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ABSTRACT

NARROW ESCAPE TIME IN BIOLOGY

In biological systems, the main challenges in modeling transport processes

can be summarized as being inside a heterogeneous medium, which is a fluctuating

environment, and striving to reach to a chemically active receptor, which acts like an

absorbing boundary while the other organelles of the interior of a living cell acting

like active obstacles. These are very complex problems in general. The only viable

approach known is to develop some stochastic models to take into account these

aspects. A continuous random process, mostly Brownian motion, is commonly used

to model the motion of chemicals in the intracellular transport. In certain cases,

these chemicals display Brownian motion on the 2D surface of the cell. Therefore,

the first passage time of such chemicals is the main determining mechanism for

triggering critical biological processes.This requires studying a stochastic process

on a two-dimensional surface which is topologically a sphere with small disks on

them. These small disk like regions represent absorbing boundaries corresponding

to the receptors. Some studies show that the calculated first passage times for

such environments grow with the logarithm of the size of the disk like regions. In

some cases, this time scale can be very long compared to the motion of the cell in

its environment. For the dynamical model where the surface is fluctuating slowly

as the particle executes Brownian motion on this surface, we can make use of a

stochastic process with a variable background metric. Since the variations of the

metric are slow we may use an adiabatic approximation. We analyze the variation

of first passage times within this dynamical model.
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ÖZET

MOLEKÜLÜN RESEPTÖRE İLK KEZ GELME ANININ

HESAPLANMASI

Biyolojik sistemlerde hücre içi molekül geçişlerinin modellenmesindeki temel

sorunların başında hücre içinin heterojen yapıda olmasıdır ki bu durum hücre içinin

daha değişken bir yapıda olmasına neden olmaktadır. Diğer bir parametre ise

molekül kimyasal olarak aktif bir reseptöre ulaşmaya çalışır ki bu durumda da

reseptör molekülü emen bir yüzey olarak işlev görür. Bu süreç içerisinde hücre

içindeki diğer organeller aktif bariyer olarak düşünülebilir. Bunlar oldukça karmaşık

problemlerdir. Tüm bu parametreleri hesaba kattığımızda bunların çözümü için

kullanacağımız en güvenilir yol stochastic modeller geliştirmektir. Sürekli ran-

dom olarak gelişen süreçlerde, kimyasal moleküllerin hücre içi geçişlerinin modellen-

mesinde genel olarak Brownian hareketi kullanılır. Bazı özel durumlarda, kimyasal

moleküller hücre yüzeyi üzerinde iki boyutlu Brownian hareketi yapmaktadır. Bu

nedenle biyolojik süreçlerin takibinde moleküllerin ilk geçiş ya da varış anının hesa-

planması temel mekanizmadır. Bu durum stochastic süreçlerin iki boyutlu yüzeyler

üzerinde çalışılmasını gerektirmektedir. Bu iki boyutlu yüzeyler topolojik olarak

üzerinde küçük diskler barındıran daire olarak düşünülebilir. Bu küçük disk yüzeyler

emici yüzeyler yani reseptörler olarak işlev görür. Bazı çalışmalar göstermiştir ki

hesaplanan ilk geçiş anı diske benzeyen alanların boyutlarının logaritmik değişimi ile

büyümektedir. Bazı durumlarda hücrenin hareketi düşünüldüğünde zaman oldukça

uzun olabiliyor. Dinamik modeller için ki burada yüzey yavaşça dalgalanmaktadır

molekülümüz yüzey üzerinde Brownian hareketi yapmaktadır ve burada biz daha

değişken bir metric kullanabiliriz. Metric değişimi oldukça yavaş olduğundan adia-

batic yaklaşımı kullanarak biz bu çalışmamızda dinamik modellerde ilk geçiş anını

hesapladık.
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1. INTRODUCTION

The e�cient delivery of proteins and other molecules to their correct location

within a cell plays a fundamental role in normal cellular function and develop-

ment [1]. Furthermore, the failure in intracellular transport leads to serious degen-

erative diseases. In particular, the breakdown of intracellular transport is especially

acute for brain cells, neurons, which are the most complex and the largest cells in

the body. In general, the regulation of protein tra�cking within neurons is of essen-

tial importance to control the intensity of synaptic connections between neurons [3].

For instance, synapses can be strengthen or weaken over time and this ability of

synapses in neuroscience is called as synaptic plasticity. The increase or decrease in

the activities of synapses and the alteration of the distribution of neurotransmitter

receptors are some of the factors which lead to the synaptic plasticity. On the other

hand, it is thought that the permanent changes in synapses a↵ects recording infor-

mation. Hence the synaptic plasticity is central to understanding the mechanisms of

learning and memory. As a result, degeneracy of this structure and dysfunction in

protein tra�cking are associated with serious illnesses such as memory loss including

Alzheimer. [4]

Understanding intracellular transport has been still a challenging task of cel-

lular biology and required contributions from the di↵erent fields of science such as

biophysics, statistical physics and applied mathematics [5]. In our study we will

provide the general perspective on stochastic models of intracellular transport. In

particular, one of the major aims is to cover a wide range of models and analytical

methods specifically over time.

To understand the synaptic dynamics we have studied the Brownian motion

since the environment of a cell is highly viscous [3]. It is thought that a particle

is in a restricted domain with a small window on the boundary. One of the major

characteristics of di↵usive transport inside the cell is that the Brownian particle on
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reflecting bounded domain aims to escape from this domain through a small absorb-

ing window.

Figure 1.1. Schematic expression of a synapse between two neurons [2].

This case is known as the narrow escape problem, (NEP). The narrow escape prob-

lem in di↵usion theory is the calculation of the mean first passage time. When we

formulate the narrow escape time, (NET), in terms of boundary value problems for

partial di↵erential equations, their singular perturbation analysis gives the exact

asymptotic expression. The di↵usion coe�cient, the ambient potential, dimensions,

and the local and global geometrical properties of the domain, and its boundary

are some of the fundamental elements of this analysis.The mathematical modeling

of the neuronal synapse and the function of its di↵erent parts can be thought as

the application of the narrow escape problem [6]. Specifically, a synapse between

two neurons is represented schematically in the Figure 1.1. There are electrical

and chemical signal conductions from the presynaptic to the postsynaptic neuron

by releasing certain neurotransmitters. The neurotransmitters can di↵use across

the neuronal cleft until they bind to receptors in the postsynaptic neuron, or be

absorbed by the surrounding cells such as glia cells.
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The geometrical shape of a spine is definitely important for the physiological

function of the cell. Since di↵usion is a major part on the regulation of several

physiological phenomena in dendritic spines, the dramatic increase in calcium con-

centration will induce synaptic plasticity. Beside spine geometry, endogenous bu↵ers

and the rate of exchangers have also impact on this process. Here the determination

of the ionic flux from the spine head through the neck to the dendrite is thought as

actually the narrow escape problem. Obviously we can define most of functions at

the cellular level as NEP.
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2. NARROW ESCAPE TIME

The calculation of the mean first passage time is defined as the narrow escape

problem in di↵usion theory. The Brownian particle on reflecting bounded domain

aims to escape from this domain through a small absorbing window. As the absorb-

ing window shrinks to zero, the mean time to absorption diverges to infinity and

thus the narrow escape turns out to be a singular perturbation problem.

The narrow escape problem corresponds to deriving the solution to the mixed

Dirichlet-Neumann boundary value problem for the case of the Poisson equation with

small Drichlet and large Neumann parts. The root of the narrow escape problem

goes back to Helmholtz (1860) and Lord Rayleigh (1945) in the context of acoustic.

The interest in the problem is renewed because the narrow escape time (NET) plays

a crucial role to determine biological cell functions from its geometrical structure.The

NET is essential in molecular and cellular biology since it represents the mean time

that it takes for a molecule to hit a target-binding site shown in the Figure 2.1. It

is expressed in many models such as in stochastic models of chemical reactions, in

modeling the early steps of viral infection in cells, and in the regulation of di↵usion

between the mother and daughter cells during division. In the NET coarse-grains

di↵usion from the molecular to the cellular scale, current is observed on the time

scale of the NET.

Another application field of the NET is the context of calcium dynamics in neu-

ronal synapsis which is one of the fundamental cases that manifest the stimulation

of several interacting species in a confined microdomain. The number of molecule

in the reaction is assumed approximately of the order of tens to hundreds. By using

fluorescent dynes we can track molecules in the reaction and di↵usion process. Sim-

ilarly in the simulation of synaptic transmission we can look at the process of the

arrival of neurotransmitter molecules at receptors on the postsynaptic membrane.
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Figure 2.1. Brownian trajectory on the cell.

2.1. Formulation of the Narrow Escape Problem

Before we embark on the narrow escape problem, we review the basic aspects

of probabilistic approach to simple processes.

2.1.1. Random Walks

We now look at the basic features of a probability distribution of a random

walk, as well as the relation between random walks and di↵usion, and hence we

follow essentially the book [20]. In this sense, we use some derivations which also

serve to introduce the mathematical tools such as Fourier and Laplace transforms,

the generating function, and simple asymptotic analysis. The generating function

is a mathematical expression, depending on a power series expansion, that simpli-

fies a number of problems. Furthermore, it holds all information associated with the

functions producing the generating function in an exceedingly compact form. Before

studying same standard problems, let us understand the general strategy to solve

these problems. Consider a set of numbers C(N), and assume that C(N) satisfies

a complicated recurrence relation which is di�cult to solve with a simple algebraic

method. In the generating function approach, one has the following steps:
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G(z) =
1
X

N=0

C
N

zN (2.1)

Note that we may recover C
N

via Chauchy Theorem.

C
N

=
1

2⇡i

I

G(z)

zN+1

dz (2.2)

Moreover, for large values of N we may use an exponential form assuming that we

can calculate G(z).

C
N

=
1

2⇡i

I

eln(G(z))�(N+1)ln(z)dz (2.3)

In the limit N ! 1, if we can find a saddle point, this gives us an asymptotic so-

lution for C
N

. To illustrate this approach, we will apply these ideas to the Random

Walk. Let’s suppose a particle jumps at discrete times between the nearest neigh-

boring sites on a one-dimensional (1D) lattice with unit distance. At each step, the

probability for taking a unit step to the right is p and for the left site the probability

is q = (1� p). Note that P
N

(r) indicates the probability that an N-step walk is at

site r. The evolution of the probability is simply given by the equation;

P
N

(x) = pP
N�1

(x� 1) + qP
N�1

(x+ 1), r 2 Z (2.4)

In our discussion, if p = q = 1

2

, then such a walk is called symmetric walk, whereas

if p < q or p > q, it is biased to the left or right.
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Now we generalize the 1D Random Walk. To higher dimension consider C(N ; ~x, ~y)

is the same as the number of N-step walks that begin from the point ~x and end up

at the point ~y. Then the generating function is the following equation in terms of z

,~x ,~y

G(z, ~x, ~y) =
1
X

N=0

zNC(N, ~x, ~y) (2.5)

By definition of the generating function, C(N, ~x, ~y) is the coe�cient of zN in this

expansion as a function of z. The probability that an N-step walk starts out from

the point ~x and ends at ~y is given by C(N, ~x, ~y) divided by the total number of

walks. For an N-step walk on the lattice, the number of walks that begin at site ~x

and end up at site ~y is equal to the sum of the number of (N�1) step walks starting

at ~x and ending at sites that are the nearest neighbors to ~y.

Figure 2.2. The recursion relation for random walks.

C(N ; ~x, ~y) =
X

i

C(N � 1; ~x, ~w
i

) (2.6)
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where w
i

are the sites adjacent to ~y. The relationship between C(N ; ~x, ~y) and the

corresponding quantities is defined in the Equation 2.6. The Figure 2.2, based on

the figure in the book [20], is a pictorial description of the process expressed in the

Equation 2.6. This equation considers all positive, non-zero values of N. When N=0,

our equation becomes C(0; ~x, ~y) = �
~x,~y

, where � is the discrete delta function. As

the next step, we construct the generating function defined by the Equation 2.5

G(z; ~x, ~y) =
1
X

N=1

zNC(N ; ~x, ~y)

Next we use the recursion relation by the generating function.

G(z; ~x, ~y) =
1
X

N=1

zN
✓

X

i

C(N � 1; ~x, ~w
i

)

◆

= z
X

i

1
X

N=0

zNC(N ; ~x, ~w
i

)

= z
X

i

G(z; ~x, ~w
i

) (2.7)

If we add the term z0C(0; ~x, ~y) = �
~x,~y

, when N = 0, we end up with

G(z; ~x, ~y) = z
X

G(z; ~x, ~w
i

) + �
~x,~y

(2.8)

Notice that the left hand side of the equation depends on the position vector ~y,

whereas the right hand side involves the locations, ~w
i

, adjacent to ~y. In such a form,

it is not easy to solve the equation by a simple algebraic method. This relation is

mainly based on the translational symmetry of the lattice. By using the symmetry,
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we can express both C(N ; ~x, ~y) and the generating function G(z; ~x, ~y) in terms of the

di↵erence of the position vectors ~x and ~y. This enables us to rewrite the generating

function in the form of G(z; ~x � ~y). Then, we take a spatial Fourier expansion of

G(z; ~x, ~y), if

g(z;~k) =
X

~x

G(z; ~x� ~y)ei
~

k·(~x�~y) (2.9)

then, we multiply G(z; ~x� ~y) by ei
~

k·(~x�~y) and sum over ~x,

g(z;~k) = z
X

~x,~w

i

ei
~

k·(~x�~y)G(z; ~x� ~w
i

) + 1

= z
X

~x�~w

i

,~w

i

ei
~

k·(~x�~w

i

)G(z; ~x� ~w
i

)ei
~

k·(~w
i

�~y) + 1

= zg(z;~k)
X

~w

i

ei
~

k·(~w
i

�~y) + 1

= zg(z;~k)�(~k) + 1

g(z;~k) =
1

1� z�(~k)
(2.10)

where �(~k) is called the structure function of the lattice. �(~k) depends on the lattice

geometry. In 1-D case, we construct the probability distribution by using the inverse

transform.

P (x,N) =

I

dz

2⇡izN+1

Z

⇡

�⇡

dk

2⇡
e�ikzg(z, k) (2.11)

with the z-contour which is taken around the unit circle. When we expand g(z, k)

in a Taylor series with respect to z, the inverse of generating function yields

P (x,N) =
1

2⇡

I

e�ikx�(k)Ndk (2.12)
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where �(k) = peik+qe�ik. To evaluate the integral, we write �(k)N = (peik+qe�ik)N

in terms of a binomial series. This gives

P (x,N) =
1

2⇡

I

e�ikx

N

X

m=0

✓

N

m

◆

pmeikmqN�me�ik(N�m)dk

=
N !

