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ABSTRACT

QUANTUM GROUP STRUCTURES ASSOCIATED WITH

INVARIANCES OF SOME PHYSICAL ALGEBRAS

In this study, the anticommuting spin algebra is introduced and it is shown

to be invariant under the action of the quantum group SOq=−1(3). Furthermore, its

representations and Hopf algebra structure are studied and found to be closely resem-

ble the similar results for the angular momentum algebra. The invariance properties

of the bosonic and fermionic oscillator algebras under inhomogeneous transformations

are also studied. The bosonic inhomogeneous symplectic group, BISp(2d,R) , and

the fermionic inhomogeneous orthogonal group, FIO(2d,R) , are defined as the in-

homogeneous invariance quantum groups of these algebras. The sub(quantum)groups

and contractions of these quantum groups are studied as a source for new quantum

groups. Finally, the fermionic inhomogeneous orthogonal quantum group is defined for

odd number of dimensions and its sub(quantum)groups and contractions are studied.

inho
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ÖZET

BAZI FİZİKSEL CEBİRLERİN DEG̃İŞMEZLİG̃İ İLE İLGİLİ

KUANTUM GRUP YAPILARI

Bu çalışmada, ters-deg̃işmeli spin cebri tanımlanmış ve bu cebrin SOq=−1(3)

kuantum grubu altında deg̃işmezlig̃i gösterilmiştir. Bunun ötesinde, bu cebrin tem-

silleri ve Hopf cebir yapısı incelenmiş ve açısal momentum cebri için bulunmuş olan-

lara çok benzer yapılara varılmıştır. Bozonik ve fermiyonik osilatör cebirlerinin ho-

mojen olmayan deg̃işmezlik özellikleri incelenmiş ve bunların sonucunda bozonik in-

homojen simplektik group, BISp(2d,R) , ve fermiyonik inhomojen ortogonal group,

FIO(2d,R) , deg̃işmezlik kuantum grupları olarak tanımlanmıştır. Bu kuantum gru-

plarının alt(kuantum)grupları ve büzülmeleri yeni kuantum grup kaynakları olarak in-

celenmiştir. Son olarak, fermiyonik inhomojen ortogonal kuantum grup tek boyutlarda

da tanımlanmış ve bu kuantum grubunun da alt(kuantum)grupları ve büzülmeleri in-

celenmiştir.
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1. INTRODUCTION

1.1. Bosons and Fermions

The concept of bosonic and fermionic particles is one of the most important

concepts in modern quantum physics. The behavior of large scale matter, from chemical

properties of elements to superconductivity and superfluidity can mostly be understood

by referring to the fermionic or bosonic nature of the quantum mechanical particles

involved in such phenomena. It is for this reason that understanding the symmetry

properties of these phenomena and, motivated by their importance, trying to find other

behavior that mimic them is very meaningful.

Furthermore, while bosonic behavior has a classical counterpart, the concept of

a fermionic particle is one that can only exist in the quantum domain. This fact

makes the study of such behavior even more important. However, what could be

more interesting is the study of other such constructs that cannot have a classical

counterpart. These constructs would thus belong solely in the quantum domain and

could help us understand phenomena that are strictly quantum mechanical in nature.

There is a strong relation between the spin properties of a particle and the particle

being a boson or a fermion. In fact, it is a proven fact of quantum physics that

integer spin particles are bosons and half-integer spin particles are fermions. This is

most often referred to as the spin-statistics theorem in quantum mechanics and is a

very interesting fact since it implies a relationship between two concepts that seem

to be totally unrelated. This strong relation between the bosonic/fermionic nature

of a particle and its spin makes the angular momentum algebra also very central in

quantum physics.

Before we start investigating such matters, it would be apt to give an overview

of the state of bosons and fermions as it has been studied up to now.
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When the harmonic oscillator is studied in a quantum mechanical manner [1],

one arrives at the relation:

aa† − a†a = 1 (1.1)

to describe the system. The Hamiltonian of this system is given by ~ω
2

(aa†+a†a). The

spectrum of this Hamiltonian, which in turn gives us the allowable energy levels of

the quantum harmonic oscillator, can be obtained easily by introducing the hermitian

operator N = a†a which satisfies the following relations with a and a†:

[N, a†] = a† (1.2)

[N, a] = a (1.3)

where [ , ] denotes the usual commutator. By observing the fact that the Hamiltonian

is nothing but ~ω(N + 1
2
), one can see that one can get the states that correspond to

the energy levels as eigenvectors | n 〉, of the operator N . The action of a† and a on

such an eigenvector | n 〉 is found to be:

a† | n 〉 =
√
n+ 1 | n+ 1 〉 (1.4)

a | n 〉 =
√
n | n− 1 〉 (1.5)

Due to the fact that the operator N is a positive hermitian operator, its eigenvalues,

namely n, cannot be negative. For a given positive value of n, however, one can

construct states with eigenvalues n−1, n−2, n−3, and so on, by repeatedly applying

the operator a on the original state. This sequence of eigenvalues will contain negative

values eventually for any given finite n unless it is an integer. In that case, the sequence

will end at the eigenvalue 0 since a further application of the operator a on that state

will give us the zero vector of the Hilbert space which is not a physically observable

state and is thus a state out of our domain.

As a result of this study one finds that the values of n, the eigenvalues of the oper-
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ator N , begin from 0 and increase by 1 every time a† is applied on the relevant state and

that the energy levels of the quantum harmonic oscillator are given by ~ω(n+ 1
2
). The

operators a† and a turn out to be operators that create and destroy, respectively, one

quanta of energy and for this reason they are usually called creation and annihilation

operators.

Even though this operator algebra seems to only describe the quantum harmonic

oscillator, when one studies quantum field theory, this algebra comes up as the algebra

of the Fourier coefficients of the field operator describing a bosonic particle. Each

normal mode of a quantum field behaves as if it is an independent harmonic oscillator

and for that reason we have a separate set of creation and annihilation operators for

each of these modes. In that setting, the operators a†p and ap, which now carry a

continuous momentum index, are interpreted as the operators that create and destroy,

respectively, one bosonic particle of such a field with momentum p.

For fermionic particles the story is a little bit more different. In 1925, Pauli first

proposed his exclusion principle [2] to explain the behavior of electrons in an atom.

According to this principle, no two electrons could exist in the same quantum state

and it was for this reason that electrons could not all occupy the lowest energy state

in the atomic orbitals but instead had to line up the energy levels in a well ordered

manner. The implication of this principle to the electron gas was first considered

by Fermi and Dirac and it is for this reason that particles that obey these statistics

are called fermions. In 1926 Dirac noted [3] that the exclusion principle could also

apply to other particles by relating bosons and fermions to the symmetry of the many-

particle wavefunction. If the wavefunction changes sign upon exchange of two particles

then those particles would be fermions and they would be bosons if the wavefunction

did not change sign. This treatment effectively implies the Pauli exclusion principle

since if there were to be two fermionic particles occupying the same quantum state,

then upon their exchange the wavefunction would change sign; on the other hand, we

expect the wavefunction to be identical to the original one before the exchange since

nothing must have changed about the quantum state of the system. For this reason

the original wavefunction can be nothing but zero if it is to be equal to its negative in
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this manner. Thus, by contradiction, one can show that no two fermions can exist in

the same quantum state. It was only later, in 1928, that Jordan and Wigner proposed

[4] that in order to treat fermions in quantum field theory, their field operators had to

anticommute so that the wavefunction could be antisymmetric. They showed that a

consistent second-quantization of fermions implied anticommutation relations on the

field operators. This is turn implies that the Fourier coefficients of the field operators

that belong to a normal mode also obey anticommutation relations instead of the

commutation relations that the bosonic creation and annihilation operators obey.

In this work, we would like to give an alternative derivation of this algebra by only

starting from the Pauli exclusion principle and assuming that fermionic particles also

have creation and annihilation operators just like the bosonic particles. If this is the

case then Pauli exclusion principle tells us that we cannot create a second fermion in the

same quantum state, i.e. that (a†)2, and in turn a2, should be 0. This relation, however,

is not compatible with the commutation relation (1.1) and thus should be supplemented

with another kind of relation. If we define the operator K as the anticommutator of a

and a†:

K ≡ aa† + a†a (1.6)

then we find that K is a central element of the algebra, since:

a†K = a†(aa† + a†a) = a†aa† (1.7)

Ka† = (aa† + a†a)a† = a†aa† (1.8)

which implies that K commutes with a† and similarly with a, thus making it a central

element of the algebra. The central operator K can be written as a multiple of the

identity kI and if we rescale the operators a and a† by 1/
√
k, we arrive at the fermion
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anticommutator algebra:

a2 = 0 (1.9)

aa† + a†a = 1 (1.10)

This derivation of the fermion algebra also shows clearly that the physically more

important relation is the fact that the square of the annihilation operator is zero, since

the other relation follows from this fact. In literature, it is often the case that only

the anticommutation relation is presented as describing fermionic particles, completely

omitting the other, more important, relation. This is usually falsely motivated by the

assumption that the anticommutation relation uniquely describes a fermionic system

just as the commutation relation alone describes a bosonic system. However, without

the first relation, the anticommutation relation alone describes a completely different

system which still has two states but is not equivalent to the fermionic system.

A study of this fermion algebra, similar to the boson algebra, shows that, again,

a hermitian positive-definite number operator N = a†a can be defined and has eigen-

values 0 and 1 that correspond to the states | 0 〉 and | 1 〉, respectively. In harmony

with our original assumption, the operator a† takes the state | 0 〉 to the state | 1 〉

thus fulfilling the interpretation of it as a creation operator. Similarly, the operator a

acts as an annihilation operator of the algebra.

1.2. Quantum Groups and Hopf Algebras

The discovery of quantum groups has historically been motivated by the study

of quantization of non-linear completely integrable systems [5]. The study of such

systems has shown that some non-linear completely integrable systems that possess

group symmetries, when quantized, acquire a different kind of symmetry; a symmetry

under quantum groups. By definition quantum groups are non-commutative and non-

cocommutative Hopf algebras and thus the physical importance of quantum groups

and Hopf algebras, in general, is very great since the aforementioned discovery.
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In order to give an overview of the definition of a Hopf algebra and the motivations

behind these definition, we will start from the definition of an associative algebra and

starting form that definition give definitions of coalgebra, bialgebra and Hopf algebra.

1.2.1. Associative Algebras

In abstract mathematics, an associative algebra A over a field F is defined to

be a vector space over F with an F bilinear multiplication m : A ⊗ A → A (where

the image of (x, y) ∈ A ⊗ A which is m(x, y) is usually written as xy) such that the

associativity law:

(xy)z = x(yz) for all x, y, z ∈ A (1.11)

is satisfied. This associativity condition can also be written without reference to any

of the elements of the algebra A by first considering that the condition is equivalent

to:

m ◦ (m(x, y), z) = m ◦ (x,m(y, z)) for all x, y, z ∈ A, (1.12)

where ◦ denotes functional composition, and then realizing that the for all condition

can be expressed as:

m ◦ (m(A⊗ A)⊗ A) = m ◦ (A⊗m(A⊗ A)) . (1.13)

If we further define the identity operator on A as id(x) = x for all x ∈ A, then we can

write the above form as:

m ◦ (m⊗ id)(A⊗ A⊗ A) = m ◦ (id⊗m)(A⊗ A⊗ A) , (1.14)
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where it is obvious that we can drop the A ⊗ A ⊗ A terms from both sides of the

equation without losing the expressive power of the relation. Thus we end up with:

m ◦ (m⊗ id) = m ◦ (id⊗m) (1.15)

for the definition of associativity of the product on an algebra A. This form of element

free notation, where appropriate, will be used in this work from this point on.

