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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Industrial Engineering
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passionate field of glass production, from which, quoting a field expert, “one cannot

get away after seeing inside of the furnace.” I would also like to acknowledge valuable
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ABSTRACT

CAMPAIGN PLANNING UNDER SEQUENCE

DEPENDENT FAMILY SETUPS AND CO-PRODUCTION

IN PROCESS INDUSTRY

We investigate tactical level production planning problem in process industries,

with float glass manufacturing being the specific application domain. Process industries

are cost intensive, and as a result, e�cient usage of capacity through planning is

necessary.

In the presence of high sequence dependent family setup costs, the need for plan-

ning production in batches, or campaigns as named in the float glass industry, arises.

Campaign planning is determining timing and duration of each product family, which

translates into setups. Moreover, availability of input data in di↵erent resolution, i.e.

setup times in continuous time whereas customer demand forecast are available in dis-

crete time, increases the complexity. Co-production is a phenomenon that exists in

several industries including float glass manufacturing. Usually due to some special

characteristic of the manufacturing process some products need to be produced by

necessity. This is another challenge for e�cient capacity usage as well as inventory

management.

We study the problem for di↵erent complexity levels. We start with single ma-

chine instance and develop two formulations. A novel branch-and-price algorithm is

proposed for the parallel machine extension. Finally, we extend the problem to multi-

ple product hierarchy levels and network structure including customer locations. We

demonstrate the e�ciency of our methods through extensive numerical experiments as

well as some further tests to analyze the sensitivity of the cost components.
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ÖZET

PROSES SANAYİSİNDE SIRA BAĞIMLI ÜRÜN AİLESİ

SETUPI VE BİRLİKTE ÜRETİM KOŞULLARINDA

KAMPANYA PLANLAMA

Bu tezde proses sanayisinde taktik seviye üretim planlama problemini incelenmiş

ve uygulamalar için bir proses sanayisi olan düz cam üretimi temel alınmıştır. Proses

sanayisi maliyet odaklı olması sebebiyle kapasitenin planlama marifetiyle verimli bir

şekilde kullanılması önem teşkil etmektedir.

Yüksek maliyetli sıra bağımlı ürün ailesi setuplarının varlığında düz cam sa-

nayisinde kampanya olarak adlandırılan partiler halinde üretim ihtiyacı ortaya çıkar.

Kampanya planlama bu partilerin zamanlamasını ve uzunluğunun belirlenmesidir ve

eş zamanlı olarak da setup planları da oluşturulmuş olur. Setup sürelerinin sürekli za-

manda müşteri taleplerinin ise kesikli zamanda ifade edilmesi problemin karmaşıklığını

artırmaktadır. Birlikte üretim düz cam üretimi de dahil olmak üzere bazı sektörlerde

bulunan bir olgudur. Genellikle imalat sürecinin birtakım özellikleri sebebiyle bazı

ürünler zorunlu olarak üretilir. Bu durum kapasitenin verimli kullanılması için olduğu

kadar stok yönetimi acısından da zorlayıcı bir başka etmendir.

Tez kapsamında problemin farklı zorluk dereceleri çalışılmıştır. İlk olarak tek

üretim hattı incelenmiş ve iki adet matematiksel model geliştirilmiştir. Paralel hat-

ların bulunduğu versiyon için yeni bir dal-fiyat algoritması geliştirilmiştir. Son olarak,

problem çoklu ürün hiyerarşisi ve müşteri konumlarını da içeren şebeke yapısında

çalışılmıştır. Sayısal deneyler önerilen yöntemlerin başarısını göstermiştir. Maliyet

kalemlerine duyarlık deneyleri de yapılmıştır.
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1. INTRODUCTION

Production planning is a decision process to determine how available resources

including materials and machines should be allocated such that demand from customers

is satisfied while conforming to the desired level of performance indicators as much

as possible. Decisions include manufacturing time and quantity of each product in

addition to the selection of machine or alternative that the manufacturing will be

executed on.

Supply chain planning often directly considers manufacturing, transportation, in-

ventory holding and demand satisfaction related costs. Nevertheless, loss of e�ciency in

production line capacity usage can have significant impact on the overall e↵ectiveness,

especially in process industries. For instance, furnaces used in float glass manufactur-

ing need to be up and running 24/7 due to the continuous production nature of the

process even if there is insu�cient demand or stock targets. Moreover, the furnace

must also keep running during setup, which can take several days. Since lost capacity

is highly undesirable, an elaborated setup decision within the plan cycle is necessary.

In the presence of high associated costs, the duration of a production run for a

given setup needs to be long enough so that the production plan ensures the balance

between setup and inventory holding costs for products involved. Therefore, products

belonging to a certain family are usually produced together in campaigns . In glass

manufacturing for instance, products that have the same color, which is the main

driver of setup, are produced in campaigns. For a specific color, the plan usually

contains one or two campaigns in a year, in order to minimize the changeovers [2].

Hence, we can define campaign planning as the process of determining the timing and

the length of such production run decisions, which also means determining setups.

We can define setup as time, cost and possibly material necessary to spend

to start producing a scheduling unit, and we can categorize it in di↵erent aspects.
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Sequence dependency is a phenomenon with a significant impact in terms of solution

performance to production planning problem, and has been investigated by numerous

works such as [3–5]. Sequence dependent setup times depend on the characteristics of

the adjacent scheduling units. Independent setups, as expected, do not vary based on

the predecessor unit but on the very unit itself. Regardless of whether the setup type is

sequence dependent or independent, we can further categorize setups as either product

or family setups. In family setups, products are grouped into families with respect to

certain attributes a↵ecting the setup time, and setups arise between production units

belonging to di↵erent families.

In terms of mathematical formulations, we can further investigate setups under

two sub domains. First one concerns discrete time formulations where planning horizon

is divided into periods. There are two concepts referred to in the literature related,

namely carryover and crossover. We refer to [6] to note their di↵erence. In setup

crossover, the time spent for the actual setup task can span over two periods including

the period boundaries. On the other hand, setup carryover allows a setup state to

be maintained from one period to the next one. Second one concerns again discrete

or hybrid models with detailed relation to sequence of setup groups, either product or

sequence oriented formulations. In the latter, pre-defined setup sequences are allocated

to periods whereas in the former models assign products periods.

[7] defines minor setup such as time incurred on machines of moderate length

due to switch from one part to another and major setup of long length due to a switch

between parts belonging to di↵erent families. However, in float glass manufacturing

major and minor setups are both related to family setups, former being related to

a change in color whereas latter related to a change in coating or thickness. [8] de-

velop a classification scheme for setups, however including cleanings, which can be

a key cost driver in process industries such as food and pharmaceuticals. Cleanings

can be viewed as another setup type, required due to quality and safety consider-

ations. The paper presents a mathematical model to accurately represent cleanings.
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In float glass manufacturing, cleanings similarly translate into setups since switch-

ing from one color to another requires the furnace and the molten solution to be stabi-

lized in terms of quality of the destination color. Finally, startup is another category of

setup, which corresponds to resources spent to start producing any product. However,

we do not further elaborate on details of startup setups, since in float glass manufac-

turing lines operate on a 24/7 basis and startup setups practically only exist when a

new production line starts operating for the first time.

Co-production is producing several di↵erent products in a single production run

by necessity [9] , and it exists in various industries including petroleum, semiconductor,

glass etc. Main di↵erence of co-production from by-production is that co-products are

primary products themselves and that a certain combination of products needs to be

produced conforming to the necessities of the process along with intended products.

On the other hand, a by-product is not primarily produced itself but rather produced

as a result of producing another product. Co-production needs to be dealt with in

process industries since it can result in undesired production, which means production

and inventory holding costs incurred unintentionally.

1.1. Thesis Contribution

Capacitated Lot Sizing Problem (CLP) is a basic production planning problem,

and is known to be NP-hard [10]. Moreover, finding a feasible solution for a single-

level General Lot Sizing Problem (GLSP), which is single-level special case of General

Lot Sizing Problem for Multiple Production Stages, is NP-complete [11]. Our main

line of research is on designing e�cient solution strategies for campaign planning in the

presence of sequence dependent family setups and co-production in di↵erent planning

complexity levels in terms of number of machines, alternative selection and network

structure. We will concentrate on float glass production as application domains.

We defined campaign planning as determination of the campaigns, which trans-

lates into timings and durations of production runs of product families.
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In the existence of co-production in addition to sequence dependent family setups,

campaign planning becomes critical in process industries since the production capac-

ity depends highly on the mix of products allocated, which is not fully controllable.

Float glass manufacturing is a process having sequence dependent family setups and

co-production attributes. Furthermore, it is a continuous process and the furnace needs

to operate 24/7 until it reaches the end of its lifetime.

Figure 1.1. Main components of campaign planning problem.

Figure 1.1 illustrates the main components of the campaign planning problem.

Tactical planning in float glass manufacturing is typically executed by the planning spe-

cialists implementing a manually pre-determined campaign plan. The tactical plans

are generated at a monthly level since the demand forecasts are available on discrete

time with monthly availability. However, critical information that drives planning ac-

tivities such as setup durations and production speed is available in continuous time.

