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ABSTRACT

FROM FIVE DIMENSIONAL FLAT SPACETIME TO OUR

FOUR DIMENSIONAL BRANEWORLD VIA

KALUZA-KLEIN

In five dimensional cosmological models, the convention is to include the fifth

dimension in a way similar to the other space dimensions. In this work we attempt

to introduce the fifth dimension in a way that a time dimension would be introduced.

In our metric ansatz we take the scale factor of three dimensional space, the x, y, z

coordinates, to depend on both time and internal space. We allow time and internal

space, the extra dimension, to share the same metric coefficient that depends on both

dimensions. As such time and internal space play similar roles. From such a metric,

we obtain a five dimensional flat spacetime into which all relevant four dimensional

cosmologies can be locally embedded. Different cases, such as radiation, matter or dark

energy dominated cosmologies, correspond to different choices of the free parameters.

Each choice is a different frame. We argue on which frame might correspond to the

cosmological frame. From our choice of the cosmological frame we obtain a braneworld

scenario by restraining internal space from stretching along the negative direction. In

this model all the matter fields are confined to the brane and the bulk is empty. We

also see that it is possible for the three dimensional space to shrink to zero away from

the brane. Thus our four dimensional world is confined to this four dimensional brane.
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ÖZET

KALUZA-KLEIN ARACILIĞI İLE BEŞ BOYUTLU DÜZ

UZAY-ZAMANDAN BİZİM DÖRT BOYUTLU

UZAY-ZAMANIMIZA

Beş boyutlu kozmoloji modellerinde beşinci boyut genellikle diğer uzay boyutları

gibi ele alınır. Bu çalışmada beşinci boyut bir zaman boyutunun metriğe eklenileceği

şekilde ele alınılmaktadır. Başlangıç metriğimizde x, y, z koordinatlarından oluşan üç

boyutlu uzayın ölçek faktörünü hem zamana hem fazla boyuta, bağlı alıyoruz. Zaman

ve fazla boyutun metrik katsayılarını da ortak ve iki boyuta birden bağlı kabul ediy-

oruz. Bu hali ile fazla boyutun üstlendiği görev zaman ile aynı. Böyle bir metriğe

tüm gerekli dört boyutlu kozmolojilerin lokal olarak gömülebileceği, beş boyutlu düz

bir uzay-zaman elde ediyoruz. Burada, ışımanın, maddenin veya karanlık enerjinin

ağırlıklı olduğu gibi farklı durumlar, serbest parametrelerin belirli değerlerine, her

seçenek de farklı bir koordinat sistemine karşılık geliyor. Bu olası koordinat sistem-

lerinden hangisinin kozmolojik koordinatlar olabileceği sorusunu ele alıyoruz. Kozmik

koordinatlar seçimimizde fazla boyutun negatif yönde uzanmamasını şart koşarak bir

zar-evren modeli elde ediyoruz. Bu modelde içerisi boş, tüm madde alanları zara

hapis olmuş durumda. Üç boyutlu uzay zamanın zardan uzakta sıfıra kadar küçülmesi

mümkün. Kısaca bizim dört boyutlu dünyamız bu dört boyutlu zardan oluşmakta.
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1. INTRODUCTION

We considered ourselves to be living in a three dimensional space until Einstein

changed our notion of time from a parameter to a dimension to explain electrodynamics

of moving bodies and led us to think in terms of a four dimensional spacetime. The

number of dimensions has been increasing ever since. With Kaluza [1] and Klein [2] the

four dimensions were augmented to five in an attempt to unite electromagnetism and

gravity and explain the quantization of electric charge. While we are plainly aware of

our four dimensional surroundings, nobody has been able to observe a fifth dimension

yet. Obviously extra dimensions are going to be helpful, but one needs to explain their

observational absence.

In time, the spirit of Kaluza-Klein theory grew into questioning of embedding

general relativity’s solutions into higher dimensions. Unless there was something spe-

cial to settle the number of dimensions, it would be most natural to consider an N

dimensional theory to be linked with a higher (N+1) dimensional one. Thus the idea

of embedding brought on the quest to embed four dimensional solutions of Einstein’s

equations into five dimensional flat solutions. In the original Kaluza-Klein theory, the

metric coefficients are independent of the fifth dimension, this is also known as the

cylinder condition. Also the internal space is compactified in a natural attempt to

explain its lack of observation. By relaxing Kaluza’s cylinder condition and allowing

components of the metric tensor to depend on the extra dimension, higher dimensional

theories became more fruitful. It turns out that standard four dimensional cosmological

models are special in that they can be embedded into five dimensional flat spacetimes.

As for all of the solutions in general, they can be embedded in the general canonical

metric [3].

The usefulness of a fifth dimension grew when Randall and Sundrum [4, 5] used

it to explain the hierarchy problem, which brought forth the concept of brane worlds.

Although important steps were made with all these works and many others, it seems

that there is still much to be done in order to completely understand internal extra
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dimensions. Today the number of dimensions have gone up to eleven or one can also

say that they came down from twenty six via superstrings with string or M-theory’s

quest to understand quantum effects of gravity and unite all fundamental forces [6].

Something as mysterious as extra dimensions is the dark energy. It was Hubble,

who first observed galaxies to be receding from each other. Today we are certain that

our universe is accelerating while expanding [7,8]. We have come up with the term dark

energy as the source of this accelerated expansion, yet we are not certain what it really

is, hence the name ”dark”. Perhaps the two mysterious concepts, dark energy and

extra dimensions, are connected with each other [9]. A recent attitude towards dark

energy is to explain it by a modification to the geometric side of Einstein’s equations.

One successful attempt which includes extra dimensions, is brane-world gravity, where

at high energies massive modes of graviton dominate, gravity leaks off the brane where

its weakening initiates acceleration [10].

In this work we want to approach this jungle of dimensions with purely cosmo-

logical concerns. We want to see what happens when we introduce an extra spacelike

dimension into the cosmological metric, in the same way that a timelike dimension

would be introduced. This way we will be putting forth symmetries between time and

the internal space, which brings up the question whether internal space can be as fun-

damental as time. Our main motivation is curiosity while our second motivation is to

see if we can obtain the effects of dark energy from this five dimensional metric without

having to introduce a cosmological constant. In the end we will achieve all relevant

four dimensional cosmologies as a four dimensional slice of a flat five dimensional cos-

mology. Thus we will have pointed out that our internal space is just as fundamental

as time and we will have obtained the expansion usually credited to the dark energy,

from an extra dimension under certain values for free parameters. We will discuss how

fixing the free parameters amounts to choosing different frames. Our choice of the cos-

mological frame will be the simplest frame that is also sensible in terms of dimensional

arguments. This choice will amount to a linearly expanding universe. We will conclude

by considering a braneworld version of our model where our four dimensional universe

is confined to a brane and the five dimensional bulk is empty.
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1.1. A brief review of mathematical and physical concepts that led to

Einstein’s equations

The first steps in the study of surfaces began with the flat Euclidean space. The

Euclidean space is an n−dimensional vector space over real numbers R. A vector space

V, consists of vectors u,v,w ∈ V and linear operations which are addition of vectors

and multiplication by scalars, a, b ∈ R or C. These operations are commutative

(i) a(u + v) = au + av

(ii) (a+ b)u = au + bu,

and associative

(iii) u + v = v + u

(iv) (u + v) + w = u + (v + w)

(v) (ab)u = a(bu).

The vector space includes a zero vector 0, for which

(vi) u + 0 = u,

an inverse −u, for each of its elements such that

(vii) (u) + (−u) = 0

and an identity element 1 where,

(viii) 1u = u.

Defined on an Euclidean space En are geometric objects such as points, lines, planes

and a positive definite inner product. The properties of the geometric objects are given

as axioms. The existence of a positive definite inner product allows one to introduce

length and orthogonality. Since length is a positive quantity, the positive definiteness

of the inner product is crucial in arriving at such a concept. Length in turn, allows

one to introduce coordinates.

A topological space (χ, τ), is a collection τ = {Ui|i ∈ I} of open sets Ui which

are also the subsets of a set χ. τ is required to include the empty set and χ itself, the

sub collection of another interval J such that for {Uj|j ∈ J} where
⋃
Uj ∈ τ and for

K a finite sub collection of I, include the intersections of the family {Uk|k ∈ K} with
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⋂
Uk ∈ τ . The metric d(x, y), to be said more on later, is a notion of length. Once a

topological space is furnished by a metric its topology can be given in terms of open

balls or cubes where the open ball Br(x) = {y ∈ Rn|d(x, y) < r} can be thought as

the inside of a ball of radius r, centered at y. Such a topological space is called the

metric space [11]. The metric space Rn, which is the n fold Cartesian product of real

numbers, can be described as an n−dimensional Euclidean space En, equipped with a

coordinate system. The objects that live in Rn are ordered n-tuples of real numbers,

(x1, x2, ..., xn).

En and Rn are flat spaces, like the surface of a pond when there is no wind. In

general one comes across curved surfaces and spaces with complicated topologies, like

a saddle. To study more general spaces we make use of manifolds. An n−dimensional

manifold M is Hausdorff, which means its points can be separated from each other in

the sense that the open sets to which the points belong do not intersect. M has a

countable basis of open sets and is locally an n−dimensional Euclidean space. That

is, although the manifold on the whole is curved and has a more complicated topology,

locally the working mechanisms of functions and coordinates on it are the same as on

Rn. This is to our advantage because we are more familiar with flat spaces then curved

ones and this allows us to express a manifold as patches of Rn sewn together.

A map φ : M → N takes an element of a set M to an element of a set N . If

the pth derivative of φ exists, and is continuous, φ is p−times differentiable and it is

called a Cp map. When a map is infinitely times differentiable it becomes a C∞ map.

A map that takes each element of M to only one element of N is a one-to-one map.

In a one-to-one map N may have elements that do not correspond to any element of

M . When all elements of N correspond to some element of M the map is onto. In an

onto map two different elements of M can correspond to the same element of N . A

map that is both one-to-one and onto is invertible. Since in a one-to-one and onto map

each element of M goes to a unique element of N , one can trace back an element of N

to which element of M it corresponds to under φ. A coordinate chart (U, φ) consists

of an open subset U of a set M and a one-to-one map φ that takes the elements of U

to an open region in Rn.
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In the definition of manifolds in terms of patches, the manifold is considered as

a collection of coordinate charts (Uα, φα) such that
⋃
α Uα = M . The Uα is said to

cover M . Moreover the intersection of charts is nonempty, Uα ∩ Uβ = ∅. The second

condition is what allows the charts to be sewn together smoothly, leaving nothing out.