�

N+x

2

�

!
�

N�x

2

�

!
p

N+x

2 q
N�x

2 (2.13)

String’s approximation for any large n;

log(n!) ⇡ n log(n)� n+
1

2
log(2⇡n) (2.14)

simplifies the expansion for large N and this binomial approach in the long-time

limit results in the solution

P (x,N) ! 1p
2⇡Npq

e�
(x�Np)2

2Npq (2.15)

In fact, the Gaussian distribution in the large time limit arises for any hopping pro-

cess in which the mean and variance of the displacement x in a single step are finite.

This is known as the statement of the central-limit theorem. When hxi and hx2i are

both finite, �(k) has the-small-k series expansion.

�(k) = 1 + ikhxi � 1

2
k2hx2i.....

⇠ eikhxi�
1
2 hx

2i , k ! 0 (2.16)
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When we substitute this result for �(k) into the Eq 2.12, the integral is dominated

by the behavior in the region around k = 0. For large N , the resulting Gaussian

integral gives the approximation

P (x,N) ! 1
p

2⇡Nhx2i
e�(x�hxi)2/2Nhx2i (2.17)

The Equation 2.17 gives the probability distribution in 1-D discrete random walk.

Now, let’s take an appropriate continuum limit to derive a di↵usion equation in

continuous space and time. For the continuum analogy of the occupation probability

of the random walk, first we should introduce infinitely small step lengths �x and

time interval �t for space and time respectively. Then, we set

P
N

= c(x, t)�x with x⌥ 1 7! x⌥ �x , t = N�t (2.18)

For the next step, we substitute reconstructed P
N

(x) into the master equation 2.4,

and it gives the following relation for the probability density c(x, t);

c(x, t) = pc(x� �x, t� �t) + qc(x+ �x, t� �t)

' (p+ q)



c(x, t)� @c

@t
�t

�

� (p� q)
@c

@x
�x

+
(p+ q)

2

@2c

@2x
�x2 (2.19)

where we expand c to first order in �t and to second order in �x. We use that

p + q = 1. Dividing both sides by �t and taking continuum limit �x, �t ! 0 gives

finite quantities such as V and D.

V = lim
�x,�t!0

(p� q)
�x

�t
, D = lim

�x,�t!0

�x2

2�t
(2.20)
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We obtain the fundamental convection-di↵usion equation, in other words, the Fokker-

Planck equation with constant drift.

@c(x, t)

@t
= �V

@c(x, t)

@x
+D

@2c(x, t)

@x2

(2.21)

For the symmetric random walk, the probability distribution satisfies the simple

di↵usion equation.

@c(x, t)

@t
= D

@2c(x, t)

@x2

(2.22)

If we apply the continuum limit to the Gaussian distribution Equation 2.17 under

the initial condition c(x, 0) = �(x), it yields the density.

c(x, t) =
1p
4⇡Dt

e�(x�V t)

2
/4Dt (2.23)

Although we will primarily consider continuum models of di↵usion, there are several

di↵erent approaches to develop theories of di↵usion in complex media and related

phenomena such as anomalous di↵usion.

2.1.2. Langevin Equation

Langevin equation, which is introduced by Langevin in 1908 to describe the

Brownian motion, is the simplest and the most widely known stochastic di↵erential

equation. It is a first order di↵erential equation which contains an additive Gaus-

sian white noise. To explain the importance of the Langevin di↵erential equation,

we review the paper [3] and we use basically the books [21], [24] and finally [25].

Let us consider the case of a moving microscopic particle subjected to an external
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force having magnitude F in a water solution such as cytoplasm. In such a case, the

fluid molecules collide with the microscopic particles and these collisions will result

in two distinct e↵ects. First, collisions with fluid molecules will cause an obvious

di↵usive or Brownian motion of the particle. Second, these collisions will produce

an influential frictional force that resists motion caused by the external force for

microscopic particles. Since the water has low Reynolds number it will behave like

an extremely viscous medium in the case of microscopic particles. So if we neglect

inertial impacts, any particle quickly reaches terminal velocity. In this sense, the

Langevin or stochastic di↵erential equation can express the influence of all collisions

on the motion of the particle.

dX

dt
=

F (X(t))

�
+ ⇠(t) (2.24)

where X(t) denotes the position of the particle at time t in stochastic case, � is the

viscosity parameter, and ⇠(t) represents a Gaussian noise term which is specified by

the conditions,

h⇠(t)i = 0, h⇠(t)⇠(t0)i = 2D�(t� t0) (2.25)

In order to simplify the derivation, suppose that F is a constant.The integration of

the Equation 2.24 with the initial condition X(0) = 0 ends up with

X(t) = V t+

Z

t

0

⇠(t0)dt0 (2.26)
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where V t = F/� represents the terminal velocity. In the next step, we take the

average relative to the noise term then this implies that

h X(t)i = h V ti+
Z

t

0

h ⇠(t0)i dt0, h⇠(t)i = 0

h X(t)i = V t (2.27)

If we square the equation for X(t) and take the average;

�

X(t)� V t
�

2

=

Z

t

0

⇠(t0)⇠(t00)dt0dt00,

h
�

X(t)� V t
�

2i =

Z

t

0

h⇠(t0)⇠(t00)i dt0dt00, h⇠(t0)⇠(t00)i = 2D�(t0 � t00)

h
�

X(t)� V t
�

2i = 2Dt (2.28)

where D is a di↵usion coe�cient. Furthermore, the position of a Brownian particle,

X(t), proceeds the Gaussian process, and the probability density p(x) derived from

the Langevin equation obeys the Fokker-Planck equation. Under the initial condition

p(x = 0) = �(x), the result of the calculations displays the Gaussian distribution in

a remarkable way .

For the stochastic systems, we can only explain the probability of finding the

system in a given state. If the probability depends on the state of the system in the

immediate past, but not its entire history, this process is defined to be a Markov

process. For the mathematical definition of a Markov process, we should follow the

definition of the hierarchy of the probability density functions for a given process

which is described by

P (x
1

, t
1

; .....; x
m

, t
m

| x
m+1

, t
m+1

.....; x
n

, t
n

) (2.29)
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These joint probability density functions describe that the system is in state x
1

at time t
1

, state x
2

at time t
2

,..and state x
n

at time t
n

. Therefore, the most general

stochastic cases can be thought as a set of conditional probabilities. The Markov

process is defined to be

P (x
1

, t
1

; .....; x
m

, t
m

| x
m+1

, t
m+1

.....; x
n

, t
n

) = P (x
1

, t
1

; .....; x
m

, t
m

| x
m+1

, t
m+1

)

(2.30)

The right-hand side represents the conditional probability density functions and

specifies that the system is in state x
1

at time t
1

,....,x
m

at time t
m

given that it was

in state x
m+1

at time t
m+1

irrespective of the previous location at previous times.

As a consequence, P (x, t | x0, t0) determines the hierarchy of the probability density

functions and if an infinite distribution is given, we set the transition functions as:

P (x
2

, t
2

) =

Z

dx
1

P (x
2

, t
2

| x
1

, t
1

)P (x
1

, t
1

) (2.31)

This implies the following integral relation for the transition probabilities:

P (x
3

, t
3

| x
1

, t
1

) =

Z

dx
2

P (x
3

, t
3

| x
2

, t
2

)P (x
2

, t
2

| x
1

, t
1

), t
1

< t
2

< t
3

(2.32)

The probability di↵erential function P (x, t | x0, t0) defines the transition probability

and the Equation 2.32 refers the Chapman-Kolmogorov equation which is a special

case of the Fokker-Planck equation that is used to describe very interesting stochastic

processes in which the system requires a continuous sample path. Let’s rewrite the

Chapman-Kolmogorov equation in a general form

P (x, t | x
0

, t
0

) =

Z 1

�1
P (x, t | x0, t0)P (x0, t0 | x

0

, t
0

)dx0 (2.33)



16

for any t0 2 [t
0

, t]. Consider an infinitesimal version of this equation and let’s take

t ! t+ ⌧ , t0 ! t and �(x, t; a, ⌧) = p(x+ a, t+ ⌧ | x, t) and our equation becomes

p(x, t+ ⌧) =

Z 1

�1
�(x� a, t; a, ⌧)p(x� a, t)da (2.34)

since ⌧ is very small, the left-hand side of the equation is following;

p(x, t+ ⌧) = p(x, t) + ⌧
@p(x, t)

@t
(2.35)

we perform a Taylor expansion with respect to a and the right-hand side of the

equation is given by

p(x� a, t) = p(x, t)� a
@p(x, t)

@x
+

a2

2!

@2p(x, t)

@x2

+ ..... (2.36)

We can combine these series to reconstruct the Equation 2.34.

p(x, t) + ⌧
@p(x, t)

@t
= p(x, t)

Z 1

�1
�(x, t; a, ⌧)da

� @p(x, t)

@x

Z 1

�1
a�(x, t; a, ⌧)da

+
@2p(x, t)

@x2

Z 1

�1

a2

2
�(x, t; a, ⌧)da..... (2.37)

Let us define ↵
n

(x, t) to simplify the equation

↵
n

(x, t) =

Z 1

�1
�(x, t; a, ⌧)anda (2.38)
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Finally we obtain the following equation

p(x, t+ ⌧) = ↵
0

(x, t)p(x, t)� @

@x
[↵

1

(x, t)p(x, t)] +
1

2

@2

@x2

[↵
2

(x, t)p(x, t)] + ... (2.39)

We aim to find out the coe�cient of ↵
n

and so that we rewrite the Langevin Equation

2.24 in the infinitesimal form

X(t+ ⌧) = x+
F (x)⌧

�
+ ⌧⇠(t) (2.40)

given that X(t) = x is the initial position. For the transition probability � we can

write

�(x, t; a, ⌧) = h�(x+ a�X(t+ ⌧))i
⇠

= h�(a� F (x)⌧

�
� ⌧⇠(t))i

⇠

(2.41)

If we discretize time in the unit of ⌧ , ⇠(t) becomes a Gaussian random variable and

its mean gives zero and variance is 2D/⌧ . The corresponding probability density is

the following equation

p(⇠) =
p

⌧/4⇡De�⇠

2
⌧/4D (2.42)

The averaging with respect to ⇠(t) gives the transition probability �.

�(x, t; a, ⌧) = h�(x+ a�X(t+ ⌧))i
⇠

=

Z

�(u� F (x)⌧/� � ⌧⇠(t))p(⇠)d⇠

=

r

1

4⇡D⌧
e�(a�F (x)⌧/�)

2
/4D⌧ (2.43)
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For the coe�cients we evaluate the expansion in the Equation 2.38 and the results

are following

↵
0

= 1, ↵
1

= F (x)⌧/�, ↵
2

= 2D⌧ + ↵2

1

, (2.44)

and ↵
m

= O(⌧ 2) for m > 2. In the next step, we substitute these results into

the Equation 2.39 and take the limit ⌧ ! 0 and eventually we end up with the

Fokker-Planck (FP) equation

@p(x, t)

@t
= �1

�

@[F (x)p(x, t)]

@x
+D

@2p(x, t)

@x2

(2.45)

For higher dimensions it is straightforward to generalize the Equation 2.45 and it

becomes

dX
i

dt
=

F
i

(X)

�
+ ⇠

i

, i = 1, ...., d (2.46)

with h⇠
i

(t)i = 0 and h⇠
i

(t)⇠
j

(t0)i = 2D�
i,j

�(t� t0). Finally the corresponding Fokker-

Planck equation is given by

@p(x, t)

@t
= �1

�
r · [F(x)p(x, t)] +Dr2p(x, t) (2.47)

We can write the Fokker-Planck equation as a continuum equation in one

dimension.

@p(x, t)

@t
+
@J(x, t)

@x
= 0 (2.48)
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where the probability current J(x, t) is given by

J(x, t) =
1

�
F (x, t)p(x, t)�D

@p(x, t)

@x
(2.49)

Let us suppose that the system is described on the interval [a, b]. If the boundaries

are reflecting, there is no net flow of probability across the boundaries. This implies

that

J(a, t) = 0

J(b, t) = 0 (2.50)

An equilibrium steady-state solution gives the conditions J = 0 and @p(x,t)

@t

= 0.

The substitution of the corresponding conditions into the Equation 2.49 yields the

first-order ODE for the density P (x, t)

D
@P (x, t)

@x
� 1

�
F (x, t)P (x, t) = 0 (2.51)

This may be integrated to give

P (x) = N e�U(x)/�D (2.52)
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where U(x) = �
R

x

F (y)dy is a potential energy function and N is a normaliza-

tion function. In order to look at the comparison of equilibrium distribution with

Boltzmann-Gibbs distribution and the Einstein relation, firstly we should write the

equation of motion in 1D.

m
d2x

dt2
= �↵dx

dt
� dV

dx
+ ⇠(t) (2.53)

where the viscosity of the fluid gives the first term on the right-hand side and ↵ is the

friction constant. V (x) is a potential and it represents the interaction of the particle

with any external force. Finally, ⇠(t) is the random force as a result of collisions with

the liquid molecules and also is frequently called the noise term. The statistics

of the fluctuation force ⇠(t) are

• h⇠(t)i = 0, since it is not expected one direction to be favored over the other.

• h⇠(t)⇠(t0)i = 2D�(t � t0), we suppose that after a few molecular collisions, ⇠

will not depend on the formal value. This implies that the force of ⇠ becomes

uncorrelated over times. This is slightly observable on the time scale, so that

we take the correlation function as a delta function.

• ⇠ shows Gaussian distribution.

Then, we may rewrite the Equation 2.53

dx

dt
= v

m
dv

dt
= �↵v + dV

dt
+ ⇠(t) (2.54)
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We assume that there is no external force and hence dV

dt

= 0. The last expression

may be written in the form of the Langevin equation.

dv

dt
= ��v + ⇠(t), v(0) = v

0

(2.55)

where � = ↵/m and ⇠(t) = ⇠(t)/m. We recall that

h⇠(t)i = 0 and h⇠(t)⇠(t0)i = 2D

m2

�(t� t0) (2.56)

Multiply the Langevin equation 2.55 by e�t

d

dt
[v(t)e�t] = ⇠(t)e�t

v(t) = v
0

e��t + e��t

Z

t

0

0

dt0⇠(t0)e�t
0

(2.57)

By taking the average of the expression for v(t)

hv(t)i = v
0

e��t (2.58)

If we take the square of the Equation 2.58 for v(t) and take the average;

hv(t)2i = v2
0

e�2�t +
D

↵m
[1� e�2�t] (2.59)
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which means that

lim
t!1

hv2(t)i = D

↵m
(2.60)

as t ! 1, the Brownian particle will be in thermal equilibrium. From the statistical

mechanics, the mean kinetic energy of the Brownian particle in equilibrium is given

by

lim
t!1

hv2(t)i = v2
eq

and
1

2
mv2

eq

=
1

2
kT (2.61)

where T is temperature of the liquid, k is Boltzmann constant. Eventually, this

yields the following relation

1

2
m

✓

D

↵m

◆

=
1

2
kT

D = ↵kT (2.62)

which implies that the liquid molecules act as a heat bath for the system. The

Equation 2.62 is one of the simple examples of a fluctuation-dissipation theorem

and gives D in terms of the friction constant, ↵, and the temperature of liquid, T .

