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ABSTRACT 

APPROXIMATE GROUND STATE ENERGIES 

OF ONE DIMENSIONAL POTENTIAL WELLS 

BY THE S-MATRIX FORMALISM 

1'v 

One dimensional potential wells are described as a collection of consecutive thin 

slices, each approximated by a Dirac delta well. Bound state energies of these Dirac 

delta well conglomerates are calculated, using a method based on Transfer and §-Matrix 

formalisms. It is observed that the method, a variant of the Born approximation, works 

best for the ground state energies of narrow and shallow wells. The approximate results 

compare favorably with the known exact results of several potential well problems. 
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OZET 

BiR BOYUTLU POTANSiYEL KUYULARIN 
. . . 

TABAN ENERJI SEVIYELERINE 

S-MATRIS YAKLASIMI 

Bir boyutlu potansiyel kuyular once ince dilimlere aynlml§, soma da bu 

dilimler ardl§lk Dirac delta kuyulan ile betimlenmi§tir. Transfer ve § -Matrisi teorisi 

kullamlarak geli§tirilen bir yontemle, bu ardl§lk Dirac delta kuyularmm bagh durum 

enerjileri hesaplanml§tlr. Born yakla§tmmmm bir tiirii olan bu metodun en c;ok, dar 

ve Slg potansiyellerin taban enerjisi sonuc;lannda ba§anh oldugu gozlenmi§tir. Elde 

edilen yakla§lk sonuc;lar, bilinen bazl potansiyellerin kesin sonuc;lanyla kar§lla§tmlml§ 

ve uyum ic;inde olduklan goriilmii§tiir. 
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1. INTRODUCTION 

Quantum Mechanics concerns itself with the spectra and transitions between the 

possible states of physical systems. The idea to study scattering, the most important 

transition problem, by investigating the asymptotic states of particles was first con­

ceived by Heisenberg [1, 2] . The interaction represented by a potential usually has a 

finite range. Outside this range, the free particle states of the incoming and outgoing 

particles give us information about the interaction. In this work we will first review the 

§-Matrix formalism in one dimension, then concentrate on the Dirac delta potential 

to derive some basic results. We see the delta function as the building block of all 

potential profiles. This approach is analogous to slicing the inhomogeneous term of a 

differential equation into delta functions in Green's function approach. After obtaining 

the first Born approximation result using §-Matrix techniques we will attack the bound 

state problem of an arbitrary well. The formalism will replace the Schrodinger differ­

ential equation by a transcendental equation. We will use this transcendental equation 

to solve for the ground state energies of several well known potentials and compare our 

results with the exact ones. 
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2. §-MATRIX FORMALISM IN ONE DIMENSION 

2.1. Definition of the Scattering Matrix § 

vVe first consider one dimensional potential functions which consists of three 

regions (Figure 2.1). The particle is free in the first and the third regions, while the 

:II 
Interaction 
Region 

Figure 2.1. Interaction potential 

liU 

Free 

second region has a non-zero potential V (x). Potentials described by a single function 

that asymptotically goes to zero as Ixl -+ 00 are natural candidates for this category. 

We proceed to solve for the wave functions by solving the one dimensional Schrodinger 

equation 
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[
112][(2 + v (X)] 1\If) = 112k5 1\If) 
2m 2m 

(2.1 ) 

region by region. The basis of solutions for the free particle Schrodinger equation 

(2.2) 

are {Iko), I-ko)}. Thus the general solutions for the first and the third regions may 

be taken as: 

I'l/JI) = A Iko) + B I-ko) 

I'l/JIII) = c Iko) + D I-ko) . 

(2.3) 

(2.4) 

Here A Iko) , D I-ko) are the solutions that travel towards the interaction region, while 

B I-ko), C Iko) are the solutions that move away from the interaction region. We 

define the §-Matrix as a linear transformation that relates the incoming states to the 

outgoing states. Thus 

(2.5) 

where § is a two by two matrix, such that § = ]I in the absence of interaction. 
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2.2. Definition of the Transfer Matrix M 

We may also define the transfer matrix M as a linear transformation relating the 

solutions of the two free regions: 

(2.6) 

Solving the relevant simultaneous linear equations we may write the §-Matrix in 

terms of transfer matrix elements mij 

§ = _1 [det (M) m12] . 
m22 -m21 1 

Likewise the transfer matrix may be written in terms of §-Matrix elements as: 

M = ~ [ det (§) 3

1

12 ] . 

