FROM FIVE DIMENSIONAL FLAT SPACETIME TO OUR FOUR
DIMENSIONAL BRANEWORLD VIA KALUZA-KLEIN

by
Gizem Sengor

B.S., Physics, Bogazici University, 2011

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Physics
Bogazici University

2013



1ii

ACKNOWLEDGEMENTS

I dedicate my thesis to Yildiz Alpar Emiroglu, who has taught me a lot of self

discipline, how to care for and how to present a work done.

First of all I would like to thank my advisor Prof. Metin Arik, for his inspiring
and cheerful guidance. It was a great pleasure to be his student and I believe I have
learned a lot from him. I would like to thank Assoc. Prof. Tongu¢ Rador, for his
suggestions upon seeing the first arxiv preprint of a paper that came out of this thesis.
His suggestions led this work to flourish further. I would like to thank Assoc. Prof.
Ozgiir Delice for drawing my attention to further references. I would also like to thank

Ayse Nihan Katirc: for her help in checking some of the calculations on Maple.

A lot of thanks goes to my family for their support, my mother for her never
ending cheer and helpfulness, and my sister for bearing the deprivation off of her

computer even as I type these words.

I am happy to have had my friends around in this progress. I thank all my
friends and future colleagues Cem Eroncel, Emre Kolay, Tuna Demircik, Yemliha Bilal
Kalyoncu, Mustafa Mert Terzi, Medine Tuna Pesen, Ebru Dogan and many others.
For it is always a great joy to learn and share information with them. It was delightful
to be working on the last bits of my thesis at the same time in the same place together
with Pmar Ozer, who was working on the last touches of her own graduation project on
performing arts. I was also happy that Giiliim Albut, Oykii Mensgan, Pinar Ozer, Dilsah
Giintav, Aylin Kalem Iscen, Oya Barbara Karanis, Doga Can Su Oztiirk, Yasemin

Kalafatoglu and Sule Sagiroglu were interested in hearing some physics once in a while.



v

ABSTRACT

FROM FIVE DIMENSIONAL FLAT SPACETIME TO OUR
FOUR DIMENSIONAL BRANEWORLD VIA
KALUZA-KLEIN

In five dimensional cosmological models, the convention is to include the fifth
dimension in a way similar to the other space dimensions. In this work we attempt
to introduce the fifth dimension in a way that a time dimension would be introduced.
In our metric ansatz we take the scale factor of three dimensional space, the z,vy, z
coordinates, to depend on both time and internal space. We allow time and internal
space, the extra dimension, to share the same metric coefficient that depends on both
dimensions. As such time and internal space play similar roles. From such a metric,
we obtain a five dimensional flat spacetime into which all relevant four dimensional
cosmologies can be locally embedded. Different cases, such as radiation, matter or dark
energy dominated cosmologies, correspond to different choices of the free parameters.
Each choice is a different frame. We argue on which frame might correspond to the
cosmological frame. From our choice of the cosmological frame we obtain a braneworld
scenario by restraining internal space from stretching along the negative direction. In
this model all the matter fields are confined to the brane and the bulk is empty. We
also see that it is possible for the three dimensional space to shrink to zero away from

the brane. Thus our four dimensional world is confined to this four dimensional brane.



OZET

KALUZA-KLEIN ARACILIGI ILE BES BOYUTLU DUZ
UZAY-ZAMANDAN BIizZIM DORT BOYUTLU
UZAY-ZAMANIMIZA

Bes boyutlu kozmoloji modellerinde beginci boyut genellikle diger uzay boyutlari
gibi ele alinir. Bu calismada besinci boyut bir zaman boyutunun metrige eklenilecegi
sekilde ele alinilmaktadir. Baglangi¢ metrigimizde x,y, 2 koordinatlarindan olugan tig
boyutlu uzayin olgek faktoriinii hem zamana hem fazla boyuta, bagh aliyoruz. Zaman
ve fazla boyutun metrik katsayilarini da ortak ve iki boyuta birden bagh kabul ediy-
oruz. Bu hali ile fazla boyutun iistlendigi gorev zaman ile ayni. Boyle bir metrige
tiim gerekli dort boyutlu kozmolojilerin lokal olarak gomiilebilecegi, beg boyutlu diiz
bir uzay-zaman elde ediyoruz. Burada, iggmanin, maddenin veya karanlik enerjinin
agirlikli oldugu gibi farkli durumlar, serbest parametrelerin belirli degerlerine, her
segenek de farkli bir koordinat sistemine karsilik geliyor. Bu olasi koordinat sistem-
lerinden hangisinin kozmolojik koordinatlar olabilecegi sorusunu ele aliyoruz. Kozmik
koordinatlar secimimizde fazla boyutun negatif yonde uzanmamasini sart kosarak bir
zar-evren modeli elde ediyoruz. Bu modelde igerisi bos, tiim madde alanlar1 zara
hapis olmug durumda. Ug¢ boyutlu uzay zamanin zardan uzakta sifira kadar kiiciilmesi

miimkiin. Kisaca bizim dort boyutlu diinyamiz bu dort boyutlu zardan olugmakta.
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1. INTRODUCTION

We considered ourselves to be living in a three dimensional space until Einstein
changed our notion of time from a parameter to a dimension to explain electrodynamics
of moving bodies and led us to think in terms of a four dimensional spacetime. The
number of dimensions has been increasing ever since. With Kaluza [1] and Klein [2] the
four dimensions were augmented to five in an attempt to unite electromagnetism and
gravity and explain the quantization of electric charge. While we are plainly aware of
our four dimensional surroundings, nobody has been able to observe a fifth dimension
yet. Obviously extra dimensions are going to be helpful, but one needs to explain their

observational absence.

In time, the spirit of Kaluza-Klein theory grew into questioning of embedding
general relativity’s solutions into higher dimensions. Unless there was something spe-
cial to settle the number of dimensions, it would be most natural to consider an N
dimensional theory to be linked with a higher (N+41) dimensional one. Thus the idea
of embedding brought on the quest to embed four dimensional solutions of Einstein’s
equations into five dimensional flat solutions. In the original Kaluza-Klein theory, the
metric coefficients are independent of the fifth dimension, this is also known as the
cylinder condition. Also the internal space is compactified in a natural attempt to
explain its lack of observation. By relaxing Kaluza’s cylinder condition and allowing
components of the metric tensor to depend on the extra dimension, higher dimensional
theories became more fruitful. It turns out that standard four dimensional cosmological
models are special in that they can be embedded into five dimensional flat spacetimes.
As for all of the solutions in general, they can be embedded in the general canonical

metric [3].

The usefulness of a fifth dimension grew when Randall and Sundrum [4,5] used
it to explain the hierarchy problem, which brought forth the concept of brane worlds.
Although important steps were made with all these works and many others, it seems

that there is still much to be done in order to completely understand internal extra



dimensions. Today the number of dimensions have gone up to eleven or one can also
say that they came down from twenty six via superstrings with string or M-theory’s

quest to understand quantum effects of gravity and unite all fundamental forces [6].

Something as mysterious as extra dimensions is the dark energy. It was Hubble,
who first observed galaxies to be receding from each other. Today we are certain that
our universe is accelerating while expanding [7,8]. We have come up with the term dark
energy as the source of this accelerated expansion, yet we are not certain what it really
is, hence the name "dark”. Perhaps the two mysterious concepts, dark energy and
extra dimensions, are connected with each other [9]. A recent attitude towards dark
energy is to explain it by a modification to the geometric side of Einstein’s equations.
One successful attempt which includes extra dimensions, is brane-world gravity, where
at high energies massive modes of graviton dominate, gravity leaks off the brane where

its weakening initiates acceleration [10].

In this work we want to approach this jungle of dimensions with purely cosmo-
logical concerns. We want to see what happens when we introduce an extra spacelike
dimension into the cosmological metric, in the same way that a timelike dimension
would be introduced. This way we will be putting forth symmetries between time and
the internal space, which brings up the question whether internal space can be as fun-
damental as time. Our main motivation is curiosity while our second motivation is to
see if we can obtain the effects of dark energy from this five dimensional metric without
having to introduce a cosmological constant. In the end we will achieve all relevant
four dimensional cosmologies as a four dimensional slice of a flat five dimensional cos-
mology. Thus we will have pointed out that our internal space is just as fundamental
as time and we will have obtained the expansion usually credited to the dark energy,
from an extra dimension under certain values for free parameters. We will discuss how
fixing the free parameters amounts to choosing different frames. Our choice of the cos-
mological frame will be the simplest frame that is also sensible in terms of dimensional
arguments. This choice will amount to a linearly expanding universe. We will conclude
by considering a braneworld version of our model where our four dimensional universe

is confined to a brane and the five dimensional bulk is empty.