Such a collection of every possible coordinate chart which consists of C∞ maps is called

a differentiable , or a C∞ manifold.

For a vector space V on R, a map φ : V× V → R that is linear in each variable

separately is said to be a bilinear form on V. The bilinearity means for a, b ∈ R,

v,v1,v2,w,w1,w2 ∈ V

(i) φ(av1 + bv2,w) = aφ(v1,w) + bφ(v2,w)

(ii) φ(v, aw1 + bw2) = aφ(v,w1) + bφ(v,w2)

On a basis {ei} of V if v = λiei, w = ηjej and if gij = φ(ei, ej) where the repeated

indices are summed over

φ(v,w) = φ(λiei, η
jej)

= λ1φ(e1, η
jej) + λ2φ(e2, η

jej) + ...+ λnφ(en, η
jej)

= λ1η1φ(e1, e1) + ....+ λ1ηnφ(e1, en) + λ2η1φ(e2, e1) + ...+ λnηnφ(en, en)

= λ1η1g11 + λ1η2g12 + ...+ λ2η1g21 + ...+ λnηngnn

φ(v,w) = gijλ
iηj (1.1)
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The last expression is similar to one that would arise in the multiplication of a matrix

g and two vectors v and w expressed in basis {ei}. This points out a one-to-one

correspondence between n× n matrices and bilinear forms once a basis is specified.

A manifold M is said to be Riemannian if it has a field of symmetric, where

φ(v,w) = φ(w,v), positive definite bilinear forms defined on it. In that case the

bilinear from is called the Riemannian metric. A positive definite symmetric bilinear

from φ(v,v) ≥ 0 equals zero only when v = 0. Such a bilinear form is the inner product.

The Riemannian metric is a symmetric positive definite bilinear form, hence it has an

inner product defined on it. The length of a C1 curve p(t) on a Riemannian manifold

stretching between t = [a, b] can be defined via the inner product of its infinitesimal

segments as

L =

∫ b

a

[
φ(
dp

dt
,
dp

dt
)

] 1
2

dt.

Since the length is independent of the choice of parametrization one can use the arc

length parametrization in a single coordinate chart (U, φ) with basis {e1p, ...enp} such

that φ(eip, ejp) = gij(x) and φ(p(t)) = x(t) = (x1(t), ..., xn(t)) ∈ Rn where p ∈ U and

p = xiei. This way the length is [12]

s = L(t) =

∫ t

a

(
gij(x)

dxi

dt

dxj

dt

) 1
2

dt (1.2)

This is usually interpreted as (ds
dt

)
1
2 = gij(x(t))dx

i

dt
dxj

dt
and results in the following ab-

breviation

ds2 = gij(x)dxidxj (1.3)

which gives the metric the notion of an interval of length.

So far we have been talking about Riemannian spaces. The metric signature

is the number of positive and negative eigenvalues of the metric. For Euclidean and
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Riemannian metrics the metric signs are all positive. When used in the sense of a

Riemannian space Euclidean space does not mean that it is necessarily flat. But we will

save the term for flat spaces. If the metric signature includes a single negative sign it is

called a Lorentzian or pseudo-Riemannian metric and indefinite if it includes a number

of negative and positive signs. The metric coefficients gµν will change depending on

the choice of coordinates. The form in which gµν = diag(−1, ..,−1, 1, .., 1, 0, .., 0) is

called the canonical form of the metric. In its canonical form the first derivatives

of the metric with respect to the coordinates vanish, the space is locally flat to first

order. Yet the second derivatives of the metric with respect to the coordinates remain

nonzero. It is these second derivatives that carry the information about the curvature

of the manifold. If they vanish also, then the space is globally flat. The coordinate

system that gives the canonical form is known as the locally inertial coordinates [13].

The discussion up until now has been about spaces of any dimension. We have

not yet said anything about time. In Newtonian physics there is the three dimensional

space and the parameter time. It was with Einstein that we began to perceive time not

as a parameter but as a dimension on its own. Therefore in general relativity we have

a four dimensional spacetime. Of course time is not the same kind of a dimension as

space, it governs causality and we still measure changes in space with respect to time.

Thus time should be introduced differently then space. As such the four dimensional

manifolds of general relativity are Lorentzian manifolds and time is the dimension with

a negative metric signature.

We have also been talking about manifolds being curved. We mentioned that the

metric carries the information weather a certain manifold is curved or flat. But we

have not yet said anything as to what may cause this curvature. The idea that lies at

the heart of general relativity is that spacetime is curved because of its matter content.

The matter content may be composed of pressure, p, and energy momentum density,

ρ, which is expressed in terms of a symmetric (2, 0) tensor, T µν , the stress energy

momentum tensor. If we assume the matter content to be free of stress and shear, like

a perfect fluid, the off diagonal elements of T µν all vanish. Its diagonal elements are

composed of p and ρ. The conservation of energy and momentum is expressed by the
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vanishing of its covariant derivative. As for curvature we have to go back to considering

the metric.

Let us write down a four dimensional Lorentzian metric

ds2 = gabdx
adxb = −dt2 + a2(t, xk)dxidxj (1.4)

with a, b = 1, 2, 3, 4,, i, j, k = 1, 2, 3 and repeated indices are summed over unless

otherwise noted. We can consider the coordinate system in which this metric is written

to be

ei = dxi (1.5a)

e4 = dt (1.5b)

then the nonzero metric coefficients are

g44 = −1 (1.6a)

gij = a2(t, xk). (1.6b)

Here we have to use the metric to raise and lower indices, for example T 4
2 = T 4aga2.

On the other hand we can choose the coordinate frame to be,

ei = a(t, xk)dxi (1.7a)

e4 = idt. (1.7b)

In this case gab = δab and it is easier to raise and lower indices. We will work in the

second frame where the coordinates are called orthonormal basis one forms. In general

differential forms are completely antisymmetric, (0, p) tensors. A one form corresponds

to a dual vector which transforms as θ̃j = Λi
jθi where vectors are (1, 0) tensors that

transform as Ṽ j = Λi
jV

i, under some transformation Λi
j.
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Curvature is a measure of how much a space, or in our case spacetime, deviates

from a flat manifold. It is expressed by the Riemann curvature tensor, and is invariant

of the choice of coordinates. If the components of Riemann curvature tensor Rµνλκ,

vanish in one frame, they vanish in all frames, and the manifold is flat. Otherwise the

manifold is curved irrespective of the frame. There is a theorem [12] which states that

for a given C∞ family of coframes e1, ...en defined on a neighborhood U that cover a

Riemannian manifold, there exists a uniquely determined set of C∞ connection forms

wij that satisfy

(i) deµ + wµλ ∧ eλ = 0

(ii) wµν + wνµ = 0

where the wedge product is an antisymmetric tensor product. Given a p form A and a

q form B

(A ∧B)µ1...µp+q =
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ] (1.8)

with the square brackets denoting anti symmetrization. The curvature two forms Ωi
j

are defined as

Ωµ
ν = dwµν + wµκ ∧ wκν . (1.9)

The components of the Riemann curvature tensor can be deduced from the curvature

two forms by

Ωµ
ν =

1

2
Rµ

νλκe
λ ∧ eκ. (1.10)

Since the wedge product is antisymmetric in the indices λ and κ, Rµ
νλκ is antisymmetric

under the exchange of its third and fourth indices. Ωµ
ν is antisymmetric due to the

antisymmetry of wµν , therefore Rµ
νλκ is also antisymmetric in its first and second

indices. This method is known as the Cartan’s formalism.
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We have discussed how to express the curvature of a manifold. Now the question

is how to relate the matter content with curvature. Einstein wanted to write down a

covariant equation, whose form would not change from one frame to another. Tensors

allow such a notation. The right hand side of the equation, governing the matter

content, was obviously going to be Tµν , it was the left hand side, that expresses the

curvature, which took more thought in the making. Tµν is a tensor of type (0, 2), in

order to keep covariance it should be equal to another tensor of the same type. The

components of the Riemann tensor Rλ
µνκ, which is of type (1, 3), form the components

of the Ricci tensor, Rµν by contracting the first and fourth indices,

Rµν = Rλ
µνλ. (1.11)

The Ricci tensor is of type (0, 2), and Einstein first wrote down his equations as

Rµν = 8πGNTµν . (1.12)

The conservation of energy momentum is expressed by the vanishing of the covariant

derivative of Tµν ,

OµT
µ
ν = 0. (1.13)

However the covariant derivative of Rµν is nonzero [13]. The left hand side of the

equation should have a tensor whose covariant derivative also vanishes. Although Rµν

measures curvature, for physical reasons we need another tensor for formulation. This

is the Einstein’s tensor, Gµν , defined as

Gµν = Rµν −
1

2
gµνR (1.14)

where the Ricci scalar, R = gµνRµν , is the trace of the Ricci tensor.
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Thus the geometry of a spacetime is engraved inside Einstein’s tensor, while Tµν

expresses the pressure and energy momentum density within that spacetime. As such

the phrase that spacetime is curved due to presence of matter, is formulated as

Gµν = 8πGNTµν . (1.15)

These are the Einstein’s field equations which will be put into use throughout the

rest of this work. Later on Einstein, realizing that the equations imply a dynamical

spacetime, added a constant to achieve static solutions,

Gµν = 8πGNTµν − gµνΛ. (1.16)

With Hubble’s discovery of the linear expansion of the universe, it was shown that

the universe is indeed dynamic, and Einstein removed this constant Λ. Today the

cosmological constant Λ is viewed as a possible explanation of the dark energy.

1.2. Embedding Theorems

According to Campbell’s theorem any analytic, n dimensional, Riemannian space

can be locally embedded in an (n + 1) dimensional, Ricci flat, Riemannian space

by adding either an extra space dimension or an extra time dimension. Therefore

n−dimensional solutions of Einstein’s equations to arbitrary energy-momentum ten-

sors can at least locally be embedded to (n + 1) dimensional vacuum solutions of

Einstein’s equations. This, turning the argument other way around, implies that once

we have an (n+ 1) dimensional metric

(n+1)dS2 = gab(x
c, L)dxadxb + εh2(xc, L)dL2 (1.17)

that satisfies field equations in vacuum, we can obtain non empty spacetimes on hy-

persurfaces where the (n + 1)th dimension is constant, L = constant. Here L refers

to the extra dimension which can be spacelike, ε = +1, or timelike ε = −1 . In
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our convention small case Latin indices run from 1 to 4 referring to four dimensional

spacetime, and Greek indices run from 1 to 5 referring to five dimensional spacetime.

