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 PREFACE - |
g The moments and defleotions in a square slab simply supported at the
boundaries and on a column at the middle shall be found by the Relaxatio

z\gethod ‘ The aim of the thesis will be to find the moments and deflectio

- o

in a square three«Span slab without drop panels, simply supported at the

\boundaries and supported on four oolumns at the .interior equidistant \
‘from eaoh other. o ) B o \ , :
oo GENERAI. NOTATION | }
'l‘he following notation is used~
R Rl, Rg = Residuals' - _ o
-Ax, Ay Change in the values of x and y, .
o Moo= Poisson's retio taken as 0.2 (for oonorete)
E = Modulus of elastioity, assumed constant; um"’s ot “SA-.mf

} Thiek:ness of- the plate, assumed constant~ um‘l‘ of cm.

B
it

Summation of: 'moments at each mesh point;

B
0

Mx; My = Moments in p o and y- axes at each mesh point respeotive]y,
! = Unirorm load on. the slab? ‘ o
\% = The Iaplace operator- ' '. ‘v A
v,&q‘, So "»= Defleetions due to load and eolumn reaotion respectively, |
K '=-5q/<53-"' |

W = The variable- v

L
o
Il

7 = Numberof mesh divisions of the sides or the slab-
-‘Myi,Mki‘= Torsional moment 3 o !
,‘Qx; Qy ’é'Shear in(i— and y- aies! respeotively; 7 ' - i
' * A = Distance in direction of‘span‘from center of support to the
, intersection of the center line of the slab thiokness with
the extreme 45-deg. diagonal line lying wholly within the
conorete section of 8lab and oolumn or other support

ineluding drop panel capital and braoket

D = Flexural rigidity of the plate, defined as; um'l's of kg*ctﬂx

: o ?’Il"; ‘_1 P “i
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CHAPTER 1 -
BASIC PRINCIPIES

l 1. The Basic Rule of Relexation. ~ The basic concept of relaxation
andqlts important and widely used modifications can be}explained by

' employing'themfto solve & pair of algebraic equations, for example:

3X +y=50 - '
S (1,1)
2X =y=10 ..
v - or 5 d +y ~50=0
- o : ‘ (1.2)
ST 28X =y -10 0 :

"The solutiou of the problem,can be easily verified to be x=12 and ‘
%v=l4 " In order to solve the‘above equations by xﬂ the Relaxation Methot
all the terms shall be written .on one side and with only zero on the
other side.. New quantities called residuals shall be introduced which
Will take the place of zero in the above equations Fcr values_of
X and ¥ which satisfy the equations: (1 2) these residuals -are equal to
‘ZeTo. For other values of x and ¥, these residuals will have a value
‘different from. zero, }

‘5x7+y ~50=R1] R
( (1.3)
| © 2x =y -10=Rjy

The aim of the relaxation is to. make these residusls equal to zero or
as small as possible When this is done x and. y will automatically
‘satisfy the above equations, v

" The process of solution is started by Ehe selection of an initial
» pair of values for,x and y equal to zero, Then for the above equations
{1.3), R1=-50 and Rg=-10, Now if we change i_by 1 unit, R1 is changed
by three units while Rg is.changed'by'z units, if on the other hand we
differ y by 1 unit, Rl is increased by 1 unit, and-Rgiisaaecreasedtpy
1 unit; This can be put in tabular form-Called theri”Operations Table"

| | ' THE OPERATIONS TABIE ONE \

A=R] "~ | A=Rj

' _Ax='l 3 ]

Ay=1 | 1 -1
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The process of relaxation consists of the application of the unit opers
tions repeatedly, gradually, to change residuals from their initial value
to Zero. . The first step in the relaxation will be to change the largest
residual in this case Rl=~50 approximately to zero,i.e,,by a change of
+ 50, Prom the‘operations table x=50/5 or’ about 15. This operation change
the value of -R2 to +20, This can be repeated until we obtain zero or
close to Zero values for our residuals. The total process written in tabu
lar form is as follows- S s | -

 OPERATIONS TABIE ~TWO

0 o | =50 ~10
Ax=15 ] =85 +20
Ay=10 +5 +10
dy= 4 + 3 + 2.
Px=-2l .l | 0 0
x=13] = 0 0

| The final dine in this table both summarizes and checks the calculatio:
,In the first column, the solution to the problem 1s recorded by summing
'for each unknown the value initially assigned and all increments added ti
it subsequently, e x= o(initlally) +15-2~1=12. The last line is aimﬁly
check 1t 1s derived by substitutlng the ialues of x and v in the equatu
ions (1. 2). | /

,1.2, Block Relaxabion; Bloock relaxation,consists in the uss of oper=
ations other_than hhe basic unltfoperations. They enbail the‘sinnltaneoua
application/of 1ncremenrs to nore than one of the unknowns at the same t!
In the example of article (1. l) the block unit operation would ‘be Ax=Ay—
In this case the operations table is:

OPERATIONS TABIE . THREE‘

—

‘ 5Rl A Rg
A x=1 3 2
A = 1 -1




The total residual'is —60' The:unit'block operation affects a change
of §+l=5' ‘So, “as a first step we shall take a block 0peration

Ax-Ay-—--g-eo) 2. TP
o OPERATIONS 'I'ABIE FOUR

) | i\xr_ T ARL ARz
o T 850 | =10
Ax=12|Ax=12 -2 2
. ' Ay=12 0 0
, x=12 AY"’E T 0 )

The table shows the usefulness of block relaxation as less steps are
Vinvolved There are ether devices such as group relaxation over-relaxat
used but we are ‘not directly concerned with them though the reader is
’meferred to books on Relaxation Methods. |

The simultaneous equations solved above are examples that show the
advantage oftthe method It is ineffioient to solve two simultaneous
equations by this method but if there are too many unknowns involved, the
advantage of the method can be clearly seen The most important applicat
of the relaxation method has been to obtain particular solutions of parti
,differential equations in tqp dimensions.:»~

In ‘this thesis the method has been used 1n solving the partial differen
tiaﬂequations encountered in the theory of thin ‘plates, In any applicat]
of the relaxation method fOr the solution of a differential equatlon,
finite difference approximations have to be used., It is by solving these
finite difference equations that we shall have a solution of the wanted :
function at a number of equally spaced points, T .

