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ABSTRACT

XMM-NEWTON DATA ANALYSIS OF ISOLATED

RADIO-QUIET NEUTRON STARS 1E 1207.4-5209, RX

J0002+6246, RX J0822-4300, CXOU J185238.6+004020

In this thesis, data analysis of X-ray dim radio quiet X-ray pulsar 1E 1207.4-

5209 and RX J0002+6246, RX J0822-4300, CXOU J185238.6+00402 which have similar

observational characteristics as 1E 1207.4-5209 are represented based on XMM-Newton

satellite observations. X-ray spectral analysis of neutron star RX J0002+6246 based

on XMM-Newton data is given for the first time. The problems related to the magnetic

field and age of X-ray pulsar 1E 1207.4-5209 are discussed and a model is proposed to

solve these problems. These four neutron stars have some common physical properties

based on their observational data, and hence they may have similar physical evolution.

It is shown that all of them have pure black body spectra (in three cases 2 black body

components) without power law component. No pulsar wind nebula has been observed

around any one of them, which strongly shows that they have low rotational energy

loss despite their very small ages. All of these neutron stars are physically connected

to shell-type supernova remnants which are younger than (1-2)×104 yr. None of these

sources has been detected to emit at any radio frequency. These common spectral

properties (and possibly common timing characteristics) of these neutron stars are

examined. Their possible physical evolution is discussed and a model is proposed. As

a result, it is quite possible that these objects form a new class of neutron stars quite

different than the other types.
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ÖZET

İZOLE RADYO-SESSİZ 1E 1207.4-5209, RX J0002+6246,

RX J0822-4300, CXOU J185238.6+004020 NÖTRON

YILDIZLARININ XMM-NEWTON VERİ ANALİZİ

Bu tezde X-ışını sönük radyoda gözükmeyen izole X-ışın pulsarı 1E 1207.4-5209

ve bu cisim ile benzer gözlemsel özellikler gosteren RX J0002+6246, RX J0822-4300,

CXOU J185238.6+004020 nötron yıldızlarının XMM-Newton uydusu gözlemlerinin bil-

gisayarla veri analizi sonuçları sunulmaktadır. RX J0002+6246 nötron yıldızının XMM-

Newton verilerine dayanan X-ışın tayfı ilk kez bu tezde verilmektedir. 1E 1207.4-

5209 X-ışın pulsarının manyetik alanı ve yaşı ile ilgili problemler tartışılmakta ve bu

problemlerin çözümüne yönelik bir model önerilmektedir. Bu dört nötron yıldızının

gözlemsel verilerinden ortak fiziksel özelliklere sahip oldukları ve dolayısıyla benzer

fiziksel evrime sahip olabilecekleri görülmektedir. Tümünün de üs yasası icermeyen

sadece kara cisim (üc durumda 2 kara cisim bileşeni) iceren tayflara sahip oldukları

gösterilmektedir. Bu nötron yıldızlarının hiç birinin etrafında pulsar rüzgar nebulası

görülmemektedir ki bu da cok genç olmalarına rağmen dönüş kinetik enerji kayıplarının

düşük olduğunu gösterir. Tüm bu nötron yıldızları yaşları (1-2)×104 yıldan daha az

olan kabuk-tipli süpernova kalıntılarına bağlıdırlar. Hiç birinin radyo frekanslarında

ışıma yaptığı kaydedilmemistir. Bu tezde ele alınan nötron yıldızlarının bu ortak tayf-

sal (ve muhtemelen ortak zamansal) özellikleri incelenmektedir. Olası fiziksel evrimleri

tartışılarak bir model önerilmektedir. Sonuç olarak, bu cisimlerin diğer izole nötron

yıldızı tiplerinden çok farklı bir sınıf oluşturdukları oldukça muhtemeldir.
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Ṗ Time rate of change in P

R Radius

T Temperature

tSNR Age of supernova remnant

w Line width

α Angle between the rotation axis and the magnetic field axis

αp Photon index

Ω Rotational velocity

Ω̇ Time rate of change in Ω

Σ Surface brightness

σ(E) Photo-electric cross-section

τ Characteristic age

τopt Optical depth

χ2 Chi-squared



xiv

ATNF The Australia Telescope National Facility

AXP Anomalous X-ray pulsars

CAL Calibration Access Layer

CCD Charge Coupled Device

CCF Current Calibration File

Chandra Chandra X-Ray Observatory

CTE Charge Transfer Efficiency

CXB Cosmic X-ray Background

ESA European Space Agency

EPIC European Photon Imaging Camera

FITS Flexible Image Transport System

FOV Field Of View

FPA The Focal Plane Assembly

FPP Focal Plane Platform

FWHM Full Width at Half Maximum

GTI Good Time Intervals

HEW Half Energy Width

IR Infrared

MIS Mirror Interface Structure

MOS Metal Oxide Semi-conductor

MSP The Mirror Support Platform

ODF Observation Data File

OM Optical Monitor

PSF Point-Spread Function

PWN Pulsar Wind Nebula

QE Quantum Efficiency

RGA Reflection Grating Arrays

RGS Refection Grating Spectrometer

ROSAT The Roentgen Satellite

SAS Science Analysis Subsystem



xv

SGR Soft gamma-ray repeaters

SN Supernova

SNR Supernova remnant

SOC XMM-Newton Science Operations Centre

SSC Survey Science Centre

SVM The Service Module

TSS Telescope Sun Shield

UHB XMM-Newton Users Handbook

UV Ultraviolet

XMM-Newton X-ray Multi-Mirror Mission

XDRQNS X-ray dim radio quiet neutron stars

XDTNS X-ray dim thermal neutron stars

ZAMS Zero age main sequence



1

1. INTRODUCTION

In this thesis, I give the results of my data analysis of isolated radio-quiet neutron

stars 1E 1207.4-5209, RX J0002+6246, RX J0822-4300 and CXOU J185238.6+004020

by presenting the X-ray spectra and data of these sources based on all the relevant

XMM-Newton satellite observations.

Among these four neutron stars, 1E1207.4-5209 is the most well observed and

examined one. On the other hand, both spectral and timing analysis of the remaining

three neutron stars have not been done well as seen from the articles given in the

literature. In particular, analysis of the X-ray spectra of radio-quiet neutron star RX

J0002+6246 has not been published in any article or book.

In the following chapters, I will also attempt to show the common characteristics

of these X-ray sources which may lead to a new type of isolated neutron star and may

help in clarifying the physical evolution of such anomalous neutron stars.
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2. ISOLATED NEUTRON STARS AND PULSARS

2.1. On the formation of isolated neutron stars

Ordinary stars undergo thermonuclear reactions in their cores beginning from

fusion of protons up to formation of Fe-group elements (depending on their mass).

As the nucleons in the nuclei of Fe-group elements have the largest binding energy

per nucleon among all the elements, thermonuclear reactions do not proceed further

during massive stellar evolution. When the hydrostatic equilibrium no longer exists

(because of the lack of radiation produced by thermonuclear reactions), the masive

star collapses on itself forming a compact object. If mass of the compact object does

not exceed 3.2 M⊙ (Fang and Ruffini 1983) the degeneracy pressure of the neutrons

formed by inverse beta-decay (neutronization) can balance the gravitational pressure

and a neutron star is born. Mass measurements of neutron stars in binary systems

(see e.g. Charles and Coe 2003) show that their mass-number distribution has a peak

around 1.4 M⊙, that is close to the Chandrasekhar limit. Radius of a neutron star is

usually adapted as 10 km, though it may change in an interval 9-16 km depending on

the mass and the equation of state of the neutron star (Shapiro and Teukolsky 1983).

The average density of a neutron star must be comparable to nuclear density (on the

order of 1014 gr/cm3) because of neutronization.

In other words, basically neutron stars are formed as the end product of massive

stellar evolution during core collapse supernovae (SNe). Isolated stars (or the ones in

wide binaries) with zero age main sequence (ZAMS) mass greater than about 8 M⊙

end their evolution by core collapse SNe forming neutron stars (Lipunov 1992; Lyne

and Graham-Smith 2006) and possibly black holes (the ZAMS mass must be greater

than about 25 Solar mass for black hole formation). If the star is in a close binary

system, the boundary limits on mass of the progenitor may be larger.

Dominant number of stars are in binary systems as known observationally. De-

spite this fact, most of the neutron stars are isolated, which shows that there occurs
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disruption of the binary system (asymmetric explosion) during most of the core collapse

SN explosions. High space velocity of neutron stars (about 250-300 km/s on average,

Allakhverdiev et al. 1985; Hansen and Phinney 1996) also supports the asymmetric

explosion scenario. On the other hand, the degree of asymmetry is not supposed to be

large as the kinetic energy of a newborn neutron star with conventional mass (1.4 M⊙)

and the energy needed to disrupt the binary system (for average values of companion

mass and binary separation) to be on the order of 1048 erg is sufficient to form an

isolated neutron star with space velocity about 250-300 km/s. This amount of energy

is 2-3 orders of magnitude smaller than core collapse SN explosion energy which is

typically on the order of 1050−51 erg (excluding the kinetic energy of neutrinos formed

during the collapse which is about 1053 erg).

Today, isolated neutron stars are divided into several subgroups according to

their observational (physical) characteristics. Although, there is no common consensus

on the number and the names of these subgroups, we can classify them according to

their radiation as: radio and/or X-ray pulsars, X-ray dim radio quiet neutron stars

(XDRQNSs), X-ray dim thermal neutron stars (XDTNSs), anomalous X-ray pulsars

(AXPs) and soft gamma-ray repeaters (SGRs). Among these different types of isolated

neutron stars, the most well examined and relatively well understood one is the class

of radio pulsars, though there still exist some problems on understanding the physics

of them (e.g. varying pulse profiles, nulling, glitches, magnetic field evolution etc.). A

radio pulsar is simply a neutron star which is a rotating magnetic dipole. When a mas-

sive progenitor star collapses on itself after finishing thermonuclear fusion reactions up

to Fe-group elements, its surface dipole magnetic field increases as its radius decreases.

Assuming that the magnetic moment of the progenitor star is conserved during the

collapse, one can easily estimate the order of magnitude of the surface dipole magnetic

field of a newborn neutron star which is on the order of 1012 G on average.

2.2. Magneto-dipole radiation and temporal evolution of pulsars

There are two basic observable quantities of isolated pulsars: the rotation period

P and the time rate of change of the rotation period Ṗ. Time rate of change of the
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rotational kinetic energy of a rigid body is

Ė = IΩΩ̇ =
4π2IṖ

P 3
(2.1)

where I is the moment of inertia and Ω=2π/P is the rotational velocity. The component

of the dipole magnetic field of pulsar which is perpendicular to the rotation axis also

depends on P and Ṗ:

B = (
3c3IP Ṗ

8π2R6
)1/2 (2.2)

where c is the speed of light in free space and R is the radius of pulsar (Shapiro and

Teukolsky 2004).

