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ABSTRACT 

Possible formulations of gauge field models where the gauge group is a quantum 

group are discussed. The exponential map from the generators of the Lie algebra analog of 

the quantum group SUq(2) to the quantum group SUq(2) itself is presented. The q-deformed 

Yang-Mills theory is introduced via the definition of the q-trace and the q-deformed Yang­

Mills lagrangian which is invariant under the quantum group gauge transformations. The 

gauge field takes values in the quantum universal enveloping algebra of SUq(2). As a result 

of this construction a Weinberg type mixing angle which depends on the quantum group 

deformation parameter q is obtained. 

The representations of the n-braid group where generators are given essentially by 

2 x 2 matrices whose elements belong to a noncommutative algebra are presented. The 

Burau representation arises as a special (commuting) case of this algebra. A closely related 

algebra to the braid algebra is introduced and it is shown that the generalized oscillator 

system given by this algebra generates a hydrogen-like spectrum. 
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QZET 

Kuantum gruplanna dayah ayar alan teorisi modelleri tartl~tldt1dl. SUq(2) kuantum 

grubunun Lie cebri analogunun elemam olan jeneratOr1er bulundu. Kuantum gurubu ayar 

donii~iimii altmda invaryant kalan yeni bir iz tamml yapddl ve bu tamm kullamlarak deforme 

edilmi~ Yang-Mills Lagranjiyeni in~a edildi. 

Elemanlan komiitatif olmayan bir cebre ait olan 2 x 2 matrisler kullamlarak Artin 

orgii grubunun temsilleri elde edildi. Burau temsilinin bu cebrin ozel bir hali oldugu 

gosterildi. Orgii cebrine yok yakm olan, "sozde orgii cebri" diye adlandlrdlglmlz cebrin 

tamml yapddl ve bu cebrin verdigi genelle~mi~ osilator sisteminin hidrojen tipi spektrum 

verdigi gosterildi. 
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1. INTRODUCTION 

This thesis consists of two seperate studies. The first study involves gauge theories 

based on quantum groupswhich appeared in the beginning as a mathematical abstraction in 

completely integrable systems[l] and statistical mechanical models[2] have attracted a lot of 

attention. Quantum groups found applications in the theory of lattice models[3], string 

theories[ 4], conformal field theories[5] and other topics. The opportunity to use quantum 

groups instead of Lie groups as gauge groups may generalize the symmetry and solve the 

standard problems of gauge theories, e.g. quark confinement in QCD by the introduction of 

Higgs scalars and the difficulties of grand unification. Work along these lines was started by 

Arafeva and Volovich[6] followed by Isaev and Popowicz[7] and Castellani[8]. They took 

SUq(2) as the gauge group instead of SU(2) and worked on the possible constructions of 

gauge theories. In chapter 2 we discuss two of these possibilities. The first possibility is to 

take the gauge field as an element of the Lie algebra analog of SUq(2) while in the other 

approach the gauge field is an element of the quantum universal algebra ofsu(2) . In section 

2.1, we briefly discuss the quantum Lie group. In section 2.2, we will show that quantum 

groups can be used for the solutions of the equation of motion for chiral fields. The 

exponential map from the "generators" to the quantum group SUq(2) is presented in section 

2.3. The deformation of the gauge group, i.e. the use of noncommutative matrix elements 

instead of the commuting ones, requires modification of the definition of trace and covariant 

derivative as well as the Lagrangian which is invariant under the quantum group action. The 

q-deformed Yang-Mills theory with the gauge group Ug(2) is discussed and the Weinberg 

type mixing angle depending on the deformation parameter q is introduced in section 2.4. 

The second study involves the braid group which is related to quantum groups. The 

discovery of new algebraic structures related to braids and to knots and links generated by 

braid closure has attracted a lot of attention in the past few years[9,10]. The developments 

in this area have brought about relations among the areas of knot invariants, gauge 

theories[ll], statistical mechanical models[12] and quantum groups[13]. In chapter 3, we 

shall investigate a class of algebras related to the braid group. We will particularly emphasize 

the representations of this algebra in a Hilbert space. Our motivation for such a 

representation is to obtain a direct link between mathematics and physics through quantum 

mechanics where hermitian operators can be identified with physical observables. 

In section 3.1 we will construct a Burau-like representation where each generator of 

the n-braid group will be represented by a n x n matrix whose nontrivial part is a 2 x 2 

matrix with matrix elements belonging to an associative but noncommutative algebra. This 

defines a set of commutation-like relations among the four operator elements of the 2 x 2 
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matrix. In section 3.1 we search for a representation of the algebra in a Hilbert space. We 

show that except for trivial representations where one matrix element is identically zero and 

the other matrix elements are commutative (Burau representation) further relations have to 

be satisfied. We discuss several representations that can be obtained and show that there are 

no unitary representations. In section 3.3 we introduce the pseudo-braid algebra by relaxing 

the conditions found in section 3.2. We show that this algebra has finite dimensional unitary 

representations. For both types of representations, one obtains a raising operator b * and a 

lowering operator b. The hermitian nonnegative operator b * b has eigenvalues depending on 

a parameter q. This eigenvalue spectrum, in the limit q ~ 1, becomes a hydrogen spectrum, 

and for q :f:.1 gives a one parameter generalization. For the hermitian representation, q is a 

real number whereas for the unitary representations which are finite dimensional q is a root 

of unity. In section 4 we present a discussion of our results. 
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2. GAUGE THEORIES BASED ON QUANTUM GROUPS 

2.1. Quantum Lie Group 

2.1.1. Quantum Group SLq (2) 

An element of the SL(2) group in 2 dimensional representation is 

(2.1.1) 

where a, h, e and d are complex numbers and the determinant is unity 

Det g =ad-be =1. (2.1.2) 

We have the inverse of g 

g-l =[d -bJ. 
-e a 

(2.1.3) 

The in\'erse is also an element of SL(2). We deform SL(2) by taking the entries not as 

complex numbers but non-commuting objects 



with the relations 

and the inverse matrix 

.fa qb] 
g 1c d 

ab=qba 

ac=qca 

bd=qdb 

bc=cb 

Det g =ad-q2bc = da-bc = 1 

g-l = [a' qb'] = [d -b]. 
c' d' -qc a 
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(2.1.4) 

(2.1.5) 

(2.1.6) 

(2.1. 7) 

(2.1.8) 

(2.l.9) 

(2.1.10) 

Now the matrix with primed entries satisfies the relations (2.1.5)-(2.1.9), but with q~q-l. In 

fact, the entries of quantum matrix gn satisfy the quantum group relations with qn instead 

ofq. 

2. 1. 2. Quantum Group SU q (2) 

It is known that an element of SU(2) can be represented in the form 
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_ [a -c*] g- * 
c a 

(2.1.11) 

where a and c are complex numbers such that the unitarity condition (where (*) means 

complex conjugate and (t) means hermitian conjugate) 

ggt= gtg = I (2.1.12) 

gIves 

* * aa +c c=1. (2.1.13) 

We can take the entries belonging to an associative but noncommutative algebra. If we 

impose the unitarity condition on SL q (2) 

which reads 

-1 
gt= g 

[ a* c*] [d -b] 
qb * d* - -qc a ' 

* b * d=a, =-c. 