The relaxation method is a numerical methcd of solution that has been ‘

develoPed in recent years mainly by R. V Southwell,
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. CHAPTER 2
| GEI\IERAL THEORY - 7
2,1 The Differential Equation of & Thin Plate., The differemtial

eqnation of a thin plate loaded laterally with a uniform load of q is

dbw +2d4w_ +34w=9q = (2,1)
_ ©¥x%y2 d3y* D o
where @~ D= E hd ‘, the fiexural rigidity of a plate., . l
» - TB(1- ' T R -

: /4= Poisson's ratio.
E= Modulus of elasticity; |
h =The thickness of the plate
The above fourth order partial differential equation can be put into
two second order Poisson type differential equations _ Thus reduoing
considerably the work involved in the solution of Eq. (2. 1)., especially

when differenoe equationscare‘used

22)422 ) (2% +3%w)= o (2.2) }
B 13“2'3;2 %2 ;%gz , %‘A;_. N -
but . Mg + M --D(l+ ) (92w +32w) i (2.3)
? . x 4 /4 X2 ayz L . ,
putting M = g + Mf-n(aav +22uw) . (2.4)
, I+M° - oxR 3y? »

Equation (2. 1) can be written as
(024 22 ) () = oq-
___z)() q

4 axz oY } 1 :
or (%M +98Y) = -q o - (2.5a)
... JxR Jy? B , ~ o
and - © (%0 +d2w) = =M . : ~ (2.5b)
o 3XZ Oy3 _,~5f ‘
In the oase of a simply supported rectangular slab the boundary
’oonditions for equations (2 5a) and (2 5b) are w~0 and 2w , J%w are
X2~ 3y®

equal to zero which makes Mro

2.8, Finite Differenoe»Approximations. ‘In any application of the

relaxation method to solve a differential equation certain finite

difference approximations of derivatives have to be used, and we shall

?S‘?abl_iSh two of these approximations which will be needed in this chapt



Suffixes as in (F184v2.1)'are uSed . i $f4e ‘;

to show a typical point of subdivision Zd — *
when working out a general result :;_ Fig. 2.1,
Corre5pond1ng ‘suffixes are used to indioatecvalues of the runction w,
the transverse deflection 1n an expansion of the Taylor seriee:

w=we +((%f)e(x—xe) + % (diw;e(x-xe)z + % gg;wsge(x-xe)"’ e ‘

In this relation, if x is put equal in turn, to (xe+h) and (xe-h)
we find that, ’ ' '

Adding these two results together we get
f+wd=2we+h2(d2w} +o(h4)

where all the’ terms oontaining fourth oL higher powers of h are included
together as-o(h4) Negleoting this qnantity as h is made smaller and -

smaller we have the finite-difference approximation to 2dawg

h2 dzw) -2w o a.a)-
| ﬁﬁz e'wfwd ° «

In two dimensiens ag in one the relaxation solution to a dirferential
equation ‘consists of a finite number of values of the{wanped quantity
w at a number of points within the reglon of integration.A‘Whereas in
one dimension a range of integrataon was divide& up. by points of sub-
.division into a- number of equal intervals, in two dimensions an area
of integration is ‘subdivided by a ﬁniform network, and the values of
w ere calculeted at the nodes of the network - Such neﬁwerks are known
as relaxatmon nets ‘the oommonxy “used one’ is thqkquare net, rarely
the triangular net is used. |

- An ordinary differential equation- also eny partial aifferential
equation has to be replaced by a set of finite differeneefequatiens.

For Polsson's equations this can be easily done since it involves only*

-~



3@ of the approxima'bion for a second deriva'bive. . 4b

Fig. 2. 2), illustra'bes the eonven*bion used in two Shnummdfmm 1

imensions to denote a typioal node "e "and the 4 le  ~.f

u.rrounding nodes

h2(02w) =w wa =2, - :‘(Z.Va) - BN &
(axz)e f+ a © . . . ‘
: _ Eig, 2.2,

as’ 'bhe rinite-dirference approximation for the
xecond derivative of w at the point "e, on the x axis In" the same

ry 1t may be shown tha‘b for the second derivative with respeet to y,

he approximation is o | : -
hzgiz%))ﬂ—-wbwrj—zwe o (2.7b) |
&dding (2.7a) and (2, '7b) together we obtain the fini'be-dirference
spproximation for{/2w at a typical node (node e),
ha(qzv})ei=wf+w5+wd+w3-4we | |
oT Wf+wb+wd+vvj-4we-h3(v2w)e=0 - (2.8)
Ihere is again an error of 0&114) in this equation, and 'bhe effect of |
this error ‘again diminishes with the mesh size h, | Equation (2.8) must
be satisried by the wan‘bed value of W at every group of" five nodes,
For any ethervallue of w 'bhe above equat;ion won"b be satisfled z.md t.hus
a residual (R) will resuat Put'bing Eq. (2.8) in the‘}i‘orm ‘below,
 w J+Wf+Wb+Wd—4We—h3(V3W)e=Re (2 9) | |
Ne should try to reduce each Re to a value which will be zero or very
close to it by the application of increments W, |
Exa.mining Eq, (2 9), if w;j is altered by +1 |
Re 1s altered by +1, and similarly for unit  EI—7=E £