322 -321 

Further, we easily see that 

det(M) = ~ 
322 

det (§) = mll 
m22 

(2.7) 

(2.8) 

(2.9) 



2.4. Transmission and Reflection Amplitudes and 

the S-Matrix 

5 

A one dimensional scattering experiment is essentially sending a forward wave 

from x = -00 and observing the reflected wave again at x = -00 . We write 

1 ~ I) = 1 ko) + r 1-ko) 

I~III) = t Iko) 

where t and r are the transmission and reflection amplitudes, respectively. 

The definition of the §-Matrix 

applied to 

yields 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Therefore the 311 and 321 matrix elements of the §-matrix give the transmission and 

reflection amplitudes respectively. 

As for' the remaining two elements we consider the "reverse" scattering experiment 

where we send a backward wave from x = +00 and observe the reflected wave, again 
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at x = +00 . Writing 

l'l/JrII) = I-ko) + r' 1ko) (2.15) 

I'l/Jr) = t' I-ko) (2.16) 

where we indicate the reverse reflection and transmission amplitudes by primed sym­

bols. 

(2.17) 

yields the final result : 

§ = [t r' 1 . 
r t' 

(2.18) 

We will derive the above amplitudes later, for the specific example of a Dirac delta 

well. The cross section in one dimension, which is simply the reflection probability, is 

given by 

(2.19) 

2.5. Bound and Virtual States From the Singularities of the §-Matrix 

When we analytically continue the §-Matrix to complex ko domain, the singu­

lar points of the §-Matrix, in other words the values of ko that make the §-Matrix 

infinite, have special importance. Values on the imaginary axis correspond to neg­

ative energies, implying bound st;:;,ces. But this idea is not entirely correct; only 



,.., 
I 

Re (ko) = 0, 1m (ko) > 0 cases correspond to bound states. Re (ko) = 0, 1m (ko) < 0 

cases are called virtual states and their meaning will be explained later, in relation to 

the specific example of a Dirac delta well (Figure 2.2). 

- Bound 

Scattet-ing 

-- \/irtual 

Figure 2.2. Possible singularities of the §- Matrix 

\~Te had expressed the §-I'v1atrix as 

§ = _1 r det (M) m12] 

mn -m21 1 
L 

(2.20) 

therefore the equation m22 = 0 provides the singularities of the §-Matrix. 
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2.6. Example: Dirac Delta Well 

Let us consider a Dirac delta well located at x = a, described by the potential 

n2
(J 

V (x) = -- c5 (x - a) 
2m 

(2.21) 

where (J > 0 [3, 4, 5]. The particle is free everywhere except for the isolated singular 

point at x = a . The wave functions which are valid in the left and right regions are 

Continuity of the wave function and the discontinuity of its derivative 

lead to equations: 

[iko eikoa C - iko e-ikoa DJ 

-(J [eikoa A + e-ikoa BJ 

\]J~ (a) - \]J~ (a) = -(J\]J (a) 

[iko eikoa A - iko e-ikoa BJ = 

Now, we write these equations in matrix form as: 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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e-

ikoa 

1 [A 1 (-1 + ~~) e-
ikoa B 

(2.27) 

so 

On the other hand we have defined the transfer matrix Mas: 

(2.29) 

Comparing the above equations we easily see that the transfer matrix M is given by 

~e-2ikoa 1 2ko 

1-~ 
2ko 

(2.30) 

We may also write the transfer matrix M as 

M=TI+- =TI+N 
ieJ [ 1 e-2ikoa 1 
2ko _e2ikoa -1 

(2.31) 

where N is a 2 x 2 nilpotent matrix, satisfying N2 = O. Nilpotent matrices also satisfy: 

Tr [N] = 0 and Dei [N] = 0 . 

N2 = 0 and M = 1 + N imply M = exp [N] , while Tr [N] = 0 implies Dei [M] = 1. 

Since we plan to investigate the bound states, energies will be negative and ko values 

will have to be imaginary. Requiring the §-Matrix to be singular, or equivalently setting 

m22 = 0 we indeed obtain 
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~~ ~~ 
m22 = 1 - - = 0 ::::} ko = -

2ko 2 
(2.32) 

We calculate the bound state energy eigenvalue from this equation: 

(2.33) 

Note that the energy is proportional to ~2 , so it is as if we would have a bound state 

even for a Dirac delta barrier: ~ ---+ -~. This unphysical bound state solution is 

referred to as a Virtual State. Bound and Virtual states are distinguished by their 

ko values; only Re (ko) = 0, 1m (ko) > 0 cases are true bound states, Re (ko) = 0 