An associative algebra is called unital if the algebra A contains an identity element

1 such that 1x = x1 = x for all x ∈ A. Such a unital algebra is also a ring and

contains all the elements of the field F by identifying an element k of the field with

the algebra element k1. This identification can be expressed as the existence of a unit

map η : F → A which has the property:

m ◦ (id⊗ η) = s = m ◦ (η ⊗ id) (1.16)

where s is the scalar multiplication s : F ⊗A→ A such that s(k, x) = kx. Since F ⊗A

is isomorphic to the original algebra A, the above relation is sometimes written with

id in place of s with scalar multiplication being implicitly understood.

As a result, we can see that the definition of a unital associative algebra is a

vector space over a field F with two operations, m : A⊗A→ A and η : F → A defined

such that the operations satisfy:

m ◦ (m⊗ id) = m ◦ (id⊗m) (1.17)

m ◦ (id⊗ η) = id = m ◦ (η ⊗ id) (1.18)

These relations can also be written as the condition that the following diagrams com-

mute:
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A⊗ A⊗ A
m ◦ id

//

id ◦m

��

A⊗ A

m

��
A⊗ A

m
// A

Figure 1.1. Associativity in an algebra A

F ⊗ A ∼= A ∼= A⊗ F
id ◦ η

//

η ◦ id

��

id

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ A⊗ A

m

��
A⊗ A

m
// A

Figure 1.2. Existence of unit in the algebra A

1.2.2. Coalgebras

The primary motivation for coalgebras stem from the study of the effect of the

multiplication and unity operators defined on an algebra on the dual of that algebra.

The dual A∗ of an algebra A is defined to be the set of all linear maps from A to F .

By this definition, the dual of an algebra is a vector space provided that the addition

and scalar multiplication is defined as:

(φ+ ψ)(x) = φ(x) + ψ(x) (1.19)

(kφ)(x) = kφ(x) (1.20)
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for all φ, ψ ∈ A∗, x ∈ A and k ∈ F . The dual does not naturally carry any of the

algebra structure of the original algebra and, in general, is not itself an algebra. For

this reason, it is very natural to inquire about the effect of multiplication in A on the

dual A∗. For this we consider:

φ(xy) = φ(m(x⊗ y)) (1.21)

for φ ∈ A∗ and x, y ∈ A. This form, in general, is not equal to φ(x)φ(y) but it should

be possible to write it as a tensor product in terms of other elements of A∗ valued at

x ⊗ y. The possibility of this can be shown if A is finite-dimensional. In general, the

multiplication m : A ⊗ A → A yields a linear map on the dual ∆ : A∗ → (A ⊗ A)∗.

However, if A is finite-dimensional, (A⊗A)∗ is naturally isomorphic to (A∗ ⊗A∗) and

for that reason the map on the dual can be written as ∆ : A∗ → A∗ ⊗ A∗. This map

is called the coproduct. In terms of the coproduct, the above relation becomes:

φ(xy) = φ(m(x⊗ y)) = ∆(φ)(x⊗ y) (1.22)

Similarly, the action of the unit map η : F → A yields a linear map on the dual

ε : A∗ → F , which is called the counit. The action of the counit is as follows:

φ(k1) = φ(η(k)) = ε(φ)k (1.23)

for φ ∈ A∗ and k ∈ F . Thus, we see that the multiplication and unit maps on

A naturally define the coproduct and counit maps on the dual A∗. Furthermore, the

associativity and existence of unit conditions on the algebraA implies certain conditions

on the maps defined on the dual A∗. The structure we have thus arrived at is called a

coalgebra and the dual of an algebra A becomes a coalgebra.

Formally, the definition of a coalgebra C is a vector space over a field F together

with two linear maps:

• Coproduct: ∆ : C → C ⊗ C
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• Counit: ε : C → F

such that the conditions:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (1.24)

(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆ (1.25)

are satisfied. The first of these conditions is called the coassociativity condition and is

equivalent to the fact that Figure 1.3 is commutative. Similarly, the second condition

C
∆

//

∆

��

C ⊗ C

id⊗∆

��
C ⊗ C

∆⊗ id
// C ⊗ C ⊗ C

Figure 1.3. Coassociativity in a coalgebra C

is called the existence of counit and is equivalent to the commutativity of Figure 1.4.

C
∆

//

∆

��

id

%%JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ C ⊗ C

id⊗ ε

��
C ⊗ C

ε⊗ id
// F ⊗ C ∼= C ∼= C ⊗ F

Figure 1.4. Existence of counit in the coalgebra C
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1.2.3. Bialgebras

Formally, a bialgebra B over a field F is both a unital associative algebra and a

coalgebra over F such that the coproduct and counit maps are both algebra homomor-

phisms. In this respect, the coalgebra structure should be compatible with the algebra

structure of the bialgebra. We will also show that the same statement can be expressed

from the opposite point of view, ie. that the algebra structure of the bialgebra should

be compatible with the coalgebra structure. For this reason, the product and the unit

maps should, equivalently, be algebra homomorphisms.

Before analyzing the implications of the compatibility condition, we should define

mB⊗B which is the product defined on B ⊗ B using the product defined on B. The

map mB⊗B : (B ⊗ B) ⊗ (B ⊗ B) → B ⊗ B is a formalization of the product rule

(a⊗ b)(c⊗ d) = (ac)⊗ (bd) and for this reason the action of this map is defined by:

mB⊗B((a⊗ b)⊗ (c⊗ d)) = m(a⊗ c)⊗m(b⊗ d) . (1.26)

One should notice that the definition of this product involves a permutation of the

order of the terms b and c. Using this fact and defining the permutation operator

τ : B ⊗B → B ⊗B by:

τ(a⊗ b) = b⊗ a , (1.27)

we can rewrite the action of the product map on B ⊗B as:

mB⊗B((a⊗ b)⊗ (c⊗ d)) = m(a⊗ c)⊗m(b⊗ d)

= (m⊗m)(a⊗ c⊗ b⊗ d)

= (m⊗m) ◦ (id⊗ τ ⊗ id)(a⊗ b⊗ c⊗ d) .

(1.28)

As a result, we find that mB⊗B is defined in terms of the product map on B as:

mB⊗B = (m⊗m) ◦ (id⊗ τ ⊗ id) . (1.29)
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The statement that the coproduct map is a algebra homomorphism implies that:

∆(ab) = ∆(m(a⊗ b)) = mB⊗B(∆(a)⊗∆(b)) = ∆(a)∆(b) (1.30)

∆(1) = 1⊗ 1 (1.31)

These two equations say that the action of the coproduct map respects both the product

and the unit of the algebra structure in the bialgebra. Similarly, the condition that the

counit is an algebra homomorphism implies:

ε(ab) = ε(m(a⊗ b)) = mF (ε(a)⊗ ε(b)) = ε(a)ε(b) (1.32)

ε(1) = 1 (1.33)

where mF stands for the product on the field F .

The content of these relations which define a bialgebra can also be expressed by

the commutative diagrams in Figures 1.5 and 1.6 for the homomorphism conditions on

the coproduct and Figures 1.7 and 1.8 for the homomorphism conditions on the counit.

B ⊗B
∆⊗∆

//

m

��

(B ⊗B)⊗ (B ⊗B)

mB⊗B

��
B

∆
// B ⊗B

Figure 1.5. Compatibility of the coproduct with the product on the bialgebra B
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F ∼= F ⊗ F

η

##GGGGGGGGGGGGGGGGGGGGG

η ⊗ η
// B ⊗B

B

∆

==zzzzzzzzzzzzzzzzzzz

Figure 1.6. Compatibility of the coproduct with the unit on the bialgebra B

B ⊗B

m

!!DD
DD

DD
DD

DD
DD

DD
DD

DD
D

ε⊗ ε
// F ⊗ F ∼= F

B

ε

;;wwwwwwwwwwwwwwwwwwwww

Figure 1.7. Compatibility of the counit with the product on the bialgebra B

F

η

��@
@@

@@
@@

@@
@@

@@
@@

@@

id
// F

B

ε

??������������������

Figure 1.8. Compatibility of the counit with the unit on the bialgebra B

One can see from these commutative diagrams, that the diagrams are completely

symmetric with respect to the coalgebra and algebra maps. In other words, one can

see that these diagrams can also be read as the coalgebra homomorphism conditions of

the product and the unit maps of the algebra structure of the bialgebra B. The only

diagram that does not explicitly exhibit this symmetry is Figure 1.5. This diagram,

however, can be written in an explicitly symmetric way by using the definition of mB⊗B

to produce the commutative diagram shown in Figure 1.9. This way the content of

all the diagrams can be read both as the compatibility of the coalgebra maps on the
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algebra structure and the compatibility of the algebra maps on the coalgebra structure

of the bialgebra B.

B

∆

$$IIIIIIIIIIIIIIIIIIIIIIIIII

B ⊗B

m

::uuuuuuuuuuuuuuuuuuuuuuuuuu

∆⊗∆

��

B ⊗B

B ⊗B ⊗B ⊗B
id⊗ τ ⊗ id

// B ⊗B ⊗B ⊗B

m⊗m

OO

Figure 1.9. Compatibility of the coproduct with the product on the bialgebra B

1.2.4. Hopf Algebras

A Hopf algebra H is basically a bialgebra, ie. both a unital associative algebra

and a coalgebra, with an additional structure called the coinverse (or the antipode)

which is a linear map S : H → H such that the diagram in Figure 1.10 is commutative.

H ⊗H
S ⊗ id

// H ⊗H

m

��
H

∆

OO

∆

��

ε
// F

η
// H

H ⊗H
id⊗ S

// H ⊗H

m

OO

Figure 1.10. Definition of coinverse on the Hopf algebra H
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In order to write the concept of a coinverse more explicitly, we will introduce

Sweedler’s [6] notation which can be considered to be the analogue of Einstein sum-

mation convention for coproducts. Given an element c of a coalgebra, there exists

elements ci(1) and ci(2) in the coalgebra such that:

∆(c) =
∑

i

ci(1) ⊗ ci(2) . (1.34)

Using Sweedler’s notation, this can be abbreviated to:

∆(c) =
∑

c

c(1) ⊗ c(2) (1.35)

and in the sumless version of Sweedler’s notation, it further becomes:

∆(c) = c(1) ⊗ c(2) (1.36)

Thus the coinverse map S can also be expressed as:

S(c(1))c(2) = m(S(c(1))⊗ c(2)) = ε(c)1 = m(c(1) ⊗ S(c(2))) = c(1)S(c(2)) (1.37)

The notion of commutativity in a Hopf algebra is defined by the commutativity

of the product map of the algebra structure. An algebra is commutative if and only if

the product map satisfies the relation:

m = m ◦ τ (1.38)

so that the order of multiplying terms in the product does not matter. In terms of

elements of the algebra this relation becomes:

m(a⊗ b) = m(b⊗ a) (1.39)
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for all elements a, b of the algebra. Similarly, the notion of cocommutativity in a

Hopf algebra is defined by the cocommutativity of the coproduct map of the coalgebra

structure. A coalgebra is cocommutative if and only if the coproduct map satisfies the

relation:

∆ = τ ◦∆ (1.40)

so that the order of terms in the outcome of the coproduct does not matter. In terms of

elements of the coalgebra and using sumless Sweedler’s notation, this relation implies:

∆(c) = c(1) ⊗ c(2) = c(2) ⊗ c(1) (1.41)

for all elements c of the coalgebra.

There are various examples of Hopf algebras. Out of these the most important

examples are the group algebras and universal enveloping algebras of Lie algebras.

Given a group G, the group algebra FG is a unital associative algebra over the field

F . It becomes a Hopf algebra, if we define the coproduct, counit and coinverse maps

by:

∆(g) = g ⊗ g (1.42)

ε(g) = 1 (1.43)

S(g) = g−1 (1.44)

for all g ∈ G. In this instance the resulting Hopf algebra is always cocommutative

(since g ⊗ g = τ(g ⊗ g)) and is commutative depending on the original group G being

abelian or not. If the underlying group G is abelian, the resulting Hopf algebra is both

cocommutative and commutative. Otherwise, it is cocommutative but noncommuta-

tive.

