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ABSTRACT 

NONCOMMUTATIVE PHASE AND THE 

UNITARIZATION OF THE QUANTUM GROUP GLp,q(2) 

IV 

In this thesis, a new *-operation (or unitarized form) is defined for the two

parameter quantum group GLp,q(2) in the case that pq is real, and the new group is 

denoted by Up ,q(2). The most interesting aspect of our construction is the appearance 

of the noncommutative phase described by the unitary operator u. The operator u 

with a central hermitian operator s allow us to extend the algebra of the quantum 

group GLp,q(2) in order to obtain not only the *-operation but also the *-relations 

throughout the new algebra of Up ,q(2). It is shown how certain *-representations of the 

quantum group SUq(2) can be extended in order to give *-representations of Up,q(2). 

This not only allows us to verify the algebraic relations in a representation, it also gives 

a hint of possible physical interpretations of the algebraic generators as operators. 



.. 
OZET 

DEGi~MELi OLMAYAN FAZ OPERATORU ve GLp,q(2) 

KUANTUM GRUBUNUN UNiTERiZASYONU 

v 

Bu tezde pq reel olmak iizere iki parametre He deforme edilmi§ GLp,q(2) kuantum 

grubu iizerinde bir * i§lemcisi tammlanml§tIr. Bu * i§lemcisi kuHamlarak Up ,q(2) olarak 

gosterilen yeni bir kuantum grubu elde edilmi§tir. YaptIklanmlzm en ilgin<; yam, bu 

yapl in§aa edilirken, degi§meli olmayan bir iiniter faz i§lemci tammlamamlzdlr. U olarak 

adlandudl~mlz bu i§lemci, S olarak adlandlrdlglmlz merkezi ve hermisyen bir i§lemci 

ile birlikte yeni cebir i<;erisinde * i§lemcisini tammlamamlzl saglamaktadu. Boylece 

Up,q(2) olarak adlandlrdl~mlz yeni cebir i<;erisinde tiim * bagmtIlan elde edilebilmekte

dir. SUq(2) kuantum grubunun bilinen temsillerinin, Up,q(2) kuantum grubunun temsil

lerine nasIl geni§letilebilecegide bu tezde gosterilmektedir. Bu hem cebir bagmtIlanmn 

temsil i<;erisinde ger<;eklemesini saglamakta, hem de cebir iiretec;lerinin i§lemciler olarak 

fiziksel yorumlan ile ilgili ipu<;lan vermektedir. 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT. . ..... 

DZET ..... 

LIST OF FIGURES ........... . 

LIST OF SYMBOLS/ABBREVIATIONS 

1. INTRODUCTION ... . . . . . . . . 

VI 

III 

IV 

V 

vii 

VllI 

1 

1.1. Hopf Algebra and Quantum Groups. . . . . 2 

1.2. The Quantum Groups GLq(2) and GLp,q(2) . . . .. 10 

1.3. The Quantum Groups SUq(2) and Uij,q (2) ................ 19 

2. THE UNITARIZATION AND THE REPRESENTATION OF THE QUAN-

TUM GROUP GLp,q (2) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.1. The Unitarization of the Quantum Group GLp,q (2) with p =J: if . . 21 

2.2. The Representation of the Quantum Group Up,q (2) . 

3. CONCLUSIONS . . . . . . . . . . . . . . . 

REFERENCES .... 

24 

32 

33 



vii 

LIST OF FIGURES 

Figure 1.1. Four morphism ............................ 3 

Figure 1.2. Associativity in an algebra A. . . . . . . . . . . . . . . . . . . .. 3 

Figure 1.3. Unity in an algebra A. . . . . . . . . . . . . . . . . . . . . . . .. 3 

Figure 1.4. Coassociativity in a co algebra e . . . . . . . . . . . . . . . . . .. 4 

Figure 1.5. Counity in a co algebra C . . . . . . . . . . . . . . . . . . . . . .. 4 

Figure 1.6. Connecting axiom in a bialgebra d . . . . . . . . . . . . . . . .. 5 

Figure 1. 7. Coalgebra morphism of f.l . . . . . . . . . . . . . . . . . . . . • " 6 

Figure 1.8. Coalgebra morphism of TJ ••••••••••••••••••••• " 6 

Figure 1.9. Algebra morphism of ~ ...................... " 6 

Figure 1.10. Algebra morphism of E ..••.•.•••..•..•..•.•. " 7 

Figure 1.11. Antipode of a bialgebra . . . . . . . . . . . . . . . . . . . . . . .. 7 

Figure 1.12. Commutativity in an algebra A . . . . . . . . . . . . . . . . . .. 9 

Figure 1.13. Cocommutativity in a coalgebra C . . . . .. . . . . . . . . . . ., 9 



A 

d 

C 

CC 

!?J 

ye 

id 

k 

p,q 

Rq , R 

S 

T 

* 
t 

Fun (G) 

LIST OF SYMBOLS/ABBREVIATIONS 

Algebra 

Bialgebra 

Coalgebra 

Complex numbers 

Quantum determinant of the quantum matrix T 

Hopf algebra 

Identity map 

Compex field 

Deformation parameters 

Quantum R matrix 

Antipode or coinverse map 

VIll 

Quantum, representation or fundamental matrix of the quan

tum group 

Coproduct map 

The quantum signature of () 