1m (ko) < 0 cases are virtual. 

with 

By the help of the transfer matrix M, we can construct the 13-Matrix as: 

~e-2ikoa ] 
2ko 

1 

1+~ 
det [13] = 2ko 

1- .1Q:... 
2ko 

Thus the transmission amplitudes are position independent: 

I 1 
t = t = ., 

1- .1Q:... 
2ko 

while the reflection amplitudes depend on the position: 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where r' is simply r, but with a ---+ --a. It is worthwhile to investigate the scattering 
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problem of the Dirac delta well using the §-Matrix formalism. First we observe the 

unitarity of the §-Matrix for real ko 

Reflection amplitude r = 821 yields 

iff Im (ko) = 0 . 

i£..e2ikoa 
r = _2k-,,-o_:---

1- i£.. 
2ko 

Thus the cross section, or the reflection probability, becomes 

High energy or the weak potential limit of the cross section is 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 

For future use, we note that the condition for the validity of this approximation is 
(J 

"2 < ko . 

Finally let us study the double Dirac delta well described by the potential: 

v (x) = - ~: [5 (x + ~) + 5 (x - ~) ] (2.42) 

as an instructive example. In this case the overall transfer matrix is given by 



;~o e-

ikoa 1 [ 
1-~ 

2ko 

Defining ko i",o; Y = ",oa ,a == a
2
a we get 

and then setting m22 equal to zero, we obtain 

1+~ 
2ko 

_~e-ikoa 
2ko 

12 

(2.43) 

(2.44) 

a transcendental equation, which has one or two solutions according to the value of the 

parameter a . 

The method based on transfer matrix products is so powerful that by multiply­

ing just two matrices, the effects of infinitely many different processes with the same 

outcome are covered ( Appendix A). Further the formalism leads to an elegant proof 

of the invariance of energy spectrum under space translations (Appendix B). 
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3. AN APPROXIMATION METHOD FOR ARBITRARY 

POTENTIALS 

3.1. Necessity of Approximation 

It would be most convenient if it were possible to reduce all differential equations 

to algebraic equations. But except for very rare instances, namely linear differential 

equations with constant coefficients and the Euler differential equation, this is not 

possible. So in this study we will aim for the next best thing, reducing the Schrodinger 

equation to a transcendental equation, and even for that modest goal we will have 

to pay the price of approximating. "lNe first consicler the potential II (x) consisting of 

successive thin slices, each slice to be approximated by a Dirac clelta well (Figure 3.1). 

Figure 3.1. Sliced potential 
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Equating the areas under the potential curves we obtain the relation 

(3.1) 

or 

(3.2) 

Substituting this OJ value into the general transfer matrix expression 

. [ 1 MI = TI + ~o 
2ko _e2ikoa 

e-2ikoa ] 

-1 
(3.3) 

we obtain 

im V (Xj) l:-, Xj 

[ -eL"", 
e-2ikoxj 

] MIj = TI-
1i2ko -1 

(3.4) 

or in exponential form as 

( imV (Xj) l:-, Xj 

[ _e2~k"Xj 
e-2ikoxj ]) MI j = exp 

1i2ko -1 
(3.5) 

For two consecutive Dirac delta wells with 

(3.6) 

we cannot claim 

(3.7) 

since I~h and N2 do not necessarily commute. Therefore the product 
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may only be approximately equal to 

3.2. Transfer Matrix and the Fourier Transform 

We had represented the potential V (x) as a succession of Dirac delta wells. For 

P Dirac delta wells, the overall transfer matrix MT becomes 

We can write the overall transfer matrix as 

Taking the limit P -t 00 in the Riemann integration sense we obtain 

( 

im l J~oo dx V (x) MT ~ exp ---
!i2 ko _ J~oo dx e2ikox V (x) 

J~oo dx e-2ikox V (x) ]) 

- J~oo dx V (x) 

Remembering the Fourier transform formula 

1 100 

. if (k) = ICC: dx e- tkx V (x) 
V 27f -(X) 

the overall transfer matrix is obtained as 

( 

v'21rim 
MT ~ exp - !i2 k

o l if (0) 

-if (-2ko) 

if ~2ko) ]) 
-V (0) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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From now on we will limit ourselves only to even potentials satisfying V (-x) = V (x) , 

leading to the simplification V (-2ko) = V (2ko). Now let us define the dimensionless 

quantities: 

v= ..f2ifim - 2im 100 

fj,2k
o 

V(2ko)=-fj,2k
o 

0 dxcos (2kox) V (x) (3.13) 

