# COMPUTER AIDED DESIGN OF COLUMNS UNDER BIAXIAL BENDING 

by<br>H. Hayati ALTUN<br>B.Sc. in C.E., Bogaziçi University, 1983

Submitted to the Institute for Graduate Studies
$\cdots$ in Science and Engineering
in Partial Fulfillment of the Requirements for the Degree of Master of Science in

Civil Engineering

Bogazici University Library


## Bugaziçi University

October, 1985

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..... iii
ABSTRACT ..... iv
OZET ..... v
LIST OF FIGURES ..... vi
LIST OF SYMBOLS ..... viii
I. INTRODUCTION ..... 1
II. DESIGN PROCEDURE ..... 3
2.1 Design for Axial Load and Moment ..... 3
2.1.1 General Considerations ..... 3
2.1.2 Balanced Loading ..... 6
2.1.3 Other Loading Conditions ..... 10
2.2 Biaxial Bending ..... 12
2.1.1 General Considerations ..... 12
2.2.2 Brester Reciprocal Load Method ..... 14
184644
2.3 Slenderness Effects
Page ..... 19
2.3.1 General Considerations ..... 19
2.3.2 Approximate Evaluation of Slenderness Effects. ..... 19
III. PROGRAMMING ..... 35
3.1 General Method ..... 36
3.1.1 Determination of Interaction diagram ..... 38
3.1.2 Internal Halving Technique ..... 42
3.1.3 Program Capabilities ..... 43
3.2 Method of Analysis ..... 44
3.2.1 Analysis ..... 45
3.2.2 Check a Desgn ..... 47
3.3 Method Of Design ..... 50
3.3.1 Input Section ..... 51
3.3.2 Find Section ..... 52
3.4 Sample Problems ..... 53
IV. 'SUMMARY AND CONCLUSIONS ..... 57.
v. REFERENCES ..... 59
APPENDIX - I PROGRAM LISTING ..... 60
APPENDIX - II SAMPLE PROBLEMS ..... 75
APPENDIX - III IDENTIFIERS ..... 106

## ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis supervisor, Prof. Dr. Vedat Yerlici, for his guidence, tolerance and understanding attitude and to Ayse ozen for her patience in typing the manuscript.

Istanbul, October 1985
Hayati ALTUN

## ABSTRACT

The equations for design of rectangular reinforced concrete columns are rarely used in actual design due to their mathematical complexities. Rather, design aids in the form of tables or charts, that are sometimes Inadequate to complete a design, are employed by designers.

This study covers the design of rectangular reinforced concrete tied columns under the action of axial load and uniaxial or biaxial bending moments according to the requirements of (ACI 318M-83), Building Code Requirements for Reinforced Concrete (1). A microcomputer program is developed to perform necessarry computations. The program is designed interactively and is based on iteration and internal halving techniques. It performs the design and analysis of columns with known or unknown cross sectional dimensions. When dimensions are not known, acceptable ranges for them must be fed into the computer upon which the program establishes its own cross sectional dimensions using the maximum range given for the reinforcement ratio.

## OZET

Matematiksel karmasiklikları nedeniyle, diktörtgen betonarme kolonlarin hesabinda kullanilan denklemler, gercek hesaplamalarda nadiren kullanılmaktadir. Bunların yerine bazen cözüm için yeterli olmayan tablo ve grafikler kullanllor.

Bu çalısma eksenel yük altinda tek veya iki yönde eğilmeye maruz etriyeli dikdörtgen betonarme kolonların ACI (318M-83)'e göre hesabını kapsamaktadir (1). Gerekli islemleri yapmak uizere bir kompuiter programi gelistirilmistir. Program sorulu cevaplı olarak düzenlenmis ve iterasyon ve yarılma tekniklerini kullanmaktadir. Programla kesit boyutları bilinen yada bilinmeyen kolonlarin analizi ve hesabi yapilabilir. Boyutları bilinmeyen kesitler icin, programin verilen maksimum donatı oranini kullanarak kesit boyutlarını tayin edeceği makul bir boyut aralığ verilmelidir..

## LIST OF FIGURES

Page
FIGURE 2.1 F Factor Increase for Compression Members ..... 5
FIGURE 2.2 General Form of Load-Moment Interaction Strength. ..... 7
FIGURE 2.3 Balanced Colomn Load ..... 9
FIGURE 2.4 Interactive Diägram of a Section with Different Steel Ratios ..... 11
FIGURE 2.5 Biaxial Interaction Surface ..... 13
FIGURE 2.6 Nuatral Axis at Ang?e to Hajor Axis ..... 13
FIGURE 2.7 Notation for Biaxial Loading. ..... 15
FIGURE 2.8 Failure Surface $S_{1}$ ..... 15
FIGURE 2.9 Reciprocal Failure Surface $S_{2}$ ..... 16
FIGURE 2.10 Failure Surface $S_{3}$ ..... 16
FIGURE 2.11 Reciprocal Load Method ..... 18
FIGURE 2.12 Bresler's Biaxial Loading ..... 20
FIGURE 2.13 Unsupported Length ( $\ell_{u}$ ) ..... 23
FIGURE 2.14 Rãdius of Gyration ..... 23
FIGURE 2.15 Interaction in Slender Columns ..... 25
FIGURE 2.16 Column Carve ..... 26
FIGURE 2.17 Slender Column Interaction Diagrams ..... 26
FIGURE 2.18 Effective Length, $l e$ (sidesway Prevented) ..... 28
FIGURE 2.13 Effective Length, $l_{e}$ (sidesway Not Prevented) ..... 28
FIGURE 2.20 Ratio of Relative Stiffnesses (sidesway Prevented) ..... 30
FIGURE 2.2i Ratio of Relative Stiffnesses(sidesway Not Prevented) ..... 37
FIGURE 3.1 Idealized Interaction Diagram ..... 36
FIGURE 3.2 Nominal and Design Interaction Diagrams ..... 37
FIGURE 3.3 Cross Section with Strain Diagram and Force Resultants. 39

## LIST OF SYMBOLS

$a_{b} \quad:$ depth of equivalent rectangular stress block at balanced condition
$A_{g}:$ gross area of section
$A_{S} \quad: \quad$ area of tension reinforcement
$A_{s}$; area of compression reinforcement
b : width of compression face of member
$C_{b} \quad: \quad$ distance from extreme compression fiber to neutral axis at balanced condition.
$C_{m} \quad: \quad$ a factor relating actual moment diagram to an equivalent moment diagram.
d': distance from extreme compression member to centroid of compression reinforcement.
e : eccentricity
$\mathrm{e}_{\mathrm{b}} \quad: \quad$ eccentricity at balanced condition
$e_{x} \quad$ : eccentricity about $x$ axis
$e_{y} \quad: \quad$ eccentricity about $y$ axis
$E_{c} \quad$ : modulus of elasticity of concrete.
$E_{S}:$ modulus of elasticity of reinforcement.
$f_{c}^{\prime}$ : specified compressive strength of concrete.
$f_{s}$ : stress of compression reinforcement.
$f_{y}:$ specified yield strength of reinforcement.
$h$ : overall thickness of member.
$H \quad$ : hight of building above foundations.
Ig : moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement.
k : effective length factor of compression member.
$\ell_{e}:$ equivalent length of compressionimember.
$\ell_{u}$ : unsupported length of compression member.
$M_{b}$ : value of moment at balanced condition.
$M_{c}$ : factored moment to be used for design of compression member.
$M_{n}$ : nominal moment capacity of section under a certain load.
$M_{n x}$ : nominal moment capacitty of section in $x$ direction under a certain load.
$M_{n y}$ : nominal moment capacity of section in $y$ direction under a certain load.
$M_{u} \quad: \quad$ factored moment at section $\leqslant \phi M_{n}$.
$M_{1 b}$ : value of smaller factored end moment on a compression member due to the loads result no appreciable sidesway, calculated by conventional frame analysis, positive if member is bent in single curvature, negative bent in double curvature.
$M_{2 b}$ : value of larger factored end moment on compression member due to loads that result in no appreciable sidesway, calculated by conventional frame analysis.
$M_{2 s}$ : value of larger factored end moment on compression member due to loads that result in appreciable sidesway, calculated by conventional frame analysis.
$n$ : number of stroies in ...f building.
$N_{c 1}$ : resultant compressive force in concrete.
$N_{c 2}$ : resultant compressive force in stee1.
$N_{t}$ : resultant tensile force.
$\mathrm{P}_{\mathrm{b}}$ : column load for balanced design.
$P_{C}:$ critical column load.
$P_{n}$ : nominal axial load strength.
$P_{u}$ : fully factored axial load.
$P_{0}$ : nominal axial load strength at zero eccentricity.

Pox : nominal axial load strength of section in $x$ direction at certain eccentricity.
$P_{0 y}$ : nominal axial load strength of section in y direction at certain eccentricity.
$r$ : radius of gyration of cross section of a compression member.

B1 : factor used in the equivalent rectangular stress diagram for concrete at the ultimate load.
$\beta_{d}$ : ratio of maximum factored dead load moment to maximum factored total moment.
$\delta$ : moment magnification factor.
$\delta_{b}$ : moment magnification factor for frames braced against sidesway.
$\delta_{c}$ : moment magnification factor for frames not braced against sidesway.
$\Delta$ : elastically computed lateral deflection
$\varepsilon_{c}$ : compressive strain in concrete
$\varepsilon_{S}:$ strain in compression steel
$\psi_{a}:$ average of $\psi_{A}$ and $\psi_{B},\left(\psi_{A}+\psi_{B}\right) / 2$
$\psi_{A}$ : ratio of the sum of stiffnesses of the compression members to that of the flexural members in a plane at the upper end of compression member.
$\psi_{2}$ : ratio of the sum of stiffnesses of the compression members to that of the flexural members in a plane at the lower end of compression member.
$\psi_{\min }:$ smallest of $\psi_{A}$ and $\psi_{B}$
$\therefore \quad: \quad$ strength reduction factor

## I. INTRODUCTION

The strength calculations for rectañgular reinforced concrete columns under axiaf load and biaxial bending are tedious. Due to their mathematical complexities, the design equations are rarely used in actual design. Rather, design aids in the form of tables or charts are employed by designers.

The common design procedure is, for a given eccentricity, to locate a point on the load and moment interaction diagram and then express the relationship between bending moment and axial load capacity for a particular reinforced concrete section. Because there exist numerous combinations of section geometries and material properties for columns, the use of design aids is sometimes inadequate for a complete design. Since the interaction curves of bending moment and axial load are usually given for square columns; it is necessary to provide correction factors for rectangular columns.

In addition, the user must predetermine the ratio of the spacing between the reinforcement on opposite faces of the section and the overall section dimension before the design aids can be applied. With the increasing availability of higher strength'steels and concretes, and with accurate method of analysis, it is now
possible to design smaller cross sections for a given load than before. Thus more slender members have come into use, rendering slenderness effects more important in design.

Since the mini and microcomputers are increasingly available, computerized procedures for design and analysis of reinforced concrete columns without the need for design tables and charts is now possible. The design procedure presented here is based on iteration and is written in an interactive mode so that the designer and computer can respond spontaneously. The design method is applicable to the design of tied reinforced concrete columns under biaxial bending including slenderness effects, and it complies with the requirements of (ACI 318M-83)Building Code Requirements for Reinforced Concrete (1).

## II. DESIGN PROCEDURE

All practical columns are members subject not only to axial load but also to moment either uniaxial or biaxial. This study covers short columns, those where lateral deflections are not significant, and long columns where deflections due to slenderness have an important effect on member strength. In design, the procedure of (ACI 318 M-83)Building Code Requirements for Reinforced Concrete (1) will be followed.

### 2.1 DESIGN FOR AXIAL LOAD AND MOMENT

### 2.1.1 General Considerations

Design or investigation of a short compression member is based primarily on the strength of its cross-section. Strength of a crosssection under combined flexure and axial load must satisfy both stress and strain compatibility. The combined nominal axial load, $P_{n}$, and moment strength, $M_{n}$, is then multiplied by the appropriate strength reduction factor (1), $\phi$, to obtain the design strength ( $P_{u}=\phi P_{n}, M_{u}=\phi M_{n}$ ) of the section. The value of $\phi$ may be increased linearly from the value for compression members ( $\phi=0.70$ ) to the value for flexure ( $\phi=0.90$ ) as the design axial load strength, $\phi P_{n}$, decreases from $0.10 f_{c}^{\prime} A_{g}$ or $\phi P_{b}$, whichever is smaller, to zero (1). A "strength interaction diagram" can than be generated between
the design axial load strength, $\phi P_{n}$, and design moment strength $\psi M_{n}$; this diagram defines the usable strength of a section. A typical schematic strength interaction diagram is shown in Fig. 2.1, illustrating the various strength curves for different $\phi$ values.

Maximum strain at the extreme concrete compression fiber is always assumed as 0.003 . Tensile strength of the concrete is neglected in strength computations. The equivalent rectangular concrete stress block can be used in lieu of other complex stress-strain relàtionships for concrete ( 1 ). Note that the required strength ( $P_{u}, M_{u}$ ) must be at least equal to the structural effects of the load groups which represent various combinations of loads and forces to which a structure may be subjected. Since all concrete columns are subject to some moment past American codes set minimum eccentrities of 0.10 h to be used for tied columns. The specified minimum eccentricities were originally intended to serve as a means of reducing the axial design load strength of a section in pure compression to account for accidental eccentricities not considered in the analysis, and to recognise that concrete strength is less under sustained high loads. The primary purpose was to limit the axial load strength for design of compression members with small or zero computed end moments. For the 1983 code thisis accomplished directly by limiting the axial load strength of a section in pure compression to 80 percent of the pure axial load strength.

For tied reinforced members

$$
\begin{equation*}
P_{n}(\max )=0.80\left(P_{0}\right) \tag{2.1}
\end{equation*}
$$

where the pure axial load strength is

$$
\begin{equation*}
P_{0}=0.85 f_{C}^{\prime}\left(A_{g}-A_{S}\right)+f_{y} A_{S} \tag{2.2}
\end{equation*}
$$


where
$A_{g}=$ gross area of section
$f_{C}^{\prime}=$ specified compressive strength of concrete
$P_{b}=$ column load for balanced condition
$P_{0}=$ nominal axial load strength at zero eccentricity

In the interaction diagram, the axial load capacity decreases as moment is increased. Any loading that falls with in this area is a possible loading; any combination sutside the area represents a failure combination. Four points along the load-moment strength interaction diagram are significant to define the behavior of members subject to combined axial load and flexure. Referring to Fig. 2.2,(1) pure compression ... $P_{0}$, (2) maximum axial load strength permitted by the Code $\ldots P_{n}(\max )$, (3) balanced conditions .... $P_{b}, M_{b}$ and (4) pure flexure ... $M_{n}$. For values of axial load strength greater than balanced conditions $P_{n}>P_{b}$, compression in the concrete controls the strength that is called compression failure and,: for values of axial load strength less than balanced conditions $\mathrm{P}_{\mathrm{n}}<\mathrm{P}_{\mathrm{b}}$, tension in the reinforcement controls the strength that is called tension failure: When the axial load strength equal to balanced conditions $P_{n}=P_{b}$, and $e=e b$ then concrete reaches a strain level of 0.003 at the same time with the yielding of steel, i.e. simultaneous crushing of concrete and yielding of steel.

### 2.1.2 Balanced Loading

Any column, regardless of its reinforcement, will reach its balanced ultimate load when the load is so placed as to maintain the eccentricity $e_{b}=M_{b} / P_{b}$. Balance in a column is a matter of loading, and it is more descriptive to speak of balanced loading rather than of a balanced column. For a given column it is very easy to establish the nominal balanced load $\mathrm{Pb}_{\mathrm{b}}$ and the accompanying $\mathrm{e}_{\mathrm{b}}$. Fig. 2.3 shows a balanced column load condition. The maximum strain of 0.003 in compression and $f y / E_{s}$ give cb from similar triangles (Fig. 2.3(c)), most simply by thinking of the large dotted triangle.


FIGURE 2.2 General Form of Load-Moment Interaction Strength

$$
\begin{equation*}
C_{b}=\frac{0.003}{0.003+0.002} \times d \tag{2.3}
\end{equation*}
$$

or muitiplying by $E_{s}$

$$
\begin{equation*}
C_{b}=\frac{600}{600+f_{y}} \times d \tag{2.4}
\end{equation*}
$$

For $f_{c}^{\prime}<30 \mathrm{MPa}, \quad a_{b}=0.85 C_{b}$

$$
\begin{align*}
& N_{c 1}=0.85 \cdot f_{c}^{\prime} \cdot b \cdot a_{b}  \tag{2.5}\\
& \varepsilon_{s}^{\prime}=\frac{c_{b}-d^{\prime}}{c_{b}} \times 0.003 \tag{2.6}
\end{align*}
$$

If $\varepsilon_{s}^{\prime}>\varepsilon_{y}$ than compression steel stress $f_{S}^{\prime}=f_{y}$ otherwise $f_{s}^{\prime}=\varepsilon_{s}^{\prime} \times E_{S}$
Then,

$$
\begin{align*}
& N_{c 2}=A_{s}^{\prime} \times\left(f_{s}^{\prime}-0.85 f_{c}^{\prime}\right)  \tag{2.7}\\
& N_{t}=A_{s} \times f_{y} \tag{2.8}
\end{align*}
$$

These three forces are in equilibrium with $P_{b}$.

$$
\begin{gather*}
\Sigma F_{y}=0=P_{b}+N_{t}-N_{c 1}-N_{c 2} \\
P_{b}=N_{c 1}+N_{c 2}-N_{t} \tag{2.9}
\end{gather*}
$$



FIGURE 2.3 Balanced Column Load
(a) Column Cross Section (b) Side View of Column (c) Strain Distribution (d) Resulting Forces
$\Sigma \mathrm{M}$ aboutplastic centroid of column $=0$
$N_{t} \times\left(h / 2-d^{\prime}\right)+N_{c 1} \times\left(h / 2-a_{b} / 2\right)+N_{c 2 x}\left(h / 2-d^{\prime}\right)-P_{b} \times e_{b}=0$
$M_{b}=P_{b} \times e_{b}=N_{t} \times\left(h / 2-d^{\prime}\right)+N_{c 1} \times\left(h / 2-a_{b} / 2\right)+N_{c 2}\left(h / 2-d^{\prime}\right)$

If column steel is distributed along: four column faces, the numbers used in finding $\mathrm{P}_{\mathrm{b}}$ would be increased by an additional term for each group of bars falling at different distances from the neutral axis. Bars very near the neutral axis will not be effective in carrying stress, for that combination of $M$ and $P$ any bars near the axis will have stresses lower than the vield stress. For any given neutral axis one should sketch the strain distributionito establish the status of nearby bars. The deformation sketch is quite simple to use whenever c is known or assumed. It also facilitates the inclusion in an analysis of bars with $f_{s}$ or $f_{S}^{\prime}$ values less than $f_{y}$.

### 2.1.3 Other Loading Conditions

Points below the balanced loading representing primary failures in tension steel past the yield strain and $\varepsilon_{C}$ still 0.003 , are easily found with assumed $c$ values smaller than $c_{b}$.

Curve points above $\mathrm{P}_{\mathrm{b}}$ can be established by using c values greater than $c_{b}$ with $\varepsilon_{c}=0.003$. As $c$ increases the tensile steel stress must drop and the failure is in primary compression.

All columns are required (1) to contain longidudinal bars sufficient to make the steel ratio, $\rho=A_{s} / A_{g}$, at least 0.01 , because of the shrinkage and creep stresses on smaller, areas, and p must not -
exceed 0.08 . At 0.08 crowding in the member is very severe. A family of curves for a section with given dimensions and locations but different amounts of longitudinal steel can be plotted on the same chart as shown in Fig. 2.4. For a given steel ratio, there will be one and only one continuous interaction curve corresponding to that stee? ratio. As the longitudinal steel ratio is increased, the curve moves farther from the origin of the interaction diagram.


FIGURE 2.4 Interaction Diagram of a Section with
Different Steel Ratios $\rho$.

### 2.2 BIAXIAL LOADING

### 2.2.1 General Considerations

A uniaxial interaction diagram defines the load moment strength in a single plane of a section under an axial load , $P$, and a uniaxial moment, M. Many columns are subject simultaneously to moments about both major axes, especially corner columns. The biaxial bending resistance of an axially loaded column can be represented schematicly (see Fig. 2.5) as a surface formed by a series of uniaxial interaction curves drawn radially from the $P$ axis. Data for these intermediate curves are obtained by varying the angle of the neutral axis with respect to the major axis (see Fig. 20.

When the position of the neutral axis is known or assumed, the magnitude of the load $P_{U}$ and the components of bending moments $M_{X}$ and $M_{y}$ which result in the prescribed limit strain, can be determined using equations of equilibrium. When the position of the neutral axis is not known, the equations of equilibrium can be solved only by the method of successive approximations. All such procedures involve more or less tedious cycles of numerical calculations. The extensive calculations are compounded when minimization of the reinforcement or cross section is sought.