alterations to Wf, Wb, wd. if, wowever Ve is

8. 1tered by +1, then Re is altered by =4, The |

al‘berations of the residuals thus :Collows a Fig. 2.3. .
definite rattern, and the residuals can be systema‘bieally reduced The
amount of work in oaloulating and ohanging the re&iduals can be reduced

to some exbent by the use of the so called " Relaxa’bion Operator." The
relaxation operator is i a daagramatical form of the finite—difference
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-quation. The relaxation operator of the present problem is that shown
Ln(Fig. 2. 3) Remembering the relaxation operator the residuals at each
ooint can be computed easily. At the same time the changing of the
residuals is made easier because the operator indioates that a ohange of
the value w at the oenter,point by;+l_ohangeswthe,residual at the center
point by ~4 and the residuals et each of the four surrounding points by +

if Wé were to put Eq. (2.1) into finite-difference form, the required
form.would be, ‘ | ‘, o ‘;

' ZOWe—B(Wb'*Wd'l-Wf-i'WJ )+2(W° Wr+Wp)+(Ws+Wr+Wt+Wu)-h4’q/D (2. 10')
Below 1s the (Fig. 2 4) that shows the lettered nodes and (Fig. 2.5) is
the relaxation operator of Eq.r(z 10). It is obvious that Eq. (2 10) is
q mnch ‘more complicated form to. deal with thaxxthe equivalent rinite
difference forms of Egs, (2. 5&) -and (2. 5b).

o

" /  .
m R tt T
8 a ‘¢'  £ %
o jt D :
|u
Flg, 2.4, T Fie. 2.5.

To get the same result as Eq. (2. 10) we have to relax Eq. (2 5a) by putin
the q—values at the nodal points and as a result the sum of moments are
obtained at the same points, Then Eq, (2 5b) is relaxed by putting the
sum of moments as 1oads at the nodal points until the. residuals are
minimized Henceforth the relaxation of Eq. (2. 5a) shall be called the
M-relg;ation and the relaxation of Eq. (2.5b) the warelaxation which will
give the value of ‘the deflection ratherv%dat each nodal point,
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| - CHAPTER 3 ’ ‘
'TnanmAxxsis OF A SQUARE SIAB WITH A COLUMN AT ITS CENTER

The maln purpose of this thesis is to iind the moments in7a three span
slab without,drop panels;'simnly,supported at the bounderies and.support
5on four colunns at the interior equidistant fron.each other, and compare
-the moments with those of the ACI- code. - _

As an introduction e problem of this sort shall‘be solved, A slab wil
be taken with a column- supporting ‘the slab in the middle,. To find the
colunn reaction and its effects, the slab without & columniis analyzed
and the deflections in the middle are found due to the 1oads. This -
‘deflection shall be called 8g. Then a unit 1oad”will be placed‘at the
fmiddle where the column 1s and the deflections 8¢ will ve found. The

4

Ks:_ég_.l - 3’1(3;1)

\

colum reaction will be,

| The deflection at any node is equal to the deflection of the 1oad+(algeb
‘raically) the &eflection due to the reaction at “that point A square
slab of 4m, by 4m. will be taken loaded with a uniformly distributed 1o
of say 1000 kg, /m2 The slab shall be sllced into four equidistant stri
with mesh points luu from‘each other. The load per mesh point will be
1ooo xg./m2, (1m. ) (lm )-lood”and ;t shall be placed at each mesh point
lfor relaxation. .
In this example the Point Relaxation method is applied that is to s8]

a unit change in the variable w, will change the residual at each point
under consideration by a -4 and the surrounding points by +l according
to the relaxation operator (rig, 2 3). The»resu&t of this relaxation
gives the sum of moments at each nodal point according to equation (2.5
By taking these as loads at each nodal point and using point relaxation
| the deflections of each point are cbtained The moments ana shears at
eaeh point can be found whan the deflections values at.the same points

are known.
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3, l. Relaxation Method., ' Now. let us start the reiaxation‘process at

the center point and reduce the residual there to zero, ‘Thus we have
to add +1000/4 or +250 at that point With this alteration of the vari-

able w, residuals at each of the surrounding four points are increased

by en amount of +250. Record the 5. 4 3 4 5

final values of the residuals at the .|
- .= ' 4 f2 |1 2 4

righticorner of each nodal point and

(the change in w, the variable at the \ 3 |1 o |1 3

left upper oorner.vahis is shown as

step 2 in (Fig. 3.2). The nodal

points ender consideration shall be 5 Ja fz | 5

numbered as shown in (Fig. 3.1). . Fig. 3.1,
'The method of numbering adopted is used througout on-books of
relaxation methods.