..f2ifim - 2im 100 

Vo = - fj,2k
o 

V(O) = -fj,2k
o 

0 dxV(x) (3.14) 

for scattering, and 

2m 100 

v = --2- dx cosh (2K;OX) V (x) 
fj, K;O 0 

(3.15) 

2m 100 

Vo = --2- dx V (x) 
fj, K;O 0 

(3.16) 

for bound states with ko = iK;O' We observe that v2 :2: v6 for both cases and that 

(3.17) 

3.3. Formalism 

We can write the overall transfer matrix MT , using only v and Vo as: 

[ 

Vo 
MT ~ exp 

-v 
(3.18) 
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Rewriting MT as 

-~ ]) 
JvLv;S 

(3.19) 

and using the identity exp (rr) = cos (r)IT+sin (r)r where r is an arbitrary parameter 

and r is a matrix satisfying r 2 = -IT we obtain 

MT = cos ( V v2 
- v5 ) . (3.20) 

3.4. First Born Approximation To Scattering 

For this particular case, v and Vo « 1 therefore the overall transfer matrix is 

approximately 

Let us construct the §-Matrix using the elements of the transfer matrix MT 

§ ~ [l~va l~va j 
I-va I-va 

We can easily identify the reflection amplitude as 

by observing the §-Matrix, so 

v 
r = 821'::: -- c::::: v 

1 - Vo 

V2ifim -
r ~ v = - Jt2k

o 
V (- 2ko) , 

(3.21 ) 

(3.22) 

(3.23) 

(3.24) 
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and the cross section (reflection probability) is given by 

(3.25) 

which is the well known first Born approximation result (Appendix C). 

3.5. First Born Approximation To Bound States 

We had seen that the positive imaginary singularities of the §-Matrix yield bound 

states, and the singularities of the §-Matrix are obtained from the equation m22 = O. 

We use the above expression for MIT and obtain the transcendental equation 

(3.26) 

or the more convenient 

(3.27) 

where 

v v (x) 

Vo 

To check the self consistency of the above method, let us consider the Dirac delta well 
n2~ ., ~ 

V (x) = - 2m 6 (x) whIch glVes v = Vo = 2K:O . Since the argument of the tangent 

Vv2 v
2 

function in tan (J v2 - v5) = v 0 is practically zero the J v2 
- v5 terms cancel 

o 2 2 
. ~ 1 ~ d h f '1' E - _!liL. bt' d to YIeld, Vo = 2K:O = =} K:o = '2 an t e amI mr - 8m IS 0 ame. 



4. APPLICATION I : PERIODICAL DIRAC DELTA 

WELLS 

4.1. General Formalism 

19 

Let us consider an interaction composed of P = 2N + 1 equidistant identical 

Dirac delta wells represented by the potential: 

1i2 (J" N 

V (x) = - - L.: 6 (x - na) 
2m 

n=-N 

(4.1) 

At first sight it seems that this analysis is limited only to an odd number of wells, but 

by allowing N, therefore n to take half integer values, even P values are also covered. 

We had defined 

v == --- dx e2
K;OX V (x) m 100 

1i2/'t,O -00 

(4.2) 

Substituting V (x) into this definition we obtain 

(J" sinh (P /'t,oa) 
v=-

2/'t,o sinh (/'t,o a) 
(4.3) 

for the derivation of this equation look at the Appendix. Using the formula 

(4.4) 

we obtain 

(4.5) 



D fi 
. Ga 

e nmg y ",oa , a = 2 the transcendental equation 

becomes 

l
aP 

tan y _s_in_h_2 -...:(,-p-,-y-,-) - 1] 
p2 sinh2 (y) 

sinh2 (Py) 
------'0-----'- - 1 
p2 sinh2 (y) 

4.2. P=2 Special Case: Double Delta Well 

20 

(4.6) 

(4.7) 

To investigate the double delta well problem we set P = 2 in the above equation 

to obtain 

or its alternate version: 

2a 
v = - cosh (y) 

y 

2a 
, vo =-

y 

[
sinh (y)] . 

tan 2a y = smh (y) 

[ 
sinh (y)] _ 1 

cos 2a - h ( ) . y cos y 

The transcendental equation for the exact result was shown to be: 

exp (-2y) = ( 1 - ; r . 

