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ABSTRACT 

 

ELECTRO OPTICAL CHARACTERIZATION OF A SILICON 

MICROSPHERE 

 

 

In today’s world, with the development of optoelectronics, metal interconnections 

are no longer limiting factor for the performance of electronic systems.  Replacing the 

metal interconnections by optical interconnections could provide low power dissipation, 

low latencies, and high bandwiths.  Such optical interconnections rely on the integration of 

micro-photonics and microelectronics.  Having high quality factors, optical microsphere 

resonators are ideal circuit elements for wavelength division multiplexing.  Silicon, as a 

common semiconductor the building block of the integrated circuits, also is a very 

important component with its optical properties.  We have experimentally observed the 

shifts in resonance wavelengths of an electrically driven silicon microsphere of 1000 

microns in diameter, in the near IR.  We have used a distributed feedback (DFB) laser at 

1475nm, and applied dc voltages ranging from -17V to 9V to the microsphere and 

observed the respected shifts in the resonance wavelengths around 0.005 nm to 0.080 nm. 
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ÖZET 

 

BIR SILIKON MIKROKÜRENIN ELEKTRO-OPTIK 

KARAKTERISTIGININ ÇIKARILMASI 

 

 

Günümüz dünyasinda, optoelektronik alanindaki gelismelerle, metal baglantilar 

elektronik sistemlerin performansini sinirlayici unsur olmaktan çikiyor.  Metal baglantilari 

optik baglantilarla degistirmek, güç kaybini ve bilgi aktarimindaki gecikmeleri düsürüp 

daha yüksek bant genisliginde bilgi iletimini saglayabilir.  Optik baglantilar mikrofotonik 

ve miktoelektronik alanlarinin bütünlesmesine baglidir.  Yüksek kalite faktörleriyle, optik  

mikroküre çinlayicilarinin dalga bölmek ve çoklamak uygulamalari için ideal devre 

elemanlari olduklari ispatlanmistir.  Yaygin bir yariiletken ve entegra devrelerin yapitasi 

olan silikon ayni zamanda optik karakteristigi açisindan önemlidir.  Bu çalismalarimizda, 

elektrikle yönlendirilen 1000 mikron çapindaki bir silikon kürenin yakin kizilalti dalga 

boylarinda, çinlama dalgaboylarindaki degismeleri deneysel olarak inceledik.  1475 nm 

dalgaboyunda çalisan bir geri besleme lazeri kullanarak -17 V ve 9 V araliginda dogru 

akimli gerilim uyguladik ve çinlama dalgaboylarinda 0.005 nm’den 0.080 nm’ye varan 

degisimler gözledik. 
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1. INTRODUCTION 

 

 

With the development of optoelectronics, metal interconnections are no longer the 

limiting factor for the performance of electronic systems.  Replacing the metal 

interconnections by optical interconnections could provide low power dissipation, low 

latencies and high bandwidths.  Such optical interconnections rely on the integration of 

microphotonics with microelectronics. Microsphere resonators are ideal microphotonic 

building blocks due to their small volumes and high quality factor (Q-factor) morphology 

dependent resonances (MDR’s), i.e., whispering gallery modes (WGM’s) [1,  2] with 

reported Q-factors ranging up to 2x1010 [3].  There have been various photonic 

applications in the ultraviolet (UV), visible and near- infrared (IR) communication bands 

[4]. Morphology dependent resonances (MDR’s), i.e., whispering gallery modes (WGM’s), 

or simply optical resonances of dielectric microspheres provide the necessary optical 

feedback for applications in spectroscopy, laser science, and optical communications. 

Microlasers [5], optical filters [4, 6, 7], optical switches [8], ultrafine sensors [9] and 

rotation detectors [10] are some of the applications of microspheres. Low threshold lasing 

from rare earth doped silica microspheres [11], polymer microsphere lasers [12] and 

Raman lasers have been demonstrated. Strain tunable microsphere oscillators [13], add-

drop filters [5], and thermooptical switching [8] have been realized for the frequency 

control in optical communications. Microsphere resonators are uniquely applicable for 

compact optoelectronic devices in wavelength division multiplexing (WDM) applications 

[14].  

 
Chapter 2 provides a brief explanation of optical resonators and then gives detailed 

information necessary to understand the working principles of Fabry-Perot resonators.  

After understanding the Fabry-Perot resonators, the microsphere as an optical resonator is 

studied in chapter 2.  Lorenz-Mie theory, mode spacing, and Q-factor of the microsphere 

are overviewed.   

 

In chapter 3, the optical modulation methods for silicon are explained.  Starting with 

a brief overview of the silicon photonics, the effects of electric field and charge injection 
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and the thermal energy on silicon are studied in chapter 3.  Finally, a comparison of the 

modulation methods is included. 

 

Chapter 4 is on the electrical characterization of silicon.  Starting with the metal-

semiconductor contact, the band diagrams, contact types and the current transportation on a 

metal-semiconductor junction are given.  Following those, the contact that is used in our 

experiments and the circuits that were used in the electrical input are shown.  Finally, the 

observed current-voltage characteristics for different contacts are presented in chapter 4. 

 

In chapter 5, the evanescent wave coupling techniques are explained. Also, the 

experimental setup, experimental results of the elastic scattering from a silicon 

microsphere are presented.  The experimental results of elastic scattering from the 

microsphere when the electrical potential applied are presented and the results are 

compared. 

 

The thesis is concluded with a short summary of the performed study in chapter 6. 
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2. OPTICAL RESONATORS 

 

 

In an optical resonator, light navigates in a closed space with very small loss.  In its 

path, light interferes with itself, and by experiencing constructive interference, a moderate 

input might build up to high field intensities.  There are quite a few optical resonators 

currently used for various applications. Planar and spherical mirror resonators [15], 

microrings [16], microdiscs [17], and toroids [18] are the most typical resonators.  In 

addition to the one and two dimensional resonators, microsphere resonators confine the 

light in three dimensions. [1]  The general condition for all the resonators is that, in a 

round-trip, the light should satisfy the phase matching with the incident beam, such that the 

phase differences of the incident light and that of the traveled should interfere by a 

multiple of 2?.   

 

??  = 2?n      (2.1) 

 

where n is the integer mode number.  The waves satisfying phase matching interferes 

constructively, resulting in a series of standing electromagnetic waves.  The corresponding 

phase matching modes determine the resonant wavelengths of the resonator. 

 

 

2.1.  The Fabry-Perot Resonator 

 

The Fabry-Perot resonator is the simplest of the optical resonators.  It consists of two 

highly reflective parallel placed planar mirrors facing each other [15].  In figure 2.1, a 

simple diagram of the Fabry-Perot resonator is illustrated.   

 

When a plane wave is incident on a plane mirror of 99.9% reflectance, nearly no 

transmission occurs.  However, if two of them are parallel and facing each other, the light 

making a round-trip between the mirrors and the incident light interferes with each other.  

The incident light first gets into the resonator, bounces back from the second mirror, 

travels back to the first mirror and bounces back from it as well, which results with the 
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overlapping of the light that made a full round-trip inside the resonator and the incident 

beam. 

Figure 2.1  The schematic Fabry-Perot resonator 

 

At certain wavelengths, there is no phase difference between those beams, they make 

a constructive interference, and the intensity of the light inside the resonator doubles.  As 

the light keeps bouncing back and forth from the mirrors with very small transmission at 

each reflection, the intensity inside the resonator increases, and thus the intensity of the 

transmitted light go up regardless of the reflectance of the mirrors.  The wavelengths 

satisfying this condition are called the resonance wavelengths.   