So an element of SU q (2) is given by 

(2.1.14) 

(2.1.15) 



_ [a -qc*] g- *. 
c a 

Equation (2.1.16) is called the canonical form. The relations (2.1.5)-(2.1.9) become 

* * ac =qc a 

ac= qca 

* * * * c a =qa c 
* * c c= cc 

* 2 * * * aa + q c c = a a + cc = 1. 
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(2. l. 16) 

(2.l.17) 

(2.l.18) 

(2. l. 19) 

(2.1.20) 

(2.1.21) 

Ifwe have two quantum matrices g, h E SUq (2) with commuting entries, i.e., if[g~i,hke] 

= 0 then gh is also an element of SU q (2). More explicitly if 

then 

g = [a -q~ *], h = [a' -q~*] E SU (2) 
cae' a' q 

gh=[aa' -qc** c' 
ca'+a c' 

* * *] -qac' -qc a' 
* • * -qcc' +a a' 

satisfies SU q (2) quantum group relations. 

(2.1.22) 
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2. 2. Quantum Group Chiral Field 

The standard chiral field is a map from R n to G, 

where G is a Lie group with the equation of motion 

(2.2.1) 

By analogy we can define the quantum group chiral field as a map 

satisfying the equation of motion where Gq is a quantum group. Ifwe take gE SU q (2) 

g(X)=[ c:(x) -q: * (X)] 
c (x) a (x) 

(2.2.2) 

then 

(2.2.3) 
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The derivatives, i.e., elements of 0,ug(x) satisfY the relations found by differentiating 

(2.1.17)-(2.1.20). Let us discuss two examples of quantum group chiral fields. 

2.2. 1. SUq(2) WZNW (Wess-Zumino-Novikov-Witten) Chiral Field 

The equation of motion for SU q (2) WZNW chiral field model is given by 

(2.2.4) 

The general solution g(x, y)=u(x) v(y) where u(x) and v(y) E SU q and hence g(x, y) E 

SU q (2) and the matrix elements ofu and v commute among themselves, i.e., [Uij, Vke ]=0. 

2. 2. 2. SU q (2) Chiral Field 

The equation of motion for SU(2) chiral field in the light-cone variables x, y is 

(2.2.5) 

where g=g(x, y) takes values in SU(2). We can take g=g(x, y) to be an element of SU q (2) 

instead of SU(2). After setting, 
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(2.2.6) 

the matrix X can be obtained by integration. The currents 

(2.2.7) 

satisfY the conservation law 

(2.2.8) 
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2. 3. Quantum Lie Algebra 

Let get) be a function of a real variable t and take values in G, where G is a Lie 

group. Then the tangent vector L = gt
dg 

is an element of the corresponding Lie 
dt 1=0 

algebra. Let us 

group SU q (2). 

follow the same procedure to find the Lie algebra analog of the quantum 

Let get) E SU q (2) and g(O)=g, then 

L = gtg(t)1 . 
1=0 

(2.3.1) 

In general, L has the form 

(2.3.2) 

Ifwe differentiate both sides of gt g = I with respect to t we obtain 

~(gt)1 =~ t 1 + t
dg 

dt g t=O dt g g 1=0 g dt . 
1=0 

(2.3.3) 
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H ·f gt dg -- L ere, 1 

dt t=O 
then 

d 
-gtgl =Lt 
dt t=O 

so (2.3.3) gives Lt + L = 0, which means L is anti-hermitian, i.e., 

[ /~ Ii] = [-It -/0 ] 
I I -/2 -1 o 

(2.3.4) 

from this equality we get 

* I I * 1* -- -I. 11 = - 1 2 = -/0 

Using 

L=gt
dg 

dt t=O 

we obtain 

I *. *. I *.* *.* l=aa+cc o=ca -qac I .* 2 * = (Xl +q cc (2.3.5) 

and 
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gL = g gt dg = dg 
dt t=O dt t=O 

(2.3.6) 

Since dg is obviously in canonical form, gL is also in canonical form. Setting 
dt t=O 

gL=[: ~] 

where 

* * * x = alt + qc 10 y = alo - qc I 

* * * z = ell - a 10 w = elo + a I 
(2.3.7) 

* . x = w gIves 

(2.3.8) 

'" . y = -qz gives 

* * alo-qc I=qllc +qloa. (2.3.9) 

Assuming the linear independence of the generators 10 ,l~ ,11 in (2.3.8) and (2.3.9) we get 
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* * * * qloc = clo qc 10 = 10c (2.3.10) 
* * * * alo = qloa lOa = qa 10 (2.3.11) 

aft = -Ia -ita * * = KCl 11 (2.3.12) 

* c 1= -/lc * -KitC = cli . (2.3.13) 

It is reasonable to assume 

1= Tdl (2.3.14) 

where K is a real parameter. To find the relations between 10 and a *, 10 and c * we assume 

* * loa = pa 10 

* * loc = rc 10. 

(2.3.15) 

(2.3.16) 

Again p and r are real numbers which will be found from the consistency of the algebra. Let 

us multiply (2.1.21) by 10 from the left and from the right 

* 2 * * 2 * 10 (aa + q c c) = (aa + q c c) 10. 

After using the above relations we get 

(2.3.17) 
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The solution for p and r is p=r=q. 

The importance of the exponential map from the Lie algebra to the Lie group is well 

known. By analogy, let us try to find the relations between the elements of g and L which 

satisfy 

(t is real). 

In series expansion we have 

( 
t2L2) g(t) = g 1 + tL +-2-+··· 

g and gL were discussed above. Let us find the relations for the second order term, gL 2 
, to 

be in the canonical form 

gL' =[ { ~] 

where 

2 * ** * * f = all - alolo + qc loll + qKC ftlo 

* * 2 * 2 h = ahlo + Kalo/l + qc 10 10 - qK c 11 

2 * ** * * k = cli - clolo - a loft - Ka ftlo 

* * 2 * 2 m = cillo + K.c!oft - a 10 10 + K a 11 . 

From the preservation of the car.onical form we have 



* f =m 

Equating the linearly independent terms we get 

* * * * -loloa = -a 10 10 

-qII/Oc- qldo/1c = chlo + K:clO/I · 

Since h = -qk * 

Equating the linearly independent terms one obtains 

* * * * loloc = c 1010 

-qil/oa - qldol1a = ali/O + I«llo/l' 

Using relations (2.3.10)-(2.3.16) in (2.3.20) and (2.3.23) one can obtain 
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(2.3.18) 

(2.3.19) 

(2.3.20) 

(2.3.21) 

(2.3.22) 

(2.3.23) 



There are two solutions 

1C=1 

(-ql/o - qTdo/Jc = (-qTdl/o - q1C2
/0/Jc 

( -qil/o - qTdil )a = (-qTdo/l - q1C2/0/1 )a . 

i) 
ii) 11/0 + TdO/l = 0 i.e. 11/0 = -TdO/l · 
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(2.3.24) 

(2.3.25) 

(2.3.26) 

Let us take the second solution, i.e., (2.3.26) to find the relation between II and I~. By 

taking the complex conjugate of both sides of(2.3.26) (remember I; = -It) we obtain 