Counit map 

Unit map 

Usual multiplication map 

Flip map 

For all 

Element(s) of 

Tensor multiplication 

Matrix multiplication with tensor product 

Star, hermitian conjugation operator 

Hermitian conjugation operator 

Linear spat::e of C--valued functions on a complex Lie group G 



Complex Lie group 

One-parameter deformed quantum group formed by 

two by two matrices whose entries are noncommutative 

Two-parameter deformed quantum group formed by 

two by two matrices whose entries are noncommutative 

One-parameter matrix quantum group formed by 

two by two matrices whose entries are noncommutative 

Special unitary one-parameter deformed quantum group 

Unitary two-parameter deformed quantum group 

lX 



1 

1. INTRODUCTION 

The concept of quantum groups generalize the concept of symmetries to the realm 

of noncommutative geometry, which can be viewed as the quantization of the classical 

vector space in order to obtain the quantum vector space rather than the quantization 

of the classical physics as in quantum mechanics. This can be realized via appropriate 

deformation of the coordinate plane leading to attainment of the related quantum 

plane and noncommutative comultiplication in coalgebra structure achieved from a 

given algebra. More formally, the mathematical construction of a quantum group G q 

pertaining to a given Lie group G is simply a deformation of a commutative Poisson

Hopf algebra defined over G [1, 2]. This result in generalizing the classical groups in 

the sense of Hopf algebra.. 

Although the applications of quantum groups mainly concentrate on the stud

ies of quantum integrable models using the quantum inverse scattering method and 

non-commutative geometry, there have been many phenomenological applications of 

quantum algebras in nuclear physics, condensed matter physics, molecular physics, 

quantum optics and elementary particle physics. The most important and remarkable 

application arose from the q-deformation of the known quantum mechanical harmonic 

oscillator algebra. The algebraic approaches to the oscillator algebras involve the known 

creation, annihilation and number operators. It is worth emphasizing the importance 

of the algebra possessing hermitian operators, giving rise to the ability of representing 

the physical observables. An algebra, therefore, needs to have a * structure to be in

terpreted as an algebra of observables. The simplest matrix quantum group with such 

a structure is SUq (2) [31. 

Another interesting quantum group which is under consideration in this thesis 

is the two parameter deformed quantum group GLp,q(2). This quantum group can be 

obtained through the quantization of both the coordinate and the exterior plane [4, 5]. 

The quantized coordinate and exterior plane are called p--plane and 1/ q--exterior plane 

respectively. The distinct feature of G Lp,q(2) is that the quantum determinant of the 
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fundamental matrix T is not central if p =1= q while the quantum determinant is central 

in one parameter deformed quantum group, e.g. GLq(2). It is important to note that 

for p = q the quantum group GLp,q(2) becomes the quantum group GLq(2). 

In this thesis, an algebra obtained by imposing * relations on the operators a, b, c 

and d which are the matrix elements of the quantum group GLp,q (2) will be consid

ered [6]. We are able to do this for pq real. In the limit p = ij, our algebra coincides 

with Uq,ij (2) [7]. We thus name this algebra Up,q (2). Representation of this algebra 

is constructed and the relationship of these representations to q~osci1lators and to 

two~parameter coherent states are discussed. Let us review the definition of quantum 

groups via the notion of Hopf algebra, the formulation of two parameter deformed 

quantum group G Lp,q(2) and its unitary form Uq,ij (2) in order. 

1.1. Hopf Algebra and Quantum Groups 

The notion of quantum groups in physics is widely known to be the generalization 

of the symmetry properties of both classical Lie groups and Lie algebras, where two 

different mathematical blocks, namely deformation and co~multip1ication, are simulta

neously imposed either on the related Lie group or on the related Lie algebra. 

A quantum group is defined algebraically as a quasi~triangular Hopf algebra. It 

can be either non-commutative or commutative. It is fundamentally a bi~algebra with 

an antipode so as to consist of either the q-deformed universal enveloping algebra 

of the classical Lie algebra or its dual, called the matrix quantum group, which can 

be understood as the q~analog of a classical matrix group [1]. Since a Hopf algebra 

is essentially a bialgebra with an antipode, one needs to define a bialgebra and an 

antipode. 

The conventional way of defining a bialgebra is based on the possession of both 

algebra and coalgebra structures of a given algebra [2, 8, 9]. Assume that A is an 

associative algebra with unit 1, over a field k which can be taken to be the set of 

complex numbers Co A bialgebra J?f on A is, then, defined by four morphisms shbwn 
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in Figure 1.1. 

k C ) k 

Figure 1.1. Four morphism 

Algebra and coalgebra structures can be treated as the axioms which the four 

morphism above should satisfy and these axioms can be written as commutative dia-

grams. 

An algebra is given by a triple (A, J.1" T)) where A is a vector space and J.1, : A®A-+ 

A and T) : k -+ A are linear maps satisfying associativity and unity axioms as shown 

in Figure 1.2. 

fl®id 
A®A®A ) A®A 

id®J.1, 

Figure 1.2. Associativity in an algebra A 

that is, J.1,(J.1,®id) = J.1,(id®J.1,). The operation J-L is the usual product in A: J.1,(a®b) = ab 

for a,b E A. 