The first three indices (123), also denoted by i or j, refer to xyz, 4 refers to time and

5 refers to internal space or the extra dimension. The locality of the theorem comes

from the fact that the n dimensional metric and field equations we obtain by setting

L = constant, restricts the situation around that hypersurface. We will not consider

the global properties of the embedding. As an application, Lidsey et al. [14] state the

set of conditions placed on the functional form of the higher dimensional metric co-

efficients and apply Campbell’s theorem to embed four dimensional gravitational and

electromagnetic plane waves to five dimensional Ricci flat spacetimes.

The n dimensional field equations are the (n + 1) dimensional field equations

on L = constant hypersurfaces. As a less restricted version, the Campbell-Magaard

theorem states that any n dimensional manifold can be locally embedded in an (n+ 1)

dimensional Einstein space. A modern and less rigorous version of the proof presents

the field equations in terms of three symmetric, n dimensional tensors namely, the

induced metric, extrinsic curvature and a tensor that resembles the components of

the (n + 1) dimensional curvature tensor outside of this n dimensional hypersurface.

These field equations do not contain any change of these three tensors with respect

to the internal dimension, meaning the same equations are to be satisfied on each

L = constant hypersurface. So in a sense the n dimensional field equations are actually

constraint equations. Moreover the number of independent dynamical quantities, which

are the elements of these tensors, are more than the number of field equations when

there are at least two dimensions, which means there are more free variables then

constrained ones. As such the line element on the L = constant hypersurface can be

chosen to correspond to any n dimensional Lorentzian manifold while still satisfying

the constraint equations. Thus it is possible to embed any n dimensional manifold in

an (n+ 1) dimensional Einstein space [15].

The Campbell’s theorem and other embeddings related with it, discuss the em-

bedding of curved spacetimes to Ricci flat spacetimes. Being Ricci flat means that

there is no pressure or energy density present. However, in order to be completely flat
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the spacetime must also have a zero Weyl tensor in addition to a zero Ricci tensor. Just

as a vanishing Ricci tensor indicates that the spacetime does not contain any matter in

the usual sense, a vanishing Weyl tensor indicates the absence of gravitational fields.

Among the four dimensional solutions of general relativity, FRW metrics are special

in that they can be embedded to five dimensional flat spacetimes, flat with both a

vanishing Ricci and a vanishing Weyl tensor.Most curved four dimensional solutions

cannot be embedded to flat five dimensions [16]. However any solution of the field equa-

tions in four dimensions with no ordinary matter, where dark energy is allowed, can

be expressed as a five dimensional metric with pure canonical form [3]. In the canon-

ical metric the four dimensional metric 4ds, is multiplied by the square of the extra

dimension and its metric coefficients are allowed to depend on the extra dimension

5dS2 =
L2

L2
0

(gab(x
c, L)dxadxb)± dL2 (1.18)

where L0 is just a constant with dimension of length. On the other hand, in the pure

canonical form the four dimensional metric tensor is independent of the extra dimension

5dS2 =
L2

L2
0

(gab(x
c)dxadxb)± dL2. (1.19)

In the case of FRW metrics it is stated, and applied for a few cases that, five dimensional

Minkowski metric with zero spatial curvature, M5, gives the complete FRW metric. It

is cautioned that the geodesics for the hypersurface in M5 appear as parabolas, contary

to common intuition for flat spacetimes. This is because of the metric signature and

the correct measure of the curvature clearly shows the flatness [17].

1.3. Space-Time-Matter and Braneworld Theories

The ability to embed a curved spacetime into a higher dimensional flat one brings

on the possibility to interpret matter as a geometrical effect coming from a higher

dimensional theory. According to general relativity spacetime is curved only in the

presence of energy and momentum or gravitational fields. A Ricci flat universe means
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a vacuum universe in terms of energy and momentum, which amount to matter such

as dust and radiation. Since we can embed a four dimensional curved spacetime, which

is nonempty, in a Ricci flat five dimensional universe we can hold the extra dimension

to be responsible of the material effects in four dimensions. This is the idea that lies

at the heart of Induced Matter (IM) or Space-Time-Matter (STM) theory. The metric

ansatz of Induced Matter theory is

5ds2 = eν(t,L)dt2 − ew(t,L)(dr2 + r2dΩ2)− eµ(t,L)dL2 (1.20)

where dΩ2 = dθ2 + sin2θdφ2. We write the above metric in the (+,−,−,−,−) conven-

tion as it appears in Wesson [18]. The five dimensional Einstein equations for vacuum

are

Rµν = 0, Gµν = 0

where as four dimensional field equations with matter are

Gab = 8πTab.

Of course the five dimensional Rµν includes terms that depend on the scale factor of

the extra dimension, ν, and partial derivatives of the scale factors with respect to the

extra dimension L. The four dimensional Gab with a nonzero Tab, corresponding to this

five dimensional Gµν in vacuum, is evaluated by collecting out these terms that arise

because of the extra dimension. That is to say, these terms in (5)G44 are collected out

as −(4)T44 and the rest are (4)G44 and those in (5)Gii are collected out as −(4)Tii and

the rest are (4)Gii. In this point of view the five dimensional field equations are written

as

(5)Rii =(4) Gii +(4) Tii = 0 (1.21a)

(5)R44 =(4) G44 +(4) T44 = 0 (1.21b)

(5)R55 = 0 (1.21c)
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To make it more clear, the field equations in five dimensions for metric (1.4) in

Wesson’s convention are

G4
4 = e−ν(−3ẇ2

4
− 3ẇµ̇

4
) + e−µ(

3w′′

2
+

3w′2

2
− 3µ′w′

4
) (1.22a)

G4
5 = e−ν(

3ẇ′

2
+

3ẇw′

4
− 3ẇν ′

4
− 3w′µ̇

4
) (1.22b)

Gi
i = G1

1 = −e−ν(ẅ +
3ẇ2

4
+
µ̈

2
+
µ̇2

4
+
ẇµ̇

2
− ν̇ẇ

2
− ν̇µ̇

4
) (1.22c)

+e−µ(w′′ +
3w′2

4
+
ν ′′

2
+
ν ′2

4
+
w′ν ′

2
− µ′w′

2
− ν ′µ′

4
) (1.22d)

G5
5 = −e−ν(3ẅ

2
+

3ẇ2

2
− 3ν̇ẇ

4
) + e−µ(

3w′2

4
+

3w′ν ′

4
). (1.22e)

Here the dot denotes differentiation with respect to time and prime denotes differenti-

ation with respect to internal space L. One obtains the apparent matter content of the

four dimensional spacetime by collecting out the terms that appear because of the pres-

ence of the fifth dimension. Setting the elements of four dimensional energy-momentum

tensor as (4)T 4
4 = ρ and (4)T 1

1 = −p gives

8πρ ≡ −3

4
e−νẇµ̇+

3

2
e−ν(w′′ + w′2 − µ′w′

2
) (1.23a)

8πp ≡ e−ν(
µ̈

2
+
µ̇2

4
+
ẇµ̇

2
− ν̇µ̇

4
) (1.23b)

−e−µ(w′′ +
3w′2

4
+
ν ′′

2
+
ν ′2

4
+
w′ν ′

2
− µ′w′

2
− ν ′µ′

4
) (1.23c)

This approach gives us two different ways to look at the same universe. It implies that

we can view the universe to be either four dimensional and curved or as five dimensional

and Ricci flat without matter.

STM starts out with the geometry of the bulk, which is a solution of five dimen-

sional field equations in vacuum. Our four dimensional world is obtained from the five

dimensional bulk by introducing the matter content as a geometric effect. The brane

is evaluated from the bulk. In braneworld theories on the other hand, one starts out

with a four dimensional brane containing matter, with a presupposed Tab and brane

tension which is related to the vacuum energy density, and arrives at the geometry of
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the bulk by imposing boundary conditions. The bulk effects the brane by a nonlocal

Weyl radiation field. This corresponds to the Eµν dependent extra terms that appear

in the effective four dimensional Gab due to the presence of internal space. These terms

resemble radiation because Eµν is a traceless tensor. STM wants to address matter as

the effect of a higher dimensional geometry while BW scenarios attempt to solve the

hierarchy problem. Although STM and BW theories arise from different motivations,

they share important common features in terms of their working principles. First of all

both allow for a nontrivial dependence on the internal space in the metric coefficients

and do not force any compactification on the extra dimension. The relaxation of such

constraints is what leads to a geometric interpretation of matter, as pointed out by

Wesson and Ponce de Leon in related works. In both Scenarios the four dimensional

metric, identified with our physical spacetime, is evaluated as a hypersurface in five

dimensions by setting L = constant in the solutions of the five dimensional field equa-

tions. The matter fields are confined to this hypersurface, or brane, as well as the

observers who cannot enter the bulk.

At first sight the two theories are complementary ways of embedding a four

dimensional world in a five dimensional one. Ponce de Leon [19] shows that both

actually carry the same properties when examined throughly. The STM equations can

be considered as the equations of gravity in a braneworld scenario of a Z2 symmetric

brane, where −L is identified with L, with a certain matter content. Both theories

arrive at the same effective matter in four dimensions. In this respect STM forms

the generating space for braneworld scenarios and can be shown to include the local

and nonlocal corrections to four dimensional gravity same as BW models. Therefore

the two theories are equal and this equivalence can be turned into an advantage to

overcome their shortcomings. In STM there are not enough physical restrictions to

determine all of the arbitrary functions that arise in field equations. In BW theories

the brane lacks of enough information for the reconstruction of the bulk. It is proposed

to use the physics on the brane, coming from the BW point of view, to restrict the

abundant freedom in STM.