Similarly, given a Lie algebra g over a field F , its universal enveloping algebra
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U(g) is a unital associative algebra. This algebra U(g) becomes a Hopf algebra if we

define the coproduct, counit and the coinverse maps as:

∆(x) = 1⊗ x+ x⊗ 1 (1.45)

ε(x) = 0 (1.46)

S(x) = −x (1.47)

for all x ∈ U(g). Notice that the coproduct rule is not only compatible with the product

on the universal enveloping algebra but it is also compatible with the antisymmetric

product defined on the Lie algebra itself. This Hopf algebra is cocommutative (since

1⊗ x+ x⊗ 1 = x⊗ 1 + 1⊗ x) but noncommutative.

Quantum groups are, loosely, defined as Hopf algebras that are neither commu-

tative nor cocommutative. As such, they are important in non-commutative geometry.

The reason for this stems from the observation that in order to study geometry on a

manifold M , it is possible to work with the algebra of functions A = C(M) on M which

is a Hopf algebra. Thus, one can continue studying Hopf algebras, including noncom-

mutative and noncocommutative ones, and do geometry with them even though the

underlying manifold does not exist anymore in a conventional sense. They are called

quantum groups because of a similar reasoning stating that a standard algebraic group

is well described by the Hopf algebra of regular functions on the algebraic group and

that a deformed version of the Hopf algebra should, in some sense, describe a deformed,

quantized version of the algebraic group. In essence, identifying these quantized alge-

braic groups with their Hopf algebras one can study them in full generality and make

a theory of these quantum groups.

Since it is essentially the noncocommutativity of a Hopf algebra that makes it in-

teresting, it is natural for there to be a mathematical property to quantify the amount

of its noncocommutativity. This is analogous to the definition of the commutator to

describe the amount of noncommutativity of an associative algebra. Thus, a quasi-

triangular Hopf algebra is defined as a Hopf algebra H, where there is an invertible
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element R in H ⊗H, such that it satisfies:

τ ◦∆ = R∆R−1 (1.48)

(∆⊗ id)(R) = R13R13 (1.49)

(id⊗∆)(R) = R13R12 (1.50)

where if R = ai ⊗ bi then R12, R13 and R23 are defined as:

R12 = ai ⊗ bi ⊗ 1 (1.51)

R13 = ai ⊗ 1⊗ bi (1.52)

and

R23 = 1⊗ ai ⊗ bi . (1.53)

As can be seen, in a quasitriangular Hopf algebra the coproduct is almost cocommuta-

tive up to a conjugation by the invertible element R. Moreover, if one works with the

equations given above, one can arrive at a matrix equation for R given by the quantum

Yang-Baxter equation:

R12R13R23 = R23R13R12 (1.54)

which plays a fundamental role in the theory of completely integrable systems [7]. If one

starts from this matrix equation for R, one can start categorizing the solutions to the

matrix equation and thus categorize quasitriangular Hopf algebras. Equivalently, every

matrix representation of a quasitriangular Hopf algebra, implies a matrix representation

of R and as such gives one a solution to the quantum Yang-Baxter equation. Thus,

from a single Hopf algebra, it is possible to extract many solutions to this equation by

using different matrix representations. This is the reason why the element R ofH⊗H is

sometimes called the universal R-matrix. It is mostly for these reasons that commonly

studied physical Hopf algebras and quantum groups are generally quasitriangular.
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1.3. Quantum Matrix Groups

A quantum matrix group is defined by a set of n x n matrices M :

M =


a11 a12 . . . a1n

a21
. . .

...
...

. . .
...

an1 . . . . . . ann

 (1.55)

such that every element of the matrix belong to a Hopf algebra H. The matrix group

defined in this way naturally becomes a Hopf algebra with the coproduct, counit and

coinverse of the matrix algebra being defined as:

4(M) = M⊗̇M (1.56)

ε(M) = In (1.57)

S(M) = M−1 (1.58)

where ⊗̇ stands for the operation where when the matrix multiplication is performed

the matrix elements are multiplied using the tensor product is instead of the normal

product and In stands for the n x n unit matrix. The relations above imply the

definitions of the coproduct, counit and coinverse of the matrix elements:

4(aij) =
∑

k

aik ⊗ akj (1.59)

ε(aij) = δij (1.60)∑
j

S(aij)ajk = δij =
∑

j

aijS(ajk) (1.61)

One of the most important examples of quantum matrix groups is the quantum

group GLq(n). This quantum group is a quantum subgroup of the bialgebra Mq(n).
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An element T of Mq(n) has matrix entries tij that satisfy:

tiktil = qtiltik for k < l (1.62)

tiktjk = qtjktik for i < j (1.63)

tiltjk = tjktil for i < j, k < l (1.64)

tiktjl − tjltik = (q − q−1)tiltjk for i < j, k < l (1.65)

for some q ∈ C. One can immediately see that Mq(n) is a bialgebra with the definitions

of coproduct and counit given in equations (1.56) and (1.57). In order to define the

coinverse, one needs to define the inverse of such a matrix and for this one should

define the quantum analogues of the determinant and the adjoint. For an element T

of Mq(n) one defines the quantum determinant [8] as:

detq(T ) =
∑
σ∈Sn

(−q)i(σ)t1σ(1) · · · tnσ(n) (1.66)

where Sn is the symmetric group on 1, · · · , n and i(σ) is the number of adjacent trans-

positions in the permutation σ. Similar to normal matrices, one can also define the

quantum adjoint matrix adj(T ) = (aij) such that:

aij = (−q)j−idetq(T
ij) (1.67)

where T ij stands for the (n− 1) x (n− 1) matrix obtained from T by deleting the ith

row and the jth column. Just as in classical matrices, one has:

T · adj(T )T = adj(T )T · T = detq(T )In (1.68)

which yields the inverse, and in turn the coinverse, of such a quantum matrix as:

S(T ) = T−1 = det−1
q (T )adj(T )T (1.69)

This coinverse is obviously only defined when detq(T ) is invertible for all T in the
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quantum matrix group. The quantum subgroup of Mq(n) that satisfies this condition

is called GLq(n), the quantum general linear group of dimension n and this structure is

a Hopf algebra since the coinverse is now defined. In analogy with the classical matrix

groups, one can further restrict the determinant of such matrices to be equal to 1 and

obtain the quantum subgroup SLq(n), the special linear quantum group of dimension

n.

1.4. Quantum Group Invariance of an Algebra

A (left)module over the ring R consists of an abelian group M and the scalar

multiplication operation s : R ⊗M → M , the action of which is usually written as

s(r, x) = rx for some r in R and some x in M , and such that:

r(x+ y) = rx+ ry (1.70)

(r + s)x = rx+ sx (1.71)

(rs)x = r(sx) (1.72)

1x = x (1.73)

for all r, s in R and all x, y in M . Notice that this definition of a module is the same

as the definition of a vector space except a module is defined over a ring instead of a

field. Thus, every vector space is also a module and a module over K is the same thing

as a vector space over K if K is a field.

The reason why the module is defined here is that they gives a representation

of a ring or any structure that extends the ring structure. On order to see this, one

can consider the scalar multiplication as the action of the ring R on M by sending the

element x to rx. This action will be a group endomorphism due to the definition of a

module. Thus, if one identifies an element r in R by its action, then one has defined a

map from R to End(M) which respects the ring structure. Such a map R→ End(M)

is called a representation of the ring R over the abelian group M . If we consider the

representations of a vector space, then these representations also form a vector space
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such that these representations can be multiplied by the elements of the underlying

field and can be added to generate new representations. Since a Hopf algebra is an

associative algebra, which itself is a vector space, it also has such representations.

However, the interesting fact for Hopf algebras (more specifically bialgebras) is that if

U and V are two representations of the Hopf algebra then U⊗V is also a representation

for the Hopf algebra due to the nature of the coproduct. The representation of A in H

on W = U ⊗ V is given by ∆(A) = A(1) ⊗A(2) such that A(1) gives the representation

on U and A(2) gives the representation on V . Thus, one can form direct products of

representations to form new representations for a Hopf algebra.

Starting from this interesting fact for Hopf algebras one can arrive at an even

more interesting result. If one were to consider an associative algebra A as a vector

representation of an algebra, then the original algebra structure of A would not be pre-

served since the product of two representations don’t even form another representation.

However, if we consider A as representation for a Hopf algebra H and if the product

mA on A respects the representation map, then the linear map ρ : H ⊗ A → A is an

algebra representation of the Hopf algebra. Thus Hopf algebras accept representations

which can also form algebras.

Finally, if A is a representation of a Hopf algebra and X is an element of A such

that:

c[X] = ε(c)X (1.74)

for all c in H, then X is said to invariant under H. The subset of all such invariant

elements of a representation A forms a subrepresentation of H. Thus, given an algebra

A which is a representation of H, if the invariant elements of A form the whole of the

algebra then A is said to be invariant under the action of the Hopf algebra H.
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1.5. Summary

This work is divided into four chapters. In the first chapter, an introduction was

given to the basic concepts of boson and fermions and basic mathematical structures

related to the succeeding chapters were introduced.

In the second chapter, the anticommuting spin algebra (ACSA) will be intro-

duced. In that section it will be shown that the invariance group of ACSA is SOq=−1(3)

and that the representations of ACSA show great similarity to the representations of its

sister spin algebra. Finally, the exact relationship between ACSA and the spin algebra

will be examined and a braided Hopf algebra structure for ACSA will be introduced.

The third chapter deals entirely with the inhomogeneous invariance (quantum)

groups of the boson and fermion algebras. The bosonic inhomogeneous symplectic

quantum group and the fermionic inhomogeneous orthogonal group will be intro-

duced to describe these invariance conditions. In the subsections of this chapter, the

sub(quantum)groups and contractions of these new quantum groups will be studied.

Finally, the fermionic inhomogeneous orthogonal group will defined in odd number of

dimensions and its sub(quantum)groups will be studied.

The fourth and final chapter is reserved for concluding remarks about the body

of work that has been introduced in this study.
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2. THE ANTICOMMUTING SPIN ALGEBRA

In recent years quantum groups involving fermions have received widespread at-

tention. These include deformed fermion algebras [9, 10, 11, 12], spin chains [13, 14, 15]

and Fermi gases [16]. Motivated by these, we start investigating a fermionic analogue

of the angular momentum algebra where the commutator relations are replaced by

anticommutator relations.

2.1. Defining Relations

We define the anticommuting spin algebra by the relations:

{J1, J2} = J3 (2.1)

{J2, J3} = J1 (2.2)

{J3, J1} = J2 (2.3)

where J1, J2, J3 are hermitian generators of the algebra. In these expressions the curly

bracket denotes the anticommutator

{A,B} ≡ AB +BA (2.4)

so (2.1)-(2.3) should be taken as the definition of an associative algebra. This proposed

algebra does not fall into the category of superalgebras in the sense of Berezin-Kac

axioms. In particular, the algebra is consistent without grading and there are no

(graded) Jacobi relations. As it is defined this algebra falls into the category of a

(non-exceptional) Jordan algebra where the Jordan product is defined by:

A ◦B ≡ 1

2
(AB +BA) . (2.5)
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A formal Jordan algebra, in addition to a commutative Jordan product, also satisfies

A2 ◦ (B ◦ A) = (A2 ◦ B) ◦ A. When the Jordan product is given in terms of an

anticommutator this relation is automatically satisfied. Just as a Lie algebra where the

Lie bracket as defined by the commutator leads to an enveloping associative algebra, a

Jordan algebra defined in terms of the above product leads to an enveloping associative

algebra which we consider as an algebra of observables.

The physical properties of this system turn out to be similar to those of the

angular momentum algebra yet exhibit remarkable differences. Since the angular mo-

mentum algebra is alos used to describe various internal symmetries, ACSA could be

relevant as well in describing those symmetries.

