
DEVELOPMENT OF A LIGHTWEIGHT AND EASY-TO-USE SMARTPHONE

APPLICATION FOR TRAFFIC DATA COLLECTION: EZDATCOL

by

Berke Kaan Ülgen

B.S., Civil Engineering, Boğaziçi University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Civil Engineering

Boğaziçi University

2021

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Assoc. Prof. Ilgın

Gokaşar for her continuous support and guidance throughout my undergraduate and

graduate study. She provided me many opportunities to use my skills and work in a

field that I enjoy. Her valuable ideas, vision and sincerity made all the classes I took

and all the projects I participated in invaluable experiences. It was an honor to learn

from her and work with her. I hope that we can work in many more projects together

in the future.

I would like to thank Tekirdağ Municipality for their collaboration and support

in the case study we conducted in Çorlu. Thanks to them, I was able to collect and

process big traffic data and gain a precious experience. I would like to also thank

Ari Bagamyan who kindly helped me conduct another case study by utilizing the

application I’ve developed.

I would like to thank my friends in BOUN ITS Lab for their constant support,

love, and respect. I thank Gazi Tülü for the excessive help and support he provided

while conducting the case studies. I would like to also thank Alperen Timuroğulları,

Emel Sadıkoğlu, Işık Okur, Semih Özkan, Burak Altın and Rahmi Şahin for their

friendship and help throughout my graduate study.

Finally, I would like to thank my parents and my sister who encouraged me to

pursue a graduate degree and supported me throughout this journey. They taught me

the importance of being an honest and hardworking person. They have always believed

in me, so I will always make them proud by achieving more.

iv

ABSTRACT

DEVELOPMENT OF A LIGHTWEIGHT AND

EASY-TO-USE SMARTPHONE APPLICATION FOR

TRAFFIC DATA COLLECTION: EZDATCOL

Data analyses in transportation engineering require large amounts of recent traf-

fic data of high quality, which are often unavailable. Conventional data collection

methods such as in-vehicle GPS trackers are time-consuming and costly, which post-

pone the data analyses. These methods also often require additional training for the

drivers, which delays the analysis parts even more. EZDatCol (Easy Data Collector)

is a lightweight and easy-to-use Android application that can start collecting traffic

data immediately after the APK file is distributed. As the application was designed

to be compatible with Android devices of varying computing power and to be used

all day long, the system demand of EZDatCol was set very low. EZDatCol collects

GPS data continuously along with optional traffic data such as the number of passen-

gers and stores collected data in an online database. In addition to the smartphone

application, a Python-based toolkit was developed to automatize processing collected

data. The functionality of the application and the data processing toolkit was tested

in three case studies. The results of the case studies indicate that the application can

successfully collect continuous traffic data for varying transport mode, duration, and

distances. The Python-based toolkit also showed its usefulness in quickly processing

big traffic data and exporting relevant spreadsheets, graphs, and maps to be examined

by the traffic analysts. The Android application and the data processing toolkit can

be easily implemented by future studies to be used during traffic data collection and

processing.

v

ÖZET

TRAFİK VERİSİ TOPLAMAK İÇİN HAFİF VE

KULLANIMI KOLAY BİR AKILLI TELEFON

UYGULAMASI GELİŞTİRİLMESİ: EZDATCOL

Ulaştırma mühendisliği alanındaki veri analizleri, doğru sonuçlar verebilmek için

yüksek miktarda kaliteli ve yakın zamana ait veriye ihtiyaç duyar. Araç içi GPS

takipçileri gibi geleneksel veri toplama yöntemleri maliyetlidir ve uzun bir hazırlık

süreci gerektirir, bu durum da veri analizin ötelenmesine yol açar. Aynı zamanda

sürücülere, bu cihazlarla ilgili ilave eğitim verilmesi gerekebilir, bu durum da veri

analizinin daha da ötelenmesine neden olur. EZDatCol (Kolay Veri Toplayıcı), APK

dosyasının dağıtılmasının hemen sonrasında trafik verisi toplanabilmesini sağlayan,

hafif ve kullanımı kolay bir Android uygulamasıdır. EZDatCol farklı işlemci gücüne

sahip Android cihazlarla uyumlu olmak ve tüm gün kullanılmak üzere tasarlandığından

dolayı bu uygulamanın sistem gereksinimi çok düşüktür. EZDatCol, aralıksız olarak

GPS verilerinin yanı sıra yolcu sayısı gibi isteğe bağlı opsiyonel trafik verileri toplar

ve topladığı verileri bir çevrimiçi veri tabanında saklar. Akıllı telefon uygulamasına

ek olarak, toplanan verilerin işlenme sürecini otomatize eden Python tabanlı bir araç

seti geliştirilmiştir. Mobil uygulamanın ve veri işleme araç setinin işlevselliği, üç

farklı vaka çalışmasında test edilmiştir. Vaka çalışmalarının sonuçları, ulaşım biçimi,

süresi ve mesafesi fark etmeksizin uygulamanın aralıksız trafik verisi toplayabildiğini

göstermektedir. Python tabanlı araç seti ise, hızlıca büyük trafik verilerini işlemek ve

trafik analistleri tarafından incelenmek üzere bu verilerle alakalı çizelgeleri, grafikleri ve

haritaların çıktılarını alma konusunda yararlılığını göstermiştir. Android uygulaması

ve Python tabanlı araç takımı, veri toplama ve işleme faaliyetlerinde faydalanmak üzere

gelecek çalışmalar tarafından kolayca kullanılabilir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ACRONYMS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

