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ABSTRACT

GRAVITATIONAL WAVE SOLUTIONS TO LINEARIZED
JORDAN BRANS DICKE THEORY ON A
COSMOLOGICAL BACKGROUND

In this thesis, approximate vacuum solutions of Jordan-Brans-Dicke theory for
perturbed scalar field and perturbed Robertson-Walker metric, were found. First we
obtained solutions for the scale factor a(t) and the scalar field ¢(¢) in unperturbed JBD
theory. The solutions are dependent on JBD constant w;gp which is the value of how
the scalar field is coupled to geometry of space-time. Then we added metric perturba-
tion h,, (z) to Robertson-Walker metric and perturbation d¢(x) to the scalar field ¢(t)
in order to construct linearized JBD equations. After acquiring the metric perturba-
tion and (d¢/¢) as gravitational wave and scalar gravitational wave respectively, we
solved the JBD equations which are first order in h,, (z) and d¢(x) such that the scale
factor and the scalar field solutions are a oc t and ¢ o< t~2 with w;gp = —3/2. These
results are necessary conditions for ordinary and scalar gravitational waves to exist in
vacuum case. Despite wygp > 10* for current solar system environment observations,
wypp = —3/2 makes JBD theory conformally invariant and fits recent supernovae type

Ia data.



OZET

LINEERIZE JORDAN BRANS DICKE TEORISININ
KOZMOLOJIK FONDA GRAVITASYONEL DALGA
COZUMLERI

Bu tez caligmasinda, tedirgenmis skaler alan ve tedirgenmis Robertson-Walker
metrigi icin Jordan-Brans-Dicke teorisinin yaklagik vakum ¢oziimleri bulunmustur. Ik
olarak tedirgenmemis JBD denklemleri kapsaminda 6lgek faktorii a(t) ve skaler alan
¢(t) igin ¢oziimler elde edilmistir. Bu ¢oziimler skaler alan ile uzay-zaman geometrisinin
nasil eglesecegini belirleyen JBD sabiti w;zp'nin degerine baghdir. Daha sonra lineer-
ize edilmis JBD denklemlerini olugturmak i¢in Robertson-Walker metrigine metrik te-
dirgemesi h,, ve skaler alana da alan tedirgemesi 0¢ eklenmistir. Metrik tedirgemesi ve
d¢/¢'1n sirasiyla gravitasyonel ve skaler gravitasyonel dalga oldugu elde edilerek h,,, ve
0¢ terimleri acisindan birinci derece olan JBD denklemleri ¢oziilmiigtiir. Tiim denklem-
leri saglayan ¢oziimler olgek faktorii igin a o< ¢, skaler alan igin ¢ o t72 ve w = —3/2
bulunmustur. Bu sonucglar vakum durumunda normal gravitasyonel ve skaler gravi-
tasyonel dalgalarin var olabilmesi igin gerekli sartlardir. Giincel giines sistemi gevresi
gozlemleri JBD sabiti w > 10* olmasmi gerektirdigi halde, w = —3/2 degeri JBD
teorisini konformal olarak degismez yapan degerdir ve son stipernova tip la verileriyle

uyusmaktadir.
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1. INTRODUCTION

In 1687, gravitational constant GG, was first introduced by Isaac Newton in his
theory of gravitation which explains the motion of astronomical objects and some
phenomena on the earth such as gravitational acceleration and weight. According to the
Newton’s law, gravitational force between two objects is simply proportional to masses
of the objects and inversely proportional to square of the distance between them. The
proportionality constant is the Newton’s constant which was first measured by British

physicist Henry Cavendish in an experiment in 1798 as G ~ 6.7 x 10~ m® kg™* s72.

Another concept which was introduced by Newton is inertial force which is equal
to inertial mass times acceleration. Since they are both proportional to mass of the
object, inertial force and gravitational force seem parallel to each other. This was
the idea for Austrian physicist Ernst Mach to suggest that inertia might be just a
phenomenon similar to gravitation and be related to gravitational influence of distant
fixed stars or simply general mass distribution of the universe on the object. An
example for this is the "Newton’s bucket” experiment which states that the surface
of water in a bucket can be flat if and only if an observer in the frame of the bucket
sees the fixed distant stars as not rotating. In other words, if the bucket-fixed observer
sees distant fixed stars as rotating, he must notice that the water surface is not flat
because of centrifugal force, which is an inertial force, on the water. According to

Mach’s principle this should not be regarded as a coincidence.

From this point of wiev, inertial masses of particles do not have to be constant
but should be determined by interaction of particles with a cosmic scalar field related to
gravity. Scalar field is needed because field should be coordinate independent. Masses
of particles can be measured by measuring the gravitational acceleration Gm/r? so

gravitational constant GG has to be related to the average value of scalar field ¢.

We can make an estimate of the average value of ¢ by computing the central

potential of a sphere of dust with density p ~ 10726 kg m™®, which is the ordinary



matter density of the universe, and radius R =~ 102 m, which is the radius of the

observable universe. They give a value
MR? o~ Ax 10 kg m™* (1.1)
where ) is a dimensionless coupling constant. As it is seen, 10?6 kg m™" is close to the

value ¢/G = 1.35 x 10%" kg m~'. Since pR? «~~ M/R, we can also write the following

relation

\./\10]:‘—\./\— (12)

where M is the total mass of the observable universe. M/Rc? seems as a potential just
like /R which is electric potential of charge @ at a distance R. So we can consider

M /Rc?* as cosmic scalar field. The average value of ¢ is

1

<¢>25

(1.3)

Since we live in an expanding universe, the radius and the mass of the observable
universe are time dependent quantities. So the average value of the scalar field should
be time dependent as well. The theory which considers reciprocal of G as the scalar field
was suggested by Brans and Dicke [1] in 1961 with motivation from Mach’s principle.
Brans and Dicke made modifications on Einstein’s theory to change Newton’s constant
as time dependent scalar field although Jordan and Thiry had developed their own
versions of the theory before Brans and Dicke. So these theories are called as Jordan-
Thiry-Brans-Dicke theories or more generally scalar tensor theories. However, in this

thesis we prefer common use which is Jordan-Brans-Dicke (JBD) theory.