2.2. The Invariance Quantum Group SOq=−1(3)

In order to find the invariance quantum group of this algebra, we transform the

generators Ji to J ′i by:

J ′i =
∑

j

αijJj . (2.6)

The matrix elements αij are hermitian since Ji’s are hermitian and they commute with

Ji’s but are not assumed to commute with each other. For the transformed operators to

obey the original relations, there should exist some conditions on the α’s which define

the invariance quantum group of the algebra. It is very convenient at this moment to

switch to an index notation that encompasses all three defining relations of the algebra

in one index equation. For the angular momentum algebra this is possible by defining

the totally anti-symmetric rank 3 pseudo-tensor εijk. A similar object for ACSA which

we will call the fermionic Levi-Civita tensor, uijk, is defined as:

uijk =

1, for i 6= j 6= k 6= i,

0, otherwise.

(2.7)
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Thus the defining relations (2.1-2.3) become:

{Ji, Jj} =
∑

k

uijk Jk + 2δij J
2
i (2.8)

The second term on the right is needed since when i = j the left-hand side becomes

2J2
i . Upon transformation (2.6) we require the algebra relations to remain invariant

which means:

{J ′i , J ′j} = J ′k for i 6= j 6= k 6= i. (2.9)

However, substituting the transformation equations into the left-hand side, we have:

{J ′i , J ′j} =
∑
k, m

(αikαjmJkJm + αjmαikJmJk) (2.10)

If one considers the quadratic forms in the universal enveloping algebra of ACSA, then

one can see that the symmetric part of these forms resolve to linear forms owing to the

defining relations of the algebra. Thus the independent quadratic forms in the algebra

are the antisymmetric forms, [Jm, Jk] where m 6= k, and the square forms, J2
k . Using

this observation we put the above relation in the form of a linear sum over independent

algebra elements:

{J ′i , J ′j} =
∑
n, m

(αinαjmJnJm + αjmαinJmJn)

=
1

2

∑
n, m

(αinαjm({Jn, Jm}+ [Jn, Jm]) + αjmαin({Jm, Jn}+ [Jm, Jn]))

=
1

2

∑
n, m
n6=m

(∑
l

(αinαjm + αjmαin)unmlJl + (αinαjm − αjmαin)[Jn, Jm]

)

+
∑

n

(αinαjn + αjnαin) J2
n

(2.11)
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which should be equal to J ′k for i 6= j 6= k 6= i, which in turn gives:

{J ′i , J ′j} = J ′k (2.12)∑
n

(αinαjn + αjnαin) J2
n

+
1

2

∑
n, m
n6=m

(∑
l

(αinαjm + αjmαin)unmlJl + (αinαjm − αjmαin)[Jn, Jm]

)

=
∑

l

αklJl for i 6= j 6= k 6= i.

(2.13)

This final equation yields the following relations among αij :

αinαjn + αjnαin = 0 for i 6= j (2.14)

αinαjm − αjmαin = 0 for i 6= j and n 6= m (2.15)

1

2

∑
n, m
n6=m

(αinαjm + αjmαin)unml = αkl for i 6= j 6= k 6= i (2.16)

However, by virtue of (2.15) and the fact that uijk = 0 if any two indices are the same,

the relation (2.16) can be written as:

αkl =
1

2

∑
n, m

(αinαjm + αjmαin)unml

=
1

2

∑
n, m

2αinαjmunml

=
∑
n, m

αinαjmunml for i 6= j 6= k 6= i

(2.17)

Therefore the resulting relations between the αij that define the invariance group of

this algebra becomes:

αinαjn + αjnαin = 0 for i 6= j (2.18)

αinαjm − αjmαin = 0 for i 6= j and n 6= m (2.19)∑
n, m

αinαjmunml = αkl for i 6= j 6= k 6= i (2.20)
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Before we define the quantum group SOq(3) and show that the relations above

correspond to the case q = −1, we first define the quantum general linear group GLq(2).

This group is defined by the elements:

M =

a b

c d

 (2.21)

such that the matrix elements satisfy the following relations:

ab = qba (2.22)

bd = qdb (2.23)

ac = qca (2.24)

cd = qdc (2.25)

ad− qbc = da− q−1cb (2.26)

bc = cb (2.27)

Using this definition of GLq(2), we can define GLq(3) as the set of matrices:

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ∈ GLq(3) (2.28)

where

Ain Aim

Ajn Ajm

 ∈ GLq(2) for i 6= j and m 6= n . (2.29)

Note that this definition of GLq(3) is an alternative but equivalent definition to the

one given in the Introduction.

From GLq(3), one can obtain SLq(3), the quantum special linear group in 3
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dimensions, by imposing the condition:

detq(A) = 1 (2.30)

where the quantum determinant is defined as presented in the Introduction. Further-

more, on SLq(3), one can impose the reality condition:

Aij = A∗ij (2.31)

thus ending up the quantum group SLq(3,R). On the other hand, one can impose the

unitarity condition:

A† = A−1 (2.32)

on SLq(3) and obtain the quantum group SUq(3). The quantum group SOq(3) is equiv-

alent to the quantum group SLq(3,R) ∩ SUq(3). However one can show for SLq(3,R)

that q = eiβ for some β ∈ R and similarly for SUq(3) that q ∈ R. Thus one finds that

q = ±1 for SOq(3). When q = 1 the quantum group becomes the usual SO(3) group;

the interesting case is when q = −1 which, as we will show, is the invariance quantum

group of ACSA.

By virtue of the relation (2.29) and the relations (2.24) - (2.27) between the

matrix elements of a GLq(2) matrix, we can see that for the case when q = −1, we

have the following relations between the matrix elements of SOq(3):

AinAjn = −AjnAin (2.33)

AinAjm + AimAjn = AjmAin + AjnAim (2.34)

AimAjn = AjnAim (2.35)
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for i 6= j and n 6= m. Furthermore, using (2.35) in (2.34) one finds:

AinAjm = AjmAin (2.36)

again for i 6= j and n 6= m.

Thus for a matrix A ∈ SOq=−1(3), the transformation invariance relation (2.18)

is shown to be satisfied by virtue of relation (2.33). Similarly, the elements of such a

matrix satisfy the relation (2.19) by virtue of the GLq(2) relations (2.35) and (2.36).

It is a little harder to show that equation (2.20) is satisfied by elements of

SOq=−1(3) matrices. However, if one considers a particular choice of k and l on the

right hand side of this equation, one can see that on the left hand side one has the

freedom to choose i and j in two different ways. This implies that a particular αkl is

equal to two separate forms. Given explicitly, for a given choice of k and l, we get:

αkl =
∑
r, q

αirαjqurql (2.37)

αkl =
∑
r, q

αjrαiqurql (2.38)

for a particular choice of i and j such that i, j, k are all different. In each of these sums

only two terms survive, one where r = n, q = m and the other one where r = m, q = n,

such that n,m, l all different. This is due to the nature of uijk which is non-zero only

if all the indices are different. Finally we arrive at the explicit form of relation (2.20):

αkl = αinαjm + αimαjn = αjmαin + αjnαim (2.39)

for i, j, k all different and n,m, l all different. Written in this form, it is obvious that

due to the GLq(2) relation (2.34), part of the above equality is satisfied by the matrix

elements of a matrix in SOq=−1(3). The fact that both sides of this relation is equal to

another matrix element does not rise form the GLq(2) relations but is due to the fact

that the matrix is special and orthogonal, i.e. it is due to the fact that AT = A−1 and
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that detq=−1(A) = 1. In order to show this, we should first note that detq where q = −1

is the same as the normal determinant except there is no alternation of signs as there

is in the normal determinant; this type of determinant with no alternation of signs is

also called a permanent. If we refer to the form of the quantum determinant given in

equation (1.66), we can see that for q = −1, this form turns into a direct sum of all

permutations of matrix elements. Given this fact, one can notice that the GLq=−1(2)

relation (2.34) is equal to the determinant of the GLq=−1(2) submatrix and is nothing

but the statement that this determinant is defined and unique. Using the definition

given in equation (1.69), the inverse of a matrix A that is an element of SOq=−1(3) is

defined as:

A−1 = det−1
q=−1(A)adj(A)T (2.40)

For a matrix A in SOq=−1(3), however, we also have the fact that A−1 = AT and

detq=−1(A) = 1, thus for such a matrix, the relation (2.40) becomes:

AT = adj(A)T ⇒ A = adj(A) (2.41)

where adj(A) stands for the matrix where each matrix element aij is equal to the

determinant of original matrix A without the ith row and jth column, ie. the cofactor

of the matrix element. This implies that the matrix elements of A and adj(A) are

equal. This further implies that each matrix element of A is equal to the cofactor of

that matrix element. For SOq=−1(3) matrices, the cofactor of a matrix element is equal

to the q = −1 determinant of its GLq=−1(2) minor submatrix. Thus, as a result of this

argument, we have:

Akl = cofkl(A) = AinAjm + AimAjn = AjmAin + AjnAim , (2.42)

thereby, showing that matrices which are elements of SOq=−1(3) fully satisfy the trans-

formation relations that leave ACSA invariant.

Thus, we have found that the invariance quantum group of ACSA is the quantum
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group SOq(3) with q = −1. Strictly speaking, ACSA is a module of the q-deformed

SO(3) quantum algebra with q = −1. It is very interesting to note that the invariance

group of the angular momentum algebra is also SOq(3) but with q = 1.

2.3. Representations

The Anticommutator Spin Algebra is defined by the relations (2.1-2.3). In order

to find the representations of this algebra we define the operators:

J+ = J1 + J2 (2.43)

J− = J1 − J2 (2.44)

J2 = J2
1 + J2

2 + J2
3 (2.45)

which obey the following relations:

{J+, J3} = J3 (2.46)

{J−, J3} = −J3 (2.47)

J2
+ = J2 − J2

3 + J3 (2.48)

J2
− = J2 − J2

3 − J3 (2.49)

Furthermore, it can easily be shown that J2 is central in the algebra, i.e. that it

commutes with all the elements of the algebra, by first observing that:

J2
j Ji = Jj(Jk − Ji Jj)

= JjJk − (Jk − Ji Jj)Jj

= (Jj Jk − Jk Jj) + Ji J
2
j

= (2Jj Jk − Ji) + Ji J
2
j for i 6= j 6= k 6= i. (2.50)
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Using this relation and the fact that J2 =
∑

j Jj, we can see:

J2 Ji =
∑

j

J2
j Ji

= J3
i +

∑
j 6=j

J2
j Ji

= J3
i +

∑
j 6=i

(2Jj Jk − Ji + Ji J
2
j ) (2.51)

However, in the final form of this expression the sum only contains two terms where

the two indices j and k are symmetric. Thus the whole expression can be written as:

J2 Ji = J3
i +

∑
j 6=i

(2Jj Jk − Ji + Ji J
2
j )

= J3
i − 2Ji + 2(Jj Jk + Jk Jj) + Ji J

2
j + Ji J

2
k

= Ji J
2 − 2Ji + 2Ji

= Ji J
2 for i 6= j 6= k 6= i, (2.52)

and therefore showing that J2 commutes with all the elements of the algebra.