Ponce de Leon introduces a normal vector orthogonal to spacetime for a metric
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of the form 5dS2 = gab(x
c, L)dxadxb + εΦ2(xc, L)dL2, with ε = ±1 whether the internal

space is timelike or spacelike. And writes down the four dimensional Einstein Tensor

and conservation equation with the motivation of STM as

(4)Gab = ε[Kc
cKab −KacK

c
b +

1

2
gab(KdeK

de − (Kc
c)

2)− Eab], (1.24)

ObP
b
a = 0. (1.25)

Here Kab = 1
2Φ
g′ab is the previously mentioned extrinsic curvature, and Eab =

(5)Ra5b5
Φ2 is

the other curvature related symmetric tensor. Written in this form the dependence of

the four dimensional Einstein tensor on the curvature of the five dimensional spacetime

evaluated at a certain hypersurface is quite clear. Moreover the quantity Pab is also

expressible in terms of extrinsic curvature as, Pab = Kab − gabKd
d.
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2. THE METRIC AND THE EINSTEIN TENSOR

The Friedmann-Robertson-Walker metric has the following form

ds2 = −dt2 + a2(t)dΣ2 (2.1)

where dΣ2 is the metric of three spacelike dimensions all of which have uniform cur-

vature. We use natural units with c = ~ = 1. The spacelike sections, being scaled by

a(t), may expand or contract in time. Therefore the scale factor a(t) is what gives us

the dynamics of this four dimensional spacetime. Because all three spatial dimensions

have the same scale factor they all change by the same amount, hence this universe

expands or contracts isotropically only with time. Here time is the proper time, which

is what an observer who sees the universe expand around him measures as time. Since

it doesn’t have a factor dependent on any of the spacelike dimensions in front of it, it

has the same value at every point. In other words the cosmological time is the proper

time at every point in this spacetime. The role of time is fundamental here.

We will consider a metric of the form

ds2 = f 2(t)g2(w)[−dt2 + dw2] + a2(t)b2(w)
dx2 + dy2 + dz2

(1 + κ(x2+y2+z2)
4

)2
(2.2)

where κ is the curvature of spacelike sections with the values −1 for negatively curved,

0 for flat, +1 for positively curved, we can always make a coordinate transformation

so that

dT = f(t)dt (2.3a)

dW = g(w)dw (2.3b)

ds2 = −G2(W )dT 2 + F 2(T )dW 2 + A2(T )B2(W )
dx2 + dy2 + dz2

(1 + κ(x2+y2+z2)
4

)2
. (2.4)
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Here T may be called the cosmological time because it is the only coordinate that

an observer will measure as time. But the value measured will change for different

observers at different points in W , because we cannot get rid of the factor of W in

front of time. We cannot get rid of the factor of time in front of W the internal

space either. As such, the role of internal space in this five dimensional universe is

as fundamental as the role time plays here. We will carry on our calculations in the

coordinates where the metric is as it is in Equation 2.2.

The observable three spacelike dimensions share the same scale factor and are

again isotropic. Here they do not evolve only in time but in w as well. Although

our internal space, w, is a spacelike dimension, it works as a timelike extra dimension

would.

Our basis one forms are

e4 = if(t)g(w)dt, i =
√
−1 (2.5a)

e5 = f(t)g(w)dw (2.5b)

ei = a(t)b(w)
dxi

1 + κr2

4

(2.5c)

and we use the metric gµν = diag(1, 1, 1, 1, 1) with i = 1, 2, 3. Using Cartan’s for-

malism and leaving the details of the calculation to the appendix, we get the curvature

two forms to be

Ωi
j =

[
ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)
+

κ

a2(t)b2(w)

]
ei ∧ ej (2.6)
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Ωi
4 =

[
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
+

b′(w)g′(w)

b(w)f 2(t)g3(w)

]
e4 ∧ ei

+

[
ȧ(t)b′(w)

ia(t)b(w)f 2(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)

]
e5 ∧ ei (2.7)

Ωi
5 =

[
b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)

]
e4 ∧ ei

+

[
b′′(w)

b(w)f 2(t)g2(w)
− b′(w)g′(w)

b(w)f 2(t)g3(w)
− ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)

]
e5 ∧ ei (2.8)

Ω4
5 =

[
− ḟ(t)2

f 4(t)g2(w)
+

f̈(t)

f 3(t)g2(w)
+

g′(w)2

g4(w)f 2(t)
− g′′(w)

g3(w)f 2(t)

]
e4 ∧ e5 (2.9)

where differentiation with respect to w and t are denoted as

ḣ =
∂h

∂t

h′ =
∂h

∂w
.

We get the Riemann tensor Rµνλx from curvature two forms by

Ωµ
ν =

1

2
Rµ

νλxe
λ ∧ ex
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and the components of our Einstein tensor by

Gµν = Rµν −
1

2
gµνR

where R is the Ricci Scalar R = gµνRµν . All this gives us the following

Gii = −2
b′′(w)

b(w)f 2(t)g2(w)
+ 2

ä(t)

a(t)f 2(t)g2(w)
+

ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)

+
κ

a2(t)b2(w)
− ḟ 2(t)

f 4(t)g2(w)
+

f̈(t)

f 3(t)g2(w)
+

g′2(w)

f 2(t)g4(w)
− g′′(w)

f 2(t)g3(w)
(2.10)

G44 = 3
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
+ 3

b′(w)g′(w)

b(w)f 2(t)g3(w)
− 3

b′′(w)

b(w)f 2(t)g2(w)

+3
ȧ2(t)

a2(t)f 2(t)g2(w)
− 3

b′2(w)

b2(w)f 2(t)g2(w)
+ 3

κ

a2(t)b2(w)
(2.11)

G55 = 3
ä(t)

a(t)f 2(t)g2(w)
+ 3

ȧ2(t)

a2(t)f 2(t)g2(w)
+ 3

κ

a2(t)b2(w)

−3
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− 3

b′2(w)

b2(w)f 2(t)g2(w)
− 3

b′(w)g′(w)

b(w)f 2(t)g3(w)
(2.12)

G54 = 3[
b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
] (2.13)
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3. VACUUM SOLUTIONS IN FIVE DIMENSIONS

Now let us consider the vacuum solutions for flat spacelike sections, that is solu-

tions to Gµν = 0 with κ = o.

From Gii = 0 we get

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ 2(t)

f 2(t)
+
f̈(t)

f(t)
= 2

b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
(3.1)

The right hand side of this equation is purely w−dependent, and the left hand side

purely t−dependent. The only way these two sides are equal to one another is if they

are equal to the same constant k. Thus out of Gii we get the following two equations

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ 2(t)

f 2(t)
+
f̈(t)

f(t)
= k (3.2)

and

2
b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
= k (3.3)

With the same reasoning we get from G44 = 0

ȧ(t)ḟ(t)

a(t)f(t)
+
ȧ2(t)

a2(t)
= l (3.4)

b′′(w)

b(w)
+
b′2(w)

b2(w)
− b′(w)g′(w)

b(w)g(w)
= l (3.5)

and from G55 = 0

ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ȧ(t)ḟ(t)

a(t)f(t)
= m (3.6)
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b′2(w)

b2(w)
+
b′(w)g′(w)

b(w)g(w)
= m (3.7)

Thus we have two sets of equations, one set related to t and the other related to

w. We will solve these two sets first and check whether the solutions satisfy G54 = 0,

which gives

1− a(t)ḟ(t)

ȧ(t)f(t)
=
g′(w)b(w)

g(w)b′(w)
= constant. (3.8)

Let’s first look at the set related to t, whose solution will give us a(t) and f(t)

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ 2(t)

f 2(t)
+
f̈(t)

f(t)
= k (3.9)

ȧ(t)ḟ(t)

a(t)f(t)
+
ȧ2(t)

a2(t)
= l (3.10)

ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ȧ(t)ḟ(t)

a(t)f(t)
= m (3.11)

We can get an equation for a(t) by adding the last two equations,

ä

a
+ 2

ȧ2

a2
= m+ l. (3.12)

If we consider a solution of the form a(t) = a0e
νt and plug this in Equation 3.12

we get

a(t) = a0 exp

[√
(m+ l)

3
t

]
. (3.13)
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By imposing this solution on Equation 3.11 we obtain

f(t) = f0 exp

[
2l −m√
3(m+ l)

t

]
(3.14)

When the solutions in Equation 3.14 and Equation 3.13 are inserted into Equa-

tions 3.9, 3.10, 3.11 we find that Equation 3.10 and Equation 3.11 are satisfied identi-

cally where as Equation 3.9 imposes the condition

m+ l = k. (3.15)

A similar approach to the w related set of equations,

2
b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
= k (3.16)

b′′(w)

b(w)
+
b′2(w)

b2(w)
− b′(w)g′(w)

b(w)g(w)
= l (3.17)

b′2(w)

b2(w)
+
b′(w)g′(w)

b(w)g(w)
= m, (3.18)

gives

b(w) = b0 exp

[√
(m+ l)

3
w

]
(3.19)

and

g(w) = g0 exp

[√
3(2m− l)√
m+ l

w

]
(3.20)
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where Equation 3.16 imposes the same condition m + l = k. Moreover our solutions

imply that

k = m+ l ≥ 0 (3.21)

since they each contain a
√

(m+ l) term. With these solutions G54 = 0 is satisfied as

well.

Thus the vacuum solutions of our five dimensional metric with flat spacelike

sections are

ds2 = f 2
0 g

2
0exp

[
4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w

]
(−dt2 + dw2)

+a2
0b

2
0exp

[
2

√
m+ l

3
(t+ w)

]
[dx2 + dy2 + dz2] (3.22)

By redefining parameters

M1 =
2l −m√
3(m+ l)

, (3.23a)

M2 =
2m− l√
3(m+ l)

(3.23b)

and rescaling coordinates we can write our metric in its simplest form as

ds2 = e2(M1t+M2w)[−dt2 + dw2] + e2(M1+M2)(t+w)[dx2 + dy2 + dz2] (3.24)
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4. THE EFFECTIVE FOUR DIMENSIONAL SOLUTION

We will now consider the above solution of the vacuum five dimensional spacetime

at some w = w0 where w0 is a constant. Such a way of considering four dimensional

hypersurfaces along constant internal space amounts to local embedding of four dimen-

sional spacetimes into five dimensions. At w = w0 spacetime metric becomes

ds2 = f 2
0 g

2
0exp[

4m− 2l√
3(m+ l)

w0]exp[
4l − 2m√
3(m+ l)

t](−dt2)

+a2
0b

2
0exp[2

√
m+ l

3
w0]exp[2

√
m+ l

3
t][dx2 + dy2 + dz2] (4.1)

f0g0exp[
2m−l√
3(m+l)

w0] is just a constant so we can set it equal to another constant F0.