For uniaxial bending, it is customary to utilize design aids in the form of interaction curves or tables. However, for biaxial bending, because of the voluminous nature of the data and the difficulty in multiple interpolations, the development of interaction curves or tables for the various ratios of bending moments about each axis is impractical.


FIGURE 2.5 Biaxial Interaction.

Surface


FIGURE 2.6 Nautral Axis at Angle
to Major Axis

Instead, several approaches (based on acceptable approximations) have been developed that relate the response of a column in biaxial bending to its uniaxial bending resistance about each major axis.

The nominal strength of a section under biaxial bending and compression is a function of three variables $P_{n}, M_{n x}$ and $M_{n y}$ which may be expressed in terms of an axial load acting at eccentricities $e_{x}=\frac{M_{n y}}{P_{n}}$ and $e_{y}=\frac{M_{n x}}{P_{n}}$ as shown in Fig. 2.7. $\quad A$ failure surface may be described as a surface produced by plotting the failure load $p_{n}$ as a function of its eccentricities $e_{x}$ and $e_{y}$ or of its associated bending moments $M_{n y}$ and $M_{n x}$.

Three types of failure surfaces have been defined. The basic surface $S_{1}$ is defined by a function which is dependent upon the variables $P_{n}, e_{x}$ and $e_{y}$ as shown in Fig. 2.8. A reciprocal surface can be derived from $S_{1}$ in which the reciprocal of the nominal axial load $P_{n}$ is employed to produce surface $S_{2}\left(1 / P_{n}, e_{x}, e_{y}\right)$ as illustrated in Fig. 2.9. The third type of failure surface, shown in Fig. 2.10, is obtained by relating the nominal axial load $P_{n}$ to moments $M_{n x}$ and $M_{n y}$ to produce surface $S_{3}\left(P_{n}, M_{n x}, M_{n y}\right)$. Failure surface $S_{3}$ is the three dimensional extension of the uniaxial interaction diagram previously described.
2.2.2 Bresler Reciprocal Load Method

A number of investigators have made approximations for both $S_{2}$ and $S_{3}$ failure surfaces for use in design and analysis. The simplest and the general one of these approximations is the Bresler Reciprocal Load Method.


FIGURE 2.7 Notation for Biaxial Loading


FIGURE 2.8 Failure Surface $S_{1}$


FIGURE 2.9 Reciprocal Failure Surface $S_{2}$


FIGURE 2.10 Failures Surface $S_{3}$

This method approxinates the ordinate $1 / P_{n}$, on the surface $S_{2}\left(1 / P_{n}, e_{x}, e_{y}\right)$ by a corresponding ordinate $1 / P_{n}^{\prime}$ on the plane $S_{2}^{i}\left(1 / P_{n}^{\prime}, e_{x}, e_{y}\right)$, which is defined by the characteristic points $A, B$ and $C$ as indicated in Fig. 2.11. For any particular cross section, the value $P_{0}$ (corresponding to point $C$ ) is the load strength under pure axial compression; $P_{0 x}$ (corresponding to point B) and Poy (corresponding to point $A$ ) are the load strengths under: uniaxial eccentricities $e_{y}$ and $e_{x}$, respectively. For every point on the surface $S_{2}\left(1 / P_{n}, e_{x}, e_{y}\right)$, there is a corresponding plane $S_{2}^{\prime}\left(1 / P_{n}^{\prime}, e_{x}, e_{y}\right)$. The approximation of $S_{2}$ involves an infinite number of planes, each one applicable only for particular values of eccentricities $e_{x}$ and $e_{y}$, and thus each plane defines only one point $1 / P_{n}^{\prime}$ which serves as an approximation to $1 / P_{n}$. Each point on the true surface is approximated by a different plane; therefore, the entire surface is approximated using an infinite number of planes.

The general expression for any values of $e_{x}$ and $e_{y}$ when derived yields the following equation :

$$
\begin{equation*}
\frac{1}{P_{n}} \sim \frac{1}{P_{n}^{\prime}}=\frac{1}{P_{0 x}}+\frac{1}{P_{o y}}-\frac{1}{P_{0}} \tag{2.11}
\end{equation*}
$$

Rearranging the variables yields:

$$
\begin{equation*}
P_{n}=\frac{1}{\left(1 / P_{o x}\right)+\left(1 / P_{o y}\right)-\left(1 / P_{0}\right)} \tag{2.12}
\end{equation*}
$$



FIGURE 2.11 Reciprocal Load Method

This equation is simple in form and the variables are easily determined. Axial load strengths $P_{0}, P_{0 x}$ and $P_{o y}$ are shown in Fig. 2.12. As an approximate method it is one of the best when resulting $P_{n}$ is greater than $0.1 f_{c}^{\prime} A_{g}$. If $P_{n}$ is lower than the balanced design level ( $0.10 \mathrm{f}_{\mathrm{C}}^{\prime} \mathrm{Ag}_{\mathrm{g}}$ level) the errors by this method can increase. In typical cases it is then on the safe side to design for biaxial moment alone, since tension failure then controls.

### 2.3 SLENDERNESS EFFECTS

### 2.3.1 General Considerations

Design of compression members shall be based on forces and moments determined from analysis of the structure. Such analysis take into account influence of axial loads and variable moment of inertia, member stiffness and fixed-end moments, effect of deflection on moments and forces, and the effects of duration of loads.

In lieu of the procedure prescribed above, slenderness effects in compression members may be evaluated in accordance with the approximate procedure presented below.

### 2.3.2 Approximate Evaluation of Slenderness Effects

The approximate moment magnification procedure is similar to the method used for structural steel design. The moment magnifier $\delta$. is a function of the ratio of the axial load to the critical or buckling load of the column., the ratio of the moments at the ends

$P_{n}$
(a)

$P_{o y}$
(b)

$P_{0 X}$
(c)

$P_{0}$
(d)

FIGURE 2.12 Bresler's biaxial loading (a) Biaxial moments (b) Eccentricity about $X$ axis (c) Eccentricity about $Y$ axis (d) Axial load alone
of the column, and the deflected shape of the column.

The objective of column design is the selection of a cross section with reinforcement for a specified combination of factored axial load, $P_{u}$, and factored moment, $M_{u}$. A column is said to be slender if its cross-section dimensions are small in comparison with its length. The degree of slenderness is expressed in terms of the slenderness ratio, $k_{2} \dot{u} / r$, where $k$ is the effective length factor which is dependent on end conditions of the compression member and bracing aginst sideway, and $r$ is the radius of gyration of the cross-section of the member. Concepts of three ranges of slenderness ratios are given along with column design methods proposed for each range.

More than 90 percent of the columns in braced frames and 40 percent in unbraced frames fall into the classification in which secondary moments can be disregarded and only the axial load and primary moment used to select the cross section.

Within moderate slenderness limits, the approximate analysis based on a moment magnifier is suggested. Whenever the slenderness of a column or member exceeds moderate slenderness a more rational second-order analysis is required. No upper limit for slenderness are given. When high sienderness ratios are encountered. The analysis shall take into account the design procedure prescribed above. Slenderness effects are considered for both braced and unbraced irames.
a. Decision For Type of Frame

Secondary moments due to deflection of the member greatly depend on bracing against sidesway. A structure may be assumed braced if it is supported by bracing elements (shearwalls, shear trusses, or other types of lateral bracing) and the following expression is realized (7).

For $n>4$, where $n$ is number of stories in building

$$
\begin{equation*}
H \frac{\sum P_{u}}{\sum E_{C} I_{g}}<0.6 \tag{2.13a}
\end{equation*}
$$

For $\quad 1<n<4$

$$
\begin{equation*}
H \frac{\Sigma P_{u}}{\sum E_{C} I_{g}}<0.2+0.1 \tag{2.13b}
\end{equation*}
$$

b. Unsupported and Effective Lengths

The unsupported length , $u$, of a compression member is to be taken as the clear distance between lateral supports as shown in Fig. 2.13. It is also to be understood that the length eu may be different in each of the principal axes of the compression members. The radius of gyration may be taken as 0.3 of the overall dimension of a rectangular section ( $\because 1$ ) (Fig. 2.14).


FIGURE 2.13 Unsupported Length ( $\ell_{u}$ )


FIGURE 2.14 Radius of Gyration

A short column may fail due to a combination of moment and axial load which may exceed the strength of the cross-section. This type of failure is known as a "material failure". As an illustration, consider the column shown in Fig. 2.15. The column has a deflection $\Delta$ which will cause an additional moment in the column. In the free body diagram, it can be seen that the maximum moment in the column occurs at section $A-A$ and this is equal to the applied moment plus. the moment due to the deflection, that is $M=P(e+\Delta)$. In the interaction curve, the failure of a short column occurs at any point along the curve depending on the combination of moment and axial load applied. As mentioned above, same deflections would occur and a "material failure" would result when the load $P$ and $M=P(e+\Delta)$ combination intersects the particular cross-section interaction curve. If the column is very slender, it may reach a deflection due to the axial force $P$, and moment, $P$, e, such that deflections can increase indefinitely with small increases in load, P. The change in moment occurs without any increase in load. This type of failure is known as a "stability failure" and may occur in a slender column.

The basic information on the behavior of straight, concentrically loaded slender columns was developed by Euler more than 200 years ago. It states that a member will fail by buckling at the critical load $P_{C}=\Pi^{2} E I /\left(\ell_{e}\right)^{2}$, where $\ell_{e}$ is the effective length $k \ell_{u}$. For a very stacky column, the value of buckling load calculated from this equation exceeds the direct crushing strength. For more slender members, that is for larger $k \ell_{u} / r$ values, the failure occurs by buckling, with buckling load decreasing for greater slenderness (Fig. 2.16). Hence a family of slender column interaction diagrams for members of varying


FIGURE 2.15 Interaction in Slender Columns


FIGURE 2.16 Column Curve


FIGURE 2.17 Slender Column Interaction Diagrams
slenderness ratios can be developed as shown in Fig. 2.17. The interaction for $k_{\ell u} / r=0$ is that which corresponds to the combination of moment and loads for a particular section with reinforcement as in a short column. The shape of the interaction curves for higher $k \&_{u} / r$ values is dependent on the moments applied to the column.

In the critical load given by the Eular equation an originally straight member buckles into half sine wave as shown in Fig. 2.18(a). In this configuration, bending moment $F . \Delta$ acts at any section where $\Delta$ is the deflection at that point. This deflection continues to increase until the bending stress caused by the increasing moment, together with the original compression stress, exceeds the compressive strength and the member fails. The effective length $\ell_{e}\left(k x_{i}\right)$ is between pinned ends, zero moments or inflection points, and in this case is equal to the unsupported length \&u. If the member is fixed against rotation at both ends, as shown in Fig. 2.18 (b), it will buckle in the shape shown. inflection points will occur as shown and the effective length $\ell_{e}\left(k \ell_{u}\right)$ will be one half of the unsupported length. When Euler's equation is applied to this column, the column will carry four times as much load as when ends are hinged. Rarely are columns in real structures either hinged or fixed, rather they are partially restrained against rotation by abutting members and thus the effective length will occur between $2 u / 2$ and $\ell_{u}$ as shown in Fig. 2.18(c). The precise value will depend on the rigidity of the members abutting the column.

A compression member that is fixed at one end and entirely free at the other end would buckle as shown in Fig. 2.19(a). The upper end would move laterally in respect to the lower. This is known as sidesway. The inflection points would occur at the upper end of the member and thus


FIGURE 2.18 Effective Length $\ell_{e}$ (sidesway Prevented)


(c)
would be similar to the upper end of the sine curve. The effective length would be twice the height. If the column is fixed against rotation at both ends but one end can move laterally, it will buckle. as shown in Fig. 2.19(b). The effective length would be equal to the height with an inflection point occuring as shown. If the buckling load of the column in Fig. 2.19(b) were compared to that of the column in Fig. 2.18(b) which is braced against sidesway, it would:be only a quarter of when sidesway is permitted. Again, rarely are the ends of columns either hinged or fixed, but rather they are partially restrained against rotation by abutting members and thus the effective length, where sidesway is not prevented, will vary between $\ell_{u}$ and $\infty$ as shown in Fig. 2.19(c). If, on the other hand, the beams are fairly flexible, a hinged condition is approached at both ends and the structure would not be very stable.

In summary, following comments can be made :

1. For columns braced against sidesway, the effective length falls between $\ell_{U} / 2$ and $\ell_{U}$, where $\ell_{u}$ is the actual unsupported length of column.
2. For columns not braced against sidesway the effective length is always longer than the actual length of the column $\ell_{u}$ and may be more like $2 \ell_{u}$ and higher. A value of $\ell_{e}$ or $k_{u}$ less than 1.2 for columns not braced against sidesway normally would not be realistic.

In computing the effective length factors for braced and unbraced members, the equations taken from the 1972 British Code of practice can be used (2).For braced compression members, an upper bound to the
effective length factor may be taken as the smaller of the following two expressions,

$$
\begin{align*}
& k=0.7+0.05\left(\psi_{A}+\psi_{B}\right)=1.0  \tag{2.15a}\\
& k=0.85+0.05 \psi_{\min }=1.0 \tag{2.15b}
\end{align*}
$$

where $\psi_{A}$ and $\psi_{B}$ (Fig. 2.20) are the values of $\psi$ at the ends of the column and $\psi_{\min }$ is the smaller of two values



FIGURE 2.20 Ratio of Relative Stiffnesses (sidesway Prevented)

For unbraced compression members restrained at both ends, the effective length may be taken as (Furlong Equation) (2) :

$$
\begin{align*}
& \text { For } \psi_{a}<2, \quad k=\frac{20-\psi_{a}}{20} \sqrt{1+\psi_{a}} \\
& \text { For } \quad \psi_{a}>2, \quad k=0.9 \sqrt{1+\psi_{a}} \tag{2.18}
\end{align*}
$$

where $\psi_{\mathrm{a}}$ is the average of the $\psi$ values (Fig. 2.21) at the two ends of the compression member.


FIGURE 2.21 Ratio of Relative Stiffnesses (Sidesway Not Prevented)
c. Consideration of STenderness Effects (1)

For compression members braced against sidesway, the effects of slenderness may be neglected when $k \ell_{u} / r$ is less than $34-12 M_{1 b} / M_{2 b}$. For compression members not braced against sidesway, the effects of slenderness may be neglected when $k \ell / r$ is less than 22.

The upper limit for compression members which may be designed by the approximate method is $k \ell_{u} / r$ equal to 100 . When $k \ell_{u} / r$ is greater than 100 , an analysis which takes into account the influence of axial loads and variable moment of inertia on member stiffness and fixed-end moments, effect of deflections on the moments and forces, and the effects of the duration of the loads, must be used.
d. Moment Magnification

Compression members shall be designed using the factored axial load $\mathrm{P}_{\mathrm{U}}$ from a conventional frame analysis and a magnified factored moment $M_{C}$ defined by

$$
\begin{equation*}
M_{c}=\delta_{b} M_{2 b}+\delta_{s} M_{2 s} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{align*}
& \delta_{b}=\frac{C_{m}}{1-\frac{P_{u}}{\phi P_{C}}}>1.0  \tag{2.20}\\
& \delta_{s}=\frac{1}{1-\frac{\sum P_{u}}{\phi \Sigma P_{C}}}>1.0 \tag{2.21}
\end{align*}
$$

and

$$
\begin{equation*}
P_{C}=\frac{\Pi^{2} E I}{(k \& u)^{2}} \tag{2.22}
\end{equation*}
$$

$\Sigma P_{u}$ and $\Sigma P_{C}$ are the summations for all columns in a story. For frames not braced against sidesway, both $\delta_{b}$ and $\delta_{s}$ shall be computed. For frames braced against sidesway, $\delta_{S}$ shall be taken as 1.0. In calculation of $P_{C}, k$ shall be computed according to equations (2.15a) and (2.15b) for $\delta_{b}$ and according to equations $(2.17)$ and (2.18) for $\delta_{s}$.

In lieu of a more accurate calculation, EI in Eq.(2.22) may be taken either as

$$
\begin{equation*}
E I=\frac{\left(E_{\mathrm{c}} \mathrm{I}_{\mathrm{g}} 75\right)+\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{se}}}{1+E_{\mathrm{d}}} \tag{2.23}
\end{equation*}
$$

or conservatively

$$
\begin{equation*}
E I=\frac{E_{c} I_{g} / 2.5}{1+\beta_{d}} \tag{2.24}
\end{equation*}
$$

In Eq. (2.20), for 3embers braced against sidesway and without transverse loads between supports $C_{m}$ may be taken as

$$
\begin{equation*}
C_{m}=0.6+0.4 \frac{M_{1 b}}{M_{2 b}} \tag{2.25}
\end{equation*}
$$

but not less than 0.4.
For all other cases, $C_{m}$ shall be taken as 1.0.

If computations show that there is no moment at both ends of a braced compression nember or that computed end eccentricities are less than $(15+0.03 \mathrm{~h}) \mathrm{am}, \mathrm{M}_{2 \mathrm{~b}}$ in Eq. $(2.19)$ shall be based on a minimum eccentricity of $(15+0.03 \mathrm{~h}) \mathrm{mm}$ about each principal axis seperately. Ratio $M_{7 b} / M_{2 b}$ in Eq. (2.25) shall be determined by either of the following :
(a) When computed end eccentricities are less than (15 + 0.03 h) mm , computed end moments may be used to evaluate $M_{1 b} / M_{2 b}$ in Eq. (2.25)
(b) If computations show that there is essentially no moment at
both ends of a compression member, the ratio $M_{1 b} / M_{2 b}$ shall be
taken equal to one.

If computations show that there is no moment at both ends of a compression member not braced against sidesway or that computed end eccentricities are less than ( $15+0.03 \mathrm{~h}) \mathrm{mm}, \mathrm{M}_{2 \mathrm{~s}}$ in Eq. (2.19) shall be based on a minimum eccentricity of ( $15+0.03 \mathrm{~h}) \mathrm{mm}$ about each principal axis separately.

For compression members subject to bending about both principal axes, moment about each axis shall be mangified by $\delta$, computed from corresponding conditions of restraint about that axis.

## III. PROGRAMMING

The arrival of the personal microcomputer at . homes and design offices of structural engineers brings a number of exciting opportunities and challenges for improved productivity, and better designs, from standpoirts of both accuracy and economy. The calculations required for rectangular reinforced concrete columns are complex and lengthy, consequently various design aids have been published to simplify calculations, or to nearly eliminate them.

These design aids are certanly warthwile, but are, in some cases limited Throughthe use of a computer program such as this the engineer is afforded maximum creativity, yet spared the necessity of repetitive calculations.

This program was developed for an Apple II+computer with 48 K bytes Random-Access-Memory. The conversion to other versions of the basic programming language should be straight-forward. The proaram is self explanatory. This is accomplislied by inserting REM statements at. the begining of each subroutine.

### 3.1 GENERAL METHOD

The program is based on two relatively simple ideas. First, for a given reinforced concrete cross section, if. the depth to neutral axis at the strength condition compression face strain of 0.003 , is known, the corresponding axial load and eccentricity (or moment) can be computed by the strength design methods of (ACI 318M-83). Second, the solution to a variaty of problems can be reached through the method of interval halving technique, a successive approximation procedure. With these two ideas in mind, a solution scheme can be developed based on the idea of the load-moment interaction diagram, and framed in the context of either analysis or design.

Load-moment interaction diagram of Fig. 2.2 can be idealized as shown by the curve $0-A-B-C$ of Fig. 3.1


The horizontal line 0-A represents the upper limit of usable strength (Eq. 2.1) recognized by(ACI 318M-83), Building code Requirements for Reinforced Concrete (1).The commentary to (ACI 318M483) suggests that point "A" is essentially the same as the point on the interaction diagram corresponding to load eccentricity of $h / 10$. Line $A-B$ represents compression failure, where point " B " is the condition of balanced failure. Line B-C represents tension failure where point "C" represents the section capacity in pure flexure. Region 1 then repiresents a minimum eccentricity, or maximum load criterian, region 2 is a zone of compression failure, and region 3 corresponds to tension failure.

Fig. 3.1 might represent the theoretical, or "nominal" capacity of a particular column section. For design, the capacity should be reduced by some factor (as shown in Fig. 2.1), 0.7 for tied columns as explained before. Fig. 2.1 can be idealized in the form of Fig. 3.2.


For reinforced concrete columns, a particular cross section and reinforcement layout will be adequate for a load and moment combination if a point which represents the factored design loads lies inside the design interaction curve. Thus, the checking process involves a particular column, and determining if the load and moment point falls inside the curve. A similar approach is taken for design. A trial section is first assumed, it is checked, and if found not adequate, a revised section with greater capacity considered. If the section is adequate, it is accepted, but the search continues for a more economical section within particular design constraints.

### 3.1.1 Determination of Interaction Diagram

The interaction diagram for a particular rectangular cross section depends on concrete and steel strength, section geometry, steel amount and layout. Any combination of axial load and moment can be treated as an eccentric axial load with the same magnitude, since $M=$ P.e. To check a given load case it is convenient to determine the column capacity at the particular eccentricity.