FlgUte i.~. Unity in an algebra A 
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that is, Jl(a 091) = J-t(l09 a) = a for all a E A. The operation 'T/ is defined by 'T/(c) = c1 

for all C E k. 

On the other hand the notion of a coalgebra is similar to the concept of an algebra 

as regards its way of definition. A coalgebra is a triple (C,.6., c) where C is a vector 

space and .6. : C ---+ C 09 C and c : C ---+ k are linear maps satisfying coassociativity and 

counityaxioms. It therefore can be said that the idea of a coalgebra is dual to the one 

of an algebra in this sense. 

C __ .6._-+-> C 09 C 

id 09 .6. 

Figure 1.4. Coassociativity in a coalgebra C 

that is, (~O9 id)~ = (id0 ~).6.. Coproduct .6. is a homomorphism of C. 

k09C +<_c_09=--id_C09C id 09 c ) C 09 k 

C 

Figure 1.5. Counity in a coalgebra C 

that is, (c 09 id)Ll = (id 09 c)~ = id, and c is also a homomorphism: c(ab) = c(a)c(b) 

for all a, bEe. 
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There is an additional structure, called the connecting axiom [9], which is needed 

to link the algebra to its dual one. One can achieve a bialgebra d with the assistance 

of the connecting axiom shown in Figure 1.6. 

d0sz/ 

b0bl 
d 0 d 0 d 0 d---T(-23-)--+>d 0 d 0 d 0 d 

Figure 1.6. Connecting axiom in a bialgebra d 

where T(23) is the morphism exchanging the second and third places in the tensor 

product. 

A bialgebra is, thus, d~fined by a vector space d equipped simultaneously with 

an algebra structure (A, j.l, 'l}) and a coalgebra structure (C,~, c) with a connecting 

axiom. It is worth emphasizing that a morphism of bialgebras is a morphism for the 

underlying algebra and coalgebra structures. Since a bialgebra is basically a quintuple 

(d, j.l, 'l},~, c), the substructures should satisfy the equivalent conditions verified by a 

bialgeb:ra itself. It is crucial that this definition be valid provided that the equivalency 

of the following two statements are fulfilled (8]. 

(i) The maps j.l and 'l} are co algebra morphisms. 

(ii) The maps D". and c are algebra morphisms. 

The connecting axiom actually includes these statements expressed in Figure 1.6. The 

former in the first statement can be expressed by the commutativity of the following 

diagrams for fl" giving rise to a co algebra morphism of j.l, 
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d---":C~-+) k 

Figure 1.7. Coalgebra morphism of fJ 

where ~® def (id0T0id)o(~0~) : d0d ---+ (d0d)0(d0d) and T is a linear 

map and is flip switching the factors Ti,i+1 (al 0 ... 0 an) = al 0 ... 0 aH 1 0 ai 0 ... 0 an 

in which Va E d whereas the latter in the first statement can be expressed by the 

commutativity of the diagrams below for '1], giving rise to a co algebra morphism of '1], 

k0k k 

Figure 1.8. Coalgebra morphism of '1] 

Similarly, the algebra morphism of ~ in the second statement is equivalent to the 

commutativity of the two diagrams below 

d0 d ~ 0 ~) (d 0 d) ® (d0 JJf) k 
'1] 

>d 

l~ 
~ 

l~® lid 
'1]0'1] 

1~ 
d )JJf 0 d k0k )d®d 

Figure 1.9. Algebra morphism of ~ 

where p,® def (/10 fJ) 0 (id 0 T 0 id) : (d 0 d) 0 (d 0 d) ---+ d0 d whereas the 

algebra morphism of c in the second statement is equivalent to the commutativity of 

the fonowing two diagrams 
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d0d 
E:0E: 

) k 0 k k 
1] )d 

l~ lid ~/ 
d E: ) k k 

Figure 1.10. Algebra morphism of E: 

Observation of the equivalency of the first four diagrams in Figures 1.7, 1.8 and 

the second four ones in Figures 1.9, 1.10 implies that the equivalency of the two state

ments. In this sense, the concept of bialgebra is selfdual. 

An antipode of a bialgebra (d, Jl, 1], I::i, E:) is a linear map S : A ~ A such that 

the following diagram is commutative: 

Figure 1.11. Antipode of a bialgebra 

that is, Jl(id 0 S)~(a) = Jl(S 0 id)l::i(a) = E:(a)l, where a E d. The antipode is an 

antihomomorphism: S(ab) = S(b)S(a). The antipode S reverses multiplication and 

coproduct, that is, defines a bialgebra morphism on the bialgebra (d, Jl, 1], I::i, E:). 

