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ABSTRACT 
 

 

AMBIENT VIBRATION SIGNATURE ANALYSIS WITH SUBSPACE 

METHODS: CASE STUDIES 
 

 

This thesis addresses the issue of determining the structural modal parameters 

(natural frequencies, damping ratios and mode shapes) using the freely available ambient 

vibration measurements. The analysis methods considered for this purpose are the recently 

developed stochastic subspace identification algorithms that prove to be useful for ambient 

data analysis. These algorithms are essentially based on the assumption that the 

unmeasured excitation is the realization of a stochastic process, and try to fit state space 

models to the experimental data in the time domain. There are two different 

implementations of subspace methods. One of them converts the measured vibration 

signals to output covariances which can be considered as some sort of free decay response, 

and hence can be used to feed the realization algorithms originally formulated to treat 

impulse responses. The other algorithm, on the other hand, circumvents the covariance 

estimation step, and tries to fit a state space model directly on the raw output 

measurements by means of some projection techniques. 

 

The first application in this study deals with the comparison of the two different 

identification algorithms with regards to their modal parameter identification capabilities. 

The comparison is handled by designing a Monte Carlo experiment based on the data 

simulated from a simple spring dashpot model. The relatively better performing algorithm 

is, then, used for the modal parameter identification of the IASC-ASCE structural health 

monitoring benchmark problem. The problem contains both an analytical and an 

experimental phase, and some implementation issues are discussed herein. The final case 

study concerns the modal analysis of the Vincent Thomas Suspension Bridge via the 

acceleration signals obtained under the operating conditions of the bridge. 



 

v

ÖZET 
 

 

ÇALIŞMA KOŞULLARI ALTINDA ELDE EDİLEN TİTREŞİM 

VERİLERİNİN ALTUZAY YÖNTEMLERİ İLE ÇÖZÜMLENMESİ: 

ÖRNEK İNCELEMELERİ 
 

 

Bu çalışmada, bir yapıdan çalışma koşulları altında elde edilen titreşim verileri 

yardımıyla yapısal modal parametrelerin (özfrekanslar, sönüm oranları ve mod şekilleri) 

tespiti araştırılmıştır. Bu amaçla, yakın zamanlarda geliştirilen ve bu tür verilerin 

çözümlenmesinde faydalı olan olasılıksal altuzay sistem tanılama algoritmaları 

kullanılmıştır. Temelde, çalışma koşulları altında tespiti mümkün olmayan uyarımların 

rastgele bir süreç oldukları varsıyıma dayanan bu algoritmalar, deneysel verilere zaman 

bölgesinde durum uzay modelleri oturtmayı esas alırlar. Altuzay yöntemlerinin iki farklı 

şekilde uygulanması mümkündür. Bu uygulamalardan ilki, ölçülen titreşim sinyallerini 

ortak değişintilere çevirmek yoluyla bir çeşit serbest sönümlenme tepkisi hesaplar. 

Sonrasında, hesaplanan bu ortak değişintiler, esasen dürtü yanıtları ile çalışan 

gerçeklenebilirlik algoritmalarına girdi olarak kullanılırlar. İkinci uygulama ise ortak 

değişinti hesabını bir takım izdüşüm yöntemleri yardımıyla daha örtük bir şekilde 

hesaplayarak ham haldeki sinyaller üzerine bir durum uzay modeli oturtur. 

 

Bu çalışmanın kapsamındaki ilk durum incelemesi, basit bir yay soğurucu siteminden 

benzetim kurularak elde edilen verilerin bir Monte Carlo deneyinde kullanılması ile ilgilir. 

Bu yolla, yukarıda sözü edilen iki farklı altuzay yönteminin modal parametre tanılamadaki 

yeterlikleri araştırılmıştır. Daha sonra, bu deneyde görece daha iyi performans gösteren 

yöntem, IASC-ASCE yapısal direnç kontrolü denektaşı problemine uygulanmıştır. Analitik 

ve deneysel olmak üzere iki ayrı fazdan oluşan bu problemin incelenmesi esnasında bazı 

uygulama sorunlarına temas edilmiştir. Çalışmadaki son durum incelemesi, Vincent 

Thomas Asma Köprüsü’nden çalışma koşulları altında elde edilmiş ivme ölçümlerinin 

köprünün modal anilizinde kullanılmasını içermektedir. 
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1.   INTRODUCTION 
Equation Chapter 1 Section 1 

 

1.1.   System Identification 

 

In the broadest sense, a system can be described as an abstraction of reality, the time 

evolution of which can be described by a certain number of measurable attributes 

(Guidorzi, 2003). The most convenient way of representing a system is by means of 

mathematical models which can be viewed as sets of relations among those measurable 

attributes of a system. So by definition, the descriptive capability of mathematical models 

is restricted to the attributes that can be expressed by numbers, and therefore mathematical 

models provide only an approximation to the underlying true behavior. Despite this 

limitation, however, they have a major role in science and technology; consequently a need 

immediately arises for model construction procedures. These procedures can be classified 

into two general categories as physical modeling and system identification. 

 

In physical modeling, the construction of a dynamic model is based on physical 

knowledge and the ‘laws’ governing the associated physical behavior. Since physical laws 

are, in turn, models deduced from observations, physical modeling is indeed constructing a 

model by means of some other abstractions of the reality. The advantage of physical 

modeling lies in the possibility of imposing a priori information on the system and using 

the physical meaning of the model variables. 

 

Identification, on the other hand, consists of inferring a predefined type of 

mathematical model based on the observations performed on the system. Note that no 

restrictions are made in this brief description regarding the type of the initially assumed 

model, meaning that it may or may not have a direct physical interpretation. In the case 

where the selected model structure does not have a physical nature, the identified model is 

called a ‘black box’ model and the variables linked to it lack any physical meaning. 

Although black box modeling seems to be a crude way of describing a system, such 

models enjoy the advantage of being simple besides the capability of capturing only some 

relevant aspects from complex frameworks. Alternatively, the initially assumed model 

might be based on an a priori knowledge of the system’s physical behavior, which in turn 
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is called a ‘white box’ model from an identification viewpoint. Thus, system identification 

should not be considered as a substitute of physical modeling, since it could be used 

together with models that have a physical origin in which case the identified variables 

correspond to the physical phenomena. 

 

The broadness associated with the given description of system identification also 

explains the variety of applications it is used in. Some of these fields are medicine, 

economics, aerospace and civil engineering, to name just a few. The common feature of all 

the applications in these topics is that the behavior of the underlying dynamic system can 

be conceptually represented as an Input/Output model as sketched in Figure 1.1. 

 

�������
		
����� � � � �

� � � � 	
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� � � � � 	
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� � � � �  � � � � �
� � � � � � � � � �
� � � � � � � � � 	  

Figure 1.1. A conceptual description of a dynamic system 

 

The system represented in Figure 1.1 is driven by the input ( )u t  as well as some 

uncontrolled disturbance ( )w t  called the ‘process noise’. The knowledge of ( )u t  may or 

may not be available, but the term ( )w t  remains totally unknown. The output ( )y t  is the 

measured response of the system, and it usually is corrupted by some noise ( )v t  due to 

observation inaccuracies. 

 

The identification of such a dynamic system consists of three basic steps: 

 

i. Collection of data: The purpose of identification is to replace the observed data ( )y t  

and ( )u t  with a mathematical description of the mechanisms that generate it. So the 
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very initial step of the identification process is to collect the driving inputs and the 

corresponding system responses. (Note that in some cases, the collection of the input 

data may not be possible.) 

ii. Selection of a model: A candidate model which is assumed to represent the internal 

system dynamics is chosen. The selection may rely upon a physical knowledge of the 

internal dynamics or simply on mathematical convenience. 

iii. Computation of the model parameters: The parameter estimation step may be 

considered as an optimization problem in which the assumed model’s variables are 

tuned according to the available observations. 

 

1.2.   System Identification in Civil Engineering 

 

Structural systems have been the most fruitful research and application area of 

system identification in civil engineering. In this context, the system refers to a large scale 

structure such as a building, a bridge, or an offshore structure, while identification mostly 

involves the determination of the associated modal parameters (modal frequencies, 

damping ratios and mode shapes) of this structure. 

 

The classical system identification algorithms have dealt with input-output mapping. 

This procedure involves the application of a measurable input to a system, measuring the 

corresponding response, and feeding these records altogether to the identification 

algorithm. The Prediction Error Methods (PEM) constitute one of the most traditional 

family of algorithms that cope with this kind of problem; see e.g. Ljung (1999). Two other 

families of algorithms are the realization based and direct subspace methods as classified 

by Viberg (1995). The realization based subspace algorithms require the impulse responses 

of a system which can be obtained either directly from impulse tests or inferred from any 

kind of forced response through some mathematical relations. These algorithms originate 

from the famous paper by Ho and Kalman (1966) in which the relationship between the 

impulse responses and the state space models has been established. The Eigensystem 

Realization Algorithm (ERA) proposed by Juang and Pappa (1985) is presumably the most 

notable realization based subspace algorithm, and it has been successfully implemented to 

several structures including the Galileo spacecraft (Pappa and Juang, 1985). The 

Observer/Kalman filter IDentification (OKID) recovers the system impulse responses from 
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the observer Markov parameters or Kalman filter derived from the experimental input-

output data (Juang et al., 1993). The studies by Luş et al. (1999, 2002) constitute a 

successful integration of ERA/OKID for use in modal parameter identification and 

response prediction of civil structures. The direct subspace methods, on the other hand, are 

based on a rather implicit computation of these impulse responses by means of some 

projection techniques. The Numerical Algorithms for Subspace Identification (N4SID) 

proposed by Van Overschee and De Moor (1994) is arguably the most renowned algorithm 

of the direct subspace methods. 

 

The difficulty concerning the application of these methodologies to civil structures is 

twofold. The first limitation is due to the impossibility of conducting experiments on the 

actual structures under controlled laboratory conditions. Consequently, the tests usually 

have to be performed in the field under operating conditions, and in this case the 

measurements of the dynamic forces are impossible. The application of artificial 

excitations under operating conditions might seem to be a solution, but besides the 

impracticality of exciting such large scale structures, there are so much uncontrolled 

disturbances that the thus acquired data is highly questionable. These concerns brought 

along the idea of using ambient vibrations measured under operational conditions which 

arise due to environmental factors such as wind and traffic. The more traditional 

approaches, in this context, are based on the analysis of ambient vibration signals in the 

frequency domain. Recently, some time domain identification algorithms that use only 

output data have also emerged. These algorithms assume that the unmeasured ambient 

excitations are realizations of a stationary stochastic process, and try to determine the 

desired model parameters on the basis of available response measurements. Although at a 

first glance this method might appear as an inferior alternative to the input-output 

identification algorithms, a study by Peeters et al. (2001a) has shown that ambient 

excitations indeed yield comparable results to the use of artificial excitation sources. 

 

Most often, the assumed model structure for the identification of civil structures is a 

modal model consisting of modal frequencies, damping ratios and mode shapes. These 

notions will be elaborated in the following sections, so let it suffice to say, at this point of 

the discussion, that these parameters can completely characterize the dynamics of a 

vibrating structure. The simplest procedure for identifying the modal parameters using 
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ambient vibration responses only is perhaps the curve fitting techniques that work in 

frequency domain. Two of the most commonly used frequency domain identification 

techniques are the Peak Picking (PP) and the Complex Mode Indication Function (CMIF). 

The PP method is based on the selection of modal frequencies from the peaks of the 

spectrum plot of the output measurements as the name suggests. The analysis procedure 

can be found, for instance, in Bendat and Piersol (1980). The CMIF, on the other hand, 

diagonalizes the spectrum matrix, and tries to find the number of independent vibration 

modes in a more quantitative manner (Shih et al., 1988). A detailed review and comparison 

of these techniques can be found in Peeters (2000). 