Another motivation for Brans and Dicke to consider G as a time dependent
parameter, comes from ”Large Number Hypothesis” which is an observation [2] made

by Dirac in 1937. Dirac realised that some combinations of fundamental constants of



different branches of physics give values which are comparable to values of some other
fundamental quantities. For instance, we can construct a value of mass with G, h,
¢ and Hy, which is today’s value of Hubble parameter, and it is close to mass of an

elementary particle such as pion

B2H,\ 3

At first glance, this might seem as a coincidence and it is possible to construct a

mass value with some other fundamental quantities from a different combination like

1
<%) 107 V) (1.5)
However, 10 eV/ ¢® is approximately 20 order of magnitude bigger than mass of a
typical elementary particle. So it is rational to think that values of not all combinations
but some have a real significance. When we consider the equation which gives the mass
of pion, we have a problem with being of Hy not a constant but a time dependent
parameter. To handle this kind of problem, Dirac proposed to choose at least one
of the other quantities as time dependent. Since making A, ¢ or the other ones time
dependent requires more serious work like reformulating some areas of physics, the

most appropriate one was the Newton’s constant.

The reasons we have mentioned above motivated Brans and Dicke to propose
that the gravitational constant GG in Einstein’s field equation should be replaced with
the time dependent scalar field ¢ and energy momentum tensor for this field should be
added. After that, the field equation becomes

8T

1
R — §ngj = E[T]\ljly + Tdﬁw] (16)



2. JORDAN BRANS DICKE EQUATIONS

In the theory of general relativity, Einstein field equation can be derived from the
action by using variational principle (or variational method), which is simply taking
the variance of the action and making it equal to zero. For instance, by using this

method, vacuum field equation can be found from Einstein-Hilbert action which is

1
Spp = —— [ d'zv/—gR 2.1
EH = 160 T g (2.1)
and, of course, if you want to obtain the equation of more general case which contains

energy momentum tensor, you should add the action of this one too.

Equations for Jordan-Brans-Dicke theory can also be obtained from variational
principle by simply choosing an appropriate action in which there is a Lagrangian for
the scalar field ¢. Before writing Jordan-Brans-Dicke action, we know that our general
Lagrangian can be written as summation of Lagrangians of different sources such as

matter and the scalar field. So in JBD theory, the Lagrangian is
L=[pR+ 167Ly + Ecﬁ] (2.2)
and applying variational principle yields

1
T

Now, we can start looking for the Lagrangian of the scalar field to be able to
apply variational principle. For unit consistency, the Lagrangian of the scalar field ¢

is defined as

AT
¢

£¢ = —WJBD



where w;gp is the Jordan-Brans-Dicke coupling constant. From now on, we will omit
JBD subscript and consider it simply as w. Since we do not theoretically know how
the scalar field and geometry are coupled, this constant w is necessary in the equation.
After obtaining the Lagrangian for the scalar field, the Jordan-Brans-Dicke action looks
like

1
Sigp = — [ d*z/—g ((bR +167Ly — w

g’V oV L0
167

: (2.5)

In order to get the JBD equations, we should vary the action with respect to g*”
and ¢. We do not plan to make these calculations here. However, if you are interested,
variation with respect to ¢g"” is conducted in Appendix. Variation with respect to the
scalar field is straightforward and can be operated easily. Variance operations give us

the equations as

1 1Y 1
Ry — §Rguv :ETW + 5 (VN8V¢ - g#l’gaﬂvaaﬁgb)
y . (2.6)
+ E (@Lgb&,(b - §guuga58a¢aﬁ¢)
and
R+29",0,6 — 5.9 0,00,6 = 2
+ Eg v“ uﬁb—gg ,LL(b V¢—0 (7)
where
2
T, - 0Sm (2.8)

Ve

is the energy momentum tensor of matter. If equation (2.6) is contracted with g"”, it
becomes
8T 3

_R=-""7T_
¢ ¢

w

V0" o

0" ¢ (2.9)



and substituting equation (2.9) into equation (2.7) gives

(3 + 2w) » B 8_7r
5 Y V0,6 = 5 T (2.10)

Equation (2.6) and equation (2.10) are basic equations we will use in Jordan-
Brans-Dicke theory. As can be found in any related textbook, the predictions of Jordan-
Brans-Dicke theory are same with the predictions of Einstein field equation when w —

oo. Current observational data [3,4] for solar system environment show that w > 10%.



3. VACUUM SOLUTIONS TO JBD THEORY IN RW
METRIC

At the end of the chapter 2, we have found the Jordan-Brans-Dicke equations
and in this chapter we will focus on the vacuum solutions of the equations on a cos-
mological background. With word ”vacuum”, we mean that there is nothing in the
environment which we are interested in, no matter, no radiation and no cosmological
constant. Besides, of course, the universe we live in, is not steady state universe but it

is expanding with the scale factor, so we will use Robertson-Walker metric which is

ds® = —(dt)* + a*(t)[(dx")? + (dz*)* + (dz®)?] (3.1)

where a is the scale factor of the universe and a function of time.