1.1. Goals and Objectives . 1

1.2. Organization of the Thesis . 2

2. LITERATURE REVIEW . 3

3. THEORY . 7

3.1. Developing Android Application . 9

3.2. Conducting Alpha and Closed Beta Tests 9

3.3. Developing Data Processing Scripts . 10

4. METHODOLOGY . 11

4.1. Developing Android Application . 11

4.1.1. Setting Up Manifest and Gradle Files 12

4.1.2. Developing User Interface . 14

4.1.3. Creating Custom View Elements 15

4.1.4. Developing Foreground Service 16

4.1.5. Establishing Connection with Firebase Database 17

4.1.6. Developing Main Activity . 17

4.1.7. Handling Permission Checks and Requests 19

4.1.8. Developing the Remaining Activities 20

4.1.9. Handling Exceptions . 21

4.2. Conducting Alpha and Closed Beta Tests 21

4.3. Developing Data Processing Scripts . 22

5. CASE STUDY ANALYSES . 26

vii

5.1. Case Study 1: Bus Trips in Tekirdağ 26

5.2. Case Study 2: Taxi Trips in İstanbul 36

5.3. Case Study 3: Textile Firm Fleet Trips in İstanbul 40

6. CONCLUSION . 44

REFERENCES . 45

viii

LIST OF FIGURES

Figure 3.1. Toolkit development flowchart . 8

Figure 4.1. Activity hierarchy of the application 12

Figure 4.2. The main screen in idle mode and trip mode 15

Figure 4.3. Data processing flowchart . 23

Figure 5.1. Speed vs. time graph of B-12-01.6 during the morning peak 28

Figure 5.2. Speed vs. time graph of B-12-01.6 during the noon peak 29

Figure 5.3. Speed vs. time graph of B-12-01.6 during off-peak hours 29

Figure 5.4. Speed heatmap of B-12-01.6 during the morning peak 30

Figure 5.5. Speed heatmap of B-12-01.6 during the noon peak 31

Figure 5.6. Speed heatmap of B-12-01.6 during off-peak hours 31

Figure 5.7. Speed vs. time graph of B-12-01.9 during the noon peak 33

Figure 5.8. Speed vs. time graph of B-12-01.9 during the evening peak 33

Figure 5.9. Speed vs. time graph of B-12-01.9 during off-peak hours 34

Figure 5.10. Speed heatmap of B-12-01.9 during the noon peak 35

ix

Figure 5.11. Speed heatmap of B-12-01.9 during the evening peak 35

Figure 5.12. Speed heatmap of B-12-01.9 during off-peak hours 36

Figure 5.13. Locations of the taxi stand near Boğaziçi University 37

Figure 5.14. Location of the taxi stand in Fulya, Şişli 37

Figure 5.15. Speed vs. time graph of T-11-17.1 38

Figure 5.16. Heatmap of T-11-17.1 . 39

Figure 5.17. Speed heatmap of T-11-17.1 . 39

Figure 5.18. Marker map of T-11-17.1 . 40

Figure 5.19. Speed vs. time graph of F-12-17 41

Figure 5.20. Heatmap of F-12-17 . 42

Figure 5.21. Speed heatmap of F-12-17 . 42

Figure 5.22. Marker map of F-12-17 . 43

x

LIST OF TABLES

Table 5.1. Summary of the collected bus data in Çorlu, Tekirdağ 27

Table 5.2. Summary of B-12-01.6 . 27

Table 5.3. Summary of B-12-01.9 . 32

xi

LIST OF ACRONYMS/ABBREVIATIONS

API Application Programming Interface

DIANA Divisive Analysis Clustering

DP Density-Independent Pixels

EZDATCOL Easy Data Collector

GIF Graphics Interchange Format

GIS Geographic Information System

GPS Global Positioning System

HTS Household Travel Survey

IDE Integrated Development Environment

ITS Intelligent Transportation System

JSON Javascript Object Notation

OS Operating System

PPI Pixels-Per-Inch

QR Quick Response

SDP Scalable Density-Independent Pixels

SP Scale-Independent Pixels

SSP Scalable Scale-Independent Pixels

UI User Interface

XLSX Extensible Markup Language Spreadsheet

XML Extensible Markup Language

1

1. INTRODUCTION

Traffic data analyses in transportation engineering require processing big traffic

data of high quality to yield accurate results. Such data, however, are not available

unless collected for previous studies taking place in the same region. Collecting new

data takes a great amount of time and organization, delaying the analysis for a large

period. Furthermore, the recency of the collected data is lost after a certain period,

requiring a new data collection study.

These problems can be easily solved by collecting traffic data continuously without

intervening in traffic operations. In the case of requiring traffic data for analysis, up-

to-date mass data would be available after such an implementation.

Mobile phones are capable of collecting GPS (Global Positioning System) data

and they are always within reach of the driver. A lightweight, easy-to-use mobile appli-

cation allows continuous GPS data collection along with optional data (e.g., number of

passengers) provided by drivers. Such an application requires a one-time installation,

and can be used every day after a brief tutorial. Using such an application in traffic

data collection also saves the cost of installing external devices such as GPS trackers

in vehicles.

In this thesis, a mobile application compatible with Android devices to be used

during traffic data collection was developed. This application continuously collects

GPS data and stores collected data in an online database. The practicality and the

functionality of the application are shown with three case studies.

1.1. Goals and Objectives

The availability of traffic data of high quality is very important for traffic analyses.

The goal of the thesis is to develop a method that allows collecting traffic data fast

2

and conveniently. To achieve this goal, the following objectives are aimed:

(i) To develop a lightweight and easy-to-use Android application that can continu-

ously collect traffic data

(ii) To conduct alpha and closed beta tests of the application

(iii) To develop a Python-based toolkit that automatizes processing collected traffic

data

(iv) To test the functionality of the application and the toolkit in three case studies

1.2. Organization of the Thesis

The remainder of this thesis is organized as follows: Literature review on GPS

data collection and processing is given in the next chapter. Then, the theory of the

methods used in this thesis is stated in Chapter 3. Following thesis theory, the method-

ology of every step of this thesis is explained in detail in Chapter 4. Then, case studies

conducted using the application and the data analyses of these case studies are given

in Chapter 5. Finally, conclusions and recommendations are included in Chapter 6.

3

2. LITERATURE REVIEW

The location of users, vehicles, and equipment can be tracked using today’s GPS

technology. The GPS tracking units receive signals from satellites, calculate a position,

and keep these calculations as coordinates. More than one method can be followed

in these location calculations. Collected GPS data can be used for many different

purposes. For instance, the trajectory data of GPS-equipped buses were used to analyze

the influence distance of bus stops and the traffic behavior of buses around them [1]. As

another example, GPS data collected through GPS devices carried by participants were

used to carry out a route and mode choice analysis [2]. There exist many GPS data

collection methods implemented by previous studies. Utilizing GPS trackers, custom

GPS units, GPS sensors, third party smartphone applications and newly developed

smartphone applications are some of the GPS data collection methods [3–6]

Collecting GPS data via GPS trackers, sensors or similar physical devices has

been preferred by many studies. Cui et al. used GPS data collected through GPS

devices equipped by taxis in Harbin, China to examine inconsistencies between urban

travel demand and transport services. The GPS devices had been implemented to all

licensed taxis as a security measure and they record the location data every 30 sec-

onds [3]. Jun et al. collected GPS data through an in-vehicle trip data collector to

observe the speed patterns of drivers [7]. Castro et al. collected GPS data through an

in-vehicle GPS device to estimate the geometric model of a highway located in Madrid,

Spain [8]. Alshibani and Moselhi collected location data via GPS units mounted on one

truck in each fleet and used the collected data to estimate cycle times for each round

trip of earthmoving operations to be used in time and cost estimation [9]. Rasmussen

et al. developed a GIS-based algorithm that detects trip legs and travel modes and ap-

plied the algorithm to the GPS data collected through wearable GPS devices equipped

by the participants [10]. Zhu collected GPS data through in-vehicle GPS devices in

Minneapolis, United States to observe the behavior of commuters after the collapse

and reopening of a bridge [11]. Huang and Levinson used the collected data to model

4

home-based, non-work destination choice [12]. Shen et al. collected activity-travel di-

ary of commuters through surveys and GPS trackers to observe day-to-day temporal,

spatial, modal, and route flexibility in Beijing, China [13]. He et al. collected travel

data of private passenger cars through GPS loggers to generate individual trip chain

distributions to analyze customer acceptance for battery electric vehicles and evaluate

the energy consumption of plug-in hybrid electric vehicles [14]. Patnaik et al. used

Divisive Analysis Clustering (DIANA) to classify large amount of speed data collected

through a GPS unit [15]. Liu et al. used long-term GPS tracking data and digital eleva-

tion map data to research the effect of road gradients on the electricity consumption of

electric vehicles [16]. Necula implemented a statistical approach on 10.000 vehicle GPS

traces from 3.600 drivers to analyze the traffic patterns on street segments [17]. Guo et

al. applied an unsupervised deep learning model to the data gathered by GPS sensors

in Shenzhen, China to study driving behavior and risk patterns [5]. Carli et al. pro-

posed an algorithm to automate the analysis and evaluation of the congestion in urban

areas and applied the algorithm to the GPS-generated data provided by a local transit

bus tracking system [18]. Lu et al. used taxi GPS data to trace macroscopic traffic

in large-scale and complex urban networks [19]. Ciscal-Terry et al. used a dataset

of low frequency GPS coordinates to recognize vehicle trajectories and analyze the

route choices of drivers [20]. Hast et al. collected population movement data through

GPS loggers to identify the relationship between individual movement patterns and

malaria risk in a high-transmission area in Zambia [21]. Ma et al. applied a series of

data-mining algorithms to extract trip-chaining information from massive truck GPS

data sets of several companies obtained through in-vehicle GPS devices [22]. Liu et

al. proposed an algorithm based on Adaptive Kalman Filter to improve the precision

of navigation information. Road tests were carried out and the algorithm was applied

to the GPS data of autonomous vehicles [23]. Du and Aultman-Hall developed three

methods to identify trip start points and these methods were applied to the GPS travel

datasets collected in Kentucky, United States between 2002 and 2003 [24].