1.1. A brief review of mathematical and physical concepts that led to

Einstein’s equations

The first steps in the study of surfaces began with the flat Euclidean space. The
Euclidean space is an n—dimensional vector space over real numbers R. A vector space
V, consists of vectors u,v,w € V and linear operations which are addition of vectors

and multiplication by scalars, a,b € R or C. These operations are commutative

(i) a(u+v) =au+av
(ii) (a+b)u = au+ bu,
and associative
(iii) u+v=v+u
(iv) (u+v)+w=u+(v+w)
(v) (ab)u = a(bu).
The vector space includes a zero vector 0, for which
(vi) u+0=nu,
an inverse —u, for each of its elements such that
(vii) (u)+(—u)=0
and an identity element 1 where,

(viii) 1u =u.

Defined on an Euclidean space E" are geometric objects such as points, lines, planes
and a positive definite inner product. The properties of the geometric objects are given
as axioms. The existence of a positive definite inner product allows one to introduce
length and orthogonality. Since length is a positive quantity, the positive definiteness
of the inner product is crucial in arriving at such a concept. Length in turn, allows

one to introduce coordinates.

A topological space (x,7), is a collection 7 = {U;|i € I} of open sets U; which
are also the subsets of a set x. 7 is required to include the empty set and y itself, the
sub collection of another interval J such that for {U;|j € J} where |JU; € 7 and for
K a finite sub collection of I, include the intersections of the family {Ux|k € K} with



(U € 7. The metric d(z,y), to be said more on later, is a notion of length. Once a
topological space is furnished by a metric its topology can be given in terms of open
balls or cubes where the open ball B,(x) = {y € R"|d(z,y) < r} can be thought as
the inside of a ball of radius r, centered at y. Such a topological space is called the
metric space [11]. The metric space R™, which is the n fold Cartesian product of real
numbers, can be described as an n—dimensional Euclidean space E", equipped with a
coordinate system. The objects that live in R™ are ordered n-tuples of real numbers,

(', 2% ... 2").

E™ and R™ are flat spaces, like the surface of a pond when there is no wind. In
general one comes across curved surfaces and spaces with complicated topologies, like
a saddle. To study more general spaces we make use of manifolds. An n—dimensional
manifold M is Hausdorff, which means its points can be separated from each other in
the sense that the open sets to which the points belong do not intersect. M has a
countable basis of open sets and is locally an n—dimensional Euclidean space. That
is, although the manifold on the whole is curved and has a more complicated topology,
locally the working mechanisms of functions and coordinates on it are the same as on
R™. This is to our advantage because we are more familiar with flat spaces then curved

ones and this allows us to express a manifold as patches of R"™ sewn together.

A map ¢ : M — N takes an element of a set M to an element of a set N. If
the p derivative of ¢ exists, and is continuous, ¢ is p—times differentiable and it is
called a C? map. When a map is infinitely times differentiable it becomes a C'> map.
A map that takes each element of M to only one element of N is a one-to-one map.
In a one-to-one map N may have elements that do not correspond to any element of
M. When all elements of N correspond to some element of M the map is onto. In an
onto map two different elements of M can correspond to the same element of N. A
map that is both one-to-one and onto is invertible. Since in a one-to-one and onto map
each element of M goes to a unique element of NV, one can trace back an element of N
to which element of M it corresponds to under ¢. A coordinate chart (U, ¢) consists
of an open subset U of a set M and a one-to-one map ¢ that takes the elements of U

to an open region in R".



In the definition of manifolds in terms of patches, the manifold is considered as
a collection of coordinate charts (U,, ¢q) such that |J,U, = M. The U, is said to
cover M. Moreover the intersection of charts is nonempty, U, N Uz = &. The second
condition is what allows the charts to be sewn together smoothly, leaving nothing out.
Such a collection of every possible coordinate chart which consists of C°*° maps is called

a differentiable , or a C'°° manifold.
For a vector space V on R, a map ¢ : V x V — R that is linear in each variable
separately is said to be a bilinear form on V. The bilinearity means for a,b € R,

V,V1,V2, W, Wi, W3 € \%

(i) ¢lavy + bvy, W) = ap(vy, W) + bop(va, W)
(i) ¢(v,awy + bws) = ag(v, wy) + bop(v, ws)

On a basis {e;} of V if v = Ne;, w = 1e; and if g;; = ¢(e;, e;) where the repeated

indices are summed over

o(v,w) = ¢(>\i€z‘, Ujej)

= Mo(ey, njej) + A2 (eq, njej) + ...+ A"(ey, T]jej)

= )\1771¢(61, er) + ... + )\17]n¢(61, en) + )\2771¢(62, e1) + ... + A"n"d(en, en)

= )\1771911 + >\1772912 + ...+ )\2771921 + o AN G

P(v,w) = gij X'/ (1.1)



The last expression is similar to one that would arise in the multiplication of a matrix
g and two vectors v and w expressed in basis {e;}. This points out a one-to-one

correspondence between n X n matrices and bilinear forms once a basis is specified.

A manifold M is said to be Riemannian if it has a field of symmetric, where
o(v,w) = ¢(w,Vv), positive definite bilinear forms defined on it. In that case the
bilinear from is called the Riemannian metric. A positive definite symmetric bilinear
from ¢(v,v) > 0 equals zero only when v = 0. Such a bilinear form is the inner product.
The Riemannian metric is a symmetric positive definite bilinear form, hence it has an
inner product defined on it. The length of a C' curve p(t) on a Riemannian manifold
stretching between ¢t = [a, b] can be defined via the inner product of its infinitesimal

segments as

O dp dp]®

Since the length is independent of the choice of parametrization one can use the arc

length parametrization in a single coordinate chart (U, ¢) with basis {ej,...en,} such
that ¢(eip, e;p) = gij(z) and ¢(p(t)) = x(t) = (2*(t),...,2"(t)) € R" where p € U and

p = x'e;. This way the length is [12]

s=L(t) = /at (gij(x)%%)édt (1.2)

This is usually interpreted as (%)% = Gij (:p(t))dd—fddi; and results in the following ab-
breviation
ds® = g;j(z)dx'dz’ (1.3)

which gives the metric the notion of an interval of length.

So far we have been talking about Riemannian spaces. The metric signature

is the number of positive and negative eigenvalues of the metric. For Euclidean and



Riemannian metrics the metric signs are all positive. When used in the sense of a
Riemannian space Euclidean space does not mean that it is necessarily flat. But we will
save the term for flat spaces. If the metric signature includes a single negative sign it is
called a Lorentzian or pseudo-Riemannian metric and indefinite if it includes a number
of negative and positive signs. The metric coefficients g,, will change depending on
the choice of coordinates. The form in which g,, = diag(—1,..,—1,1,..,1,0,..,0) is
called the canonical form of the metric. In its canonical form the first derivatives
of the metric with respect to the coordinates vanish, the space is locally flat to first
order. Yet the second derivatives of the metric with respect to the coordinates remain
nonzero. It is these second derivatives that carry the information about the curvature
of the manifold. If they vanish also, then the space is globally flat. The coordinate

system that gives the canonical form is known as the locally inertial coordinates [13].

The discussion up until now has been about spaces of any dimension. We have
not yet said anything about time. In Newtonian physics there is the three dimensional
space and the parameter time. It was with Einstein that we began to perceive time not
as a parameter but as a dimension on its own. Therefore in general relativity we have
a four dimensional spacetime. Of course time is not the same kind of a dimension as
space, it governs causality and we still measure changes in space with respect to time.
Thus time should be introduced differently then space. As such the four dimensional
manifolds of general relativity are Lorentzian manifolds and time is the dimension with

a negative metric signature.

We have also been talking about manifolds being curved. We mentioned that the
metric carries the information weather a certain manifold is curved or flat. But we
have not yet said anything as to what may cause this curvature. The idea that lies at
the heart of general relativity is that spacetime is curved because of its matter content.
The matter content may be composed of pressure, p, and energy momentum density,
p, which is expressed in terms of a symmetric (2,0) tensor, T"", the stress energy
momentum tensor. If we assume the matter content to be free of stress and shear, like
a perfect fluid, the off diagonal elements of T" all vanish. Its diagonal elements are

composed of p and p. The conservation of energy and momentum is expressed by the



vanishing of its covariant derivative. As for curvature we have to go back to considering

the metric.
Let us write down a four dimensional Lorentzian metric
ds? = gudr®da’ = —dt* + a®(t, 2%)dx'da’ (1.4)

with a,b = 1,2,3,4,, i,5,k = 1,2,3 and repeated indices are summed over unless
otherwise noted. We can consider the coordinate system in which this metric is written

to be

e = dr’ (1.5a)

et = dt (1.5b)
then the nonzero metric coefficients are

gaa = —1 (1.6a)

gi; = a*(t,z"). (1.6b)

Here we have to use the metric to raise and lower indices, for example T4, = T*%g,,.