(4.8) 

(4.9) 

( 4.10) 

(4.11) 

Making'the correct choice for sign, we obtain the equation that yields the ground state 

energy: 

') y exp (-y = -1 + - . 
a 

(4.12) 
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Table 4.1. Double Delta 

0; Yexact YBarn error 

0.001 0.001998 0.002 0.20 % 

0.002 0.003999203 0.004 0.40 % 

0.005 0.00995049 0.001 1.00 % 

0.01 0.0198039 0.020003 2.02 % 

0.02 0.0392306 0.040021 4.07 % 

0.05 0.0954483 0.100336 10.50 %. 

0.1 0.183255 0.202748 22.41 % 

0.2 0.342061 0.424297 53.86 % 

0.5 0.738835 1.00824 86.22 % 

It is worth noting that both the exact and the first Born approximation equations yield 

Y = 20; as 0; --t O. This is in accordance with the expected 

(4.13) 

result. The values of y, both exact and approximate, for different values of 0; are 

presented below in Table 4.1 . 

The approximation error 

reduces to 

E = I Eexact - E Barn I 
Eexact 

E = 1 _ (Y Barn) 2 

Yexact 

( 4.14) 

(4.15 ) 

since E rv y2. These values are consistent with the series solution for y, obtained by 

analytical methods. Only the first two terms were kept for Yexact and YBarn , while one 



term was sufficient for % Error. 

YeXQ,ct = 20; - 20;2 + ... 

8 
YEarn = 20; + 30;3 + ... 

% error ~ 2000; % . 

The graph of % error plotted against log (0;) is presented in Figure 4.1 . 

I.. 

o 
I.. 
I.. 

OJ 

-3 

Double Delta 

-2 -1 o 

Log(a) 

Figure 4.1. % Error vs. log (0; ) for Double Delta 
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( 4.16) 

(4.17) 

(4.18) 
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5. APPLICATION II : FINITE SQUARE WELL 

5.1. Parametrization 

Before proceeding with the standard square well problem: 

v (x) = {-vo , Ixl < ~ 
o ,Ixl > "2 

(5.1) 

we reparametrize V (x) such that - Voa , the area under the potential curve equals to 

the area under a Dirac delta well: 

(i2(J 
V (x) = -- 8 (x) 

2m 

(i2(J (i2(J 
Equating - Voa = - -2 - we replace Va by -2 - and use the potential m ma 

v (xl = { 
_ fj,2(T I I a 

2ma ' X < 2" 

o ,Ixl > ~ 

5.2. Exact Result 

(5.2) 

(5.3) 

The transcendental equation for the exact ground state energy of a finite square 

well, one of the classic problems of quantum mechanics, is known to be, 

tan [ ~y'2a - y2] = Y 
2 y'2a - y2 [6] (5.4) 

where y - ""oa , 
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Table 5.1. Square Well 

0; Yexact YBarn error 

0.001 0.000999667 0.001 0.07 % 

0.002 0.00199867 0.002 0.13 % 

0.005 0.00499169 0.005 0.33 % 

0.01 0.00996687 0.01 0.67 % 

0.02 0.0198683 0.020001 1.34 % 

0.05 0.0491908 0.050014 3.37 % 

0.1 0.09685532 0.100111 6.84 % 

0.2 0.188065 0.200899 14.11 % 

0.5 0.435131 0.514904 40.03 % 

5.3. Born Approximation 

Using the familiar formula for v , we obtain 

(5.5) 

and the limiting procedure yields Vo = Q.. Thus the transcendental equation for the 
y 

Born approximation becomes: 

tan [; 
sinh2 (y) _ 1] 

y2 
sinh2 (y) 
---'-'-'- - 1 

y2 

5.4. Error Analysis 

(5.6) 

The values of y, both exact and approximate, for different values of 0; are presented 

below in Table 5.1. The approximation error is given by 

(
YBorn)

2 

1 (5.7) 
Yexact 
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since E rv y2. These values are consistent with the series solutions for y, obtained by 

analytical methods. Only the first two terms were kept for Yexa.ct and YBarn, while one 

term was sufficient for % Error. 

0:2 

Yexact = 0: - 3 + ... 

0:3 

Y Born = 0: + 9 + ... 

2000: 
o/roError ~ -- % . 3 

The graph of % error plotted against log (0:) is presented in Fig'ure 5.1 . 

