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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Civil Engineering

Boğaziçi University

2015



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assoc. Prof. Osman S. Börekçi
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Bayındır, Emin Çiftçi, Hüseyin Demir, Soner Kural, Andrea Mueller, Arzu Samancı,
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ABSTRACT

MODELLING OF LONG WAVE PROPAGATION USING

THE RADIAL BASIS FUNCTION COLLOCATION

METHOD

In this thesis, the depth averaged equations of motion and continuity, satisfy-

ing certain additional conditions on the boundaries for long wave propagation will be

presented. An efficient meshless numerical scheme, which is an easily adaptable con-

vergent new technique, based on the Radial Basis Functions Collocation Method has

been employed in the model. Long wave propagation model is developed using the non-

linear shallow water equations which is applicable at different water depths, including

the run-up regions. In the model, flow resistance can optionally be introduced through

the bottom shear stress and the dispersion effect is neglected. From coastal and ocean

engineering aspects, water wave propagation to coastal zones directly effects coastal

morphology. The obtained water velocity fluxes and elevations which are an impor-

tant parameter for the force on the structures can easily be tested by interdisciplinary

works. A numerical model case study is presented. The method has proved itself to

be an efficient method in the sense of the programming effort and the computation

times. Therefore the efficiency of the method in terms of programming effort can be

attributed to the fact that collocation nodes are placed easily in the regular, irregu-

lar and adjustable computation domains. Besides, reduced computation time is also

an important issue about the efficiency of the models. Applying different RBF and

techniques were found to be a promising method for the long wave propagation and

the run-up. Thus the philosophy of this study is to bring a more elaborate, advanced,

living model in the future that can be updated and modified by the help of RBF. RBF

has the advantages of meshless structure, convergent new technique which decreases

computational time, easily formulated for hyperbolic, elliptic and parabolic problems.
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ÖZET

UZUN DALGALARININ RADYAL BAZLI FONKSİYON

KOLOKASYON METODU İLE MODELLENMESİ

Bu tezde uzun dalga yayılımı için sınırları üzerinde bazı ek koşulları sağlayan de-

rinlik üzerinde ortalaması alınmış hareket ve süreklilik denklemlerinin birlikte çözümleri

sunulmuştur. Verimli, kolay, ağsız sayısal, yakınsak yeni bir modelleme tekniği olan

radyal bazlı fonksiyon kolakasyon yöntemi kullanılmıştır. Uzun dalga yayılım mod-

eli lineer olmayan sığ su denklemlerini ki bunlar çoğu su derinliklerinde ve hatta

tırmanma senaryolarında kullanılmıştır. Model akımına direnç olarak taban sürtünmesi

isteğe bağlı eklenebilinir ve modelde yayılım etkisi ihmal edilmiştir. Kıyı ve okyanus

mühendisliği açısından, kıyı bölgeleri için su dalga yayılımı doğrudan kıyı morfolo-

jisini etkilemektedir. Yapılar üzerindeki etkisini hesaplamak için önemli bir parametre

olan elde edilen su hız ve yükseklikleri kolayca ortak disiplinler arası çalışmalarda

ve testlerde kullanılabilinir. Bir sayısal modelleme çalışması bu çalışmada sunula-

caktır. Yöntem programla çabası ve hesaplama süreleri açısından kendinin etkili bir

yöntem olduğunu kanıtlamıştır. Bu nedenle programlama çabası açışından yöntemin

verimliliği kolay yerleştirilen düzenli düzensiz ve ayarlanabilinir kolokasyon noktalarına

atfedilebilinir. Ayrıca RBF kullanarak hesaplama sürelerinin azaltılması modelin ver-

imliliği acısından önemli bir konudur. Farklı RBF ve tekniklerı uygulanması, uzun

dalga yayılımı ve tırmanma problemleri için umut verici bir yöntem olabilir. Dolayısı

ile bu çalışmanın felfesefesi; ağsız yapısı kolay adapte methodolojisi, hesaplama süresini

azaltan yakınsak yeni bir teknik oluşu, hiperbolik, eliptik ve parabolic problemlerde ko-

lay formüle edilişi, ve kolay ayarlanabilir veya düzensiz alanlarda hesaplamada zaman

tasarufu sağlamasıdır.
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1. INTRODUCTION

Intensive investigations and significant progresses have been made over the last

century in order to accurately predict wave propagation in coastal zones. Due to

the complexity of wave motion, accurate prediction still remains a challenge for coastal

engineers and scientists. Wave properties, such as the wave heights and the steepness of

wave fronts, significantly change as waves propagates towards shores and wave breaking

starts to take place in the surf zone.

In order to describe accurately the propagation of waves, it is of necessity to use

three-dimensional (3D) spaces. For most of the coastal engineering applications it is

convenient to set up approximate two dimensional models that eliminate the vertical

dependency. The main reason to establish two-dimensional (2D) models is that 3D

models are complex and demand much more computer resources to obtain numerical

solutions. In addition to this fact, 2D models are moderately good approximations to

3D models under certain conditions, i.e. small wave amplitude (the linear wave approx-

imation), small water depth (the long wave approximation) and nonlinear models such

as Boussinesq models. As a result, many investigations have been concentrated on de-

riving 2D wave equations and on developing the corresponding 2D numerical solutions.

The existing models include the ray tracing and the mild slope model (Berkhoff, 1982)

which are based on the linear wave approximation, and the nonlinear shallow water

(NSWE) model (Airy, 1845; Lamb, 1945), the Boussinesq models (Boussinesq, 1872;

Peregrine, 1967; Madsen et al., 1991; Nwogu, 1993; Wei and Kirby, 1995), the Serre

models, the Hamiltonian formulation models, and the Green-Naghdi models, which

are based on the long wave approximation. All these models have been shown to be

successful in determining wave properties accurately when applied within their ranges

of validity. These models can describe, to varying degrees of accuracy in representing

nonlinearity and dispersion, most phenomena exhibited by non-breaking waves in finite

depths.
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Airy’s theory (1845) or the NSWE model is the earliest approximate model to

describe the propagation of waves in the shallow water regions. The basic assumption

for the model is that the dispersion effect is negligibly small; however, there is no

restriction on the nonlinearity. Among the approximate long wave models, the set

of governing equations for the NSWE model has the simplest form. However, the

model works quite well for the condition that the ratio of the water depth to wave

length is small, such as in the surf zone and swash zone where the water depth is

extremely small or for simulating tides, tsunamis, and infra-gravity waves whose wave

lengths are quite large. These flows display a 3D structure due to bottom friction

and density stratification. Early numerical model, owing perhaps to limitations in

computing capability, were mostly based on the Airy (1845) theory wherein the pressure

distribution in the vertical is assumed to be hydrostatic. This approximation is known

as the Boussinesq approximation and is also part of many modern models.

A wide variety of problems, such as atmospheric flows (Charneyet al., 1950),

tidal flows (Hendershott, 1981), tidal mixing (Ridderinkhof, 1990), residual currents

(Nihoul and Ronday, 1975), storm surges (Dube et al., 1985), flows around structures

(Stelling, 1983), dam break waves (Alcrudo and Garcia-Navarro, 1993), river (Ogink et

al., 1986) and coastal currents (Wind and Vreugdenhil, 1986), lake currents (Simons,

1980), tsunamis (Shokin and Chubarow, 1980), internal waves (Garvine, 1987) and

planetary flows (Dowling and Ingersoll, 1989), can be modeled using the shallow water

equations (SWEs).

In the near shore region, where the relative water depth is shallow, the wave

amplitude may be large and the wave becomes nonlinear. The nonlinearity becomes

increasingly dominant with decreasing water depth. Hence, numerical models based

on the linear wave theory will not provide an accurate simulation of near shore wave

phenomena.

With the availability of advanced computing facilities, numerical model has be-

come an attractive means of studying wave propagation and transformation. The shift

from physical modeling towards numerical modeling has resulted in rapid developments
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of numerical methods for solving water wave equations. The greatest advantage of the

numerical model over the physical model is its ability to determine the required in-

formation at a much shorter period with a comparatively larger degree of accuracy.

Different from numerical modeling, physical modeling needs more cost, space and staff

for the set up. The same numerical model may also be used repeatedly on different

problems with only some minor modifications of boundary conditions, bathymetry and

incident wave condition.

This study is mainly concerned with the development of a meshless numerical

model to solve incompressible water wave motion based on the NSWE. Based on SWE

wave models are applicable where the water depth is much less than the horizontal scale

of motion. They are used to model tides, tsunamis and surges in coastal areas. Thus,

the main aim of this thesis is to develop and validate a numerical model to accurately

model NSWE flow in domains with fixed boundaries i.e. sponge layer treatment and

domains with moving boundaries.

NSWE models are simultaneous nonlinear partial differential equation models

representing conservation of mass and conservation of momentum. In some circum-

stances to perform a simulation and stability analysis, the NSWE can be linearized.

Analytical solutions of the linearized shallow water (LSWE) wave models have been

found only for a small number of domains of simple geometric shape. As coastal do-

mains do not have simple geometric shapes, analytical solutions do not, in general,

exist. For coastal domains, there is only limited experimental data in order to test nu-

merical solutions and for domains of flow without exact solutions the equations must

be approximately solved by numerical methods. Also, analytical solutions for domains

of flow with simple geometric shapes are very useful for testing numerical solutions.

There exist analytical solutions of both LSWE (Lamb, 1945, Ippen, 1966, Lynch

and Gray, 1978) and NSWE (Airy, 1845) for domains with fixed boundaries. Also, there

exist analytical moving boundary solutions NSWE (Carrier and Greenspan, 1958).

None of the moving boundary solutions contain friction.
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Some analytical solutions of the one-dimensional (1D) NSWE for a basin with a

horizontal bed and constant rectangular cross section will be used in this thesis; the

basin is closed at one end and at the other end has an open sea boundary, at which

there is sinusoidal forcing.

The developed meshless numerical model is coded in Fortran’90 and validated

both against analytical solutions for flow in a basin of constant depth and in a basin of

linearly varying depth. In this thesis a convergence study of the model is carried out

for a rectangular basin of linearly varying depth using analytical solutions of the one

dimensional linear shallow water wave equations.

The structure of this thesis is outlined below. Chapter 2 presents the literature

review of thesis. Chapter 3 presents the mathematical background of the model flow.

The governing equations of the 2D NSWE and its derivation are given in detail. Chap-

ter 4 presents the numerical model of the flow is investigated. RBF interpolation and

RBFCM are reviewed. Numerical formulation by RBF, boundary and initial condi-

tions and time marching types are presented in details. The model’s solution strategy

and convergence also given in Chapter 4. In Chapter 5, fixed and moving boundary

analytical solutions reviewed. Theoretical development of the long wave propagation

and run-up model on a sloping beach for case studies 1 and 2 is given. Long wave

propagation problems in 1D and 2D with sponge treatment are given in case studies 3

and 4. In Chapter 6 the conclusions of this thesis are presented with suggestions for

further research.
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2. LITERATURE REVIEW

The linear water wave theory is based on the assumptions that the wave amplitude

be everywhere small compared with the water depth. Nevertheless this cannot be true

around shoreline where water depth is close to zero, therefore linear theory is not a good

approximation around shoreline. This is because the wave speed from linear theory

approaches to zero when wave propagates from deep water to the shoreline and finally,

the waves gets reflected from the bottom, run up the beach as long as its momentum is

nonzero and run-up stopped at the point where its momentum is zero. There is no run-

up and run-down process on the beach for linear theory which is not a physical reality.

The reason for this nonphysical result is that nonlinear effects are neglected. When

including nonlinear terms, the wave speed never reaches to zero at the real shoreline

point thus observing wave running up and down on the beach, instead of stopping at

the nonmoving shoreline. In nonlinear theory, the run-up is defined on the physical

ground neglecting only the viscous effects by the wave elevation.

The physical picture for the longshore variations of run-up due to oblique inci-

dence upon beaches is a 3D problem. The run-up of waves normally incident upon

beaches is 2D, x and z. The governing equations for the (x,t) domain formulation

for normal incidence is a special case and have one space, x and one time, t. Due to

the difficulties of capturing the moving shoreline of this nonlinear problem, results to

only few analytic studies have been reported since the 1950’s. Analytical solutions to

problems of nonlinear wave run-up on planar beaches exist only for the special case of

2D (x,t) waves disregarding dispersion and other effects.

Some planar beach problems of run-up have also been investigated. Carrier and

Greenspan (1958) presents an elegant analytical solution, Carrier (1966) and Tuck and

Hwang (1972) introduce a cunning transformation to map the NSWE into a linear form,

Spievogel (1975) apply Carrier and Greenspan’s theory. Many studies in the literature

from a mathematical point of view, is the extension of the Carrier and Greenspan

(1958) transformation used early in the theory of water waves.



6

In addition to these studies, Synolakis (1987) developed an approximate nonlinear

theory for the run-up of solitary waves by introducing a matching condition at the

junction of a sloping plane beach and exterior uniform ocean. Synolakis’ conclusion

which is made under linear wave assumption, is that the maximum run-up predicted

by the nonlinear theory is identical with the maximum run-up predicted by the linear

theory. The SWEs do not have solutions for prorogating wave of permanent form,

even in water of uniform depth. A solitary wave continuously becomes more steepened

forward as computation time goes on for the lack of dispersive effects to balance out the

wave steepening according to this model. One and a half decade ago, Li and Raichlen

(1999) have found a nonlinear correction to Synolakis’s formula for which nonbreaking

waves on beaches decreases as the beach slope steepens.

In three dimensions (2+1), Carrier and Noiseux (1983), based on LSWE theory,

analyzed the reflection of a long wave obliquely incident on sloping plane beach. Later,

Borcchini and Peregrine (1996) introduce a weakly nonlinear theory for calculating run-

up at small angles of incidence. In 1998, Kanoğlu and Synolakis presented long wave

evolution and run-up on piecewise linear 1D and 2D bathymetries with a numerical

model of LSWEs.

In numerical studies, the difficulty is capturing moving shoreline on sloping

beaches. This has been undertaken popularly by moving boundary from wet grid

to dry grid or by extrapolation in time steps.

Numerical treatments of shoreline starts with Hibberd and Peregrine (1979) who

studied the run-up of a sloping beach by using the finite difference method to compute

numerical solutions of the SWE. Gaining information around the shoreline is mainly

achieved by linear extrapolation which is not physical and introduces considerable

errors.

Long-wave equations in the Lagrangian description which account for weakly non-

linear and dispersive processes for wave propagation not to avoid the moving shore-

line difficulty is used by Pedersen and Gjevik (1983), Zelt (1986, 1991) and Zelt and
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Raichlen (1990). This approach produces additional nonlinear terms in the basic gov-

erning equations which makes the solution more difficult.

Assuming potential theory and using the finite difference method (FDM), finite

element method (FEM) or the boundary integral equation method (BIEM), the run-up

problem was solved by Kim et al., (1983), Grilli (1997) and Grilli et al., (1997). In the

Kim et al., (1983) study, the whole free surface including the shoreline becomes a mov-

ing boundary. The BIEM solutions are 2D. Their achievement in resolving nonlinear

effects is noteworthy.

Titov and Synolakis (1995) treated the shoreline by adding an artificial relation

which is not physical. This term, zero velocity gradient (uz=0) introduces some con-

siderable error in the computation of run-up.

Tuba Ozkan-Haller and Kirby (1997) present, a Fourier-Chebyshev collocation

method for the SWE in resolving a problem of periodic 3D shoreline run-up for normal

incidence of ocean waves on periodically curved beach, yielding noteworthy results.

In experimental studies, Hall and Watts (1953) investigated the vertical rise of

solitary waves on impermeable slopes. Synolakis (1987) updated Hall and Watts’s

(1953) maximum run-up data. Yeh et al., (1989) introduce bore propagation near the

shoreline on a uniform sloping beach. Zelt (1991) studied the run-up of nonbreaking

and breaking solitary waves on plane beaches. Liu et al., (1995) presented a series

of large scale laboratory experiments on the interactions of solitary waves climbing

up a circular island. Li and Raichlen (1999) applied advanced technologies to their

laboratory measurements of wave evolution.

In summary, the literature seems to have focused on the NSWE for modeling 2D

ocean waves on shelves and beaches (Liu et al., 1995) while disregarding the geometry

of the third dimension and the dispersive effects.
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When the nonlinear effects are taken into consideration, the exact governing

equations for determining a moving inviscid shoreline are introduced based on the

local Lagrangian coordinates. A numerical scheme has been applied for the efficient

evaluation of these governing equations by Zhang (1996). Zhang’s scheme is shown

to accurately approximate the analytic solution of the shallow water equations. The

maximum run-up of solitary wave predicted in the Zhang’s study (1996) by the SWE

depends on the initial location of the solitary wave. The maximum run-up of solitary

wave changes in value because of the fact that the wave becomes increasingly more

steepened in the absence of dispersive effects in the long travel time. It is larger

than that predicted by linear long wave theory. For this reason, the dispersive effects

are important especially in 2D problems to keep nonlinear effects balanced at the

equilibrium and tend to reduce the run-up. Thus, the main objective is to have the first

principles of coastal physics well understood for this ideal case without the additional

effects of dispersion and dissipation (including wave breaking, bottom friction, wind

stress, Coriolis effects, etc., as energy sources and sinks). These additional effects need

to be taken into account in further studies since these effects become significant at

least around the moving shoreline where the water depth vanishes. Hence, linear run-

up theory has validity, even though it cannot predict, equally accurately as nonlinear

theory of the transient wave profiles near the moving shoreline and the time for reaching

maximum run-up.

Throughout the history of long wave investigations or tsunami investigations, var-

ious approaches were used to determine the hydrodynamics by laboratory experiments,

analytical calculations and numerical computations. Numerical modeling of propaga-

tion and run-up is widely studied by many researchers. There are different approaches

in terms of the algorithms used in numerical models. The analysis are performed by

numerical modeling by applying valid calculation theories. It is necessary and essential

to validate and verify the numerical modeling tool before analyzing the wave motion.