Hence, the campaign planning problem needs to incorporate continuous timeline while

ensuring the demand responsiveness on discrete time. Consequently, the synchroniza-

tion between discrete and continuous information is challenging. To the best of our

knowledge a work that can e�ciently incorporate continuous time input data with dis-

crete time data without harming the optimality due to discretization is not present in

the literature for di↵erent complexity levels.
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The main output of the planning is the campaign plan, which we can define as

a sequence of families, start and end times of setups and productions. The planning

process yields production quantity per product and period based on campaign decisions,

which in return provides demand satisfaction and backlog plan as well as inventory

projection. Despite focusing on float glass manufacturing as the specific application

domain, we believe that the methods we present can be generalized to other process

industries.

1.2. Thesis Outline

We present literature review in Chapter 2, from which we observe that former

studies can be categorized with respect to the structure of the machine settings. High

portion of the studies focus on single machine instance. Other studies cover parallel

machine and multiple product hierarchy and multiple facility settings.

We define the details and the challenges of the campaign planning problem in

float glass manufacturing in Chapter 3. Availability of input data in both discrete and

continuous time requires any solution method to manage the resulting complexity in

addition to setups and co-production.

In Chapter 4, we focus on single machine instance of the problem. We propose two

Mixed Integer Programs (MIP). Both formulations determines the sequence of product

families, which we name as patterns,to be produced on each machine in each period,

and both formulations contain macro periods. They are di↵erent from each other on

formulating setups over period boundaries. One couples all pattern combinations over

period boundaries whereas the other couples families.

Chapter 5 considers parallel machine extension. The extended problem consid-

ers both identical and unrelated machines. Formulations proposed for single machine

problem fail with the new scope. We develop a compact reformulation which leads to

Column Generation (CG) and a novel Branch-and-Price (B&P) algorithm.
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In Chapter 6, we study the problem in the most general form. We introduce

a hierarchy of multiple product levels, which contains both discrete and continuous

products. This brings addition of discrete production lines, outputs of which consume

outputs of continuous production lines. Moreover, we introduce multiple facilities with

one or more production lines as well as customer locations, which hold the customer

demands. All of the previous solution methods prove to be not su�cient enough in

terms of solution quality in a reasonable running time. As a result, we build mathemat-

ical programming based heuristics, namely matheuristics making use of reducing the

problem to multiple facility parallel machine instance exploiting the business insights.

In Chapter 7, we present numerical results of proposed solution methods for all the

instances of various dimensions in terms of family structure, number of production lines

and planning horizon. Finally, Chapter 8 concludes the dissertation with a summary

of the proposed methodologies and discusses further research directions.
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2. LITERATURE REVIEW

Production planning with setup considerations is a widely studied topic in the

literature. Consequently, comprehensive reviews on the topic are available. [12] gives

definitions for GLSP, Capacitated Lot Sizing with Sequence-Dependent-Setup, Propor-

tional Lot Sizing and Scheduling, Continuous Lot Sizing and Scheduling and Discrete

Lot Sizing and Scheduling. Authors categorize the reviewed papers with respect to

being extension to one of these fundamental models. They state that large-bucket

models dominate the small-bucket models. In large-bucket models typically multiple

items can be produced within a period whereas in small-bucket models at most one

item is produced in a period. Authors also note that studies containing multi-stage

models are limited to only two production stages and the reason behind is only one or

two processes are argued to be bottleneck in real world problems.

Another review study is available in [13]. It categorizes the literature based on

shop environment type including single machine, parallel machines and flow shops,

batch and non-batch setup indications and sequence dependency. Authors state that

the majority of 300 papers they reviewed address sequence independent setups. Branch-

and-Bound (B&B) based algorithms, MIP based matheuristics, Dynamic Programming

(DP) and some meta-heuristics are the most common solution methodologies used.

Authors also suggest that even though most of the current available work is limited

to planning activities in manufacturing, models with setup consideration have great

potential to be applied to other areas such as telecommunications, logistics and high-

speed parallel computing.

An updated version of [13] is in [14] with a review of around 500 papers. The cate-

gorization of the papers is the same and this newer version covers again problems involv-

ing static, dynamic, deterministic and stochastic environments for di↵erent shop types.

Authors state that the research on scheduling problems with setup presence is less

than 10 percent of the available literature on scheduling and more research is needed.
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Another important conclusion is that, around 75 percent of the available papers related

to single machine environment with family setup address sequence independent setup

type. Hence, there is need for addressing the sequence dependent scheduling problems

in single machine environments with family setup times.

Remainder of this Chapter refers to existing work from literature under four

sections. First section focuses on studies on single machine case while second one

focuses on parallel machine case in a single facility. Section 2.3 discusses studies with

network structure and multiple product hierarchy. Finally, we present papers relevant

to campaign planning problem in process industries in Section 2.4 and provide a high

level comparison of our study with existing work. At the end of this Chapter, Table

2.2 provides an overview of the available literature and the acronyms used within is

available in Table 2.1.

2.1. Single Machine

In the existence of a pre-defined jobs heuristic algorithms are applied frequently

in order to determine the sequence forming up the final schedule. In [15], the problem

consists of a set of jobs, where each belongs to a family, in continuous casting stage

of steel industry. Sequence-dependent setup is required if consecutive jobs are from

di↵erent families. Material constraint exists in the form of cumulative demand for

an upstream resource restricted to its cumulative demand assuming linear supply and

consumption. Authors apply Variable Neighborhood Search (VNS) with 6 di↵erent

moves, namely job move, job exchange, batch move, batch exchange, batch combine,

batch break. At each iteration, the algorithm selects a move and explores all neighbors

unless one provides an incumbent solution. Otherwise perturbation is done based on

a score value calculated for each job. Critical jobs are decisive for the move.

Authors of [16] claim that traditional position change heuristics are ine�cient as

neighborhoods contain a lot of non-improving solutions. For a problem similar to [15]

in terms of jobs and families, they propose a batch-based Simulated Annealing (SA).
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The algorithm has a neighborhood definition aimed to increase e�ciency in neighbor

detection by eliminating non-promising neighbors. Proposed neighborhood is based on

batch destruction and the schedule gets completed again with a greedy heuristic.

In [17] the authors study non sequence dependent but family dependent job

scheduling without preemption. Six di↵erent heuristics, Incomplete Dynamic Pro-

gramming (IDP), Earliest Due Date (EDD), Rolling Horizon (RH), Group Technology

(GT), Local Search Modified EDD and Batch Splitting GT, are compared and RH

performs the best out of 1440 randomly generated test instances. In [18], the problem

contains sequence dependent product setups and proposed solution is based on Scatter

Search with motivation to develop a new meta-heuristic that will provide near-optimal

solutions within a reasonable amount of time. Improvement module is based on two

di↵erent VNS based local search and diversification is based on both random and con-

struction heuristics. Moreover, a reference set strategy is employed. Search starts with

a small size which then is increased if no improvement obtained in certain number of

periods. Authors of [15–18] employ a di↵erent heuristic strategy to get a good solution

within a reasonable amount of time.

In [19] capacitated lot sizing problem under sequence independent setup is for-

mulated as Mixed Integer Linear Program (MILP) with setup carryover. Fundamental

decision of setup carryover is formulated with a binary variable to indicate whether a

setup is carried over to its adjacent period. Authors also define another binary variable

indicating whether a setup state covers a period entirely. Since MILP formulation is

unable to solve the problem, they propose a Genetic Algorithm (GA), which they ar-

gue has di�culty in finding exact minimum/maximum optima in a large and complex

solution space. To tackle this, they propose a hybridization approach: GA for locating

good quality solutions and fix-and-optimize to search this region more in detail. It is

also important to note here that they apply time based decomposition to the origi-

nal MILP formulation to generate initial solutions with a mixture of partially random

information and partially information from Linear Program (LP) relaxation.
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Authors study lot sizing on a single machine, single level and multiple-product

with product dependent setup in [6]. Main contribution of the work is that setup

crossover between periods is now possible without adding binary variables. Another

contribution is that model contains symmetry breaking constraints. They propose

two formulations for the problem. Binary variables indicating whether a setup is split

between periods and continuous setup borrow time variables are important to notice in

the first formulation. In the second formulation, binary variable set indicating whether

a setup is complete in period t and another set indicating whether a setup is split in

addition to continuous setup back and front variables corresponding to time spent for

setup in two adjacent periods respectively. Authors show that binary variables in first

formulation can be relaxed and symmetry breaking constraints improve performance

in second formulation whereas barely have e↵ect in first.

The work in [20] focuses on lot sizing problem with sequence dependent setups.

They argue that it’s not possible to solve to optimality in reasonable time and hence

the usage of heuristic methods are necessary. Variables to keep track of demand sat-

isfactions and flow equations and elimination constraints have positive impact for a

tighter lower bound. In formulation, macro periods correspond to days whereas micro

periods correspond to parts of a day. In order to schedule the first day more in detail it

has 10 micro periods while the rest of the days have a single micro period. they apply

Relax-and-Fix (R&F) heuristic as the solution procedure. First, all binary variables

other than first day’s are relaxed and solved. Then they’re fixed and rest of the binary

variables are restored. First step is argued to be slow and they apply Descent Heuristic

(DH), Diminishing Neighbourhood Search (DNS) and SA metaheuristics.