Before we start calculations, the energy momentum tensor of matter and the
trace of it should be set equal to zero in order to attain fundamental two vacuum case
equations for JBD theory. We will also consider space as flat which means curvature

parameter k£ = 0. For the vacuum case equation (2.6) and equation (2.10) transform

into
1 1 af
R, — éRgW =3 (Vu0,0 — 99"’V aOs0)
(3.2)
w 1
+ E <a,u¢au¢ - ig,uugaﬁaagbaﬂ(ﬁ)
and
gwjvuau(b =0 (33)

As you can see, equation (3.3) can be substituted into equation (3.2), and the final

form of basic JBD equation for vacuum is



1
¢

w

Vo + o

1 1
R/J,I/ - éRg,UJJ - <aﬂ¢al/¢ - Eg/ﬂ’gaﬁaaqsaﬁqﬁ) (34)

Now, all we should do is to place the Ricci tensor components and the Ricci
scalar of Robertson-Walker metric in the equation in order to construct equations for
different p and v values. The Ricci tensor and the Ricci scalar of RW metric for £ =0

and in cartesian coordinates, which can be easily found in any related textbook, are

Ry = —3— 3.5
0 =3 (35

Rll = R22 = R33 = (aa + 2&2) (36)

R=6 (g + Z—z) (3.7)

where dots represent time derivatives. We assume that the scalar field ¢ is only func-
tion of time, not dependent on spatial coordinates. After substituting equation (3.5),

equation (3.6) and equation (3.7) into equation (3.4), we get for =0 and v =0

0 (3.8)
and for y=1and v =1

g8 @ 309w —0 (3.9)

Other two equations for cases y = 2, v = 2 and p = 3, v = 3 are not different from

the equation for y =1, v = 1, so they do not give any new information about vacuum



case solutions. Subtracting equation (3.9) from equation (3.8) yields

Q2 i dded  aded
it -0 (3.10)

By assuming that the scalar field ¢ and the scale factor a have solutions like power
of time ¢, equation (3.9) and equation (3.10) give us solutions of values of powers which

depend on the JBD coupling constant w. If ¢ o t* and a o t?, we get

—3¢* 4+ 2¢ + sq — 352 =0 (3.11)

6> —2¢—sqg+s—s>=0 (3.12)

Solutions to these equations for w > —3/2 and w # —4/3 are

1 2w+ 3
_ 14 313
=3, (”'% 3 ) (3.13)
17 /302w + 3)
- 3.14
o+ 3w+4 ( )

They also satisfy the relation

3g+s=1 (3.15)

These solutions are same with that of O’Hanlon and Tupper [5]. Once we get the exact

value of w observationally, values of ¢ and s can be determined.
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4. VACUUM SOLUTIONS TO LINEARIZED JBD
THEORY IN RW METRIC

In this chapter, we will find approximate solutions for the scalar field, the scale
factor, ordinary gravitational wave and scalar gravitational wave by regarding per-
turbed Robertson-Walker metric and perturbed scalar field. So we add first order
perturbations to the metric and the scalar field, and neglect all the higher order per-
turbations in calculations. Since our zeroth order metric is funtion of time, we choose
zeroth order scalar field which is ¢ to be function of time for ansatz. In addition, the
first order perturbations of the metric and the scalar field are function of time and

spatial coordinates. Our perturbed metric and perturbed scalar field are

9 () = fu(t) + by () (4.1)

and

D(x) = 6(t) + 06(x) (4.2)
where

e f,. is the Robertson-Walker metric
e h,, is perturbation to the metric and |h,,| < 1

e )¢ is perturbation to the scalar field and [0¢| < ¢

In equation (2.6) and equation (2.10), replacing the scalar field ¢ with our new per-
turbed scalar field ® leads to

1 81 1 feY
R,uu - §Rg,uu :ETNV + 5 (vﬂal’q) — 9wd BVQaﬁq))

y X (4.3)
+ @ (8#(1381,@ - §gwga68acl>85¢)
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and
2
Mg“yvu&,@ — %TT (4.4)

Since we are dealing with the vacuum solutions of the JBD equations, the energy

momentum tensor and the trace of it equal to zero. Thus, these two equations become

1 1 w 1 e
Rw—iR%f—EW@@+@g(%®@¢—§ww5%¢%@> (45)
and
1
_gﬂuvuayq) =0 (46)

)

If we write them again with explicit form of the field ® and the metric g,,, they look
like

1 1
Ruu - éR(f;w + h;w) :m[vuau(¢ + 5¢)]

L
(6 +30)?

5 U+ ) (F° = B)0,(6 + 68)05(6 + 69)

[0(¢ + 60)0, (¢ + 60) (4.7)

and

1 Ky v =
G V6 +50) =0 (4.8)

We have used inverse of the metric above in equation (4.7) and equation (4.8) as

g () = [ (t) — b (x) (4.9)
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4.1. Ricci Tensor and Ricci Scalar for Perturbed Robertson Walker Metric

We do not plan to calculate perturbed Ricci tensor explicitly. If you are interested
in detailed calculation of it from Christoffel symbols and Riemann tensor, you can
check Weinberg’s ” Gravitation and Cosmology” book [6]. General forms® of first order

components of the Ricci tensor are,

1 a? a
0Roo = 5.2 9o0ohyr — 2— aohkk + 2 o Rk (4.10)
SRt = — 200 | = (Bihes — D) (4.11)
0i — 9 0 a2 11Vkk kTtki .

