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iv

ABSTRACT

PRIMORDIAL AND LATE-TIME INFLATION IN

BRANS-DICKE COSMOLOGY

The basic motivation of this work is to attempt to explain the rapid primordial

inflation and the observed slow late-time inflation by using the Brans-Dicke theory of

gravity. We show that the ratio of primordial and late-time inflation parameters is pro-

portional to the square root of the Brans-Dicke parameter ω (ω À 1). We also calculate

the Hubble parameter H and the time variation of the time dependent Newtonian grav-

itational constant G for both regimes. The variation of the Hubble parameter predicted

by Brans-Dicke cosmology is shown to be consistent with recent measurements: The

value of H in the late-time future is predicted as 0.86 times the present value of H0.

By using a linearized non-vacuum late time solution in Brans-Dicke cosmology we ac-

count for the seventy five percent dark energy contribution but not for approximately

twenty-three percent dark matter contribution to the present day energy density of

the universe. In the context of Brans-Dicke scalar tensor theory of gravitation, the

cosmological Friedmann Equation which relates the expansion rate H of the universe

to the various fractions of energy density is analyzed rigorously. And it is shown that

Brans-Dicke scalar tensor theory of gravitation brings a negligible correction to the

power of the scale size term in the matter density component of Friedmann equation.

In addition to ΩΛ and ΩM in standard Einstein cosmology, another density parameter,

Ω
∆
, is expected by the theory. This implies that if Ω

∆
is found to be nonzero, data will

favor this model instead of the standard Einstein cosmological model with cosmological

constant and will enable more accurate predictions for the rate of change of Newtonian

gravitational constant in the future.
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ÖZET

BRANS-DICKE KOZMOLOJİSİNDE, İLK-ZAMANA VE

GEÇ-ZAMANA AİT ENFLASYON

Bu çalışmanın temel amacı, Brans-Dicke skaler-tensörel kütle çekim teorisi kul-

lanılanılarak hızlı ilk zaman ve yavaş geç-zaman enflasyonlarına açıklık getirmektir.

Gösterilmiştir ki, geç-zamana ve ilk-zamana ait enflasyon parametrelerinin oranı, Brans-

Dicke teorisinin parametresi ω À 1 için, ω nın kare kökü ile orantılıdır. Buna ek

olarak, Hubble parametresi H nin ve zaman bag̃lı deg̃işen Newton kütle çekim sabi-

tinin deg̃işim oran deg̃erleri her iki rejim için de zamana bag̃lı olarak hesaplanmıstır.

Brans-Dicke teorisi gereg̃ince öngörülen Hubble parametresindeki deg̃işimin en yeni

gözlem sonuçlarıyla uyumlu oldug̃u gösterilmiştir: Geç zamanda H deg̃erinin, bugün

ölcülen H0 deg̃erinin yaklaşık 0.86 katı kadar olacag̃ı öngörülmektedir. Brans-Dicke

kozmolojisiyle elde edilen, lineerize edilmiş, kararsız ve vakum olmayan geç zaman

çözümlerini kullanarak, evrenin bugünkü enerji yog̃unlug̃una yüzde yetmi beş oranında

katkı veren karanlık enerjiye açıklık getirilebilirken; yaklaşık yüzde yirmi üç oranında

katkı payına sahip karanlık maddeye açıklık getirilememiştir. Brans-Dicke skaler-

tensörel kütle çekim teorisi çerçevesinde, bugünkü enerji yog̃unlug̃unu, evrenin genileme

hızına bag̃layan, Friedmann denklemi daha da detaylı şekilde analiz edildi. Brans-Dicke

skaler-tensörel kütle çekim teorisinin, Friedmann denkleminin madde bileşeninde ki

evrenin skala olarak büyüklüg̃ünü ifade eden terimin üstel derecesine ω À 1 için, ih-

mal edilebilir bir düzeltme getirdig̃i gösterildi. Bunlara ek olarak, standard Einstein

kozmolojisinde bilinen ΩΛ ve ΩM dan ayrı olarak yeni bir enerji yog̃unluk parametrisi

olan Ω
∆

öngörülmektedir. Öyleki Ω
∆

nın sıfıra eşit olmaması durumunda elde edilecek

yeni kozmolojik verilerin standard Einstein teorisi yerine Brans-Dicke skaler-tensörel

kütle çekim teorisine uygunluk göstereceg̃i öngörülebilir ki bu da Newton kütle çekim

sabitinin deg̃işim oranı deg̃erlerinin daha hassas ölçümünü sag̃layabilecektir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . viii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Friedmann-Lemaitre-Robertson-Walker Cosmology . . . . . . . . . . . 2

1.1.1. The Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Expansion and Red-Shift . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3. Dynamics: The Friedmann Equations . . . . . . . . . . . . . . . 6

1.1.4. Evolution of Spacetime . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4.1. Pressureless Matter (Dust; γ = 0) . . . . . . . . . . . . 9

1.1.4.2. Radiation (γ = 1/3) . . . . . . . . . . . . . . . . . . . 10

1.1.4.3. Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.5. Observational Parameters . . . . . . . . . . . . . . . . . . . . . 12

1.1.5.1. Present Hubble Parameter H0 . . . . . . . . . . . . . . 12

1.1.5.2. The Density Parameter Ω . . . . . . . . . . . . . . . . 12

1.1.5.3. The Cosmological Constant . . . . . . . . . . . . . . . 13

1.1.6. Perplexing Observational Results . . . . . . . . . . . . . . . . . 16

2. PRIMORDIAL AND LATE-TIME INFLATION . . . . . . . . . . . . . . . . 19

2.1. Primordial Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2. Late-time Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. CAN BRANS-DICKE SCALAR FIELD ACCOUNT FOR

DARK-ENERGY AND DARK-MATTER? . . . . . . . . . . . . . . . . . . . 39

4. FRIEDMANN EQUATION FOR BRANS DICKE COSMOLOGY . . . . . . 46

5. DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 54

APPENDIX A: Brans Dicke Action Variation . . . . . . . . . . . . . . . . . . 57

APPENDIX B: Einstein’s Field Equation . . . . . . . . . . . . . . . . . . . . . 62

APPENDIX C: Energy conservation in standard cosmology . . . . . . . . . . . 67

APPENDIX D: Energy conservation in BD cosmology . . . . . . . . . . . . . 68



vii

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



viii

LIST OF SYMBOLS/ABBREVIATIONS

a Scale size of the universe
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1. INTRODUCTION

The most incomprehensible thing about the world is that it is com-
prehensible. A. Einstein.

Concerning the recent observational evidences today, we may say that the field of

cosmology is entering its ‘golden age’ which we are experiencing and living through. In

the last twenty years, new observational data has allowed the field to advance as never

before in its history. The most exciting innovations have strengthened the theory

that the universe underwent a period of accelerated expansion at very early called

primordial inflation and have also revealed the discovery that it is now experiencing

another period of acceleration called late-time acceleration driven by some mysterious

dark energy. Hence, this thesis is mainly motivated by making the physical explanation

of these two accelerations. For this aim, we have chosen the underlying theory as Brans-

Dicke (BD) scalar tensor theory of gravitation since it is the most serious alternative to

general relativity. The leading idea to work with such scalar tensor theories is to study

how the assumption of the underlying theory of gravitation affects the cosmological

and astrophysical phenomena, and then to use that information for extracting testable

predictions. The plan and some of the main results of the thesis are as follows: In

the first chapter, the general review of standard cosmology will briefly be discussed so

that some important cosmological results deduced from BD theory can be interpreted

well compared to the results in standard cosmology. In the second chapter, primordial

and late- time inflation will be studied under BD scalar tensor theory of gravitation,

and the results coming from BD theory will be discussed from the point of standard

cosmology. In the third chapter, by imposing linearized solution to the field equations

of the theory, the issue of dark matter and dark energy will be examined and hence, it

will be shown that BD theory well accounts for dark energy but not for dark matter.

In the fourth chapter, the field equations of the theory will be examined rigorously so

that the famous Friedmann Equation in standard Einstein cosmology will be modified

in the power of the scale size term appearing in the matter component of Friedmann

Equation. This correction is in the amount of 1/ω and it is negligible when ω À 1.
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Also it is shown that as far as BD cosmology is concerned, the perturbative solutions of

the theory predicts another density parameter Ω
∆

which is different from the measured

density parameters ΩΛ, ΩR, ΩM and the measurement of its value in the future can be

beneficial for more accurate measurement of the rate of change of GN .

1.1. Friedmann-Lemaitre-Robertson-Walker Cosmology

1.1.1. The Metric

The cornerstone of modern cosmology is the belief that the place which we occupy

in the universe is not a special one. In other words, there are no preferred positions in

the universe [1, 2]. This statement that summarizes the basis of cosmology is known

as the cosmological principle (or Copernican view) which underpins many models of

the universe. The cosmological principle is widely accepted as a property of the global

universe, since it breaks down when one looks at local phenomena. In this sense, this

principle is not assumed to be an exact principle. But evidence that the universe

becomes smooth on large scales supports the use of the cosmological principle. It

is therefore believed that our large-scale universe possesses two important properties,

homogeneity and isotropy. Homogeneity is the statement that the universe looks the

same at each point, isotropy, on the other hand, is the statement that the universe

looks the same in all directions. These do not automatically imply each other however

if we require that a distribution is isotropic about every point, then that does enforce

homogeneity as well according to a basic theorem of geometry. Astronomical obser-

vations of the Cosmic Microwave Background show that the Universe appears to be

isotropic on large scales to 1 part in 105 [3]. Despite the existence of inhomogeneous

structures such as stars and galaxies, the observable universe is remarkably homoge-

neous and isotropic [4] at scales larger than about 150h−1 Mpc, where 1 Mpc≈ 3×1024

cm is a convenient unit for extragalactic astronomy and h = 0.72± 0.07 characterizes

the current rate of expansion of the universe in dimensionless form. The mean distance

between galaxies is about 1 Mpc while the size of the visible universe is about 3000h−1

Mpc. Structures on small scales, on the other hand, can be treated as perturbations

to this homogeneous background. The conventional and highly successful approach to
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cosmology separates the study of large scale (l ≥ 150h−1 Mpc) dynamics of the universe

from the issue of structure formation at smaller scales. The former is modelled by a

homogeneous and isotropic distribution of energy density; the latter issue is addressed

in terms of gravitational instability which will amplify the small perturbations in the

energy density leading to the formation of structures like galaxies. This starting point

in the large scale cosmology allows concepts of density and curvature to be idealized.

The first approximation (working to 0th order in perturbations in the density and pres-

sure) holds that the density of gas and the curvature of space is the same everywhere

at a fixed cosmological time t. Starting from flat metric R4 with a signature (+, +, +,

+)

ds2 = dw2 + dx2 + dy2 + dz2,

one can produce its curved form under the following transformations

w = r cos ξ,

z = r cos ξ cos θ,

y = r sin ξ sin θ sin φ,

x = r sin ξ sin θ cos φ.

Since spatial isotropy implies spherical symmetry about every point, using (ξ, θ, φ) is

necessary in the metric and the form of R4 metric in spherical polar coordinates is

ds2 = dr2 + r2
[
dξ2 + sin2 ξ(dθ2 + sin2 θdφ2)

]
,
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where r denotes the radius of S3. As r → 1, maximally symmetric S3 metric is

identified as

dΩ2
3 = dξ2 + sin2 ξ(dθ2 + sin2 θdφ2).

Hence, the most general metric called Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric must be the following form having S3 describes homogeneous and isotropic

spatial sections with radius a(t). Considering the spacetime, FLRW metric is defined

as

ds2 = dt2 − a2(t)
[
dξ2 + f 2(ξ)(dθ2 + sin2 θdφ2)

]
, (1.1)

so that the intrinsic spatial curvature is constant throughout the space. The three

possibilities for f(ξ) to get homogeneous and isotropic spatial sections are

f(ξ) = {sin ξ, ξ, sinh ξ}. (1.2)

These alternatives of f(ξ) are due to a purely geometric fact, independent of the details

of general relativity.

In the rest of this thesis, we will be concerned with the behavior of the universe

as a whole and will be assuming large-scale homogeneity and isotropy. In this thesis

we will be working with the natural units in which ~ = c = 1.The metric we use is the

spatially conformal flat form of FLRW metric

ds2 = dt2 − a2(t)

[
1 +

k

4
~x2

]−2

d~x2, (1.3)

where k geometrically describes the curvature of the spatial sections (slices at constant

cosmic time), is the curvature constant; the term ~x2 denotes ~x2 = x2 +y2 +z2; the time

coordinate t, referred to as cosmic time, is called the proper time which is the time

measured by a comoving observer who is at constant spatial coordinates. The function

a(t) is called as the scale size of the universe. In the FLRW metric the curvature k,
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governed by the amount of matter and energy inside the universe, does not change

with the expansion of the universe. It can take three different values:

• k = 1 if f(ξ) = sin ξ, corresponds to positively curved spatial sections, geometri-

cally elliptical universe (locally isometric to 3-spheres),

• k = 0 if f(ξ) = ξ, corresponds to local flatness namely zero spatial curvature, a

geometrically flat, Euclidean universe,

• k = −1 if f(ξ) = sinh ξ, corresponds to negatively curved (locally hyperbolic).

1.1.2. Expansion and Red-Shift

The most dramatic piece of observational evidence in cosmology is that almost

everything in the universe appears to be moving away from us [5]. And the further

away something is, the more rapid its recession appears to be. These velocities are

measured via the red-shift, which is basically the Doppler effect applied to light waves.