The work [21] studies animal feed compound production, where some products

serve for cleansing as long as they are produced a certain amount, which results in vio-

lation of triangular inequality of sequence-dependent setups. They apply a R&F heuris-

tic, which is shown to be computationally and economically e↵ective compared to cur-

rent practice in the industry. [22] study production planning for animal nutrition prod-

ucts under sequence-dependent family setups, and formulate a mathematical model.
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The model is based on asymmetric traveling salesman problem. The study shows the

model can be e�cient for some certain cases but needs further algorithmic development

for variants of the problem.

The authors present another study based on setup carryover concept with se-

quence dependent setup times and costs in [5]. The formulation is sequence oriented,

which means that for a period t a pre-defined setup sequence is selected and assigned.

The authors propose an e�cient and fast sequence enumeration method. Rescheduling

is basically limiting sequences that can be selected for a given period with respect to

fixed jobs. Moreover, a lower bound generation scheme is proposed, result is used to

prune the search tree.

In [23] a change of paradigm is proposed in lot sizing and scheduling named

block planning concept. It is based on a continuous representation of time. A block

is actually a timespan in which a setup family can be scheduled and a setup family

is a pre-defined sequence of products between families resulting in major setup and

assigned to blocks with a binary variable. Model avoids overlapping blocks via block

start-finish variables and corresponding constraints. Authors also argue that as setup

and inventory holding costs are hard to determine in most practical cases, timespan

minimization is a reasonable objective.

Uncapacitated dynamic lot-sizing problem with co-production extension is stud-

ied in [9]. Co-products’ demands are non substitutable and co-production is always

approximated with random yield. However, it is also argued that the yield can also be

determined as a percentage of total production with respect to historical data. Further-

more, co-production is defined to be 1-to-1 between products whereas by-production

is defined to be 1-to-n with respect to certain percentages. Author proves that the

problem can be reduced to single item lot sizing problem and hence DP is suitable.

Short-term production planning and scheduling in pulp and paper industry is

studied in [24]. The main objective is maximizing production throughput.
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Consequently, planning should minimize the losses due to sequence dependent setups.

This is usually the case in process industry. It is also important to note that the

Bill-of-Material (BOM) hierarchy consists of two-stage. Digester speed is determined

with a binary variable assigned per micro period among a known set of speed levels.

Between sub-periods there is a maximum allowed variation in speed of digester and as

a result model includes coupling constraints. Setups are due to paper grades, which

are product families that require setup. Solution representation for the hybrid VNS is

based on setup sequence and the procedure itself is a combination of exact method,

for continuous variables, and Speeds Constraint Heuristic, for digester speed. [25] also

formulate a MIP model for lot scheduling in pulp and paper industry in integrated

mills. They propose a GA to e�ciently solve large instances.

Authors of [26] study the same problem again in pulp and paper industry to the

extent of development of a decision support system. Production campaigns correspond

to paper grade and the aim is to determine their size and sequence. Formulation

contains macro and micro periods. Time slots, micro periods namely, are of variable

length and independent from macro periods which have the demand information. The

model has two sets of binary variables. Minimum and maximum duration constraints

for campaigns are present in addition to a soft constraint for encouraging minimum time

between two similar campaigns. As solution strategy, the paper uses a meta-heuristic

which is composed of 3 stages, initial solution, forward pass and neighborhood search.

Heuristic is able to provide satisfactory results in reasonable running times.

Authors of [27] study the same problem in glass container industry. Glass color,

which causes a major setup in glass manufacturing environments, is assumed to remain

constant in short term. Sequence dependent setup is due to product changeover. Fur-

nace, which needs to be working 24/7, capacity is not formulated as equality but the

model penalizes unutilized capacity. Heuristic applies multi-population GA assuming

convergence and then applies SA to the incumbent solution to intensify the search. To

determine the number of mold cavity a MIP is formulated.
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2.2. Parallel Machine

Production planning and scheduling problem with lot sizing has an important di-

mension, namely alternative selection, when multiple machines are present. [28] studies

the problem for short term in glass container industry with identical parallel machines.

study argues that production losses due to not using all of available capacity of a re-

source is critical in process industries which glass container is of one, and this paper

claims to be the first to address this issue. Model penalizes production losses, and

decides integer number of mold cavities. The solution includes relaxation is based on

these variables. Moreover, model contains valid inequalities to improve the quality of

lower bounds. One important observation is that impact of the inequalities increases

as the number of products and periods increase. In relaxation reformulation, product

assignments are eliminated with the setup carryover constraints. The problem then

reduces to a network flow representation. Production quantities can be determined by

using a shortest path algorithm, which ensures integrality of setup changeover variables

directly.

Authors use hierarchical approach in food industry in [29]. The importance in

the supply chain coordination is high due to perishable products, since products should

be shipped as soon as they’re produced. Hierarchy consists of batching of orders, pro-

duction planning and finally distribution sub-problem. Similar customer orders are

grouped to form batches with due dates. Production planning then schedules these

batches with sequence dependent setups with a MILP. Distribution planning mini-

mizes trade-o↵ between transportation cost and quality decay. The paper compares

hierarchical planning approach to integrated planning and concludes that a certain

level of quality can be guaranteed without increasing costs too much.

Authors of [30] study production planning and scheduling in oil refineries con-

centrating on subsystems due the complex nature of the planning problem. In prac-

tice, refineries develop in-house developed simulations based planning tools. A com-

plex Mixed Integer Non-Linear Program (MINLP) model is described in two parts.
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First, operating rules are formulated with binary variables in order to ensure the hard

constraints of the working mechanism of subsystems. Second part consists of mate-

rial flow constraints that are basically the part, where stream flow rates and viscosity

decisions are taken. Viscosity constraints cause co-production and non-linearity but

then are reformulated to obtain an MILP formulation. As per co-production, types

and rates of co-products are known in advance. The most di�cult step throughout the

entire study is to understand working mechanism of the refinery, which is obvious to

the refinery experts but unclear to the planning system researchers.

In [31], authors present several procedures for scheduling identical parallel ma-

chines with family setups minimizing total tardiness. It applies Tabu Search (TS) with

batch insertion move. In case of no improvement, job with highest tardiness is split

and the procedure continues until the stopping criteria is met. Authors also apply

GA with n-tournament selection operator and uniform order-based crossover. It uses

shift mutation operator and applies local search to intensify the search. Finally, an

optimal branch-and-bound algorithm with implicit complete enumeration is applied.

Computational tests show that GA performs best among all proposed procedures and

in small instances finds the optimal solution in most cases.

Authors of [32] study scheduling of elective surgeries to multiple operating rooms,

a di↵erent domain than production planning. Elective surgeries can be scheduled as

opposed to urgent surgeries as they do not stand emergency and there are types of

surgeries each having di↵erent requirements for operating rooms. This results in se-

quence dependent setup times between surgeries. Decisions to be made are number

of operating rooms to open, assignment of surgeries to operating rooms and sequence

of surgeries within an operating room. Paper proposes MINLP and Constraint Pro-

gramming (CP) formulations and authors show that CP outperforms MINLP model

as MINLP gets ine�cient with the increase of problem size.
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Five novel MIP formulations are proposed for identical parallel machine schedul-

ing with family dependent setups in [33]. The formulations are inspired by single

commodity, arc-flow and set covering formulations. They conduct extensive set of

numerical experiments and show the e�ciency of two of the formulations driven from

strong bounds bounds. [34] study the same problem on single machine. They formulate

a model exploiting properties of optimal solutions. They discuss the LP relaxation of

their formulation to be stronger than other formulations in the literature. Hence, the

model is able to find optimal solutions for instances with high number of families and

long setup times.

Authors of [35] study capacitated lot sizing and scheduling problem with alter-

native selection, and the problem is generalized to parallel machine case. A stochastic

MIP based decomposition heuristic is the proposed solution approach. As the heuristic

proposed is an improvement heuristic, algorithm consequently requires a feasible solu-

tion. Authors use a construction heuristic based on the general R&F framework. It

does not apply relaxation on integrality of any integer variable since the neighborhood

is defined as a subset of adjacent periods and products. This means optimizing all the

related variables while fixing setup variables of other periods and products.

Three formulations (discrete, hybrid and continuous) are proposed in [36] for

two stage lot sizing and scheduling problems with continuous upstream and discrete

downstream production that is present in many process industries. In discrete model,

planning horizon is divided into macro periods which are then divided into micro

periods. Number of micro periods is assumed to be user defined and their length

is variable. Hybrid model is batch scheduling within periods with upper bound on

the number of batches that can be scheduled within the planning horizon. Finally,

continuous model works with an initial number of available common resource batches

with unknown sequence. The work concludes that continuous model is the most flexible

allowing setup crossover but has bad performance. Discrete is favorable being compact

and providing good solutions yet without optimality proof.
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Hierarchical production planning has some problems such as potential infeasibil-

ity in capacity and setup times due to aggregation and hence its optimality becomes

doubtful as well as cost savings results. The purpose of study in [37] is to solve such

problems with an integrated approach. Main decisions in the problem formulation con-

tains workforce hiring and firing, subcontracting, storage and backorder, and sequence

dependent setups. Sequence of setups are modeled with a set of binary variables indi-

cating its position within a period. Quantity of a setup family needs to be in between

a certain percentage of the production of the family, which can result in co-production

with demand being less than the minimum required production amount. Integrated

model outperforms hierarchical approach in terms of setup number and overall costs.