 

There also exist stochastic identification algorithms that work in time domain. One of 

these methods concerns fitting an Auto Regressive Moving Average (ARMA) model to the 

output data, and estimating the ARMA parameters using the PEM approach. This method 

has been successfully applied to civil structures (Andersen, 1997), but the highly nonlinear 

optimization problem involved in the parameter estimation step constitutes the main 

drawback for this procedure. Another notable example of these time domain algorithms is 

the Natural Excitation Technique (NExT) proposed by James et al. (1993). In this 

algorithm, the auto and cross correlation functions of output signals are treated as sums of 

decaying sinusoids which are considered to be similar to the free vibration response, and 

the modal parameters are extracted from these correlation functions. Along similar lines of 

reasoning, Ibrahim (1977) had proposed the Random Decrement technique (RD) which 

also converts the output signals to free decays using the RD functions. The other important 

group of stochastic identification algorithms, which is also the subject matter of the present 

study, is the subspace methods. Again the distinction will be made between the realization 

based and the direct subspace methods. The former algorithm is based on the solution of 

the stochastic realization problem (Akaike, 1974) and deals with obtaining the impulse 

responses by estimating the output covariances which can then be used in the realization 

algorithms. The direct method, on the other hand, circumvents the covariance estimation 

step by applying some projections on the output data (Van Overschee and De Moor, 1993). 

 

In the field of civil engineering, system identification is inclined towards two major 

goals as classified by Franco (2003): Model calibration and vibration based structural 

health monitoring. The following sections include a brief overview of these applications. 
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1.2.1.   Model Calibration 

 

In civil engineering practice, it is customary to generate a physical idealization of the 

actual structure in the design process. Many approximations are made while creating this 

initial physical model. Besides, there might be some deviations from the structural and 

material properties specified in the design due to uncertainties involved in the construction 

process and time-dependent deterioration. Consequently, if this initial model is to be used 

for studying the behavior of the structure under operating conditions, it might be useful to 

update this model to account for such modeling inaccuracies and construction 

uncertainties. System identification provides a reliable way to fine tune the initial model 

based on experimental vibration measurements. Modal parameters are usually the most 

frequently identified structural parameters for this purpose (Ewins, 1995). A model 

updated in this manner has the capability of better reproducing the actual behavior of the 

structure, and hence is a more reliable tool to study the structure. A concise literature 

survey of existing model updating methods can be found in Mottershead and Friswell 

(1993). 

 

1.2.2.   Structural Health Monitoring 

 

Structural health monitoring (SHM) is an active field of research which aims at 

obtaining qualitative and/or quantitative measures regarding the “health” condition of 

existing structures. According to the classification given by Rytter (1993), there exist four 

levels of damage identification: 

 

i. Level 1 – Detection: Is any damage present in the structure or not? 

ii. Level 2 – Localization: Where is the damage located within the structure? 

iii. Level 3 – Assessment: What is the severity of damage? 

iv. Level 4 – Prediction: What is the remaining service life of the structure? 

 

The SHM methods can basically be classified as being local or global. Local 

methods concentrate on a part of a structure, and try to determine the damage within this 

specific part on the basis of experimental methods which include inducing acoustic waves, 
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eddy currents, X-rays, etc. In this perspective, these methods require a priori knowledge of 

the question in Level 2, and deal with Level 3 damage identification. 

 

The global SHM methods, on the other hand, are generally based on vibration 

measurements obtained from the structure and are motivated from the fact that a local 

damage also affects the global response of the structure. In this context, the changes in 

modal parameters are usually considered as an implication of damage within the structure. 

Therefore, identification of modal parameters can be used as a Level 1 damage 

identification method. A concise overview of the existing damage detection techniques, 

which are based on the changes in modal parameter estimates, can be found in Farrar and 

Doebling (1997). 

 

1.3.   Scope and Outline 

 

The present study focuses on two different identification algorithms that try to infer a 

model based on the ambient vibration measurements of a system. These algorithms are the 

COVariance-driven Stochastic Subspace Identification algorithm (SSI-COV), and the 

DATA-driven Stochastic Subspace Identification (SSI-DATA) as classified by Peeters and 

De Roeck (2001b). The initial issue concerns the comparative modal parameter 

identification capabilities of these methods. This will be discussed by means of simulating 

a very simple model. Following this analysis, one of these algorithms that have proven to 

be superior in the simulation step will be applied to two different structures: a four story 

steel frame and a long suspension bridge. The contents of the different sections in this 

thesis are given as follows: 

 

In the second section of this study, three different mathematical representations of 

vibrating structures, namely the spatial, modal and state space models, are discussed, and 

the relations between them are shown. Next, the SSI-COV and SSI-DATA algorithms that 

identify state space models from response measurements are explained. 

 

The third part involves the applications of subspace algorithms to several structures 

having different levels of complexities. The first example concerns a simple spring dashpot 

model, and this model is used for comparing the modal parameter identification 
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performances of the above mentioned algorithms. In the second application, a four story 

steel frame is considered. For this structure both an analytical and experimental model 

exist, so the application involves mainly two phases. The last structure in this study is a 

long suspension bridge. 

 

The final section summarizes the conclusions of this study. 
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2.   BASIC FORMULATIONS 
Equation Chapter 2 Section 1 

 

2.1.   Models of Vibrating Structures 

 

2.1.1.   Spatial and Modal Models 

 

The continuous time equation of motion for a linear, time-invariant, N  degree of 

freedom (DOF) model is given by 

 

 ( ) ( ) ( ) ( )fMq t q t Kq t B u t+Ξ + =&& &  (2.1) 

 

In this second order differential equation, N NM × , N N×Ξ , and N NK ×  are the mass, damping, 

and stiffness matrices, respectively, of dimensions N N× . The vector ( )q t , of dimensions 

1N × , contains the displacements associated with all the DOFs at continuous time t , and 

overdots designate differentiation with respect to time with ( )q t&  representing the velocity 

and ( )q t&&  the acceleration vector. The force vector ( )u t  describes the r  inputs applied at 

time t , and the second order input matrix fB , of dimensions N r× , maps these inputs to 

their corresponding point(s) of application on the system. 

 

The model described in Eq. (2.1) is called the spatial model since it describes the 

system by means of its physical and geometrical characteristics such as the distribution of 

mass, rigidity, and damping. For civil engineering structures which have distributed mass 

and stiffness properties, Eq. (2.1) can be obtained as the N  DOF Finite Element (FE) 

approximation of the system. In this approach, the structure would be divided into 

elements, and the mass and stiffness matrices would be constructed by means of the 

geometry and material properties of these elements. As for the damping properties, viscous 

damping assumption is generally used to reproduce the observed decaying motions of 

vibrating structures. The largest uncertainty in this model can be said to be associated with 

the damping matrix due to a lack of precise knowledge of damping mechanisms in civil 

structures. 
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The N  equations implicitly involved in Eq. (2.1) are coupled, and need to be solved 

simultaneously. It is possible, on the other hand, to uncouple these equations, and rewrite 

them in N  independent coordinates. Each of these coordinates can then be considered as 

an independent vibration mode characterized by a frequency, damping ratio and mode 

shape. The resulting model in this case is called a modal model, and describes the way in 

which a system vibrates naturally, e.g. without any externally applied force. 

 

In order to obtain the modal model by means of the spatial model, consider first the 

solution to the homogenous spatial model without damping: 

 

 ( ) ( ) 0Mq t Kq t+ =&&  (2.2) 

 

The solution is assumed to have the following form: ( ) ij t
iq t e ωφ=  where j  is the imaginary 

unit defined as 2 1j = − , and 1,2...,i N=  (the range for i  will be the same for the rest of 

the discussion in Section 2.1). By inserting this solution into Eq. (2.2) an eigenvalue 

problem is obtained such that 

 

 2( ) 0i iK Mω φ− =  (2.3) 

 

where iω  and iφ  are the i th (real) eigenvalue and eigenvector, respectively. All N  

eigenvalue problems given in Eq. (2.3) can be combined in a single matrix expression as 

 

 2K MΦ = ΦΩ  (2.4) 

 

where N N×Φ  contains the eigenvectors iφ  as columns, and N N×Ω  is a diagonal matrix with 

the corresponding eigenvalues iω  as its nonzero entries. It can be shown that the following 

orthogonality conditions hold true 

 

 ( ) ( ),   T T
i iM diag m K diag kΦ Φ = Φ Φ = %%  (2.5) 
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where im%  and ik%  are defined as the modal masses and stiffnesses, ( )diag •  symbolizes a 

diagonal matrix whose nonzero elements are those specified inside the brackets, and ( )T•  

denotes matrix transpose. Introducing Eq. (2.5) into Eq. (2.4) yields 

 

 2 i
i

i

k
m

ω =
%

%
 (2.6) 

 

and this leads to the conclusion that the eigenvalues iω  are the undamped natural 

frequencies (in rad/s) as defined in structural vibrations. The eigenvectors also correspond 

to the so-called mode shapes which define the deformed shape of a structure vibrating at its 

natural frequency. 

 

It is very important to realize at this stage that the eigenvalue matrix Ω  is unique, 

whereas the eigenvector matrix Φ  is not. Even though the natural frequencies are fixed 

quantities, the mode shapes can be scaled arbitrarily without changing the shape of the 

vibration mode while changing its amplitude. Among the many possible scaling choices, 

the most commonly preferred one is the mass normalization which in turn allows rewriting 

Eq. (2.5) as 

 

 2,   T T
N NM I K×Φ Φ = Φ Φ = Ω  (2.7) 

 

where N NI ×  is an identity matrix. 

 

If the eigenvector matrix Φ  also diagonalizes the damping matrix such that 

 

 ( ) ( ) ( )2 2 ( )T
i i i i i i idiag c diag m diag diag mζ ω ζ ωΦ ΞΦ = = =% % %  (2.8) 

 

where iζ  are the modal damping ratios defined as 2i i i ic mζ ω= % % , the spatial model given 

in Eq (2.1) can completely be split into independent modal coordinates. Introducing the 

transformation ( ) ( )q t q t= Φ% , and making use of Eq. (2.7) and (2.8); Eq. (2.1) can be 

rewritten as follows: 
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 ( ) ( )2( ) 2 ( ) ( ) 1/ ( )T
i i i fq t diag q t q t diag m B u tζ ω+ +Ω = Φ&& &% % % %  (2.9) 

 

Here ( )q t%  contains the N  modal displacements at continuous time. If the solution to the 

homogenous part of Eq. (2.9) is assumed to have the form ( ) it
iq t eλφ=% , this leads to the 

following the eigenvalue problem: 

 

 2 2( 2 ) 0i i i i i iλ ζ ω λ ω φ+ + =  (2.10) 

 

Owing to the assumption made in Eq. (2.8), the eigenvectors are the same as in the 

undamped case. Provided that the system is underdamped, i.e. 1iζ < , the eigenvalues will 

be given by 

 

 2, 1i i i i i ijλ λ ζ ω ω ζ∗ = − ± −  (2.11) 

 

where ( )∗•  denotes complex conjugate. In this case, the undamped natural frequencies and 

modal damping ratios can be extracted from Eq. (2.11) as 

 

 
( ) ( )

( ) ( )

2 2Re Im

ReRe

i i i

ii
i

i i

ω λ λ

λλ
ζ

ω ω

∗

= +

−−
= =

 (2.12) 

 

where ( )Re •  and ( )Im •  represent the real and imaginary parts of a complex number. A 

system that can be reduced to the form in Eq. (2.9) is said to be classically damped. If a 

damping description is ever needed in a FE modeling process, it is customary to assign 

modal damping ratios to the modes of interest. These values might, for instance, be 

obtained from an experimental modal analysis. 

 

Although classical damping assumption is often used in theoretical analysis of 

structures, it is valid for a very special distribution of damping which may not generally 

apply to the real structures. The general viscous damping assumption, on the other hand, 
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covers both the classical as well as the non-classical damping cases. In the latter case, the 

eigenvector matrix of the solution to the homogenous undamped equation of motion does 

not diagonalize the damping matrix, so the assumption introduced in Eq. (2.8) is not valid 

anymore.  