On the other hand we can choose the coordinate frame to be,

¢ = a(t, z")dx’ (1.7a)

et = idt. (1.7b)

In this case gu = d4 and it is easier to raise and lower indices. We will work in the
second frame where the coordinates are called orthonormal basis one forms. In general
differential forms are completely antisymmetric, (0, p) tensors. A one form corresponds
to a dual vector which transforms as 0~j = A';0; where vectors are (1,0) tensors that

transform as V7 = A% V* under some transformation A’..
v J



Curvature is a measure of how much a space, or in our case spacetime, deviates
from a flat manifold. It is expressed by the Riemann curvature tensor, and is invariant
of the choice of coordinates. If the components of Riemann curvature tensor R\,
vanish in one frame, they vanish in all frames, and the manifold is flat. Otherwise the
manifold is curved irrespective of the frame. There is a theorem [12] which states that
for a given C* family of coframes e!,...e" defined on a neighborhood U that cover a
Riemannian manifold, there exists a uniquely determined set of C'* connection forms

w'; that satisfy

(i) det +wty Ae* =0

(i) wh, +w”, =0

where the wedge product is an antisymmetric tensor product. Given a p form A and a

q form B

(»+q)!
(AN B)u1~-~ﬂp+q = WA[#L--MBMHMMM} (1.8)
with the square brackets denoting anti symmetrization. The curvature two forms Q;

are defined as
QF, = dw”, + w". Nw",. (1.9)

The components of the Riemann curvature tensor can be deduced from the curvature

two forms by
1 A K
O, = SR e N e, (1.10)

Since the wedge product is antisymmetric in the indices A and x, R*,), is antisymmetric
under the exchange of its third and fourth indices. *, is antisymmetric due to the
antisymmetry of w*,, therefore R*,,. is also antisymmetric in its first and second

indices. This method is known as the Cartan’s formalism.
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We have discussed how to express the curvature of a manifold. Now the question
is how to relate the matter content with curvature. Einstein wanted to write down a
covariant equation, whose form would not change from one frame to another. Tensors
allow such a notation. The right hand side of the equation, governing the matter

content, was obviously going to be T, it was the left hand side, that expresses the

iz
curvature, which took more thought in the making. 7}, is a tensor of type (0,2), in
order to keep covariance it should be equal to another tensor of the same type. The
components of the Riemann tensor R* ., which is of type (1,3), form the components

of the Ricci tensor, R, by contracting the first and fourth indices,
R =R (1.11)
The Ricci tensor is of type (0,2), and Einstein first wrote down his equations as
Ry, = 87GNT,,. (1.12)

The conservation of energy momentum is expressed by the vanishing of the covariant
derivative of T},,,

v, ", =0. (1.13)

However the covariant derivative of R, is nonzero [13]. The left hand side of the
equation should have a tensor whose covariant derivative also vanishes. Although R,

measures curvature, for physical reasons we need another tensor for formulation. This

is the Einstein’s tensor, GG,,,, defined as

Iz

1
G“V = RHV — égm,R (114)

where the Ricci scalar, R = g"” R,,,,, is the trace of the Ricci tensor.

ma
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Thus the geometry of a spacetime is engraved inside Einstein’s tensor, while T},
expresses the pressure and energy momentum density within that spacetime. As such

the phrase that spacetime is curved due to presence of matter, is formulated as

G = 8TGNT . (1.15)

These are the Einstein’s field equations which will be put into use throughout the
rest of this work. Later on Einstein, realizing that the equations imply a dynamical

spacetime, added a constant to achieve static solutions,

G = 8TGNT ) — g (1.16)

With Hubble’s discovery of the linear expansion of the universe, it was shown that
the universe is indeed dynamic, and Einstein removed this constant A. Today the

cosmological constant A is viewed as a possible explanation of the dark energy.

1.2. Embedding Theorems

According to Campbell’s theorem any analytic, n dimensional, Riemannian space
can be locally embedded in an (n 4+ 1) dimensional, Ricci flat, Riemannian space
by adding either an extra space dimension or an extra time dimension. Therefore
n—dimensional solutions of Einstein’s equations to arbitrary energy-momentum ten-
sors can at least locally be embedded to (n + 1) dimensional vacuum solutions of
Einstein’s equations. This, turning the argument other way around, implies that once

we have an (n + 1) dimensional metric
D352 = gop (2, L)dadzx® + eh®(z°, L)dL? (1.17)
that satisfies field equations in vacuum, we can obtain non empty spacetimes on hy-

persurfaces where the (n + 1)th dimension is constant, L = constant. Here L refers

to the extra dimension which can be spacelike, ¢ = 41, or timelike ¢ = —1 . In
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our convention small case Latin indices run from 1 to 4 referring to four dimensional
spacetime, and Greek indices run from 1 to 5 referring to five dimensional spacetime.
The first three indices (123), also denoted by i or j, refer to xyz, 4 refers to time and
5 refers to internal space or the extra dimension. The locality of the theorem comes
from the fact that the n dimensional metric and field equations we obtain by setting
L = constant, restricts the situation around that hypersurface. We will not consider
the global properties of the embedding. As an application, Lidsey et al. [14] state the
set of conditions placed on the functional form of the higher dimensional metric co-
efficients and apply Campbell’s theorem to embed four dimensional gravitational and

electromagnetic plane waves to five dimensional Ricci flat spacetimes.

The n dimensional field equations are the (n + 1) dimensional field equations
on L = constant hypersurfaces. As a less restricted version, the Campbell-Magaard
theorem states that any n dimensional manifold can be locally embedded in an (n+1)
dimensional Einstein space. A modern and less rigorous version of the proof presents
the field equations in terms of three symmetric, n dimensional tensors namely, the
induced metric, extrinsic curvature and a tensor that resembles the components of
the (n + 1) dimensional curvature tensor outside of this n dimensional hypersurface.
These field equations do not contain any change of these three tensors with respect
to the internal dimension, meaning the same equations are to be satisfied on each
L = constant hypersurface. So in a sense the n dimensional field equations are actually
constraint equations. Moreover the number of independent dynamical quantities, which
are the elements of these tensors, are more than the number of field equations when
there are at least two dimensions, which means there are more free variables then
constrained ones. As such the line element on the L = constant hypersurface can be
chosen to correspond to any n dimensional Lorentzian manifold while still satisfying
the constraint equations. Thus it is possible to embed any n dimensional manifold in

an (n + 1) dimensional Einstein space [15].

The Campbell’s theorem and other embeddings related with it, discuss the em-
bedding of curved spacetimes to Ricci flat spacetimes. Being Ricci flat means that

there is no pressure or energy density present. However, in order to be completely flat
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the spacetime must also have a zero Weyl tensor in addition to a zero Ricci tensor. Just
as a vanishing Ricci tensor indicates that the spacetime does not contain any matter in
the usual sense, a vanishing Weyl tensor indicates the absence of gravitational fields.
Among the four dimensional solutions of general relativity, FRW metrics are special
in that they can be embedded to five dimensional flat spacetimes, flat with both a
vanishing Ricci and a vanishing Weyl tensor.Most curved four dimensional solutions
cannot be embedded to flat five dimensions [16]. However any solution of the field equa-
tions in four dimensions with no ordinary matter, where dark energy is allowed, can
be expressed as a five dimensional metric with pure canonical form [3]. In the canon-
ical metric the four dimensional metric *ds, is multiplied by the square of the extra

dimension and its metric coefficients are allowed to depend on the extra dimension

L2
°dS? = =
Lj

(gap(2¢, L)da"dx®) & dL? (1.18)
where L is just a constant with dimension of length. On the other hand, in the pure

canonical form the four dimensional metric tensor is independent of the extra dimension

LQ
PdS?* = =
Lj

(gap(2)dxdax®) £ dL?. (1.19)
In the case of FRW metrics it is stated, and applied for a few cases that, five dimensional
Minkowski metric with zero spatial curvature, M;, gives the complete FRW metric. It
is cautioned that the geodesics for the hypersurface in My appear as parabolas, contary

to common intuition for flat spacetimes. This is because of the metric signature and

the correct measure of the curvature clearly shows the flatness [17].
1.3. Space-Time-Matter and Braneworld Theories

The ability to embed a curved spacetime into a higher dimensional flat one brings
on the possibility to interpret matter as a geometrical effect coming from a higher
dimensional theory. According to general relativity spacetime is curved only in the

presence of energy and momentum or gravitational fields. A Ricci flat universe means
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a vacuum universe in terms of energy and momentum, which amount to matter such
as dust and radiation. Since we can embed a four dimensional curved spacetime, which
is nonempty, in a Ricci flat five dimensional universe we can hold the extra dimension
to be responsible of the material effects in four dimensions. This is the idea that lies
at the heart of Induced Matter (IM) or Space-Time-Matter (STM) theory. The metric

ansatz of Induced Matter theory is

Sds? = e’ dt? — D) (dr? 4 12dQ?) — et gL (1.20)

where dQ? = df? + sin?0d¢?*. We write the above metric in the (+, —, —, —, —) conven-
tion as it appears in Wesson [18]. The five dimensional Einstein equations for vacuum

are

R, =0Gu, =0

where as four dimensional field equations with matter are

Gab = 87TTab.