With

F0 = f0g0exp[
2m− l√
3(m+ l)

w0],

A0 = a0b0exp[

√
m+ l

3
w0]

we can write our solution as

ds2 = −F 2
0 exp[

4l − 2m√
3(m+ l)

t]dt2 + A2
0exp[2

√
m+ l

3
t][dx2 + dy2 + dz2]. (4.2)

To write this in terms of the cosmological proper time consider the following

coordinate transformation

dt̃ = F0exp[
2l −m√
3(m+ l)

t]dt. (4.3)
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To simplify the notation we will define

β =

√
m+ l

3
,

and

α =
3β

2l −m
.

With all this our coordinate transformation gives,

t̃ = F0αe
[ t
α

] (4.4)

and

e2βt = (
t̃

F0α
)2βα. (4.5)

This coordinate transformation has turned our solution into

ds2 = −dt̃2 + A2
0t̃

2αβ[dx2 + dy2 + dz2]. (4.6)

We can always absorb A0 into ~r by a coordinate transformation. So if we drop the

tilde, define αβ = n our metric in its simplest form becomes

ds2 = −dt2 + t2n[dx2 + dy2 + dz2]. (4.7)

The metric in Equation 4.7 contains all the relevant four dimensional cosmologies

with ordinary matter. For n = 2
3

we have matter dominated universe, for n = 1
2

we

have radiation dominated universe.
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Furthermore by setting m = 2l in Equation 4.1 we get

ds2 = f 2
0 g

2
0e

2
√
lw0 [−dt2] + a2

0b0e
2
√
lw0e2

√
lt[dx2 + dy2 + dz2]. (4.8)

Before explaining what we have obtained let us simplify this metric further first.

The factor e2
√
lw0 is just a constant which can be set to c2

0. We can also absorb all the

constants into dt2 by the coordinate transformation,

dτ = f0g0c0dt

τ − τ0

f0g0c0

= t (4.9)

and define a0b0c0exp[− τ0
f0g0c0

] = A2
0 so that we have

ds2 = −dτ 2 + A2
0e

[ 2
√
l

f0g0c0
τ ]
d~r2. (4.10)

Let us denote τ by t and set α =
√
l

f0g0c0
, the constant A0 can also be absorbed into d~r

ds2 = −dt2 + e2αtd~r2. (4.11)

Thus we have obtained an exponential scale factor, a behavior attributed to dark energy

with α = H0 where H0 is approximately today’s value of Hubble’s parameter.

As such we have shown how it is possible to obtain all relevant four dimensional

cosmologies with radiation, matter, inflation and dark energy from our five dimensional

metric. Of course each case corresponds to different values of the parameters and we

are not yet able to switch from one case to another.
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5. THE CURVATURE AND WEYL TENSORS

So far we have arrived at a five dimensional spacetime whose four dimensional

hypersurfaces correspond to relevant cosmologies. At this point it is important to

consider the flatness of the five dimensional model to gain further insight. Therefore

we will now calculate the Ricci tensor, which carries information about the ordinary

matter content of the universe, and the Weyl tensor, which informs of the presence

of gravitational fields. A zero Ricci tensor corresponds to a Ricci flat metric, and a

vanishing Weyl tensor corresponds to a conformally flat metric. A flat metric is the

one that is both Ricci flat and conformally flat.

Components of the Weyl tensor in our convention of Ricci tensor Rνλ = Rµ
νλµ,

metric sign (−,+,+,+), are calculated as

Cρσµν = Rρσµν +
1

d− 2
(gρµRνσ − gρνRµσ − gσµRνρ + gσνRµρ)

− 1

(d− 1)(d− 2)
(gρµgνσ + gρνgµσ)R (5.1)

where d is the number of dimensions.

For our five dimensional solution, in Equation 3.22,

Rijij = [f 2
0 g

2
0exp(

4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w)]−1(
m+ l

3
− m+ l

3
) = 0

Ri44i = [f 2
0 g

2
0exp(

4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w)]−1(

√
m+ l

3

l +m√
3(m+ l)

− m+ l

3
) = 0
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Ri45i = Ri54i =
1

if 2(t)g2(w)
[
m+ l

3
−
√
m+ l

3

m+ l√
3(m+ l)

] = 0

Ri55i =
1

f 2(t)g2(w)
[
m+ l

3
−
√
m+ l

3

m+ l√
3(m+ l)

] = 0

R4545 =
1

f 2(t)g2(w)
[− ḟ

2

f 2
+
f̈

f
+
g′2

g2
− g′′

g
] = 0

all the components of Riemann curvature tensor are zero. Therefore the Ricci Scalar,

all components of Rµν , and the Weyl tensor for the Ricci flat five dimensional metric

are all zero. Our five dimensional universe is Ricci flat, meaning it contains no energy

nor momentum density, and conformally flat, it doesn’t contain any gravitational fields

either, in short it is flat and empty.

The Ricci flatness of the metric does not guarantee that it will be conformally

flat. It is possible to have Ricci flat solutions with nonzero Rρσµν . Our universe turned

out to be conformally flat because all of its Rρσµν vanish.

It is a well established fact that the Friedmann-Robertson-Walker (FRW) metric

can be put in a conformally flat form [20,21]. It has been further pointed out that [22,23]

calculations on the age of the universe and its matter density carried out in conformally

flat spacetime (CFS) coordinates agree better with the observations then those carried

out in FRW coordinates. With such emphasis on the conformal flatness of our universe,

it is an achievement to be able to embed standard four dimensional conformally flat

cosmology in a five dimensional flat spacetime in this work on higher dimensional

cosmologies.
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6. PHYSICAL IMPLICATIONS

6.1. Transformations involving internal space and time

So far we have obtained the following metric for a flat five dimensional universe

ds2 = e2(M1t+M2w)[−dt2 + dw2] + e2(M1+M2)(t+w)[dx2 + dy2 + dz2]. (6.1)

We have seen that we can derive all relevant four dimensional cosmological solutions

from this metric at some w = constant slice, by adjusting the free parameters M1 and

M2.

We wish to consider SO(1,1) transformations of the t and w coordinates which

leave −dt2 + dw2 interval invariant. That is,

−dt2 + dw2 = −dt̃2 + dw̃2 (6.2)

which is the usual Lorentz transformation with a parameter α, a boost along w where

t and w are transformed as

t̃ = (coshα)t+ (sinhα)w (6.3a)

w̃ = (sinhα)t+ (coshα)w. (6.3b)

Of course we would like to express the general parameter α in terms of the parameters

of our metric. The hyperbolic functions are obliged to satisfy the following identity

(coshα)2 − (sinhα)2 = 1. (6.4)
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If we define coshα and sinhα as

coshα =
M1√

(M2
1 −M2

2 )
(6.5a)

sinhα =
M2√

(M2
1 −M2

2 )
(6.5b)

the identity is satisfied. Therefore the rapidity for our spacetime, defined in terms of

the parameters that appear in our metric is α = cosh−1[ M1√
(M2

1−M2
2 )

]. As such t and w

expressed in terms of t̃ and w̃ is

t = (coshα)t̃− (sinhα)w̃ =
M1√

(M2
1 −M2

2 )
t̃− M2√

(M2
1 −M2

2 )
w̃ (6.6a)

w = −(sinhα)t̃+ (coshα)w̃ = − M2√
(M2

1 −M2
2 )
t̃+

M1√
(M2

1 −M2
2 )
w̃ (6.6b)

This transformation effects the scale factor of [−dt2 + dw2] as

M1t+M2w =
√

(M2
1 −M2

2 )t̃ (6.7)

and the scale factor of three space as

t+ w =
√

(M2
1 −M2

2 )(t̃+ w̃). (6.8)

Thus the metric ds2 = e2(M1t+M2w)[−dt2 + dw2] + e2(M1+M2)(t+w)[dx2 + dy2 + dz2] trans-

forms into

ds2 = e2
√

(M2
1−M2

2 )t̃[−dt̃2 + dw̃2] + e2
√

(M2
1−M2

2 )(t̃+w̃)[dx2 + dy2 + dz2]. (6.9)

Apparently we can remove the w−dependent part of the scale factor in front of

[−dt2 + dw2] by a boost along w. The scale factor of three spatial dimensions which

depends on (t+ w) continues to do so as in the form of (t̃+ w̃) with only a change in

the coefficient, hence (t+ w) is a lightlike coordinate.
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We can redefine M2
1 −M2

2 as µ2 and write this metric as

ds2 = e2µt̃[−dt̃2 + dw̃2] + e2µ(t̃+w̃)[dx2 + dy2 + dz2]. (6.10)

This is as if we have set M2=0 via a transformation. At this point we would like

to point out that setting the parameters M1 and M2 to certain values amounts to

choosing different frames. These frames aren’t all equivalent because we will pick out

one of them to be the cosmological frame, whose time dimension will be the time

referred to as cosmological time. The choice is the one in which the scale factor of

time is unity. This frame is among those where M2 = 0 because the scale factor of

time here, as in metric of Equation 6.10, can be set to one by the following coordinate

transformation

dτ = eµt̃dt̃ (6.11)

which makes eµt̃ = µτ . We will drop the tilde on w from now on and write the metric

in these coordinates

ds2 = −dτ 2 + µ2τ 2dw2 + µ2τ 2e2µw[dx2 + dy2 + dz2]. (6.12)

As such the dimensions of [τ ], [w] and the three space coordinates [x],[y],[z] are all equal

to length where as, [µw], being the variable of the exponential function, is dimension-

less. This form of the metric is appropriate as far as the dimensions are concerned. τ

is the cosmological time and we pick this frame as the cosmological frame. In time this

universe expands linearly and it does not contain dark energy. So in a sense our choice

of the cosmological frame, is the simplest cosmological case. On the other hand we were

able to obtain dark energy for the four dimensional slice from metric in Equation6.1

by setting M1 = 0, in chapter 4. As we have argued, metric in Equation 6.1 and in

Equation 6.12 are different frames, the time coordinate in one is not the same as the

time coordinate of the other. If there is a physical reason for us to choose the time of

Equation 6.1 as the cosmological time, it may be the dark energy.
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6.2. A test particle moving along w in the cosmological frame

We will continue on considering the frame where the metric is of the form written

in Equation 6.12. This time we are concerned about the geodesics of test particles.

ds2 = −dτ 2 + µ2τ 2dw2 + µ2τ 2e2µw[d~x2] (6.13)

where d~x2 = dx2 + dy2 + dz2. The action of the particle is expressed as S = −
∫
ds =∫

dτL. Proceeding in this direction

ds2 = −dτ 2[1−M2
1 τ

2ẇ2 − µ2τ 2e2µw~̇x2] (6.14)

here dot refers to differentiation with respect to τ . Due to our (− + + + +) choice of

the metric signature ds =
√
−ds2, which gives,

ds = dτ [1− µ2τ 2ẇ2 − µ2τ 2e2µw~̇x2]
1
2 . (6.15)