SRij = [V2 ij = 0jOkhir, — 0:0kh i + 0,0,

2 . (4.12)
— —8080% + [6’0 ij 51180hkk] [ 2]1@] + 5zghkk]

Now we can consider each component of the Ricci tensor as zeroth order part plus first

order part as
R/.Ll/ = R,u,y + 5R/,u/ (413)

e R, is the Ricci tensor for metric g,
° RW is the Ricci tensor for the Robertson-Walker metric

e 0RR,, is the perturbation of Ricci tensor

Before proceeding to compute Ricci tensor components, we can make some simpli-

fications for our sake. As is known, in Minkowski space-time, which is flat, transverse-

hTT

traceless perturbation h,,, represents plane wave solution in cartesian coordinates. The

metric perturbation is composed of plus and cross polarization waves. For a plane wave

!Since Weinberg used different notation in his book, we multiply first order components of the
Ricci tensor with a minus sign.



which is propogating in 2 direction, it looks like

0O 0 0 0
WIT _ 0 hip hig O
"0 ha e 0
0 0 0 0
where
hu(t — $3) = h+6ikoxa and hay = —hyg
and

hia(t — 2°) = hye™™ and hiy = hay

13

(4.14)

(4.15)

(4.16)

This solution to Minkowski metric perturbation is for the Einstein equation. If we

want to solve the JBD equations for perturbed Minkowski metric, we should choose

our scalar field as

®(z) = do + d9(x)

(4.17)

where ¢q is constant and d¢ is a function of time and spatial coordinates. As it

can be checked in any related textbook [7], the work of Maggiore and Nicolis [8] is

recommended, the solution is

0 0 0 0
0 A _ 92 AX) 0
hw/ — o
0 AG) _AH) %
@0
0 0 0 0

(4.18)

where A (t — 23) = AJ7(F) ekon” | ACO (¢t — 23) = AU () e*o*" and 8¢/ ¢y is scalar

gravitational wave. This metric perturbation has trace n**h,, =

—2(6¢/¢o)-



14

Taking the solutions of the JBD equations for perturbed Minkowski metric into
consideration, we can assume that perturbation of the Robertson-Walker metric for
the JBD theory has trace

JH by = L (4.19)

¢

and it is transverse to propagation direction of the wave. For a wave which is propa-

gating in 23 direction, it looks like

0 0 0 0
_w
By = d 2 (4 ) 2) <AB ) 2 (4.20)
0 0 0 0

where A, B and (d¢/¢) are in wave form. As you can see, we can take hg, and
hs, components of the metric perturbation as zero. This assumption will simplify
our calculations and by using equation (4.10)-equation (4.12) components of the Ricci

tensor become

_ 3a 1 a
Roo = Roo + 6Roo = — — — 5—50000(h11 + haa) + —0o(h1 + hao)
a 2a a
i o2 (4.21)
+ (ﬁ - @) (h11 + ha2)

_ 1 1
Ry = Ry + 0Ryy =(ad + 2d*) + =0p0ph11 — = 0505h11
2 2a?
. (4.22)
a

a
+ %aohm + —5 (hi1 — hag)

_ 1 1
R22 = R22 + 5R22 :(CLCL + 2a2) + 580(90}7@2 - ﬁaggaghgg
. 2 ¢ (4.23)
+ %aohn + E(hzz — h11)
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— . ) 1
R33 == R33 + 5R33 :<CLCL -+ 20,2) — ﬁagag(hll + hgz)
. “ o2 (4.24)
+ %ao(hn + hgg) — E(hn + hag)

_ 1 a
R03 = R03 + 5R03 = _2_0,28380(}“1 + h22) + gag(hu + hgg) (425)
_ 1 1 a 242
Ry = Rig+0Rip = 58030}112 - ﬁa?,ai’)hw - %aohm + ?hlz (4.26)
ROl - R02 = R13 = R23 =0 (427)

After obtaining components of the Ricci tensor, we can easily compute the Ricci
scalar by contracting the Ricci tensor with the inverse of the metric. Again we can

regard the Ricci scalar as summation of zeroth and first order parts

R=R+0R (4.28)

e R is the Ricci scalar for metric g,
e R is the Ricci scalar for the Robertson-Walker metric

e )R is the perturbation of Ricci scalar

Contracting equation (4.13) with equation (4.9) yields

R = RMVQW = (RW + 5RW)(fW - hW)
= Rw’fl“/ - Ruuhwj + 5R;u/fwj (429)
C R— R b + Ry
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Since only Riq, Ray and R3s have nonzero values, R, h*" gives

.. 2 -2
Ruh = (ai +2a%)(h' + h%2) = (% + @—‘Z)(h11 + Pigo) (4.30)

a3

For the third term of equation (4.29), summation can be carried out by using first

order parts of equation (4.21)-equation (4.27) and RW metric as

SR " =6Roof™ + 0R1 ' + SRao f* + 0 Rag f°

i o a

1 a
:ﬁaoao(hn + hog) — ﬁao(hn + has) — <$ — ?) (h11 + ha2)

1 1 a a2

+ ﬁaoaohu - ﬁasa?)hn + ﬁaohm + E(hn — haa) (4.31)
1 1 a a2

+ ﬁaoaohm - ﬁasa?)hm + ﬁaohn + E(hn — hi1)

1 a a2
- %835’3(]111 + hag) + ﬁao(hn + hog) — E(hn + haa)

Adding equation (3.7), equation (4.31) and subtracting equation (4.30) gives the Ricci

scalar for the perturbed RW metric as
C'LQ
a? a
a  a?

a
- 2(@ + g)(hn + D)

a 1 1
R :6 (a + ) + 28080(h11 + h22) - Eagﬁg(hll + hgg)

(4.32)

4.2. Derivatives of the Scalar Field in Perturbed Robertson Walker Metric

Up to that point, since we have the Ricci tensor and scalar for metric g,,, we
can write the left hand side of the first JBD equation which is equation (4.7). For the
other side of the equation, we need to take covariant derivative of partial derivative of
perturbed scalar field ®, which consists of ¢(¢) and the perturbation d¢(z). As we have
mentioned before, we expect to find a wave solution for d¢/¢, which is a dimensionless

3

quantity. For a scalar gravitational wave with preferred propagation direction x°, we

can consider d¢ as it depends on time and 2 coordinate.