Some studies including numerical modeling approaches and validation and verification

of numerical models are given in the following;
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For the propagation of waves; many numerical models are used to make short-

term and long-term predictions for academic and operational purposes. Among these,

the most commonly used numerical models are the Cornell Multi-grid Coupled Tsunami

Model (COMCOT) (Liu et al., 1994; 1998), Tohoku University’s Numerical Analysis

Model for Investigation of Near-field Tsunami (TUNAMI-N2) (Imamura, 1995) and

Method of Splitting Tsunami (MOST) (Titov and Synolakis, 1998). These three models

solve NSWE using the FDM. There are also models developed at the using the FVM

such as HyFlux2 that is used by the European Commission Joint Research Center

for tsunami forecasting and warning all over the world (Franchello and Krausmann,

2008). COMCOT, TUNAMI-N2 and MOST have been validated at National Science

Foundation workshop in Catalina Island in 1995 and 2004 by comparing their results

with benchmark problems. These three codes were the only ones that can solve wave

motions in 2D at that time (Synolakis and Bernard, 2006).

TUNAMI-N2 and Tsunami Simulation/Visualization Code (NAMIDANCE), which

were originally authored for the Tsunami Inundation Modeling Exchange (TIME) pro-

gram under the supervision of United Nations Educational, Scientific and Cultural

Organization (Goto et al., 1997; Shuto et al., 1990; Imamura, 1989) in Disaster Con-

trol Research Center, Tohoku University in Sendai, Japan, was modified, improved

and registered in United States of America granting copyright to Professors Imamura,

Yalciner and Synolakis in 2000 (Yalçıner et al., 2001; Yalciner et al., 2002; Yalçıner et

al., 2003; Yalçıner et al., 2004; Kurkin et al., 2003; Zahibo et al., 2003; Zaitsev et al.,

2002; Zaitsev et al., 2008; Özer et al., 2008, 2011; Yalçıner et al., 2010, 2012).

The numerical modeling has been continuously improved, and now it is one of

the most operative tools used for the prediction of hazards (Shuto, 1991). The com-

putations are principally based on the long wave theory (Shuto, 1991). Shuto (1991)

compared the numerical results of three long wave theories in deep water to discuss the

dispersion effects on propagation: linear Boussinesq, Boussinesq and linear long wave.

Kirby (1996) investigated dispersive long waves in water of variable depth and

Shi et al., (2012) describe the theory and numerical implementation of a fully nonlinear



10

Boussinesq wave model called Fully Nonlinear Boussinesq Wave Model (FUNWAVE)

which is a phase-resolving, time-stepping Boussinesq model for ocean surface wave

propagation in the nearshore.

Imamura (1995) described a method of setting initial and boundary conditions of

the linear long wave theory and asserted that long travel distance may yield dispersion

of wave components, and therefore physical dispersion term should be included, i.e.

the equations of higher order approximation should be used.

Sato (1996) reports a numerical simulation of long wave propagation for the

1993 Southwest Hokkaido earthquake tsunami. The model is based on the Boussinesq

equation, which includes the effects of frequency dispersion. Energy dissipation due to

breaking at the tsunami wave front is modeled. The validity of the model was tested

with the existing laboratory data of dispersive wave trains breaking on a slope. The

model was then applied to the simulation of the 1993 Southwest Hokkaido earthquake

tsunami around the southern part of Okushiri Island. Comparison with the physical

model demonstrates that it is the dispersion of the wave front which caused focusing

of the wave energy at the narrow region on the lee side of the island, consequently

increasing the tsunami height.

One of the most comprehensive studies about numerical modeling is Synolakis and

Bernard (2006) which collect and summarize the approaches for long wave numerical

calculations. They emphasize the improvements in simulations by numerical modeling

after the devastating 2004 Sumatra tsunami.

Yalçıner and Synolakis give a brief review of generation, propagation and coastal

amplification of tsunamis (in Sumer et al., 2007).

Dao and Tkalich (2007) studied the sensitivity of the modified version of the

numerical model TUNAMI-N2 considering astronomic tide, sea bottom friction, dis-

persion, Coriolis force, and spherical curvature by modeling the 2004 Sumatra event

as the tsunami scenario. The code was modified and the resulting version is called
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TUNAMI-N2-NUS which solve NSWE. The code uses the Boussinesq Equations when

the dispersion effect is considered.

The validation and verification of tsunami numerical models are essential if the

outputs of the models will be used by governmental policies in emergency evacuation

planning. Synolakis et al., (2008) discussed analytical, laboratory and field benchmark

tests with which tsunami numerical models can be validated and verified. The bench-

mark tests are described in detail as well as their expected solutions. They also discuss

the scientific and operational evaluation of the model and the necessity of continuous

validation and verification processes in the case that new knowledge and data are ac-

quired. It is emphasized that operational tsunami models have to be tested after each

tsunami event with real time data for hind casting.

Besides numerical modeling, there are various studies regarding the analytical

solutions of tsunami propagation and run-up most of which are tested and compared

with the results of laboratory experiments. The analytical solutions of tsunamis are

reviewed and some of the studies in literature are summarized in the following.

One of the earliest analytical solutions of tsunami motion is that of Thacker (1981)

which introduced some exact solutions of the NSWE. The exact solutions correspond

to time-dependent motions in parabolic basins and the shoreline is assumed to move

freely. Thacker provided a solution for a flood wave if the parabolic basin is reduced to

a planar one. These exact solutions provide a valuable comparison test for numerical

models. It is also emphasized that since the numerical integration of NSWE with the

required assumptions is not easy, it is more practical to use the analytical solutions.

Liu et al., (1995) investigated run-up of solitary waves on a circular island. They

studied the interactions of solitary waves climbing up a circular island and carried out

a series of large-scale laboratory experiments with waves of different incident height-

to-depth ratios and different crest lengths. They also developed a numerical model

based on the 2D SWE including run-up calculations. Under certain conditions, they

observed run-up and wave trapping on the back side of the island.
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Kanoğlu and Synolakis (1998) investigated long wave run-up on piecewise linear

topographies and developed a general solution method for determining the amplifica-

tion factor of different ocean topographies consisting of linearly varying and constant-

depth segments to study how spectral distributions evolve over bathymetry. They used

their results to study the evolution of solitary waves.

Kanoğlu (2004) solved the initial value problem of the nonlinear evolution, shore-

line motion and flow velocities of long waves climbing sloping beaches analytically for

different initial wave forms. He proposed that any initial wave form can first be rep-

resented in the transformation space by the linearized form of the Carrier-Greeenspan

transformation for the spatial variable, and then the nonlinear evolutions of these

initial waveforms can be directly evaluated. After the necessary transformations, he

introduced a simplified equation for the calculation of run-up/run-down motion of the

shoreline. This approach is applied to Gaussian and leading-depression N-wave initial

forms presented by Carrier et al., (2003), and the results are compared. Kanoğlu (2004)

concluded that his study is simpler than that of Carrier et al., (2003) and produces

identical results since his analysis does not need to solve singular elliptic integrals. He

also suggested that, based on the convenience of NSWE for the quantitative and quali-

tative predictions, the method outlined in his study may be useful to assess the impact

of long waves generated by seafloor displacements and to validate numerical codes.

The above mentioned method described in Kanoğlu (2004) is also applied to dif-

ferent N-wave initial forms, such as leading-depression isosceles N-wave and generalized

N-wave initial forms. Tadepalli and Synolakis (1994) use a first-order theory for the

N-wave forms and derive asymptotic results for the maximum run-up. They stated

that a class of N-shaped waves was found in their study with very interesting behavior

which is said to be a new phenomenon for tsunami run-up studies. Similar trends were

observed by Tadepalli and Synolakis (1994) in their maximum run-up results.
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3. THE MATHEMATICAL MODEL OF THE FLOW

3.1. Background

Starting from the mathematical description of the physical phenomena the math-

ematical statement of fundamental physical principles results in differential equations.

In fluid flow calculations, differential equations express a certain conservation principle

and each equation embodies a certain physical quantity as its depended variable, like

velocity or mass fraction and implies a balance between the various factors that has

an effect on the variable. One of the problems of physics and engineering is the propa-

gation problem. Propagation problems are initial boundary value problems that have

an unsteady state and the subsequent behavior of a system given the initial state that

needs to be predicted. The governing equations for a well-posed propagation problem

are parabolic or hyperbolic.

The Navier-Stokes equations (NSE) are derived from the general principle of mass

and momentum conservation that is able to describe any type of fluid flow including

water waves. Without a hydrostatic pressure assumption and with the inclusion of a

proper turbulence model, it is possible for an NSE model to simulate difficult wave

problems, e.g., wave-structure interactions, wave-current interactions, and breaking or

nonbreaking waves. With almost no theoretical limitation, this type of model seems

to be the best choice. However, the main barrier that prevents the wide application

of such a model is the expensive computational effort. Thus it is restricted to the

simulation of local wave phenomena near the location of interest. To solve this ex-

pensive computational effort, depth averaged models such as Wave spectral models,

Mild-slope equation wave models, Quasi-three-dimensional hydrostatic pressure wave

models, Boussinesq equation wave models or SWE wave models need to be established

rather than deep varying ones according to their modeling capability and validity.

To model long waves, SWE model is more likely to be adopted. Compared with

the Boussinesq model, the SWE model is simpler because the flow is assumed to be
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uniform across the water depth and the wave-dispersive effect is neglected. The SWE

model has a wide application range in modeling tsunami, tides, storm surges, and river

flows. The main limitation of the SWE model is that it is suitable only for flows whose

horizontal scale is much larger than vertical scale.

3.2. Governing Equations of the System

In the fluid flow research, the physical phenomena are represented by the conser-

vation of mass and momentum. In the most general case the NSE are the governing

differential equations. Representing the fluid flow, The SWE are derived from these

equations under some assumptions and relevant theory. The assumptions considered

in deriving the SWE can be summarized as follows.

First assumption, the fluid is well-mixed vertically with a hydrostatic pressure

gradient. The vertical acceleration is dominated by gravity, so that the vertical pressure

profile is hydrostatic. The pressure at the surface of the fluid is atmospheric. Secondly,

the density of the fluid is constant and large salinity variations or temperature vari-

ations in the vertical direction would cause a variable density. Thirdly, water waves

of long wave lengths are studied. Short wave phenomena where vertical acceleration

is important cannot be modeled. Last assumption, the viscosity term is negligible.

Kinnmark (1989), referring to Dronkers (1964), stated that the viscosity term is often

physically negligible.

3.2.1. Three Dimensional Equations

To determine the calculation in water bodies, one need to solve the set of time

averaged momentum and continuity equations derived from the Reynolds-averaged

NSEs (Kowalik and Murty, 1993) in rectangular system of coordinates given by

Du

Dt
− fv = −1

ρ

∂p

∂x
+ A∇2u (3.1)
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Dv

Dt
+ fu = −1

ρ

∂p

∂y
+ A∇2v (3.2)

Dw

Dt
= −1

ρ

∂p

∂z
− g + A∇2w (3.3)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (3.4)

where u, v and w are the mean velocity components in x-y- and z- directions, respec-

tively, A is mixing (diffusion) coefficient, p is the pressure and ρ is the density. The

operator D/Dt is the material derivative.

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(3.5)

In these equations, the Coriolis parameter,

f = 2Ω sinΘ (3.6)

is a function of the earth’s angular velocity Ω = 7.29 ∗ 10−5s−1 and the latitude, Θ.

Considering the fact that the horizontal dimensions of the water body are usually

much larger than its vertical dimensions, for oceanic flows, the mixing (diffusion) term

is split into horizontal and vertical mixing terms as

A∇2u = Ah∇2
hu+ Az

∂2u
∂z2

A∇2v = Ah∇2
hv + Az

∂2v
∂z2

(3.7)

where the parameters Ah and Az are the horizontal and vertical mixing coefficients,
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respectively, and the 2D Laplace operator defined as,

∇2
h =

∂2

∂x2
+

∂2

∂y2
(3.8)

Therefore from Equation 3.1 to Equation 3.3 can be rewritten as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+ Az

∂2u

∂z2
+ Ah∇2

hu (3.9)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+ Az

∂2v

∂z2
+ Ah∇2

hv (3.10)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g + Az

∂2w

∂z2
+ Ah∇2

hw (3.11)

The hydrostatic approximation is only related to the vertical component of the

equation of the motion, Equation 3.3 or Equation 3.11. If the flow is considered to be

predominantly horizontal and the vertical acceleration is small compared to the grav-

itational acceleration, such as in coastal and estuarine-flows, the equation of vertical

motion can be reduced to the hydrostatic law (Proudman, 1953) and becomes

−1

ρ

∂p

∂z
− g = 0 (3.12)

Equation 3.12 indicates that the pressure variation in the vertical direction is hydro-

static. When we assume that the pressure at the surface is only atmospheric, the

solution to Equation 3.12 simply is

p− pa = ρg (η − z) (3.13)

where pa is the atmospheric pressure.
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Although the vertical acceleration was assumed to be negligible and the vertical

equation has been reduced to the equation of hydrostatic, the vertical velocity still

can be calculated from Equation 3.4, the equation of continuity. Substitution of these

results into Equation 3.9 and Equation 3.10, the system of equations with hydrostatic

approximation yields

Du

Dt
− fv = −1

ρ

(
∂pa
∂x

)
− g ∂η

∂x
+

1

ρ

(
∂

∂z
Az
∂u

∂z
+ Ah∇2u

)
(3.14)

Dv

Dt
+ fu = −1

ρ

(
∂pa
∂y

)
− g∂η

∂y
+

1

ρ

(
∂

∂z
Az
∂u

∂z
+ Ah∇2u

)
(3.15)

The SWE are composed of the depth integrated horizontal components of the

momentum equation and the continuity equation. Both the sea surface

z = η(x, y, t) (3.16)

and the sea bottom

z = −h(x, y, t) (3.17)

may in general be functions of x, y and t as seen in Figure 3.1. At both the sea surface

and at the bottom, kinematic boundary conditions must be satisfied. Differentiating

these expressions in time one can obtain the boundary conditions. The Kinematic free

surface boundary condition (KFSBC) which states a fluid particle remains on the free

surface, meaning, the free surface is a sharp boundary between the two fluids with no

flow through it, has been used as a boundary condition and gives,

w (η) =
dη

dt
=
∂η

∂t
+
∂η

∂x

∂x

∂t
+
∂η

∂y

∂y

∂t
=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(3.18)
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Figure 3.1. Cross Section of a Water Body.

Thus, the forces acting on the fluid at the free surface are in equilibrium known

as the momentum conservation or the dynamic condition at the free surface. At the

bottom the kinematic bottom boundary condition (BBC) which requires that the flow

be parallel to the bottom becomes,

w (η) =
dη

dt
=
∂η

∂t
+
∂η

∂x

∂x

∂t
+
∂η

∂y

∂y

∂t
=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(3.19)

The depth averaged form of the continuity equation is obtained by integrating

three dimensional continuity Equation 3.4 over depth using the Leibnitz Rule (Ap-

pendix A) for changing the order of differentiation and integration in the second and

third integrals and direct evaluation of the first and last integrals yields

η∫
−h

∂ρ

∂t
dz =

∂

∂t

η∫
−h

ρdz (3.20)

η∫
−h

∂(ρu)

∂x
dz =

∂

∂x

η∫
−h

ρudz − ρu
∂η

∂x

∣∣∣∣∣
z=η

− ρu∂h
∂x

∣∣∣∣∣
z=−h

(3.21)
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η∫
−h

∂(ρv)

∂y
dz =

∂

∂y

η∫
−h

ρvdz − vρ
∂η

∂y

∣∣∣∣∣
z=η

− ρv∂h
∂y

∣∣∣∣∣
z=−h

(3.22)

η∫
−h

∂(ρw)

∂z
dz = ρ

(
w|η − w|−h

)
(3.23)

Using the boundary conditions given in Equation 3.18 and Equation 3.19, the depth

average continuity equation becomes

η∫
−h

(
∂ρ
∂t

+ ∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

)
dz = ∂

∂t

η∫
−h
ρdz + ∂

∂x

η∫
−h
ρudz + ∂

∂y

η∫
−h
ρvdz

+ρ

[
w − ∂η

∂t
− u∂η

∂x
− v∂η

∂y

]
z=η︸ ︷︷ ︸

=0(KFSBC)

−ρ
[
w +

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

]
z=−h︸ ︷︷ ︸

=0(BBC)

= 0 (3.24)

or

∂

∂t

η∫
−h

ρdz +
∂

∂x

η∫
−h

ρudz +
∂

∂y

η∫
−h

ρvdz = 0 (3.25)

For an incompressible fluid, the density is constant over the depth, knowing that we

talk about a vertically well-mixed fluid phenomenon, and if we define depth averaged

quantities in the following manner,

ū =
1

d

∫ η

−h
udz v̄ =

1

d

∫ η

−h
vdz (3.26)

where d = h+ η than Equation 3.25 integrates to

∂

∂t
(h+ η) +

∂

∂x
[ū(h+ η)] +

∂

∂y
[v̄(h+ η)] = 0 (3.27)

where ū and v̄ are the depth averaged values of u and v respectively.

Equation 3.27 can be written by dropping the overbars and the final form of the

continuity equation in water bodies is obtained



20

∂d

∂t
+
∂ (ud)

∂x
+
∂ (vd)

∂y
= 0 (3.28)

The vertically averaged forms of momentum equations are obtained by a series of

virtually identical steps. For the sake of brevity the specific arguments will be applied

only to Equation 3.14 with the integrated form of Equation 3.15 deduced by analogy.

Starting with the left hand side (LHS) of the x-component of the momentum equation,

with a constant ρ is

LHS =
∫ η

−h

∂u

∂t
dz +

∫ η

−h
u
∂u

∂x
dz +

∫ η

−h
v
∂u

∂y
dz +

∫ η

−h
w
∂u

∂z
dz −

∫ η

−h
fvdz (3.29)

and application of Leibnitz’ rule to the local acceleration we have

∫ η

−h

∂u

∂t
dz =

∂

∂t

∫ η

−h
udz − u|

η

∂η

∂t
− u|−h

∂h

∂t
(3.30)

Noting that

u
∂u

∂x
=
∂u2

∂x
− u∂u

∂x
, v

∂u

∂y
=
∂(uv)

∂y
− u∂v

∂y
and w

∂u

∂z
=
∂(uw)

∂z
− u∂w

∂z
(3.31)

Application of Leibnitz’ rule to the first two convective acceleration terms in

Equation 3.14 are transformed as,

∫ η

−h
u
∂u

∂x
dz =

∂

∂x

∫ η

−h
u2dz −

∫ η

−h
u
∂u

∂x
dz − u2

∣∣∣
η

∂η

∂x
− u2

∣∣∣
−h

∂h

∂x
(3.32)

∫ η

−h
v
∂u

∂y
dz =

∂

∂y

∫ η

−h
uvdz −

∫ η

−h
u
∂v

∂y
dz − (uv)|η

∂η

∂y
− (uv)|−h

∂h

∂y
(3.33)
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and the direct integration for the last convective acceleration term is

∫ η

−h
w
∂u

∂z
dz =−

∫ η

−h
u
∂w

∂z
dz + (uw)|η − (uw)|−h (3.34)

The combination of the convective horizontal terms from Equation 3.32 to Equation

3.34 is

∂
∂t

∫ η
−h udz +

∂
∂x

∫ η
−h u

2dz + ∂
∂y

∫ η
−h uvdz

−u|η

(
−w +

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

)
︸ ︷︷ ︸

=0(KFSBC)

−u|−h

(
−w +

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

)
︸ ︷︷ ︸

=0(BBC)

−
∫ η
−h u

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
︸ ︷︷ ︸

=0(continuity)

dz

(3.35)

The term in this equation multiplied with u(η) is zero by the KFSBC, Equation 3.18

and the term multiplied with u(−h) is zero by the BBC, Equation 3.19. The last term

in Equation 3.35 is zero since the term in the brackets is the continuity Equation 3.4.