Using the characteristic absorbtion and emission line spectra of the galaxies, whether a

galaxy is receding or moving towards us can be identified. If the galaxy is receding, the

characteristic lines move towards the red end of the spectrum and the effect is known

as a red-shift z. In standard terminology, z, is defined by

z =
λobs − λem

λem

, (1.4)

where λobs, λem are the wavelengths of light at the points of observation (us) and

emission (galaxy) respectively. If an object is receding at a speed v, then its red-shift

is

1 + z =

√
1 + v/c

1− v/c
, (1.5)

for v ¿ c

z =
v

c
, (1.6)
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where c is the velocity of light. Because the expansion is uniform, the relationship

between real distance ~dr and the co-moving distance ~dx for nearby objects can be

written

~dr = a(t) ~dx, (1.7)

where the homogeneity property ensures that a is a function of time only. The recession

velocity of the nearby galaxies at fixed co-moving coordinates is ~v = d~r/dt, and is

proportional to their physical distance vector, ~dr,

~v = H ~dr. (1.8)

This relation is known as Hubble’s Law, where H is the constant proportionality, the

Hubble parameter, at the cosmological time t. Hubble parameter, defined as H = ȧ/a,

having the dimension [LENGTH]−1, is constant over space but not over time; it

determines the expansion rate of the universe, where ȧ = da(t)/dt. The red-shift of

spectral lines that we used to justify the assumption of an expanding universe can also

be related to the scale factor a in the form of

1 + z =
λobs

λem

=
aobs

aem

. (1.9)

It tells us that as space expands, wavelength become longer in direct proportion.

Namely, the wavelength difference in light is the same as the scale difference in the

universe. One can think of the wavelength as being stretched by the expansion of the

universe, and its change therefore tells us how much the universe has expanded since

the light began its travel.

1.1.3. Dynamics: The Friedmann Equations

The FLRW metric is a purely kinematic consequence of requiring homogeneity

and isotropy of the spatial sections. However, it tells us nothing about how the scale

factor of universe a(t) evolves in time. Concerning the dynamics, we must solve Ein-
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stein’s field Equations [6, 7] in General Relativity:

Gµ
ν ≡ Rµ

ν −
1

2
Rδµ

ν = 8πGNT µ
ν , (1.10)

where Rµ
ν is the Ricci tensor, R = Rµ

µ is the Ricci scalar, T µ
ν is the stress-energy

tensor and GN is the gravitational constant. Here we assume a perfect fluid where the

stress-energy tensor is defined as

T µ
ν = (p + ρ)uµuν − pδµ

ν . (1.11)

In a frame comoving with the fluid, the velocity uµ = uν = (1, 0, 0, 0). The individual

elements are thus:

T 0
0 = ρ, (1.12)

T 1
1 = T 2

2 = T 3
3 = −p, (1.13)

T 0
i = T i

0 = T i
j = 0 (i 6= j). (1.14)

Here ρ is the energy density and p is the pressure of the fluid. Diagonal form

of the stress energy tensor is required by the diagonal metric gµν . Solving Einstein’s

equations gives us two equations for the scale factor (see appendix B): G0
0 of Equation

(1.10) yields

G0
0 = 3(

ȧ2

a2
+

k

a2
) = 8πGNρ,
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so that the ‘Friedmann equation’ is

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.15)

which relates expansion rate of the universe to the energy density ρ. The Gi
i component

of Equation (1.10) on the other hand yields

Gi
i = 2

ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGNp. (1.16)

Another equation which is called ‘fluid equation’ is deduced from the conservation of

energy; namely from the fact that covariant derivative of energy momentum tensor

must be zero, ∇µT
µ
ν = 0, (see appendix C)

ρ̇ + 3(ρ + p)
ȧ

a
= 0. (1.17)

This is the equation that maintains energy conservation. The first term in the

brackets corresponds to the dilution in the density because the volume has increased

as the universe expands, while the second corresponds to the loss of energy because

the pressure of the material inside has done work as universe’s volume increased. This

energy has not disappeared entirely of course, since energy is always conserved. What

really happens is that this energy lost from the fluid via the work done has gone

into gravitational potential energy. Besides, since there are no pressure forces in a

homogeneous universe, pressure gradient is zero, hence, pressure does not contribute

a force helping the expansion along; its effect is solely through the work done as the

universe expands. Lastly, if we subtract Equation (1.15) from Equation (1.16), we get

precisely the Acceleration equation or sometimes called Evolution equation,

ä

a
=
−4πG

3
(ρ + 3p). (1.18)



9

1.1.4. Evolution of Spacetime

In order to discover how the universe might evolve, we need idea of what is in

it. In a cosmological context, this is done by specifying the relationship between the

mass density ρ and the pressure p. This relationship is called as the ‘equation of state’

described as p = p(ρ). The continuity equation (1.17) describes the evolution of the

energy density ρ = ρ(a) of the universe in terms of the expansion factor of the universe

when coupled with the equation of state p = p(ρ). In particular when p = γρ is given,

then using Equation (1.17) gives

ρ ∼ a−3(1+γ), (1.19)

where γ is a constant which is called as the equation of state parameter. Furthermore,

if one assumes k = 0 or equivalently neglects k/a2 which is strongly favored by the

recent observations, and using Equation (1.19), it follows from Equation (1.15) that

a ∼ t2/[3(1+γ)]. (1.20)

In standard cosmology, in addition to the assumption that the universe is flat, there is

one more assumption that kinematics of the universe is essentially determined by one

of the matter components or both. Namely, by pressureless matter, by radiation, or

by the mixture of both. Now we will consider these cases briefly.

1.1.4.1. Pressureless Matter (Dust; γ = 0). This case illustrates the expansion of a

universe filled with any type of material (particles) which exerts negligible pressure,

p = 0. It is a good description of a collection of galaxies in the universe, as they have

no interactions other than gravitational ones. Using Equation (1.17) and the equation

of state p = 0, one can find

ρdust ∼ 1

a3
, (1.21)



10

and this says that the dust density ρdust falls off in proportion to the volume of the

universe. Throughout this thesis we will use the subscript ‘0’ to indicate the present

value of the quantities. Denoting the present density by ρ0 fixes the proportionality

constant

ρdust = ρ0

(a0

a

)3

. (1.22)

By inserting Equation (1.22) into Equation (1.15) for a flat universe, we can also

determine how a(t) varies with time

a(t) = a0

(
t

t0

)2/3

. (1.23)

In this solution, we see that despite the pull of gravity of the material in the universe,

universe does not re-collapse but rather expands forever. However, the rate of expansion

H(t) decreases with time according to

H(t) ≡ ȧ

a
=

2

3t
, (1.24)

becoming infinitely slow as the universe becomes infinitely old.

1.1.4.2. Radiation (γ = 1/3). This case illustrates the expansion of the early universe

during the Hot Bing Bang. The radiation obeys p = ρ/3 equation of state which is

derived from the fact that Einstein-Maxwell energy- momentum tensor is traceless (see

appendix C). The radiation energy density depends on a as

ρrad = ρ0

(a0

a

)4

, (1.25)

the scale factor and the rate of expansion evolve as the following:

a(t) = a0

(
t

t0

)1/2

, (1.26)
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H(t) ≡ ȧ

a
=

1

2t
. (1.27)

Notice that the universe expands more slowly if radiation dominates than if dust dom-

inates. The reason why this is so can be explained by the extra deceleration that the

pressure supplies as it is displayed in Equation (1.18). In a flat radiation dominated

universe the expansion will continue for all time but the Hubble parameter will go to

zero as t →∞.

1.1.4.3. Mixture. Now let us investigate the case illustrates the more general situation

that universe is composed of both dust and radiation. Then there are two separate

fluid equations, one for each of the two components;

ρdust ∼
(

1

a

)3

; ρrad ∼
(

1

a

)4

. (1.28)

Namely, the energy density ρ = ρdust + ρrad is inserted in the Friedmann Equation

(1.15) and it is going to be solved for a scale factor a in the case where the energy

density ρ is much far away from being too large. Then we can study the regime where

one of the components of the density is dominant. For example, suppose radiation is

more important. Then, one would have

a(t) ∼ t1/2 ; ρrad ∼ 1

a4
∼ 1

t2
; ρdust ∼ 1

a3
∼ 1

t3/2
. (1.29)

Here one can notice that the density in dust falls off more slowly than that in radia-

tion. So the situation of radiation dominating can not last forever and eventually dust

component might come to dominate. Hence, the domination of universe by radiation is

an unstable situation. In the opposite situation where it is the dust which is dominant,

one can obtain the solution

a(t) ∼ t2/3 ; ρdust ∼ 1

a3
∼ 1

t2
; ρrad ∼ 1

a4
∼ 1

t8/3
, (1.30)
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and this solution shows that dust domination is a stable solution; the dust becomes

increasingly dominant over the radiation as time goes by. In other words, the evolution

of a universe containing dust and radiation starts initially with radiation and eventually

the dust comes to dominate and as it does so the expansion rate speeds up from

a(t) ∼ t1/2 to the a(t) ∼ t2/3 law. Hence, it is very possible that this is the situation

which applies in our universe.

1.1.5. Observational Parameters

Standard Big Bang model does not give a unique description of our present uni-

verse. However, it leaves quantities such as the present expansion rate, the present

composition of the universe and the present value of cosmological constant to be fixed

by observation.

1.1.5.1. Present Hubble Parameter H0. The present value of Hubble constant H0 =

720± 8 km s−1 Mpc −1 [8].

1.1.5.2. The Density Parameter Ω. It is convenient to measure the the energy densi-

ties of different components in terms of a critical energy density ρc, a special value of

density, which would be required in order to make the geometry of the universe flat,

k = 0. Using (1.15), it is given as

ρc(t) =
3H2

0

8πGN

. (1.31)

Hence, instead of writing the matter density of the universe directly, it can be useful

to write its value relative to the critical energy density. This dimensionless quantity

called the density parameter is defined as

Ω ≡ ρi

ρc

, (1.32)
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and gives the fractional contribution of different components of the universe (i denotes

Matter (Baryons+Dark matter), Radiation). The density parameter determines the

geometry of the universe. With this new notation, one can rewrite the Friedmann

Equation (1.15) as

Ω− 1 =
k

a2H2
, (1.33)

and can state the possibilities for the geometries of the universe depending on the

density parameter where Ω = ΩM + ΩR.

• Open Universe: 0 < Ω < 1 : k < 0 : ρ < ρc

• Flat Universe: Ω = 1 : k = 0 : ρ = ρc

• Closed Universe: Ω > 1 : k > 0 : ρ > ρc.

1.1.5.3. The Cosmological Constant. When Einstein proposed general relativity, his

field equation was in the form of Equation (1.10) where the left-hand side characterizes

the geometry of spacetime and the right-hand side characterizes the energy sources. If

the energy sources are a combination of matter and radiation, there are no solutions

to Equation (1.10) describing a static, homogeneous universe as it is studied in Equa-

tion 1.1.4.3. Since astronomers at the time believed the universe was static, Einstein

suggested modifying the left hand side of his equation to obtain

Gµν − Λgµν = 8πGNTµν , (1.34)

where Λ is a new free parameter, the cosmological constant. With this modifications,

Friedmann-Lemaitre equation Equation (1.15) becomes

H2 =
8πG

3
ρ +

Λ

3
− k

a2
. (1.35)

Here Λ is dimensional and has dimension [LENGTH]−2. Einstein’s original idea was

to balance positive curvature, Λ and ρ to get H = 0. This solution is called Einstein
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static universe. In fact this idea was rather misguided, since such balance proves

to be unstable to small perturbations. Anyway, more commonly now the Λ term is

considered in the context of universes with the flat Euclidean geometry, k = 0. In

principle, Λ could be positive or negative, though the usual case is positive. Now let’s

analyze Einstein’s static universe for the vacuum case and then for the case in which

there is matter in the universe. Concerning the vacuum, Friedmann-Lemaitre Equation

(1.15) gets the form of

H2 =

(
ȧ

a

)2

=
Λ

3
− k

a2
, (1.36)

As Einstein’s vacuum static universe is concerned, one can see that only possible solu-

tion for static universe is

a =

√
3k

Λ
,

and the only plausible static universe is the closed one with k = 1. However if k = 0

then no static universe solution is yielded. Namely, there is an exponentially expanding

or shrinking universe solution due to the sole effect of cosmological constant in vacuum

as

a = a0e
λt, (1.37)

where λ = ±
√

Λ
3
. On the other hand, if the Einstein universe is assumed to be filled

with matter, and it is static, Friedmann-Lemaitre Equation implies that

H2 =

(
ȧ

a

)2

=
Λ

3
− k

a2
+

8πG

3
ρ(dust)0

(a0

a

)3

= 0. (1.38)

Since the considered universe should be big enough, we can ignore ρ(dust)0

(
a0

a

)3
term

compared to the curvature parameter term k/a2. Hence this assumption yields

Λ

3
=

k

a2
· (1.39)
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At that point, we can argue that if k = −1 < 0, then this implies both Λ < 0 and

the energy density ρ = 2Λ/3 < 0 is not physical. But if k = 1 > 0, then this implies

both Λ > 0 and positive energy density with ρ = 2Λ/3 is plausible as far as FLRW

cosmology is concerned. Hence, with positive spatial curvature and all the parameters

ρ, p, and Λ are non-negative, instead of finding static universe solution as Einstein

considered, one gets

a(t) = λ−1 cosh(λt), (1.40)

expanding universe solution with matter inside. Although the need for a static uni-

verse has disappeared by improved astronomical observations, the cosmological con-

stant somehow has kept its reputation alive until today. It is sometimes thought of as

the energy density of ‘empty’ space; in particular in quantum physics. Its possible ori-

gin is as a type of ‘zero-point energy’ which remains even if no particles are present. It

is useful to express the density as a fraction of the critical density, and it is convenient

to normalize the cosmological constant by defining

ΩΛ =
Λ

3H2
· (1.41)

Although Λ is a constant, ΩΛ is not since H varies with time. Now, we can state

Friedman-Lemaitre Equation (1.35) as in the density fractional form of

ΩM + ΩR + ΩΛ − 1 =
k

a2H2
· (1.42)

The condition to have a flat universe, k = 0 generalizes to

Ωtot = ΩM + ΩR + ΩΛ = 1. (1.43)

The equation of state of the universe with cosmological constant Λ, on the other hand,

can be deduced from rewriting G0
0 and Gi

i in the case of without matter energy but
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with cosmological constant. By treating Tµν ∼ gµν :

G0
0 = (

ȧ2

a2
+

k

a2
) =

Λ

3
, (1.44)

Gi
i =

−1

3
(2

ä

a
+

ȧ2

a2
+

k

a2
) = −Λ

3
,

and these two equations are identical with G0
0 and Gi

i with matter energy but without

cosmological constant if we set

8πG

3
ρ =

Λ

3
, (1.45)

8πG

3
p = −Λ

3
, (1.46)

and it is seen from the Equations 1.45 and 1.46 that the equation of state of the universe

filled with cosmological constant is γ = p/ρ = −1.

