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ABSTRACT

USING MACHINE LEARNING APPROACHES TO

CONSTRUCT CORRELATIONS FOR COHESIVE SOILS

USING IN-SITU AND LABORATORY DATA

In a world where the sizes of construction sites are ever increasing and project

deadlines ever reducing, the geotechnical engineer no longer has the time to properly

conduct the necessary tests on the soil so as to come up with optimal soil properties

that would as accurately as possible reflect the ones on site. Therefore, correlations

equations together with in-situ tests and laboratory tests have formed the basis of

geotechnical engineering design. The literature is filled with correlation equations de-

veloped by previous and present researchers. Some of these equations may or may

not have any statistical background hence making them less reliable when used to es-

timate critical soil parameters. The goal of any correlation equation developed is to

estimate as accurately as possible a response given a certain input. In this thesis, we

aim at developing regression models using machine learning algorithms such as linear

regression, Random Forest and Gradient Boosting so as to predict the undrained shear

strength, cu, the elastic modulus, Em and the limit pressure, pL. In order to further

improve our prediction capabilities we can stack the aforementioned models using their

weighted averages derived from their RMSE indices obtained from the test data. Fi-

nally, the best performing models are compared to the correlations equations found in

the literature.
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ÖZET

KOHEZYONLU ZEMİNLER İÇİN MAKİNE ÖĞRENMESİ

YAKLAŞIMLARI KULLANILARAK ARAZİ VE

LABORATUVAR TEST VERİLERİ İLE KORELASYON

KURULMASI

Günümüz dünyasında inşaat faaliyet sahaları bu denli genişlemekte ve proje

süreleri bu denli kısalmakta iken, geoteknik mühendislerinin sahadaki zemin özelliklerini

mümkün olan en doğru şekilde yansıtacak saha deneylerini yapmak için yeterli zaman-

ları bulunmamaktadır. Bu sebeple korelasyon denklemleri, saha deneyleri ve laboratu-

var deneyleri ile birlikte geoteknik tasarım mühendisliğinin temelini oluşturmaktadır.

Geoteknik literatürde geçmişteki ve günümüzdeki araştırmacılar tarafından geliştirilmiş

bir çok korelasyon denklemi bulunmaktadır. Bu bağıntılardan bazılarının istatiksel

bir temele sahip olmayışı, bu bağıntıları kritik zemin parametrelerinin belirlenmesinde

daha az güvenilir yapmaktadır. Korealasyon denklemlerinin genel amacı elde etmek

istediğimiz bir çıktıyı, belirli bir girdi ile mümkün olan en doğru bir biçimde tahmin

edebilmektir. Bu tez çalışmasında, drenajsız kayma mukavemeti cu, Elastisite modülü,

Em ve limit basınç, pL paramatrelerini tahmin edebilmek için, “Doğrusal Regresyon”,

“Random Forest” ve “Gradient Boosting” gibi makine öğrenimi algoritmalarını kul-

lanan regresyon modellerinin geliştirilmesi amaçlanmıştır. Tahmin kabiliyetimizi daha

da geliştirmek için, bahsi geçen modellerin deney verilerinden elde edilmiş olan RMSE

endeksleri ile hesaplanmış ağırlıklandırılmış ortalamaları kullanılarak, bu modeller bir

arada değerlendirilmiştir. Sonuç olarak, en iyi performansı gösteren modeller lit-

eratürdeki korelasyon denklemleri ile karşılaştırılmıştır.
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1. INTRODUCTION

In the fast paced world of construction, time has become a key factor in the design

process. Gone are the days where geotechnical engineering designers would have ample

time to properly carry out the necessary research, conduct tests punctiliously in order

to give results that would correctly match what is encountered at the field of study.

Understanding the behavior of soil has proven to be an immensely difficult prospect

due to its peculiar nature of having the ability to reflect different properties at different

depths. Thus the best a designer can do, is, to as to the best of his or her capability

to estimate the soil behavior in order to put forth a safe, prudent and lasting design.

In order to properly define the soil profile and strength properties of soil media

at a potential project site, conventional sub soil investigation methods are conducted.

These methods include, drilling of boreholes, collection of disturbed and undisturbed

samples and conducting of in-situ and laboratory tests on the collected disturbed and

undisturbed samples. In-situ and field tests have been advanced where obtaining sam-

ples is difficult or sample disturbing is eminent. Incidentally, laboratory testing has

become inadequate and time consuming as the size of project sites increased and project

deadlines reduced.

Increase of new in-situ testing equipment and procedures have grown in popularity

during this period due to their feasibility and practicality. Many in-situ tests have been

developed over time with the most frequently used being the Standard Penetration Test

(SPT) and the Cone Penetration Test (CPT). Other tests include the Pressuremeter

Test (PMT) , Flat Dilatometer Test (DMT) and Field Vane Test (FVT).

The Standard Penetration Test (SPT), is the most commonly conducted test

among the in-situ tests. The SPT can be practically explained as the resistance of the

soil to vertical penetration. This resistance is measured by blow counts required to

penetrate a certain depth of soil.
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The Cone Penetration Test (CPT) has become quite popular as the SPT due

to its ability to obtain continuous soil profiles and its ability to provide a reasonable

estimate of a variety of geotechnical engineering parameters.

Differently from the SPT and CPT, is the Pressuremeter Test (PMT). With the

PMT, soil resistance is measured radially by the use of an inflatable rubber membrane

and frequently conducted on pre-bored holes. Strength characteristics can directly

derived from the results of the PMT, thus making it an invaluable in-situ test. Fur-

thermore, its relevancy in a wide range of soil and rock media is one of its main

superiority over the other tests. Each of these in-situ tests uses different methods

and parameters to predict soil behavior. However, unlike laboratory tests, none of

the in-situ tests give the required geotechnical parameters directly. Countless empiri-

cal correlations have been developed in order to estimate these parameters from in-situ

tests despite the enormous number of uncertainties involved with empirical approaches.

These approaches combined with in-situ testing and laboratory testing form the basis

of geotechnical design.

In the scope of this study, a substantial number of in-situ tests of cohesive soils

including SPT and PMT were compiled from sub soil investigations executed in a

number of projects across Turkey. In order to come up with correlation equations,

laboratory test data from akin depths were also collected. Among the laboratory

tests collected were the Atterberg limits; Liquid Limit (LL), Plastic Limit (PL) and

Plasticity Index (PI), water content (wn) and the undrained shear Strength (cu).

In the past few years, there has been a steady increase in the interest of using

machine learning algorithms in various fields of engineering [3–5]. This thesis aims

to introduce correlation equations established by using multiple regression analysis

(MRA) methods, both linear and non-linear. Among the non-linear regression meth-

ods, this study looked at the possibility of using machine learning algorithms (MLA)

such as Random Forest(RF) and Gradient Boosting Method (GBM) to estimate the

geotechnical parameters.
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1.1. Machine Learning Overview

Machine Learning is essentially a subset of artificial intelligence, involving the

usage of computer algorithms to autonomously learn from given data. This suggests

that computers do not need to be rigorously programmed to put out the best results

since machine learning algorithms have the ability to improve efficiency through their

learning process.

The term machine learning is relatively new but most of its basic concepts were de-

veloped several years ago. Ever since the development of the method of the least squares

which implemented the method that is now known as linear regression, researchers have

developed various methods of analyzing data quantitatively and qualitatively. During

the early 1980s, quite a number of approaches used to learn data had been developed.

However, most of them were linear methods since fitting non-linear relationships was

considered cumbersome. Briema, Stone, Olshen and Friedmann introduced decision

trees for regression and classification purposes. This method demonstrated the capac-

ity of a detailed practical implementation of a method which involves cross-validation

for model tuning.

In recent times, machine learning progress has been helped by the availability of

user-friendly and extremely powerful tools and softwares such R,Python among other

coding languages. In this study, the user-friendly R program which is freely available

for download was used to model the machine learning models as well as the multiple

regression model.

1.2. Supervised Learning

Supervised learning generally means trying to map an outcome by using its input

values. The mapping is essentially done by use of algorithms. The goal of supervised

learning is to map the outcome of the input variables as accurately as possible so as to

accurately predict the outcome on a different set of input data.
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It has been given the term supervised learning because the whole process of the

algorithm learning from the training data can be thought of as an instructor supervising

a learning process. The correct answers are known, the algorithm makes predictions

on the training data and it is corrected by the instructor until an acceptable level of

performance is achieved.