2.1.3. First Passage Time

One of the important ways to quantify the e�ciency of di↵usive transport is

the calculation of the first passage time, FPT. By definition FPT is the time when a

targeted particle arrives for a specific point at the first time. Understanding of the

FPT for a small absorbing boundary is essential since the calculation of the mean

first passage time gives us the narrow escape time, NET. In this section, we follow
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basically the article [3] and we use the books [21], [24] as well as [25] to explain

the main concept in this process. Consider a particle whose position satisfies 1-D

Langevin Equation 2.24 and its motion is confined in the bounded domain x 2 [0, L].

Suppose that the corresponding FP Equation 2.45 has mix boundary conditions of

reflection at x = 0 and absorption at x = L, and thus

J(0, t) = 0 , p(L, t) = 0 (2.63)

Our basic goal is to find out the stochastic time T (y) for the particle which starts

at a point y 2 [0, L] at time t and leaves the right hand boundary. The first step is

to introduce the survival probability S(y, t) that the particle is still in the interval

at time t:

S(y, t) =

Z

L

0

p(x, t | y, 0)dx (2.64)

It follows that

Prob[T (y)  t] = 1� S(y, t) (2.65)

and let us define f(y, t) as the first passage time (FPT) density. This implies that

f(y, t) = �@S(y, t)
@t

(2.66)
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The FPT density obeys the backward FP equation derived from the Chapman-

Kolmogorov equation which is given by

P (x, t | x
0

, t
0

) =

Z 1

�1
P (x, t | x0, t0)P (x0, t0 | x

0

, t
0

)dx0 (2.67)

For the backward FP equation, we take the di↵erential of both sides with respect

to the intermediate time t0.

@P (x, t | x
0

, t
0

)

@t0
=

Z

dx0 @

@t0
p(x, t | x0, t0)p(x0, t0 | x

0

, t
0

)

+

Z

dx0p(x, t | x0, t0)
@

@t0
p(x0, t0 | x

0

, t
0

) (2.68)

Since @P (x,t|x0,t0)

@t

0 = 0, we can rewrite our equation

Z

dx0 @

@t0
p(x, t | x0, t0)p(x0, t0 | x

0

, t
0

) +

Z

dx0p(x, t | x0, t0)
@

@t0
p(x0, t0 | x

0

, t
0

) = 0

(2.69)

To derive the backward FP equation, we can introduce the Fokker-Planck operator

L
FP

@P

@t0
= �L

FP

P (2.70)

and L
FP

is defined by

L
FP

=
@

@x0 · A(x
0)� @

@x0 ·D · @

@x0 (2.71)
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where A(x0) = F (x

0
)

�

, moreover we may take D position dependent as well. Substi-

tuting the Fokker-Planck operator L
FP

into the Equation 2.69 gives the following

relation

Z

dx0 @

@t0
p(x, t | x0, t0)p(x0, t0 | x

0

, t
0

)�
Z

dx0p(x, t | x0, t0)L
FP

p(x0, t0 | x
0

, t
0

) = 0
Z

dx0


@

@t0
p(x, t | x0, t0)�L†

FP

p(x, t | x0, t0)

�

p(x0, t0 | x
0

, t
0

) = 0 (2.72)

Finally the derivative of the Chapman-Kolmogorov equation with respect to t0 gen-

erates

@

@t0
p(x, t | x0, t0)� L†

FP

p(x, t | x0, t0) = 0 (2.73)

here the adjoint operator is defined to be

L†
FP

= �A(x0) · @

@x0 �
@

@x0 ·D · @

@x0 (2.74)

If there is time translation invariance, we obtain the following relation

@

@t0
p(x, t | x0, t0) = � @

@t
p(x, t | x0, t0) (2.75)

and the backward FP equation can be written

@

@t
p(x, t | x0, t0) = A(x0)

@

@x0p(x, t | x
0, t0) +D

@2

@x02p(x, t | x
0, t0) (2.76)
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Let us take x0 ! y and t0 = 0, the integration of Equation 2.75 with respect to x

shows that S(y, t) and also f(y, t) satisfy the backward FP equation.

@S(y, t)

@t
= A(y)

@S(y, t)

@y
+D

@2S(y, t)

@y2
(2.77)

In particular, the mean first passage time MFPT, ⌧(y), is given by

⌧(y) = hT (y)i =
Z

t
@

@t
Prob[T (y)  1]

=

Z 1

0

f(y, t)tdt = �
Z 1

0

t
@S(y, t)

@t
dt

=

Z 1

0

S(y, t)dt (2.78)

The mean first passage time is defined as the mean of the stochastic time T (y). We

know the probability of the particle to be captured at the boundary up to t but we

need to convert it to around t. Therefore we take the derivative of the probability

density. For the final result we use the integration by parts technique because S(t)

is decaying fast. Then the integration of both sides of Equation 2.78 indicates that

the MFPT satisfies the ODE.

Z 1

0

@S(y, t)

@t
dt = A(y)

@

@y

Z 1

0

S(y, t)dt+D
@2

@y2

Z 1

0

S(y, t)dt

S(y,1)� S(y, 0) = A(y)
@

@y
⌧(y) +D

@2

@y2
⌧(y)

�1 = A(y)
@

@y
⌧(y) +D

@2

@y2
⌧(y) (2.79)

with the reflecting and absorbing boundary conditions

⌧ 0(0) = 0 , ⌧(L) = 0 (2.80)
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We can solve directly Equation 2.79 by taking integration. The solution, after

manipulation, can be introduced in terms of

 (y) = exp

✓

1

D

Z

y

0

A(y0)dy0
◆

= exp

✓

�U(y)

k
B

T

◆

(2.81)

where A(y)

D

= F (y)

D�

and here U(y) is a potential energy. Eventually Equation 2.79

becomes

d

dy
[ (y)⌧ 0(y)] = � (y)

D
(2.82)

so that

 (y)⌧ 0(y) = � (y)
D

(2.83)

where the boundary condition ⌧ 0(0) = 0. We integrate once more with respect to y

and use ⌧(L) = 0 then the integration yields

⌧(y) =

Z

L

y

dy0

 (y0)

Z

y

0

0

 (y00)

D
dy00 (2.84)

In the case of pure di↵usion A(x) = 0

 (y) = 1 and ⌧(y) =
L2 � y2

2D
(2.85)
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for any finite L� y,

⌧(y) ! 1 as L ! 1 (2.86)

and hence, although 1D di↵usion is recurrent, the average time goes to infinite.

This time, let’s suppose that L is finite and the particle starts at the left-hand side

boundary. The related MFPT is generated by

⌧(y) =
L2

2D
(2.87)

It is also possible that we can look at the case where the targeted particle goes

to a specific receptor and it can exit from one of the ends. In this case, we keep

track the end which the particle exits and we may evaluate our calculations under

the concept of splitting probability. Finally, we will again find out the mean exit

time. Let’s assume G
0

(x, t) denotes the probability that the particle goes through

x = 0 after time t, having started at the point x. Thus this probability satisfies

G
0

(x, t) = �
Z 1

t

J(0, t0 | x, 0)dt0 (2.88)

and J(0, t | x, 0) is defined by

J(0, t | x, 0) = A(0)p(0, t | x, 0)�D

✓

@p(y, t | x, 0)
@y

◆

y=0

(2.89)
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The next step is to take the derivative of G
0

with respect to t and use the backwards

FP Eq 2.75. Thus we obtain the following relation.

@G
0

(x, t)

@t
= J(0, t | x, 0) = �

Z 1

t

@J(0, t0 | x, 0)
@t0

dt0

= A(x)
@G

0

(x, t)

@x
+D

@2G
0

(x, t)

@x2

(2.90)

The hitting or splitting probability that the particle exits at x = 0 rather than

x = L is defined by ⇧
0

(x), and

⇧
0

(x) = G
0

(x, 0) (2.91)

Furthermore, the probability that the particle exit through x = 0 after time t is

given by

Prob(T
0

> t) =
G

0

(x, t)

G
0

(x, 0)
(2.92)

where T
0

is the corresponding conditional FPT. The mean exit time, given that exist

is through x = 0 satisfies

⌧
0

(x) = �
Z 1

0

t
@Prob(T

0

(x) > t)

@t
dt

=

Z 1

0

G
0

(x, t)

G
0

(x, 0)
dt (2.93)

Simply the Equation 2.90 is integrated with respect to t and it yields

A(x)
@⇧

0

(x)⌧
0

(x)

@x
+D

@2⇧
0

(x)⌧
0

(x)

@x2

= �⇧
0

(x) (2.94)
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with boundary condition

⇧
0

(0)⌧
0

(0) = ⇧
0

(L)⌧
0

(L) = 0 (2.95)

Eventually, by letting t ! 0 in the Eq 2.90, we see that

J(0, 0 | x, 0) = 0 if x 6= 0 , (2.96)

and we get

A(x)
@⇧

0

@x
+D

@2⇧
0

(x)

@x2

= 0 (2.97)

the boundary condition this time is

⇧
0

(0) = 1 and ⇧
0

(L) = 0 (2.98)

We can carry out the similar analysis for exit through the other end x = L and it

also satisfies this condition

⇧
0

(0) + ⇧
0

(L) = 1 (2.99)

Note that it is clear how to generalize the above analysis to higher dimensions. In

particular, consider that a particle satisfies the Fokker Planck Equation 2.47 in a

compact domain with boundary @⌦. Let’s consider that the particle is initially

at the point y 2 ⌦ and T (y) is the first passage time to reach any point on the
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boundary @⌦. The probability that the particle, initially at y, is somewhere on the

boundary @⌦ after a time t is

S(y, t) =

Z

⌦

p(x, t | y, 0)dx (2.100)

where the solution of FP Equation 2.47 with an absorbing boundary condition on

@⌦ is p(x, t | y, 0). Let f(y, t) denote the FPT density;

f(y, t) = �@S(y, t)
@t

(2.101)

by using the Equation 2.47 and the divergence theorem, we express the function as

f(y, t) = �
Z

@⌦

⇥

�A(x)p(x, t |y,0) +Drp(x, t |y,0
⇤

.d� (2.102)

with A = F

�

. As a result of constructing the corresponding backwards FP equation,

the MFPT obeys this relation;

A(y) ·r⌧(y) +Dr2⌧(y) = �1 (2.103)

where ⌧(y) = 0 for y 2 @⌦.

As in 1D case, we calculate the FPT density precisely. As an example we work

out 1D, we can set the conditional probability density without boundary condition;

p(x, t | x
0

, 0) = p(x� x
0

, t) (2.104)
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Similarly, we can write the FPT density of arriving for the first time at x time ⌧

starting from x
0

f(x, ⌧ | x
0

, 0) = f(x� x
0

, ⌧) (2.105)

The relation between densities p and f is given by

p(x� x
0

, t) =

Z

t

0

p(x� x0, t� ⌧)f(x0 � x
0

, ⌧)d⌧ (2.106)

After Laplace transform, the equation becomes

ep(x� x
0

, s) = ep(x� x0, s) ef(x0 � x
0

, s) (2.107)

The Laplace transformation of the Gaussian distribution Equation 2.23 for V = 0

produces

ep(x, s) =
1p

4⇡Ds
e�

p
x

2
s/D (2.108)

so that

ef(x� x
0

, s) = e�
p

(x�x0)s/D (2.109)
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The inverse Laplace transform gives the Levy-Smirnov distribution which is a con-

tinuous probability distribution for a non-negative random variable.

f(x� x
0

, t) =
1

t

r

(x� x
0

)2

4⇡Dt
e�(x�x0)

2
/4Dt (2.110)

Obviously this inverse-Gaussian decays asymptotically as f(x, t) ⇠ t�3/2 for short

times, as in the infinite system. Subsequently, the MFPT from x
0

to x diverges with

time. On the other hand,

Z 1

0

f(x� x
0

, t)dt = 1 (2.111)

and this implies that the di↵using particle will almost certainly hit any point x

during its motion.

After reviewing the basics topics in di↵usion theory, we will start to formulate a

more interesting version of this process, which is the narrow escape problem, NEP.

Let us consider that we have a Brownian particle on a bounded domain with a

large reflecting boundary and it intends to escape from this domain through a small

absorbing window. Here our purpose is to find out the narrow escape time, NET.

In a confined domain, the solution of the homogenous mixed Neumann-Dirichlet

boundary value problem for the Poisson equation gives the formulation of the NET.

If the Dirichlet part of the boundary goes to zero, the NET will diverge and, as

it turns out, it renders a singular perturbation problem. In two dimension the

singularity of the Neumann function is logarithmic while it gives algebraic solutions

in higher dimension and thus the problem is unique in 2D. For the computation part,

we calculate specifically the principal eigenvalue of the mixed Neumann-Dirichlet

problem for the Laplace equation in the domain where the Dirichlet boundary is

quite small.
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2.1.4. The Mixed Boundary Value Problem

We first take a look at free Brownian motion in a bounded domain D ⇢ Rd

(d=1,2,3). We recover mainly the studies [6], [7], [8], [9], [11], and [12], as well as the

books [22], and [23] to explain the basic concept behind the narrow escape problem.

Figure 2.3. Brownian trajectory escaping through a small absorbing window in a

domain otherwise it shows the reflecting boundary properties.

Let us suppose the boundary @⌦ is su�ciently smooth. The Brownian trajectory

x(t) is reflected at the boundary whereas it is absorbed on a small hole @⌦
a

. The

reflecting part of the boundary is

@⌦
r

= @⌦� @⌦
a

(2.112)
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The lifetime of a Brownian particle in the domain in the domain ⌦ starting at

a point x 2 ⌦ at t = 0 is the first passage time (FPT) ⌧ of the trajectory to its

absorbing boundary @⌦
a

. The NET is given by

⌧(x) =

Z 1

0

f(x, t)tdt (2.113)

The NET is finite under general conditions. As the diameter of the absorbing hole

goes to zero, but that of the domain remains finite, the NET increases indefinitely.