However, it can obtain with more than 20 hours of running time.

A new heuristic method Hamming Oriented Partition Search based on mathemat-

ical programming is proposed by [38], to solve the lot sizing and scheduling problem in

textile industry consisting of two stage process each of which can either be executed on

single or parallel machines with alternative selection. Yarns are grouped into families

which are then related to fiber blends. This ensures their quality and yarn families

have sequence dependent setups. HOPS consists of B&B combined with a problem-

oriented procedure injecting new and better upper bounds into the original problem.

The heuristic is shaped with respect to problem features, for determining set of vari-

ables to be fixed. This partitioning is based on a metric such that variables that are

the most promising partition to be optimized are determined. Another key feature is

that previous solutions are stored with a coe�cient regarding recency and these are

used in partition determination in order not to re-optimize stable variables.

Production planning problem of a wood remanufacturing mill with following

characteristics is studied in [39]: co-production that is uncontrolled in most cases,

alternative selection, Make-to-Order (MTO) with short customer lead times, sequence

dependent family setup and finite capacity. Sophisticated setup formulation for ex-

actly four product families. The model has a set of binary variables for individ-

ual families and another set for indicating number of families scheduled in a period.
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The objective is backorder minimization, which is the characteristic of the industry

regarding the MTO and short lead time nature. The paper proposes an e�cient re-

planning based two phase solution procedure, and it is shown with simulation based

tests that proposed solution improves backorder performance.

Authors of [40] propose an improvement heuristic based on Variable Neighbour-

hood Decomposition Search and fix-and-optimize to solve general multi-level lot-sizing

and scheduling problems. Sequence dependent setup crossover between period bound-

aries is possible with setup back and front variables representing time spent for setup in

predecessor and successor periods respectively. They sequentially apply three decompo-

sition schemes based on product, resource and process, and procedure can outperform

a commercial solver in small instances but gets producing worse optimality gaps for

real world instances within one hour of running time.

Glass container production contains sequence dependent family setup times based

on color of the glass produced by furnace, which is the first production stage. The

main aim of [3] is to determine the color campaign schedule. Products belong to color

families and products with same color within the same family do not require a setup

for a changeover. Similar to [27], continuous production with 24/7 uptime is declared

but capacity not utilized is penalized, hence not guaranteed. For the initial solution

generation, authors propose a construction heuristic, which consists of product selection

with respect to five criteria and scheduling. Proposed heuristic is a combination of

Reduced Variable Neighborhood Search (RVNS) and basic VNS with RVNS aimed

to increase e�ciency whereas VNS to balance the e↵ectiveness. According to the

comparison between pure VNS, pure RVNS and RVNS/VNS, the proposed variant,

VNS is shown to be superior to RVNS and the variant. However, due to a worse

initial solution and short solution time, available proposed methodology becomes more

attractive.
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Authors of [41] study planning and scheduling of drying and finishing opera-

tions in softwood lumber industry with two characteristics, divergent system with co-

production and alternative production process. All di↵erent combination of processes

are reduced down to alternatives, which are then assigned to machines per period. It

is also important to note that a product can be both consumed internally or sold.

Authors propose MIP and CP formulations. Tests show that performance of MIP is

unstable with respect to dataset due to large number of binary variables while CP

provides good quality solutions fast with proposed search strategy.

In [42], the study focuses on generalization of lot scheduling problem including

backordering and setup carryover on unrelated parallel machines. They formulate three

di↵erent matheuristics inspired by local search, local branching and feasibility pump.

Their tests show that their approach outperforms other approaches and two MIP solvers

on base formulation.

The aim is to minimize total weighted tardiness for scheduling unrelated parallel

machine scheduling problem with sequence dependent setup times and machine eligibil-

ity restrictions in [43]. They propose a SA and a TS algorithm. Numerical experiments

show TS with long-term memory yields better solutions.

2.3. Multiple Level Network

Having multiple facilities including production sites, warehouses and point of

sales increases the complexity of the problem as the decisions to be taken also include

allocation of campaigns to facilities in addition to already defined sequencing and lot

sizing related decisions presented in previous sections. Allocation to facilities become

more important when the distribution within the network to customer locations is also

to be planned.
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Authors of [44] study production planning problem in biopharmaceutical pro-

cesses with multiple BOM levels. The industry has its own characteristics such as

batch and continuous processes being present at the same time, multiple intermediate

deliveries, sequence dependent setup and product shelf life limitations. MILP is based

on resource Task Network with continuous time formulation with a single time grid

that is structured with sub periods, namely event points, the end times of which are

determined through a decision variable resulting in variable sized periods. Authors

introduce a limitation on number event points and lot scheduling coupling such as

maximum number of points a lot can traverse. This last might be problematic because

period length is variable and model only limits by the number of periods which can

basically be either too long or short.

The study [45] focuses on discrete time MILP formulation for lot sizing and

scheduling with multiple BOM levels and sequence dependent setup times. Planning

horizon is divided into macro periods attached to due dates and micro periods at-

tached to campaign allocation. Carryover typed setup changeovers are tracked with

a linearized variables. An important note about campaign allocation is that only the

latest campaign can span multiple slots. Maintenance and product trials are also in-

troduced as tasks to the system such that they’re unavailable time within a period.

Proposed strategy couldn’t provide better solutions than 10% relative gap.

In [4], authors also studies glass production is studied also, this time in glass

container sub domain. Main objective of the study is to determine color campaigns in

furnaces in di↵erent plants, and synchronize the overall operation. Campaign duration

is a decision variable and not necessarily integral as number of days. Moreover, model

also takes a near-strategic decision as furnace shut-down, after which the furnace can

not start up again. Demands do not have to be entirely satisfied which introduces

unsatisfaction penalty. As initial formulation is hard to solve, the study proposes a

relaxation, and solution with an improvement heuristic that is a combination of multi-

population GA and fix-and-optimize. Proposed heuristic outperforms a commercial

solver in most instances.
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Authors of [46] work on a production distribution formulation in network context

in another process industry, metals. There are several sites with one or more lines and

capacitated warehouses for tackling fluctuating demand. Sixteen products are divided

into two families that require sequence dependent setups for a changeover in between.

Study employs single setup per period assumption and this is justified denoting the

possibility of having nine days of setup within a month if more than two families are

selected to be produced due to their demand patterns. In a capital intensive process

industry like metal, nine days without output is argued to be unacceptable. As only

two families are present, all possible sequences are enumerated completely and the

formulation is hence sequence oriented. Proposed model is implemented as a decision

support tool but is not capable of solving large problems.

Authors of [47] study tactical production and distribution model with continuous

first and discrete second stage production process. Network structure contains plants,

warehouses and customer sites having demands. As opposed to [46], warehouse capaci-

ties are assumed to be su�ciently large here. Two formulations are proposed as MILP.

First one is sequence oriented in which pre-defined sequences are allocated to resource

periods. Second one is product oriented specifically determining which families, at

most two are allowed, are produced in a resource period. R&F construction heuristic

with disjunctive subsets and groups by period is applied in addition to fix-and-optimize

heuristic with an adaptive VNS. The study defines neighborhood on a subset of periods

and resources.

2.4. Relevant Campaign Planning Studies in Process Industries

Authors of [2] deal with tactical level production planning problem in float glass

manufacturing company that has four facilities distant from each other with signif-

icant transportation cost. Glass manufacturing has its own unique properties, con-

tinuous production with random yield, partially controllable co-production, product

substitution and complex sequence dependent setups to name a few. However, in

the formulation color campaigns are assumed to be determined beforehand as inputs.
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Moreover, setups due to thickness changeover are neglected. Co-production driven by

size group, quality and stacker capacities, on the other hand, is formulated with a spe-

cial set of constraints. Although resulting setups are neglected, thickness changeover

phenomenon is modelled with base thickness assumption meaning meaning base thick-

ness will most probably be produced in each period as by definition it contains most

common products. With proposed system more detailed production plans can be gen-

erated respecting size/quality restrictions, improved production quantity and inventory

levels, decreased transportation costs with faster plan cycles for the planners.

The work in [48] is on lot sizing and scheduling problem with sequence dependent

setup consideration on single machine with two di↵erent approaches. One formulation

is based on decisions for setup between products whereas in the other uses a collection

of pre-defined sequences. The latter selects a sequence to be executed in the produc-

tion. However, authors do not explicitly model family setups but only products and

longer setups between products corresponding to family aggregation is not analyzed in

detail but only present in a single instance of computational experiments. Moreover,

the models proposed do not allow for setup crossover, which can be necessary in envi-

ronments where some of input data is not an integer multiple of micro-period lengths

such as setup durations.

In [49], the authors study extensively the float glass manufacturing process and

develops a MIP for production planning. The model in this study determines whether

a product is produced in a time period and that at most one product is allocated

to periods. The author does not explicitly address sequence dependent family setup

phenomenon. [50] model the transition between adjacent periods permitting the

changeovers between products occur before, across and after the period boundaries.