 

In the general viscous damping case, a solution of the form ( ) it
iq t eλψ=%  can be 

assumed for the homogenous part of Eq. (2.1), and this yields the following eigenvalue 

problem: 

 

 ( )2 0i i iM Kλ λ ψ+ Ξ + =  (2.13) 

 

Note that in Eq. (2.13) the eigenvectors iψ  are represented with a different notation. This 

is because they appear in complex conjugate pairs (i.e., ,i iψ ψ ∗ ) as opposed to the real 

eigenvectors in the classical damping case. An efficient way to solve this problem is to 

transform it to a symmetric generalized eigenvalue problem. For this purpose, the second 

order spatial model should be converted into a first order representation. The solution will 

not be presented in the context of this discussion, but detailed derivations concerning the 

solution of this eigenvalue problem can be found, for instance, in Luş et al. (2003). The 

non-classical damping case is mentioned here briefly in order to enable a better 

understanding of the link between the state space models of the following section and the 

modal models described herein. Throughout this study, however, classical damping 

assumption will be imposed on the identified modal models. 

 

2.1.2.   State Space Models 

 

Although Eq. (2.1) provides an accurate representation of a system, constructing 

such a second order spatial model is not the primary concern in this study. The model 

given in Eq. (2.1) will rather be used as a starting point to show the relationship of state 

space models to the second order formulation. By introducing the following vector and 

matrix definitions 
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-1-1 -1

0( ) 0
( ) ,  ,  

( )
N NN N N N

c c
f

q t I
x t A B

M Bq t M K M
×× × ⎡ ⎤⎧ ⎫ ⎡ ⎤

= = =⎨ ⎬ ⎢ ⎥⎢ ⎥− − Ξ⎩ ⎭ ⎣ ⎦ ⎣ ⎦&
 (2.14) 

 

where 0N N×  is an N N×  matrix full of zeros, Eq. (2.1) can be cast into the first order form 

in which the system dynamics are described by 

 

 ( ) ( ) ( )c cx t A x t B u t= +&  (2.15) 

 

Eq. (2.15) is referred to as the continuous time state equation. Here, ( )x t  is the n  

( 2n N= ) dimensional state vector that contains the displacements and velocities at time t . 

cA  is the n n×  continuous time state matrix which characterizes all the system dynamics 

such as mass, damping and stiffness properties (hence the modal parameters), and cB  is the 

n r×  continuous time (first order) input matrix that describes how the input term 

influences the state. (The subscript c  is to denote continuous from hereafter). Note that the 

order of the state matrix n  is equal to two times the number of vibration modes, and will 

be referred to as the system order from here onwards. 

 

In experimental vibration problems, it is simply impossible to measure all DOFs that 

are specified in the spatial modal. This is also not necessary since the number of 

measurements that is sufficient to accurately determine the modal parameters is some 

orders of magnitude smaller than the DOFs needed for an accurate spatial model. 

Consequently, an additional equation that interconnects the internal state and the observed 

output measurements is needed. An output vector ( )y t  is defined for this purpose, and it 

can be related to the state vector (and the input vector if the measurements involve 

acceleration readings) through 

 

 ( ) ( ) ( )y t Cx t Du t= +  (2.16) 

 

where ( )y t  is an 1m×  vector containing the response measurements at time t . C  is the 

m n×  output matrix that maps the internal states to the observed signals, and can be 

constructed as a subset of the rows of the matrix 
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1 1

0
0

N N N N

N N N N

I
I

M K M

× ×

× ×

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − Ξ⎣ ⎦

 (2.17) 

 

depending on whether displacements, velocities and/or accelerations are measured at a 

DOF. Finally, D  is the direct transmission matrix which describes the direct effect of the 

input term on the output measurements without the need to go through the intermediary 

state equation. It has dimensions m r×  and is nonzero only if measurements contain 

acceleration readings. Similarly, the rows of D  are selected from the rows of the matrix 

[ ]1
fM B− . 

 

The complete continuous time state space representation of the linear, time invariant 

system is given by the combination of Eqs. (2.15) and (2.16): 

 

 
( ) ( ) ( )
( ) ( ) ( )

c cx t A x t B u t
y t Cx t Du t

= +
= +

&
 (2.18) 

 

It is possible to define a new state vector by considering the transformation 

 

 ( ) ( )x t Tz t=  (2.19) 

 

where n nT ×  is a nonsingular matrix. By introducing this coordinate transformation into 

Eq.(2.18), the state space model can be rewritten as 

 

 
1 1( ) ( ) ( )

( ) ( ) ( )
c cz t T A Tz t T B u t

y t CTz t Du t

− −= +
= +

&
 (2.20) 

 

The most important implication of Eq. (2.20) is that it describes exactly the same input-

output mapping as Eq. (2.18), and for this reason Eq. (2.19) is said to be a similarity 

transformation. Note, however, that the new state vector ( )z t  does not contain the 

displacements and velocities expressed in spatial coordinates anymore. 
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This transformation property can also be employed to establish the relations between 

a state space model and a modal model. Consider, for this purpose, the eigenvalue 

decomposition of the continuous time state matrix given by 

 

 1
c cA −= ΨΛ Ψ  (2.21) 

 

where cΛ  is a diagonal matrix with the n  complex eigenvalues (that appear in complex 

conjugate pairs , ,,c i c iλ λ∗  if all modes are underdamped) as its nonzero entries, and n n×Ψ  

contains the corresponding complex eigenvector pairs ,i iψ ψ ∗  of cA . If the complex modal 

states are denoted by ( )x t% , then ( ) ( )x t x t= Ψ %  represents a special similarity transformation 

(where T = Ψ ) which when introduced into Eq. (2.18) yields the modal state space model 

as 

 

 
1( ) ( ) ( )

 ( ) ( ) ( )
c cx t x t B u t

y t C x t Du t

−= Λ +Ψ
= Ψ +

&% %

%
 (2.22) 

 

In the special case of classical damping, it can be shown that the eigenvalues can be 

expressed as 

 

 2
, ,, 1c i c i i i i ijλ λ ζ ω ω ζ∗ = − ± −  (2.23) 

 

and therefore contain all the frequency and damping ratio information. By definition the 

output matrix C  selects the components of the mode shapes corresponding to an output 

location. So, each column vector in the modal output matrix CΨ  defines a part of the 

corresponding mode shape that can be observed from the data. 

 

To this end the state space model is expressed in continuous time, whereas in reality 

measurements are taken at discrete time intervals. In order to fit models to measurements 

(which is the aim of system identification), this model has to be converted to discrete time. 

For this purpose, consider first the solution to the first order differential equation of motion 

given by Eq. (2.15) that can be written as 
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0

( )
0( ) ( ) ( )c c

t
A t A t

c
t

x t e x t e B u dτ τ τ−= + ∫  (2.24) 

 

where the first term on the right-hand side constitutes the initial condition response, and 

the second term is due to the excitation the system is exposed to. Without loss of 

generality, let 0 0t =  and Eq. (2.24) can be rewritten as 

 

 ( )

0

( ) (0) ( )c c

t
A t A t

cx t e x e B u dτ τ τ−= + ∫  (2.25) 

 

If a sampling interval tΔ  is assumed, then the solution to the state equation leads to 

 

 ( )

0

( ) (0) ( )c c

k t
A k t A k t

cx k t e x e B u dτ τ τ
Δ

Δ Δ −Δ = + ∫  (2.26) 

 

If k  is increased by 1 to 1k + , the following expression is obtained 

 

 
( 1)

([ 1] )([ 1] ) ( ) ( )c c

k t
A k t A k t

c
k t

x k t e x k t e B u dτ τ τ
+ Δ

Δ + Δ −

Δ

+ Δ = Δ + ∫  (2.27) 

 

Eq. (2.27) is cumbersome to use in practice due to the need to integrate for each 

value of k . However, if a Zero Order Hold (ZOH) assumption is imposed on the input 

term (i.e., ( ) ( )u u k tτ = Δ  over the interval ( 1)k t k tτΔ ≤ < + Δ ), the input function can be 

taken outside the integral, and Eq. (2.27) boils down to 

 

 ( 1) ( ) ( )x k Ax k Bu k+ = +  (2.28) 

 

where the shorthand notation k  is used instead of k tΔ . Eq. (2.28) is called the discrete 

time state equation, and A  and B  are the discrete time state and input matrices that are 

related to their continuous time counterparts through the following relations: 
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( )

( )
0

1

00

!

!

c

c

ii
A t c

i

iit
A c

c c
i

A t
A e

i

A t
B e d B B

i
τ τ

∞
Δ

=

+Δ ∞

=

Δ
= =

⎛ ⎞⎛ ⎞ Δ
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑

∑∫
 (2.29) 

 

The transformation to discrete time has no effect on the structure of the output matrix 

and the direct transmission term since they are only some mapping matrices, and thus have 

no contribution to the dynamics of a system. The output vector at the k th time step can, 

therefore, be related to the discrete states (and the k th input sample if the outputs contain 

any acceleration measurements) as 

 

 ( ) ( ) ( )y k Cx k Du k= +  (2.30) 

 

Eqs. (2.28) and (2.30) are together called the discrete time state space equations: 

 

 
( 1) ( ) ( )
    ( ) ( ) ( )
x k Ax k Bu k

y k Cx k Du k
+ = +

= +
 (2.31) 

 

and as can be inferred from the discretization process, reducing Eq. (2.18) to Eq. (2.31) is 

in essence nothing but the conversion of a set of first order differential equations to a set of 

first order difference equations. 

 

The output can be calculated from Eq. (2.31) but requires the state vector. An explicit 

solution that depends only on the input can, however, be obtained by means of some 

recursive computations. Assuming , without loss of generality, (0) 0x = , it can be shown 

that the output sequence can be expressed in terms of the matrices A , B , C , and D  as 

 

 
1

0

( ) ( 1 ) ( )
k

i

i

y k CA Bu k i Du k
−

=

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠
∑  (2.32) 

 

Here the sequence of matrices 2 3, , , , ,D CB CAB CA B CA B K  are called the Markov 

parameters, and represent response of a system to a unit pulse input. Even though A , B , 



 

19

C , and D  need not be unique as pointed out earlier, the Markov parameters are invariant 

under coordinate transformations. 

 

It is appropriate, at this point of the discussion, to establish the connections between 

the discrete time state space model and the modal model. Consider for this purpose the 

eigenvalue decomposition of the discrete state matrix A  which can be found by making 

use of the eigenvalue decomposition of the continuous state matrix cA  and Eq. (2.29) as 

follows: 

 

 ( )1 1 1 1

0 !
c c c

ii
A t t t c

d
i

t
A e e e

i
−

∞
Δ ΨΛ Ψ Δ Λ Δ − − −

=

⎛ ⎞Λ Δ
= = = Ψ Ψ = Ψ Ψ = ΨΛ Ψ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑  (2.33) 

 

Here dΛ  is a diagonal matrix of dimensions n n× , and it contains the N  complex 

conjugate eigenvalue pairs ( , ,,d i d iλ λ∗ ) of the discrete time state matrix A . Eq. (2.33) 

suggests that the discrete eigenvectors are equal to the continuous ones, and the continuous 

eigenvalues ,c iλ  are related to the discrete ones as 

 

 
( ) ( )( ) ( ), 2

, ,, ,
,

ln lnln 2
d ij l

d i d id i d i
c i

e lj
t t t t t

θ πλ λλ θ πλ

+

⎛ ⎞
= = = + +⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠

 (2.34) 

 

where •  denotes absolute value operator, ,d iθ  are the phase angles of the discrete time 

complex eigenvalues, and 0,1,2,l = K . The second equality in Eq. (2.34) is nothing but 

paraphrasing the complex ,d iλ  in terms of the absolute value and the associated phase 

angle. The problem with Eq. (2.34) is that the value of l  is unknown. For the rest of the 

discussion it will be set to zero, which is equivalent to making the assumption that all the 

frequencies of the continuous time signal are below the Nyquist frequency. The Nyquist 

frequency Nf  is defined as 

 

 1
2 2

s
N

ff
t

= =
Δ

 (2.35) 
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and according to the sampling theorem constitutes the largest frequency that can be 

observed from a signal sampled with a sampling frequency 1/sf t= Δ . Provided that the 

sampling interval has been chosen small enough, the continuous time eigenvalues can be 

computed by means of the following relation: 

 

 
( ), ,

,

ln d i d i
c i j

t t

λ θ
λ

⎛ ⎞
= + ⎜ ⎟Δ Δ⎝ ⎠

 (2.36) 

 

Once the eigendecomposition of the discrete time state matrix is done, it is possible 

to obtain the continuous time eigenvalues and eigenvectors by Eq.(2.36). The modal 

frequencies and damping ratios can, then, be evaluated from these by means of Eq. (2.12). 