The LHS of Equation 3.14 may now be written as

LHS =
∂

∂t

∫ η

−h
udz +

∂

∂x

∫ η

−h
u2dz +

∂

∂y

∫ η

−h
uvdz −

∫ η

−h
fvdz (3.36)

where the additional depth averaged quantity is defined in the following manner,

ūv̄ =
1

d

∫ η

−h
uvdz (3.37)

Then, LHS of the equation is

LHS = d

(
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
− f v̄

)
(3.38)

The integration of the right hand side (RHS) of the x-component of the momentum is
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as follows

RHS =

η∫
−h

1

ρ

∂pa
dx

dz −
η∫

−h

g
∂η

dx
dz +

η∫
−h

∂

dz
Az
∂u

∂z
∂z +

η∫
−h

Ah∇2udz (3.39)

The depth average of the pressure term is

η∫
−h

1

ρ

∂pa
∂x

dz =
1

ρ

∂pa
∂x

(h+ η) (3.40)

η∫
−h

g
∂η

∂x
dz = g

∂η

∂x
(h+ η) (3.41)

The depth average of the mixing term in the vertical is

ρ

η∫
−h

∂

∂z

(
Az
∂u

∂z

)
dz = τ sx−τ bx (3.42)

ρ

η∫
−h

∂

∂z

(
Az
∂v

∂z

)
dz = τ sy−τ by (3.43)

where τ bx, τ
b
y is the bottom shear stresses, τ sx , τ

s
y is the wind induced surface shear

stress in the x-direction and y- direction respectively. The components of the stress

are defined as,

ρAz
∂u

∂z
= τx and ρAz

∂v

∂z
= τy (3.44)

The depth average of the mixing term in the horizontal is

η∫
−h

Ah∇2udz = dAh∇2ū (3.45)
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and then Equation 3.39 turns to,

RHS = d

1

ρ

∂pa
∂x

+ g
∂η

∂x
+

(
τ sx − τ bx

)
dρ

+ Ah∇2ū

 (3.46)

Writing the full equation and dropping the overbars,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −1

ρ

∂pa
∂x
− g ∂η

∂x
+

(
τ sx − τ bx

)
ρd

+ Ah∇2u (3.47)

Also, with similar applications the integration of the y-momentum Equation 3.15

can be written as,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− f u = −1

ρ

∂pa
∂y
− g∂η

∂y
+

(
τ sy − τ by

)
ρd

+ Ah∇2v (3.48)

At scales less than 10 km the mixing in the horizontal, Ah, is usually negligible in

comparison to the mixing in the vertical and at distances larger than 1km the Coriolis

term begins to dominate over nonlinear terms which can be disregarded (Kowalik

and Murty, 1993). The pressure term in the depth averaged form of the momentum

equations in x-direction and y-direction in Equation 3.47 and Equation 3.48 is ∂pa/∂x

and ∂pa/∂y. However the atmospheric changes are not as large as those in oceans and

open seas, therefore the pressure terms are neglected in the present study.

Hence the momentum and equations with Coriolis term and continuity equation

in the present study can be summarized without shear stresses on the surface and

bottom in non-conservation form as follows,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −g ∂η

∂x
(3.49)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −g∂η

∂y
(3.50)

and

∂d

∂t
+
∂ (ud)

∂x
+
∂ (vd)

∂y
= 0 (3.51)

Figure 3.2. A Typical Vertical Cross Section and Definition of Parameters.

With the vertical coordinates located below the bottom, as shown in Figure 3.2,

one can rewrite the equations in terms of the variation of the total flow depth, d and

with the slopes defined below,

∂η

∂x
=
∂d

∂x
+
∂H

∂x
and

∂η

∂y
=
∂d

∂y
+
∂H

∂y
(3.52)

Defining z = η → s = d+H, Sx
0 = −∂H

∂x
and Sy

0 = −∂H
∂y

where is bottom slope in the
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x and y directions, respectively. H is the elevation from the datum plane to the bed,

∂η

∂x
=
∂d

∂x
− Sx

0 and
∂η

∂y
=
∂d

∂y
− Sy

0 (3.53)

and Equation 3.52 yields,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂d

∂x
+ gSx

0 (3.54)

∂v

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g∂d

∂y
+ gSy

0 (3.55)

∂η

∂t
+
∂ (ud)

∂x
+
∂ (vd)

∂y
= 0 (3.56)

These first two momentum Equation 3.54 and Equation 3.55, with the continuity Equa-

tion 3.56 will be used for the long wave propagation with RBFs in the following sections.
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4. THE NUMERICAL MODEL OF THE FLOW

4.1. Background

A wide list of numerical techniques can be chosen to attempt to solve the reduced

set of differential equations through a process of mathematical modeling. It is not easy

to obtain the exact solutions, so numerical methods must be resorted to. There are

a lot of numerical techniques in the literature. The most common methods are the

FDM, FEM, and Finite Volume Method (FVM); which can be classified as mesh-based

domain discretization techniques. Another popular scheme is the Boundary Element

Method (BEM), which provides numerical solutions to boundary integral equations.

BEM differs from traditional methods in the sense that only the boundary needs to

be discretized and BEM is an integral method thus, the dimension of the problem is

reduced.

These conventional methods are derived from assumptions of local interpolation

schemes, which require a mesh to support the localized approximations. Even though,

significant advances have been made in the area of mesh generation over the last few

decades, it still remains a complex and time consuming process, particularly for com-

plex high-dimensional geometries and evolving boundaries. In general it can be said

that meshing is an issue that over-complicates the art of numerical modeling.

Being different from mesh-based methods, a class of new methods, known as

meshless methods, has been developed, which are also referred to in the literature as

meshfree, element-free, gridless, cloud methods. In mesh-free methods, physical domain

is discretized into a scattered set of points and uses shape functions to interpolate the

field variables at a global level, there is no dependency on a mesh generation program

and computed results are generally smooth therefore, it requires no post-processing.

Meshless methods can be grouped into two according to their discretization

scheme as Galerkin-based Meshless Method and Collocation based Meshless Method.
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The first meshless method which is developed in the late 1970’s is the Smooth

Particle Hydrodynamics method. Nayroles et al., (1992) developed the Diffuse Ele-

ment Method for structural analysis which is later improved to Element-Free Galerkin

method by Belytschko et al., (1994). After that, many meshless methods were pro-

posed, such as the Reproducing Kernel Particle Method, the Natural Element Method,

the free-mesh method, the finite spheres method, the local Petrov-Galerkin method

and the h-p cloud method, all of which are representatives of Galerkin-Based Meshless

Method which has a high accuracy and good stability. They need numerical integration

to form the discretized system equations. The main drawback is that the integrals in

the weak form must be evaluated properly.

Collocation based Meshless Methods use the strong form of the governing equa-

tions to avoid numerical integration in deriving the discretized system equations. Finite

Point Method, Point Collocation Formulation, Dual Reciprocity Method, Least-Square

Collocation Meshless Method, and RBFCM all belong to this group. These methods

are very efficient due to their implementation and independence of problem dimension.

A comparative analysis of these methods can be found in Viana et al., (2007) and

Nguyen et al., (2008). RBFCM is the method used in this thesis.

4.2. RBF Interpolation and Collocation Method

To majority of scientific and engineering community, RBF which uses the one-

dimensional distance variable irrespective of dimensionality has become a quite brand-

new concept. The RBF method was first used by Hardy (1971) for the interpolation of

geographical scattered data, and later used by Kansa (1990a; 1990b) for the numerical

solution of partial differential equations (PDEs). Since the pioneering works of Franke

(1982) who presented a review of several types of RBFs for scattered data interpolation,

and works of Johnson (1985) and Kansa (1990a; 1990b), the research into the RBF

theory and its applications have grown. In the following studies the effectiveness of

the technique was demonstrated by Goldberg and Chen (1997) and investigations on

applications to Initial value problems (IVP) have been carried out by Hon et al., (1997).
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RBF has been successfully applied to a number of areas such as convection-

diffusion problems (Boztosun, et al., 2002), nonlinear problems (Hon, 1997; Hon and

Mao, 1998; Shu et al., 2004; Sarra, 2004; Williams and Jensen, 2000), heat conduction

problems (Lui and Lu, 2005), and free boundary problems (Soroushian and Farjoodi,

2006) and heat transfer problems (Zerroukat et al., 2000 and Chantasiriwan, 2007).

To demonstrate the RBF theory clearly, the function u is first approximated with

global RBF fij, as;

ubi = fijα
b
j (4.1)

ubi (x, t) =
N∑
j=1

f (rij)α
b
j =

N∑
j=1

f (∥xi − xj∥)αb
j (4.2)

where i denotes the node on the domain,b s the time step, N refers to number of nodes

defined on the domain, ∥ . ∥ denotes the common choice of Euclidean norm, the nodes

xj,= 1, 2, ..., N are the centers of the RBF interpolant and can be chosen arbitrarily in

the domain of interest, hence creating a truly meshfree method. “r” is the distances

between the nodes on the domain in 3D denoted with the Pythagorean relations and

defined in Equation 4.3 and αb
j’s are the unknown coefficients to be calculated at the

time instant, b. The only geometric property that is used in an RBF approximation

is the pairwise distances between points that are easy to compute in any number of

space dimensions

rij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (4.3)

Let’s call the elements of f (∥xi − xj∥ , cj) which are the elements of matrix F as shown
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in Equation 4.4 and the free parameter, cj is defined as the shape parameter.

F =



f11 f12 . f1N

f21 . . .

. . . .

fN1 . . fNN


(4.4)

Then Equation 4.1 may be organized as,

 F




α1

.

αN


b

=


u1

.

uN


b

(4.5)

The method works with points scattered throughout the domain of interest, and the

RBF interpolant is a linear combination of RBFs. Given scalar function values ui =

u (xi, c) the expansion coefficients αb
j are obtained by solving a system of linear equation

as given in Equation 4.5 where the interpolation matrix satisfies f (∥xi − xj∥ , cj). At

each time step, b, the coefficient matrix remains constant, which means while αb
j changes

the u values change. The mathematical reasoning, derivations and applications to

different fields can be found in Buhmann (2003), Wendland (2004) and Fasshauer

(2007).

This kind of meshless method in the field of function approximation instead of

derivative approximation is due to the pioneering effort of Kansa (1990a; 1990b), who

solved PDEs by collocation employing RBF. This method is known as the unsymmet-

ric RBFCM where the unknown function is expanded in terms of RBFs. RBFCM

possesses the following advantages; First of all, it is a truly mesh-free method, and is

independent of spatial dimension in the sense that the convergence order is of O
(
hd+1

)
;

where h is the density of the collocation points and d is the spatial dimension (Kansa

and Hon, 2000). Secondly, Shu et al., (2004) stated that, as the spatial dimension, D,

of the problem increases the convergence order also increases, and hence, much fewer

scattered collocation points will be needed to maintain the same accuracy as compared
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with conventional FDM, FEM and FVM. This shows the applicability of the RBFs

for solving high-dimension problems. Thirdly, Sarra, (2004) stated that the choice

of basis function is another flexible feature of RBF methods. RBFs can be globally

supported, infinitely differentiable, and contain a free parameter, c, called the shape

parameter. Among the interpolation methods for scattered data sets, RBFs outper-

forms best regarding its accuracy, stability, efficiency, memory requirement, simplicity

and straightforwardness of the implementation (Larsson and Fornberg, 2003). The

performance of RBF for solving different problems depend on not only the number of

nodes but also by the RBF’s types which are given in Section 4.2.1. In addition to the

advantages of meshless RBFCM, method may have negative drawbacks. As the number

of centers or nodes on the domain grows, the method needs to solve a relatively large

algebraic system. Moreover, Heryudono and Driscoll (2007) stated that full dense,

nonsymmetric and ill-conditioned interpolation matrix causes instability that makes

spectral convergence difficult to achieve. This behavior is manifested as a classic accu-

racy and stability trade-off. Several strategies have been successful to some extent in

reducing the ill-conditioning problem when using RBF methods in PDE problems as

stated in Fasshauer (1996), Kansa and Hon (2000) and Sarra (2004). The strategies

include one or a combination of these;

• Variable MQ shape parameters based upon the local radius of curvature of the

function being solved,

• A truncated MQ basis function having a finite, rather than a full band-width,

• Preconditioning the interpolation matrix by using matrix preconditioners,

• Replacement of global solvers by block partitioning, LU decomposition schemes,

• Augmented approximation by adding a polynomial term to approximation func-

tion,

• Domain decomposition technique,

• Adaptive meshless method,

• Symmetric collocation method assures a non-singular system of equations.
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4.2.1. Types of RBF

There are infinite numbers of possible RBFs and the most common RBFs can be

categorized into three main groups according to their differentiability and supported

features (Larsson and Fornberg, 2003 and Börekçi, 2005). Some of the functions include

free-parameter and some of them are parameter-free. The choice of suitable RBFs can

vary in terms of the problem types. In the first group, piecewise smooth functions

and parameter-free RBFs, in the second group, infinitely smooth functions with a free

parameter RBFs, and in the third group, compactly supported piecewise polynomials

with free parameter for adjusting the support so called, Wendland functions, are shown

in Table 4.1, Table 4.2 and Table 4.3, respectively. Furthermore, Iske (2003) established

tables for Fourier transforms and convergence rates of some radial basis functions.

Table 4.1. Piecewise Smooth RBFs.

Piecewise Smooth RBFs f(r)

Piecewise Polynomials rββ > 0, β ∈ 2N + 1

Powerspline −rββ > 0, β ∈ 2N + 1

βth Order Spline (Thin Plate Spline, β = 2) rβ ln rβ > 0, β ∈ 2N

Table 4.2. Infinitely Smooth RBFs.

Infinitely Smooth RBFs f(r)

Multiquadrics (MQs) β
√
r2 + c2β > 0, β ∈ 2N + 1

Inverse Multiquadrics −β
√
r2 + c2β > 0, β ∈ 2N + 1

Inverse Quadratics 1/ β
√
r2 + c2β > 0, β ∈ 2N + 1

Exponential Spline exp (−cr)

Gaussian Spline exp (−c2r2)

Matern Spline exp (−cr)Kν (cr)

In Table 4.1 and Table 4.2 N refers to natural numbers 0, 1, 2, ..., N and ν is the

modified Bessel function of order ν .
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Table 4.3. Wendland’s Positive Definite Functions With Compact Support.

Dimension f(r) Smoothness

d = 1 f1,0 = (1− r)+ C0

f1,1 = (1− r)3 + (3r + 1) C2

f1,2 = (1− r)5 + (8r2 + 5r + 1) C4

d ≤ 3 f3,0 = (1− r) 2
+ C0

f3,1 = (1− r) 4 + (4r + 1) C2

f3,2 = (1− r) 6 + (35r2 + 18r + 3) C4

f3,3 = (1− r) 8 + (32r3 + 25r2 + 8r) C6

d ≤ 5 f5,0 = (1− r)3+ C0

f5,1 = (1− r)5 + (5r + 1) C2

f5,2 = (1− r)7 + (16r2 + 7r + 1) C4

In Table 4.3 ()+ operator is used to express f(r) as an univariate polynomial p(r)

or 0 depending on the values of r and defined as

f(r) =

 p(r), if 0 ≤ r < 1

0, if r ≥ 1
(4.6)

PDE applications with smooth solutions, the infinitely smooth RBFs are preferable,

mainly because they lead to higher accuracy. The infinitely smooth RBFs exhibit

exponential or spectral convergence as a function of center spacing and as the nodes

get denser, while the piecewise smooth types give algebraic convergence (Heryudono

and Driscoll, 2007). In addition, it is shown that the MQ method is more accurate as

grid spacing and time step decrease, a random arrangement of nodes does not affect

the accuracy of the method significantly. In this study the MQRBF method is used as

an acceptable alternative numerical method for solving SWEs.
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4.2.2. RBF-MQ’s Shape Parameter

For RBF-MQ, different approaches for the selection of the shape parameters exist.

A number of studies have been conducted to determine the optimum value of the shape

parameter, c, yet there is still no conclusive answer. Hardy (1971) proposed selecting

the parameter based on average of smallest internodal distances, rav, in Equation 4.7

c = 0.815rav (4.7)

Tarwater (1985) showed that by increasing c , the root mean square (RMS) error,

Equation 4.9 dropped to a minimum and then sharply increased afterwards. Moody

and Darken (1989) suggested a simple varied shape parameter. Carlson and Foley

(1991) found that the shape parameter is problem dependent and the optimum shape

parameter depends on the behavior of the function to be approximated. Madych (1992)

demonstrated that significant improvement can be achieved in the accuracy of the RBF

interpolant by increasing the c value. Franke and Schaback (1998) proposed a method

based on the smallest circle spanning all the data points. Wang and Liu (2002) studied

the effect of shape parameters on the numerical accuracy of MQ. Cheng et al., (2003)

showed that for very large c values RMS error is of exponential convergence but there’s

a trade-off (or uncertainty principle, Schaback, 1995) between the accuracy gained

in interpolation by increasing the c parameter and the stability lost due to the large

matrix condition number created. Hon et al., (1997), and Wu and Hon (2003) proposed

choosing c as

c = 4rmin (4.8)

where rmin is the minimum intermodal distance in the domain. Also, they obtained

satisfactory results for c, between 5rav and 8rav.