If we assume that the time rate of change of the rotational velocity of pulsar can

be expressed as a simple power law (Lyne and Graham-Smith 2006):

Ω̇ = −kΩn (2.3)

where k is a proportionality constant and the power n is called the ’braking index’,

then the real age of pulsar can be represented in terms of P and Ṗ as:

t =
P

(n − 1)Ṗ
[1 − (

P0

P
)n−1] (2.4)

where P0 is the initial rotation period of pulsar. If P0 is much less than P:

t ∼=
P

(n − 1)Ṗ
(2.5)

Magneto-dipole radiative power of pulsars is

L =
B2

pR
6Ω4

6c3
Sin2α (2.6)
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where Bp is the strength of the dipole magnetic field at the magnetic pole and α is the

angle between the rotation axis and the magnetic axis (Shapiro and Teukolsky 2004;

Lipunov 1992). If Ė (eqn. 1.1) is equal to L (eqn. 1.6) (i.e. if the net torque on pulsar

is equal to the magneto-dipole radiation torque), then the braking index turns out to

be n=3 (assuming also that eqn.(3) can be applied to express the rotational evolution

of pulsar). In such a case, the characteristic age (τ) of pulsar is defined using the n=3

condition in eqn.(5):

τ ∼=
P

2Ṗ
(2.7)

So, when n=3 and P0≪P, τ is approximately equal to the real age of pulsar. When

n is greater (less) than 3, τ is greater (less) than the real age. So, if there are extra

torques on pulsar which spin it down in addition to the effect of the magneto-dipole

radiation torque, the pulsar will evolve with larger Ṗ values compared to the case of pure

magneto-dipole radiation torque. On the other hand, if there is B-decay, the Ṗ values

the pulsar has throughout the evolution will be smaller. Note that the braking index

n should be adapted as the average braking index (n̄) of pulsar when considering long

time intervals in pulsar’s lifetime, because the value of ’instantaneous’ (i.e. considering

very short time intervals compared to the lifetime of pulsar) braking index may change

in time in a complicated way in general.

2.3. Cooling of Neutron Stars

When a neutron star is formed by core-collapse SN of a massive star, its interior

temperature must be about 1011 K (for thermonuclear reactions to proceed up to

formation of Fe-group elements, the core temperature of a massive star should be at

least ∼109 K). This temperature drops down to 109−10 K very rapidly and then the

young neutron star cools down via neutrino cooling in the first 105−6 yr (depending

on the equation of state and the mass of neutron star) predominantly, after which

photon cooling becomes dominant when the temperature in the interior part of the

neutron star is as low as 108 K (i.e. when the surface temperature is 105-106 K,

Tsuruta 1974,1979; Malone 1974; Shapiro and Teukolsky 2004). So, for all neutron
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stars physically connected to SNRs (lifetime of SNRs is about 104−5 yr depending

mainly on the SN explosion energy and the ambient medium in which the SNR’s shock

wave expands), neutrino cooling should be dominant and their surface temperature

must be greater than a few times 105 K. If there is a hot spot on the surface of neutron

star (possibly on the magnetic poles) it is observed as an X-ray pulsar emitting thermal

(black body) radiation.

Besides thermal emission, there will be synchrotron (power-law) emission of pulsar

as discussed above briefly. Both thermal and non-thermal components of a neutron

star’s radiation may or may not be observable depending on its surface temperature,

distance from the Sun, position in the Galaxy, observed flux, angle between the rotation

and the magnetic axes, beam width of the pulsed emission, surface magnetic field and

rotation period.

Most of the detected isolated pulsars are not observed to emit thermally as their

surface temperatures are too low and/or their distances from the Sun are in general

large. On the other hand, most of the detected young pulsars are observed to have

both power-law and black body emission. The neutron stars under consideration in this

thesis are all young and physically connected to supernova remnants (SNRs) but they

do not have power-law components in their spectra (none of them has been detected

at radio frequencies) as the best fits to their X-ray spectra are consisted of one or two

black body components only. Possible reasons and consequences of this observational

fact will be discussed below.

2.4. Physical Characteristics of New Types of Isolated Neutron Stars and

Pulsars

XDRQNSs, XDTNSs, AXPs and SGRs are relatively new classes of isolated neu-

tron stars. None of them have been yet detected in radio frequencies. Some of the

XDRQNSs and XDTNSs and all the AXPs and SGRs detected up to date show them-

selves as X-ray pulsars. AXPs and SGRs should be considered as a single class as they

seem to have similar spectral and temporal properties. Gamma-ray bursts have been
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observed from SGRs and recently AXPs have been observed to experience X-ray bursts

(Kaspi et al. 2003) which further supports the idea that they belong to different phases

of the same type of neutron star as predicted by Guseinov et al. (2003a). AXPs/SGRs

have long P and high Pdot and unlike radio pulsars these objects are not rotation

powered pulsars as their Ė values are less than their persistent X-ray luminosity. In

order to explain the position of AXPs/SGRs on a P-Ṗ diagram as well as the source

of their persistent X-ray emission and bursts, several ’magnetar’ models depending on

very high magnetic field have been suggested since 1992 (Duncan and Thompson 1992;

see also Thompson and Duncan 1995,1996). On the other hand, it is not possible to

explain all the observational characteristics of these sources based on a possible very

high magnetic field only (Guseinov et al. 2003a). The idea of possible existence of

low mass neutron stars have been proposed by Guseinov et al. (2005a,2005b) to ex-

plain their positions on the P-Ṗ diagram, their very hot surfaces as compared to their

ages as found from their physical connections to SNRs, and the gamma-ray and X-ray

bursts based on magnetic reconnection. The main difference between this model and

the magnetar models is that in such a low mass neutron star model the magnetic field

is not supposed to be as high as in the magnetar models (≤1014 G). This approach

leads to a smooth distribution in the surface magnetic fields of isolated neutron stars

as a whole.

XDTNSs, as the name suggests, are observed to emit pure thermal radiation

without any power law component (Haberl 2005). They have long rotation period

(several seconds) and moderate Ṗ values (see Figure 2.1). Since these objects have low

X-ray luminosity the observed ones are located not so far away from the Sun (d<500

pc). Yet, their number in such a relatively small volume around the Sun leads to a

high birth rate for this type of isolated neutron star (Guseinov et al. 2005c). Some

of XDTNSs may be descendants of AXPs/SGRs and/or they may evolve from normal

radio pulsars.

XDRQNSs is not a well defined subclass; some of these sources are called in some

references as ”central compact objects” as they are physically connected to SNRs (but

note that there are some other isolated neutron stars as central compact objects of
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some SNRs, which are certainly not XDRQNSs). The locations of XDRQNSs on the

P-Ṗ diagram may be in the region where bulk of the radio pulsars are present, but this

is not so clear as the number of such sources with measured P and Ṗ values is very

limited.

The best known example of XDRQNSs is 1E 1207.4-5209 which is one of the

most heavily examined neutron star among all the types up to date . Although, it is

located in the bulk pulsar population on the P-Pdot diagram, its observational char-

acteristics are quite different compared to normal radio and/or X-ray pulsars. We will

use this source as a model in this thesis to distinguish the sources which belong to the

class of XDRQNSs. Spectral anlaysis of this source as well as RX J0822-4300, CXOU

J185238.6+004020 and RX J0002+6246, which have observational characteristics sim-

ilar to 1E 1207.4-5209, based on the XMM-Newton data will be presented in chapters

4 and 5.

2.4.1. X-ray Dim Radio-Quiet Neutron Stars

None of the XDRQNSs, XDITNSs or AXPs/SGRs has been detected at radio

frequencies with the exception AXP XTE J1810-197 from the direction of which radio

emission at 1.4 GHz has been detected (Halpern et al. 2005), but this radio emission

might also be produced by a possible pulsar wind nebula (PWN) around this AXP.

There are only a few observationally known XDRQNSs. All of them are physically

connected to Galactic SNRs which are located up to about 3.5 kpc from the Sun and

which have ages about (3-20)×103 yr with the exception of about 320 yr old SNR

Cassiopeia A which is one of the most heavily examined SNR especially because of

its very high radio surface brightness and the SN explosion energy (Guseinov et al.

2004a,2005c).

Although, none of the XDRQNSs has been detected at radio frequencies, this

does not necessarily mean that they have no radio emission. There are basically two

selection effects (other than the background radiation which is effective only on the
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sources located in the Galactic central directions, see Ankay et al. 2004) which can

prevent detection of the radio emission: the beaming fraction and the luminosity func-

tion. Based on radio pulsar observations, there exists a strong evidence that beaming

fraction decreases in time possibly because of the angle between the rotation axis and

the magnetic axis (α) decreasing during the evolution (Tauris and Manchester 1998).

Indeed, the existence of B-decay (where B is the component of the dipole magnetic

field perpendicular to the rotation axis) for a large sample of pulsars was shown by

Guseinov et al. (2004b) by comparing the characteristic ages of pulsars with their

kinematic ages (i.e. their distances from the Galactic plane). Guseinov et al. (2004b)

assumed an exponential decay with a characteristic decay time τd=3×106 yr. The cause

of B-decay in the case of pulsars can be a temporal decrease in α, but the possibility of

a decay in the dipole magnetic field itself can not be totally excluded (see e.g Geppert

& Rheinhardt 2002 on the possibility of magnetic field decay in neutron stars).

The other selection effect is related to radio luminosity versus number distribution

of pulsars (luminosity function). Based on the observational data, most of the pulsars

must have low radio luminosity at birth and the radio luminosity, which is only a

small fraction of the magneto-dipole radiation produced by the pulsar, does not change

significantly in time (Guseinov et al. 2003b).

As mentioned above, all the known XDRQNSs are connected to Galactic SNRs

with ages ≤2×104 yr. Most of the Galactic SNRs are shell-type (Green 2006) and

many of these SNRs lack detected point sources or PWNe in them. Direct detection

of neutron stars in many of the SNRs may not be possible because of the selection

effects and the large distances. On the other hand, PWN is not seen around pulsars

which have rate of rotational energy loss Ė<1035 erg/s (Guseinov et al. 2004c). The

only known XDRQNS with measured P and Ṗ values is 1E 1207.4-5209 and it has

Ė=2×1034 erg/s. This explains why there is no PWN around 1E 1207.4-5209.

Most of the observed neutron stars show themselves as radio pulsars. In ATNF

pulsar catalogue, there are more than 1700 neutron stars and about 80% of them are

radio pulsars. On the other hand, most of the observed isolated pulsars rotate rapidly
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with P>1 s. Obviously, such rapidly rotating objects should be neutron stars as white

dwarfs and ordinary stars can not have such rapid rotation without disrupting. Mag-

netars (AXPs/SGRs) and XDTNSs which have P>1 s are exceptions in this sense, but

these objects are surely neutron stars (not white dwarfs) as their surface temperature,

luminosity and surface magnetic field are too high for any white dwarf.

On the other hand, some isolated neutron stars do not show themselves as pulsar

in any low or high frequency band. Such objects are identified as neutron stars by their

Lx/Lopt ratio to be high as compared to normal stars and/or from their positional

coincidence with geometric centers of SNRs (in some cases ”bow shock” or PWN in

the central part of an SNR further supports a physical connection between the NS and

the SNR which are in the same direction).

XDRQNSs (otherwise known as ”compact central objects” in some articles) ex-

amined in this thesis are 1E 1207.4-5209 (P=424 ms, Ṗ∼=1.4 10−14, d=2 kpc, SNR

G296.5+10.0), RX J0822-4300 (P=220 ms (?), d=2 kpc, SNR Puppis A), CXOU

J185238.6+004020 (P=105 ms, d∼=7 kpc, SNR Kes79) and RX J0002+6246 (P=242 ms

(?), d∼=3.5 kpc, SNR 117.7+0.6). Only 1E 1207.4-5209 and CXOU J185238.6+004020

have been observed as X-ray pulsars. For RX J0822-4300 and RX J0002+6246 the

measured P values have not been confirmed yet.

These four neutron stars have some common physical properties based on their

observational data, and hence they may have similar physical evolutions. All of them

have pure black body spectra (in three cases 2 black body fits) wothout power law

component. No PWN has been observed around any one of them, which is an evidence

that they have low Ė even though they are very young (Ė has been measured only for

1E 1207.4-5209 yet). All of them are physically connected to S-type SNRs which are

younger than (1-2)×104 yr (which are also the ages of these neutron stars). None of

these sources has been detected to emit at any radio frequency.