However, fixed number of slots, similar to micro-periods in [48], can result in sub-

optimal solutions in cases where input data is sensitive to discretization.
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The authors of [51] study the e↵ect of uncontrolled co-production on the produc-

tion schedules and the environment contains multiple products with unsubstitutable

demand in glass manufacturing. Moreover, the problem is based on uncapacitated

single machine instance. Co-production is not scrap, has its own demand and there

is product hierarchy with respect to quality and size attributes. Moreover, demand

and co-product rates are deterministic. Common cycle schedule method is applied.

Authors found out that cycle length increases with increasing co-production rate but

sensitivity of the long-run average cost to the co-product rate is low.

In [52], products are aggregated to product families, which have sequence de-

pendent setups in between. Products within the same family have sequence dependent

setup times. MILP formulation contains an excessive number of binary variables in-

cluding family allocation per period, product allocation per period and sets indicating

whether a product is first or last in family allocation per period. Moreover, setup

crossover between periods is possible with setup back and front variables. As also dis-

cussed in [28], not using all of available capacity is not desired in process industry and

authors introduce dummy product to let capacity constraints be equality. However, it

is not clear how this is discouraged within the formulation.

To summarize, there are studies in the literature for campaign planning problem

in process industries. However, the available work do not simultaneously solve cam-

paign planning with setup carryover considerations, does not provide a solution for the

synchronization of discrete and continous input data, or have some certain limitations,

which may produce sub-optimal solutions in some environments. Moreover, 24/7 work-

ing mode of resources are either relaxed or relaxed with penalty on unusued capacity.

Hence, we believe our work will provide valuable contribution to the literature.
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Table 2.1. Acronyms for problem attributes.

Columns Potential Values Acronym

Network Structure, Alternative

Selection, Lot Sizing

Yes y

No n

Facility, Machine
Single s

Multiple m

BOM Level

Single 1

Two 2

Multiple M

Setup Type

Sequence Independent si

Family Dependent fd

Product Dependent pd

Sequence Dependent sdp

Sequence Dependent Family sdf

Setup Formulatiıon

Sequence Oriented so

Single Setup per Period sspp

Multiple Setup per Period mspp

Setup Period Relation

Crossover xo

Carryover co



Table 2.2: Literature overview.

Reference Network

Struc-

ture

Facility Machine Alternative

Selection

BOM

Level

Lot

Sizing

Setup

Type

Formulation

Approach

Period

Schema

Industry

[44] n s m y M n sdp sspp co Biopharmaceuticals

[45] n s m y M y sdp sspp co -

[47] y m m y 2 y sdp sspp co Glass container

[36] n s m y 2 y sdp sspp xo Spinning

[40] n s m y M y sdp sspp xo -

[46] y m m y 1 y sdp so co Metal

[5] n s s n 1 y sdp so co High-tech

[35] n s m y 1 y sdp sspp co -

[20] n s s n 2 y sdp sspp co -

[23] n s s n 1 y sdf so – Beverage

[4] y m m y M y sdp sspp co Glass container

[3] n s m y M y sdf sspp co Glass container

[19] n s s n 1 y si sspp co -

[29] n s m n 1 n si sspp co Perishable food

[28] n s m n 1 y sdp sspp co Glass container

[38] n s m y 2 y sdp sspp co Textile

[24] n s s n 2 y sdp sspp co Pulp & paper

[27] n s s n 2 y sdp sspp co Glass container



Table 2.2. Literature overview (cont.)

Reference Network

Struc-

ture

Facility Machine Alternative

Selection

BOM

Level

Lot

Sizing

Setup

Type

Formulation

Approach

Period

Schema

Industry

[52] n s m n 1 y sdf mspp xo Beverage

[26] n s s n 2 y sdp mspp xo Pulp & paper

[15] n s s n 1 n sdf – – Steel

[31] n s m n 1 n sdf – – -

[9] n s – n 1 y si sspp – -

[37] n s – n 1 y sdp sspp co Mold

[16] n s s n 1 n sdf – – Steel

[32] n s m n 1 n sdp – – Health care

[17] n s s n 1 n fd – – -

[6] n s s n 1 y pd sspp xo -

[18] n s s n 1 n sdp – – -

[2] y m m y 1 y – – – Float glass

[30] n s m n 1 y – – – Petroleum

[41] n s m y M n – – – Lumber

[39] n s m y 2 y sdf mspp – Wood

[51] n s – n 1 y si – – Glass

[11] n s s n 1 y – – – -

[48] n s s n 1 y sd – – -

[48] n s s n 1 y sd – – -



Table 2.2. Literature overview (cont.)

Reference Network

Struc-

ture

Facility Machine Alternative

Selection

BOM

Level

Lot

Sizing

Setup

Type

Formulation

Approach

Period

Schema

Industry

[50] n s s n 1 n sd – – Glass

[21] n s s n 1 y sdf mspp co Nutrition

[22] n s s n 1 y sdf sspp co Nutrition

[25] n s m y 2 y si mspp co Pulp & paper

[42] n s m y 1 y sdf sspp xo -

[43] n s m y 1 n sdp – – -
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3. PROBLEM DEFINITION

3.1. Flat Glass Manufacturing as a Process Industry

Process manufacturing di↵ers from discrete manufacturing in how it creates the

final products. Discrete manufacturing considers producing identical products usually

over an assembly line, whereas process manufacturing converts raw materials into final

products through a continuous process following a recipe [53]. Moreover, the output of

a process line cannot be disassembled back to its input. Process industries are capital

oriented since there is usually high associated manufacturing and raw material costs.

Consequently, the main driver within the manufacturing process is cost e↵ectiveness,

which makes the planning activity more intricate.

By nature of supply chain in manufacturing industries, transportation, inventory

holding and demand satisfaction related costs are directly considered in planning de-

cisions as previously expressed. Nevertheless, loss of e�ciency in capacity usage can

have non-negligible implicit impact on the overall e↵ectiveness. The reason is again

due to dynamics of most process industries. In glass manufacturing, each furnace need

to be up and running 24/7 due to the continuous production nature and energy costs

increase as a significant expense item. These can be seen as fixed operating costs, how-

ever the lost capacity is highly undesirable. Setup times and, if the nature of the process

imposes, co-production certainly need to be dealt with to improve the e↵ectiveness.

Float glass manufacturing is a process industry, where the main driver in planning

process is the cost and the e↵ectiveness in capacity usage. Furthermore, float glass

manufacturing has some special characteristics making it di�cult from a planning

complexity perspective, which we discuss next.
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3.2. Process Definitions

The term float refers to the physical nature of the glass production. Molten

solution, consisting of raw materials such as sand, limestone and soda ash, is fed into

a tin bath and transforms into its flat form by floating over liquid tin. The floating

glass then goes through a coating process depending on the characteristic of the active

production. Please note that such products are not categorized as coated products but

a special type of float glass products. This is a chemical process consisting of covering

the surface of float glass with thin metal layers [2]. It enhances visual and thermal

properties of the final product. Annealing step is where the product cools down and

becomes solid. Finally, the glass is cut into di↵erent sizes before being picked up and

stacked in storage area. Figure 3.1 illustrates a typical float glass furnace and the entire

production line.

Figure 3.1. An illustrative float glass furnace and production line [1].

The primary characteristics of the finished product is determined by raw materials

fed into the mixture [2]. The most significant attribute of float glass is its color. Coating

is also another attribute, which has some impact on the production itself. Color and

coating identify product family in float glass manufacturing. Products, on the other

hand, have size group and quality attributes on top of family attributes.
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3.3. Setups

Switching from one color to another requires several days to be spent as setup

since the process, the furnace in particular, needs to stabilize to obtain the desired color.

Typically, a color changeover takes from three to seven days. This results in significant

amount of time and energy consumption without any yield since the production is

uninterruptible, hence is very costly. Glass produced during setup time is usually does

not have any demand, and needs to be broken into pieces, which then is fed back to

the raw material mixture to a limited extent.

In order to compensate the setup cost incurred for the changeover and also for

e�ciency purposes, each family has a corresponding minimum production duration.

Moreover, these setups depend on other family attributes of glass other than color,

namely coating. The problem hence contains the phenomenon of sequence-dependent

family setups. Other types of setups explained more in detail in Chapter 1, are not

relevant in float glass production.

3.4. Co-Production

We define co-production as producing several di↵erent products in a single pro-

duction run by necessity. Due to the chemical nature of the process, random errors on

the glass surface appear during production. There can be di↵erent types of error such

as visually detectable defects. There can also be serious errors which would enforce

the output to be scrapped [2]. Depending on where the final product is used, some of

these errors can be disregarded. Hence, we can categorize glass with di↵erent errors

into quality groups. Depending on the cutting decisions regarding the size, the line can

yield di↵erent size and quality combinations.

Using the historical data that reflects the characteristics of a specific

production line, we can determine the percentages up to which a specific combination

of products from the same size group and quality group can the furnace yield at most.
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For example, producing high quality glass in big sizes on a specific production line

might eventually result in an increase in production of moderate and/or low quality

glass in lower sizes, which results in uncertainty in final production quantities. How-

ever, aggregating production quantities in planning phase can provide enough flexibility

to planners since the amount planned is not continuous. It needs to be obtained within

a certain timespan. We can define this as partially controllable co-production. For a

more detailed explanation on float glass manufacturing fundamentals, we refer to [2].