 

 

2.1.1.  The Resonator Modes 

 

The physical definition of the resonator modes is the self-consistent existence of the 

wavefunctions and the resonance wavelengths within the resonator.  A mode is a self-

reproducing wave that interferes with itself constructively within the resonator, and only 

self reproducing waves can exist inside the resonator.  Resonator modes are subject to the 

boundary conditions of the Helmholtz equation.  Resonant wavelengths are restricted to 

Output LightInput Light

Partially reflecting plates

d

m

Output LightInput Light

Partially reflecting plates

d

m
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discrete values, when the equation is solved for standing waves for a Fabry-Perot 

resonator.  Standing wave solution, therefore will give us the equation: 

 

mdn n =
2

λ
          (2.2) 

 

where m is the refractive index of the medium inside the resonator; d is the distance 

between the mirrors, ? is the vacuum wavelength of the light and n is an integer mode 

number.  Defining a parameter to simplify the above equation: 

 

λ
dx 2=          (2.3) 

 

We call x the size parameter.  Then (2.2) becomes: 

 

mxn =        (2.4) 

 

The waves satisfying (2.1) interfere constructively and form a series of standing 

electromagnetic waves satisfying equation (2.4).  Taking the derivative of (2.2) and 

dividing it with itself, we can see how the resonant wavelengths change: 

 







 +≡

m
m

d
d δδ

λδλ       (2.5) 

 

Equation (2.5) gives the sensitivity of the Fabry-Perot resonator.  Any change in the 

distance between the mirrors and the refractive index changes the resonant wavelengths as 

given in equation (2.5). 

 

If there is no absorption, regardless of the reflectance of the mirrors, the resonator 

becomes transparent at the resonance wavelengths.  The sharpness of the peaks however is 

dependent on the reflectance of the mirrors. 

 

The quality factor (Q-factor) is given by: 
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percyclelossenergy

energystored
Q π2=     (2.6) 

 

Quality factor is a measure of the sensitivity of the resonator.  In terms of parameters, 

Q-factor is given as: 

 

2/1λ
λ

∆
=Q       (2.7) 

 

where ? 1/2 is the full width half maximum (FWHM) of the resonance. 

 

The quality factor determines the sharpness of the resonance.  Q-factor may also be 

called the resolving power of the resonator.  As the reflectance of the mirrors increase, the 

energy loss per cycle decrease; therefore the quality factor increases with the reflectance of 

the mirrors.  In most of the filter applications, high Q-factor is a desirable parameter. 

 

The resonance condition given by equation (2.2) satisfies infinite number of 

resonance modes.  The difference between the resonance wavelengths of adjacent 

resonance modes is called free spectral range (FSR).  The distance between adjacent 

resonances has consecutive mode number n.  The FSR then is given with the expression: 

 

1
1

+
−=∆ +

nn
nn

FSR

λλ
λ                                        (2.8) 

     

From equation (2.2), replacing the wavelength: 

 

1
22

+
−=∆

n
md

n
md

FSRλ  

              =
)1(

2
+nn

md
                                (2.9) 
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For n being large, we can make the approximation of n+1˜ n, on (2.9) which would 

make: 

 

2

2
n
md

FSR =∆λ      (2.10) 

 

by using (2.2) once more: 

 

mdFSR 2

2λ
λ =∆      (2.11) 

 

 
 

An illustration of the intensity of the output beam from the Fabry-Perot resonator is 

given in figure 2.2, in which the mode spacing ??FSR can be seen along with the adjacent 

resonance wavelengths.  As it can be seen in equation (2.11), the FSR in Fabry-Perot 

resonator is inversely proportional to the distance between of the parallel mirrors.  The 

dependence of FSR on the distance of the mirrors is also calculated in figure 2.3, for 

mediums of glass (m = 1.5) and silicon (m = 3.5). 

 

Figure 2.2.  Expected intensity of the transmitted light in a Fabry-Perot 
resonator 

FSRλ∆Transmitted Light 

? 
?n+2 ?n+1 ?n 
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The ratio of the FSR to the linewidth of the resonance is called finesse (F), which can 

be expressed as: 

 

2/1λ
λ

∆
∆

= FSRF      (2.12) 

 

For a Fabry-Perot resonator, the expression for finesse is given as: 

 

R

R
F

−
=

1

π
     (2.13) 
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where R is the reflectance of the mirrors in the Fabry-Perot resonator.  In light of equation 

(2.7) for Q-factor and (2.12) for finesse, the Q-factor in terms of finesse would be given as: 

Figure 2.3.  The dependence of FSR on round-trip distance for a 
Fabry-Perot resonator 
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nFFQ
FSR

=
∆

=
λ
λ

             (2.14) 

 

Equation (2.13) can be revised to write the Q-factor in terms of reflectance, index of 

refraction, and the size parameter.  Using the equations for size parameter, FSR and finesse 

as given in equation (2.3), (2.11) and (2.13): 

 

R
Rmx

Q
−

=
1

π
     (2.15) 

 

Now increasing reflectance, size parameter or the internal refractive index of the 

resonator, the Q-factor becomes higher, leading to sharper peaks and higher resolving 

power of the resonator.  From the equation (2.4) of the resonator modes, increasing the 

refractive index and the size parameter leads to higher order modes.  Therefore, higher 

order modes also lead to high Q-factor resonances. 

 

2.1.2.  The Resonance Phase and Intensities 

 

In an optical resonator, the light beam interferes with itself repeatedly.  When the 

interference is constructive and the resonance condition is satisfied, the result of the 

superposition may become an infinite number of waves.  Consider now that the incident 

beam is given as E0eiwt , and let Et represent the total transmitted wave [22].  At each 

reflection from the mirrors, there will be a coefficient of r for reflection amplitude of 

coefficient will add up to the incident beam.  For transmission amplitude, there will be a 

coefficient of t adding up to the incident beam.  The superposition of the waves will be 

given as: 

 

Et = E1t + E2t +……+ ENt 

   = E0t
2eiwt + E0t

2r2ei(wt-d) + E0t
2r4ei(wt-2d) + …+ E0t

2r2(N-1)ei[wt-(N-1)d] 

= E0Teiwt [1+R e-id+ R e-i2d +…+ R(N-1) e-i(N-1)d]            (2.16) 
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T and R are transmittance and reflectance of the surfaces, and they are squares of the 

coefficients t and r respectively; in the case of no absorption, they add up to unity.  The 

superposition of waves in equation (2.15), when there is infinite number of waves, add up 

to: 

 









−
= − δi

iwt
t

T
eEE

Re10     (2.17) 

 

The difference between each adjacent transmission is a phase difference imposed on 

the wave.  Since the light is traveling back and forth and interfering with itself, the optical 

path difference will impose a phase difference on the interfering waves.  The difference in 

optical path for a Fabry-Perot resonator is: 

 

π
λ

π
δ mx

md
mdk ===

2
2 0              (2.18) 

 

where k0 is the wavenumber of the incident light.  The difference between resonances 

corresponds to a phase difference 2?.  The field, in general can be written as: 

 

)(
0

φ+= wtieEE               (2.19) 

 

The phase difference ?  given in (2.19) can be derived from the equation (2.17): 

 









−
=

δ
φ

i
i T

e
Re1

               (2.20) 

 

Which we can write as: 
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

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
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and taking out the phase alone: 
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              (2.22) 

 

  

The phase in (2.22) is a function of the optical path difference and reflectance alone.  

The necessary condition for resonances to occur is to have multiples of 2? for the phase 

difference.  Once the field inside the resonator is found, the intensity of the incident light 

and the transmitted light can be calculated, provided the reflectance of the mirrors and the 

separation of mirrors within the resonator are known. 

 

Consider an incident beam with the intensity equal to Iinc.  When the light makes the 

first contact with the resonator, a fraction of the beam will enter the resonator.  When the 

beam makes a contact with the second mirror, again only a fraction of the light will 

transmit and the rest will be reflected back into the resonator. 