1.1.6. Perplexing Observational Results

• Our universe has 0.98 . Ωtot . 1.08 [9]. The value of Ωtot can be determined

from the angular isotropy spectrum of the cosmic microwave background radiation

(CMBR) and these observations now show that we live in a universe with critical

density [9, 10].

• Observations of primordial deuterium produced in big bang nucleosynthesis (which

took place when the universe is about 1 minute in age) as well as the CMBR

observations [11] show that the total amount of baryons in the universe con-

tributes about ΩB = (0.024 ± 0.0012) h−2. Given the independent observations

on the Hubble constant H0 [8] which fix h = 0.72 ± 0.07, it is concluded that
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ΩB
∼= 0.04−0.06. These observations take into account all baryons which exist in

the universe today irrespective of whether they are luminous or not. Combined

with the first item we conclude that most of the universe is non-baryonic.

• Host of observations related to large scale structure and dynamics (rotation curves

of galaxies, estimate of cluster masses, gravitational lensing, galaxy surveys ...)

all suggest that the universe is populated by a non-luminous component of matter

(dark matter; DM here thereafter) made of weakly interacting massive particles

which does cluster at galactic scales. This component contributes about ΩDM
∼=

0.20− 0.35.

• The universe also contains radiation contributing an energy density ΩR
∼= 2.56×

10−5 today. Most of which is due to photons in the CMBR and is dynamically

irrelevant today.

• Combining the last observation with the first, one can conclude that there must

be (at least) one more component to energy density of the universe contributing

about 70% of critical density. Early analysis of several observations [12, 13]

indicated that this component is unclustered and has negative pressure. The

observations suggest that the missing component has γ = p/ρ . −0.78 and

contributes ΩDE
∼= 0.60− 0.75.

• Briefly, all known observations are consistent with that our universe today has

density compositions of ΩDE
∼= 0.70, ΩDM

∼= 0.26, ΩB
∼= 0.04, ΩR

∼= 3× 10−5.

In the light of this introductory information about standard Einstein cosmology

and observational results, one can see that how strange the present universe behaves

cosmologically. Although the only component of the universe which we can understand

theoretically well is the radiation (Cosmic Microwave Radiation), understanding the

baryonic and dark matter density components is not trivial. Moreover, the issue of

dark energy and slow-acceleration in present universe under the influence of this mys-

terious energy today is somehow perplexing and beyond the expectations of standard

Einstein cosmology. Hence, to solve this puzzle, many alternative theories to Einstein’s

gravitational theory are widely being used in the literature. Scalar tensor theories are

the most favorite ones of these theories. So, in this thesis, we have chosen Brans Dicke

scalar tensor theory of gravity as an underlying theory to explain primordial inflation
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and late-time inflation essentially. Furthermore, whether Brans-Dicke scalar tensor

theory can account for dark energy and dark matter or not will be studied. And fi-

nally, how Brans-Dicke theory modifies the famous Friedmann Equation in standard

Einstein cosmology, and provides another density parameter Ω
∆
, different from the

measured density parameters (ΩΛ, ΩR, ΩM), will be shown rigorously.
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2. PRIMORDIAL AND LATE-TIME INFLATION

The inflationary universe model whose key feature is a finite period of primordial

rapid exponential expansion has been proposed to resolve a number of cosmological

puzzles, including the horizon, flatness and monopole problems. In the original or ‘old

inflation model’ [14], the universe super-cools into a false vacuum phase and its energy

density acts as an effective cosmological constant which causes an epoch of de-Sitter

(exponential) expansion. In this old inflation model, the de-Sitter expansion never ends

and for a generic first order phase transition, there appears an energy barrier between

the false vacuum and the true vacuum phases. This problem is known as the‘graceful

exit’ problem. This problem was avoided with the invention of the new inflationary

theory [15, 16]. In this theory, inflation may begin either in the false vacuum, or in an

unstable state at the top of the effective potential. Then the inflaton field φ slowly rolls

down to the minimum of its effective potential. The density perturbations produced

during the slow-roll inflation are inversely proportional to φ̇ [17, 18, 19]. Thus the

key difference between the new inflationary scenario and the old one is that the useful

part of inflation in the new scenario, which is responsible for the homogeneity of our

universe, does not occur in the false vacuum state, where φ̇ = 0. Although this scenario

was so popular in the beginning of the 80’s, it had its own problems. One of them, for

example, is that the inflaton field has an extremely small coupling constant in most

versions of this scenario, so it could not be in thermal equilibrium with other matter

fields. The theory of cosmological phase transitions, which was the basis of old and new

inflation, did not work in this situation. Furthermore, inflation in this theory begins

very late and during the preceding epoch, the universe can easily collapse or become

so inhomogeneous that inflation may never happen again [20].

With the invention of the chaotic scenario, all problems of old and new inflation

were resolved. According to this scenario, inflation may occur even in theories with

simple potentials such as V (φ) ∼ φn. Inflation may begin even if there was no thermal

equilibrium in the early universe, and it may start even at the Planckian density, in

which case the problem of initial conditions for inflation can be easily resolved [20]. The
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field in this scenario evolves slowly and at this stage the energy density of the scalar

field, unlike the density of ordinary matter, remains almost constant, and expansion of

the universe continues with a much greater speed than in the old cosmological theory.

Inflation does not require supercooling and tunneling from the false vacuum [14], or

rolling from an artificially flat top of the effective potential [15].

All models discussed so far have used field theories at very high energies to drive

inflation. However, inflation may also be generated by changing the gravitational

sector alone (R2 inflation) [21, 22] or both the gravitational and the matter sectors

(Extended inflation) [23, 24]. And the well known Jordan-Brans Dicke theories are

widely used in this third type generation of inflation. Before going into the details of

the primordial and late- time inflation in BD theory, it would be better to mention

about the main differences in between Jordan and BD scalar theories as far as their

Lagrangian definitions are concerned.

In the early 1910s, a “scalar” theory of gravity had been attempted by G. Nod-

ström by promoting the Newtonian potential function to a Lorentzian scalar. However,

owing to the lack of a geometrical nature, namely, it does not rely on equivalence prin-

ciple which is one of the two pillars supporting the entire structure of general relativity,

it was left outside the aim of the theory. After a decade of search for new concepts

to make gravitational theory compatible with the spirit of special relativity, Einstein

eventually arrived at a dynamical theory of space-time geometry. Thus, in Einstein’s

hands, gravitation theory was transformed from a theory of forces into the first dy-

namical theory of geometry, the geometry of four dimensional curved space-time.

In spite of the widely recognized success of general relativity, it is now called

the standard theory of gravitation, the theory has also feeded by many “alternative”

theories for one reason or another. Among them, we particularly focus on the Jordan

and Brans-Dicke scalar tensor theories of gravitation. The reason why these theories

are also labeled with “tensor” is that this type of theories do not merely combine the

two kinds of fields (scalar field and gravitational field), but also they are built on the

solid foundation of general relativity and besides, since Einstein’s theory of relativity
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is a geometrical theory of space-time and the fundamental building block is a metric

tensor field, gµν , these kind of theories are named as “scalar-tensor” theories.

The scalar-tensor theory was studied originally by Jordan-Thiry [25, 26]. He

showed that if a four dimensional curved manifold is embedded into a five dimensional

flat space time, the constraint appeared in formulating the projective geometry can

be four dimensional scalar field, which enables one to describe a space-time dependent

Newtonian gravitational constant which is in accordance with Dirac’s argument that

gravitational constant should be time dependent [27]. Under these considerations, a

general Jordan Lagrangian for the scalar field living in four-dimensional curved space-

time:

LJ =
√−g

[
Φσ

(
R− ωJ

1

Φ2
gµν∂µΦ∂νΦ

)
+ LM(Φ, Ψ)

]
, (2.1)

where Φ(t, ~x) is Jordan’s scalar field, R is the Ricci scalar, gµν is the metric tensor,

ωJ and σ are the Jordan’s dimensionless coupling constants and Ψ is representing

matter fields collectively. The term ΦσR has a specific name in this context called as a

“nonminimal coupling term”, and this is the term that marked the birth of the scalar

tensor theory. Planck-length is defined in natural units as, L2
p = 8πGN , where GN is

present Newton’s gravitational constant. Thus, the dimension of the Jordan’s scalar

field, Φ, is chosen to be [Φ] = L−1 so that Geff ∼ Φ−2 has a dimension [Geff ] = L2. In

this unit system, we may also express the dimensions of the following physical entities

such as [LJ ] = 1/L4, [R] = 1/L2, [gµν ] = [ωJ ] = [σ] = 1, [∂µ] = 1/L. Thus, dimensional

analysis of the Lagrangian (2.1) yields that σ = 2, which shows that the term Φσ

has the dimension L−2, which is the same as that of G−1
eff . Although this invariance

need not to be satisfied if Φ enters the matter Lagrangian, the constants appear in the

Lagrangian are dimensionless and this is true for any values of σ.

Jordan’s this effort particularly had been re-studied by Brans and Dicke, but with

a difference in defining the scalar field. They define their scalar field ϕ by

ϕ ≡ Φσ, (2.2)
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which simplifies (2.1) in the sense that specific choice of the value σ is irrelevant.

This process is actually a part of demanding that the matter part of the Lagrangian

(−g)1/2LM(Φ, Ψ) be decoupled from Φ(t, ~x) as an implementation of their requirement

that weak equivalence principle be respected, in contrast to Jordan’s model. In BD

model, Lagrangian is defined by as in the following form [28]

LBD =
√−g

[(
ϕR− ω

1

ϕ
gµν∂µϕ∂νϕ

)
+ LM(Ψ)

]
, (2.3)

where the dimensionless ω is the only parameter of the theory, and LM is the matter

Lagrangian. According to our metric convention, (+ - - -), Equation (2.3) turns out to

be

LBD =
√−g

[(
−ϕR + ω

1

ϕ
gµν∂µϕ∂νϕ

)
+ LM(Ψ)

]
. (2.4)

In particular, it is expected that ϕ (t, ~x) is spatially uniform and evolves slowly only

with cosmic time t such that ϕ (t, ~x) → ϕ(t). As another point, the second term on

the right hand side of (2.3) appears to be kinetic term of the scalar field but it is in an

unlikely form, since the presence of the ϕ−1 which seems to indicate a singularity, and

the presence of the coupling constant in multiplicative form is undesired. However,

whole term can be transformed into the standard canonical form by re-defining the

scalar field ϕ by introducing a new field φ, and a new constant ε in such a way that

ϕ =
1

8ω
φ2. (2.5)

In this new form, BD Lagrangian is redefined as

LBD =
√−g

[
− 1

8ω
φ2R +

1

2
gµν∂µφ∂νφ + LM(Ψ)

]
, (2.6)

where the signs of the non-minimal coupling term and the kinetic energy term are

properly adopted to (+ − −−) metric signature in such a way that as gµυ ∼ η00, the

kinetic term, 1
2
gµυ ∂µφ ∂νφ becomes 1

2
φ̇2.
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In a brief manner, Jordan-Brans-Dicke scalar tensor theory of gravitation theories

are a class of theories in which the effective gravitational coupling evolves with time,

and asymptotically attains a value of G. The strength of the coupling is determined

by a scalar field, φ, such that asymptotically, it tends to a value G−1. The origins of

Brans-Dicke theory is in Mach’s principle according to which the property of inertia

of material bodies arises because of their interactions with the matter distributed in

the universe. In the modern context, the Brans-Dicke theory attempted to rescue the

inflationary scenario from some of its problems. The theory is parameterized by a

dimensionless constant ω, where as ω → ∞, Brans-Dicke theory approaches to the

Einstein theory [29]. Present limits of the constant ω based on time-delay experiments

[30, 31, 32] require ω > 104 À 1.

In the conventional inflationary scenario, the universe underwent an exponential

expansion for a brief period in its early phase. After the exponential phase is over

the universe should transit to the normal cosmological phase. Within the framework

of Einstein-Hilbert action, there is no satisfactory mechanism by which the universe

transits to the normal phase. It was shown that within the framework of Brans-Dicke

gravity, a constant energy density leads to a rapid power-law expansion instead of

exponential. This is rapid enough to solve the problems in standard cosmology and at

the same time slow enough to make the transition to normal state possible after the

inflationary phase. This has come to be known as extended inflation [33, 34]. Extended

inflation constrains ω to be less than 25. This bound comes from the fact that if it is

more than 25, there will be much more anisotropy in the Cosmic Microwave Background

Radiation [35] than what is observed today. This is, however, incompatible with the

bound which constrains ω to be greater than 104. A large number of inflationary models

were proposed in the framework of multi-scalar tensor gravity to solve the problem.

For instance, the introduction of a potential for the scalar field φ and a scalar field

dependent coupling constant ω(φ) solved some problems [36, 37, 38, 39, 40].