1.3. An Overview of Bias and Variance

As mentioned above, a supervised machine learning algorithm learns from a train-

ing dataset. The objective of any supervised machine learning algorithm is to estimate

the best mapping function,f̂ , for an output variable,y, given input data x. The mapping

function can also be termed as the target function as it is the function the supervised

machine learning algorithm aims at approximating. Machine learning prediction error

can be broken down into 3 parts:

• Bias Error

• Variance Error

• Irreducible Error

The irreducible error, from its name, is understood as an error that cannot be reduced

regardless of what algorithm is used.

The bias error is simply explained as a model making assumptions of the mapping

or target function. This makes the models exhibit low predictive performances on much

more complex problems. An example of a high bias model is the linear regression as it

assumes the input data and output data can be fitted through a linear model. However,

models that make less assumptions about the form of the target function tend to have

a high variance. This bring us to the variance error.
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The variance error estimates how much the target function, f̂ , varies if and when

different training data is used. Essentially, the algorithm is expected to have some

variance. A low variance suggests small changes to the target function with changes

to the training with the vice versa being true.

The objective of any supervised machine learning algorithm is to achieve a bias-

variance trade off that can map the target function as accurately as possible which in

turn will enable us to obtain an acceptable prediction performance.

1.4. Assessing Model Performance

Assessing the performance of machine learning models on given data is straight-

forward. Since the problem at hand is a regression program, like previous researchers

the root mean square error (RMSE) of the models is considered in determining model

performance [4, 6]. An excellent prediction is represented with a 0 the RMSE values.

The RMSE value is determined as following:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (1.1)

In assessing the performance of our models, we would like to see how our models

would fair when they are given data that has not been seen by the algorithms i.e test

data. This is a much more non-biased way of evaluating how well the models have been

able to map the target function. Finally, to determine the validity of the equations and

models from the linear and machine learning models, equations developed by previous

researchers are compared using the test data with the ones determined from this study.
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1.5. Resampling Techniques

Resampling techniques are essential tools in modern statistics. They comprise of

drawing repeatedly from a sample of training data and refitting a model so as to acquire

more information of a model. An example can be trying to obtain the variability of

a linear regression by repeatedly drawing different samples from the training data,

fitting a linear regression and comparing the results obtained so as to see how much

they differ. Such an approach may allow us to acquire information that would not be

available from fitting the model only using the original training sample.

Figure 1.1. Simplified Display of Validation Approach.

The downside to using resampling approaches is that it can be computationally

expensive, as it involves drawing data and fitting it on a model multiple times. However,

thanks to recent improvements in the computational powers of computers resampling

methods are no longer suppressive. Here we will discuss two of the most common

resampling techniques which have been used in this thesis.

1.5.1. Cross-Validation

Cross-validation can be used to estimate the test error involved with any sta-

tistical learning method. Cross-validation involves splitting the data into two sets

randomly, fitting the model on one and testing for its error in the other. The valida-

tion set as mentioned earlier is drawn from the training data set and is different from

the test data set [7].
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Figure 1.1 shows a data set that has been split randomly into two different parts.

The dataset in blue is used to fit the model while the one in orange is used to check the

accuracy of the fitted model. The validation error of such an approach may be highly

variable hence less reliable. To mitigate such a problem, we can randomly split the

data into a k separate fold, train on k-1 folds and test on the fold that has been held

out. Then the average of the accuracies of the models can be taken into account as a

more reliable estimate of the errors. Figure 1.2 shows an example of such an approach.

In this schematic display a 5 fold cross-validation procedure was performed [7].

Figure 1.2. 5 Fold Cross-Validation Approach.

1.5.2. Bootstrap

Bootstrap is essentially a resampling technique which involves continuously tak-

ing random samples from a training data with replacement. This simply means that

selected data may appear more than once in the selected subset [8].

A bootstrap sample will have the size of the original data set from which is being

drawn. Consequently, various observations will be represented in the sample and others

will not, these are called out of bag samples. A model will be built on the selected

samples and evaluated on the out of bag samples.
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Bootstrapping is an essential tool used in building the Random forest model which

will be discussed in the upcoming chapters. An example of how bootstrap resampling

is done is presented in Figure 1.3.

Figure 1.3. Bootstrap Resampling Method.

1.6. Outline of Thesis

This research aims to introduce new approaches and methodologies by using

machine learning algorithms (MLA) and multiple regression analysis (MRA) models

to predict geotechnicals strength parameters.

Chapter 2 includes a brief summary of the tests whose data has been used to

determine the correlation equations developed in this research. Moreover, it also shows

the correlation equations that have been developed over the years by different re-

searchers in the field of civil engineering. Chapter 3 focuses on introducing the linear

regression models and machine learning algorithms that have been used in this thesis.

Additionally, properties of each model together with their advantages and disadvan-

tages are discussed in this chapter. Furthermore, the tuning parameters for each model

are explained and optimized. Chapter 4 is dedicated to introducing the dataset used

in developing the machine learning models, giving results and comparing the results

obtained from the different machine learning models utilized. Chapter 5 sees the com-

parison of the best performing models with the frequently used correlation equations

from the literature. Lastly, the final chapter focuses on conclusions of the research

and suggestions for future methodologies that could be applied in order to improve the

performance the machine learning algorithms.
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2. LITERATURE REVIEW

2.1. In-Situ Tests

In situ testing can be simply expressed as laying an instrument in a precise point

in a borehole or on the ground surface so as to establish the properties of the soil

or rock media in its natural stress condition. Most of the in-situ test are primarily

penetration methods which allow them to be swift and cost effective. Frequently used

in-situ tests in the world of geotechnical engineering are seen in Figure 2.1.

Figure 2.1. Frequently Performed In-Situ Tests.

2.1.1. Advantages and Disadvantages of In-Situ Tests

In-situ testing is an efficient way of determining different soil properties. More-

over, they do have significant advantages over laboratory testing, but, also hold some

drawbacks which can greatly affect the design process.
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Typical advantages and drawbacks of in-situ testing contrasted with laboratory

testing are listed below:

(i) Advantages

• Larger percentage of soil is represented.

• Continuous soil profiling can be attained from a couple of the tests.

• They are applicable to both soil and rock media.

• Tests are conducted under natural stress environment which is significant in

determining the parameters of the media on the potential project site.

• Most in-situ tests are cost effective and less time consuming.

(ii) Drawbacks

• Nature of the soil cannot be determined in all the tests while index prop-

erties can be only be determined from a disturbed sample of the Standard

Penetration Test (SPT).

• Stress and deformation effect are not clear for most of the tests except for

the Pressuremeter Test.

• Inconsistent results may be achieved for the same type of soils.

• Drainage conditions during the testing cannot be controlled.

With the help of correlation equations, results obtained from in-situ tests can be

used to predict or estimate necessary geotechnical parameters that are to used in the

design process.

Correlations used to determine the parameters together with brief introductions

of the some of the in-situ tests are discussed in the following sections of this chapter.
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2.2. Standard Penetration Test (SPT)

2.2.1. General Information

The Standard Penetration Test (SPT) is one of the oldest and most frequently

used of the in-situ tests. Initially developed in the late 1920s and extensively used in

North and South America, Great Britain, Japan and elsewhere. It is conducted in an

exploratory boring using inexpensive, readily available equipment, hence adding little

cost to the subsurface exploration program.

2.2.2. Testing Procedure and Equipment

The test was only standardized back in 1958 when the ASTM standards initially

appeared [1]. It is typically:

• A standard sampler with dimensions as given in Figure 2.2 is driven into the

ground by energy delivered from a 63.5kg weight hammer dropped from a distance

of 760mm.

• The process is repeated until the sampler has penetrated a distance of 450mm.

• Hammer blows required to penetrate each interval of 150mm are recorded. The

test is stopped if the blows required to penetrate a certain 150mm interval exceed

50, or if more than 100 blows are required for the entire 300mm.

• The SPT N or N30 value is calculated by adding up the sum of the blows required

to penetrate the final 300mm.

• The procedure is repeated after boring to the next depth test is reached. Typically

these tests are performed at intervals of 1.5 - 5m

One of the advantages of the SPT test, is that after performing the test, one extract

the sampler, remove and save the soil sample for classification and conduction of index

tests on it.
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Figure 2.2. Standard SPT Sampler [1].