17

Let us begin with simple formula of covariant derivative of a one-form, which is

partial derivative of a scalar.
V,0,® = 0,0, — T'),0,® (4.33)
And Christoffel symbol is
= Lo ) 0 0 4
uv 59 [ nGpv + vGup — pg;w] ( 34)
After writing our metric explicitly, equation (4.34) becomes

T = %(fpA — WO (fow + hipw) + O (frup + Piap) = Op(frow + hya)] (4.35)

At this point, we do not have to compute all different combinations of Christoffel
symbol. We only need values of superindex A which are 0 and 3 since perturbed scalar
field ® depends only ¢, and z*. So, for =0 and v =0, V,0,P is

VO(?()‘I) — 808()(1) - Fgoao(b — Fgoagq) (436)
Since we have
oy =15, =0 (4.37)
equation (4.36) is written as
V0o ® = 0y0yP (4.38)

Forpy=1landv=1,V,0,®is

V10,® = 0,0,® —T%,0,® — I'3,0;® (4.39)



Since we have

1 1
F(l)l = _§f0080(f11 + hy1) = an(fll + hq1)

and

1 1
I3, = —=f%03hy, = —=—h
11 2f 3M11 gz 3

equation (4.39) is written as
V10,9 = —%80(f11 + h11)06® + 2%125):%1133‘I>
For py=2and v =2,V,0,® is
V20,® = 0,0, — I19,00P — I'5,05
Since we have

1 1
ng = _§f0080(f22 + hao) = §ao(f22 + hgo)

and
1 1
Fg2 = —§f3383h22 = —ﬁa‘zhm
equation (4.43) is written as
1 1
V30,® = —an(fm + ha2)0y® + 2—(1263@263‘1)

For py =3 and v =3, V,0,® is

V3038 = 03030 — 19,00® — 3,05
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)



Since we have

1 1
Fg:s = fooaof?,:a = 530f33

T2
and
I, =0
equation (4.47) is written as

1
V383(I) = 8363(I> — 580]‘“3300(1)

For py=0and v =3, V,0,® is

vOag(I) - 30(93@ - F8380(D - ngagq)

Since we have
0o _
Loz =

and

1

1
ng - §f3380f33 = @aofzas

equation (4.51) is written as

1
Voagq) = 80(93(13 — —80f3383<1>
2a?

Forpy=1and v =2,V,0,® is

V10,® = 0,0, — I'%,0,® — I'3,05
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)
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Since we have

1 1
P(I)Q = —§f0080h12 = 580]112 (456)
and
3 L33 1
F12 - —Ef 83h12 - —Tﬂaghlg (457)
equation (4.55) is written as
1 1
V182(I> = —éaohlgao(b + 2_a283h1283(1) (458)

4.3. Solutions to Linearized Jordan Brans Dicke Equations

In this section, we plan to construct and solve the perturbed JBD equations.
Since we have found necessary elements in previous sections, we can now place them
into the equations, and look for solutions of a, ¢ and perturbations which are consistent
with our all equations. We have two basic equations, however the first one which is
equation (4.7), will yield more than one due to different components of the Einstein
tensor which is G, = R, — %Rglw. Let us begin with the second JBD equation which

is equation (4.8). Its compact form is equation (4.6) as

1
59" V0,2 =0

After inserting explicit forms of ® and g,,, it becomes equation (4.8) which is

T VA6 +00) =0
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There is summation in this relation between metric components and derivatives of ®.

It can be expanded as

1 00 o A 11 hll o )

+(f* = h?)Va20y(¢ + 00) + [P V305(¢ + 6¢)] = 0

then inserting metric components and covariant derivatives of partial derivatives of ®,

which have been found in the previous section, into equation (4.59) yields

8080¢ 3a 80¢ 1 aogb
(¢ + d9) T a (¢ + 69) - ﬁF%(fbn + hgo)
@ N0 _ 330000 | 1 0ssb0 _

+ gF(hn + ha2) — 3 e 8 2 ¢

(4.60)
0

In order to separate the zeroth and the first order terms in equation (4.60), we need

one more arrangement like

(0+0p)™ =~ = (1 - —) (4.61)

After substituting equation (4.61) into equation (4.60) and separating the zeroth order

and the first order terms, the zeroth order equation is

oo 3aded _
o a o

0 (4.62)

Placing a o t? and ¢ o t° into this equation yields the relation 3¢ + s = 1 which is
equation (3.15). The first order equation is

00006 300000 1 30506 1 oo
- (b - ? ¢ + & ¢ - 27“278001,11 + h22)
a Oy 00000 ¢ L 3a 0opdg

+ E?(hu + haa) + 2 PRV R 0

(4.63)
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Since we know hy1 + hoy = —2a%(d¢/¢), by using this relation and integration by parts

method, equation (4.63) can be written as

o\ 3 5¢) 1 00\ 9., (00
aa(3)-5a () e (3)-Ta(5) 0 e

This is the final form of the first order part of equation (4.59) and it has the form of
a wave equation for (d¢/¢). First three terms can be written as f*'V,V,(0¢/¢), but

the fourth term is unusual.