A bialgebra (d, Jl, 71,~, E:) together with property S is, thus, called a Hopf algebra 

with an antipode S and denoted by (£, Jl, 1], b., E:, S). A morphism of Hopf algebra is 

a morphism between the underlying bialgebras commuting with the antipodes. 
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A *-algebra is an associative algebra A with unit I equipped with a *-operation [101 

with the properties 

(aa + j3b)* aa* + j3b* (anti-linearity) , (1.1) 

(a*)* - a (involutivity) , (1.2) 

(ab)* b*a* (anti-multiplicativity) , (1.3) 

1* 1. (1.4) 

A Hopf algebra is said to be a *-Hopf algebra [10J if and only if Jt' is equipped with 

the *-operation with the properties (1.1)-(1.3) and such that 

S((S(a*))*)=a, aEJt', thatis So*oSo*=id, (1.5) 

and if Ll and care *-homomorphism, that is 

c(a*)=c(a), aEJt', (1.6) 

and 

(1.7) 

where ,6. (a) = 2:i bi @ Ci. The equation (1.7) is equivalent to the form 

(1.8) 

It is important to note that Sand * can be noncommutative. 

s~ far, commutativity and noncommutativity of a bialgebra have not been men

tioned yet so these of a Hopf algebra have not been either. An algebra (A, It, 11) is 

commutative if and only if It = It ° T which is equivalent to the commutativity of the 

diagram below 
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Figure 1.12. Commutativity in an algebra A 

Similarly, a coalgebra (C,~, c:) is cocommutative if and only if ~ = r 0 ~ which 

is equivalent to the commutativity of the following diagram 

C 

Figure 1.13. Cocommutativity in a co algebra C 

It is apparent that (:ommutativity and cocommutativity can be achieved provided 

that the Lie group G, in which !R = Fun(G), is abelian. For instance, if cocommuta

tivity of a bialgebra is under consideration, then 

(fI 0 12)(g1, g2) 

fI (gt)/2(g2) 

l(glg2) = l(g2g1) 

(r 0 ~f) (gl, g2) (1.9) 

is satisfied if and only if g1,92 = g2g1 for a given function 1 E Fun ( G) and for elements 

g1,g2 E G. 

If the underlying Lie group G is a noncommutative group, then the Hopf algebra 

!R = Fun ( G) is actually both a noncommutative and a noncocommutative Hopf alge

bra. This implies that antipode of the Hopf algebra is also noncommuting. Moreover, 

the Hopf algebra under consideration has a * structure, i.e., it is a *-Hopf algebra, 

then * is noncomrnuting as well. 
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In quantum groups, Hopf algebras are encountered without the condition of com

mutativity. Quantum groups are a generalization of tp.e concept of groups in the Hopf 

algebra sense with an appropriate deformation parameter q as mentioned before. They 

can be defined by quantum matrices with noncommuting entries, which coincide with 

the genera:llinear matrices if q = 1. These matrices form a Hopf algebra which is both 

noncommutative and noncocommutative rather than forming a group under matrix 

multiplication. 

1.2. The Quantum Groups GLq(2) and GLp,q(2) 

The quantum group GLq(2) can be thought as a noncommutative Hopf algebra 

freely generated by the elements a, b, c and d of the two--by-two matrix called quantum, 

fundamental or representation matrix of the quantum group 

T=(: :) 
The entries of the matrix (1.10) satisfies the commutation relations 

ab = qba ae = qea 

bd = qdb cd = qde 

be = eb ad - da = (q - q-l) be. 

(1.10) 

(1.11) 

The commutation relations (1.11) can be achieved through the quantum plane relation 

and the quantum Rq matrix, or shortly R. The former is acquired by the deformation 

of two dimensional plane which gives us to the quantum plane [8, 9]. The coordinates 

of the quantum plane do not commute 

(1.12) 
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where q E C\ {O} while the exterior plane, whose coordinates are defined by e = dxl, 

e = dx2
, commutation relations are given by 

(1.13) 

The quantum matrix T, the representation matrix of the quantum group G Lq(2), 

can be treated as the matrix which transforms the quantum plane into another one 

(::) (::) (::) (1.14) 

( 
~1l ) (a b) (e) 
e2 e d e 

(1.15) 

The relation (1.14) leads to 

ac = qea bd = qdb ad - da = -q-1be + qcb, (1.16) 

whereas the relation (1.15) gives rise to 

be = eb ad - da = -q-1cb + qbc. (1.17) 

Exchanging b and e in (1.16) results in 

ab = qba cd = qde. (1.18) 

Thus all the commutation relations between the entries of the representation matrix of 

the one parameter deformed quantum group GLq(2) given by (1.11) have been achieved. 

The latter is the way of using the quantum Rq matrix, shortly R which accounts 

for the noncommutativity of the quantum matrix T. The quantum R matrix will be 

mentioned in the GLp,q(2) case in detail. The R matrix for the quantum group GLq(2) 



12 

is given by 

q 0 0 0 

0 1 0 0 
R= 

0 q _ q-l 1 0 
(1.19) 

0 0 0 q 

The noncommuting matrix entries of Tab satisfy the relation 

(1.20) 

in which the repeated indices should be summed over and they receive their values from 

one to two. The commutation relations (1.11) can be obtained by the relation (1.20). 