The reasons for the wide usage of the SPT in subsoil investigations can be ac-

counted to many factors such as the already mentioned readily available equipment,

directness of the operation, appropriateness in a variety of soil media and ability of

sampling.

For its practical aspects, results of the SPT test can be drastically affected by

drilling operations, competence of the operator, existence of coarse particles and ground

water conditions.

2.2.3. Measured Parameters

Results of SPT-N are used to calculate imperative engineering properties of

coarse-grained soils such as internal angle of friction (φ), relative density, Dr, bear-

ing capacity and settlement. It can be used to calculate the shear wave velocity (vs),

liquefaction potential and also as a control for compacted fills.



13

Even though the SPT test was initially intended to be used in coarse-grained

soils, it can also be used to determine certain properties of fine-grained soils such as

undrained shear strength (cu), undrained compressive strength (qu), and coefficient of

volume compressibility (mv) [9].

Since the equipment and operating conditions vary, direct use of SPT results

in design is not recommended [10]. However, ASTM standards recommend that the

measured SPT-N value (N30) should be standardized by ratio (CE) between the energy

measured transfered to the rod (Emeasured) and 60% of the theoretical potential energy

(Etheoretical).

CE = (Emeasured/Etheoretical)/60 = ER/60 (2.1)

This compensates for the different rods and different rigs used during the SPT

test, hence, making the results more reliable when estimating parameters to be used

in design.

There are a few number of factors that affect the validity of the SPT results [11],

and for that matter the obtained penetration resistance may be too high or too low.

High values result in estimating nonconservative results, while low values result in

estimation of over conservative results of soil properties and bearing capacity. It is

for this reason that corrections should be made to SPT results before using them to

estimate engineering properties.

We can improve the raw SPT data by applying certain corrections,thus greatly

improving its repeatability. The variations in testing procedure may be somewhat

compensated by converting recorded SPT-N (N30) values to N60 using equation 2.2 [12]:

N60 =
EMCBCSCRN

0.60
(2.2)
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where:

N60 = SPT-N value corrected for field procedures

EM = Hammer Efficiency

CB = Borehole Diameter Correction

CS = Sampler Correction

CR = Rod Length Correction

N = SPT-N value recorded in the field

Furthermore, to obtain the N1,60 values, a correction of overburden pressure of

100kPa and a 60% of the theoretical free-fall hammer energy is applied. This can be

simply explained by equation 2.3.

N1,60 = CNN60 (2.3)

where:

CN = Overburden Correction Factor

The SPT-N value is used in a few number of empirical correlations to deter-

mine engineering properties of soil media to be used in design [13–16]. Although the

equations present in the literature are known, little exists regarding what sort of SPT

corrections were done or what sort of regression analysis method was undertaken.

2.2.4. Preceding Correlations from the Standard Penetration Test

In todays fast paced construction world, an engineer has to deal with two main

factors, time and cost effectiveness. Getting soil the required soil parameters to start

the design requires both time and money. Therefore, it is to the advantage of the

engineer to use the correlations by using a small number of soil parameters that can

be easily obtained.
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Correlations are essential in estimating engineering properties of soils, particularly

where projects are under a tight financial budget and need to completed within the

shortest period. However, usage of correlations from the literature is not always clear.

There are generally four uncertainties that arise from the use of the correlations [9].

These uncertainties include:

• whether the correlations have any corrections or not, and if they do,which cor-

rections have been made.

• whether the correlation has a statistical background.

• which test results are to be used.

• which type of soil is the correlation credible for.

Therefore, when using a correlation equation, one must always question and an-

swer the aforementioned uncertainties.

2.2.4.1. SPT-N and Undrained Shear Strength (cu). It is essential to determine the

undrained shear strength of fine-grained soils in order to calculate their bearing capac-

ities as well as to calculate stability analysis for structures and slopes. cu is determined

primarily through laboratory tests such as unconsolidated undrained (UU) triaxial

test. In addition for saturated fine-grained soils, the undrained shear strength can be

obtained by taking half of the unconfined compressive strength from the unconfined

compression test (cu = qu/2). Many researchers have over the years studied and tried

to come up with different correlation between the SPT and Cu [9, 15, 17]. A summary

of the correlations most frequently come across is presented in Table 2.1.
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Table 2.1. Previous Correlations Presented By Different Researchers.

Researcher(s) Explanations cu (kPa)

Sanglerat [18] Clay

Silty Clay

12.5N

10N

Terzaghi and Peck [15] Fine-grained soil 6.25N

Nixon [19] Clay 12N

Decourt [19] Clay 12.5N

15N60

Sivrikaya and Togrol

[9]

Highly Plastic Soil 4.85Nfield

6.82N60

Low Plastic Soil 3.35Nfield

4.93N60

Fine-grained Soil 4.32Nfield

6.18N60

Ajayi and Balogun [9] Fine-grained soil 1.39N+74.2

Hettiarachchi and

Brown [20]

Fine-grained soil 4.1N60

Sivrikaya [3] UU Test

UU Test

3.33N -0.75wn + 0.20LL +1.67PI

4.43N60 - 1.29wn + 1.06LL + 1.02PI

As seen from Table 2.1, uncertainties may arise when using some of the correla-

tions. Researchers such as Sivrikaya and Togrol, Hettiarachchi and Brown and Decourt

have explicitly stated what results of the SPT test have been used to determine the

undrained shear strength (cu). Furthermore, Sivrikaya offers a different approach when

computing the undrained shear strength. He unlike the other researchers also decided

to see how the water content (wn) and Atterberg limits (LL, PL and PI) affect the

estimation of the undrained shear strength.
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This study attempts to come up with different correlation based data collected

from projects completed around Turkey. In addition, it will compare the validity of

some of the equations found in Table 2.1 to estimate the undrained shear strength (cu)

of the database used in this study.

2.3. Pressuremeter Test (PMT)

2.3.1. General Information

A pressuremeter can be defined as a cylindrical probe that has an expandable

flexible membrane designed to apply a uniform pressure to the walls of a prebored

borehole [21]. Invented in 1954 by Louis Menard, the pressuremeter test has become

on the most sort after in-situ test during subsoil investigations. The initial concept

developed by Menard was the inflation of a cylindrical balloon inside a pre-bored hole

so as to measure the deformation properties of the soil media. The PMT is conducted

in hard clays, dense sands and weathered rock. After developing the PMT device,

Louis Menard attested to it being one of the most precise testing methods available for

any type of soil [22].

2.3.2. Testing Procedure and Equipment

The Pressuremeter is made up of three main parts which are, a probe, a moni-

toring box and tubing for inflation.

• Probe: A conventional Menard pressuremeter probe include three separate cells;

top cell, loading cell and bottom cell. The top and bottom cells are usually

referred to as guard cells. These cells are filled with gas in order top protect the

loading cell. The load cell is a flexible membrane that is filled with water after

the guard cells are filled with gas.
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• Monitoring box: This part of the pressuremeter is placed on the ground, prefer-

ably close to the borehole. Its main purpose is to regulate the pressure given

to the probe inside the borehole, record and monitor the volume changes with

respect to pressure increase by use of the dial gauges on it.

• Tubings:From the wording if this part one can easily guess that this part is respon-

sible for delivering gas and water to the guard cells and loading cells respectively.

Aside from the originally developed Menard type pressuremeter, self boring pres-

suremeters and cone pressuremeters have been developed over time.

The Pressuremeter test is performed either by stress controlled method, where

pressure application is applied in equal increments or by the strain controlled method,

where volume application is of equal increment. Before the test begins, two main

calibrations are performed. These calibrations include:

• Volume Calibration: This calibration is performed to check leaks in the system

and to make the necessary adjustments required. The probe is usually placed in

a steel tube before the volume calibration is done. The pressure is increased in

steps. For a given pressure, the lost volume is determined since the probe is in a

confined by the tubes.

• Pressure Calibration: This calibration is performed to determine the resistance

of the rubber membrane to expansion. The probe is taken out of the steel tube

and calibration performed under atmospheric conditions. A typical calibration

graph is presented in Figure 2.3 [23].