(2.3.27) 

The only remaining relation is between 10 arid I~. To find this one can use (2.3.10) and 

(2.3.16) with r=q in the equation (2.3.22) and obtain 

(2.3.28) 

Using these relations and considering the solution (2.3.26) we obtain 

(2.3.29) 

where 
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2 * A = 11 - /0/0 

B = K2/~ -/0/; 
(2.3.30) 

(
2 4 J( 3 J tL t 2 t 4 t 2 

e = l+-L +-L + ... + t+-L + ... L . 
21 41 31 

In this expression the first term is given by 

o 
o = [COShtJA 0] (2.3.31) 

t 2 t 4 2 0 Cosht JB 
l+-B+-B + ... 

t 2 t 4 
2 

l+-A+-A + ... 
21 41 

21 41 

and the second term given by 

t 3 t5 
2 

t+-A+-A + ... o 

= 

= 

31 5! 

o t 3 t5 
2 

t+-B+-B + ... 
31 51 

SinhtJA 
0 

JA 
0 

SinhtJ]j 

SinhtJA I 
JAI 

SinhtJB l* 
J]j0 

JB 
SinhtJA I 

JAI 
SinhtJ]j1 

K JB 1 

(2.3.32) 



where 

Sinh (..fA _ (3 A 
..fA - t+3 + ... 

(2 
Cosht..fA = 1+-A+ ... 

2 

So by using (2.3.31) and (2.3.32) we find 

[

aSinh (...fA 1 C . h 'A * Sinh (.JB [* 

JA 
1 +a os ('VB. +qc .JB 0 

tL A B ge = 
Sinh (...fA [ C h t.A * Sinh (.JB 1* 

c .fA 1 +c os t'VB. -a .JB 0 
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Sinh t..fA [ * Sinh t.JB 1 *C h Ie] a ..fA 0 -qKc jjj 1 -qc os t'V n 

Sinh (..fA 1 * Sinh t.JB 1 *C h mB c .fA 0 + 1al .JB 1 + a os t'V D 

(2.3.33) 

Since ge tL belongs to SU q (2) it must be in canonical form. From s = p * (notice A and B 

are hermitian) we have 

I SinhtJA * C h J.A * I SinhtJij Sinh tJA I * Sinh tJB Z *C h InB 
- 1 JA a + os tvA a + q 0 JB C = C JA 0 + Ka .JB 1 + a os tv D 

* and from m = -qr 

(2.3.34) 
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Sinh t.fA * r; * Sinh t JB Sinh t JA * Sinh t JB * In 
q/l .fA c -qCosht'l/Ac +q1o JB a=a .fA lo-qKc JB 11-qc Cosht'l/B. 

By using (2.3.10)-(2.3.16),(2.3.26)-(2.3.30) we obtain 

* * * * aA = Ba Aa = a B eA = Be e B = Ae 

IIA = All loB = Alo 

and the generalized relation 

so that we have 

Sinh t.fA Sinh t ..{ij 
a .fA = ..{ij a 

Sinh t.fA I _ I Sinh t JA 
JA 1-1 .fA 

aCosht.fA = Cosht..{ij a 

CoshtJA It = 11CoshtJA 

Sinh t.fA Sinh t JB 
e .fA = ..{ij e 

Sinh tJA l -l Sinh tJB 
.fA 0-0 JB 

eCosh t JA = Cosh t JB e 

CoshtJA 10 = 10CoshtJB. 

Applying (2.3.40) to the left hand side of(2.3.34) we obtain 

(2.3.35) 

(2.3.36) 

(2.3.37) 

(2.3.38) 

(2.3.39) 

(2.3.40) 
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I 
SinhtJB _ SinhtJA

I qo JB c-c JA o· 

Again by using (2.3.40) and (2.3.10) we get 

Sinh t JA I Sinh t JB I 
.,fA oC = JB oC' (2.3.41) 

Following the same procedure for (2.3.35) we obtain 

I 
SinhtJB _ Sinh tJA I 

qo JB a-a .,fA o· 

Using (2.3.40) and (2.3.11) 

Sinh t JA 1 _ Sinh t JB I 
.,fA ·oa - JB oa. (2.3.42) 

Equations (2.3.41) and (2.3.42) require 

or more explicitly 



There are various solutions for this equation 

i) K2 = 1 

ii) I~/O = 0 

iii) I~/O = 0 * 1010 10 = o. 
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Let us take the third solution which is the interesting solution. We can define the quantum 

superplane relations 

(2.3.43) 

together with the previously found relations 

11/0 = -Kloh 
* 2 * 1010 = q 1010 . 

Let us summarize this section. The exponential mapping from the Lie algebra analog 

L to the quantum group SU q (2) was constructed. We found that Lis of the form 



where the entries of L satisfy the quantum plane relations 

2 
10 = 0 

together with I; = -11. If the entries of L satisfy 

then 

afo = qloa 

c/o =qloc 

ah = -Klla 

* * * * loc = qc 10 

* Iia = -Kll 11 

* * c/I = -Kllc Ilc = -KC 11 

* * * * loa = qa 10 alo = qloa 

where 
a -qc [ *] g= c a* ESUq (2). 
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(2.3.44) 

(2.3.45) 

An explicit construction of g(t) = ge tL was done. In fact, the defined quantum superplane 

relations give rise to finite number of elements in the series expansion. Since L2 was found 

to be 

L2 = [A 0] o B 

where 

(2.3.46) 
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because of the quantum plane relations (2.3.44). Hence, only the terms up toL3survive in 

the power series expansion ,others vanish. More explicitly 

Sinh 1 JA = 1 + ~ A = 1 - ~ l 1* 
JA 3! 3! 00 

12 12 * 
CashtJA = 1+-A = 1--/0/0. 

2 2 

Using (2.3.45) and (2.3.46) in (2.3.33) we find 

Again using the quantum plane relations (2.3.44) we obtain a one parameter group of 

automorphisms of the quantum group SU q (2) . 

(2.3.47) 

(2.3.48) 
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2.4. Quantum Yang-Mills Formulation 

2. 4. 1. Possible Formulations 

In the quantum group deformation of gauge theory, it seems, at least at the moment, 

we have only two possible ways to proceed. In the first way, gauge fields take values in the 

Lie algebra analog of the quantum group SU q (2). The relations between the generators are 

well defined. The general form of generators were found to be 

(2.4.1) 

If the gauge field takes values in the universal enveloping algebra then we have 

AI' (x) ~ A;, (x)ll [~ ~] + A; (X)lo[ ~ ~] + A~ (X)I;[ ~l ~] + A;I(x)loh [~ ~]+ . 
(2.4.2) 

In the second approach the gauge field takes values in the quantum deformation of 

the universal enveloping algebra of su(2) i.e. Uq (su(2)) generated by X+,X_ and H 

satisfying 

(2.4.3) 
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For a sensible gauge theory, the usual Lagrangian formulation has to be modified. In 

the non-deformed case the Lagrangian is invariant under the usual gauge transformations 

while for the deformed case it is invariant under the quantum gauge group. This means that 

the Lagrangian is not a complex number but an element of a non-commuting algebra. So a 

new trace should be introduced to construct a realistic gauge theory. Using this trace we will 

discuss the q-deformed SU(2J x U(JJ gauge theory. 