For this reason, we can label the states in our representation with the eigenvalues

of J2 and J3:

J2 | λ, µ 〉 = λ | λ, µ 〉 (2.53)

J3 | λ, µ 〉 = µ | λ, µ 〉 (2.54)

The action of J+ and J− on the states such defined is easily shown to be:

J+ | λ, µ 〉 = f(λ, µ) | λ,−µ+ 1 〉 (2.55)

J− | λ, µ 〉 = g(λ, µ) | λ,−µ− 1 〉 (2.56)

It is enough to look at the norm of the states J+ | λ, µ 〉 and J− | λ, µ 〉 to find f(λ, µ)



34

and g(λ, µ). Thus:

〈 λ, µ | J2
+ | λ, µ 〉 = |f(λ, µ)|2 (2.57)

〈 λ, µ | J2 − J2
3 + J3 | λ, µ 〉 = |f(λ, µ)|2 (2.58)

λ− µ2 + µ = |f(λ, µ)|2 (2.59)

f(λ, µ) =
√
λ− µ2 + µ (2.60)

and, similarly, g(λ, µ) =
√
λ− µ2 − µ. These coefficients must be real due to the

fact that J+ and J− are hermitian operators. This constraint imposes the following

conditions on λ and µ:

λ− µ2 + µ ≥ 0 (2.61)

λ− µ2 − µ ≥ 0 (2.62)

which can be satisfied by letting λ = j(j + 1) for some j with:

j ≥ µ ≥ −j. (2.63)

Note that equation (2.55) shows that the action of J+ is composed of a reflection

which changes sign of µ, the eigenvalue of J3, followed by raising by one unit. Similarly,

equation (2.56) shows that J− reflects and lowers. Thus the highest state µ = j is

annihilated by J− and lowered by J+. Applying J+ or J− twice to any state gives back

the same state due to relations (2.48) and (2.49). Thus starting from the highest state

we apply J− and J+ alternately to get the spectrum:

j,−j + 1, j − 2,−j + 3, ... (2.64)

This sequence ends so as to satisfy equation (2.63) only for integer or half-integer j. For

integer j, it terminates, after an even number of steps, at −j and visits every integer

in between only once. For half-integer j = 2k ± 1
2

it ends at j = ±1
2

having visited
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only half the states with µ half-odd integer between j and −j. The rest of the states

cannot be reached from these but are obtained by starting from the µ = −j state and

applying J− and J+ alternately; starting with J−.

For the first few integer and half-integer values of j, the spectrum and state

transitions are depicted in the following figures. In these figures the transitions that

take the states to the null state are not shown.

0

Figure 2.1. State diagram for j = 0
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1

0

J−��−1

Figure 2.2. State diagram for j = 1
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1
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−1 J−
ZZ

−2

Figure 2.3. State diagram for j = 2
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Figure 2.4. State diagram for j = 1
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Figure 2.5. State diagram for j = 3
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Figure 2.6. State diagram for j = 5
2
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2.4. Hopf Algebra Structure with Braiding

One natural question to ask having considered this associative algebra is whether

or not it has a Hopf algebra structure. On the surface, this algebra shares a lot with

its sister algebra, the SU(2) Lie algebra, which has a Hopf algebra structure and one

would expect ACSA to similarly have one. It turns out, however, that naively trying

the same coproduct rule for ACSA does not work due to the symmetric nature of the

product defined on ACSA since the product is defined in terms of anticommutators. As

was noted in the Introduction of this work, the coproduct of the Lie algebra requires

the product on the Lie algebra to be anti-symmetric. For this reason, the coproduct

of the SU(2) Lie algebra is not suitable for ACSA.

In our quest for a Hopf algebra structure for ACSA, it would be more fruitful

to understand the nature of the relationship of ACSA with the SU(2) Lie algebra. If

one names the generators of the SU(2) algebra Ii, then it can easily be shown that J̃i

defined as

J̃i = −Ii ⊗ σi (2.65)

satisfy the defining relation of ACSA since:

J̃iJ̃j + J̃jJ̃i = IiIj ⊗ σiσj + IjIi ⊗ σjσi

= IiIj ⊗ iσk + IjIi ⊗−iσk

= i(IiIj − IjIi)⊗ σk

= i(iIk)⊗ σk

= −Ik ⊗ σk

= J̃k for i 6= j 6= k 6= i.

Similarly, the generators satisfying the SU(2) Lie algebra can be written in terms
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of ACSA generators as:

Ĩi = Ji ⊗ σi (2.66)

since:

ĨiĨj − Ĩj Ĩi = JiJj ⊗ σiσj − JjJi ⊗ σjσi

= JiJj ⊗ iσk − JjJi ⊗−iσk

= i(JiJj + JjJi)⊗ σk

= i(Jk)⊗ σk

= Ĩk for i 6= j 6= k 6= i.

These two relations show that the SU(2) algebra and ACSA are so closely related

that it is not even possible to identify which one of these algebras is more fundamental.

Both of them can be written in terms of the generators of the other and their algebraic

structure can be derived from the structure of the other one. However, as mentioned,

the Hopf algebra structure of ACSA cannot be derived from the Hopf algebra structure

of the SU(2) algebra. Specifically, ACSA does not admit a coproduct defined in a

normal way using the usual tensor products. Such a coproduct can be defined if one

were to extend the definition of the permutation map τ used in the connecting relation

of a bialgebra. Normally the operation of τ is defined as:

τ(A⊗B) = B ⊗ A , (2.67)

however, if one considers the algebra to be graded and one were to define a degree

operator (deg) which is 0 for bosonic variables and is 1 for fermionic variables, then

the natural redefinition of the τ operator is

τ(A⊗B) = (−1)deg A deg B B ⊗ A . (2.68)



39

Using this redefined permutation operator, one can still write down the bialgebra and

Hopf algebra relations and only the connecting relation will be redefined; thus, one

arrives at the definition of a braided Hopf algebra structure.

When the permutation operator is redefined in this way, the product of two tensor

product terms is given by (A⊗B)(C ⊗D) = (−1)deg B deg C (AC ⊗BD) where the −1

factor comes in because of the reordering of the B and C terms. Using this rule and

defining the degree of 1 as 0 and the degrees of J1, J2, J3 as 1, we can see that the

coproduct defined as:

∆(Ji) = 1⊗ Ji + Ji ⊗ 1 (2.69)

∆(1) = 1⊗ 1 (2.70)

satisfies the algebra structure relations since:

∆(Ji)∆(Jj) = (1⊗ Ji + Ji ⊗ 1)(1⊗ Jj + Jj ⊗ 1)

= 1⊗ JiJj − 1Jj ⊗ Ji1 + Ji1⊗ 1Jj + JiJj ⊗ 1

= 1⊗ JiJj − Jj ⊗ Ji + Ji ⊗ Jj + JiJj ⊗ 1

and

∆(Ji)∆(Jj) + ∆(Jj)∆(Ji) = 1⊗ JiJj − Jj ⊗ Ji + Ji ⊗ Jj + JiJj ⊗ 1

+1⊗ JjJi − Ji ⊗ Jj + Jj ⊗ Ji + JjJi ⊗ 1

= 1⊗ JiJj + JiJj ⊗ 1

= 1⊗ Jk + Jk ⊗ 1

= ∆(Jk) for i 6= j 6= k 6= i.

The counit and coinverse are simpler and they match with the definitions for the normal
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Lie algebra, i.e.:

ε(Ji) = 0 (2.71)

S(Ji) = −Ji (2.72)

These definitions of the coproduct, the counit and the coinverse give us a braided Hopf

algebra structure for ACSA.
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3. QUANTUM GROUPS ASSOCIATED WITH

INVARIANCE OF NON-DEFORMED OSCILLATORS

The concepts of bosons and fermions lie at the heart of microscopic physics. They

are described in terms of creation and annihilation operators of the corresponding

particle algebra:

cicj ∓ cjci = 0 (3.1)

cic
∗
j ∓ c∗jci = δij (3.2)

where the upper sign is for the boson algebra BA(d) and the lower sign is for the

fermion algebra FA(d).

It has been realized that quantum algebras play an important role in the de-

scription of physical phenomena. Some classical physical systems which are invariant

under a classical Lie group, when quantized, are invariant under a quantum group

[17, 18, 19, 20]. The quantum groups thus considered turn out to be q-deformations of

the classical semisimple groups. On the other hand, inhomogeneous quantum groups

[21, 22] are perhaps more interesting since classical inhomogeneous groups such as the

Poincaré group are more important in physics.

In this paper we will investigate an important class of inhomogeneous quantum

groups which are related to the boson algebra BA(d) and the fermion algebra FA(d).

Although BA(d) and FA(d) themselves are not quantum groups, by considering quan-

tum group versions of symmetry transformations acting on these algebras, one can

arrive at these inhomogeneous quantum groups. Mathematically speaking we are thus

interested in constructing left modules of these algebras such that these modules have

Hopf algebra structure.

Traditionally the boson algebra has the symmetry group ISp(2d,R), the inho-
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mogeneous symplectic group, which transforms creation and annihilation operators as:

ci → αijcj + βijc
∗
j + γi . (3.3)

In this transformation αij, βij, γi are complex numbers satisfying the constraints re-

quired by the group ISp(2d,R). One should note that this symmetry group is also the

group of linear canonical transformations of a classical dynamical system. An impor-

tant physical application of this transformation is the Bogoliubov transformation which

is crucial in the explanation of many quantum mechanical effects such as the Unruh

Effect [23] and Hawking Radiation [24]. In the case of the Hawking Radiation, the

physical reinterpretation of the transformed operators imply that the future vacuum

state is annihilated by the transformed annihilation operator, which is related to the

initial creation and annihilation operators by a Bogoliubov transformation.

Similar to the boson algebra, the fermion algebra has the classical symmetry

group O(2d) with the transformation law:

ci → αijcj + βijc
∗
j . (3.4)

however, unlike its bosonic counterpart this algebra is not inhomogeneous. This fact is

the primary motivation for the generalization that we are going to offer. By relaxing

the conditions on the transformation coefficients such as commutativity, one can come

up with inhomogeneous invariance (quantum)groups for fermions and for bosons alike.

The explicit R-matrices utilizing the quantum group properties of these structures have

already been presented [25, 26]. In this paper, after a brief definition of these quantum

groups FIO(2d,R) , the fermionic inhomogeneous orthogonal quantum group, and

BISp(2d,R) , the bosonic inhomogeneous symplectic quantum group, in Section 1,

we will investigate their sub(quantum)groups and also study the (quantum)groups

obtained by their contractions. In the last section, FIO(2d + 1,R), the fermionic

inhomogeneous quantum orthogonal group in odd number of dimensions, will also be

defined and its properties examined.
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A general transformation of a particle algebra can be described in the following

way:


c′

c∗′

1

 =


α β γ

β∗ α∗ γ∗

0 0 1

 ⊗̇


c

c∗

1

 (3.5)

where c, c∗, γ, γ∗ are column matrices and α, β, α∗, β∗ are d×d matrices. Thus, in index

notation the transformation is given by:

c′i = αij ⊗ cj + βij ⊗ c∗j + γi ⊗ 1 , (3.6)

c∗′i = α∗ij ⊗ c∗j + β∗ij ⊗ cj + γ∗i ⊗ 1 . (3.7)

Given this transformation, we look for an algebra A generated by these matrix

elements such that the particle algebra remains invariant. Thus, we first write the

transformation matrix in the above equation in the following way:

M =


α β γ

β∗ α∗ γ∗

0 0 1

 =

 A Γ

0 1

 . (3.8)

We assume that αij, βij, γi belong to a possibly noncommutative algebra on which

a hermitian conjugation denoted by ∗ is defined.
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3.1. The Bosonic Inhomogeneous Symplectic Quantum Group BISp(2d,R)

If we consider the transformation matrix (3.8) being applied to the boson algebra

given by:

cicj − cjci = 0 (3.9)

cic
∗
j − c∗jci = δij (3.10)

then we require that the transformed operators c′i and c∗′i are required to satisfy the

same algebra in order for the transformation to be an algebra invariance. Thus we

require that:

c′ic
′
j − c′jc

′
i = 0 (3.11)

c′ic
∗′
j − c∗′jc

′
i = δij (3.12)

Explicitly writing out the transformed operators, these relations become:

(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1)(αjl ⊗ cl + βjl ⊗ c∗l + γj ⊗ 1)

−(αjl ⊗ cl + βjl ⊗ c∗l + γj ⊗ 1)(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1) = 0
(3.13)

(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1)(α∗jl ⊗ c∗l + β∗jl ⊗ cl + γ∗j ⊗ 1)

−(α∗jl ⊗ c∗l + β∗jl ⊗ cl + γ∗j ⊗ 1)(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1) = δij

(3.14)

which gives us:

[αik, αjl]clck + [βik, βjl]c
∗
l c
∗
k

+ [αik, γj]ck + [βik, γj]c
∗
k

+ [γi, αjl]cl + [γi, βjl]c
∗
l

+ [αik, βjl]ckc
∗
l + [βik, αjl]c

∗
kcl

+ (αjkβik − βjkαik + [γi, γj]) = 0 ,

(3.15)
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and

[αik, β
∗
jl]clck + [βik, α

∗
jl]c

∗
l c
∗
k

+ [αik, γ
∗
j ]ck + [βik, γ

∗
j ]c

∗
k

+ [γi, β
∗
jl]cl + [γi, αjl]c

∗
l

+ [αik, α
∗
jl]ckc

∗
l + [βik, β

∗
jl]c

∗
kcl

+ (α∗jkαik − β∗jkβik + [γi, γ
∗
j ]) = δij .