2.3.3. Measured Parameters

After the test is conducted, volume changes recorded during the test are plotted

against the pressure considering necessary corrections have been made based on the

calibrations. The corrected pressuremeter graph usually obtained is given in Figure

2.4.
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Figure 2.3. Calibration Curves Obtained During Calibration Process [2].

Figure 2.4. Calibration Curves Obtained During Calibration Process.
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As seen from Figure 2.4, three values are recorded in order to obtain the graph.

Pressure pho, is known as the initial horizontal pressure on the ground. At this pressure,

it is assumed that the membrane is in full contact with the soil around the wall of the

borehole.

As the pressure increases, the pressure-volume curve becomes almost linear, which

is a result of the elastic behavior of soils, hence described on the graph as the elastic

range. With further pressure increase, permanent deformations occur and volumetric

expansion in the soil increases greatly.

Another measured parameter from the graph is the limit pressure, pL. The limit

pressure is defined theoretically as the pressure for which an infinite expansion is of the

probe is expected [24]. It is assumed that soil failure occurs at this pressure point. This

pressure is achieved at volume equal to 2v0 , where v0 is the initial volume required to

inflate the pressuremeter.

Although the limit pressure pL, defines the failure point that occurs in the soil, the

net limit pressure pLn is frequently used in practice due to its crassness to disturbances

in the borehole [24,25]. The net limit pressure, pLn, is calculated as:

pLn = pL − pho (2.4)

Accurately determining the value of pho from the test data is difficult due to the

disturbances in the borehole. For this reason, the following equation can be used as

well:

pho = [(γ − u)z]Ko + u (2.5)
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where:

γ = Unit weight of soil being tested

u = Pore water pressure at testing depth

z = Depth of test level from ground surface

Ko = Earth pressure coefficient at rest

The Pressuremeter test is widely used for foundation designs because the method

of the test resembles the behavior of a foundation. The settlements of foundations

can be estimated by using the deformation modulus, EPMT . This modulus can be

determined from the elastic phase of the graph in Figure 2.4. Since the EPMT is a

function of Poisson’s ratio, slope and cavity volume in the elastic range, it can be

found using the equation below:

EPMT = 2(1− ν)(Vo + vm)
∆p

∆v
(2.6)

where:

ν = Poisson’s ratio, typically taken as 0.33

Vo = Initial volume of probe

vm = Average volume of probe over the considered stress range i.e (vo + vf )/2

∆p = Pressure change in the elastic range

∆v = Volume change in the elastic range

2.3.4. Preceding Correlations from the Pressuremeter Test

The literature is not filled with correlations of obtaining the Pressuremeter param-

eters from field tests. However, from the few studies that have been undertaken rela-

tionships between SPT parameters and PMT parameters have been determined [26–28].

Bozbey and Togrol in 2010 did present a relationship between N60, EPMT and pL

based on a study in Istanbul, Turkey [29].



22

They developed their relationships based on 182 tests carried out in both sandy

and clayey soils. Gonin in 1992 also developed correlations between SPT, EPMT and

pL for nine different French soils [30]. The literature does also show a non uniform

relationship between the SPT and PMT parameters. This can be accounted for by

factors such as type of soil, ranges of the N, EPMT , pL and the geological conditions

of where the tests are conducted. Table 2.2 presents some of the correlations used to

predict the limit pressure, pL , from the SPT parameters. The equation proposed by

Yagiz uses the Ncor to determine the limit pressure. However, the corrections made

to the SPT-N value obtained are not mentioned. The same problem applies to the

equations proposed the rest of the researchers, except for Bozbey and Togrol and

Kayabasi. They explicitly state that N60 is used to estimate the limit pressure.

Table 2.2. Correlations of Limit Pressure and SPT From Different Studies.

Researcher(s) Explanations Proposed Correlation

Hobbs and Dixon [31] Clay pL = 0.021N + 0.33 (kPa)

Waschkowski [6] Clay pL = 0.0561N - 0.092 (kPa)

Yagiz [26] Clay pL = 29.45Ncor + 219.7 (kPa)

Bozbey and Togrol

[29]

Clayish Soil

Sandy Soil

pL = 0.26N0.71
60 (MPa)

pL = 0.33N0.51
60 (MPa)

Kayabasi [6] Clay pL = 0.0425N1.1965
60 (MPa)

Table 2.3. Correlations of Elastic Modulus and SPT from Different Researchers.

Researcher(s) Explanations Proposed Correlation

Yagiz [26] Clay Em = 388.67Ncor + 4554 (kPa)

Bozbey and Togrol

[29]

Clayish Soil

Sandy Soil

Em = 1.61N0.71
60 (MPa)

Em = 1.33N0.77
60 (MPa)

Kayabasi [6] Clay Em = 0.29N1.4
60 (MPa)
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3. INTRODUCING MACHINE LEARNING

ALGORITHMS

There are a wide variety of machine learning algorithms to use for regression

purposes, this thesis uses only three of them. Linear regression model, Random forest

and Gradient boosting algorithms.

3.1. Linear Regression

Linear regression is a very simple and old approach for supervised learning. It

is particularly useful tool for predicting qualitative responses. One can describe this

approach as dull compared to the more fancy statistical learning algorithms that are

now available, but one can not overstate the importance of properly understanding

the key ideas involved with linear regression before jumping off to the more eye catch-

ing supervised learning algorithms. Linear regression can be divided into two simple

segments:

• Simple linear regression

• Multiple linear regression

3.1.1. Simple Linear Regression

Simple linear regression, from its name is a very straightforward method of pre-

dicting a quantitative response. It aims at predicting a response y, from a single

predictor, x, i.e it maps the target function, f̂ , of the input by looking at the output.

Mathematically such a relationship can be expressed as:

ŷ = β1 + β2x (3.1)
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where ŷ indicates the prediction of response y based on input parameter x. The hat

symbol here is used to denote the prediction made by our model and to denote an

unknown coefficient or parameter.

Our aim is to obtain coefficient estimates β1 and β2 such that the model fits the

available data as well possible. To phrase the previous statement more simply, we want

to find an intercept β1 and slope β2 that results in a line that closely follows the data

points.

Figure 3.1. Schematic Representation of the Intercept and Slope in a Simple Linear

Regression.

Having come up with a linear, one may assume that they could directly use the

formula to estimate responses. However, there is the need to check the statistical

significance of the coefficients that have been developed. These statistical significance

checks will be discussed in the upcoming sections.
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3.1.2. Multiple Linear Regression

Simple linear regression as mentioned earlier, is a useful approach for predicting

a response on the basis of having a single predictor. However, in the real world and in

practice this is rarely the case. To mitigate this problem, we can extend the simple lin-

ear regression to accommodate the multiple predictors available. Once this is achieved

it is referred to as a multiple linear regression model. The multiple linear regression

model will then take the form

ŷ = β1 + β2x2 + β3x3 + ...+ βpxp (3.2)

To estimate the regression coefficients of both the simple and multiple regression

models, we use the least squares approach. Essentially what we are trying to achieve

can be expressed in equation 3.3.

RSS =
n∑

i=1

(yi − ŷi)2 (3.3)

where:

RSS = Sum of squared residuals

yi = Actual response value

ŷi = Predicted response value

We would therefore like to choose coefficients that minimize the sum of squared

residuals [7]. Figure 3.2 shows a three dimensional space of a multiple regression model.

For such a model the least squares regression line becomes a plane. This plane is chosen

in a way that is reduces the vertical distances of each points (shown in red) and the

plane.
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Figure 3.2. Schematic Representation of a Linear Regression with Two Predictors in

a Three Dimensional Space.

3.1.3. Determining Statistical Significance of a Linear Regression Model

Recall that we mentioned that upon developing our models, we may not imme-

diately dive in into applying it in our practices, we must first determine if the models

are statistically significant. Basically this means that the possibility of a relationship

between two or more variables is determined by something other than chance.

Statistical hypothesis testing among other significance tests are used to determine

the significance of a relationship determined by a dataset. Here we shall discuss some

of tests carried out to determine if a model is statistically significant.

The p-values are of great importance, a linear can only be considered as statis-

tically significant when the p-values are less than the pre-determined significance level

of 0.05.
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When a p-value is involved, there is null and alternative hypothesis that comes

with it. In Linear regression, the null hypothesis refers to the coefficients of the variables

being equal to zero i.e β2 = β3 = ... = βp = 0. Whereas the alternative hypothesis

refers to the coefficients not being equal to zero. The existence of an alternative

hypothesis indicates that there exists a relationship between the predictor and the

response.