Collecting GPS data with smartphone applications is another method that gained

popularity in recent years. Flake et al. compared trip rates obtained through Household

5

Travel Survey (HTS) and rMove, a travel data collection application developed by

Resource Systems Group [25]. Gong et al. collected GPS data every 30 seconds through

smartphones carried by participants. The application installed on the smartphones

allowed users to enter destinations, trip purposes, and travel modes. Collected data

were used to train a machine learning algorithm that identifies trip purposes and travel

mode [6]. Korpilo et al. used GPS tracks collected through multiple smartphone

applications (e.g. Sports Tracker, Strava) installed on the smartphones of volunteer

participants to examine spatial patterns on paths runners and mountain bikers follow

[26]. Shafique and Hato used GPS data collected in Kobe, Japan through an application

installed on the smartphones of the participants to train an algorithm that detects

travel modes [27]. Jackson et al. collected GPS data in Montreal, Canada through

Mon RésoVélo, an application installed on the smartphones of cyclists [28]. Collected

data were used by Strauss et al. to estimate bicycle volumes and injury risk of cyclists

in the entire network [29]. Stipancic et al. collected GPS data to examine vehicle

maneuvers via Mon Trajet, a smartphone application developed by Brisk Synergies [30].

Pluvinet et al. collected GPS data through a smartphone application to research the

contribution of GPS survey techniques to urban freight route characterization and

diagnosis [31]. Chen et al. used vehicle trajectories obtained through the smartphones

of the drivers to analyze the particle matter emission of on-road vehicle braking events

[32]. To build an Intelligent Transportation System (ITS), Pham et al. developed a

smartphone application as a part of traffic data collection framework that incorporates

traffic cameras, sensors, GPS data of vehicles and individuals [33].

In recent years, various technologies making use of Global Positioning System

have been used in location data collection studies. While obtaining travel data con-

taining location and time, device-related problems such as misreporting and unrespon-

siveness may be encountered. In addition, financial problems that stem from the cost of

physical devices may arise in developing countries. Moreover, keeping track of whether

the tracker is working properly is also problematic for the drivers. Smartphone appli-

cations, on the other hand, are easy-to-use and free. As the smartphone technologies

became widespread, smartphone applications have become a great alternative for GPS

6

trackers and other physical devices.

Nonetheless, existing third-party smartphone applications may not be appropri-

ate for the project requirements as the data collection period and frequency cannot be

adjusted. The application also may not be suitable to be used all day long. Addition-

ally, problems may arise while retrieving the collected data. Mass data collection may

be restricted by the application. Furthermore, collected GPS data may be shared with

the owners of the application or public, which poses a threat to the privacy of users.

Another privacy concern is that these third-party applications may request or force the

users to share personal data. The application developed in this thesis can be used in

any GPS data collection study regardless of travel duration or mode. It can also be

adjusted by the project specifications, if desired. The application can be used all day

long as it has low battery consumption. Finally, the application does not request any

personal data from the user and the collected GPS data can be accessed by authorized

personnel only.

7

3. THEORY

Availability of mass traffic data is very important for the accuracy of traffic anal-

ysis results. Unfortunately, there are many obstacles such as time and money cost and

bureaucracy that impose difficulty on collecting traffic data or accessing collected traffic

data. Having a smartphone application capable of collecting traffic data continuously

can be very convenient for future traffic analyses.

EZDatCol (Easy Data Collector) developed in this thesis is an Android applica-

tion that collects GPS data every second and stores collected data in an online database.

The application was specifically developed to be highly backward compatible, easy-to-

use, and battery-life-friendly. Hence, it is suitable for traffic data collection of any

transportation mode, without any limitations such as time, distance, speed, vehicle

type, or the number of passengers.

In addition to the Android application, a set of Python scripts were developed

to quickly process the mass data collected by the application. Android application

and Python scripts together create a great toolkit that easily collecting GPS data and

processing the collected data easily. Development of the tools introduced in this thesis

consists of the following steps:

(i) Developing Android application

• Developing and linking user interface

• Developing activities

• Implementing miscellaneous features such as handling errors and permission

checks

(ii) Conducting alpha and closed beta tests

(iii) Developing data processing Python scripts

The flowchart of the toolkit development is given Figure 3.1.

8

Figure 3.1. Toolkit development flowchart.

Selection of the programming language is important because each language has

advantages and disadvantages in certain fields. An Integrated Development Environ-

ment (IDE) is software that allows developing programs in certain languages faster and

more conveniently with the help of tools they provide such as code editor, compiler,

developer console, and debugger. Hence, the selection of the IDE is also important as

it can shorten the application development period significantly.

9

3.1. Developing Android Application

The smartphone application was developed on Android Studio version 4.1. Al-

though other platforms can be used while developing an Android application, Android

Studio is very convenient thanks to the various tools it provides. It also gets frequent

updates published by Google.

Kotlin language was used while developing activities. Although the activities can

still be developed with Java, Google increased the functionality and compatibility of

Kotlin in the development of Android applications in recent years and it is possible

that Google with continuing with only Kotlin in the future. XML language was used

while developing UI.

Google Firebase was chosen as the online database platform to be used along

with the application as it is easy to implement in Android applications. It also has low

processing power demand thanks to high compatibility and does not require additional

operations to communicate with the database such as running an additional Node.js

script on the server-side. Free Google Firebase plan provides a realtime database size

of 1 Gigabyte and enables up to 100 simultaneous connections.

3.2. Conducting Alpha and Closed Beta Tests

Alpha tests of the application were done on virtual devices via the emulator

provided by Android Studio, and on physical devices connected to the computer in

debugging mode. Debugging the application was done through the internal debugging

tool in Android Studio. A checklist including certain tests concerning many different

topics such as functionality, design, permissions, and limitations stemming from specific

Android OS versions was followed. The application was tested in various devices and

the tasks included in the test checklist were repeated a certain number of times order

to check whether an error or a bug is encountered.

10

Closed beta tests were done on the physical devices of volunteer participants. The

application was installed on the smartphones of testers through the unsigned APK file

of the application. Signing the APK file is not necessary as the application will not be

published in Google Play Store in the future. The participants were asked to use the

application continuously for a specified duration of time and give feedback on certain

features of the application such as functionality, accessibility, user interface, and ease

of use.

3.3. Developing Data Processing Scripts

Python 3.6 was used to create scripts that process and modify the database

exports. Python scripts handle files very fast and require minimal installation. Ad-

ditionally, gmaps binary provides a very easy toolkit for creating custom maps with

given datasets. Visual Studio Code is used as the IDE.

Multiple Python scripts were created to split data processing into smaller parts.

This enables manually verifying the validity of the script output after each run, imposes

smaller amounts of workload on the computer for each run, and reduces the time loss

in case of encountering errors stemming from corrupted JSON or XLSX files.

11

4. METHODOLOGY

EZDatCol was designed to be lightweight and easy-to-use. In addition to the

GPS data, the application also collects the number of passengers if the user chooses

to provide information. Users are also able to select the genders of the passengers.

Collecting such additional data can be very useful for analyses done for certain trans-

portation modes such as a taxi. The reason that the number and gender of passengers

were chosen to be collected is that both features are distinct and can be easily provided

by the driver.