 

2.2.   Evolution from Deterministic to Stochastic State Space Models 

 

The model described by Eqs. (2.18) or (2.31) is deterministic in the sense that 

whatever input drives the system, the response can be exactly predicted. In reality, 

however, there exists no such determinism, and noise is always present in the data. The 

noise basically stems from two sources: The uncontrolled and unmeasured inputs that the 

system might be subjected to during the experiment, and the sensor inaccuracies. When all 

these factors are integrated into the state space equations, the discrete time combined 

deterministic-stochastic state space model is obtained as follows: 

 

 
( 1) ( ) ( ) ( )

     ( ) ( ) ( ) ( )
x k Ax k Bu k w k

y k Cx k Du k v k
+ = + +

= + +
 (2.37) 

 

where ( )w k , of dimensions 1n× , accounts for the process noise due to uncontrolled 

inputs, and ( )v k , of dimensions 1m× , represents the measurement noise. These vectors 

constitute the stochastic component of the model, and they are assumed to be zero mean 

(i.e. [ ] [ ]( ) 0,  ( ) 0w k v k= =E E ), and white with covariance matrices expressed as 

 

 { }( )
( ) ( )

( )
T T

pqT

w p Q S
w q v q

v p S R
δ

⎡ ⎤ ⎡ ⎤⎧ ⎫
=⎨ ⎬⎢ ⎥ ⎢ ⎥

⎩ ⎭⎣ ⎦ ⎣ ⎦
E

) )

) )  (2.38) 
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where [ ]•E  denotes the expected value operator, pqδ  is the Kronecker delta, and p  and q  

are two arbitrary time instants. 

 

In the case of ambient vibrations, the input excitation remains unknown. Due to the 

lack of input information, it is not possible (from a system identification standpoint) to 

differentiate ( )u k  from the noise terms ( )w k  and ( )v k . Omitting the terms containing 

( )u k  in Eq. (2.37) results in the following model: 

 

 
( 1) ( ) ( )
    ( ) ( ) ( )
x k Ax k w k

y k Cx k v k
+ = +

= +
 (2.39) 

 

Eq. (2.39) is called the discrete time stochastic state space model in which the 

driving force is implicitly accounted for by the noise terms. If the whiteness assumption 

concerning these noise vectors is ever violated such that the input contains some dominant 

frequency components, these components will also be observed in the output, and hence be 

treated as a system mode in the identification process. 

 

In addition to the above assumptions regarding the noise terms, the stochastic process 

( )x k  is also assumed to be zero mean and stationary: 

 

 [ ]( ) 0,  ( ) ( )Tx k x k x k⎡ ⎤= = Σ⎣ ⎦E E  (2.40) 

 

The term Σ  in Eq. (2.40) is defined as the state covariance matrix, and is independent of 

the time step k . This is a natural result of the stationarity assumption that dictates the 

statistical properties of a random process to be invariant with respect to time.  

 

Furthermore, the noise vectors ( )w k  and ( )v k  are assumed to be independent of the 

state vector ( )x k . This assumption, coupled with the previous assumption that these 

vectors are zero mean, yields 

 

 ( ) ( ) 0,  ( ) ( ) 0T Tx k w k x k v k⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦E E  (2.41) 
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Defining the output covariance matrices as 

 

 ( ) ( )T
iR y k i y k⎡ ⎤= +⎣ ⎦E  (2.42) 

 

the state-output covariance matrix as 

 

 ( 1) ( )TG x k y k⎡ ⎤= +⎣ ⎦E  (2.43) 

 

and making use of the above assumptions, the following relations can be inferred: 

 

 0

T

T

T

A A Q

R C C R

G A C S

Σ = Σ +

= Σ +

= Σ +

)

)

)
 (2.44) 

 1i
iR CA G−=  (2.45) 

 

Eq. (2.45) suggests that the output covariances can be considered analogous to the 

Markov parameters of a deterministic, linear, time invariant system described by 

0, , ,A G C R . This is an important implication in the sense that the output covariances can be 

used as inputs to the classical realization algorithms that are based on the factorization of 

Markov parameter sequences. Owing to this property, Eq. (2.45) will also have a major 

role in the derivation of the stochastic subspace identification algorithms that will be 

treated in the following section. 

 

2.3.   Stochastic Subspace Identification Algorithms 

 

2.3.1.   Problem Statement and Notation 

 

In a structural analysis procedure, one assigns the model parameters (either the 

spatial characteristics such as mass, damping and rigidity or the modal parameters of the 

modes of interest depending on the initially assumed model), and generates the desired 

responses to the prescribed inputs. In system identification, on the other hand, one has the 
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information about the response (in some cases the input as well), and aims at deriving the 

assumed model’s parameters based on this information. 

 

The stochastic identification algorithms that will be considered in this study are the 

SSI-COV and SSI-DATA algorithms. Both algorithms work in time domain, and both try 

to fit stochastic state space models to the experimental data. Put more formally, the modal 

identification problem investigated here can be defined as the determination of the system 

order n , and the corresponding system matrices A  and C  (up to within a similarity 

transformation) using the available output measurements which might be composed of 

displacements, velocities and/or accelerations. The extraction of modal parameters from 

the state space matrices is then straight forward from the discussion given in Section 2.1.2. 

 

Before proceeding with the identification algorithms, some notation needs to be 

introduced. The significance of the following material will be clear as the algorithms are 

explained. 

 

Suppose we are given s  output vectors (0), (1), (2)...... ( 1)y y y y s − . These 

measurements can be collected in a block Hankel matrix H  which has 2i  block rows and 

l  columns such that 
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f

Y
Y

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2.46) 

 

The subscripts of 2 1i iY −  stand for the time indices corresponding to the first and last 

elements in the first column of the block data Hankel matrix. The matrices pY  and fY , both 

of dimensions im l× , are obtained by splitting H  into two matrices with i  block rows 

each, and the subscripts denote “past” and “future”, respectively. The integer i  should be 
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chosen such that im n≥ , and for obvious reasons l  could at most be equal to 2 1s i n− + ≥  

(for statistical reasons that will be clear later on, it is assumed that l →∞ ). 

 

The derivation of the SSI-DATA algorithm requires two other data matrices to be 

defined by shifting the border between past and future one block row down which reads 

 

 0 12 1,  p fi i iY Y Y Y+ −
+ −= =  (2.47) 

 

where pY +  and fY −  have dimensions ( 1)i m l+ ×  and ( 1)i m l− ×  in this case. 

 

The identification algorithms of the following sections make extensive use of the 

observability and controllability matrices. The observability matrix iO  is defined as 

 

 2

1

i

i

C
CA

O CA

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

 (2.48) 

 

and has dimensions im n× . If a system is observable, it means that all the modes of the 

system can be observed in the output and ( )irank O n= . The reversed stochastic 

controllability matrix iΓ , on the other hand, is defined as 

 

 1 2 3  i i i
i A G A G A G AG G− − −⎡ ⎤Γ = ⎣ ⎦L  (2.49) 

 

and is an n im×  matrix. If a system is controllable, this implies that all the modes of the 

system can be excited by the stochastic input and ( )irank nΓ =  (Kailath, 1980). 
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2.3.2.   Covariance-Driven Stochastic Subspace Identification 

 

This section introduces the covariance-driven stochastic subspace identification. This 

is also addressed as the stochastic realization problem which was first solved by Akaike 

(1974). 

 

The algorithm starts with the formation of a Toeplitz matrix iT  composed of output 

covariances: 

 

 

1 2 1

1 3 2

2 1 2 2 1

i i

i i
i

i i i i

R R R R
R R R R

T

R R R R

−
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L

L

M M O M M

L

 (2.50) 

 

Assuming ergodicity, which dictates that the expected value of a stationary process 

can be replaced by the average over one infinitely long record of the process, Eq. (2.42) 

can be rewritten as follows: 

 

 
1

0

1( ) ( ) lim ( ) ( )
l

T T
i l k

R y k i y k y k i y k
l

−

→∞
=

⎡ ⎤= + = +⎣ ⎦ ∑E  (2.51) 

 

In reality, only a finite number of samples are available and only estimates of the output 

covariances can be obtained by dropping the limit on the second expression in Eq. (2.51) 

as 

 

 
1

0

1 ( ) ( )
l

T
i

k
R y k i y k

l

−

=

≈ +∑  (2.52) 

 

Therefore, a fast way of computing an estimate for iT  is obvious from the definitions given 

in Eqs. (2.46) and (2.52): 

 

 1 T
i f pT Y Y

l
=  (2.53) 
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Making use of the property introduced in Eq. (2.45) along with the definitions given 

in Eqs. (2.48) and (2.49), iT  can be decomposed as 

 

 1 2

1

i i
i i i

i

C
CA

T A G A G AG G O
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− −

−

⎡ ⎤
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L
M

 (2.54) 

 

If im n≥ , and the system is both observable and controllable, the rank of the Toeplitz 

matrix, which has dimensions im im× , should be equal to n . This follows from Eq. (2.54) 

where iT  is found to be the product of two matrices each having rank n . 

 

Eq. (2.54) brings along the question of determining the rank of the covariance matrix 

iT . Singular Value Decomposition (SVD) is a numerically robust tool that could be used 

for this purpose. Applying SVD to iT  yields 

 

 [ ] 1 1
1 2 1 1 1
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0
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T
T T

i T

S V
T USV U U U S V

V
⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2.55) 

 

where im imU ×  and im imV ×  are orthonormal matrices, and im imS ×  is a diagonal matrix with the 

positive singular values (in descending order) as its entries. The practical interpretation of 

this rank determination process corresponds to finding out the number of independent 

vibration modes that satisfactorily characterize a linear dynamic system while truncating 

those that have insignificant contribution to the overall response or that are not actual 

structural modes at all. 

 

A special note should be added at this point of the discussion concerning this rank 

determination operation via SVD. In reality, none of the singular values in Eq. (2.55) will 

be exactly zero due to the measurement noise inherent in the data. Therefore, a need arises 

to distinguish these noise modes from the actual system modes. This problem is usually 

referred to as spurious or mathematical mode discrimination in the literature. A simple way 

to tackle the problem is to try to find a gap between the singular values. However, there 
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might be occasions where it is hard to find such a clear gap, and one needs more reliable 

tools in these cases. This discussion will be detailed in the following sections where the 

identification algorithms are applied to a variety of systems involving different levels of 

complexity; and some pole selection strategies will be suggested in the context of this 

applied study. 

 

Combining the expressions in Eqs. (2.54) and (2.55), it is possible to achieve a 

realization of the observability and the reversed stochastic controllability matrices as 

 

 
1/ 2

1 1
1/ 2
1 1

i
T

i

O U S

S V

=

Γ =
 (2.56) 

 

Eq. (2.56) is referred to as the Balanced Realization (BR). The BR algorithm makes use of 

the principal components of the covariance matrix iT  (Arun and Kung, 1990). The 

particular state space realization resulting from the procedure is balanced in the sense that 

iO  and iΓ  both have orthogonal columns and 

 

 1
T T
i i i iO O S= Γ Γ =  (2.57) 

 

From the definitions of the observability and controllability matrices, it is straight 

forward that the output matrix C  is the first m  rows of iO , and the state-output covariance 

matrix G  is the last m  columns of iΓ . The state matrix A  can be found by making use of 

the shift structure of the observability matrix as 

 

 †
i iA O O=  (2.58) 

 

where iO  and iO  denote the observability matrix with the last and first m  rows truncated, 

respectively, and ( )†•  is the Moore-Penrose matrix pseudo-inverse. The zero-lag output 

covariance matrix 0R  can, then, be computed as 
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1

0
1 1( ) ( )

i l
T T

i i i i
k i

R y k y k Y Y
l l

+ −

=

= =∑  (2.59) 

 

It is important to note that the state output covariance matrix G , and the zero-lag 

output covariance matrix 0R  have no significance in terms of modal parameter estimation. 

