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PREFACE 

The moments and def'lec:tlons in' a square' slab simplY supported at the I 

. . . I 

boundaries and on a/column at the middle shall be f'ound by the'Relaxatid 

~ethod~ The. aim of' the thesis will be to f'ind 'thenioments and def'lectioJ 
,~. ~ 

in a square three-span slab without drop p~els, simplY supported at the 
/ - . . ~------. - -~;-. '-:'~;"-- ~ . , 

boundEJ.ries and supported on tour 'colunms at the.interior equidistant 

f'rom each other. 

GENERAL NOTATION 

The f'ollowingnotation is used: 

~ Rlj R2 = Residu~ls; 
-~x, Ay = Change in:the values otx and y; , 

= Poisson's ratio, take~as Q. 2 (tor ooncrete);. ;v. 
E . ~ Modulus ot elastioity, assumed constant; . vnits ot- lcglcl'\'\~ 
h = Thiclmess ot . the, plate, assUDied constant; unit of em· , 

M :: Summation of'c)moments at each mesh point; 

• Mx~ 'MY = Moments "in x- am\~~:r:~. axes at each mesh point, respectively; 

q. = Unitorm lo~d on, the slab; 

V = The Laplace operator; 
., 

. bq~ S c . = De tIe ct'1ons' due to load anq. oolumn reaotion, respectively; 

K = -Sq/Oc e ' . ., . 

w = The variable; \ 
T . . '. 

=.Numbe~of' mesh divisions.of' the sides ot the ~lab; 
"" 

a, b , 
Myx,Mxi = TQrsional moment; 

Qx, Qy = Shear in x- and y- axes, respectively; 
. , 

A = Distance in direction of' span trom ce~ter of' support.to the 

D 

intersection ot the center line of' the slab thickness with 

the extreme 45-deg. diagonal line lring wholly within the 

conorete section ot slab and colUmn or otlier' support, 

including drop panel', capit~l and bracket. 
". ~-'-------. --.-...-.----;--.-" .. ~.~ •. I '. 

= Fl~xural rigidity otthe plate, detined as; vni+s of 

D= Eh3 • 
T2( 1-p2) . 

124082 
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CHAPl'ER; 1 

BASIC PRINCIPLES 
I 

1.1. ~ Basic ~,.2! Relaxation. The basic concept of relaxation 

and ,its import lint and widely used modifioatio~s can b~ explained by 

employing them-to solve a pair of ~lgebraic equations, for example:' 

or 

3x +y=50, 

2x -y=lO, 

3x +y -50=0 

2x -y -10=0 

(1.1) 

(1.2) 

The solution of the problem can be easily verified to be x=12 and 
J 'H 
y=14. In order to solve the '~bove equations by ~~f the Relaxation, Methot 

a~l the terms 'shE;ll be written on one side anq with only zero on the 

other side • New quantities called ~esiduals shall be introduoed which 

will t~ke the plaoe of zero in the ~bove equations. For values of 

x ~nd y whioh satisfy the equ~tions(1.2), these residu~ls are equal to 

zero. For other values of x andy, these residuals will have a value 

'd ifferent from, zero. 

3x +y -50=Rl 

ax -y -10=R2 

The aim of the relaxation is to make these residuals equal to zero or 

E;S small as possible. WIlen this is done x and, y will automatically 

satisfy the above equations. 

'The proc,ess of solution is started by sqe selection of an initial 

pair of Vl3.1ues for x and y equ~l to zero. Then for the above equations 

.(1.3) ,Rl=~50 and Rj=-lO. Now if,we change x by 1 unit, Rl is changed 

by three units'while R2 is changed 'by' 2 units, if on the other hand we 

differ y byl unit
j

, Rl is increased by 1 unit, andR2i1:~(~deor.e&aad l;gy 

1 unit. This CE3.n be' put in tabular form oalled the "Operations Table'~ 

THE OPERATIONS TABIfJ QNE , ' 

~=Rl' .6=R2 

Llx=l 3 2 

~y=l - 1 -1 
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The process ot rel~x~tion ~onsists ot the ~ppli~ation ot the unit opera 

tlonsrepe~tedlYJ grgdlli3.lly, to change residualS f'rom their initial value 

to zero." The tirst step in:::~ the rel~tion will be. '!i0 cJ:lange the largest 

residual, 'in this case Rl =.-50, approximately to zero,i.e.,by a change ot 

+ 50. !'rom the~ operations table X=,50/3 or 'about 15. This operation change 
, .. , . - - . 

the v~lue of' 1I'OR2 to +20. This can be rep'e~ted until we obtain zero or 
, , 

olose to zero values for our residuals. The total process written in tab\l , , 

~arfor.m -is ~s follows: 

OPERATioNS TABIE,' TWO 

x' ,y Rl R2 

',0 0 -50 l'!OlO 
~=15 e 5 +20 

~:::=-2 
A:/=10 + 5 +10 

-1 + 6 

~x=-l 
~-4 + 3 + 2 

, , 0 0' 
-

X=12 y=~4 0 0 

The f'in~l I1;ine in this table both summarizes and checks the calculatiOl 

In 'the first oolumn; the solution to the problem is recorded b! s~ing 
. , ( , 

'~or e~cli unknown the value ini tie-1ly &ssiglied and all incremellts added tc 
, . ,{J 

it subsequently,e.g.x- O(initi~lly) +15 ... 2 ... 1=12. The last line is s1mpJ-y,! 
, ' - - ~. 

check, it is derived by substituting thet~lues of x and y' in the equat~ 

ions (1.2). 
\ 

1.2. Block Relaxation. B100k rel~xation_consists in the use of' oper~ 
, , 

ations other .than the basic unit operations. They entail the'simultaneou~ 

a.pp1icQ,tionof' increments to more than,one of the unmowns at the same t~ 

In the example of article (1.1) the block unit operation would be ~x=Ay=: 
. , 

In this case the operations table is: 

OPERATiONS - TABLE, THREE 

~Rl. A R2 

A x=1 3 2' 
A y=! 1 el 
Ax =, y=1 4: 1 

" \ 



The total residual ,is -50. Theunlt block operation affects a change 

of 4:+1=5. So " lils ~ first· step we shall take a block operation 

~x=~=-{-50)=12o 
5 

OPERATIONS TABLE FOUR 

,x y , ~Rl ~R2 
., 

. 