Another feature that was implemented in the application is a system that allows

passengers to provide additional information about themselves if they choose to do so.

Collecting such information is possible through anonymous surveys, which also ensures

privacy between the driver and passengers. Survey questions can be adjusted by the

project specifications.

4.1. Developing Android Application

To be used in a wide range of devices with varying Android versions, the minimum

API level was chosen to be 17, which corresponds to Android 4.2 Jelly Bean released

in November 2012. The targeted API level was selected as 29, which corresponds to

Android 10 released in September 2019. The selected API level range was compatible

with 99.2% of all Android devices as of September 2020.

The application consists of multiple interconnected activities. Most of the activ-

ities have a layout shown in the user interface (UI), which provides the users visual

feedback and enables user input. Some activities run in the background, in other words

not shown in the user interface, and some activities are not launched but accessed by

other activities. The activity hierarchy of the application is given in Figure 4.1.

12

Figure 4.1. Activity hierarchy of the application.

As the survey questions may be modified in time, the survey link needed to be

dynamic. Thus, it was stored in the database. It also needed to be easily accessible

by the passenger. Even if the survey link was shortened beforehand, typing it into a

mobile phone browser is very inconvenient. Hence, a system that generates QR (Quick

Response) code of the link stored in the database was implemented in the application.

The driver asks the passenger whether they want to participate in the survey, and can

generate the QR code of the survey with a single tap. The passengers can access the

survey within seconds by reading the QR code with their mobile phone’s camera.

4.1.1. Setting Up Manifest and Gradle Files

AndroidManifest.xml file contains information about the application. All activi-

ties and services must be included in the manifest file to be launched. Launch activity

was also stated here, which was splash activity in this case. Default settings except for

screen orientation were used for most of the activities. Portrait mode was selected for

all activities in order not to force the users to adjust their screen orientation constantly

while driving.

Launch mode of the main activity was selected to be “singleTask” to run a single

13

instance of it at a time and not restart it when the user returns to it from other

activities or the home screen.

The “stopWithTask” attribute of the foreground service was selected as “True” to

kill the service when the application is closed. This enables collecting data only when

the application is running. Forcing the application to collect GPS data continuously

even when the user closes the application is unacceptable as it is a big privacy breach.

Permissions of the application, which are given in detail in Section 4.1.7, were

stated in the manifest file. Icon, name (i.e., label), and theme of the application were

adjusted here.

Building configurations were stated in build.gradle files. One build.gradle file

is for the top-level whereas the other one is for the module-level. External binaries

used in the application were stated within module-level build.gradle file. In this case,

external binaries were rarely used as the application was designed to be simple and

battery-friendly.

Following external binaries were used in the application in addition to the ones

defined by default:

(i) Binaries related to location services

• com.google.android.gms:play-services-location:*

• com.google.android.gms:play-services-maps:*

(ii) Binaries related to Firebase database

• com.google.firebase:firebase-database:*

• com.google.firebase:firebase-database-ktx:*

(iii) Binaries used in tutorial screen

• me.relex:circleindicator:*

• androidx.viewpager2:viewpager2:*

• pl.droidsonroids.gif:android-gif-drawable:*

14

(iv) Binaries used in QR code generation

• org.jetbrains.anko:anko-commons:*

• com.google.zxing:core:*

(v) Binaries used for scalable text and views

• com.intuit.sdp:sdp-android:*

• com.intuit.ssp:ssp-android:*

It should be noted that asterisks (*) correspond to the latest version for each

binary.

4.1.2. Developing User Interface

The application was designed to be easily usable in traffic. Hence, it does not

contain any audiovisual pollution. The main screen is composed of the number of male

and female passenger selectors (i.e., rating bars), a large, round, green main button

that is used to start a trip, and a menu button that reveals or hides buttons belonging

to miscellaneous functions such as generating QR code and logging out. Rating bars

get hidden when a trip is started and the main button is replaced with a red one in

order for the driver to use the application easily in traffic. Starting and ending the trip

requires the users to approve their actions through an alert box to prevent problems

due to misclicks. The main screen in idle and trip mode is given in Figure 4.2.

15

(a) (b)

Figure 4.2. The main screen in idle mode (a) and trip mode (b).

Constraint layout was used in all activity layouts to prevent problems in screens

with very high or very low pixel density. Scalable sp (scale-independent pixels) and scal-

able dp (density-independent pixels) were used for texts and UI elements (i.e., views),

respectively. These units abbreviated as ssp and sdp, respectively, were implemented

through appropriate binaries provided by Intiuit.

4.1.3. Creating Custom View Elements

Custom rating bar and button styles were created for the application. For the

custom rating bar styles, male and female avatar icons were used as the rating bar

stars. The background and tint colors of these avatars were adjusted to be easily

distinguishable from each other and the remaining view elements. For each custom

button style, different shapes and radii were used depending on the place of use. Stroke

16

and background colors were also adjusted accordingly for neutral, focused, and pressed

button states.

4.1.4. Developing Foreground Service

Google restricted the frequency of background location requests strictly with

Android 8.0 Oreo (API level 26) to reduce power consumption. Hence, a service was

created for the application as frequent location requests are needed. Service is an

extension for an application with no user interface that runs simultaneously with the

application itself. Foreground services can keep running in the foreground even if the

application is brought to the background.

A custom service class that extends to the original service class was created in the

application. Upon starting the service, it starts requesting precise location every second

until it is stopped when the application is closed or the main activity is destroyed.

Foreground services are launched along with a service notification; thus, a notification

channel and a notification builder were set up within the service. Additionally, for the

service to communicate with the main activity, a broadcast manager was set up within.

To achieve a better user experience and privacy, the application was designed

to request location updates in the background so that the users can use other appli-

cations in the meantime, and stop requesting when it is closed so that the users can

stop sharing location data and lower their power consumption. This was achieved

by setting “stopWithTask” attribute of the service to “true” in AndroidManifest.xml.

Additionally, the service is launched with “onStartCommand” function which returns

“START NOT STICKY”. This ensures that the system does not try to relaunch the

service after it is killed. Content title and content text shown as the texts in notification

title and description, respectively, were written to describe the purpose of the notifica-

tion to the user. The importance of the notification was set to “IMPORTANCE LOW”

as higher notification importance levels make a sound when the notification is created,

which was not desired in this case. Notification intent was set for the main activ-

17

ity, which means that the user is redirected to the main activity upon pressing the

notification.

Upon creating the service “startLocationUpdate” function is run with “INTER-

VAL” and “FASTEST INTERVAL” attributes of 1000. This results in requesting

location updates every second. Besides, “PRIORITY” was set to “PRIORITY HIGH

ACCURACY”, which means that the requested location data have the highest ac-

curacy possible. Whenever “onLocationChanged” function is called, received location

data are broadcasted via custom broadcast manager set up in the service to be received

by a broadcast receiver within the main activity.

4.1.5. Establishing Connection with Firebase Database

The database reference and credentials are stored in the Google services JSON

file provided by Firebase after setting up the database and stored in the application.

An instance of the Firebase database is created within main activity after setting up

permission checks and requests the details of which are given in Section 4.1.7. Database

reference and credentials are retrieved from the mentioned JSON file.

4.1.6. Developing Main Activity

The main activity creates an instance of the preferences class upon launching to

execute read and write operations in the device storage. A broadcast receiver com-

patible with the foreground service was set up within the main activity. Every time

the main activity receives a broadcast from the service, a function that writes to the

database is called. This write function creates a node with the value of the saved plate

value. Under the plate node, the function creates a node with the value of the current

date and another node under the date note with the value of the timestamp. Finally,

trip parameters are written under the timestamp node. Depending on many param-

eters such as connection quality, Android version and computing power of the phone,

the interval between consecutive write operations may rise for several seconds.