2.4.2. Quantum Trace 

Ifwe have two matrices with commuting entries 

T=[lil 
T21 

we know that trace remains invariant under the transformation 

These matrices are elements of a quantum group, not the ordinary trace but the quantum 

trace remains invariant 

(2.4.4) 
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Example: Let A be any 2x 2 matrix and G be an element of SU q (2) i.e. 

(2.4.5) 

GAG-1 =[a -q~*][x y][ a* e*]. 
e a z w -qe a 

Using the fact that entries of the matrix A commute with those ofG one obtains 

[ 
* ** 2 * * ** *] GAG-1 = xaa -qze a -qyae+q we e xae -qze e + yaa-qwe a 
* ** ** * ** * xee + za e + yea + wa e xc e + za e + yea + wa a 

and 

-1 -1( * * * 2 *) (* * * * ) TrqGAG =q xaa -qze a -qyae+q we e +q xc e+za e +yea+wa a 

= q -1 x( aa * + q2 ee * ) + z( qa * e * - e * a * ) + y( qea - ae) + qw( a *" a + e * c) 

Using (2.1.17)-(2.1.21) one obtains 

(2.4.6) 

which means that quantum trace remains invariant under quantum group transformations. In 

fact, for higher dimensional (N dimensional) matrices we have 
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N 
Trq (E) = Trq (TET- I ) = q-(N +1) I.q2i Eii . (2.4.7) 

i=l 

2. 4. 3. The q-Deformed Yang-Mills Theory 

Before proceeding let us remember the basic features of the usual Yang-Mills 

theory. We have a covariant derivative defined by 

(2.4.8) 

where xp = (XO,Xl, .... ,Xd) is the coordinate of the d+ 1 dimensional space-time and 

Ap (x) is the potential taking values in the Lie Algebra. We have 

(2.4.9) 

where d are the generators of the gauge group G. For G=U(2)=SU(2) x U(l) we take the 

identity matrix 0-0 and the Pauli matrices d, i=1,2,3. For this case the covariant derivative 

is given by 

(2.4.10) 

and the Lagrangian is given by 

(2.4.11) 



where 

The Lagrangian is invariant under the gauge transformations 

V p ~ G(x) V p G-1(X) 

Fpv ~ G(x) FpvG-1 (X). 
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(2.4.12) 

(2.4.13) 

(2.4.14) 

Now let us take the gauge group elements to belong to the quantum group U q (2). Then 

the gauge potentials A~ are operators i.e. elements of the quantum universal enveloping 

algebra U q (su (2) ). We can find the q-deformed curvature Fpv and the q-deformed Yang­

Mills Lagrangian by using the q-trace formula (2.4.4) and using the usual definition of the 

covariant derivative. The curvature is 

After cancellations one obtains 

(2.4.15) 

where a's are Pauli matrices. 
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This curvature transforms as (2.4.14), where now G(x) is an element of the quantum 

group Uq (2) and [ A~,Gij ] = O. To obtain the invariant "abelian" component F;v of FJiv 

we use the q-trace formula. Note that q-trace of d is not zero but q-I - q. Then we have 

-I 

Defining Tan()= q _I -q (2.4.16) becomes 
q +q 

(2.4.16) 

(2.4.17) 

Since Trq is invariant under quantum group gauge transformation (2.4.14) FZv is 

also invariant. We see from equation (2.4.16) that in the "quantum" case the U(l) 

component B Ji mixes with the nonabelian components A; . Now let us investigate the results 

of the transformation (2.4.13) 

(2.4.18) 

Let us take the q-trace of the right hand side of(2.4.18) 



30 

(2.4.19) 

Using (2.4.12) and defining 

(2.4.20) 

we obtain the field AfJ which transforms as the "abelian" field in the quantum group 

case.We also obtain that the only combination of the operator valued fields A~ and BfJ 

defined by (2.4.20) is simply shifted without rotation: 

(2.4.21) 

In addition to (2.4.20) we can define 

(2.4.22) 

It is interesting to mention that the formulas (2.4.20), (2.4.22) coincide with the 

definitions of the photon and Z-boson in the Weinberg-Salam model where () is the 

Weinberg angle. Substituting AfJ and Z fJ into (2.4 .16) one obtains 
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F~v = o,uAv-ovA,u + Cos ~[A,u ,Av ](1 + 2 Sin 2 8) + [Z,u,Z v]COS28} 

+Sin 8COS2~[ A,u,Zv ]+[ Z,u,Av]) + Cos {[ A!,A~ J+[ A~,A~ J) (2.4.23) 

+iSin e{ A 1 A 2 + A 2 A 1 - A 1 A 2 - A 2 AI } ,u v v,u v,u ,u v' 

Now let us find the q-analog of the Lagrangian 

Lq = Tr q (F,uyF,uJ = Tr q ( B,u) + F;vcf1 )( B,u) + F~vcf ) 

= Tr q {( B pv)2 1+ Bp.F:vd' + F;hvd' + F;.J':vd'd' } 

= [(BpY +( F;v r ]tq-I +ql+( Bp.F~v + F~,)3pv+ie"b3 F;.J':v )(q-I- q) 

(2.4.24) 

Here we used the identity aaci =i&abcac, (2.4.15), (2.4.24) and the fact that only the 

identity matrix and d contribute to the q-trace. 

From the construction of Lq it is clear that Lq is invariant under the quantum gauge 

transformations 

(2.4.25) 

where 

(2.4.26) 

We can obtain another invariant (q-analog of the abelian theory) by using (2.4.15) 
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Lq = (Trq F;'y = [Trq (Bp"I+ F;vd') r = [BW(q-l +q)' + F~)q-l_ q) r 
(2.4.27) 

= B~)q-l +q)2 +( F~v r (q-l - q)2 +( B,uyF~v + F~vB,uv )(q-2 _ q2). 

A linear combination of the two invariants Lq and Lq gives us the analog of the q­

deformed Yang-Mills Lagrangian, 

L" = (L - Lq J 1 = [(Fa )2 _ (F3 )2 Tan2 B] + i[FI F2 ] Tan B q q -1 -1 ,uv,uv j.Jv' j.Jv q+q q+q 

which is independent of the field B,uv and is invariant under the quantum gauge group 

transformations. 



3. BRAID GROUP RELATED ALGEBRAS, THEIR 
REPRESENTATIONS AND GENERALIZED HYDROGEN-LIKE 

SPECTRA 

3. 1. The Braid Algebra 
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The n-strand Artin braid group is defined in terms of n-1 invertible generators (Jj 

which satisfy the braid group relations 

(Jj (Jj + 1 (Jj = (Jj + 1 (Jj (Jj + 1 . 

(3.1.1) 

(3.1.2) 

We can represent each generator by an n x n matrix whose nontrivial part is 2 x 2 and is 

given by 

Where a,b,c,d are "noncommuting" objects.Then we have 

a b 0 1 0 0 0 1 0 

c d 0 0 a b 0 0 1 

0 0 1 0 c d 0 
0"1 = (J2 = 

0 0 0 1 
(In-l = 

a b 

1 1 c d 
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In such a representation (3.1.1) is automatically satisfied whereas (3.1.2) imposes 

relations for the elements of the matrix A. To find the relations we put these matrices into 

equation (3.1.2) and using the fact that in this equality only the 3 x 3 part gives relations. 