Now, there is one more equation to solve for the perturbed JBD theory. In
total, this one gives six equations because there are six different components of the
Einstein tensor G, for our perturbed RW metric. Of course, since we have made some
assumptions about metric perturbation h,,, the number of nonzero components of the
Einstein tensor has been reduced to six. Let us begin with inserting equation (4.21),
equation (4.32) and equation (4.38) into equation (4.7) to get equation of y = 0 and
v=0as

3a 1 a a2

- — = gaoao(hn + hoo) + %ao(hn + hoo) + (— — —) (h11 + ho2)

a 2 a’  a*
a(Eh N (L BN it hos) + = o (s + o)
a a2 &3 a4 11 22 20/2 ovo\7t11 22
1 1
- @8333(%1 + ha2) = Waoao(ﬁb +0¢)

[(80¢80¢ + 2000000¢) — %(a@ao(b + 260¢805¢)]

(4.65)

w

+ -
(¢ +d¢)?
Some terms cancel each other, so this equation can be simplified as

) 1 a 042 .
3a% — 2—(1253(93(h11 + hao) + aao(hn + hao) — ?(hn + ho) = a? 0¢0¢

2(5080¢)5¢+ 500000 ¢ 5 [(D00)? (30¢)25¢+80¢805¢

& CTe T THY [T & &

(4.66)
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As we have mentioned before, we can separate this equation in two parts as the zeroth

and the first order in h,, and d¢. So the zeroth order part of this equation is

a*  0pOooh (Do9)?
BT Y

This equation is exactly equation (3.8), so it does not give any new information about

the solutions of @ and ¢. For the first order part, equation (4.66) can be written as

— GZ%;)&b — 2%28383@11 -+ hgz) + gao(hll + hgz)
) (4.67)
2 ) DR [ 050  u]

By using Ay +hae = —2a?(0¢/ ), equation (4.64) and relations via integration by parts

D000 00\ | 5% ?\ | 900opdd
K a°8o<¢> ;8°(¢)+O§2 (4.68)

i [_ (009)*d¢ n 80¢305¢} _ waz@ao (5_¢)

e e 5 5 (4.69)

equation (4.67) can be simplified as

() etpa () meeal(G) o

We can write this equation like

@_%¢_ O (4.71)
. — .

¢ ¢

We have assumed that ¢ and a have power-law solutions like ¢ o t* and a o t9. So,

after we put them into equation (4.71), we get

g=s(w+1) (4.72)
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This equation is a new relation of ¢, s and w. Now we have three equations to solve for
three unknowns. Before finding solutions for ¢, s and w, as well as ¢ and a, we should
keep going and find consistency of this relation for other equations. Equation (4.7) for

p=1land v=1I1is

. ) 1 1 a a?
(Ga -+ 2&2) + 56080h11 — 2—a283(93h11 + %80@2 + g(hn — hgg)
. 1 1
— 3(0@ + a2) - §aoao(h11 + hgg) + ﬁ&g@g(hn + hgg)
a2 i i a2 1 (4.73)
+ <? + a) (h11 + ho2) — 3 (a + g) hi1 = Wv1a1(¢ +d9)
w

T 501 5 o (006000 +20:60006) + Ood o]

Terms of this equation can be arranged. By using equation (4.42) it can be written as
. a 1 1 a®>  2a

— 2aa — CL2 + —80}122 - —8080h22 + —8383h22 - =+ — hn

2a 2 2a? a a

2
a, .0 .00 Db Dopdohi
+5h22_ aa 5 + aa e aa 5 2%

2 [ (D00)? (30¢)25¢+30¢805¢+ (ao¢)2h11]

(4.74)

+ wa —

2¢2 ¢3 ¢2 2@2 ¢2

Before inserting the values of hqy; and hos to the equation, we separate the zeroth order

terms of the equation as

Since this is exactly equation (3.9), it does not have any new information for us. After
substituting hy; and hgy in terms of A and d¢/¢, the first order part of the equation

can be arranged as

%80(90%1 + %(%A — 2%12(9353A + aQL(faoA + %(’)080 (%b)
34, (09 1 00\ | op, (00  a, (00
o (E) 92 <3) + 25 O (5) =% (3> (4.75)

Qo o¢ 0o 0o
T % (z) Ty (z)
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As it is seen, the left hand side of the equation is in the form of equation (4.64) for A
and 0¢/¢ and they are both equal to zero. Again if we use ¢  t* and a o t? relations,

the right hand side of the equation gives the equality which we are familiar with,
g=s(w+1)

As can be checked, equation (4.7) for 4 = 2 and v = 2 is the same for p = 1 and v = 1.
For p=2and v =2, it is

. ) 1 a?
(CLCL -+ 2@2) —+ 580(90h22 — 83(93h22 —|— 80h11 —|— (h22 — hll)

. 1
— 3(aa + a2) — éaoao(hll + hzg) + ﬁ@g@g(hn + hgz)
a
& i @ 1 (4.76)
+ (? 5) (h11 + hoy) — 3 ( E) hog = 6+ 99) ————V05(¢ + 69)
w

T e+ 09)y [a®(D0pDo¢ + 2000000)) + BodBodhas]

In order to see the similarity between = 2, v = 2 and ¢ = 1, v = 1 cases, this

equation can also be organised as

o2

+ ghu = —aaa;);b + aa 80226¢ ad80£¢ — 8o¢28:;h22

2 [(Q00)®  (009)*09 n D000 ¢ n (009)*has
2¢? @3 P> 2a2¢?

hd 1 1 -2 2--
— 2ai — @ + gaohn - —3030}111 + 55 0303h11 — (a_ + _a) has
a 2a a

(4.77)

+ wa

Equation (4.7) for p =3 and v =3 is

n2

. ) 1 a a
(CLCL + 2@2) —_ ﬁagﬁg(hu + h22) —+ %ao(hn + h22) - ?(hjn + hgg)

. 1 1
— 3((1(1 + CL2) — 58060(h11 + hgz) + —283@3(]111 + hgg)

o (4.78)
+($+ a) (ur +hi) = 55 6¢>V333(¢+5¢)

w 2
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This can be arranged by using equation (4.50) as

D3050¢)
¢

. 1 a a
— 2aa — a2 — —8080(h11 + h22) + %80(h11 + hgz) -+ a(hll + h22) =

. 009 8¢5¢ . 0000 O )? Dod)28¢d  DydpDedd
aa; +a 0¢2 —aa 07+wa2 (20¢2) —<O¢l + 0¢2O

(4.79)