The approach taken in the program is to find the resultant load and moment (eccentricity) corresponding to a particular assumed neutral axis in the rectangular cross-section. This requires that force magnitudes and resultants be determined for the concrete, and various reinforcing elements, as shown in Fig. 3.3. A subprogram is provided to evaluate the resultant load and eccentricity for an assumed neutral axis in the rectangular cross-section.

For the purposes of this program, the steel reinforcement is not considered as individual bars, but rather the steel is smeared throughout the section as an equivalent "I" shape as shown in Fig. 3.3 (b). The symbols indicated on this figure correspond to the identifier names used to code the program in Applesoft Basic. They are described in the dictionary of identifiers which is given in Appendix III. The amount of side steel at yield stress level is calculated by proportioning the depth of uniform stress level to the depth of web of . "I" shape reinforcement.


FIGURE 3.3 Cross Section with Strain Diagram and Force Resultants
(a) Actual bar layout (b) Idealized reinforcement
(b) Strain diagram (d) Steel stresses (e) Force resultants

For a given neutral axis position, the resultant load and moment (eccentricity) can be calculated, considering Fig.3.3, as the following:
critical distances :

| $\mathrm{H} 2=\mathrm{SH} / 2$ |  |  | 3.1 (a) |
| :---: | :---: | :---: | :---: |
| $C D=C-D P$ |  |  | 3.1 (b) |
| TD $=$ - $\mathrm{D}-\mathrm{C}$ |  |  | 3.1 (c) |
| $Y D=E P Y X C / K 3$ |  |  | 3.1 (d) |
| $J D=D-D P$ |  |  |  |
| $C P=C D-Y D \quad$ if $(P<)$ | then | $C P=0$ | 3.1 (f) |
| $T P=T D-Y D \quad$ If $T P<0$ | then | $T P=0$ | 3.1 (g) |

Critical Strains:

| $C E=C D / C Y K 3$ |  | $3.2(\mathrm{a})$ |
| :--- | :--- | :--- |
| $T E=T D / C X K 3$ |  | $3.2(\mathrm{~b})$ |
| $C F=E P Y$, If $C P=0$ | THEN | $C F=C E$ |
| IF $=E P Y$, If $T P=0$ | THEN | IF $=$ TE |
|  | $3.2(c)$ |  |

Outer Face Steel Stresses

| $C S=$ | $K 29 \times C E$ | If $C S>F Y$ | THEN | $C S=F Y$ |
| :--- | :--- | :--- | :--- | :--- |
| $T S$ | $=K 29 \times T E$ | If TS $>F Y$ | THEN | TS $=F Y$ |

Force Resultants :
a) Compressive :

| $C 1=(C S-0.85 \times F P C) \times A E$ | $3.4(a)$ |
| :--- | :--- |
| $C 2=(F Y-0.85 \times F P C) \times A F \times C P / J D$ | $3.4(b)$ |
| $C 3=C S / 2 \times A F \times(C D-C P) / J D$ | $3.4(c)$ |
| $C C=0.85 \times Z 1 \times F P C \times S B \times C$ | $3.4(d)$ |

b) Tensile :

$$
\begin{array}{ll}
T 1=T S \times A E & 3.5(\mathrm{a}) \\
T 2=F Y \times A F \times T P / J D & 3.5(\mathrm{~b}) \\
T 3=(T S / 2) \times A F \times(T D-T P) / J D & 3.5(\mathrm{c})
\end{array}
$$

c) Axial Force

$$
\mathrm{P}=\mathrm{CC}+\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+-\mathrm{T} 1-\mathrm{T} 2-\mathrm{T} 3
$$

d) Moment

$$
\begin{align*}
M= & C C \times(H 2-Z 1 \times C / 2)+C 1 \times\left(H_{C}-D P\right) \\
& C 2 \times(H 2-D P-C P / 2)+C 3 \times(H 2-D P-C P \\
& -(C D-C P) / 3)+T 1 \times(H 2-D P)+T 2 \times(H \times-D P \\
& -T P / 2)+T 3 \times(H 2-D P-T P-(T D-T P / 3)
\end{align*}
$$

e) Eccentricity

$$
E=M / P
$$

If the column is biaxially loaded, the capacity in the other direction is calculated by replacing width to depth, depth to width and flange reinforcement to web, web reinforcement to flange. The web reinforcement, $A F$ is diveded into two, $A F / 2$, and treated as flange reinforcement, the flange reinforcement is multiploed by two, $2 \times A E$, and it is treated as web reinforcement. (Appendix I, on 1 ines 4450 and 4440 respectively)

### 3.1.2 Interval Halving Technique

The interval halving is a simple searching algorithm useful where a parameter varies monotonously between two limits. As an example consider finding a number between 1 and 100. Suppose the number that must be found is 36 and the first guess is $50=(1+100) / 2$ and it is then told the guess is high then uncertainty is halved by making a second guess of $25=(1+50) / 2$, and the guess is low this time, the interval of uncertainty is halved again. The third guess must be $37=(25+50) / 2$. After several additional cycles the number will either be guessed exactly, or the remaining limits of the interval will converge to make the answer obvious. This approach is also applicable whereasearch is made for an answer that is close enough. For example, plus or minus 1 of the right answer might be a tolerable value. So the right number is reached in three guesses. This latter approach is generally necessary when searching noninteger values.

In the program the method of interval halving technique is used in two ways for both analysis and design.

The primary application is in analysis. It is used in the subprograr (Appendix I between lines 3490 and 3650 ) which determines axial load capacity for a specified eccentricity. Since load capacity decreases with eccentricity, the relation-ship is monotonous. Unfortunately, eccentricity tends toward infinity at very low loads, so it is not convenient to use eccentricity in the interval halving procedure explicitely. Instead the depth to neutral axis, $C$ is used, since there are physical limits to its value. The depth to neutral axis,
$C_{b}$, corresponding tolabalanced condition is used as the initial value to begin the iteration. If the eccentricity found is greater than the actual value then the $C$ value for the second iteration is increased by the application of internal halving between the first value $C_{b}$ and the higher value $C L=1.5 \times D$ then new depth to neutral axis $C$ is $\left(C_{b}+C L\right) / 2$. If the eccentricity is less than the actual value, then the $C$ value for the second iteration, is decreased by the application of the interval:halving between the first value $C_{b}$ and a lower value corresponding to pure flexure. These trials continue until finding an eccentricity that is tolerable. In this program, the tolerable limit, is plus or minus $5 \%$ of the actual eccentricity. When the trial eccentricity falls between these limits then iteration stops. In the design, interval halving is used to find the appropriate reinforcement for a specified cross section and choice of materials. First, the maximum reinforcement ratio given is checked if it is adequate then interval halving is used between maximum and minimum reinforcement ratios in order to find the appropriate ratio. (Appendix I between lines 4630 and 4690 )

### 3.1.3 Program Capabil ities

The program is capable of analysis and design of reinforced concrete columns under axial load and uniaxial or biaxial bendingimoment when the program is run, main menu will appear on the screen as shown below :

RC. COLUMN 1.0

## $\stackrel{P R O B L E M ~ M E N U}{=}===$

## ANALYSIS

1) UNIXAIAL
2) BI-AXIAL
3) CHECK A DESIGN

## DESIGN

4) UNIAXIAL, INPUT SECTION
5) UNIAXIAL, FIND SECTION
6) BIAXIAL, INPUT SECTION
7). BIAXIAL, FIND SECTION

ENTER TYPE OF PROBLEM
OR ' $\phi$ ' TO QUIT .....

It must be entered the number of the choice.

### 3.2 METHOD OF ANALYSIS

In the analysis menu of the program there are three choices.
1 - Uniaxal bending
2 - Bi-axial bending
3 - Check a design

### 3.2.1 Analysis

For analysis of any section, the user must input concrete and steel strengths, cross section properties, number, size and layout of reinforcing bars, capacity reduction factor, and the load and moment (or eccentricity) for which the capacity is to be checked.

To make the program as "user-friendly" as possible many of these. parameters are established by default, and the user need only change the value as desired the new values become the default condition for succeeding problems.

When the program is run and main menu appear on the screen, "1" for uniaxial analysis and "2" for biaxial analysis must be entered. Then program goes to the subroutine GET LOADS (Appendix I between 1 ines 2890-3140) Capacity reduction factor will appear as 0.7 on as: the screen unless another value for it is fed in as the new value 1 might be input if the factored loads have been previously divided by the capacity reduction factor. The axial load, PN, and moment, $M$, or eccentricity, E, are entered. If the analysis is biaxial then moments (or eccentricities) in both $x$ and $y$ directions are entered. If moments are entered eccentricities, $E=M / P$, if eccentricities are entered moments, $M=P . E$, are calculated.

The material properties (Subroutine GET MATERIALS Appendix II between lines $3190-3350$ ) will be selected next. On the screen concrete strength as 30 MPa and steel strength as 400 MPa will appear. If the material properties are different new values must be entered. With these values beta-1 (as 21) of (1) and steel yield strain. Es (as EPY) are calculated in this subroutine.

Then, section geometry (subroutine INPUT THE SECTION, Appendix I between lines 2560-2650), section width, $B$, and depth, $H$, and cover to bar centerline, $D P$, are entered. Gross area of section, $A G=B \times H$, is calculated.

In order to idealize the reinforcing steel as an embedded "I" section, it is necessary to specify how much of the steel corresponds to the flange, and how much to the web. The term "side bars" is used to describe intermediate steel corresponding to the web. The section of fig. 3.3 has 6 side bars, and 14 total bars. Side bars are assumed to have the same amount of cover as the end bars. The reinforcement of the section (subroutine INPUT STEEL Appendix I between lines 2700-2840) is given in three steps

BAR SIZE (BS)
NUMBER OF BARS (BN)
NUMBER OF SIDE BARS (BF)

As bar sizes, bar numbers of AC1-318-83 are used. In this subroutine, ratio of web reinforcement to total reinforcement, $R S=B F / B N$, total reinforcément, $A S=B N \times B S$, reinforcement ratio $R H O=A S /(B * H)$, web reinforcement, $A F=A S \times R S$, and flange reinforcement ,$A E=A S \times(1-R S) / 2$, are calculated.

In the subroutine "FIND CAPACITY FROM P-M DIAGRAM" (Appendix I, between lines $3410-3670$ ), axial load capacity, $P$, corresponding to a given eccentricity, $E$, is calculated as explained in sections 3.1.1 and 3.1.2. If the analysis is uniaxial then axial load capacity $P$ is multiplied by the capacity reduction factor and nominal axial load capacity is found ( $\mathrm{NN}=\mathrm{P} \times \mathrm{PHI}$ ). If the analysis is biaxial, calculated $P$ is accepted as $P x(P x=P)$ and column axial load capacity, $P Y$, in the other direction
(Y direction) is calculated by the same procedure. Pure axial load strength $P_{0}(E q .2 .2)$ is calculated (line 4420, Appendix I). Then with. Px, Py and Po values on hand, Bresler's Reciprocal Load Equation (Eq. 2.12) is applied (line 2370, Appendix I) and nominal axial load capacity $\left(N N=P H I /\left(1 / P x+1 / P y-1 / P_{0}^{\prime}\right)\right)$ is calculated.

Output of the analysis routine consists of a summary of section and reinforcement properties, the magnitude of the applied loadPN and the section capacity, NN. A message will älso be displayed, informing that the design is either "ADEQUATE" when capacity, NN, is greater then applied load, PN, or "NOT ADEQUATE" When NN is less than PN.

### 3.2.2 Check a Design

As a special case of the analysis routine, there is an option to "check a design". This option is included so that additional load combinations can be tested for a given section with minimal additional input. Additionally slenderness effects can also be checked for the columns where slenderness must be considered. It can be used in the case of sections designed within the program, or entered through the analysis routine.

In programming, an approximate method explained in section 2.3.2 is used for slenderness design. There is a subroutine "DESIGN FOR SLENDERNESS" (Appendix I between lines 4820-8510), the following steps are followed in slenderness design :
a) Braced or Unbraced Frame

There are two options in the program for deciding the type of frame (Appendix I, between lines 4880-5370). First is to input and the second is to find at the end of a series of computations. In the second option Eq. 2.13b is used for decision and it is necessary to input the height of building (BH), total vertical load (VL), nember of stories, (NS) types of bracing elements (TE) and the width (B) and depth (D). of bracing elements.
b) Effective Length Factors

For the effective length factors there are two options, as well. They are ei given or calculated (Appendix I between lines 5420-7330). If the frame is braced only the braced effective length factor of the column designed, if it is unbraced all the unbraced effective. length factors of the columns in the story must be calculated.

It is necessary to feed the length, width and depth of the lower, upper and middle columns and upper and lower beams in order to calculate relative end stiffnesses(Eq.2.16). In Eq. 2.16, it is assumed that columns and beams have the same material properties. If the frame is braced Eq.2.15 (a) and 2.15(b) and if it is unbraced Eq. 2.17 and 2.18 are used in the ealculation of effective length factors.
c) Comparison of Slenderness Criteria
$k_{u} / r$ ratios for both braced and unbraced frames are computed. This ratio is compared with $34-12 M_{1 b} / M_{2 b}$ for braced frames and with 22 for unbraced frames.

If $k_{u} / r$ is less than the values above, slenderness may be neglected in the direction consideredand"SLENDERNESS IS NEGLIGIBLE IN $X(Y)$ - DIRECTION" will appear on the screen. If the problem is uniaxial the program will return to the main program and will continue the analysis. If it is biaxial then the moment is not magnified in this direction, other direction is considered.

If $k l u / r$ is greater than 100 then the approximate procedure of the program will not be adaquate and "THIS PROGRAM IS INSUFFICIENT IN $X(Y)-$ DIRECTION" will appear on the screen. Then there are three options :
A) CHANGE SECTION
B) CHANGE REINFORCEMENT LIMIT
C) RETURN TO MAIN MENU

One of them must be chosen in order to continue the solution.

If the $k l u / r$ values are between $34-12 M_{1 b} / M_{2 b}$ for braced or 22 for unbraced and 100 then,

$$
34-12 M_{1 b} / M_{2 b}(22)<k \ell_{u} / r \leqslant 100
$$

moments are magnified in the direction considered.
d) Moment Magnification

Pioments are magnified in the subroutine MOMENT MAGNIFICATION (Appendix II between lines $7690-8510$ ). If the frame is unbraced then effective length factors ( $k$ ) must be calculated for the other columns in the story by the same procedure in order to find critical load

Pc (Eq.2.22) of each column. EI value in Eq. 2.22 is obtained by Eq. 2.24 which is more conservative and simple than Eq. 2.23. In order to obtain $\beta_{d}$ of Eq. 2.24; dead and live load moments must be input. Total critical load of the story $\Sigma \mathrm{Pc}$ is calculated by adding critical loads of each column in the story. Unbraced magnification factor $\delta_{s}$ (Eq. 2.21) is determined by the input of total story load $\Sigma \mathrm{Pu}$.

If the frame is braced, effective length factor of the column considered is enough in order to obtain braced moment magnification factor $\delta_{b}$ (Eq. 2.20). Cm in Eq. 2.20 is calculated by Eq. (2.25). For the braced frame, $\delta_{s}$ is taken as 1.0. Eccentricities corresponding $M_{2 b}$ and $M_{2 s}$ (in Eq. 2.19) are less than $(15+0.03 \mathrm{~h}) \mathrm{mm}$, then $M_{2 b}$ and $M_{2 s}$ are replaced with moments corresponding the minimum eccentricity $(15+0.03 \mathrm{~h}) \mathrm{mm}$. seperately.

Moments are magnified by Eq. 2.19. New eccentricity for analysis is obtained by dividing the magnified moment, Mc, to the axial design load, Pu. If the column is biaxially loaded the same procedure is fallowed for the other ( $y$ ) direction. Analysis is continued with the new magnified moment and corresponding eccentricity.

### 3.3 METHOD OF DESIGN

The design capabilities of the program include both. uniaxial and biaxial problems where a cross section has already been established (input section), and cases in which the cross section is established by the program. (Find Section).

### 3.3.1 Input Section

Most design problems with either uniaxial or biaxial bending concern finding the minimum satisfactory reinforcing steel ratio for a specified cross-section and a given load case. In this case, axial load and corresponding moment or eccentricity (Appendix II GET LOADS between lines 2890-3140), material strengths (Appendix II, GET MATERIALS between lines $3190-3390$ ), cross section size (Appendix II between lines 1620-1670) and permissible range of reinforcement (Appendix II between lines $4280-4410$ ) must be input. The default reinforcement ratios are 0.01 and 0.04 . This upper limit is lower than ACI maximum for columns to make easily constructible designs. However, as with all the other defaults in this program, these limits can be changed freely. In design the amount of side steel is established by specifying a fraction of the total steel that is to be placed as intermediate bars along the sides of cross-section. The section of Fig. 3.3 would correspond to a ratio of $6 / 14=0.43$.

With these values on hand the design starts. First the capacity corresponding to maximum reinforcement is computed if the capacity at maximum reinforcement (NN) is less than the design load (EN) then "INSUFFICIENT CAPACITY AT MAXIMUM REINFORCEMENT" appears on the screen and it is advised to change section or reinforcement limit. If (NN) is greater than (PN) then capacity at minimum reinforcement is computed. If new axial load capacity (NN) is greater than design axial load (PN) then minimum reinforcement is accepted if (NN) is less than (PN) then the program proceeds in order to find appropriate reinforcement ratio by internal halving technique (Appendix II, between lines 4630-4690) When the reinforcement ratio is found then the results are
printed. Results of design problems will present total amounts of steel necessary at each face and each side of the section.

### 3.3.2 Find Section

Here the design problem is to find the smallest satisfactory section within . some given range, and with reinforcing ratio specified to be within certain limits. For this type of problems, least depth, greatest depth, width depth ratio, increment of depth and steel ratios and fractions (Appendix I busroutine LEAST SECTION between 1 ines 1840-1970) are input.

First the axial load capacity corresponding to greatest depth and maximum reinforcement is computed. If axial load capacity (NN) is less than applied load (PN) then "NOT ADEQUATE WITH MAXIMUM DEPTH, REINFORCEMENT" will appear on the screen and it is advised to change section or reinforcement limit. If (NN) is greater than (PN) then axial load capacity at minimum depth and maximum reinforcement is computed. If new axial load capacity (NN) is greater than design axial load (PN) then the results are printed. If it is not satisfactory. The depth is increased by increment of depth and program proceeds to find the smallest, section adequate with largest reinforcement. When the minimum section that is adequate is found then the reinforcement is computed by interval halving technique (Appendix I, between lines $4630-4690$ ). When optimum reinforcement is found, the results are printed as in section 3.3.1

### 3.3 SAMPLE PROBLEIMS

This section is intended to illustrate the use of the program.
a) Uniaxial Analysis

A $30 \times 60 \mathrm{~cm}$. column with $8 \neq 25$ bars (fy $=400 \mathrm{MPa}$ ); four in each face placed with a cover of 5 cm ., has concrete strength of 30 MPa . Is the column section adequate for a load of 2220 kN at an eccentricity of 20 cm . about the strong axis"(Sample problem 1. Appendix.II))

Upon first running of the program, the main menu will appear on the screen. Since this is a uniaxial analysis, enter "j" and hit the return key.

At this point load information will be entered as shown. The capacity reduction factor for this problem is 0.7 , so accept the value by hitting the return key, the choice is made to enter eccentricity rather than moment, and the axial load "2220" and eccentricity "20" are entered.

Once loads are entered, it is time to input the material properties, accept the both values, and proceed.

Next input the section properties as shown, Enter dimensions of width (30), depth (60) and cover to bar centerline (5). Next reinforcement pattern, bar size (25), number of bars (8) and number of side bars (0) is entered.

At this point the screen will clear, and the "SOLVING" message will appear. After a short interval the results will flash on the
screen, as shown... Since the capacity of the section is less than the applied load, the column is not adequate. After recording the solution, it is possible to return to the main menu by hitting the return key.
b) Biaxial Desigr

Design a $65 \times 65 \mathrm{~cm}$ column with equal steel on all faces, using $f_{c}^{\prime}=30 \mathrm{MPa}$ concrete, and $f_{y}=300 \mathrm{MPa}$ steel. The axial load is 4160 kN , moment about x-axis $1310 \mathrm{kN} . \mathrm{m}$, the y -axis moment is $505 \mathrm{kN} . \mathrm{m}$. For this problem assume the factoradloads have been previously divided by the capacity reduction factor, so PHI $=1$, (Sample Problem 5 Appendix I I )

When the menu appears on the screen, since this is a problem where the section is known, and biaxially loaded, enter "6" and hit the return key.

At this point load information will be entered as shown. The default capacity reduction factor is to be changed to 1 , the choice is made to enter moments, rather than eccentricity, and the loads and moments are entered.

After the loads are entered, it is time to input the material properties. Accept the given concrete strength, 30 MPa , but change the steel yield stress to 300 MPa .

Next input the section properties as shown. Enter dimensions of width and depth, accept the default minimum, 0.01 and maximum, 0.04 steel ratios, and type in 0.5 to distribute the steel equally about all four faces of the column. Finally enter a cover of 5 cm .