We obtain 

[~ 
b 

H~ 
0 

n~ 
b 

~]=[~ 
0 

n~ 
b 

n~ d a d a d 

0 c 0 c 0 

ab + bad ba 

ca+dac 
[a2 +bac 

cb+dad 
b
21 

[a ~j= ~ ada+bc adb+bd . b
2 

1 
c2 cd d c2 cda+dc cdb+d2 

This equality gives us the relations 

a2 +bac=a 

ab+bad= ba 

ca+dac= ac 

cb + dad = ada+bc 

db = adb+bd 

cd=cda+dc 
2 d=cdb+d . 

We rearrange these equations to obtain 

bac= a _a2 

cdb = d-d2 

bc-cb = dad-ada 

ab = ba( 1- d) 

ca = (l-d)ac 

bd = (l-a)db 

dc = cd(l-a). 

0 

!] a 

c 

(3.1.3) 

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.l.10) 

(3.1.11) 

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 
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If the elements of A ,i.e., a,b,e and d commute among themselves from (3.1.10)­

(3.1.16) we obtain that either a=0 or d=0 ,or b=e=O. If we take a=0 and other elements to 

be different from zero, then (3.1.11) gives eb = 1- d, or 

d = I-be. (3.1.17) 

Setting be=t we obtain 

By the similarity transformation S -1 AS = A I we obtain 

(3.1.18) 

Equation (3.1.18) is just the Burau representation of the Artin braid group. The Burau 

representation is used to calculate the Alexander polynomial by the use of the Alexander's 

theorem which states that each link in three-dimensional space is ambient isotopic (i.e. 

having the same link invariant) to a link in the form of a closed braid[ 14]. 

Instead of taking a,b,e,d as numbers, let us take them to be elements of an 

associative but noncommuting algebra. Using relations (3.1.10)-(3.1.16) together with the 

existence of the inverse of A one can obtain the expression for A -1 as follows. Putting 

(3.1.19) 
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the existence of the right inverse AA -1 == I implies 

ax+bz = 1 (3.1.20) 

cx+dz = 0 (3.l.21) 

ay+bw = 0 (3.1.22) 

cy+dw = 1. (3.1.23) 

Multiplying (3.1.20) from left by c, and (3.1.21) by (1-d)a and using (3.1.14) one obtains 

[( I-d)ad-cb]z = -c. 

Similarly one can obtain expressions for x, y and w 

[da-(I-d) -cb]x = (l-a)d 

[( I-d)ad -cb]w = (1- d)a 

[da(l-d) -cb]Y = -b. 

The existence of the left inverse A -1 A = I gives 

xa+yc=1 

xb + yd = 0 

za +wc = 0 

zb +wd = 1. 

Repeating the calculations as in the right inverse case we obtain 

(3.1.24) 

(3.1.25) 

(3.1.26) 

(3.1.27) 

(3.1.28) 

(3.1.29) 

(3.1.30) 

(3.1.31) 



Z[(l-d)ad-eb] =-e 

x[ ( 1-d )ad - eb] = d( 1-a) 

w[da(l-d) -eb] = a(l-d) 

y[da(l-d) - eb] = -b. 

Solving for x,y,w and z in (3.1.24)-(3.1.27) we obtain the right inverse 

where 

~ 1 = ( 1-a )da - be = da( 1-d) - cb 

~2 = ad(l-a)-be = (l-d)ad-cb. 

Equation (3.l.36) can be rearranged as 

A-I - 1 [ ~-l 0 ][l-(l-a)(l-d)-a -b ] 
- 0 ~21 -e l-(l-d)(l-a)-d 

to yield 

37 

(3.1.32) 

(3.l.33) 

(3.l.34) 

(3.l.35) 

(3.l.36) 

(3.l.37) 

(3.l.38) 

(3.l.39) 



where 

with 

~'l = -(l-a)(l-d) 

~2 = -(l-d)(l-a). 

Similarly, using (3. l.32)-(3. l.35) we find the left inverse 

and it can be rearranged to give 

where 
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(3.1AO) 

(3.l.41) 

(3.l.42) 

(3.l.43) 

(3.1.44) 

(3.1A5) 
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I I 

~1'~2,~land ~2can be identifed as "determinants".Now let us find the relations between 

the "determinants" and a, b, e and d. We have 

d~l =d[da(l-d)-eb] 

= d 2a(l-d) -deb 

= d 2a(1-d) - ed(l-a)b 

= d 2a(l-d) - edb +edab 

=d2a(l-d)-d-d2 +edba(l-d) 

= d 2a( I-d) - d(l-d) +d(l-d)a( I-d) 

= [d 2a -d +da -d2a ](I-d) 

= [d 2a-d +da -d2a ](I-d) 

= -d( 1-a )( 1-d) 
=d~'l 

or in a better form 

defining 

and repeating the same procedure one finds 



aD=Da=O 

dD=Dd=O 

[b,~d = [b'~'l] = 0 

[e'~2]=[e'~'2 ]=0 

[~1,Al]=[~2'~'2 ]=0. 
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(3.1.46) 

(3.1.47) 

(3.l.48) 

(3.l.49) 

(3.l.50) 

The relations (3.1.46)-(3.1.50) strongly suggest that ~l = ~'l and ~2 = ~'2. Now we will 

show that for a representation of a,b,e,d as linear operators in a Hilbert space this is indeed 

true. For D to be diagonalizable the following condition has to be satisfied 

[Dt, D]=O. (3.l.51) 

When we discuss the hermitian and the unitary representations of A we will 

explicitly show that (3.l.51) is satisfied. From (3.1.46)-(3.1.50) it follows that the operator 

D commutes with a, b, e and d. We consider an eigenspace of D with eigenvalue 8:t:- O. Since 

aD=Da=O, it follows that in such a subspace a=d=O and be=eb, and the representation is 

trivial. Thus we need only consider eigenspaces of D with eigenvalue zero. If on this 

subspace D is diagonalizable then it is identically zero and 

from (3.l.52) 

So that 

da - dad - be = (l-a)( 1- d) 

= -1+a+d-ad. 

(3.l.52) 

(3.l.53) 



be = 1-a - d + ad + da - dad 

be = (1- a) - (1- a )d( 1-a). 

Using (3 .l.I2) and (3.1.54) one obtains 

eb = ( 1- d) - (1- d )a( 1-d). 
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(3.l.54) 

(3.l.55) 

The equality (3.l.53) gives the same relations as in (3.l.54) and (3.l.55). This only leaves 

the case where D is not diagonalizable. 