The residual at point 1 which has become 1250 will be reduced
TO‘reduoe it to a value near zero, we shall add a value of +1250/4 or

"aboutiéoo at this point, Thus the residual at 1 becomes +50, andtthe
e . i ‘ ‘ Q% |

residuals’at its surrounding rolnts are shoWn aSAStep 3 in (Figi 5{2). ‘
Point 3 is a boundery‘point, endﬂphe velue of the function at this point
1s determ;néd by the;boundary conditions, .As the boundary condition is
satisfied the residual there is zero. It is‘observed thet by reducing
the residual at 1, the residual at point 0 is agaln 1ncreased To reduc
this additional residual we must increase Wo again, This always happene
iwhan a point is surrounded by other points with residuals of the same

sign, 'To make the convergence more rapld, instead of reducing Ro in st
2 to zero we may increase Wo in step 2 so that Ro becomes a negative

value, -This process is called over-relaxation. The amount of over-rem

ation depends on the magnitudes of residuals et the surrounding points.
By not over: sooting enough or by overshooting too much no harm is done
emceﬁt that some time is lost' NQW'both points 2 at the right slde of

_the vertical center line have residuals of 1300. To reduce them, let u

| over—relax the residuals by adding 600 at both points, The changes in
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~the residuals end the values of w are shown as step 4, Next we add 800
to point above and below 0, respectivelly. The results are shown as
step 5, Now, 800 shall be added at point 0 and 1; 600 at points 2 of

~ the left side_o: the vertical center linevand,SQo at,point 1. The final
residuals‘are shown as step 6. The residuals have now been reduced to a

maximumﬂValue\of&éOQ._ If we add 80 ‘at all the inner points, the residuals
shall be considorably reduced The final residuals are shown as step 7.

Some further?changes as in step 8 reduces the residuals to a minimum, )

*3.2, ‘Block,Rclaxs%ion and Iines of Symmetry. Th#%rocedure of

%, r. Wang, Applied Elasticitz. (New'York° Me. Graw Hill Book Co. Ine.,
1955) p. 119,

'relaxation ma& be altered by the computer ror’a‘rapid approach to the
£inal answer of no'residuals. We shall now discuss a few short outs in
the relaxation technique which will serve to accelerate the elimination
of the residuals, o o | \

One of these relaxation techniques is the so-called line and block -
relaxation. In step 7 of the example considered in Sec, 5 1, we found
'that the residuals could be reduced by adding 80 to the values of w, at
all the net points. Altering simnltaneously all the values of the func—
tion by the same amount at a group of points in a block of the domain is
called block relaxation. Similarly, simultaneously altering the values

of the funetion by the. saﬁe amount at a group of points along‘a linedin
the domain is called line relaxation, ‘

Consider the effect of the simnltaneous chaging of the function of two
adaacent points by the same amount. Obviously this may be carriea’out by
writing,down,seperately rhe effects of'each displacoment and adding tnem
together;' In the ocase of the Isplace operator, by the use of unit opere?
torS‘-WO can obtain the‘two-‘\threé-, and four-point line-relaxationf

operators, as shown in(Fig. 3. 3) and the various block—relaxation operati

i ee item.No- 5 in bibliography.
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aslshown inh(Figs. 5.4‘and 3.5), ‘InSpecting)the onerators as shown in
;(Eigs.tz.ﬁ; 3;4, and 3.5) oarsfully,}wo‘find tnat‘;p is\possible to
obtain é\rule'by which all such operators can be immediately written
down by inspection. ‘The rulo'for nriting the line- and block-relaxation
operators for Iaplace or Poisson s equations is as follows " By simul-
‘taneously altering the values of the function at a group of points in
a region along a line or within a block by an amount of +1, the residuals
‘at all‘points whiuhi like a (Figs. 3 3. ‘and 3 4) are directl& connected
with three - points outside the line- or block—relaxation region are
altered by an amount of =3,  The rosiduals at all points which, llke:g,
‘are connected with two outsiie points, are altered byvan amount of -2.
The reSidualfat a point snohrss<g‘1s altered by‘sn‘amount of =1 whon the
‘point is oonneoted with one»outside point, There are no ohanges in‘nhe .
residuals at points_such as‘nghich are not dineotly conneoted’with‘any
outside points. Ths residuals at all points e, nhich are outsido‘tne
lino-vor'blookbrelaiation.region,but»dirsotly_connected to one point
within the region, arefaltefed by +1., _The-rsSidual at anpoutside'point
such aé;; which 1is éireotl& conneotod tOftwpvoutsidé points 1is alterea
by +23. The advantage of/tho line and plock relaxation can easily be
SQenlrrom (Fig. 3.5).,.Fon~whils thosrosidnalsAat the‘points,on the
boundary\of‘the block are altered, the residuals at points inside the
bloék ane not changed, Judicious use of.blook relaxation can prevent
much of nhe '* washing back"™ of reSiduals, tnus'Saving much tims in
,obtaining'a»so;ntion. ) |

‘:Another useful relaxation tochniqueris the observation‘of The lines
of symmetry, In msny problens the'solution can eésixy seen'to be sym-~
metrical W1th respect to one or more 11nes because of the symmetry of
the domain and boundary conditions. In solving-suoh problems, 1t is
unnecessary to find the unknown funotion.oner the entire area, In the
exgnple‘of‘Sec.~3,1; there is an eightfold symnetny. Thus it is sufficen
toFind a solution in one-eight of the domain, as shown in (Fig. 3.6). .
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Ehere.is no maikgdly new technique in#olved’in‘solving suéh problems.

tt is mprely necessary to rempmbér ‘that to pf%erﬁe symmetry each time

a point adjasent to a 11ne of symmgtry is altered the point which is
symmetrical to this point_is altered at the»samp tima That is, such

an oPerafion 1s'aggom§anieﬂby ﬁn autqm&?icélxy equal change on the other
side of the line of éymmctryl As a result, & point on the line of
symmgtry will receive & change 1n its residual from both of the points
being altered, | \ '