3.5. Campaign Planning And Challenges

We concentrate on float glass manufacturing for the campaign planning problem,

as stated in Chapter 1. Campaign planning in float glass manufacturing needs to

deal with sequence dependent family setup, which stems from color of products and

co-production, which is due to chemical properties of the process.

Figure 3.2 illustrates an example of a campaign plan for four periods. With the

help of this illustration, we can observe synchronization of input and output data,

which are available on di↵erent time resolutions. We focus on a specific product from

family FM. For each period, a production amount and demand for the product is

available. On the other hand, the campaign plan is available on continuous time. For

example, a campaign of family FM starts in Period 1 and ends in Period 2. Production

quantity within this campaign is associated with Period 1 and Period 2 with respect

to time overlapping with each one of them. As a result, the production quantity is

disaggregated to discrete time. With the help of the dotted lines, we can also observe

the illustration of demand satisfaction schema. For example, the demand of Period 2 is

satisfied from productions in Period 1 and Period 2. whereas the demand of Period 3 is

partially satisfied from Period 2 and Period 4, which results in backlogging. Moreover,

for each period, considering the production quantity and demand satisfaction plan, one

can obtain ending inventory projections.
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Figure 3.2. Illustration for inputs and outputs of Campaign Planning.

Let us note the main characteristics of the campaign planning problem as follows:

• Demand forecast per product is available on a discrete time (monthly).

• Input master data consists of inventory holding cost, demand backlog and unsat-

isfaction cost, production speed per item and setup duration between families.

They are parameters of the decision process and are available in continuous time.

• Main cost items are inventory holding, demand backlog/unsatisfaction and setup.

Production costs are ignored since the problem is on a single machine.

• Setups are costly such that the furnace consumes as much as energy as in pro-

duction without yielding any glass in order of days in duration. Hence, setups

are important in terms of ensuring cost e↵ectiveness of the plan.

• Due to significant setup duration and costs, campaigns are encouraged to have

relatively long durations. However, since this will also e↵ect the demand satis-

faction plan. Backlog is another major expense item. Hence, obtaining an good

quality, or optimal if possible, campaign plan is crucial.

• Due to the fact that sequence-dependent setup times are expressed in continuous

time, the campaign plan needs to be on continuous time.

To elaborate on the last item, we note that campaign planning problem di↵ers

from aggregate planning even though lot sizing decisions need similarly to be in discrete

time in order to match the availability of the demand forecast.
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On the other hand, as stated sequencing decisions considering sequence-dependent

setup times and production speed is in continuous time. Hence, synchronizing discrete

and continuous information is a necessity for the e↵ectiveness of the final campaign

plan.
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4. SINGLE MACHINE PROBLEM

In this chapter, we develop two mathematical models for the campaign planning

problem described in Chapter 3 on a single machine. Both models are mainly based on

the state decisions of the machine in each time bucket and they mainly di↵er from each

other with respect to the formulation of the state transition over period boundaries.

We name the models Pattern Transition Based Model (PTBM) and Family Transition

Based model (FTBM) respectively.

In order to clarify the formulations, we first define the concept of pattern in

Section 4.1 as well as the approach for generation, and then introduce the formulations

in Sections 4.2 and 4.3. In addition, Table 4.1 illustrates symbols used in both PTBM

and FTBM.

Table 4.1. Symbols used in both formulations.

Set Description

J Set of products

Q Set of quality groups

S Set of size groups

T Set of time periods

P Set of campaign patterns

F Set of product families

O Set of orders for timing of production in a period (b: beginning,

m: middle, e: end)

P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

F
o(p) Set of families appearing in order o in pattern p

P
o(f) Set of patterns containing family f in order o

J(f) Set of products belonging to family f

�(f, g) Set of product family couples that are infeasible, f, g 2 F
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Table 4.1. Symbols used in both formulations. (cont.)

Parameter Description

Djt Demand of product j in period t

Ij(�1) Beginning inventory of product j

vj Production speed of product j, machine-days required

for unit production

At Available capacity of the machine in period t in days

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j

Rfqs Maximum production ratio/percentage for quality group q and

size group s for family f

MDf Minimum production duration for family f in days

NTfp Number of times family f appears in the middle order of pattern p

MDfp Minimum production duration for family f in middle order of

pattern p, can similarly be expressed as MDfNTfp

STp Setup time needed for family order within pattern p in days

STfg Setup time needed for switching from product family f

to family g in days

hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period

cfg Setup cost of switching from family f to family g

cp Total setup cost of family order within pattern p

Variable Description

Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j in period k

Ujt Unsatisfied quantity of demand from period t of product j

Xjt Production quantity of product j in period t

�pt Binary indicator variable for selection of pattern p in period t

d
o
ft Number of days spent for production of family f

in order o in period t
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4.1. Pattern

4.1.1. Definition

We can define a pattern as an ordered list of families that will be produced

consecutively within a period. The concept of pattern is similar to sequence in [48]

with the di↵erence that they define sequence by product order but we define patterns

by family order.

An important issue to address in pattern definition is that setup times are re-

spected. Each adjacent pair within the pattern needs to be feasible in terms of setup

changeover. Let FM, MV and BR be three families available. We can define Pattern

1, a pattern with single family as FM, Pattern 2, a pattern with two families FM-MV,

Pattern 3, a pattern with three families BR-MV-FM and Pattern 4, another pattern

with three families MV-BR-MV. Figure 4.1 illustrates these four example patterns.

Notice that these represent sequence of the families that the furnace will produce in a

period. In addition, the setup from family FM to MV (for Pattern 2), BR to MV, MV

to FM (for Pattern 3), MV to BR and BR to MV (for Pattern 4) should be feasible.

Figure 4.1. Sample illustrations for patterns including up to 3 families

Moreover, we distinguish the amount produced at the beginning, in the middle

and at the end of a period for each family. Let us focus on Pattern 3 as an example.
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Family BR corresponds to the beginning, MV to the middle and FM to the end. Note

that as MV in Pattern 4, a family can also appear multiple times in di↵erent orders in

a pattern. We assume that for patterns having at most two families, the set of families

produced in the middle is empty.

In our formulations we will assign a pattern to each period. Consequently, it is

also important that the setup between the last family of a predecessor pattern and the

first family of its successor pattern is also feasible. Setup data is known and hence is

an input. We can e�ciently represent this data as a matrix having families in columns

and rows. Each cell in the matrix corresponds to the setup duration/cost between the

corresponding couple. Notice that, for infeasible family couples, which can be due to

some technical properties, cells can be filled up with a su�ciently large value being

larger than maximum number of days in a month.

Let us explain our approach regarding the representation of the setup over period

boundaries in more detail with the help of illustrations as in Figure 4.2. Case (a)

is an example where the setup time spent between families MV and BR crosses over

period boundary. The Case (b) represents an example where the setup time is spent

at the beginning of successor period. Note that depending on the production quantity

and consequently duration decisions, it might well be also spent at the end of the

predecessor period as in case (c). Finally, case (d) is an example for no-setup instance

as the production within the same family continues. Note that with this approach

the model can decide on allocating patterns such that setup is executed during period

boundaries, which is not possible with sequence decisions in [48].

4.1.2. Generation and Pre-processing

As explained in Section 4.1.1, a pattern is simply an ordered list of families that

we can assign to a period on the production line. We can generate patterns with the

algorithm shown in Figure 4.3.
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Figure 4.2. Sample setup illustrations

The algorithm works with the set of families F and the corresponding setup

matrix M , which we use as input to a recursive procedure called Extend. At each

call to Extend, the procedure evaluates each family f with respect to three criteria: i)

f should be di↵erent than the last family of the current sequence, ii) by inserting f

to the end of the sequence, minimum possible duration of this new sequence should

not exceed the duration of a period, iii) if by adding f to the end of the sequence

minimum possible duration exceeds the duration of a period, then there should be

at least a strictly positive amount of time for producing f in addition to minimum

possible duration of the sequence.

We define the minimum possible duration of a sequence as the sum of minimum

production duration of appearing families and the setup required for the sequence.

Also note that, with criteria iii), we make sure that even if a sequence is not feasible to

be executed in a period with respect to its minimum duration, we do not eliminate it

since our formulations can handle it. We explain this further in Sections 4.2.1 and 4.3.1

in detail. Note that, the algorithm generates all possible sequencing combinations.
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GeneratePatterns (F,M)
inputs : Set F of all families and setup matrix M

LL ; (LL is a list)

return Extend(LL, F,M)

Extend (LL, F,M)
inputs : A list to be extended with new family insertions, set of families and setup

matrix

P  ;

foreach family f 2 F do

if tail(LL) 6= f and CanAdd(LL, f,M) then
LL LL [ f

P  P [ LL

P  P [ Extend(LL, F,M)

return P

CanAdd (LL, f,M)
inputs : A list and a family f and setup matrix

D  MinDuration(LL,M)

if D � length of a period then
return FALSE

S  M [tail(LL), f ]

D  D + S

if D � length of a period then
return FALSE

else
return TRUE

MinDuration (LL,M)
inputs : A list and setup matrix

D  0

foreach family f 2 LL do
D  D +M [prev(f), f ] +MDf

return D

Figure 4.3. Generate all patterns p for a given set of families F .
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We observe that multiple patterns generated with the algorithm in Figure 4.3 can

result in the production of the same set of families for a given beginning and ending

family pair. Let us elaborate with illustrative examples. Let f1, f2, f3 and f4 be a set

of families and p1 and p2 be a couple of generated patterns containing these families.