For a measure of smallness, we can choose the ratio between the surface area of the

absorbing boundary and volume of the entire region;

✏ =
| @⌦

a

|1/(d�1)

| ⌦ |1/d ⌧ 1 (2.114)

In our case, the NET ⌧(x) is the solution of the mixed boundary value problem;

r2⌧(x) = � 1

D
for x 2 ⌦, (2.115)

⌧(x) = 0 for x 2 @⌦
a

, (2.116)

@⌧(x)

@n(x)
= 0 for x 2 @⌦

r

, (2.117)
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where D is the di↵usion constant and n(x) is the unit outer normal vector. The

integration of the Equation 2.115 over ⌦ and using the Equation 2.116 and the

Equation 2.117 give the compatibility equation.

Z

r2⌧(x)d3x =

Z

~r · (~r⌧)dx =

I

@⌦

~r⌧ · n̂da = � 1

D

Z

d3x

=

Z

@⌦

a

@⌦

@n
· dS

x

+

Z

@⌦

r

~r⌧ · n̂dS
x

= � 1

D

Z

d3x

=

Z

@⌦

a

@⌧

@n
dS

x

= � | ⌦ |
D

(2.118)

We will look at an asymptotic approximation to ⌧(x) for small ✏, because the

solution of ⌧(x) diverges to infinity as the hole goes to zero, ✏ ! 0, except around

the boundary layer near @⌦
a

, otherwise the compatibility equation is not satisfied

in this limit.

2.1.4.1. Neumann’s Function and a Helmholtz Integral Equation. Let us observe

that the solution of ⌧(x) diverges to infinity for all x 2 ⌦ as ✏ ! 0, we can write

the leading order approximation to the boundary flux density, which is also given by

g(x) =
@⌧(x)

@n
for x 2 @⌦

a

(2.119)

This provides the solution of Helmholtz integral equation. In order to calculate the

NET ⌧(x), we use a solution of boundary value problem.

r2

x

N(x, ⇠) = ��(x� ⇠) for x, ⇠ 2 ⌦ (2.120)

@N(x, ⇠)

@n(x)
= � 1

| @⌦ | for x 2 @⌦, ⇠ 2 ⌦ (2.121)
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where N(x, ⇠) is the Neumann function. Green’s identity and the boundary condi-

tions give

Z

N(x, ⇠)r2⌧(x)dx�⌧(x)r2N(x, ⇠)dx =

=

Z

n h

~r ·
⇣

N(x, ⇠)~r⌧(x)
⌘

� ~rN(x, ⇠) · ~r⌧(x)
i

�
h

~r ·
⇣

⌧(x)~rN(x, ⇠)
⌘

� ~r⌧(x) · ~rN(x, ⇠)
io

dx

=

Z

~r ·
h

N(x, ⇠)~r⌧(x)� ⌧(x)~rN(x, ⇠)
i

dx

=

I

@⌦



N(x, ⇠)
@⌧(x)

@n
� ⌧(x)

@N(x, ⇠)

@n

�

dS
x

(2.122)

The boundary conditions in the Equation 2.115 and the Equation 2.120 imply that

I

@⌦

h

N(x, ⇠)~r⌧(x)� ⌧(x)~rN(x, ⇠)
i

dS
x

= ⌧(⇠)� 1

D

Z

⌦

N(x, ⇠)x (2.123)

For the next step, we submit the boundary conditions into our calculation and finally

we end up with

⌧(⇠)� 1

D

Z

⌦

N(x, ⇠)dx =

Z

@⌦

N(x, ⇠)
@⌧(x)

@n
dS

x

+
1

| @⌦ |

Z

@⌦

⌧(x)dS
x

(2.124)

The second integral on the right hand side of the Equation 2.124 is an additive

constant.

C
⇠

=
1

| @⌦ |

Z

@⌦

⌧(x)dS
x

(2.125)
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Note that the integral in the Equation 2.125 gives the average of the NET on the

boundary. Now let’s rewrite the Equation 2.124

⌧(⇠) =
1

D

Z

⌦

N(x, ⇠)dx+

Z

@⌦

a

N(x, ⇠)
@⌧(x)

@n
dS

x

+ C
⇠

(2.126)

The Equation 2.126 takes the form of the integral representation of ⌧(⇠). The bound-

ary conditions in the Equation2.116 and the Equation 2.119 give

0 =
1

D

Z

⌦

N(x, ⇠)dx+

Z

@⌦

a

N(x, ⇠)g(x)dS
x

+ C
⇠

for all ⇠ 2 @⌦
a

(2.127)

For the asymptotic approximation to the solution, the first integral in the Eq 2.127

is a regular function of ⇠ on the boundary. Due to the symmetry of the Neumann

function, the solution of boundary gives

r
⇠

Z

⌦

N(x, ⇠)dx = �1 for ⇠ 2 ⌦ (2.128)

@

@n(⇠)

Z

⌦

N(x, ⇠)dx = � | ⌦ |
| @⌦ | for ⇠ 2 @⌦ (2.129)

Now it is clearly seen that the Equation 2.128 and the boundary conditions in the

Equation 2.129 are independent of the hole @⌦
a

.

Z

@⌦

a

N(x, ⇠)g(x)dS
x
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Therefore, the first integral of the Equation 2.127 is defined as a regular function of

⇠. Consequently we can write the solution of the Helmholtz integral equation

Singular

✓

Z

@⌦

a

N(x, ⇠)g(x)dS
x

◆

= Singular (�C
⇠

) for ⇠ 2 @⌦
a

(2.130)

For all x 2 ⌦, if ✏ ! 0, the NET ,⌧(x),diverges to infinity, and likewise singular

C
⇠

goes to infinity in this limit. For ⇠ 2 @⌦
a

, this implies that the second integral

in the Equation2.127 must go to infinite, since the first integral is independent of

@⌦
a

. As a consequence of these relations, the result of the Equation2.130 gives the

leading-order approximation to the solution of g(x) in the Equation2.127.

2.1.4.2. The NET Problem in 2 Dimension. Let us take a Brownian trajectory x(t)

in a bounded domain ⌦ on a 2D Riemann manifold (⌃, g). For a domain ⌦ ⇢ ⌃

with a smooth boundary @⌦, the Riemann surface area of ⌦ is shown by | ⌦ |
g

,

and also the arch length of its boundary is computed with respect to the metric g.

The boundary is divided into two parts; an absorbing part @⌦
a

and reflecting part

@⌦
r

= @⌦� @⌦
a

. Assume that the absorbing part is small and

✏ =
| @⌦

a

|
| @⌦

g

| ⌧ 1 (2.131)

✏ can only a↵ect the absorbing and reflecting part on the boundary. The mean of

the first passage time ⌧ of the Brownian motion from ⌦ to @⌦
a

is finite,

⌧(x) =

Z 1

0

f(x, t)tdt (2.132)
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and the mixed Neumann-Dirichlet boundary value problem for the 2 dimension is

written as

r2

g

⌧(x) = � 1

D
for x 2 ⌦ (2.133)

@⌧(x)

@n
= 0 for x 2 @⌦

r

(2.134)

⌧(x) = 0 for x 2 @⌦
a

(2.135)

where the function of ⌧(x) satisfies the boundary conditions, D is the di↵usion

coe�cient and r
g

is the Laplace-Beltrami operator on ⌃. In di↵erential geometry,

we use the Laplacian to operate on functions defined on a surface in Euclidean spaces

as models of on Riemann manifolds. The Laplace-Beltrami operator is applied to

as the divergence of the covariant derivative. Like the Laplacian, the most basic

definition of the Laplace-Beltrami operator is the divergence of the gradient on a

function:

r2f = r ·rf (2.136)

Let us take the integral of the Equation2.136

Z

V

rf ·rfdV =

Z

V

�

r2f
�

fdV (2.137)
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where rf is defined in terms of the metric tensor as

rf = gij@
j

f (2.138)

here g is described by

ht
i

, t
j

i = g
ij

(2.139)

where t
i

denotes the basis of the tangent space and let us define g
11

, g
22

, and g
12

ht
1

, t
1

i = g
11

(2.140)

ht
2

, t
2

i = g
22

(2.141)

ht
1

, t
2

i = g
12

= cos(✓) (2.142)

thereby, sin(✓) is given by

sin(✓) =
q

g
11

g
22

�
�

g
12

�

2

(2.143)

actually this means

sin(✓) =

v

u

u

u

tdet

0

@

g
11

g
12

g
21

g
22

1

A =
p

det(g) (2.144)
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Ultimately, we can write the volume element

dV =
p

det(g)d⇠1d⇠2 (2.145)

The pictorial representation of the metric transition is given in the subsequent figure.

Figure 2.4. The metric transition.

In the next step, we substitute all newly defined variables into the Equation 2.137

Z

✓

gij@
j

f

◆

g
ik

✓

gkl@
l

f

◆

p

det(g)d⇠1d⇠2 =

Z

�

r2f
�

fdV (2.146)

and �l
i

= g
ik

gkl therefore,

Z

�

r2f
�

fdV =

Z

✓

gij@
j

f

◆✓

�l
i

@
l

f

◆

p

det(g)d⇠1d⇠2

=

Z

gij@
j

f@
i

f
p

det(g)d⇠1d⇠2

=

Z

� 1
p

det(g)
@
j

✓

p

det(g)gij@
i

f

◆

f
p

det(g)d⇠1d⇠2 (2.147)
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As a result, we obtain the Laplace-Beltrami operator which is explicitly given by

r
g

f =
1p
detg

X

i,j

@

@⇠i

✓

gij
p

detg
@f

@⇠j

◆

(2.148)

here the terms on the operator are given by

ti =
@x

@⇠i
, g

ij

= ht
i

, t
j

i, gij = g�1

ij

(2.149)

If ⌧(x) ! 1 as ✏! 0, we expect that x is in the boundary layer near @⌦
a

. To find

out the NET, we take the origin 0 2 @⌦
a

and the boundary curve @⌦ is indicated

by the arclength s =
�

x(s), y(s)
�

as well as rescaling s yields

@⌦ =

⇢

�

x(s), y(s)
�

: �1

2
< s <

1

2

�

✓

x
�

� 1

2

�

, y
�

� 1

2

�

◆

=

✓

x
�1

2

�

, y
�1

2

�

◆

(2.150)

We suppose that x(s) and y(s) are properly real analytic in the interval 2 | s |< 1

and the absorbing part of the boundary @⌦
a

is respectively the arc, which is given

by

@⌦
a

=
��

x(s), y(s)
�

:| s |< ✏
 

(2.151)

We can write the Neumann function as

N(x, ⇠) = � 1

2⇡
log(d(x, ⇠)) + v

N

(x, ⇠), for x 2 B
�

(⇠) (2.152)
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here B
�

(⇠) is a geodesic ball with the radius � centered at ⇠ and v
N

(x, ⇠) is a regular

function. We choose a normal geodesic coordinate system (x, y) at the origin and

one of the coordinates should intersect with the tangent coordinate of @⌦
a

. For the

simplicity, we take unit vectors e
1

, e
2

which are orthogonal bases in the tangent

plane at 0. In this sense we can write any vector field as

X = x
1

e
1

+ x
2

e
2

(2.153)

and the corresponding metric tensor g is given by

g
ij

= �
ij

+ ✏2
X

kl

akl
ij

x
k

x
l

+O(✏2) (2.154)

Since ✏ is small, | x
k

|< 1. Let’s consider that x and y are centered at the origin of

the geodesic ball with radius ✏ and

d(x,y) = d
E

(x,y) +O(✏2) (2.155)

where d
E

is the Euclidean metric. For the asymptotic expansion of the solution of

the Equation 2.130 for small ✏, when x and ⇠ are on the boundary, v
N

(x, ⇠) turns

out to be a singular function. Consequently the singular part gains an additive

factor of 2, because of the ”image charge”. Substituting the new regular part,ṽ
N

, into the Equation 2.104 givesN . Therefore, we can write the corresponding relation



45

Z

|s0|<✏



ṽ
N

(x(s0); ⇠(s))� log(d(x(s0); ⇠(s)))

⇡

�

f(s0)S(ds0) = C
✏

(2.156)

where the induced length on the boundary is denoted by S(ds0), and the further

terms are explained in the following steps

x =
�

x(s), y(s)
�

, ⇠ =
�

⇠(s), ⌘(s)
�

, f(s0) = g
0

(x(s0)) (2.157)

We expand the logarithmic function with respect to ✏

log(d(x(s), ⇠(s0))) = log

✓

q

�

x(s0)� ⇠(s)
�

2

+
�

y(s0)� ⌘(s)
�

2

�

1 +O(✏2)
�

◆

(2.158)

and the other functions are written in powers of s and s0

S(ds)f(s) =
1
X

j=0

f
j

sjds (2.159)

ṽ
N

�

x(s0); ⇠(s)
�

S(ds0) =
1
X

j=0

v
j

(s0)sjds0 for | s |< ✏ (2.160)
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where v
j

(s0) and f
j

are unknown coe�cients. For the exact results, we substi-

tute them into the Equation 2.156. Now we are looking for the expansion of the

logarithmic term in the Equation 2.156. As x(s0), y(s0), ⇠(s) and ⌘(s) are analytic

functions, we can write

Z

✏

�✏

(s0)n log(d
�

x(s), ⇠(s0)
�

)ds0 =

Z

✏

�✏

(s0)n log
q

�

x(s0)� ⇠(s)
�

2

+
�

y(s0)� ⌘(s)
�

2

⇤
�

1 +O(✏2)
�

ds0

=

Z

✏

�✏

(s0)n log

⇢

| s0 � s |
✓

1 +O
�

(s0 � s)2
�

◆�

⇤
�

1 +O(✏2)
�

ds0 (2.161)

We consider only the leading term in the Taylor expansion of logarithmic term and

hence we end up with

Z

✏

�✏

log(s� s0)2ds0 = 4✏
�

log ✏� 1
�

+ 2
1
X

j=1

1

(2j � 1)j

s2j

✏2j�1

(2.162)

For even n � 0, we obtain

Z

✏

�✏

(s0)n log(s�s0)2ds0 = 4

✓

✏n+1

n+ 1
log ✏� ✏n+1

(n+ 1)2

◆

�2
1
X

j=1

s2j
✏n�2j+1

j(n� 2j + 1)
(2.163)

whereas odd n values give

Z

✏

�✏

(s0)n log(s� s0)2ds0 = �4
1
X

j=1

s2j+1

2j + 1

✏n�2j

n� 2j
(2.164)



47

Substitution of the expansions into the Equation 2.156 gives

0 =

Z

✏

�✏

⇢

� 1

⇡
log



| s0 � s |2
✓

1 +O
�

(s0 � s)2
�

◆

]
�

1 +O(✏2)
�

�

+
1
X

j=0

v
j

(s0)sj
�

⇤
1
X

j=0

f
j

s0jds0 + C
✏

(2.165)