How do we then determine if there is a null hypothesis or an alternative hy-

pothesis. This is simply achieved by checking the p-value. If the p-value is less than

0.05 (p-value < 0.05), then we can safely reject the null hypothesis and conclude that

our model is indeed statistically significant. It is vital that our model be statistically

significant before going ahead and using it to predict future responses, otherwise, the

confidence in the predicted responses is mightily reduced and may be described as an

event of chance [32].

In linear regression, the coefficient of determination, R2 , is mostly what people

look at to see how well their model has performed. However, for this study we have

chosen to use a different goodness of fit statistic that is the standard error of the

regression. This can be more helpful and easily understandable. Furthermore, s gives

us more valuable information than the coefficient of determination does.

The standard error for regression represents the average distance the observed

values fall from the regression line or plane when there are multiple predictors. Smaller

values of this statistic indicate that the observed values are closer to the fitted line.

An advantage of the standard error of the regression has over the R-squared is the

practicality and intuitiveness of using the natural units of the response variables. One

can easily see how close or far are the predicted responses to the observed ones by

simply checking the s statistic.
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3.1.4. Advantages and Disadvantages of Linear Regression

As stated at the start of this chapter, an introduction of the models would be

followed by their advantages and disadvantages. A few of the advantages and disad-

vantages of the linear regression will be listed here.

(i) Advantages

• It is a simple approach that is easy to understand

• It shows optimal results when the predictor and observed response are almost

linear

(ii) Disadvantages

• It makes an assumption that the predictor and response have a linear rela-

tionship, this makes it prone to producing poor models if the the relationship

is non-linear

• It is rigid way of producing prediction based models

3.2. Random Forest

The Random forest is a powerful machine learning algorithm used for both re-

gression and classification problems. It essentially a tree-based method which involving

breaking up the predictor space into a number of simple regions. So as to make a pre-

diction of a certain observation, the mean of the training observation of the region

to which it belongs is given. Since the splitting criterion used to break up the pre-

dictor space can be summarized in a tree, these methods are known as decision tree

methods [7].

Decision tree methods are not competitive compared to the other supervised

machine learning approaches. However, more competitive models such as bagging and

Random forest, which involve producing multiple trees which are then combined to

produce a single prediction have been developed [7]. We first look at the basics of

decision trees.
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3.2.1. Decision Trees

Decision trees try to simplify problems by segmentation. They build rectangular

spaces in the predictor space and give region specific responses. What do we mean

by region specific responses. Figure 3.3 shows how the predictor space is split into

regions namely R1, R2, ... , R5 using splitting criteria t1, t2, t3 and t4 [7]. For all the

observations in a specific region Rk, a similar response is given.

Figure 3.3. Schematic Representation of Segmentation of the Predictor Space in

Decision Trees.

The regression tree is built by following the two steps explained below.

• Dividing the predictor space, that is for a possible set of variables X1, X2, ..., Xp,

into K non-overlapping regions, R1, ..., Rk.

• A similar prediction is made to all the observations that fall within the region.

This simply means the mean of the response values for the training observations.
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To elaborate more on these steps, suppose in the first step we obtain two regions,

R1 and R2, and their means of the training responses are 10 and 20 respectively. Then

for a given observation X=x, if x happens to fall in R1, we will predict 10 as the

response. Were it to fall in R2, we will predict 20 as the response.

The question remains, how do we construct the regions. Similarly to how the

coefficients of linear regression are determined, the regions are determined by minimiz-

ing the RSS of the region. A top-down greedy approach known as recursive binary

splitting is used.

3.2.2. Recursive Binary Splitting

In order to perform recursive binary splitting, we select a predictor Xj and a

cutting point s that will lead to least possible value of RSS in the segmented region.

Next, we repeat the process looking for the cut point and best predictor of the available

data so as to further reduce the RSS in the regions. This time, instead of splitting

the entire space, we split one of already formed regions. We now have developed three

regions. To further reduce the RSS we split any of these three regions. This process

can continue until say no region contains no more than ten or even five observations.

3.2.3. Advantages and Disadvantages of Trees

Decision trees used for both regression and classification have advantages and

disadvantages. We take a look at these here.

(i) Advantages

• Trees are easy to explain.

• They mirror human decision making.

• Trees can be graphically displayed and even a non-expert can interpret them.
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(ii) Disadvantages

• The biggest disadvantage of trees is that they do not have the the predictive

capabilities of other regression models.

However, by combining different decision trees using methods like bagging, ran-

dom forests and boosting, the predictive capabilities of the trees can be drastically

improved. We will now aim to shed some light on these methods.

Figure 3.4. An Example of a Regression Tree.

3.2.4. Bagged Trees

The decision trees explained above suffer from high variance. This simply trans-

lates to that if we split the training data into two halves randomly and fit decision trees

on them, the results could show significant differences. A conventional way of reducing

the variance is to build multiple prediction models using multiple training data sets

and average the resulting predictions.
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This is not a very practical way of doing this since we do not have an infinite

number of training sets. One way of mitigating this problem is by using the resampling

method known as bootstrap. Recall the bootstrap method involves repeatedly taking

samples from single training data set with replacement. We can create B different

bootstrapped training datasets, train our model on each other bootstrapped datasets

and average the predictions.

f̂bag(x) =
1

B

B∑
b=1

f̂ b(x) (3.4)

where B is the number of bootstrapped samples, f̂ b(x) is the result of the bth sample

and f̂bag(x) is the average of all the predictions of the bootstrapped samples.

3.2.5. Basics of Random Forest

The Random forest is a tree-based model too that uses the bagged tree approach.

Just like bagged trees it uses bootstrap resampling to create multiple training sets

and fits trees to each bootstrapped training data set. The only difference between the

bagged tree and random forest , is that at each split, it randomly picks m predictors and

only searches within these randomly selected predictors for the best possible split [33].

Typically, different software packages have various default parameters for the m

value. For regression purposes generally m = p/3, where p is the number of predictors.

However, using the cross-validation introduced earlier one can tune to model to find

the optimum m value. Note that the m value cannot exceed the number of predictors

present in your training data set.

The reasoning behind using a randomly selected group of predictors rather than

using the entire predictor space is that it is generally the case that one of the predictors

is the best one to be used at the top of the tree. This results in having similar trees,

and averaging similar trees does not reduce the high variance of the predictions.
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In using a random set of predictors to decide the best split at the top of the tree,

the Random forest enables trees to be formed using the more weaker predictors as well.

Averaging these predictions results in less variable and more reliable predictions.

3.3. Boosting

Boosting is another avenue for improving the prediction results of a decision tree.

Like bagging which has been discussed earlier, boosting can be applied to different

statistical learning methods for both regression and classification problems .

Recall bagging involves generating multiple training data set from the original set

using bootstrap. This is followed by fitting decision trees to each of these bootstrapped

samples, and finally combining all these fitted trees to create a single model. Boosting

works in a similar way, except this time each one of the trees grown is grown by

using information from the previously grown trees. This is process can be termed

as sequential growing. This sequential growing of the trees in the boosting approach

allows the algorithm to learn slowly [7].

Let us break down this process a little further for us to form a clear picture. Given

a model, we fit the residuals of the model rather than the response. Then we add to

this a new decision tree so as to update the residuals. These new decision trees can be

slow in nature, hence the residuals of the model are slowly improved. In the boosting

algorithm, the shrinkage parameter, λ slows down the process even further allowing

more smaller decision trees to improve the residuals hence improving the performance

of the model.

3.4. Stacking

Stacking, can be simply understood as stacking multiple machine learning models

on top of each other. The machine learning models pass their predictions to the upper

layer and this layer makes decisions based on performances of the models in the layer

below. A simple schematic in Figure 3.5 aims at simplifying this.
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Figure 3.5. Simplified Structure of Stacked Models .

In Figure 3.5, we see two stacked layers of machine learning algorithms. For

purpose of simplicity we only included two layers, but an arbitrary amount of layers can

be arranged. The bottom layer of machine learning algorithms pass their predictions

to the layer above. The layer above takes the outputs of the layers below as its input

and produces an output. The main goal of using the stacked model is to increase the

performance of our models, in order to achieve that, one must have a clear performance

criterion that individual models need to achieve so as to part of the stack. Furthermore,

the predictions of the individual models should not be highly correlated. If these

predictions have high correlations then combining the models will not result in a better

performance of the stacked model.