The quantum determinant !!J of an n-dimensional matrix quantum group 9J1q ( n) [2, 

9] is defined by 

!iY = detq (T) ~ L E( a )T1a(1) T 2
a(2) ••• Tna(n) , (1.21) 

aESn 

where the sum is over all permutations a of the symmetric group Sn, and the quantum 

signature E( a) is given for each element of Sn by 

E(a) = 11 (-q) = (_q)l(a) , 
j<k 

a(j) <a(k) 

(1.22) 

in which l ((J) is the length of a, that is, the minimal number of inversions in the 

permutation a. The q-determinant is central for the one-parameter quantum groups, 

that is, it commutes with Tab for each a, b = 1, ... ,n. The quantum determinant !!J of 

the quantum group G Lq(2) is therefore given by 

q; = ad - qbc. (1.23) 
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A Hopf algebra £ is an algebra £ which is endowed with the homomorphism 

~ : £ ---+ yt' ® £ and E : £ ---+ C and the antihomomorphism S : £ ---+ £ as 

mentioned in Section (1.1). The coproduct ~ of the quantum group GLq(2) is given 

by 

~(T) T®T 

(1.24) 

The couni t E is given by 

(1.25) 

The antipode S is given by 

(1.26) 

The quantum group G Lp,q(2) is obtained by the deformation of two dimensional 

differential calculus on the two dimensional coordinate plane. This results in obtain

ing the quantum plane whose coordinates do not commute and also accounts for the 

noncocommutativity of the comultiplication (4, 5]. The quantum plane is spanned by 

the coordinates Xl, x2 whose commutation relation is given by 

(1.27) 

where p, E C\ {o} whereas the exterior plane, which is Grassmannian, is spanned by 

the coordinates e = dxl, e = dx2 whose commutation relation is given by 

(1.28) 
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where q E <C\ {O}. The quantum matrix T, the representation matrix of the quantum 

group G Lp,q(2), is given by 

(1.29) 

The quantum matrix T E Jt' can be viewed as transformations of a quantum vector 

space, that is, 

( :: ) (:: ) ( :: ) (1.30) 

( 
~Il ) (a b) (e ) 
~T2 C d e (1.31) 

The relation (1.30) leads to 

(1.32) 

whereas the relation (1.31) gives rise to 

(1.33) 

Exchanging band c and replacing p2 by q2 simutaneously in (1.32) results in 

(1.34) 

Thus aU the commutation relations between the entries of the representation matrix 

of the two parameter deformed quantum group GLp,q(2) are given by 

ab = q2ba 

bd =p2db 

ac = p2 ca 

cd = q2dc (1.35) 
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One can achieve the same commutation relations by means of the quantum Rq 

matrix, shortly R, which is the solution of the quantum Yang-Baxter equation 

(1.36) 

in which the repeated indices should be summed over and they receive their values 

from one to two. The noncommutativity of Tab is controlled by the R matrix and the 

matrix Tab satisfy the relation 

Rab T e Tf = Tb T a Ref 
ef c d f e cd' (1.37) 

in which the repeated indices should, again, be summed over and they receive their 

values from one to two. 

In general, the matrices T and R are given by 

T = (T~) i,} = 1, ... , n (1.38) 

Quantum groups are obtained through noncommutative continuous deformations of the 

Hopf algebra Yf' ..:... Fun(G) as mentioned before. Thereby, for one-parameter deformed 

quantum groups q -+ 1 corresponds to the classical limit which means that 

Rab m £b 
cd -+ 0 cO d' (1.39) 

such that the noncommutative matrix entries of Tab becomes commutative. This can 

be easily seen from the Hecke condition [1, 2] which the Rabcd matrix satisfies 

R2 = (q - q-l) R + I, for An-I (Hecke condition), (1.40) 
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For the quantum group GLp,q(2), the R matrix can be given by 

p 0 0 0 

0 1 0 0 
(1.41) R= 

0 p _ q-l pq-l 0 

0 0 0 p 

The commutation relations in (1.35) can be obtained through both the R matrix above 

and (1.37). 

The Hopf algebra structure of the quantum group GLp,q(2) is given by the co

product .6., the counit c, and the antipode( matrix inverse) S of the matrix T, whose 

bialgebra is generated by the matrix elements a, b, c and d. The coproduct .6. is given 

by 

~(T) T®T 

(1.42) 

The couni t c is given by 

f(T) = C ~) (1.43) 

The anipode S is given by 

(1.44) 

where the quantum determinant of T is defined by 

(1.45) 
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The quantum determinant ~ can also be achieved by the Borel decomposition of the 

matrix T as follows 

del [( ~ bd
1
-

1

) ( a-~d-lb ~) C~'C :) J 
(a - cd-1b) d 

ad - p2cb 

ad - q2 bc. (1.46) 

The commutation relations between ~, which is not central unless p = q, and a, b, e, 

d are given by 

a~=~a 
(1.47) 

whereas ~-l obeys the following commutation relations 

(1.48) 

The matrix with the entries S(a), S(b), S(e) and S(d) is both left and right inverse for 

the matrix T, that is, 

( 

c(a) C(b)) 
de) c(d) (

a b) (s(a) S(b)) 
e d S(e) S(d) 

( 
S(a) S(b)) (a b) 
S(e) S(d) e d 

(~ :) (1.49) 



The coproduct and the antipode of the quantum determinant are given by 

A(~) ~0~, 

S(~) _ 91-1 . 

The coproduct of the inverse of the quantum determinant 91-1 is given by 

which is consistent with ~91-l = 1 = ~-1~, that is, 

.6. (~~-1) .6. (~) .6. (91-1) 

- (91 091) (91-1 091-1) 

- (~~-1) 0 (~91-1) 

- 101 

A(l) . 