In the expansion of s, the leading order is given by

✏(log ✏� 1)f
0

+
X

p

✓

✏2p+1

2p+ 1
log ✏� ✏2p+1

(2p+ 1)2

◆

f
2p

=
⇡

2

Z

✏

�✏

v
0

(s0)ds0 + C
✏

(2.166)

To find out the leading term in the expansion of C
✏

we define the relation as

1

2

Z

✏

�✏

f(s)S(ds) =
X

p

✏2p+1

2p+ 1
f
2p

(2.167)

The compatibility condition in the Equation 2.118 yields

Z

✏

�✏

f(s)S(ds) = � | ⌦
g

|
D

(2.168)

and also using the fact that

Z

✏

�✏

v
0

(s0)S(ds) = O(✏) (2.169)
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Using the Equation 2.130 in this setting and performing an asymptotic solution,

finally the leading order singularity C
✏

is reduced to the following form

C
✏

=
| ⌦

g

|
D⇡



log
1

✏
+O(1)

�

, for ✏⌧ 1 (2.170)

We obtain ultimately the NET from a point x 2 ⌦ outside of the boundary layer

by solving the Helmholtz integral equation in the Equation 2.130

⌧(x) =
| ⌦

g

|
⇡D



log
1

✏
+O(1)

�

= C
✏

, for ✏⌧ 1 (2.171)

where D is the di↵usion coe�cient. If there is no boundary other than the absorbing

one, for example a compact closed surface such as a sphere, Neumann and Dirichlet

become the same problem and we do not need to put the image correction. For the

exact solution of sphere, Z. Schuss and his colleagues solved this problem and the

result is given by

⌧(x) =
| ⌦

g

|
2⇡D

✓

log
1

�
+O(1)

◆

(2.172)

here � is the opening angle of the spherical cap and | ⌦
g

|= 4⇡R2 is the area of the

2 dimensional surface of the sphere [9].
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3. ASYMPTOTIC EXPANSION AND NARROW

ESCAPE TIME

3.1. Perturbation of Boundary Condition

In this part, we treat the boundary conditions under the case of a strong local-

ized perturbation and mainly follow the articles [16], [17], [18] and [19]. This is going

to be the basis of our approach in subsection Exit T ime for T ime Dependent Metrics.

For possible future applications, we prefer to review the more general case here. For

the general case, let us look at the unperturbed eigenvalue problem for the Schrödin-

ger operator in a domain, ⌦, of Rn.

⇥

�r2 + U(x)
⇤

u
0

(x) = �g
0

%(x)u
0

(x) , x 2 ⌦ (3.1)

[@
n

+ b(x)] u
0

(x) = 0 , x 2 @⌦ (3.2)

Z

⌦

u2

0

(x)%(x)dx = 1 (3.3)

where U(x) is the potential, %(x) is the weight function and b(x) is called the bound-

ary impedance. We assume that the solution to the Equation 3.1, 3.2 and 3.3 gives

a simple isolated eigenvalue, �g
0

, and u
0

(x) is the corresponding eigenfunction.
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Next, we have a sphere of radius ✏ centered at a point x
0

on @⌦, but this time

we will look for the solution to a strong perturbation of the boundary condition for

the Equation 3.2. Let us rewrite the boundary conditions;

r2u(x, ✏) + [�(✏)%(x)� U(x)] u(x, ✏) = 0, x 2 ⌦, (3.4)

@
n

u(x, ✏) + bu(x, ✏) = 0, x 2 @⌦, (3.5)

✏@
n

u(x, ✏) + u(x, ✏) = 0, x 2 @⌦
✏

, (3.6)
Z

⌦

u2(x, ✏)%(x)dx = 1 (3.7)

where  is a constant term, @⌦
✏

is the part of boundary within the sphere of radius

✏, and finally @⌦ is the remaining part of the boundary of ⌦. We assume that the

constant in the Equation 3.6 is altered to 

✏

within the sphere and hence we multiply

the first equation in the left-hand side with ✏.

3.1.1. Deletion of A Small Subdomain (n=2)

Now we study the perturbed eigenvalue problem in 2 dimension. We construct

the perturbed solutions by using the method of matched asymptotic expansions. For

the inner expansion, large changes occur in the solution around the strong pertur-

bation whereas the outer expansion leads to relatively small e↵ects. We expect that

these two expansions are matched on the boundary, and hence we can find out the

unknown coe�cients in the expansions. Since the perturbation in the inner region

produces more considerable e↵ects we magnify the extent, and thus we introduce

the stretched variables to define the inner expansion of u

y =
x� x

0

✏
and v(y, ✏) = u(x

o

+ ✏y, ✏) (3.8)
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and we write the inner expansion of u as

u(x
0

+✏y, ✏) = v(y, ✏) = µ
0

(✏)v
0

(y)+µ
1

(✏)v
1

(y)+µ
2

(✏)v
2

(y)+µ
3

(✏)v
3

(y)+ ..... (3.9)

The outer expansion of u is given by

u = u
0

(x) + ⌫
1

(✏)u
1

(x) + ⌫
2

(✏)u
2

(x) + ⌫
3

(✏)u
3

(x) + ..... | x� x
0

|� O(✏) (3.10)

here ⌫
i

(✏) is the gauge functions which satisfy ⌫
i

(✏) ⌧ 1 and ⌫
i

(✏) � ⌫
i+1

(✏) as ✏!

0. In the same way, we expand the eigenvalue, �(✏):

�(✏) = �g
0

+ ⌫
1

(✏)�
1

+ ⌫
2

(✏)�
2

+ ⌫
3

(✏)�
3

+ .... (3.11)

For the solution to the outer expansion, we submit the Equation 3.10 and the Equa-

tion 3.11 into the boundary condition in the Equation 3.4.

r2 [u
0

(x) + ⌫
1

(✏)u
1

(x) + ...] + [�(✏)%(x)� U(x)] [u
0

(x) + ⌫
1

(✏)u
1

(x) + ...] = 0

r2u
0

(x) + (�g
0

%� U(x)) u
0

+r2 (⌫
1

u
1

) + ⌫
1

�
1

%u
0

+ �g
0

%µ
1

u
1

� U⌫
1

u
1

.... = 0

r2u
1

+ �
1

%u
0

+ �g
0

%u
1

� Uu
1

= 0

r2u
1

� Uu
1

+ �g
0

%u
1

= ��
1

%u
0

, | x� x
0

|� O(✏)

(3.12)

For the outer correction u
1

, the outer expansion on the boundary in the Equation

3.5 produces

(@
n

+ b) [u
0

+ ⌫
1

(✏)u
1

+ ⌫
2

(✏)u
2

+ ⌫
3

(✏)u
3

...] = 0

(@
n

+ b) u
0

+ (@
n

+ b) u
1

.... = 0

(@
n

+ b) u
1

= 0, x 2 @⌦ (3.13)
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If we submit the outer expansion in the final Equation 3.7, we end up with

Z

[u
0

+ ⌫
1

(✏)u
1

+ ⌫
2

(✏)u
2

+ ...] % [u
0

+ ⌫
1

(✏)u
1

+ ⌫
2

(✏)u
2

+ ...] dx = 1
Z

u2

0

%dx+

Z

u
0

%u
1

dx+ ... = 1
Z

u
0

u
1

%dx = 0 (3.14)

After all calculations, let us summarize the final results in the outer region. Sub-

stituting the outer expansion in the Equation 3.10 and the eigenvalue expansion in

the Equation 3.11 into the boundary conditions gives

r2u
1

� Uu
1

+ �g
0

%u
1

= ��
1

%u
0

, | x� x
0

|� O(✏) (3.15)

(@
n

+ b) u
1

= 0, x 2 @⌦ (3.16)
Z

u
0

u
1

%dx = 0 (3.17)

Now we define the perturbed eigenvalue problem by extracting a small subdomain

⌦
✏

with radius O(✏) from ⌦. The subdomain ⌦
✏

is located at a point x
0

in ⌦, and we

use the boundary conditions in the Equation 3.4, 3.5, 3.6 and 3.7 on the resulting

hole. In the inner region, we use the stretched variable y = x�x0
✏

and set v(y, ✏) and

then we end up with

r2

y

v � ✏2U(x
0

+ ✏y)v = �✏2�%(x
0

+ ✏y)v, y /2 ⌦
1

(3.18)

@
n

v + v = 0, y 2 @⌦
1

(3.19)
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where r2

y

and @
n

are the derivatives with respect to y and ⌦
1

defines the domain

⌦
✏

in the y variables. Substituting the Equation 3.9 into the Equation 3.18 yields

⇥

r2

y

� ✏2U
⇤

[µ
0

(✏)v
0

+ µ
1

(✏)v
1

+ ...] = �✏2�% [µ
0

(✏)v
0

+ µ
1

(✏)v
1

+ ...] (3.20)

r2

y

µ
0

v
0

� ✏2Uµ
0

v
0

...... = �✏2�%µ
0

v
0

..... (3.21)

The leading term in the inner expansion gives

r2

y

v
0

= 0, y /2 ⌦
1

(3.22)

Next we analyze the boundary condition in the Equation 3.19 for the inner region

and we look for the leading term.

(@
n

+ ) [µ
0

(✏)v
0

+ µ
1

(✏)v
1

+ µ
2

(✏)v
2

+ ...] = 0

(@
n

+ ) v
0

= 0, y 2 ⌦
1

(3.23)

We assume that there is an overlap domain for these expansions. We can determine

the unknown coe�cients, since the inner and outer expansions must give the similar

asymptotical results in this overlap domain. Hence, the matching condition in this

domain is provided by

u
0

(x) + ⌫
1

(✏)u
1

(x) + ⌫
2

(✏)u
2

(x)... ⇠ µ
0

(✏)v
0

(y) + µ
1

(✏)⌫
1

(y) + µ
2

(✏)⌫
2

... (3.24)
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Next, we consider the case of  > 0 to find out the first correction to �
0

. In two

dimensions, the fundamental solution of the Laplace equation of v
0

, the Equation

3.22, is given asymptotically by

v̂(y) = log | y | � log [d()] + ....., as | y |! 1 (3.25)

In the case of  > 0, the solution is unique and the constant d() based on simple

hole geometries is found out. Let us consider a more specialized case, when  = 1,

d(1) is defined as the logarithmic capacitance of ⌦
1

. We note that a circular do-

main has the smallest logarithmic capacitance. In the matching conditions, u
0

on

the left part and µ(✏)v
0

(y) on the right are the leading terms in the Equation 3.24.

They satisfy the matching condition if

µ
0

(✏) = � 1

log [✏d()]

v
0

(y) = u
0

(x
0

)v̂(y) = u
0

(x
0

) [log | y | � log (d())] (3.26)

Next, we substitute these defined coe�cients in the Equation 3.26 into the matching

conditions and it gives

u
0

(x) + ⌫
1

(✏)u
1

(x) + ⌫
2

(✏)u
2

(x) + .... ⇠


� 1

log (d())

�

u
0

[log | y | � log (d())]

+ µ
1

(✏)v
1

(y) + µ
2

(✏)v
2

(y) + .... (3.27)
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Due to the fundamental solution of the Laplace equation of v
0

, the matching order

change and hence the first equation u
0

on the left matches with the second equation

on the right. On the other hand, the second equation ⌫
1

(✏)u
1

(x) on the left part

should be matched with the first term on the right.

⌫
1

u
1

=



� 1

log (d())

�

u
0

log | y |, y =
x� x

0

✏

⌫
1

u
1

=



� 1

log (✏d())

�

u
0

log | x� x
0

|

⌫
1

=



� 1

log (✏d())

�

and u
1

⇠ u
0

log | x� x
0

| as x ! x
0

(3.28)

Using Green’s theorem and the boundary conditions, we obtain the solvability con-

dition for u
1

��
1

Z

⌦/⌦

�

u2

0

(x)%(x)dx =

Z

@⌦

�

(u
0

@
n

⌫
1

� u
1

@
n

u
0

) dx

��
1

=

Z

@⌦

�

[u
0

@
n

(u
0

log | x� x
0

|)� (u
0

log | x� x
0

|) @
n

u
0

] dx

�
1

= 2⇡ [u
0

(x
0

)]2 (3.29)

where ⌦
�

is a small sphere with radius � centered at x
0

and @
n

is the outward

normal derivative. For the other terms in the expansion of the eigenvalue, in the

outer region we take the gauge functions as

⌫
j

(✏) =

✓

� 1

log [✏d()]

◆

j

for j = 1, 2, 3... (3.30)
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Then, we rewrite the outer and eigenvalue expansions with the new gauge functions

in the conditions given in the Equation 3.4, 3.5, 3.6, 3.7, and eventually we obtain

following relations for u
j

(x)

r2u
j

� U(x)u
j

+ �g
0

%(x)u
j

= ��
j

%(x)u
0

�
j�1

X

i=1

�
j�i

%(x)u
i

, | x� x
0

|� O(✏), (3.31)

[@
n

+ b] u
j

= 0, x 2 ⌦ (3.32)

j

X

i=0

Z

⌦

u
i

u
j�i

%(x)dx = 0 (3.33)

For the inner region, we choose the gauge functions as

µ
j

(✏) =



� 1

log [✏d()]

�

j+1

for j = 0, 1, 2, 3... (3.34)

Likewise in the outer region, we rewrite the conditions in the Equation 3.4, 3.5, 3.6,

3.7 with the new variables and we end up with

r2

y

v
j

= 0, y /2 ⌦

@
n

v
j

+ v
j

= 0, y 2 @⌦
1

(3.35)

Since v
j

grows logarithmically as | y |! 1, we take

v
j

(y) = a
j

u
0

(x
0

)v̂(y) (3.36)
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where a
j

is a constant and v̂(y) is the fundamental solution of Laplace equation of

v(y). From the matching condition in the Equation 3.26, we find out a
0

= 1. Let us

rewrite the inner expansion with the new coe�cients

v(y, ✏) ⇠ a
0

u
0

(x
0

)+
1
X

i=1



� 1

log [✏d()]

�

i

u
0

(x
0

)

✓

a
i�1

log | x�x
0

| +a
i

◆

+ .... (3.37)

In the matching condition we find u
1

in the Equation 3.28 and similarly u
j

should

have the following singular behavior as x ! x
0

.

u
j

(x) ⇠ a
j�1

u
0

(x
0

) log | x� x
0

|, for j = 1, 2, 3... (3.38)

Using Green’s theorem and the boundary conditions in the Equation 3.31, 3.32, 3.33

give the solvability condition for u
j

and ultimately we obtain

�
j

= 2⇡a
j�1

[u
0

(x
0

)]2 �
j�1

X

i=1

�
j�1

(u
i

, u
0

), for j = 1, 2, 3... (3.39)

The following step is that we substitute the Equation 3.39 into the Equation 3.11

for the expansion of �(✏)

�(✏) = �g
0

+

✓

� 1

log [✏d()]

◆

2⇡ [u
0

(x
0

)]2 +
1
X

j=2

✓

� 1

log [✏d()]

◆

j

�
j

+ .... (3.40)

After all calculations, we can summarize our results as follows. The outer expansion

is given by

u(x, ✏) = u
0

(x) +
1
X

j=1

✓

� 1

log [✏d()]

◆

j

u
j

(x) + ..., | x� x
0

|� ✏ (3.41)
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Ultimately we find out the inner expansion in the following statement

u(x, ✏) = u
0

(x
0

)v̂

✓

x� x
0

✏

◆ 1
X

j=0

✓

� 1

log [✏d()]

◆

j+1

a
j

+ ...., | x� x
0

|= O(✏)

(3.42)

3.1.2. Exit Time Distribution

Let us suppose that a particle initially starting from y at time zero performs

a Brownian motion in 3D domain, ⌦. The domain ⌦ has reflecting wall @⌦ which

includes N small holes. The radius of each hole is ✏ and its hole is centered at xi

0

.