34

The RMS error which evaluates the average error that is distributed to all part

of the so-called numerical solution at a certain time is

RMS =

√√√√ 1

N

N∑
i=1

(
uinumerical − uianalytical

uianalytical

)
(4.9)

where N denotes the total number of nodes. Kansa and Hon (2000) state that regular

node distribution on the domain and shape parameter can affect the RMS in numerical

solution of PDE’s.

4.3. Numerical Formulation by RBFCM

The unsteady, two dimensional governing Equation 3.49-Equation 3.51 of the

present study are,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
(4.10)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g∂η

∂y
(4.11)

∂η

∂t
+

∂

∂x
[(h+ η)u] +

∂

∂y
[(h+ η)v] = 0 (4.12)

or defining ∂h/∂x = Sx and ∂h/∂y = Sy Equation 4.12 and rearranging, Equation 4.12

yields,

∂η

∂t
= −u

(
Sx +

∂η

∂x

)
− (h+ η)

∂u

∂x
− v

(
Sy +

∂η

∂y

)
− (h+ η)

∂v

∂y
(4.13)

where Sx and Sx are the slopes in the x and y directions, respectively. For constant

depth their values are zero.
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For an IVP associated with the unknown function u,

Du = φ, onΩD

Bu = ψ, onΩB

(4.14)

where L and B are differential operators, and ΩD and ΩB are the problem domain and

boundary, a solution to the IVP may be formed with the use of Equation 4.1 which

transforms to

Du = (Dfij)αj = φi

Bu = (Bfij)αj = ξi
(4.15)

A system can be formed in the form in matrix notation as

 Df

Bf

 {α} =
 φ

ξ

 or [F ] {α} = {S∗} (4.16)

The F matrix will be formed from the BVP formulation, placement of the nodes,

and selection of the RBF and the shape parameter, c. {S∗} will be formed from the

initial conditions, boundary conditions and the governing equations. Estimation of the

unknown values for the problem becomes as simple as determining the unknown {α}

and applying the RBFCM.

ui = fijα
u
j or α

u
i = f−1

ij uj (4.17)

vi = fijα
v
j or α

v
i = f−1

ij vj (4.18)

ηi = fijα
η
j or α

η
i = f−1

ij ηj (4.19)
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where ui, vi and ηi denote the x-direction and y-direction velocities and water surface

elevation at a collocation point, respectively. f is the interpolation matrix and f−1

is the inverse of the interpolation matrix, with its ijth component defined by the re-

lationship given in Table 4.4. depending on RBFMQ, and their derivatives are given

as,

Table 4.4. MQRBF and its First and Second Order Derivatives.

MQRBF

f
√
r2 + c2

fx (xi−xj)

f

fy (yi−yj)

f

fxx c2+(yi+yj)
2

f3

fyy c2+(xi+xj)
2

f3

uxi =

(
∂u

∂x

)
i

=
∂fij
∂x

αu
j = fx

ijα
u
j and uyi =

(
∂u

∂y

)
i

=
∂fij
∂y

αu
j = f y

ijα
u
j (4.20)

vxi =

(
∂v

∂x

)
i

=
∂fij
∂x

αv
j = fx

ijα
v
j and v

y
i =

(
∂v

∂y

)
i

=
∂fij
∂y

αv
j = f y

ijα
v
j (4.21)

ηxi =

(
∂η

∂x

)
i

=
∂fij
∂x

αη
j = fx

ijα
η
j and η

y
i =

(
∂η

∂y

)
i

=
∂fij
∂y

αη
j = f y

ijα
η
j (4.22)

uxxi =

(
∂2u

∂x2

)
i

=
∂2fij
∂x2

αu
j = fxx

ij α
u
j and v

yy
i =

(
∂2v

∂y2

)
i

=
∂2fij
∂y2

αv
j = f yy

ij α
v
j (4.23)

The x-direction momentum Equation 4.10, the y-direction momentum Equation 4.11
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and the continuity Equation 4.12 become,

∂ui
∂t

= −
(
Du

ijf
x
jkf

−1
kl ul +Dv

ijf
y
jkf

−1
kl ul + gfx

ijf
−1
jk ηk

)
(4.24)

∂vi
∂t

= −
(
Du

ijf
x
jkf

−1
kl vl +Dv

ijf
y
jkf

−1
kl vl + gf y

ijf
−1
jk ηk

)
(4.25)

∂ηi
∂t

= −
(
Sxui +Du

ijf
x
jkf

−1
kl ηl +Dh+η

ij fx
jkf

−1
kl ul

)
(4.26)

−
(
Syvi +Dv

ijf
y
jkf

−1
kl ηl +Dh+η

ij f y
jkf

−1
kl vl

)
(4.27)

where D
(·)
ij is the matrix containing (·) on its main diagonal and zero elsewhere.

In the RBFCM procedure for solving PDE’s, the solution is constructed from

GEs, BCs and/or the ICs. The data centers are placed inside the domain and on the

boundaries. The locations for the RBF centers are more flexible and it is also possible

to place them outside the domain. Next section gives a brief summary of BCs and ICs.

4.4. Boundary Conditions and Initial Conditions

Most realistic ocean models numerically solve the primitive equations, which con-

sist of the momentum and continuity equations with hydrostatic and Boussinesq ap-

proximations, equations for conservation of heat and salinity, and an equation of state

with appropriate boundary conditions. The efficient evaluation of accurate radiation

boundary conditions for time domain simulations of wave propagation on unbounded

spatial domains needs to be considered. This issue has long been a primary stumbling

block for the reliable solution of this important class of problems.

In recent years, a number of new approaches have been introduced which have

radically changed the situation. These include methods for the fast evaluation of the

exact nonlocal operators which is the composition of a spatial and temporal operator
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in special geometries, novel sponge layers with reflectionless interfaces, and improved

techniques for applying sequences of approximate conditions to higher order. These

methods involve a variety of techniques (Colonius, 2004) including characteristic-based

decomposition (Giles, 1990; Poinsot and Lele, 1992; Tam and Dong, 1996), flow dis-

sipation (Israeli and Orszag, 1981; Freund 1997), grid-stretching/slow-down operators

(Colonius et al., 1993; Karni 1996), supergrid modeling (Colonius and Ran, 2002), and

perfectly matched layers (Hu et al., 2008; Hu, 2008). These new developments can

provide an essentially complete solution of the numerical radiation condition problems.

In the present study, the boundary conditions are expressions of the same phys-

ical principals in the set of governing equations such as no slip boundary condition

and kinematic and dynamic boundary conditions which are briefly explained and used

in Section 3.2.1. The case studies are subjected to kinematic free surface boundary

condition on the surface, i.e. on the z = η(x, y, t). No flux on the side boundaries, wall

condition, is applied.

A cold start or a warm start is selected due to the nature of the case studies.

Given the initial conditions for a cold start

u0 = u(x, y, 0), v0 = v(x, y, 0) and η0 = η(x, y, 0) (4.28)

Initial conditions of the wave elevations and velocities are obtained from previ-

ous studies. Periodic incident wave boundary condition or analytic solutions of wave

elevations are used to drive the waves.

Defining artificial boundaries is a necessity in any non-global ocean or any prop-

agation model. One must prescribe boundary conditions for such artificial interfaces

in order to close the system of equations and to yield a well-posed problem which en-

sures the uniqueness of the solution and its stability with regard to initial datum at

the interface. However the choice of global or local open boundary conditions (OBCs)

is a difficult problem, which has been the subject of numerous studies ranging from
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purely mathematical approaches to specific modeling applications. The main goal of

the OBC’s is to evacuate the outgoing information reaching the boundary. On the other

hand, numerical studies can use complex and realistic models, but their results seem

generally dependent on the test cases. They may not give any information on its accu-

racy or relevance with regard to the true solution. In the literature, radiation methods,

Flather condition, absorbing conditions, characteristic waves amplitude methods, and

relaxation methods are generally used as OBC types in wave simulations. Extensive

reviews of various nonreflecting OBC were made by Givoli (1991) and Tsynkov (1998).

A very popular class of OBCs is radiation methods which are based on the Som-

merfeld condition (Sommerfeld, 1949) which fully justified in the context of wave equa-

tions. The Sommerfeld radiation boundary condition may be given as

∂ϕ

∂t
+ c

∂ϕ

∂x
= 0 (4.29)

The condition specifies the transport of the quantity ϕ through the open boundary

Γ with the velocity c and n is the out normal vector. The Sommerfeld condition

is appropriate for wave propagation problems with constant phase velocity, and cor-

responds to setting the incoming characteristic to zero. Orlanski (1976) proposed a

numerical implementation of this Sommerfeld condition for more complex hyperbolic

flows such as the collapse of a mixed region in a stratified fluid and the spatially grow-

ing Kelvin-Helmholtz instability in an unbounded shear flow. Engquist and Majda

(1977) proposed a high order 2D open boundary condition when the main propagation

direction is in the x-direction.

∂2ϕ

∂t2
+

∂2ϕ

∂t∂x
− c2

2

∂2ϕ

∂y2
= 0 (4.30)

One way of preventing outgoing waves from reflecting from the artificial numer-

ical boundaries is to introduce an absorbing layer rather than look for more efficient

nonreflecting boundary conditions. Absorbing boundary conditions which are gener-

ally global in time and space are exact relations satisfied by the outgoing quantities
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at the open boundary. Mathematical foundation and its practical efficiency in several

domains of applications make this approach used in the literature. However, it is not

feasible in practice since there is no artificial boundary.

A widely-used class of OBCs is relaxation methods whose goal is to relax the

model solution ϕ towards the external layer ϕext on the artificial boundary. Thus, the

efficient way of preventing outgoing waves from reflecting from the artificial numerical

boundaries is to introduce a relaxation method rather than searching for more efficient

non-reflecting boundary conditions. This approach consists in extending the computa-

tional domain Ω by defining an additional domain Ωs (the sponge layer), which interface

with Ω is Γ. Thus, unlike viscous damping on the boundaries, Relaxation methods are

often performed jointly with a sponge layer approach. One simple approach to treat

the external boundaries is to use the sponge terms (Israeli and Orszag 1981; Bodony

2006). The increase of the computational cost introduced by the additional layer and

its solution in the sponge layer are the drawbacks of this method. With this method

the NSWE are artificially modified as following Wei and Kirby (1999) and Chawla and

Kirby (2000):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
−w1(x)u− w2(x)uxx︸ ︷︷ ︸

inside the sponge layer in the x−direction

(4.31)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g∂η

∂y
−w1(y)v − w2(y)vyy︸ ︷︷ ︸

inside the sponge layer in the y−direction

(4.32)

where

−w1(x) =

 0 x < xs

α1ωf(x) x ≥ xs

−w2(y) =

 0 y < ys

α2υf(y) y ≥ ys


where

f(x) =
exp

(
x−xs
xl−xs

)n

exp(1)−1

f(y) =
exp

(
y−ys
yl−ys

)n

exp(1)−1

, (4.33)
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and

K1 = Kw1 K2 = Kw2

K =

 0

1

x, y < xs, ys

x, y ≥ xs, ys

(4.34)

Thus, in the absorbing layer, waves which decay in all directions of propagation and

which match the internal solution. The discretized momentum equations for the sponge

layer are

−∂ui
∂t

= Du
ijf

x
jkf

−1
kl ul +Dv

ijf
y
jkf

−1
kl ul + gfx

ijf
−1
jk ηk +DK1

ij uj +DK2
ij f

xx
jk f

−1
kl ul (4.35)

−∂vi
∂t

= Du
ijf

x
jkf

−1
kl vl +Dv

ijf
y
jkf

−1
kl vl + gf y

ijf
−1
jk ηk +DK1

ij vj +DK2
ij f

yy
jk f

−1
kl vl (4.36)

In this thesis for the OBC, radiation and relaxation methods are used. This kind of

combined OBC was first used by Ohyama and Nadaoka (1991) in the literature. In

addition to this, in this study, it was found that filtering was necessary in order to

avoid temporal instabilities.

Low pass filters may be utilized in to rid the signal of high frequency waves.

The Shapiro filter (Shapiro 1970, 1975) is a high order horizontal low pass filter that

efficiently remove small scale grid noise without affecting the physical structures of a

field. It can be applied at the end of the time step on both velocity and tracer fields.

In the literature many researchers use Shapiro filter namely some, Lewis and Adams

(1983), Kowalik and Murty (1993), Özkan-Haller and Kirby (1997). Shapiro (1971)

defines a response function, R, that is the ratio of the original wave, f , to the filtered

wave, f ∗. For the ideal low pass filter that would be one for long waves and zero for

short waves. The response function is at point i as such;

Ri =
f ∗
i

fi
= a0 + 2a1 cos θ + 2a2 cos 2θ + ...+ 2aN cosNθ = 1− sin 2N

(
θ

2

)
(4.37)
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where aN is the amplitude of the wave component with wave number of k=2π/L in the

fourier expansion. θ = k△x where △x is the collocation node interval. Starting from

N=1 to 4 and using Equation 4.37 one can obtain the 3-5-7-9-... point filters and their

stencils in Table 4.5 at the ith filtered wave below,

Table 4.5. Stencils of the Response Function for fN
i for the Various Values of N.

N-1 fi fi±1 fi±2 fi±3 fi±4 fi±5 fi±6 fi±7 fi±8 fi±9 fi±10

0 1/22 (2 1)

1 1/24 (10 4 -1)

2 1/26 (44 15 -6 1)

3 1/28 (186 56 -28 8 -1)

4 1/210 (772 210 -120 45 -10 1)

5 1/212 (3172 792 -495 220 -66 12 -1)

6 1/214 (12952 3003 -2002 1001 -364 91 -14 1

7 1/216 (52666 11440 -8008 4368 -1820 560 -120 16 -1)

8 1/218 (213524 43758 -31824 18564 -8568 3060 -816 153 -18 1)

9 1/220 (863820 167960 -125970 77520 -38760 15504 -4845 1140 -190 20 -1)

4.5. Time marching

The unsteady nature of the problem is accounted for by using an appropriate

time integration scheme. There are a number of self-starting (single step) schemes

namely; Euler method, modified Euler method, Heun method, Runge-Kutta methods,

Taylor polynomial method. Also, there are commonly used multi-step methods such as

Adams-Basforth method, Adams-Moulton method, Adams-Basforth-Moulton method.

Since the predictor-corrector type of equations uses past information they do not have

the ability to start initial value problems. Single step schemes are used at the beginning

until the necessary information for predictor-corrector schemes is obtained.

As a time integration method, three fourth order, O(4), methods are investigated

in this thesis. First one is a self starting Runge-Kutta method, RK O(4). Milne pre-

dictor and Hamming corrector, MH O(4) and Adams-Basforth predictor and Adams-

Moulton corrector ABM O(4) are the second and third time integration methods that

use a RK O(4) starter. Time marching three different schemes has been employed and

comprised in the selected case studies in Chapter 5. ABM O(4) was selected and used

among the others because they are known to work well for smooth problems. The

discretized Equation 4.38, Equation 4.39, and Equation 4.40 will be used in the time



43

marching according to selected time integration type.

u
(n+1)
i = u

(n)
i − δt

(
Du

ijf
x
jkf

−1
kl ul +Dv

ijf
y
jkf

−1
kl ul + gfx

ijf
−1
jk ηk

)(n)
(4.38)

v
(n+1)
i = v

(n)
i − δt

(
Du

ijf
x
jkf

−1
kl vl +Dv

ijf
y
jkf

−1
kl vl + gf y

ijf
−1
jk ηk

)(n)
(4.39)

η
(n+1)
i = η

(n)
i − δt

 αui +Du
ijf

x
jkf

−1
kl ηl +Dh+η

ij fx
jkf

−1
kl ul

+βvi +Dv
ijf

y
jkf

−1
kl ηl +Dh+η

ij f y
jkf

−1
kl vl


(n)

(4.40)

The superscript n denotes the previous time step when all the values are known, n+1

denotes for the new time step.

4.5.1. Runge-Kutta O(4)

RKO(4) is a self starting method so that the initial input will be sufficient to

proceed in time. It involves 4 evaluations per time step and local truncation error is

fourth order as stated in Burden and Faires (1993). Also, since the expected results are

smooth, adaptive step size control is not considered. To established an approximate

solution to the initial-value problem can be stated as in Chapra and Canale (1988),

ϕ′ = f(t, ϕ) a ≤ t ≤ b ϕ(a) = ϕ0 (4.41)

where ϕ is the unknown function of time t and ϕ′ is the rate at which ϕ changes

between the time a and b. The function f and the data a and the data ϕ0 are given.

The RKO(4) method poses the following for ϕn+1 at some time step n+1 using value

of at ϕn the step n.