There are also some other physical properties which may be common for this

type of neutron stars (we will name them simply as ”1207-like” objects), but up to
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date only 1E 1207.4-5209 has been detected to have them: characteristic age (τ) of 1E

1207.4 is much larger than age of its SNR which suggests that there is a rapid B-decay

for this source. Absorption lines have been clearly observed in its X-ray spectrum

which is very uncommon among isolated neutron stars as their atmosphere must be

geometrically very thin (in fact 1E 1207.4-5209 is the only such neutron star among the

isolated ones, for neutron stars in binaries such absorption lines are common because

of the plasma around them as a result of mass accretion from the companion star in a

close binary system). The ratio LX/Ė is large (∼0.1) compared to normal radio/X-ray

pulsars. There are anomalous oscillations in Ṗ of 1E 1207.4-5209 which are certainly

not glitches.

It must also be noted that two other neutron stars may be 1207-like objects:

RX J0852.0-4622 (SNR G266.2-1.2) and CXO J2323+5848 (SNR Cas A). In order

to test whether these neutron stars have properties similar to 1E 1207.4-5209 further

observations are needed.

Two other sources which are given as compact central objects in some articles are

not 1207-like: RX J0007.0+7302 has PWN around it and it has synchrotron emission

(Halpern et al. 2004; Slane et al. 2004. Although, this neutron star has not been

observed as a pulsar, its observational data are similar to the data of young isolated

neutron stars. Also, 1E 161348-5055 has been claimed as a central compact object of

SNR RCW 103 in the literature (see e.g. Reynoso et al. 2004). Long term variability

(several hours) and eclipsing of its X-ray emission strongly suggests that this is a low-

mass X-ray binary and the connection of this neutron star to the SNR is not real

(chance projection).

Below, the observational data on 1E 1207.4-5209 and 1207-like neutron stars will

be represented, the physical characteristics mentioned above will be discussed and an

evolutionary model for these anomalous neutron stars will be suggested.
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2.5. Observational data on 1207-like neutron stars given in the literature

The observational data given in the literature on the XDRQNSs under consider-

ation are displayed together with brief discussions in this chapter. A detailed repre-

sentation and the results of the data analysis of these sources done in this thesis will

be given in Chapter 4 and Chapter 5.

2.5.1. 1E 1207.4-5209

Dim radio-quiet neutron star (DRQNS) 1E 1207.4-5209 has been examined by

both XMM-Newton and Chandra X-ray satellites. The Chandra observation of this

X-ray pulsar in 2000 revealed the X-ray pulsar (and hence neutron star) nature of this

source (P=424 ms). In this observation, two wide absorption lines centered at 0.7 and

1.4 keV have also been detected. In addition to these lines two other absorption lines

centered at 2.1 and 2.8 keV have been seen in the spectrum of 1E 1207.4-5209 in the

300 ks XMM-Newton observation. This looks like a harmonic series with a principal

frequency at 0.7 keV and its harmonics at 1.4, 2.1 and 2.8 keV. On the other hand,

there is an intrinsic atomic transition for both Chandra and XMM-Newton detectors

around 2.1 keV that this line may simply be detectors’ noise. Another problem is

related to the line at 2.8 keV detected by XMM-Newton; this absorption line is not so

clear compared to the other lines, though it may still be statistically significant.

If these absorption lines do actually form a harmonic series, then the principal line

can be formed by resonant proton cyclotron scattering leading to a surface magnetic

field about 1.4×1014 Gauss, which is two orders of magnitude larger than the perpen-

dicular component of the surface dipole magnetic field (B) found from the rotation

period (P) and the time rate of change in the rotation period (Ṗ) of 1E 1207.4-5209.

There is also another significant problem based on the observational data of this

X-ray pulsar and its SNR. Age of the SNR G296.5+10.0 which is physically connected to

1E 1207.4-5209 is two orders of magnitude smaller than the characteristic age (τ=P/2Ṗ)

of the neutron star. Discrepancies in the magnetic field and age values may be explained
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based on a simple exponential B-decay model as shown by Ankay et al. (2007). Such

a model may also help us to understand the lack of detected radio emission from this

source (and possibly from some other radio-quiet sources) and also to explain the lack of

point sources and PWNe in most of the SNRs observed up to date (in Green’s catalogue

of Galactic SNRs, only 9 and 30 SNRs are F and C type, respectively, among all the

265 known SNRs).

In Figure 2.1, P-Ṗ diagram for different types of isolated pulsars is displayed.

In this figure, small dots represent radio pulsars. Symbols ’cross’ and ’star’ denote

AXPs-SGRs and XDTNSs, respectively (upper limits on Ṗ for 3 XDTNSs are shown

by arbitrary arrows). The actual position of 1E 1207.4-5209 is shown by a ’dark square’

and its position for n=3 case (see text) is displayed by a ’plus’ sign. Constant lines of

B, Ė and τ are denoted by B11-B15, E29-E41 and T3-T9, respectively. Some points

on the evolutionary tracks found from the exponential B-decay model (see text) are

displayed as ’light squares’: a,b,c (B0=2×1013 G, τd=2.5 kyr); d,e,f (B0=2×1013 G,

τd=5 kyr); g,h,i (B0=4×1013 G, τd=2.5 kyr); j,k,l (B0=4×1013 G, τd=5 kyr). (This

figure is from Ankay et al. 2007)

The characteristic decay time (τd) for radio pulsars based on exponential decay

was found to be on the order of 106 years (Guseinov et al. 2004b), whereas τd of 1E

1207.4-5209 seems to be only several thousand years (see Figure 2.1). Such a rapid

decay leads to a short lifetime for 1E 1207.4-5209 and similar neutron stars. In Table

2.1, candidates for 1207-like neutron stars are represented together with their available

observational data. All the neutron stars in this table are physically connected to

SNRs and their ages (i.e. the ages of their SNRs) are not larger than (1-2)×104 years.

None of these sources have PWNe around them and this observational fact can also

be explained by a rapid B-decay (i.e. a rapid decrease in Ė which is the main physical

parameter for formation of PWN, see Guseinov et al. 2004c). The only such neutron

star with measured P and Ṗ values is 1E 1207.4-5209 so that timing measurements of

other sources are essential to test the applicability of the B-decay model further.
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Figure 2.1. Rotation period (P) versus temporal change of rotation period (Ṗ) diagram of

various types of isolated pulsars.

Table 2.1. Data on 1207-like neutron stars given in the literature.

Name P Ṗ(10−14) tSNR τ Ė(1035) B (1012) kT LX(1032)

SNR (s) (s/s) (kyr) (kyr) (erg/s) (G) (keV) (erg/s)

1E 1207.4-5209 0.424 1.4 7-20 480 0.2 2.5 0.16,0.32 10

G296.5+10.0 (0.5-6) (0.5-6)

RX J0822-4300 0.22 ? 3-4 >100 <1 <2 0.22,0.43 12

Puppis A

CXOU J185238.6+004020 0.105 <0.3 6-12 >500 <1 <0.7 0.46 30

Kes 79

RX J0002+6246 0.242 ? 10-20 >100 <1 <2 2

G117.7+0.6
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2.5.2. RX J0002+6246

P=242 ms was measured from ROSAT observations (Hailey and Craig 1995)

which has yet to be confirmed by precise timing observations.

RX J0002+6246 is connected to G117.7+0.6 which is given as a probable SNR in

Green (2006). G117.7+0.6 was observed as a partial shell which may be the remnant

of a previous SN that swept up the region of SNR CTB 1. G117.7+0.6 may have a

distance of about 3-4 kpc as it is located in the direction of the Perseus arm, probably in

a very dense medium. Its NH=8×1021 similar to CTB1 which has NH=7×1021 (Hailey

and Craig 1995) that these 2 SNRs may be in the same region.

There is no PWN around this young neutron star and if P = 242 s then τ ≫

tSNR (tSNR = 10-20 kyr).

2.5.3. RX J0822-4300

The distance to this source (i.e. the distance to its SNR) was measured to be:

d=2 kpc (Petre et al. 1996; Guseinov et al. 2004a) and d=2.2 kpc (Reynoso et al.

1995; Green 2006; Hui and Becker 2006a,2006b). In this work, d=2 kpc is adapted. The

proper motion measurements of this neutron star led to a very high transverse velocity,

V(transverse) = 1122±360 km/s (for d=2.2 kpc, Hui and Becker 2006b). This should

be checked by further observations.

The best fit to its spectra includes 2 black body components with T1=2.6×106 K

(R1=3.3 km) and T2=5×106 K (R2=0.75 km), where R1 and R2 are black body radii,

without power-law component. The X-ray flux f(0.5-10 keV)=4.2×10−12 erg/cm2s

(XMM, Chandra) and f(0.1-2.4 keV)=3.4×10−12 erg/cm2s (XMM, Chandra) with a

neutral hydrogen column density NH=4.5×1021 cm−2 (XMM, Hui and Becker 2006a).

A statistically significant (possible) period ∼ 0.22 s was measured based on XMM

observations (Hui and Becker 2006a). No PWN was detected around this neutron star
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in XMM and Chandra data. Since there is no PWN, Ė must be less than about

1035 erg/s and correspondingly the upper limit on Ṗ must be about 3×10−14. So, its

characteristic age must be at least 105 yr, whereas the age of Puppis A (which RX

J0822-4300 is connected to) was measured to be only 3000-4000 yr (Hailey and Craig

1995; Brazier et al. 1996; DeLuca et al. 2003). This case is similar to 1E 1207.4-

5209 - SNR G296.5+10.0, if the possible period P 0.22 s is confirmed by longer timing

observations.

Puppis A is an S-type SNR (Green 2006). It is Oxygen rich that the progenitor

might be a very massive star and the SN could probably be type II. Age measurements

of show that Puppis A is a young SNR: t=3400 yr (Winkler et al. 1988), t=3700

yr (Braun et al. 1989; Kaspi et al. 1996; Dechristopher and Winkler 1994; Brazier

and Johnston 1999). Puppis A, unlike Vela, is not in the direction of star formation

regions and distances of the OB associations in the star formation region located in

a nearby direction do not exceed 1.5-1.8 kpc (Melnik and Efremov 1995; Humphreys

1978; Guseinov et al. 2004a). HI clouds in this direction (from 21 cm measurements)

are also at d=1.5-1.8 kpc (Braun et al. 1989). There are OH clouds in front of the

SNR without interacting with it (Woermann et al. 2000). The SNR is out of the HII

region it was once in and the eastern part of the SNR is interacting with an HI cloud

(Reynoso et al. 1995). So, a possible evolutionary scenario for this SNR is that the

progenitor was a very massive star which has partly ionized an HI cloud turning the

inner part of it into an HII region in which it has been exploded about 3500-4000 years

ago as a type II SN. Initially, the SNR has expanded within the HII cavity (the ionized

part of the cloud) and then reached the HI boundary (non-ionized part) of the cloud,

presently interacting with it.

The measured values of NH for Puppis A are (2-6)×1021 cm−2 (Winkler et al.

1981a, 1981b), (2.9-4.7)×1021 cm−2 (Blair et al. 1995; Zavlin et al. 1999).
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2.5.4. CXOU J185238.6+004020

This source has recently been identified as an X-ray pulsar with P=105 ms and

an upper limit on the period change Ṗ < 7×10−14. These values give the lower and

upper limits: Ė < 2×1036, B < 3×1012, τ > 24 kyr. A one-black body with kT=0.44

keV (R=0.9 km) fits very well to its spectrum. The bolometric X-ray luminosity is

L(bol)=3.7×1033 erg/s for d=7.1 kpc (XMM, Gotthelf et al. 2005).

Halpern et al. (2007) claim that a power-law fit is also good but the corresponding

NH is very large compared to NH of the SNR. A black body fit with kT=0.46 keV gives

both a good reduced χ2 and NH=1.4×1022 cm−2 which is comparable to the SNR’s

NH. They give the X-ray luminosity L(bol)=3×1033 erg/s.