(3.16)

In the first of these relations, for the equality to be satisfied, it is sufficient for

the coefficients of all the terms on the left hand side to be equal to zero. In the second

one, however, we only have a term that is a multiple of the unit element of the boson

algebra on the right hand side, thus the coefficient of that term should be equal on

both sides and it is sufficient for the coefficients of the other terms on the left hand

side to be separately equal to zero.

Thus we have the following relations between the transformation elements:

γiγ
∗
j − γ∗j γi = δij − αikα

∗
jk + βikβ

∗
jk (3.17)

γiγj − γjγi = βikαjk − αikβjk (3.18)

αijγk − γkαij = 0 (3.19)

βijγk − γkβij = 0 (3.20)

αijγ
∗
k − γ∗kαij = 0 (3.21)

βijγ
∗
k − γ∗kβij = 0 (3.22)

and any two elements from the set αij, βij, α
∗
ij, β

∗
ij commute.

The set of matrices M obeying the above relations form the group of inhomo-

geneous transformations of bosons. We name this quantum group as the bosonic in-

homogeneous symplectic quantum group BISp(2d,R) since it is an inhomogeneous

extension of the symplectic group where the inhomogeneous part exhibits bosonic be-
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havior. This symmetry group, however, is not a classical group like the symplectic

group but is in fact a quantum group with a Hopf algebra structure. As shown in [26],

this Hopf algebra has an explicit R-matrix representation and the coproduct, counit

and coinverse are defined as:

∆(M) = M⊗̇M (3.23)

ε(M) = I (3.24)

S(M) = M−1 . (3.25)

In Equation (3.23), the symbol ⊗̇ denotes the usual matrix multiplication where when

elements of the matrices are multiplied, tensor multiplication is used.

The inverse of the matrix M can be defined as:

M−1 =

 A−1 −A−1Γ

0 1

 (3.26)

where A−1 is defined in the standard way since matrix elements of A are shown to be

commutative.

3.1.1. Subgroups

After having shown that the inhomogeneous transformations of the boson al-

gebra forms the symmetry quantum group BISp(2d,R) , one important question is

what sub(quantum)groups does this quantum group have. For example, we know

that the group ISp(2d,R) is an important special subgroup of BISp(2d,R) and other

sub(quantum)groups could turn out to have similarly important physical applica-

tions. While searching for sub(quantum)groups, we would also like to find new (quan-

tum)groups allowed by suitable contractions [27] of these quantum groups as well.

The sub(quantum)groups are obtained by imposing additional relations on the

matrix elements of M which obey the relations (3.17) - (3.22). The additional relations
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that we will impose are:

δij − αikα
∗
jk + βikβ

∗
jk = βikαjk − αikβjk = 0 (3.27a)

γi = 0 (3.27b)

βij = 0 (3.27c)

αij = 0 (3.27d)

We would like to study the implication of each relation one by one in the following

subsections.

3.1.1.1. Inhomogeneous Subgroup. The relation (3.27a):

δij − αikα
∗
jk + βikβ

∗
jk = βikαjk − αikβjk = 0

by virtue of (3.17) and (3.18) implies that γiγ
∗
j −γ∗j γi = 0 and γiγj−γjγi = 0, i.e. that

the inhomogeneous transformation parameters are commutative variables.

For bosonic particles, the fact that the inhomogeneous elements of the quantum

group are commutative elements coupled with the fact that the remaining relations

between the transformation elements are already commutative gives us a symmetry

transformation of the boson algebra where all the elements commute. However, we

know that such a transformation is nothing but the classical symmetry group of the

bosonic particle algebra ISp(2d,R) in which all the parameters, including the inhomo-

geneous elements, are commutative.

3.1.1.2. Homogeneous Subgroup. The relation (3.27b):

γi = 0
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practically gets rid of the inhomogeneous part of the transformation and also implies

the relation (3.27a) considered in the previous subsection. Since the previous relation

is implied the resulting group will be a subgroup of ISp(2d,R) and since the group is

not inhomogeneous anymore the resulting subgroup is the classical symplectic group

Sp(2d,R).

3.1.1.3. Bosonic Inhomogeneous Unitary Quantum Group. The relation (3.27c):

βij = 0

applied to the transformation gets rid of the off-diagonal members of the homogeneous

part of it and leaves us with the following relation:

γiγ
∗
j − γ∗j γi = δij − αikα

∗
jk (3.28)

γiγj − γjγi = 0 (3.29)

This equation implies for the homogeneous part of the transformation the relation:

δij = αikα
∗
jk (3.30)

which tells us that the submatrices α and α∗ in equation (3.8) are members of U(d).

The subgroup we have arrived at thus is an inhomogeneous quantum group extension

to the classical homogeneous group U(d). Since the inhomogeneous elements of the

resulting group obeys the same relations as BISp(2d,R) , we will name this quantum

group BIU(d), the bosonic inhomogeneous quantum group.

3.1.1.4. Boson Algebra. The relation (3.27d):

αij = 0
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applied alone onto the transformation gets rid of the diagonal members of the homo-

geneous part and prevents such transformations from forming a (quantum)group since

the homogeneous parts of these set of transformations can never include the identity

transformation.

However, if this relation is applied together with the previous one, relation (3.27c),

the resulting relation gets rid of the whole homogeneous part of the transformation

leaving only the inhomogeneous part and leaves us with two relations:

γiγ
∗
j − γ∗j γi = δij (3.31)

γiγj − γjγi = 0 (3.32)

which gives us back the boson algebra, BA(d).

We should note, however, that after this condition is applied, the resulting set of

matrices M , which now form BA(d), is no longer a quantum or classical group since the

antipode defined in equation (3.25) no longer exits. For this reason, the boson algebra

can be considered to be a boundary for the sub(quantum)groups of BISp(2d,R) .

3.1.1.5. Sub(quantum)group Diagram. As a result of the above discussion, we get the

sub(quantum)group diagram:

BISp(2d,R)
(3.27a)−−−−→ ISp(2d,R)

(3.27b)−−−−→ Sp(2d,R)

(3.27c)

y (3.27c)

y (3.27c)

y
BIU(d)

(3.27a)−−−−→ IU(d)
(3.27b)−−−−→ U(d)

(3.27d))

y
BA(d)

for the sub(quantum)groups of the BISp(2d,R) we have introduced in this section.
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3.1.2. Contractions

In order to explore the new (quantum)groups that will come about as the result

of a contraction, we replace γi by γi/
√

~ so that we may consider the case ~ → 0.

After this replacement, the equations (3.17) and (3.18) become:

γiγ
∗
j − γ∗j γi = ~(δij − αikα

∗
jk + βikβ

∗
jk) (3.33)

γiγj − γjγi = ~(βikαjk − αikβjk) (3.34)

When we consider the case ~ → 0, we get the relations:

γiγ
∗
j − γ∗j γi = 0 (3.35)

γiγj − γjγi = 0 (3.36)

which imply that the inhomogeneous part of the transformation form ordinary complex

numbers. What makes this case different from the previous case of subgroups is that the

homogeneous part of this transformation forms a matrix A with non-zero determinant.

We can transform such a matrix A with a similarity transformation given by the unitary

matrix:

U =
1√
2

 1 1

i −i

 (3.37)

to put it in a real form. The transformation gives:

A′ = UAU †

=
1

2

1 1

i −i

 α β

β∗ α∗

1 −i

1 i


=

 Re(α) +Re(β) Im(α)− Im(β)

−Im(α)− Im(β) Re(α)−Re(β)


(3.38)
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which is a real matrix that is a member of the general linear group GL(2d,R). Thus

we have the group IGL(2d,R), the inhomogeneous general linear group.

If we consider the contraction of the subgroups as well then we should examine

the ~ → 0 limit after the relations (3.27c) and (3.27d) are applied.

After we apply relation (3.27c), we get the subgroup BIU(d) as discussed pre-

viously. After the contraction, again, the inhomogeneous part of this group become

complex numbers. However, if we apply the previous similarity transformation on the

homogeneous part, we get:

A′ = UAU †

=
1

2

1 1

i −i

α 0

0 α∗

1 −i

1 i


=

 Re(α) Im(α)

−Im(α) Re(α)


= Re(α)I + Im(α)J

(3.39)

where I stands for the identity matrix and J stands for the matrix the square of which is

minus the identity matrix. This way we can see that the matrix A′ is a actually member

of GL(d,C). This gives us IGL(d,C) as the group we arrive at as the contraction of

BIU(d).

We have previously shown that we get the boson algebra after applying both of

the relations (3.27c) and (3.27d). We have also discussed that in this case only the

inhomogeneous part of the transformation survives. After applying the contraction,

the surviving inhomogeneous part of the transformation turns into complex variables.

Thus in this case, the contraction of BA(d) gives us Cd.

As a summary, for the contraction considered in this section applied onto the
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subgroups obtained in the previous subsection we get the following group diagram:

BISp(2d,R)
~→0−−−→ IGL(2d,R)

(3.27c)

y (3.27c)

y
BIU(d)

~→0−−−→ IGL(d,C)

(3.27d)

y (3.27d)

y
BA(d)

~→0−−−→ Cd

3.2. The Fermionic Inhomogeneous Group FIO(2d,R)

Similarly to how it was done in the bosonic case one can also consider the trans-

formation matrix (3.8) being applied to the fermion algebra given by:

cicj + cjci = 0 (3.40)

cic
∗
j + c∗jci = δij (3.41)

and then require that the transformed operators c′i and c∗′i satisfy the same algebra in

order for the transformation to be an algebra invariance. Thus the requirement is that:

c′ic
′
j + c′jc

′
i = 0 (3.42)

c′ic
∗′
j + c∗′jc

′
i = δij (3.43)

Explicitly writing out the transformed operators, these relations become:

(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1)(αjl ⊗ cl + βjl ⊗ c∗l + γj ⊗ 1)

+(αjl ⊗ cl + βjl ⊗ c∗l + γj ⊗ 1)(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1) = 0
(3.44)

(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1)(α∗jl ⊗ c∗l + β∗jl ⊗ cl + γ∗j ⊗ 1)

+(α∗jl ⊗ c∗l + β∗jl ⊗ cl + γ∗j ⊗ 1)(αik ⊗ ck + βik ⊗ c∗k + γi ⊗ 1) = δij

(3.45)
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which gives us:

[αjl, αik]clck + [βjl, βik]c
∗
l c
∗
k

+ {αik, γj}ck + {βik, γj}c∗k

+ {γi, αjl}cl + {γi, βjl}c∗l

+ [αik, βjl]ckc
∗
l + [βik, αjl]c

∗
kcl

+ (αjkβik + βjkαik + {γi, γj}) = 0 ,

(3.46)

and

[β∗jl, αik]clck + [α∗jl, βik]c
∗
l c
∗
k

+ {αik, γ
∗
j }ck + {βik, γ

∗
j }c∗k

+ {γi, β
∗
jl}cl + {γi, αjl}c∗l

+ [αik, α
∗
jl]ckc

∗
l + [βik, β

∗
jl]c

∗
kcl

+ (α∗jkαik + β∗jkβik + {γi, γ
∗
j }) = δij .