Their identification has been shown here only for the sake of completeness of the 

derivation. 

 

Along similar lines of reasoning, there exists other realization algorithms published 

in the literature. One such algorithm is the Canonical Variate Analysis (CVA) (Akaike, 

1975) the implementation of which can be easily fitted within the framework of the above 

explained algorithm by introducing some weighting matrices to Eq. (2.50) such that 

 

 ( ) 1 2i iW
T W TW=  (2.60) 

 

In CVA, it is aimed at normalizing the data such that the singular values of the 

weighted Toeplitz matrix ( )i W
T , of dimensions im im× , lie between 0 and 1. In this 

fashion, the singular values represent the cosines of the angles between the subspaces of 

pY  and fY . This approach is particularly useful when the system order is not known 

because it minimizes the effects of noise modes while amplifying those of the system 

modes, thereby reducing numerical problems (Guyader and Mevel, 2003). The weighting 

matrices 1W  and 2W  can be chosen as 

 

 
1/ 2 1/ 2

1 2
1 1,  T T

f f p pW Y Y W Y Y
l l

− −
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.61) 

 

so that the norm of the weighted Toeplitz matrix ( )i W
T  is equal to 1. 

 

The only difference of CVA with respect to BR is in the realization step given by Eq. 

(2.56). The observability and controllability matrices are realized in this algorithm as 

follows: 
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1 1/ 2
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1/ 2 1
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=

=
 (2.62) 

 

The rest of the procedure (i.e., the computation of the state space matrices) is identical to 

the one explained for the BR algorithm. The flow chart presented in summarizes all the 

computational steps of the SSI-COV algorithm. 
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Figure 2.1. Flowchart for the SSI-COV algorithm 
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2.3.3.   Data-Driven Stochastic Subspace Identification 

 

The main difference of the SSI-DATA from the previous algorithm is that it operates 

directly on the output data sequence, and computes the output covariances implicitly 

through matrix projections (Viberg, 1995). The second important novelty regarding this 

algorithm is that it identifies a set of Kalman filter state estimates, and the state-space 

matrices are computed in a least squares sense using these states and the output data. 

 

The algorithm starts with the orthogonal projection of the row space of fY  into the 

row space of pY . This projection is defined as 

 

 ( )†
/ T T

i f p f p p p pP Y Y Y Y Y Y Y= =  (2.63) 

 

and, in practice, can be interpreted as an ‘improved estimate’ of fY  whereby the noise 

component orthogonal to pY  is removed. The projection operation can, indeed, be viewed 

as the counterpart of the explicit covariance estimation step involved in the SSI-COV 

algorithm. The actual implementation can easily be performed by means of the QR-

decomposition. If the block data Hankel matrix in Eq. (2.46) is factorized such that 
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 (2.64) 

 

where 2l imQ ×  is an orthonormal matrix, and 2 2im imR ×  is a lower triangular matrix; the 

projection defined in Eq. (2.63) can be extracted from this factorization as follows: 
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It can be shown that the matrix iP , of dimensions im l× , is equal to the product of 

the observability matrix iO , and a matrix ˆ
iX  that contains certain Kalman filter states and 

has dimensions n l× : 
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 (2.66) 

 

The proof for Eq. (2.66) has been provided by Van Overschee and De Moor (1996). Since 

the projection matrix iP  is found to be the product of two matrices with rank n , its rank 

should also equal n . The SVD of iP  yields 
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 (2.67) 

 

and the rank can be decided upon the number of nonzero singular values in Eq. (2.67). 

 

The observability matrix iO  and the Kalman filter state sequence ˆ
iX  can then be 

recovered as 
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In order to extract the system matrices, one more Kalman filter state sequence 1
ˆ

iX +  

should be realized, and this can be achieved by computing another projection similar to the 

one given in Eq. (2.66) which yields 
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The projection matrix 1iP−  has dimensions ( 1)m i l− ×  this time, and can be retrieved from 

Eq. (2.64) as 
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The state sequence 1
ˆ

iX +  can then be evaluated by the following equality 

 

 †
1 1 1

ˆ
i i iX O P+ − −=  (2.71) 

 

where 1iO −  is the observability matrix with the last m  rows truncated. 

 

Now that the system order and the state sequences are determined, the system 

matrices can be computed by solving the following set of equations in a least squares 

sense: 
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 (2.72) 

 

The matrices wε  and vε  are simply the least squares residuals, and has respective 

dimensions n l×  and m l× . These residual matrices can be used to compute the error 

covariance matrices defined in Eq. (2.38) as 
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Finally, the state-output covariance matrix G , and the zero-lag output covariance 

matrix 0R  can be computed using the relations in Eq. (2.44). It should be mentioned that 

the covariance sequence determined by thus identified 0, , ,A C G R  is a positive real 

sequence. 

 

With the inclusion of minor modifications, the BR and CVA algorithms can be 

implemented into the SSI-DATA scheme. The modification involves introducing some 

weighting matrices into Eq. (2.63) such that the weighted projection matrix has the form 

 

 ( ) 1 2i iW
P W PW=  (2.74) 

 

The observability matrix iO  and the Kalman filter states ˆ
iX  can then be computed by 

means of the SVD of ( )i W
P  as 
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The appropriate weighting matrices can be selected as 

 

 ( ) 1/ 2

1 2,  T T
p p p pW I W Y Y Y Y

−
= =  (2.76) 

 

for the BR algorithm and 

 

 ( ) 1/ 2

1 2,  T
f f l lW Y Y W I

−

×= =  (2.77) 

 

for the CVA, respectively. A schematic overview of the SSI-DATA algorithm has been 

provided in Figure 2.2. 
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Figure 2.2. Flowchart for the SSI-DATA algorithm 
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3.   CASE STUDIES 
Equation Chapter 3 Section 1 

 

3.1.   Numerical Example 

 

The first step in the analysis is to compare the modal parameter identification 

capabilities of the subspace algorithms via the 3-DOF spring-dashpot model illustrated in 

Figure 3.1. The corresponding mass and stiffness matrices are given in Table 3.1, and the 

modal damping ratios are assigned as 1 2%ζ = , 2 8%ζ =  and 3 4%ζ = . 

 

 
Figure 3.1. Spring-dashpot model 

 

Table 3.1. Mass and stiffness matrices for the 3-DOF spring-dashpot model 

Mass Stiffness 
0.8 0.0 0.0   40.0 -10.0 -10.0 
0.0 1.2 0.0 -10.0   40.0 -10.0 
0.0 0.0 2.0 -10.0 -10.0   40.0 

 

A Monte Carlo experiment, similar to the one described by Peeters (2000), has been 

designed for carrying out the comparison. An individual simulation in such an experiment 

involves the realization of three independent Gaussian white noise sequences used to excite 

the model (one at each DOF). Acceleration responses from all the DOFs are then used to 

feed the SSI-COV (BR), SSI-COV (CVA), SSI-DATA (BR), and SSI-DATA (CVA) 

algorithms. The initial model order is chosen to be 180n =  and, though not realistic, the 

order is then always reduced to the true system order 6n = . Finally, modal parameters are 

estimated using the identified state space matrices. If the number of these simulations is 
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sufficiently large, a Monte Carlo experiment can be expected to provide useful information 

on the statistical properties of these estimates such as the bias and variance. 

 

Figure 3.2 and Figure 3.3 illustrate the observed frequency histograms of the 

identified natural frequencies and modal damping ratios from 150 different simulations. 

The ordinate of these plots represent the number of observations corresponding to the 

interval defined in the abscissa. The estimates are normalized with respect to the actual 

values, so a mean value close to one represents an estimate with low bias. Similarly, the 

range for the x -axis is adjusted to be the same in both plots (except for two results 

corresponding to the second mode which involve large bias and variance) in order to 

enable a comparison between the relative variances of the estimates resulting from 

different algorithms. The continuous line superimposed to the histograms represents a 

normal distribution fit to the simulation results. This facilitates a better visualization of the 

associated bias and variance properties. 
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Figure 3.2. Observed frequency histograms for the natural frequency estimation results 

from 150 simulations. eω  and aω  denote the estimated and the actual natural frequencies. 
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Figure 3.3. Observed frequency histograms for the damping ratio estimation results from 

150 simulations. eζ  and aζ  denote the estimated and the actual modal damping ratios. 

 

A summary of the results is also presented in Table 3.2, wherein the mean and the 

coefficient of variation (δ ) values for the estimated frequencies, damping ratios and 

Modal Amplitude Coherence (MAC) values are reported. MAC is computed using the 

estimated mode shapes and the actual ones as 

 

 ( ) ( )( )

2

,
H
e a

e a H H
e e a a

MAC
ψ ψ

ψ ψ
ψ ψ ψ ψ

=  (3.1) 

 

where eψ  and aψ  are the estimated and the actual (complex) modal vectors, and ( )H•  

denotes complex transpose. Therefore, MAC is a scalar between 0 and 1, and shows the 

degree to which two vectors are correlated. 
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Table 3.2. Modal parameter estimation results from 150 simulations 

ω (rad/sec) ζ (%) MAC Method 
Mean δ (%) Mean δ (%) Mean δ (%) 

Actual 
3.71 
5.84 
7.45 

- 
- 
- 

2 
8 
4 

- 
- 
- 

- 
- 
- 

- 
- 
- 

SSI-COV 
(BR) 

3.71 
5.97 
7.45 

0.3 
5.9 
0.6 

1.97 
7.36 
3.86 

15.2 
35.6 
21.4 

1.00 
0.93 
1.00 

0.0 
22.5 
3.5 

SSI-COV 
(CVA) 

3.71 
5.85 
7.45 

0.3 
0.6 
0.3 

1.98 
7.98 
4.02 

12.2 
6.6 
7.3 

1.00 
1.00 
1.00 

0.0 
0.2 
0.0 

SSI-DATA 
(BR) 

3.71 
5.91 
7.45 

0.3 
5.0 
0.3 

1.95 
7.30 
3.83 

12.9 
46.7 
12.5 

1.00 
0.97 
1.00 

0.0 
12.6 
3.8 

SSI-DATA 
(CVA) 

3.71 
5.85 
7.45 

0.3 
0.6 
0.3 

1.95 
7.72 
3.90 

12.2 
6.7 
7.4 

1.00 
1.00 
1.00 

0.0 
0.3 
0.0 

 

The results indicate that both covariance and data driven algorithms yield similar 

results as far as modal parameter estimation accuracy is concerned. In fact, this is not an 

unexpected result in that both algorithms are based on factorization of output covariances 

computed either explicitly through matrix multiplications or implicitly by means of data 

projections. Another important observation is that the application of the CVA weighting 

improves the modal parameter estimates of both algorithms. It should also be noted that 

regardless of the algorithm and weighting used, there is, in general, a higher bias 

associated with the damping estimates when compared with the frequencies and the mode 

shape correlations. Similar results were also reported by Peeters (2000). 

 

3.2.   Phase II IASC-ASCE SHM Benchmark Problem 

 

In order to assess the relative performances of existing SHM techniques, a task group 

of the American Society of Civil Engineers (ASCE) and the International Association of 

Structural Control (IASC) has defined a series of benchmark problems. The problem 

consists of an analytical and an experimental phase both of which are described in the 

following sections. 
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The structure selected for this purpose is the 4-story, 2-bay by 2-bay steel frame 

shown in Figure 3.4. It is located in the Earthquake Research Laboratory at the University 

of British Columbia. The structure is 2.5 by 2.5 in plan, and has a story height of 0.9 m, 

which sums up to 3.6 m for the entire structure. There are nine vertical columns that are 

B100×9  sections, and the floor beams are of type S75×11 sections. Each bay also consists 

of a diagonal bracing made of 12.7 mm diameter threaded steel rods. As for the support 

conditions, the vertical columns are bolted to a steel base frame and the lower flanges of 

these base beams are embedded in a concrete slab. So the structure may be assumed as 

fixed supported at the base. To make the mass distribution reasonably realistic, one heavy 

slab is placed in each bay per floor. Additionally, on each floor two of the masses were 

placed eccentrically with respect to the center. In this manner, the mass and stiffness 

centers are not allowed to overlap; hence some coupling between translational motions is 

expected. 