The probability density that the particle is at x time t is denoted by p(x, y, t, ✏). We

assume that a di↵usion coe�cient  > 0, and then p satisfies

p
t

= Dr2

x

p, x 2 ⌦

@
n

p = 0, x 2 @⌦
r

i = 1, ...N

p = 0, x 2 @⌦
✏

i = 1, ...N

p = �(x� y), t = 0 (3.43)

The conditions in the Equation 3.43 give the solution

p(x, y, t, ✏) =
1
X

n=1

e�(�

n

(✏)Dt)u
n

(x, ✏)u
n

(y, ✏) (3.44)

where �
n

is the nth eigenvalue and u
n

displays the normalized eigenfunction.

r2

x

u
n

(x, ✏) = ��
n

(✏)u
n

(x, ✏), x 2 ⌦
Z

⌦

u2

n

(x, ✏)dx = 1 (3.45)
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The probability P (y, t, ✏) that the particle is in ⌦ at time t is

P (y, t, ✏) =

Z

⌦

p(x, y, t, ✏)dx

=
1
X

n=1

exp [��
n

(✏)Dt] u
n

(y, ✏)

Z

⌦

u
n

(x, ✏)dx (3.46)

Let us assume that the initial position of y is uniformly distributed over ⌦. Next,

we divide the solution of the Equation 3.43 by the volume of ⌦, and after that, the

integration of the result with respect to y gives

p
0

(x, t, ✏) =
1

V

1
X

n=1

exp [��
n

(✏)Dt] u
n

(x, ✏)

Z

⌦

u
n

(y, ✏)dy (3.47)

here V =| ⌦ |. Eventually, the probability P
0

(t, ✏) they the particle is in ⌦ at time

t under the uniform distribution is produced by

P
0

(t, ✏) =

Z

⌦

p
0

(x, t, ✏)dx =
1

V

1
X

n=1

exp [��
n

(✏)Dt]

✓

Z

⌦

u
n

(x, ✏)dx

◆

2

(3.48)

For the case ✏ = 0, we take that �
n0

and u
no

are the nth eigenvalue and normalized

eigenfunction respectively. We follow the examples for 2 and 3 dimensions given

in Ward et al [16]. The next step is to determine the correction to �
n0

. Thereby,

the inner expansion should be near each xi

0

, and the outer expansion should be

constructed away from the perforations. Finally, we end up with

�
n

(✏) = �
n0

+ 2⇡✏
N

X

i=1

C i(1)
⇥

u
n0

(xi

0

)
⇤

2

+ ... (3.49)

u
n

(x, ✏) = u
n0

(x) + ✏u
n1

(x) + ..... | x� xi

0

|� O(✏) i = 1, ...N (3.50)
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where C i(1) is the capacitance of ith hole. The correction term u
n1

for the outer

expansion satisfies

r2

x

n
n1

+ �
n0

u
n1

= ��
n1

u
n0

, x 2 ⌦ (3.51)

@
⌫

u
n1

= 0, x 2 ⌦ (3.52)

u
n1

⇠ �u
n0

(xi

0

)C i(1)

| x� xi

0

| as x ! xi

0

i = 1, ....N (3.53)

The inner expansion of u
n

(x, ✏) near xi

0

is given by

u
n

= vi
0

✓

x� xi

0

✏

◆

+ ... | x� xi

0

|= O(✏) i = 1, ...N (3.54)

If we use local curvilinear coordinate systems near xi

0

, each term vi
0

will satisfy the

boundary conditions. Let us consider the case of the absence of the hole, the first

eigenvalue is

�
10

= 0 (3.55)

and the corresponding eigenfunction is

u
10

=
1p
V

(3.56)

Since the u
n0

is orthogonal, subsequently we get

Z

⌦

u
n0

(x)dx = 0 for n � 2 (3.57)
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The Equation 3.57 and the Equation 3.49 yield

Z

⌦

u
n

(x, ✏)dx =
p
V �

n1

+ ✏

Z

⌦

u
n1

(x)dx+O(✏) (3.58)

Let us rewrite the probability P
0

(t, ✏) that the particle is in ⌦ at time t in terms of

newly defined variables.

P
0

(t, ✏) = exp

"

�2⇡✏Dt

V

N

X

i=1

C i(1)

#

✓

1 + 2✏
2p
V

Z

⌦

u
11

(x)dx+O(✏)

◆

(3.59)

p
0

(x, t, ✏) =
1

V
exp

"

�2⇡✏Dt

V

N

X

i=1

C i(1)

#

(1 +O(✏)) (3.60)

For t � O(�log(✏)), p
0

(x, t, ✏) in the Equation 3.59 is

p
0

(x, t, ✏) =
1

V
exp

"

�2⇡✏Dt

V

N

X

i=1

C i(1)

#

�

1+ ✏
p
V u

11

(x) +
✏p
V

Z

⌦

u
11

(y)dy+O(✏)
�

(3.61)

Let us assume that each hole is circular and the radius is ✏, and then

C i(1) =
2

⇡
for i = 1, ...N (3.62)
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Thereby the exponential terms in the Equation 3.60 and the Equation 3.61 are

replaced by exp



� 4✏DtN

V

�

. Similarly we can do this analysis for the 2D case. Con-

sider that each absorbing segment is @⌦
✏

and their length is 2✏. Then we use the

eigenvalue in the Equation 3.49 with d(1) = 1

2

. Finally, we end up with

P
0

(t, ✏) = exp



� ⇡NDt

V
⌫(✏)

�✓

1 + 2⌫(✏)
1p
V

Z

⌦

u
11

(x)dx+O(⌫(✏))

◆

(3.63)

where ⌫(✏) =

✓

� 1

log(

✏

2 )

◆

, and V is the area of ⌦. The outer solution turns out to

be

u
n

(x, ✏) = u
10

+ ⌫(✏)u
11

+ ... (3.64)

here u
11

satisfies the conditions in the Equation 3.51 and the Equation 3.53 with

n = 1. Eventually, we replace the Equation 3.53 with

u
11

(x) ⇠ 1p
V

log | x� xi

0

| as x ! xi

0

i = 1, ...N (3.65)

3.1.3. Exit Time for Time Dependent Metrics

Let us consider the two time scales: the di↵usion time scale is here shown

by ⌧
D

and the geometric evolution scale is denoted by ⌧
G

. This is the typical time

scale over which the geometry, i.e.. metric changes are not small. We know typ-

ically ⌧
D

⌧ ⌧
G

. Hence as long as di↵usion is concerned we may take g
ij

(coming

from the embedding) as fixed. Yet in reality we know that g
ij

should be taken time

dependent. The evolution of the metric is given by some equation determined by
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geometric objects like extrinsic curvature etc. Yet we should take into account the

fact that ⌧
MFPT

� ⌧
G

for narrow escape problem, NEP. The standard equation is

the di↵usion equation,

�Dr2

g

p =
@p

@t
(3.66)

However this has a problem for a totally reflecting boundary. Total probability is

not conserved if g(t) is time dependent. We propose the subsequent form containing

a correction term for probability conservation;



r2

g

�
✓

1
p
g

@

@t

p
g

◆�

p =
@p

@t
(3.67)

We shall assume that 1p
g

@

@t

is a very small correction term in typical cases. Let us

check the probability conservation,

d

dt

Z

p
p
gd2⇠ =

Z

@p

@t

p
gd2⇠ +

Z

p
@

@t

p
gd2⇠

=

Z



r2

g

� 1
p
g

@

@t

p
g

�

p
p
gd2⇠ +

Z

p
@

@t

p
gd2⇠

=

Z



r2

g

p
p
g � @

@t

p
gp

�

d2⇠ +

Z

p
@

@t

p
gd2⇠

=

Z

r2

g

p
p
gd2⇠ (3.68)
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As a result, the Equation 3.67 evidently satisfies the probability conservation. If

there is a reflecting boundary or no boundary

d

dt

Z

p
p
gd2⇠ =

Z

r2

g

p
p
gd2⇠

=

Z

@⌦

n
i

gij@
j

pds = 0

'
Z

@⌦

�!
5p · bnds = 0 (3.69)

Consider that p(x, t | y) satisfies the forward Fokker-Planck equation

@p

@t
+D



�r2

g

+

✓

1
p
g

@

@t

p
g

◆�

p = 0 (3.70)

For writing down an explicit solution, let us define the following eigenvalue equation,

�g
i

 
i

=



�r2

g

+

✓

1
p
g

@

@t

p
g

◆�

 
i

(3.71)

Since the metric is a slowly changing function, we can take as an approximation

for the transition probability p(x, t | y, 0) given in the subsequent form

p(x, t | y, 0) ⇠=
X

i

e�
R
t

0 �

i

(t

0
)dt

0
u
i

(x | t)u
i

(y | 0) (3.72)
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where we assume that the derivative of the wave-functions is negligible. If t ! 0+,

the summation becomes

X

i

u
i

(x | 0)u
i

(y | 0) = �
g

(x, y) (3.73)

which is true due to completeness of the wave-functions at the same moment. As

required we should check wether the transition probability satisfies the Chapman-

Kolmogorov equation.

Z

p(x, t | y, s)p(y, t | z, u)d
g

y =
X

i,j

exp
�

�
Z

t

s

�g
i

(t0)dt0
�

Z

u
i

(x | t)u
i

(y | s)⇥

u
j

(y | s)u
j

(z | u)exp
�

�
Z

s

u

�g
j

(t0)dt0
�

d
g

y

=
X

i,j

exp
�

�
Z

t

s

�g
i

(t0)dt0
�

�
Z

s

u

�g
j

(t0)dt0u
i

(x | t)�
ij

u
j

(z | u)

=
X

i

exp
�

�
Z

t

s

�g
i

(t0)dt0 +

Z

s

u

�g
i

(t0)dt0
�

u
i

(x | t)u
i

(z | u)

=p(x, t | z, u) (3.74)
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where we use the orthogonally of the wave-functions at any given instant. This

relation shows that probability satisfies a proper evolving condition and hence it

is important. According to the perturbation theory, we can write � and u in the

following form

u
i

= u
(0)

i

+ u
(1)

i

�g
i

= �
g(0)

i

+ �
g(1)

i

(3.75)

and consequently our equation becomes

✓

�
g(0)

i

+ �
(1)

i

◆✓

u
(0)

i

+ u
(1)

i

◆

=



�r2

g

+

✓

1
p
g

@

@t

p
g

◆�✓

u
(0)

i

+ u
(1)

i

◆

(3.76)

here �g(1)
i

is determined by

�
g(1)

i

= hu(0)

i

| 1
p
g

@

@t

p
g | u(0)

i

i (3.77)

and u
(1)

i

is given subsequently

u
(1)

i

=
X

i 6=0

hu(0)

i

| 1p
g

@

@t

p
g | u(0)

i

i

�
g(0)

i

� �
g(0)

0

| u(0)

i

i (3.78)

Now let us rewrite p with the perturbed terms without adding the wave function

corrections

p ⇠=
X

i

exp



�
Z

t

0

�
g(0)

i

(t0)dt0 �
Z

t

0

hu(0)

i

(t0) | 1
p
g

@

@t

p
g | u(0)

i

(t0)idt0
�

u
(0)

i

(x | t)u(0)

i

(y | 0)

(3.79)
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The initial distribution is given by

p
t=0

(y) =
1

| ⌦
g(0)

| (3.80)

The average probability p̃ is thought to be

p̃ =

Z

p(x, t | y, 0)p
t=0

(y)d
g

y

=
X

i

exp

✓

�
Z

t

0

�
g(0)

i

(t0)dt0 �
Z

t

0

hu(0)

i

(t0) | 1
p
g

@

@t

p
g | u(0)

i

(t0)idt0
◆

⇥

u
(0)

i

(x | t)
Z

u
(0)

i

(y | 0) 1

| ⌦
g(0)

|dgy (3.81)

We know that u(0)

0

(x | t)

u
(0)

0

(x | t) = 1
p

| ⌦
g(t)

|
(3.82)

and the integral of u(0)

0

(y | 0) gives

Z

u
(0)

0

(y | 0) 1

| ⌦
g(0)

|dgy =
1

p

| ⌦
g(0)

(3.83)

Consequently p̃ becomes

p̃ ⇠exp

✓

�
Z

t

0

�
g(1)

0

(t0)dt0 �
Z

t

0

Z

p
gd2⇠

1
p

| ⌦
g(t

0
)

|



1
p
g

@

@t0
p
g

�

1
p

| ⌦
g

(t0) |
dt0
◆

⇥ 1
p

| ⌦
g(t)

|
1

p

| ⌦
g(0)

|

=exp

✓

�
Z

t

0

�
g(1)

0

(t0)dt0 �
Z

t

0

1

| ⌦
g(t)

|
@

@t0

Z

M

p
gd2⇠dt0

◆

1
p

| ⌦
g(t)

|
1

p

| ⌦
g(0)

|
(3.84)
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We know that

Z

M

p
gd2⇠ =| ⌦

g(t)

| (3.85)

Substituting the result into p̃ gives the corresponding relation

p̃ =exp

✓

�
Z

t

0

�
g(1)

0

(t0)dt0 �
Z

t

0

@

@t0
ln | ⌦

g

|dt0
◆

1
p

| ⌦
g(t)

|
1

p

| ⌦
g(0)

|

=exp

✓

�
Z

t

0

�
g(1)

0

(t0)dt0 � ln
| ⌦

g(t)

|
| ⌦

g(0)

|dt
0
◆

1
p

| ⌦
g(t)

|
1

p

| ⌦
g(0)

|
(3.86)

Eventually we find out p̃ in the following form

p̃ =

p

| ⌦
g(0)

|
| ⌦

g(t)

|3/2 e
�

R
t

0 �

g(1)
0 (t

0
)dt

0
(3.87)

Now we take the integral of p̃ over d
g

x and dt

⌧
NET

=

Z 1

0

dt

Z

|⌦|
p̃d

g

x =

Z 1

0

dte�
R
t

0 �

g(1)
0 (t

0
)dt

0

s

| ⌦
g(0)

|
| ⌦

g(t)

| (3.88)

where we call d
g

x =
p

det(g)d⇠1⇠2. From the asymptotic analysis we know that

�g
0

= �g
0

(✏ = 0) + [� log(✏)]�12⇡D
1

| ⌦
g

| + .... (3.89)
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where �g
0

(✏ = 0) = 0 and thus the smallest eigenvalue for very small ✏ looks like

�
g(1)

0

⇠=
2⇡D

| ⌦
g

|
1

log
�

1

✏

� + ... (3.90)

Therefore we can write the following relation

⌧
NET

=

Z 1

0

exp

✓

�2⇡D[log(1/✏)]�1

Z

t

0

dt0

| ⌦
g

(t0) |

◆

s

| ⌦
g(0)

|
| ⌦

g(t)

| (3.91)

As a further approximation we give roughly the solution of the integral as an average.