Once this has been entered, the screen will again clear, and the message "SOLVING" will appear until the solution has been reached. The message will appear to flicker time to time; this is a signal that the program is operating and working toward a solution. Finally the results will appear on the screen as shown.
c) Check a Design

The section designed (Sample Problem 6) has been checked for another load case considering slenderness (Sample Problem 8). After appearing the solution (sample Problem 6), hit the return key in order to return to the main menu. When "3" is typed on the main menu, the analysis part of the menu will only be appear on the secreen. Since this is a biaxially loaded section, enter "2" for biaxial analysis.

Next loads are entered. In order to see the effect of slenderness loads are unchanged. Since the slenderness will be checked print "Y" as the answer to the question "DO YOU WANT TO CHECK SLENDERNESS?".

At this point informations for slenderness will be entered. Since the type of frame will be determined by the program, type "F". Then enter hight of building, total vertical load, number of stories and dimensions of bracing elements. At the end of some computations, the message "BRACED IN X-DIRECTION" and "BRACED IN Y. DIRECTION" will appear. Since the effective length factors, $k$, will be input, print "I". Then the column dimensions (width, depth and length, braced and effective length factor, larger and smaller end moments, unbraced end moment and unbraced axial load and dead end live lead moments are entered for both, $x$ and $y$ directions. Once these are entered,
braced and unbraced moment magnification factors, magnified moment and resulting eccentricity will be appear, as shown.

After this point, ordinary analysis procedure will be carried on with the given design axial load and magnified moments.

## IV. SUMMARY AND CONCLUSIONS

The computer program presented is capable of performing design or analysis of reinforced concrete columns, considering slenderness effects also. The load capacity at a particular eccentricity is determined from the load and moment interaction diagram generated for a particular section. Successive approximations are made through the method of interval halving in order to find column capacity from the interaction diagram and appropriate reinforcement ratio.

Since the design procedure complies with ACI 318 M. 83 (1) where SI units are used and most of the design parameters such as material properties and capacity reduction factor are fed as input, the design part of the program can be used for designs that comply with the Turkish Standarts, TS 500 (7) which is very similar to ACI 318M-83, as well. The column sections can also be analyzed in complience with TS 500 by adding a new subroutine for the input of reinforcement patternctue to the fact that bar numbers of ACI 31811-83. is different than that of TS 500 .

Since about 90 percent of the columns in braced frames and 40 percent in unbraced frames can be designed as short column, slenderness
effects are only considered in the analysis part of the program. Nevertheless, slenderness effects can easily be introduced into the design part of the program by calling the slenderness subroutine. It is also possible to incorporate slenderness effects by directly feeding the magnified moments determined from the analysis as input into the design part of the program.

A new approach is adapted for the design of reinforcied concrete tied columns by using the iterative method and interactive mode in the computer program. Thus a microcomputer and a disk can turn this tedious everyday design work into a. simple and interesting task. Voluminous tables and charts are no longer necessarry.

## V. REFERENCES

1 - ACI Committe 318, "Euilding Code Requirements for Reinforced Concrete;" (ACI 318-83), American Concrete Institute, Detroit, 1983.

2 - Notes on ACI 318-77, "Building Code Requirements for Reinforced Concrete with Design Applications" Portland Cement Association, Skoike, 1980

3 - Phil M. Ferguson, "Reinforced Concrete Fundamentals;"' Fourth Edition, John Wiley and Sons, New York, 1981

4 - ACI Committee E 702, "Design of Structural Concrete," Computer Program Series/COM-1(83) AC1, Michigan, 1984

5 - Boris Bresler, "Design Criteria for Reinforced Concrete Columns under Axial load and Biaxial Bending," Jour. ACI, U.57, 1960

6 - Richard W. Furlong, "Ultimate streng th of Square Columns under Biaxially Eccentric Loads," Jour. ACI, 32, No.9, Mar. 1961; Proc. 57

7 - TS 500, "Betonarme Yapilarin Hesap ve Yapım Kuralları," Ankara, 1982.

8 - F.N. Pannel, "Failure Surfaces for Members in Compression and Biaxial bending," Jour. ACI, No.1, Jan. 1967.

9- Doc. Dr. M. Nadir Yücel, "Basic ile Sayısal Hesap", Istanbul, 1977.

APPENIIX I PROGRAM LISTING：

| 1000 |  |
| :---: | :---: |
| 1010 | FEM－FiC．COLUMN－－－－－ |
| 1020 |  |
| 10.50 | REM $\mathrm{H}^{*} *^{*} *^{*} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$ |
| 1040 | FEM MASTEF THESIS |
| 1050 | REM FEINFORCED CONCFETE COLUMN DESIGN FROGRAM |
| 1060 | FEM HAYATI ALTUN |
| 1070 | FEM DEFARTMENT OF CIVIL ENGINEEFING |
| 1080 | FEM EOGAZICI UNIVEFSSITY |
| 1090 | REM ISTANEUL－TUFKEY |
| 1100 |  |
| 1110 |  |
| 1120 | Fict＝＂FE－ENTEF＂ |
| 1130 | $F H I=0.7: D F=0.0 E F S S=0: F N=0.01: F X=0.04$ |
| 1140 | $T L=0.005: F P C=30: F Y=400: Z 1=0.85$ |
| 1150 | $\mathrm{E}=0: \mathrm{H}=0: H N=0: H M=0: H I=0.05: H E=0.02$ |
| 1160 | K\％$=0.003: 6329=200000: E F Y=0.002$ |
| 1170 | LUF＝＂LNIAXIAL＂：LEF＝＂EI－AXIAL＂：LD本＝＂DESIGN＂ |
| 1180 | LA末＝＂ANALYSIS＂ |
| 1190 | LXi＝＂SECTIDN＂：LFF＝＂FIND＂：LIt＝＂INFUT＂：LCi＝＂COLUMN |
| 1200 | REM |
| 1210 | FEM |
| 1220 | FEM |
| 1230 | FEM FFOBLEM MENU |
| 1240 | HOME ：$E \times \%=0$ |
| 1250 | INVEFSE ：FFIINT＂FC．COLUMN 1．0＂：NDFMAL |
| 1260 | FFiINT＂FFRDELEM MENU：＂ |
| 1270 | FFiINT＂＝＝＝＝＝＝＝＝＝＝＝＝＝＂ |
| 1280 | GOSUB 4500：－FRINT LA： |
| 1290 | FFINT＂－－－－－－－＂： |
| 1300 | HTAE 10：FFINT＂1）＂：LUFF |
| 1310 | HTAE 10：FFiINT＂2）＂LEF |
| 1320 | IF FT\％＝ O THEN 1410 |
| 1330 | HTAB 10：FFINT＂马）CHECK A DESIGN＂ |
| 1340 | GOSUE 4500：FRINT LD三 |
| 15 O | $C E *=0$ |
| 1.50 | FRINT＂－－－－－－－＂； |
| 1370 | HTAE 10：FFint＂4）＂：LU⿻三丨口：＂，＂：LI丰：LX丰 |
| 1380 | HTAE 10：FFiNT＂S）＂¢LU＊：＂，＂LFF\％LX： |
| 1390 |  |
| 1400 | HTAE 10：F＇RINT＂7）＂：LE＊；＂，＂LFF：LX＊ |
| 1410 | GOSUE 45OG：FFINT＂ENTEF TYFE DF FFOELEM＂ |
| 1420 | INFUT＂OFF ${ }^{\text {G }}$ ：TO GUIT，．．．＂FT\％ |
| 1480 | IF F－T\％＜O OF FT\％$>7$ THEN GOSUE 45OO：FFINT Fi末：GOTO 1240 |
| 1440 | IF FT\％＝ 3 THEN Cド\％＝1：GOTD 1240 |
| 1450 | IF FT\％$=2$ DF FT\％＝ 7 OFi FT\％$=6$ THEN EX\％$=1$ |
| 1460 | IF FT\％$=0$ THEN END |
| 1470 | FEM |
| 1480 | FEEM |
| 1490 | FEM |
| 1500 | FEM GET THE LDADS |
| 1510 | GOSUB 2890 |
| 1520 | IF CF\％\％$\%$ THEN 4820 |

```
15%G GOSUE S190: FEM GET THE MATEFIALS
1540 FEM ANALYSIS OF DESIGN ?
1550 IF FT% < = THEN 2210
1560 FEM
1570 FEMM
1580 REM
1540 FEM EEGIN THE DESIGN
1600 FEM INFUT OF FIND SECTION
1610 HOME : IF FTT% = 5 DF FT% = 7 THEN 1840
1620. FRINT "SECTION WIDTH, CM = ":E * 100: GOSUE 4270
1630 IF ANF = "" THEN 1650
1640 E = VAL (ANF) / 100
1650 FFINT "SECTIDN DEFTH, CM = ":H * 100: GOSUE 4270
1660 IF AN: = "" THEN 1680
1670 H = VAL (AN*) / 100
1680 GOSUE 4280
1690 AG=E * H
1700 FEM OK G MAX FEINFOFCEMENT ?
1710 FHOD = FXX: GDSUE 4460: GOSUE 2250
1720 IF NN = `FN THEN 1770
17S0 GOSUE 4500: FRINT "INSUFFICIENT CAFACITY AT MAX FEINF."
1740 GOSUE 4500: GOSUH 45SO
1750 ON OF% GOTO 1620,1680,1240
1760 FREM G&& @ MIN FEINFGFEEMENT ?
1770 FHO = FN: GOSUE 4460: GOSUE 22SO
1780 IF NN = % FN THEN 2150
1790 FEM ITEFATE TO FIND OFTIMUM FEINFOFCEMENT WITHIN RANGE
1800 GOSUE 46%O: GOTO 215O
1810 FEEM FIND LEAST AFEA SECTION
1820 FEM ENTEF FIANGE DF DEFTH,WIDTH-DEFTH FATID, AND
18SO FEM FIANGE OF FEINFORCEMENT
1840 HOME : VTAB 5
1850 FFINT "LEAST DEFTH, CM = ":HN * 10O: GOSUE 4270
1860 IF ANF = "" THEN 1880
1870 HN = VAL {AN毒) '100
1880 FFINT "GFEATEST DEFTH, CM = ":HM * 100: GOSUE 4270
1890 IF ANF = "" THEN 1510
1900 HM = VAL (ANF) / 100
1910 FFIINT "INCFEMENT OF DEFTH, CM = "HI * 100: GOSUE 4270
1920 IF ANF = "" THEN 1940
19S0 HI = VAL (ANF) / 100
1540 FFINT : FFINT "FATID OF DEFTH TO WIDTH = ":HE * 10O: GOSLE
1950 IF AN: = "" THEN 1970
1960 HE = VAL (AN末) / 100
1970 GOSUE 4280: FEM STEEL FATIOS & FFACTION
1980 FEM DKG G HMAX,FIMAX ?
1990 H = HM: GOSUE 4470
2000 IF NN }>=FNN THEN 2O60
ZO1O HOME : VTAE E: FRINT "NOT ADEQUATE WITH"
2020 FFIINT "MAXIMLM DEFTH, FEINFOFICEMENT"
20SO GOSUE 4500: GOSUE 45SO:
2040 IN EF% GOTO 1840,1970,1240
2050 FEM OR © HMIN, FMAX ?
2060 H= HN: GOSUE 4470
2070 IF NN }=\mathrm{ FN THEN 2140: REM MIN STEEL QKK
```

```
20EO FEM FIND SMALLEST H=O& 
2100 GOSLIE 4470
2110 IF NN ? = FN THEN 2140
2120 NEXT H
2130H=HM
2140 GOSUE 4SSO: FEM ITEFIATE FOF OFTIMUM FHO
2150 GOSUE 4520
2160 GOSUE 4OSO: GOSUE 4730
2170 FIEM
2180 REM
2190 FEEM
2200 FEM ANALYSIS:
2210 GOSUR 256O: FEM FIND SECTION
2220 FEM
22SO FEM
2240 GOSUE Z700: FEM FEINFOFCENENT
2250 GOSUB 4440: FEN SET SECTIDN }
2260 GOSLIE S410: FEM CAFACITY X
2270 NN = F * FHI
2280 IF BX% = O THEN 2S80
2290 FX = F
2SOO GOSUE 445O: FEN SET SECTION Y
2`10 GOSUE 44J0: FEM FOTATE STEEL
2320 GOSUE S410: FEN CAFACITY Y
2SEO GOSUE 44S0: FEM FOTATE STEEL EACF*
2340 FY = F
2SSO GOSLIE 442O: FIEM GET FO
2360 FEM EFESLEF'S FECIFFOCAL LOAD METHDD:
2C70 NN = FHI / (1/FX + 1/FYY - 1/FO)
2S80 IF FT% > J THEN RETUFN
2S90 FEM DUTFUIT FESLILTS OF ANALYSIS
2400 GOSUE 4520
2410 GOSLE 40SO
2420 LT韦= LU*: IF EX%< %O'THEN LT& = LE车
24SO FFINT : FFINT LT&:" ":LC&:" ":LA⿻三丨:
2440 FFINT "----------------------------
2450 FRINT: FRINT "AFFLIED LOAD -- ": INT (FN):" KN ":
2460 HTAE 2B: FFINN "FHI = "FHI
2470 FFINT : FFINT "CAFACITY ------ "; INT (NN):" KN ":
2480 IF NN & FN THEN 2S10
2490 HTAE \Xi2: FFIINT "ADEQLATE": HTAE 32: FFINNT "=========="
2500 GOTO 4730
2510 HTAE 28: FFINT "NDT ADEQUATE": HTAE 2B: FRINT "==== ———m---
2520 GOTO 47S0
25GO FEEM
2540 FEM
25SG FEM INFUT THE SECTION
2560 HOME : GOSUE 4500: FRINT "ENTEF THE SECTION GEDMETFY"
```

```
2570 FFRINT "=============================="
2580 FFINT "SECTION WIDTH, CM = ";E * 100: GOSUE 4270
2590 IF ANF= = "" THEN 2610
2600 B = VAL (ANF)/100
2610 FRINT "SECTION DEPTH, CM = ":H * 10Q: GOSUE 4270
2620 IF AN* = "" THEN 2640
2630 H= VAL (ANF)/100
2640 AG=E * H
2&50 GOSUE 4380
2660 FETUFN
2670 FEEM
2680 REM
2690 FEM INFUT STEEL
2700 HOME : GOSUE 4500: PRINT "INFUT THE FEINFOFCEMENT FATTERN"
2710 F'RINT "==================================="
2720 GOSUB 4EOO: INFUT "EAFSIZE,... ";ES
27\Xi0. GOSUE 45OO: INFUT "NUMEER OF BARS, . . ";BN
2740 GOSUE 450O: INFUT "NLMEER OF SIDE EAAFS, ...":EF
2750 IF EF % BN THEN GOSUE 45OO: FRINT "IMFOSSIBLE !, ";F事: GOTO 2740
2760 RS = EF/ / EN
2770. IF ES = < 20 THEN HA = (ES * 20-100) / 1000000
27B0 IF ES = 25 OF ES = S5 THEN EA = (ES \therefore2-125-(ES - 25) 人 2) / 100
2790 IF ESS = 30 THEN EA =0.0007
2800 IF BS = 45 THEN EA =0.0015
2810 IF ES = 55 THEN EA = 0.0025
2820 AS = EA * EN:FHO = AS / (E * H)
2BSO AF = AS * FS:AE= (1-RS) * AS//2
2840 RETURN
2850 FEM
2860 FEEM
2870 FEM
2880 REM GET LOADS
2890 HOME : VTAE E
2900 FFFINT "CAFACITY REDUCTION FACTOF = ";FHI
2910 GOSUE 4270
2920 IF ANF = "" THEN 2970
29.30 V = VAL (ANF)
2940 IF }V<<<GFV>1 THEN 2900
2950 FHI = V
2960 FFINT "NEW FHI = ":FHI
2970 GOSUE 450G: FFINT "INFLIT THE LOADS"
2980 FFINT "=================""
2990 GOSUE 4500: INFUT "AXIAL LOAD, FN,... "FFN
SOOO GOSLE 45OO: FFINT "DO YOU WANT TO ENTEF MOMENT OR"
S010 INPUT "ECCENTFICITY (M/E), ... ";ANF
3020 IF AN* = "M" THEN SO50
SOSO IF ANF = "E" THEN S100
SO40 GOSUE 4500: FRINT FF: GOTO SOOO
S050 GOSUE 4500: INFUT "MOMENT, MX, ... ";MX
3000 EX = (MX / FN) * 100
SO70 IF EX% % O THEN GOSUE 45OO: INFUT "MOMENT, MY, ... ":MY
```

```
SOgO EY = (MY / F'N) * 100
S090 FIETLIFN
З100 GOSUB 4500: INFUT "ECCENTFICITY,EX,...CM = ":EX
S110 MX = FN * EX/100
\Xi120: IF EX% > O THEN GOSUE 45OO: INFUT "ECCENTFICITY,EY,...CM =
S1SO MY = FN * EY / 100
3140 FETUFN
$150 FEM
3160 FEM
#170 REM
उ1BO FEM ENTEF MATEFIAL FFLFEFTIES
S150 HOME : GOSUE 450O: FFINT "INFLT MATERIAL PFOFERTIES"
3200 'FFINT " ==============================="
3210 GOSUE 4500
S220 FFIINT "CONCFETE STFENGTH, MFA = "FFF
3230 GCSUE 4270
3240 IF ANF = "" THEN 5290
S5O FFC= VAL (ANF)
3260 21 = 0.85 - 0.00日 * (FFC - SO)
370 IF Z1 < 0.65 THEN Z1 = 0.65
\Xi280 IF Z1 % 0.85 THEN Z1=0.85
3290 VTAE 14
BZOO FFINT "STEEL YIELD STFESS, MF'A = ";FY
B10 GOSUE 4270
BEO IF ANF = "" THEN FETURN
ESO FY = UAL (ANF)
ES40 EFY = FY /.8:29
XESO FETUFN
3SGO FEEM
SZ70 FIEM
TSEO FEM
SEO FEN
3400 FEM FIND CAFACITY FFOM F-M DIAGFAM
$410 GOSUE 4020
O2OD = SH - DF:EM = SH / 10
34.O GOSUB 4420
340 IF ET < = EM THEN F = 0.8 * FO: GOTO 3670
Z450 FEEM GET BALANCED F:M
F400 C = 60O / (600 + FY) * D
\Xi470 GOSUE S720
3480}F\cdotF=F:ME=
3490 IF ET& E THEN CH = C:CL = 1.5* D: GOTD 3620
S5OO FEM FIND FAILURE FEGIGN
S510 IF E = ET THEN 3670
F5% FEM E<ET (TENSION FAILURE)
BSO CL = C
BE4G FEM CH FFOM MO CONDITION
350 E1 = 0.05:E2=FY / K229
SG0}E=(E1+E2)/2:C=D**S/(KJ + ES
S570 GOSUE उ720
S50) IF F% (FO/1000) THEN E2 = ES: GOTO 3E60: FEM C % T
```

```
5590 IF: ABS (F) & = (FO / 1000) THEN \Xi610
S6OO E1 = ES: GOTO S56O: FEM TOD MLCH TENSIDN
3610 CH = C
Z620 C = (CL + CH)/2
SGO GOSUE S720
3640 IF E & ET * 0.995 THEN CL = C: GOTO 3620
3650 IFE ? ET * 1.005 THEN CH = C: GOTO 3620
S660 FEM WITHIN TOLERANCE
3670 FETUFN
S680 FEM SUEFRUITINE TD FIND LOAD AND MOMENT
Z690 REM FOR A GIVEN SECTION AND
\Xi700 REM DEFTH TO NEUTRAL AXIS
T710 FEM IDENTIFY CFITICAL DISTANCES
3720 H2 = SH/2:CD=C - DF:TD=D - C
\Xi7SO YD = EFY * C / KE:JD = D - DF
3740 CF = CD - YD: IF CF< =0 THEN CF = O
Z5OTF = TD - YD: IF TF % = O THEN TF = 0
3760 FEM CFITICAL STFIAINS
S70 CE = CD / C * KS:TE=TD / C * K``
B7B0 CF = EFY: IF CF = O THEN CF =CD / C * K`
З70 TF = EFY: IF TF = O THEN TF = TD/ C * K%
SBOO FIEM OUTEF FACE STEEL STFESSES
B10 CS = K`2马 * CE: IF CS % FY THEN CS = FY
SB2O TS = K29 * TE: IF TS % FY THEN TS = FY
38FO FEM FORCE FESULTANTS
8840 C1 = {CS - 0. B5 * FFC) * AE
B50 C2 = (FY - 0.85 * FFC) * AF * CF/JD
386OCS = CS/2 * AF * (CD - CF) / JD
B70 T1 = TS * AE
B880 T2 = FY * AF * TF / JD
B890 TS=TS / 2 * AF * (TD - TF) / JD
3900 CC =0.B5 * Z1 * FFCC * SE * C
3910F= (CC + C1 + [2 + CS -T1-T2-TS) * 1000
520 M = CC * (H2-Z1 * C//2)
S90 M = M + C1 * (H2 - DF)
\triangle940 M =M + C2 * (H2 - DF - CF/ 2)
$950M=M+CZ*(H2-DF-CF-(CD-CF)/J)
5960 M =M + T1 * (H2 - DF)
3570M=M+T2*(H2-DF-TF/2)
3980 M = (M +TS* (H2 - DF-TF - (TD - TF) % S)) * 1000
\triangle990 E =M/F
4000 FETLEN
4010 END
40こO HOME : VTAE 12: HTAE 17: FFINN "SOLVING": RETUFN
40S0 GOSUB 4500: FRINT "F'C = ";FFC:" MFA":
4040 HTAB 20: FFIINT "E = "EE * 100;" CM. "
4050 FFINT "FY = "FY;" MFA";:HTAE 2O: FRINT "H = ";H * 100:"
4060 HTAE 20: FFINT "D" = ":DF * 100:".CM. ": GOSLIE 4500
4070 IF FT% S OF CK゙% = 1 THEN 4100
40日G FFIINT EN:"- #":ES:".S, ":EF:" SIDE EAFS "
4090 FETUFN.
```

```
4 1 0 0
4110
4 1 2 0
4130
4140 GOSUE 4510: FFINT "LDAD":: HTAE 15: FFINT "MOMENT";
4150 HTAB 25: FFINT "ECCEN.": GOSUE 4510
4160 FFINT INT (FN):: HTAE 17: FFINT INT (MX):: HTAE 27
4170 FRINT INT (EX * 100) / 100;: HTAE S5: FRINT "X"
4180 IF EX% = 0 THEN 4210
4190 HTAE 17: FFINT INT (MY):: HTAE 27
4200 FRINT INT (EY * 100) / 100;: HTAE S5: FRINT "Y"
4210 GOSUE 4510: FFIINT
4220 FFINT "EHO =": INT (FHO * 1000) / 1000
42SO PRINT "STEEL AREA ="; INT (AS * 1000000) / 100;" S0 CM., (TDTAL
4240. HTAE 14: PFINT INT {AE * 1000000) / 100;" SO CM., (EACH FACE)"
4250: HTAE 14: FRINT INT (AF * 500000) / 100;" S0 CM., (EACH SIDE)"
4260 FETURN
4270 FRINT : INFUT "<RETURN` OR NEW VALUE,.... ";AN: : RETURN
4280. FRINT : FRINT "MINIMUM STEEL FATIO = ":FN: GOSUE 4270
4290 IF AN: = "" THEN 4S10
4300 RN = VAL (AN#)
4S10 FRINT : FFINT "MAXIMUM STEEL FATIO = ":FX: GUSUE 4270
4320 IF AN = "" THEN 4340
4330 FX = VAL (AN#)
4S40 FFIINT : FFINT "FFACTION OF STEEL AT SIDES"
4S50 FFINT "OF SECTION = ";RS: GOSUE 4270
4360 IF ANF = "" THEN 4.380
4.70 FSS = VAL (AN:)
4380 FFINT : FFIINT "COVER TO EAR CENTEFLINE, CM = ":DF * 100: GOSUE 4"
4390 IF AN: = "" THEN 4410
4400 DF = VAL (AN*) / 100
4410 RETUFIN
4420 FO= 1000* 0.85*FFC * AG + 1000* AS * (FY - 0.85 * FFC): RETLP
44\Xi0 XT = AE:AE=AF * 0.5:AF=2* XT: FETUFN
4440 SE = E:SH=H:ET = EX / 100: RETUFN
4450 SE = H:SH=E:ET = EY / 100: RETURN
4460 AS = AG * FHO:AF=FS * AS:AE=AS * (1 - RS) / 2: FETURN
4470 E = INT (H / HE) / 100
4480 IF INT (E / HI) * HI< > E THENE = (1 + INT (E/ HI)) * HI
4490 FHO = FX:AG = E * H: GOSUB 4460: GOSUE 2250: FETURN
4500 FFINT : FRINT : FETUFN
4510 FOF I = 1 TO SE: PRINT "-";: NEXT : PRINT "-": RETURN
4520 HOME : GOSUE 4500: FFIINT "RESULTS": FFINT ."========": RETURN
4530 FFINT "OFTIONS:": FRINT "========"
4540 FFINT " A) CHANGE SECTION"
4550 FFINT " E) CHANGE FEINFOFCEMENT LIMIT"
45GO FFINT " C) RETURN TO MAIN MENLI"
4570 GOSUE 4500
45gO INFUT "YOUR CHOICE ? ... ":AN$
4590 IF ANF = "A" THEN OF% = 1: FEETURN
```

```
    4600 IF ANF = "E" THEN QF% = 2: FETUFNN
    4610 IF AN: = "C" THEN QF" = B: RETURN
    4620 GOTO 4570
    4630 RL = FN:FU = FX
    4640 FHO = (FUU + FLL) / 2
    4650 GOSUE 4460
    4660 GOSUE 2250
    4670 IF NN & FN THEN RL = FHO: GOTO 4640
    4680 IF NN > = FN AND ABS ((FU - FL) / FL) < 0.05 THEN FETUFN
    4690 FUS = FHO: GOTO 4640
    4700 FEM
    4710 FEM
    4720 FEM
    47SO GOTO 8560
    4740 FEEM
    4750 FEM
    4760 FEM
    4770 FEM
    4780 FEM
    4790 REM SUEFOUITINE
    4B00 FEM DESIGN FOF SLENDEFNESS
    4810 FEEM
    4820 FFINT "DO YOLI WANT TO CHECK SLENDEFNESS ?"
    48.00 INFUT "Y/N ....":AN:
    4840 IF AN:F = "Y" THEN 4870
    4850 IF ANF = "N" THEN 2250
    4860 FEM EFRACED IF: UNEFAACED FRAME ?
    4870 EC= 4700 * SOR (FFCC)
    48BO FFINT "INFUT OF FIND TYFE DF FFAME"
    4890 FFINT "EFACED OF UNERACED ?"
    4900 INFUT "I/F ...";AN聿
    4910 IF ANF = "FF" THEN 49S0
    4920 IF AN: = "I" THEN 5260
    49ङ0 INFUT "HIGHT OF EUILDING,.M. . EH="; EH
    4940 INFUT "TOTAL VEFTICAL LOAD..KN..VL = ":VL
    4950 INFUT "NUMEEF OF STOFIIES .."NS = ":NS
    4960 INFLIT "TYFES IF VEFTICAL ELEMENTS...TE = ":TE
4970:IX=0:IY=0:S=1
4980 INFUIT "# OF SIMILAF VEFTICAL ELENENTS..NE = ":NE
4990 INFUT "SECTION DEFTH ...";D
50OG INFUT "SECTION WIDTH...":W
5010 IX = IX + NE/ 12 *W * D* ※
50%OY = IY + NE/12 * D * W* 
5030 S = 5+1
5 0 4 0 ~ I F ~ S < ~ = ~ T E ~ T H E N ~ 4 9 8 0 ~
5O5O CX = BH * SQR (VL / (EC * 1000 * IX))
EOGO EY = EH * SOF (VL / (EC * 10OO * IY))
5070 EV = 0.2 + 0.1 *NS
5O75 FFINT "CX=";CX: FRINT "CY=";CY: FFINT "EV=";EV
5080 IF EV % O.G THEN BV = 0.6
5090 IF EV ? = CX THEN 513O
5100 FFIINT "UNEFACED IN X-DIRECTION"
5110 SX% = 1
5120 GOTO 5150
```

```
S130 FFEINT "EFACED IN X-DIFECTION"
5 1 5 0 ~ I F ~ E X \% = 1 ~ T H E N ~ S 1 B O ~
5160 5Y% = 0
5170 GOTO 5420
5180: IF EV }>= CY THEN 5220
5190 FFINT "UNEFAACED IN Y-DIFECTION"
5200 5Y% = 1
5210 GOTD E.420
5220 FFINT "EFAACED IN Y-DIRECTIDN"
52%O 5Y% = 0
5240 GOTO 5420
52SO FEM INFUT EFAACED OF NOT
5260 FFINT "EFAACED IN X-DIFECTIDN"
5270 INFUT "Y/N...":AN:
5280 IF ANF = "Y" THEN SX% = 0
5290 IF AN$ = "N" THEN SX% = 1
5SOO IF EX% = 1 THEN 5SJO
5S10 5Y% = 0
520 GOTO 5420
SBSO FFINT "EFIACED IN Y-DIFIECTION"
5S40 INFUT "Y/N....""AN#
ESEO IF ANF= "Y" THEN SY% = 0
5360 IF ANF= "N" THEN SY% = 1
5.70 GOTO 5420
5S80 FEM
5%90 FEM
5400 FEM
5.410 FEM INFUT OK FIND EFFECTIVE LENGTH FACTOFS
5420 IF SX% = 0 AND 5Y% = 0 THEN 5440
54SO INFUTT "TYFES OF COLUMNS IN THE STOFEY...":TC
5440 S = 1
5450 TX = 0:TY = O
5400 FFINT "INFUT OF' FIND K VALUES ?"
5470 INFUTT "I/F....";AN:F
54B0 IF AN车 = "I" THEN FI% = 0
5 4 9 0 ~ I F ~ A N \& = ~ " F " ~ T H E N ~ F I \% = 1 ~
5500 IF SK% = 0 AND 5 % = 2 THEN 5700
5510 INFUT "COLLMN-X..E,H,L.. ";W,H4,CX
5520 IF FI% = 0 THEN 6650
5SSO FFFINT "LIFFEFF COLUMN-X..E,H,L... ":W:", ";H4:" , ":CX
5540 GOSUE 8520
ES5O IF ENF = "" THEN 55GO
55SOW1= VAL (ENF):H5 = VAL (DNF):UX = VAL (LN$)
5570 GOTO 5590
5580 W1 = W:H5 = H4:UX = CX
S550 FFINT "LOWEF COLUMN-X..EGH.L.: ";W:", ":H4:", ":CX
5600 GOSUF 85NG
5&10 IF ENF = "" THEN 5640
5S20 W2 = VAL (ENF):H2 = VAL (DNF):LX = VAL (LNF)
```

```
5630 GOTO 5650
5640 W2 = W:H6 = H4:LX = CX
5650 IF 5X% = 0 THEN 5670
5660 INFUT "# OF SIMILAF CDLUMNS IN X-DIF.";NX
5670 [11 =W1*H5* * / WX +W W H4* 3 / CX
5680 02 = W2 * H6* = LXX +W * H4 * J / CX
5690 IF EX% = 0 THEN 62B0
5700 IF SY% = 0 AND 5 % = 2 THEN 6280
5710 IFS< = 1 THEN 5750
5720 IF SX% = 0 AND SY% = 1 THEN 6070
57SO FEEM
5740 FEM
5750 FFINT "INFUT NEW COLUMN LENGTHS FOF Y-DIFECTION"
5760 INFUT "Y/N...":AN:
5770 IF AN& = "N" THEN 5790
5780 IF ANF = "Y" THEN 58.50
5790 CY = CX
5800 UY = UX
5810 LY = LX
5820 GOTO 6020
58SO FEM INFUT NEW COLUMN LENGTHS
5840 FRINT "COLUMN-Y...L = ";CX
5850 GOSUE 4270
5860 IF AN:F = "" THEN 5890
5870 CY = VAL (AN: )
5880 GOTO 5900
5890 CY = CX
59OO_FFRINT "LIFFEF COLUMN-Y...L = ":CY
5910 GOSUE 4270
5920 IF ANF = "" THEN 5550
57马0 UY = VAL (AN:*)
5940 GOTO 5960
5950 UY = CY
E960 FFINT "LOWEF COLUMN-Y...L = ";EY
5970 GDSUB 4270
EG80 IF ANF = "" THEN 6010
5990 LY = VAL (ANF)
6OO GOTO 6O2O
6010 LY = CY
6020 IF SY% = 0 THEN 6040
GOSO INFUT "# OF SIMILAR COLUMNS IN Y-DIF....":NY
604O OS = HE * W1* */ UY + H4 *W* S / CY
6050 04 = H6 *W2 = / LY + H4 *W W J / CY
6060 GOTO 6270
6070 INFUIT "COLUMN-Y..E,H,L..":H4,W,CY
6OBO FFINT "UFFEF: COLUMN-Y..E,H,L.= ":H4:", ":W:" , ":CY
6050 GOSUE 8E20
6100 IF ENF = "" THEN 61SO
6110 HE = VAL {ENF):W1= VAL (DNF):UY = VAL (LNF)
6120 GOTO 6.140
6130 HE=H4:W1 = W:LIY = CY
6140 FFFINT "LIWEF: COLUMN-Y.EE,H,L.. ":H4:",";W;", ":CY
```

```
6150 GOSUE 8520
6160 IF EN# = "" THEN 6190
6170 H6 = VAL (EN#):W2 = VAL (DN:):LY = . VAL (LN*)
6180 GOTO 6200
6190 H6 = H4:W2 = W:LY = CY
6200 IF 5Y% = 0 THEN 6220
6210 INFUT "# OF SIMILAR COLUMNS...":NY
6220 OS = H4 *W*S/CY + H5 * W1 ^ S./ UY
6230 D4 = H4 *W* S / CY + H6 * W2* S/LY
6 2 4 0 ~ R E M
6250 FEM INFUT EEAM DIMENSIONS IN X-DIFECTION
6 2 6 0 ~ R E M
6270 IF SX% = O AND S > = 2 THEN 6790
6280 INFUT "FIGHT UFFER EEAM-X.EF,D,L.. ";B1,D1,L1
6290 FRINT "LEFT UFFER EEAM-X..E,D,L... "E1:", ":D1;", ";L1
6310 IF EN# = "" THEN 6340
G320 E2 = VAL (EN#):DE = VAL (DN#):L2 = VAL (LNF)
6330 GOTO 6SEO
GS40 E2 = E1:D2 = D1:L2 = L1
6B50 FFINT "KIGHT LOWER EEAM-X..E,D,L.. ";E1;", ";D1;", ";L1
6.370 IF ENF: = "" THEN 6400
6. B80 ES = VAL (EN#):DS = VAL (DN#):LS = VAL (LN#)
6390 GOTO 6410
6400 ES = E1:DE = D1:LS=L1
6410 FFINT "LEFT LOWEF EEAM-X..B,D,L.. ";E2;" , ";D2;" , ";L2
6420 GOSUE 8520
6480 IF EN: = "" THEN 6460
6440 E44 = VAL (ENF):D4 = VAL (DNF):L4 = VAL (LNN )
6450 G0T0 6470
6460 E4 = E2:D4 = D2:L4 = L2
6470 X1 = E1 * D1* */L1 + E2*D2* 3/L2
6480 X2 = ES* DS*S/LS + E4 * D4 ^ S/L4
6490 FAX = 01/ X1
6500 FBX = 02 / X2
6510 IF 5x% = 1 AND 5 > =2 THEN 6600
6500k1 = 0.7 + 0.05 * (FAX + FEX)
6530 FMX = FAX
SE40 IF FAX & FEX THEN FMX = FEX
6550 k4 = 0.85 + 0.05 * FMX
6560 KE = K1
6570 IF K1 > K4 THEN KE = K4
6580. IF KE > 1 THEN KE = 1
6590 IF 5x% = O THEN 6640
6600 FX = (FAX + FEX) / 2
GS10 IF FX & 2 THEN KU = ((20-FX) / 20) * SQR (1 + FX)
6620 IF FX > = 2 THEN KU =0.9* SQR (1 + FX)
6630. IF KU < 1 THEN KU = 1
6640 IF FI% = 1 THEN 6680
6650 IF S > = 2 THEN 6665
6660 INFUT "EFIACED EFFECTIVE LENGTH FACTOR-X, KEX=";KE
66S2 IF 5X% = 0 THEN 6680
6665 INFUT "# OF SIMILAR COLUMNS-X...";NX
```