0 0 &50 " -lO 
~x=12 b.~=12 - 2 2 

Ay=12 0, 0 

x=12 y=l4 0 0 
-

Trhe t~ble sp.ows the usefulness of, block relaxation as less steps are 

,involved. Tliere are, athe,r devices such as group relaxation, over-relaxat 
, . 

used but we are not direotly conoerned with them though the reader is 

~eferred to books on Relaxation Methods. 

T~esimultaneous equations solved above are examples 'that show the 

adv~ntage ottthe method., It is ineffioient to solve two simultaneous 

equations by this method ~ut lf there are too many unknowns invo"lved, the 
" 

advantage of the method, can be clearly,seen. The,most important applicat 
I 
I 

of the 'relaxation method has: been ~p obtain particular solutions of part~ 

differential equations in tlIo dimensions. 
I 

In:,this thesis the method bas ,been used in solving1ihe parti~l differel1 

t iaJfequat ions ~ncoillJ.tered in the theory ,of thin plates. In any applicatJ 
, ' , 

of the relaxation method for the solution ofa differential equation, 

fini1iedifference approximations have to be used. It is by solving these 

finite difference equations that we shall have a solution of the wanted. 

function at a number of equgllyspaced points. 

Therelaxa,tion method is a numerical method of solution that has been 

developed in recent years mainly by R.' V. Southwell. 

i 
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CHAPrER 2 

GENERAL THEORY 

2.1. ~ Differential Equation' ,.2! ~ Thi.n- Plate. The differential 

equation of a thin plRte loaded laterallyw!th a uniform load of q is 

wp.ere 

04w+204w t,04w = s 
~ +0 x2(§Y2 ,§'?!' D 

D= E h3 \ , the tmexural rigidity of a plate. 
l2( i-r) 

r = Poisson 's rat~o. 
'-

E= Modulus of elasticity. 

h =The thickness of the plate. 

The ~bove fourth order part!s.l differential equati~n can be 'put into 

t,WQ second order Poisson type different ial ~quations. " ThuB reducing 

oonsider~bly the work involved in the solution of Eq. (2.1)., especially 

when difference equationSF;are;_~llsed. 

but 

putting 

Equatio~ 

or 

and' 

(§~~+~;a), <gJ +g;a>= ~ , 
'M:x: + My =-D(l+j'1}(a2W +o2w} 

'~, ax2 oy2 

M = Mx + Mz=-D(d~ +~2w) 
1 + fit - ax2 OyZ 

(2.'1) can be written as . , 

(02, + ,02 ,) (M) = ... q' 
0:x:2 oy2' 

(~+g~) = -q 

(a2w + d2v,) = -M 
~ 'by2 D 

(2.5a) 

In, the case of a simPl¥ supported rectangular slab the boundary, 

. 'conditions for equations (2.9a) and ('2.5b) are w=O, and 02w , d2w are 
dxS' oyZ 

equal to zero, which makes M=O. 

,2.,2. Finite Difference Approximations., In any application of the 

rela:x:a~ion m~thod, to-solve a differe~tial equation, certain,finite 
-

difference approximations of derivatives have to be used', and we shall 
, . 

establish two of these approximations which will be needed in this chap1 



-0-
. Suf'fixes as .in (Fig" 2.1) are used 

to show a typioal point of subdivision 
: +t __ h ___ ~_~!~ __ h_~1 ~ x 

, ,. , 

when working out a' general result. Fig.2.1. 
. . 

Correspondingsuf'ftxes are used to indioateovalues of, the function~, 

the transverse .deflection,in an expansion of the Taylor 

W=We +(dw) (x-xe) ..: 1 (dSw) (X-Xej2 + I (d3w) (X-Xe)3 +. 
. (ax)e '2 (Ux2)e . '3 (Tx3)e . 

series: 

• • • 

In this relation, if x is put equal, in turn, to (Xe+h) and (xe-h), 

we find that, 

wfcwe+h(dw} +h2 (d2w) +h3 (d3w) +h4 (d4w) +. 
, ' (dx) e 2 (ai2) e 6' ((!is',) e 24 «(ii':r) e . 

• • • 

wd=we-h(:dw) '+!!! '(d2w') __ l-~ (d3w) +Jt (d4yt) +. 
_ . (Tx)e 2 (dx2)e 6 (Qi3)e 24 «(Ti2r) e 

• • • 

Adding these two results together, we get. 

Wf+Wd=2We+h2(d2W) +O{h4 ) • 
. (UxZ)e \ 

where all the terms oontaining' fourth em higher powers of h are inc luded 

together as, O(h4 ) ~ Negleoting this quantity as h is made smaller and 

smaller, we have the finite-differenoe approximation to (d2w) : 
(crxz)e 

h 2 (d2w) =wrWd-2We - (dx2)e' .... 

In two dimensions a,a in_one, the rela~ation solution to a differential 

equation oonsists of a finite number of values of the, wanted quantity 

~ at a number,of'points within the region of integration. Whereas in 

one dimension a range of integrataon was divided up by points of sub-
. -

division into a number of equal intervals, in two dimensions an area 

of integration is subdivided by a uniform network, and the values of 

~ are oaloulated at the ,nodes of the· network. Such networks are known 

as relaxation nets, the commonly 'used one~ is theJsqUare net, rarely 

the triangular net is used. 

An ordinary differentlalequat,"on; also any partlal.iifferentlal 

equation has to ~e replaoed by a set ot finite difference equations. 

For Poisson's equations this can be easily. done since it involves only . 
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3e oftheappro;x:imationfor a second derivative. 