Of course the five dimensional R, includes terms that depend on the scale factor of
the extra dimension, v, and partial derivatives of the scale factors with respect to the
extra dimension L. The four dimensional G, with a nonzero T,;, corresponding to this
five dimensional GG, in vacuum, is evaluated by collecting out these terms that arise
because of the extra dimension. That is to say, these terms in )G,y are collected out
as —WTy, and the rest are WGy, and those in ®)G;; are collected out as —HT}; and
the rest are WG;;. In this point of view the five dimensional field equations are written

as

O R, =W Gy +W T, =0 (1.21a)
O Ry =W Gu+W Ty =0 (1.21b)

G Rss =0 (1.21c)
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To make it more clear, the field equations in five dimensions for metric (1.4) in

Wesson’s convention are

3w/2 3[ulwl

Gy = e—u(_T _ T) e st~ ) (1.22a)
G, — e_u(3g/ N 37«21”' _ 312”’ _ 3“;/”) (1.22b)
Gii:Gllz—e_”(w—FgTW-I—ng%z‘f'%_%_%) (1.22¢)
e (w” + 3%/2 - %ﬁ + V; + wl;/ - “;wl - V/f/) (1.22d)

G = _e—y(% i 377“”2 _ 3VTw) + e—u(BZ/Q guiyl), (1.22¢)

Here the dot denotes differentiation with respect to time and prime denotes differenti-
ation with respect to internal space L. One obtains the apparent matter content of the
four dimensional spacetime by collecting out the terms that appear because of the pres-
ence of the fifth dimension. Setting the elements of four dimensional energy-momentum

tensor as WT*, = p and WT, = —p gives

3 3 !,/
87p = ——e i+ —e V(W' +w? — e ) (1.23a)
4 2 2
.. -2 . . . .
I RN N
Swl2 V” 1//2 w/V/ /,L/w/ y/ul
e M (" i R 1.2
e(w+4+2+4+2 5 4) (1.23¢)

This approach gives us two different ways to look at the same universe. It implies that
we can view the universe to be either four dimensional and curved or as five dimensional

and Ricci flat without matter.

STM starts out with the geometry of the bulk, which is a solution of five dimen-
sional field equations in vacuum. Our four dimensional world is obtained from the five
dimensional bulk by introducing the matter content as a geometric effect. The brane
is evaluated from the bulk. In braneworld theories on the other hand, one starts out
with a four dimensional brane containing matter, with a presupposed T, and brane

tension which is related to the vacuum energy density, and arrives at the geometry of
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the bulk by imposing boundary conditions. The bulk effects the brane by a nonlocal
Weyl radiation field. This corresponds to the F,, dependent extra terms that appear
in the effective four dimensional G, due to the presence of internal space. These terms
resemble radiation because F,, is a traceless tensor. STM wants to address matter as
the effect of a higher dimensional geometry while BW scenarios attempt to solve the
hierarchy problem. Although STM and BW theories arise from different motivations,
they share important common features in terms of their working principles. First of all
both allow for a nontrivial dependence on the internal space in the metric coefficients
and do not force any compactification on the extra dimension. The relaxation of such
constraints is what leads to a geometric interpretation of matter, as pointed out by
Wesson and Ponce de Leon in related works. In both Scenarios the four dimensional
metric, identified with our physical spacetime, is evaluated as a hypersurface in five
dimensions by setting L = constant in the solutions of the five dimensional field equa-
tions. The matter fields are confined to this hypersurface, or brane, as well as the

observers who cannot enter the bulk.

At first sight the two theories are complementary ways of embedding a four
dimensional world in a five dimensional one. Ponce de Leon [19] shows that both
actually carry the same properties when examined throughly. The STM equations can
be considered as the equations of gravity in a braneworld scenario of a Z, symmetric
brane, where —L is identified with L, with a certain matter content. Both theories
arrive at the same effective matter in four dimensions. In this respect STM forms
the generating space for braneworld scenarios and can be shown to include the local
and nonlocal corrections to four dimensional gravity same as BW models. Therefore
the two theories are equal and this equivalence can be turned into an advantage to
overcome their shortcomings. In STM there are not enough physical restrictions to
determine all of the arbitrary functions that arise in field equations. In BW theories
the brane lacks of enough information for the reconstruction of the bulk. It is proposed
to use the physics on the brane, coming from the BW point of view, to restrict the

abundant freedom in STM.

Ponce de Leon introduces a normal vector orthogonal to spacetime for a metric



17

of the form °dS? = g, (2, L)dx?dz® + e®?(x¢, L)dL?, with € = £1 whether the internal
space is timelike or spacelike. And writes down the four dimensional Einstein Tensor

and conservation equation with the motivation of STM as

1
WGy = €[K° Ky — KK + §gab<KdeKde — (K°)?*) — Eu), (1.24)

VP, = 0. (1.25)

Here K, = % gl is the previously mentioned extrinsic curvature, and E,, = (5)$35”5 is
the other curvature related symmetric tensor. Written in this form the dependence of
the four dimensional Einstein tensor on the curvature of the five dimensional spacetime
evaluated at a certain hypersurface is quite clear. Moreover the quantity P, is also

expressible in terms of extrinsic curvature as, Py, = Kap — gan K %4.
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2. THE METRIC AND THE EINSTEIN TENSOR

The Friedmann-Robertson-Walker metric has the following form
ds* = —dt* + a*(t)d%? (2.1)

where d¥? is the metric of three spacelike dimensions all of which have uniform cur-
vature. We use natural units with ¢ = h = 1. The spacelike sections, being scaled by
a(t), may expand or contract in time. Therefore the scale factor a(t) is what gives us
the dynamics of this four dimensional spacetime. Because all three spatial dimensions
have the same scale factor they all change by the same amount, hence this universe
expands or contracts isotropically only with time. Here time is the proper time, which
is what an observer who sees the universe expand around him measures as time. Since
it doesn’t have a factor dependent on any of the spacelike dimensions in front of it, it
has the same value at every point. In other words the cosmological time is the proper

time at every point in this spacetime. The role of time is fundamental here.

We will consider a metric of the form

dx? + dy? + dz?

(1+ W)Q

ds® = f2(t)g*(w)[—dt* + dw?] + a®(t)b* (w) (2.2)

where « is the curvature of spacelike sections with the values —1 for negatively curved,
0 for flat, +1 for positively curved, we can always make a coordinate transformation

so that

dl' = f(t)dt (2.3a)
dW = g(w)dw (2.3b)

da? + dy? + dz?

I{:E2 2 Z2 .
(1+ ( +Z+ ))2

ds®* = —G*(W)dT? + F*(T)dW? + A*(T)B*(W) (2.4)
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Here T may be called the cosmological time because it is the only coordinate that
an observer will measure as time. But the value measured will change for different
observers at different points in W, because we cannot get rid of the factor of W in
front of time. We cannot get rid of the factor of time in front of W the internal
space either. As such, the role of internal space in this five dimensional universe is
as fundamental as the role time plays here. We will carry on our calculations in the

coordinates where the metric is as it is in Equation 2.2.

The observable three spacelike dimensions share the same scale factor and are
again isotropic. Here they do not evolve only in time but in w as well. Although
our internal space, w, is a spacelike dimension, it works as a timelike extra dimension

would.

Our basis one forms are

and we use the metric g, = diag(1,1,1,1,1) with ¢ = 1,2, 3. Using Cartan’s for-
malism and leaving the details of the calculation to the appendix, we get the curvature

two forms to be

i = B y s
0y = a2(t) f2(1) g2 (w) b2 (w)f2(t)g?(w) +a2(t)b2(w) A (2.6)
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where differentiation with respect to w and ¢ are denoted as

. Oh
=5
oh
no=2"
ow

We get the Riemann tensor R, 5, from curvature two forms by

1
Qr, = §R“l,,\xe)‘ A e”



and the components of our Einstein tensor by

1
G#V = R,ul/ - §gle

where R is the Ricci Scalar R = g"”R,,,,. All this gives us the following

//
Gy = —2 0" (w)

a*(t) b (w)
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K (1) f g°(w) g"(w)

TEORW) - Few) | Phew) | PO P w)

i)t Vg . D)
Cu = POEw) ) PO ) PO w)
L3 @) P ) P S

b)) Ta() A()gR(w) T a2t fA(H)gE(w) bR (w) () g3 (w)

(2.11)

(2.12)

(2.13)
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3. VACUUM SOLUTIONS IN FIVE DIMENSIONS

Now let us consider the vacuum solutions for flat spacelike sections, that is solu-

tions to G, = 0 with k = o.