The idea behind this is the following. The 2 dimensional closed surface moves while

preserving the volume inside. This can be thought as an oscillation around an

average area. We propose the following model for the changes of area. Assume that

the enclosed volume remains constant and as a result area fluctuates. To a first

approximation we assume

⌦
g

(t0) ⇠= ⌦
g(0)

+ �⌦cos(!t) (3.92)

where ⌦
g(0)

refers to an average area for the cell and �⌦ represents the change of

area. Moreover, ! = 2⇡

T

is relatively small and ⌦2

g(0)

> �⌦2

g(t)

but not necessarily so

small to be negligible. Eventually our result is that

⌦
g(0)

+ �⌦cos(!t) =⌦
g(0)

+ �⌦
�

2cos2(
!t

2
)� 1

�

=⌦
g(0)

� �⌦+ 2�⌦cos2(
!t

2
)

=
�

⌦
g(0)

� �⌦
�⇥

1 +
2�⌦

⌦
g(0)

� �⌦
cos2(

!t

2
)
⇤

(3.93)
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As a result, our formula will be slightly modified

⌧
NET

⇠=
Z 1

0



exp

✓

�2⇡D[log(
1

✏
)]�1

Z

t

0

dt0

| ⌦
g

(t0) |

�

dt

◆

s

| ⌦
g(0)

|
| ⌦

g(t)

|

⇠=
Z 1

0



exp

✓

�2⇡D[log(
1

✏
)]�1

Z

t

0

dt0
�

⌦
g(0)

� �⌦
�⇥

1 + 2�⌦

⌦

g(0)��⌦

cos2(!t
2

)
⇤

�◆

⇤

s

| ⌦
g(0)

|
| ⌦

g(t)

|dt (3.94)

For the simplification, let us call

✓

� 2⇡D[log(1
✏

)]�1

◆

= a in the Equation 3.94 and

determine new terms as follows

↵ =



a
2

! | ⌦
g(0)

|
q

1�
� |�⌦|
|⌦

g(0)|

�

2

�

� =
1� |�⌦|

|⌦
g(0)|

s

1�
✓

|�⌦|
|⌦

g(0)|

◆

2

=

v

u

u

u

t

1� |�⌦|
|⌦

g(0)|

1 + |�⌦|
|⌦

g(0)|

(3.95)

Since � < 1, 1��

2

�

2 gives the corresponding ratio

1� �2

�2

=
2�⌦

⌦
g(0)

� �⌦
=

2�⌦

⌦

g(0)

1� �⌦

⌦

g(0)

(3.96)

and we assume 1��

2

�

2 < 1. Let us describe another term to simplify the calculations.

To define cos2(!t
2

) we choose tanu = �tan(!t), and the derivative of tan(!t) with

respect to time yields

d(tanu) =
du

cos2u
= �!

dt

2cos2(!t
2

)
(3.97)
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Eventually we can write cos2(!t
2

) in the following form

cos2(
!t

2
) =

1
1

�

2 tan2u+ 1
(3.98)

This allows us to express volume fluctuation also in terms of tan(u). Substituting

these terms into the Equation 3.93 gives

⌦
g(0)

+ �⌦cos(!t) =
�

⌦
g(0)

� �⌦
�



1 +
1� �2

�2

cos2(
!t

2
)

�

=
�

⌦
g(0)

� �⌦
�



1 +
1� �2

�2

1
1

�

2 tan2u+ 1

�

(3.99)

Let us write the ratio

✓

1

⌦

g(0)+�⌦cos(!t)

◆

1/2

✓

1

⌦
g(0)

+ �⌦cos(!t)

◆

1/2

=
1

�

⌦
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� �⌦
�
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✓

1

�

2 tan
2u+ 1

◆
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
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�

2 tan2u+ 1 + 1��
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�

2

�
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=
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�

⌦
g(0)

� �⌦
�

1/2

✓

1

�
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2u+ 1

◆

1/2



1

�

2 tan2u+ 1 + 1

�

2 � 1

�

1/2

=
1

�

⌦
g(0)
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�

1/2

✓

1

�

2 tan
2u+ 1

◆

1/2



1

�

2
1

cos

2
u

�

1/2

(3.100)
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Now we can write the subsequent expansion with respect to �2

1


⌦
g(0)

+ �⌦cos(!t)

�

1/2

=
1

| ⌦
g(0)

� �⌦ |1/2



1

�2

tan2u+
1

�2

+ 1� 1

�2

�

1/2

�cosu

=
1

| ⌦
g(0)

� �⌦ |1/2



1

cos2u
+ �2 � 1

�

1/2

cosu

=
1

| ⌦
g(0)

� �⌦ |1/2



1 +
�

�2 � 1
�

cos2u

�

1/2

(3.101)

In the next step, we replace cos2u with (1 � sin2(u)), and consequently it reduces

the expression to the form

1


⌦
g(0)

+ �⌦cos(!t)

�

1/2

=
1

| ⌦
g(0)

� �⌦ |1/2



1 +
�

�2 � 1
��

1� sin2u
�

�

1/2

=
1

| ⌦
g(0)

� �⌦ |1/2



1 +
�

1� �2

�

sin2u+ �2 � 1

�

1/2

=
�

| ⌦
g(0)

� �⌦ |1/2



1 +
�1� �2

�2

�

sin2u

�

1/2

(3.102)

Ultimately we can recast our result into

⌧
NET

⇠=
Z 1

0

e�↵u

2du | ⌦
g(0)

|1/2 �
�! | ⌦

g(0)

� �⌦ |1/2

⇥

1 + 1��

2

�

2 sin2u
⇤

1/2

⇥

1 + 1��

2

�

2 sin2u
⇤

⇠=
Z 1

0

e�↵u

2du

! | 1� �⌦

⌦

g(0)
|1/2

1
⇥

1 + 1��

2

�

2 sin2u
⇤

1/2

(3.103)
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Afterwards, we expand 1

⇥

1+

1��

2

�

2 sin

2
u

⇤1/2 . For the simplicity, we call x = 1��

2

�

2 sin2u

and the expansion results in

1

(1 + x)1/2
=

1
X

m=0

(�1

2

)....(�1

2

�m)

m!
xm, and

Z 1

0

sin2m(u)e�↵udu =
2(2m)!

↵

✓

(↵2 + 22)....(↵2 + (2m)2)

◆ (3.104)

Since ↵ = 4⇡D[log(1/✏)]

�1

!|⌦
g(0)|

r
1� |�⌦|2

|⌦
g(0)|2

, in the computation of 22 + ↵2, 42 + ↵2,...(2m)2 + ↵2

etc as ✏ ! 0+, ↵2’s are all negligible. Finally we substitute the expansion into the

Equation 3.103, ⌧
NET

becomes

⌧
NET

⇠=
1
X

m=0

(2m+ 1)!

(m!)2m

✓

1� �2

�2

◆

2m (2m)!

22m(m!)2

| ⌦
g(0)

|
q

1� |�⌦|2
|⌦

g(0)|2

a

⇠=
| ⌦

g(0)

| log(1
✏

)
q

1� |�⌦|2
|⌦

g(0)|2

2⇡D

1
X

m=0

(2m+ 1)!

(m!)2m

✓

1� �2

�2

◆

2m (2m)!

22m(m!)2

(3.105)

Schuss looks at the problem for a frozen metric and typically the motion of the cell

is not considered. Let us comment on the exact solution of the NET for a sphere as

given in [9]

⌧ =
| ⌦

g

|
2⇡D

✓

log
1

�
+O(1)

◆
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where � is defined to be the opening angle of the spherical cap and the area of the

2 dimensional sphere surface is represented by | ⌦
g

|= 4⇡R2. As we let �⌦ ! 0 we

recover the result since � ! 1 in this limit. Yet in our solution, we assume that

the motion of a cell can be thought of as an oscillation. Ultimately our result shows

that the impact of oscillation around an average area has considerable e↵ect on the

NET, ⌧
NET

.
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4. KILLING PROCESS AND NARROW ESCAPE TIME

4.1. Killing Process in General Approach

The success of a targeted Brownian molecule to arrive a specific point on the

cell may be limited by a killing activity. To model the killing activity we will use the

steady state killing rate k. In this section we basically follow Holcman’s paper [13]

to understand the general approach in the killing process. Let us consider the

probability P
N

, which is the arrival probability and ⌧
N

is the mean time. Since

receptors hold a relatively small fraction of the total area, we can asymptotically

estimate P
N

and ⌧
N

as a function of the di↵usion constant D and the killing rate k,

which is in general a space dependent rate.

Let us take the probability P
N

(x) that the targeted particle arrives at a re-

ceptor and it is still alive in the domain ⌦. Subsequently the survival probability

density function SPDF is given in the following form

p(x, t | y)dx = Pr
�

X(t) 2 x+ dx, ⌧ k > t, ⌧a > t | X(0) = y
 

(4.1)

here ⌧a is described as the first time that the targeted molecule reaches the absorbing

boundary @⌦
a

alive and ⌧ k is reported as the first time that is killed. In the calcula-

tion part, it is known that the SPDF p(x, t | y) satisfies the forward Fokker-Planck

equation.

@p(x, t | y)
@t

= Dr2p(x, t | y)� k(x)p(x, t | y), in ⌦ (4.2)
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where the initial condition is given by

p(x, 0 | y) = �(x� y), for x, y 2 ⌦ (4.3)

and the boundary conditions are the following

p(x, t | y) =0, on @⌦
a

J(x,y | t) · n
x

=0, on @⌦
r

(4.4)

here @⌦
a

is defined as the absorbing part as well as @⌦
r

is the reflecting part.

Furthermore, n
x

represents the normal derivative at a boundary point x, and finally

the flux density vector J(x,y | t) is determined by

J i(x, y | t) = �Drp(x, t | y) (4.5)

The expression of probability P
N

(y) that the targeted molecule started from the

initial condition y arrives at a receptor before being killed is given by

P
N

(y) = Pr
�

⌧a < ⌧ k | X(0) = y
 

(4.6)

Similarly we can define the probability of being killed before arriving at the absorbing

part Pr
�

⌧ k < ⌧a | X(0) = y
 

. We can express these probabilities in terms of

SPDF by integrating the Fokker-Planck equation in 4.2 over time and the domain

⌦. Consequently we end up with

1 =

Z 1

0

I

@⌦

J(x, y | t) · n(x)dS
x

dt+

Z 1

0

Z

⌦

k(x)p(x, t | y)dxdt (4.7)
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Let us express the probabilities separately

P
N

(y) = Pr
�

⌧a < ⌧ k | X(0) = y
 

=

Z 1

0

I

@⌦

J(x, y | t) · n(x)dS
x

dt (4.8)

and

Pr
�

⌧ k < ⌧a | X(0) = y
 

=

Z 1

0

Z

⌦

k(x)p(x, t | y)dxdt

=

Z

⌦

k(x)p̃(x, y)dx (4.9)

where we define p̃(x, y) as follow

p̃(x, y) =

Z 1

0

p(x, t | y)dt (4.10)

and it is the solution of

Dr2p̃� k(x)p̃ = ��(x� y), for x, y 2 ⌦ (4.11)

If p
i

is given as the initial distribution, we can define the averaging probability

p̃(x) =

Z

⌦

p̃(x | y)p
i

(y)dy (4.12)
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As the averaging probability satisfies the Fokker-Planck equation in 4.2, the solution

is given by

Dr2p̃(x)� k(x)p̃(x) = �p
i

(x) for x 2 ⌦ (4.13)

Now let us define the time dependent averaged probability

p̃(x, t) =

Z

⌦

p̃(x, t | y)p
i

(y)dy (4.14)

and the corresponding flux is

J i(x, p
i

| t) = �Dr(i)p̃(x, t) (4.15)

Eventually we describe the probability P
N

to arrive at a receptor as the reaching

probability averaged over the initial position.