Kes 79 (G33.6+0.1), which is connected to CXOU J185238.6+004020, is an S-

type SNR with strong lines of Mg, Si, S. The measured distance values for this SNR

are: d=10 kpc (21 cm measurements, Frail and Clifton 1989), d=5.2 kpc (Σ-D relation,

Guseinov et al. 2003c), d=7 kpc (Guseinov et al. 2003d). Its neutral hydrogen column

density is NH=1.6×1022 cm−2 (Sun et al. 2004). A distance of 7 kpc is adapted in this

thesis.

Similar to the neutron stars above, there is no PWN around this young neutron

star (XMM, Gotthelf et al. 2005) that Ṗ < 3×10−15. So, τ > 5×105 yr, but tSNR is

only (6-12)×103 yr (Seward et al. 2003).
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3. XMM-NEWTON

The information given below are from XMM-Newton website. The XMM-Newton

(X-ray Multi-Mirror Mission) is the second of European Space Agency’s four corner-

stone missions defined in the Horizon 2000 Programme. It was launched on December

10, 1999.

3.1. Spacecraft

3.1.1. Components

The XMM-Newton satellite is configured modularly and is composed of four main

elements:

• The Focal Plane Assembly (FPA), consisting of the Focal Plane Platform (FPP)

carrying the focal-plane instruments: two Reflection Grating Spectrometer (RGS)

readout cameras, an EPIC PN and two EPIC MOS imaging detectors, and the

data handling and power distribution units for the cameras. The EPIC and RGS

instruments are fitted with radiators, which cool the CCD detectors via cold

fingers.

• The Telescope Tube (a long carbon fibre tube), maintaining the relative position

between the FPA and the MSP. Due to its length of 6.80 m, the Telescope Tube

is physically composed of two halves: the upper and lower tubes. The upper tube

includes two reversible venting and outgassing doors (VOD), and supports the

outgassing baffle (OGB).

• The Mirror Support Platform (MSP), consisting of the platform itself and car-

rying the three mirrors assemblies (Mirror Modules + entrance and exit baffles

+ doors + two RGS grating boxes), the Optical Monitor (OM) and the two

star-trackers.

• The Service Module (SVM), which carries the spacecraft subsystems and associ-

ated units providing the necessary resources to the satellite. Also attached to the
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SVM are the two solar-array wings, the Telescope Sun Shield (TSS) and the two

S-band antennas mounted on their booms.

The different components of the XMM spacecraft and its payload are visible in

sketche in which XMM has been ”dissected”, as shown in the following image. The

X-ray telescopes, two with Reflection Grating Arrays, are visible at the lower left.

At the right end of the assembly, the focal instruments are shown: The EPIC MOS

cameras with their radiator, the radiator of the EPIC p-n camera and those of the RGS

receivers.

Figure 3.1. If the XMM spacecraft were made of glass, one could gain the above view of its

payload. Image courtesy of Dornier Satellitensysteme GmbH / ESA.

3.1.2. Structural Design

The spacecraft structure, like any other structure, is there primarily to guarantee

the integrity of the spacecraft under any loading, such as during handling, testing
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and launch. In addition, it must allow the spacecraft to serve as an optical bench

for a telescope and therefore the structure must provide the necessary thermo-elastic

stability in orbit. In the case of XMM-Newton, this led immediately to the selection

of ultra-high-modulus carbon-fibre composites (low thermal expansion) for the main

structural elements. Another advantage of this material is its very high modulus of

elasticity, which limits structural mass for a structure like this, which is (also) designed

for stiffness.

These two favourable qualities of this carbon-fibre material, plus its low mass,

have led to its widespread use on XMM, albeit for different reasons in different parts.

For instance, for the telescope tube and the mirror support platform, a carbon-fibre

composite was necessary for thermo-elastic reasons. A strongly directional lay-up made

it possible to meet the requirements, whereas the mass could be kept low. On the other

hand, for the central cone of the Service Module, the stiffness required was the main

reason for using a carbon-fibre composite.

In complex items, such as the mirror support platform, the joints that are nec-

essarily made out of metal degraded the intended high thermo-elastic stability to such

a level that active thermal control was necessary. Here, a carbon-fibre composite was

selected for its high stiffness and strength. Other parts outside the optical path were

made of aluminium for reasons of thermal conductivity (honeycomb for Service Module

side panels), light-tightness and ease of production (telescope Sun shield, outgassing

baffle).

3.1.3. Thermal constraints

The mirror shells of the Mirror Modules have to be kept at an average temperature

of 20◦C, with spatial maximum temperature differences of ±2◦C in order to limit

thermo-elastic deformations. Therefore, the platform is maintained almost isothermal,

with deviations of less than ±2◦C. On the other hand, the Service Module equipment

presents quite standard temperature ranges and attention is therefore mainly paid to

simplicity and reliability.
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The thermal design of XMM takes the full advantage of the stable environment

provided by its high-altitude, long-period orbit and by the limited variation of solar

attitude angles (±20◦ pitch combined with ±20◦ roll). In fact, the Earth albedo and

infrared heat fluxes are negligible along the largest part of its high-altitude orbit. Only

at perigee passes, when the altitude reduces to 7000 km, XMM’s thermal stability is

slightly affected by the influence of the Earth.

The largest thermal perturbations occur during the eclipse seasons, when the

satellite does not receive the Sun’s energy for a maximum period of 1.7 h (although,

on average, the eclipses are much shorter). However, eclipses always occur below the

minimum altitude that is required for observation (40 000 km), leaving time for the

spacecraft to recover its temperature stability. Boost heating performed before and

after the eclipses by means of heater helps to reduce the time needed for recovery of

the temperature drop caused by eclipses.

In order to cope with all orbital perturbations and with changes of satellite at-

titude, the telescope tube is completely insulated from the external environment and

the heater power that is dissipated inside it can be almost continuosly adjusted to

compensate for changes.

3.2. Mirrors

3.2.1. Introduction

Each of the three X-ray telescopes on board XMM-Newton consists of 58 Wolter I

grazing-incidence mirrors which are nested in a coaxial and cofocal configuration. The

design of the optics was driven by the requirement of obtaining the highest possible

effective area over a wide range of energies, with particular emphasis in the region

around 7 keV. Thus, the mirror system had to utilize a very shallow grazing angle

of 30′ in order to provide sufficient reflectivity at high energies. The telescopes focal

length is 7.5 meters and the diameter of the largest mirrors is 70 cm, to be compatible

with the shroud of the launcher. Each telescope consists includes, apart from the mirror
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modules, baffles for visible and X-ray stray-light suppression and an electron deflector

for diverting soft electrons. Two of the telescopes carry a Reflection Grating Array

(RGA).

3.2.2. Telescope Configuration

Each of the XMM-Newton telescopes consists of:

• the mirror assembly door, which protected the optics during integration, launch

and early orbit phase,

• the entrance baffle, which provides visible straylight suppression at angles larger

than 47◦,

• the X-ray baffle,

• the Mirror Module,

• an electron deflector, which produces a circumferential magnetic field which pre-

vents low energy electrons reflected by the mirrors reaching the focal plane de-

tectors,

• in two of the telescopes, the Reflection Grating Array, and

• the exit baffle, which provides an appropriate thermal environment.

Figure 3.2. Technical drawing of one of the XMM-Newton telescopes. Image courtesy ESA.
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The 58 Wolter I mirrors of each telescope are bonded on their entrance aperture

to the 16 spokes of a single spider made out of Inconel. The spider is connected to

the support platform via an aluminium interface structure (the MIS: Mirror Interface

Structure) consisting of an outer cylinder and an interface ring. On two of the mod-

ules, the ring interfaces the mirror module to a Reflection Grating Assembly (RGA).

To minimise the mechanical deformation of the mirrors and therefore the optical degra-

dation, the flatness of the interface between the spider and the MIS had to be better

than 5 micron.

X-ray baffles are located in front of the mirror systems. They act as collimators

and reduce considerably the amount of straylight in the field of view of the focal plane

cameras.

The XMM-Newton X-ray baffle was constructed as two sieve-plates made out

of circular strips. The plates were mounted coaxial to and coaligned with the front

aperture cross section of the 58 mirror shells, such that they block single-reflection

rays, but do not eclipse two-reflection rays. Each sieve plate is a disk 1 mm thick with

59 circular strips and 16 radial spokes. The offset of the two sieve plates from the front

of the mirror system is 385 mm and 439 mm, respectively. All the baffle surfaces facing

the mirrors are blackened.

3.2.3. Optical Design

Each Mirror Module is a grazing-incidence Wolter I telescope, consisting of 58

gold-coated nested mirrors. Each mirror shell consists of a paraboloid and an associated

hyperboloid which were replicated together in one piece to facilitate alignment and

integration.

In grazing incidence optics the effective area is increased by nesting a number of

mirrors and thus filling the front aperture as far as possible. The nesting efficiency is

determined by the mirror shell thickness and, in case of very low grazing angles, by

the minimum radial mirror separation which is required for integration and alignment.
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Figure 3.3. Light path in the XMM-Newton telescope with only an EPIC camera in its

primary focus (left), and in the two telescopes in which a RGA is mounted into the optical

path (right). Image courtesy ESA.

The thinner the mirror shells are and the narrower the shells are spaced, the larger is

the collecting area.

The thickness of the smallest mirror (diameter=306 mm) is 0.47 mm, and it

increases linearly with shell diameter in order to guarantee sufficient stiffness. The

thickness of the 700 mm diameter mirror is 1.07 mm. The minimum radial separation

between adjacent shells is 1mm. Adding more shells is rather inefficient in building up

more collecting area because of the mass penalty involved and the low gain in effective

area.

The performance of the X-ray telescopes can be characterized by:

• the image quality,

• the effective area, and

• the straylight rejection efficiency.
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3.2.3.1. Image Quality. The point spread functions and effective areas of the three

telescopes were first characterized on-ground during an extensive calibration campaign.

A comprehensive numerical model of the mirror system was used to generate an initial

calibration database by extrapolating on-ground tests to in-orbit operation conditions

and by interpolating between the finite number of measurement points.

On January 19 2000 the X-ray telescope FM2 saw ”First Light”, followed by

FM3 and FM4. After ”First Light” a number of observations were made during the

commissioning phase in order to characterize the imaging performance of the telescopes.

Analysis of the results indicated that the telescopes point responses measured in-orbit

were basically the same as derived from on-ground calibration measurements out to

30′′. In particular, extended sources in the center of the telescope field of view can be

studied with a 5′′ spatial resolution.

For on-axis sources, high energy photons are focused predominantly by the inner

shells of the telescope. These inner shells apparently give better focus that the average

hence the fractional encircled energy increases with increasing photon energy.

3.2.3.2. Effective Area. The design driver for the XMM-Newton telescopes was to

achieve maximal area at low energies (2 keV) without sacrificing area at high energies

(7 keV). XMM mirrors are most efficient in the energy range from 0.1 to 10 keV, with

a maximum around 1.5 keV and a pronounced edge near 2 keV (the Au M edge). The

design goal was to achieve a collecting area of 1900 cm2 for energies up to 150 eV, 1500

cm2 at 2 keV, 900 cm2 at 7 keV, and 350 cm2 at 10 keV, for each of the telescopes.

The effective area for each telescope was measured in the PANTER X-ray test

facility illuminating the full aperture with line radiation between 0.28 and 10 keV, and

using a copy of the ROSAT PSPC as focal plane detector.