From G;; = 0 we get

2(1) ) P Pw) W) W)
0 @D PO T e T ) fw) ¢ ogw) OV

The right hand side of this equation is purely w—dependent, and the left hand side
purely t—dependent. The only way these two sides are equal to one another is if they

are equal to the same constant k. Thus out of GG;; we get the following two equations

(0 _ (3.2)

and

2 + - + =k (3.3)

=1 (3.4)

Viw) | W) Vg
bw) T Pw)  bw)glw) (3:5)

and from Gs; =0




23

=m (3.7)

Thus we have two sets of equations, one set related to ¢t and the other related to
w. We will solve these two sets first and check whether the solutions satisfy G54 = 0,

which gives

a(®)f(t) _ g/ (w)b(w)
aD7(0) ~ g(w)b(w)

1-— = constant. (3.8)

Let’s first look at the set related to ¢, whose solution will give us a(t) and f(t)

at) @t o fo
o) T T o e T ’ .
a(t)f(t) () _
nOHORED =1 (3.10)
a(t) @) _aiew _
a(t) * a’(t) a(t)f(t) e

We can get an equation for a(t) by adding the last two equations,

2

a a
-4+ 2— = [. 3.12
Ct 25 =mt (3.12)

If we consider a solution of the form a(t) = age”* and plug this in Equation 3.12

we get

(3.13)




By imposing this solution on Equation 3.11 we obtain

2l —m
3(m+1)

f(t) = foexp [
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(3.14)

When the solutions in Equation 3.14 and Equation 3.13 are inserted into Equa-

tions 3.9, 3.10, 3.11 we find that Equation 3.10 and Equation 3.11 are satisfied identi-

cally where as Equation 3.9 imposes the condition

m+1=k.

A similar approach to the w related set of equations,

W) Pw) gPw) | gw)

o) " Bw)  Pw) | gw)

Viw) | DPw) V) (w)
bw) T Bw)  bluw)g(w)

(w) | V(w)g(w)
Pw) | blw)glw)

gives

(m+1)
g

b(w) = by exp [

and

V3(2m — z)w]

= e
g(w) = go Xp[ —

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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where Equation 3.16 imposes the same condition m + [ = k. Moreover our solutions

imply that

k=m+1>0

(3.21)

since they each contain a +/(m + ) term. With these solutions G54 = 0 is satisfied as

well.

Thus the vacuum solutions of our five dimensional metric with flat spacelike

sections are

41 — 2m 4m — 21

Sl man"

(—dt?* + dw?)

45 = Poieny [

[
+agbyexp [2 %(t +w)| [dz?® + dy* + dz?]
By redefining parameters
20 —
M=
V3(m+1)
~ 2m -1
’ 3(m+1)

and rescaling coordinates we can write our metric in its simplest form as

ds? — 62(M1t+M2w)[_dt2 + dw?] + e2(Mi+Mz)(t+w) [da? + dy? + d2?]

(3.22)

(3.23a)

(3.23b)

(3.24)
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4. THE EFFECTIVE FOUR DIMENSIONAL SOLUTION

We will now consider the above solution of the vacuum five dimensional spacetime
at some w = wy where wy is a constant. Such a way of considering four dimensional
hypersurfaces along constant internal space amounts to local embedding of four dimen-

sional spacetimes into five dimensions. At w = w, spacetime metric becomes

dm — 21 4l —2m i)

s = ogoexp[mwo]exp[mt](— t

/ l / l
+agbaexp[2 m; wolexp|2 %t] [d2® + dy® + dz?] (4.1)
2m—l

fogoexp| \/mwo] is just a constant so we can set it equal to another constant Fj.

With

d

2m — 1
Fy= erp| —————wy|,
0 fogo p[ 3(m n l) 0]
+1
Ay = agboexp| 3 w|
we can write our solution as
4] — 2 )
ds* = — Feap|——"_fd? + Aexpl2y/ Do t)[de? + dy? + =7, (42)
3(m+1) 3

To write this in terms of the cosmological proper time consider the following

coordinate transformation

dt = Foexp[(—t]dt. (4.3)
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To simplify the notation we will define

m +
B=1/"
and
353
o= )
2l —m

With all this our coordinate transformation gives,

= Fyaeld] (4.4)
and
et = (i)wa. (4.5)
F()Oé

This coordinate transformation has turned our solution into

ds® = —di* + AL**Pda?* 4 dy* + d27). (4.6)

We can always absorb Ay into 7 by a coordinate transformation. So if we drop the

tilde, define a8 = n our metric in its simplest form becomes

ds® = —dt* + t*"[dx® + dy* + d2?). (4.7)

The metric in Equation 4.7 contains all the relevant four dimensional cosmologies

with ordinary matter. For n = % we have matter dominated universe, for n = % we

have radiation dominated universe.
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Furthermore by setting m = 2/ in Equation 4.1 we get
ds* = fgggeQ‘ﬁ“’O[—dtz] - a3b062ﬂw062\ﬁt [dz® + dy* + d=7). (4.8)
Before explaining what we have obtained let us simplify this metric further first.
The factor €2V0 is just a constant which can be set to 2. We can also absorb all the

constants into dt? by the coordinate transformation,

dT = fog()CQ dt

T — T0o

Jogoco - (49)

and define agbocoexp|— 7] = A2 so that we have
ds* = —dr? + A%e[%ﬂdfg. (4.10)
Let us denote 7 by ¢ and set a = F‘i{), the constant Ay can also be absorbed into dr’

ds® = —dt* + e**'di”. (4.11)

Thus we have obtained an exponential scale factor, a behavior attributed to dark energy

with a = Hy where Hj is approximately today’s value of Hubble’s parameter.

As such we have shown how it is possible to obtain all relevant four dimensional
cosmologies with radiation, matter, inflation and dark energy from our five dimensional
metric. Of course each case corresponds to different values of the parameters and we

are not yet able to switch from one case to another.
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5. THE CURVATURE AND WEYL TENSORS

So far we have arrived at a five dimensional spacetime whose four dimensional
hypersurfaces correspond to relevant cosmologies. At this point it is important to
consider the flatness of the five dimensional model to gain further insight. Therefore
we will now calculate the Ricci tensor, which carries information about the ordinary
matter content of the universe, and the Weyl tensor, which informs of the presence
of gravitational fields. A zero Ricci tensor corresponds to a Ricci flat metric, and a
vanishing Weyl tensor corresponds to a conformally flat metric. A flat metric is the

one that is both Ricci flat and conformally flat.

Components of the Weyl tensor in our convention of Ricci tensor R,y = R\,

metric sign (—, +,+, +), are calculated as

1
Cropw = Rpopw + m(gpuRw — 9o Lo — Goullup + gou Byp)

_m(gppgua + o Guo) R (5.1)

where d is the number of dimensions.

For our five dimensional solution, in Equation 3.22,

4l — 2m dm — 2]

Rijij = [fogoeiﬁp(\/mtJr \/mw)]

m+1l m-+l
3 3

N )=0

4l —2m dm — 21 )] m+1 l+m m+ 1

D) Am D 5 BmiD 3

Riga; = [fgggemp( )=20
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all the components of Riemann curvature tensor are zero. Therefore the Ricci Scalar,

all components of R,,,, and the Weyl tensor for the Ricci flat five dimensional metric

Qs
are all zero. Our five dimensional universe is Ricci flat, meaning it contains no energy
nor momentum density, and conformally flat, it doesn’t contain any gravitational fields

either, in short it is flat and empty.

The Ricci flatness of the metric does not guarantee that it will be conformally
flat. It is possible to have Ricci flat solutions with nonzero R,,,,. Our universe turned

out to be conformally flat because all of its R,y,, vanish.

It is a well established fact that the Friedmann-Robertson-Walker (FRW) metric
can be put in a conformally flat form [20,21]. It has been further pointed out that [22,23]
calculations on the age of the universe and its matter density carried out in conformally
flat spacetime (CFS) coordinates agree better with the observations then those carried
out in FRW coordinates. With such emphasis on the conformal flatness of our universe,
it is an achievement to be able to embed standard four dimensional conformally flat
cosmology in a five dimensional flat spacetime in this work on higher dimensional

cosmologies.
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6. PHYSICAL IMPLICATIONS

6.1. Transformations involving internal space and time
So far we have obtained the following metric for a flat five dimensional universe
ds® = 62(M1t+M2w)[—dt2 + dw?] + 2 (Mt Mz)(t4w) [d2? + dy® + d2?]. (6.1)
We have seen that we can derive all relevant four dimensional cosmological solutions
from this metric at some w = constant slice, by adjusting the free parameters M; and

M.