Square Well 

! 
g~I--~~~~~-~-~ 
a> I 

-3 -2 
Log(a) 

-1 o 

Figure 5.1. % error vs. log(o: )for finite square \\'e11 

~ tiojaz~i Oniver.it.si Katuphanesi " 

(5.8) 

(5.9) 

(5.10) 
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6. APPLICATION III : POSCHL-TELLER POTENTIAL 

6.1. Parametrization 

Before proceeding with the Poschl - Teller problem: 

v (x) = _ Va 
cosh2 (6x) 

(6.1 ) 

we reparametrize b, the width of the potential V (x) as 6 = II and, its strength such 
a 

2aVo . 
that - --, and the area under the potential curve equals to the area under the DIrac 

1T 

delta well 

(6.2) 

. 2aVo Ji2a 1TJi2a . 
Equatmg - -- = - -2 - we replace Vo by -4- and use the potentIal 

1T m ma 

(6.3) 

6.2. Exact Result 

The Poschl-Teller potential is one of the few quantum mechanics problems that 

are exactly solvable. The exact ground state energy is given by 

This cor~esponds to y = 1T [V % + ; - ~] 
Ji2K,2 o 

E = - 2m' 

a 
aa 
2 

1Ta 

26 ' 

(6.4) 



Table 6.1. Poschl-Teller 

a Yexact YBorn error 

0.001 0.000999682 0.001 0.06 % 

0.002 0.0199873 0.002 0.13 % 

0.005 0.00499207 0.005 0.32 % 

0.01 0.00996837 0.01 0.64 % 

0.02 0.0198743 0.020001 1.28 % 

0.05 0.0492286 0.050014 3.22 % 

0.1 0.0970047 0.100112 6.51 % 

0.2 0.188669 0.200901 13.39 % 

0.5 0.43873 0.515193 37.89 % 

6.3. Born Approximation 

Using the familiar formula for v, we obtain 

a 
V=--

sin (y) 

27 

(6.5) 

and the limiting procedure yields Vo = Q. (Appendix E). The transcendental equation 
Y 

for the Born approximation becomes: 

tan [~Y y2 - 1]-
sin2 (y] -

y2 
-,,------ - 1 
sin2 (y) 

6.4. Error Analysis 

(6.6) 

The values ofy, both exact and approximate, for different values of a are presented 

below in'Table 6.1. The approximation error is given by 

(
YBorn)

2 

-1 
Yexact 

(6.7) 
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since E rv y2. These values are consistent with the series solutions for y, obtained by 

analytical methods. Only the first two terms were kept for YExact and YEarn, while one 

term was sufficient for % Error. 

0;2 

Yexact = 0; - - + ... 
'if 

0;3 

YEarn = 0; + 9 + ... 

2000; 
%Error = %Error ~ -- % 

'if 

The graph of % Error plotted against log (0;) is presented in Figure 6.1 . 

Posch I-Teller 

p_, , ___ '~" _o __ ·_· __ 

! ," 

2 I~------------~--~-~--------.. 
Q) 

-8 -7 -6 -5 -4 

Log(a) 

-3 

Figure 6.1. % error vs. log (0; ) for Poschl-Teller 

(6.8) 

(6.9) 

(6.10) 
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7. CONCLUSION 

In this work we attempted to develop and test a method to estimate the ground 

state energies of one dimensional potential wells. We first sliced the well into many 

thin wells, then approximated each by a Dirac delta well. Using Transfer and §-Matrix 

techniques we solved for the approximate energy levels of this infinite sequence of Dirac 

delta wells. It was seen that this method is the familiar first Born approximation of 

scattering, extended to bound states. For calculational simplicity we limited ourselves 

to potentials satisfying V(x) = V( -x) , but the method may easily be generalized to ar­

bitrary potential functions. The method reduces the Schrodinger differential equation 

to a transcendental equation involving the Fourier transform of V(x) . After testing 

the self consistency of the method for a single Dirac delta well, we applied it to three 

potential problems: double delta well, finite square well and the Poschl-Teller poten­

tials. The accuracy of the results for narrow and shallow potentials is remarkable. A 

summary of our results is presented in the equation below and in the table at the end 

of this section: 

tan j v2 _ v5 = J v2 
- V5 

Vo 
(7.1) 

We should point out, however, that there is an essential and fundamental difference 

between the validity criteria of the first Born approximation applied to scattering or 

bound states. For scattering, the approximation is valid when % ~ ko , a relationship 

involving both the strength of the potential and the projectile kinetic energy. For 

the bound states the analogous relation is 0'2
a ~ 1, a statement involving just the 

parameters of the potential. This corresponds to IImina2 < 4e II A 2 for atomic physics 

applications, and IImina2 < 20M e II j2 for nuclear physics applications, which are 

reasonable values for most problems in these fields. Solid state physics might even be a 

better field to satisfy the above condition [7] . In this age of fast electronic computation 

we can not claim that the above method is superior to well established techniques such 

as the variation method, but we believe it to be original and more analytic. V\le plan 

to extend this work to potential functions such as the Morse, Manning-Rose and the 
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Rosen-Morse, in the near future. 