In our work, we start out with a strong link between inflation and Brans-Dicke

[28] theory of gravity. The proposed model in this thesis is simple in that no other

phenomenon, such as the domination of the false vacuum over the scalar field energy
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density as in the extended inflation model is used. Since the recent progress in ob-

servational cosmology shifted attention towards experimental verification of various

inflationary theories, the motivation of this work is accelerated with the recent mea-

surements of the dependence of the Hubble parameter H = ȧ
a

on the scale size a(t) of

the universe. At this point it would be important to note that the classical Friedmann

equation which is used for fitting the Hubble parameter, H, to the measured present

density parameters (Ω0Λ, Ω0R, Ω0M) of the universe in such a way that Ω0Λ+ Ω0R+

Ω0M = 1 is given as

(
H

H0

)2

= Ω0Λ + Ω0R

(a0

a

)2

+ Ω0M

(a0

a

)3

. (2.7)

The present density parameter, Ω0i ≡ ρ0i/ρc, is defined as the fractional ratio of the

present energy density of any matter to the present critical energy density which is a

special required density in order to make the geometry of the universe flat. i stands

for Cosmological constant with Λ ), matter with (M), and the curvature with R. In an

other words, Ω0Λ, Ω0R, Ω0M are the fractions of contributions of the vacuum density,

curvature density and the matter density to the present energy density of the universe

respectively. H0 is the present Hubble parameter [8]. According to recent data, their

present measured values are ΩΛ
∼= 0.75, Ω0R

∼= 0 and ΩM
∼= 0.25 [41]. In standard

cosmology the ΩΛ term would be induced by a cosmological constant. An immediate

question which arises is the physical reason behind this cosmological constant. A

universe, expanding under the sole influence of a cosmological constant Λ = λ2 inflates

as a(t) ∼ eλt. For the present day expansion, λ ' H0, whereas for the primordial

expansion responsible for the present large size of the universe, λ is much bigger.

We will show a natural model where the large ratio of primordial inflation to

present day inflation can be explained by Brans-Dicke theory which effectively replaces

the Newtonian gravitational constant GN in the Einstein-Hilbert action (A.30) by a

power of the Brans-Dicke scalar field in such a way that

G−1 =
2π

ω
φ2, (2.8)
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where G is the effective gravitational constant as long as the dynamical scalar field φ

varies slowly. In units where c = ~ = 1, we define Planck-length, Lp, in such a way that

L2
P φ2

0 = ω/2π where φ0 is the present value of the scalar field φ. Thus, the dimension

of the scalar field is chosen to be L−1 so that Geff has a dimension L2.

The action is the following;

S =

∫
d4x

√
g

[
− 1

8ω
φ2 R +

1

2
gµυ ∂µφ ∂νφ− V (φ) + LM

]
, (2.9)

where φ represents the Brans-Dicke scalar field and ω denotes the dimensionless Brans-

Dicke parameter taken to be much larger than 1, ω > 104 À 1 [32]. LM , on the other

hand, is the matter Lagrangian such that the scalar field φ does not couple with it. The

nonminimal coupling term is φ2 R and R is the Ricci scalar. The kinetic and potential

terms of the scalar field behave effectively as time dependent cosmological constants.

At this point, we have to point out three simple assumptions made in this work:

• The Brans-Dicke field φ does not couple to any other field except gravity.

• The Lagrangian of the field, in addition to the kinetic term of φ, contains the

simplest chaotic inflation-style potential energy density V (φ) = 1
2
m2φ2 which is

composed only of the scalar field mass term.

• In particular we may expect that φ is spatially uniform, but varies slowly with

time. For simplicity we also restrict our analysis to the Robertson Walker metric

1.3 to emphasize that φ is necessarily spatially homogeneous.

After applying the variational procedure to the action (see appendix A) and

assuming φ = φ (t) and energy momentum tensor of matter and radiation excluding φ

is in the perfect fluid form of T µ
ν = diag (ρ,−p,−p,−p) where ρ is the energy density

and p is the pressure, and also noting that the right hand side of the φ equation below

is set to be zero in accordance with our first assumption on LM being independent of

φ, the field equations reduce to
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3

4ω
φ2

(
ȧ2

a2
+

k

a2

)
− 1

2
φ̇2 − 1

2
m2 φ2 +

3

2ω

ȧ

a
φ̇ φ = ρM , (2.10)

−1

4ω
φ2

(
2
ä

a
+

ȧ2

a2
+

k

a2

)
− 1

ω

ȧ

a
φ̇ φ− 1

2ω
φ̈ φ−

(
1

2
+

1

2ω

)
φ̇2 +

1

2
m2 φ2 = pM , (2.11)

φ̈ + 3
ȧ

a
φ̇ +

[
m2 − 3

2ω

(
ä

a
+

ȧ2

a2
+

k

a2

)]
φ = 0, (2.12)

where ‘dot’ denotes (d/dt). The right hand sides of the Equations (2.10, 2.11) are

adopted to the matter energy density term ρM instead of ρ and pM instead of p where

the subscript M denotes everything except the φ field.

2.1. Primordial Inflation

In the primordial inflation analysis, we start to solve the field equations (2.10,

2.11, 2.12) for an empty-static universe by setting ȧ = 0 and p = ρ = 0 and get the

following vacuum solutions;

φ = φo eFp t, (2.13)

a = a∗ = const, (2.14)

k = 1 (closed universe), (2.15)
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where

F 2
p = m2

(
ω

2ω + 3

)
, (2.16)

a2
∗ =

1

m2

(
2 ω + 3

3 ω + 3

)(
3

2 ω

)
. (2.17)

From these solutions (2.13, 2.14, 2.15), we see that φ evolves exponentially with the

expansion parameter Fp and, on the other hand, a∗ is the constant size of this static

universe. We regard that only the closed universe solution is possible as a positive

aspect of this solution since homogeneity of the universe only makes sense if a closed

universe undergoes big-bang. Let us also note that, since two variables φ (t) and a (t)

satisfy the field equations (2.10, 2.11, 2.12), these solutions (2.13, 2.14) are expected

to be stable. To prove this stability we impose the size of the universe a and the field

φ to be a function of time t in a perturbative manner;

a = a∗ (1 + ε b (t)) , (2.18)

φ = eFpt (1 + ε ψ (t)) , (2.19)

where ε is the perturbative factor (ε ¿ 1) and b (t), ψ (t) are perturbative functions

of a (t) and φ (t) respectively. Using (2.18, 2.19) and (2.16, 2.17), it follows from the

Equations (2.10, 2.11, 2.12) that

ψ̇ (t)− 3

2 ω
ḃ (t) +

3

2 ω Fp a2∗
b (t) = 0, (2.20)

ψ̈ (t) + (4 + 2ω) Fp ψ̇ (t) + b̈ (t) + 2 Fp ḃ (t)− 1

a2∗
b (t) = 0, (2.21)
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ψ̈ (t) + 2 Fpψ̇ (t)− 3

2 ω
b̈(t) + 3 Fp ḃ (t) +

3

ω a2∗
b(t) = 0. (2.22)

Solving Equations (2.20, 2.21, 2.22) simultaneously gives the only solution ḃ = 0 which

directly implies b̈ = 0, ψ̇ = 0 and ψ̈ = 0. Namely, this closed universe vacuum solution

where a = a∗ = cst and φ ∼ eFpt is a stable solution.

Considering the radiation dominating early universe, we now investigate how the

presence of radiation changes the behavior of the universe compared to this stable

solution. Hence, as a first step, instead of solving the Equations (2.10, 2.11, 2.12) for

the primordial equation of state p = 1
3
ρ, which is hard enough, we find that solving

Equation (2.12) for a (t) by keeping φ ∼ eFP t is much more effective. As a second

step, we plan to show that for possible solution for a (t) and φ ∼ eFpt, equation of

state p = 1
3
ρ is satisfied automatically. By changing to the variable a2 (t) = Θ (t), the

Equation (2.12), which turns out to be the following second order differential equation,

3

4ω
Θ̈− 3Fp

2
Θ̇− (

F 2
p + m2

)
Θ = − 3

2ω
, (2.23)

has been solved for Θ(t), and we find,

Θ (t) = a2 (t) =

(
3

2ω

)(
1

F 2
p + m2

)
+ c1 e−2Fpt + c2 e2Hpt, (2.24)

where c1, c2 are integration constants and Hp is the primordial Hubble parameter. The

relation between Hp and Fp is

Hp = (ω + 1)Fp. (2.25)

Using the Equations (2.16, 2.17), (2.24) reduces to

Θ (t) = a2 (t) = a2
∗ + c1 e−2Fpt + c2 e2Hpt. (2.26)

Considering ω À 1 and using Equation 2.16, we may also display expansion parameter
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Fp and primordial Hubble constants Hp in terms of the mass of the scalar field φ as

Fp ' 0.7m, (2.27)

Hp ' 0.7ωm. (2.28)

Now, the Equation (2.26) can be expanded about t = 0 which becomes

Θ (t) = a2 (t) ' a2
∗ (1 + c1 + c2 − 2c1 Fpt + 2c2 Hpt) , (2.29)

with the constraint 1 + c1 + c2 = 0, due to the fact that as t → 0, we want a2 (t) ∼ t as

it is in standard cosmology (1.29). Thus, with the help of Equation (2.25), we end up

with the general solution for the scale size of the universe in the primordial inflation

regime with ω À 1 as

a2 (t) ' a2
∗
[
1− (1 + c) e−2(Hp/ω)t + ce2Hpt

]
. (2.30)

Using Equation (2.28) provides the general solution (2.30) to be represented in terms

of a scalar field mass of m as,

a2 (t) ' a2
∗
[
1− (1 + c) e−1.4mt + ce1.4ωmt

]
. (2.31)

This general solution is important for at least three reasons:

1. It is a natural solution in the sense that no equation of state for radiation is

needed. It is solely deduced from the theory by using the stable-empty universe

solution (2.13) in the Equation (2.12).

2. When we examine this inflationary solution concerning as t → 0 and as t & 0,

we simultaneously see from Equation (2.29) and Equation (2.31) that, it is both

consistent with a (t) ∼ √
t as t → 0 and the primordial rapid inflation described
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by a (t) ∼ eHpt ∼ e0.7mωt for ω À 1.

3. The equation of state parameter γ ' 1/3 is automatically satisfied under this

solution. To show this substituting φ ∼ eFpt and a ∼ √
t into Equations (2.10,

2.11) yields

φ2

[
1

16ω

(
1

t2

)
− 1

4ω

(
1

t

)
− 1

2ω

(
1

t

)
FP −

(
1

2
+

1

ω

)
F 2

P +
1

2
m2

]
= pM ,

(2.32)

φ2

[
3

16ω

(
1

t2

)
+

3

4ω

(
1

t

)
+

3

4ω

(
1

t

)
FP − 1

2
F 2

P −
1

2
m2

]
= ρM . (2.33)

Using the relation F 2
P ' 1

2
m2 for ω À 1 provides γ to be

γ '

[
1

16ω

(
1
t2

)− 1
4ω

(
1
t

)− m
2
√

2ω

(
1
t

) − 1
4
m2

]
[

3
16ω

(
1
t2

)
+ 3

4ω

(
1
t

)
+ 3m

4
√

2ω

(
1
t

)− 3m2

4

] , (2.34)

and as t → 0, it becomes

γ '
[

1
16ω

(
1
t2

) − 1
4
m2

]

3
[

1
16ω

(
1
t2

)− 1
4
m2

] =
1

3
. (2.35)

As a result of this section, we can remark that as far as present big size of the

universe is concerned, primordial inflation in BD universe satisfies the same results

as the universe expanding exponentially under the sole influence of the cosmological

constant in the standard cosmology. However, the main difference in between them is

that although in standard cosmology, the expanding factor called cosmological constant

is just a constant whereas in BD cosmology, the expansion factor is the scalar field φ

and since it evolves only with time it can be assumed as a dynamical entity like dark

energy.

2.2. Late-time Inflation

In this section, we aim to analyze how much today’s universe is far from late-time

inflation by considering the case of slowly expanding empty universe (ρ = p = 0) except
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the φ field in it. Since the considered universe should be big, we ignore the curvature

parameter k/a2 as a (t) increases with the expansion of the universe. Under these

considerations, in analogy with the previous section, we put a = eH∞t and φ = eF∞t

into the Equations (2.10, 2.11, 2.12) where H∞, F∞ are new constants to be determined

and search for a stable solution. We get the following coupled equations for H∞ and

F∞;

H2
∞ −

2

3
ωF 2

∞ + 2H∞ F∞ − 2ω

3
m2 = 0, (2.36)

H2
∞ +

(
2

3
ω +

4

3

)
F 2
∞ +

4

3
H∞ F∞ − 2ω

3
m2 = 0, (2.37)

H2
∞ −

ω

3
F 2
∞ − ω H∞ F∞ − ω

3
m2 = 0. (2.38)

These equations have the solution;

H∞ = 2 (ω + 1)

(
ω

6ω2 + 17ω + 12

)1/2

m ≈ 0.8
√

ω m, (2.39)

F∞ =

(
ω

6ω2 + 17ω + 12

)1/2

m ≈ 0.4√
ω

m, (2.40)

where the approximations are again for ω À 1. We see that although the primordial

Hubble parameter Hp is 0.7ωm, the late-time Hubble parameter H∞ is found to be

0.8
√

ω m. Namely, a factor
√

ω less than the primordial inflation parameter. This is a

very important result in the sense that although there is an experimental lower bound

on ω, there is no upper bound on it according to the observational results stating

ω À 104[32]. Hence in Brans-Dicke cosmology, the late-time inflation can be as small

as one wishes compared to the primordial inflation. Now, we consider the case where

the universe is closed (k = 1) and matter dominated p ≈ 0. Since solving the field

Equations (2.10, 2.11, 2.12) for a (t) and φ(t) is hard enough under p ≈ 0, we proceed
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to work by defining the fractional rate of change of φ as F (a) = φ̇/φ and the Hubble

parameter as H (a) = ȧ/a so that we rewrite the left hand-side of the field Equations

(2.10, 2.11, 2.12) in terms of H, F and their derivatives with respect to a,

H2 − 2ω

3
F 2 + 2 H F +

1

a2
− 2ω

3
m2 = (

4ω

3
)
ρM

φ2
, (2.41)