 

To put it more numerically, the intensity of a beam with the field E is given as: 

 

n
E

n
EE

I inc 22
. 2

0
*

=∝                          (2.23) 

 

After the light gets into the resonator, the intensity of the transmitted beam: 
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From the intensity of the wave inside the resonator, the intensity of the transmitted 

wave can be derived.  The light inside the resonator will bounce from the mirrors, each 

time multiplying the intensity by T, which is equal to 1-R.  Therefore the transmitted light 

can be expressed as: 
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In the case of resonance, that is, when the phase difference is zero or multiples of 2?, 

the transmission becomes unity, meaning the mirrors becomes transparent and the incident 

dn+2 

d 
dn+1 

dn 

Figure 2.4. Expected transmittance of a Fabry-Perot 
resonator with highly reflecting mirrors  
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light is totally transmitted.  The reflected light intensity can also be found from equation 

(2.25): 
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which will be zero when the phase difference is zero. 

 

The transmittance and reflectance can also be written in terms of size parameter.  By 

using equation (2.18) we can write T and R as: 
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The analysis of Fabry-Perot resonator is important in understanding the general 

properties of optical resonators.  We will see next the microsphere as an optical resonator 

for example, and we will see similarities in their working principles. 

 



 
14 

 

 
 
 

2.2.  The Microsphere Resonator 

 

Gustav Mie was the first scientist to investigate the morphology dependent 

resonances (MDR’s) of microspheres, in the beginning of 19th century [19]. The intuition 

leading to the basic idea of the microsphere resonator’s working principle is based on the 

geometric optics.  In investigating the light scattering from spherical particles, the resonant 

circulation of optical field inside the microsphere caused the spectrum to give sharp 

responses.  These optical modes are called “whispering-gallery modes”, which originated 

from the phenomenon of acoustic waves observed propagating in the interior surface of the 

Saint Paul’s Cathedral in London, observed and published by Lord Rayleigh [19].  

 

As an optical resonator, the microsphere has its similarities with the Fabry-Perot 

resonator.  The obvious difference isthat, instead of the area within the mirrors, the cavity 

is determined by the interior surface of the microsphere. A physical interpretation of 

MDR’s is based on the propagation of rays around the inside surface of the microsphere, 

confined by an almost total internal reflection (TIR).  The rays approach the interior 

surface of the microsphere at an angle beyond the critical angle, they bounce off from the 

interior surface of the sphere, and as the light continues its path inside the sphere, all 

subsequent angles of incidence are the same because of the spherical symmetry, and the 

ray is trapped.  The trapped ray propagates close to the surface, and traverses a distance ≈  

R(d) 

d 
dn+2 dn+1 dn 

Figure 2.5.  Expected reflectance of a Fabry-Perot resonator 
with highly reflecting mirrors  
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2πa in one round trip [23].  Once the light returns to its respective entrance points, it starts 

to propagate in the interior surface of the microsphere all over again.  This basically is the 

physical interpretation of the MDR’s for a microsphere.  The light, after circumnavigating 

the interior surface of the sphere, returns to its entrance point and interferes with itself.  At 

resonant wavelengths, the interference is constructive and the interference might result in 

standing waves, causing the elastically scattered light from the microsphere to reach peak 

intensities.  Numerically, using the similar expression from the Fabry-Perot resonator in 

equation (2.2) the condition of resonance would be: 

 

amn πλ 2≈                     (2.29) 

 

Similarly, for the size parameter: 

 

λ
πa

x
2

=      (2.30) 

 

Which, we can use to write 2.29 as: 

 

mxn =       (2.31) 

 

The geometrical ray optics definition of MDRs of a microsphere fails to explain the  

following significant points:  How is the light coupled into the microsphere, and how does 

the light escape from the microsphere?  Furthermore, the geometrical ray optics does not 

take polarization of the light into account, and is not sufficient to determine the radial 

character of the optical modes [20].  In order to pass the limitations imposed by the ray 

optics, we need to examine the Lorenz-Mie Theory. 

 

2.2.1.  Lorenz-Mie Theory 

 

The interaction of light with a microsphere can be explained by using Lorenz-Mie 

theory.  According to this theory, the light waves are expressed as the superposition of the 

electromagnetic waves.  From there, the characteristic equations for the MDRs are derived 

by imposing the appropriate boundary conditions for the fields.  



 
16 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

As has been studied in the Fabry-Perot resonator, and seen in the equation (2.28) the 

MDR’s occur at discrete wavelengths depending on the refractive index of the cavity and 

the optical path length.  The characteristic equations are obtained by expanding the fields 

in vector spherical harmonics and then matching the tangential components of the electric 

and magnetic fields at the surface of the sphere.  As in the spherical harmonics, the MDRs 

will have the quantum numbers labeled as polar mode number (n), azimuthal mode number 

(m), and radial mode order (l).  For a perfect sphere, all of the m modes are degenerate 

(with 2n+1 degeneracy) [19, 24]. The degeneracy is partially lifted when the cavity is 

axisymmetrically (along the z-axis) deformed from sphericity. For such distortions the 

integer values for m are ±n, ±(n-1),…,0, where the degeneracy remains, because the 

resonance modes are independent of the circulation direction. 

The resonances inside the microsphere are characterized by their polarization:  

transverse electric (TE), and transverse magnetic (TM).  For optical modes having TM 

polarization, the characteristic equation is: 

 

[ ] [ ]
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)(
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)1(

)1(

xh
xxh

mxj
mxmxj

n

n

n

n

′
=

′
              (2.32) 

 

Whereas, the characteristic equation for TE modes is: 

 

 

 

Figure 2.6.  An illustration of optical resonance path 
inside the microsphere 
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where for both (2.29) and (2.30) the jn(x) and hn
(1)(x) are the spherical Bessel and the 

Hankel functions of the first kind, respectively.  The prime in the equation denotes the 

differentiation with respect to the argument.  

 

The elastically scattered field can be written as an expansion of vector spherical wave 

functions with TM coefficients (an) and TE coefficients (bn) for a plane wave.  The 

expansion coefficients for the scattered TM field are given as [25]: 

 

[ ] [ ]
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and the coefficients for TE field are given as: 

 

[ ] [ ]
[ ] [ ]′−′

′−′
=
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where jn is the spherical Bessel function, and hn
(2) is the spherical Henkel function of the 

second kind [26].  The natural resonance frequencies associated with TE and TM modes 

are given by: 

µε
ω

a

x ln
ln

,
, =             (2.36) 

 

where µ is the permeability  and ε permittivity of the surrounding lossless medium.  

The coefficients an and bn become infinite, when there is a complex frequency 

corresponding to complex size parameter.  The MDR’s of the microsphere occur at the 

zeros of the denominators of an and bn coefficients, given by equations (2.34) and (2.35) 

[27]. The modes are radiative for real frequencies, and hence the modes are virtual and the 
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resonance frequencies are complex. The real part of the pole frequency is close to real 

resonance frequency, wn,l [28].  The imaginary part of the pole frequency determines the 

linewidth of the resonance, w1/2. [29, 30]  

 

2.2.2.  Q-factor 

 

The performance of a resonator can be determined by quality factor (Q-factor) as was 

seen for the Fabry-Perot resonator.  The Q-factor of an optical resonator determines how 

long a photon can be stored inside an MDR [31].  Therefore the Q-factor of a resonance is 

governed by the losses in the optical field during the round-trip associated with it, and the 

losses in coupling the light into the sphere.  The losses during the round-trip can be labeled 

as:  the loss due to the absorption of the sphere (Qabs), the loss due to the diffraction 

leakage (Qr) and finally, the loss caused by the scattering (Qs), and the loss due to coupling 

(Qcoupling).  The observed Q-factor is the geometric sum of the Q-factors associated with 

each mechanism: 

 

couplingsrabs QQQQQ
11111

+++=    (2.37) 

 

For frequencies near an MDR, the electric field inside the microsphere varies as: 

)
2

exp()( 00 t
Q

tiEtE oω
ω −−=     (2.38) 

 