6670 INFUT＂UNEFAACED EFFECTIVE LENGTH FACTDFi－X，KUX＝＂：KU
6680 IF $5 \geqslant 2$ THEN 6780
$6690 \mathrm{Fi}=0.5 * H$
6700 IF $S x \%=1$ THEN 6760
6710 INFUT＂LAFGEF END MOMENT－X．．MX2＝＂：M2
6720 INFUT＂SMALLEF END MOMENT－X．．MX1＝＂；M1
$6750 \mathrm{~F} 1=\mathrm{KF}$＊CX／FI
$6740 \mathrm{FZ}=34-12 * M 1 / \mathrm{M2}$
6750 IF $5 \times \%=0$ THEN 3790
$6760 \mathrm{~F} 1=\mathrm{KU} * \mathrm{CX} / \mathrm{F} 1$
$6770 \mathrm{FZ}=22$
6780 IF EX\％$=0$ THEN 7380
6790 IF $5 Y \%=0$ AND $S\rangle=2$ THEN 7580
6800 IF FI\％$=0$ THEN 7210
6810 FEM
G82O FEM INFUT EEAM DIMENSIDNS IN Y－DIFECTION
68SO FEM
6840 INFLIT＂FIGHT UFFEF EEAM－Y．．E，D，L．．＂EE1，D1，L1
6850 FFINT＂LEFT UFPER EEAM－Y．．E，D，L．．＂：E1：＂，＂：D1：＂，＂L1
6860 GOSUE 8520
6870 IF ENF＝＂＂THEN 6900
$6880 \mathrm{EZ}=$ VAL（EN丰）：D2＝VAL（DN丰）：L2＝VAL（LN＊）
6890 GOTO 6910
$6900 \mathrm{ER}=\mathrm{B1}: \mathrm{D} 2=\mathrm{D} 1: L 2=L 1$
6910 FFINT＂FIGHT LOWEF EEAM－Y．．EsD，L．．＂：E1：＂，＂；Dis＂，＂：Li
6920 GOSUE 8520
6530 IF ENF＝＂＂THEN 6960
$6940 \mathrm{ES}=$ VAL（ENF）：DE＝VAL（DN丰）：LE＝VAL（LNF）
6950 GOTO 6970
$6560 \mathrm{ES}=\mathrm{E} 1: \mathrm{DE}=\mathrm{D} 1: \mathrm{LS}=\mathrm{L} 1$
6970 FFINT＂LEFT LCWEF EEAM－Y．．E，D，L．．＂：EZ：＂，＂：D2：＂，＂： 2
6980 GOSUE 8520
6990 IF ENF＝＂＂THEN 7020
$700 \mathrm{E} 4=$ VAL $(\mathrm{ENF}): \mathrm{D} 4=$ VAL $(\mathrm{DNF}): L 4=$ VAL（LN：$)$
7010 GUTO $70 \leq 0$
$7020 \mathrm{E} 4=\mathrm{E} 2: \mathrm{D} 4=\mathrm{D}=\mathrm{LA}=\mathrm{L} 2$