 

 
Figure 3.4. The steel frame used for the ASCE SHM benchmark problem (ASCE SHM 

benchmark website, 2006) 

 

In the analytical phase of the benchmark problem, the intent is to create a 

mathematical idealization of the actual structure. There exists, however, slight differences 

between the analytical and the actual models which will also be revealed in the 

identification results. These variations might be attributed to the structural properties of the 

diagonals, and the floor masses that have different values in each phase. 
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3.2.1.   Analytical Phase 

 

Within the context of the analytical phase of the benchmark problem (Bernal et al., 

2002), a FE model of the benchmark structure has been developed by the SHM task group. 

(The FE and simulation codes can be obtained from the ASCE benchmark website). The 

model originally has 216 DOFs (3 translations and 3 rotations per each node excluding 

those at the base which are restrained from any movement) but, assuming that floors are 

rigid in translation along the horizontal plane and rotation about the vertical direction, the 

total number of DOFs has been reduced to 120. 

 

The simulated data is generated by exciting the 120 DOF model with broadband 

ambient inputs applied at the geometric center of each floor along the East-West (E-W) 

and North-South (N-S) directions shown in Figure 3.5. At each story level, two 

acceleration measurements are collected in the E-W and two in the N-S direction, making a 

total of 16 output measurements. The data is sampled with 250 Hz for 200 seconds which 

in turn yields 50000 samples per output channel. White noise sequences with root mean 

square (RMS) values equal to 10% of the RMS of the strongest signal are then 

superimposed to the data as measurement noise. 

 

 
Figure 3.5. Measurement setup for the Phase II analytical benchmark problem 

 

The system order is known in advance for this analytical model, but an effort will be 

made for order determination as if it were not known. Although theoretically sound, order 

determination via SVD has not proven to be very effective when working with ambient 

data, and the system order has to be inferred based on some auxiliary criteria. Arguably, 



 

41

the most popular approach for differentiating system modes from spurious noise modes is 

working with “stabilization diagrams” (Basseville et al., 2001). A stabilization diagram is 

simply a plot of various model orders versus the natural frequencies identified at each of 

these orders (See, for instance, Figure 3.6). The motivation is that a system mode should 

show up with consistent frequency, damping and mode shape at various model orders, 

whereas the spurious ones could be expected to show a somewhat erratic behavior. 

 

�� ���

 
Figure 3.6. Stabilization diagram for the Phase II analytical benchmark problem. “×” and 

“• ” denote stable and unstable modes, respectively. 

 

The actual implementation of this strategy can be executed by initially choosing a 

sufficiently high order n im=  to be used in Eq. (2.50) or Eq. (2.66), and then constructing 

smaller order models by gradually reducing the number of singular values retained. This 

procedure yields a set of modal parameters for each consecutive order. Then, parameters 

that belong to two consecutive model orders are compared according to some preset 

criteria such as 
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 ( )1 1
1,  ,  1 ,p p p p

p p MAC
p p

MACω ζ

ω ω ζ ζ
ρ ρ ψ ψ ρ

ω ζ
+ +

+

− −
< < − <  (3.2) 

 

where p  is the number of retained singular values (and hence the model order); pω , pζ  

and pψ  are the frequency, damping ratio and (complex) mode vector estimates at this 

order; and ωρ , ζρ  and MACρ  are some user specified tolerance limits for labeling a modal 

parameter as stable. Eq. (3.2) is repeated for all available sets of modal parameters 

identified at each order in a sequential manner, and finally, the resulting “stable” 

frequencies are plotted against their corresponding model orders. 

 

Even though stabilization diagrams prove to be useful in practical cases, the large 

amount of user interaction requirement is the main drawback about this procedure (Van der 

Auwaraer, 2001). The sequential procedure involved in its construction can also interrupt 

proper grouping of the stable modes. In order to overcome these difficulties, and to 

somewhat automate the selection process; a clustering algorithm can be adopted to select 

the most reliable modes from the large set of parameters identified at various model orders 

(Goethals et al., 2004). 

 

In this approach, one single set of modal estimates (a frequency and the associated 

damping ratio and mode shape) is chosen among all the available parameters identified, 

and all sets which are closer to this point than a certain “radius” are clustered based on a 

distance measure between frequencies and damping estimates as well as the corresponding 

MAC values such that 

 

 ( )2 21 1( ) ( ) ,   1 , MACMACα β α β α β
ω ζ

ω ω ζ ζ τ ψ ψ− + − ≤ − < Δ
Δ Δ

 (3.3) 

 

Here ωΔ , ζΔ  and MACΔ  are user specified parameters analogous to the tolerance limits in 

Eq. (3.2), and τ  is the threshold value for the “distance” between frequencies and 

dampings. The indices α  and β  in Eq. (3.3) do not denote the model order as in Eq. (3.2) 

but are just dummy indices that stand for two different sets of estimates. (In any case, 

however, attention should be paid not to include two sets of parameters that have been 
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identified at the same model order in the same cluster). Once such a cluster is formed, the 

algorithm proceeds in the same manner with the set of parameters that are left out from the 

previous analysis. Finally, those clusters that have a predefined number of members (e.g. a 

certain fraction of the total number of reduced model orders) are classified as system 

modes. 

 

As can be inferred from the description of the algorithms, the main difference of the 

two mode selection strategies is that the stabilization procedure proceeds in a sequential 

manner while the clustering analysis makes use of the available data all at once, thereby 

rendering it more suitable for automation of the process. The clustering analysis could be 

used on its own, i.e. ignoring the stabilization procedure described by Eq. (3.2), or as a tool 

to further refine the results obtained in the stabilization procedure by only considering 

those modes that are labeled as “stable”, thus decreasing the computation time. 

 

Due to its relatively better performance in the Monte Carlo experiment, the SSI-

DATA (CVA) algorithm is used in the analysis of the simulated data from the Phase II 

benchmark problem. The integer i  in Eq. (2.46) is chosen as 18 so that a maximum of 

288n =  states can be identified. This model is then reduced to 2,3,..., 288n = , 

respectively. A first refinement on the identified set of modal parameters is achieved by 

considering their stabilization behavior with 1%ωρ = , 4%ζρ =  and 1%MACρ = . The idea 

of allowing larger uncertainty for damping estimates is based on the results obtained in the 

previously discussed Monte Carlo experiment. The associated stabilization diagram is 

given in Figure 3.6. A visual inspection of this diagram reveals 12 modes (including 2 

pairs of closely spaced modes presented in more detail in the subfigures) that show 

consistency at all selected model orders. The continuous line superimposed to the diagram 

represents the power spectral density (PSD) of the output estimated using Welch’s 

modified periodogram method (Stoica and Moses, 2005). It is presented here for 

comparison purposes since the peaks of the PSD also correspond to the resonance 

frequencies of the structure. 

 

The modal parameters that have been labeled as stable in this analysis are then 

subjected to the clustering analysis, the results of which are presented in Table 3.3. Here 
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the related tolerance parameters are imposed as 0.5%ωΔ = , 0.05%ζΔ = , 0.01MACΔ =  and 

the corresponding threshold value for the distance is 1τ = . The proper choice of these 

tolerance values is, in fact, the most crucial step in this analysis because too stringent limits 

will cause either splitting of a system mode or misclassification of it as spurious, whereas 

loose limits will introduce false modes as system modes. Initially setting relatively tight 

limits and then combining the modes that are suspected to have split in the analysis may be 

a remedy to avoid these misinterpretations. In any case, the selection of the proper 

threshold values requires some trial and error approach. Table 3.3 shows that the 

frequencies form dense clusters, as can be deduced from the low coefficient of variation 

values associated with them, and that the damping estimates show larger deviations with 

respect to the mean values, similar to the Monte Carlo experiment results. 

 

Table 3.3. Clustering analysis results for the Phase II analytical benchmark problem 

ω (Hz) ζ (%) 
Mode # Type 

Actual Mean δ (%) Actual Mean δ (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Bending (E-W) 
Bending (N-S) 

Torsion 
Bending (E-W) 
Bending (N-S) 
Bending (E-W) 

Torsion 
Bending (N-S) 
Bending (E-W) 
Bending (N-S) 

Torsion 
Torsion 

8.35 
8.74 
14.34 
23.15 
25.29 
36.09 
40.73 
40.78 
46.27 
55.50 
62.52 
80.80 

8.34 
8.75 

14.33 
23.15 
25.29 
36.10 
40.73 
40.82 
46.28 
55.47 
62.49 
80.83 

0.03 
0.05 
0.08 
0.02 
0.04 
0.03 
0.03 
0.03 
0.03 
0.03 
0.02 
0.02 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.88 
0.93 
0.82 
0.92 
0.97 
0.91 
0.86 
1.09 
1.03 
0.97 
0.95 
0.98 

4.3 
4.6 

10.0 
2.9 
7.1 
6.5 
4.6 
5.5 
5.1 
6.0 
2.6 
3.3 

 

Figure 3.7, Figure 3.8, and Figure 3.9 illustrate the estimated mode shapes for the 

simulated benchmark problem. The dashed lines in these three dimensional plots represent 

the undeformed configuration of the structure, whereas the solid lines correspond to the 

deformed shape for each mode. The associated frequency and modal damping ratio are also 

given above each plot. 
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Figure 3.7. Estimated bending mode shapes along E-W direction for the Phase II analytical 

benchmark problem 

 

 
Figure 3.8. Estimated bending mode shapes along N-S direction for the Phase II analytical 

benchmark problem 

 

 
Figure 3.9. Estimated torsional mode shapes for the Phase II analytical benchmark problem 

 

A remark should be added at this point of the discussion regarding the classical 

damping assumption implicitly made while estimating the tabulated modal parameters. In 

this part of the study there exists no concern about their validity since data is already 

simulated from a classically damped system. While working with real life data, on the 

other hand, this assumption needs to be substantiated. For this purpose, a criterion called 

Modal Phase Collinearity (MPC) will be used. This criterion was formulated by Juang and 

Pappa (1985) to help interpret the analysis results obtained by ERA. 
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The MPC begins with the idea of a monophase mode. A monophase mode is the one 

that has the same phase at all spatial output points. This means, for instance, that each 

output reaches its respective maximum displacement at the same time while vibrating in 

that mode. Theoretically, the mode vectors of a classically damped system will exhibit 

monophasicity since the modal vectors are expected to be real in this case. The motivation 

behind MPC is to scale a complex mode vector such that the resulting vector is as close to 

real as possible, and then quantify the complex residuals to give a measure of how close 

the vector is to monophase behavior. 

 

The derivation of the MPC follows the one presented by Tolson (1991). Consider 

first the identified m  dimensional complex modal vector ψ  
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M M
 (3.4) 

 

where ia  and ib  denote the real and imaginary parts, and ir  and iθ  represent the absolute 

value and phase angle of each component. Let θ  be the angle that makes ψ  real such that 

 

 je θψ ψ=  (3.5) 

 

where ψ  is a real vector. ψ  may not be exactly real due to the noise in the data, but it is 

possible to minimize the imaginary parts in a mean square sense. Therefore the problem 

can be stated more precisely as finding the angle θ  that minimizes the sum of the squares 

of the complex parts as 

 

 ( ) 2( )

1
Im i

m
j

i
i

J re θ θ+

=

⎡ ⎤= ⎣ ⎦∑  (3.6) 

 

This minimization problem can be solved by forcing 0J
θ
∂

=
∂

 which yields  
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and, using Eq. (3.7) a measure of deviation for the imaginary residues can be computed 

which reads 

 

 ( )2 2 2 2

1
sin sin 2

m

i i i i i
i

J b a b a bθ θ
=

⎡ ⎤= + − +⎣ ⎦∑  (3.8) 

 

The MPC is then defined as 

 

 
2 2
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i i
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= −
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 (3.9) 

 

and has a range between 0 and 1, where 0 indicates a mode with no phase coherence and 1 

means a normal mode. 