The intensity of the field is proportional to: 
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As seen in equation (2.34), the Q-factor determines the sharpness of the resonance 

peaks.  The Q-factor and wavelengths of MDR’s of microspheres are highly sensitive 

functions of size and refractive index.  The higher the Q-factor, the more sensitive is the 

microsphere to the perturbations. 
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2.2.3.  Mode Spacing of MDR’s 

 

From equations (2.26), (2.27) and (2.28), we saw that an MDR satisfies resonance 

condition for specific values of the size parameter.  The mode spacing (??) then, is defined 

as the wavelength difference between two consecutive mode numbers (n) in the same 

mode order (l) [32]: 

 

lnlnln ,,1, λλλ −≡∆ +     (2.40) 
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Mode spacing of the microsphere resonator, as can be seen from equation (2.38), 

resembles the FSR of the Fabry-Perot resonator from equation (2.11).  The only difference 

in between the equations is the index of refraction of the resonators.  Therefore, we can 

introduce a new parameter for microsphere resonator: 

Wavelength 
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∆λ  
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Figure 2.7.  Expected intensity of elastic scattering from 
microsphere resonator 
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meff given here is defined as the effective index of refraction of a microsphere 

resonator.  From equation (2.35), we can deduce that the closer the unity the index of 

refraction is, the closer the mode spacing of a microsphere and Fabry-Perot resonator.   
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Figure 2.8 illustrates calculations of mode spacing as a function of the round-trip distance 

for microsphere and Fabry-Perot resonators.  The calculation is for glass (m = 1.5) and 

silicon (m = 3.5).  It can be seen from the graph, that the difference in mode spacing is 

closer for glass, than that of silicon at optical frequencies. 

 

 

 

Figure 2.8.  Mode spacing of microsphere and Fabry-Perot resonators as a 
function of round-trip distance (2?a) 
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3.  ELECTRO-OPTIC EFFECTS IN SILICON 

 

3.1 Silicon Photonics 

 

Silicon has been the material of choice for the solid state microelectronics industry 

for more than fifty years. [7] For microelectronics applications, silicon chip design has 

many applications and is the basis of complex microprocessors and integrated circuits.  
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Currently, it is a question whether silicon can be the material of choice in the photonic 

integrated circuits.  Although silicon photonics is less well-developed than that of group 

III-V semiconductors, being low-cost and highly available, as well as being well-

understood in electronics [33, 34], silicon photonics can make a real impact in the optical 

communications [35].   

 

There are significant challenges for using the silicon photonics.  Silicon has an 

indirect bandgap, making it an inefficient light emitter [36].  Silicon is transparent at the 

telecom spectral regions of 1.3 µm and 1.55 µm.  Finally, optical interconnections require 

precise alignment, which require improved alignment technologies for mass production. 

Silicon also has substantial advantages in photonics.   First, silicon is suitable for 

guiding light in waveguides without excessive loss. The transparency range of silicon 

extends from 1.1 µm to well into the far- infrared region.  Second, silicon’s Raman gain 

coefficient is high and with the efficient use of waveguides, the light can be confined in a 

small area, thus allowing for efficient Raman amplification [37, 38].  Recently, Raman 

scattering in pulsed and continuous-wave [39] silicon Raman lasers have been observed. 

The downside is that a Raman laser or amplifier still requires an optical pump source.  

Another progress of silicon photonics is the silicon optical modulators.  Using a Mach-

Zehnder interferometer, changing the charge density in one arm of the interferometer by 

applying an electrical input causes a change in the refractive index, which modulates the 

phase of the output beam [34].   Silicon photonics still require an enormous amount of 

work corresponding to substantial investments.  However, the potentia l merits of the 

technology are highly motivative. If successful, it can lead to a powerful technology with 

substantial benefits for microphotonics and microelectronics applications. 

3.2.  Optical Modulation Mechanisms in Silicon 

 

For integrated optical technology, one of the requirements is the ability to perform 

optical modulation, which is basically a change in the optical field due to an applied 

external signal.  Usually, the change in the optical field is derived from the change in the 

refractive index of the material, though it is possible to make modulation by other 

parameters.  For silicon, the most efficient means of implementing optical modulation by 

an applied electrical signal is to use carrier injection or depletion.  There are other methods 
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for optical modulations, which are not as effective in silicon but are used for other 

integrated optical technologies.  These electrically driven modulation techniques are 

primarily based on electric field effects. 

 

Applying an electric field to a material can result in a change to both the real 

refractive index and the imaginary refractive index.  The change in the real part refractive 

index of the material due to an applied electric field is labeled as electrorefraction; whereas 

the change in the imaginary part of the refractive index due to an applied electric field is 

called electroabsorption.  ? m denotes the change in the real refractive index, whereas ?k 

denotes the change in the imaginary part of the index of refraction.  The primary effects 

known for optical modulation driven by electric field are Pockels effect, Kerr effect, and 

Franz-Keldysh effect. 

 

3.2.1.  The Pockels Effect 

 

The Pockels effect causes a change in the real part of the refractive index that is 

linearly dependent on the applied electric field, E.  If the applied E field is uniform, and the 

modulator geometry is fixed, the change in the refractive index will be proportional to the 

applied potential difference.  In general, the Pockels effect generates a change in the 

refractive index that is dependent on the direction of the applied E field with respect to the 

axes of the modulator crystal.  Therefore, the effect is also polarization dependent. 

 

Silicon’s symmetry is such that, the Pockels effect disappears completely [34].  The 

largest electro-optic coefficients, however, can be utilized for other semiconductor 

materials by aligning the applied field with one of the principal axes.  To illustrate, for the 

material lithium niobate (LiNbO3) the change in the refractive index is given by: 

 

2
3

3333

E
mrm −=∆      (3.1) 

 

where m33 is the refractive index in the direction of the applied field, and E3 is the 

electric field applied on the material.  The subscript 3 is to show that which of the three 

principal axes, the electric field is aligned with.  The value of r33 is 30.8 x 10-12 m/V.   
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3.2.2.  The Kerr Effect 

 

The Kerr effect also causes a change in the real part of the refractive index.  It is a 

second order effect and is proportional to the square of the applied electric field, E.  It is a 

relatively weak effect in silicon, and the change in ? m may be expressed as: 

 

2

2

033
E

msm =∆      (3.2) 

 

s33 is the Kerr coefficient, m0 is the unperturbed refractive index and E is the electric 

field.  As it can be seen from the expression, the  change in the refractive index is 

independent of the direction of the applied field.  Figure 3.1, shows graph of the change in 

the refractive index for silicon at 1300 nm due to Kerr effect, which is calculated by Soref 

and Bennett [39] theoretically. 

 

 

3.2.3.  The Franz-Keldysh Effect 

 

The Franz-Keldysh effect changes both the real part and the imaginary part of the 

refractive index, although mostly the latter [34].  Upon applying the electric field, the 

energy bands of the semiconductor experience a distortion, and this shifts the energy 

bandgap which results in the absorption of the material particularly at wavelengths close to 

its bandgap.   
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The Franz-Keldysh effect is mainly dominant at wavelengths close to the material’s 

bandgap.  Soref and Bennett also theoretically calculated the change in the refractive index 

of the silicon due to the Franz-Keldysh effect [40], which is shown in figure 3.2.  The data 

is calculated for wavelengths of 1.07 µm and 1.09 µm.  For silicon, as the wavelength 

shifts to 1.3 µm and 1.55 µm, the effect of the Franz-Keldysh diminishes significantly.   

 

As it can be seen from the figure, the change in the refractive index reaches to 10-4 at 

an applied field of 105 V/cm.  This is a bigger shift when it is compared to the Kerr effect 

however it is evaluated at different wavelengths.  At the wavelengths of 1.3 µm and 1.55 

µm, the Franz-Keldysh effect diminishes significantly. 