18

The trip parameters that the write function passes are current latitude, current

longitude, number of male passengers, number of female passengers, and a Boolean

indicating whether the trip is started or not. The trip parameters were optimized to

reduce the size of the database and mobile data usage. Each second, a device uploads

80 bytes of data to the database, which results in using less than a third of a megabyte

of mobile data every hour.

When the application is launched, writing to the database starts immediately if

the user has already logged in. 0 is used as the default value for the number of male

and female passengers until the user starts a trip. After the user starts a trip, the

number of male and female passengers specified by the user is passed to the database.

The number of passengers and the time trip starts are also stored in the preferences

class.

A timer (i.e., fixed-rate time) runs in the main activity to remind the user that

the trip is continuing every 10 minutes in case they forget to end the trip when the

customer gets off the vehicle.

If the user closes the application while a trip is continuing and relaunch the

application, they are asked whether they want to resume the previous trip or not.

After the user ends the trip, default values for the number of passengers are used

again. Trip parameters saved in the preferences class are also deleted.

A QR code of the survey link is generated when the main activity launches.

The link is retrieved from the database in case that the survey link changes after the

application is released. A function that creates the QR code of a given string as a

bitmap was implemented in the main activity through appropriate functions provided

by ZXing Core. The bitmap is scaled to the screen size and has a minimum dimension

specified. For the devices with slow processors or high screen resolution, the function

generating the bitmap takes a while to finish execution, delaying the launch of the main

activity. Hence, the function generating QR code bitmap is run asynchronously in order

19

not to delay activity launch. “doAsync” function provided by Anko was preferred for

coroutines of Kotlin for simplicity and performance purposes.

When the user presses the survey link button in the menu, the QR code bitmap

is shown with a layout inflator with a transparent background over the main activity,

if it has been generated successfully. Using a layout inflator enables showing an image

view without pausing/destroying the current activity or creating a separate layout for

the image in the ”layouts” directory.

4.1.7. Handling Permission Checks and Requests

When the main activity launches, it checks whether all the permissions required

for the application are granted and requests are made for permissions denied or not

granted yet. If the user chooses not to grant any of the permissions, the application is

closed as it cannot function.

Permission checks run at the beginning are repeated every time the application

is brought to the foreground in case the user initially grants permissions and turns

on location services and internet access but denies permissions or turns off location

services or internet access after the application is launched.

Permissions the application requires are as follows:

(i) Permissions granted by default upon installation

• INTERNET: Required for the device to connect to the database and call

read and write functions

• ACCESS NETWORK STATE: Required for the application to check for

internet connectivity and alert the user if no connection is found

• FOREGROUND SERVICE: Required for the application to run a fore-

ground service that requests location data even if the application is in the

background

20

(ii) Permissions to be granted by the user

• ACCESS COARSE LOCATION: Required to access the approximate loca-

tion of the device with an accuracy of a city block

• ACCESS FINE LOCATION: Required to access the precise location of the

device

• ACCESS BACKGROUND LOCATION: Required for the application to re-

quest location data while it is running in the background

4.1.8. Developing the Remaining Activities

The application has a splash screen in which the logo of the application is shown

for a short duration while certain tasks such as reading data saved in the phone storage

are executed in the background. Afterward, the user is redirected to the appropriate

activity depending on whether or not they have already logged in before.

If the user has not logged in before, log-in activity launches to input the license

plate of their vehicle. The plate inputted is stored in the preferences class to be saved

for future application launches. The user is redirected to the tutorial screen afterward.

The tutorial screen is shown only once per log-in but also accessible through the tutorial

button in the main activity.

The tutorial screen contains a slider (i.e., view pager) with a tip and a video of the

tip being executed at each slide. A custom view pager adapter was created to be used

for the view pager in the tutorial activity. The videos shown on the tutorial screen are

in GIF format. Animated GIF files can be played by implementing the binary provided

by Droids on Roids.

The log-out button in the main activity redirects the user to the log-out activity

after validation through an alert dialog. log-out activity wipes saved data in preferences

class and redirects the user to the splash screen.

21

4.1.9. Handling Exceptions

Exception handling procedures were implemented at necessary sections, espe-

cially at fragments that establish the connection to the database or require certain

permissions to execute properly. When a function fails at execution, execution han-

dling enables calling an alternative function or showing an error message to the user

rather than crashing and relaunching the application.

As the application is compatible with all Android versions released within the last

8 years, version checks are executed while calling functions required for certain Android

versions but deprecated in later versions or dealing with permission requirements added

or removed in certain Android versions.

4.2. Conducting Alpha and Closed Beta Tests

Alpha tests were conducted on 6 physical and 3 virtual devices with OS versions

ranging from Android 4.4 KitKat (API level 19) to Android 11 (API level 30) and

pixel densities ranging from 216 to 538 pixels-per-inch (PPI). A checklist was created to

assess the functionality and visual quality of certain aspects of the application including

but not limited to permission checks and requests, activity launches and redirections,

connection to the database, user interface, and notification tray. Each topic on the

checklist has multiple subtopics and each subtopic has at least one test. The application

is considered working properly if it passes every test.

No functionality error was observed during alpha tests. Minor cosmetic errors

caused by some deprecated view attributes in certain API levels but not stated in

documentations were fixed.

Closed beta tests were conducted by 3 testers for 2 days. The application was

installed on the smartphones of volunteer testers through an unsigned APK file. The

participants were asked to use the application continuously and give feedback on various

22

aspects of the application such as functionality, accessibility, and user-friendliness. No

problem was observed in the data collected. Testers did not encounter any problems

while using the application.

4.3. Developing Data Processing Scripts

Multiple Python scripts were created to automatize data processing. Whole data

processing was split into multiple parts to decrease execution time and workload of

each step, and allow manually validating the script output after each run.

Following modules were imported in the Python scripts:

(i) Retrieving path of script file and creating folders

• pathlib

• os

(ii) Searching for and accessing multiple files in a certain path

• glob

(iii) Running command-line arguments to run other Python scripts

• subprocess

(iv) Reading JSON files

• json

(v) Creating, reading, and writing on XLSX files

• pandas

• xlsxwriter

(vi) Calculating the distance between two data points

• geopy.distance

(vii) Creating custom maps based on Google Maps

• gmaps

(viii) Exporting maps as HTML files

• ipywidgets

23

A total of 6 scripts were created. Data processing flowchart is given in Figure 4.3.

Figure 4.3. Data processing flowchart.

First Python script loads the JSON file, extracts trip data, and writes extracted

data in a new XLSX file. Extracted trip data comprise location, date, time, number

of passengers, vehicle occupancy and license plate. Each data type is retrieved as a

dictionary object and converted to a transposed DataFrame object. All data collected

from a vehicle throughout a day, which will be referred to as “travel log” in the future,

is named based on the date and license plate, and stored in a separate XLSX sheet.

Designing the hierarchy of the nodes in the database well while developing the Android

application helps to scan and navigate through JSON files very easily.

24

Second Python script loads the initial XLSX file (i.e., raw XLSX file) and pro-

cesses it. First, all cells and are formatted depending on the cell value to be easily

readable. Second, time and distance differences between consecutive data points are

calculated. The distance between two data points is calculated by using geopy.distance

binary. Third, the instantaneous velocity is calculated for every point based on time

and distance difference. Fourth, the total distance and time of the travel log are cal-

culated and the average speed is found. Last, the speed vs. time graph is plotted for

each travel log.