For small values of µ2τ 2ẇ2 and µ2τ 2e2µw~̇x2 we can approximate this as

ds ' dτ [1− 1

2
µ2τ 2ẇ2 − 1

2
µ2τ 2e2µw~̇x2]. (6.16)

Thus

S = −
∫
ds =

∫
[−1 +

1

2
µ2τ 2ẇ2 +

1

2
µ2τ 2e2µw~̇x2]dτ =

∫
Ldτ (6.17)

and

L = −1 +
1

2
µ2τ 2ẇ2 +

1

2
µ2τ 2e2µw~̇x2. (6.18)

Let us consider the equations of motion for ~̇x = 0, where the x, y, z coordinates
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of the particle are held fixed.

d

dτ
(
∂L
∂ẇ

) =
∂L
∂w

d

dτ
(M2

1 τ
2ẇ) = M3

1 τ
2e2M1w~̇x2

using the constraint on ~x

d

dτ
(µ2τ 2ẇ) = 0

µ2τ 2ẇ = constant = C (6.19)

We can solve this as

dw

dτ
=

C

µ2τ 2

dw =
C

µ2

dτ

τ 2

w = w0 −
C

µ2τ
(6.20)

This is the geodesic for a particle moving along the extra dimension in time. Of course

this solution is an approximation for small ẇ. In the limit τ → ∞ the test particle

moving along internal space approaches a certain slice w0. In a sense, in time the

test particles become confined to w0, as far as their motion along internal space is

concerned, and they can never go further behind.
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6.3. A braneworld scenario

Let us go back to consider the Lagrangian with the small µ2τ 2ẇ2 and µ2τ 2e2µw~̇x2

approximation,

L = −1 +
1

2
µ2τ 2ẇ2 +

1

2
µ2τ 2e2M1w~̇x2. (6.21)

The µ2τ 2 coefficients of ẇ and ~̇x are due to linear expansion of the universe. The −1

term is to be interpreted as some potential and velocity squared terms, ẇ2 and ~̇x2, as

kinetic energy. In this respect, particles moving along w have unit mass where as those

moving along the three spatial dimensions have the mass e2µw related to w. It is as

if particles along three space gain mass via a contribution coming from the internal

dimension. The mass e2µw will increase as w becomes more and more positive and

decrease as w becomes negative. If we are to relate mass with w, it is more convenient

to have the mass increase as the particle travels further along w. This means something

should prevent the internal dimension stretching in the negative direction. With this

motivation in mind we rewrite our metric as

ds2 = −dτ 2 + µ2τ 2dw2 + µ2τ 2e2µ|w|d~x2. (6.22)

Braneworld scenarios start with the introduction of Z2 symmetry, which identifies a

dimension streching in the negative direction (−w), with its other half streching in

the positive direction (w). Our inclusion of absolute value in the metric has the exact

effect. Here we will write down the Einstein tensor for this metric right away, leaving

the calculations for the appendix. With the following as the nonzero components of

Riemann curvature tensor

Rii = 2
δ(w)

µτ 2
(6.23a)

R55 = 6
δ(w)

µτ 2
, (6.23b)
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the nonzero components of the Einstein tensor are

Gii = −4
δ(w)

µτ 2
(6.24a)

G44 = −6
δ(w)

µτ 2
(6.24b)

where index i refers to (x, y, z), 4 refers to τ and 5 refes to w. The restriction of

internal space, w, to be positive has created curvature only along the four dimensional

spacetime, and this curvature is related to the fifth dimension. Rµν , with only spatial

and internal space elements being nonzero, is well adjusted to give zero pressure along

the fifth dimension with nonzero energy density and pressure along the four dimensions.

Since Gµν = 8πGNTµν , we see that

Gii = −κp→ p = 4
δ(w)

κµτ 2
(6.25a)

G44 = κρ→ ρ = −6
δ(w)

κµτ 2
(6.25b)

G55 = −κq → q = 0 (6.25c)

where κ is the five dimensional gravitational constant which is positive. The energy

momentum tensor, T µν , turned out to be proportional to δ(w) because of the absolute

value involved in the metric, which gives rise to the dirac delta via its second derivative,

while physically refraining w from becoming negative. So the pressure and energy

density we have along the four dimensional spacetime is confined to the w = 0 slice.

The equation of state for our spacetime is

p

ρ
= −2

3
(6.26)

which is the equation of state for a cosmic wall [24, 25]. Our restriction of w to be

positive actually meant the introduction of a brane at w = 0. We now see that by

including a brane in our five dimensional universe we have restricted ourselves to live

on that brane. Moreover the bulk of this universe is empty since both p and ρ are

proportional to δ(w) and q is zero.
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Notice that unless the constant µ is negative the energy momentum density of this

universe is going to be negative which can be problematic. By setting µ to be negative

not only do we avoid such possible problems, but we can also achieve a compactification

scheme. Therefore let us redefine µ = −M < 0, to obtain the metric

ds2 = −dτ 2 +M2τ 2[dw2 + e−2M |w|d~x2]. (6.27)

Now as one moves along the internal space, away from the w = 0 brane, the exponential

scale factor tends to zero and the three dimensional space shrinks. In fact it disappears

by approaching zero in the limit where w → ±∞. In this respect we can say that we

are not aware of this extra dimension w, because we are confined to the brane. We

are confined to the brane because there is no energy density nor pressure outside the

brane, moreover the three dimensional space is too small away from the brane for us

to be a part of. So in a sense away from the the brane this spacetime is effectively

two dimensional with only τ and w. Usually one of the reasons given in explaining

the absence of observation of the extra dimension is to suggest that it is too small.

Contrary to that convention here we are suggesting that the three dimensional space is

too small away from the brane. To make this shrinking of the three dimensional space

as small as possible, the value of M should be chosen to be large. This braneworld

universe is neither Ricci flat nor conformally flat. It contains both energy momentum

density and gravitational fields.

As a last remark we would also like to consider the geodesics of this brane world

with the metric in form

ds2 = −dτ 2 + µ2τ 2dw2 + µ2τ 2e2µ|w|d~x2. (6.28)

From S = −
∫
ds =

∫
dτL,

L = −[1− µ2τ 2ẇ2 − µ2τ 2e2µ|w|~̇x2]
1
2 . (6.29)
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If we again consider the spatial coordinates x, y, z to be fixed, the equations of motion

for w, d
dτ

( ∂L
∂ẇ

) = ∂L
∂w

, give

d

dτ
(

µ2τ 2ẇ√
1− µ2τ 2ẇ2

) = 0. (6.30)

This means

µ2τ 2ẇ√
1− µ2τ 2ẇ2

= C = constant

ẇ =
C

µ2τ 2(µ2τ 2 + C2)

w − w0 = − 1

µ
ln|
C
µ

+
√
τ 2 + C2

µ2

τ
| (6.31)

If we are to calculate the acceleration of an object falling along the z direction, with

x, y, w held fixed we have to solve the following equation for z̈

d

dτ
(

µ2τ 2e2µ|w|ż√
1− µ2τ 2e2µ|w|ż2

) = 0

which gives

z̈ = −2
ż

τ
+ µ2τe2µ|w|ż3. (6.32)

We can always absorb the µ in front of d~x2 into ~x2 by rescaling x, y, z

ds2 = −dτ 2 + µ2τ 2dw2 + τ 2e2µ|w|d~x2. (6.33)
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Now consider µ set equal to 0,

ds2 = −dτ 2 + τ 2d~x2 (6.34)

and consider the acceleration along z,

z̈ = −2
ż

τ
(6.35)

This means

lnż = −2lnτ + a0

ż =
a

τ 2

z = z0 −
a

τ

where a0 and a are constants. We can always shift the origin of the coordinate system

and write this as

z = z0 −
a

τ0 + τ
. (6.36)

Let us do a further approximation where

z = z0 − a(τ0 + τ)−1 ' z0 − aτ0(1− τ

τ0

).

A redefinition of constants to ease notation will give

z = cτ + d. (6.37)
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This approximation shows us that in a linearly expanding universe the coordinate z

evolves linearly as well. In Equation 6.36 as τ →∞, z approaches a constant value, as

if it is held fixed. In a sense z is stationary, it just evolves as the spacetime evolves.
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7. CONCLUSION

As we pointed out in the beginning, it has been shown that four dimensional

curved spacetimes can be embedded in five dimensional flat or Ricci flat spacetimes [17].

The former branch has been well studied in literature. It is stated that a matter and

radiation dominated four dimensional universe can be embedded in a five dimensional

vacuum universe [26,27] and the accelerated expansion of the universe can be obtained

via extra dimensional models [28]. In this work we have obtained all relevant cosmolo-

gies, including dark energy dominated cosmology, as four dimensional slices of a flat,

five dimensional metric. We were able to do this by allowing the internal dimension

to be fundamental, like time. We name the internal space as fundamental because it

affects all the scale factors including that of time. Moreover, although the internal

space is a spacelike dimension, the linear combinations of time and the internal space

may transform as lightlike coordinates.

We should like to point out that this thesis does not present a detailed cosmolog-

ical model. In standard four dimensional cosmology, the equation of state that governs

the expansion of the universe with time, changes for physical reasons. The early uni-

verse goes through different phases, starting with radiation dominated moving on to

dust dominated, and so forth by a power law, a(t) = tn, where the value of n changes

from one era to another with time. In our model the change of n may be obtained

by a pseudo rotation involving internal space and time. Although we can embed all

these cases into the same five dimensional metric we are not able to switch from one

to another because our parameter n does not depend on time. To turn our model

into a physically better suited one it would be necessary to find a different reason

for the changes of the time variable to explain this change of n with time which gives

the correspondence with radiation dominated, dust dominated, dark energy dominated

eras.

We have pointed out that fixing the free parameters amounts to choosing different

frames. We have picked out the cosmological frame to be the one in which the scale
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factor of time is unity and this frame gave us a linearly expanding universe. Thus from

dimensional arguments we have shown that, in a universe where the only dimensional

constant is the speed of light, the preferred change of scale size in time amounts to linear

expansion. This inevitably brings to mind the present relationship between Hubble’s

parameter H0, and life time of the universe t0, being H0t0 = 1. If this relationship is

valid for all times that would indicate a linearly expanding universe. With this in mind

our choice of the cosmological frame might indeed be the suitable choice. On the other

hand, among the possible frames, the ones that contain dark energy are more complex

and have w dependent scale factors for time. A physical reason to choose one of these

as the cosmological frame would be dark energy.