We can see from Figure 3.5 that the top layer has been labeled as stacking func-

tion. This simply means once can incorporate any machine learning algorithm to the

stacking function or simpler functions such as weighted average of their performances.
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4. DEVELOPING REGRESSION MODELS USING

MACHINE LEARNING

APPROACHES

In this chapter we shall try and develop the aforementioned machine learning ap-

proaches to create regression models. The models will be developed so as to predict the

undrained shear strength, cu, using in-situ parameter, N60, and further by introducing

the Atterberg limits (LL,PL, and PI) and water content, wn. Furthermore, models will

also be developed to predict elastic modulus, Em, and limit pressure, pL, of the PMT

test again by using in-situ parameter N60. It should be noted that all these models

were built using the CARET (Classification and Regression Training) package found

in R.

4.1. Introducing the Datasets

The dataset used to develop the various machine learning models was developed

by requesting data from Zemin Etud ve Tasarim A.S and Geocon Zemin Uzmanlari Ve

Mühendislik Ltd. Sti. Additionally, some data was adopted from the thesis of Kamil

Özçelik previously of Istanbul Technical University [34]. The dataset consists of two

portions. One of them contains parameters such as undrained shear strength, cu, N60,

Atterberg limits and finally water content, wn (from now on dataset A). While the

second data set contains in-situ parameters N60, the elastic modulus, Em and the limit

pressure, pL (from now on dataset B). These datasets contain 231 and 110 observations

respectively. These datasets are split into training and testing sets. The purpose of

the training data is to model and tune our algorithm and then test it on the test data.
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Table 4.1. Summary of Dataset A.

Variable Minimum Maximum Median Mean

N60 1 53 15 18

wn (%) 9 96 30 31.6

LL 23 104 56 55.62

PL 11 60 24 24.04

PI 7 62 30 31.8

cu (kPa) 8 353 74 90.5

Table 4.2. Summary of Dataset B

Variable Minimum Maximum Median Mean

N60 5 50 20 20.63

Em (kPa) 1844 46540 20685 20583

pL (kPa) 259 4470 1500 1543

4.2. Data Preprocessing

Before embarking on the building of the models, some preprocessing methods

need to satisfied. There are some important aspects that can have significant brunt

on our models. Such aspects include presence of non-informative parameters within

our dataset. Another is the presence of highly correlated parameters which can result

in developing unstable models. Furthermore, presence of outliers within a dataset can

lead to drastic model inaccuracies. Outliers are defined as data points that do not

conform to the general consensus of the sample data.
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4.2.1. Uncovering Outliers

As mentioned above, the presence of outliers in the dataset will lead to building

drastically inaccurate models which will furthermore lead to poor predictive perfor-

mance. To detect the presence of outliers in our model we can refer to Table 4.1 and

4.2. A simple way of detecting presence of outliers can be seen in the values of the

median and the mean of the variables. These values if close together indicate that

there are no outliers present within the sample data. If these values are very different

then it is possible that there are some outliers present. The mean and median values

of the undrained shear strength are very far apart, this indicates that there could be

some outliers that are augmenting the mean value. To further investigate this we plot

a histogram of the undrained shear strength values in an attempt to further uncover

these outliers.

Figure 4.1. Histogram of Undrained Shear Strength.
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From Figure 4.1 we can deduce that the bulk of undrained shear strength fall

between 0 and 200kPa. Values above this limit are less frequent in the data, thus

including them will make drastically decrease our models’ predictive performances.

Furthermore, SPT tests cannot be properly conducted on soils that have undrained

shear strengths greater than 200kPa. It is for this reason that they are not included in

the analysis.

4.2.2. Parameter Selection and Correlation

Another factor that may reduce the predictive performances of our models is

the presence of non-informative parameters within the data. This however, is not a

problem in our data as researchers have determined correlation equations based on the

very same predictors before [16,17]. The next obstacle we must tackle is to determine

the correlation among our variables. The Pearson correlation coefficient is a good tool

to use so as to determine how correlated our parameters are. The Pearson correlation

can be calculated for all parameters and a correlation matrix obtained as seen in Figure

4.2. As seen from the correlation matrix above, none of parameters are highly correlated

with one another. This means we use all the parameters as predictors to determine the

undrained shear strength.

As seen as well from from Figure 4.3, none of the parameters are highly correlated

with each other, hence reduction of the predictors is not necessary to obtain the best

model for prediction.

4.3. Tuning the Models

Model tuning involves choosing the best parameters so as to best develop a model

with the best possible prediction performance. The Linear regression has no model for

tuning so it will not be included in this section.
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Figure 4.2. Correlation Matrix of Parameters in Dataset A.

Figure 4.3. Correlation Matrix of Parameters in Dataset B.
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4.3.1. Tuning the Random Forest Model

In the Random Forest model, two parameters need to be optimized so as to max-

imize prediction performance, these parameters are the ntree and mtry [35]. Though

researchers have determined that prediction accuracy is more sensitive to mtry than

ntrees [35, 36]. To determine the best mtry parameter, a simple cross-validation will

determine the optimizing parameter of our model. Recall that cross-validation data is

part of the training data and independent of the test data. Also recall that the mtry

value cannot be higher than the available number of predictors. We will only need

to determine the optimizing mtry for dataset A since it has a total of five possible

predictors. A 10 fold cross-validation which is repeated 5 times is used to perform

a search on a grid of multiple parameter values in order to determine the optimum

parameters for the model [5]. Repeating this multiple times and taking the average

of the cross-validation results ensures reliability of the cross-validation test. From the

results seen in Figure 4.4, we can clearly see that the optimum mtry value is equal to

2.

Figure 4.4. Random Forest Tuning Results.
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4.3.2. Tuning the Gradient Boosting Model

Recall that boosting involves growing of trees sequentially and that newly grown

trees are only grown considering information learned from previously grown trees. The

shrinkage parameter λ, number of trees and interaction depth are what need to be

tuned so as to obtain the best predictive model. Most machine learning experts set the

number of trees to 100 and hence we will do the same for our problem. To determine

the best shrinkage parameter and the interaction depth that will give us the optimal

predictive model a 10 fold cross-validation repeated 5 times is applied as done for the

Random Forest model. From the results presented in Figure 4.5, it can seen the best

model parameters for the prediction of the undrained shear strength are λ of 0.11 and

interaction depth of 1. Results of all these cross-validations are presented in Figure 4.6

and 4.7.

Figure 4.5. Gradient Boosting Tuning Results to Determine Undrained Shear

Strength.
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Figure 4.6. Gradient Boosting Tuning Results to Determine Elastic Modulus.

Figure 4.7. Gradient Boosting Tuning Results to Determine Limit Pressure.
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4.4. Results of Machine Learning Approaches

Having tuned our models we are ready to see how they will perform when used

to predict responses of unseen data i.e test data.

4.4.1. Results of Linear Models

From the analysis done on the R software a linear regression formula with a 95%

confidence interval having the coefficients as given in equation 4.1 is developed.

cu(kPa) = 45.86 + 2.61N60 − 0.84wn + 0.40LL− 0.34PL (4.1)

As explained in the chapters before, the resulting equation before being used for

prediction has to be checked if it is statistically significant. This is simply achieved by

printing the summary of the linear model when using R.

Table 4.3. Summary of Statistics of the Linear Model for Dataset A.

Coefficient Estimate St.Error t-value Pr (> |t|)

Intercept 45.86 10.69 4.29 3.01E-05

N60 2.61 0.245 10.659 2.00E-16

wn -0.84 0.267 -3.139 0.028

LL 0.40 0.1332 2.618 0.00978

PL -0.34 0.563 -0.606 0.5454

From the summary seen in table 4.3, we can clearly see that null hypothesis can

be neglected for the coefficients of the intercept, N60, wn and LL whose p-value < 0.05.

However, the same cannot be stated for the remainder of the coefficients. They show

p-values that are greater than 0.05. This means that the null hypothesis for these

coefficients is valid. This coefficient needs to be removed from the analysis completely

and another regression model built.
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From the results of the statistical significance of the model, equation 4.1 is there-

fore re-written as:

cu(kPa) = 44.23 + 2.56N60 − 0.93wn + 0.36LL (4.2)

Table 4.4. Summary of Statistics of the Linear Model for Dataset A.