3.2.3.3. X-Ray Straylight Rejection. X-rays from outside the field of view can reach

the sensitive area of the focal plane detectors by single reflection from the rear end of
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the hyperbola, if the source is at an off-axis angle between 20′ and 80′. Rays reflected

just once from any one the parabolas cannot leave the mirror assembly because of the

close packing of the mirror shells.

The efficiency of the sieve plate system was ray traced and demonstrated to

reduce the straylight level by a factor of 5 to 10 depending on the position in the focal

plane. Pointings in the vicinity of the Crab Nebula confirmed the high efficiency of the

baffles. The straylight collecting area of the EPIC detectors as a function of off-axis

angle is about 3 cm2 for sources located between 20′ and 1.4◦ from the optical axis,

and completely negligible at higher angles.

3.3. EPIC

3.3.1. Introduction

The XMM-Newton spacecraft is carrying a set of three X-ray CCD cameras, com-

prising the European Photon Imaging Camera (EPIC). Two of the cameras are MOS

(Metal Oxide Semi-conductor) CCD arrays (referred to as the MOS cameras). They

are installed behind the X-ray telescopes that are equipped with the gratings of the

Reflection Grating Spectrometers (RGS). The gratings divert about half of the tele-

scope incident flux towards the RGS detectors such that (taking structural obscuration

into account) about 44 % of the original incoming flux reaches the MOS cameras. The

third X-ray telescope has an unobstructed beam; the EPIC instrument at the focus of

this telescope uses pn CCDs and is referred to as the pn camera.

The EPIC cameras offer the possibility to perform extremely sensitive imaging

observations over the telescope’s field of view (FOV) of 30 arcmin and in the energy

range from 0.15 to 15 keV with moderate spectral (E/∆ E ∼ 20-50) and angular

resolution (PSF, 6 arcsec FWHM).

All EPIC CCDs operate in photon counting mode with a fixed, mode dependent

frame read-out frequency, producing event lists, i.e. tables with one entry line per
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received event, listing (among others) attributes of the events such as the position at

which they were registered, their arrival time and their energies. The two types of

EPIC, however, differ in some major aspects. This does not only hold for the geometry

of the CCD arrays and the instrument design but also for other properties, like e.g.,

their readout times.

3.3.2. Chip Geometry

Figure 3.4. A rough sketch of the field of view of the two types of EPIC camera; MOS (left)

and pn (right). The shaded circle depicts a diameter area. For the alignment of the different

cameras with respect to each other in the XMM-Newton focal plane refer to the text.

3.3.2.1. MOS CCDs. The MOS EEV CCD22 is a three-phase frame transfer device

on high resistivity epitaxial silicon with an open-electrode structure; it has a useful

quantum efficiency in the energy range 0.2 to 10 keV. The low energy response of the

conventional front illuminated CCD is poor below ∼ 700 eV because of absorption in

the electrode structure. For EPIC MOS, one of the three electrodes has been enlarged

to occupy a greater fraction of each pixel, and holes have been etched through this

enlarged electrode to the gate oxide. This gives an ”open” fraction of the total pixel
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area of 40 %; this region has a high transmission for very soft X-rays that would have

otherwise be absorbed in the electrodes. In the etched areas, the surface potential is

pinned to the substrate potential by means of ”pinning implant”. High energy efficiency

is defined by the resistivity of the epitaxial silicon (around 400 Ohm-cm). The epitaxial

layer is 80 microns thick (p-type). The actual mean depletion of the flight CCDs is

between 35 to 40 microns: the open phase region is not fully depleted.

3.3.2.2. PN CCDs. The schematic view looking into the pn-CCD introduces intu-

itively the advantages of the concept: X-rays hit the detector from the rear side. In

the event of an X-ray interaction with the silicon atoms, electrons and holes are gener-

ated in numbers proportional to the energy of the incident photon. The average energy

required to form an electron-hole pair is 3.7 eV at -90◦ C. The strong electric fields in

the pn-CCD detector separate the electrons and holes before they recombine. Signal

charges (in our case electrons), are drifted to the potential minimum and stored under

the transfer registers. The positively charged holes move to the negatively biased back

side, where they are ’absorbed’. The electrons, captured in the potential wells 10 mi-

crons below the surface can be transferred towards the readout nodes upon command,

conserving the local charge distribution patterns from the ionization process. Each

CCD line is terminated by a readout amplifier.

3.3.3. Operating Modes

The EPIC cameras allow several modes of data acquisition. Note that in the case

of MOS the outer ring of 6 CCDs remain in standard full-frame imaging mode while the

central MOS CCD can be operated separately. The pn camera CCDs can be operated

in common modes in all quadrants for full frame, extended full frame and large window

mode, or just with one single CCD (CCD0 in quadrant 1) for small window, timing

and burst mode.

1. Full frame and extended full frame (pn only); in this mode, all pixels of all CCDs

are read out and thus the full FoV is covered.

2. Partial window:
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a) For MOS; in a partial window mode the central CCD of both MOS cameras can be

operated in a different mode of science data acquisition, reading out only part of the

CCD chip: in small window mode an area of 100 x 100 pixels is read out, whereas in

large window mode an area of 300 x 300 pixels is active.

b) For PN; in large window mode only half the area of all 12 CCDs is read out, whereas

in small window mode only the part of CCD0 in quadrant 1 at the focal point is used

to collect data.

3. Timing:

a) MOS + PN; in timing mode, imaging is made only in one dimension, along the

column axis. Along the row direction, data from a predefined area on one CCD chip

are collapsed into a one-dimensional row to be read out at high speed.

b) PN only; a special flavour of the timing mode of the EPIC pn camera is the burst

mode, which offers very high time resolution, but has a low duty cycle of 3 %.

3.3.4. Instrument Characteristics

3.3.4.1. Quantum Efficiency. One of the factors to be taken into account when deter-

mining the effective area of the EPIC cameras is their quantum efficiency. It is the

quantum efficiency of the EPIC-MOS chips that limits the energy passband at its high

energy end, while the pn camera can detect photons with high efficiency up to 15 keV.

Figure 3.5. Quantum efficiency of the EPIC MOS1 (solid line) and MOS2 (dashed line)

CCD1 chip as a function of photon energy. Quantum efficiency of the EPIC pn CCD chips

as a function of photon energy (Struder et al., 2001).
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3.3.4.2. Background. The EPIC background can be divided into two parts: a cosmic

X-ray background (CXB), and an instrumental background. The latter component

may be further divided into a detector noise component, which becomes important at

low energies (below 200 eV) and a second component which is due to the interaction

of particles with the structure surrounding the detectors and the detectors themselves.

This component is characterized by a flat spectrum and is particularly important at

high energies (above a few keV). The particle induced background can be divided into

two components: an external ’flaring’ component, characterized by strong and rapid

variability, which is often totally absent and a second more stable internal component.

The flaring component is currently attributed to soft protons (with energies smaller

than a few 100 keV), which are funneled towards the detectors by the X-ray mirrors.

The stable component is due to the interaction of high energy particles (with energies

larger than some 100 MeV) with the structure surrounding the detectors and possibly

the detectors themselves.

Figure 3.6. Example of light curve from a MOS1 observation badly effected by proton

flares.
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3.3.5. Filters and Effective Area

As the EPIC detectors are not only sensitive to X-ray photons but also to IR,

visible and UV light, the cameras include aluminised optical blocking filters to reduce

the contamination of the X-ray signal by those photons.

Figure 3.7. Combined effective area of all telescopes assuming that all cameras operate

with the same filters, either open, thin, medium or thick.

If such photons are registered by the EPIC detectors, the data analysis would be

impeded in three ways:

1. Shot noise on the optically generated photo-electrons will increase the overall system

noise

2. The energy scale will be incorrectly registered, because a nominally zero signal will

have a finite offset. For each optically generated photo electron, the energy scale shifts

by about 3.6 eV.

3. Optically-generated photo electrons can lead to a saturation of electron traps, chang-

ing (improving) the charge transfer inefficiency.

There are four filters in each EPIC camera. Two are thin filters made of 1600

Å of poly-imide film with 400 Å of aluminium evaporated on to one side; one is the

medium filter made of the same material but with 800 Å of aluminium deposited on
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it; and one is the thick filter. This is made of 3300 Å thick Polypropylene with 1100 Å

of aluminium and 450 Å of tin evaporated on the film. The filters are self-supporting

and 76 mm in diameter. The remaining two positions on the filter wheel are occupied

by the closed (1.05 mm of aluminium) and open positions, respectively. The former

is used to protect the CCDs from soft protons in orbit, while the open position could

in principle be used for observations where the light flux is very low, and no filter is

needed.

3.4. RGS

The XMM-Newton payload comprises three co-aligned high throughput tele-

scopes with a FOV of 30 arcmin and spatial resolution of about 6 arcsec (FWHM).

Imaging CCD detectors are placed in the focus of each telescope. Behind two of the

three telescopes, about half of the X-ray light is utilized by the Reflection Grating Spec-

trometers (RGS). Each RGS consists of an array of reflection gratings which diffracts

the X-rays to an array of dedicated charge coupled devices (CCD) detectors. The RGS

instruments achieve high resolving power (150 to 800) over a range from 5 to 35 Å

[0.33 to 2.5 keV] (in the first spectral order). The effective area peaks around 15 Å

[0.83 keV] (first order) at about 150 cm2 for the two spectrometers.

3.4.1. Instrument Design

The RGS design incorporates an array of reflection gratings placed in the converg-

ing beam at the exit from the X-ray telescope. The grating stack intercepts roughly half

of the X-ray light and deflects it to a strip of CCD detectors offset from the telescope

focal plane. The undeflected light passes through and is intercepted by EPIC-MOS

in the telescope focal plane. Nine large format back-illuminated CCDs are operated

in single photon counting and frame transfer mode at a temperature of -80◦ C. For

each photon, the position and the energy is measured: the position to determine the

high resolution X-ray spectrum as diffracted by the grating module, and the energy

and position to separate the contributions from the various overlapping grating orders

(and from the in-flight calibration source) and to reduce the background.
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The instrument consists of two identical chains with the following units:

• Two Reflection grating Arrays units (RGA), directly attached to the correspond-

ing mirror assemblies.

• Two Focal Plane Camera units (RFC), each including a stand-off structure, a

radiator and the detector itself with its front-end electronics.

• Two Analogue Electronic units (RAE), containing prime and redundant func-

tions.

• Four Digital Electronic units (RDE), two for each chain.

• The relevant interconnecting harness between the different units.

Figure 3.8. Schematic layout of the RGS (from Brinkman et al. 1998).

3.5. OM

The Optical/UV Monitor Telescope (XMM-OM) is mounted on the mirror sup-

port platform of XMM-Newton alongside the X-ray mirror modules. It provides cov-
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erage between 170 nm and 650 nm of the central 17 arc minute square region of the

X-ray field of view, permitting routine multiwavelength observations of XMM targets

simultaneously in the X-ray and ultraviolet/optical bands.

The XMM-OM consists of a Telescope Module and a separate Digital Electronics

Module, of which there are two identical units for redundancy. The Telescope Mod-

ule contains the telescope optics and detectors, the detector processing electronics and

power supply. There are two distinct detector chains, again for redundancy. The Digital

Electronics Module houses the Instrument Control Unit, which handles communica-

tions with the spacecraft and commanding of the instrument, and the Data Processing

Unit, which pre-processes the data from the instrument before it is telemetered to the

ground.

The Telescope Module consists of a modified 30 cm Ritchey-Chretien telescope

with a focal ratio of f/12.7, i.e. a focal length of ca. 3.8 m. The incoming light is

reflected by a mirror inclined at an angle of 45◦ to one of two redundant detectors.