Third Python script loads the processed XLSX and splits it into four as morning

peak, afternoon peak, evening peak, and off-peak by checking the timestamp of each

data point and placing it in the appropriate XLSX file. Morning, afternoon, and

evening peaks are defined as 07:00 – 10:00, 12:00 – 14:00, and 17:00 – 19:00, respectively.

Fourth, fifth and sixth Python scripts create the marker map, heatmap, and speed

heatmap of the XLSX file, respectively. These scripts have a similar structure. They

retrieve latitude and longitude values from the XLSX file, form a location list, create

a gmaps figure, add a gmaps layer to the figure, and export the figure as HTML file.

The type and attributes of the gmaps layer depend on the map type.

Marker maps contain the timestamp, latitude, and longitude of every data point.

Hence, timestamps must be retrieved from the XLSX file in addition to latitude and

longitude. Marker maps are useful to cross-reference with the XLSX file. They, how-

ever, have large file sizes and load slower.

Heatmaps show in which regions the data inputs are concentrated more. They do

not, however, represent instantaneous speed well. Speed heatmaps are similar to regular

heatmaps. Data points are, however, separated into groups based on instantaneous

speed and each group is assigned a gradient. The color assigned for each speed group

can be observed in the legends of maps. Then, each group is added to the figure

separately.

25

An error that is likely to be encountered is that when multiple maps are exported

at once with Visual Studio Code, file sizes get larger with each map. This is caused by

the gmaps figure storing data of previous maps even though the figure is redeclared for

each map. This error can be solved by exporting a single map at each time. However,

this solution is very impractical and time-consuming.

In this case, a separate map-exporting script was created for each map type,

instead. These scripts are called once for each map by the scripts that retrieve data

from XLSX through Popen function of subprocess module. Information about the

travel log to be exported as the map is passed to the second script through Popen

function arguments. The remaining data such as latitude, longitude, and timestamp

of data points are saved in a text file and read by the second script.

26

5. CASE STUDY ANALYSES

The functionality of the application was tested in three case studies. The appli-

cation was used in collecting descriptive GPS data of different vehicle types. The data

collection period and the number of vehicles vary for each case study. The same data

processing scripts previously described in detail in Section 4.3 were used for all case

studies.

5.1. Case Study 1: Bus Trips in Tekirdağ

In collaboration with Tekirdağ Municipality, the application was used in collecting

GPS data of buses in Çorlu, Tekirdağ. For this case study, an alternative version of

the application was developed. In this alternative version, the application does not

ask for any user input other than granting permission requests and it starts collecting

GPS data immediately after permission checks are completed. The user also does not

input the license plate or number of passengers. Instead, a unique device ID is created

at the first launch and the location data are stored in the database under a node with

the value of the device ID.

The application was installed on 15 devices and data collection continued for

four weeks. Collected GPS data were processed using Python scripts and stored as

individual daily travel logs. A flowchart of the processing of collected bus data was

previously given in Figure 4.2. Each travel log was named based on the date and

the device ID. The total travel time and distance of the collected bus data are 430

hours, and 6860 kilometers, respectively. A summary of the collected data is given in

Table 5.1.

27

Table 5.1. Summary of the collected bus data in Çorlu, Tekirdağ.

Time

(DD.MM.YYYY)

Number

of Travel

Logs

Total

Duration

(hh:mm:ss)

Total

Distance

(km)

Average

Speed

(km/h)

30.11.2020 - 06.12.2020 42 128:50:46 1967.77 15.27

07.12.2020 - 13.12.2020 42 159:38:34 2674.67 16.75

14.12.2020 - 20.12.2020 29 84:17:37 1309.87 15.54

21.12.2020 - 27.12.2020 19 57:23:37 907.87 15.82

Total 132 430:10:34 6860.18 15.95

Using appropriate Python script, travel logs were split into parts corresponding

to peak and off-peak hours, and the speed vs. time graph of each travel log part was

plotted. As previously mentioned in Section 4.3, the morning, afternoon, and evening

peaks are defined as 07:00 – 10:00, 12:00 – 14:00, and 17:00 – 19:00, respectively. Next,

the marker map, heatmap, and speed heatmap of each travel log part were exported

using appropriate Python scripts.

Two travel logs, B-12-01.6 and B-12-01.9 will be showcased in this section. Sum-

mary of travel log B-12-01.6 is given in Table 5.2.

Table 5.2. Summary of B-12-01.6.

Travel Log Peak/Off-peak Duration

(hh:mm:ss)

Distance

(km)

Average Speed

(km/h)

B-12-01.6 Morning peak 02:59:57 49.48 16.50

Noon peak 01:05:46 15.53 14.17

Evening peak - - -

Off-peak 03:01:55 43.98 14.51

Total 07:07:38 108.99 15.29

28

B-12-01.6 took place between 05:58 and 13:05 on 1 December 2020. Hence, it

comprised the the morning and noon peaks, but not the evening peak. The average

speed during the noon peak and off-peak hours were close to each other and the average

speed during the morning peak was slightly higher. The speed vs. time graph of travel

log B-12-01.6 during the morning peak, noon peak, and off-peak hours are given in

Figure 5.1, Figure 5.2, and Figure 5.3, respectively.

Figure 5.1. Speed vs. time graph of B-12-01.6 during the morning peak.

29

Figure 5.2. Speed vs. time graph of B-12-01.6 during the noon peak.

Figure 5.3. Speed vs. time graph of B-12-01.6 during off-peak hours.

Although speed profiles can be examined via the speed vs. time graphs, it is

hard to keep track of speed on a minute-by-minute basis as the period is too long.

30

They also don’t provide any information about the correlation between instantaneous

speed and location. Maps, especially speed heatmaps, can be very useful in this regard.

The speed heatmaps of travel log B-12-01.6 during the morning peak, noon peak, and

off-peak hours exported through appropriate Python script are given in Figure 5.4,

Figure 5.5, and Figure 5.6, respectively.

Figure 5.4. Speed heatmap of B-12-01.6 during the morning peak.

31

Figure 5.5. Speed heatmap of B-12-01.6 during the noon peak.

Figure 5.6. Speed heatmap of B-12-01.6 during off-peak hours.

32

During off-peak hours, the bus maintained relatively high speeds except in Salih

Omurtak Avenue, Kumyol Avenue, and Şinasi Kurşun Avenue. A similar speed profile

can be observed during the noon peak, although the speed drops are less severe in

these three avenues. Harsh speed drops can be observed during morning peak in these

avenues, especially in Şinasi Kurşun Avenue.

To showcase a travel log that includes evening peak, similar procedures will be

repeated for travel log B-12-01.9. Summary of travel log B-12-01.9 is given in Table 5.3.

Table 5.3. Summary of B-12-01.9.

Travel Log Peak/Off-peak Duration

(hh:mm:ss)

Distance

(km)

Average Speed

(km/h)

B-12-01.9 Morning peak - - -

Noon peak 01:20:20 19.00 14.19

Evening peak 01:59:56 28.80 14.43

Off-peak 04:27:08 64.25 14.43

Total 07:47:24 112.09 14.39

B-12-01.9 took place between 12:39 and 20:27 on 1 December 2020. Hence, it

comprised the noon and evening peaks, but not the morning peak. The average speed

during the noon peak, evening peak and off-peak hours were close to each other. The

speed vs. time graph of travel log B-12-01.9 during the noon peak, evening peak, and

off-peak hours are given in Figure 5.7, Figure 5.8, and Figure 5.9, respectively.

33

Figure 5.7. Speed vs. time graph of B-12-01.9 during the noon peak.

Figure 5.8. Speed vs. time graph of B-12-01.9 during the evening peak.