The zeroth order part of this is equation (3.9)

which we already know, and to find the first order, we can simply write hi; + hoy =

—2a?(8¢/ ). This leads to

() 5 (3) w0 (5) 5 (5)
0 0 o) o\ (4.80)
:__;a (5¢) L %o, (5¢) f%¢aj(5¢) '
o) o g o "\¢
Again the left hand side of the equation is equation (4.64) and it equals to zero. After

substituting ¢ o t* and a o t%, rest of the equation gives equation (4.72) as
q=sw+1)

Let us continue with equations of nondiagonal components of the Einstein tensor. For

pw=0and v =3, it is

8380(5@5 CL 835§Z§ i 80¢835¢

——835’0(}111 + haa) + as(hn + hag) = $ @ 6 w e

(4.81)
The left hand side of the equation equals to

1 ; 5
‘3?%%@H+Mﬁ+%%@ﬂ+@ﬂ @%(j) (4.82)
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and the first term in the right hand side can be written by using integration by parts

as

agzzéqb _ o (%ﬂﬁ) N 6%@533 (%) (4.83)

After inserting last two equations into equation (4.81), the ultimate relation is

Ay (09 _ %o, (09 %o, (09
aag(d)) ¢a3(¢)“’¢a°’(¢) 484

and using ¢ o« t* and a x t? gives
g=s(w+1)

which is equation (4.72). Lastly, for 4 =1 and v = 2, equation (4.7) is

1 1 a 242 i | a’
anaohlz — 2—61263@3}112 - 2—aaoh12 + ?hm -3 (5 + E) hl?

_ lambaohm n gﬁoqﬁaoﬁbhu
2 ¢ 2 @?

(4.85)

If we replace hio with a?B where B is cross polarization wave and substitute equation
(3.9) into equation (4.85), it becomes

1 3a 1 0
SO0 B + 2008 — 5505055 + b a8 =0 (4.86)

2¢
which is equation (4.64) for B.
As we have seen, equation (4.64) has a form like a wave equation for (6¢/¢), A

and B. In this section, the relation ¢ = s(w + 1) consistently appeared for different p

and v cases. So now, we can look for solutions for ¢, s and w. We have the relations

—3q2+2q+sq—°§u32:0
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6> —2¢—sq+s—s2=0

¢=s(w+1)

which are equation (3.11), equation (3.12) and equation (4.72) respectively. The so-
lutions that satisfy these relations are ¢ = 1, s = —2 with w = —3/2. Thus, we can

write

a(t) = ao (%) (4.87)

and

o(t) = do (—) - (4.88)

Although our finding for w seems unpleasant because it is a negative coupling
constant and solar system observations have shown w > 10%, the JBD theory with
negative w value can explain accelerating expansion of the universe [9] without any
necessity of cosmological constant [10]. In addition, w = —3/2 is the value which
makes the JBD theory conformally invariant [11]. Also the JBD theory with w = —3/2

fits recent data of type la supernovae [12].
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5. CONCLUSION

So far, we have reviewed the motivations that encouraged Jordan, Brans and
Dicke to consider Newton’s gravitational constant G as a time dependent parameter
which is related to cosmic scalar field ¢. In addition, we have mentioned how Dicke
modified Einstein field equation with the idea of that if there is a scalar field, its energy
momentum tensor should be included in the field equation. After writing appropriate
Lagrangian for the scalar field, which is the function of ¢ and d,¢, the action of JBD
theory has been easily defined. Then by using variational principle, the equations of

JBD theory have been obtained as we have showed detailed calculations in Appendix.

Furthermore, we have solved the JBD equations for unperturbed RW metric and
unperturbed scalar field, and as a result we have had two independent equations in
terms of a, ¢ and w. By assuming a and ¢ have power-law solutions like a o t? and
¢ o t*) values of ¢ and s have been found, depending on the value of w. The JBD
constant w has been put in the Lagrangian of the scalar field, since we have had no

idea how the scalar field is coupled to geometry.

Lastly, we have added perturbations to the metric and the scalar field. Perturba-
tions are dependent on time and spatial coordinates because the metric perturbation
and d¢/¢ should have wave solutions. Since scalar wave should be a dimensionless
quantity when it is coupled to geometry, not the perturbation of the scalar field, but
d¢/¢ should be a scalar wave. In order to simplify our calculations, we have made
a gauge choice for the metric perturbation h,, such that it is transverse to preferred
propagation direction of gravitational wave. Then, we have computed the Ricci ten-
sor components, the Ricci scalar and the covariant derivatives of one-forms, which are

partial derivatives of perturbed scalar field, for perturbed RW metric.

After we have constructed the JBD equations for perturbed metric and perturbed
scalar field, we have separated the equations as the zeroth and the first order equations

in terms of h,, and d¢. As we expect, the solutions of the zeroth order equations are
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not different from the solutions of the unperturbed JBD equations. However, the first
order equations have produced two important results. One of them is the form of the

wave equation for scalar and ordinary gravitational waves. For d¢/¢, it is equation

(4.64) as

6o\ 3a. (¢ 1 0¢\  Oop,, (00
—(9080 (g) — ;aao <E> + ?3383 (E) — %80 <E) =0

This equation is similar to ordinary wave equation, since the first three terms can be
written as "V ,V,(d¢/¢). However, the last term is unusual. The other result is a
new relation of ¢, s and w values. We have had three independent equations for three
unknowns. Finally, we have found values of ¢, s, and w as 1, —2 and —3/2 respectively.