ϕn+1 = ϕn +
∆t

6
(k1 + 2k2 + 2k3 + k4) (4.42)
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where k1,k2, k3 and k4 can be seen in Equation 4.43 in terms of the time step, ∆t.

k1 = f(tn, ϕn)

k2 = f(t
n+

1
2
, ϕn +

1
2
k1∆t)

k3 = f(t
n+

1
2
, ϕn +

1
2
k2∆t)

k4 = f(tn+1, ϕn + k3∆t)

ϕn+1 = ϕn +
∆t
6
(k1 + 2k2 + 2k3 + k4)

(4.43)

Algorithm for the RK O(4) time integration is as follows:

(i) Initialize u, v and η at the start of the time interval l, compute with appropriate

boundary conditions, for discretized governing Equation 4.44 are used inside the

domain,

ku1 = dt
(
−uouox − vouoy − gηox

)
kv1 = dt

(
−uovox − vovoy − gηoy

)
kη1 = dt

{
−[(h+ ηo)uo]x − [(h+ ηo) vo]y

} (4.44)

and inside the sponge layer Equation 4.45 are used.

ku1 = dt
(
−uouox − vouoy − gηox − w1 (x)u

o − w2 (x)u
o
xx

)
kv1 = dt

(
−uovox − vovoy − gηoy − w1 (y) v

o − w2 (y) v
o
yy

)
kη1 = dt

{
−[(h+ ηo)uo]x − [(h+ ηo) vo]y

} (4.45)

(ii) Increase the time step with 0.5 time increment and update the values as in Equa-

tion 4.46
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un ← uo + 1
2
ku1

vn ← vo + 1
2
kv1

ηn ← ηo + 1
2
kη1

(4.46)

Then, compute ku2 , k
v
2 and kη2 in side the domain with appropriate boundary conditions

as in Equation 4.46

ku2 = dt
(
−ununx − vnuny − gηnx

)
kv2 = dt

(
−unvnx − vnvny − gηny

)
kη2 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.47)

and inside the sponge layer as in Equation 4.48

ku2 = dt
(
−ununx − vnuny − gηnx − w1 (x)u

n − w2 (x)u
n
xx

)
kv2 = dt

(
−unvnx − vnvny − gηny − w1 (y) v

n − w2 (y) v
n
yy

)
kη2 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.48)

(iii) Update un, vn, ηn respectively as stated in Equation 4.49

un ← uo + 1
2
ku2

vn ← vo + 1
2
kv2

ηn ← ηo + 1
2
kη2

(4.49)

Compute ku3 , k
v
3 and kη3 in side the domain with appropriate boundary conditions in

Equation 4.50

ku3 = dt
(
−ununx − vnuny − gηnx

)
kv3 = dt

(
−unvnx − vnvny − gηny

)
kη3 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.50)
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and inside the sponge layer as stated in Equation 4.51.

ku3 = dt
(
−ununx − vnuny − gηnx − w1 (x)u

n − w2 (x)u
n
xx

)
kv3 = dt

(
−unvnx − vnvny − gηny − w1 (y) v

n − w2 (y) v
n
yy

)
kη3 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.51)

Update, once more, the values un, νn, ηn as stated in Equation 4.52.

un ← uo + 1
2
ku3

vn ← vo + 1
2
kv3

ηn ← ηo + 1
2
kη3

(4.52)

(iv) Increase the time step with 0.5 time increment, compute ku4 , k
v
4 and kη4 inside the

domain with appropriate boundary conditions as in Equation 4.53.

ku4 = dt
(
−ununx − vnuny − gηnx

)
kv4 = dt

(
−unvnx − vnvny − gηny

)
kη4 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.53)

and inside the sponge layer Equation 4.54 is used.

ku4 = dt
(
−ununx − vnuny − gηnx − w1 (x)u

n − w2 (x)u
n
xx

)
kv4 = dt

(
−unvnx − vnvny − gηny − w1 (y) v

n − w2 (y) v
n
yy

)
kη4 = dt

{
−[(h+ ηn)un]x − [(h+ ηn) vn]y

} (4.54)

Update, the old values un, νn, ηn with the new values un+1, νn+1, ηn+1, respectively as

stated in Equation 4.55.

un + 1← uo + 1
6
[ku1 + 2(ku2 + ku3 ) + ku4 ]

vn + 1← vo + 1
6
[kv1 + 2(kv2 + kv3) + kv4 ]

ηn + 1← ηo + 1
6
[kη1 + 2(kη2 + kη3) + kη4 ]

(4.55)
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4.5.2. Milne predictor and Hamming corrector of O(4) with a Runge-Kutta

O(4) starter

Applying the self starting integrator such as the Runge-Kutta O(4), one can

obtain the first 3 time steps to use in the Milne Hamming time marching schemes.

General procedure to approximate the solution of the initial value problem ϕ′ =

f(t, ϕ) with ϕ(a) = ϕ0 between a ≤ t ≤ b using the Milne predictor with the Hamming

corrector method from time step n to n+1 is as follows:

The classical predictor step is that of Milne (1953) given below in Equation 4.56.

pn+1 = ϕn−3 +
4h

3
(2fn−2 − fn−1 + 2fn) (4.56)

Given a stable predictor-corrector method, the only remaining problem is speed. It

has become common practice to avoid the corrector iteration by taking the predicted

value, inserting it in the right hand side of the corrector and accepting this value of

the corrector as the new one. Hamming (1959) adds sophistication to this idea by

modifying the predicted value by the estimated error in the predicted value at the

previous step. The modifier step is

p mod = pn+1 +
112

121
(cn − pn) ,fn+1 = f(tn+1, p mod ) (4.57)

Hamming (1959) developed a stable corrector to use with Equation 4.56 instead of

Milne’s (1953) corrector. The corrector step is

cn+1 =
−ϕn−2 + 9ϕn

8
+

3h

8
(−fn−1 + 2fn + fn+1) (4.58)

Thus at the n+1 time step, the unknown can be estimated as

ϕn+1 = cn+1 +
9

121
(pn+1 − cn+1) (4.59)
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The discretized equations for predicted values of unknowns u,v velocities and η are

(up)
n+1
i = un−3

i + 4δt
3
(2fui

n − fuin−1 + 2fui
n−2)

(vp)
n+1
i = vn−3

i + 4δt
3
(2fvi

n − fvin−1 + fvi
n−2)

(ηp)
n+1
i = ηn−3

i + 4δt
3
(2fηni − fηn−1 + 2fηi

n−2)

(4.60)

where f is an operator

funi = fiku
n
k , fun−1

i = fiku
n−1
k , fun−2

i = fiku
n−2
k

fvni = fikv
n
k , fvn−1

i = fikv
n−1
k , fvn−2

i = fikv
n−2
k

fηni = fikη
n
k , fηn−1

i = fikη
n−1
k , fηn−2

i = fikη
n−2
k

(4.61)

The predicted values in Equation 4.60 are now modified using the estimated truncation

error e from the previous time step. The modified unknowns, u,v velocities and η, are

(upm)
n+1
i = (up)

n+1
i + 9

112
enu

(vpm)
n+1
i = (vp)

n+1
i + 9

112
env

(ηpm)
n+1
i = (ηp)

n+1
i + 9

112
enη

(4.62)

For n+1=4 the truncation error is taken as zero since no previous value has been

determined yet. For the Hamming corrector step we have

(uc)
n+1
i = 1

8

{
9uni − un−2

i + 3δt
[
(fu∗)n+1

i + 2funi − fun−1
i

]}
(vc)

n+1
i = 1

8

{
9vni − vn−2

i + 3δt
[
(fv∗)n+1

i + 2fvni − fvn−1
i

]}
(ηc)

n+1
i = 1

8

{
9ηni − ηn−2

i + 3δt
[
(fη∗)n+1

i + 2fηni − fηn−1
i

]} (4.63)

where

(fu∗)n+1
i = fui

[
tn+1, (upm)

n+1
i

]
= fuik(upm)

n+1
k

(fv∗)n+1
i = fvi

[
tn+1, (vpm)

n+1
i

]
= fvik(vpm)

n+1
k

(fη∗)n+1
i = fηi

[
tn+1, (ηpm)

n+1
i

]
= fηik(ηpm)

n+1
k

(4.64)
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The truncation error may now be determined from Equation 4.65.

(eu)
n
i = 9

121

[
(uc)

n+1
i − (up)

n+1
i

]
(ev)

n
i = 9

121

[
(vc)

n+1
i − (vp)

n+1
i

]
(eη)

n
i = 9

121

[
(ηc)

n+1
i − (ηp)

n+1
i

] (4.65)

The corrected values are modified and assigned as the values of u v and η for time step

n+1 as seen in Equation 4.66.

un+1
i = (uc)

n+1
i − (eu)

n+1
i

vn+1
i = (vc)

n+1
i − (ev)

n+1
i

ηn+1
i = (ηc)

n+1
i − (eη)

n+1
i

(4.66)

4.5.3. Adams - Bashforth - Moulton Method of O(4) with a Runge-Kutta

O(4) starter

Applying the self starting integrator such as the Runge-Kutta O(4), one can

obtain the first 3 time steps to use in the Adams - Bashforth - Moulton time marching

schemes.

General procedure to approximate the solution of the initial value problem ϕ′ =

f(t, ϕ) with ϕ(a) = ϕ0 between a ≤ t ≤ b the Adams-Bashforth predictor and the

Adams-Moulton corrector method from time step n to n+1 is as follows;

By using four-step Adams-Bashforth and Adams-Moulton methods together, the

predictor formula is

pn+1 = ϕn +
h

24
(−9fn−3 + 37fn−2 − 59fn−1 + 55fn) , fn+1 = f(tn+1, pn+1) (4.67)
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and the corrector formula is stated in Equation 4.68.

ϕn+1 = ϕn +
h

24
(fn−2 − 5fn−1 + 19fn + 9fn+1) (4.68)

In general for the kthorder,

kthorder


predictor : pn+1 = ϕn + δt

h−1∑
j=0

1
ck
βjfn−j +O (hm+1)

corrector : ϕn+1 = ϕn + δt
h−1∑
j=0

1
cm
βjfn+1−j +O (δtm+1)

(4.69)

Both formulas can be derived from the Taylor series expansions, for the predictor,

the expansion is performed around ni and for the corrector at ni+1. Derivations in

detail, stability and error analysis on the mentioned methods can be found in Chapra

and Canale (1988). The predictor and corrector formulas are given in Table 4.6 and

Table 4.7.

Table 4.6. Adams-Bashforth Predictors.

k ck β0 β1 β2 β3 β4 β5 εt

1 1 1 1
2
(δt)2f ′ (ξ)

2 2 3 -1 5
12
(δt)3f ′′ (ξ)

3 12 23 -16 5 9
24
(δt)4f ′′′ (ξ)

4 24 55 -59 37 -9 251
720

(δt)5f (4) (ξ)

5 720 1901 -2774 2616 -1274 251 475
1440

(δt)6f (5) (ξ)

6 1440 4277 -7923 9982 -7298 2877 -475 19078
60480

(δt)7f (6) (ξ)

Table 4.7. Adams-Moulton Correctors.

k cm β0 β1 β2 β3 β4 β5 εt

2 2 1 1 − 1
12
(δt)3f ′′ (ξ)

3 12 5 8 -1 − 1
24
(δt)4f ′′′ (ξ)

4 24 9 19 -5 1 − 19
720

(δt)5f (4) (ξ)

5 720 251 646 -264 106 -19 − 27
1440

(δt)6f (5) (ξ)

6 1440 475 1427 -798 482 -173 27 − 863
60480

(δt)7f (6) (ξ)
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The predicted discretized values of unknowns; u, v velocities and η, are stated in

Equation 4.70.

(up)
n+1
i = un−3

i + δt
24
(55fui

n − 59fui
n−1 + 35fui

n−2 − 9fui
n−3)

(vp)
n+1
i = vn−3

i + δt
24
(55fvi

n − 59fvi
n−1 + 35fvi

n−2 − 9fvi
n−3)

(ηp)
n+1
i = ηn−3

i + δt
24
(55fηi

n − 59fηi
n−1 + 35fηi

n−2 − 9fηi
n−3)

(4.70)

where

funi = fiku
n
k , fu

n−1
i = fiku

n−1
k , fun−2

i = fiku
n−2
k , fun−3

i = fiku
n−3
k

fvni = fikv
n
k , fv

n−1
i = fikv

n−1
k , fvn−2

i = fikv
n−2
k , fvn−3

i = fikv
n−3
k

fηni = fikη
n
k , fη

n−1
i = fikη

n−1
k , fηn−2

i = fikη
n−2
k , fvn−3

i = fikv
n−3
k

(4.71)

Discretized values in corrector step of the unknowns; u, v velocities and η, are in

Equation 4.72.

(uc)
n+1
i = uni +

δt
24

(
9 (fu∗)n+1

i + 19funi − 5fun−1
i + fun−2

i

)
(vc)

n+1
i = vni + δt

24

(
9 (fv∗)n+1

i + 19fvni − 5fvn−1
i + fvn−2

i

)
(ηc)

n+1
i = uni +

δt
24

(
9 (fη∗)n+1

i + 19fηni − 5fηn−1
i + fηn−2

i

) (4.72)

where

(fu∗)n+1
i = fui

[
tn+1, (upm)

n+1
i

]
= fuik(upm)

n+1
k

(fv∗)n+1
i = fvi

[
tn+1, (vpm)

n+1
i

]
= fvik(vpm)

n+1
k

(fη∗)n+1
i = fηi

[
tn+1, (ηpm)

n+1
i

]
= fηik(ηpm)

n+1
k

(4.73)

4.5.4. Solution Strategy and Convergence

In the present study, in order to solve unknown u, v velocities and free surface

displacement, η, an iterative solution strategy is needed because of the non-linearity in

the momentum equations. The algorithm starts with an initial guess of u and v. The

discretized momentum Equation 4.38 and Equation 4.39 are solved to find u and v in
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all nodes of domain. Using the new quantities, η computed by the continuity Equa-

tion 4.40, successively, the same algorithm applied to discretized equations. Updating

the iteratively improved quantities, solution process computed until the convergence

criteria satisfied.

The convergence of the process constructed with the difference of the new and

pre-iterated surface elevation, η, values. Max error for surface elevation, η, is set to

1e-8. The pseudo code is given below. In the test runs, the model has taken minimum

one and maximum five iterations to converge. Max. iteration is set to 10 iterations for

the iteration loop. If the collocation nodes are selected too large or too small, this may

cause oscillatory or divergent iterative solutions. However, the system cannot suffer

from ill-conditioning if the node number is not higher than to some extent for this

study the limit is between minimum 16 and maximum 256 nodes per wave length.

Solution strategy as a pseudo code is:

• Wave parameters are set (wave amplitude, wave period ,dispersion relationship

find the k value),

• Model parameters are set (time increment, max. iteration, max. error),

• Collocation nodes are set,

• Sponge parameters are set,

• RBFMQ shape parameter is set,

• Operators are set,

• Time Iteration method is set (for example,. RKO(4)),

• Time loop starts till the number of time step,

• ku1 , k
η
1 calculated to find un, vn,

• T = t+ 0.5dt derivatives are computed,

• ku2 , k
η
2 are calculated to find un, vn compute derivatives,

• ku3 , k
η
3 are calculated to find un, vn,

• T = t+ 0.5dt derivatives are computed,

• ku4 , k
η
4 are calculated to find un, vn and derivatives are computed,;

(i) Iteration loop starts,

(ii) Number of iteration < max. number of iteration,
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(iii) Error η < max. error η,

(iv) Shapiro filter is called,

(v) Interchange of new values with the old values is set,

(vi) Iteration loop ends.

• Time loop ends.
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5. APPLICATIONS AND DISCUSSION OF THE

RESULTS

5.1. Background

Some analytical solutions of the shallow water wave equations exist both for

domains with fixed boundaries and domains with moving boundaries. Some of these

solutions are for linearized forms of the shallow water wave equations while others are

for the NSWEs. The used linearized equations ignore the advective terms, the Coriolis

terms, the viscosity terms and the wind stress terms. They assume that the oscillations

of the water surface, η , are small compared to the total depth, h+ η , and hence that

the nonlinear continuity and momentum terms are replaced with the linear continuity

and momentum terms.

5.1.1. Fixed Boundary Analytical Solutions

Some examples of fixed boundary analytical solutions are as follows. Lamb (1945)

solved linearized forms of the shallow water wave equations to model tidal flow in

channels of different shapes for frictionless flow. Ippen (1966) solved linearized forms of

the shallow water wave equations to model tidal flow in channels of different shapes both

for frictionless flow and linear friction. Lynch and Gray (1978) developed analytical

solutions of the linearized shallow water wave equations. Their equations included

linear friction and a wind stress term for constant depth, linearly varying depth and

quadratically varying depths. The authors stated that their analytical solutions should

prove useful for comparison with numerical models. The advantage of these analytical

solutions over previous analytical solutions is that most previous analytical solutions

were for frictionless flow and where their solutions were for frictional flow as well.

Prandle and Rahman (1980) modelled tidal oscillations with linear friction in channels

of varying depth and cross-section.



55

Some authors have considered tidal oscillations in estuaries when the water el-

evation, η, is not small compared with the mean water depth. Tidal oscillations in

one dimensional estuaries were investigated by Airy in 1845 (discussed in Lamb (1945)

and Rahman (1995)) using the method of perturbations. Kreiss (1957) included linear

friction in analyzing nonlinear oscillations in a tidal channel of finite length. Proudman

(1957) included quadratic friction in analyzing nonlinear oscillations due to tide and

surge in a channel of finite length. Knight (1973) extended Proudman’s work. His

solution is obtained for an idealized estuary in which the channel is horizontal, of con-

stant rectangular section, closed at one end and open at the other to tidal influence.

The motion is considered to be one-dimensional, and the solution includes the effects

of both the convective acceleration and friction terms. Gallagher and Munk (1971),

Kabbaj and Provost (1980), and DiLorenzo (1988) all found second order solutions for

quadratic frictional tidal flow in channels of finite length using perturbation methods.

Friedrichs and Madsen (1992) produced a table showing the ratio of local acceleration

to friction and of advection to friction in twelve estuaries.

In 1845 Airy investigated tidal flow in a channel of constant mean water depth, h,

defined for 0 ≤ x ≤ ∞, for when η, the water level, is not small compared with h. The

equations of motion to be solved are based on Equation 4.10 and Equation 4.11, and

the equation of continuity to be solved is based on Equation 4.12 with flow assumed

only in the x-direction. The coriolis force, viscous forces, bottom friction and wind

stress forces where omitted, but the nonlinear terms in the momentum and continuity

equations were retained. The resulting nonlinear shallow water equations are,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0 (5.1)

and

∂η

∂t
+

∂

∂x
[u (h+ η)] = 0 (5.2)
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The channel is bounded by the open sea at x = 0 of constant depth and semi-infinite

length, where the water elevation which is progressive is given by

η (0, t) = a1 cosωt (5.3)

To solve this problem Airy used the method of successive approximations. The solu-

tions for η and u have terms involving, ω, the angular frequency of the tidal oscillation

plus terms involving twice the frequency, 2ω, the latter terms representing over tides,

or tides of the second order. Airy’s analysis did not extend to tides of higher order,

i.e. to those whose frequencies are three, four or more times than of that of the forced

frequency.

As a first approximation to the NSWE we have the linear equations.

∂u

∂t
+ g

∂η

∂x
= 0 (5.4)

∂η

∂t
+ h

∂u

∂x
= 0 (5.5)

The solutions of Equation 5.4 and 5.5 which are consistent with Equation 5.3 are

η = a1 cosω
(
t− x

c

)
(5.6)

u =
ga1
c

cosω
(
t− x

c

)
(5.7)

where c, the wave speed, is given by

c =
√
gh (5.8)
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As a second approximation these values of η and u in Equation 5.6 and Equation

5.7 are substituted in the nonlinear terms of Equation 5.1 and Equation 5.2 to obtain

time derivatives of u and η.