Fig.' 2.2),' illustrates the convention used in ,two 

jJ 
b 

mens ions to denote a typical node ,It e tt and. the, .. d ____ -f-"e ___ ,· -.e l' ~ x 

urrounding nodes. 

h2(o2w l =W1*Wd-2We 
(~x2)e 

'(2.'7a) 

'a,s'the finite-difference approximation fC?r the 

j 

,:!fig. 2.2. 

lecond derivative of :! a~ the point tt e ", on the x axis.. In' the same 

ray it may be shown ,that, for the second derivative with respect to y, 

;he approximation is 

h 2( '?>2w) =wt>+Wj-2We 
(ay 2)E ' 

~ddlng ( 2. '7 a) and ( 2 .7b ) together, we obtain the fini te~difference 

ipproximation' for\J2w at a typical node (node e). 

,h2(V2W)ecWf+Wb~Wd+Wj-4We 

or (2.8 ) 

rhere'is again an error" of o:6h4 ) in this equation, and the effect of 

this error 'again diminishes, with the mesh size h. Equation (2.8) must 

be satisfied by the wanted value of ~ at every group of 'five nodes. 

For any othervallue of .!! the above equa~ion Vlon'tbe satisfied and thus 

a res1~ual (R) will resuat. Putting Eq; (2.8) in the' 1'0rmbelow, 

Wj+wf+Wb:wd-4We~h2(V2w)e=Re (2. g) , 

we should try to . reduce each He to a' value which w1l1 be zero or very 

close to it by the application of increments W. 

, Examining Eq. (2. g), if Wj is. alte~ed by . + 1, 

Re is ,altered by +1, and similarly for unit _ . ';. 

alterations to Wf, 'Wb,wd. If, wowever, We is 

altered by +1, then Re is a,ltered by -4. , The 

,alterations of the residuals thus tollows a /' Fig. 2.3. ' 

definite pattern, and the residuals can be systematically reduced. The 

amount of work in calculating and ohanging the re!iduals can be reduced 

to some extent by the use of the so called "Re laxation Operator." The 

relaxation operator is, ,~:.:,a. driagioamatical form of the finite-difference 
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~quation. The relaxation operator of the present problem is that shown 

Ln (Fig. 2.3).' Remembering the re1axatio~ operat<?r, the, residuals at each 

90~t, oan be oomputed easily. At,the same'.time, the changing of the 

t"esiduals is made easier beca'l:lse the operator indioates that a ohange of 

~he value w at theoenterpoint by + 1 ohangesthe residual at the center - ,-

point by -4 and _ the residuals at each of the four surroun~ing points by '+: 
If we we~e to put Eq. (2.1) into finite-difference form, the required 

form would be, 

20We-8{wb+Wd+W:f+Wj )+2(~o+wm+Wl;+wp)+ (ws+wr+Wt+wu)=h4q/D (2.10) 

Below is the (Fig. 2.4J,that shows the lettered nodes and (Fig. 2.5) 1s 

the relaxation operator of Eq. (2¥.10). It is obvious that Eq. (2.10) is 
r _ "~ 

. ' 

a much more complicated form to deal with tha~the equivalent finite 

aifterence for,ms of Eqs. (2.5a) -and (2~5b) • 

.-:.~ V 

m b r 
. 

-

s d e f t 

0 .1 in I 

I 

U 

Fig. 2.4. Fig. 2.5. 

To get the same result as Eq. (2.10) we have to relax Eq. (2.5a) by putl:il 

the·q-values at the nodal points and as a result the sum of moments are 
, ~ 

obtained at the same poinns. ,Then Eq. (2.5b) is relaxed by putting the " . 
sum of moments as loads at the nodal- points until the. residuals _ are 

minimized. Henceforth the relaXatio~ of' Eq .(2 .5a) shall be called the 

M-reluation and the relaxation o-t Eq. (2~5b) the w-relaxation whioh will 

giv:e the value of the def'lectiQn rather1M~t' each nodal point. 
_ _ - 1> 



-11-

CHAPrER 3 

. THE' ANALYSIS OF A SQ,UARE SIAB WITH A COLUMN AT ITS CENTER 

The main purpose of th~s thesis is to find the moments in a three span 

slab without drop panels, simply. supported at the boundarie~ and supporte 
I 

on four columns at the interior equidistant from each other, and oompare 

the moments'with those of the ACI code. 

As an introduotion a problem of this sort. shall be solved. A slab wil] 

be taken with a oolumn'supporting the slab in the middle. To find the 

column reaction and its effects, the slab without a oolumn' is analyzed 

and the defleotions in the middle are found due to the loads. This 

.defleotion shall be oalled, ,tSq.Then a, unit load will be plaoed at the 

, middle where the oolumn is and ,the deflections ho Vlill be found. The 

I oolumnreaction will be, 

f . 

K=-.sa " 
"-~ . 

The deflection at! any node is equal to the defleotion of the load+ (algeb 

raioally) the iefleotion due to the reaotion at that point. A square 

slab of 4m. by 4m. will be taken loaded with a uniformly' distributed'loa 
, . ' 

of sB:Y 1000.kg./m2 • The slab shall be slioed into four equidistant strj 
, -:-1" 

with ~esh,points lh4. from eaoh other. The load per mesh point will be 
.... "; . 

1000 kg./m2.(lm.) (~.)=lOOo~and ~tshall be placed at eaoh mesh point 

for relaxation.' 

In this example the poin~ Relaxation method is applied, that is to s~ 

a unit ohange l in the variable !!, will ohange the residual at each point 

under oonsideration by a -4 and the surrounding pqlnts by +1 acoording 
- ' , 

to the relaxation operator (Fig. 2.3). The result of this relaxation 
, . "; \ 

gives the sum of moments at. eaoh nodal point aooording to equation (2.5 

By taking these as loads at eaoh nodal point and using'point relaxation 

the defleotions of'eaoh.point are obtained. ~he moments ana shears at 

eaoh point oan be found whan the defleotions values at,the same points 

are known. 
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3.1. Relaxation Method • .' Now let us start the relaxation process at 

the center point and reduce the residual there to zero. Thus we have 
- -

to add, +1000/4 or +250 at that ,point. Wi:!ih this alteration ot the vari- " 

able !!,residuals "at each of the surrou:nding four points are increased 

by an amount of +250. Record the 

final values ot the residuals at the 

rightporner ot eaoh nodal point ana 

the ohange ~!!, th~ variable at the 

lett upper corner. This is shown as 

step 2 in (Fig. 3.2). The nodal 

points under consideration shall be 

numbered as shown in (Fig. 3.1). 