We wish to consider SO(1,1) transformations of the ¢ and w coordinates which

leave —dt? 4+ dw? interval invariant. That is,
—dt? + dw? = —dt* + dw* (6.2)

which is the usual Lorentz transformation with a parameter o, a boost along w where

t and w are transformed as

t = (cosha)t + (sinha)w (6.3a)

W = (sinha)t + (cosha)w. (6.3b)

Of course we would like to express the general parameter « in terms of the parameters

of our metric. The hyperbolic functions are obliged to satisfy the following identity

(cosha)? — (sinha)? = 1. (6.4)
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If we define cosha and sinho as

M,

coshow = ———— (6.5a)
(M} — M3)
M.
sinha = ——— (6.5b)
(M — M3)

the identity is satisfied. Therefore the rapidity for our spacetime, defined in terms of

the parameters that appear in our metric is a = coshil[%] As such t and w
12

expressed in terms of ¢ and w is

- - M, - M, - .
t = (cosha)t — (sinha)w = NGl Mg)t NI (6.6a)

M, ~ M,y
2 =it 2 2
V(M = M3) /(MF - M3)

w = —(sinha)t + (cosha) = — w (6.6b)

This transformation effects the scale factor of [—dt? + dw?] as

Mt + Myw = y/ (ME — M2)t (6.7)

and the scale factor of three space as
t+w=/(M}— M3 (t+ ). (6.8)

Thus the metric ds? = 2Mt+HMaw)[_qt2 4 qoy?] 4 2MF+M) ) (22 + dy? + d2?] trans-

forms into

ds? = 2V ME=MDY_ g2 4 qii?) 4 2V MI-MDED) (g2 1 g2 4 27, (6.9)

Apparently we can remove the w—dependent part of the scale factor in front of
[—dt* + dw?] by a boost along w. The scale factor of three spatial dimensions which
depends on (t + w) continues to do so as in the form of (4 @) with only a change in

the coefficient, hence (t + w) is a lightlike coordinate.
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We can redefine M? — M3 as pu? and write this metric as
ds® = X [—di? + dw?] + T [da® + dy® + d=7). (6.10)

This is as if we have set My=0 via a transformation. At this point we would like
to point out that setting the parameters M; and Ms to certain values amounts to
choosing different frames. These frames aren’t all equivalent because we will pick out
one of them to be the cosmological frame, whose time dimension will be the time
referred to as cosmological time. The choice is the one in which the scale factor of
time is unity. This frame is among those where M; = 0 because the scale factor of
time here, as in metric of Equation 6.10, can be set to one by the following coordinate

transformation
dr = e di (6.11)

which makes e* = pir. We will drop the tilde on w from now on and write the metric

in these coordinates
ds* = —dr? + pPridw® + p*r*e* [da® + dy® + dz?). (6.12)

As such the dimensions of [7], [w] and the three space coordinates [z],[y],[2] are all equal
to length where as, [pw], being the variable of the exponential function, is dimension-
less. This form of the metric is appropriate as far as the dimensions are concerned. 7
is the cosmological time and we pick this frame as the cosmological frame. In time this
universe expands linearly and it does not contain dark energy. So in a sense our choice
of the cosmological frame, is the simplest cosmological case. On the other hand we were
able to obtain dark energy for the four dimensional slice from metric in Equation6.1
by setting M; = 0, in chapter 4. As we have argued, metric in Equation 6.1 and in
Equation 6.12 are different frames, the time coordinate in one is not the same as the
time coordinate of the other. If there is a physical reason for us to choose the time of

Equation 6.1 as the cosmological time, it may be the dark energy.
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6.2. A test particle moving along w in the cosmological frame

We will continue on considering the frame where the metric is of the form written

in Equation 6.12. This time we are concerned about the geodesics of test particles.
ds* = —dr? + pPridw? + pPrie®[da?) (6.13)

where d#? = dz* + dy® + dz*. The action of the particle is expressed as & = — [ ds =
[ drL. Proceeding in this direction

ds? = —dr[1 — MPT%0? — 22 i) (6.14)

here dot refers to differentiation with respect to 7. Due to our (— + + + +) choice of

the metric signature ds = v/—ds?, which gives,
ds = dr[l — p?r%i* — u272e2“w52]%. (6.15)

For small values of p?7%i? and p?72e*“#? we can approximate this as

ds ~dr[l — %,LLQTz’LiJQ — %,LLQTQez“wf ]. (6.16)
Thus
G =- /ds = /[—1 + %/LZTQU')Q + %uZTQeZ“w:?Q]dT = /EdT (6.17)
and
L=-1+ %u272u}2 - %u27262“w§:’2. (6.18)

Let us consider the equations of motion for 7= 0, where the z,y, z coordinates
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of the particle are held fixed.

a0 oc
dr 0w’  Ow

d -
— (ME7%0) = M2 M g?

dr

using the constraint on ¥

p*r*ib = constant = € (6.19)

We can solve this as

W =Wy — —5— 6.20
. (6:20)
This is the geodesic for a particle moving along the extra dimension in time. Of course
this solution is an approximation for small w. In the limit 7 — oo the test particle
moving along internal space approaches a certain slice wy. In a sense, in time the
test particles become confined to wy, as far as their motion along internal space is

concerned, and they can never go further behind.
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6.3. A braneworld scenario

Let us go back to consider the Lagrangian with the small p27%w? and ,u27'262‘“”f'2
approximation,
Loy oo 1 9 9 onnus
L=—1+-p*mw° + —pr7e . (6.21)

2 2

The p2?7? coefficients of 1 and Z are due to linear expansion of the universe. The —1
term is to be interpreted as some potential and velocity squared terms, w? and :?2, as
kinetic energy. In this respect, particles moving along w have unit mass where as those
moving along the three spatial dimensions have the mass e** related to w. It is as
if particles along three space gain mass via a contribution coming from the internal

Znw will increase as w becomes more and more positive and

dimension. The mass e
decrease as w becomes negative. If we are to relate mass with w, it is more convenient
to have the mass increase as the particle travels further along w. This means something
should prevent the internal dimension stretching in the negative direction. With this

motivation in mind we rewrite our metric as

ds? = —dr? + p2r2dw? + pPr2e? vz, (6.22)

Braneworld scenarios start with the introduction of Z; symmetry, which identifies a
dimension streching in the negative direction (—w), with its other half streching in
the positive direction (w). Our inclusion of absolute value in the metric has the exact
effect. Here we will write down the Einstein tensor for this metric right away, leaving
the calculations for the appendix. With the following as the nonzero components of

Riemann curvature tensor

L ow) )
Fio =27 (6.23a)
Ry = 621 (6.23b)
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the nonzero components of the Einstein tensor are

d(w)
Gii = —4= 5 (6.24a)
B d(w)
G = —6- 5 (6.24b)

where index i refers to (x,y,z), 4 refers to 7 and 5 refes to w. The restriction of
internal space, w, to be positive has created curvature only along the four dimensional
spacetime, and this curvature is related to the fifth dimension. R,,, with only spatial
and internal space elements being nonzero, is well adjusted to give zero pressure along
the fifth dimension with nonzero energy density and pressure along the four dimensions.

Since G, = 8TGNT),, We see that

Gii=—Kp—Dp 45(wl (6.25a)
KT
4
Gu=tp—p=—6 (“’)2 (6.25h)
KUT
Gss = —kq—q=0 (6.25¢)

where « is the five dimensional gravitational constant which is positive. The energy
momentum tensor, 7%,, turned out to be proportional to §(w) because of the absolute
value involved in the metric, which gives rise to the dirac delta via its second derivative,
while physically refraining w from becoming negative. So the pressure and energy
density we have along the four dimensional spacetime is confined to the w = 0 slice.

The equation of state for our spacetime is
p
C——— (6.26)
p

which is the equation of state for a cosmic wall [24,25]. Our restriction of w to be
positive actually meant the introduction of a brane at w = 0. We now see that by
including a brane in our five dimensional universe we have restricted ourselves to live
on that brane. Moreover the bulk of this universe is empty since both p and p are

proportional to d(w) and q is zero.
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Notice that unless the constant y is negative the energy momentum density of this
universe is going to be negative which can be problematic. By setting p to be negative
not only do we avoid such possible problems, but we can also achieve a compactification

scheme. Therefore let us redefine y = —M < 0, to obtain the metric
ds? = —dr? + M?7%[dw? + e 2Ml g2, (6.27)

Now as one moves along the internal space, away from the w = 0 brane, the exponential
scale factor tends to zero and the three dimensional space shrinks. In fact it disappears
by approaching zero in the limit where w — +oo. In this respect we can say that we
are not aware of this extra dimension w, because we are confined to the brane. We
are confined to the brane because there is no energy density nor pressure outside the
brane, moreover the three dimensional space is too small away from the brane for us
to be a part of. So in a sense away from the the brane this spacetime is effectively
two dimensional with only 7 and w. Usually one of the reasons given in explaining
the absence of observation of the extra dimension is to suggest that it is too small.
Contrary to that convention here we are suggesting that the three dimensional space is
too small away from the brane. To make this shrinking of the three dimensional space
as small as possible, the value of M should be chosen to be large. This braneworld
universe is neither Ricci flat nor conformally flat. It contains both energy momentum

density and gravitational fields.