Table 7.1. Summary 

V(x;a,O') v Va 

Delta - ;~ 0'6 (x - a) Q Q 
y y 

P - Delta 
112 2:N a sinh (Py) Pa --0' 6 (x - na) 

P = 2N + 1 
2m n=-N y sinh (y) y 

Double Delta - ;~ 0' [6 (x + ~) + 6 (x - ~) ] 2Qcosh(y) 2Q 
y y 

112(J" Ixl < a/2 
Square Well 2ma 

~ sinh (y) Q 

l 0 Ixl > a/2 
y y 

Poschl-Teller 7f112 (J" a Q -
4ma cosh 2 ("ax) sin (y) y 
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APPENDIX A: EQUIVALENCE TO PATH INTEGRATION 

At this point it is proper to correct a possible misconception. Approximating an 

arbitrary potential well by a sequence of Dirac delta wells and forming an ordered prod­

uct of their transfer matrices may give the false impression that we only consider the 

forward motion of the particle, ignoring internal reflection. Counter to naive intuition, 

this impression is not correct, transferring of coefficients should not be confused with 

the transfer of particles. To demonstrate our point, let us limit ourselves to the simple 

scattering problem of two identical delta wells. The overall reflection amplitude con­

sists of an infinite sum of processes: reflection from the first well, transmission through 

the first well followed by reflection from the second well and transmission through the 

first well, etc. The transmission amplitude, which is independent of the location of the 

well, as well as the direction of transmission is given by t = 1_1 iO" • The reflection 
2kO 

amplitude, on the other hand depends both on the location of the Dirac delta well and 

the region in which reflection occurs. These amplitudes are given by 

~O" 

r(L) = e2ikoxj ~. = e2ikOxj ro (left to left) 
1-~ 

2ko 

(A.l) 

iCT 

(R) _ e-2ikoxj 2ko = e-2ikoxj ro (right to right) 
r - 1-~ 

2ko 

(A.2) 

Forming the infinite series 

(L) (L) (L) (R) (L) 
rT = r 1 + tr 2 t + tr 2 r 1 r 2 t + ... (A.3) 

and placing the first well at x = 0, the second at x = a 

(A.4) 
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turns into a sum containing a geometric series 

rT = r(L) + t [e2ikoa r + 2ikoa 3 + ] t 1 0 e rO ... (A.5) 

which may be summed as 

(A.6) 

Simplifying and substituting we obtain 

r _ _ iO"_ [ ( 1 + d:o ) + e2ikoa ( 1 - d:o) ] 
T - 2k --=-":'---'-.-~2-------'------'---=-

o (1 _~) + e2ikoa~ 
2ko 4k6 

(A.7) 

Replacing ko by ireo to study the bound states and defining a = 0"2a and y = reoa we 

reach the familiar correct expression. 

a ( 1 - ~) + (1 + ~ ) e-
2y 

rT =-
y (1 _ Q.) 2 + 00

2 
e- 2y 

y y2 

(A.8) 

An alternate and much simpler method would be to form the product 

Mr = M (a) M (0) = (A.9) 

and to use 

(A.10) 

Thus we demonstrate that the ordered product of transfer matrices takes into account 

all possible processes that lead to an overall reflection. ·When we extend the transfer 

matrix product method to an infinite sequence of Dirac delta wells, the result is 
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equivalent to the result obtained by a path integral method which takes into account 

all possible paths within the interaction region. 



APPENDIX B: INVARIANCE OF THE ENERGY 

SPECTRUM 

UNDER SPACE TRANSLATIONS 

Transfer matrices for Dirac delta wells 

n2a 
V (x) = -- r5 (x - x) 

2m J 

have the general form: 

or 

[ 

1 + iaj 
M = 2ko 

iU,i 2ikox' --e J 
2ko 

iUj -
2ik

ox 'J 2ko e J 

1 _ iUj 
2ko 

[ 

1 + iUj iUj l J M = 2ko 2ko Aj 

_ iUj A' 1 _ iUj 
2ko J 2ko 
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(B.1) 

(B.2) 

(B.3) 

where we have defined the only position dependent term e2ikoxj as Aj. Using a more 

abstract notation 

(B.4) 

where Ho , HI , H_I denote homogeneous functions of A \vith degrees 0, +1 and -1 

respectively. Using the multiplication table: 

:: ;:~n:ha~t:e [pr;~uc~:~ a]ll ar::'~:~~:I':b~:I:f :::::r t::tt~:::::;~ ::~~:~::: 
, HI Ho 

e2ikOx[ 
the energy spectrum, belongs to class Ho and contains only ratios such as e2ikoxm ' 

which are invariant under the transformation: x ---+ x + Xo· This completes the proof 

of the invariance of energy spectrum under space translations. 