 

Figure 3.1.  The Kerr effect in silicon as a function of   applied 

electric field at 1.3 µm wavelength. Source: Soref and Bennett [39] 
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3.2.4.  Carrier Injection or Depletion 

 

Changing the concentration of free charges in a semiconductor material can also 

cause a change in the refractive index of the material.  Drude-Lorenz equation, regarding 

the concentration of free charges to the absorption of the material is: 
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Where Ne and Nh are concentration of electrons and holes, respectively.  Meanwhile, the 

corresponding equation for the change in the real part of refractive index is: 

Figure 3.2.   The Franz-Keldysh effect in silicon as a function of applied 

electric field for wavelengths of 1.07 µm and 1.09 µm wavelength. Source: 

Soref and Bennett[39] 
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Soref and Bennett studied the  dependence of electron and hole densities of silicon on 

the refractive index experimentally, especially concentrating their work on communication 

wavelengths of 1.3 µm and 1.55 µm.  They found out that their results are related to 

Drude-Lorenz model for electrons, whereas, for holes there is a dependence of (?N) 0.8.  

They have produced the following expressions evaluating the changes in the refractive 

index of silicon due to carrier injection or depletion at communication wavelengths of 1.3 

µm and 1.55 µm. 

 

For ? = 1.55 µm. 

 

        ? m = ?me + ? mh = -[8.8 x 10-22 ?Ne + 8.5 x 10-18 (?Nh)0.8] 

?k = ?ke + ?kh =  8.5 x 10-18 ?Ne+ 6.0 x 10-18 ?Nh          (3.5) 

 

 

 

For ? = 1.3 µm: 

 

 ? m= ?me + ? mh = -[6.2 x 10-22 ?Ne + 6.0 x 10-18 (?Nh)0.8] 

?k= ?ke + ?kh = 6.0 x 10-18 ?Ne+ 4.0 x 10-18 ?Nh        (3.6) 

 

where ? me and ? mh are change in the refractive index of silicon due to a change in the 

electron and  hole concentrations; whereas ?ke and ?kh are change in the absorption 

coefficient of silicon due to a change in the electron and hole concentrations, respectively. 

 

To give an example, consider silicon that has a carrier injection of 1015 available.  

The change in the refractive index of the material at the communication wavelength of 

1.55 µm is: 
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? m = -[8.8 x 10-22 (1015) + 8.5 x 10-18 (1015)0.8]= 9.4 x 10-6 

 

It is nearing to a change in the order of 10-5.  We will see in the upcoming chapters 

that in our experiments, we have observed a shift in the resonance wavelength of a silicon 

microsphere that nearly corresponds to such a change in the refractive index.  Furthermore, 

by appropriate doping of the silicon, it is possible to see higher carrier injection levels and 

thus observe a bigger change in the refractive index. 

 

3.2.5 The Thermo-optic Effect 

 

In addition to the electric field effects and carrier injection-depletion effects on 

silicon, the thermo-optic effect has also been proven to be viable for optical modulation of 

silicon. [41] In this method, the index of refraction of silicon is changed by applying heat 

on the material.  The refractive index change of silicon is given by: 

 

Kx
dT
dm

/1086.1 4−=     (3.7) 

 

The problem with the application of this effect though rises from controlling the 

temperature rise to the locality of the waveguide, and of the efficiency of the mechanism 

that will deliver the thermal energy.  Note that the refractive index change is positive with 

the applied thermal energy, whereas the carrier injection-depletion effect and also the 

electric field effects caused a negative change in the refractive index.  Therefore, it should 

be taken into consideration in the design not to compete such effects against each other. 

 

The effects changing the refractive index of the silicon are summarized in table 3.1.  

The shift in the wavelength corresponds to the shift in the refractive index as is given in 

equation (2.5).  For reference, a light beam of 1475 nm coupled into a silicon microsphere 

of 1 mm diameter is taken, and the expected resonance wavelength shifts corresponding to 

the change in the refractive index of the material are calculated.   Since the wavelength of 

the reference light is well above 1.3 µm and nearing the communication band, we have 

neglected the Franz-Keldysh effect in our calculations. 
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For the carrier injection effect, we have assumed an injection of 1015 free charges.  

Note that the dominating factor in the table is the carrier injection effect.  The Kerr Effect 

is very dim for small electric fields, but would be more significant for higher order fields.  

Because of the geometry of the silicon crystal, the Pockels effect disappears completely.  

However, it has been proven that growing a non-symmetric layer on silicon allows the 

application of Pockels effect [42].  The Pockels effect given in the table is calculated as 

assuming our silicon microsphere’s geometry allowed it, therefore we used our parameters 

in the calculations. 

 

 

 m=3.48 ? =1475nm Silicon Sphere 

a= 500 micrometers ? m ?? 

Pockels Effect 

(effective) 

 

-5.33x10-5 /V 
 

-0.02 nm/V 

Kerr Effect -1.110 x 10-14 /V -0.047 x 10-10 nm/V 

Carrier Injection -0.71 x 10-3 /V -0.3 nm/V 

Thermo-Optic Effect 1.86 x 10-4  /K 0.07 nm /K 

Table 3.1.  Refractive index and wavelength shift for silicon 
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4.  ELECTRICAL CHARACTERIZATION OF THE SILICON 

MICROSPHERE 

 

When a metal is making contact with a semiconductor, a barrier will be formed at the 

metal-semiconductor interface [43, 44].  The basic energy diagram showing such a barrier 

is illustrated in figure 4.1.  The Fermi levels of metal and semiconductor in contact must be 

coincident at thermal equilibrium.  At the far the metal and semiconductor are not in 

contact, and the system is not in thermal equilibrium as can be seen from the difference of 

the Fermi energy level.  If a wire is connected between the metal and the semiconductor, so 

that charge would flow from the semiconductor to the metal and thermal equilibrium 

would be established, the Fermi levels on both sides line up  [45].  The work function is the 

energy difference between the vacuum level and the Fermi level.  The potential difference 

between the metal and semiconductor is called the contact potential.   

 

Metal
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Figure 4.1.  a) One dimensional structure of a metal-semiconductor 
before contact, b) Energy band diagram of a p-type semiconductor 
under non-equilibrium condition, c) One dimensional structure of a 

metal-semiconductor contact d) Energy band diagram of metal-
semiconductor contact under thermal equilibrium  
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When a metal and a semiconductor is brought into intimate contact, the conduction 

and the valence bands of the semiconductor are brought into a definite energy relationship 

with the Fermi level of the metal.  Once known, this relationship serves as the boundary 

condition [46]. The energy-band diagrams for metals on both n-type and p-type materials 

are shown in figure 4.2 under different biasing conditions. 
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4.1.  The Schottky Junction 

 

The Schottky effect is the image-force- induced lowering of the potential energy for 

charge carrier emission when an electric field is applied.  In order to see this effect, 

consider a metal-vacuum system first.  For an electron to escape to vacuum from an initial 

energy at Fermi level, the work function q? m defines the minimum energy required.  

Figure 4.3 illustrates the energy band diagram between a metal surface and a vacuum.  

When an electron is present at a distance of x from the surface of the metal, there will be a 

Figure 4.2.  Energy diagrams of (a) n-type and p-type 
semiconductors in contact with metal, (b) in thermal 

equilibrium, (c) forward biased, (d) reverse biased conditions 
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positive induced charge on the metal located at –x from metal’s surface and thus negating 

the electrical potential on the metal’s surface.   This positive charge is called the image 

charge, and the force it exerts is called the image force [45]. 

 

0

Image potential 
energy

xR

q? m

q? B

q??

q? ?

EF

Metal

 

 

 

 

 

Replacing the external field with the maximum field at the interface, and free space 

permittivity ?o is to be replaced with ?s for characterizing the medium; the condition for 

metal-vacuum condition can also be applied to metal-semiconductor interfaces. 