In the problem of Seo. 3, l in (Fig. 3 2) thc computation was deiibera-
tely 1engthened by 1gnor1ng the symmatrical property of the solution o
Dusing the relaxation process? the oomputations shpu;aybe,checked from
time to time by evaluating the residuals at all the nodal points, If
there are migtakes‘it;is‘advisabie to correct the residuals at the nodal
'poinxs by using Eq.:(2.9), As,far as the thegisAis'coqcerned,the |
M- relaxation is accomplished, «Thejw~re1a1atioﬁﬁoan be done by using
‘1ine»re1axafidn.' The numbering of the nodal points willibe as in
(Fig. 3.1), the center point‘1s 0, the si@e points as 1, and~the corner
Pbintsvaslz. The correspohdiﬁgvchange of‘a'variabie'ofy+1 put at any one
of the thrge'hodalfpoigts‘will be illustrated with the following three
diagrams of relaxation operators}f'Thp numbéring of the points wili‘be :

written on the lower left corners of each point througout this paper.

+1 ' 2
2 : 2
g 0 - | b1\
) | 1 0 -
- Flg. 3.6,

The steps are not written one by one ‘but the relaxation 1is carried out
on page 18, The 1035 middle deflection can be compared with the result
of a gimilar slab solved by elasticity such that

(D) wmay, =o.oo4oeqa4-o 00406(1000)(44) =1040 |

The exact and approximate results are in good proximity.
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Thereforé +he colump reaction is 4F70k. The  final L deffe ctien

with —a  colomn reaction  acting are  ds. follows.

wy = THI~ A FIxFT » s4h9- 371 = (FE cm. |

W, = FSB3— M FIxA26 = FSB~54 = (859 . U

I}

w, = 1035~ % FIx220 =1035~7035



=-a0=

The results of the examples solved in Secs, 3.1 andAS.ann be increased
in eocaraoy if the slab is dividedvinto eight, meshes, . The same process
3f relaxations shall be done again. The load per mesh point will be
1000kg. /m2 (0. 5m.)(o 5m, )=250kg. and 11: shall be placed at each mesh or
nodal ‘point for relaxation. The relaxation operators»for the 8 mesh |
odel are shown on page 21 1n (Fig. 5.10). The relaxation of the uniform
load is performed in two steps. First block relaxation shall be used |
and the approximate residuals will be carried further by point relaxation.
The block relaxation portion of the Job is shown in (PFig. 3.11) and the
further point relaxation in (Fig. 5 12). Note that block relaxation is-
carried from the outskirts of the slab to the center in (Fig. 3. 11)
The 438 kg, of step 1 1s found as-

1000 kg‘/m?.(o,gsm,zgo,sm,,l gNo, of mesh points)= 50155,;49 =438kg.
NO. o1 ST

ngs

or - | g.road per node point (n=1) (3.2)
. i 4 ‘ :

N

where n=no, of division of meshes of & square slab For any kind of
reotangular slab the general formula -is: w | -
load pe¥ node point (a-1)(b-1) . (3.3)
SR 5=2] L'""i_" | | o
where a=no. of mesh divisions o: one side of the slab;

- b=no. of mesh divislons of the other side of the slab;
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e

K= 4156 =5,15
- 807

'The column :naaaticn is =5 15(1000)=5150.kg

,The deflections of the ‘columm load are opposite in sign to the deflections'

of the uniformly distributed load, The final deflecti-cns, ,

with a 'cbllumn' reaction acting are assfollows:

wg= 680-5.15( 88)= 680- 453=2237

wg=1217-5,15(166)=1217- 855=362
w7=1554-5.15(224)=1554-1153=4oi'

| Wg=1668-5,15 (247 ).=ﬁ‘z;'6’68- 1272=396

| W5=2189-5,15(517)=2189-1635=556

vi4=2803-5 , 15(453 ) =2803-2230=573. .

| | W3=3012-5,15(481)=3012-2477=535
K wz=3595-;5.15(603)=359573105=490
w1=3865-5ﬁ15 ( 684 ')=3_865-3523=342 f
wp=4156-5 15(80'7)=4156—4156= 0

cm.

om.

"o ‘
- 1})

\k\

'n .
.0

1]

O

B, (w)D)'s

'I‘he momen'bs Mx and My at each nodal poin'b are found by the rollowing

- formulas :

Mx n(afw*?azw)
My= D(ﬂbzw +33w) _
- The torsional momen'bs are:

Myx=Mxy=D( 1- IA) af;wy

' where f4= 0.2
The shear Qx and Qy are:

(3.4)