The OM telescope tube is ca. 2 m long. Incoming light falls onto the primary mirror,

which reflects it onto the secondary, from where it goes to the inclined mirror that

reflects it onto the detector. A filter wheel is mounted immediately in front of the

detectors . This does not only contain filters, but also other optical elements, like

grisms and a magnifier (i.e. optics for a longer focal length and thus higher resolution

on the sky).
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4. OBSERVATION AND DATA REDUCTION

4.1. Observations

X-ray data of isolated radio-quiet neutron stars were obtained by XMM-Newton

observations with European Photon Imaging Camera (EPIC) instruments, which con-

sist of the EPIC PN CCD detector (Strueder et al. 2001) and the two EPIC MOS

CCD detectors (Turner et al. 2001).

1E 1207.4-5209 was observed with XMM-Newton on 2002 August 4-7 for two

time intervals 128 and 130 ks respectively. The PN camera was operated with a thin

filter in small-window mode and two MOS cameras were operated with a thin filter in

full frame mode.

RX J0002+6246 was observed with XMM-Newton on 2001 August 22-23 for 32

ks. The PN camera was operated with a medium filter in small-window mode and two

MOS cameras were operated with a medium filter in full frame mode.

RX J0822-4300 was observed with XMM-Newton on 15 April and 11 August 2001

for 28.8 and 24.3 ks respectively. The PN camera was operated with a thin filter in

small-window mode and two MOS cameras were operated with a medium filter in full

frame mode.

CXOUJ185238.6+004020 was observed with XMM-Newton on 10 August 2001

for two time intervals 31.4 ks each. The PN camera was operated with a medium filter

in small-window mode and two MOS cameras were operated with a medium filter in

full frame mode. Table 4.1 gives summary of the observations.
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Table 4.1. Log of observations.

Source OBS-ID Start Date Instrument Instrument Mode Filter Timea (ks) Timeb (ks)

1E 1207.4-5209 0155960301 2002-08-04 PN P.SmallWindow Thin 128.2 76.3

1E 1207.4-5209 0155960301 2002-08-04 MOS1 P.FullWindow Thin 127.6 104.5

1E 1207.4-5209 0155960301 2002-08-04 MOS2 P.FullWindow Thin 127.5 104.7

1E 1207.4-5209 0155960501 2002-08-06 PN P.SmallWindow Thin 129.5 72.9

1E 1207.4-5209 0155960501 2002-08-06 MOS1 P.FullWindow Thin 129.4 100.3

1E 1207.4-5209 0155960501 2002-08-06 MOS2 P.FullWindow Thin 129.4 100.2

RX J0002+6246 0016140101 2001-08-22 PN P.SmallWindow Medium 32.2 18.0

RX J0002+6246 0016140101 2001-08-22 MOS 1 P.FullWindow Medium 33.0 14.0

RX J0002+6246 0016140101 2001-08-22 MOS 2 P.FullWindow Medium 33.0 14.5

RX J0822-4300 0113020101 2001-15-04 PN P.SmallWindow Thin 24.2 14.8

RX J0822-4300 0113020101 2001-15-04 MOS 1 P.FullWindow Medium 22.7 16.4

RX J0822-4300 0113020101 2001-15-04 MOS 2 P.FullWindow Medium 22.7 17.5

RX J0822-4300 0113020301 2001-11-08 PN P.SmallWindow Thin 22.9 15.9

CXOUJ185238.6+004020 0204970201 2004-10-18 PN P.SmallWindow Medium 31.0 21.4

CXOUJ185238.6+004020 0204970201 2004-10-18 MOS1 P.FullWindow Medium 31.2 30.5

CXOUJ185238.6+004020 0204970201 2004-10-18 MOS2 P.FullWindow Medium 31.2 30.6

CXOUJ185238.6+004020 0204970301 2004-10-23 PN P.SmallWindow Medium 31.0 21.6

CXOUJ185238.6+004020 0204970301 2004-10-23 MOS1 P.FullWindow Medium 31.2 30.2

CXOUJ185238.6+004020 0204970301 2004-10-23 MOS2 P.FullWindow Medium 31.2 30.3

aLive Time
bNet Exposure Time
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4.2. Data Reduction

The Observation Data Files (ODF) were processed with the XMM-Newton Sci-

ence Analysis Software (SAS) version 7.0.0. Epic calibrated event lists were generated

by the tasks emchain and epchain. Filtering event list data and creating data products

including images, spectra and rate curves were all accomplished using the evselect task.

Evselect task supports selections based on intrinsic event attributes falling into

the following sub-categories (XMM-Newton USG 4.0, Loiseau, N. et al., 2006):

(i) Spatial selections for particularly interested regions in any spatial coordinate system,

(ii) Energy selections for the interested interval in either PHA or PI space,

(iii) Time selections for the interested interval or Good Time Intervals (GTI),

(iv) Event selections based on any event properties (e.g PATTERN, CCDNR).

Observations were affected by soft protons flares, so contaminated periods were

cleaned. To achieve this, a rate curve of the TIME column in the calibrated event lists

were extracted using only high energy (greater than 10keV). Time bin size was chosen

50 sec for rate curve accumulation. The rate curves are examined and the mean values

are defined with Gaussians. All time bins out of ±2.7 (90%) range of the mean count

rate which defined the selection of Good Time Intervals (GTI) for each camera were

excluded. The mean count rate and ± 2.7 (90%) values are tabulated in Table 4.2.

Table 4.2. The mean count rate values of each observation and 2.7 σ (90%)

values.

Source Obs. ID. PN MOS1 MOS2

1E 1207.4-5209 0155960301 1.1163±6.6169 7.6947± 7.3432 8.1568± 7.3788

1E 1207.4-5209 0155960501 1.5491± 5.1314 7.8761± 7.5041 8.1878± 7.8019

RX J0002+6246 0016140101 9.8844± 18.1489 9.6506 ± 9.1260 9.7694 ± 9.9746

RX J0822-4300 0113020101 1.6653± 3.8389 6.8513± 9.1816 6.8837±7.7120

RX J0822-4300 0113020301 0.9889± 6.7559 4.3852± 36.6174 8.5689±21.4534

CXOUJ185238.6+004020 0204970201 1.4007± 4.7677 10.1340± 7.9547 10.2920±8.1278

CXOUJ185238.6+004020 0204970301 1.9239± 4.3629 10.6620± 8.8965 10.8220± 8.7588
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After removing high particle background intervals, the net exposure times are

76.34 ks and 72.89 ks (PN), 104.5 ks and 100.3 ks (MOS1), 104.7 ks and 100.2 ks

(MOS2) for 1E 1207.4-5209 with observations 0155960301 and 0155960501, respec-

tively. Figure 4.1 shows PN, MOS1 and MOS2 light curves of 1E 1207.4-5209. The bin

width is 50 sec. Black solid lines represents the average count rate values and dashed

lines define ± 2.7 σ levels from the mean value during the quiescent periods.

The net exposure times for RX J0002+6246 are 18.0 ks (PN), 14.0 ks (MOS1),

and 14.5 ks (MOS2). During the observations of RX J0002+6246, the detections were

strongly effected by soft proton flaring that the net exposure times were shortened more

than usual. Figure 4.2 shows PN, MOS1 and MOS2 light curves of RX J0002+6246.

The bin width is 50 sec. Black solid lines represents the average count rate values and

dashed lines define ± 2.7 σ levels from the mean value during the quiescent periods.

For RX J0822-4300, the net exposure times are 14.8 ks and 15.9 (PN), 16.4

ks (MOS1), and 17.5 ks (MOS2) for the observations 0113020101 and 0113020301

respectively. Figure 4.3 shows PN, MOS1 and MOS2 light curves of RX J0822-4300.

The bin width is 50 sec. Black solid lines represents the average count rate values and

dashed lines define ± 2.7 σ levels from the mean value during the quiescent periods.

For CXOUJ185238.6+004020, the net exposure times are 21.4 ks and 21.6 ks

(PN), 30.5 ks and 30.2 ks (MOS1), and 30.6 ks and 30.3 ks (MOS2) for the observations

0204970201 and 0204970301 respectively. Figure 4.4 shows PN, MOS1 and MOS2 light

curves of CXOUJ185238.6+004020. The bin width is 50 sec. Black solid lines represents

the average count rate values and dashed lines define ± 2.7 σ levels from the mean

value during the quiescent periods.
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Figure 4.1. PN, MOS1 and MOS2 light curves of 1E 1207.4-5209 with observations

0155960301 (top panel) and 0155960501 (bottom panel).
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Figure 4.2. PN, MOS1 and MOS2 light curves of RX J0002+6246.
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Figure 4.3. PN, MOS1 and MOS2 light curves of RX J0822-4300 with observatios

0113020101 (top panel) and 0113020301 (bottom panel).
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Figure 4.4. PN, MOS1 and MOS2 light curves of CXOUJ185238.6+004020 with

observatios 0204970201 (top panel) and 0204970301 (bottom panel).
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Pile-up effects occur when two or more X-ray photons deposit charge packets in

a single pixel as photon pile-up or in neighboring pixels as pattern pile-up, during one

read-out cycle. This is a non-negligible possibility when the source is very bright. In

such a case these events are recognized as one single event having the sum of their

energies. If this happens sufficiently often it will result in a hardening of the spectrum

as piled-up soft events are shifted in the spectrum to higher energies (XMM-Newton

USG 4.0, Loiseau, N. et al., 2006).

Pile up was checked using the SAS task epatplot . Except 1E 1207.4-5209 obser-

vations, source count rates were too low for pile-up effects to be significant. For the

case of 1E 1207.4-5209, pattern distributions are in agreement with the model curves,

pile-up is not a problem. Thus, the events were selected as all valid events (PATTERN

≤ 12) for MOS1 and MOS2, and single and double events (PATTERN in [1:4]) for PN.

4.3. Background Treatment

Background regions were selected according to recommendations of XMM-Newton

calibration team (EPIC status of calibration and data analysis Kirsch, M., 2006) from

the same observation and the same CCD. To avoid out-of-time events from the source,

circular region was preferred to annulus around the source region. ‘FLAG == 0‘ used

to screen PN event files to exclude the events next to edges of the CCDs and next to

bad pixels.

The fraction of Out-of-Time (Oot) events scales with the mode-dependent ratio

of integration and readout time and is not high for the PN Small Window mode 1.1%

and MOS Full Frame Mode 0.35%. (XMM-Newton UHB 2.4, Ehle, M. et al., 2006)

Also there doesn‘t seem any Oot events overlap the sources being investigated, so Oot

correction wasn‘t applied.

For 1E 1207.4-5209, source and background region was extracted from a 45”

radius circle for all cameras (see Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8, Figure

4.9, Figure 4.10).
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For RX J0002+6246, source and background region was extracted from a 13”

radius circle for all cameras (see Figure 4.11, Figure 4.12, Figure 4.13).

For RX J0822-4300, source and background region was extracted from a 18”

radius circle for all cameras (see Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17).

For CXOUJ185238.6+004020, source and background region was extracted from

a 15” radius circle for all cameras (see Figure 4.18, Figure 4.19, Figure 4.20, Figure

4.21, Figure 4.22, Figure 4.23).