 

Figure 4.3.  Energy band diagram between metal and vacuum.  
q? m is the metal work function.  The effective work function is 

lowered when an electric field is applied 
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The current transport in metal-semiconductor contacts is due mainly to majority 

carriers, in contrast to p-n junctions, where current transport is due mainly to minority 

carriers.  In figure 4.4, four processes of current transportation in a metal-semiconductor 

junction is shown.  These processes are (1) transport of electrons from the semiconductor 

over the potential barrier into the metal (the dominant process for Schottky diodes with 

moderately doped semiconductors); (2) quantum-mechanical tunneling of electrons 

through the barrier (important for heavily doped semiconductors and responsible for most 

ohmic contacts);  (3) recombination in the space-charge region (identical to the 

recombination process in a p-n junction) ; and (4) hole injection from the metal to the 

semiconductor (equivalent to recombination in the neutral region).  In addition to these 

processes, there can be edge leakage current due to a high electric field at the periphery of 

contact, or interface current due to traps at the metal-semiconductor interface.  

 

 

 

 

 

Figure 4.4.  The current transportation in a metal-
semiconductor contact 
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4.2.  Metal-Semiconductor-Metal Configuration 

 

Figure 4.5 shows a diagram of metal-semiconductor-metal junction (MSM).  It is 

basically two Schottky diodes connected back to back [46].  Consider the current transport 

in a symmetrical MSM structure with a uniformly doped semiconductor.  When a 

sufficiently high electric field is applied, the field will reach through the device.  The 

corresponding band diagram is shown in figure 4.6.  Under this condition, thermionic 

injection of holes across the barrier occurs.  The injected holes can traverse the drift region.  

There will be a time delay called transit time delay in reaching the metal contact, 

corresponding to the time of holes reaching to the contact [45].   

 

For a small positive voltage applied to contact 1 with respect to contact 2 (contact 1 

is forward-biased and contact 2 is reverse-biased).  The depletion layer width’s are: 

 

)(
2

11 VV
qN

W bi
A

s −=
ε

     (4.4) 

 

)(
2

22 VV
qN

W bi
A

s +=
ε

    (4.5) 

 

Where W1 and W2 are the depletion layer widths in the junction in the p- layer for the 

forward and reverse-biased barriers, respectively; NA is the acceptor ionized impurity 

density; and Vbi is the built in voltage.  The current in this configuration, is the sum of the 

reverse saturation current, generation-recombination current, and surface leakage current. 

 

As the voltage increases, the reverse-biased depletion region will eventually reach 

through to the forward-biased depletion region.  The corresponding voltage is called the 

reach-through voltage VRT .  Figure 4.6 shows the field distribution of an MSM 

configuration at reach through.  If the voltage is increased further, the energy band at 

contact 1 can become flat.  In the flat-band condition, the field is zero at x=0 when Vbi= 

V1.  The corresponding voltage: 
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s

A
FB

WqN
V

ε2

2

=      (4.6) 

This is defined as the flat band voltage.  The relation between the applied voltage and 

the barrier height is: 

 

FB

2
FB

1 4V
(V )−

=−
V

VVbi     (4.7) 

 

 

The reach-through point xR as shown in figure 4.6-a is given by: 

 

FB

FB

2V
(V

/
)−

=
V

WX R     (4.8) 

 

 

After reach through, the hole current thermionically emitted over the hole barrier ? Bp 

becomes the dominant current: 

 

Jp= Ap
*T2e-q(? Bp+Vbi)/kT (eqV1/kT  -1)     (4.9) 

 

where Ap
* is the effective Richardson constant. Note that the current density 

increases exponentially with the applied electrical potential. 
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Figure 4.5.  a) Schematic of MSM contact, b) 
the expected carrier distribution, c) the electric 

field distribution, and d) the unbiased band 
diagram 
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4.3.  Ohmic Contact 

 

In the metal-semiconductor junction, if there is a negligible contact resistance, the 

contact is called Ohmic contact.  It is a junction between a metal and semiconductor where 

the contact does not limit the flow of the current [47].  The current is only limited by the 

resistance of the semiconductor outside the contact region.  Figure 4.7 shows the band 

diagram of an Ohmic contact before and after it is established.  The electrons in the figure, 

tunnel into the semiconductor and pile in the conduction band near the junction.  The 

equilibrium is reached when the electrons in the junction prevent further electron 

accumulation. 

 

The semiconductor region near the junction is called the accumulation region.  The 

electrons passing from metal to the semiconductor pile up in this region.  Going from the 

far end of the metal, to the far end of the semiconductor, there are always conduction 

electrons in the Ohmic contact, whereas, in Schottky junction, the conduction electrons in 

metal are separated from those of the semiconductor [47]. 

Figure 4.6.  The electric field distribution and band diagram of 
MSM contact at a) reach through and b) flatband 

configuration 

(a) (b) 
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Excess electrons in the junction increase the conductivity of the semiconductor.  The 

bulk of the semiconductor has higher resistance than that of the contact.  Therefore, when 

an electrical potential is applied to the metal-semiconductor structure, the higher voltage 

drop is observed at the bulk of the semiconductor.  The current is determined by the 

resistance of the bulk semiconductor.   

 

4.4.  Electrical Input 

 

As explained in chapter 3, silicon’s optical characteristics can be changed by an 

electrical input.  By placing two probes to the poles of the sphere, we made the metal-

silicon-metal (MSM) contact.  Figure 4.8 shows the schematic diagram of the MSM 

contact that was used in our experiments, whereas figure 4.9 shows the pictures of the 

contact of metal probes and sphere. 

 

Figure 4.7.  a) One dimensional structure of a metal-
semiconductor before contact, and their band diagrams 

forming an ohmic contact b) before c) after the contact is 
established 
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The probes we used are brass probes that are connected to the electrical circuit given 

in figure 4.10.  The output of the circuit gives a DC ranging between ±9V.  This circuit 

was used in the early stages of the experiment, whereas, later on the 9V batteries were 

changed with 65 Volt batteries and the switch was taken off.  The diagram for the updated 

electrical circuit is given in figure 4.11.   

 

The alignment of the probes and the sphere was significantly important, for that was 

determining the contact with the metal and the semiconductor.  For different metal-silicon 

contacts, we obtained different current (I) and potential (V) characteristics.  Figure 4.12 

shows an earlier graph of I-V characteristics of the MSM structure that was obtained in our 

experiments.   

 

 

 

 

Silicon 
Microsphere 

 

Figure 4.8.  The schematic of the electrical input and the microsphere over the 
OFHC 
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Figure 4.9.  Picture of metal probes and silicon contact: a) Side 

view of the OFHC and metal probes holding the microsphere b) 

Top view of the metal probes holding the sphere from the poles c) 

Top view of the metal probes holding the sphere from the poles 

taken by an IR camera 

(a) 

(b) (c) 
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Figure 4.10.  The diagram of the electrical circuit of the experimental setup for the 
electrical input 

Figure 4.11.  The diagram of the updated electrical circuit of the experimental 
setup for electrical input 
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Figure 4.12.  a) The I-V characteristics of the experimental metal-silicon-metal 
(MSM) contact 

 

Figure 4.12.  b) The expanded I-V characteristics of the experimental metal-silicon-metal 
(MSM) contact 
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The I-V characteristics illustrated in figure 4.12 support that the diode is two 

Schottky diodes connected back to back.  The graph is not fully symmetric, due to the non-

symmetric contact.  The contact resistance differences are not significant, since contacts 

are both Schottky contacts.  