As a last remark we would also like to consider the geodesics of this brane world

with the metric in form
ds® = —d7? + p2r2dw? + pPrie®ivlg?. (6.28)
From 6 = — [ds = [drL,

L=—[1—p*m%i? — u27262“lw|:f2]%. (6.29)
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If we again consider the spatial coordinates x,y, z to be fixed, the equations of motion

for w, L (2%) = %,

» dr \o give

d 2.2,
e —) (6.30)

%( /T — 27202 o
This means

lu27_2,u']

/1 — ,u27-2w2

= C = constant

, C
w= #272(M272+Cz)
C 2 Cc2
1 =+ 4/T+ =
w—1wp = ——In| V" (6.31)

If we are to calculate the acceleration of an object falling along the z direction, with

x,y,w held fixed we have to solve the following equation for Z

d prremivl ;

E( \/1 _ /,627'262”‘1”‘2}2) -

which gives
L oZ 9 ouu| 3
Z=—2— 4 pre iz, (6.32)
T
We can always absorb the u in front of d#? into 22 by rescaling z, v, 2

ds? = —dr? + pPr%dw? + vl a2, (6.33)



Now consider pu set equal to 0,

ds* = —dr® + 7°d7”

and consider the acceleration along z,

This means

Inz = =2lnt + qa,

Z =20 —
T
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(6.34)

(6.35)

where a, and a are constants. We can always shift the origin of the coordinate system

and write this as

a
Z =20 — .
To+T
Let us do a further approximation where
z=z20—a(ro+ 7)1 ~ 2 —an(l — —).

A redefinition of constants to ease notation will give

z=c¢T+0.

(6.36)

(6.37)
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This approximation shows us that in a linearly expanding universe the coordinate z
evolves linearly as well. In Equation 6.36 as 7 — 0o, z approaches a constant value, as

if it is held fixed. In a sense z is stationary, it just evolves as the spacetime evolves.
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7. CONCLUSION

As we pointed out in the beginning, it has been shown that four dimensional
curved spacetimes can be embedded in five dimensional flat or Ricci flat spacetimes [17].
The former branch has been well studied in literature. It is stated that a matter and
radiation dominated four dimensional universe can be embedded in a five dimensional
vacuum universe [26,27] and the accelerated expansion of the universe can be obtained
via extra dimensional models [28]. In this work we have obtained all relevant cosmolo-
gies, including dark energy dominated cosmology, as four dimensional slices of a flat,
five dimensional metric. We were able to do this by allowing the internal dimension
to be fundamental, like time. We name the internal space as fundamental because it
affects all the scale factors including that of time. Moreover, although the internal
space is a spacelike dimension, the linear combinations of time and the internal space

may transform as lightlike coordinates.

We should like to point out that this thesis does not present a detailed cosmolog-
ical model. In standard four dimensional cosmology, the equation of state that governs
the expansion of the universe with time, changes for physical reasons. The early uni-
verse goes through different phases, starting with radiation dominated moving on to
dust dominated, and so forth by a power law, a(t) = ", where the value of n changes
from one era to another with time. In our model the change of n may be obtained
by a pseudo rotation involving internal space and time. Although we can embed all
these cases into the same five dimensional metric we are not able to switch from one
to another because our parameter n does not depend on time. To turn our model
into a physically better suited one it would be necessary to find a different reason
for the changes of the time variable to explain this change of n with time which gives
the correspondence with radiation dominated, dust dominated, dark energy dominated

eras.

We have pointed out that fixing the free parameters amounts to choosing different

frames. We have picked out the cosmological frame to be the one in which the scale
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factor of time is unity and this frame gave us a linearly expanding universe. Thus from
dimensional arguments we have shown that, in a universe where the only dimensional
constant is the speed of light, the preferred change of scale size in time amounts to linear
expansion. This inevitably brings to mind the present relationship between Hubble’s
parameter Hy, and life time of the universe ¢y, being Hyto = 1. If this relationship is
valid for all times that would indicate a linearly expanding universe. With this in mind
our choice of the cosmological frame might indeed be the suitable choice. On the other
hand, among the possible frames, the ones that contain dark energy are more complex
and have w dependent scale factors for time. A physical reason to choose one of these

as the cosmological frame would be dark energy.

We have also discussed a braneworld version of our cosmological frame by putting
a brane at w = 0. Our world turns out to be a linearly expanding universe, confined to
the brane. It is also the largest universe in size. The other worlds at different w—branes
are also linearly expanding universes, and the Hubble time is the same for all of them.
The only difference between our universe and these others is that their scale size is

~Mlvl A more detailed discussion of how cosmological models

smaller by a factor of e
can be incorporated into brane world scenarios can be found in [29]. Dvali and collab-
orators [30] present a mechanism by which the correct four dimensional gravitational
potential may be obtained for static 3-branes embedded in five dimensional Minkowski
space. One of the possible cases to where their mechanism can be applied to consists
of matter fields confined to the brane. In our braneworld scenario the 3-brane is dy-
namic yet the matter fields are still confiend to the brane. Therefore it may be possible

to apply the same mechanism here and obtain an expression for the four dimensional

gravitational potential with cosmic dynamics.

A Ricci flat spacetime is empty in terms of matter, meaning it contains no pressure
or energy density. A vanishing Weyl tensor, which represents the conformal flatness,
points the absence of gravitational fields. Therefore a flat universe must be both
Ricci flat and Conformally flat, containing neither matter nor gravitational fields. The
ability to embed conventional four dimensional cosmologies in Ricci flat five dimensional

spacetimes not only presents a simpler frame to consider the situation in but also gives
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a geometric explanation of observed material effects, this has been the subject of the
briefly mentioned literature. Conformal flatness, on the other hand, is one of the key
properties of standart cosmology. Our five dimensional spacetime in which all relevant
cosmologies can be locally embedded, is both Ricci flat and conformally flat. Therefore
we have achieved the embedding of all relevant four dimensional cosmologies in a flat

five dimensional spacetime.

The common intuition would be to imagine a four dimensional space expanding
along time. Instead what we have introduced here, and in [31], is the three dimensional
space expanding along both time and internal space. So in a sense we should visualize

this as a four dimensional spacetime evolving along the extra dimension.
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APPENDIX A: The calculation of curvature two forms in

chapter 2

We will now give the details of the calculations done in evaluating the Einstein’s

tensor, for the metric

45t = P02 () [ + du] + a8 ) (A1)
(14 55)?
where 72 = 22 + y? + 22, The basis one forms are
et =if(t)g(w)dt (A.2a)
e’ = f(t)g(w)dw (A.2Db)
‘=ua w)F' = a w L
e’ = a(t)b(w)F (t)b( )(1 n %)2. (A.2¢)

In order to obtain the connection coefficients w*,, we must first evaluate the differen-

tials of the basis on forms. We will make use of the following

2=zl
di? dz’ dx; . L
- (et R (V-
il zzzdxj—éjxl—i-xél—%z:]
and
di? = ijdxj
dF' = — 24 A da

(1+25)74



1 ) )
= —ng@]dI’] A\ dl’l
~ K el A el
dF'" = —— )
2" a2 ()0 (w)

A sum over j is indicated, and we get

de’ = a(t)b(w)dt A F' + a(t)t (w)dw A F* + a(t)b(w)dF"

ei——d(t) et Nel _ Vw) ed ei_%_ej/\ei
= e’ T T Bgwb@)” ¢ T 2 abw)
4_y !V dw _ g/(w) &5 A et

de* = if(t)g' (w)dw A dt —QQ(ZU)f<t) A
N (L

de’ = f(t)g(w)dt N d (D) g(w) A

We evaluate the connection coefficients by the following formula

de +w’, ANe¥ =0

46

(A.4a)

(A.4b)

(A.4c)

(A.5)

where the connection forms are expanded as w”, = w”, e*. From e° we obtain;

de® +w i Nel +uws Al Fuls Aed +wis Net =0

f®)
if?(t)g(w)

et ne’ + w51262 Ael + w51363 Ael + w514e4 Ael + w515e5 A el

(A.6)

wPorel A e+ w’ysed A e® + wiyuet A e? 4+ wiase® A e + wlsiel Ae® + wsee? Ae?
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w534e4 Aed + w535e5 Aed + w54lel Aet + w54262 Aet + w54363 Aet

w’yse® A et =0 (A.7)

Collecting coefficients of the same e® A e gives the following equations

t

Wy = % (A.8a)

w5 = wes = w55 = 0 (A.8b)
W’y = w’oy (A.8c)