 

Table 3.4. MPC values for the Phase II analytical benchmark problem 

Mode # Type ω (Hz) 
ζ

ζ (%) MPC (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Bending (E-W) 
Bending (N-S) 

Torsion 
Bending (E-W) 
Bending (N-S) 
Bending (E-W) 

Torsion 
Bending (N-S) 
Bending (E-W) 
Bending (N-S) 

Torsion 
Torsion 

8.35 
8.74 
14.34 
23.15 
25.29 
36.09 
40.73 
40.78 
46.27 
55.50 
62.52 
80.80 

0.88 
0.93 
0.82 
0.92 
0.97 
0.91 
0.86 
1.09 
1.03 
0.97 
0.95 
0.98 

99.8 
99.7 
93.8 

100.0 
100.0 
100.0 
77.8 
93.1 
100.0 
100.0 
99.3 
98.9 

 

Table 3.4 presents the MPC values corresponding to the identified mode shapes for 

the analytical benchmark problem. The lowest values are associated with the two closely 
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spaced modes around 40.7 Hz. The corresponding mode shape plots also confirm this 

indication because the deformed patterns of these two modes look almost identical and it 

seems as if the torsional motion has not been properly uncoupled from the bending mode. 

Pappa et al. (1993) indeed point out that significant phase angle errors can occur for 

closely spaced modes when the excitation is inadequate to uncouple these modes, and this 

might be a possible explanation for the low MPC values concerning these two modes. 

 

3.2.2.   Experimental Phase 

 

In the experimental phase of the benchmark problem, the model structure shown in 

Figure 3.4 is instrumented with three uniaxial accelerometers at each story level including 

the base. Two of these measure the N-S motion and the remaining one is placed near the 

center column to measure the E-W (Figure 3.10). As for the excitation, the structure is 

subjected to ambient loads due to wind, pedestrians and traffic. The sampling rate is 200 

Hz, and the test duration is 300 seconds. A detailed description of the test structure and 

experimental procedure can be found on the ASCE SHM website, and is also discussed by 

Dyke et al. (2003). 

 

 
Figure 3.10. Measurement setup for the Phase II experimental benchmark problem 

 

Before proceeding with the modal analysis, the data is detrended in order to remove 

the mean and drift due to sensor inaccuracies. The base accelerations are excluded and thus 

the total number of output channels is 12. The first 10 seconds of measurements are not 

considered in the analysis, and the remaining time histories are divided into three non-

overlapping segments. These three segments are then analyzed separately, and the results 
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which are obtained mutually from all three data sets are considered to qualify as system 

modes. 

 

Initially, a 480 state model is constructed using the CVA weighted SSI-DATA 

algorithm. In the reduction step this higher order model is reduced to 2,3,...,300n = , and 

the corresponding modal parameters are estimated for each order. The stabilization 

diagrams for all three data sets are given in Figure 3.11, Figure 3.12, and Figure 3.13 to aid 

visual judgment of the stable modes. The criteria for modal parameter discrepancies are set 

to be 1%ωρ = , 4%ζρ =  and 1%MACρ =  in these diagrams, and again the continuous line 

represents the PSD estimate of the output. There are seven modes that appear consistently 

in all three analyses. In addition, these plots suggest that there exists a high modal density 

in the 25-30 Hz. frequency range which may interrupt proper identification of any modes 

located herein. 

 

 
Figure 3.11. Stabilization diagram for the Phase II experimental benchmark problem (First 

time history) 

 



 

50

 
Figure 3.12. Stabilization diagram for the Phase II experimental benchmark problem 

(Second time history) 

 

 
Figure 3.13. Stabilization diagram for the Phase II experimental benchmark problem 

(Third time history) 
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The identified modal parameters are clustered using 0.5%ωΔ = , 0.05%ζΔ = , 

0.01MACΔ =  and 1τ = , but using all the available sets of modal parameters instead of the 

refined results obtained in the initial stabilization diagram step. 

 

Table 3.5. Clustering analysis results for the Phase II experimental benchmark problem 

ω (Hz) ζ (%)  Mode # Type 
Mean δ (%) Mean δ (%)  

MPC 

1 
2 
3 
4 
5 
6 
7 
8 

Bending (E-W) 
Bending (N-S) 

Torsion 
Bending (E-W) 
Bending (N-S) 

- 
Bending (E-W) 
Bending (E-W) 

7.49 
7.76 

14.48 
19.89 
21.01 
22.70 
25.41 
28.19 

0.08 
0.09 
0.03 
0.00 
0.02 
0.04 
0.04 
0.04 

0.67 
0.69 
0.15 
0.00 
0.07 
0.45 
0.21 
0.18 

9.79 
15.41 
55.34 
194.32 
74.90 
12.61 
33.33 
21.00 

 

95.8 
96.3 
94.6 
92.8 
81.4 
25.2 
90.0 
86.2 

 

Table 3.5 presents the summary of the results pertaining to modal parameters 

identified consistently in all three data sets. The MPC values are also given to assess the 

validity of the classical damping assumption. The estimated mode shapes illustrated in 

Figure 3.14 suggest that there exists coupling between translational motions to some extent 

due probably to the eccentric placement of the floor masses; hence the classification of the 

modes as given in Table 3.5 is based on the most dominant direction of motion for that 

mode. 

 

 
Figure 3.14. Estimated mode shapes for the Phase II experimental benchmark problem 
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One of the noteworthy results is the negligibly small modal damping ratio associated 

with the second bending mode identified along E-W direction. Although the MPC value 

and the associated mode shape plot seem to be satisfactory for this mode, the zero damping 

ratio suggests some kind of trouble. The second remark concerns the sixth identified mode 

that has a natural frequency of 22.7 Hz. For this mode, the MPC value does not appear to 

be acceptable even though it has been identified with good consistency in all three data 

sets. 

 

�� ��

 
Figure 3.15. Power spectral density estimate of the acceleration signals measured at the 

base level 

 

Figure 3.15 shows the power spectral density plot of the acceleration measurements 

recorded at the base level. The two zooms reveal three frequencies (11.3 Hz., 19.9 Hz. and 

21 Hz.) around which there is a considerable amount of energy accumulation. As far as the 

base is properly fixed, there should not be any dominant frequency components in these 

signals. Assuming that there is no such violation of the fixed support conditions, these 

frequency components might be attributed to some harmonic excitation present in the 
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environment. If this claim is correct, the identified fourth and fifth modes can no more be 

considered as system modes. 

 

This problem was also studied by Ching and Beck (2003) with a two-stage Bayesian 

SHM approach, and some of their results are presented in Table 3.6 in order to facilitate a 

comparison basis for the SSI results. 

 

Table 3.6. Modal parameters for the Phase II experimental benchmark problem by Ching 

and Beck (2003) 

Mode # Type ω (Hz) ζ (%) 

1 
2 
3 
4 
5 

Bending (E-W) 
Bending (N-S) 

Torsion 
Bending (E-W) 
Bending (N-S) 

7.48 
7.76 

14.48 
19.89 
21.01 

0.60 
0.37 
0.06 
0.01 
0.01 

 

3.3.   Vincent Thomas Suspension Bridge 

 

The final analysis in this study investigates the performance of the SSI methodology 

with regards to modal parameter identification of large scale structures. The structure 

considered for this purpose is the Vincent Thomas Suspension Bridge (Figure 3.16) located 

in Los Angeles, California. The bridge has of a main span of length 457.2 m and two side 

spans of length 154.5 m each. The deck is 16 m wide steel truss with lateral K-bracing that 

provide torsional stiffness. The main span is supported by two towers, each 120 m tall, 

which rest on steel piles. 

The bridge is instrumented with 26 uniaxial strong ground motion sensors since mid 

1980s as a part of the California Strong Motion Instrumentation Program. The deployment 

of the sensors is shown in Figure 3.17. Here we only use the acceleration measurements 

obtained from the 16 stations located on the superstructure, and exclude also station 4 

which malfunctioned during the test. The data is sampled at a frequency of 100 Hz, and the 

measurements constitute a total duration of one hour yielding 360000 output samples per 

channel. 
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Figure 3.16. Photograph of the Vincent Thomas Bridge (Pridham and Wilson, 2002) 

 

 
Figure 3.17. Sensor setup on the Vincent Thomas Suspension Bridge (Abdel-Ghaffar and 

Masri, 1992) 

 

Before using the output measurements in the identification algorithms, it is 

sometimes important to consider some measures to make the data easy to handle. Two data 

preprocessing tools that are useful in this context are filtering and decimation. 

 

If the frequency range of interest can be anticipated beforehand, a suitable filter can 

be utilized to remove the undesired frequency components from the data. Depending on the 

range of interest, these undesired components might be the lower or higher frequencies, or 
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some combination of both. The filters to be considered in each of these cases are highpass, 

lowpass and bandpass filters, respectively. 

 

If the measured data is sampled at a very high sampling frequency compared to the 

anticipated frequency range of interest, then it is advisable to decimate the data by some 

appropriate factor to improve numerical accuracy and better concentrate on the desired 

frequencies (McKelvey, 1995). Decimation is simply resampling the data at a lower 

frequency, but a filtering should be always applied before this operation in order to avoid 

folding of frequencies. 
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Figure 3.18. Acceleration measurements from channel 15 before and after resampling at a 

frequency of 25 Hz. 

 

Going back to the Vincent Thomas Suspension Bridge, the initial step of the analysis 

is to detrend the data to remove the mean and drift that might adversely affect the results. 

This is followed by the decimation step where the original sampling frequency has been 

reduced by a factor of four after applying a Chebyshev Type I lowpass filter with a 

normalized cutoff frequency of 10 Hz. This operation reduces the sampling frequency to 

25 Hz. Figure 3.18 shows a segment of the acceleration response obtained from channel 15 
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both before and after data preprocessing. The effect of the removal of higher frequency 

components is apparent in the second plot in that the lower frequency waves can be 

distinguished more visibly. 

 

As for the modal identification analysis, the CVA weighted SSI-DATA algorithm is 

utilized to initially construct a model with 1800 states. Realizing such a high order model 

using all the available output samples is not possible due to computational limitations so a 

time history that depicts relatively stationary behavior for a total duration of 400 seconds is 

considered for the following analysis. The initial higher order model is reduced to 

400,401,...,600n = , and the associated modal parameters are clustered using 0.5%ωΔ = , 

0.05%ζΔ = , 0.01MACΔ =  and 1τ = . A stabilization diagram is also generated as a visual 

aid (Figure 3.19) with respective tolerances 1%ωρ = , 4%ζρ = . Note that the system order 

has to be increased substantially in order to obtain satisfactory results even though the 

sampling frequency is decreased by a factor of 4. 

 

 
Figure 3.19. Stabilization diagram for the Vincent Thomas Bridge ( 25sf Hz= ) 
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For such a lightweight and slender structure as the Vincent Thomas Bridge the 

fundamental frequencies are expected to lie below 1 Hz, and furthermore the sensor setup 

on the bridge is not dense enough to reliably visualize the multi-noded mode shapes that 

belong to higher frequencies. The present analysis, therefore, focuses mainly on the 

frequency range 0-1 Hz. Table 3.7 presents a summary of the clustering analysis results, 

and the corresponding mode shapes are plotted in Figure 3.20. 