$7040 Y 2=E S * D E \therefore E / L E+E 4 * D 4 \therefore E / L 4$
$7050 \mathrm{FAY}=[\mathrm{S} / \mathrm{Y} 1$
$7060 \mathrm{FBY}=04 / \mathrm{Y}$
7070 IF $S Y \%=1$ AND $5 \%=2$ THEN 7160
$7080 k 1=0.7+0.05 *$（FAY＋FEY）
7090 FMY $=$ FAY
7100 IF FAY $\Rightarrow$ FEY THEN FMY $=$ FEY
$711064=0.85+0.05 *$ FMY
$7120 \mathrm{KE}=\mathrm{K} 1$
71 OO IF K1 $\because \& 4$ THEN BK゙ $=154$
7140 IF EK $>1$ THEN EK $=1$
7150 IF $5 Y \%=0$ THEN 7200
$7160 \mathrm{GY}=(\mathrm{FAY}+\mathrm{FEY}) / 2$
7170 IF GY $\because 2$ THEN UK $=(20-G Y) / 20 *$ SQF $(1+G Y)$
7180 IF GY $>=2$ THEN UK $=0.9 *$ SOK $(1+$ GY）

| 7190 | IF UK゙ < 1 THEN UK: $=1$ |
| :---: | :---: |
| 7200 | IF FI\% = 1 THEN 7240 |
| 7210 | IF $S>=2$ THEN 7225 |
| 7215 | $C Y=C X$ |
| 7220 | INFUT "EFIACED EFFECTIVE LENGTH FACTOF-Y, KEYY=":EK, |
| 7222 | IF $5 Y \%=0$ THEN 7240 |
| 7225 | INFUT "\# OF SIMILAF COLUMNS-Y. $\quad$ ":NY |
| 7230 | INFUT "UNEFACED EFFECTIVE LENGTH FACTOR-Y, KLY=":UK: |
| 7235 | $C Y=C X$ |
| 7240 | IF 5$\rangle=2$ THEN 7700 |
| 7250 | $\mathrm{R} 1=0.3 * \mathrm{E}$ |
| 7260 | IF SY\% = 1 THEN 7E20 |
| 7270 | INFUT "LAFGER END MOMENT-Y, MYZ=";NZ |
| 7280 | INFUT "SMALLER END. MOMENT-Y, MY1="; N1 |
| 7290 | $\mathrm{GI}=\mathrm{EK}$ * CY/Fil |
| 7300 | $G 2=34-12 * N 1 / N 2$ |
| 7310 | IF $S Y \%=0$ THEN 7580 |
| 7320 |  |
| 7350 | G2 $=22$ |
| 7840 | FEM |
| 7350 | FEEM |
| 7360 | FEM COMFAFISSN OF SLENDEFNESS CRITERIAS |
| 7370 | FEM X-DIFECTIDN |
| 7380 | IF $S \geqslant=2$ THEN 7700 |
| 7390 | IF F1 < = 100 THEN 7440 |
| 7400 | FFIINT "THIS FFOGFiAM IS INSUFFICIENT IN X-DIFECTION" |
| 7410 | $I X \%=1$ |
| 7420 | IF $\mathrm{BX} \mathrm{\%}=1$ THEN 75.30 |
| 74.30 | GOTO 7610 |
| 7440 | IF F1 $\%$ F2 THEN 7490 |
| 7450 | FFIINT "SLENDEFNESS IS NEGLIGIELE IN X-DIRECTION" |
| 7460 | IX\% = 2: FFiINT "F1="F1: FFint "F2="F2 |
| 7470 | IF $E \times \%=1$ THEN 7550 |
| 7480 | GOTa 7610 |
| 7490 | IX\% $=\boldsymbol{\Xi}$ |
| 7500 | IF EX\% = 1 THEN 75S0 |
| 7510 | G0TO 7610 |
| 7520 | FEM Y-DIFECTION |
| 7530 | IF $\mathrm{G1} \times 100$ THEN 7570 |
| 7540 | FFIINT "THIS FFOGFiAM IS INSUFFICIENT IN Y-DIFECTION" |
| 7550 | $I Y \%=1$ |
| 7560 | GOTO 7610 |
| 7570 | IF G1 $~$ G2 THEN 7600 |
| 7580 | IY\% = 2 |
| 7570 | GOTO 7610 |
| 7600 | IY\% $=3$ |
| 7610 | IF $E X \%=0$ THEN $I Y \%=I X \%$ |
| 7620 | IF $I X \%=1$ OR IY\% $=1$ THEN $20 \leq 0$ |
| 76.30 | IF $I X \%=2$ AND IY\% $=2$ THEN 2250 |
| 7640 | IF $I X \%=2$ THEN $5 \times \%=0$ |
| 7650 | IF IY\% $=2$ THEN $5 Y \%=0$ |
| 7660 | FEM |
| 7670 | FEEM |
| 7680 | REM |
| 7690 | IF IX\% = 2 THEN 7920 |

```
7700 IF \(5 \times \%=0\) AND \(S>=2\) THEN 7920
7710 IF \(5 \times \%=0\) THEN 7740
7715 IF \(5 \%=2\) THEN 7760
7720 INFUT "LARGER END MOMENT-X, MX2=":M2
7750 INFUT "SMALLER END MOMENT-X, MX1=":M1
7740 INFUT "UNBFAACED END MOMENT-X, MXS=":MS
7750 INFUT "UNERACED AXIAL LDAD-X, UFX="; XU
7760 INFUT "DEAD AND LIVE LOAD MMOMENTS-X, DM,LM="; XD, XL
7770 IF \(5 \%=2\) THEN 7830
7780 IF \(5 \times \%=0\) THEN 7800
7790 INFUT "TOTAL STOFY LOAD, TP=";FT
\(7800 \times \mathrm{XF}=\mathrm{M1} / \mathrm{M} 2\)
7810 IF M1 \(=0\) AND M2 \(=0\) THEN XF \(=1\)
\(7820 \mathrm{JX}=0.6+0.4 * X F\)
\(7830 E X=X D /(X D+X L)\)
\(7840 X E=E C * W * 1000 *(H 4 * 1000) \sim 3 /(30 *(1+E X))\)
7850 IF \(S \geqslant=2\) THEN 7910
\(7860 \mathrm{~F} \cdot \mathrm{X}=3.14 \times 2 * X E /(1000 *(K E *[X * 1000) \approx 2)\)
\(7870 \mathrm{DX}=\mathrm{JX} /(1-\mathrm{FN} /(\mathrm{FHI} * \mathrm{FX}))\)
7875 FFIINT "DX=":DX
7880 IF DX < 1 THEN DX \(=1\)
7890 IF \(5 \times \%=0\) THEN \(5 X=1\)
7900 IF \(5 \times \%=0\) THEN 7920
\(7910 T X=N X * 3.14 * 2 * X E /(1000 *(K U * C X * 1000) \sim 2)+T X\)
7920 IF EX\% = 0 THEN 8210
7930 IF IY\% = 2.THEN 8210
7940 IF \(5 Y \%=0\) AND \(5>=2\) THEN 8210
7950 IF \(5 Y \%=0\) THEN 8010
7960 REM
7970 FEM
7980 IF \(S>=2\) THEN 8030
7990 INFUT "LAFGEF END MOMENT-Y, MY2="; N2
8000 INFUT "SMALLEF:END MOMENT-Y, MY1=":N1
8010 INFUT "UNERACED END MOMENT-Y, MYS=":NS
BOEO INFUT "LINEFACED AXIAL LOAD-Y, LIFY=":YU
80SO INFUT "DEAD AND LIVE LOAD MOMENTS-Y, DM,LM=":YY,YL
8040 IF \(5 \%=2\) THEN 8120
BO50 REM
\(8050 \mathrm{YF}=\mathrm{N} 1 / \mathrm{N} 2\)
8070 IF N1 \(=0\) AND N2 \(=0\) THEN YF \(=1\)
\(8080 \mathrm{JY}=0.6+0.4 * \mathrm{YF}\)
8090 IF \(5 \times \%=1\) THEN 8120
8100 IF \(5 Y \%=0\) THEN 8120
8110 INFUT "TOTAL STOFY LOAD, TF=":FT
\(8120 \mathrm{EY}=\mathrm{YY} /(\mathrm{YY}+\mathrm{YL})\)
\(8130 Y E=E C * 1000 * H 4 *(W * 1000) \sim 3 /(30 *(1+E Y))\)
8140 IF \(S \geqslant=2\) THEN 8200
\(8150 \mathrm{FY}=3.14 \times 2 * Y \mathrm{Y} /(1000 *(\mathrm{BK} * \mathrm{CY} * 1000) \sim 2)\)
\(8160 \mathrm{DY}=\mathrm{JY} /(1-\mathrm{FN} /(\mathrm{PHI} * \mathrm{FY}))\)
8165 FRINT "DY=":DY
8170 IF DY \& 1 THEN DY \(=1\)
B180 IF \(5 Y \%=0\) THEN \(S Y=1\)
8190 IF \(S Y \%=0\) THEN \(8210 \quad 1\)
8200 TY \(=\) NY * \(5.14 * 2 * Y E /(1000 *(U K * C Y * 1000) \sim 2)+\) TY
8210 IF \(5 \times \%=0\) AND \(5 Y \%=0\) THEN 8260
```

```
8220 5 = 5 + 1
B2S0 IF S < = TC THEN 55OO
8240 REM
825GO FEMFIX% = 2 THEN 8SB0
8270 IF SX% = 0 THEN 8SOO
82gO SX = 1 / (1 - FTT / {FHI * TX))
8285 FRFINT "SX=":SX
8290 IF SX < 1 THEN SX = 1
BSOO AX = M2 / FN
8S10 IF AX& (0.015 + O.0.5* H) THEN M2 = FN * (O.015 + 0.0S * H)
8\Xi20 EX = MS % XU
8SSO IF EX < (0.015 + 0.0S * H) THEN ME = XU * (O.O1E + O.OS * H)
8%40 MX = DX * M2 + SX * ME
BE50 EX = 100 * MX / FN
8B60 FFINT "DEX = ":DX:" DSX = ":SX :
8S70 FFINT "MX = ";MX:" EX = "EX
8380 IF EX% = 0 THEN 2250
8S90 IF IY% = 2 THEN 2工50
8400 IF SY% = 0 THEN 84S0
8410 SY = 1 / (1 - FT / (FHI * TY))
8415 FFIINT "SY=":SY
8420 IF SY & 1 THEN SY = 1
84Z0 AY = NZ / FN
8440 IF AY & (0.015 + O.0S * E) THEN N2 = FN * (O.01S + O.0S * E)
8450 EY = NE / YU
8460 IF EY < (0.015 + 0.0S * E) THEN NE = YU* (0.015 + 0.0S * E)
8470 MY = DY * N2 + SY * NE
8480 EY = 100 * MY / FNN
8490 FFIINT "DEY = ";DY:" DSY = ":SY
BSOO FFFINT "MY = ":MY:" EY = ";EY
8510 GUTO 2250
8E20 FFINT : INFUT "&FETUFN\ OF NEW VALUES... ":EN: 
85.S0 IF ENF = "" THEN RETURN
8540 INFUIT DN:三
85SO INFUT LNF: FETUFN
BESO INFLIT "HIT &FETUFN\ TO CDNTINUE. ..";ANE
8570 GOTO 1240
85BO END
```

RC．COLUMN 1.0
FROELEM MENU：
ㅍニニニニニンニニニニ～～＝

ANALYSIS
1）UNIAXIAL
2）BI－AXIAL
3）CHECK A DESIGN

DESIGN
4）UNIAXIAL，INFUTSECTION．
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INFUTSECTION
7）EI－AXIAL，FIND SECTION

```
ENTEF TYFE OF FFOELEM
    OR 'O' TO GUIT, ... 1
```

CAFACITY FEDUCTION FACTOR $=.7$
«RETUFN» OF NEW VALUE, ...
INFIIT THE LDADS
$=============$
AXIAL LOAD, FN. ... 2220
DO YOU WANT TO ENTER MOMENT OR
ECCENTFICITY (M/E), ... E
ECCENTRICITY,EX,...CM $=20$
INFUT MATERIAL FRDFERTIES

CONCFETE STRENGTH, MF'A $=30$
«RETURN» OR NEW VALUE, ...
STEEL YIELD STFESS, MFA $=400$
«RETUFN. OR NEW VALUE, ...
ENTEF THE SECTION GEOMETFY

SECTION WIDTH, CM $=0$

```
<RETURN` OF NEW VALUE, ... SO
SECTION DEFTH, CM = O
<RETURN\ OF NEW VALUE, ... 60
COVER TO EAR CENTEFLINE, CM = 5
<FETURN> OR NEW VALUE, ...
INFUT THE REINFORCEMENT FATTERIN
```



```
EARSIZE,... 25
NUMEER OF EARS,... 8
NUMEER OF SIDE EAFS, ...O
                                SOLVING
```

RESULTS
ニニニニニニニ
$F \cdot C=30 \mathrm{MFA} \quad E=30 \mathrm{CM}$.
$\mathrm{FY}=400 \mathrm{MPA} \quad \mathrm{H}=60 \mathrm{CM}$.
$\mathrm{D}^{\prime}=5 \mathrm{CM}$.
8- \#25'5; O SIDE BARS
UNIAXIAL COLUMN ANALYSIS

| AFFLIED LOAD－ 2220 KN | $F H I=.7$ |
| :--- | :--- |
| CAFACITY－－－ 2154 KN | NOT ADEQUATE |

```
HIT <RETUFN` TO CONTINUE...
RC.COLUMN 1.O
FFOBLEM MENU:
==============
ANALYSIS
    1) UNIAXIAL
    2) EI-AXIAL
    S) CHECF゙ A DESIGN
DESIGN
    4) UNIAXIAL, INFUTSECTION
    5) UNIAXIAL, FIND SECTION
    b) EI-AXIAL, INFLITSECTION
    7.) EI-AXIAL, FIND SECTION
ENTEF: TYFE OF FFOELEM
    OF 'O' TO GUIT,2
CAFACITY FEDUCTION FACTOF = . 7
〔FETUFN: OF NEW VALUE, ... 1
NEW FHI = 1
INPUT THE LDADS
```



```
AXIAL LOAD, FN, ... 4160
DG YOU WANT TO ENTEF MUMENT OF
ECCENTFICITY (M/E), ...M
MOMENT, MX, ... 1310
MOMENT, MY, ... SOS
INFUT MATEFIIAL FFOFEFTIES
```



```
CONCFETE STFENGTH, MF'A = 30
<RETURN` OF NEW VALUE, ...
STEEL YIELD STFESS, MFA = 400
\FETURN` OF NEW VALUE, ... SOO
```

```
ENTEF: THE SECTION GEDMETRY
============================
SECTION WIDTH, CM = SO
&RETUFNN OR NEW VALUE, ... 65
SECTION DEFTHH, CM = 60
GETUFN` OF NEW VALUE,... 65
COVEF TO EAF CENTEFLINE, CM = 5
&FETUFN\ OR NEW VALUE, ...
INFUIT THE FEINFOFICEMENT F'ATTEFNN
```



```
BAFSIZE,... 45
NUMEER OF EARS,... 10
NUMEEF OF SIDE EAFS, ...5
                            SOLVING
                                SOLVING
F:ESULTS
=二====二=
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(F^{\prime} \cdot\) & SO MFA & E & \(=\) & 65 & 5 & CM. \\
\hline FY & \(=300 \mathrm{MFA}\) & H & = & 65 & 5 & CM. \\
\hline & & \(\mathrm{D}^{\prime}\) & & & 5 & CM. \\
\hline
\end{tabular}
```

10- \#45'S, 5 SIDE EAFS
BI-AXIAL COLLUMN ANALYSIS
AFFLIED LOAD -- $4150 \mathrm{KV} \quad F H I=1$
CAFACITY $\quad$ ADEQUATE
$=======$

```
HIT <RETUFN` TO CONTINUE...
RC.COLUAN 1.O
FROELEM MENU:
ニニ二ニニニニ夫= = ===~
ANALYSIS
1）UNIAXIAL
2）EI－AXIAL
3）CHECK A DESIGN
```

DESIGN
4）UNIAXIAL：INFUTSECTION
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INFUTSECTION
7）EI－AXIAL；FIND SECTION

ENTER TYFE OF FFOELEM OR＇$O$＇TO QUIT，．．． 4
CAFACITY FEDUCTION FACTOR $=1$
＜EETURN〉 OR NEW VALUE，．．．． 7
NEW FHI $=.7$

INFUT THE LOADS
＝ニニ＝＝＝＝＝ニ＝＝＝＝＝＝

AXIAL LQAD，FN，．．． 2220

DG YOU WANT TO ENTEF MOMENT OF： ECCENTRICITY（M／E），．．．E

ECCENTRICITY，EX，．．．$C M=20$

INFUT MATERIAL FROFEFTIES


```
CONCFETE STRENGTH, MFA = 30
&RETURN` OF NEW valuE,
STEEL YIELD STRESS, MPA = 3OO
<RETURN` OR NEW VALUE, ... 400
SECTION WIDTH, CM = 65
```

```
<FETUFN> OF NEW VALUE, ... SO
SECTION DEPTH, CM = 65
<FETURN` OF NEW VALUE, ... 60
MINIMUM STEEL RATIO = .OI
<RETUFN\ OF NEW VALUE, ...
MAXIMUM STEEL RATIO =.04
<FETURN\ OF NEW VALUE, ...
FRACTION OF STEEL AT SIDES
OF SECTION = .5
<RETURN> OR NEW VALUE, ... O
COVEF TO EAF CENTEFLINE, CM = 5
<RETURN` OR NEW VALUE, ...
    SOLVING
    SOLVING
    SGLVING
    SOLVING
    SOLVING
    SOLVING
    SOLVING
    SOLVING
```

FESULTS
二ニニニニニニ

| $F^{\prime} \mathrm{C}$ | $=30 \mathrm{MFA}$ | B | $=30 \mathrm{CM}$. |
| ---: | :--- | ---: | :--- |
| $\mathrm{FY}^{\prime}=400 \mathrm{MFA}$ | H | $=60 \mathrm{CM}$. |  |
|  |  | $D^{\prime}=5 \mathrm{CM}$. |  |

UNIAXIAL COLUMN DESIGN

| LOAD | MOMENT | ECCEN． |
| :--- | :--- | :--- |
| 2220 | 444 | 20 |

FHO $\quad=.024$
STEEL AFEA $=44.15$ SO CM．，（TOTAL） 22.07 S0 CM．，（EACH FACE） 0 SE CM．（EACH SIDE）

```
HIT &RETURN\ TO CONTINUE...
RC.COLUINN 1.O
FROELEM MENU:
ニニニ二ニニッニ゙ニニニニッ=
ANALYSIS
1）UNIAXIAL
2）EI－AXIAL
3）CHECK A DESIGN
```

DESIGN
4）LINIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INFUTSECTION
7）EI－AXIAL，FIND SECTION

```
ENTEF TYFE DF FFOELEM
    OR 'O' TU GUIT, ... S
CAFACITY FEDUCTIDN FACTDF = .7
```

«FETUFIN DF NEW VALUE, ...
INF:UT THE LDADS

AXIAL LOAD, FN, ... 2220
DU YOU WANT TO ENTER MOMENT OF
ECCENTRICITY (M/E), ... E
ECCENTFICITY,EX,...CM $=20$
INFUT MATEFIAL FFOGFEFTIES

CONCFETE STFENGTH, MF'A $=\mathbf{S O}$
〔FETUFN
STEEL YIELD STFESS, MFA $=400$
«RETURN: OR NEW VALUE, ...
LEAST DEFTH, CM = 0

```
<FETUFN\ OF NEW VALUE, ... 20
GFEATEST DEF'TH, CM =O
&FETURN` OF NEW VALUE; ... 65
INCFEMENT OF DEFTH, CM = 5
<FETUFN\ DF NEW VALUE,...
FATIO OF DEFTH TO WIDTH =2
<FETUFN` OF NEW VALUE, ...
MINIMUM STEEL FATIO = .OI
<RETUFN` OFi NEW VALUE, ...
MAXIMUM STEEL FIATID = .04
<FETUFN\ OR NEW VALUE, ...
FFACTION OF STEEL AT SIDES
OF SECTION = O
&FETUFN% OF NEW VALUE, ...
COVEF TO EAR CENTERLINE, CM = 5
\thereforeRETUFIN` OF: NEW VALUE, ...
                        SOLVING
                        SOLVING
                        SOLVING
                        SaLVING
                        SOLVING
                            SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SaLVING
                                    SOLVING
                                    SOLVING
                                    SOLUING
                                    SOLVING
```


## FESULTS

드ニニニニニ

| $F^{\prime} \mathrm{C}=30 \mathrm{MFA}$ | $\mathrm{E}=30 \mathrm{CM}$. |
| :--- | :--- |
| $\mathrm{FY}^{\prime}=400 \mathrm{MFA}$ | $H=55 \mathrm{CM}$. |
|  | $\mathrm{D}=5 \mathrm{CM}$. |

UNIAXIAL COLUMN DESIGN，FOUND SECTION

| LOAD | MOMENT | ECCEN． |
| :--- | :--- | :--- |
| 2220 | 444 | 20 |

```
FHO =.OSS
STEEL AREA =59.42 SQ CM., (TOTAL)
    29.71 S0 CM., (EACH FACE)
    O SO CM., (EACH SIDE)
HIT «RETURN` TO CONTINUE...
RC.COLUMN 1.O
FROELEM MENU:
ニニニニニニニニッニッニニニニ
```

ANALYSIS
SAMPLE PRGBLEM 5
1) UNIAXIAL
2) $\mathrm{BI}-\mathrm{AXIAL}$
3) CHECK A DESIGN
DESIGN
4) UNIAXIAL, INFUTSEETION
5) UNIAXIAL, FIND SECTION
b) EI-AXIAL, INFUTSECTION
7) EI-AXIAL, FIND SECTION
ENTEF TYFE OF FRGBLEM
OR ' $O$ ' TO QUIT, ... 6
CAFACITY REDUCTION FACTOF $=.7$
〔FETURND OR NEW VALUE, ... 1
NEW FPHI $=1$
INFUT THE LOADS

AXIAL LOAD, FN. ... 4160

```
DO YOU WANT TO ENTEF MOMENT OF
ECCENTFICITY (M/E),...M
MOMENT, MX, ... 1310
MOMENT, MY, ... 505
INFUT MATERIAL FFIGFEFTTIES
```



```
CONCRETE STRENGTH, MF'A = SO
<RETURN` OFI NEW VALUE, ...
STEEL YIELD STFESS; MF'A = 40O
<FETUFN\ OF: NEW VALUE, . SOO
SECTION WIDTH, CM = S0
GRETURN` DR NEW VALUE, ...GS
SECTION DEF'TH, CM = SES
<FETUFN` OF NEW VALUE, ... 65
MINIMUM STEEL FATIG =.01
<FETUFN% OF NEW VALUE,....
MAXIMLMM STEEL FATID = .04
<FETURN` OR NEW VALUE, ...
FFAACTION OF STEEL AT SIDES
GF SECTION = O
&FETLFN` OF NEW VALUE,...O.5
COVEF TO EAF CENTEFLINE, CM = 5
&FETUFN\ OF NEW VALLIE, ...*
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
                                    SOLVING
```

SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
sOLVING
sOLVING
sOLVING

RESULTS
＝ニニ二ニ二ニ

| $F^{\prime} \mathrm{C}=30 \mathrm{MFA}$ | $\mathrm{E}=65 \mathrm{CM}$ |
| :--- | :--- |
| $\mathrm{FY}=300 \mathrm{MFA}$ | $\mathrm{H}=65 \mathrm{CM}$. |
| D | $=5 \mathrm{cM}$. |

EI－AXIAL COLUMN DESIGN

| LOAD | MOMENT | ECCEN． |  |
| :---: | :---: | :---: | :---: |
| 4160 | 1310 | 31.49 | $\times$ |
|  | 505 | 12.13 | $Y$ |

FHO $=.028$
STEEL AREA $=115.48$ SO CM．，（TOTAL） 29.87 SE CM．，（EACH FACE） $29.8750 \mathrm{CM} .$, （EACH SIDE）

```
HIT <RETURN> TO CONTINUE... SAMPLE PROBLEM }
RC.COLUHN 1.O
FFOELLEM MENU:
```



ANALYSIS

1) UNIAXIAL
2) EI-AXIAL

ج) CHECK A DESIGN

DESIGN
4) UNIAXIAL, INFUTSECTION
5) UNIAXIAL, FIND SECTION
6) EI-AXIAL, INFUTSECTION
7) EI-AXIAL, FIND SECTION

ENTEF TYFE OF FFOELEM
OR ' 0 ' TO QUIT, ... 7
CAFACITY FEDUCTIUN FACTOF $=1$
<RETUFN: OF NEW VALUE, ...