(3.47)

In the first of these relations, for the equality to be satisfied, it is sufficient for

the coefficients of all the terms on the left hand side to be equal to zero. In the second

one, however, we only have a term that is a multiple of the unit element of the boson

algebra on the right hand side, thus the coefficient of that term should be equal on

both sides and it is sufficient for the coefficients of the other terms on the left hand

side to be separately equal to zero.
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Thus we have the following relations between the transformation elements:

γiγ
∗
j + γ∗j γi = δij − αikα

∗
jk − βikβ

∗
jk (3.48)

γiγj + γjγi = −βikαjk − αikβjk (3.49)

αijγk + γkαij = 0 (3.50)

βijγk + γkβij = 0 (3.51)

αijγ
∗
k + γ∗kαij = 0 (3.52)

βijγ
∗
k + γ∗kβij = 0 (3.53)

and any two elements from the set αij, βij, α
∗
ij, β

∗
ij commute.

The set of matrices M obeying the above relations form the group of inhomoge-

neous transformations of fermions. We call this quantum group the fermionic inhomo-

geneous orthogonal quantum group FIO(2d,R) since it is an inhomogeneous extension

of the orthogonal group where the inhomogeneous part exhibits fermionic behavior.

This symmetry group, like its sister BISp(2d,R) , is not a classical group but is a

quantum group with a Hopf algebra structure. Similar to the case with BISp(2d,R) ,

this Hopf algebra has an explicit R-matrix representation and the coproduct, counit

and coinverse are defined as:

∆(M) = M⊗̇M (3.54)

ε(M) = I (3.55)

S(M) = M−1 . (3.56)

3.2.1. Subgroups

We have shown that there is a rich sub(quantum)group structure forBISp(2d,R) and

it should naturally follow that there should be a similarly rich sub(quantum)group

structure for the fermionic counterpart FIO(2d,R) .
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In this subsection this sub(quantum)group structure will be explored using rela-

tions similar to the ones considered for BISp(2d,R) :

δij − αikα
∗
jk − βikβ

∗
jk = −βikαjk − αikβjk = 0 (3.57a)

γi = 0 (3.57b)

βij = 0 (3.57c)

αij = 0 . (3.57d)

The implication of each of these relations will be explored in the following subsections.

3.2.1.1. Inhomogeneous Subsupergroup. The relation (3.57a):

δij − αikα
∗
jk − βikβ

∗
jk = −βikαjk − αikβjk = 0

by virtue of (3.48) and (3.49) implies that γiγ
∗
j +γ∗j γi = 0 and γiγj +γjγi = 0, i.e. that

the inhomogeneous transformation parameters are anticommutative variables.

Thus we end up with an inhomogeneous orthogonal algebra where the inhomoge-

neous parameters are grassmannian variables giving us the Grassmannian inhomoge-

neous orthogonal group, GrIO(2d,R), as the resulting subgroup of FIO(2d,R) . This

subgroup of FIO(2d,R) can also be considered as an inhomogeneous supergroup. Ac-

tually, more generally, the transformation elements αij, βij, α
∗
ij and β∗ij anticommute

with γi, γ
∗
i and the FIO(2d,R) matrices M are multiplied with each other using the

standard tensor product. One can also show that αij, βij, α
∗
ij and β∗ij can be taken to

commute with γi, γ
∗
i provided that the matrices M are multiplied with a braided [28]

tensor product, eg.

(A⊗B)(C ⊗D) = −AC ⊗BD (3.58)

whenever B and C are both fermionic. This approach is similar to the approach that

was taken with ACSA to obtain a Hopf algebra structure. As a result of this redefinition
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the treatment of the transformation elements corresponds to the usual superalgebra

approach, i.e. that the elements αij, βij, α
∗
ij and β∗ij are bosonic and the elements γi,

γ∗i are fermionic.

3.2.1.2. Homogeneous Subgroup. The relation (3.57b):

γi = 0

practically gets rid of the inhomogeneous part of the transformation and also implies

the relation (3.57a) considered in the previous subsection.

This gives us the subgroup in the previous subsection without the inhomogeneous

part which is basically the classical orthogonal group O(2d,R).

3.2.1.3. Fermionic Inhomogeneous Unitary Quantum Group. The relation (3.57c):

βij = 0

applied to the transformation gets rid of the off-diagonal members of the homogeneous

part of it and leaves us with the following relation:

γiγ
∗
j + γ∗j γi = δij − αikα

∗
jk (3.59)

γiγj + γjγi = 0 (3.60)

For the homogeneous part of the transformation, this equation implies δij =

αikα
∗
jk which tells us that the submatrices α and α∗ in equation (3.8) are both mem-

bers of U(d). The subgroup we have arrived at thus is an inhomogeneous quantum

group whose homogeneous part is U(d). For fermions we will name this group the

fermionic inhomogeneous quantum group, FIU(d), since the inhomogeneous part of

the transformation exhibits fermionic behavior.
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3.2.1.4. Fermion Algebra. The relation (3.57d):

αij = 0

applied alone onto the transformation gets rid of the diagonal members of the homo-

geneous part and prevents such transformations from forming a (quantum)group since

the homogeneous parts of these set of transformations can never include the identity

transformation.

However, if this relation is applied together with the previous one, relation (3.57c),

the resulting relation gets rid of the whole homogeneous part of the transformation

leaving only the inhomogeneous part and gives us a single relation:

γiγ
∗
j + γ∗j γi = δij (3.61)

γiγj + γjγi = 0 (3.62)

which gives us back the fermion algebra, FA(d).

It should be noted that the fermion algebra in d dimensions is isomorphic to the

Clifford algebra in 2d dimensions. If one considers operators ψi defined as:

ψi =

i(ci/2 − c∗i/2) when i is even

(c(i+1)/2 + c∗(i+1)/2) when i is odd

(3.63)

where i = 1, 2, . . . , 2d and cj are elements of the fermion algebra, then one can show

that ψi satisfy the Clifford algebra rule:

{ψi, ψj} = 2δij (3.64)
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In order to show this, one only needs to prove the cases:

{ψi, ψj} =


2δij i and j odd

2δij i and j even

0 i odd, j even

(3.65)

For i and j both odd, {ψi, ψj} becomes:

{ψi, ψj} = (c(i+1)/2 + c∗(i+1)/2)(c(j+1)/2 + c∗(j+1)/2)

+ (c(j+1)/2 + c∗(j+1)/2)(c(i+1)/2 + c∗(i+1)/2)

= {c(i+1)/2, c(j+1)/2}+ {c∗(i+1)/2, c
∗
(j+1)/2}

+ {c(i+1)/2, c
∗
(j+1)/2}+ {c∗(i+1)/2, c(j+1)/2}

= 0 + 0 + δij + δij

= 2δij

(3.66)

Similarly, when i and j are both even, one gets:

{ψi, ψj} = i(ci/2 − c∗i/2)i(cj/2 − c∗j/2)

+ i(cj/2 − c∗j/2)i(ci/2 − c∗i/2)

= −{ci/2, cj/2} − {c∗i/2, c
∗
j/2}

+ {ci/2, c
∗
j/2}+ {c∗i/2, cj/2}

= −0− 0 + δij + δij

= 2δij

(3.67)
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Finally, when i is odd and j is even, the anticommutator becomes:

{ψi, ψj} = (c(i+1)/2 + c∗(i+1)/2)i(cj/2 − c∗j/2)

+ i(cj/2 − c∗j/2)(c(i+1)/2 + c∗(i+1)/2)

= i{c(i+1)/2, cj/2} − i{c∗(i+1)/2, c
∗
j/2}

− i{c(i+1)/2, c
∗
j/2}+ i{c∗(i+1)/2, cj/2}

= 0− 0− δi+1,j + δi+1,j

= 0

(3.68)

thereby completing the proof that the operators ψi form the elements of a Clifford

algebra of 2d dimensions. If one also considers that fact that the definition of ψi is

invertible and that ci can also be defined in terms of ψi, one can conclude that the

algebras FA(d) and Cliff(2d) are isomorphic.

3.2.1.5. Sub(quantum)group Diagram. As a result of the above discussion, we get the

sub(quantum)group diagram:

FIO(2d,R)
(3.57a)−−−−→ GrIO(2d,R)

(3.57b)−−−−→ O(2d,R)

(3.57c)

y (3.57c)

y (3.57c)

y
FIU(d)

(3.57a)−−−−→ GrIU(d)
(3.57b)−−−−→ U(d)

(3.57d)

y
FA(d) ≈ Cliff(2d)

for the for the sub(quantum)groups of FIO(2d,R) that have been introduced in this

section.

3.2.2. Contractions

It was observed for BISp(2d,R) that using a suitable contraction one can ob-

tain new sub(quantum)groups. This should also be possible for FIO(2d,R) and the

resulting structures will be examined in this section.
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Similar to the bosonic treatment, we replace γi by γi/
√

~ so that we may consider

the case ~ → 0. After this replacement, the equations (3.48) and (3.49) become:

γiγ
∗
j + γ∗j γi = ~(δij − αikα

∗
jk − βikβ

∗
jk) (3.69)

γiγj + γjγi = ~(−βikαjk − αikβjk) (3.70)

and we consider the case ~ → 0, we get the relations:

γiγ
∗
j + γ∗j γi = 0 (3.71)

γiγj + γjγi = 0 (3.72)

which imply that the inhomogeneous part of the transformation are Grassmannian

elements. What makes this case different from the previous case of subgroups is that the

homogeneous part of this transformation forms a matrix A with non-zero determinant.

We have previously shown that this matrix can be put in real form that is a member of

the general linear group GL(2d,R). Since the homogeneous part of the transformation

is the general linear group and the inhomogeneous part is Grassmannian, we have the

group GrIGL(2d,R), the Grassmannian inhomogeneous general linear group where

the inhomogeneous part of the group are Grassmannian.

If we consider the contraction of the subgroups as well then we should examine

the ~ → 0 limit after the relations (3.57c) and (3.57d) are applied.

After we apply relation (3.57c), we get the subgroup FIU(d) as discussed pre-

viously. After the contraction, again, the inhomogeneous part of this group become

Grassmannian variables. However, as was shown during the contraction ofBISp(2d,R) ,

if we apply the previous similarity transformation on the homogeneous part of the re-

sulting transformation matrix after contraction, one can see that the homogeneous part

of the transformation is a member of the general linear group GL(d,C). Similarly this

gives us GrIGL(d,C).
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We have previously shown that we get the fermion algebra after applying both

of the relations (3.57c) and (3.57d). We have also discussed that in this case only the

inhomogeneous part of the transformation survives. After applying the contraction,

the surviving inhomogeneous part of the transformation turns into Grassmannian vari-

ables. Thus in this case, the contraction of FA(d) gives us Gr(d,C), the d dimensional

Grassmann algebra.

As a summary, for the contraction considered combined with the remaining sub-

group relations we get the table:

FIO(2d,R)
~→0−−−→ GrIGL(2d,R)

(3.57c)

y (3.57c)

y
FIU(d)

~→0−−−→ GrIGL(d,C)

(3.57d)

y (3.57d)

y
FA(d) ≈ Cliff(2d)

~→0−−−→ Gr(d,C)

3.3. The Fermionic Inhomogeneous Orthogonal Quantum Group of Odd

Dimension

The bosonic transformation quantum group BISp(2d,R) can only be defined

in even dimensions and it is not possible to extend this definition to odd dimension.

However, as will be shown in this section, it is possible to define the fermionic inho-

mogeneous orthogonal quantum group of odd dimension. In order to show this, one

should first consider a unitary transformation of the FIO(2d,R) matrix:

M → UMU−1
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using the unitary matrix:

U =


1√
2

1√
2

0

i√
2

−i√
2

0

0 0 1

 (3.73)

If one applies this unitary transformation, it can be seen that M can be put in the real

form:


Re(α+ β) Im(α− β)

√
2Re(γ)

−Im(α+ β) Re(α− β) −
√

2Im(γ)

0 0 1

 =

 A Γ

0 1

 (3.74)

where A and Γ matrices are defined as in (3.8), and Re and Im denote the hermitian

and anti-hermitian parts.