5 

4 

3 

4 

5 

4 '3 4 

2 ]., 2 

1 0 'I 

2 1 2 

4 3 4 

Fig. 3.1. 

The method ot numbering adopted is used througout on'booksof 

relaxation methods. 

5 

4 

3 

4 

5 

The residual at point 1 which has become 1250 will be reduced. 

To reduce it to a value near zero, we shall add a value ot +~250/4 or 

about,300 at this point. Thus ·the residual at 1 becomes +50, and"tthe 

residuals at its surrounding points are shown as step 3 in (Fig~ 3.2). 
I 

Point 3 is a boundary point, and. the value of the funotion at, this poin~ 
• \ I .. 

is determined by the boundary oonditions. As the boundary condition is 
-

satisfied, the residual there is ,zero. ' It is observed that by reducing 
, 

the residual at l,'the residual at point 0 is again increased. To reduc 
I 

this additional residual we must increase Wo again. This always happen! 
., 

whan a point is surrounded by other points with residuals ot the same 

sign. To make the convergence more rapid, i~tea~ ot'reducing Ro in ste 

2 to zero we may increasewo in step 2 so that He becomes a negative 

"talue. This prooess is called over-relaxation. The 'amount ot over-rel~ 

ation depends on the magnitudes of residuals e.t the surrounding points. 

By not over·L3sooting enough or by overshooting too muoh no harm is done 

elloept that some time is lost:- Now both points 2 at the right side ot 

, the vertioal center line have residuals ot 1300. To reduce them, let' 11 . 
over-relax the residuals by adding 600 at both points. The changes in 
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the residuals and the values of!!. are shown as step 4. Next we add 800 

to point above and below·O, respectivelly., The results are shown as 

step 5. NOw, 800 shall be added a.t point 0 and 1; 600 at points 2 of 

the lett--side of the vertical center line and 500 at point 1. The final 
. \ r ' 

residuals are shown as step 6. The residuals have now been reduoed to a 

maxiDmm value. of 200. If we add 80 at all the inner points, the residuals 

shall be considerably reduoed. The final residuals are shown as step? 

Some fUrther changes as in step 8 reduces the-residuals toa minimum.· 

*3.2. Block. Relaxation ~ Unes' g! Symmetry. 

*0. T. wang, Applied Elasticity. (New York: Mc. Graw Hill Book 00. Ino., 

1953)~ P. 119. 
./ 

relaxation may be altered by the computer for a rapid approaoh to the 

final answer of no' ,residuals. ·We shail,Dow discuss a few short outs in 
\ • 1 _ 

the relaxation teohnique which will serve to aooelerate the elimination 

of the residuals. 

One ot these relaxation teohniques is the so-oalled line and blook 

relaxation. In step? ot the example considered in Seo. 3.1, we to~d 
- / 

that the residuals could ?ereduced ~y adding 80·to the values of ~, at 

all the net points. Altering simultaneously all the values ot the func­

tion by the same amount at a group of points in a blook ot the domain is 

o~lledblook relaxation. Similarly, simultaneously altering ;t31ie values 

ot the funotion by the same amount at a group at points along a line in 

theaomain is called line relaxation. 

Consider the etfeot ot the simultaneous ohJging ot. the:Lfunotion ot two 

adja~ent points by the same amount. Obviously this may be oarriea out b~ 

writing down seperately the effeots of e~oh displaoement and adding them 

together~' In the oase of the Laplaoe operator, by the use of unit opera~ 

tors, we oan obtain the two- ,three-, and four-point line-rela~tion 

operators., as shown in{Fig. 3.a}, and the various blook-relaxation, operate 

lSee item No: 5 in bibliography • 

. - " 
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as 'shown in' (Figs. 3.4 and 3.5). Inspecting) the operators as shown in 

:CFigs.3 •. 3, 3.4, and 3.5) carefully, we find that it is, possible to 
. , 

ob'tain a .rule by which all 'such operators c~n be immediately written 

down by inspection. The rule for writing the line- and block-relaxation 

operators for laplace or Poisson's equations is as foll~ws.' By simul-:­

,taneouslya'ltering the values of the function at a group o~ points in 

a region along a line or within a block by an am?unt of +1, the residuals . , . '. 

at all po~nts whiah, like!-. (Figs. 3.3 •. and 3.4), are direct.1y connected 

with three ,points outside the line- or block-relaxation region,are 

altered by an amount of -3. The residuals at all points which, like E.,. .' , 

are connected with two outside pOints, are altered by an amount of -2. ' 

The resldualat a point such. as £ is altered by an. amount of'-l when the 
, 

point is connected with one outside point. There are no changes in the 

residuals at poin~s such as ,9;. which are not directly connect.ed· with any 
, 

outside points. The residuals at all points!" which are outside the 

line ... or block-relaxation region.but directly,connected to one point 

within th~ region, are altered by +1. The residual at an outside point 

such as'! which is directly connect~d to b~O outside points is altered 

by +2. The advantllge of ,the line and block relaxation can easily 'be 

seen from (Fig. 3.5). For while the residuals at the points on the 

boundary of the block are altered, the residuals at points. inside the 
, . -

block ~e not changed. JUdicious use of block relaxation can prevent 

muoh of the "washing baok" ot residuals, thus saving much time in 

.obtaining· a solution. 

Another useful relaxation teo~ique is the observation of the lines 

of symmetry. In many problems the solution can easily seen to be sym­

metrioal with respect to one or more lines because of the symmetry of 

the domain ~nd boundary conditions~ In solving suoh problems, it is 

unnecessary to find the unknown funotion over the entire area. In the 

eX@lJlple of Sec. :3.1 ,there is an eightfold symmetry. Thus it is sufficen 

tOFind a solution in one-eight of the domain, as shown in (Fig. 3.6). 
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\ 

~here is no markedly new technique involved in solving such problems. 