INFUT THE LDADS


AXIAL LUAD, FN, ... 4160

DU YOU WANT TO ENTEF MOMENT OF
ECCENTFIEITY $\langle M / E\rangle, \ldots M$

MOMENT, MX, ... 1310

MCIMENT: MY, ... SOE

INFUT MATEFIAL FROFERTIES


CONCFETE STFENGTH, MFA $=\mathbf{S O}$
©FETUFN $\$ DFi NEW VALUE. ..
STEEL YIELD STRESS, MFA $=$ TOO

```
\RETURN& OF NEW VALUE, ...
LEAST DEFTH, CM = 20
```

```
\RETURN\ OF NEW VALUE,.... 60
```

\RETURN\ OF NEW VALUE,.... 60
GREATEST DEFTH, CM = 65
GREATEST DEFTH, CM = 65
<EETURN> OR NEW VALUE, ... 70
<EETURN> OR NEW VALUE, ... 70
INCREMENT DF DEFTH, CM = 5
INCREMENT DF DEFTH, CM = 5
<RETURN\ OF NEW VALUE, ...
RATIO OF DEFTH TO WIDTH = 2
<RETLINN\ OR NEW VALUE, ... 1
MINIMUM STEEL RATIO=.01
<RETURN\ DF NEW VALUE, ...
MAXIMUM STEEL RATIO =.04
\&FETURN> OR NEW VALUE, ...
FRACTION OF STEEL AT SIDES
OF SECTION = .5
<RETURN` OR NEW VALUE, ... COVEF TO EAR CENTEFLINE, CM =5 <RETURN` OR NEW VALUE, ....
SOLVING
SOLVING
SOLVING
SOLVINg
SOLVING
SOLVING
SILVINE
SOLVING
SOLVING
EOLVING
SOLVING
SOLVING
sOLVINg
SOLVING
gOLvING
SOLVING
SOLVING

```

RESULTS
ㄷニニニニニ二
\begin{tabular}{rl}
\(F^{\prime} \mathrm{C}=50 \mathrm{MFA}\) & \(\mathrm{E}=65 \mathrm{CM}\). \\
\(\mathrm{FY}^{\prime}=300 \mathrm{MF} \cdot \mathrm{A}\) & \(\mathrm{H}=65 \mathrm{CM}\). \\
& \(=5 \mathrm{~cm}\).
\end{tabular}

EI－AXIAL COLUMN DESIGN，FOUND SECTION
\begin{tabular}{cccc} 
LDAD & MOMENT & ECCEN． & \\
\hline 4160 & 1310 & 31.49 & \(\times\) \\
\hline & 505 & 12.13 & \(Y\) \\
\hline
\end{tabular}
```

FHCI =.028
STEEL AREA =119.48 SQ CM., (TOTAL)
29.87 50 CM., (EACH FACE)
29.87 S0 CM., (EACH SIDE)
HIT «EETUFN` TO CONTINUE...
RC.COLUHN 1.O
FFOELEM MENU:
ッニニニニニニニニニニ= -

```
ANALYSIS
SAMPLE PRCBLEM 7
    1) UNIAXIAL
    2) EI-AXIAL
    B) CHEC\& A DESIGN

DESIGN
－－․－4）UNIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
b）EI－AXIAL，INFLITSECTION
7）EI－AXIAL，FIND SECTION
```

ENTER TYFE DF FFIOELEM
OF 'O' TO GUIT, ... S
RC.COLUHN 1.O
FFOELEM MENU:
=============

```

ANALYSIS
1）UNIAXIFL
2）\(E I-A X I A L\)
```

ENTEF TYFE OF FROELEM
OR 'O' TO QUIT, ... 2

```
```

CAF'ACITY FEDLICTION FACTOF = 1
<RETURN\ OR NEW VALUE, ...
INFUT THE LIIADS
====ニニ=ニ=======
AXIAL LOAD, FN, ... 4160
DU YOU WANT TO ENTEF MOMENT OF
ECCENTRICITY (M/E),...M
MOMENT, MX, ... 1S10
MOMENT, MY, ... 505
DG YOU WANT TO CHECK SLENDEFNESS ?
Y/N ....N
SOLVING
SOLVING

```

\section*{FESULTS}
＝ニニニニニ＝
```

F}C=OOMF'A E = G5 CM.
FY = SOGMFA M = MS CM.
D'=5 CM.

```
```

RHO =.028
STEEL AFEA =119.48 SD CM., (TOTAL)
29.87 SG CM. (EACH FACE)
29.87 50 CM., (EACH SIDE)

```
EI-AXIAL COLUMN ANALYSIS
\begin{tabular}{lr} 
AFFLIED LQAD－－ 4160 KN & \(F H I=1\) \\
CAFACITY－－－ 4163 KN & ADEQUATE \\
\(========\)
\end{tabular}

HIT ©RETURNS TO CONTINUE．．．
RC．COLUNN 1.0
FROELEM MENU：
－ニニニーッ二ニニニニニニ

ANALYSIS
1）UNIAXIAL
2）EI－AXIAL
3）CHECK A DESIGN

\section*{DESIGN}

4）UNIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INFUTSECTION
7）EI－AXIAL，FIND SECTION

ENTER TYFE OF FROELEM
OR＇\({ }^{\text {＇＇TO QUIT，．．．}}\) ．
RC．COLUIN 1.0
FROELEM MENU：


ANALYSIS
1）LINIAXIAL
2）EI－AXIAL
```

ENTEF TYFE OF FROELEM
OF: 'O' TO OLIIT, ... 2

```
CAF'ACITY FEDUCTION FACTOF \(=1\)
«RETUFN» OF NEW VALUE, ...
INFUT THE LGADS
===============
AXIAL LDAD, FN, ... 4160
DU YOU WANT TO ENTEF MOMENT OR
ECCENTFICITY (M/E), ... M
MOMENT, MX, ... 1210
```

MOMENT, MY, ... SOS
DO YOU WANT TO CHECK SLENDEFNESS ?
Y/N ....Y
INFUT OFF FIND TYFE OF FFiAME
ERAACED OR UNBFRACED ?
I/F ...F
HIGHT OF EUILDING;.M. . EH=15
TOTAL VEFTICAL LOAD,.KN..VL = 55OO
NUMEEF OF STQKIES ...NS = EG
TYFES OF VEFTICAL ELEMENTS...TE = = =

# DF SIMILAF VEFTICAL ELEMENTS..NE = NS

SECTION DEFTH ...1.6
SECTION WIDTH...O.S

# GF SIMILAR VEFRICAL ELEMENTS..NE = 21

SECTION DEFTH ...1.1
SECTION WIDTH ...0.9

# UF SIMILAFi VEFTTICAL ELEMENTS..NE =24

SECTION DEFTH ...0.4
SECTION WIDTH...1.E
CX=. 111556907
CY=.088606155
EV=.7
EFAACED IN X-DIFECTION
EFIACED IN Y-DIRECTION
INFUT DF FIND K VALUES ?
I/F....I
COLUMN-X..E,H,L.* .G5,.GESEE.E
EFACED EFFECTIVE LENGTH FACTOR-X, KEX=. }
LAFGEF END MOMENT-X. .MX2=1310
SMALLEF END MOMENT-X. .MX1=1200
BFARED EFFECTIVE LENGTH FACTOF-Y, FEY=.95
LAFGEF END MONENT-Y, MY2=5O5
SMALLEFF END MOMENT-Y, MY 1=400
UNEF:ACED END MOMENT-X, MXS=SSO
UNEFAACED AXIAL LOAD-X, UFX=55OO
DEAD AND LIVE LOAD MMONENTS-X, DM,LM=6OO,71O
DX=1.07189136
UNEFACED END MOMENT-Y, MYS=270
UNEF:ACED AXIAL LOAD-Y; LFFY=455O
DEAD AND LTVE LOAD MOMENTS-Y, DM,LM=2OS,SOO
DY=1.025224B9
DEX = 1.07135136
DSX=1
MX=1754.17769
DEY = 1.02522489
EX = 42. 1677328
DSY = 1
MY = 787.738572
EY = 18.9360234

```

SOLVING
SOLVING

RESLLTS
＝＝＝＝＝＝＝
\(\begin{array}{ll}\mathrm{F}^{\prime} \mathrm{C}=30 \mathrm{MFA} & \mathrm{E}=65 \mathrm{CM} . \\ \mathrm{FY}^{\prime}=300 \mathrm{MFA} & \mathrm{H}=65 \mathrm{CM} . \\ & \mathrm{D}=5 \mathrm{CM} .\end{array}\)
\begin{tabular}{rl} 
FHO & \(=028\) \\
STEEL AREA \(=\) & \(119.48 \mathrm{SO} \mathrm{CM} .,(\) TOTAL） \\
& 29.87 SQ CM, （EACH FACE） \\
& \(29.87 \mathrm{SQ} \mathrm{CM} .\), （EACH SIDE）
\end{tabular}

EI－AXIAL COLUMN ANALYSIS

AFFLIED LOAD－－ \(4160 \mathrm{kN} \quad\) FHI \(=1\)
CAFACITY ——－－－ \(2885 \mathrm{kN} \quad\) NOT ADEQUATE

HIT \＆FETUFN» TO CONTINUE．．．
RC．COLUAN I．O
FFROELEM MENU：
프二ニニニニニニニニニニ

ANALYSIS
SAMPLE PROBLEM 9
1）UNIAXIAL
2）EI－AXIAL
ミ）CHECK A DESIGN

DESIGN
4）UNIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INPUTSECTIDN
7）EI－AXIAL，FIND SECTION
```

ENTEF TYFE OF FFRDELEM QF＇$\sigma$＇TO QUIT，．．．$\Xi$
FC．COLUMH i．O
FFOBLEM MENU：
ㅍニニニニニ二二二ニニニニニ

```

ANALYEIS
1）LINIAXIAL
2）\(B I-A X I A L\)
```

ENTEF TYFE OF FFROELEM
OR 'O'TO QUIT.... 2

```

CAFACITY FEDUCTION FACTOR \(=1\)
```

<RETURN` OF NEW VALUE, ...

```

INFUT THE LDADS
＝ニニニ＝ニ＝ニニ＝＝＝＝＝＝
```

AXIAL LDAD,FN, ... 4160

```
DG YOU WANT TO ENTER MOMENT OR
ECCENTFICITY (M/E), ... M
MOMENT, MX, ... 1310
MOMENT, MY, ... 505
DG YOU WANT TO CHECK SLENDEFNESS ?
Y/N .... Y
INFUT GF FIND TYFE OF FFAME
ERACED OF UNERACED?
I/F...I
ERACED IN X-DIFECTION
Y/N...Y
GFACED IN Y-DIFECTION
Y/N....Y
INFUIT OR FIND K VALUES?
I/F....F
COLUMN-X. E, H,L. . \(65,-65,6\)
UFFER COLUMN-X..E,H,L.. \(65, .65\), 6
<RETURMS OR NEW VALUES... . 5
7.7
\(?\)
LOWER COLUMN-X..E,H,L.. . \(65, .65,6\)
«RETURN» OR NEW VALUES...
INFUT NEW COLLMN LENGTHS FDR Y-DIRECTION
Y/N...Y
CCLLUMN-Y...L \(=6\)
<RETURN> OF NEW VALUE, ...
UFFEF COLUMN-Y...L \(=6\)
<RETURN> OF NEW VALUE, ... 5.5
LLIWEF COLLMM-Y...L \(=6\)
SFETURN» OF NEW VALUE, ... 6.2
FIGHT UFFEF HEAM-X. E,D,L.. .4,.7,5
LEFT UFFER EEAM-X..E,D,L.. . \(4, .7,5\)
```

K1GH: LUWEK HEAM-X..B,D,L.. .4, .7.5
¿RETURN» OR NEW VALUES．．．． 6
$? .7$
$? 4$
LEFT LOWEF EEAM－X．．E，D，L．．：4，． 7,5

```
«RETUFN〉 OR NEW VALUES．．．
LAFGER END MOMENT－X．\(\quad\) MX2 \(=1310\)
SMALLER END MOMENT－X．MX1＝950
FIGHT UFFEF BEAM－Y．．E，D，L．．． \(6, . B, 4\)
LEFT UFPER EEAM－Y．．E，D，L．．．6 ， 8,4
«RETURN〉 OR NEW VALUES．．．． 6
？． 9
\(?\)
RIGHT LOWER EEAM－Y．．EI，D，L．．．6， 8,4
＜EETURN〉 OR NEW VALUES．．．
LEFT LOWEF FEAM－Y．．E，D，L．．．6，． 9 ， 5
\＆RETURN» OR NEW VALUES．．．
LARGEF END MOMENT－Y，MYZ＝505
SMALLER END MOMENT－Y，MY1＝445
SLENDERNESS IS NEGLIGIELE IN X－DIRECTION
\(F 1=24.494 .8876\)
\(F 2=25.2977099\)
UNERACED END MOMENT－Y，MY \(3=310\)
UNEFAACED AXIAL LDAD－Y，UFY \(=4950\)
DEAD AND LIVE LOAD MOMENTS－Y，\(D M, L M=205,300\)
\(D Y=1.08956797\)
DEY \(=1.08956797 \quad\) DSY \(=1\)
\(M Y=860.231822\)
\(E Y=20.6786496\)
sOLVING
SOLVING

FESULTS
ニニーニニニー \(=\)
\begin{tabular}{ll}
\(F^{\prime} \mathrm{C}=30 \mathrm{MF} \cdot\) & \(\mathrm{E}=65 \mathrm{CM}\). \\
\(\mathrm{FY}^{\prime}=300 \mathrm{MFA}\) & \(\mathrm{H}=65 \mathrm{CM}\). \\
& \(\mathrm{D}^{\prime}=5 \mathrm{CM}\).
\end{tabular}
\begin{tabular}{rl} 
RHO & \(=028\) \\
STEEL AREA \(=\) & \(119.48 \mathrm{SO} \mathrm{CM},(\) TOTAL） \\
& 29.87 SO CM, （EACH FACE） \\
& \(29.87 \mathrm{SO} \mathrm{CM} .\), （EACH SIDE）
\end{tabular}

EI－AXIAL COLUMN ANALYSIS
\begin{tabular}{ll} 
AFPLIED LOAD－-4160 KN & \(\mathrm{FHI}=1\) \\
CAFACITY－\(-3 G 11 \mathrm{KN}\) & NOT ADEQLATE \\
\(===-\infty\)
\end{tabular}
```

HIT «RETURN` TO CONTINUE...
RC.COLUAN 1.O
FFOELEM MENU:
ニニニニニニニニニニニニッ

```

ANALYSIS
1）LINIAXIAL
2） \(\mathrm{EII}-\mathrm{AXIAL}\)
B）CHECF A DESIGN

\section*{DESIGN}

4）LNIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
b） \(\mathrm{BI}-\mathrm{AXIAL}\) ，INFUTSECTION
7）EI－AXIAL，FIND SECTICIV
```

ENTEF TYFE OF FFOELEM
OF' 'O' TO QUIT, ... S
RC.COLGNN 1.O
FFOELEM MENU:

```

ANALYSIS
    1) UNIAXIAL
    2) EI-AXIAL
ENTEF: TYFE OF FFROELEM
    OF' 'O' TO OUIT, ... 2
CAFACITY FEDUCTION FACTOF \(=1\)
CFETURN: IR NEW VALUE, ...
INFUT THE LOADS
==ニ=ニニニ=ニニ=ニ:=ニ:=
AXIAL LOAD, FN, ... 4160
DO YOU WANT TO ENTEF MOMENT OF
ECCENTFICITY (M/E), ... M
MOMENT, MX, ... \(1 \Xi 10\)
MLIMENT, MY, . . EOE
DU YDU WANT TO CHECK SLENDEFNESS?
```

Y/N....Y
INFLIT [IF FIND TYFE DF FFAAME
EFIACED OF UNEFACED ?
I/F ...I
EFIACED IN X-DIFEETION
Y/N...N
EFACED IN Y-DIFECTIDN
Y/N....N
TYFES OF COLLIMNS IN THE STOREY...2
INFUT DR FIND \&゙ VALUES ?
I/F....I
COLUMN-X..E,H,L.. -65,-65,5
ERACED EFFECTIVE LENGTH FACTOR-X, KKEX=. }9

# OF SIMILAF COL_LINNS-X...7

UNEFIACED EFFECTIVE LENGTH FACTOF:X, FUX=3
EFGACED EFFECTIVE LENGTH FACTOF:Y, KEEY=. 8S

# UF SIMILAF COLUMNS-Y...7

UNEFIACED EFFECTIVE LENGTH FACTOF-Y; KUY=2.5
LAFGER END MOMENT-X, MX`=1\Xi10
SMALLEF END MOMENT-X, MXI=785
UNEF:ACED END MOMENT-X, MXS=4OO
LINEFACED AXIAL LIAD-X, LF'X=5ESO
DEAD AND LIVE LOAD MMOMENTS-X, DM,LM=6SO,660
TOTAL STOFY LOAD, TF=7EOO
DX=.925778675
LAFGEF END MOMENT-Y, MYZ=505
SMALLEF END MOMENT-Y, MY1=410
UNEFFACED END MOMENT-Y, MYS=SEO
UNEF:ACED AXIAL LOAD-Y, UFY=4900
DEAD AND LIVE LDAD MOMENTS-Y, DM,LM=195, \Xi10
DY=.993251964
COLLIMN-X..EI,H,L.. .4,.5,4

# OF SIMILAF COLLIMNS-X...5

UNEFACED EFFECTIVE LENGTH FACTGF-X, FUX=2.7

# OF SIMILAF COLUMNS-Y...S

LINEFACED EFFECTIVE LENGTH FACTOF:Y, KUUY=2.6
DEAD AND LIYE LGAD MIMOMENTS-X, DM,LM=270,400
DEAD AND LIVE LDAD MOMENTS-Y, DM,LM=26E,300
SX=1.20ES445E
DEX=1 DSX = 1.2OS\&4468
MX = 1791.45757 EX = 4%.0638912
SY=1.1505G865
DEY = 1 DSY = 1.15050G65
MY = 884.667854 EY = 21.2660542
SOLVING
SOLVING

```

\section*{FESULTS}

ㅍ⼆ニニニニニ二
\begin{tabular}{ll}
\(F^{\prime} C=30 M F A\) & \(E\) \\
\(F Y=300 \mathrm{MFA}\) & \(H\) \\
& \(=65 \mathrm{CM}\). \\
&
\end{tabular}
\begin{tabular}{rl} 
FiHO \(=\) & .029 \\
STEEL AREA \(=\) & 119.48 SO CM．，（TOTAL） \\
& 27.87 SE CM．，（EACH FACE） \\
& \(29.87 \mathrm{SQ} \mathrm{CM} .\), （EACH SIDE）
\end{tabular}

EI－AXIAL COLUMN ANALYSIS
```

AFPLIED LOAD -- 4160 kN FHI = 1
CAFACITY ----- 2740 kN NOT ADEQUATE
=== ---------
HIT <RETURN\ TO CONTINUE...
RC.coluith 1.0
FFOBLEM MENU:
ニニニニニニニニニニニニ=

```
ANALYSIS
                    SAMPLE PROBLEM 11
    1) UNIAXIAL
    2) EI-AXIAL
    3) CHECK A DESIGN
DESIGN
    4) UNIAXIAL, INFUTSECTIDN
    5) UNIAXIAL, FIND SECTION
    6) EI-AXIAL, INFUTSECTION
    7) EI-AXIAL, FIND SECTION
    ENTEF TYFE OF FFRELEM
        OF ' \(O\) ' TO GUIT, ... 3
    RC. COLUNH 1.0
    FFOOLLEM TEENU:
    二ニニニニニ二ニニニニ二ニ
ANALYSIS
    1) UNIAXIAL
    2) EI-AXIAL
```