Using this form it is not too hard to show that for FIO(2d,R) , the transformation

relations (3.48) and (3.49) together transform into the single equation:

{Γi,Γj} = δij − AikAjk , i, j = 1, 2, . . . , 2d. (3.75)

By extending the range of the indices in this relation to odd-dimensions it is possible

to define FIO(2d + 1,R), the fermionic inhomogeneous orthogonal algebra of odd

dimension.

In order to show the validity of (3.75), one needs to consider the three cases:

{Γi,Γj} =


2{Re(γi), Re(γj)} for 1 ≤ i, j ≤ d

2{Im(γi), Im(γj)} for d+ 1 ≤ i, j ≤ 2d

−2{Re(γi), Im(γj)} for 1 ≤ i ≤ d and d+ 1 ≤ j ≤ 2d
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For the case when 1 ≤ i, j ≤ d, the above form becomes:

{Γi,Γj} = 2{Re(γi), Re(γj)}

=
1

2

[
{γi, γj}+ {γi, γ

∗
j }+ {γ∗i , γj}+ {γ∗i , γ∗j }

]
=

1

2

[
(−βikαjk − αikβjk) + (δij − αikα

∗
jk − βikβ

∗
jk)

+(δij − α∗ikαjk − β∗ikβjk) + (−β∗ikα∗jk − α∗ikβ
∗
jk)
]

=
1

2

[
2δij − (αik + β∗ik)(α

∗
jk + βjk)− (βik + α∗ik)(αjk + βjk)

]
= δij −

1

2

[
(αik + β∗ik)(α

∗
jk + βjk) + (βik + α∗ik)(αjk + βjk)

]

(3.76)

however, for this case, the form of AikAjk is:

2d∑
k=1

AikAjk =
d∑

k=1

AikAjk +
2d∑

k=d+1

AikAjk

=
d∑

k=1

[Re(αik + βik)Re(αjk + βjk) + Im(αik − βik)Im(αjk − βjk)]

=
1

4

[
(αik + βik + α∗ik + β∗ik)(αjk + βjk + α∗jk + β∗jk)

−(αik − βik − α∗ik + β∗ik)(αjk − βjk − α∗jk + β∗jk)
]

=
1

4

[
(αik + β∗ik)(α

∗
jk + βjk) + (αik + β∗ik)(αjk + β∗jk)

+(α∗ik + βik)(αjk + βjk) + (α∗ik + βik)(α
∗
jk + β∗jk)

+(αik + β∗ik)(α
∗
jk + βjk)− (αik + β∗ik)(αjk + β∗jk)

+(α∗ik + βik)(αjk + βjk)− (α∗ik + βik)(α
∗
jk + β∗jk)

]
=

1

2

[
(αik + β∗ik)(α

∗
jk + βjk) + (α∗ik + βik)(αjk + βjk)

]

(3.77)

and using this in equation (3.76) gives us:

{Γi,Γj} = δij −
1

2

[
(αik + β∗ik)(α

∗
jk + βjk) + (βik + α∗ik)(αjk + βjk)

]
= δij − AikAjk for 1 ≤ i, j ≤ d

(3.78)
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For the case when d+ 1 ≤ i, j ≤ 2d, the above form becomes:

{Γi,Γj} = 2{Im(γi), Im(γj)}

= −1

2

[
{γi, γj} − {γi, γ

∗
j } − {γ∗i , γj}+ {γ∗i , γ∗j }

]
= −1

2

[
(−βikαjk − αikβjk)− (δij − αikα

∗
jk − βikβ

∗
jk)

−(δij − α∗ikαjk − β∗ikβjk) + (−β∗ikα∗jk − α∗ikβ
∗
jk)
]

= −1

2

[
−2δij + (α∗ik − βik)(αjk − β∗jk) + (β∗ik − αik)(βjk − α∗jk)

]
= δij −

1

2

[
(α∗ik − βik)(αjk − β∗jk) + (αik − β∗ik)(α

∗
jk − βjk)

]

(3.79)

however, for this case, the form of AikAjk is:

2d∑
k=1

AikAjk =
d∑

k=1

AikAjk +
2d∑

k=d+1

AikAjk

=
d∑

k=1

[Im(αik + βik)Im(αjk + βjk) +Re(αik − βik)Re(αjk − βjk)]

=
1

4

[
−(αik + βik − α∗ik − β∗ik)(αjk + βjk − α∗jk − β∗jk)

+(αik − βik + α∗ik − β∗ik)(αjk − βjk + α∗jk − β∗jk)
]

=
1

4

[
(α∗ik − βik)(αjk − β∗jk)− (α∗ik − βik)(α

∗
jk − βjk)

+(αik − β∗ik)(α
∗
jk − βjk)− (αik − β∗ik)(αjk − β∗jk)

+(α∗ik − βik)(αjk − β∗jk) + (α∗ik − βik)(α
∗
jk − βjk)

+(αik − β∗ik)(α
∗
jk − βjk) + (αik − β∗ik)(αjk − β∗jk)

]
=

1

2

[
(α∗ik − βik)(αjk − β∗jk) + (αik − β∗ik)(α

∗
jk − βjk)

]

(3.80)

and using this in equation (3.79) gives us:

{Γi,Γj} = δij −
1

2

[
(α∗ik − βik)(αjk − β∗jk) + (αik − β∗ik)(α

∗
jk − βjk)

]
= δij − AikAjk for d+ 1 ≤ i, j ≤ 2d

(3.81)
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Finally, for the case when 1 ≤ i ≤ d and d+ 1 ≤ j ≤ 2d, the above form becomes:

{Γi,Γj} = −2{Re(γi), Im(γj)}

= − 1

2i

[
{γi, γj} − {γi, γ

∗
j }+ {γ∗i , γj} − {γ∗i , γ∗j }

]
= − 1

2i

[
(−βikαjk − αikβjk)− (δij − αikα

∗
jk − βikβ

∗
jk)

+(δij − α∗ikαjk − β∗ikβjk)− (−β∗ikα∗jk − α∗ikβ
∗
jk)
]

= − 1

2i

[
(αik + β∗ik)(α

∗
jk − βjk)− (α∗ik + βik)(αjk − β∗jk)

]
(3.82)

however, for this case, the form of AikAjk is:

2d∑
k=1

AikAjk =
d∑

k=1

AikAjk +
2d∑

k=d+1

AikAjk

=
d∑

k=1

[−Re(αik + βik)Im(αjk + βjk) + Im(αik − βik)Re(αjk − βjk)]

=
1

4i

[
−(αik + βik + α∗ik + β∗ik)(αjk + βjk − α∗jk − β∗jk)

+(αik − βik − α∗ik + β∗ik)(αjk − βjk + α∗jk − β∗jk)
]

=
1

4i

[
(αik + β∗ik)(α

∗
jk − βjk)− (αik + β∗ik)(αjk − β∗jk)

−(α∗ik + βik)(αjk − β∗jk) + (α∗ik + βik)(α
∗
jk − βjk)

+(αik + β∗ik)(α
∗
jk − βjk) + (αik + β∗ik)(αjk − β∗jk)

−(α∗ik + βik)(αjk − β∗jk)− (α∗ik + βik)(α
∗
jk − βjk)

]
=

1

2

[
(αik + β∗ik)(α

∗
jk − βjk)− (α∗ik + βik)(αjk − β∗jk)

]
(3.83)

and using this in equation (3.82) gives us:

{Γi,Γj} = − 1

2i

[
(αik + β∗ik)(α

∗
jk − βjk)− (α∗ik + βik)(αjk − β∗jk)

]
= −AikAjk for 1 ≤ i ≤ d and d+ 1 ≤ j ≤ 2d

(3.84)

which completes the derivation of equation (3.75).
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Similar to the analysis that went into finding the sub(quantum)groups of FIO(2d,R) ,

we can also investigate the sub(quantum)groups of FIO(2d+1,R). The sub(quantum)group

relations in this case, however, are more restricted owing to the fact that the algebra is

not described anymore by submatrices of the A matrix but is rather described by the

whole matrix itself. Thus, we cannot set α or β to zero on their own, we can only restrict

the algebra by setting the whole of A to zero. Thus the resulting sub(quantum)algebra

relations are:

δij − AikAjk = 0 (3.85a)

Γi = 0 (3.85b)

Aij = 0 (3.85c)

which, through a similar analysis to the even dimensional case, gives us the following

sub(quantum)group diagram:

FIO(2d+ 1,R)
(3.85a)−−−−→ GrIO(2d+ 1,R)

(3.85b)−−−−→ O(2d+ 1,R)

(3.85c)

y
Cliff(2d+ 1)
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4. CONCLUSIONS

The importance of Lie groups in physics arises from the fact that they are invari-

ance groups of classical physical systems. Thus, for example, the 3 dimensional position

space, the 3 dimensional momentum space and the 3 dimensional angular momentum

space are all transformed under the same Lie group SO(3). When the classical system

is quantized one realizes that although the resulting quantum system is invariant under

the classical group SO(3), one should also perhaps generalize the definition of a Lie

group such that the transformation matrix may have non-commuting entities. This is

precisely what has been considered in this work. If one considers the angular momen-

tum algebra and tries to find such a non-commutative quantum group which leaves the

commutation relations of the Lie algebra invariant, one finds that the elements of the

transformation matrix should be commutative and reobtain the classical group SO(3).

On the other hand, as we have shown, when one considers the anticommuting spin

algebra, its invariance quantum group becomes SO−1(3). It is also interesting to note

that more algebras like the anticommuting spin algebra can be constructed where the

original Lie algebra is turned into a similar Jordan algebra. These might also have

invariance quantum groups that is the same as the invariance group of the original Lie

algebra in the limit q = 1. This possibility is open to investigation in a more general

framework.

As far as the momentum and position are concerned, one realizes that the Heisen-

berg algebra inevitably contains the unit operator and therefore the transformations

considered on that algebra should be inhomogeneous. It was shown in this work that

this approach indeed makes sense by explicitly calculating the invariance quantum

groups of the bosonic and fermionic oscillator algebras. In 3 dimensions, the hermitian

and antihermitian parts of the annihilation operator can be identified with the position

and i times the momentum operator, respectively. For this reason, the invariance quan-

tum group BISp(2d,R) that was introduced becomes the invariance quantum group

of the quantum phase space in 3 dimensions. Both the fermionic and the bosonic

inhomogeneous quantum groups considered in this work are relevant for field theoret-
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ical systems; especially since they can be made infinite dimensional. This is achieved

by extending the discrete indices i, j, k in BISp(2d,R) and FIO(2d,R) to continuous

variables together with a replacement of the Krönecker deltas to Dirac delta functions.

As was shown, the boson and fermion algebras can be obtained as a limit of the

inhomogeneous quantum groups BISp(2d,R) and FIO(2d,R) . We can understand

why these boson and fermion algebras are not quantum groups from this construction,

since in this limit the quantum group becomes singular and the antipode does not exist.

Thus we can consider the invariance quantum groups as deformations, with a Hopf

algebra structure, of their respective particle algebras. This construction is similar to

q-deforming the bosonic oscillator to obtain Pusz-Woronowicz [29] oscillators and then

constructing the q-deformed quantum unitary groups as their left modules. Similarly,

in that construction, the q-deformed oscillator can be reobtained as a limit of these

q-deformed quantum unitary groups. However, in contrast to that construction the

quantum groups presented in this paper are inhomogeneous quantum groups.

Lastly, we would like to remark on the definition of a quantum group. Although

in most works, quantum groups are defined as noncocommutative and noncommutative

Hopf algebras, this definition does not produce any physical insight. It makes more

sense to define a quantum group as a Hopf algebra which is a left and/or right module

of a physical algebra obtained by quantizing a classical system. This thesis has directly

dealt with such quantum groups.
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