P
N

=

Z

⌦

Pr
�

⌧a < ⌧ k | X(0) = y
 

p
i

(y)dy

=1�
Z

⌦

k(x)p̃(x)dx (4.16)

To find out the mean time to reach a receptor ⌧
N

, we obtain a set of partial

di↵erential equations satisfied by the mean first passage time MFPT. We first derive

an equation for the probability distribution function of the killing time and we have

that

Pr
�

⌧ k < t | ⌧a > ⌧ k, p
i

 

=
Pr

�

⌧ k < t, ⌧a > ⌧ k | p
i

 

Pr
�

⌧a > ⌧ k | p
i

 (4.17)
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Let us define these probabilities separately

Pr
�

⌧a > ⌧ k | p
i

 

=

Z 1

0

Z

⌦

Z

⌦

k(x)p(x, s | y)p
i

(y)dxdyds

=

Z

⌦

k(x)p̃(x)dx (4.18)

and

Pr
�

⌧ k < t, ⌧a > ⌧ k | p
i

 

=

Z

t

0

Z

⌦

Z

⌦

k(x)p(x, s | y)dxdyds

=

Z

t

0

Z

⌦

k(x)p̃(x, s)dxds (4.19)

Eventually the expression in the Equation 4.17 becomes

Pr
�

⌧ k < t | ⌧a > ⌧ k, p
i

 

=

R

t

0

R

⌦

k(x)p̃(x, s)dxds
R

⌦

k(x)p̃(x)dx
(4.20)

After integrating by parts, the MFPT is obtained by

⌧
K

=E[⌧ k | ⌧ k < ⌧a, p
i

]

=

Z 1

0

t
d

dt
Pr

�

⌧ k < t | ⌧a > ⌧ k, p
i

 

dt

=

R

t

0

R1
t

R

⌦

k(x)p̃(x, s)dxdsdt
R

⌦

k(x)p̃(x)dx

=

R1
0

s
R

⌦

k(x)p̃(x, s)dxds
R

⌦

k(x)p̃(x)dx
(4.21)
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For the analytical expression of the Equation 4.21, we derive the partial di↵erential

equation as follow

q(x) =

Z 1

0

sp̃(x, s)ds (4.22)

The integral of the Fokker-Planck equation in 4.2 after multiplying by t results in

Z 1

0

t
@p(x, t | y)

@t
dt = Dr2q(x | y)� k(x)q(x | y), for x 2 ⌦ (4.23)

Hence the function q satisfies the boundary value problem

�p̃(x | y) =Dr2q(x | y)� k(x)q(x | y), for x 2 ⌦

q(x) =0, for x 2 @⌦
a

J(x | y) · n =�Dr2q(x) · n = 0, for x 2 @⌦
r

(4.24)

Therefore the expression of the conditional MFPT to be killed is given in the sub-

sequent relation

E[⌧ k | ⌧ k < ⌧a, p
i

] =

R

⌦

k(x)q(x)dx
R

⌦

k(x)p̃(x)dx
(4.25)

Similarly for the survival trajectories we use the probability distribution function of

the absorbing time ⌧a, and thus we find out the conditioned MFPT ⌧a

Pr
�

⌧a < t | ⌧a < ⌧ k, p
i

 

=

R

t

0

J(s | p
i

)ds

1�
R1
0

R

⌦

k(x)p̃(x)dxds
(4.26)
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where the flux is given by

J(s | p
i

) =

I

@⌦

J(x,p
i

| t) · n(x)dS
x

(4.27)

Finally the mean time ⌧a to absorption is the following expression

⌧
N

=E[⌧a | ⌧a < ⌧ k, p
i

]

=

Z 1

0

�

1� Pr
�

⌧a < t | ⌧a < ⌧ k, y
 �

dt

=

R

t

0

sJ(s | p
i

)ds

1�
R

⌦

k(x)p̃(x)dx

=

R

⌦

p̃(x)dx�
R

⌦

k(x)q(x)dx

1�
R

⌦

k(x)p̃(x)dx
(4.28)

This is the general approach to understand the killing process under a zero drift.

For the next step, Holcman looks at the problem for a small killing rate k ⌧ 1 [13].

Owing to the boundary conditions, Holcman uses the image source method to deal

with the problem. Therefore the singularity of the Green’s function changes and

the ultimate result is multiplied by a factor 2. As a result, Holcman’s result in 2

dimension turns out to be in the consequent form for a single absorber.

⌧
N

⇠=
|⌦

g

|
⇡D

log(1
✏

)

1 +
log(

1
✏

)

⇡D

R

⌦

k(x)d
g

x
(4.29)
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4.2. An Alternative Derivation

Alternatively let us apply another technique to check wether we can come up

with the same solution with Holcman’s result. This time we propose the asymptotic

expansion of the eigenvalue to obtain the MFPT. The asymptotic analysis formula

is given in the following relation

�(✏) = �g
0

+

✓

1

log[1
✏

]

◆

2⇡D
⇥

u
0

(x
0

)
⇤

2

+ ..... (4.30)

The perturbation of the initial �
0

and u
0

(x
0

) are given by

�g
0

= �
g(0)

0

+ �
g(1)

0

and u
0

= u
(0)

0

+ u
(1)

0

(4.31)

Let us substitute the perturbed values into the Equation 4.30 and our formula

becomes

�(✏) = �
g(0)

0

+ �
g(1)

0

+

✓

1

log[1
✏

]

◆

2⇡D
⇥

u
(0)

0

+ u
(1)

0

⇤

2

+ ..... (4.32)

where u(0)

0

= 1p
|⌦

g

|
and �g(0)

0

= 0. The perturbed form of �g(1)
0

and u
(1)

0

are described

as

�
g(1)

0

= hu(0)

0

| k(x) | u(0)

0

i =
Z

⌦

k(x)
dx

| ⌦
g

| (4.33)

We assume �g(1)
0

⌧ 1 and u
(1)

0

is indicated by

u
(1)

0

(x) =
X

i 6=0

hu(0)

i

| k | u(0)

0

i
�
(0)

i

� �
(0)

0

u
(0)

i

(x) (4.34)
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where hu(0)

i

| k | u(0)

0

i =
R

⌦

k(x)u(0)

i

d
g

x 1p
|⌦

g

|
and �g(0)

0

is zero, we can rewrite u
(1)

0

in

the following form,

u
(1)

0

=
X

i 6=0

1

�
g(0)

i

1
p

| ⌦
g

|

Z

⌦

k(x)u(0)

i

d
g

x (4.35)

Now �(✏) with the new perturbed variables is given by

�(✏) = �
g(0)

0

+ �
g(1)

0

+

✓

1

log[1
✏

]

◆

2⇡D
⇥

u
(0)

0

+ u
(1)

0

⇤

2

+ .....

⇠= 0 +

Z

⌦

k(x)d
g

x

| ⌦
g

| +
1

log[1
✏

]
2⇡D

⇥

u
(0)2

0

+ u
(1)

0

u
(0)

0

⇤

+ .... (4.36)

As 1

log[

1
✏

]

⌧ 1 , the product of 1

log[

1
✏

]

with u
(1)

0

u
(0)

0

is negligible. Ultimately we can call

the final result as �g(1)
0

(✏)

�
g(1)

0

(✏) ⇠=
Z

⌦

k(x)
d
g

x

| ⌦
g

| +
2⇡D

log[1
✏

]

1

| ⌦
g

| (4.37)

In Holcman’s study [13], the mean time ⌧
N

is given by

⌧
N

=



R

⌦

d
g

x
R

⌦

p
i

(y)d
g

y
R1
0

p(x, s | y)ds�
R

⌦

k(x)d
g

x
R1
0

sds
R

⌦

p
i

(y)p(x, s | y)d
g

y

�

1�
R

⌦

k(x)d
g

x
R1
0

sds
R

⌦

p
i

(y)p(x, s | y)d
g

y
(4.38)

Since the survival probability density function p(x, s | y) satisfies the forward Fokker-

Planck equation, we can write the solution in the following expression

p(x, y | s) =
1
X

i=0

e��

g

i

(✏)su
i

(x)u
i

(y) (4.39)
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To calculate the survival probability, let us take the integral with respect to time

Z 1

0

p(x, s | y)ds =
1
X

i=0

Z 1

0

e��

g

i

(✏)su
i

(x)u
i

(y)ds

=
1
X

i=0

1

�g
i

(✏)
u
i

(x)u
i

(y) (4.40)

Since �g(0)
0

= 0 and the correction �g(1)
0

is small, we have the dominant contribution

still coming from the �g
0

(✏) term,

Z 1

0

p(x, s | y)ds ⇠=
1

�
g(1)

0

(✏)
u
0

(x)u
0

(y) (4.41)

Let us write the perturbed values of u
0

Z 1

0

p(x, s | y)ds ⇠=
1

�
g(1)

0

(✏)
[u(0)

0

(x) + u
(1)

0

(x)][u(0)

0

(y) + u
(1)

0

(y)]

⇠=
1

�
g(1)

0

(✏)



1

| ⌦
g

| +
1

p

| ⌦
g

|
[u(1)

0

(x) + u
(1)

0

(y)]

�

(4.42)

In the following step, we will check all integrals in the Equation 4.38 one by one.

For the first integral part, we solve the integral by using the perturbed values and

it produces

Z

⌦

d
g

x

Z

⌦

p
i

(y)d
g

y

Z 1

0

p(x, s | y)ds = 1

�
g(1)

0

(✏)



Z

⌦

g

d
g

x

| ⌦
g

|

+
X

i 6=0

1

| ⌦
g

|

Z

⌦

d
g

x
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

⇤
✓

u
(0)

i

(x)

Z

⌦

p
i

(y)d
g

y +

Z

⌦

u
(0)

i

(y)p
i

(y)d
g

y

◆�

(4.43)
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The summation part is of order O(k) whereas the integral part is O(1), and O(1) �

O(k), hence we can rewrite the relation

Z

⌦

d
g

x

Z

⌦

p
i

(y)d
g

y

Z 1

0

p(x, s | y)ds = 1

�
g(1)

0

(✏)



1 +
X

i 6=0

✓

R

⌦

g

u
(0)

i

(x)d
g

x

| ⌦
g

| +

| ⌦
g

|
| ⌦

g

|

Z

⌦

u
(0)

i

(y)p
i

(y)d
g

y

◆

hu(0)

0

| k | u(0)

i

i
�
g(0)

i

�

(4.44)

For the second integral part in the Equation 4.38, let us redo the calculations with

the perturbed values

Z

⌦

k(x)d
g

x

Z 1

0

sds

Z

⌦

p
i

(y)p(x, s | y)d
g

y =

Z

⌦

k(x)
1

[�g(1)
0

(✏)]2



1

| ⌦
g

|+

X

i 6=0

1

| ⌦
g

|
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

✓

u
(0)

i

(x) +

Z

⌦

u
(0)

i

(y)p
i

(y)d
g

y

◆�

=
1

[�g(1)
0

(✏)]2



Z

⌦

k(x)d
g

x

| ⌦
g

| +
X

i 6=0

✓

R

⌦

k(x)u(0)

i

(x)d
g

x

| ⌦ |
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

+

Z

⌦

k(x)d
g

x

| ⌦
g

|

Z

⌦

u
(0)

i

p
i

(y)d
g

y
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

◆�

(4.45)

Finally, the last part in the Equation 4.38 induces the following relation

1�
Z

⌦

k(x)d
g

x

Z 1

0

sds

Z

⌦

p
i

(y)p(x, s | y)d
g

y = 1� 1

[�g(1)
0

(✏)]2



Z

⌦
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g

x

| ⌦
g

| +

X
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✓

R

⌦

k(x)u(0)
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x

| ⌦ |
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

+
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⌦

k(x)d
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x

| ⌦
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|

Z

⌦
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(0)

i

p
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g

y
hu(0)

0

| k | u(0)

i

i
�
g(0)

i

◆�

(4.46)
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We make a very crude approximation and remove all terms of order O(k), hence the

first part yields

Z

⌦

d
g

x

Z

⌦

p
i

(y)d
g

y

Z 1

0

p(x, s | y)ds ⇠=
1

�
g(1)

0

(✏)

Z

⌦

d
g

x

| ⌦
g

|

⇠=
1

�
g(1)

0

(✏)
(4.47)

The second integral part gives the corresponding relation

Z

⌦

k(x)d
g

x

Z 1

0

sds

Z

⌦

p
i

(y)p(x, s | y)d
g

y =

Z

⌦

k(x)

| ⌦ |
1

[�g(1)
0

]2
d
g

x (4.48)

Eventually, the last part reduces to the integral

1�
Z

⌦

k(x)d
g

x

Z 1

0

sds

Z

⌦

p
i

(y)p(x, s | y)d
g

y = 1�
Z

⌦

k(x)

| ⌦ |
1

[�g(1)
0

]2
d
g

x (4.49)

Now, let us submit the results of our crude approximation into the Equation 4.38 [13]

⌧
N

⇠=
1

�

g(1)
0 (✏)

�
R

⌦

k(x)

|⌦|
1

�

g(1)2
0
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x

1�
R

⌦
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�

g(1)2
0
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g

x
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|⌦

g

|
2⇡D

log(1
✏

)

1 +
log(

1
✏

)

2⇡D

R

⌦

k(x)d
g

x
(4.50)

Let us compare this outcome with Holcman’s result. Holcman finds the mean time

⌧
N

for 2 dimension in the following form

⌧
N

⇠=
|⌦

g

|
⇡D

log(1
✏

)

1 +
log(

1
✏

)

⇡D

R

⌦

k(x)d
g

x
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Holcman takes a regular boundary condition, thus he considers the image source. As

a consequence, the singularity of the Green’s function in his calculations is multiplied

by a factor 2. Finally the di↵erence between two results is due to the image charge.
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5. CONCLUSION

In biological systems modeling of transport is a challenging process because

there is a highly viscous and heterogeneous medium. Furthermore, medium has a

fluctuating environment. The purpose of our targeted molecule is to arrive at a

chemically active receptor, which acts like an absorbing boundary. Consider other

organelles of the interior of a cell, they act like an obstacle and that means our tar-

geted molecule can be killed before reach the receptor. In these complex processes,

a simple and feasible approach known is to develop stochastic models. In the intra-

cellular transport, Brownian motion is commonly used to model the motion of the

molecules. In certain case, these molecules display Brownian motion on the 2D sur-

face of the cell. Therefore the first passage time of such molecules is the fundamental

mechanism for critical biological processes. Another argument is that our Brownian

particle on reflected domain intends to escape from this domain through a small

absorbing window. This case is defined as the narrow escape problem (NEP). The

narrow escape problem in di↵usion theory is defined as the calculation of the mean

first passage time. Schuss uses Neumann-Drichlet Boundary Condition to calculate

the mean first passage time. Another group Ward uses Perturbation of Boundary

Condition in their calculations. They use matched asymptotic expansion. Here,

for the inner expansion, large changes occur in the solution around the strong per-

turbation whereas the outer expansion leads to relatively small e↵ects. We expect

that these two expansions are matched on the boundary. In some cases, this time

scale can be very long compared to the motion of the cell in its environment. For

the dynamical model where the surface is fluctuating slowly as the particle displays

Brownian motion on this surface, we can apply a stochastic process with a variable

background metric. Since the modification of the metric is slowly, we can use an

adiabatic approximation. We analyze the variation of first passage times within

this dynamical model. We find out that oscillation of the surface in a cell has a

significant e↵ect on the NET. Additionally we investigate the killing process in bi-

ological systems. Holcman approaches this problem by using Green’s function. In
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our technique, we apply the asymptotic expansion of the eigenvalue. Specifically we

use perturbation of the initial eigenvalue and eigenfunction. Both results are satis-

fied by each other but because of the singularity of the Green’s function, Holcman’s

result is multiplied by a factor 2. This di↵erence between two results comes from

the image charge in Holcman’s calculations.
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