Let the sequence of p1 be f1 - f2 - f3 - f4 and the sequence of p2 be f1 - f3 - f2 - f4. If

setup costs for pattern p1 is less than that of p2, then an optimal solution will favor p1

to p2 since both patterns have common starting and ending families, and the same set

of families produced in only di↵erent sequences.

A similar redundancy appears in cases where a pattern contains as sub-sequence,

the replication of a specific number of times of another pattern. Let f1 and f2 be a

couple of families and p1 and p2 be a couple of generated patterns. Let the sequence

of p1 be f1 - f2 and the sequence of p2 be f1 - f2 - f1 - f2. Notice that p1 is a ‘shrunk’

version of p2, and that since p2 yields more setup time and setup cost having twice the

setup f1 to f2 and one f2 to f1 whereas p1 yields more useful production time, p2 can

be removed from the list of patterns, thus reducing the number of binary variables in

both formulations.

Algorithm in Figure 4.4 groups all patterns with respect to their canonical repre-

sentation and keeps the one having the least associated cost from each group. Since we

need to keep all the patterns enabling all possible transitions over period boundaries,

information about the beginning and the ending families should not be lost, which we

ensure by sub procedure GetCanonicalRepresentation in Figure 4.4.

4.2. Pattern Transition Based Model

Table 4.2 lists the symbols used in PTBM in addition to common symbols listed in

Table 4.1 We present the constraints in Section 4.2.1. First, we define the fundamental

constraints of GLSP followed by the constraints related to business model, which are

tied to specifics of float glass manufacturing. Finally, we present the campaign defining

constraints. We define the objective function and complete model in Section 4.2.2.
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Table 4.2. Symbols used in PTBM.

Parameter Description

STPf Maximum setup time in days such that product family f

is predecessor

STSf Maximum setup time in days such that product family f

is successor

MSTfg Maximum setup time in days needed for switching from

product family f to any other family or from any family to

family g, can similarly be expressed as max(STPf , STSg)

f
H
p First family in pattern p

f
T
p Last family in pattern p

Variable Description

✓prt Auxiliary variable indicating whether machine switched

from pattern p to pattern r at the beginning of period t

Fpt Setup time, in days, spent for pattern p at the beginning of period t

Bpt Setup time, in days, spent for pattern p at the end of period t
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SimplifyPatterns (P )
inputs : Set of patterns P

P
0  ;

G Group all patterns in P in by GetCanonicalRepresentation(p)

foreach pattern group g 2 G do
P

0  P
0 [ argminp = {cp}

return P
0

GetCanonicalRepresentation (p)
inputs : A pattern p

f  beginning family of pattern p

g  ending family of pattern p

M  ordered distinct list of families in pattern p

s concatenate(f, f 0 2M, g)

return s

Figure 4.4. Pattern preprocessing algorithm.

In order to facilitate the understanding of the formulation logic, we present Figure

4.5 as an illustrative example. We have patterns FM-MV and BR-MV-FM assigned to

periods t and t+1 respectively, and the relations between periods in terms of variables

are available on the figure. Moreover, considering pattern BR-MV-FM assigned to

period t + 1, let us note that family BR is produced in order b at the beginning, MV

in m in the middle and FM in e at the end.

Figure 4.5. Illustration of PTBM decisions
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4.2.1. Constraints

We permit backlog for demand satisfaction since the demands of products can be

spread over the planning horizon whereas the duration and the timing of production

campaigns are restricted. Eq. (4.1) ensures the consistency of demand satisfactions.

X

k2T
k�t

Sjtk + Ujt = Djt 8 j 2 J, t 2 T (4.1)

Eq. (4.2) is the inventory balance constraint that links production quantity X,

ending inventory I and demand satisfaction S variables across time periods.

Ij(t�1) +Xjt �
X

k2T
kt

Sjkt = Ijt 8 j 2 J, t 2 T (4.2)

Production cannot be interrupted since the furnace needs to be up and running in 24/7

operating mode. Available capacity must hence be fully utilized, which is ensured by

Eq. (4.3). Note that in addition to time spent for production, Eq. (4.3) incorporates

the setup time required due to the pattern selection.

X

o2O

d
o
ft +

X

p2P

(STp�pt + Fpt +Bpt) = At 8 t 2 T (4.3)

We define the auxiliary variables do corresponding to the number of days allocated

for production of family f at the beginning, in the middle or at the end of a period t.

We relate d
o to the production quantity variables X with Eq. (4.4).

X

j2J

vjXjt =
X

o2O

d
o
ft 8 f 2 F, t 2 T (4.4)

Due to the physical and the chemical nature of float glass production, random

errors are observed on glass surface. Moreover, products can be substituted.

This is with respect to their size group and quality attributes, namely s and q.
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For example, a glass sheet of size group s can be cut into smaller sizes. Similarly,

a sheet of quality q can be substituted as an item of lower quality. Furthermore, de-

pending on the characteristics of the production line, production amount of a specific

size group s and quality q cannot exceed a certain percentage of the total production

quantity within a time period. Consequently, various production compositions are fea-

sible. We denote this phenomenon as partially controllable co-production as explained

in Chapter 3. Eq. (4.5) ensures that the production quantities in a time period yield

a feasible composition within a specific family. The rates Rfqs depend on the charac-

teristics of each furnace and are driven from the historical production data. Note that

this approach is defined in [2].

X

j2J(f)
Q(j)q
S(j)s

Xjt 
X

j2J(f)

Xjt Rfqs 8 f 2 F, q 2 Q, s 2 S, t 2 T (4.5)

Our approach for the campaign planning is mainly based on assigning patterns to

time periods. Eq. (4.6) ensures that a single pattern is assigned to each period.

X

p2P

�pt = 1 8 t 2 T (4.6)

To ensure the e�ciency and the stability of the manufacturing process, a minimum

production duration should be ensured for each run of a product family. Eq. (4.7)

models this requirement, ensuring a lower bound for production duration of families

that are produced in the middle of a pattern. Considering the period boundaries, in an

optimum solution the minimum duration can be split into two adjacent periods. Hence,

we introduce Eq. (4.8). On the other hand, we need to set proper upper bounds on

the production duration variables. Eq. (4.9) ensures that producing family f in order

o is permitted only if a corresponding pattern is assigned in that period.

d
m
ft �MDfp�pt 8 p 2 P, f 2 F

m(p), t 2 T (4.7)

d
e
f(t�1) + d

b
ft �MDf�pt 8 p 2 P, f 2 F

b(p), t 2 T, t � 1 (4.8)
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d
o
ft 

X

p2P o(f)

At�pt 8 f 2 F, o 2 O, t 2 T (4.9)

In order to properly handle setup crossover, we need to relate ✓ variables with �

variables. This can be formulated as in Eq. 4.10, which is a non-linear constraint.

✓prt = �p(t�1)�rt 8 p, r 2 P, t 2 T, t � 1 (4.10)

Note that we can linearize Eq. 4.10 as in Eqs. (4.11)–(4.13). Hence, we do not

consider Eq. (4.10) any further. Moreover, Eqs. (4.11)–(4.13) permit relaxation of ✓

variables as ✓prt � 0

✓prt  �p(t�1) 8 p, r 2 P, t 2 T, t � 1 (4.11)

✓prt  �rt 8 p, r 2 P, t 2 T (4.12)

✓prt � �p(t�1) + �rt � 1 8 p, r 2 P, t 2 T, t � 1 (4.13)

Setup time spent at the beginning and at the end of a period t are managed with

Eqs. (4.14)–(4.15). Note that these are big-M type constraints with MSTfg being the

tightest big-M value. When a pattern transition is active through ✓ variable, setup

time for the corresponding family pair is binding for the sum of setup time variables

B and F . Otherwise, both upper bound and lower bound become redundant. Notice

that it may or may not be the case that the setup time spans period boundaries with

our approach.

STfg +MSTfg(1� ✓prt) � Bp(t�1) + Frt 8 p, r 2 P,

f = f
T
p , g = f

H
R , t 2 T, t � 1 (4.14)

STfg �MSTfg(1� ✓prt)  Bp(t�1) + Frt 8 p, r 2 P,

f = f
T
p , g = f

H
R , t 2 T, t � 1 (4.15)
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It is also imperative that the variables for setup time at the beginning and at

the ending of a period are zero unless the corresponding pattern is selected. Eqs.

(4.16)–(4.17) ensure this requirement.

Fpt  STSf�pt 8 p 2 P, f = f
H
p , t 2 T, t � 1 (4.16)

Bpt  STPf�pt 8 p 2 P, f = f
T
p , t 2 T, t � 0 (4.17)

It might be the case that, switching from a certain product family f to another

g is not possible due to some technical restrictions or business practice. Eq. (4.18)

ensures that the model does not generate such an output.