The antipode of the inverse of the quantum determinant ~-1 is given by 

18 

(1.50) 

(1.51) 

(1.52) 

(1.53) 

(1.54) 

which is again consistent with ~91-1 -:- 1 = 91-191. However, it is important to note 

that 8 2 . SoS =I id generally if the algebra under consideration is noncommutative [2], 

for instance, in the GLp,q(2) algebra 

S2(a) = a S2(b) = p-2q-2b 

S2(C) = p2q2c S2(d) = d. 
(1.55) 
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1.3. The Quantum Groups SUq(2) and Uq,q (2) 

The quantum group SUq(2) is defined as the algebra Funq (SL (2, C)) which ad

mits an anti-involution defined by Tt = T-1 for q E ~+ [3, 9], i.e., the unitarity 

condition imposed on the quantum group. Tt is given by 

( 
a* c*) Tt= 
b* d* 

(1.56) 

In order to obtain the quantum group SLq(2), the quantum determinant ofthe quantum 

group GLq(2) should be equalized to one. Mterwards the unitarity condition, Tt = 

T-1 , is imposed on this quantum group so as to achieve the quantum group SUq (2) 

(1.57) 

The quantum matrix of the resultant quantum group SUq(2) read from the equa

tion (1.57) is given by 

. _ (a -qc*) T- . 
c a* 

(1.58) 

The new commutation relations of the unitary quantum group are given by 

ac = qca ac* = qc*a 
(1.59) 

cc* = c*c aa* - a*a = (q2 - 1) cc* , 

together with the conjugate relations 

c*a* = qa'~c* ca* = qa*c. (1.60) 
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The quantum determinant !!J of the quantum group SUq (2) is defined as 

!!J = aa* + q2cc* = 1. (1.61) 

Lastly, the quantum matrix T E SUq(2) satisfies the relation 

TtT = TTt = 1. (1.62) 

A unitarized form of GLp,q (2), named Uij,q (2), can be found in Jagannathan and 

Van Der Jeugt [7]. It is important to notice that our notation is different from the 

usual one as regards the usage of the deformation parameters p and q. The deformation 

parameters p and q should be replaced by pi/2 and qi/2 to obtain the usual convention 

in [7]. The fundamental T -matrix of the quantum group is given in [7] by 

T = (a b) (a -ij!!Jc*) = (a -qc*!!J) 
cdc !!Ja* c a* !!J 

(1.63) 

where the matrix elements satisfy 

ac = ijca ac* = qc*a 

a!!J = !!Ja !!J c* = e2ifJ c* q 
(1.64) 

cc* = c* c !!J* !!J = !!J!!J* = 1 

a*a + c*c = 1 aa* + jq\2 c*c = 1. 

Here q = jq\ eiO , p = if. and () is a phase. The case !!J = 1 which also implies () = 0 

corresponds to SUq (2), (1.59)-(1.60). 
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2. THE UNITARIZATION AND THE REPRESENTATION 

OF THE QUANTUM GROUP GLp,q (2) 

2.1. The Unitarization of the Quantum Group GLp,q (2) with p i= ij 

In order to obtain SUq (2), elements ofthe fundamental matrix T, T E GLq (2, C), 

are chosen in such a way that Tt = T-1 and detq(T) = 1. This choice brings about a 

restriction on the elements of the matrix such that b = -qc* and d = a*. 

The procedure applied to the quantum group G Lp,q (2, C) to carry out the uni

tarization [61 is similar to the one applied to the one-parameter deformed quantum 

group in order to transform GLq (2, q into Uq (2) but it is not completely the same. 

The most important point of the procedure we have studied is that the matrix of the 

quantum group should be factorized into a product which consists of the square root 

of the quantum determinant and a new matrix whose determinant is unity. 

T - 5Tright. 

The coproduct and the antipode of 5 are given by 

A (5) 

S (5) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

which are consistent with the equations (1.50) and (1.51). The commutation relations 

between 8 and the entries of the matrix T are given by 

a5 = 5a d5 = 5d 

b8 = pq-15b c5 = p-lq5d. 
(2.5) 
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The next step is to impose the unitarity condition on the new matrix, resulting in 

finding the relation between the elements of this matrix as in the Uq (2) case. Therefore, 

the elements of the matrix Tright become the elements of SUr (2) with r E lR 

r = pq = j5ij. (2.6) 

The commutation relations between 6 and Tright, obtained through (2.2) and (2.5) under 

the unitarity condition, i.e., using the commutation relations in (1.59) and (1.60), are 

given by 

(2.7) 

Lastly, the relations between the original matrix elements can be achieved through 

the relations between the new ones obtained after the unitarization of the matrix with 

the condition 

(2.8) 

where s is a central element of the resultant unitarized algebra of G Lp,q (2). It commutes 

with all elements in the algebra and is also hermitian s = s*. The coproduct, counit 

and the antipode of the central element s are given by 

6. (s) 

E (s) 

S (s) 

s0s, 

1, 

-1 
S . 

(2.9) 

(2.10) 

(2.11) 

The equation (2.8) allows us to determine the commutation relations between the 
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entries of T and J*, which are 

(2.12) 

These lead to the matrix elements band d of the matrix T being respectively 

replaced by a combination of c* and a* multiplied by inverse of s and a unitary operator 

u. The new fundamental matrix T of the unitary quantum group is given by 

(2.13) 

It can be easily checked that with these relations a, c and b, d defined by (2.13) satisfy 

the commutation relations (1.35) of GLp,q (2). The coproduct, the counit and the 

antipode of the unitary operator u are given by 

~(u) u®u, 

c (u) 1, 

S (u) - u*. 