34

Figure 5.9. Speed vs. time graph of B-12-01.9 during off-peak hours.

Speed heatmaps of travel log B-12-01.9 during noon peak, evening peak, and

off-peak hours are given in Figure 5.10, Figure 5.11, and Figure 5.12, respectively.

35

Figure 5.10. Speed heatmap of B-12-01.9 during the noon peak.

Figure 5.11. Speed heatmap of B-12-01.96 during the evening peak.

36

Figure 5.12. Speed heatmap of B-12-01.9 during off-peak hours.

Throughout the day, the bus maintained speeds between 10 and 30 km/h most

of the time, especially in Salih Omurtak Avenue, Kırkova Avenue, Halit Ziya Uşaklıgil

Avenue, Kömürcü Avenue, and Ahmet Priştina Avenue. Additionally, during off-peak

hours, speed drops can be observed in certain parts of Çetin Emeç Avenue. Aside from

these regions mentioned above, the bus maintained relatively high speeds.

5.2. Case Study 2: Taxi Trips in İstanbul

The application was used in collecting descriptive GPS data of taxis. Three taxi

stands near Boğaziçi University campuses and one taxi stand in Fulya, Şişli was selected

for the case study. Locations of the taxi stand near Boğaziçi University and in Şişli are

given in Figure 5.13 and Figure 5.14, respectively.

37

Figure 5.13. Locations of taxi stands near Boğaziçi University.

Figure 5.14. Location of the taxi stand in Fulya, Şişli.

The application was introduced to the taxi drivers and a brief tutorial on how

to use it was given face-to-face. The application was installed on the mobile phones

of four volunteer participants through the unsigned APK file built priorly. A PDF file

containing instructions on how to install and use the application was sent to the drivers

38

in case they would like to refer to the documentation. Contact information was also

shared with the drivers if they would like to give feedback or ask questions. The data

collection period continued for five days.

Using the appropriate Python script, the speed vs. time graph of each travel log

was plotted. Travel log T-11-17.1, which took place between 12:10 and 12:56 on 17

November 2020, will be showcased in this section. Total duration, total distance, and

average speed for travel log T-11-17.1 are 46 minutes, 15 kilometers, and 19.4 km/h,

respectively. The speed vs. time graph of travel log T-11-17.1 is given in Figure 5.15.

Figure 5.15. Speed vs. time graph of T-11-17.1.

Using appropriate Python scripts, three types of maps were exported for each

travel log. Heatmap, speed heatmap, and marker map of travel log T-11-17.1 are given

in Figure 5.16, Figure 5.17, and Figure 5.18, respectively.

39

Figure 5.16. Heatmap of T-11-17.1.

Figure 5.17. Speed heatmap of T-11-17.1.

40

Figure 5.18. Marker map of T-11-17.1.

As seen in the maps, the travel log took place around Şişli and Beşiktaş, İstanbul.

In Figure 5.17, it can be observed that the taxi maintained a speed over 30 km/h for

nearly half of the trip. Most notable speed drops were observed around Halide Edip

Adıvar, Şişli and Gayrettepe, Beşiktaş. Examining Figure 5.18, the exact time the

vehicle visited each marker point can be found out. Likewise, using Figure 5.18, at

which regions the density of data inputs is higher can be observed. These regions,

naturally, match with the regions where the speed drops, as observed in Figure 5.17.

5.3. Case Study 3: Textile Firm Fleet Trips in İstanbul

The application was used in collecting GPS data of a voluntary vehicle belonging

to a textile firm’s fleet. Data collection continued for three weeks. Trip data recorded

by the tester vehicle mostly consist of series of short trips between warehouses. The

application was turned on by the driver every time the vehicle started moving and

turned off when the vehicle reached its destination.

41

Using appropriate Python scripts collected data was processed. The speed vs.

time graph of each travel log was plotted. Three types of maps of each travel log

were exported. Travel log F-12-17, which took place between 11:20 and 16:27 on 17

December 2020, will be showcased in this section. Total duration, total distance, and

average speed for travel log F-12-17 are an hour and 22 minutes, 23.5 kilometers, and

17 km/h, respectively. The speed vs. time graph of travel log F-12-17 is given in

Figure 5.19.

Figure 5.19. Speed vs. time graph of F-12-17.

As seen in Figure 5.19, the vehicle made multiple small trips throughout the

day. These trips varied in duration and none of them exceeded an hour. The speed

profile also varied for each trip. The route of each trip can be examined in detail with

appropriate maps. Heatmap, speed heatmap, and marker map of travel log F-12-17

are given in Figure 5.20, Figure 5.21, and Figure 5.22 respectively.

42

Figure 5.20. Heatmap of F-12-17.

Figure 5.21. Speed heatmap of F-12-17.

43

Figure 5.22. Marker map of F-12-17.

As seen in the maps, the vehicle made multiple short trips around Bahçelievler,

İstanbul. In Figure 5.21, it can be observed that the vehicle maintained a speed over

30 km/h most of the time. Speed drops can be observed on certain parts of D100

Highway. Similar to the previous case studies, Figure 5.22 and Figure 5.20 can be

used to determine data point timestamps and regions with higher data input density,

respectively.

44

6. CONCLUSION

The application developed in this thesis was used in three different case studies

for traffic data collection. As each case study had different specifications, it was shown

that the application can be used in various types of projects regardless of data collec-

tion duration or transport mode. It was also shown that traffic data can be collected

without the need to visit the project region; data collection can start immediately

after distributing the application and giving a brief tutorial to the users. Addition-

ally, Python-based data processing toolkit developed in this thesis proved its efficiency

and functionality in processing collected data, plotting relevant graphs, and exporting

relevant maps.

Although the main objectives of this thesis were to develop a smartphone appli-

cation and a data processing toolkit, multiple case studies were conducted to test the

functionality of them. As the drivers in the second and the third case studies were

volunteer participants, data sets collected in these case studies are limited. In future

studies that use the Android application and the Python-based data processing devel-

oped in this thesis, the number of participants and overall data size should be increased

to be able to conduct detailed traffic analyses.

45

REFERENCES

1. Gokasar, I., Y. Cetinel and M. G. Baydogan, “Estimation of Influence Distance of

Bus Stops Using Bus GPS Data and Bus Stop Properties”, IEEE Transactions on

Intelligent Transportation Systems , Vol. 20, No. 12, pp. 4635–4642, Dec 2019.

2. Montini, L., C. Antoniou and K. W. Axhausen, “Route and mode choice models

using GPS data”, p. 14, 2017.

3. Cui, J., F. Liu, D. Janssens, S. An, G. Wets and M. Cools, “Detecting urban

road network accessibility problems using taxi GPS data”, Journal of Transport

Geography , Vol. 51, pp. 147–157, Feb 2016.

4. Murakami, E. and D. Wagner, “Can using global positioning system (GPS) improve

trip reporting?”, Transportation Research Part C: Emerging Technologies , Vol. 7,

No. 2-3, pp. 149–165, Apr 1999.

5. Guo, J., Y. Liu, L. Zhang and Y. Wang, “Driving Behaviour Style Study with a

Hybrid Deep Learning Framework Based on GPS Data”, Sustainability , Vol. 10,

No. 7, p. 2351, Jul 2018.

6. Gong, L., R. Kanamori and T. Yamamoto, “Data selection in machine learning for

identifying trip purposes and travel modes from longitudinal GPS data collection

lasting for seasons”, Travel Behaviour and Society , Vol. 11, pp. 131–140, Apr 2018.

7. Jun, J., R. Guensler and J. Ogle, “Differences in observed speed patterns between

crash-involved and crash-not-involved drivers: Application of in-vehicle monitor-

ing technology”, Transportation Research Part C: Emerging Technologies , Vol. 19,

No. 4, pp. 569–578, Aug 2011.