XMM EPN   2002 Aug  4 
1E1207.4−5209

0 6.4 41 265 1700 9720

12
h
10

m
10

s
12

h
10

m
05

s
12

h
10

m
00

s
12

h
09

m
55

s
12

h
09

m
50

s
12

h
09

m
45

s
12

h
09

m
40

s

−52
o
28 ’ 30 "

−52
o
28 ’ 00 "

−52
o
27 ’ 30 "

−52
o
27 ’ 00 "

−52
o
26 ’ 30 "

−52
o
26 ’ 00 "

−52
o
25 ’ 30 "

−52
o
25 ’ 00 "

−52
o
24 ’ 30 "

Figure 4.5. EPIC PN image of 1E 1207.4-5209 obs. 0155960301.
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Figure 4.6. EPIC MOS1 image of 1E 1207.4-5209 obs. 0155960301.
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Figure 4.7. EPIC MOS2 image of 1E 1207.4-5209 obs. 0155960301.
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Figure 4.8. EPIC PN image of 1E 1207.4-5209 obs. 0155960501.
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Figure 4.9. EPIC MOS1 image of 1E 1207.4-5209 obs. 0155960501.
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Figure 4.10. EPIC MOS2 image of 1E 1207.4-5209 obs. 0155960501.
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Figure 4.11. EPIC PN image of RX J0002+6246.
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Figure 4.12. EPIC MOS1 image of RX J0002+6246.
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Figure 4.13. EPIC MOS2 image of RX J0002+6246.
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Figure 4.14. EPIC PN image of RX J0822-4300 obs. 0113020101.
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Figure 4.15. EPIC MOS1 image of RX J0822-4300 obs. 0113020101.
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Figure 4.16. EPIC MOS2 image of RX J0822-4300 obs. 0113020101.
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Figure 4.17. EPIC PN image of RX J0822-4300 obs. 0113020301.

XMM EPN   2004 Oct 18  
CXOUJ185238.6+00402

0 2.7 7.2 19 52 131

18
h
52

m
48

s
18

h
52

m
44

s
18

h
52

m
40

s
18

h
52

m
36

s
18

h
52

m
32

s

+0
o
37 ’ 00 "

+0
o
37 ’ 30 "

+0
o
38 ’ 00 "

+0
o
38 ’ 30 "

+0
o
39 ’ 00 "

+0
o
39 ’ 30 "

+0
o
40 ’ 00 "

+0
o
40 ’ 30 "

+0
o
41 ’ 00 "

+0
o
41 ’ 30 "

Figure 4.18. EPIC PN image of CXOUJ185238.6+004020 obs. 0204970201.
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Figure 4.19. EPIC MOS1 image of CXOUJ185238.6+004020 obs. 0204970201.
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Figure 4.20. EPIC MOS2 image of CXOUJ185238.6+004020 obs. 0204970201.
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Figure 4.21. EPIC PN image of CXOUJ185238.6+004020 obs. 0204970301.
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Figure 4.22. EPIC MOS1 image of CXOUJ185238.6+004020 obs. 0204970301.
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Figure 4.23. EPIC MOS2 image of CXOUJ185238.6+004020 obs. 0204970301.
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5. ANALYSIS AND RESULTS

Source and background spectra were generated seperately via the evselect task.

Spectrum of PI channels were created by the standart selections as single and double

events (PATTERN in [1:4]), ‘FLAG == 0‘, spectral binsize 5, spectal channel range

between 0 and 20479 for PN and all valid events (PATTERN ≤ 12), #XMMEA EM

flag, spectral binsize 15, spectal channel range 0-11999 for MOS1/2 in the energy

range 0.3-10.0 keV. Response matrices and ancillary files were generated by the SAS

task rmfgen and arfgen.

The spectal analysis was performed by XSPEC 7.0. Black body (bb), power law

(pow), gaussian absorption lines (gabs) and photo-electric absorption (wabs) models

were used (XSPEC User’s Guide 12.2.1, Arnaud, K. et al., 2006).

Photo-electric absorption using Wisconsin cross-sections is defined as M(E) =

exp(-NHσ(E)) where NH is the equivalent hydrogen column density (in units of 1022

atoms cm−2) and σ(E) is the photo-electric cross-section (not including Thomson scat-

tering, this model uses the Anders and Ebihara relative abundances).

Black body spectrum is defined as A(E)= K×8.0525E2dE
kT 4[exp(E/kT )−1]

where kT is the temper-

ature in keV and K is the ratio L39/D2
10 where L39 is the source luminosity in units of

1039 ergs−1 and D10 is the distance to the source in units of 10 kpc.

Gaussian absorption line is defined as M(E)=exp(-(τopt/
√

2π/w)exp(-.5((E-E0)/w)2))

where E0 is the line energy in keV , w is the line width in keV and τopt is the optical

depth.

Simple photon power law spectrum is defined as A(E)=KE−αp where αp is the

photon index of the power law and K is the number of photons keV−1 cm−2s−1 at 1

keV.
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5.1. 1E 1207.4-5209

The results of PN, MOS1 and MOS2 data are represented in Table 5.1. The

spectra were rebinned by grppha in order to have at least 40 counts per bin. The

energy range was chosen to be 0.3-4.0 keV as the source is marginally detected beyond

4 keV. Single component black body or power law does not fit the data well. Two

black body or black body plus power law fits give relatively better results, but still

the reduced χ2 values are too high. The best fit includes two black body components

with three Gaussian absorption lines (see Figure 5.1, Figure 5.2, Figure 5.3) (reduced

χ2=1.16 for 784 degrees of freedom). The black body temperatures are 0.15 and 0.3

keV with NH=1×1021 cm−2 which is comparable to the SNR’s NH . The luminosity of

1E 1207.4-5209 is 2×1033 erg/s for d=2 kpc.

Table 5.1. Spectral parameters of 1E 1207.4-5209.

Parameter PN MOS1 MOS2

NH (1022 cm−2) 0.097+0.001
−0.002 0.113+0.003

−0.002 0.098+0.002
−0.002

kTBB1 (keV) 0.151+0.001

−0.001 0.166+0.252

−0.002 0.160+0.001

−0.001

kTBB2 (keV) 0.301+0.002

−0.002 0.321+0.002

−0.002 0.313+0.002

−0.002

E1 0.681+0.002

−0.004 0.750+0.006

−0.004 0.729+0.004

−0.006

τ1 119+1

−3 52+1

−2 48+1

−2

FWHM1(keV) 0.199+0.003
−0.002 0.155+0.004

−0.005 0.154+0.005
−0.004

E2 1.398+0.006

−0.006 1.433+0.010

−0.008 1.413+0.007

−0.009

τ2 29+2
−1 17+1

−2 14+1
−1

FWHM2(keV) 0.097+0.005

−0.005 0.087+0.006

−0.012 0.072+0.007

−0.009

E3 2.258+0.015
−0.017 2.139+0.031

−0.060 2.148+0.035
−0.039

τ3 12+4

−2 8+4

−2 10+3

−3

FWHM3(keV) 0.096+0.022

−0.013 0.080+0.068

−0.036 0.0.82+0.049

−0.045

flux(ergscm−2s−1)(0.3-4.0 keV) 2.12 × 10−12 2.11× 10−12 2.20 × 10−12

Reduced chi-squared 1.16 1.52 1.38

D.O.F. 784 274 272
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Figure 5.1. Spectra of 1E 1207.4-5209. Data from EPIC-PN cameras are shown with two

blackbody and Gaussian absorption lines model.
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Figure 5.2. Spectra of 1E 1207.4-5209. Data from EPIC-MOS1 cameras are shown with

two blackbody and Gaussian absorption lines model.
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Figure 5.3. Spectra of 1E 1207.4-5209. Data from EPIC-MOS2 cameras are shown with

two blackbody and Gaussian absorption lines model.

5.2. RX J0002+6246

The results of PN and PN, MOS1 and MOS2 simultaneously fitted data are

represented in Table 5.2. The spectra were rebinned by grppha in order to have at

least 40 counts per bin. The energy range was chosen to be 0.3-5.0 keV as the source

is marginally detected beyond 5 keV. Single component black body or power law does

not fit the data well. Black body plus black body and black body plus power law fits

are equally acceptable, but the corresponding NH of the latter is much larger than the

SNR’s NH that the best fit is obtained by a two component black body (see Figure 5.4,

Figure 5.5, Figure 5.6, Figure 5.7) with kT1=0.094 keV, kT2=0.38 keV and NH=7×1021

cm−2 (comparable to the SNR’s NH).
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Table 5.2. Spectral parameters of RX J0002+6246.

PN PN+MOS1+MOS2

Parameter BB+BB BB+POW BB+BB BB+POW

NH(1022cm−2) 0.70+0.05

−0.05 0.85+0.12

−0.18 0.72+0.06

−0.03 0.87+0.13

−0.05

kT1(keV ) 0.37+0.06
−0.05 0.38+0.05

−0.04

kT2(keV ) 0.095−0.006

−0.005 0.082+0.006

−0.003 0.094+0.005

−0.003 0.081+0.018

−0.014

Photon Index 3.95+0.51

−0.46 3.97+0.73

−0.63

flux(ergscm−2s−1)(0.3-5.0 keV) 1.38 × 10−13 1.42 × 10−13 1.56 × 10−13 1.57 × 10−13

Reduced chi-squared 1.52 1.55 1.32 1.38

D.O.F. 28 28 35 35
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Figure 5.4. Spectra of RX J0002+6246. Data from EPIC-PN cameras are shown with two

component blackbody model.
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Figure 5.5. Spectra of RX J0002+6246. Data from EPIC-PN, MOS1 and MOS2 cameras

simultaneously fitted two component blackbody model.
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Figure 5.6. Spectra of RX J0002+6246. Data from EPIC-PN cameras are shown with

blackbody and powerlaw model.
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Figure 5.7. Spectra of RX J0002+6246. Data from EPIC-PN, MOS1 and MOS2 cameras

are simultaneously fitted blackbody and powerlaw model.

5.3. RX J0822-4300

The results of PN and PN, MOS1 and MOS2 simultaneously fitted data are

represented in Table 5.3. The spectra were rebinned by grppha in order to have at

least 200 counts per bin. The energy range was chosen to be 0.3-5.0 keV as the source

is marginally detected beyond 5 keV. Single component black body or power law does

not fit the data well. Black body plus black body and black body plus power law fits

are equally acceptable, but the corresponding NH of the latter is about two times the

SNR’s NH that the best fit is obtained by a two component black body (see Figure

5.8, Figure 5.9, Figure 5.10, Figure 5.11) with kT1=0.23 keV, kT2=0.43 keV and

NH=5×1021 cm−2 (comparable to the SNR’s NH).
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Table 5.3. Spectral parameters of RX J0822-4300.

PN PN+MOS1+MOS2

Parameter BB+BB BB+POW BB+BB BB+POW

NH(1022cm−2) 0.52+0.02

−0.03 0.95+0.07

−0.06 0.50+0.04

−0.03 0.90+0.03

−0.05

kT1(keV ) 0.21+0.04
−0.01 0.23+0.01

−0.02

kT2(keV ) 0.42+0.01

−0.04 0.39+0.01

−0.02 0.43+0.02

−0.02 0.38+0.01

−0.02

Photon Index 4.97+0.21

−0.21 4.62+0.10

−0.27

flux(ergscm−2s−1)(0.3-5.0 keV) 4.23 × 10−12 4.24 × 10−12 4.31 × 10−12 4.32 × 10−12

Reduced chi-squared 0.99 0.98 1.02 0.99

D.O.F. 269 269 352 352
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Figure 5.8. Spectra of RX J0822-4300. Data from EPIC-PN cameras are shown with two

componenet blackbody model.
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Figure 5.9. Spectra of RX J0822-4300. Data from EPIC-PN, MOS1 and MOS2 cameras

are simultaneously fitted with two componenet blackbody model.

0.1

1

0.02

0.05

0.2

0.5

no
rm

al
iz

ed
 c

ou
nt

s 
s−

1  
ke

V
−

1

RX J0822−4300 PN−camera bb+pow

10.5 2

−2

0

2

∆S
 χ

2

Energy (keV)

Figure 5.10. Spectra of RX J0822-4300. Data from EPIC-PN cameras are shown with

blackbody and powerlaw model.
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Figure 5.11. Spectra of RX J0822-4300. Data from EPIC-PN, MOS1 and MOS2 cameras

are simultaneously fitted with blackbody and powerlaw model.