ﬁ(s.s)
(3.6)
D(1-p)d%w .
al =
(3.7)
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The finite difference form of the equa'bions (5 4) and !55 5) where ''e '
in (Fig. 2.2) Will be a typioal node with the surrounding nodes b,d,f 3,

g _(_J_:vzvg_ﬂm)n«( 8=Wb t), ~ (3.9)
M%ﬁyﬁhpﬂgﬂ“ Qmm 

as all the w's are actually w(D), 'bhe modified Mx and My moments after
nmltip]ying by hauas noted on p. 23 will be;
i Mx= (2We-wa-we)+m2we-wp-wj)
| ‘wﬂm%whmwwﬁ‘  1‘ -
Now the moments of the 8 mesh model will be found, “ :
ng=2(227)—362 . +0, z[?a(zzv)—sez -:= 120 tfg-m/m-
| Mi3f2(562)9556} v+0.2l§(562)-2§7740l_= 187  n |
| Mx7=2(401)-578  +0.2[2(401)-596-363]= 258
Mxe=2(396)-535  +0.2[2(396)-2(401) ]= 255
Mx5=2(556)-573-362+0.2 [2(556)-573-362] = 212
Mx4=2(573)-401-480+0.,2 2(573)-535-656] =266 -
Mx3=2(535 )-542-596+0,2 [2(535)-2(573) |= 317 .
‘Mx2=2(490)=573-342+0,2 :.‘.3(490')-‘-573’-5423= "8 .
| Mx1=2(343)-535-0 +0.2[2(542)-2(4%0) J= 90 '
Mxo=a(o)-2(34=2)f“ 0.2 2(0)-2(342) ]=-821

Myg= ===—=cccmne | 110 \r.g-m/m .

Mys= 06+0.2(168)= 130"  »

Myn= 44+0,2(229)= 90«

Mye= -10+092(2'5'7)= 41 . o :
- My5= mmmmmeemeee = 212 " ‘

Myg= 55+0,2(255)= 106« L

My 3= -;76+0.2(552)=_- 12w

‘ My1=-296+0 2(149)==266 u

» Myo"‘ .o - “—821 N
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| CHAP.EER 4 |
THE ANAIXSIS OF A SIMPILY SUPPOR'I‘ED SIAB WI'I‘H FOUR
 SYMMETRICALIY PIACED COLUMNS
| In the first part of the thesis a slab was solved simply supported
at the boundaries and on a column at the middle For this slab the
deflections and moments were found only for the eight mesh model and
the deflections for the four mesh one. | The aim of the thesis_is to
collect interest on a sleb simply supponted'at the boundaries and B
supported internally on four 6o lumms eqﬁidf%ant:from each other and’
the boundaries The slab to be investigatedvhas dimensions of 4m, by'
4m.. The relaxatlon procedure will be similar to the previous ones,
The uniform loading will be 1000 kg,/m?,(4/6m.)(4/6m,) =445kg. for_'the
M-relaxation of the_uniform load, The relaxation operators for the |
'6 mesh model,are'showo in (Pig. 3.16) with ﬁhe lines of symmetrj
indicated. vTthoperations tableslfolﬂmn. | o
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It is sufficient to find the load on one column as all four of them

are similarly loaded.

KF1797 1. 985
906 :

The co1nmn reaction is = 1.985(1000)=1985 kg,‘

The fina1-¢eflections at thé mesh points afe: ‘
ws= 6421,9885( 2681)= 642- 558= 84  om.
w4=1071-1,985( 500)=1071- 993= 78  w-
w5=1219-'1;985( ‘565)=12,‘19—4-‘11]BV= 101 -
wo=1797-1,985( -906)=1"797-;17‘9'7-% 0
w1=2049-1.985(10»00‘)=2o49'-'-1985-‘—-' 64 w-
Wo=2538-1, 985 ( 1125 )=2338-2232= 106 v -

‘In fhe previous éxample, it was notrﬁscessary'tb find the moments
since another square slab having dimenslons Gﬁ. by ém. shall be analyzed
with the seame given conditions but this ‘time the sleb shall be divided
into 12 meshés so as to minimize the error of the deflections_aﬁd ‘the
moﬁenté to be found, To find the moménts;‘strips shall be considered
_ such as the column strip, the middle strip as is done in the analysiSt
of flat élabs in reinforéeq concreté. This so called strip anglysis‘
cquldn't be done’wifh thé 6 mesh model as~there.were insufficient
nodal points and therefore insufficient deflections The previous
example was ‘done so that it would be a useful guide to the 12 meshed
example, In this example the load per nodal point will be
1000 kg./m® .(o.5m._)(o 5m, ) =250 kg., Block relazation shall be followed
bj poiny relaxation. Under each Fig, is written what that Fig, is
about so as to facilitate the reading of the thesis,
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. K=16144=4,609
3503

The column reaction is =1000(4.609)=4609 kg.; As the other columms

bear the same load, the true deflections at the mesh points are:
Wg= 1600-4,609( 294)= 1600~ 1355245 om.
wh= 3024-4,609( 572)= 3024~ 2636=388 -
We= 5734-4,609(1115)= 5734~ 5139=595 “.
wi= 4186-4,609( 815)= 4186~ 3756=430 -
We= 7956~4,609(1592)= 7956~ 7338=618 . .
w=11061-4,609(2284)=11061-10527=534  \ -
wg= 5040~4,609(1000)= 5040~ 4609=431 u .
Wh= 9594-4,609(1957)= 9594- 9020=574 u .
w1=13356-4,609(2818 )=13356-12988=368 1 .
W j=16144-4,609(3503)=16144~-16144= 0
Wk= 5560-4,609(1109)= 5560~ 5111=449 1 -
w1=10593-4 ,609(2165)=10593~ 9979=614 .
Wy=14759-4,609(3099)=14759-14283=476 v -
wp=17851-4,609(3818 )=17851-17597=254 o -
wWo=19746~4 ,609(4209)=19746-19399=347 n -
wp= 5735-4,609(1145)= 5735~ 5277=458 " -
wq=10929-4,609(2231)=10929-10283=646 n -
wp=15231~4 ,609(3185)=15231-14680=554 ! -
wg=18425-4,609(3914)=18425-18040=385 1 -
W4 =20384~4 ,609(4331)=203684~19962=422 1 -
Wyu=21043-4,609(4463)=21043-21570=473 " -
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The lixy moments at the mesh points are:
Mza=2(245)-390  +0,2[2(245)-3%0 |= 120 kg-"/m-
Mxp=2(388)-595  +0.2[2(388)-245-430]= 201
Mxo=2(595)-368-618+0,2[2(595 )-388-618] = 221 "
Mxd=2(430)-618  +0,2[2(430)-388-431] = 250 Y
lixe=2(618)~430-524+0,2[2(618)-595-574] = 286 "
Myr=2(534)-618-368+0,2[2(534 )-618-568] = 98 "
Mxg=2(431)-574  +0.2[2(431)~430-449]= 285 =
Mxh=2(574 )~431-368+0,2[2(574 )-618-614] = 332 "