It is merely necessary to remember that to p!serv~ symmetry ea~h time 
. . 

3. point ."adjasent to a line of synnnetry is altere.d the point whi~h is 

symmetrical to this point is altered at the same time. That is , such" 

an operation is accompanieafby an aut~ma;iC~lly equal change on the other 
" \ 

side of the line of symmetry. As a resu~t ,a point on the line of 

symmetry will receive a change in its residual from both of the points 

being altered. 

In the problem of Sec. 3.1, in' (Fig. 3.2), the computation .was deiibera~ 

tely lengthened by ignoring the sYlmn~trical property of the solution .". 

D~ing the relaxation process, the oomputations shoulabe .ohecked from 

time to time by evaluating the residuals at all the Ilodal points. If 

there are mistakes it is advisable to oorreot the residuals at the nodal 

points by using Eq.(2.9). As far as the thesis is oo~cerned,the 

M- relaxation isaccomplished.~he" w-relaxation can be done by using 

J.ine relaxation. The numbering of the noaal points will be as in 
." .' 

(Fig. 3.1), the center point is 0, the side points as 1, and~he corner 

points as 2. The oorresponding change of a 'variable of + 1 put at anyone 

of the three nodal points will be illustrated with the following three 

diagrams of relaxation operators. The numbering of the points will be 

written on the lower left oorners of each point ~hrougout this paper. 

Fig~ 3 .• 6. 

The· steps are not written one by one but the relaxation is carried out 

on page 18. The 1035 middle deflection o~n ~e compared with the result 

of a ~imilar slab solved by elastioity such that 

(D) wmax.=0.00406qa4=0.00406(1000)(44 )=1040 

The exact and approximate results are in good proximity. 
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The results of the examples solved in Secs. 3.1 and 3.2can be increased 

Ln aoouraoy if the slab is divided into eight) meshes. ,The same process 

~rr relaxations' shall be done again. The loa~ per mesh point will be 

lOOOkg./m2.(O.5m.)(O.5m~)~250kg.' and it shall be placed at each mesh or 

[lodal point for relaxation. The relaxation operators for the 8 mesh 

Dlodel are shown on page 21 in (Fig. 3.10). The relaxation ot the uniform 

l.oad is performed in. two steps. First block relaxation shall be used 

and the approximate residuals will be . carried f'urther by point relaxation4 
. - . 

The block relaxation portion of the job is.shown in (Fig. 3.11) and the 

further point relaxation in (Fig. 3.12). Note that block relaxation is 
- -

carried trom the outskirts of the slab to the center in (Fig. 3.11). 

The 438 kg. of step 11s found as: 

..-l-..oO;:;.,;;O:;.. ..... k.::o.g.~1 m __ ~'"-l(_o~, 5~m;;;;,j.w}~(-ir0.:.;. 5~m~.~1 ... (N __ O~· .-..;:;o.:;,.f ... m::;;,;e;;,;;s;,:;;h;,...-p_o-=i::;n_-t~s ) =2501$. ( 49) =438kg. 
. - . . No. of str:tngs28 

or load per node POint (n-l) 
4 

" 

where n=no. of division of meshes of a square slab. For any kind of 

reotangular slab the general formula·is: 

load per node point (a-l)(b-l) 
. 2{a+b .. 2) . 

where aano. of mesh divisions of one side ot the slab; 

b=no. of mesh divisions of the other side ot the sla.b~ 
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K= 4156 =5.15 
, 807 

The column r:eaa.tionis =5 .15( 1000)=5l50Jkg .. 

. The deflections of the column.load are opposite in sign to.the def:lection~ 

of the unii'ormlydistributed load. ·The final defleet"ions , 1:.8. (~'(;:t)} IS 

with a column reaotion acting areasstollows: 

w9= 680-5 .15 ( 88) = 680~ 453=227 Go m . 

W8=12l7-5.l5( 166)=1217- 855=362 em· 

W7= 1554-5.15 (.224 ) = 1554-1153=40 1 II 

w6=166S-5 .15 (247 )=lki.68-1272=396 \\ 

W5=2189-5 .15 (317 ~=2189~1633=556 I' 

W4= 2803-5.~ 15 (433) =2803-2230=57 3.· 1\ 

W3=30l2-5.15(481)=3012-2477=535 .11 

w2=3595-5 .15 (603 )=3595-3105=490 " 

WI =38~5-5"ij15 ( 684 ) =3865-35 23= 342: 1I 

wO=4156-5'. 15 (807)=4156-4156=. 0 
. , 

; . 

The moments ¥X and MY at each nodal point are found by the tollowing 

formulas: 

The torsional moments are: 

Myx=Mxy=D ( 1-r)'a2w 
• • r , iUy 

where fer: 0.2 

~he shear Qx and Qy are: 