∂u

∂t
= −g ∂η

∂x
− ωga21

2ch
sin 2ω

(
t− x

c

)
(5.9)

∂η

∂t
= −h∂u

∂x
− ωga21

h
sin 2ω

(
t− x

c

)
(5.10)

Eliminating u from Equation 5.9 and Equation 5.10 one obtains

∂2η

∂t2
= gh

∂2η

∂x2
− κ cos 2ω

(
t− x

c

)
(5.11)

where

κ =
a21gω

2

c2
+

2a21ω
2

h
(5.12)

Equation 5.11 with Equation 5.12 can be solved by assuming that

η = a1 cosω
(
t− x

c

)
+ Ex cos 2ω

(
t− x

c

)
+ Fxsin2ω

(
t− x

c

)
(5.13)

where E and F are constants. The constants E and F can be found by substitut-

ing Equation 5.13 in Equation 5.11 and equating coefficients of cosω (t− x/c) and

sinω (t− x/c), giving

η = a1 cosω
(
t− x

c

)
−
(
3a21gω

4c3

)
x sin 2ω

(
t− x

c

)
(5.14)

Eliminating η from Equation 5.9 and Equation 5.10 one obtains,

∂2u

∂t2
= gh

∂2u

∂x2
−
(
3a21gω

2

ch

)
cos 2ω

(
t− x

c

)
(5.15)
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If one assumes that

u = a1g
c
cosω

(
t− x

c

)
+ P cos 2ω

(
t− x

c

)
+Qsin2ω

(
t− x

c

)
+Rx cos 2ω

(
t− x

c

)
+ Sxsin2ω

(
t− x

c

) (5.16)

where P, Q, R and S are constants. Upon substituting Equation 5.16 in Equation 5.15

one obtains

R = 0 (5.17)

S = −3a21ω

4h2
(5.18)

Substituting Equation 5.17 and Equation 5.18 in Equation 5.16 gives

u = a1g
c
cosω

(
t− x

c

)
+ P cos 2ω

(
t− x

c

)
+Qsin2ω

(
t− x

c

)
−3a21ω

4h2 xsin2ω
(
t− x

c

) (5.19)

Substituting Equation 5.14 and Equation 5.19 in Equation 5.9 gives

P = −a
2
1g

8hc
(5.20)

Q = 0 (5.21)

Substituting Equation 5.20 and Equation 5.21 in Equation 5.19 gives

u =
a1g

c
cosω

(
t− x

c

)
− a21g

8hc
cos 2ω

(
t− x

c

)
− 3a21ω

4h2
x sin 2ω

(
t− x

c

)
(5.22)

From Equation 5.14 it can be seen that the approximate solution will be valid provided

that the amplitude of the over tide term (i.e. the second order term) is small compared

to the amplitude of the linear term, i.e. a1ωx/ch is small.
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5.1.2. Moving Boundary Analytical Solutions

Some examples of moving boundary analytical solutions are as follows. Carrier

and Greenspan (1958) obtained moving boundary analytical solutions of the nonlinear

shallow water equations for a water wave climbing a linearly sloping beach. Carrier

and Greenspan’s derivation is discussed in detail in Zhang (1996) and Johnson (1997).

The procedure is discussed in detail here to show the complications involved in deriving

the analytical solutions. The analytical solution will be used to validate the numerical

model developed.

The equations of motion to be solved are based on Equation 4.10, Equation

4.11 and the continuity Equation 4.12, with flow assumed only in the x-direction and

without any Coriolis effect, pressure driven forces, wind and bottom shear stresses.

The resulting equations are

∂u

∂t
+ u

∂u

∂x
+
∂η

∂x
= 0 (5.23)

and

∂η

∂t
+

∂

∂x
[u (h+ η)] = 0 (5.24)

where h = −αx, and applying a rescaling,

x′ = x, t′ =
√
αt, η′ = η

α
, u′ = u

α
, (5.25)

The equations are then rewritten in terms of u′, η′, x′ and t′ which are successively

transformed forms of u, η, x and t. Next two new variables, σ and λ, are introduced.

These are defined in terms of the dimensionless variables (with primes dropped)

σ = 4
√
η − x (5.26)
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and

λ = 2 (u+ t) (5.27)

Then Equation 5.23 and Equation 5.24 transform to the equations

∂σ

∂t
+ u

∂σ

∂x
+
(
σ

4

)
∂λ

∂x
= 0 (5.28)

∂λ

∂t
+ u

∂λ

∂x
+
(
σ

4

)
∂σ

∂x
= 0 (5.29)

Transforming the equations so that the independent and dependent variables are in-

terchanged is achieved by applying the hodograph transformation which is defined as,

∂x

∂λ
= −∂σt

J
,
∂x

∂σ
=
λt
J
,
∂t

∂σ
= −λx

J
,
∂t

∂λ
=
σx
J

(5.30)

where the Jacobian is

J =
∂ (σ, λ)

∂ (x, t)
=

∣∣∣∣∣∣∣
σx σt

λx λt

∣∣∣∣∣∣∣ = σxλt − σtλx (5.31)

The transformation yields.

∂x

∂λ
− u ∂t

∂λ
+
(
σ

4

)
∂t

∂σ
= 0 (5.32)

∂x

∂σ
− u ∂t

∂σ
+
(
σ

4

)
∂t

∂λ
= 0 (5.33)

Substituting t = λ/2− u from Equation 5.27 into these equations gives

(
x+

u2

2

)
λ

− σ

4
uσ −

u

2
= 0 (5.34)
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(
x+

u2

2
+
σ2

16

)
σ

−
(
σu

4

)
λ
= 0 (5.35)

where the subscripts indicate differentiation with respect to the subscripted variable.

It follows from Equation 5.35 that there is a variable ϕ (σ, λ) , such that

x+
u2

2
+
σ2

16
=
ϕλ

4
(5.36)

and

σu

4
=
ϕσ

4
(5.37)

Substituting Equation 5.36 and Equation 5.37 into Equation 5.34 gives a linear equation

(σϕσ)σ − σϕλλ = 0 (5.38)

Thus, the original nonlinear equations have been reduced to a linear equation. The

instantaneous shoreline is at σ=0. Far away from the shoreline nonlinear effects are

small and σ=0 as stated in Synolakis (1987).

Carrier and Greenspan (1958) obtained a number of solutions of Equation 5.38.

The choice of a function ϕ(σ, λ) which satisfies Equation 5.38 defines η, u, x, and t in

terms of parametric coordinates σ and λ. In particular, if the Jacobian ∂ (x, t)/∂ (σ, λ)

never vanishes in σ > 0, the implicitly defined solutions η and u will be single-valued

and such solution represents nonbreaking waves. Thus, a particular simple solution of

Equation 5.38 can be given by

ϕ = AJ0(ωσ) cos(ωλ− ψ) (5.39)

where A ≤ 1 is a constant for a valid mapping, J0 is the usual notation for 0th order

Bessel function of the first kind and ψ is the phase lag. No loss in generality ensures
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when the phase lag, ψ, is taken to be zero or ω is put equal to unity. A wave of

unit frequency in the dimensionless time variable travels shoreward and this wave is

reflected and travels out to sea of an unit frequency. This solution is

ϕ = AJ0 (σ) cosλ (5.40)

Using Equation 5.26, Equation 5.27, Equation 5.36, Equation 5.37 and Equation 5.40,

exact solutions for η(x, t) and u(x, t) can easily be found in terms of σ and λ as

η =
ϕλ

4
− u2

2
= −A

4
J0 (σ) sinλ−

A2J2
1 (σ)

2σ2
cos2λ (5.41)

where J1 is the usual notation for 1st order Bessel function of the first kind.

u =
ϕσ

σ
= −AJ1 (σ) cosλ

σ
(5.42)

x = −σ
2

16
+
σλ
4
− u2

2
= −σ

2

16
− A

4
J0 (σ) sinλ−

A2J2
1 (σ)

2σ2
cos2λ (5.43)

t =
λ

2
− u =

λ

2
+
AJ1 (σ) cosλ

σ
(5.44)

The resulting wave running up the sloping beach is periodic for 0 < A ≤ 1. To find

the resultant wave at any time t, a value of σ is substituted in Equation 5.44 to find

λ numerically by iteration. Then the values of σ and λ are substituted in Equations

5.41, Equation 5.42, and Equation 5.43 to find η, u and x. Using another value of σ,

new value of λ is found and so on. Then the process is repeated for other values of t.
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Figure 5.1. Variation of the Free Surface According to the Carrier and Greenspan

(1958) Exact Solution.

The analytical solutions of Carrier and Greenspan (1958) (including Equation

5.41 to Equation 5.44) have been used by various researchers to test many numerical

models such as Bokhove (2005), Cheng et al., (1993), Dietrich et al., (2004), Hibberd

and Peregrine (1978), Johns (1982), Kowalik and Murty (1985), Lewis and Adams

(1983), Pearson (1980), Prasad and Svensen (2003), Runchal (1975), Siden and Lynch

(1988), Sielecki and Wurtele (1970), Vincent et al., (2001), Zelt and Raichlen (1991),

and Zhang (1996).

A number of other analytical solutions have been found that are modifications of

Carrier and Greenspan’s solutions. Ball (1964) found exact moving boundary solutions

of the nonlinear shallow water equations in Lagrangian form. Sielecki and Wurtele

(1970) tested their numerical model against these solutions. Keller and Keller (1964)

obtained moving boundary analytical solutions of the LSWE for a periodic water wave

traveling across an ocean of constant depth then running up a uniform plane beach.

Shuto (1967) found exact moving boundary solutions of the linearized shallow water

equations in Lagrangian form for flow on a sloping beach. His results for run-up height

were found to be in close agreement with experimental results. Tuck and Hwang
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(1972) investigated the generation of waves on a linear slope to simulate a tsunami due

to seismic disturbances, using linearized equations. They also considered run-up using

nonlinear equations which they transformed into linear equations which they solved.

Thacker (1981), using Eulerian equations, obtained exact moving boundary fric-

tionless solutions of the shallow water wave equations similar to those obtained by Ball

(1964) using Lagrangian equations. A number of numerical models have been tested

against Thacker’s exact solutions to name few; Balzano (1998), Holdahl et al., (1998),

Lewis and Adams (1983), Peterson et al., (1984), Yoon and Cho (2001). Sachdev et

al., (1996) built on Thacker’s work, producing periodic solutions for frictionless flow

involving the Coriolis force.

Johns (1982) expressed Carrier and Greenspan’s (1958) exact solution for moving

boundary periodic flow in a simpler form, which involved periodic forcing at the open

sea boundary. Li and Raichlen (2001) studied the run-up of solitary waves on a uniform

plane beach connected to an open beach of constant depth. They obtained an analytical

nonlinear solution using an approach based on that of Carrier and Greenspan (1958).

The solution was in close agreement to experimental results, giving slightly better

results for maximum run-up than the approximate linear theory of Synolakis (1987).

Kanoğlu (2004) solved analytically Carrier and Greenspan’s equations for the evolution

of waves climbing sloping beaches for a number of different initial waveforms.

5.2. Theoretical Development of the Long Wave Propagation and run-up

Model for case studies 1 and 2

The nonlinear, nondispersive shallow water model is based on the assumptions

of hydrostatic pressure and uniform velocity distribution. The governing equations,

the continuity and momentum equations in the Eulerian form, for one dimension in

space and one dimension in time,(1+1), or 1D long wave propagation and run-up in

the physical plane are

∂η

∂t
+

∂

∂x
[u (h+ η)] = 0 (5.45)
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∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0 (5.46)

In the case of moving boundary problems, the Lagrangian-Eulerian method was first

introduced by Bellos and Sakkas (1987) for a dam-break flood- wave propagation prob-

lem. This solution exactly captured the moving shoreline by combining the Lagrangian

description for the moving shoreline with the Eulerian description for the interior flow

field. The solution domain extends from a fixed point (x = −L) at sea to the waterline

which changes its position with time on the shore slope. If we denote by χ(t) the

location of the waterline, then the velocity of the waterline is

dχ(t)

dt
= u (χ(t), t) = U0(t) (5.47)

where U0(t) is the Lagrangian velocity of the mass at the waterline.

Consider the geometric transformation from the (x, t)-coordinates to the (ζ, τ)-

coordinates given by

x =

(
1 +

χ(t)

L

)
ζ + χ(t) (5.48)

This transformation maps the time varying domain −L ≤ x ≤ χ(t) to the fixed domain

−L ≤ ζ ≤ 0. Note that t ≡ τ . To transform the continuity and momentum equations

to the (ζ, τ)-coordinates, we have the following

∂

∂t
=

∂

∂τ

∂τ

∂t
+

∂

∂x

∂x

∂τ
(5.49)

∂x = (1 + χ(t)/L) ∂ζ → ∂

∂x
= c2(t)

∂

∂ζ
(5.50)

where c2 (t) is defined as (1 + χ(t)/L)−1
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∂x

∂τ
=

∂

∂τ
[(1 + χ(t)/L)ζ + χ(t)] =

ζ

L

∂χ

∂τ

∂τ

∂t
+
∂χ

∂τ

∂τ

∂t
=

(
1 +

ζ

L

)
∂χ

∂τ
(5.51)

Since t ≡ τ

∂τ

∂t
= 1 (5.52)

and

∂η

∂t
=
∂η

∂τ

∂τ

∂t
+
∂η

∂x

∂x

∂τ
=
∂η

∂τ
+

(
1

(1 + χ/L)

∂η

∂ζ

)[(
1 +

ζ

L

)
∂χ

∂τ

]
(5.53)

Using Equation 5.47 and defining (1 + ζ/L)/(1 + χ/L) = c1 (t) yields

∂η

∂t
=
∂η

∂τ
+ c1U0

∂η

∂ζ
(5.54)

or

∂η

∂τ
=
∂η

∂t
− c1U0

∂η

∂ζ
(5.55)

Similarly

∂u

∂τ
=
∂u

∂t
− c1U0

∂u

∂ζ
(5.56)

Using Equation 5.50, Equation 5.55 and Equation 5.56 to transform the continuity and

momentum equations gives,

∂η

∂t
− c1U0

∂η

∂ζ
+ c2

∂

∂ζ
[u(h+ η)] = 0 (5.57)
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and

∂u

∂t
− c1U0

∂u

∂ζ
+ c2

[
u
∂u

∂ζ
+ g

∂η

∂ζ

]
= 0 (5.58)

5.3. Analytical Solution For Long wave Run-up On A Sloping Beach (Case

Study 1)

Due to the difficulties of this nonlinear problem, only very few theoretical studies

have been presented since Carrier-Greenspan’s theory (1958). Other theories are more

or less extensions of this theory.

In the analytical benchmark problem, 1D run-up of periodic long wave on a

beach of uniform slope, α, is considered as seen in Figure 5.2 where α= 1. Carrier and

Greenspan’s solution (1958) to Equation 5.45 and Equation 5.46 for periodic wave of

elevation η(x, t) and horizontal velocity u(x, t) can be expressed in parametric form as

in Equation 5.40, Equation 5.44. On a sloping beach, this solution is a time-periodic

wave for 0 < A ≤ 1, breaks (with infinite slope) at the waterline at the run-down

extreme for the critical case of A = 1, and becomes multivalued for A > 1. Figure 5.3

to Figure 5.16 show Carrier-Greenspan’s exact solution for the case of periodic waves

and the corresponding numerical results of the present Lagrangian-Eulerian numerical

method, both based on Equation 5.45 and Equation 5.46.
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Figure 5.2. Geometry of the Solution Domain, 221 Collocation Nodes were Used in

the Simulations.

For this numerical work, two initial conditions are required. From the Carrier-

Greenspans solution Equation 5.41- Equation 5.44 at the t0 = λ/2 = 4π/16 instant,

η(x, t0) (implicitly by Equation 5.42), and u(x, t0) (implicitly by Equation 5.43) are

the two initial conditions used for the warm start, respectively. As for the boundary

condition on the ocean side the Sommerfeld radiation boundary condition is applied so

that no disturbances are reflected back from the open boundary during the numerical

experiment. In this numerical experiment MQRBF is used, and no optimization is

required for the shape parameter, c, which is explained in Section 4.2.2 and is taken to

be constant as 4rmin as suggested by Hon et al., (1997; 1999).

By comparison, the present numerical results are found to be in excellent agree-

ment with the exact analytical solution. Taking 220 collocation points over a 30 meter

length of domain and a time increment of π/8000, the RMS error for the deviations

of the η values from the analytical solution seem to be a most of order 10−4. For the

same time increment but with 101 nodes, the RMS error is 4 times greater as seen in

Table 5.1. This excellent accuracy surpasses any other numerical methods known for

solving this problem i.e. Zhang, (1996). Further, a CPU time of only 0.15 seconds per



69

time step is required on an Intel(R) Core (TM)2 Duo CPU E8400, 3.00 GHz processor.

The entire runtime is 10 minutes.

For the run-up, Figure 5.3 Figure 5.11 are the comparisons at the fixed time in-

stants, t = 4π16, 5π/16, 6π/16, 7π/16, 8π/16, 9π/16, 10π/16, 11π/16, and 12π/16. Also,

their RMS error for n=220 and n=101 collocation nodes can be found in Table 5.1.

Table 5.1. RMS Error for Run-Up at the Given Time Instants.

Time instant
RMS error (10−4) RMS error (10−4)

n=220 n=101

4π/16 1.98 9.8

5π/16 2.08 10.5

6π/16 2.16 10.8

7π/16 2.28 11.2

8π/16 2.37 11.7

9π/16 2.41 11.4

10π/16 2.47 11.9

11π/16 2.51 12.1

12π/16 2.46 10.1

RMS error: 2.31 11.2
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Figure 5.3. Comparison of the Initial Boundary Condition with the

Carrier-Greenspan (1958) Exact Solution for Run-up of a Periodic Wave on a Sloping

Beach, A=1.0, Initial Condition at t = 4π/16.

Figure 5.4. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=5π/16.
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Figure 5.5. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=6π/16.

Figure 5.6. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=7π/16.
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Figure 5.7. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=8π/16.

Figure 5.8. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=9π/16.
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Figure 5.9. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=10π/16.

Figure 5.10. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=11π/16.
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Figure 5.11. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-up of a Periodic Wave on a Sloping Beach, A=1.0, Computed

at t=12π/16.

The present numerical results are found to be in excellent agreement with the

analytical solution. Taking 220 collocation points over a 30 meter length of domain

and with a time increment of π/8000, the RMS error is uniformly less then 2.29x10−4.

For the same time increment with 101 nodes, the RMS error is 4 times greater and

1.09x 10−3 thus qualifying the scheme as being of the second order.