We have also discussed a braneworld version of our cosmological frame by putting

a brane at w = 0. Our world turns out to be a linearly expanding universe, confined to

the brane. It is also the largest universe in size. The other worlds at different w−branes

are also linearly expanding universes, and the Hubble time is the same for all of them.

The only difference between our universe and these others is that their scale size is

smaller by a factor of e−M|w|. A more detailed discussion of how cosmological models

can be incorporated into brane world scenarios can be found in [29]. Dvali and collab-

orators [30] present a mechanism by which the correct four dimensional gravitational

potential may be obtained for static 3-branes embedded in five dimensional Minkowski

space. One of the possible cases to where their mechanism can be applied to consists

of matter fields confined to the brane. In our braneworld scenario the 3-brane is dy-

namic yet the matter fields are still confiend to the brane. Therefore it may be possible

to apply the same mechanism here and obtain an expression for the four dimensional

gravitational potential with cosmic dynamics.

A Ricci flat spacetime is empty in terms of matter, meaning it contains no pressure

or energy density. A vanishing Weyl tensor, which represents the conformal flatness,

points the absence of gravitational fields. Therefore a flat universe must be both

Ricci flat and Conformally flat, containing neither matter nor gravitational fields. The

ability to embed conventional four dimensional cosmologies in Ricci flat five dimensional

spacetimes not only presents a simpler frame to consider the situation in but also gives
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a geometric explanation of observed material effects, this has been the subject of the

briefly mentioned literature. Conformal flatness, on the other hand, is one of the key

properties of standart cosmology. Our five dimensional spacetime in which all relevant

cosmologies can be locally embedded, is both Ricci flat and conformally flat. Therefore

we have achieved the embedding of all relevant four dimensional cosmologies in a flat

five dimensional spacetime.

The common intuition would be to imagine a four dimensional space expanding

along time. Instead what we have introduced here, and in [31], is the three dimensional

space expanding along both time and internal space. So in a sense we should visualize

this as a four dimensional spacetime evolving along the extra dimension.
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APPENDIX A: The calculation of curvature two forms in

chapter 2

We will now give the details of the calculations done in evaluating the Einstein’s

tensor, for the metric

ds2 = f 2(t)g2(w)[−dt2 + dw2] + a2(t)b2(w)
d~r2

(1 + κ~r2

4
)2

(A.1)

where ~r2 = x2 + y2 + z2. The basis one forms are

e4 = if(t)g(w)dt (A.2a)

e5 = f(t)g(w)dw (A.2b)

ei = a(t)b(w)F̃ i = a(t)b(w)
dxi

(1 + κ~r2

4
)2
. (A.2c)

In order to obtain the connection coefficients wµνλ, we must first evaluate the differen-

tials of the basis on forms. We will make use of the following

~r2 = xixi

d~r2

dxj
=
dxi

dxj
xi + xi

dxi
dxj

= δijxi + xiδj i = 2xj

and

d~r2 = 2xjdx
j

dF̃ i = − 1

(1 + κ~r2

4
)2

κ

4
d~r2 ∧ dxi
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= − 1

(1 + κ~r2

4
)2

κ

4
2xjdx

j ∧ dxi

dF̃ i = −κ
2
xj

ej ∧ ei

a2(t)b2(w)
. (A.3)

A sum over j is indicated, and we get

dei = ȧ(t)b(w)dt ∧ F̃ i + a(t)b′(w)dw ∧ F̃ i + a(t)b(w)dF̃ i

dei =
ȧ(t)

if(t)g(w)a(t)
e4 ∧ ei +

b′(w)

f(t)g(w)b(w)
e5 ∧ ei − κxj

2

ej ∧ ei

a(t)b(w)
(A.4a)

de4 = if(t)g′(w)dw ∧ dt =
g′(w)

g2(w)f(t)
e5 ∧ e4 (A.4b)

de5 = ḟ(t)g(w)dt ∧ dw =
ḟ(t)

if 2(t)g(w)
e4 ∧ e5 (A.4c)

We evaluate the connection coefficients by the following formula

deµ + wµν ∧ eν = 0 (A.5)

where the connection forms are expanded as wµν = wµνλe
λ. From e5 we obtain;

de5 + w5
1 ∧ e1 + w5

2 ∧ e2 + w5
3 ∧ e3 + w5

4 ∧ e4 = 0 (A.6)

ḟ(t)

if 2(t)g(w)
e4 ∧ e5 + w5

12e
2 ∧ e1 + w5

13e
3 ∧ e1 + w5

14e
4 ∧ e1 + w5

15e
5 ∧ e1

w5
21e

1 ∧ e2 + w5
23e

3 ∧ e2 + w5
24e

4 ∧ e2 + w5
25e

5 ∧ e2 + w5
31e

1 ∧ e3 + w5
32e

2 ∧ e3



47

w5
34e

4 ∧ e3 + w5
35e

5 ∧ e3 + w5
41e

1 ∧ e4 + w5
42e

2 ∧ e4 + w5
43e

3 ∧ e4

w5
45e

5 ∧ e4 = 0 (A.7)

Collecting coefficients of the same ea ∧ eb gives the following equations

w5
45 =

ḟ(t)

if 2(t)g(w)
(A.8a)

w5
15 = w5

25 = w5
35 = 0 (A.8b)

w5
12 = w5

21 (A.8c)

w5
13 = w5

31 (A.8d)

w5
14 = w5

41 (A.8e)

w5
23 = w5

32 (A.8f)

w5
24 = w5

42 (A.8g)

w5
34 = w5

43 (A.8h)

Similarly we get, from de4 + w4
1 ∧ e1 + w4

2 ∧ e2 + w4
3 ∧ e3 + w4

5 ∧ e5 = 0;

w4
54 =

g′(w)

g2(w)f(t)
(A.9a)

w4
14 = w4

24 = w4
34 = 0 (A.9b)

w4
12 = w4

21 (A.9c)

w4
13 = w4

31 (A.9d)

w4
15 = w4

51 (A.9e)

w4
23 = w4

32 (A.9f)
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from de1 + w1
2 ∧ e2 + w1

3 ∧ e3 + w1
4 ∧ e4 + w1

5 ∧ e5 = 0;

w1
41 =

ȧ(t)

ia(t)f(t)g(w)
(A.10a)

w1
51 =

b′(w)

b(w)f(t)g(w)
(A.10b)

w1
21 = − κx2

2a(t)b(w)
(A.10c)

w1
31 = − κx3

2a(t)b(w)
(A.10d)

w1
23 = w1

32 (A.10e)

w1
24 = w1

42 (A.10f)

w1
25 = w1

52 (A.10g)

w1
34 = w1

43 (A.10h)

w1
35 = w1

53 (A.10i)

w1
45 = w1

54 (A.10j)

from de2 + w2
1 ∧ e1 + w2

3 ∧ e3 + w2
4 ∧ e4 + w2

5 ∧ e5 = 0;

w2
42 =

ȧ(t)

ia(t)f(t)g(w)
(A.11a)

w2
52 =

b′(w)

b(w)f(t)g(w)
(A.11b)

w2
12 = − κx1

2a(t)b(w)
(A.11c)

w2
32 = − κx3

2a(t)b(w)
(A.11d)

w2
13 = w2

31 (A.11e)

w2
14 = w2

41 (A.11f)

w2
15 = w2

51 (A.11g)

w2
34 = w2

43 (A.11h)

w2
35 = w2

53 (A.11i)

w2
45 = w2

54 (A.11j)
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and from de3 + w3
1 ∧ e1 + w3

2 ∧ e2 + w3
4 ∧ e4 + w3

5 ∧ e5 = 0;

w3
43 =

ȧ(t)

ia(t)f(t)g(w)
(A.12a)

w3
53 =

b′(w)

b(w)f(t)g(w)
(A.12b)

w3
13 = − κx1

2a(t)b(w)
(A.12c)

w3
23 = − κx2

2a(t)b(w)
(A.12d)

w3
12 = w3

21 (A.12e)

w3
14 = w3

41 (A.12f)

w3
15 = w3

51 (A.12g)

w3
24 = w3

42 (A.12h)

w3
25 = w3

52 (A.12i)

w3
45 = w3

54. (A.12j)

wµνλ is antisymmetric in its first two indices because of the antisymmetry of wµν . From

Equations A.8c, A.11g, A.10g

w512 = w521 = −w251 = −w215 = w125 = w152 = −w512 = 0 (A.13)

Similarly all permutations of w513, w514, w523, w524, w534, w412, w413, w423, w123 are

zero.
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Finally we can obtain all of the connection forms from wµν = wµνλe
λ, to be the

following

wij =
κ

2a(t)b(w)
(xie

j − xjei) (A.14a)

wi4 =
ȧ(t)

ia(t)f(t)g(w)
ei (A.14b)

wi5 =
b′(w)

b(w)f(t)g(w)
ei (A.14c)

w4
5 =

g′(w)

g2(w)f(t)
e4 − ḟ(t)

if 2(t)g(w)
e5. (A.14d)

To obtain the curvature two forms we first need to evaluate the following

dwi4 =
ä(t)

ia(t)f(t)g(w)
dt ∧ ei − ȧ2(t)

ia2(t)f(t)g(w)
dt ∧ ei

− ȧ(t)ḟ(t)

ia(t)f 2(t)g(w)
dt ∧ ei − ȧ(t)g′(w)

ia(t)f(t)g2(w)
dw ∧ ei +

ȧ(t)

ia(t)f(t)g(w)
dei

= [− ä(t)

a(t)f 2(t)g2(w)
+

ȧ2(t)

a2(t)f 2(t)g2(w)
+

ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
]e4∧ ei− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
e5∧ ei