 

Figure 4.12 is not the only current-voltage characteristics that were obtained from the 

contact.  As mentioned earlier, different contacts in the MSM structures resulted in 

different current-potential relations.  After taking the I-V characteristics of figure 4.11, the 

sphere’s position is changed and the MSM structure was formed anew.  The new MSM 

structure’s electrical I-V characteristics are shown in figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The significance of figure 4.13 is that, it is not symmetric.  The forward biased 

current seems to depend on the potential exponentially, whereas the reverse-bias current 
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Figure 4.13.   a) The I-V characteristics of the experimental metal-silicon-metal 
(MSM) contact 
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seems to depend on the potential nearly linearly.  It is possible in the configuration that the 

contact 2 made a negligible resistance at the contact and thus the reverse-bias current-

voltage relation turned out to be Ohmic contact.   
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Figure 4.13.  b)  The I-V characteristics of the experimental metal-silicon-metal (MSM) 
contact, (i) positive applied potential, (ii) negative applied potential 
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5.  ELASTIC LIGHT SCATTERING FROM A SILICON 

MICROSPHERE 

 

The schematic of the experimental setup is shown in figure 5.1.  A tunable distributed 

feedback (DFB) semiconductor laser with a center of wavelength of 1475.5 nm is used to 

excite the MDR’s of the microsphere.  Wavelength tuning is achieved by tuning the 

temperature of the DFB Laser with a laser diode controller (LDC).  Laser light is coupled 

to into the optical fiber half coupler (OFHC) by lenses.  The optical fiber used in the 

OFHC is a standard 1500 nm single-mode fiber.   

 

 

 

 

 

DFB 

 

Oscilloscope  

      OMM 

      Computer 

      LDC 

   InGaAs     
Photodiode  

Microscope 

    IR  
 Viewer 

GPIB 

GPIB GPIB 

Applied 
Voltage  

InGaAs 
PWH 

OFHC 

Figure 5.1.   Schematic of the experimental setup for  observing the MDR’s of silicon 
microsphere , and the resonance shifts with the applied electrical potential 
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The transmitted light through the optical fiber is measured by an optical multimeter 

(OMM) with InGaAs Power/Wave Head (PWH).  The scattered light from the microsphere 

is collected by a microscope lens is measured by an InGaAs photodiode.  The InGaAs 

photodiode signal is sent to the digital oscilloscope for signal monitoring and data 

acquisition.  Data acquisition and control are performed with IEEE-488 GPIB interface and 

the Labview program which was written previously by Senol Isçi and updated by Ulas 

Kemal Ayaz. 

 

5.1.  Coupling Light into MDR’s of Microspheres 

 

A significant challenge in utilizing high-Q narrow-linewidth optical resonators is the 

need to excite resonant modes efficiently while, simultaneously, making sure that the Q is 

not compromised.  In the case of the microsphere, this implies that along with maintaining 

a sphere surface clean from surface imperfections and particles that would attenuate or 

scatter light out of the resonant modes, the external factors to affect Q must be controlled 

[48].  A significant element here is the coupler, which passes the light into and out of the 

microsphere. 

 

The ideal microsphere MDR coupling device should have the characteristics of a) 

performance of efficiently exciting MDRs; b) alignment of sphere to couple; c) clearly 

defined ports; d) integrable and robust structure; and finally e) a low cost and consistant 

fabrication process [49]. 

 

There are a variety of evanescent field techniques to coupling to MDR’s of 

microspheres efficiently.  These techniques range from bulk prisms to OFHCs [50], 

examples of which you can see in Figure 5.2.  For these techniques, it is required that at the 

coupler’s glass-air interface, the energy transfer from the coupler to the microsphere’s 

whispering gallery modes is an optical field that decays exponentially. 
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The overlap of the sphere and the coupler mode fields and the matching mode 

propagation constants are the primary factors that determine the efficiency of an 

evanescent coupler.   Yet, there are other factors that might play a significant role in the 

efficiency of the coupler, such as the length of the coupler, and how steep the fiber is 

curled inside of the coupler [51].  Ease of alignment and the clearly defined ports narrow 

the field of evanescent-field couplers to purely guided wave devices.  For instance, in bulk 

prisms, the positions of all components (such as light source, prism, and sphere) must be 

carefully adjusted in order to reach the optimal coupling region conditions.  In addition, the 

MDR’s of the sphere can be observed by either collecting the elastically scattered beam or 

collecting the light from the prism; whereas there is no need for elaborate spatial position 

optimization when a tapered-fiber guided wave coupler is used.   

 

5.1.1.  Optical Fiber Half Coupler   

 

The optical fiber half coupler (OFHC) is made of an optical fiber buried in glass 

block.  In order to be able to get access to the optical mode in the fiber, the fiber is polished 

very close (1 µm) to the core.  Placing a microsphere on the exposed surface near the 

evanescent field of the fiber optic core will cause an energy exchange between the 

waveguide mode of the fiber and the MDR of the sphere [52].  The optical fiber buried into 
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Figure 5.2.  Evanescent wave coupling techniques. Source: Laine [50] 
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the glass substrate to make OFHC is 1500 nm single-mode fiber with a core radius of 9 µm 

with refractive index of 1.47, and a cladding with index of refraction of 1.45, and a radius 

of 62.5 µm.   

 

5.1.2.   MDR Excitation for the Microsphere  

 

In order to use microspheres in applications, efficient light coupling into the sphere is 

required.  Two basic methods of illumination in applications of microspheres are plane-

wave and Gaussian beam illumination. 

 

In plane wave illumination, the density of the incoming beam is uniformly 

distributed.  Figure 5.3 shows an example of the plane wave coupling into the microsphere.  

The lines inside the sphere are the optical paths within the cavity, arrows pointing the 

direction of the beams.  As can be seen in the figure, the internal intensity of the resonator 

is mainly focused on the front and the rear surfaces of the microsphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Gaussian beam excitation, the efficiency of the excitation of MDRs depend on the 

beam’s focusing and the position of the beam waist with respect to the sphere.  Figure 5.4 

 

 

Figure 5.3.  The expected optical paths inside the 
microsphere for plane wave illumination 
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gives an illustration of Gaussian beam coupling into a microsphere and elastic scattering 

angles of the beam.   

 

 

 

The fiber microsphere system shown in figure 5.4 requires the study of generalized 

Lorenz-Mie theory.  This theory of was implemented as generalization of Lorenz-Mie 

theory, and then was used to study Gaussian beam scattering of tight beam localization.  

The model predicts that the efficiency of MDR excitation is particularly high when the 

beam illuminates the sphere near the edge. 

 

 

5.2.   Experimental Results from Silicon Microsphere  

 

Morphology dependent resonances (MDR’s) of silicon microspheres are excited by a 

tunable continuous wave DFB laser with a central wavelength of 1475 nm.  Efficient 

coupling to MDR’s is achieved by using an optical fiber half coupler (OFHC) and 

resonance peaks in the elastic scattering spectra are experimentally observed.   
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Figure 5.4.   Excitation of MDRs by a Gaussian beam 

illumination 
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5.2.1.  Observing MDR’s from a Silicon Microsphere   

 

Silicon microsphere of 500 micrometer is placed over the OFHC, and two metal 

probes held the sphere in position.  Elastic scattering data from the microsphere at 900 was 

collected by using an InGaAs photodetector.  Figure 5.5 shows one of the earliest elastic 

scattering spectra when the coupling between the microsphere and the OFHC is not 

efficiently coupled. 
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The DFB laser was tuned with a laser diode controller (LDC) by changing the 

temperature.  The temperature range was from 19 0C to 22 0C.  The mode spacing was 

measured to be 0.296 nm which is very close to the expected value of 0.293 nm. 

 

Figure 5.5.  Elastic scattering intensity of silicon microsphere with respect to 
the wavelength 
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After the data was taken, electric potential of ±4V is applied to the poles of the 

microsphere, and the elastic scattering spectra are taken.  Comparison of elastic scattering 

intensities with and without applied potential is given in figure 5.6.  The shift of resonant 

wavelengths is measured to be 0.03 nm for 4 volts of applied electrical potential.   

 

In order to couple the light into the microsphere more efficiently, the sphere was 

moved over the OFHC.  Also the alignment of the photodiode iss changed before taking 

the spectrum.  The temperature range is changed to 19 0C - 25 0C before taking the 

spectrum.  Because of the change in the alignment, the intensity of the scattered signal 

dropped from its previous value.  Still the repetitive pattern of the resonance can be seen in 

the spectrum.  After taking the data, discrete potentials ranging from 0V to -3V were 

applied to the sphere and the intensity of elastic scattering signal was recorded.  For all 

applied potentials, the signal has a blue shift and the value of the shift is proportional to the 

applied potential. 