H2 +

(
2ω

3
+

4

3

)
F 2 +

4

3
H F +

2a

3

(
H H́ + H F́

)
+

1

3a2
− 2ω

3
m2 = (

−4ω

3
)
pM

φ2
≈ 0,

(2.42)

H2 − ω

3
F 2 − ω H F + a

(
H H́

2
− ω

3
HF́

)
+

1

2a2
− ω

3
m2 = 0. (2.43)

To check the stability of the vacuum solution a ∼ eH∞t and φ ∼ eF∞t in late-time

regime, we write them in perturbative manner such that a = eH∞t(1 + bε) and φ =

eF∞t(1 + ψε) and put them into Equations (2.10, 2.11, 2.12). Using the relation H∞ =

2(ω + 1)F∞ these equations reduces to

(
H2
∞(3ω + 4)(2ω + 3)

8ω(ω + 1)

)
+

(
H∞

4ω(ω + 1)

)
ḃ +

(
3

2ω
H∞

)
ψ̇ − 1

2
m2

+

[(
3H∞
2ω

)
ḃ +

(
3H2

∞(2ω + 3)

4ω(ω + 1)

)
b−

(
H∞

2(ω + 1)

)
ψ̇ +

(
H2
∞(3ω + 2)

4ω(ω + 1)2

)
ψ

]
ε = 0,

(2.44)

−
(

H2
∞(4ω2 + 13ω + 10)

8ω(ω + 1)2

)
−

(
H∞

2ω(ω + 1)

)
ḃ−

(
H∞
ω

)
ψ̇ +

m2

2

−
[(

1

4ω

)
b̈ +

(
5H∞
4ω

)
ḃ +

(
H2
∞(2ω + 3)

2ω(ω + 1)

)
b

]
ε

−
[(

1

2ω

)
ψ̈ +

(
H∞(5 + 2ω)

4ω(ω + 1)

)
ψ̇ +

(
H2
∞(3ω + 4)

4ω(ω + 1)2

)
ψ

]
ε = 0, (2.45)
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−
(

H2
∞(12ω2 + 36ω + 23)

8ω(ω + 1)2

)
+

(
3H∞

2(ω + 1)

)
ḃ + 3H∞ψ̇ + m2

−
(

3

2ω
b̈ +

15H∞
2ω

ḃ + H2
∞

3(3ω + 4)

2ω(ω + 1)
b

)
ε

+

(
1

2ω
ψ̈ + H∞

3

4ω(ω + 1)
ψ̇ + H2

∞
6ω2 + 6ω + 1

4ω(ω + 1)2
ψ

)
ε = 0. (2.46)

Using the fact that as ω →∞, H2
∞ ≈ ωm2 yields

(
1

2
√

6ω3/2

)
ḃ +

(
3√

6ω1/2

)
ψ̇

+

(
3√

6ω1/2
ḃ + ωb− 1√

6ω1/2
ψ̇ +

1

2ω
ψ

)
ε = 0, (2.47)

(
1√

6ω3/2

)
ḃ +

(
2√

6ω1/2

)
ψ̇

+

(
1

4ω
b̈ +

5

2
√

6ω1/2
ḃ +

2

3
b +

1

2ω
ψ̈ +

1√
6ω1/2

ψ̇ +
1

2ω
ψ

)
ε = 0, (2.48)

(
3√

6ω1/2

)
ḃ +

(√
6ω1/2

)
ψ̇

+

(
− 3

2ω
b̈− 15√

6ω1/2
ḃ− 3b +

1

2ω
ψ̈ +

3

2
√

6ω3/2
ψ̇ + ψ

)
ε = 0. (2.49)

Namely,

( √
6

12ω3/2

)
ḃ +

( √
6

2ω1/2

)
ψ̇ = 0, (2.50)

( √
6

6ω3/2

)
ḃ +

( √
6

3ω1/2

)
ψ̇ = 0, (2.51)
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( √
6

2ω1/2

)
ḃ +

(√
6ω1/2

)
ψ̇ = 0. (2.52)

From these three Equations (2.50, 2.51, 2.52) it is seen that the only possible solution

is ḃ = 0 which directly implies b̈ = 0 and ψ̇ = 0 which directly implies ψ̈ = 0. Namely,

this flat universe vacuum solution where a ∼ eH∞tand φ ∼ eF∞t is a stable solution.

Expanding F (a) and H (a) in powers of
(

ao

a

)
up to third order, where a0 is the

present size of a universe,

H (a) = H∞ + H2

(a0

a

)2

+ H3

(a0

a

)3

, (2.53)

F (a) = F∞ + F2

(a0

a

)2

+ F3

(a0

a

)3

, (2.54)

and putting them into Equations (2.41, 2.42, 2.43), we get the perturbation constants

for (ω À 1) :

H∞ ≈ 0.8
√

ω m, (2.55)

F∞ ≈ 0.4√
ω

m, (2.56)

H2 ≈ − 1

2a2
oH∞

≈ − 0.6√
ωa2

om
≈ 0, (2.57)

F2 ≈ 3

4ωa2
oH∞

≈ 0.9

ω3/2a2
om

≈ 0, (2.58)
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H3 ≈ 2ω

3
F3, (2.59)

H3 ≈ −F3. (2.60)

Up to now, we note that all the constants required in our assumption for H (a) and

F (a) in the late-time inflation regime are almost determined from the theory except

H3 and F3. Indeed solving Equations (2.59) and (2.60) simultaneously gives us H3

and F3 to be zero. However, to explain the late-time universe, we may assume that

γ = pM/ρM ¿ 1 rather than pM being exactly zero. To overcome this problem, we use

the relation (2.59) between H3 and F3 coming from the φ−Equation (2.43) which is

more exact comparing to the relation (2.60) coming from the p−Equation (2.42). We

also use the classical Friedman formula (2.7) in such a way that using Equations (2.55,

2.57) and rearranging Equation (2.53) by leaving H3 as a free parameter, it follows

from the Equation (2.7) that

Ω0Λ ≈ H2
∞

H2
0

, (2.61)

Ω0R ≈ 2H∞H2

H2
0

, (2.62)

Ω0M ≈ 2H∞H3

H2
0

. (2.63)

By fitting all these above results to the present observational results Ω0M ≈ 0.25,

Ω0Λ ≈ 0.75 and Ω0R ≈ 0 [41], we determine H3 and F3 in terms of the parameters in

the theory as,

H3 ≈ 0.13
√

ωm (for ω À 1), (2.64)
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F3 ≈ 1.41√
ω

m (for ω À 1). (2.65)

We may now write H and F as in the form in which all perturbative constants are

appeared, namely;

H (a) ≈ 0.8
√

ω m + 0.13
√

ωm
(a0

a

)3

, (2.66)

F (a) ≈ 0.4√
ω

m +
1.4√

ω
m

(a0

a

)3

. (2.67)

After finding the perturbation constants explicitly for H and F , we also find it worthy

to determine how the Hubble parameter H (a) = ȧ/a and the time variation of G,

where G is the time dependent value of the gravitational constant, change in the

primordial and late-time regimes compared to their present values. To do so, we use

the relationG−1 = 2π
ω

φ2 (2.8) which entirely comes from the fact that the term 1
8ω

φ2

in the action Equation (2.9) will be the same as that of the term 1/16πG in the

Hilbert-Einstein since Brans-Dicke gravity becomes identical to Einstein gravity as ω

approaches infinity. Then, taking time derivative of both sides of the Equation (2.8)

gives,

(
Ġ

G

)
= −2

(
φ̇

φ

)
= −2F (a) ≈ − 0.8√

ω
m− 2.8√

ω
m

(a0

a

)3

. (2.68)

Hence, if we use Equation (2.68) for the present scale size of the universe a0, then the

present rate of change of G is found to be

(
Ġ

G

)

0

≈ − 3.6√
ω

m, (2.69)

whereas in a similar manner, using Equation (2.56) in addition to Equation (2.68)
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expects the rate of change of G in asymptotic regime as

(
Ġ

G

)

late−time

≈ −0.8√
ω

m, (2.70)

and finally, using Equation (2.27) gives the rate of change G in primordial regime as,

(
Ġ

G

)

primordial

≈ −1.4m. (2.71)

Subsequently, we think that it would be beneficial to express parameter m, mass of

the scalar field, in terms of the present value of Hubble parameter H0. For this reason,

we simply satisfy the Equation (2.66) for the present value of the Hubble constant H0

and for the present value of the scale factor of the universe a0 such that for ω À 1, m

is expected from the theory as,

m ≈ 1.08√
ω

H0. (2.72)

Hence, with Equation (2.72), we can also express the rate of change of G and Hubble

parameters H in terms of the observationally measured quantity H0:

(
Ġ

G

)

0

≈ −3.9

ω
Ho, (2.73)

(
Ġ

G

)

late−time

≈ −0.87

ω
H0, (2.74)

(
Ġ

G

)

primordial

≈ −1.51√
ω

H0. (2.75)

(H)primordial ≈ 0.7mω ≈ 0.75
√

ωH0, (2.76)
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(H)late−time ≈ 0.8
√

ωm ≈ 0.86H0. (2.77)

Finally, when we investigate the equation of state parameter for the late time regime

where ω →∞,

γ =
p

ρ
=

[
−(ω+6)
ω(6ω+6)

− 60ω+63
50(3ω2+3ω)

]
[

ω+3
ω(2ω+2)

+ 6
25

] ' 0 (2.78)

we find that it is approaching a value of zero as expected.
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3. CAN BRANS-DICKE SCALAR FIELD ACCOUNT FOR

DARK-ENERGY AND DARK-MATTER?

Our universe seems, according to the present-day evidence, to be spatially flat and

to possess a non vanishing cosmological constant [42, 43]. For a flat matter dominated

universe, cosmological measurements [41] imply that the fraction ΩΛ of the contribution

of the cosmological constant Λ to present energy density of the universe is ΩΛ ∼ 0.75.

In standard cosmology ΩΛ would be induced by a cosmological constant which is a

dimensional parameter with units of (length)−2. From the point of view of classical

general relativity, there is no preferred choice for what the length scale defined by Λ

might be. Particle physics, however, gives a different point of view to the issue. The

cosmological constant turns out to be a measure of the energy density of the vacuum

and although we can not calculate the vacuum energy with any confidence, this allows

us to consider the scales of various contributions to the cosmological constant. The

energy scale of the constituent(s) of Λ which in Planck units is approximated to 10−123

is problematic since it is lower than the normal energy scale predicted by most particle

physics models. To solve this problem, a dynamical Λ [44] in the form of scalar field

with some self interacting potential [45] can be considered and its slowly varying energy

density induces a cosmological constant. This idea called “quintessence” [44] is similar

to the inflationary phase of the early universe with the difference that it evolves at a

much lower energy density scale. The energy density of this field has to evolve in such

a way that it becomes comparable with the mass density fraction ΩM now. This type

of specific evolution, better known as “cosmic coincidence” [46] problem, needs several

constraints and fine tuning of parameters for the potential used to model quintessence

with minimally coupled scalar field. To solve the cosmic coincidence problem, a new

form of quintessence field called the “tracker field” [46] has been proposed. Such kind

of quintessence field is mainly based on an equation of motion with a solution for

such that for a wide range of initial conditions the equation of motion converge to

the same solution. This type of solution is also called an ’attractor like’ solution.

There are a number of quintessence models proposed. Most of these involve minimally
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coupled scalar field with different potentials dominating over the kinetic energy of

the field. Purely exponential [47] and inverse power law [45, 46] potentials have been

extensively studied for quintessence fields to solve the cosmic coincidence problem.

However the fact that the energy density is not enough to make up for the missing

part of the cosmological constant or that the p/ρ ≡ γ value found for the equation of

state of quintessence is not in good agreement with the observed results makes such an

explanation unlikely. The investigation of alternative models in which the equation of

state parameter γ of the cosmological constant evolves with time has been proposed due

to the conceptual difficulties associated with a cosmological constant [48, 49, 50, 51].

There have been quite a few attempts for treating this problem with non-minimal

coupled scalar fields. Studies made by Bartolo et al [52], Bertolami et al [53], Ritis et

al [54] have found tracking solutions in scalar tensor theories with different types of

power law potential. In another work, Sen et al [55] have found the potential relevant

to power law expansion in BD cosmology and Arık and Çalık [56] have shown that BD

theory of gravity with the standard mass term potential 1
2
m2φ2 is a natural model to

explain the rapid primordial inflation and the observed slow late-time inflation.

In this chapter of thesis, we aim to show that a linearized non-vacuum solution

about the stable cosmological vacuum solution with flat space-like section is capable of

explaining how the Hubble parameter evolves with the scale size of the universe a(t).

In this framework, we also show that the standard Friedmann equation changes into a

form in which the power of the scale size term with ΩM is corrected by an amount 1/ω

(
H

H0

)2

= Ω0Λ + Ω0M

(a0

a

)3+ 1
ω

. (3.1)

Subsequently, under such a linearized solution, we point out that only a very small

part of the dark matter can be accommodated into the contribution of the Brans-Dicke

scalar field.

In the context of BD theory [28] with self interacting potential and matter field,

the action we use in the canonical form is given by the Equation (2.9), and all the
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kinetic and potential term properties of the scalar field are the same as it is defined in

the previous chapter. Excluding φ, as the matter field, we again consider a classical

perfect fluid with the energy-momentum tensor T µ
ν = diag (ρ,−p,−p,−p) where ρ is

the energy density, p is the pressure. Hence, the gravitational field equations derived

from the variation of the action (2.9) with respect to Robertson- Walker metric are the

same as the Equations (2.10, 2.11, 2.12). Since in the standard theory of gravitation,

the total energy density ρ is assumed to be composed of ρ = ρΛ + ρM where ρΛ is

the energy density of the universe due to the cosmological constant which in modern

terminology is called as “dark energy”, re-organization of the right hand sides of the

Equations (2.10, 2.11), adopted to the matter energy density term ρM instead of ρ and

pM instead of p where M denotes everything except the φ field, is being essential for

this chapter in the sense that whether if the φ terms on the left-hand side of Equation

(2.10) can accommodate a contribution to due to what is called dark matter.