    OR 'O' TO QUIT, ... 2
    CAFACITY FNEDUCTION FACTOF: = 1
\&FETUFNN DFI NEW VALUE, ...
INFUT THE LOADS
===============
AXIAL LOAD, FN, ... 4160
DO YOUL WANT TQ ENTEF MOMENT OF
ECCENTRICITY (M/E), ... M
MOMENT, MX, ... 16OO
MOMENT, MY, .. SSO
DO YOU WANT TO CHECKK SLENDERNESS ?
Y/N ....N
SOLVING
SOLVING
FESULLTS
========
F'C = SOMFA E E = ES CM.
FY = SOO MFA H}=65 CM.
D= 5 CM.

```

    EI-AXIAL COLUMN ANALYSIS
AFFLIED LOAD - \(-4160 \mathrm{KN} \quad \mathrm{FHI}=1\)
CAFACITY ————- 559 KN NOT ADEQUATE
                                === --------
```

RC.COLUHN 1.O
FFOELEM MENL:
ニニニニニニニ:ニッニニ二

```
ANALYSIS
    1) UNIAXIAL
    こ) EI-AXIAL
    B) CHECK A DESIGN
DESIGN
    4) UNIAXIAL, INFUTSECTION
    5) UNIAXIAL, FIND SECTION
    6) EI-AXIAL, INFUTSECTION
    7) EI-AXIAL; FIND SECTION
ENTEF TYFE OF FFFDELEM
    OR ' 0 ' TO QUIT, ... 4
CAFACITY FEDUCTION FACTOF \(=.7\)
〔FETUFN〉 OF NEW VALUE, ...
INFUT THE LOADS
ニニニニニニッェニニニッニニニ
AXIAL LUAD, FN, ... 2220
DU YOU WANT TO ENTEF MOMENT OF
ECCENTFICITY (M/E), ...E
ECCENTFICITY,EX,...CM \(=20\)
INFUT MATEFIGL FFAFEFTIES

CDNCFETE STFENGTH, MFA \(=\mathbf{3 O}\)
〔FETUFN OF NEW VALUE, ...
STEEL YIELD STFESS, MF'A \(=400\)
«FETUFN
SECTION WIDTH, \(\mathrm{CM}=\widetilde{\square}\)
GETUFN: OF NEW VALLIE, ... 30
```

SECTION DEFTH, CM = G5
<FETURN` OF NEW VALLE, ... 6O MINIMUM STEEL FATIO = .OI <FETUFN\ OF NEW VALUE, ... MAXIMUM STEEL FATIO=.04 <KEETURN` OR NEW VALUE, ...
FFACTION OF STEEL AT SIDES
OF SECTION = .5
<FETUFND OF: NEW VALLIE, ... O
COVER TO EAR CENTERLINE, CM = 5
<FETUFN\ OF NEW VALUE, ...
SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
SOLVING
FESULTS
=======

| $F^{\circ} \mathrm{C}=30 \mathrm{MFA}$ | $\mathrm{E}=30 \mathrm{CM}$ |
| :--- | :--- |
| $\mathrm{FY}=400 \mathrm{MFA}$ | $\mathrm{H}=60 \mathrm{CM}$ |
|  | $\mathrm{D}=5 \mathrm{CM}$. |

UNIAXIAL COLUMN DESIGN

| LOAD | MOMENT | ECCEN. |  |
| :--- | :---: | :---: | :---: |
| 2220 | 444 | 20 | $\times$ |

```

```

HIT \&FETUFN` TO CONTINUE...
RC.COLUHN 1.0
FROELEM MENU:
\#二=ニ二=圤=====
ANALYSIS

1) UNIAXIAL
2) BI-AXIAL
3) CHECK A DESIGN
```
DESIGN
    4) UNIAXIAL, INFUTSECTION
    5) UNIAXIAL, FIND SECTION
    6) EI-AXIAL, INFUTSECTION
    7) BI-AXIAL, FIND SECTION
ENTEF TYFE OF FFOBLEM
    OR ' \(O\) ' TO QUIT, . . . 3
RC.COLUMN 1.0
FROELEM MENU:
\(=============\)
ANALYSIS
    1) UNIAXIAL
    2) EI-AXIAL
ENTER TYFE OF FFRGELEM
    OR ' \(\sigma\) ' TO QUIT, ... 1
CAFACITY FEDUCTIDN FACTOF \(=.7\)
<RETURN: OF NEW VALUE, ...
INFUT THE LGADS

AXIAL LOAD, FN, ... 2220
DO YOU WANT TO ENTER MOMENT OF
ECCENTRIEITY (M/E), ... WG
MOMENT, MX, ... 390
DO YOU WANT TO CHECK SLENDERNESS ?
Y/N ....N

RESULTS
＂二ニニニ二 \(=\)
\begin{tabular}{rl}
\(F^{\prime} C=30 \mathrm{MFA}\) & \begin{tabular}{l}
H
\end{tabular}\(=30 \mathrm{CM}\). \\
\(\mathrm{FY}^{\prime}=400 \mathrm{MPA}\) & \(H\) \\
& \(=60 \mathrm{CM}\). \\
\(D^{\prime}\) & \(=5 \mathrm{CM}\).
\end{tabular}
\begin{tabular}{rl} 
RHO & \(=.024\) \\
STEEL AREA \(=\) & \(44.15 \mathrm{SQ} \mathrm{CM} .\), （TOTAL） \\
& 22.07 SE CM．，（EACH FACE） \\
& 0 SQ CM, （EACH SIDE）
\end{tabular}

UNIAXIAL COLUMN ANALYSIS

AFFLIED LOAD－ \(2220 \mathrm{kN} \quad \mathrm{FHI}=.7\)
CAFACITY－－－－－ 2406 kN ADEDUATE
ㅍニッニニニ＝
HIT «RETUFN» TO CONTINUE．．．
RC．COLUAN 1.0
FRGELEM MENU：

SAMPLE PROBLEM 14
ANALYSIS
1）UNIAXIAL
玉）EI－AXIAL
3）CHECE A DESIGN

DESIGN
4）UNIAXIAL，INFUTSECTION
5）UNIAXIAL，FIND SECTION
6）EI－AXIAL，INFUTSECTION
7）EI－AXIAL，FIND SECTION

ENTEF TYFE OF FFROBLEM
OF＇O＇TO DUIT，．．．
FC．COLUNN \(i .0\)
FFOELEM MENU：
＝ニニニ＝ニニ＝＝ニニニ＝

ANALYSIS
1）UNIAXIAL
2）EI－AXIAL
```

        OFK 'O' TO QUIT, ... 1
    CAF'ACITY FIEDULCTIDN FACTOFF = .7
\&FETLIFN% DF: NEW VALLUE;...
INFLIT THE LDADS

```

```

AXIAL LDAD, FN, ... ごここO
DG YOU WANT TO ENTEF MOMENT DR
ECCENTFIICJTY: (M/E). ... E
ECCENTFICITY,EX,...CM = 20
DO YOU WANT TO CHECK: SLENDEFNESS ?
Y/N....Y
INFUIT OF FIND TYFE OF FFAMME
BFAACED OF LNEFFACED ?
I/F ...I
EFIACED IN X-DIFECTION
Y/N...Y
INFUIT UF FIND E: VALUES ?
I/F....I
COLLINM-Y:.EG,H,L.. .J,.6,5
EFAACED EFFECTIVE LENGTH FACTOF-X, KEX=0. }
LAFGEF: END MCMENT-X..MX2=445
SMALLEEF END MOIUENT-X. .MX1=SBO
UNBFACED END MOMENT-Y, MXS=2EG
UNEFACED AXIAL LOAD-X, UF'X=58SG
DEAD ANT, LJVE LOAD MMOMENTS-X, DM,LM=195, 2EO
DY=1.1J2天4107
DEX=1.1S2S4105 DSX = 1
HX = 75%.8%1786
EX = S. %5%0B%5

```

SOLUINE

FESULTE

\begin{tabular}{ll}
\(F^{\prime} \mathrm{C}=30 \mathrm{MFA}\) & \(E=50 \mathrm{CM}\) \\
\(\mathrm{FY}^{\prime}=400 \mathrm{MFA}\) & \(H=60 \mathrm{CM}\). \\
& \(=E \mathrm{CM}\).
\end{tabular}
```

FiHO}=.02
STEEL AFEA =44.1E SO CM., (TOTAL)
22.07 S0 CM., (EACH FACE)
O 50 CM. (EACH SIDE)

```
UNIAXIAL COLUMN ANALYSIS
AFFLIED LDAD --22こO KN FHI = 7
CAFACITY ————— \(155 G F N\) NOT ADEQUATE
HIT EFETLIFNУ TO CONTINUE... 3
RC. COLUMN 1.0
FFOELEM MENU:


SAMPLE PROBLEM 15
ANALYSIS
1) UNIAXIAL
2) EI-AXIAL

玉) CHECK A DESIGN

DESIGN
4) LINIAXIFIL, INFUTSEETION
5) UNIAXIAL, FIND SECTION
6) EI-AXIAL, INFUTSECTION
7) EIT-AXIAL, FIND SECTION

ENTEF TYFE OF FFUELEN \(\ldots . .\).
OF \(O\) TG QUIT,\(\ldots\).
RC. COLUMN i. O
FFOELEM MENU:


ANALYSIS
1) UNIAXIFLL
2) EI-AXIAL

ENTEF: TYFE IF FROELEM
OF: ' \(\quad\) ' TO QUIT.... 1
CAFACITY REDUCTION FACTOF \(=.7\)

CRETUFND OF: NEW VALUE, ...

INFUT THE LDADS
\(=============\)
```

AXIAL LOAD, FN, ... 1560
DGI YOU WANT TO ENTEF MOMENT OF
ECCENTFIICITY (M/E), ... E
ECCENTFICITY,EX,...CN = 2O
DO YOLI WGNT TO CHECF SLENDEFNNESS ?
Y/N....Y
INFUT UF: FIND TYFE OF FFAME
EFACED OF UNEFACED ?
I/F...I
BFIACED IN X-DIFIECTICIN
Y/N...N
TYFES OF COLUMNS IN THE STOFEY... Z
INFUT GF FIND \& VALUES ?
I/F....I
COLLIMN-X..E,H,L.. .\Xi..G.5
EFACED EFFECTIVE LENGGH FACTOF:-X, FEX=.%

# [IF SIMILAF: COLUMNS-X=..7

UNEFFACED EFFECTIVE LENGTH FACTOF:X, K゙UX=2.4
LAFGEF: END MOMENT-X, MXZ=S12
SMALLEF END MOMENT-X, MX1=245
UNEFAAC:ED END MCMENT-X, MXS=2SO
UNEFAACED AXIAL LOAD-X, UFX=45OO
DEAD AND LIUE LIIAD MMOMENTS-X, DM,LM=112,2OO
TOTAL STOFY LOAD, TF=5OOO
DY=1.02920744
COLUNN-X..EI,H,L. .4.,7,4.5

# CIF SIMILAF: COLLUMNS-X...ES

LNEFACED EFFECTIVE LENGTH FACTOF:X, FUX=1. }
DEAD, AHD L IUE LOAD MWGMENTE-X, DM, LM=2OO,SOO
Sx=1.06%21057
DHY = 1.02G23744 DSX = 1.06521097
MN = 567,040604
EX= 56.5487567

```
    SCILUINE

FESLILTS
ニニニニニーニ
\begin{tabular}{|c|c|c|}
\hline \(C\) & \(=30 \mathrm{MFA}\) & \(E=30 \mathrm{CM}\) \\
\hline FY & \(=400 \mathrm{MFA}\) & \(H=60 \mathrm{CM}\) \\
\hline & & \(\mathrm{D}^{\circ}=\mathrm{EF}^{\text {CM}}\) \\
\hline
\end{tabular}
\begin{tabular}{rl} 
FIHO \(=\) & .024 \\
STEEL AKEA \(=\) & \(44.15 \mathrm{SO} \mathrm{CM}, \quad\)（TITAL） \\
& \(22.07 . \mathrm{SE} \mathrm{CM}\). （EACH FACE） \\
& 050 CM. （EACH SIDE）
\end{tabular}

UNIAXIAL COLUMN ANALYSIS
\begin{tabular}{ll} 
AFFLIED LDAD－ 1560 KN & \(\mathrm{FHI}=.7\) \\
RAFACTTV－\(-1 \Delta Q O \mathrm{Kh}\) & nint AnEMinte
\end{tabular}

\section*{APPENDIX lli IDENTIFIERS}
A) MAIN PROGRAM
1. AE is area of steel along sides
2. \(A F\) is area of steel in one face
3. AG is gross section area
4. \(A N\) is answer (Dummy)
5. AS is total area of steel in section
6. \(B A\) is area of one bar (temporary)
7. \(B F\) is number of bars along side of section
8. \(B N\) is number of bars
9. \(B S\) is bar size (Nominal)
10. \(B X \%\) is biaxial flag (0-Uniaxial)
11. \(B\) is width of section
12. \(C C\) is the concrete compression resultant force
13. \(C D\) is the distance from NA to compression face steel
14. CE is strain at compression face steel
15. \(C F\) is the strain in the side steel at the compression face
16. CH is high limit on neutral axis
17. CX\% is flag for design check
18. CL is low limit on neutral axis
19. CP is plateau depth of yielded compression steel
20. CS is the stress in the compression face steel
21. C is depth to neutral axis
22. Cl is resultant of compression face steel
22. \(\quad C 2\) is the resultant of compression plateau side steel

23: C3 is the resultant of elastic compression side steel
24. DP is cover to bar center
25. D is effective depth of tension face steel
26. EM is eccentricity roughly corresponding to ACI maximum column load
27. ET is target eccentricity for capacity check
28. EX is eccentricity about \(X\)-axis
29. EY is eccentricity about \(Y\)-axis
30. EPY is steel yield strain
37. E is eccentricity of load
32. E1, E2, E3 are strains used in finding \(M 0\)
33. FPC is concrete strength
34. FY is steel yield stress
35. \(H B\) is ratio of section height to width
36. HI is increment of section depth
37. \(H M\) is maximum section depth
38. HN is minimum section depth
39. \(H\) is depth of section
40. H 2 is \(\mathrm{H} / 2\)
41. JD is internal lever arm of face steel
42. \(K 29\) is 200000
43. \(K 3\) is 0.003
44. \(M B\) is moment at balanced conditions
45. \(M \varnothing\) is moment at zero axial load
46. \(M X\) is \(M X\)
47. MY is MY
48. \(N N\) is nominal column capacity
49. PB load at balanced conditions
50. PHI is capacity reduction factor
57. \(\quad P N\) is required capacity for design
52. \(\mathrm{PT} \%\) is problem type flag
53. \(P X\) is load capacity with \(E X\)
54. PY is load capacity with EY
55. \(\quad P\) is load capacity returned from P-M curve
56. \(\quad P \emptyset\) is load capacity for pure axial case
67. \(\quad\) QP\% is flag for problem revision
58. RHO is steel ratio for a section
59. RL is lower bound to steel ratio
60. \(\mathrm{R}_{\mathrm{N}}\) is design minimum steel ratio
67. RS is fraction of steel at sides of section
62. RU is upper bound to steel ratio
63. RX is design maximum steel ratio
64. \(R\) is string "RE-ENTER"
65. \(S B\) is section width in \(P-M\) subroutine
66. SH is section width in \(\mathrm{P}-\mathrm{M}\) subroutine
67. TD is distance from NA to tension face steel
68. \(T E\) is the strain in the tension face steel
69. \(T F\) is the strain in the side steel at the tension face
70. TL is iteration tolerance
71. \(T P\) is plateau depth of yielded tension steel
72. TS is the stress in the tension face steel
73. \(T 1\) is the resultant of tension face steel
74. \(T 2\) is the resultant of tension plateau side steel
75. T3 is the resultant of elastic terision side steel
76. XT is temporary identifier
77. YD is distance from level of yield strain to neutral axis.
78. Z1 is beta-1
B) SUBROUTINE DESIGN FOR SLENDERNESS
79. \(A X\) is eccentricity corresponding M2.
80. AX is eccentricity corresponding N2.
81. BH is hight of building.
82. BK is braced effective length factor in \(y\) direction
83. BV is comparison factor for bracing.
84. \(B X\) is \(\beta_{d}\) in \(x\) direction
85. \(B Y\) is Bd in \(y\) direction
86. B 1 is width of right upper beam.
87. B2 is width of left upper beam.
88. B3 is width of ringt lower beam.
89. B4 is width of left lower beam
90. \(C X\) is unsupported length of middle column in \(x\) direction
91. CY is unsupported length of middle column in \(y\) direction
92. \(D X\) is braced moment magnification factor in x direction.
93. DY is braced moment magnification factor in \(y\) direction.
94. D1 is depth of right upper beam
95. D2 is depth of left upper beam
96. D3 is depth of right lower beam
97. D4 is dept of left lower beam
98. EC is modulus of elasticity of concrete.
99. \(F A X\) is \(\psi A\) in \(X\) direction.
100. \(F B X\) is \(\psi B\) in \(x\) direction.
101. FAY is \(\psi A\) in \(y\) direction
102. \(F B Y\) is \(\psi B\) in \(y\) direction
103. FI\% is flag for effective length factor
104. FMX is the smaller of FAX and FBX
105. \(F X\) is the average of \(F A X\) and \(F B X\)
106. F1 is \(k \ell_{\mathrm{i}} / r\) ratio in \(x\) direction
107. F2 is \(34-12 M_{7} / M_{2}\) or 22 in \(x\) direction
108. GY is the average of FAY and FBY
109. G1 is \(\mathrm{k}_{\mathrm{u}} / \mathrm{r}\) ratio in y direction
110. G 2 is \(34-12 \mathrm{M}_{7} / \mathrm{M}_{2}\) or 22 in y direction
111. H4 is depth of middle column in \(x\) direction
112. H 5 is depth of upper column in \(x\) direction
113. H6 is depth of lower column in \(x\) direction
114. IX is total moment of inertia of bracing elements in \(x\) direction
115. IY is total moment of inertia of bracing elements in \(y\) direction
116. JX is Cm in x direction
117. JY is Cm in y direction
118. \(K B\) is braced effective length factor in \(x\) direction
119. KU is unbraced effective length factor in \(x\) direction
120. LX is unsupported length of lower column in \(x\) direction
121. LY is unsupported length of lower column in \(y\) direction
122. L1 is length of right upper beam
123. L2 is length of left upper beam.
124. L3 is length of right lower beam
125. L4 is length of left lower beam
126. M1 is smaller end moment about \(x\) axis
127. M2 is larger end moment about \(x\) axis.
128. M3 is unbraced end moment about \(x\) axis
129. NE is number of similar bracing element.
130. NS is number of stories in building.
131. \(N X\) is number of similar columns in \(x\) direction
132. NY is number of similar columns in \(y\) direction
133. \(N 1\) is larger end moment about \(y\) axis.
134. \(N 2\) is smaller end moment about \(y\) axis.
135. N3 is unbraced end moment about \(y\) axis.
136. 01 is sum of stiffnesses of columns at the upper end in \(x\) direction 137. 02 is sum of stiffnesses of columns at the lower end in \(x\) direction.
138. 03 is sum of stiffnesses of columns at the upper end in y direction.
139. 04 is sum of stiffnesses of columns at the lower end in y direction.
140. PT is total story load.
141. \(P X\) is critical load about \(x\) axis.
142. PY is critical loâd about \(y\) axis.
143. Pi is radius of gyration
144. \(S x\) is unbraced moment magnification factor in \(x\) direction.
145. Sy is unbraced moment magnification factor y direction
146. SX\% is bracing flag in \(x\) direction
147. \(S Y \%\) is bracing flag in y direction.
148. TC is number of types of columns in the story
149. TE is number of types of bracing elements.
150. TX is total critical load of columns in the story in \(x\) direction.
151. Ty is total critical load of columns in the story in \(y\) direction.
152. UK is unbraced effective length factor in y direction.
153. UX is unsupported length of upper column in \(x\) direction.
154. UY is unsupported length of upper column in y direction.
155. VL is total vertical load in building.
156. \(W\) is width of middle column in \(x\) direction.
157. W1 is width of upper column in \(x\) direction.
158. W2 is width of lower column in \(x\) direction.
159. \(X D\) is dead load moment in \(x\) direction.
160. \(X E\) is \(E I\) value of middle column in \(x\) direction.
161. XL is live load moment in x direction.
162. \(X R\) is the ratio of smaller end moment to larger end moment in \(x\) direction.
163. \(X U\) is the load causing sidesway in \(x\) direction.
164. \(\mathrm{X1}\) is the sum of stiffnesses of beams at the upper endin \(x\) direction.
165. X 2 is the sum of stiffnesses of beams at the lower end in x direction.
166. YE is EI value of middle column in \(y\) direction.
167. YL is live load moment about y axis.
168. \(Y R\) is the ratio of smaller end moment to larger end moment in \(x\) direction.
169. YU is the load causing sidesway in y direction.
170. \(Y Y\) is dead load moment about \(y\) axis.
171. Y1 is the sum of stiffnesses of beams at the upper end in \(y\) direction.
172. \(Y 2\) is the sum of stiffnesses of beams at the lower end in \(y\) direction.```