8. Castro, M., L. Iglesias, R. Rodŕıguez-Solano and J. A. Sánchez, “Geometric mod-

elling of highways using global positioning system (GPS) data and spline approxi-

46

mation”, Transportation Research Part C: Emerging Technologies , Vol. 14, No. 4,

pp. 233–243, Aug 2006.

9. Alshibani, D. A. and D. O. Moselhi, “Productivity based method for forecasting

cost time of earthmoving operations using sampling GPS data”, Journal of In-

formation Technology in Construction (ITcon), Vol. 21, No. 3, pp. 39–56, Mar

2016.

10. Rasmussen, T. K., J. B. Ingvardson, K. Halldórsdóttir and O. A. Nielsen, “Im-

proved methods to deduct trip legs and mode from travel surveys using wearable

GPS devices: A case study from the Greater Copenhagen area”, Computers, En-

vironment and Urban Systems , Vol. 54, pp. 301–313, Nov 2015.

11. Zhu, S., “The roads taken: theory and evidence on route choice in the wake of the

I-35W Mississippi River bridge collapse and reconstruction.”, pp. 1–129, Sep 2010,

http://conservancy.umn.edu/handle/11299/99233.

12. Huang, A. and D. Levinson, “A model of two-destination choice in trip chains with

GPS data”, Journal of Choice Modelling , Vol. 24, pp. 51–62, Sep 2017.

13. Shen, Y., M.-P. Kwan and Y. Chai, “Investigating commuting flexibility with GPS

data and 3D geovisualization: a case study of Beijing, China”, Journal of Transport

Geography , Vol. 32, pp. 1–11, Oct 2013.

14. He, X., Y. Wu, S. Zhang, M. A. Tamor, T. J. Wallington, W. Shen, W. Han, L. Fu

and J. Hao, “Individual trip chain distributions for passenger cars: Implications for

market acceptance of battery electric vehicles and energy consumption by plug-in

hybrid electric vehicles”, Applied Energy , Vol. 180, pp. 650–660, Oct 2016.

15. Patnaik, A. K., P. K. Bhuyan and K. Krishna Rao, “Divisive Analysis (DIANA) of

hierarchical clustering and GPS data for level of service criteria of urban streets”,

Alexandria Engineering Journal , Vol. 55, No. 1, pp. 407–418, Mar 2016.

47

16. Liu, K., T. Yamamoto and T. Morikawa, “Impact of road gradient on energy

consumption of electric vehicles”, Transportation Research Part D: Transport and

Environment , Vol. 54, pp. 74–81, Jul 2017.

17. Necula, E., “Analyzing Traffic Patterns on Street Segments Based on GPS Data

Using R”, Transportation Research Procedia, Vol. 10, pp. 276–285, 2015.

18. Carli, R., M. Dotoli, N. Epicoco, B. Angelico and A. Vinciullo, “Automated eval-

uation of urban traffic congestion using bus as a probe”, IEEE International Con-

ference on Automation Science and Engineering (CASE), pp. 967–972, IEEE, Aug

2015, http://ieeexplore.ieee.org/document/7294224/.

19. Lu, S., V. L. Knoop and M. Keyvan-Ekbatani, “Using taxi GPS data for macro-

scopic traffic monitoring in large scale urban networks: calibration and MFD

derivation”, Transportation Research Procedia, Vol. 34, pp. 243–250, 2018.

20. Ciscal-Terry, W., M. Dell’Amico, N. S. Hadjidimitriou and M. Iori, “An analysis of

drivers route choice behaviour using GPS data and optimal alternatives”, Journal

of Transport Geography , Vol. 51, pp. 119–129, Feb 2016.

21. Hast, M., K. M. Searle, M. Chaponda, J. Lupiya, J. Lubinda, J. Sikalima,

T. Kobayashi, T. Shields, M. Mulenga and et al., “The use of GPS data loggers

to describe the impact of spatio-temporal movement patterns on malaria control

in a high-transmission area of northern Zambia”, International Journal of Health

Geographics , Vol. 18, No. 1, p. 19, Dec 2019.

22. Ma, X., Y. Wang, E. McCormack and Y. Wang, “Understanding Freight Trip-

Chaining Behavior Using a Spatial Data-Mining Approach with GPS Data”, Trans-

portation Research Record: Journal of the Transportation Research Board , Vol.

2596, No. 1, pp. 44–54, Jan 2016.

23. Liu, Y., X. Fan, C. Lv, J. Wu, L. Li and D. Ding, “An innovative information

48

fusion method with adaptive Kalman filter for integrated INS/GPS navigation of

autonomous vehicles”, Mechanical Systems and Signal Processing , Vol. 100, pp.

605–616, Feb 2018.

24. Du, J. and L. Aultman-Hall, “Increasing the accuracy of trip rate information from

passive multi-day GPS travel datasets: Automatic trip end identification issues”,

Transportation Research Part A: Policy and Practice, Vol. 41, No. 3, pp. 220–232,

Mar 2007.

25. Flake, L., M. Lee, K. Hathaway and E. Greene, “Use of Smartphone Panels for

Viable and Cost-Effective GPS Data Collection for Small and Medium Planning

Agencies”, Transportation Research Record: Journal of the Transportation Re-

search Board , Vol. 2643, No. 1, pp. 160–165, Jan 2017.

26. Korpilo, S., T. Virtanen and S. Lehvävirta, “Smartphone GPS track-

ing—Inexpensive and efficient data collection on recreational movement”, Land-

scape and Urban Planning , Vol. 157, pp. 608–617, Jan 2017.

27. Shafique, M. and E. Hato, “Travel Mode Detection with Varying Smartphone Data

Collection Frequencies”, Sensors , Vol. 16, No. 5, p. 716, May 2016.

28. Jackson, S., L. F. Miranda-Moreno, C. Rothfels and Y. Roy, “Adaptation and

Implementation of a System for Collecting and Analyzing Cyclist Route Data Us-

ing Smartphones”, Transportation Research Board 93rd Annual Meeting , 2014,

https://trid.trb.org/view/1289501.

29. Strauss, J., L. F. Miranda-Moreno and P. Morency, “Mapping cyclist activity and

injury risk in a network combining smartphone GPS data and bicycle counts”,

Accident Analysis Prevention, Vol. 83, pp. 132–142, Oct 2015.

30. Stipancic, J., L. Miranda-Moreno and N. Saunier, “Vehicle manoeuvers as surro-

gate safety measures: Extracting data from the gps-enabled smartphones of regular

49

drivers”, Accident Analysis Prevention, Vol. 115, pp. 160–169, Jun 2018.

31. Pluvinet, P., J. Gonzalez-Feliu and C. Ambrosini, “GPS Data Analysis for Un-

derstanding Urban Goods Movement”, Procedia - Social and Behavioral Sciences ,

Vol. 39, pp. 450–462, 2012.

32. Chen, J., W. Li, H. Zhang, W. Jiang, W. Li, Y. Sui, X. Song and R. Shibasaki,

“Mining urban sustainable performance: GPS data-based spatio-temporal analysis

on on-road braking emission”, Journal of Cleaner Production, Vol. 270, Oct 2020.

33. Pham, D.-T., B. A. M. Hoang, S. N. Thanh, H. Nguyen and V. Duong, “A Con-

structive Intelligent Transportation System for Urban Traffic Network in Devel-

oping Countries via GPS Data from Multiple Transportation Modes”, IEEE 18th

International Conference on Intelligent Transportation Systems , IEEE, Sep. 2015.

	10385208.pdf