(2.14) 

(2.15) 

(2.16) 

The whole algebra of the unitarized two-parameter quantum group, which the matrix 

elements obey, is given by 

ac = p2ca 

ac* = q2s2c*a 

cc* = q~s2C*C 
pp 

ua = s2au 

a*c* = p-2c*a* 

a*c = q-2s-2ca* 

uc = 1!.il S2CU u*c* = ~ij s-2c*u* 
pq pq 

uc* = P~S2C*U u*c = P~S-2CU* 
pq pq 

uu* = u*u = 1. 

(2.17) 
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It can be shown that the commutation relations (2.17) satisfy the co-product algebra 

homomorphism and the antipode algebra anti-homomorphism. For p = (j, the algebra 

introduced in (2.17) coincides with the Uq,q(2) algebra in (1.64) since s = 1 in this 

limit. 

2.2. The Representation of the Quantum Group Up,q (2) 

The operators constituting an SUq (2) matrix which corresponds to P = 1, q real 

in (1.63) can be represented by their action on states In, m} where n is non-negative 

integer corresponding to the particle number associated with the creation operator a* 

and m is a positive or negative integer associated with the Fourier transform of c [11]. 

This serves two purposes. One is that it proves the algebra presented in the previous 

section is consistent. The second is that it gives physical insight on the oscillator 

properties of the operators. The action of the operators a, a* and c, c* of SUq (2) on 

the states In, m) is given by 

aln,m) 

a* In,m) 

VI - q2n In - 1, m) , 

V1- q2n+2In+ I,m) , 

cln,m) - qn In,m -1) , 

c* In, m) qn In,m + 1) . 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Here m is an integer and n is a nonnegative integer. Motivated by this, we look 

for a representation of the algebra (2.17) on such states. Firstly, it is appropriate to 

investigate the representation of the SUr (2) through the actions of the operators CR 

and aR on such states I,) that 

(2.22) 

(2.23) 
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where, E cc. If the commutation relations given in (1.59)-(1.60) with r instead of q, 

the equations below can be achieved , 

which gives 

Similar holds for the operator aR, 

which also gives 

If the equations below are treated in the same way, 

the following equations can easily be found, 

a (f) & (r-1
,) + Ihll2 

a C'y) a (r"() + r21hl12 

1, 

1, 

1, 

1. 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

In addition, the multiplication of the state aRI,) by the state (r-1,1 from left gives 

(2.32) 

~> Bogazi~i Oniversitesi KOtOphanesi ~ 



Taking the hermitian conjugate of the both sides of (2.32) brings about 

Comparing this result with (2.27), one can easily find 

This result with the equations (2.30)-(2.31) leads to 

The number operator can therefore be given by 

The ground state or vacuum is defined by 

aRI'Ytop) 

aRaRI'Ytop) 

0, 

0, 3'Ytop Ihtop/!2 = 1, for q < 1, 

in order to obtain the harmonic oscillator properties of the operators. 
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(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

One can construct the Fock space which is the full Hilbert space of states through 

defining the state In) with the creation operators, 

CR (aRI'Ytop}) T'Ytop (aRI'Ytop)) , 

cRln) ~ CR [(aRt l'Ytop) 1 , 

Tn'Ytopln) , 

(2.39) 

(2.40) 

(2.41) 



in which 'Ytop has to be 

rv - eia 
Itop - , with a E Rj21r . 

The action of CR and cit. on the states In, a) are given by 

cRln, a) 

c'Rln,a) 
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(2.42) 

(2.43) 

(2.44) 

with the normalization (n, aln', a') = dnn1d (a - a'). Therefore, the state 10) is made 

to relate Ihll = 1 and so forth. 

Ihl! 
In) 

aRaRln) 

1 r 

10) 11) ex aRlO) 12) ex aRll) 

o (1 - r2) 11) (1 - r4
) 12) 

The action of the operators aR and a'R on the states In, a) are given by 

aRln, a) - Vi - r2nln - 1, a), 

a'Rln, a) VI - r2n+2ln + 1, a) . 

If the states In, a) are expanded in Fourier Series as, 

one can find the action of the operator CR under these transformations 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 
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If the states on the left-hand side in the last step is also expanded in Fourier Series 

without the fulfillment of the action of the operator CR on the states, the following 

relations can be acquired, 

(2.52) 

The action of the operator CR on the states In, m) is thus defined by, 

(2.53) 

If the same calculation is done for the operator aR, it can be found that 

J1- r2n . 
---"""' ezmaln - 1 m) V2K ~ " 

m 

(2.54) 

J1- r2nln -l,m). (2.55) 

Likewise, similiar equations can be found for the other two operators cil and ail. The 

complete set of equations for the action of the operators CR, c'R, aR and a'R for the 

quantum group SUr (2) is given by 

cRln,m) rnln,m-1), (2.56) 

c~ln,m) rnln,m+1), (2.57) 

aRln,m) J1 - r2nln - 1, m), (2.58) 

a~ln,m) J1 - r2n+2ln + 1, m) , (2.59) 

where m is an integer and n is a nonnegative integer as mentioned before. 