 

Table 3.7. Modal parameter estimates for the Vincent Thomas Bridge ( 25sf Hz= ) 

ω (Hz) ζ (%) 
Mode # Type 

Mean δ (%) Mean δ (%) 
 MPC 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Vertical 
Vertical 
Vertical 
Vertical 
Vertical 

Torsional 
Vertical 

- 
Torsional 
Vertical 

- 
- 

0.219 
0.232 
0.365 
0.375 
0.475 
0.538 
0.567 
0.705 
0.734 
0.815 
0.864 
0.911 

0.09 
0.05 
0.08 
0.05 
0.03 
0.05 
0.03 
0.08 
0.06 
0.01 
0.05 
0.15 

3.1 
2.3 
1.9 
1.6 
1.4 
0.9 
0.7 
1.7 
1.9 
0.6 
1.9 
3.5 

3.08 
6.12 
5.33 
6.37 
7.90 
9.05 
5.52 
1.71 
6.28 
1.05 
4.75 
3.85 

 

90.3 
95.1 
99.0 
99.2 
99.8 
99.4 
99.9 
80.3 
95.6 
99.2 
93.0 
88.0 

 

The classification of the bridge vibration modes as given in Table 3.7 is based on the 

description made by Abdel-Ghaffar and Housner (1977). In pure vertical modes, all points 

on any cross section of the bridge move vertically with equal displacements, and remain in 

phase. Torsional motion involves the rotation of the cross sections about the longitudinal 

axis of the bridge. Finally, in pure lateral modes a sway motion is observed in which each 

cross section swings like a pendulum in its own vertical cross section. As can be seen from 

Table 3.7 and Figure 3.20, some fundamental vertical and torsional modes have been 

figured out with satisfactory consistency indicators (i.e., the density of the clusters and the 

MPC values). However, no pure lateral modes have been identified in this analysis. This 

might be attributed to the insufficient excitation of these modes during the test (or 

specifically during the time window considered). 
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Figure 3.20. Estimated mode shapes of the Vincent Thomas Bridge ( 25sf Hz= ) 

 

In order to further appreciate the effects of preprocessing techniques on the 

identification accuracy, another analysis has been undertaken where the data is decimated 

by a factor of 20 this time. Prior to decimation, the higher frequency components in the 

data are removed using a Chebyshev Type I lowpass filter with a normalized cutoff 

frequency of 2 Hz. The new sampling frequency is 5 Hz. A representative time history 

window from the acceleration responses measured at channel 15 both before and after 

decimation are given in Figure 3.21. The contributions of the lower frequencies to the 

response are more prominent in this figure as compared to Figure 3.18. 



 

59

0 10 20 30 40 50 60 70 80
-40

-20

0

20

40
f s =

 1
00

 H
z.

0 10 20 30 40 50 60 70 80
-10

-5

0

5

10

f s =
 5

 H
z.

time (sec)  
Figure 3.21. Acceleration measurements from channel 15 before and after resampling at a 

frequency of 5 Hz. 

 

 
Figure 3.22. Stabilization diagram for the Vincent Thomas Bridge ( 5sf Hz= ) 
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In this second analysis, the initially realized model has 600 states, and since there is 

no computational complexity involved in identifying a model of this order using 18000 

samples, all the available output measurements are employed in the SSI-DATA (CVA) 

algorithm. This 600 state model is then reduced to 200,201, 400n = K  which are 

significantly less demanding in terms of computation time compared to the orders used in 

the previous analysis. The rest of the analysis is exactly the same as the previous one. The 

associated stabilization diagram is shown in Figure 3.22, and the clustering analysis results 

are summarized in Table 3.8. 

 

Table 3.8. Modal parameter estimates for the Vincent Thomas Bridge ( 5sf Hz= ) 

ω (Hz) ζ (%) 
Mode # Type 

Mean δ (%) Mean δ (%) 
 MPC 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

- 
Vertical 
Vertical 
Vertical 
Vertical 
Vertical 

Torsional 
Vertical 

- 
Torsional 
Vertical 

- 
- 
- 

0.162 
0.220 
0.233 
0.368 
0.375 
0.475 
0.539 
0.569 
0.706 
0.732 
0.814 
0.859 
0.895 
0.997 

0.27 
0.06 
0.11 
0.04 
0.18 
0.09 
0.03 
0.03 
0.04 
0.12 
0.11 
0.02 
0.09 
0.07 

4.2 
1.5 
1.3 
1.1 
2.2 
1.6 
0.6 
1.1 
0.5 
1.3 
0.8 
1.0 
1.7 
1.1 

5.35 
4.82 
8.00 
3.42 
8.14 
7.94 
5.22 
4.37 
5.72 
9.99 
8.58 
3.80 
7.73 
5.75 

 

60.1 
99.7 
99.9 
92.6 
99.5 
93.9 
99.6 
99.0 
87.5 
98.8 
99.9 
89.1 
97.2 
96.5 

 

Both the stabilization diagram and the tabulated results suggest that there are 14 

modes located in the 0-1 Hz. frequency interval which consistently appear in all of the 

identified lower order models. The most notable difference in between the two analyses is 

the mode with 0.162 Hz. frequency. This mode has not been identified in the first analysis, 

but here it appears to be one of the most “stable” modes. The associated modal damping 

ratio is in the order of magnitudes that are acceptable for a lightweight and slender 

structure. It is hard, on the other hand, to classify this mode as a pure vertical, torsional or 

lateral one based on the rather odd mode shape shown in Figure 3.23. Although it seems to 

be dominated by both vertical and lateral motion, this conclusion should be read with great 

care considering the related MPC value (60.1 %). 
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Figure 3.23. Estimated mode shapes for the Vincent Thomas Bridge ( 5sf Hz= ) 

 

Table 3.9. Comparison of modal parameters obtained from two different analyses 

Analysis #1 
( 25sf Hz= ) 

Analysis #2 
( 5sf Hz= ) MAC(%) 

ω (Hz) ζ (%) ω (Hz) ζ (%)  
- 

0.219 
0.232 
0.365 
0.375 
0.475 
0.538 
0.567 
0.705 
0.734 
0.815 

- 
0.864 

- 
0.911 

- 

- 
3.1 
2.3 
1.9 
1.6 
1.4 
0.9 
0.7 
1.7 
1.9 
0.6 
- 

1.9 
- 

3.5 
- 

0.162 
0.220 
0.233 
0.368 
0.375 
0.475 
0.539 
0.569 
0.706 
0.732 
0.814 
0.859 

- 
0.895 

- 
0.997 

4.2 
1.5 
1.3 
1.1 
2.2 
1.6 
0.6 
1.1 
0.5 
1.3 
0.8 
1.0 
- 

1.7 
- 

1.1 

- 
93.9 
98.4 
90.3 
98.6 
98.6 
96.0 
99.6 
92.9 
97.5 
99.7 

- 
- 
- 
- 
- 
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Even though some differences are observed between the results of the two analyses, 

some of the identified modes agree well with each other in both cases. Table 3.9 presents 

the results pertaining to both analyses on a comparative basis such that the modes that have 

close modal frequency and damping ratio estimates are tabulated side by side. The MAC 

values are also evaluated to further assess the degree of correlation in between these 

modes. Except for three values, they are all above 96% which suggests a satisfactory 

correspondence for the estimated mode shapes. 

 

The ambient vibration measurements of this bridge have been studied by various 

researchers applying different system identification techniques. Abdel-Ghaffar and 

Housner (1978) have used the more classical peak picking method. The more recent 

studies involve the application of the SSI-COV algorithm by Luş et al. (2004), and 

Pridham and Wilson (2002). Some of the results obtained by Abdel-Ghaffar and Housner 

are presented in Table 3.10 for comparison purposes. 

 

Table 3.10. Modal parameters for the Vincent Thomas Bridge by Abdel-Ghaffar and 

Housner (1978) 

Mode # Type ω (Hz) ζ (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Lateral 
Vertical 
Vertical 
Vertical 
Vertical 
Vertical 

Torsional 
Lateral 
Vertical 
Lateral 
Lateral 

Torsional 
Torsional 
Vertical 
Lateral 

Torsional 

0.168 
0.216 
0.234 
0.366 
0.385 
0.487 
0.494 
0.542 
0.579 
0.623 
0.678 
0.740 
0.806 
0.835 
0.879 
0.945 

2.0 ~ 2.8 
1.4 ~ 1.8 
2.1 ~ 2.3 
0.7 ~ 1.1 
1.0 ~ 1.5 
0.8 ~ 1.0 
0.7 ~ 0.9 
0.9 ~ 1.0 
0.5 ~ 0.6 
0.4 ~ 0.5 

- 
0.5 ~ 0.7 
0.4 ~ 0.6 
0.7 ~ 0.9 
0.4 ~ 0.6 
0.4 ~ 0.5 
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4.   CONCLUSIONS 
Equation Chapter 4 Section 1 

 

The aim of this study was to assess the comparative merits of different stochastic 

subspace identification algorithms, and investigate their use for modal analysis of some 

structures to find out what the potential benefits and pitfalls are. 

 

The results of the Monte Carlo simulation discussed in Section 3.1 revealed that the 

performances of the covariance and data driven subspace algorithms are similar as far as 

the accuracy of the identified modal parameters are concerned. This finding was indeed 

implied in the discussion pertaining to the implementation details of these algorithms. 

Though the analytical relations have not been established, the data projection step involved 

in the data-driven algorithm appears to be a notion similar to the explicit computations of 

the output covariances. By estimating covariances, one obtains a free decay response in 

some sense. The projection operation aims, on the other hand, at obtaining an improved 

estimate of some partition of the available data based on the remaining partition, thereby 

removing the contributions of the uncorrelated modes to the improved partition. 

 

The main distinction seems to occur due to the realization basis used in both 

algorithms. The Canonical Variate Analysis approach has been found to perform superior 

when compared with the Balanced Realization weighting. As is evident from the derivation 

of the covariance-driven algorithm, Canonical Variate Analysis basically weights the 

output covariances with some other output covariance estimates. In this manner, it might 

be dampening out noise modes while revealing the effects of the actual system modes on 

the derived free decay responses. Finally, it has been observed that the damping estimates 

are usually identified with much less accuracy than the frequencies and mode shapes. 

 

In real life engineering structures, the fundamental problem is the determination of 

the system order or, in other words, differentiating true structural modes from spurious 

noise modes. Two different approaches were considered in this study, both of which are 

indeed based on the same motivation: System modes are expected to appear consistently in 

a set of identified models of different orders whereas the spurious ones are expected to 

show a somewhat more erratic behavior. The stabilization diagrams proved to be useful 
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tools for visually judging the number of significant modes. The main drawback about this 

approach is the large amount of user interaction required for this judgment process. 

Although it is possible to automate the mode selection process, there might be some 

algorithmic complications due to the order wise sequential construction of these diagrams. 

The clustering analysis, on the other hand, automates the grouping of these stable modes in 

a more reliable way, i.e. the computer looks at the data instead of the user and selects the 

modes that show consistency at sufficiently many system orders. In order to enforce a 

computer to make such a decision, it is inevitable to define some threshold values, and the 

analysis results become quite sensitive to these predefined thresholds in return. Many trials 

and errors might be necessary to achieve a satisfactory result with the clustering analysis, 

and this, in fact, constitutes the basic tradeoff between automation and user interaction. On 

the whole, both of these approaches can be criticized as being more heuristic than 

mathematically robust, and a reliable and computationally less demanding way of 

determining the system order is still an open problem. 

 

The second major issue discussed here was the validity of the classical damping 

assumption for the identified modal parameters. How ‘classical’ a mode is depends on the 

relative phase differences of its components, so that validation can be done by simply 

looking at the phase angles of the components of a vector. If the phase angles are spaced 0  

or π  rads apart for a specific complex mode vector, then it might be claimed that this 

mode vector defines a monophase behavior. The phase angles, however, are much more 

sensitive to noise than the relative magnitudes, such that a component which has a very 

small effect on the deformation shape may require a big penalty because of the large 

deviation in its phase angle. In general, therefore, an interpretation base solely on the phase 

angle information may be misleading. In this respect, the Modal Phase Collinearity has 

been found to be a practically useful accuracy indicator that can be used to properly 

discuss the monophase behavior. The basic rationale behind this parameter is to try to scale 

a complex modal vector such that the complex parts are minimized. The remaining 

complex residuals are then normalized with respect to a value that is invariant under the 

above transformation, and this normalized value suggests the degree of justification for the 

classical damping assumption. The implications of this parameter in the applications 

involving experimental data analysis were indeed quite reasonable. 
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The experiences with the experimental data have shown that the SSI algorithms 

perform quite satisfactorily and provide a well defined framework for ambient data 

analysis. On the other hand, a large amount of pre-processing of data might be required 

depending on the sampling process and the complexity of the structure. To this end, 

preprocessing tools such as filtering and decimation have been found to be useful in 

reducing the computational burden and improving the results of the identification. These 

benefits were most evident in the analysis of the Vincent Thomas Bridge wherein the pre-

processing helped to focus on the fundamental frequencies of this large scale structure 

which were extremely difficult to detect properly without preconditioning. 
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