Coefficient Estimate St.Error t-value Pr (> |t|)

Intercept 44.22 10.322 4.29 3.08E-05

N60 2.56 0.229 11.136 2.00E-16

wn -0.934 0.212 -4.404 1.89E-05

LL 0.356 0.164 2.168 0.003

The predicted values obtained by using equation 4.2 on the test data are plotted

against their respective observed data in Figure 4.8. The resulting RMSE index is

determined as 25.02.

From dataset B, we come up with two linear models, one to predict the elastic

modulus, Em, from in-situ parameter N60, while the other is to predict the limit pres-

sure, pL, from in-situ parameter N60. The resulting developed equations are shown

below.

Em(kPa) = 85340 + 576.7N60 (4.3)

pL(kPa) = 595.2 + 45.33N60 (4.4)
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Figure 4.8. Relationship between Measured and Predicted Undrained Shear Strength.

Recall that before using any linear regression formula, the model has to be statisti-

cally significant. Again we print the summary of statistics for both models. Examining

closer the summary of statistics from Table 4.5 and 4.6, clearly see that our p-value is

below the pre-set threshold of 0.05, hence we can safely conclude that both our models

are statistically significant.

Table 4.5. Summary of Statistics of the Linear Model for Dataset B Equation 4.3.

Coefficient Estimate St.Error t-value Pr(> |t|)

Intercept 8534 2402.6 3.552 0.000605

N60 576.7 104.9 5.496 3.44E-07

Figure 4.9 and 4.10 show the linear relationships between the measured and the

predicted responses of the elastic modulus, Em and limit pressure, pL. These equations

yield RMSE indices of 7.61 and 0.46 respectively.
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Table 4.6. Summary of Statistics of the Linear Model for Dataset B Equation 4.4.

Coefficient Estimate St.Error t-value Pr(> |t|)

Intercept 595.29 176.050 3.381 0.00106

N60 45.33 7.703 5.884 6.41E-08

Figure 4.9. Relationship between Measured and Predicted Elastic Modulus.
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Figure 4.10. Relationship between Measured and Predicted Limit Pressure.

4.4.2. Results of Random Forest Model

Unlike the linear regression models, the Random Forest is unable to generate a

tangible equation as to how prediction was achieved. Instead, as explained earlier,

it splits the predictor space into regions while trying to minimize the RSS in each

region as the splitting takes place. Figure 4.11, 4.12 and 4.13 show the relationships

between the measured and predicted parameters as obtained from the Random Forest

regression model. These models respectively give RMSE indices of 23.88, 5.8 and 0.34

respectively.
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Figure 4.11. Relationship between Measured and Predicted Undrained Shear

Strength from Random Forest.

Figure 4.12. Relationship between Measured and Predicted Elastic Modulus from

Random Forest.
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Figure 4.13. Relationship between Measured and Predicted Limit Pressure from

Random Forest.

4.4.3. Results of Gradient Boosting Model

Like the Random Forest model and most of the supervised learning algorithms,

a tangible equation is not possible to derive. Recall that boosting works by growing

trees sequentially, meaning that new trees are grown by using information learned from

the previously grown tree. As presented before, the results of the three models are

presented. The relationships of the measured and predicted parameters are displayed

in Figure 4.14, 4.15 and 4.16.
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Figure 4.14. Relationship between Measured and Predicted Undrained Shear

Strength from Gradient Boosting.

Figure 4.15. Relationship between Measured and Predicted Elastic Modulus from

Gradient Boosting Methods.
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Figure 4.16. Relationship between Measured and Predicted Limit Pressure from

Gradient Boosting Methods.

4.5. Developing the Stacked Model

Recall that if we want to furthermore improve the predictive capabilities of out

models, we can stacked the already developed models [37]. Recall Figure 3.5, where the

lower layers fed their predictions to an upper layer labeled as stacking function. In this

thesis, the lower layers are linear regression, Random Forest and Gradient Boosting

Models. As mentioned earlier, the weighted average of the prediction performances i.e

RMSE indices are used to determine the weights given to the stacking function. Recall

that before embarking on creating stacked models, we must ensure that the individual

predictions of the models are not highly correlated, in this thesis we have set this

correlation value at 0.70. For the predictions obtained from dataset A, the correlation

plot is presented below.
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Figure 4.17. Correlation Plot of Individual Predictions of the Models.

It can be clearly seen from Figure 4.17 that the individual predictions of the

undrained shear strength by the models are not highly correlated, hence a stacked

model can be applied. A stacked model was only developed for models obtained from

dataset A as models from dataset B only included one predictor, hence a stacked model

would not increase the the prediction performance.

4.6. Comparison of Performances of Machine Learning Approaches.

In this section, we aim at selecting the machine learning approach that predicted

the responses of the test data as accurately as possible. As mentioned before, through

cross-validation the best possible parameters were selected for the Random forest and

the Gradient Boosting approaches. To evaluate performance of the models, like pre-

vious researchers the root mean squared error (RMSE) of the observed and predicted

values of the test data was evaluated [5, 38].
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The purpose of selecting the best prediction performing model is to use this model

in comparison with the most commonly used correlation equations from the literature.

This comparison, however, is not in the scope of this chapter but the next. We shall

start by comparing models developed from dataset A. Recall that dataset A was used

to determine the undrained shear strength, cu, using both in-situ parameters, N60, and

laboratory obtained parameters such as the Atterberg limits and water content.

4.6.1. Comparing Models used to Predict Undrained Shear Strength

From Figure 4.18, we can clearly see that all the models did perform reasonably.

The Linear Model is seen to have performed the worst among the three supervised

machine learning approaches. This can be attributed to the fact that the model assumes

a linear relationship exists between the response and the predictors. The Random

Forest and Gradient Boosting perform almost similarly since they do not make any

assumption between the response and the predictors.

Figure 4.18. RMSE Indices for Various Machine Learning Approaches in Predicting

the Undrained Shear Strength.
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Additionally to the RMSE values of the models, the coefficients of determination

were also computed.

Table 4.7. Results of Models used to Estimate Undrained Shear Strength.

Model RMSE (kPa) R2

Linear Model 25.02 0.57

Random Forest 23.88 0.71

Gradient Boosting 23.76 0.71

Stacked 23.09 0.72

The Gradient Boosting Model shows the least value of the calculated RMSE of the

individual models. Furthermore, we can see a lower RMSE index for the stacked model

indicating that combining our three models together does give us a better prediction

power. It should be noted that the test data upon which the RMSE values have

been calculated is explicitly independent from the training data used to develop these

approaches.

4.6.2. Comparing Models used to determine Elastic Modulus and Limit

Pressure

Figure 4.19 clearly shows that the Random Forest outperforms the other models

when predicting of the elastic modulus is taken into consideration. The Linear Model

performs satisfactorily and this, as explained earlier is brought about by the model

assuming a linear relationship between the response and set of predictors. Gradient

Boosting goes from being the best performer to the worst. We can account this to the

few number of predictors in this database. With one predictor, the Gradient Boosting

model is unable to come up with a proper predictive model.
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Figure 4.19. RMSE Indices for Various Machine Learning Approaches in Predicting

Elastic Modulus.

Similarly, Figure 4.20 shows the Random Forest model again outperforming the

other machine learning approaches. In conclusion, we have seen that to predict the elas-

tic modulus and limit pressure from in-situ parameter N60, the Random Forest model

gives the best prediction performance. Similarly like presented earlier, the coefficients

of determination are presented together with RMSE values.

Table 4.8. Results of Models used to Estimate Elastic Modulus.

Model RMSE (MPa) R2

Linear Model 7.61 0.70

Random Forest 5.78 0.82

Gradient Boosting 9.06 0.71
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Figure 4.20. RMSE Indices for Various Machine Learning Approaches in Predicting

Limit Pressure.

Table 4.9. Results of Models used to Estimate Limit Pressure.