In the light of encouraging result obtained by using the instability caused by the

nonvacuum in the closed stable vacuum solution in explaining the rapid primordial

inflation, we will show that a linearized non-vacuum solution about the flat stable

vacuum solution can also be powerful in explaining the slow late time expansion.

Since the universe becomes (approximately) flat in late times, we ignore the curvature

parameter k/a2 as a (t) increases with the expansion of the universe. Under these

considerations, in analogy with the assumption we use in explaining rapid primordial

inflation, we first propose a = eH∞t and φ = eF∞t and put into Equations (2.10, 2.11,

2.12) and search for a zeroth order stable vacuum (empty except the φ field) solution.

H∞, F∞ are the constants to be determined named as the late time Hubble parameter

and the fractional rate of change of φ in the late time regime respectively. We have

the same results for H∞ and F∞ as in the previous chapter. Thus, in our one hand,

we have had an exact zeroth order stable-vacuum solution as,

a = eH∞t, (3.2)

φ = φ∞eF∞t, (3.3)
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where H∞ ≈ 0.8
√

ωm, F∞ ≈ 0.4√
ω
m, φ∞ is a constant. Then, after finding such a zeroth

order exact stable solution, the question that stimulates us, similar to the primordial

regime analysis, is that how the presence of matter affects this flat stable vacuum

solution (3.2, 3.3). To understand such a perturbation phenomenon, we impose the

following linearized first order non-vacuum solution for H ≡ ȧ/a and F ≡ φ̇/φ which

includes first order perturbation functions of h(a) and f(a) in addition to the con-

stant terms H∞ and F∞ which appear in the flat stable vacuum solution (3.2, 3.3)

respectively.

H = H∞ + h(a), (3.4)

F = F∞ + f(a). (3.5)

Since solving the field Equations (2.10, 2.11, 2.12) exactly for a(t) and φ(t) under the

condition p = 0 is hard enough, we put our imposed solution (3.4, 3.5) into the modified

field Equations (2.41, 2.42, 2.43) for p = 0 and neglect higher terms in h(a), f(a) then

we get h(a) and f(a) for all ω in the form of,

h(a) = C1H0

(a0

a

) 3ω+4
ω+1 −

(
1

H∞a2
0

)
(ω + 1)(ω + 3)

(ω + 2)(2ω + 3)

(ao

a

)2

, (3.6)

f(a) = C2H0

(a0

a

) 3ω+4
ω+1

+

(
3

2H∞a2
0

)
(ω + 1)

(ω + 2)(2ω + 3)

(ao

a

)2

, (3.7)

where C1 and C2 are dimensionless integration constants. Since letting ω → ∞ has a

special meaning in the sense that the Brans-Dicke scalar tensor theory matches with

standard Einstein theory under such limit, we display the linearized solution (3.4, 3.5)

in the following form as ω →∞,

H = H∞ + C1H0

(a0

a

)3+ 1
ω − 1

2

(
1

H∞a2
0

) (ao

a

)2

, (3.8)
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F = F∞ + C2H0

(a0

a

)3+ 1
ω

. (3.9)

Hence, putting the solution (3.8) in the standard Friedmann equation (2.7), and using

the present observational results on density parameters Ω0Λ ' 0.75, Ω0M ' 0.25,

Ω0R ' 0 [41], we get C1 ' 0.15 and H∞ = 0.86H0 so that F∞ ≈ H∞/2ω ≈ (0.43/ω) H0

which provides |C2| ¿ 0.43/ω. Namely, the first term in a linearized solution (3.9)

is much greater than the second term. The curvature density parameter Ω0R, on

the other hand, is found to be in accordance with the recent measurements since the

term (1/H0a0)
2 ≈ Ω0R ' 0 [41]. To compare Equation (2.41) with standard FLRW

cosmology, we put the linearized solution (3.8, 3.9) into Equation (2.41) and transfer

all terms except for H2 = (ȧ/a)2 to the right hand side. Neglecting the 1/a2 term, we

end up with

H2 =
4ω

3φ2
(ρΛ + ρM + ρD). (3.10)

Noting that in the late time regime, scalar field dependence on the scale size of the

universe, φ ∼ a1/2ω, is approximately constant as a changes. Keeping this in mind,

we identify the terms which do not explicitly depend on a with ρΛ and terms which

depend on a as a−3 with the dark matter energy density ρD so that

ρD = (C2F∞H0φ
2 − 3C2

2ω
H∞H0φ

2 − 3C1

2ω
H0F∞φ2)(

a0

a
)3, (3.11)

ρΛ =
1

2
F 2
∞φ2 − 3

2ω
H∞F∞φ2 +

1

2
m2φ2. (3.12)

Using the recent observational results on density parameters of the universe (Ω0Λ

≡ ρΛ/ρ0 ' 0.75, Ω0D ≡ ρD/ρ0 ' 0.23) (1.1.6) where ρ0 is the present measured

energy density of the universe and the relations H∞ ≈ 0.86H0 and F∞ ≈ H∞/2ω ≈
(0.43/ω) H0 as ω →∞, we fit Equations (3.11, 3.12) to the ratio ΩΛ/ΩD ' 75/23 and

determine the |C2| integration constant to be |C2| ≈ 0.20 which is inconsistent with

the requirement |C2| ¿ 0.43/ω imposed by the theory.
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In conclusion, the first remarkable feature of this work that a linearized non-

vacuum solution (3.8) about the stable cosmological vacuum solution (3.2) with flat

space-like section is capable of explaining how the Hubble parameter H ≡ ȧ/a evolves

with the scale size of the universe a(t). The second remarkable feature of this theory is

that by fitting the linearized solutions (3.8, 3.9) of the theory to the recent observations

[41], the late-time Hubble parameter H∞ = 0.86H0 and the fractional rate of change

of φ in the late time regime F∞ = (0.43/ω) H0 are successfully predicted in terms of

today’s observational measured value of Hubble parameter H0. Another important

prediction we note from this theory is that for a fixed H0, since F∞ ≈ (0.43/ω) H0, F∞

may not attain a large value because of its inverse dependence on ω which is measured to

be, according to the recent observational data, as ω > 104 À 1 [32]. This is the reason

why F∞ can not let the scalar field φ = φ∞eF∞t to blow up rapidly so that ρΛ (3.12),

the energy density of the universe due to the cosmological constant, can grow slowly

and reasonably. Hence we strictly agree on that this theory is successful in explaining

the dark energy though the Brans-Dicke scalar field φ can not account for dark matter

with its minor contribution to dark matter which is approximately less than 2 %. The

last remarkable feature of this theory is that it enables us to estimate some dimensional

parameters displayed in the theory. Using the relation H∞ ≈ 0.86H0 ≈ 0.8
√

ωm and

the restriction on ω, we may estimate m for a fixed H0 as

m / 10−2H0, (3.13)

where the present value of Hubble constant H0 = 720 ± 8 km s−1 Mpc −1 [8]. Using

appropriate conversion relation in relativistic units, present Hubble parameter is found

to be

H0 ≈ 10−26m−1 ≈ 2× 10−42GeV. (3.14)

Furthermore, by using (3.13), one can re-estimate Hubble parameters and rate of

change values in Newtonian gravitation constant for the primordial and the late time
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epochs considering linearization approach used in this chapter as

|Ġ
G
|P = 2FP ≈ (1.5/

√
ω)H0, (3.15)

|Ġ
G
|∞ = 2F∞ ≈ 0.86

ω
H0, (3.16)

HP ≈ 0.7mω > 70 H0, (3.17)

H∞ ≈ 0.8
√

ωm ≈ 0.86H0. (3.18)

The fractional rate of change of the scalar field φ, on the other hand, are given by

FP / 7× 10−3 H0, (3.19)

F∞ < 43× 10−6H0. (3.20)
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4. FRIEDMANN EQUATION FOR BRANS DICKE

COSMOLOGY

Recent observational data have strongly confirmed that we live in an accelerating

universe [58] and have made it possible to determine the composition of the universe

[9, 59]. According to these observations, nearly seventy five percent of the energy

density in the universe is unclustered and has negative pressure by which it is driving an

accelerated expansion [13, 60, 61, 62]. Furthermore, the energy density of the vacuum is

much smaller than the estimated values so far. By itself, acceleration seems to be much

more understandable in the context of general relativity (cosmological constant) [42, 43]

and quantum field theory (quantum zero point energy); however, the very small and

non-zero energy scale implied by the observations is not quite comprehensible. Because

of these conceptual problems associated with the cosmological constant [48, 49, 50, 51],

alternative treatments to the problem have been produced and they are being used

widely in the literature nowadays [45, 46, 47, 52]. In such treatments, mostly, a scalar

field φ is considered together with a suitably chosen V (φ) to make the vacuum energy

vary with time. The reason for this is to get a model in which the current value of

the cosmological constant can be expressed in a more natural way; without need of

any fine tuning. In the literature, there exist number of studies on accelerated models

in Brans Dicke theory [63, 64, 65, 66, 67, 68, 69, 70, 71]. In this regard, choosing the

underlying theory as a BD scalar tensor theory of gravitation, we aim to calculate the

corrections, in the context of BD cosmology, to the famous Friedmann Equation (2.7).

According to recent observational results for the present universe, we have ΩΛ ' 0.75,

ΩM ' 0.25, ΩR ' 0 [41]. In the light of these values, one can conclude that the universe

is mostly filled with non-baryonic matter and it seems that this non baryonic matter

is responsible for the expansion of the universe solely.

The gravitational field equations that we will use in this chapter are the ones

modified in terms of H(a), F (a) and their derivatives with respect to the scale size of

the universe a, namely, (2.41, 2.42, 2.43). From these three equations it can be shown
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that the continuity equation for the matter-energy excluding the BD scalar field is also

satisfied (see appendix D) with the help of the φ Equation (2.43)

˙ρM + 3

(
ȧ

a

)
(pM + ρM) = 0, (4.1)

and hence, instead of considering the p-Equation (2.42) solely as one of the dynamical

equations to be satisfied, we choose continuity equation in addition to the density

equation and the φ equation to be satisfied in any cosmological case we want to explain.

That is because once the continuity equation is satisfied than p-Equation must already

be satisfied automatically provided that ȧ is nonzero. To eliminate the φ dependence

in Equation (2.41), we take the time derivative of both sides of the ρ equation and

after some rearrangements, we get Equation (2.41) purely in terms of H(a), F (a), ρ(a)

and their derivatives with respect to a.

H ′(H2 + HF ) + F ′(H2 − 2ω

3
HF )

=
H3

2

(
ρ
′

ρ

)
+

2ω

3a
F 3 + H2F

[(
ρ
′

ρ

)
− 1

a

]
+ F 2H

[
−2

a
− ω

3

(
ρ
′

ρ

)]

+
k

a2

[
H

((
ρ
′

2ρ

)
+

1

a

)
− F

a

]
− ωm2

[
H

(
ρ
′

3ρ

)
− 2F

3a

]
. (4.2)

After rewriting Equation (2.43) in the following form

3aHH
′ − 2ωHaF

′
= −6H2 + 2ωF 2 + 6ωHF − 3k

a2
+ 2ωm2 (4.3)

we solve Equations (4.2, 4.3) for H ′, F ′ and get the general form of the solution in the

sense that once the curvature constant k and energy density in terms of a is given than

H and F can be solved from the following equations:

H ′ =
[ωa(ρ′/ρ)− 6]

(2ω + 3) aH
H2 − [4ω2 + 2ω + 2aω2(ρ′/3ρ]

(2ω + 3) aH
F 2 +

[8ω + 2aω(ρ′/ρ)]

(2ω + 3) aH
HF

− [2ω2a(ρ′/3ρ)− 2ω]

(2ω + 3) aH
m2 + k

[2ω + ωa(ρ′/2)− 3]

(2ω + 3) a3H
(4.4)
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F ′ =
[3a(ρ′/2ρ) + 6]

(2ω + 3) aH
H2 − [8ω + aω(ρ′/ρ) + 6]

(2ω + 3) aH
F 2 − [6ω − 3a(ρ′/ρ)− 3]

(2ω + 3) aH
HF

− [ωa(ρ′/ρ) + 2ω]

(2ω + 3) aH
m2 + k

[6 + 3a(ρ′/2ρ)]

(2ω + 3) a3H
. (4.5)

Hence, in the present epoch, to discover how the Hubble parameter H changes with the

scale size of the universe a, we assume that the present universe is mostly flat and it

necessarily obeys the pM = 0 equation of state . Using Equation (4.1), we find that the

energy density ρ evolves with a in the same manner as in standard Einstein cosmology

when the universe is solely governed by matter,

ρ =
C

a3
, (4.6)

where C is an integration constant. Setting k = 0 and inserting this energy density

into Equations (4.4, 4.5), we get the following form of the equations to be solved:

H
′
=

−1

H(2ω + 3)a

[
3(2 + ω)H2 + 2ω(ω + 1)F 2 − 2ωHF − 2ω(ω + 1)m2

]
, (4.7)

F
′
=

1

H(2ω + 3)a

[
3

2
H2 − (5ω + 6) F 2 − 6(1 + ω)HF + ωm2

]
. (4.8)

With the transformation u =
(

a0

a

)α
, we rewrite Equations (4.7, 4.8) in terms of H(u),

F (u) and their derivatives with respect to u

dH

du
=

1

αH(2ω + 3)u

[
3 (2 + ω) H2 + 2ω (ω + 1) F 2 − 2ωHF − 2ω(ω + 1)m2

]
, (4.9)

dF

du
=

−1

αH(2ω + 3)u

[
3

2
H2 − (5ω + 6) F 2 − 6(1 + ω)HF + ωm2

]
. (4.10)

Since these coupled equations are hard enough to be solved analytically for H and

F , our approach is to determine a perturbative solution in which both H and F vary
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about some constants H∞ and F∞ respectively:

H = H∞ + H1u + H2u
2 + ... (4.11)

F = F∞ + F1u + F2u
2 + ... (4.12)

where H∞, F∞, H1, F1, α, are all constants to be determined from the theory. Plugging

this perturbative solution into Equations (4.9, 4.10) and keeping only the zeroth, first,

second order terms of u and neglecting higher terms, we end up with two sets of

solutions in the zeroth order

H∞ =

√
ω (2ω + 2) m√

(6ω2 + 17ω + 12)
; F∞ =

H∞
2(ω + 1)

, (4.13)

and

H∞ =
2
√

3ω m

3
√

3ω + 4
; F∞ =

3

2
H∞. (4.14)

Comparing the first order terms of u, on the other hand, provides two linearly depen-

dent equations for which the only possible solution is the trivial solution of H1 = 0 and

F1 = 0,

{[6(ω + 2)− α(2ω + 3)] H∞ − 2ωF∞}H1 + [−2ωH∞ + 4ω(ω + 1)F∞] F1 = 0, (4.15)

[−3H∞ + 6(ω + 1)F∞] H1 + {[6 (ω + 1)− α(2ω + 3)] H∞ + 2(5ω + 6)F∞}F1 = 0.