A related approach is to consider the uniqueness of the determinant of the operator 

matrix A. We have two candidates L\},L\2 for this "determinant". The inverse of A exists 

only ifboth L\l and L\2 are invertible. Ifwe insist on a unique determinant then 

(3.l.56) 

Using (3.1.37) and (3.1.38) we get 

da(l- d) - eb = (1- d)ad - eb 

[a,d] = 0 (3.l.57) 

[a,&] = [b,L\] = [e,L\] = [d,L\] = o. (3.l.58) 

Hence L\ behaves as a "Casimir" operator for the algebra generated by a,b,c and d 

and the representation of this algebra can be labeled by the eigenvalue of this "Casimir" 

operator. Calling this eigenvalue -q and recalling that a and d commute we find that for 

diagonalizable a and d this covers both the hermitian At = A and unitary At = A-I 

representations to be discussed below. 

Before proceeding let us discuss the consequences of (3.1.56) 
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/!,.R = /!,.L = -qI. 

Multiplying (3.1.39) from left by /!,. L and from right by A one obtains 

Using (3.1.56) we get 

(3.1.59) 

Again multiply both sides by A 

A 3 = (I - q) A 2 + qA 

= (1- q)[(I-q)A +q ]+qA 

=(I-q+q2)A+q(l-q) 

and proceeding in this manner we obtain 

(3.1.60) 

this gives us an interesting result that, when 
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(3.1.60) becomes 

so that 

cf1 = 1 (3.1.61) 

which means that when you apply a braid group generator on the braid n times you obtain a 

configuration whose representation is the same as the representation of the original 

configuration of the braid. 
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3. 2. Representations of the Braid Group 

Now let us take the elements of the matrix A which is the nontrivial part of the braid 

group generators, as operators on a vector space. Consider they have the following effects 

on a vector In) in this space 

bln)=bnln-l) (3.2.1) 

cln) = cnln+ 1) (3.2.2) 

aln)=anln) (3.2.3) 

din) = dn In). (3.2.4) 

Notice that band c are lowering and raising operators respectively and a and d are diagonal 

operators in this basis. The vectors In) are the eigenvectors of a number operator N, i.e., 

Nln) = nln) where n is an integer. Since In) is an eigenvector of the operator cb, we can 

express bc as a function of the number operator and the eigenvalues of bc as a function of n. 

cbln) = cbn In-I) = bncn-lln) = [n Jln) = [NJln) 
bcl n) = bCn In + 1) = bn + 1 cn In) = [ n + 1 JI n) = [ N + 1 JI n) 

(3.2.5) 

(3.2.6) 

Now let us solve an ,bn ,cnand dn using the braid group relations (3.1.10)-(3. 1. 16).From 

(3.1.10) we get 

(3.2.7) 



From (3.1.11) 

From (3.1.12) 

From (3.1.13) 

From (3.1.14) 

if dn- 1 :;to. 

(bc - cb )In) = (dad -ada)ln) 

abln) = ba(1- d)ln) 

an-Ibn =bnan(1-dn) 

an-l =an(1-dn). 

cnan = (1-dn+l )an+ICn 

an = (1-dn+dan+l' 
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(3.2.8) 

(3.2.9) 

(3.2.10) 

(3.2.11) 



From (3.1.15) 

From (3.1.16) 

bd\n) = (l-a)db\n) 

bndn = (l-an-ddn- 1bn 

dn = (1-an-l)dn- 1. 

dc\n) = cd( I-a )\n) 
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(3.2.12) 

(3.2.13) 

The equations (3.2.10) and (3.2.11) and the equations (3.2.12) and (3.2.13) are identical 

when we replace n by n+1. Substituting n+l instead of n in (3.2.8) and using (3.2.13) for 

dn+1 and from (3.1.11) i.e. by taking 

(3.2.8) turns out to be 
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This gives us the same equation as in (3.2.7). One can easily show that (3.2.9) can be 

obtained by using (3.2.11 ),(3 .2.13) and (3.2.7). In the previous section we have obtained 

that 

(3.2.14) 

Using this equality it is easy to show that equations (3.2.11) and (3.2.13) are identical. 

Hence we have only three independent equations (3.2.10),(3.2.7) and (3.2.14). Let us solve 

an by using (3.2.10) and (3.2.14) 

Defining 

we find the solution in terms of Uo 

U1 =1+qUO 

2 U2 = l+q+q Uo 
2 3U U3 = l+q+q +q 0 

2 n-l nU 
Un = l+q+q + .... +q +q 0 

(3.2.15) 



Defining 

we get 

Using (3.2.14) one obtains 

Using (3.2.19) in (3.2.7) we obtain 

1- qn n 
Un =--+q Uo l-q 

C == -1 + Uo - qUo 

Un = I+Cqn 
1- q 

an = 
l-q 

I+Cqn 

Cqn-l(l_ q) 
dn = --C-n----:-1-

1+ q 
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(3.2.16) 

(3.2.17) 

(3.2.18) 

(3.2.19) 

(3.2.20) 

(3.2.21) 
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3. 2. 1. Hermitian Representations 

Now let us discuss the case where A is hermitian. 

At=A (3.2.22) 

[:: ;}[: !] 
gives 

* a =a (3.2.23) 
* b = e (3.2.24) 

d* =d. (3.2.25) 

For a hermitian representation of the braid group generators, a and d are themselves 

hermitian operators acting on a Hilbert space and have real eigenvalues. Using (3.2.14) we 

get 

(3.2.26) 

Since an and dn are real, the parameter q is also real for a hermitian representation. Also we 

have 

(n+ lleln) = (nle *In + 1) = (nlbln + 1) = bn+1 (nln) 

(n+ lleln) = en (n+ 11"+ 1). 

(3.2.27) 

(3.2.28) 

Since the scalar product is well defined in Hilbert space and (n In) = (n + 11 n + 1) = 1, from 

the equality of(3.2.27)-(3.2.28) we can conclude that 
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Using [a,a*]=o and [d,d*]=O together with [a,d]=O we can take a and d to be 

simultaneously diagonal. So the eigenvalues of the operators a, b, c, d become 

-b- ian 
Cn = n+l = e 

Yz 
q( 1 + Cqn-l)( 1 + Cqn+l) 

(1 + Cqn)2 

(3.2.29) 

(3.2.30) 

Thus we have constructed an infinite dimensional representation of the braid group with 

hermitian generators where n is an integer. The right hand side of the equation (3.2.29) 

must be positive definite and this condition is satisfied only when C)O and q)O. 

Now lets investigate if there is a finite dimensional representation with A hermitian. 

Suppose there is a ground state 10) which is annihilated by the lowering operator b and a 

top state IN-I) (for N dimensions) which is annihilated by the raising operator b *.We have 

blO) = 0 

clN -1) = 0 

(3.2.31) 

(3.2.32) 



from which it follows that 

Ib
o
l2 = q(1+C)(1+C;-2) = O. 

(1 + Cq-I) 

Equation (3.2.33) is satisfied only when C = _q2. With this value ofC 

1-q 
a = -----'=---

n n+2 l-q 
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(3.2.33) 

(3.2.34) 

(3.2.35) 

(3.2.36) 

Let us look if the braid group relations are satisfied with these eigenvalues. Equation 

(3.1.11) gives 

This is satisfied only when do = 0 or do = l. From (3.2.35) we obtain do = -q .The q=O 

case makes the representation trivial . Also the q = -1 case is forbidden because it violates 

the positive definiteness of Ibn 12. Hence there are no finite dimensional hermitian 

representations. 
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In (3.1. 51) we considered [Dt, D]=O and promised to show this explicitly for a 

hermitian representation. We have 

D = da - dad - cb + 1- a - d + ad = L11 - L1' 1 

Dt = a * d* -d* a * d* -b * c * + 1- a * -d* +d* a * 

Dt = ad - dad - cb + 1- a - d + da = L11 - L1' 1 = D. 