Model RMSE (MPa) R2

Linear Model 0.46 0.80

Random Forest 0.39 0.93

Gradient Boosting 0.57 0.80

From the results of the models used to predict the Elastic modulus and Limit

pressure, it is evident that the Random Forest is a bit superior to the other developed

models. To see the competitiveness of our models, we will in the next chapter put them

to the test against correlations developed by researchers throughout the years. The

stacked model having performed the best in predicting the undrained shear strength,

while Random Forest performed the best in predicting both the elastic modulus and

limit pressure are selected for comparison.
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5. COMPARISON OF MACHINE LEARNING

APPROACHES WITH

EXISTING CORRELATIONS

In this chapter as it has been previously stated, we will now compare our best per-

forming machine learning approaches with the correlations that exist in the literature.

We saw in the previous chapter that the stacked model performed best when predicting

the undrained shear strength and Random Forest performed best when predicting the

elastic modulus and limit pressure.

5.1. Stacking against Existing Undrained Shear Strength Correlations

We start by comparing our best performing model in predicting the undrained

shear strength. Many correlations of predicting cu exist in the literature but very

few exist where there is more than the N60 parameter as the predictor. Sivrikaya

proposed an equation(Equation.5.1) where the predictors included, N60, water content,

wn, liquid limit, LL, and plasticity index, PI [3]. Another equation that also uses the

aforementioned parameters was put forth by researchers from Hormozgan University

in Iran (Equation.5.2). These equation are listed below.

cu(kPa) = 4.43N60 − 1.29wn + 1.06LL+ 1.02PI (5.1)

cu(kPa) = 2N60 − 0.4wn − 1.1LL+ 2.4PI + 33.3 (5.2)

Using an independent test data that was not involved in the training of the

stacked model, we compare the prediction performance of these three models.
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Figure 5.1. RMSE of Stacked Model and Existing Correlations.

It is evident from Figure 5.1, that the stacked model clearly outperforms the ex-

isting correlations from the literature. It can be concluded that using machine learning

models can increase the estimation accuracy of undrained shear strength. The reason

for such a better performance of the stacked model can be attributed to the fact that

both Random Forest and Gradient Boosting models do not make any assumptions on

the relationship between the predictor and its coinciding variables.

Table 5.1. Comparison of Models used to Estimate Undrained Shear Strength.

Model RMSE (kPa) R2

Stacked 23.09 0.72

Hormozgan 53.05 0.40

Sivrikaya 77.44 0.52
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5.2. Linear Model against Existing Undrained Shear Strength Correlations

The stacked model above is a combination of both the Random Forest and Gra-

dient Boosting Models. However, we would also like to compare how the generated

linear model from this study compares with the correlations that exist in the litera-

ture. For this, like similarly done throughout, an independent test data is used on

both the correlations in the literature and the generated linear model presented in this

thesis.

Figure 5.2. RMSE of Linear Model Developed and Existing Correlations.

As evident from Figure 5.2 it is clear that the linear model developed from this

thesis outperforms the ones present in the literature. This can be attributed to the

different mechanical properties of the soils used to develop these models.
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Table 5.2. Comparison of Linear Models to Estimate Undrained Shear Strength.

Model RMSE (kPa) R2

Linear Model 25.02 0.61

Hormozgan 53.05 0.40

Sivrikaya 77.44 0.52

5.3. Random Forest against Existing Elastic Modulus and Limit Pressure

Correlations

Similarly, we would like to see how the Random Forest would compare to the

correlations of the elastic modulus and limit pressure. For these comparisons we will

the equations proposed by Bozbey and Togrol (Equation 5.3) as well as those proposed

by Kayabasi (Equation 5.4).

Em(MPa) = 1.61N0.77
60 (5.3)

Em(MPa) = 0.29N1.4
60 (5.4)

Figure 5.3 shows the plot of the RMSE indices of the existing correlations in

the literature and Random Forest developed in this thesis. Random Forest clearly

outperforms both equations put forth by the literature.

Furthermore, the same researchers developed Equation 5.5 and 5.6 to predict the

limit pressure from in-situ parameter N60.

pL(MPa) = 0.26N0.71
60 (5.5)
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Figure 5.3. RMSE of Random Forest and Existing Correlations of Elastic Modulus.

pL(MPa) = 0.0425N1.1965
60 (5.6)

An easily interpretable table of both the RMSE of coefficient of determination

for models used to determine the elastic modulus is presented in Table 5.3. Results of

the RMSE indices in Figure 5.4 clearly show the superiority of Random Forest model

over the other correlations that exist in the literature.

Table 5.3. Comparison of Models used to Estimate Elastic Modulus.

Model RMSE (MPa) R2

Random Forest 5.78 0.82

Bozbey and Togrol 7.48 0.68

Kayabasi 6.73 0.64



62

Figure 5.4. RMSE of Random Forest and Existing Correlations of Limit Pressure.

Figure 5.4 and Table 5.4, we see the RMSE and subsequently the coefficient

of determination, R2, of the models compared to the Random Forest. The results

indicate that the Random Forest has a better prediction capability compared to the

linear models presented in the literature.

Table 5.4. Comparison of Models used to Estimate Limit Pressure.

Model RMSE (MPa) R2

Random Forest 0.39 0.93

Bozbey and Togrol 0.56 0.83

Kayabasi 0.52 0.80
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From the comparison conducted in this chapter, once can easily see the superiority

of the machine learning algorithms over the conventionally used equations to predict

respective soil parameters. The machine learning algorithms, especially Random Forest

out performances the other developed models in this thesis. The Random Forest and

Gradient Boosting outperform the conventionally used correlations simply because they

have no bias. The linear relationships present in the geotechnical engineering literature

assume linear relationships between predictors and their corresponding responses. The

results of this thesis show very promising results when machine learning algorithms

such as Random Forest and Gradient Boosting are used to predict both undrained

shear strength, elastic modulus and limit pressure.

Validation of the built models are explained before was conducted by using an

independent test data that was not included in the training phase. The results of the

RMSE and R2 indicate superiority of the built models to the ones that exist in the

literature.
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6. CONCLUSION

This thesis has aimed to develop machine learning approaches in the field of

geotechnical engineering so as to develop more accurate predictive models. Machine

learning has gained a lot of popularity recently due to the ever developing field of tech-

nology. Data availability has also contributed a lot to this rapid increase in popularity

of machine learning approaches. Machine learning has been introduced with all the

necessary analyses done on the R programming software.

Three machine learning approaches have been chosen in order to correlate the

undrained shear strength, elastic modulus and limit pressure from their respective

predictors found in their datasets. All these models have shown acceptable predic-

tive performances. Before embarking on building the model, data preprocessing was

performed. This included removal of existing outliers from the sample data and also

selecting parameters and checking their correlations. Since the variables present in the

sample have been used by previous researchers in determination of undrained shear

strength, elastic modulus and limit pressure, these variables were not altered in any

manner.

When building the models, a 10 fold cross-validation repeated 5 times was per-

formed. Essentially this means training the model a total of 50 times on the training

data set. The purpose of cross-validation is to determine the best parameters for

your algorithm that would give the best predictive results. The results of these cross-

validations have been clearly presented in the chapters above.

Using an independent set of testing data and RMSE value as a gauge to deter-

mine model performance, the built models were then compared among themselves. In

predicting the undrained shear strength, the stacked model approach was determined

as the best performer while Random Forest outperformed the other approaches in

predicting the elastic modulus and limit pressure.
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The best performing models again using their RMSE values as gauges to perfor-

mance were then compared with correlations from different researchers in the literature.

Both the stacked model and Random Forest outperformed the correlation equations

put forth by the researchers.

From the results of this thesis, we deduce the possibility of using machine learning

algorithms in the geotechnical engineering field. The predictive abilities of stacking and

Random Forest far outperform that of the conventionally used linear regression. Hence,

when accuracy of the response is a critical matter, using these algorithms leads to closer

predictions to the actual values. With the presence of essentially one line codes to ran

the Random Forest and stacked model algorithms, engineers with little understanding

of programming can be able to use them. However, from the results of the models

we see that with a properly built linear model, the resulting equation can be used to

predict the undrained shear strengths with promising predictive capabilities.

In conclusion, the performance capabilities of these algorithms depends highly

on the quality of the data being fed into the model. Data that has not been properly

sampled hence containing missing or outliers from the field or the laboratory will result

in poor predictive performance of the models. Furthermore, to properly present these

algorithms into the field, a larger dataset should be taken into consideration. The more

the algorithm learns, the better it is able to predict known and unknown responses.
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