Qx=~ -()Mif- ~rD(-a2w+rj2w~ -~ D('l-r)~2w , . rx-?iy . ·Ox[ ~ ay2] EY ai$y 

. =-DC) (~2w + ~ a; ) ( 3.7 ) 
. Ox Ti2y 

~~~Mx -6~xy= - () rn «()2w + a ,)1_ () D ( 1-r)?J~ 
y -. x rye 0y2 x] c;x . mY 
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The finite difference form of the equations (3.4) and ~3.5), whe:r:e, 't, e " 

in (Fig., 2.2) will be a typioal node with' the sUrrounding nodes b ~d ,f , j.!!;I' 

(3.9) 

!!\t= fA( 2We ... Wd -wr)+ (2we-vffi ... wt) 
D h2 . ·.h 
.' . 

as all the~'s.are aotually w1Dh th~ modifiedMOC and My 'moments after 
. . . . 

multlplyingby h2ttas noted on p. 23, will be.:' 

Mx= (2We-Wd-wf)+ 1'\( 2We~'~~W:j) 

My= r( 2We-Wd -wf)+ ( 2We-wb-w j ) 

Now the mo:qtents o.f the 8 mesh model will be found. 

Mx9=2(227 )-362 +O.2l2( 227 ) ... 362 ] = 110 

Mx8=2(362)~556' +0.2[2(362)'-227-401J= 187 

. MX7=2(401)';'573 +0.2 ~(401)-396 .. 362] ~. 238 

Mx6=2(396)-535 +O.~ [2(396 )-2(401)' ] =·255 

Mx5=2(556 )-573-362+0.2 [2(556 )-5.7;3-362] = 212 

. Mx4=:' 2 (573 )-491-490+6.2 (2(573 )-535-556] =266 

Mx~a(535)-342-396+0.2~(535 )-2(573) ] = 317 

Mxa=2(490) .. 573-342+0.2 ~(4~0)-573-34~ = . 78 

Mxl=2(342).-535-0. +0.2~(342)-2(490)]:: 90 

Mxo=2(0)-2(342) ~0.2~(0)-2(342). ]=-821 

My9= --------- = 110 ~g-M/tI\ . 
Mya~ 96+0.2(168)= 130 I' 

My7= -44+0.2 ( 229 ):: 90 II 

MY6= -10+0.2(257)= 41 II 

My5= ... ----~----- = 212 'I 

My4= 55+0.2(255)= 106 '" II 

MY3= ... 76+0.2(332)=- 12 

Mya= ----------- = 72 II 

" 
Myo= ------~---- =-821 

. " 

I 
/ 

~!-M/'tl\ . 

II 

1\ 

" 
" 
1\ 

" 
1\ 

" 
~I 
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CHAPrER 4 

THE ANALYSIS OF A SIMPLY StJPPORTED SIAB, WITH FOUR 

SYMMETRICALLY, PIACED CO LTIMNS 

In the first part of the thesis a slab was solved simply supported 

at the boundaries and on a column at the middle. For this slab the 

deflections and moments were found only for the eight mesh model an~ 

the deflections ,for the four mesh one. The' aim of the thesis is 'to 

oolleot interest ona slab simply suppo~tedat the boundaries and 

supported internally on four columns equidftant from each other and' 

the boundaries. The slab to be investigated has dimensions of 4m. by 

4m •• The 'relaxation ,procedure will be ~imilar to the previous ones. 

The uniform'loading will be 1000 -kg./m2, (,4/6m. ){4/6m. }=445kg. for the 

M-relaxation of the uniform load. The relaxation operators for the 

6 mesh model are shown in (Fig. 3.l6) with the lines of symmetry 

indioated. The operations tables follow. 
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It is sufficient to find the load on one oolumn'as all four of them 

are similarly loaded. 

K=1797=1.985 
906 

The. oolumn reaction is = 1.985 ( 1000 .) = 1985 kg. 

The final deflections at the mesh points are: 

W5= 6421. 9885 ( 281)= 642- 558= 84 ,~. 

W4=107l-l. 985 ( 500 )=1071- 993= 78 ". 

W3=12l9-l. 985 ( 563 )=12l9 ... lllB= 101 'I. 
w2=1797-1. 985 ( 906)=1797-1797= 0 

Wl=2049 .. 1.985(lOOO)=2049-l985= 64 ". 

wo=2338 ... l~985(1125)=2338-2232=106 ,I. 

'In the previous example, it was not neoessary to find the_moments 

sinoe another square slab having dimensions 6m. by 6m. shall be analyzed 
, , 

with the same given oonditions but this time the 'slab shall be divided 

into 12 meshes so as to minimize the error of the defleotions, and the 

moments to be found. ,To find the moments';, strips shall be oonsidered 

suoh as the oolumn strip, the middle strip as is done in the analysis 

of flat slabs in reinforced concrete. This so called strip analysis 

couldn't be done'with the 6 mesh model as there were insuffioient 

nodal points and therefore insuffioient defleot~ons. The previous 

example was done so that it would be a useful guide to the 12 meshed 

example. In ,this example the load per npdal point will be 

1000 kg./m2• (0.5m. )(0.5m. )=250 kg •. Blook relaxation shall be followed 

by poin; relaxation. Under eaoh Fig. is written what that Fig. is 

about so as to faoilitate the r~ading of the thesis. 

, 
. I 

" 
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K=16144=4.609 
3503 

The colUJllIl reaction is =1000(4 •. 609)-4609 kg •• , As the other columns 

bear the same load, the true det1eetionsat the meah points are: -

wac 1600--4.609( 294)= 1600- 1355=245 CorA· 

Wb- 3024-4.609( 572)- 3024- 2636-388 " . 

wc- 5734-4.609(1115}- 5734~ 5139-595 n. 

Wd- 4186~.609{ 815)= 4lB6- 3756-430 " . 

we- 7956-4.609( 1592}= 7956- 7338-SlB " .. 

Wf=11061-4 .6o~H 2284 }-11061-10527=534 ". 

Wg- 5040-4.509(1000)= 5040- 4609-431 11· 

Wh= 9594-4.609(1957)- 9594- 9020-574 \1 • 

wi=13356-4.609(2818)-13356-1298S-368 11. 

Wj-16144~.609(3503)=16144-15144= 0 

Wk= 5560-4.609( 1109)- 5560- 5111=449 " . 

w1-10593-4 .609( 2165 )-10593- 9979=614 " . 

wm=14'159-4.609( 3099 )-14759,..14283-476 ,\. 

wnc:1785l-4.609( 3818 )·17851-17597=254 ". 

wo=19746-4 .609( 4209 )=19746-19399=347 ". 

wp- 5735-4.609( 1145)- 5735- 5277=458 ". 

wq=10929-4.609(2231)-10929-10283-S46 " ,. 

wr-15231-4.609(3lB5)·15231-14680-5511 .,. 

ws-lB425-4:.609(3914)-lB425-lB040-385 " . 

wt-203B4-4.609(4331)-20384-19962-422 II· 

wu·al043~.609(4463)=21043-21570c473 ". 



The Mx moments at the mesh points are: 