Since Dt = D ,(3.1.51) is trivially satisfied. 

3. 2. 2. Unitary Representations 

Now let us discuss the case where A is unitary 

Using (3.1.46) and (3.1.47) one obtains 

d 
d-l 

a =-_. 
a-I 



Hence 

* d a =--
d-l 

d*=~ 
a-I 

c * - -11-1b - 1 

b* -1 = -112 c. 

Using (3.1.56) and (3.2.14),(3.2.39) becomes 

* * * c = qb or c = q b 

* * * b = qc or b = q c . 

By substituting (3.2.41) into (3.2.42) one obtains 

which gives 

b* *b* =qq 

* qq = I 

(l-d)(I-a)=q 

* a = 

d = _1---=-..q _-_a 
I-a 

I-q-a 
I-a =a+q-I 

q q 
a-I 

* a = l-q+qa . 
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(3.2.37) 

(3.2.38) 

(3.2.39) 

(3.2.40) 

(3.2.41) 

(3.2.42) 

(3.2.43) 

(3.2.44) 
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First let us try to find an infinite dimensional unitary representation. Note that 

(3.2.41),(3.2.43) and (3.2.44) are the unitarity conditions. We follow the same procedure of 

the hermitian case, but this time with the unitarity conditions. The operators b * = q-1c and b 

are the raising and lowering operators respectively. We find that 

I-q 
an = -----=--

I+Cqn 
(3.2.45) 

(3.2.46) 

The unitarity condition (3.2.44) imposes CC* = 1. But unfortunately the positive 

definiteness of (3 .2.46) is violated. For some values of n i.e. for some states, Ibn 12 becomes 

negative. So there are no infinite dimensional unitary representations. There may be a 

possibility to preserve the positive definiteness by cutting the spectrum where it passes from 

the positive to the negative region. In other words, let us investigate if there is a finite 

dimensional representation. Let there be a ground state which is annihilated by the lowering 

operator and a top state annihilated by the raising operator. For N dimensions we have 

clN -I) = o. 

Using the braid group relation we get 

cdblo) = (d _d 2 )10) 

0= do (1- do). 

This gives us the solutions do = 0 or do = 1. The do = 0 solution gives q = 1 which makes 

every eigenvalue of a and d zero and there is no value of q satisfying do = 1. The same 
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problem arises for the top state. Hence there are no unitary representations satisfying the 

braid group relations (3.1.10)-(3.1.16). 

For unitary representations we have stated that [Dt, D]=O i.e. D is diagonalizable. 

Let us explicitly show that this is indeed true. From (3.2.39) and (3.2.40) 

It follows that 

Since c and L12 commute 

and for unitary case we have 

b* - _ A-I 
- L,12 c *( *)-1 c=-b L11 . 

-1 ( *)-1 c = L12 c L11 . 

* A-I 
L11 = ti2 or L1-1 - L1* 1 - 2 

(L1' )* = -(l-a*)(l-d*) = -(1-~)(1-~) 
2 d-1 a-I 

[ ]-1 (' )-1 
= - (l-a)(l-d) = L11 

where D = L11 - L1'l = L12 -I1'z· Using (3.2.48) and (3.2.49) we get 

(3.2.47) 

(3.2.48) 

(3.2.49) 

(3.2.50) 
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so D is also unitary and [D ,Dt] = o. 



3. 3. The Pseudo Braid Algebra Their Representations And Generalized Hydrogen 

Spectrum 
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In the unitary representation of the braid algebra with b the lowering and b * = q-1c 

the raising operator, we have defects for the ground state and for the top state. For a finite 

dimensional representation we should have /b5/ = O.This is satisfied only when C = _q2 in 

(3.2.46).Using this value ofC in (3.2.45) for N dimensional representation we have 

cdblO) = (d _d2 )1 0) 

qd_1IboI
2

10) = (do -d5 )1 0) 

The left hand side of the equation must be equal to zero (because b annihilates the ground 

state). But we have d_1 = 00 and Ibol2 = 0 and the product d_1lbol2 = 00·0 should give a 

finite value which is just the value of do - d5. Hence we have a defect (or inconsistency 0 = 

finite nonzero value) for the ground state. Similarly for the top state we have 

bacl N -1) = (a - a2 )1 N - 1) 

qaNlbNI21N -1) = (aN-I -a~_JIN -1). 

The left hand side must be equal to zero (because b * = q-Ic annihilates the top state). But 

we have aN = 00 and IbN 12 = 0 and the product d_1lbol
2 

= 00·0 should give a finite value 

which is just the value of aN -I - a~ -I. We have also a defect for the top state just like the 

defect for the ground state. 

To overcome this difficulty (inconsistency) i.e. to avoid 00.0 = finite value relations 

we must avoid aN and d_1 in the relations (3.1.10) and (3.1.11).We replace these 

relations by (3.1.54) and (3.l.55). Thus 



bae=a-a2 is replaced by be=(I-a)[I-d(1-a)] 

edb = d - d 2 is replaced by eb = (1- d)[l- a(1- d)] 
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The relations on the left belong to the braid algebra (BA) while the relations on the right 

belong to what we call the "pseudo braid algebra (PBA)". If a,b,e,d satisfY the braid algebra 

and a-I (or d-I) exists then a,b,e,d also satisfY the pseudo braid algebra. If a,b,e,d satisfy 

the PBA and [1- d( 1- a) f (and [1- a( 1- d) f) exist then a,b,e and d also satisfY the 

B A. Except (3.3.1) and (3.3.2) all of the braid algebra relations remain the same in the 

pseudo braid algebra, and (3.1.12) is just a consequence of (3.3.1) and (3.3.2).So we have 

six relations instead of seven in the case ofPBA 

be = (1- a)[ 1- d( 1- a)] (3.3.1) 

eb = ( 1 - d)[ 1-a( 1- d) ] (3.3.2) 

ab = ba( 1- d) (3.3.3) 

ea = (l-d)ae (3.3.4) 

bd = (l-a)db (3.3.5) 

de = ed( 1- a). (3.3.6) 

If we repeat the procedure in the previous section we find the eigenvalues of the 

operators for the finite dimensional unitary representation as 

l-q a = _-.-0.._ 

n I+Cqn 

Cqn-l(l_q) 
d =-----

n 1 + Cqn-l 

(3.3.7) 



* where qq = 1. The ground state is annihilated by b 

cblo) = (l-d)[ l-a(l-d) ]10) 

Ibol

2 =(I-do)[I- ao(l-do)]=O. 

With this value of C we have 

l-q 
a =-~-n n+2 l-q 

1 ao=-­
l+q 

Then the right hand side of(3.3.8) becomes 

_qn+l(l_q) 
d =----n n+l l-q 

do = -q. 