Table H.I. Multiplication Table 

Ho Hi I-L l 

Ho Ih H-l 

Hi H2 Ho 

H-l Ho H-2 

35 
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APPENDIX C: BORN APPROXIMATION 

(C.l) 

(G2) 

2mlVI k2 » max 
o li2 

(G3) 

(C.4) 

(C.5) 

2m [2 2]-1 -!if lK - ko V (X) Iko) ~ r I-ko) (C.6) 

(C.7) 

(C.S) 

We must choose the contour such that the pole at k = -ko is included, while the pole 

at k = +ko is excluded. Further the contour must be closed from below since we are 
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" 
./ 

.r 
., .. i' 

\",' 

........ -
, .. "" 

...•. -

----------------------..1 I ~--~-~----------~--
\-T-......... 

Figure C.l. Integration Contour for Born Approximation 

doing our measurement at x = -00 and \J! rv eikx :::::; eik ( -00) is regular ¢:=:} 1m (k) < 0 

- 2m JOO dk (klV(X)lko) Ik\-
11,2 -00 (k+ko)(k-ko) /-

2m ( 2 ') (-kolV(X)lko) I k \ 
- 11,2 - 7n -2ko - 01 ::: T I-ko) (C.g) 

=* T:::::; -27ri h~o (-ko IV (X) I ko) 

Remembering 

1 -
I_ko IV (X) I ko) = ~ 1/ (- 2ko) 
\ v 27r 

(C.lO) 

we finally obtain 

(C.l1) 
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APPENDIX D: v FOR PERIODIC DIRAC DELTA WELLS 

We consider the case with P Dirac delta wells 

P == 2N + 1, N = 0,1,2'000 

which can be represented by the potential 

We define v as 

and Vo as 

fi2 N 
V (x) = -(T L c5 (x - na) 

2m 
n=-N 

v = -~ 100 

dx e2
;;;QX V (x) 

fi2 /'Co -00 

m 100 

Vo = --2- dx V (x) 
fi /'Co -00 

Substituting Equation (Do2) into (D.4) 

N 100 

v = ~ L dx e2
;;;

QX c5 (x - na) 
2/'Co n=-N -00 

Calculating the integral we get 

Let us define 

(Dol) 

(Do2) 

(Do3) 

(D.4) 

(Do5) 

(Do6) 

(Do7) 



so v can be written as 

Factoring out u( -N) in the above equation and get 

Substituting e2Koa = u 

(J" uN+~ - U-(N+~) 
V = - -~l'---------Ol--

2K:o uz - u-z 

(J" ePKoa _ e-PKoa 

2K:o eKoa - e- Koa 

(J" sinh (PK:oa) 

2K:o sinh (K:oa) 

Using the limit Vo = .llimKO-to (K:ov) we obtain the final result 
K:o 
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(D.8) 

(D.9) 

(D.lO) 

(D.ll) 

(D.12) 

(D.13) 

(D.14) 
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APPENDIX E: v FOR POSCHL-TELLER POTENTIAL 

We defined v as 

2m 100 

v = --2- dxcosh (2fi:ax)v (x) 
Ii fi:a a 

where V (x) is the so-called P6schl-Teller potential 

Therefore 

Jrli2(]" 1 
V (x) - -

- 4ma cosh2 CTaX ) 

vo- dx . 
Jr(]" 100 

cosh (2fi:ax) 
2fi: a cosh2 (7rX) a a a 

(]" (fi:aa fi:aa) 
V = -(3 1 + - , 1 - -

2fi:aa Jr Jr 

v = ~r (1 + ~) r (1 - ~) 

= ~r (1 + ~) r (1 + ~) 
__ 0<_ 

- sin(y) . 

(y < Jr) 

Formulas 3.512.1, 8.331, 8.334.3 of Reference [8] . While 

1 a 
Va = - lim (yv) = -

y y--+a y 

(E.1) 

(E.2) 

(E.3) 

(E.4) 

(E.5) 

(E.6) 
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