Figure 5.12- Figure 5.16 are for a fixed time instant, t = 12π/16, 14π/16, 16π/16,

18π/16, and 20π/16, for the run-down. Also, their RMS error norms both for a loose

collocation node and a dense collocation node cases can be found in Table 5.2.
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Table 5.2. RMS Error for Run-Down at the Given Time Instants.

Time instant
RMS error (10−4) RMS error (10−4)

n=220 n=101

12π/16 2.45 10.2

14π/16 2.49 12.1

16π/16 2.36 11.6

18π/16 2.17 11.0

20π/16 1.99 9.7

RMS error: 2.29 10.9

Figure 5.12. Comparison of the Initial Boundary Condition with the

Carrier-Greenspan (1958) Exact Solution for Run-down of a Periodic Wave on a

Sloping Beach, A=1.0, Computed at t=12π/16.
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Figure 5.13. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-down of a Periodic Wave on a Sloping Beach, A=1.0,

Computed at t=14π/16.

Figure 5.14. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-down of a Periodic Wave on a Sloping Beach, A=1.0,

Computed at t=16π/16.
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Figure 5.15. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-down of a Periodic Wave on a Sloping Beach, A=1.0,

Computed at t=18π/16.

Figure 5.16. Comparison of the Numerical Results with the Carrier-Greenspan (1958)

Exact Solution for Run-down of a Periodic Wave on a Sloping Beach, A=1.0,

Computed at t=20π/16.
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5.4. Long Wave Run-up On A Sloping Beach (Case Study 2)

A meshless method based on the RBFs is used to solve the nonlinear, nondis-

persive shallow water equations. The one dimensional initial value problem has a

moving free surface boundary. As stated in Section 5.2, the formulation employs a

Lagrangian-Eulerian scheme to track the movement of the free boundary and trans-

forms the problem to a time-independent domain. The results obtained from the

numerical simulations in case study 1 using the RBFCM provided motivation to com-

pare the two numerical codes of Zhou et al., (2004) and this study. In the former, the

Wilson-θ method, in the latter developed code, the Adams-Basforth-Moulton method

is used to advance the solution in time and RBF evaluates the spatial derivatives.

The RBFCM was applied to simulate the wave run-up and run-down of a long

wave propagating from an open ocean of depth h0 onto a uniformly sloping plane beach

as depicted Figure 5.17. The water depth taken to vary as

h =

 αζ, −h0

α
≤ ζ ≤ 0

h0, x < −h0

α

(5.59)

where ζ represents the spatial horizontal coordinate and α denotes the slope of the

plane beach. The fixed domain is [−L, 0]. The wave in the fixed domain is given as;

U0(t) = A sin(ωt) (5.60)

which is originally located L meters from the shoreline of the beach. The boundary

conditions are,

η (0, t) = αχ (t) , u(−L, t) = U0(t) (5.61)

The initial conditions, a cold start, are taken to be,

η (x, 0) = 0, u(x, 0) = 0 (5.62)
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Figure 5.17. Geometry of the Solution Domain, 101 Collocation Nodes were Used in

the Simulations.

The parameters used in the simulations are given in the Table 5.3.

Table 5.3. Comparison of Wave and Domain Parameters.

Parameters Zhou et al., (2004) This study

Depth, h0 [m] 1 1

Slope, α 0.5 0.5

Velocity Amplitude, A [m] 0.06 0.06

Wave Frequency, ω
√
g

√
g

Domain Length, L 12m 12m

Time domain, [sec] [0-10] [0-10]

The total number of time steps 500 10000

The total number of the points used, n 101 101

Shape parameter, c2 [m2] 16 0.0576

The results of the numerical simulation are shown in Figure 5.18. The horizontal

lines, A=0.06, in Figure 5.18 show the maximum vertical amplitude of the wave run-
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up problem. For the same accuracy with Zhou et al., (2004)’s model, my simulation

needs more time steps with a small shape parameter which plays an important role

for the accuracy of the method. In most papers the authors end up choosing this

shape parameter by trial and error or some other ad-hoc means. An unwelcome aspect

appears when the linear systems are solved by the shape parameter they used, the

matrix turned out to be ill-conditioned. When the value of shape parameter increases

more increasingly flat basis functions occur, this leads to a severely ill-conditioned

problem as stated in Buhmann (2003). From Figure 5.19 Figure 5.23 it can be observed

that the RBFCM was successful in simulating the wave run-up phenomena. RMS error

is 2.7x10−4.

Figure 5.18. Vertical Amplitude of the Wave in the Run-up Problem.
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Figure 5.19. Wave Run-Up and Run-Down Profile Between 4.20 and 5.83 Seconds on

the Sloping Plane Beach.

Figure 5.20. Wave Run-Up Profile Between 5.83 and 6.68 Seconds on the Sloping

Plane Beach.
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Figure 5.21. Wave Run-Down Profile Between 6.68 and 7.88 Seconds on the Sloping

Plane Beach.

Figure 5.22. Wave Run-Up Profile Between 7.88 and 8.70 Seconds on the Sloping

Plane Beach.
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Figure 5.23. Wave Run-Down Profile Between 8.70 and 9.89 Seconds on the Sloping

Plane Beach.

5.5. Long Wave Propagation Problems with Sponge Treatment

The results of some selected numerical tests are given and compared with the

linear and one dimensional nonlinear solution in terms of the normalized free surface

displacements. There are several parameters involved in the problem. These are input

wave parameter such as wave steepness, period and Ursell number (UN) (Ursell, 1953),

problem dimensions such as the length, width of the domain and the sponge layer,

computationally necessary parameters such as the time step, the shape parameter and

the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967). UN indicates the

nonlinearity in the long wave limit of shallow water and simply stated as the ratio of

the amplitudes of the second-order to the first-order term in the free surface elevation.

When model runs were being performed, experiments on the accuracies associated

with using different time steps were analyzed. It was decided to take a rule of thumb

type of time step and apply the same approach on all of the models. CFL condition

states that the computational speed of the wave should not be greater than the physical

speed of the wave. Time step for the computational wave should be less than the time
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for the wave to travel to the next time step. To avoid any such violation, for all of

the models, the time increments were in the order of one-thousandth of a second was

chosen and better results obtained. Time steps of smaller that one-thousandth of a

second were tried and found not to contribute toward increasing accuracy of the results

and also consume computational time. Each case that was run is for 20-24 simulation

periods.

On the other hand, wave steepness criterion which is one of the most critical

parameters to construct stabilized numerical solution is overcomed for the LSWE. Also,

for the NSWE model, the steeper the wave, the less accurate results are obtained. The

numerical tests in this study have shown that beyond a limiting steepness and UN, the

accuracy of the results worsens. The test cases for comparison are selected according

to wave steepness and UN which for linear wave solution and nonlinear wave solution

of the given data in Table 5.4. The highest UN that the developed code can solve for

the test cases are shown in all Figure. The largest UN that the NSWE code can handle

is approximately 50.

Table 5.4. Test Cases Wave Parameters.

T (s) H (m) h (m) ω (s−1) L0(m) h/L0 kh L (m) a/h h/L UN

2

0.01 1 3.142 6.245 0.16012 1.205 5.22 0.005 0.192 0.136

0.02 1 3.142 6.245 0.16012 1.205 5.22 0.010 0.192 0.272

0.03 1 3.142 6.245 0.16012 1.205 5.22 0.015 0.192 0.408

0.04 1 3142 6.245 0.16012 1.205 5.22 0.020 0.192 0.544

4

0.01 1 1.571 24.981 0.04003 0.524 12,00 0.005 0.083 0.720

0.02 1 1.571 24.981 0.04003 0.524 12.00 0.010 0.083 1.440

0.03 1 1.571 24.981 0.04003 0.524 12.00 0.015 0.083 2.160

0.04 1 1.571 24.981 0.04003 0.524 12.00 0.020 0.083 2.881

8

0.01 1 0.785 99.924 0.01001 0.253 24.79 0.005 0.040 3.074

0.02 1 0.785 99.924 0.01001 0.253 24.79 0.010 0.040 6.147

0.03 1 0.785 99.924 0.01001 0.253 24.79 0.015 0.040 9.221

0.04 1 0.785 99.924 0.01001 0.253 24.79 0.020 0.040 12.295

16

0.01 1 0.393 399.695 0.0025 0.126 49.98 0.005 0.020 12.491

0.02 1 0.393 399.695 0.0025 0.126 49.98 0.010 0.020 24.982

0.03 1 0.393 399.695 0.0025 0.126 49.98 0.015 0.020 37.474

0.04 1 0.393 399.695 0.0025 0.126 49.98 0.020 0.020 49.965

The placement density of the centers is an important factor in obtaining accurate

results. High density not only results in long computational times but also leads to

ill-conditioned systems matrices and non-converging schemes.
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5, 9, 17, 33 and 65 collocation points per wave length were tested both for the

LSWE solution and the NSWE solution. As seen from Figure 5.24, the best results

were obtained for 33 and 65 collocation nodes per wave length in the NSWE solution

where the shape parameter, c, is taken to equal as 4rmin as suggested by Hon et al.,

(1997; 1999) vertical lines in the Figure 5.24 drawn at ±3L where the sponge layer

starts. For the rest of the test cases collocation nodes per wave length was fixed to 33

nodes to save memory and to decrease the computational time.

Figure 5.24. Comparison of NSWE Solutions for Different Choices of Nodes per Wave

Length, c=4rmin following Hon et al., (1997).

Another adjustment necessary to obtain accurate solution is shape parameter.

Although, there are several studies on the selection of the shape parameter as explained

in Chapter 4, there is no common agreement for the optimum value. Therefore, the

strategy adopted here is to start with the suggested values, then, to refine this value by

trail and error. To achieve this different shape parameters are used and the percentage

reflection from the sponge layer is investigated. In the tests single half positive wave,

single half negative wave, single wave and airy wave are tested. Figure 5.25 shows

the periodic wave’s shape parameter optimization to minimize the reflection from the

sponge layers. All the other wave types have the same trait. Due to the fluctuations at

the end of the sponge layers, the optimum shape parameter is not the one where the

minimum reflection occurs. To overcome this problem, Sommerfeld radiation boundary

condition is employed at both ends of sponge layers. As a result of the tests conducted,
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the optimum square of the shape parameter, c2, was found to be between 80-100 cm2.

In an expressional form shape parameter, c, can be taken as 2πrmin where rmin is

between 0.1 and 1.9 meters.

Figure 5.25. Optimizing Shape Parameter with Sponge Layers and RBC at the Ends.

Once the adequate resolution and optimum shape parameter are obtained, time

integrator tests are done. All the time integrators as seen from the figure have the same

order of accuracy to illustrate this observation Figure 5.26 is given, nevertheless, they

have different computational time. More detailed of Figure 5.26 is shown in Figure

5.27 for wave amplitudes, their UN and RMS error by ABM O(4) integrator.
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Figure 5.26. Comparison of RMS Error of Different Time Integrators, ABM O(4)

(Circles), MH O(4) (Stars), RK O(4)(Diamonds), and for a Linear Wave of Different

Wave Amplitudes.

Figure 5.27. Comparison of UN and RMS Error with Wave Amplitudes.

Another important adjustment necessary to obtain accurate solutions is on the

sponge layer coefficients. Despite the fact that there are few studies that suggest the

values of sponge coefficients, again by trail and error the damping coefficients can easily
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be determined by the type of the wave used in the simulations. The sponge layer length

in this case is three times the wavelength in both the positive and in the negative x

directions.

Recalling the x direction momentum Equation 4.32 and the sponge layer Equation

4.33 and rearranging them for 1D yield ;

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
−w1(x)u− w2(x)uxx︸ ︷︷ ︸

inside the sponge layer on the x−axis

(5.63)

and

−w1(x) =

 0 , x < xs

α1ωf(x) , x ≥ xs

−w2(x) =

 0 , x < xs

α2υf(x) , x ≥ xs


f(x) =

exp
(

x−xs

xl−xs

)n
exp(1)− 1

(5.64)

The variation of the sponge layer coefficients, w1(x) and w2(x), with constant α1

and α2 coefficients shown in Figure 5.28. When power, n of the sponge layer coefficient

increases the wave enters the sponge layer more, less reflection occurs, nevertheless, the

stability problems arises even for one dimensional problems. Thus, in the simulations

n is selected to be 2. The variation of the sponge layer coefficients, w1(x) and w2(x),

with constant n=2, and α2=0.1 coefficients shown in Figure 5.29. The change in the

α1 term has no effect on w2(x). As seen in Figure 5.30 this time, the change in the α2

term has no effect on w1(x). The moderate coefficients selected as α1=10 and α2 is 0.1

to avoid computational instabilities.
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Figure 5.28. Variation of Sponge Layer Coefficients w1(x) and w2(x) (α1=10 and

α2=0.1).

Figure 5.29. Variation of Sponge Layer Coefficients w1(x) and w2(x) (n=2 and

α2=0.1).
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Figure 5.30. Sponge Layer Coefficients w1(x) and w2(x) (n=2 and α1=10).

The improvement in the accuracy of the results directly effected by the sponge

layer coefficients and the shape parameter due to the slight reflection from the sponge

layer. The propagation and reflection of a single positive wave, a single negative wave

and a single full wave can be seen in the Figure 5.31 Figure 5.38 for 0.5, 1, 3, 3.5, 4, 5,

6, and 12 simulation periods. The reflection diminishes in time since the reflected wave

from left sponge layer captured by the right sponge layer in time. The reflection can

be minimized in the half waves by changing the wave parameters to have small UN.

Thus, the difficulty of using sponge layer arises from the coefficients to be used needs

to be changed according to the type of the input wave.
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Figure 5.31. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=0.5T.

Figure 5.32. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=T.
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Figure 5.33. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=3T.

Figure 5.34. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=3.5T.
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Figure 5.35. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=4T.

Figure 5.36. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=5T.
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Figure 5.37. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=6T.

Figure 5.38. The Propagation and Reflection of a Single Negative Half Wave, a Single

Positive Half Wave and a Single Full Wave by Using NSWE at t=12T.

FFT analysis gave some valuable information regarding the performance of the

numeric models. For this reason some numerical gage locations were selected along the

channel. The locations where the free surface displacements were analyzed are in the

middle of the domain, x=0 where influx boundary condition is specified, at distances of

L, 2L where GE are valid and 3L where is the beginning of the sponge layer. The data
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collected on the numerical gage locations are for horizontal bottom and for the UN

of 50 by using NSWE model. FFT analyze is applied to the collected data in terms

of amplitude and mean water level (MWL) locations. The fluctuation of the MWL

is tabulated in Table 5.5 where each analysis involved 2n data and good results are

obtained. In Table 5.6 FFT results of amplitude spectrum is given. Figure 5.39 shows

the FFT results of different sized sample data at the gage location of ±2L. The FFT

analysis shows the two points on the graphs as expected zero frequency for the MWL

and one at the carrier amplitude. In the light of FFT analysis the model with sponge

layer and RBC condition is working properly.

Table 5.5. Variation of the Mean Water Level, UN is 50.

x = 0 L 2L 3L

T 1.72E-03 1.22E-03 1.06E-03 1.19E-02

2T 9.76E-04 7.98E-04 7.18E-04 3.13E-02

4T 5.52E-04 5.53E-04 1.58E-02 2.74E-02

8T 4.39E-05 6.16E-03 7.67E-03 7.90E-03

16T 1.81E-04 1.86E-03 3.03E-03 3.41E-03

Table 5.6. Amplitude Spectrum.

x = 0 L 2L 3L

T 9.98E-01 9.98E-01 9.97E-01 9.84E-01

2T 9.98E-01 9.97E-01 9.97E-01 9.87E-01

4T 9.98E-01 9.97E-01 9.92E-01 9.94E-01

8T 9.97E-01 9.99E-01 9.98E-01 9.97E-01

16T 9.97E-01 9.97E-01 9.96E-01 9.95E-01

Avr. 9.98E-01 9.98E-01 9.96E-01 9.91E-01
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Figure 5.39. FFT Results of Normalized Free Surface at ±2L.

5.5.1. One Dimensional Solutions of SWE (Case Study 3)

5.5.1.1. LSWE Solution and NSWE Solution in 1D. Numerical tests were conducted

to determine which integration method, RK O(4), MH O(4) or ABM O(4), gives the

best performance. Different wave steepnesses were selected to obtain the maximum UN

to be used in the one dimensional NSWE model. The horizontal length of the solution

domain was selected as 12 wave lengths of the selected wave. The Sommerfeld radiation

boundary condition was symmetrically applied at the ends of the solution domain

to minimize the reflection and fluctuations at the end of sponge layers. The wave

properties and the RMS error in time are summarized in Table 5.7 for an intermediate

water wave and in Table 5.8 for a shallow water wave. The simulation times of the tests

range from 30-253 sec. for LSWE solutions and from 35-326 sec. for NSWE solutions.

Common skewed wave traits are observed the more the UN is the more RMS error

involve in the solution. Best performance is observed for time integration by using
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the ABM O(4) in terms of intermediate time steps needed per integration time step,

required storage and run time.

Figure 5.40 and Figure 5.41 show the variation of the normalized free surface in

the shallow water at the 3T where waves enter the sponge layer and 24T for the UN of

50, respectively. In Appendix B.1., the variation of the normalized free surface in the

shallow water are given for horizontal bathymetry at the 0.5T, T, 3T, 5T, 6T, 7T, 8T,

and 24T, respectively. In Appendix B.2., the variation of the normalized free surface

in the shallow water are given for the sloped bathymetry at the 0.5T, T, 3T, 5T, 6T,

7T, 8T, and 24T, respectively.

Figure 5.40. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.
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Figure 5.41. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.

From Figure 5.42- Figure5.49, Comparison of LSWE vs. NSWE solution with

its RMS error at the time instants of 3T, 5T, 6T, 9T, 10T, 12T 15T, 18T and 24T,

respectively. The model has negligible reflection traits as seen in the Figure 5.42-

Figure5.49. The fluctuations maybe attributed to the fact that in a NSWE solution

a linear wave is given on the influx boundary. The nonlinear wave whose UN greater

then 1, skew the wave crest and trough, thus, when comparing with the linear wave

solution fluctuations occurred. The maximum RMS error is with the fourth order RK

8.042x10−4, MH 8.0427x10−4 and ABM 8.0417x10−4 time integrators, respectively.
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Table 5.7. Maximum RMS Error for Intermediate Wave.