In. the second place the representation of the c5 should be determined in order to 

find the representation of the elements of the quantum matrix T. It is a good idea to 
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give an ansatz for the action of the operator 0 on the states In, m) 

oln, m) = L C (n, m, n', m') In, m) . (2.60) 
n'm' 

It is possible to choose the function C (n, m, n' ,m') as 

C (n, m, n', m') = 0 (n, n') D (m, m') (2.61) 

Through the commutation relations (2.7) and the representations of the quantum group 

SUr (2) in (2.56)-(2.59), the relation which the function D (m, m') satisfies can be found 

OCRln,m) 

rnI:D(m -I,m') In,m') 
m' 

D(m,m' + 1) 

p 
-cRoln,m) , 
q 

rnEI:D (m,m') In,m' -1), 
q m' 

'1 D (m - 1, m') . 
p 

(2.62) 

(2.63) 

(2.64) 

Same result can be achieved via the commutation relation which includes the operators 

o and cR' 

Let us choose the function D(m, m') as 

D(m, m') = F(m - mi, m + m') , 

which gives 

F (m - m', m + m' + 2) 

F(x,y) 

f{ F (m - m', m + m') , 
p 

( )

Y/2 

~ F(x). 

(2.65) 

(2.66) 

(2.67) 

Both the function D (m, m') and the action of the operator 0 on the states In, m) can 
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be rewritten in terms of the new function F (m, m') as 

m+m' 

D(m,m') _ F(m-m') (~)-2- (2.68) 

m+m' 

51n, m) L F (m - m') ('1) -2- In, m') . 
m' P 

(2.69) 

If the function F (m - m') is chosen to be 

F (m - m') = Dm,mIHB(k) , (2.70) 

the representation of the operator 8 with the states In, m) can be found as 

8In,m) = (~) m In,m - k), (2.71) 

with the function 

( )

k/2 

B(k) = ~ (2.72) 

This kind of choice for the function B(k) is for simplification and also does not make 

any changes in the commutation relations (2.17). The action of the operator 5* on the 

states In, m) is also given by 

( 
_)m+k 

8*ln, m) = Z In, m + k) . (2.73) 

The deformation parameters p and q are reparametrized in order to achieve a 

convenient form for the representation 

(2.74) 

where r, t and () are real independent parameters. The parameters rand t are positive 
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by definition and () is a phase angle. The representation also depends on a real integer 

parameter k associated with the eigenvalue of the central element s. The special case 

where t = 1, () = 0, k = 0, and therefore p = q, corresponds to the SUq (2) algebra 

for which it is necessary that q E (0,1) whereas the case k = 0, t = 1 corresponds to 

Uq,q (2) discussed in Section (2.2). The operators c, c*, a, a*, u, u* and s act on states 

as 

cln,m) rn (te-io)m-l In, m - (k + 1)) , (2.75) 

c* In,m) ( ·o)m+k rn teZ In, m + (k + 1)) , (2.76) 

aln,m) J1 - r2n (te-iO)m In - 1, m - k) , (2.77) 

a* In,m) - ,/1- r2n+2 (teio)m+k In + 1, m + k) , (2.78) 

uln,m) ei(k-2m)O In, m - 2k) , (2.79) 

1£* In, m) ei (2m+3k)O In, m + 2k) , (2.80) 

sln,m) tln,m), (2.81) 

which explicitly shows that u is actually a non-commutative unitary phase operator. 

It can be easily seen that setting t = 1, () = 0, k = 0 leads to p = q. The representation 

above then reduces to the representation (2.18-2.21) by the replacement of p and q by 

pl/2 and ql/2. 
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3. CONCLUSIONS 

The usual method of unitarizing a quantum group is merely imposing the (uni

tarity) condition TTt = TtT = 1 on the quantum matrix T. The quantum group 

Uq(2) can, thus, be obtained from GLq(2) in this manner. During this process, con

sistency also requires that the complex parameter q of the quantum group G Lq(2) is 

constrained to be real. Hence Uq(2) exists only for real q. If one applies the same 

method to GLp,q(2) , it is found that consistency requires p = if and the resulting group 

is the quantum group Uq,q(2). The quantum group GLp,q(2) is made to reduce to the 

quantum group SUq(2) for the special case in which p = q. The physical importance of 

unitarization is that it imposes star relations onto the algebra formed by the noncom

mutative entries of the quantum matrix T. The star relations achieved in this manner 

allow a physical interpretation of a subset of these operators which are interpreted as 

deformed creation and annihilation operators. 

In our approach we are able to impose such relations and thus generalize Uq,q(2) 

to Up ,q(2) with pq real. It is achieved by extending the oscillator algebra related to 

the quantum group Uq,q(2) by adding a noncommutative unitary phase operator u and 

a hermitian central operator s. For the special case p = ij, s becomes unit operator 

and u becomes a commutative phase, which results in that our algebra coincides with 

Uq,q algebra whereas our representation reduces to the representation of SUq(2) for the 

special case in which p = q. 

Taking everythip.g mentioned in this thesis into account, the obvious conclusion 

to be drawn is that a rigorous foundation for a noncommutative unitary phase operator 

lies in the tvvo~parameter deformed quantum group. Whether applications such as the 

quantun~ phase operator for a quantized boson can be incorporated into this formalism 

will be the subject of further research. 
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