(4.16)

Since the solution in which H1 and F1 are nonzero is much more plausible for our

aim, the coefficient matrix is properly constructed from Equations (4.15, 4.16) and its

determinant is set to be zero to get the value of α for which H1 and F1 need not be
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zero simultaneously. We get two different α values

α = 3 +
1

1 + ω
, (4.17)

and

α ∼ √
ω, (4.18)

corresponding to the solution sets (4.13) and (4.14) respectively. In this regard, we

note two things here:

• Concerning the solution of H we seek for, the solution (4.17) is much more pre-

cious than the solution (4.18) which approaches to infinity as ω becomes infinitely

large. On the other hand, in the same limit, Equation (4.17) gives α = 3 which is

the well known term in a matter dominated universe solution of standard Einstein

cosmology.

• The correction factor 1/(1 + ω) in the solution (4.17) is solely coming from the

exact solutions of the field equations of BD theory and it is not surprising that we

get the same correction factor as we have had by a linearization method applied

to the field equations in the previous chapter.

On the other hand, two linearly dependent equations are available when one

compares the second order terms of u;

{[6(ω + 2)− 2α(2ω + 3)] H∞ − 2ωF∞}H2 + [4ω(ω + 1)F∞ − 2ωH∞] F2

= [α(2ω + 3)− 3(ω + 2)] H2
1 − 2ω(ω + 1)F 2

1 + 2ωH1F1, (4.19)

[3H∞ − 6(ω + 1)F∞] H2 + {[2α(2ω + 3)− 6 (ω + 1)] H∞ − 2(5ω + 6)F∞}F2

= −3

2
H2

1 + F 2
1 + [6 (ω + 1)− α(2ω + 3)] H1F1. (4.20)
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Letting α = 3 + 1/(ω + 1) and F∞ = H∞/2(ω + 1) in Equations (4.19, 4.20) gives H2

and F2 only in terms of H∞, H1, F1;

H2 =
1

(3ω + 4)(2ω + 3)H∞

[−(3ω2 + 8ω + 6)H2
1 + 2ω(ω + 1)2F 2

1 − 2ω(ω + 1)H1F1

]
,

(4.21)

F2 =
1

(3ω + 4)(2ω + 3)H∞

[−(3ω + 3)

2
H2

1 + (ω + 1)F 2
1 − (5ω + 6)H1F1

]
. (4.22)

Hence, with these perturbation constants found from theory, we can express H and F

as

H = H∞ + H1

(a0

a

)3+ 1
ω+1

+ H2

(a0

a

)6+ 2
ω+1

+ ... (4.23)

F = F∞ + F1

(a0

a

)3+ 1
ω+1

+ F2

(a0

a

)6+ 2
ω+1

+ ... (4.24)

where Equation (4.13) gives

H∞ =
[
2 (ω + 1)

√
ωm

]
/
√

(6ω2 + 17ω + 12), (4.25)

and

F∞ =
(√

ωm
)
/
√

(6ω2 + 17ω + 12). (4.26)

When the standard procedure of putting Equation (4.23) into the standard Friedmann

Equation (2.7) and of fitting it to the present measured density parameters of universe

is applied [41], we get

(
H

H0

)2

= ΩΛ + ΩM

(a0

a

)3+ 1
ω+1

+ Ω∆

(a0

a

)6+ 2
ω+1

, (4.27)
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ΩΛ =
H2
∞

H2
Σ

' 0.75, (4.28)

ΩM =
2H∞H1

H2
Σ

' 0.25, (4.29)

Ω∆ =
H2

1 + 2H∞H2

H2
Σ

, (4.30)

where H2
Σ = H2

∞ + 2H∞(H1 + H2) + H2
1 . With the findings both from theory and

observations, we can make the following statements:

1. Remarkable feature of this theory is that it enables us to estimate some dimen-

sional parameters displayed in the theory. Using the ratio of Equation (4.28) to

Equation (4.29), H1 ' 0.167H∞ where H∞ ' 0.82 mω1/2 as ω →∞. If Equation

(4.23) is satisfied for H = H0, one can get H∞ ' 0.86 H0 where H0 is the present

value of the Hubble parameter [8]. Using H∞ ' 0.86 H0 ' 0.82 mω1/2 and ω

restriction ω > 104 À 1, we may estimate m for a fixed H0 as m / 10−2H0.

2. Investigating two cases for Ω∆ can be meaningful for the sake of future measure-

ments of the density parameter Ω:

• If we set Ω∆ ' 0 together with H2 6= 0 which is consistent with today’s

universe density compositions, by using Equation (4.21) and Equation (4.30)

simultaneously, we get F1 ' 0.08H∞ /ω, F2 ' −0.04H∞ /ω as ω → ∞.

Remembering that F∞ ' H∞ /2ω, we may say that F∞ in Equation (4.24)

is the dominating term in today’s universe. This shows us that similar to

the expansion rate of the universe H, the rate of change of the Newtonian

gravitational constant has approached the asymptotic regime.

• On the contrary, when we set Ω∆ 6= 0 together with H2 ' 0, we get F1 '
0.2H∞ /

√
ω, F2 ' −7 × 10−3H∞ /ω as ω → ∞. Since F∞ ' H∞ /2ω, we

may now say that F1 is the dominating term in Equation (4.24). Namely,

the rate of change of the Newtonian gravitational constant
(
Ġ/G

)
has not

approached to the asymptotic regime yet. However, theory predicts that
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when the size of the universe exceeds a À 0.6ω1/6a0, then the term F∞ will

become dominant so that asymptotic regime will be satisfied for
(
Ġ/G

)
.

In addition to these, using Equations (4.28-4.30), we find that

ΩM = 2
√

ΩΛΩ∆ , (4.31)

and with the constraint ΩΛ + ΩM + Ω
∆

= 1, we express Equation (4.31)

only in terms of ΩΛ and ΩM as

ΩM = 2
√

ΩΛ

(
1−

√
ΩΛ

)
. (4.32)

If the ratio of today’s universe density parameters ΩΛ/ΩM = 3 is still satis-

fied in this Ω∆ 6= 0 case, we predict,

ΩΛ ' 0.73, (4.33)

ΩM ' 0.24, (4.34)

Ω
∆
' 0.03. (4.35)



54

5. DISCUSSION AND CONCLUSION

In this work, we specifically have shown that primordial inflation and slow-rate

late inflation can successfully be explained in the context of Jordan-Brans-Dicke scalar

tensor theory of gravitation. Keeping in mind that the strength of the coupling to

gravity is determined by a non-minimal term φ2R in these theories, we have just focused

on the question what happens if we plug the simplest chaotic inflation-style potential

energy density V (φ) = 1
2
m2φ2 composed only of the scalar field mass term in addition

to the usual kinetic term 1
2
gµν∂µφ∂νφ in BD action. The reason for choosing such a

simple potential energy term is to keep the originality of BD theory as possible as

we can. For instance, the proposed model in this thesis is simple in that no other

phenomenon, such as the domination of the false vacuum over the scalar field energy

density as in the extended inflation model is used. Finding stable vacuum solutions

and their perturbative solutions under the existence of matter is the common way of

proceeding in this thesis. In this regard, in the first chapter, we have seen that such a

solution technique is successful to explain primordial expansion. We have recognized

that empty universe with a constant size a∗ has a potential to expand if it is filled with

radiation and scalar field φ ∼ eFpt. Its general equation for the scale size of the universe

is appealing for at least three reasons: We get this solution without need any special

equation of state for the matter as it is frequently required in the standard cosmology,

using the stable-empty universe solution (2.13) in the Equation (2.12) has yielded this

solution from the theory, and this inflationary solution is examined concerning as t → 0

and as t & 0. We recognized with the help of Equation(2.29) and Equation (2.31) that

that this solution implies that a (t) ∼ √
t as t → 0 and the primordial rapid inflation

a (t) ∼ eHpt for ω À 1. When the equation of state p = 1
3
ρ is studied for ω À 1 by

substituting φ ∼ eFpt and a ∼ √
t into Equations (2.10, 2.11), we have satisfied with

the result of γ = 1/3 as expected in this regime.

Since the recent progress in observational cosmology shifted attention towards

experimental verification of various inflationary theories, our motivation on this model

is accelerated with the recent measurements of the dependence of the Hubble parameter
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H = ȧ
a

on the scale size a(t) of the universe. Hence we studied our model concerning

the late-time regime. With perturbative solution approach we get the results of how

the Hubble parameter H (a) = ȧ/a and the time variation of G, where G is the time

dependent value of the gravitational constant, change in the primordial and late-time

regimes compared to their present values. We note that the recent measurement [41] of

ΩΛ and ΩM has been used as input to derive these results. These are according to the

expansion parameters of the scalar field φ found from the theory, FP / 7 × 10−3 H0,

F∞ < 43 × 10−6H0, | ĠG |P = 2FP ≈ (1.5/
√

ω)H0, | ĠG |0 ≈ 3.9
ω

Ho, | ĠG |∞ = 2F∞ ≈
0.86
ω

H0. One interesting feature is that the predicted present day and late time values

of |Ġ/G| are comparable whereas the primordial value is much bigger. In any case

a measurement of Ġ/G will be crucial in determining the Brans-Dicke parameter ω.

Hubble parameters found in both regimes, on the other hand, are HP ≈ 0.7mω > 70 H0

and H∞ ≈ 0.8
√

ωm ≈ 0.86H0. Here it is noted that the ratio of the primordial and

late-time inflation parameters is proportional to
√

ω is the most appealing feature of

Brans-Dicke cosmology. This is a very important result in the sense that although

there is an experimental lower bound on ω, there is no upper bound on it according

to the recent observation ω À 104[32], hence the late-time inflation in Brans-Dicke

cosmology can be as small as one wishes compared to the primordial inflation. Besides

this, the ratio γ = p
ρ

is found to be zero as universe approaches late-time inflation

(ω À 1). Thus, recent measurements, which imply that in today’s universe ΩΛ 6= 0,

require 1/ω 6= 0 and make this model attractive.

In the third chapter of this thesis, we have applied linearized solutions to the

field equations of the theory. In this regard, it is checked that whether if there is dark

matter contribution due to a scalar field φ to the energy density ρM or not. We have

concluded that the probable contribution from the scalar field is approximately less

than 2 % . Hence we strictly agree on that this theory is successful in explaining the

dark energy though the Brans-Dicke scalar field φ can not account for dark matter

with its minor contribution to dark matter. Another remarkable feature of this theory

is that it enables us to estimate some dimensional parameters displayed in the theory.

Using the relation H∞ ≈ 0.86H0 ≈ 0.8
√

ωm and the restriction on ω, we may estimate

m for a fixed H0 as m / 10−2H0 where the present value of Hubble constant H0 ≈
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10−26m−1 ≈ 2× 10−42GeV [8].

As a result, in the fourth chapter, it is shown that Brans-Dicke scalar tensor

theory of gravitation brings a negligible correction to the matter density component

of Friedmann equation by an amount 1/ω. Hence the standard Friedmann equation

changes into a form (4.27). In the context of Brans-Dicke scalar tensor theory of

gravitation, in addition to ΩΛ and ΩM , in standard Einstein cosmology, another density

parameter, Ω
∆
, is expected by the theory. This implies that if Ω

∆
is found to be nonzero,

data will favor this model instead of the standard Einstein cosmological model with

cosmological constant and will enable more accurate predictions for the rate of change

of Newtonian gravitational constant G in the future.
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APPENDIX A: Brans Dicke Action Variation

The action in Brans Dicke scalar tensor theory of gravitation is given

S =

∫
d4x g1/2

[
− 1

8ω
φ2 R +

1

2
gµυ ∂µφ ∂νφ− V (φ) + LM

]
, (A.1)

where V (φ) is solely composed of standard mass term V (φ) = 1
2
m2φ2. Here R is the

Ricci scalar with its definition of

R = gµνRµν , (A.2)

Rµν is the Ricci tensor with its definition of

Rµν = Ra
µaν , (A.3)

Ra
µaν is the contracted Riemann tensor with its definition of

Ra
bcd = ∂cΓ

a
bd + Γe

bdΓ
a
ec − ∂dΓ

a
bc − Γe

bcΓ
a
ed, (A.4)

and affine connection Γσ
µν with its definition of

Γσ
µν =

1

2
gσd(∂µgνd + ∂νgµd − ∂dgµν). (A.5)

Besides, g1/2 is defined as

g1/2 = (− det gµν)
1/2, (A.6)
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and LM is the matter Lagrangian except φ field in it. Variation of action yields,

δS =

∫
d4x

[
− 1

8ω
δ

(
g1/2φ2 R

)
+

1

2
δ
(
g1/2gµυ ∂µφ ∂νφ

)− δ

(
g1/2 1

2
m2φ2

)
δ
(
g1/2LM

)]
.