− ȧ2(t)

a2(t)f 2(t)g2(w)
e4 ∧ ei +

ȧ(t)b′(w)

ia(t)f 2(t)g2(w)b(w)
e5 ∧ ei − κ

2i

ȧ(t)

a2(t)f(t)g(w)b(w)
xje

j ∧ ei

dwi4 = [
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
]e4 ∧ ei − κ

2i

ȧ(t)

a2(t)f(t)g(w)b(w)
xje

j ∧ ei

+[
ȧ(t)b′(w)

ia(t)b(w)f 2(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
]e5 ∧ ei. (A.15)
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Similarly

dwi5 = [
b′′(w)

b(w)f 2(t)g2(w)
− b′(w)g′(w)

b(w)f 2(t)g3(w)
]e5 ∧ ei − κ

2

b′(w)

a(t)b2(w)f(t)g(w)
xje

j ∧ ei

+[
b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
]e4 ∧ ei (A.16)

dw4
5 = [− ḟ 2(t)

f 4(t)g2(w)
+

f̈(t)

f 3(t)g2(w)
+

g′2(w)

g4(w)f 2(t)
− g′′(w)

g3(w)f 2(t)
]e4 ∧ e5 (A.17)

dwij =
κ

a2(t)b2(w)
(1 + κ

~r2

4
)ei ∧ ej − κ2

4a2(t)b2(w)
xixke

k ∧ ej

+
κ2

4a2(t)b2(w)
xjxke

k ∧ ei. (A.18)

We will evaluate the curvature two forms with the help of the following equation

Ωµ
ν = dwµν + wµλ ∧ wλν . (A.19)

The calculations will be given explicitly only for Ω2
3

Ω2
3 = dw2

3 + w2
1 ∧ w1

3 + w2
4 ∧ w4

3 + w2
5 ∧ w5

3

=
κ

a2(t)b2(w)
(1+κ

~r2

4
)e2∧e3+

κ

4a2(t)b2(w)
(x3x1e

1∧e2+x2
3e

3∧e2−x2x1e
1∧e3−x2

2e
2∧e3)

+
κ

4a2(t)b2(w)
(x2e

1−x1e
2)∧(x1e

3−x3e
1)+

ȧ2(t)

a2(t)f 2(t)g2(w)
e2∧e3− b′2(w)

b2(w)f 2(t)g2(w)
e2∧e3
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Ω2
3 = [

κ

a2(t)b2(w)
+

ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)
]e2 ∧ e3. (A.20)

On the whole the curvature two forms are

Ωi
j = [

ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)
+

κ

a2(t)b2(w)
]ei ∧ ej (A.21)

Ωi
4 = [

ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
+

b′(w)g′(w)

b(w)f 2(t)g3(w)
]e4 ∧ ei

+[
ȧ(t)b′(w)

ia(t)b(w)f 2(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
]e5 ∧ ei (A.22)

Ωi
5 = [

b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
]e4 ∧ ei

+[
b′′(w)

b(w)f 2(t)g2(w)
− b′(w)g′(w)

b(w)f 2(t)g3(w)
− ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
]e5 ∧ ei (A.23)

Ω4
5 = [− ḟ 2(t)

f 4(t)g2(w)
+

f̈(t)

f 3(t)g3(w)
+

g′2(w)

g4(w)f 2(t)
− g′′(w)

g3(w)f 2(t)
]e4 ∧ e5 (A.24)

The components of Riemann tensor can be obtained from the following equation

Ωµ
ν =

1

2
Rµ

νλκe
λ ∧ eκ. (A.25)
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From Ωi
j we obtain

Ωi
j = [

ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)
+

κ

a2(t)b2(w)
]ei ∧ ej

=
1

2
Rijije

i ∧ ej +
1

2
Rijjie

j ∧ ei =
1

2
Rijije

i ∧ ej +
1

2
(−Rijij)(−ei ∧ ej)

Rijij = [
ȧ2(t)

a2(t)f 2(t)g2(w)
− b′2(w)

b2(w)f 2(t)g2(w)
+

κ

a2(t)b2(w)
]. (A.26)

In the same way one gets

Ri44i = [
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
+

b′(w)g′(w)

b(w)f 2(t)g3(w)
] (A.27)

Ri45i = [
ȧ(t)b′(w)

ia(t)b(w)f 2(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
] (A.28)

Ri54i = [
b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
] (A.29)

Ri55i = [
b′′(w)

b(w)f 2(t)g2(w)
− b′(w)g′(w)

b(w)f 2(t)g3(w)
− ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
] (A.30)

R4545 = [− ḟ 2(t)

f 4(t)g2(w)
+

f̈(t)

f 3(t)g2(w)
+

g′2(w)

g4(w)f 2(t)
− g′′(w)

g3(w)f 2(t)
]. (A.31)
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And the components of Ricci tensor, calculated from

Rνλ = Rµ
νλµ (A.32)

are

Rii =
b′′(w)

b(w)f 2(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
− 2

ȧ2(t)

a2(t)f 2(t)g2(w)

+2
b′2(w)

b2(w)f 2(t)g2(w)
− 2

κ

a2(t)b2(w)
(A.33)

R44 = 3[
ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
+

b′(w)g′(w)

b(w)f 2(t)g3(w)
]

+
ḟ 2(t)

f 4(t)g2(w)
− f̈(t)

f 3(t)g2(w)
− g′2(w)

g4(w)f 2(t)
+

g′′(w)

g3(w)f 2(t)
(A.34)

R55 = 3[
b′′(w)

b(w)f 2(t)g2(w)
− b′(w)g′(w)

b(w)f 2(t)g3(w)
− ȧ(t)ḟ(t)

a(t)f 3(t)g2(w)
]

+
ḟ 2(t)

f 4(t)g2(w)
− f̈(t)

f 3(t)g2(w)
− g′2(w)

g4(w)f 2(t)
+

g′′(w)

g3(w)f 2(t)
(A.35)

R54 = R45 = 3[
b′(w)ȧ(t)

ia(t)b(w)f 2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f 3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f 2(t)g3(w)
]. (A.36)
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And the Ricci scalar is

R = gµνRµν

R = 6[
b′′(w)

b(w)f 2(t)g2(w)
− ä(t)

a(t)f 2(t)g2(w)
− ȧ2(t)

a2(t)f 2(t)g2(w)
+

b′2(w)

b2(w)f 2(t)g2(w)
− κ

a2(t)b2(w)
]

+2[
ḟ 2(t)

f 4(t)g2(w)
− f̈(t)

f 3(t)g2(w)
− g′2(w)

g4(w)f 4(t)
+

g′′(w)

g3(w)f 2(t)
(A.37)
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APPENDIX B: The Einstein’s tensor for our braneworld

scenario

ds2 = −dτ 2 + µ2τ 2dw2 + µ2τ 2e2µ|w|d~x2 (B.1)

The basis one forms for this metric are

ei = µτeµ|w| (B.2a)

e4 = idτ (B.2b)

e5 = µτdw. (B.2c)

Let us calculate the curvature two forms and Einstein tensor for this metric.We should

start with the deν for this ,

dei = µeµ|w|dτ ∧ dxi + µ2τ
d|w|
dw

eµ|w|dw ∧ dxi =
e4 ∧ ei

iτ
+
d|w|
dw

e5 ∧ ei

τ
(B.3)

de4 = idτ ∧ dτ = 0 (B.4)

de5 = µdτ ∧ dw =
e4 ∧ e5

iτ
(B.5)
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We obtain the connection forms by deµ + wµν ∧ eν = 0 and wµν = wµνλe
λ to be

ωij = 0 (B.6a)

ωi4 =
ei

iτ
(B.6b)

ωi5 =
d|w|
dw

ei

τ
(B.6c)

ω4
5 = −e

5

iτ
. (B.6d)

These give us the following

dωij = 0 (B.7)

dωi4 = −dτ ∧ e
i

iτ 2
+
dei

iτ
=
d|w|
dw

e5 ∧ ei

iτ 2
(B.8)

dω4
5 =

dτ ∧ e5

iτ 2
− de5

iτ
= −e

4 ∧ e5

τ 2
− 1

iτ

e4 ∧ e5

iτ
= 0 (B.9)

dωi5 = −d|w|
dw

dτ ∧ ei

τ 2
+
d2|w|
dw2

dw ∧ ei

τ
+
d|w|
dw

dei

τ

= [2
δ(w)

µτ 2
+

1

τ 2
(
d|w|
dw

)2]e5 ∧ ei = [2
δ(w)

µτ 2
+

1

τ 2
]e5 ∧ ei (B.10)
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where in the last equation d|w|
dw

= sgn(w) and d2|w|
dw2 = 2δ(w). For the curvature two

forms Ωµ
ν = dwµν + wµλ ∧ wλν

Ωi
j = 0 (B.11a)

Ωi
4 = 0 (B.11b)

Ωi
5 = 2

δ(w)

µτ 2
e5 ∧ ei (B.11c)

Ω4
5 = 0. (B.11d)

On the other hand Ωµ
ν = 1

2
Rµ

νλxe
λ ∧ ex, since the only nonzero curvature two forms

are Ωi
j,

Ω1
5 = 2

δ(w)

µτ 2
e5 ∧ ei =

1

2
R1551e

5 ∧ e1 +
1

2
R1515e

1 ∧ e5

the only nonzero Rµνλx are

R1551 = Ri55i = 2
δ(w)

µτ 2
. (B.12)

With Rµν = Rµ
νλµ

R11 = R5
115 +R2

112 +R3
113 +R4

114 = 2
δ(w)

µτ 2
= Rii (B.13a)

R44 = R1
441 +R2

442 +R3
443 +R5

445 = 0 (B.13b)

R55 = R1
551 +R2

552 +R3
553 +R4

554 = 6
δ(w)

µτ 2
, (B.13c)

R = gµνRµν = 12 δ(w)
µτ2

and Gµν = Rµν − 1
2
gµνR

Gii = Rii −
1

2
R = −4

δ(w)

µτ 2
(B.14a)

G44 = R44 −
1

2
R = −6

δ(w)

µτ 2
(B.14b)

G55 = R55 −
1

2
R = 0. (B.14c)
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Some of the nonzero elements of the Weyl tensor

Cρσµν = Rρσµν +
1

d− 2
(gρµRνσ − gρνRµσ − gσµRνρ + gσνRµρ)

− 1

(d− 1)(d− 2)
(gρµgνσ + gρνgµσ)R, (B.15)

for this metric are

C1551 = −5

3

δ(w)

µτ 2
(B.16a)

C4554 = −3
δ(w)

µτ 2
(B.16b)

C5454 =
δ(w)

µτ 2
(B.16c)

C1441 = −5

3

δ(w)

µτ 2
(B.16d)

C1331 = −7

3

δ(w)

µτ 2
. (B.16e)

Therefore the metric in Equation A.1 is not conformally flat.
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