(1 +q)[I- _1_(1 +q)] = O. 
q+l 
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(3.3.8) 

(3.3.9) 

(3.3.10) 

Hence (3.3.2) is satisfied for the ground state. Now we will investigate if (3.3.1) is satisfied 

for the top state 1 N - 1) 



bel N - 1) = (1- a)[ 1-d( 1- a)]1 N - 1). 

Since e annihilates the top state 

This is satisfied when . 

Using (3.3.12) we obtain 

aN-l =-q 

. 2:r 
/--

q = e N+2. 

1 
dN - 1 =-­

q+l 

and with these values the right hand side of (3.3. 11) becomes 
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(3.3.11) 

(3.3.12) 

Hence (3.3.1) is satisfied for the top state and this completes the construction of the finite 

dimensional unitary representation of the pseudo braid algebra with the spectrum (3.3.10) 

.2:r 

and q = / n+2 for an N dimensional representation. Since [ 1- d( 1-a) r does not exist this 
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unitary representation belongs only to the PBA not to the BA. Now let us show that Ibn /2 is 

positive definite. Expressing q in terms of trigonometric functions and after a few 

manipulations we obtain 

S· 2 Jr 
In --

Ibnl

2 = 1- N +2 

S
. 2 n+ 1 
In --Jr 

N+2 

It is obvious that for n = O,I, .... ,N-l (3.3.13) is positive definite. 

For the hermitian representation of the PBA we have 

* b* d = d*. a =a c= 

(3.3.13) 

(3.3.14) 

Again identifying b the lowering operator and c the raising operator and repeating the 

procedure of (3.2.1) we find that 

Cqn-l(l_q) 
d =-----

n I+Cqn-l 
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where q is a real parameter. For an infinite dimensional representation where n = 0,1,2, ..... . 

the lowering operator b annihilates the ground state 

cblo) = (1- d)[ l-a( I-d) ]10). (3.3.15) 

The left hand side must be equal to zero 

This is satisfied when C = _q2 and by substituting this value we get 

l-q 
a = --"'=--n n+2 l-q 

(3.3.16) 

_qn+l(l_q) 
d n = -1--n-+--=l-

-q 
(3.3.17) 

(3.3.18) 

The right hand side of(3.3.15) must be equal to zero for consistency, i.e., 

(1- do)[ 1- ao (1- do)] = o. 



Using 

we find that 

1 
ao =-- and do =-q 

I+q 

(I +q )[1 __ 1_(1 +q)] = ° 
I+q 
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so (3.3.15) is satisfied. Since there is no value of q satisfying (3.3.1) for the top state i. e. 

bel N -1) = (1- a)[ 1-d( 1- a)]1 N - 1) 

we have only infinite dimensional hermitian representations. Since [1 - a( 1 - d)] is not 

invertible this hermitian representation belongs only to the PBA not to the BA. If we don't 

have a ground state i.e. ifn = ...... ,-2,-1,0,1,2, ...... then the hermitian representations belong 

both to the BA and to the PBA. 
Now let us discuss the q ~ 1 limit. From (3.1.59) we have 

This reduces to 

(3.3.19) 

Equation (3.3.19) shows that In the q~ 1 limit the hermitian and the unitary 

representations coincide 
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We can also see this from the eigenvalues of the operators. In both representations 

the eigenvalues reduce to 

or 

1 a --­n -
n+2 

1 
dn =---

n+l 

(3.3.20) 

(3.3.21) 

(3.3.22) 

(3.3.23) 

We can identify (3.3.22) as a hydrogen-like spectrum and interpret the q -::j:: 1 case as 

a one parameter generalization of the hydrogen spectrum. 
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3.4. OTHER REPRESENTATIONS 

Let us investigate other possible representations of the braid algebra. In section 3.1., 

we have shown that 

[b,(I-a)( I-d)] = o. 

Assuming a -I and b -I exist and using the relation (3. 1.13) we get 

Substituting this value in (3.4.1) 

This reduces to 

ab= ba(I-d) 

(I-d) = a-1b-1ab. 

(3.4.1) 

(3.4.2) 

(3.4.3) 

In fact this is the only relation to be satisfied. By solving c and d in terms of a and b 

using (3.1.13) and (3.1.10), that is 

c=a-1b-1a(1-a) 

d = I-a-1b-1ab 

(3.4.4) 

(3.4.5) 
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and substituting into the braid algebra relations, it can be shown that all of the relations 

(3.1.10)-(3.1.16) are satisfied when (3.4.3) is satisfied. Hence different solutions to (3.4.3) 

are different representations of the braid algebra. Finite dimensional representations exist for 

this case but it can be proven that they cannot be made hermitian or unitary. 
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4. CONCLUSION 

The use of the q-deformation of Lie groups -quantum groups- may be an 

opportunity to solve the standard problems of field theories by generalizing the symmetry. 

Quantum groups, we have discussed only the SUq(2) case, can be used as gauge groups and 

we have two possibilities for the gauge field. One of the possibility is to take the gauge field 

as an element of the quantum universal enveloping algebra of su(2) while the other 

possibility is to take the gauge field as an element of the Lie algebra analog of the gauge 

group SUq(2). It would be interesting to find the relation between the superplane defined by 

(2.3.44) and the superplane introduced in the Manin formulation of quantum 

groups[lS].The relation between the exponential mapping (2.3.33) and the exponential 

representation found in [16] and [17] still remains as an unsolved problem. 

To construct the Lagrangian which is invariant under quantum group gauge 

transformations the usual notion of trace has to be modified. The q-trace which is invariant 

under. quantum group transformations is defined. But the physical meaning of the 

noncommuting objects in the Lagrangian has to be clarified and this is another problem for 

future works. 

We have defined two closely related associative algebras by considering a 2 x 2 

matrix whose elements satisfy certain commutation-like relations. If the relations of which 

we have called the braid algebra are satisfied (hen a representation of the n-braid group can 

be constructed. Looking for hermitian and unitary representations of the braid algebra in 

Hilbert space by identifying raising and lowering operators we have found that the braid 

algebra has such representations without a ground or top state. If the existence of a ground 

and/or a top state is desired then one has to define a new algebra which we have called "the 

pseudo-braid algebra". 

The pseudo-braid algebra has two physically interesting representations, one of 

which corresponds to the case where the 2 x 2 matrix whose elements generate the algebra 

is hermitian. In this case the structure is that of a generalized oscillator with creation and 
* * . annihilation operators band b such that the spectrum of b b IS a one parameter 

generalization of the hydrogen spectrum. The other interesting representation corresponds 

to the case where 2 x 2 matrix with operator elements is unitary. In this case, the 

representations are finite dimensional. The spectrum of b * b, although finite, is again a 

generalization of the hydrogen spectrum since in the limit q = exp (2lri / (N + 2)) ~ 1 it 

becomes hydrogen-like. In this limit N, the dimension of the representation goes to infinity. 
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For the pseudo-braid algebra one can again use the 2 x 2 matrix A with operator 

elements to construct "the pseudo-braid group".In this case the braid group relation 

CYj CYj + 1 CYj = CYj + 1 CYj CYj + 1 is only approximately satisfied. Both the braid algebra and the 

pseudo-braid algebra have mathematically and physically interesting properties. 
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