(A.7)

Before going further, one can need the variation of the following geometrical objects

defined in Einstein’s General Relativity theory and the variation of the terms with

respect to the scalar field φ,

δ g1/2 = −1

2
g1/2gµνδg

µν , (A.8)

δ R = δ (gµνRµν) = Rµνδg
µν + gµνδRµν , (A.9)

δRa
bcd = ∇cδΓ

a
bd −∇dδΓ

a
bc (Palatini Equation), (A.10)

δRa
µaν = δRµν = ∇aδΓ

a
µν −∇νδΓ

a
µa, (A.11)

δΓa
µν =

1

2
gad(∇µδgνd +∇νδgµd −∇dδgµν) (Palatini Equation), (A.12)

δ∂µφ ∂νφ = 2∂µφ∂νδφ = 2 (∂µφδφ), ν − 2 (∂µφ), ν δφ (A.13)

δ φ2 = 2φδφ, (A.14)

δ (g1/2LM) ≡ −1

2
g1/2Tµνδg

µν . (A.15)
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Hence, variation of the action with respect to φ yields

δS

δφ
=

[
(

1

4ω
R + m2)φ + ¤ φ

]√
g, (A.16)

where ¤φ is defined as

¤φ = g−1/2(g1/2gµν∂µφ), ν . (A.17)

To get stationary action, Equation (A.16) is set to be zero

(
1

4ω
R + m2)φ + ¤φ = 0, (A.18)

so that Equation (2.12) is deduced from Equation (A.18). Working with Cartan for-

malism under the Robertson Walker metric (1.3) yields Ricci scalar R as

R = −6(
ä

a
+

ȧ2

a2
+

k

a2
), (A.19)

and each components of Einstein tensor Gµν = Rµν − 1
2
gµν as

G00 = 3(
ȧ2

a2
+

k

a2
), (A.20)

Gii = 2
ä

a
+

ȧ2

a2
+

k

a2
, (i = 1, 2, 3) (A.21)

Gij = 0 (i 6= j). (A.22)

Variation with respect to gµν , on the other hand, yields

δS

δgµν
=





−1
8ω

[
Gµνφ

2 + g−1/2∇λ∇λ(g
1/2gµνφ

2)− g−1/2∇µ∇ν(g
1/2φ2)

]

+1
2
∂µφ ∂νφ− 1

4
gµνg

αβ ∂αφ ∂βφ + 1
4
m2gµνφ

2 − 1
2
Tµν




√

g. (A.23)
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Here we assume a perfect fluid with the four-velocity uµ = (1, 0, 0, 0), the stress-energy

tensor is defined as

T µν = (p + ρ)uµuν − pgµν . (A.24)

where ρ is the energy density, p is the pressure. Using Equation T µ
ν = gναT µα, one

easily can show that

T µ
ν = diag (ρ,−p,−p,−p) , (A.25)

where the components of metric tensor are well defined from RW metric as

g00 = 1, (A.26)

gii = − a2(t)[
1 + k

4
~x2

]2 , (A.27)

gij = 0 (i 6= j). (A.28)

Hence, when Equation (A.23) is set to be zero for the sake of stationary action,

δS

δgµν
=





−1
8ω

[
Gµνφ

2 + g−1/2∇λ∇λ(g
1/2gµνφ

2)− g−1/2∇µ∇ν(g
1/2φ2)

]

+1
2
∂µφ ∂νφ− 1

4
gµνg

αβ ∂αφ ∂βφ + 1
4
m2gµνφ

2 − 1
2
Tµν



 = 0, (A.29)

other field Equations (2.10, 2.11) are obtained successfully.

The Einstein Hilbert action in the theory of gravitation, on the other hand, is

given

S =

∫
d4x

√
g

[
1

16πGN

R + LM

]
. (A.30)



61

Variation of action yields,

δS =

∫
d4x

[
1

16πGN

δ
(
g1/2 R

)
+ δ

(
g1/2LM

)]
. (A.31)

Using Equations (A.8-A.15), it follows from Equation (A.31) that

δS

δgµν
=

{
1

16πGN

[
(Rµν − 1

2
gµν) + g−1/2(∇λ∇λg

1/2gµν −∇µ∇νg
1/2)

]
− 1

2
Tµν

}√
g,

(A.32)

where the second term g−1/2(∇λ∇λg
1/2gµν−∇µ∇νg

1/2) in the brackets directly vanishes

since ∇σg
1/2 = 0 and ∇σgµν = 0. Hence, to get the stationary action, Equation (A.32)

is set to be zero

δS

δgµν
=

1

16πGN

(Rµν − 1

2
gµν)− 1

2
Tµν = 0, (A.33)

so that Equation (A.33) reduces to the famous Einstein field equations

Gµν = 8πGNTµν , (A.34)

where GN is the Newtonian gravitational constant.
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APPENDIX B: Einstein’s Field Equation

We will use basically Cartan’s formalism in this calculation. The metric is the

FLRW metric

ds2 = dt2 − a2(t)
d~x2

[
1 + k

4
~x2

]2 . (B.1)

and the basis one-forms deduced from the FLRW metric are as follows:

e4 = dt, (B.2)

ei = i∗a(t)
dxi

[
1 + k

4
~x2

] , (i∗)2 = −1

where {i, j, k = 1, 2, 3} are spatial indices, k is the curvature constant and i∗ is chosen

to be an imaginary number defined as (i∗)2 = −1 lest to be confused with spatial index

i. The metric tensor gµν ≡ δµν since the basis are chosen to be orthonormal. Applying

Cartan’s first structure equation

deµ + ωµ
ν ∧ ων = 0, {µ, ν, σ = 1, 2, 3, 4} (B.3)

provides

dei = i∗
[

ȧ (dt ∧ dxi)(
1 + k

4
xjxj

) − akxjdxj ∧ dxi

2
(
1 + k

4
xjxj

)2

]
, (B.4)

and the connection one forms ωµ
ν as follows:

ω1
2 =

i∗ky

2a
e1 − i∗kx

2a
e2, (B.5)

ω1
3 =

i∗kz

2a
e1 − i∗kx

2a
e3, (B.6)
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ω1
4 =

ȧ

a
e1, (B.7)

ω2
3 =

i∗ky

2a
e1 − i∗kx

2a
e2, (B.8)

ω2
4 =

ȧ

a
e2, (B.9)

ω3
4 =

ȧ

a
e3. (B.10)

Now we can apply Cartan’s second structure equation

Ωi
j = dωi

j + ωi
k ∧ ωk

j = 0, (B.11)

where Ωi
j is the curvature two-form. Applying (B.11) rigorously yields the non-zero

curvature two-form terms as the following;

Ω1
2 = −

(
k

a2
+

ȧ2

a2

)
e1 ∧ e2, (B.12)

Ω1
3 = −

(
k

a2
+

ȧ2

a2

)
e1 ∧ e3, (B.13)

Ω1
4 =

(
−

..
a

a

)
e1 ∧ e4, (B.14)

Ω2
3 = −

(
k

a2
+

ȧ2

a2

)
e2 ∧ e3, (B.15)
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Ω2
4 = −

( ..
a

a

)
e2 ∧ e4, (B.16)

Ω3
4 = −

( ..
a

a

)
e3 ∧ e4, (B.17)

and other curvature terms are zero. If we use the relation in between the curvature

two form and the Riemann curvature tensor, namely,

Ωµ
ν = Rµ

νσρ eσ ∧ eρ, (B.18)

we can find relevant Riemann tensor elements as

R1
212 = −

(
k

a2
+

ȧ2

a2

)
, (B.19)

R1
313 = −

(
k

a2
+

ȧ2

a2

)
, (B.20)

R1
414 = −

( ..
a

a

)
, (B.21)

R2
323 = −

(
k

a2
+

ȧ2

a2

)
, (B.22)

R2
424 = −

( ..
a

a

)
, (B.23)

R3
434 = −

( ..
a

a

)
, (B.24)
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and others are zero. Using the definition of Ricci tensor Ri
j = Rk

ikj and the symmetry

properties of Riemann tensor

Rµ
νσρ = −Rµ

νρσ = −Rν
µσρ, (B.25)

we can determine also the relevant elements of Ricci tensor as

R1
1 = R1

111 + R2
112 + R3

131 + R4
141 = −2

k

a2
− 2

ȧ2

a2
−

..
a

a
, (B.26)

R2
2 = R1

212 + R2
222 + R3

232 + R4
242 = −2

k

a2
− 2

ȧ2

a2
−

..
a

a
, (B.27)

R3
3 = R1

313 + R2
323 + R3

333 + R4
343 = −2

k

a2
− 2

ȧ2

a2
−

..
a

a
, (B.28)

R4
4 = R1

414 + R2
424 + R3

434 + R4
444 = −3

..
a

a
, (B.29)

where R1
111 = R2

222 = R3
333 = R4

444 = 0. On the other hand, Ricci scalar, R is defined

as R = Rµ
µ and this yields

R = R1
1 + R2

2 + R3
3 + R4

4 = −6

(
k

a2
+

ȧ2

a2
+

..
a

a

)
. (B.30)

Hence since Einstein tensor is defined as Gµν ≡ Rµν − 1
2
R, we can identify G44;

G44 = R44 − 1

2
R = −3

..
a

a
+ 3

k

a2
+ 3

ȧ2

a2
+ 3

..
a

a
, (B.31)
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G44 = 3

(
ȧ2

a2
+

k

a2

)
, (B.32)

and Gii as

Gii = Rii − 1

2
R, (B.33)

in such a way that

G11 = G22 = G33 = −2
k

a2
− 2

ȧ2

a2
−

..
a

a
+ 3

k

a2
+ 3

ȧ2

a2
+ 3

..
a

a
, (B.34)

G11 = G22 = G33 = 2

..
a

a
+

ȧ2

a2
+

k

a2
. (B.35)
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APPENDIX C: Energy conservation in standard cosmology

Energy conservation in general relativity requires that the covariant derivative

of energy-momentum tensor is vanished. Starting from this requirement defined in

general relativity, it follows

∇µT
µ
ν = 0. (C.1)

Using the definition of covariant derivative ∇ on (1, 1) type tensor yields

∇µT
µ
ν = ∂µT

µ
ν + Γµ

aµT
a
ν − Γa

νµT
µ
a = 0. (C.2)

For the ν = 0 component, and remembering that T µ
ν is diagonal (A.25), the relevant

affine parameters are

Γ0
00 = 0 ; Γ1

01 = Γ2
02 = Γ3

03 =
ȧ

a
. (C.3)

Substituting them in Equation (C.2), and keeping careful track of the summation over

repeated indices, gives

ρ̇ + 3(ρ + p)
ȧ

a
= 0. (C.4)
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APPENDIX D: Energy conservation in BD cosmology

We have checked the field equations (2.10, 2.11, 2.12) as far as energy conservation

is satisfied. The easiest way of doing this is that taking the Equations (2.10, 2.11), and

putting them directly into the energy conservation equation ρ̇ + 3(ρ + p) ȧ
a

= 0, and

checking whether the conservation equation is hold or not. For this aim, taking the

time derivative of (2.10) gives,

ρ̇M =
3

2ω

( ..
a

a

)( .
a

a

)
φ2 − 3

2ω

( .
a

a

)3

φ2 +
3

2ω

( .
a

a

)2

φ̇φ− 3k

2ω

( .
a

a3

)
φ2 +

3k

2ω

(
1

a2

)
φ̇φ

−
..

φφ̇−m2φ̇φ +
3

2ω

( ..
a

a

)
φ̇φ− 3

2ω

(
ȧ

a

)2

φ̇φ +
3

2ω

(
ȧ

a

)
..

φφ +
3

2ω

(
ȧ

a

)
φ̇2. (D.1)

The second term, on the right hand side of the energy conservation equation can be

written as

3(ρ + p)
ȧ

a

=
9

4ω

( .
a

a

)3

φ2 +
9k

4ω

( .
a

a3

)
φ2 − 3

2

(
ȧ

a

)
φ̇2 − 3

2
m2 ȧ

a
φ2 +

9

2ω

(
ȧ

a

)2

φ̇φ

− 3

2ω

( ..
a

a

)( .
a

a

)
φ2 − 3

4ω

( .
a

a

)3

φ2 − 3k

4ω

( .
a

a3

)
φ2 − 3

ω

(
ȧ

a

)2

φ̇φ− 3

2ω

(
ȧ

a

)
..

φφ

−3

2

(
ȧ

a

)
φ̇2 − 3

2ω

(
ȧ

a

)
φ̇2 +

3

2
m2 ȧ

a
φ2. (D.2)

Putting together (D.1) and (D.2), we end up with

ρ̇ + 3(ρ + p)
ȧ

a

= −
..

φφ̇ +
3k

2ω

(
1

a2

)
φ̇φ−m2φ̇φ +

3

2ω

( ..
a

a

)
φ̇φ− 3

(
ȧ

a

)
φ̇2 +

3

2ω

(
ȧ

a

)2

φ̇φ (D.3)

in which there appears a second order time derivative of φ as a first term in the right

hand side of the above equation. Now, at that point third field equation 2.12 comes
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into play and yields

−
..

φφ̇ = 3

(
ȧ

a

)
φ̇2 + m2φ̇φ− 3

2ω

( ..
a

a

)
φ̇φ− 3

2ω

(
ȧ

a

)2

φ̇φ− 3k

2ω

(
1

a2

)
φ̇φ. (D.4)

Combining (D.3) and (D.4) will give us that our field equations (2.10, 2.11, 2.12)

satisfies energy conservation equation ρ̇M + 3(ȧ/a)(ρM + pM) = 0 successfully.
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