Mx.=2(245 )-390 +0.2[2(245 )-390 ] = 120 

Mxb=2(38e)-595 +O.2[2(388)-245-430]- 201 

Mxo-a(595 )-388-6lB+O.2[ 2(595 )-388-618} -= 221 

Mxd=2(430) .. 6lB +0.2[2(430)-388-431}- 250 

M:xe=2( 6]B )~30-534+0.2[2( 618 )-595-574] c 286 

Mxf=2{534 )-6lB-368+0.2[2(534 )-6lB-368] - 98 

I4xg-a(431)-574 +e.a[2(431)-A:30-449] =:= 285 

Mxh-S(5'14 )~31 .. 368+0 .2[2(574 )-6lB-614] - 332 

I(x1=2(368)-574 +0.2[2(368)-534-476] - 99 

Mxj= 0 -36S .. 254+0.a[2( 0 )-368-254] --746 

. Mu-2(449 )-611 +.0.2[2(449 )-431-458] - 286 

Mx1==2( 614 )-4:49.-.476+0.a[a( 614 )-574-646] =- 305 

Mxm.=2(476)-614-254+0.2[2(476l'568-551}= 91 

Mxn-!(254)-476-347+0.2[!(254)- 0 -385J=-290 

)[xo=2(347 )-254P422+0.2[a( 347 )-254-422J * 20 

Mxp-2( 408 )-646 +0.2 [2( 458 )-2 (449) ] = 274 

Mxq=a(646 )-458-551+0.2[2( 646 )-2(614) 1- 296 

Mxr=2(551)-S4S-385+0·.a[2(551)-2{476) ] =: 101 

14x8·2(385 )-551-422+0.2 [~5 )-2(254) j =-151 

14xt-! (422) -385-473+0.2 [2 (422) -2 (347) ] = 16 

Xxu·2(473)-2(422) +0.2[2(473)-2(422) ] a 122 

" 

" 
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~he ' My moments at the mesh points are: 

Mya= ------------------------ = 120 

Myb= ------------------------ = 137 

Myo· ------------------------ - 221 

Myd- ------------------------ = 89 

Mye= ------------------------ • 121 

Myt- ------------------------ = ~8 
Myg= -------------------~----. 41 

Myh= ------------------------ = 14 

My1- ----------~-----------~ =-282 

Myj= 

My~ 

My 1= 

Mym= 

Myn= 

Myo= 

Myp. 

Myq= 

Myr= 

Mys= 

-~-------~-------------- -"746 

-~-~------------------~ = 66 

-~--~---~-~--~-~--~~-~ = 
----------~-----~------~ = 

-------------~---~--~---

------------~~--~----~~ . 
---------~-~~---~----~~- . 
-~~-~----------~----~ • 

------------------------ = 

-----------------------~ 
= 

~~---------------------- = 

---~-----------------~ == 

69 

50 

50 

20 

72 

121 

164 

221 

147 

122 

, , 

" 

" 
" 

" 

" 

" 
u 

1\ 

,. 
., 
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" 
" 
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CHAPrER 5 

DISCUSSION OF RESUDl'S AND CONCIDSION 

5.1. Statio Load Check. - .................. 

A B 

I 

E .. ~ 
",,", 

I 

c D 

Fig. 4.15. O~e-half ot an interlo~ panel. 

Let (Pig. 4.l5) represent one-halt ot an interior panel. It this 

was a real tntermediate panel that -is to sayan intinite number ot 

panels extended in both directiona, ' then the shear along the lines 

AB, BD, and CD will be zero. Theretore the -sum ot moments along BD and 

AC must be aql2 where a=1/8, no matter what the distribution ot moments 

along this line would be. The sum ot moments along AEC will be the 

area at the moment diagram. 

4 o~ D.SM.-~-----...;""'1 c 
A.-------~------~--------~------~ 

... 15l __ --:::;~~ ~~r----1~d. 

... 746 

Fig. 4.16. Moment diagram along AEC. 

(746+290)(0.5)(2)-1036(0.5)(2)-518 -2 2 ' 

(290+151) (0.5) (2)- 441(0.5) (2)-220 
, 2 T m " , \ 



· \ 

e aum o't moments along BD is. 

1 z:.,.I __ +_·1_4r_7.z.:~ __ + __ Z_' ~_1..t.r .&.-_+-1-'-: .. -_-_ -_ -_+~~_I_~ ~J -""· ..... r: 2 

-tl ...... ------- 4 at 0.5m. _____ ......... 1 
~lg. 4.17. Moment diagram along BD. 

(221+ 147) (0.5) (2 )-368( 0.5 ) (2 )-lB4 'c.cI .. ~. 
2 ,- ~ 

(147+ 122) (0.5) (2 )-269(0.5) (2 )-135 " 
S ,- . m" 

The sum o~ moments along AEC and BD are -738+319-10'7 ~SW'l" 

The load on the 2m. slab 18,,-1000 kg./~.(2m.)-2000 kg./m. 

M-lql2..!(aOoo)(a2 )-1000 kgym. 
8 8 

The sum o't moments of 1057 found by relaxation and the moment ot the 

statio load are in good proxm1;Y tor statioal comparison. 

Next we shall tind out what percentage ot this total moment goes to 

negative and positive moments. It is observed that ot this 1057 total 

moment, 

738-0.70-70 ~o goes to negative moment. 
1."05'7 

and 19t~-O.30.30 0,0 goes to positive moment. 

The slab under investlg~tlon shall be divided into strips. The strips 

o't interest in the thesis shall be the oolumn strip and the middle strip. 

These strips are shown in (Fig. 4.18). o't the total negative moments, 

-746-200-290--1326--441 ~ .. ~, is the moment for the column strip. 
3 3 

-290-151-290=,.. 243-",,243 " is the moment ·~tor the middle strip. 
3 3 -684 " 

441=0.645-64.50/0 is the peroentage ot the negative moment 
684 

at the column. strip. 

243-0.355-35.5 % is the percentage of the negative moment 
684 

at the middle str~p. 
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Of the total positive mo~entst 

+147+221+147=515=+172 is the moment tor the oolumn strip • 
. 3 ~ .' 

+147+122+147~=~ is the moment for the middle strip. 
3 3 +3111c.~-'IW\'· . . 

." . : 

172=0.55=55 0
/,0 is the peroentage of the positive moment at the oolumn' strirJJ 311 . \ ... ~' 

. .' . .,.. I 

i39=0 •. 45=45 °1.0 is the peroentage of the positive moment at the middle stri] 
311 . ..., 

. TABLE FIVE 

PEROENTAGE OF MOMENTS BETWEEN OOLUMN STRIPS .AND MIDDLE 

STRIPS IN PERCENT OF TOTAL MOMENTS AT CRITICAL SECTIONS OF A PANEL· o. 
- . . 

Moment Seotion 
" Strip Negative Moment Posit ive-

c,"v·'( ':< at Interior Support Moment .. 

'C'olumn Stri 'D 64.5 55 
MIddle Strip 35.5 45 

. 



The ·slab analyzed above shall. be compared by the elastic analysis 