W'z = w’s (A.8d)

Wiy = Wiy (A.8e)

Woy3 = W3, (A.8f)

Wy = Wy (A.8g)

wosy = W’y (A.8h)

Similarly we get, from de* + w* A el +w*y A e +wis Aed +whs Ae® = 0;

4 g’(w)
Wiy = A 9a
= ) (4.98)
w414 == UJ424 = w434 =0 (Agb

w412 = w421 (A9C

4 4
W15 = W 51

)
)
whs = wy (A.9d)
)
)

(
w423 = w432 (Agf



from de' +w's Ae® +wls Aed +wly Aet +wls Ae® =0;

()
ia(t) f(t)g(w)

w's = olw)
b(w) f(t)g(w)
O T ) b(w)
YL T 6)b(w)

from de? + w? A et + w3 Ae® +w?y Aet +wis A e’ = 0;

1 1
W34 = W 43
1 1
W 35 = W 53

1 1
W g5 = W 54
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and from de® + w3, A el + w3y A e +wiy A et + w5 Ae® = 0;

v = (A128)
o ST S
why = — o ('Z)a;l(w) (A.12¢)
T (:;2(10) (A.12d)
Wiy = wiy (A.12¢

Wiy =wy (A.12f

3 3
W15 = W 51
3 _ .3
W24 = W 42
w3y = w35y (A.12i

w345 = U}354. (A]_QJ

wk,, is antisymmetric in its first two indices because of the antisymmetry of w*,. From

Equations A.8c, A.11g, A.10g

Ws12 = Ws] = —Was1 = —Wais = Wiz5 = Wisz = —Ws12 = 0 <A~13)

Similarly all permutations of wsi3, Wsi4, Ws23, Ws24, Ws34, War2, Wa13, Wa3, W12z are

Zero.
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Finally we can obtain all of the connection forms from w*, = w", e, to be the

following

W5 = ey (5 — i) (A.14a)

w'y = M%ei (A.14b)

T b(w)if%)gw)ei (A1)

why = 922";;”;@ et — %65. (A.14d)

= T R T i
T~ TR
ST R oy O Ry A oy o
O N R e m e
' = o g R SEm R

L) ) 5 e



o1

Similarly
io's = s e ~ S P s ™
T~ TR (A0
s = i PO P RE R Eme A G0
dw'; = — (t)/; ) (14 ﬁ?)ei Nel — 1 (t/§2b2 (w)xixkek Ael
+W;<w)xjxkek A€ (A.18)

We will evaluate the curvature two forms with the help of the following equation

O*, = dwt, + wh\ Aw?,. (A.19)

The calculations will be given explicitly only for 0?3

Q23 = dw23 + w21 N w13 + ’LU24 A ’LU43 + U)25 VAN U)53

K 72 K
= —CLQ(t)bQ(UJ) (1+/{Z)62/\63+W(x3x161/\62+$§€3/\62—$2$1€1A63—J}§62/\63)
22 /2
K 1 2 3 1 a (t) 2, 3 b (w) 2,3
— (zge'— - - A
TaEmRw) "¢ NN e ) e B R 0w
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K a’(t) b (w)

V= anre T 200w Fw) PORw)

Je* A e’ (A.20)

On the whole the curvature two forms are

a’(t) b2 (w) K

Je" A e (A.21)

V(@) algw) V@) s
ia(t)b(w) f2(t)g2(w)  ia(t)f2(t)g3(w) ib(w)f3(t)g2(w)] A (A.22)

+]

V' (w)  Vw)g(w)  a(t) £(t) e
+[b(w)f2<t)92(w) b(w) f2(t)g3(w) a(t)fS(t)gQ(w)] A (A.23)
=— f2(t) f(t) g/Q(w) _ g”(w> et A ed
2o @) " Pl ) 2 g f2(t)] " (A.24)

The components of Riemann tensor can be obtained from the following equation

1
O, = éR“,,Me)‘ A er. (A.25)
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From Q'; we obtain

a’(t) B b (w) N K el el

EOPOFw) B PORw) T E0Rw)

1 . . 1 . . 1 ) . 1 . .
= ERijijez A\ e’ + §Rijjiej A e = §Rijij61 A e’ + 5(—Rijij)<—€Z N 6])

Foi = am PO ~ P roew T eorw) 4
In the same way one gets
o amfe) i(t) W (w)g (w)
s = P em) ~ arnew i roew) &
4 a(t)t' (w) Calgw)  V(w)f(t)
B = b)) POR@) @@ POR@) B PO, 2
o v'(w)al(t) V) f) Ay (w)
Bisi = o htw) Pig) ~ o) POew) @ POg@) )
o ' (w)  Vwgw) A f)
Rissi [b(w)fQ(t)gQ(w) b(w) F2(t) g% (w) a(t)f?’(t)gQ(w)] (A.30)
Rysas = | ) /(1) + "w) __g'w) ]. (A.31)

TTWRw) | POw) | g 20 giw) )



And the components of Ricci tensor, calculated from

RI/A = Ruz/)\,u

P/ R U N 0
S N POFw)  dOPOPw @O W)
b (w) K
PR POPw) @R w)

L ami b (w)g (w
B =3 PO ~ a@Pogw T i) P8 @)

S R () N (5 N )
@ PO Fwro - @
p g VW) wlgw) aniw
= 3 PO ) PO¢w)  alP(be(w)

LB 0 Pw W
@~ PO F@ o @
for = e — 3 Vw0 (w)f (1) a(t)g' (w)

o4

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)



And the Ricci scalar is

25

) )
b0 PO a0 EOPOFw) | R PO @0r)
RO P g
P ew - PO d@i0 " PR (4.37)
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APPENDIX B: The Einstein’s tensor for our braneworld

scenario

ds® = —dr? + p2r2dw? + pPr2eivl gz (B.1)

The basis one forms for this metric are

el = pret!v! (B.2a)
et =idr (B.2b)
e’ = prdw. (B.2¢)

Let us calculate the curvature two forms and Einstein tensor for this metric. We should

start with the de” for this ,

d|w| el A el N dlwl| e’ A e’

de' = pe'ldr A da' + pPr——e!ldw A da’ = — (B.3)
dw T dw T
de* =idr AdT =0 (B.4)
4 p 5
de® = pdr A dw = ‘ ,/\6 (B.5)

1T
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We obtain the connection forms by de* + w*, A e” = 0 and w", = w", e to be

i
wj—O

w'y=—
i

dlw| e
5= 75—

i
dw T

4 e
W'y = ——.
iT

These give us the following

dwij =0

; dr Net  det  dlw|e’ e
dw4:— + — =

iT? iT dw ir?
., dTANed deP etANed  1etAed
dw's=—5——=-F—————=0
iT iT T iT AT

dwldr Ne' dlw|dw e dw|de

dw's =
W dw 12 dw? T dw T
5(“’) 1 d|w| 21 5 i o(w) 5 i
=2 3 ﬁ(_dw ) e’ Aet =2 = +ﬁ]e Ae

(B.6a)
(B.6b)
(B.6c)

(B.6d)

(B.7)

(B.10)
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where in the last equation % = sgn(w) and d;ﬁ' = 20(w). For the curvature two

forms Q*, = dw", + w*) A w’,
Q=0 (B.11a)
Q=0 (B.11Db)

. 1) .
N5 =2 (w2) e’ Ne' (B.11c)
ur

Q' =0. (B.11d)

On the other hand Q*, = 1R*, \,e* A e®, since the only nonzero curvature two forms

2

i
are {2},

) -1 1
915 = 2%65 Ae' = §R155165 VAN 61 + §R1515€1 A 65

the only nonzero R\, are

o(w)

R1551 = Ri55i =2

With R, = Ryx,

o(w
Ri1 = R’115 + R*112 + R%113 + R =2 '57_2) = Ry
Ry = R'un + RPuuo + RPu3 + Ruu5 =0
o(w
Rss = R'ss1 + RP550 + RP553 + Rissu = 6%»

R=g"R,, =12°% and G,, = R,, — JguR

w2

1 d(w)
L = _ — = —4
Gii = Ry — ;R e
1 O(w
G44—R44—§R:— (2)
1%

(B.12)

(B.13a)

(B.13b)

(B.13c)

(B.14a)

(B.14b)

(B.14c)



Some of the nonzero elements of the Weyl tensor

Coopw = Rpopn + (Gpultve = G Ryuo — Goullp + Gou Ryp)

1
d—2

1
m(%ugw + gp,,gw)R,

for this metric are

Cussa = —35;?2)
C’5454 - if:f;)
Cizsr = —%5;;”2).

Therefore the metric in Equation A.1 is not conformally flat.

29

(B.15)

(B.16a)
(B.16D)
(B.16c¢)
(B.16d)

(B.16e)
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