T A0

Max. Error
Method of Integration Linear Solver Nonlinear Solver

(s) (m) (10−4) Run Time (s) Run Time (s)

2

0.005 0.39685

ABM O(4) 30 35
0.010 1.60220

0.015 3.65650

0.020 6.63830

0.005 0.39725

MH O(4) 31 38
0.010 1.60380

0.015 3.65990

0.020 6.64450

0.005 0.39688

RK O(4) 39 41
0.010 1.60230

0.015 3.65670

0.020 6.63890

4

0.005 0.45041

ABM O(4) 59 67
0.010 1.82190

0.015 4.17480

0.020 7.63110

0.005 0.45064

MH O(4) 65 70
0.010 1.82280

0.015 4.17700

0.020 7.63510

0.005 0.45045

RK O(4) 70 82
0.010 1.82200

0.015 4.17510

0.020 7.63160
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Table 5.8. Maximum RMS Error for Long Wave.

T A0

Max. Error
Method of Integration

Linear Solver Nonlinear solver

(s) (m) (10−4) Run Time (s) Run Time (s)

8

0.005 0.46815

ABM O(4) 124 134
0.010 1.89490

0.015 4.35070

0.020 7.95570

0.005 0.46829

MH O(4) 128 140
0.010 1.89550

0.015 4.35200

0.020 7.95810

0.005 0.46818

RK O(4) 142 164
0.010 1.89500

0.015 4.35090

0.020 7.95610

16

0.005 0.47377

ABM O(4) 243 265
0.010 1.91790

0.015 4.40320

0.020 8.04170

0.005 0.47384

MH O(4) 252 273
0.010 1.91820

0.015 4.40390

0.020 8.04270

0.005 0.47379

RK O(4) 312 326
0.010 1.91800

0.015 4.40340

0.020 8.04200
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Figure 5.42. Comparison of LSWE vs. NSWE Solution at t=3T.

Figure 5.43. Comparison of LSWE vs. NSWE Solution at t=5T.
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Figure 5.44. Comparison of LSWE vs. NSWE Solution at t=6T.

Figure 5.45. Comparison of LSWE vs. NSWE Solution at t=10T.
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Figure 5.46. Comparison of LSWE vs. NSWE Solution at t=12T.

Figure 5.47. Comparison of LSWE vs. NSWE Solution at t=15T.
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Figure 5.48. Comparison of LSWE vs. NSWE Solution at t=18T.

Figure 5.49. Comparison of LSWE vs. NSWE Solution at t=20T.

5.5.2. Two Dimensional Solutions of NSWE (Case Study 4)

The advantages of the meshless RBFs method will be demonstrated by applying

the method from 1D solutions to successfully obtain the numerical approximations of
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2D solutions. Numerical simulation of 2D model was performed on the horizontal and

sloped bathymetry by using NSWE model with sponge layers to show the model also

works properly in 2D.

Node placement in the x, propagation direction and y, cross direction can be seen

in Figure 5.50. In the middle of the propagation direction at x=0, the wave maker is

placed as influx boundary. The sponge layers start at x=3L and x=-3L till the end of

the domain. Collocation node placement is the same for the horizontal and the sloped

bathymetry. In the propagation direction, there are 12 wave length. Each wave length

has 33 collocation nodes. In the cross direction, there are 5 transects placed half the

wave length each, each has 397 collocation nodes and 1985 total collocation nodes in the

domain. In Subsection 5.5.2.1., the solutions are obtained on the horizontal bathymetry

and in Subsection 5.5.2.2, the solutions are obtained on the sloped bathymetry by 2D

NSWE model.

Figure 5.50. Node Placement in the Propagation and Cross Direction, Influx

Boundary (Blue Line) and Sponge Layers (Red Lines).

5.5.2.1. 2D NSWE Solution on the Horizontal Bathmetry. In the horizontal plane, the

depth is set to 1 meter so that for future studies a comparison can be done by the model
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and laboratory studies. To show how RBF works well in 2D solutions a comparison of

1D NSWE Solution to Midtransect of 2D NSEW Solution on the horizontal bathmetry

is done. In Figure 5.51 and Figure 5.52, the variation of the normalized free surface in

shallow water can be seen at 3T and 24T, respectively. In Appendix C.1., the variation

of the normalized free surface in the shallow water are figured at 0.5T, T, 3T, 5T, 6T,

7T, 15T and 24T.

Figure 5.51. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.

Figure 5.52. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.
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Variation of the maximum RMS error with time for intermediate and long wave

can be seen in Table 5.9 and Table 5.10. When the wave steepness increases the error

increases. Time marching in the model is carried out by the ABM O(4) method. The

maximum RMS error is 4.74x10−5 for UN 50.

Table 5.9. Maximum RMS Error in Time for Intermediate Waves.

T (s) A0 (m) Max RMS error 2D Nonlinear Solver Run Time (s)

2

0.005 2.34E-06

8669
0.01 9.44E-06

0.015 2.16E-05

0.02 3.91E-05

4

0.005 2.66E-06

16596
0.01 1.07E-05

0.015 2.46E-05

0.02 4.50E-05

Table 5.10. Maximum RMS Error in Time for Long Waves.

T (s) A0 (m) Max RMS error 2D Nonlinear Solver Run Time (s)

8

0.005 2.76E-06

33192
0.01 1.12E-05

0.015 2.56E-05

0.02 4.69E-05

16

0.005 2.79E-06

65640
0.01 1.13E-05

0.015 2.60E-05

0.02 4.74E-05

The model results shown in Figure 5.53- Figure 5.61 comparison of 1D and 2D

midtransect NSWE solution with this maximum relative error at the time instants of

3T, 5T, 6T, 9T, 10T, 12T 15T, 18T and 24T. The model results indicate that the

sponge layers are functioning properly with Sommerfeld radiation boundary condition

at the ends for the horizontal bathymetry.
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Figure 5.53. Comparison of 1D vs 2D Midtransect NSWE Solution at t=3T.

Figure 5.54. Comparison of 1D vs 2D Midtransect NSWE Solution at t=5T.
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Figure 5.55. Comparison of 1D vs 2D Midtransect NSWE Solution at t=6T.

Figure 5.56. Comparison of 1D vs 2D Midtransect NSWE Solution at t=9T.
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Figure 5.57. Comparison of 1D vs 2D Midtransect NSWE Solution at t=10T.

Figure 5.58. Comparison of 1D vs 2D Midtransect NSWE Solution at t=12T.
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Figure 5.59. Comparison of 1D vs 2D Midtransect NSWE Solution at t=15T.

Figure 5.60. Comparison of 1D vs 2D Midtransect NSWE Solution at t=18T.
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Figure 5.61. Comparison of 1D vs 2D Midtransect NSWE Solution at t=24T.

5.5.2.2. 2D NSWE Solution on the Sloped Bathmetry. Comparison of 1D NSWE to

Midtransect of 2D NSWE Sloped Solution

Node placement in the x, propagation direction and y, cross direction can be seen

in Figure 5.62. In the middle of the propagation direction at x=0, the wave maker

is placed as influx boundary. The sponge layers start at x=3L and x=-3L till the

end of the domain. Between ±L and ±2L the sloped bathymetry is set. Collocation

node placement is the same for the horizontal and the sloped bathymetry. Nodes for

the sloped bathymetry on the propagation direction, x, 12 wave length distance is set

and each wave length has a 33 collocation nodes. There are 5 transect each has 397

collocation points on the cross direction, y and 1985 total collocation on the domain.
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Figure 5.62. Node Placement in the Propagation and Cross Direction, Influx

Boundary (Blue Line at x=0), Sponge Layers (Red Lines at x=±3, Sloped

Bathymetry Starts at x=±L and Ends at x=±2L).

The bathymetry of the domain as seen in Figure 5.63. The depth is set to 1 meter

between L and -L and 0.5 meter between 2L to 6L in the positive x direction (-2L to

-6L in the negative x direction). Between L and 2L (and -L and-2L) there is a constant

slope of 1/100.

Figure 5.63. Bathymetry of the Sloped Domain.

In Figure 5.65 and Figure 5.66, the variation of the normalized free surface in the

shallow water are figured at the 3T and 24T time instants, respectively. In Appendix

C.2., the variation of the normalized free surface in the shallow water are figured at

the 0.5T, T, 3T, 5T, 6T, 7T, 8T, 15T and 24T time instants, respectively.
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Figure 5.64. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.

Figure 5.65. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.

Maximum RMS error in time for intermediate and long wave values can be seen

in Table 5.11 and Table 5.12. When the wave steepness increases the error increases.

The time integration is done by ABM since all the studied time integration methods

have the same order from the point of computational times ABM is selected not to

consume too much time.
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Table 5.11. Maximum RMS Error in Time for Intermediate Wave.

T (s) A0 (m) Max. RMS error 2D Nonlinear Solver Run Time (s)

2

0.005 2.78E-06

8669
0.010 1.12E-05

0.015 2.56E-05

0.020 4.66E-05

4

0.005 3.16E-06

16596
0.010 1.28E-05

0.015 2.93E-05

0.020 5.35E-05

Table 5.12. Maximum RMS Error in Time for Long Wave.

T (s) A0 (m) Max. RMS error 2D Nonlinear Solver Run Time (s)

8

0.005 3.28E-06

33192
0.010 1.33E-05

0.015 3.05E-05

0.020 5.58E-05

16

0.005 3.32E-06

65640
0.010 1.34E-05

0.015 3.09E-05

0.020 5.64E-05

From Figure 5.66-5.74, comparison of 1D and 2D midtransect NSWE solution

with this maximum relative error at the time instants of 3T, 5T, 6T, 9T, 10T, 12T

15T, 18T and 24T respectively. The developed code has negligible reflection traits as

seen in Figure 5.66- Figure 5.74.
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Figure 5.66. Comparison of 1D vs 2D Midtransect NSWE Solution at t=3T.

Figure 5.67. Comparison of 1D vs 2D Midtransect NSWE Solution at t=5T.
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Figure 5.68. Comparison of 1D vs 2D Midtransect NSWE Solution at t=6T.

Figure 5.69. Comparison of 1D vs 2D Midtransect NSWE Solution at t=9T.
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Figure 5.70. Comparison of 1D vs 2D Midtransect NSWE Solution at t=10T.

Figure 5.71. Comparison of 1D vs 2D Midtransect NSWE Solution at t=12T.
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Figure 5.72. Comparison of 1D vs 2D Midtransect NSWE Solution at t=15T.

Figure 5.73. Comparison of 1D vs 2D Midtransect NSWE Solution at t=18T.
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Figure 5.74. Comparison of 1D vs 2D Midtransect NSWE Solution at t=24T.
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6. CONCLUSIONS

The applications of the RBFCM to provide a solution for the unsteady, nondis-

persive NSWE are considered in case studies. Thus, the first conclusion of this thesis is

that successful numerical solutions of the SWE are developed for four case studies. In

case studies 1 and 2, the performance of the model is evaluated against the analytical

and numerical solutions of the problems. In case study 3 and 4 unbounded domain

solutions with sponge treatment is devised.

In case study 1, the meshless RBFCM combined with the Lagrangian-Eulerian

scheme is devised with moving boundary. The advantages of the meshless method are

demonstrated in the numerical solutions of a water wave climbing a linearly sloping

beach. RBFCM solution compared with the analytical solution for long wave run-up on

a sloping beach, Carrier-Greenspan’s theory (1958). The RBFCM produces accurate

results comparable to the analytic solution. Transforming the boundary value problem

to a time invariant domain approach, however, leads to several new nonlinear terms

in the governing equations that render the numerical computation considerably more

complicated. Corresponding numerical results of the present Lagrangian-Eulerian nu-

merical method with additional terms are easily formulated and applied by RBFCM

without any stability problems. MQ RBF, which is globally supported, infinitely dif-

ferentiable, smooth and even with a shape parameter, outperforms best regarding its

accuracy, stability, efficiency, memory requirement, simplicity and straightforwardness

of its implementation.

In case study 2, long wave run-up on a sloping beach with different bathymetry

then case study 1 is compared with a numerical test of Zhou et al., (2004). Good

numerical solutions obtained in this case both for run-up and run down profiles and also

in good agreement with the observed waterline position. The use of the RBFCM with

Lagrangian-Eulerian scheme saves the computational time. This representation brings

the benefit of spatial independence and flexible data structure. Numerical experiments

show that this meshless method has many advantages over traditional methods.
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In case study 3 and 4, Eulerian form of the unsteady, nonlinear, nondispersive

SWE with sponge treatment are used to capture variation of free surface in one and

two dimensions with constant and sloped bathymetry in unbounded domain of interest.

Thus, second conclusion of this thesis, in unbounded domains, sponge treatment is

easily applicable to long wave propagation problem by RBFCM in terms of accuracy

and simple implementation. The damping terms of sponge layer adds higher derivatives

in the governing equations which are easily formulated and applied by RBFCM without

any stability problem.

The computations depicted the definite advantages in using this truly meshfree

method for solving various initial and boundary value problems. Secondly, The mesh-

free algorithm’s spatial dimension independent which is the triggering motivation for

RFB users in the sense that as the spatial dimension of the problem increase, the

convergence order also increases and hence fewer collocation points will be needed to

maintain the same accuracy. This gives the motivation of more sophisticated two and

three dimensional model development for future studies.

The advantages of the meshless RBFs method are demonstrated by applying the

method to successfully obtain the numerical approximations of the solutions. The re-

sultant coefficient matrix of the system of equations resulted from RBFs method is

usually full and unsymmetric and hence leads to an ill-conditioning problem when a

large system of equations is involved. The developed overlapping and multizone do-

main decomposition method for the RBFs approximation by Wong et al., (1999) and

truncated MQ applications by Galperin and Kansa, (2002) may enable the applications

of the method to solve larger scale problems for operational purposes. This may be

a future extension in the simulation of 2+1 dimension wave run-up problem with a

special emphasis of the shape parameter or free parameter. The models’ demonstrated

performances in solving the case studies also show that they can be used for engi-

neering design purposes especially for tsunami propagation and run-up of a tsunami.

Further fields of another study may be to model tsunami propagation and inundation

by RBFCM to get fast results with acceptable errors that can be used for operational

tsunami modeling.
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APPENDIX A: LEIBNITZ’S RULE

When the differentiation of integrals contains a parameter Leibnitz’s rule applied.

The integral

I (β) =

b(β)∫
a(β)

f (x, β)dx (A.1)

has a function of the parameter which is not a function of x, solely a dummy integration

variable.

I ′ (β) =
d

dβ

b(β)∫
a(β)

f (x,β) dx (A.2)

In principle, evaluating the integral and then taking have to be done; in practice,

however, inverting the order of integration and differentiation can be advantageous.

The difference quotient is,

I (β +∆β)− I (β)
∆β

=
1

∆β


b+∆b∫

a+∆a

f (x, β +∆β)dx−
b∫

α

f (x,β)dx

 (A.3)

=

b∫
a

f (x,β+∆β)− f (x, β)
∆β

dx+
1

∆β

b+∆b∫
b

f (x,β+∆β)dx− 1

∆β

a+∆a∫
a

f (x,α+∆α)dx (A.4)

≈
b∫

α

f (x,β+∆β)− f (x,β)

∆β
dx + f (b,β +∆β)

∆b

∆β
−f (a,β+∆β)

∆α

∆β
(A.5)
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A Continuous function, f, is constant over the infinitesimal intervals from b ≤ x ≤ b+∆b

to a ≤ x ≤ a+∆a. Formally, letting ∆α→ 0, the Leibnitz rule is obtained as;

I ′ (β) =

b(β)∫
α(β)

∂f (x, β)

∂β
dx + f [b (β) , β]

db

dβ
− f [a (β) , β]

da

dβ
(A.6)

Equation A.1 is valid if ∂f/∂β be continuous in the rectangular x, and the derivatives

∂f/∂β, ∂b/∂β and ∂a/∂β all exist.
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APPENDIX B: ONE DIMENSIONAL SOLUTIONS OF

NSWE

B.1. Two Sponge Treatment with Horizontal Bathymetry

Figure B.1- Figure B.17 show the variation of the normalized free surface in the

shallow water are given for the horizontal bathymetry at 0.5T, T, 3T, 5T, 6T, 7T, 8T,

and 24T, respectively.

Figure B.1. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=0.5T.
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Figure B.2. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=T.

Figure B.3. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.
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Figure B.4. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=5T.

Figure B.5. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=6T.
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Figure B.6. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=7T.

Figure B.7. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=8T.
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Figure B.8. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.

B.2. Two Sponge Treatment with Sloped Bathymetry

Figure B.9- Figure B.17 show the variation of the normalized free surface in the

shallow water are given for the sloped bathymetry at 0.5T, T, 3T, 5T, 6T, 7T, 8T, 15T

and 24T, respectively.
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Figure B.9. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=0.5T.

Figure B.10. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=T.
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Figure B.11. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.

Figure B.12. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=5T.
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Figure B.13. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=6T.

Figure B.14. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=7T.
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Figure B.15. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=8T.

Figure B.16. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=15T.
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Figure B.17. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.
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APPENDIX C: TWO DIMENSIONAL SOLUTIONS OF

NSWE

C.1. Two Sponge Treatment with Horizontal Bathymetry

Developed numerical code is verified by applying a numerical benchmark problem

Figure C.1. Node Placement in the Propagation and Cross Direction, Influx

Boundary (Blue Line) and Sponge Layers (Red Lines).
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Figure C.2. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=0.5T.

Figure C.3. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=T.
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Figure C.4. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.

Figure C.5. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=5T.
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Figure C.6. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=6T.

Figure C.7. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=7T.
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Figure C.8. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=8T.

Figure C.9. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=15T.
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Figure C.10. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.

C.2. Two Sponge Treatment with Sloped Bathymetry

Figure C.11. Node Placement in the Propagation and Cross Direction, Influx

Boundary (Blue Line at x=0), Sponge Layers (Red Lines at x=±3L, Sloped

Bathymetry Starts at x=±L and Ends at x=±2L).
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Figure C.12. Bathymetry of the Sloped Domain.

Figure C.13. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=0.5T.
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Figure C.14. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=T.

Figure C.15. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=3T.
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Figure C.16. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=5T.

Figure C.17. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=6T.
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Figure C.18. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=7T.

Figure C.19. Variation of the Normalized Free Surface in Shallow Water by NSWE

Solution at t=8T.
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Figure C.20. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=15T.

Figure C.21. Variation of the Normalized Free Surface in Shallow Water by Using

NSWE at t=24T.
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