5.4. CXOUJ185238.6+004020

The results of PN and PN, MOS1 and MOS2 simultaneously fitted data are

represented in Table 5.4. The spectra were rebinned by grppha in order to have at

least 40 counts per bin. Black body and power law fits are equally acceptable, but the

corresponding NH of the latter is significantly larger than the SNR’s NH that the best

fit is obtained by black body (see Figure 5.12, Figure 5.13, Figure 5.14, Figure 5.15)

with kT=0.46 keV and NH=1.35×1022 cm−2 (comparable to the SNR’s NH).
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Table 5.4. Spectral parameters of CXOUJ185238.6+004020.

PN PN+MOS1+MOS2

Parameter BB POW BB POW

NH(1022cm−2) 1.15+0.22

−0.19 2.97+0.49

−0.42 1.35+0.15

−0.14 3.19+0.36

−0.32

kT (keV ) 0.49+0.03
−0.02 0.46+0.02

−0.02

Photon Index 4.69+0.44

−0.40 4.92+0.34

−0.31

flux(ergscm−2s−1)(0.7-5.0 keV) 1.94 × 10−13 1.91 × 10−13 2.10 × 10−13 2.11 × 10 −13

Reduced chi-squared 0.83 0.94 0.83 0.94

D.O.F. 72 72 141 141
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Figure 5.12. Spectra of CXOUJ185238.6+004020.Data from EPIC-PN cameras are shown

with blackbody model.
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Figure 5.13. Spectra of CXOUJ185238.6+004020. Data from EPIC-PN, MOS1 and MOS2

cameras are simultaneously fitted with blackbody model.
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Figure 5.14. Spectra of CXOUJ185238.6+004020.Data from EPIC-PN cameras are shown

with powerlaw model.
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Figure 5.15. Spectra of CXOUJ185238.6+004020. Data from EPIC-PN, MOS1 and MOS2

cameras are simultaneously fitted with powerlaw model.
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6. DISCUSSIONS AND CONCLUSIONS

1E 1207.4-5209 have some observational characteristics which can be used to

classify the neutron stars which are similar to this radio-quiet X-ray pulsar. X-ray

spectrum of 1E 1207.4-5209 includes 2 blackbody fits with no power-law component.

There is no PWN around this X-ray source, though it is a young neutron star (age of the

S-type SNR G296.5+10.0 is about 10-20 kyr). There is no detection of radio emission

coming from this source similar to AXPs, SGRs and DTNSs. The characteristic age of

the X-ray pulsar is much larger than the age of the SNR. Surface magnetic field of 1E

1207.4-5209 based on the resonant proton cyclotron line and its harmonics seen in its

spectrum is 2 orders of magnitude larger than the B-field (perpendicular component

of the surface magnetic field). There are rapid oscillations in the Ṗ which can not be

explained by glitches or noise. Large value of the ratio LX/Ė for 1E 1207.4-5209, unlike

radio pulsars, is similar to some other radio-quiet neutron stars and magnetars.

The low value of Ė can be used to explain why there is no PWN around this

neutron star (i.e. why the SNR is S-type) as the formation of PWN strongly depends

on the value of Edot (Guseinov et al. 2005c). Such cases with low Ė and no PWN do

exist even among some other young pulsars and there would be no problem if τ and

t(SNR) were comparable in the case of 1E 1207.4-5209 – SNR G296.5+10.0 pair. The

large difference (about 2 orders of magnitude) between the ages might in principle be

explained by assuming that this X-ray pulsar was born with a rotation period similar

to its present P. Unfortunately, this explanation further creates significant problems

on formation of neutron stars via core-collapse supernovae. Unless there exists a large

extra torque which further spins down the newborn neutron star (which is not present

in the core-collapse supernova models and simulations), it must have an initial rotation

period which must be at least 10 times less than its present rotation period. So, if 1207

was born spinning with a conventional rotation period (about 10-20 ms), the braking

of its rotation would be at lower values of Pdot compared to pure magneto-dipole

radiation braking. In other words, the average braking index (assuming a power-law

temporal evolution) should be much larger than n=3 case which is correct only if the
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net torque on the pulsar is nothing but magneto-dipole radiation torque.

Another problem is related to the large difference between the magnetic field

inferred from the proton cyclotron line and the perpendicular component of the surface

dipole field B. Because of the discrepancy between the ages as discussed above, the

huge difference in the magnetic field values can not be explained by a very small angle

between the rotation and the magnetic axes.

An exponential B-decay model can be used to explain both discrepancies (i.e.

related to the ages and the magnetic fields). Such a model can also be used to un-

derstand the anomalous oscillations in the Pdot of this X-ray pulsar. Furthermore, it

is also possible to understand both the lack of PWN (i.e. the smallness of Edot at a

young age) and the lack of detection of radio emission (as the width of beaming emis-

sion at radio frequencies can be much smaller than the beam width in X-ray bands)

based on such an exponential decay model. So, the lack of power-law component in

the spectrum of 1207 is also explained by such a model.

In Sedrakian and Blaschke (2002) and Sedrakian and Shahabasyan (2007), the

possibility of two different magnetic fields existing in neutron stars is discussed, the

superposition of which will give the resultant field. According to their calculations, in

addition to the relic magnetic field formed by the collapse of the progenitor star, there

must also be a magnetic field formed by superconducting entrainment currents which

was calculated to be on the order of 1012 G by Sedrakian et al.. Since this magnetic

field must naturally be parallel to the rotation axis and as the relic magnetic field

axis can have an arbitrary angle (α) with respect to the rotation axis, the resultant

magnetic field (i.e. the superposition of the two magnetic fields) will be at an arbitrary

angle from the rotation axis. So, if the relic field is comparable to or smaller than the

entrainment-current-field, than the resultant field will have an axis close to the axis of

rotation. On the other hand, if the relic field is the dominant one, then it is possible

that the axis of the resultant field may be approximately perpendicular to the rotation

axis in some cases. The smallness of alpha in most of the cases for radio pulsars is

known from the observational data.
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For 1207, the angle α seems to be close to zero (Bcyc∼=1.4×1014 G and B∼=2.5×1012

G). As discussed above, this very small α could be formed by a rapid approach of the

surface field to the rotation axis. As the axis of the relic magnetic field approaches

the rotation axis, the magnitude of the resultant surface magnetic field (i.e. the to-

tal magnetic field on the surface which is the superposition of the relic field and the

field formed by the superconducting entrainment currents) increases and its component

which is perpendicular to the rotation axis decreases in time. Since 1E 1207.4-5209 has

most probably very high Bcyclotron and comparably very low B (perpendicular compo-

nent of the resultant surface magnetic field) and as this neutron star is observed as a

pulsar, Bcyclotron must be comparable to the resultant surface magnetic field which is

increasing in time (or to the relic magnetic field as the magnetic field formed by the

entrainment currents must be on the order of 1012 G on average). On the other hand,

the actual low B value of 1E 1207.4-5209 as compared to the case of n=3 (see Fig2.1)

can be explained by the exponential decay as this perpendicular component decreases

in time based on the discrepancy between the age values.

The increase in the magnitude of the resultant surface magnetic field of 1E 1207.4-

5209 must be very small if the relic field is actually much higher than the entrainment

field, so that the Bcyclotron and hence the magnitude of the present resultant surface

magnetic field must be comparable to the magnitude of the initial resultant surface

magnetic field. On the other hand, the decrease in the perpendicular component of the

resultant surface magnetic field must be very large (about one order of magnitude) in

a very short time interval (∼ 104 yr) compared to radio pulsar lifetimes. In the case

of radio pulsars, the increase in the magnitude of the resultant surface magnetic field

must be relatively large (up to a factor of about 1.5) based on the known B values of

radio pulsars and the prediction on the average strength of the entrainment field, and

the decrease in the perpendicular component of the field must exist on a much longer

timescale. Comparing the magnetic field values of 1E 1207.4-5209 with the B values

of most of the radio pulsars together with the age discrepancy for 1E 1207.4-5209 –

SNR G296.5+10.0 pair (which also exists for several other pulsar – SNR pairs but

without any clearly detected absorption lines) may be an evidence for the existence of

two different magnetic fields for neutron stars; the relic field and the entrainment field.
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The interaction between the superconducting entrainment currents and the relic field

may be the reason for the decrease in α. Such a possible interaction between the two

fields throughout the evolution of neutron stars with different initial intrinsic physical

conditions has yet to be examined.

The rate of temporal decrease in α (and hence the evolution of the perpendicular

component of the total surface dipole magnetic field) may depend on both the relic and

hence the resultant magnetic field, the mass and the equation of state of the neutron

star (it may also depend on the initial value of α). The changes in Ṗ observed for

1E 1207.4-5209 may also be explained by oscillations in the magnetic dipole axis as

it approaches the rotation axis. Such changes in Ṗ must also exist in other 1207-like

isolated radio-quiet X-ray pulsars.

The surface magnetic fields of accreting X-ray pulsars in X-ray binaries obtained

from cyclotron line measurements are on the order of 1012 G (Coburn et al. 2002), that

is comparable to the predicted surface magnetic fields due to the entrainment currents

(Sedrakian and Blaschke 2002; Sedrakian and Shahabasyan 2007), and the B values of

recycled millisecond pulsars are several orders of magnitude smaller (see Bisnovatyi-

Kogan and Komberg 1976, who gave the first reliable explanation for the magnetic field

decay in X-ray binaries by accretion and the formation of recycled millisecond pulsars).

The surface magnetic field in the case of X-ray binaries most probably decreases because

of the plasma falling upon the surface of the neutron star during the accretion process

(Bisnovatyi-Kogan and Fridman 1969; Amnuel and Guseinov 1969; Bisnovatyi-Kogan

and Komberg 1976; Bisnovatyi-Kogan 2007). A decrease in the resultant surface field

because of accretion and maybe also a decrease in the value of α (but on a much

longer timescale compared to the 1E 1207.4-5209 case) may explain the measured

conventional 1012 G magnetic field values of X-ray pulsars in binary systems and the

very low perpendicular components of the resultant surface field of recycled millisecond

pulsars.

A rapid B-decay naturally leads to a very short lifetime as an X-ray pulsar for

1207-like objects. The birth rate of 1207-like X-ray pulsars must be about 20-30%
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of the total supernova rate (excluding type-Ia supernovae as this type of explosion

most probably does not lead to formation of a neutron star) taking into consideration

that the lifetime of such sources as X-ray pulsars must be about 2×104 yr because

of rapid B-decay (see Guseinov et al. 2005c on the birth rates of different types of

isolated neutron stars including dim radio quiet neutron stars some of which seem to

be 1207-like objects based on the existing observational data). After the axis of the

resultant surface magnetic field becomes parallel to the rotation axis, the neutron star

will continue its evolution as an X-ray source (but not a pulsar). It will still be possible

to observe such a neutron star in X-ray bands if it is not located far away from the

Sun. Some radio-quiet thermal neutron stars (which are pure black body emitters with

absolutely no power-law component) nearby the Sun may be descendants of 1207-like

X-ray pulsars. If this is true, the high birth rate of DTNSs can be explained easily.

In this thesis, the X-ray spectra of 1E 1207.4-5209, RX J0002+6246, RX J0822-

4300 and CXOU J185238.6+004020 were derived. The X-ray spectrum of RX J0002+6246

was fitted using XMM-Newton data for the first time. The results of X-ray fitting of

the remaining three neutron stars are in accordance with the values given in the litera-

ture. 1207-like nature of three XDRQNSs was for the first time identified in this work

based on the common observational properties of these sources as discussed above.

Analysis of long and precise timing observations of RX J0002+6246, RX J0822-

4300 and CXOU J185238.6+004020 are needed to further clarify the nature of these

sources, which I plan to do as future work.
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