method ·ofthe ACI Code. ~n design by elastic analysis sevexal 

assumptions are made.w 

'* ". Journal of ACI. Feb. 1962, proc.v.59, No.2; P.229-231,Table 2103(c) • 

.. , 

a) Assump;tions: 

. 1. l'he structure may be considered d.ivided into a 'number of bents, 

c,each consisting of a row ofrcolumns or supports and strips of sup­

ported slabs, each st'rip bound.ed laterally by the center line of 

the panel on either side of the center line of columns or supports. 

The bents shall be jraken longitudinally. and, transver.sely of the 

building. 

2. Each such bent may be analyzed in its entirety; or each floor 

thereof and the roof may be analyzed seperately with its adjacent 

columns as they occur above and below, the columns beeing assumed 
. \ 

fixed at their remote ends. 'Where slabs are thus analyzed separately, 

'-it may be assumed in determining the bending at a. given support that 

the slab is' fix~d at any support two panels distant therefrom provi­

ded the slab continues beyond that point. 

3. The joints between columns and slabs may be considered rigid, 

and 'this rigidity (infin'ite moment of inertia) Imay be assumed to 

extend in the slabs from the center of the columns to the edge of' 
- . , 

the capital, and in the column'fromthe top of the slab to the bottom 

of the capital. The change in length of columns and slabs due to 

direct stress, and deflections'due to shear, may be neglected. 

-4", Where metal column capitals are used, account may be taken 

of their contributions to stiffness and resistance to bending ang. she 

5. The' moment of inertia of the slab or column'at any ,cross 

~ection may.be assumed to be that of th1cross section of the c<?n~rete 

isee item No: 6 in bibliography. 
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Variation in the moments of'ine':ttia of the slabs and columns along 

their axes shall be taken into account. 
, " 

6. Where the load to be supported is,defini:tely known, the struc- ' 

ture shall be analyzed for that-load. Where the ,live load'is vari­

able but does not exceed three~quarters of the dead load, or the 

nature of the live load is such that all,panels will be loaded si­

mul taneously, the maximum bending may be assumed t'o occur at all 

sections under full live load. For other conditions, maKimum posi­

tive,bending near midspan of a panel may be'assumed.to occur under 

three-quarters of the full live load in the panel and in alternate 

panels; and maximum negative bending in the slab at a support may 

be assumed, to occur under three-quarters of the full live load in 

the'adjacent panels only. In no case, shall the design moments be 

taken as less than those occurin~ith full live load on all panels. 

b) G~itical Sections: 

The critical section for negative bending, in both the column 

strip ,and ,middle strip, may be assumed as not more than the distance 

A from the center of the column or 'support and the critical negative 

moment shall be taken to consideration as extendi~g over this distance, 

c) Distribution £f Panel moments: 

Bending at critical sections across the slabs of each bent may be 

apportined bet\'leen the column strip and middle strip, as given in 

~able Six. For design purposes , any of these percentages may be 

varied by not more than 10 % of its value, but their sum for the full 

panel width,shall nbt be reduced. 
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TABLE SIX 

.PERCENTAGE OF MOMENTS BETWEEN COLUMN STRIPS·AND ~UDDLE 

STRIPS IN PERCENT OF TOTAL MO~~NTS AT CRITICAL SECTIONS OF A PANEL 
.. ,,-..' ~ . '" 

~ J ~:, - -
Moment Sect~on 

Strip Negative lVioment Positive 
at Interior Support . Moment·-

Column Strip 76 60 
~liddle "'Strip 2_4- 40 .. >-~..,.:; 

'-
5.2. Conclusion. It is seen that the values 2n Tables Five and 

, Table Six are ,quite close so that the elastic analysis proposed by 

the ACI Code agrees well with the theoretical analysis. However, 

as it'is seen, the relaxation method is easily applicable specially 

in cases where the elastic analysis proposed by the ACI Code may 

give questionable results such as a column in the middle of a slab 
, 

or,' slabs with unusual loadings. 
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.APPE~DIX 

USEFUL'FINITE-DIFFERENCE APPROXIMATIONS 

10 

6 2, 5 

11 3 0 1 9 

7 4 8 

12 

Fig. 4.19. A square net with nodes indicated. 
, 

In terms of thew values at the nodes of a square net as indicated 

in (Fig. 4 .• 19), the following finite-differellce approximations to 

low-order derivatives are frequently neeqeaand have been collected 

together here for ease of reference: 

First Derivatives 

Second Derivatives 

/ 

Third Derivatives 

('1I 3w) .:J!9-2Wl +2w3-\~11, 
(fXJ)o ' 2h'. 
. .' ..-' .-' ;,.- ~ . ~ - . ." . " ~ . . . :. "':." ~ 

«(}-'w) "~ WJ 0-2w~+jW4~W12 , 
(lY"') 0 ' h, 



-', 

Fourth Derivatives 
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(~4w) _6Wo-4w2-4w4"'WIQt~12 ' .. 
i (¥) 0 , __ . _ .. , h~ __ ." ___ .. __ .' ... ' .'. , . _ 

~~~fl:: 2Owo-8 (WJ+W2tW3M4.J+2 '="15+"'6+\'17+w81 + ' 
••. i ... ' •• - " .... ., • 

+ ( \oJ'9+WJO~!p ,-rwJ 2 ) • , , 

I 

I 
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