 

 

Figure 5.6.  Elastic scattering spectrum of silicon microsphere with respect to 
the wavelength.  When the electrical potential is applied, the signal experiences 

a blue shift. 
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The resonance observed in the signal still does not have sharp and narrow peaks, so 

the sphere is moved over the OFHC again and the alignment of the InGaAs photodiode is 

adjusted.  While the temperature is changed by LDC from 19 0C to 25 0C the elastic 

spectrum is recorded.  In the data, the FSR of the same mode order is recorded to be 

approximately 0.280 nm.  After the spectrum is taken, potential differences of 3, 6, and 9 

volts are applied and elastic scattering spectra data are taken.  In figure 5.8, the data taken 

for each applied potential is displayed.  Without changing the position of the sphere, elastic 

scattering spectra are taken for negative potential differences.  -3, -6, -9 volts of DC 

potentials are applied to the poles of the sphere and the scattered signal from the 

microsphere is recorded.  For reference, the scattering spectrum at zero volt potential 

difference is taken again.  The intensities of scattering signal for each electrical input is 

shown in figure 5.9.  

Figure 5.7.  Elastic scattering spectra of silicon microsphere 
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 Figure 5.9.  The shift in the resonant spectra of the silicon microsphere 

when negative electrical potential is applied to the sphere 

Figure 5.8.  The shift in the resonant spectra of the silicon microsphere 
when positive electrical potential is applied to the sphere 
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With the applied electrical potential, both for positive and negative voltages, the 

elastically scattered spectra experienced a blue shift and the shift was proportional to the 

applied potential difference.  From the gathered data, the shifts are ranging from 0.005 nm 

to nearly 0.05 nm with respect to the applied potential differences.   

 

The data collected, proves that as the applied potential difference increase, so does 

the shift in the resonance wavelengths.  Therefore, applying a higher electrical potential 

should result in a higher shift in the wavelength.  After changing the contact of the metal 

probes and the alignment of the detector, the elastic scattering spectra are taken once more.  

Recording the data at zero applied potential, another data is taken for -17 volts of applied 

potential.  More data would be taken, however the sphere’s position on OFHC shifted and 

we did not get the chance to take more data. The spectrum of the elastic scattering for no 

applied potential as reference and for -17 volt of electrical potential on sphere is given in 

figure 5.10.   
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Figure 5.10.  The shift in the resonant spectra of the silicon microsphere 
when a negative electrical potential is applied to the sphere 
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Figure 5.11 summarizes the wavelength shifts observed in our experiments.  The 

positive and negative applied potentials both correspond to negative shifts in the resonance 

wavelengths. The shifts of the wavelengths were the direct results of the change in the 

index of refraction. From equation (2.5) for Fabry-Perot resonator and (2.26) for 

microsphere resonator we can derive the following expression regarding the perturbations 

in the resonance wavelengths due to the changes in the refractive index: 

 

 λ
δλδ

=
m
m

     (2.5) 

 

 

 

 

 

 

Figure 5.11.  The shifts observed in the resonance wavelengths with respect 
to the applied electric potential 
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Similar experiments with the electro-optic effects on silicon have been studied 

experimentally by Intel Corporation [53] and Cornell University [54].  Intel Corporation 

used a Mach-Zender interferometer, applying the electrical input on one branch of the 

interferometer and measuring the phase difference from the output of the interferometer.  

Cornell University has used a silicon microring resonator and applied electrical potential 

on the resonator and observed blue shifts in resonance wavelengths of the transmission 

spectrum.  Table 5.1 summarizes the observation of Intel Corporation, Cornell University, 

and Koç University.  For simplicity only -17 volts, the highest applied electrical potential, 

has been included in the table. 

 

 

 

 Potential 
Difference(V) 

Distance 
(mm) 

E-field (V/m) ?? (nm) ? m (10-4) 

Koç 
University 

17 1 17x103 0.08 -1.88 

Cornell  
University 

0.94 5 x 10-5 15.8x106 0.06 -1.33 

Intel 
Corporation 

10 10 x 10-5 109 0.0034 -0.078 

Table 5.1.  Summary of the observed electro-optic effects on silicon 
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6.  CONCLUSIONS 

 

In this work, after overviewing the Fabry-Perot resonator, MDR’s of microspheres 

are studied. The plane wave Lorenz-Mie theory, and the Gaussian-beam excitations of 

microspheres are studied.  Various optical modulation methods in silicon are demonstrated.  

Then metal-semiconductor contacts are visited:  band diagrams, current-voltage 

characteristics are provided and the experimental results are presented.  Finally 

experimental results of elastic scattering spectra from a silicon microsphere of 1 mm 

diameter are presented.  The elastic scattered signal from a silicon microsphere is in the 

near-IR at a wavelength of 1475 nm. The mode spacing (∆λ), i.e. wavelength difference 

between consecutive mode numbers (n) with the same mode order (l), is measured to be 

0.27 nm. Moreover, the effects on electro-optical excitation of silicon have been studied.  

We have observed blue shifts in the resonant wavelengths of silicon microsphere with 

respect to the applied potential.  This observation heralds novel active optoelectronic 

silicon devices. Possible wavelength division multiplexing (WDM) applications include 

optoelectronic devices for filtering, modulation, switching, and detection. 
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APENDIX:  UPDATES TO THE SOFTWARE 

 

    A.1. Installing the Software  

 
 

1. Open “LDC_OMM_TDS_updated.LLB”, which is a Labview library file.  

2. Select the Ulas_2channels.VI, which is the application software for the LDC 

3744B OMM 6810B TDS 210 system. 

 
 
 

 
 
 
 

 

Once the “Ulas_2channels.VI” has been opened, you are ready to get started. 

 

 

Figure A.1.  The labview software files 
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A.2. Updates in the user interface 

 

The interface is mainly composed of LDC parameter controls and status displays for 

various settings of LDC, OMM and TDS. Each graph display the acquired data in the 

experiment. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.  LDC_OMM_TDS_updated.llb file 

Figure A.3.  The user interface of the software 
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Oscilloscope  is data coming from TDS 210. Unit, 

Source and Type  are the parameters set for TDS.  

When the program is running the parameters and 

the data can be read from the window.  

 

 

      (c) 

 

Using the arrows , the channel 

that the data and the parameters 

read can be changed.  When it is 

“0” channel 1 is the source. 

When it is “1” channel 2 is the 

source. 
 

Figure A.4.  The data read on the oscilloscope (a) when it is turned off, (b) reading 
channel 1, (c) reading channel 2. 

(a) 

(b) 

Figure A.5.  The graph of the temperature of the LDC 
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Temperature graph displays the temperature values during the scanning.  X-axis is 

the number of data points taken, and the Y-axis is the temperature value in celcius.   

 

 

 

 

The values read from TDS 210 are displayed in Channel 1 and Channel 2 

respectively.  The X-axis on both graphs represent the number of data points taken.   

 

Figure A.6.  The graphs of data taken from TDS 210 (a) channel 1, (b) 
channel 2 

(a) 

 (a) 
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These graphs display the TDS reading as a function of Temperature. It will show up at the 

end of scan process.  The graphs display the reading for channel 1 and channel 2 

respectively.   

 
 

Figure A.7.  The graphs of data taken from TDS 210 vs the temperature (a) 
channel 1, (b) channel 2 
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This is the diagram of the Read_Measurement_updated.vi.  Check the boxes the 

arrows are pointing.  The format inside the boxes should be exactly the same as shown in 

Figure A.8 otherwise the measurement in the oscilloscope will not be read. 

 

 

 

Figure A.8.  The diagram of Read Measurement.vi.   
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