Thus, we could write the solutions to the scale factor and the scalar field as

w-a ()

and

8(t) = 6o (i) N

These values of ¢, s and w are the only solution for all the equations to be satisfied.
They determine how the scale factor and the scalar field evolve with time for ordinary
gravitational and scalar gravitational waves to exist and have the form of the wave
equation. Also w = —3/2 is another necessary condition for being of the JBD theory

conformally invariant and compatible with supernovae type la data.
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APPENDIX A: JBD EQUATION FROM VARIATIONAL
PRINCIPLE

In this Appendix, we will obtain one of the basic Jordan-Brans-Dicke equations
from the action by using variational principle. Taking variance of the JBD action
with respect to inverse of the metric g,, and making it equal to zero is the procedure.
Variation of the JBD action with respect to the scalar field is easy to operate so we
will only focus on the first one. Let us begin with the JBD action which is equation

(2.5)
9"V oV
167

SJBD = L d4$\/ —g (¢R + 167T£M — W ¢

Since the Ricel scalar is the contraction of the Ricci tensor with the inverse of the

metric, this equation becomes

WW) (A1)

1
Sipp = —— | d*zv/—g (gbRWg”” + 167Ly — 5

167

By taking variation of the action, we can write

5SJBD - F dl’ [5\/_¢Rw/gwj + \/_Qb(SR,uung + \/_(bijdng

—|—5 / dl’4\/ —gﬁM

Now, there are two variations we have to find. One is 6,/—g, and the other one is 0 RR,,,,.

Let us begin with the first one and write the following relation

In(det M) = Tr(In M) (A.3)
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where M is a square matrix with nonzero determinant. Taking variance of this yields

§(det M) = Tr(M 6 M) (A.4)

det M

After replacing matrix M with metric g,, and the determinant of the matrix with the

determinant of the metric, which is g, equation (A.4) can be written as

09 = 9(9""0gu) (A.5)

Since we are looking for variation with respect to g"”, we should raise subindices of
0gu- To be able to do that we will consider Kronecker delta which is a constant

number. Taking variance of the relation g,,g7" = 9}, gives

5gua = —gaug,w@W (A6)

By using equation (A.6), equation (A.5) can be arranged as

69 = —9(gud9"") (A7)

Now if we turn back to

_ 149
5\/—__—2\/__9 (A.8)

and substitute equation (A.7) into it, we obtain

1
5\/ — Y= _5 vV —4g g,uu(sglw (AQ)

For the variance of the Ricci scalar, we start with the relation

5RMV =Ry, = 6(80Fg,u + Fg)\rzi\,u - aVFgu - Fg)\rc);,u) (A]'O)

nov
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and so

SRS, = 0,007, + 6T\, + 19,005, — 0,007, — 6T, I, — 7,612, (A.11)

pov

Since covariant derivatives of the variations of the Christoffel symbols are

Vool'y, = 0,007, + 9,0, —I';,00%, — 5,609, (A.12)

V,0r7, = 0,6ry, + 9,60, —I;,00%, —I),007, (A.13)
then the variation of the Riemann tensor can be written as

SRS, = V6T, — V,6T9, (A.14)

uov

By using this, the second term of equation (A.2) in the parenthesis is written like

/da:”‘\/—ggbg“"éRW = /d$4\/ —9¢9"" (Vol7, — V,0I7,)

(A.15)
= [ s V=gova(gar, - 95T,)
Regarding how Christoffel symbol is defined, the following relations can be obtained

1
0Ty = 59" (0009 + 0udGup — Op0gm) (A.16)

1
0Ty = 59" (Vubgau + Viudgup = V s0gm) (A.17)

Now we will consider the first term in parenthesis in equation (A.15). For the second

one, the same procedure should be followed.

v 1 4 4 4
g"ry, = 59" 9NV 0o + 6" 9N 1000, — 9" 5V 0 G) (A.18)
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By using equation (A.6), this equation can be arranged as

v 1 v v v
gH 5Fz>\/;¢ = 5( - g“ gApgpAg,uuvu(;g A — gN gkpgp,ugp)\v,udgp)\

(A.19)
+ 9" 9 99V 509" )
Thus
1
9oL, = S(=Vibg™ = V,09™ + ., V69") (A.20)
And for the second term, applying same steps gives
1
g“)‘él“gu = 5(—Vgég")‘ — 9o Vg7 + V69" (A.21)
By taking difference of them,
g*“’(?f‘;\u — g“’\éf‘gu = gWV’\ch’“’ — Vuég“)‘ (A.22)
we can write equation (A.15) as
/ da*\/—gpV (g™ oT;, — g or7,)
= / dz'/=gpV (9 V09" — V,.59")
=- / da'/ =gV (g V69" — V ,,09") (A.23)

= / dr*/=g(g,, VAV ¢dg"” — V,Vrdg")

= / dr*/ =999’V oV d — V¥, )5g"

In the second line of equation (A.23) we have just used the equality in equation
(A.22). In the third line, integration by parts has been applied. Also volume element of
a covariant divergence has been set equal to a boundary contribution at infinity, which

we can set to zero, thanks to Stokes’ theorem. In the fourth line, again integration by
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parts method and Stokes’ theorem have been applied. In the last line, some simple
index manipulations have been made for nicer looking of it. Substituting equation

(A.9) and equation (A.23) into equation (A.2) leads

1
6S78p = — [ dz'/=g0g" [¢Ru + (9w 9*°VaVsd — V,.V,0)

167
gaﬂva¢VB¢ —w quvaQb
¢ ¢

1 1
=5 0RGuw + 59 (A.24)

2
+(5 / d.’IZA\/ —gﬁM

Now, by setting the variation of the JBD action equal to zero, the JBD equation can

be obtained as in equation (2.6) which is

1 8T 1
iRguu :ET,LLI/ =+ 5 (V,uau(b - guugaﬁvaaﬁ(b)

w

1
+ E (au¢au¢ - §guugaﬁaa¢aﬁ¢)

R, —

where for definition of energy momentum tensor of matter, we have used equation (2.8)

as

2 §Su
M V=g