Myi=2(368)-574  +0,2[2(368)-534-476]= 99 0

Myj= O -368-254+0.2[2( 0 )-368-254]=-746 o
Mxk=2(449)-611  +0,2[2(449)-431-456]= 286  «
Mx1=2(614)=449-476+0,2[2(614 )~574~046] = 305 =«
Myy=2(476)-614~254+0,2[2(476 }568-551 }= 91
Mxn=2(254 )-476-347+0,2[2(254)~ 0 -385]=-200
Mxo=2(347)-254~422+0,2[2(347 )-254-422]= 20
Mxp=3(458)-646  +0,2[8(458)-2(449) |= 274 .,
qu=2(646)—458-551+0.2[2(646)—2(614) ]- 296 "
Mxr=2(551)-646-385+0,2[2(551)-2(476) |= 101 .
Nyg=2(385)-551-422+0,2 [#385 )~2(254) j--lsl "
Nxt=2(422)-385-473+0.2[2(422)-2(347) ]= 16
Mxu=2(473)-2(422) +0.2[2(473)~3(422) ]= 122 "
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The My moments at the mesh points are:

Myb=
My =
Myq=
Mye=
My f=
Myg=
Myh=
Myi=

Myt=

. y - - it

1 S e e o v a5 = S

R I R R

= 137
= 221
= 89

= 121

98
41
14

==282

=746

66
69
50
60
20
72
121
164
221
147
122

ks-wxa'
(1)
)
(1)

"

L]

"

"
u
"

u
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CHAPTER 5
DISCUSSION OF RESUITS AND CONCIUSION
5.1, Static Ioad Check,

A oy
|

Eo—

c L

Fig. 4,15, One-half of an interiof panel.

Let (Fig. 4.15) represent one~half of an interior panel, If this
was a real intermediate panel that is to say an infinite number of
panels extended in both directions, then the shear along the lines
AB, BD, and CD will be zero, Therefore the sum of moments along BD and
Ab must be aql® whei'e a=1/8, no matter what the distribution of moments
along this line would be, The sum of moments along AEC will be the

area ofi the moment diagram,

e 4 at 0.5m. >
E_

=746

Fig. 4,16, Moment dilagram along AEC,
(746+290)(0.5)(2)=1036(0.5)(2)=518 kg-m.
% T

290 151 0.5)(2)= 441(0.5)(2)=220 .
( ; )(0,5)(2) 41 220

(1}



The sum of momnfs along BD is,
pik 221

+ + e - +
B L] LX) —— D
_L 4 at b.5m. ’l_

Fig. 4.17. Voment diegram along BD,
(221;14'7)(0.5)(2)-@(0.5)(2)-m4 leg-w -
2

(147+122)(0.5)(2)=269(0,5)(2)=135 .
LT R i 5 19 .

The sum of moments along AEC and BD are =738+319=1087 kgw-
The load on the 2m, slab 1s,e=1000 kg./m2. (2m,)=2000 kg./m,
M-%_ql& % (2000)(22)=1000 kgsm,

-

The sum of moments of 1057 found by relaxation and the moment of the
static load are in good promi;by for statiocal comparison,

Next we shall find out what percentage of this total moment goes to
negative and positive moments, It is observed that of this 1057 total

moment ,
738=0,70=70 Y0 goes to negative moment,
1057
and 319=0,30=30 °,6 goes to positive moment,

The slab under investigation shall be divided into strips. The strips
of interest in the thesis shall be the column strip and the middle strip,
These strips are shown in (Fig, 4.18). Of the total negative moments,

~746-290-200=~1326=~441 y.». 18 the moment for the column strip.
3 3

=290~151=290== 243==243 .. is the moment:for the middle strip.
3 5 —Eaz at :

441=0.645-64.5°/° is thé percentage of the negative moment
o at the column strip.
_2_4_:?_5.-0.355-55;5 % 1is the percentage of the negative moment
g o at the middle strip.,



of the total positive moments; |

+l4='7+2§1+14=’7=5%5=+1’72 is the moment v'for the» colum strip.

+147+122+147=416=+139 13 the moment for the middle strip.
3 S +31llkgwm: ' ' - -

172=0,55=55 °/°,18 the percentage of the positive moment at the column‘stril

519—0.‘475—45 /o is the percentage of ‘the positive moment at the middle stri

~ Fig. 4,18, The middle and columm Strips of a paneljwith a
. colum a.t»‘E; | B
The results obtained shall be put in t‘abulér form,
\ | o ' TABIE FIVE |
: PERCENTAGE OF MOMENTS BETWEEN-COIDMN STRIPS AND MIDDIE
- STRIPS IN PERCENT OF TOTAL MOMENTS AT CRITICAL SECTIONS OF A PANEL. O.

. L L Toment_Seotion
.. Strip - Negative Moment Pogitive
R A . -1 at Interior Support. Moment

B o o S — 4.5 | 55
. ddle Strip | 35,5 45
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mhe slab analyzed above shall be compared by thé elastlc analy51s
method of ‘the ACI Code. In des1gn by elastlc analy51s several
assumptlons are made.% ‘ |

e

‘a) Assumpglons" B

'l.'ihe structure may. be con31dered d1v1ded 1nto a number of bents,
each consrstlng of a row ofrcolumns or supports and strlps of sup-
ported slabs, each strlp bounded laterally by the center line of
the panel on either 51de'of the center line of columns or supports.
The bents shall be yaken longltudlnally and transversely of the
bulldlng. | ~

C 2. Each such bent may,be\analyzed inpits entirety;lor each‘floor
thereof and the,roof may - be analyzed seperately‘with its adjacent
columns as they occur above and below, the columns beelng assumed
flxed\at their remote ends. Where slabs are thus ‘analyzed separately,
1t may be assumed in determlnlng the bendlng-at a given support that
the slab 1s flxed at any support two panels dlstant therefrom prov1- |
ded the slab contlnues beyond that p01nt. | ’

3.‘The 301nts between columns and slabs may be con31dered rlgld,
. and thls rlgldlty (1nf1n1te moment of 1nert1a)‘may be assumed to
extend in the slabs from the center of the columns to the edge of
the capltal, and 1n the column from the top of the slab to the bottom
of thekcapltal. The change in length of columns and slabs due to
direct stress, and deflectlons due»to shear, may be neglected.

Y Where metal column_capitals are used, accountkmay be taken

of their contributions to stiffness and resistanCe to bending and she

5. The moment of inertia of the slab or column at any\cross
section may .be assumed to’be_that“Of the/cross section»of the concrete

xSee item No: 6 1ncb1bliography.




1-DU-

Varlation in the moments of inettia of the slabs and columns along
their axes shall be taken into account | | N
6,‘Where the load to be supported is definitely known, tne struc— )

turelshall be analyzed for that‘load;‘Wherecthe‘live load is Vari-
oable nut does not exceed three-quarters of the dead load; or-the |
nature of’the-live load is such’tnat allppanels will bebloaded si-
multaneouSlj, the maximum‘oending may be assumed to occur at all
sections'under'full liVe load. For»othericonditions, maiimum posi-
: tiVe'bending'near midspan of a panel may be‘aSSumed to. oCcur'under
three quarters of the full live load in the panel and in alternate
panels, and max1mum negatlve bendlng in the slab at a. support may
be assumed to occur under three-quarters of the full llve load 1n
the adaacent panels only. In novcase,'shall the deslgn.moments be
taken as less thah those occurlnéwith full live load on all panels.

b) Grltlcal Sectlons.

~The critical sectlon for negatlve bendlng, in both the column
strlp and middle strlp, may be assumed as not more than the dlstance
A from the center of the column or support and the crltlcal negatlve
moment shall be taken to. cons1deratlon as extendlng over this dlstance.

!

e¢) Distribution of Panel moments:

Bending at critical sectlons across the slabs of each bent nay be
apportlned between the column strlp and middle strlp, as glven in
fable SlX. For des1gn purposes , any of these percentages may be
varled by not more than 10 % of its value, but their sum for the full

'panel width shall not be.reduced.



\ PERCEVTAGE Ob MOMENTS BETWEEN COLUMN STRIES AND MIDDLE
SIRIPS 1IN PLRCENT OF TOTAL MOMENTS AT CBITICIL SECTIONS UF A PANEL

TABLE SIX

_ ! -1 Column Strip

_ Voment Sectlon '
Strip Negative lMoment Positive
at Interior Support | ~Moment - -
76 00
24. 40.. .. g

' [Middle ~Strip

5 2. Cbnclusioﬁ. It is seeﬁ that'the values in Tables Five and

Table SlX are qulte close so that the elastlc analysis proposed by

the Abl Code agrees well w1th the theoretlcal analysise.

" as 1t is seen, the relaxation method is easily appllcable spe01a11y
1n cases where the elastic ana1y31s proposed by the ACI Code may

glve}questlonable results such as a column in the middle of a slab

or slabs with unusual ioadings.

However,
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APPENDIX
USEFUL FIVITE-DIFFERENCE APPROXIMATIONS

"id"_;'
6 2| 5
. |
uT 3 o I 9
\ T 4_ , 8
12

Fig. 4 19. A square net with nodes 1ndlcated.
| In terms of the W values at the nodes of a square net as 1ndlcated :
| in (Fig. 4. 19), the follow1ng finite-difference approxmmatlons to
’low-order‘ derlvat:.ves are frequently neede&and have been collected '

‘together here for ease of reference:

First Derivatives

Second Derivatives

g ,
| 22y) _ .
9y%),  BS S
{-ngz)o_w + -i-wh ~4vig
éBQW__';’__w ~W ~W8
9%3¥) o 4h:

' Third Derivatives

(3 gramia |
3W

) o W1Q=2W2 WA -W12 ,
A



_Fourth Derivatives

b4wg f _Bwg=4 wgk.-%w§+w9+‘wl] ,
A . n¥

+(w tnotpanna).

| g M ) =4w0-2(wl+w2+w3~1¥4)+ (werwErTWa) 5

3x< 3y<)o
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