�p(t�1) + �rt  1 8 p, r 2 P, f = f
T
p , g = f

H
r , (f, g) 2 �(f, g), t 2 T, t � 1 (4.18)

4.2.2. Objective and Complete Model

We define the objective function as cost minimization. We assume that produc-

tion cost for each product j remains constant within the planning horizon. Inventory

holding costs for each product is driven from its production cost. Hence, production

costs are implicitly included in the model and do not appear in the objective. We

sum inventory holding and demand satisfaction costs over products and periods as

the first three components. Our approach for demand unsatisfaction is based on the

assumption that it is favorable to satisfy a demand, no matter how long the backlog

period is, over unsatisfying. To achieve this, the cost associated with unsatisfaction

is calculated as bj (|T | � t + 1), which reflects our assumption that demand can be

satisfied from an infinite capacity after the planning horizon ends with a corresponding

backlog cost associated. In addition, having the coe�cient set as (|T | � t + 1) earlier

demands will be satisfied more preferably. Moreover, the cost associated to each family

setup is significant and we incorporate this cost into the objective function with both

pattern selection and pattern transition variables as with last two components. Model

4.1 represents the complete formulation for PTBM.
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Model 4.1. Pattern Transition Based Model (PTBM)

Minimize
X

j2J
t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

p2P

cp�p +
X

t2T
f=fT

p

g=fH
r

(f,g)/2�(f,g)

cfg✓prt

subject to (4.1)–(4.9)

(4.11)–(4.18)

Ijt, Xjt, Ujt � 0 8(j 2 J, t)

Sjtk � 0 8(j 2 J, t, k � t)

�pt 2 {0, 1} 8(p, t)

Fpt, Bpt, ✓pt � 0 8(p, t)

4.3. Family Transition Based Model

In PTBM, an auxiliary variable ✓prt is introduced for each feasible pattern pair

and time period. This approach may be ine�cient in cases where there are multiple

pattern couples such that the predecessor’s last family and the successor’s first family

are same. This leads us to the main idea in FTBM. The main di↵erence in FTBM

is the way we formulate the transition between periods. Instead of introducing an

auxiliary variable for each feasible pattern couple, we introduce variables for a distinct

set of family pairs corresponding to one or more pattern pair transition.

Table 4.3 lists the symbols used in FTBM in addition to the common symbols

listed in Table 4.1. We present the constraints in Section 4.3.1. Figure 4.6 illustrates

the formulation logic and the variable mapping to a possible campaign plan. Notice

that the campaign plan is the same as the one illustrated for PTBM in Figure 4.5.



47

Table 4.3. Symbols used in FTBM.

Set Description

P
S(f) Subset of patterns whose first family is f

P
E(f) Subset of patterns whose last family is f

Variable Description

�
S
ft Indicator for selection of family f as starting in period t

�
E
ft Indicator for selection of family f as ending in period t

✓fgt Auxiliary variable indicating whether machine switched from family f

to family g at the beginning of period t

n
P
fgt Number of days spent for setup in predecessor period t� 1 for

switched from family f to family g at the beginning of period t

n
S
fgt Number of days spent for setup in successor period t for switched

from family f to family g at the beginning of period t

Ft Setup time, in days, spent at the beginning of period t

Bt Setup time, in days, spent at the end of period t

Figure 4.6. Illustration of FTBM decisions
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4.3.1. Constraints

First, we note that since FTBM di↵ers from PTBM with respect to the formu-

lation of the state transition over period boundaries, some other concepts remain the

same. Hence, the corresponding constraints are still valid for FTBM. In particular,

requirement and inventory balance constraints with Eqs. (4.1)–(4.2), Eq. (4.4), which

relates production duration and quantity variables, and Eq. (4.5) formulating the pro-

duction composition regarding the size group and the quality are included in FTBM.

Similarly, Eq. (4.6) ensuring assignment of a single pattern in each period and Eqs.

(4.7)–(4.9) ensuring the minimum duration for producing family f are also valid for

FTBM. Resource balance constraints, that are defined with Eq. (4.3) in Section 4.2.1

need to be modified due to the di↵erences in the definitions of setup related variables

F and B. Note that they do not depend on pattern p in FTBM but rather only on

period t. Eq. (4.19) formulates resource balance as follows:

X

o2O

d
o
ft +

X

p2P

STp�pt + Ft +Bt = At 8 t 2 T (4.19)

In order to determine the first and the last family produced in a period we set Eqs.

(4.20)–(4.21). Notice that with Eq. (4.6) combined with Eqs. (4.20)–(4.21), variables

(�S
, �

E) can only have values from {0, 1}. Hence, we can relax them as �S
, �

E � 0.

�
S
ft =

X

p2PS(f)

�pt 8 f 2 F, t 2 T (4.20)

�
E
ft =

X

p2PE(f)

�pt 8 f 2 F, t 2 T (4.21)

✓ variables indicate whether a changeover is performed from family f to family g

at the beginning of period t, and hence are binary. Similar to Eq. (4.10), ✓ variables

should be equal to 1 if and only if both corresponding � variables are equal to 1.
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Eqs. (4.22)–(4.24) allow us to linearize and relax ✓ as ✓ � 0.

✓fgt  �
E
f(t�1) 8 f, g 2 F, t 2 T, t � 1 (4.22)

✓fgt  �
S
gt 8 f, g 2 F, t 2 T (4.23)

✓fgt � �
E
f(t�1) + �

S
gt � 1 8 f, g 2 F, t 2 T, t � 1 (4.24)

Eq. (4.25) ensures that necessary setup time is allocated for color transition.

n
P
fgt + n

S
fgt = STfg✓fgt 8 f, g 2 F, (f, g) /2 �(f, g), t 2 T (4.25)

We relate setup time variables for families (nS
, n

E) to period based variables (F,B)

with Eqs. (4.26)–(4.27).

Ft =
X

(f,g)/2�(f,g)

n
S
fgt 8 t 2 T (4.26)

Bt =
X

(f,g)/2�(f,g)

n
P
fg(t+1) 8 t 2 T (4.27)

Eq. (4.28) ensures that no infeasible family transition is permitted. Note that this

is the counterpart of Eq. (4.18).

�
E
f(t�1) + �

S
gt  1 8 f, g 2 F, (f, g) 2 �(f, g), t 2 T, t � 1 (4.28)

4.3.2. Objective and Complete Model

The objective function is the same as PTBM. Model 4.2 represents the complete

formulation for FTBM.
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Model 4.2. Family Transition Based Model (FTBM)

Minimize
X

j2J
t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

p2P

cp�p +
X

t2T
(f,g)/2�(f,g)

cfg✓fgt

subject to (4.1)–(4.2)

(4.4)–(4.9)

(4.19)–(4.28)

Ijt, Xjt, Ujt � 0 8(j 2 J, c, t)

Sjtk � 0 8(j 2 J, t, k � t)

�pt 2 {0, 1} 8(p, t)

✓fgt � 1 8(f, g, t)

�
S
ft, �

E
ft � 0 8(f, t)

Ft, Bt � 0 8(t)

n
P
fgt, n

S
fgt � 0 8(f, g, t)

4.4. Comparison of Pattern and Family Transition Based Models

As explained in detail in Sections 4.2 and 4.3, formulations di↵er from each other

with respect to the formulation of the state transition over period boundaries. In

PTBM, there is a ✓ variable for each pair of patterns whereas in FTBM ✓ variables are

mapped to each pair of families. The FTBM associates state decision variables � to

setup duration through a convex hull reformulation with Eqs. (4.20), (4.21) and (4.25).

Hence, we argue that FTBM is tighter than PTBM with the following proposition.

Proposition 4.1. Let SFTBM and S
PTBM be the feasible regions of linear programming

relaxations of FTBM and PTBM respectively. Then, SFTBM ⇢ S
PTBm.



51

Proof. Let I be the set of family pairs (f 0
, g

0) such that ✓f 0g0t > 0 in a feasible solution

to PTBMV. Then summing Eq. (4.25) over (f 0
, g

0) 2 I, we obtain

X

(f 0,g0)2I

n
P
f 0g0t +

X

(f 0,g0)2I

n
P
f 0g0t =

X

(f 0,g0)2I

STf 0g0✓f 0g0t (4.29)

Note that, the first term is equal to Ft+1 and the second term is equal to Bt on the

left hand side of the equation. Moreover, from Eqs. (4.22)–(4.24), we obtain following

inequalities respectively by again summing over (f 0
, g

0) 2 I.

X

(f 0,g0)2I

STf 0g0✓f 0g0t 
X

(f 0,g0)2I

STf 0g0�
E
f 0t (4.30)

X

(f 0,g0)2I

STf 0g0✓f 0g0t 
X

(f 0,g0)2I

STf 0g0�
S
g0(t+1) (4.31)

X

(f 0,g0)2I

STf 0g0✓f 0g0t �
X

(f 0,g0)2I

(�E
f 0t + �

S
g0(t+1)) + |I| (4.32)

Left hand side of all these three inequalities can hence be replaced by Ft+1 + Bt. On

the other hand, when we sum Eqs. (4.16) and (4.17) followed by another sum over

(p0, r0) 2 J where p0 and r
0 correspond to patterns having f

0 as ending family and g
0 as

starting family respectively, we obtain

X

(p0,r0)2J

(Bp0t + Fr0(t+1)) 
X

(p0,r0)2J

(STPf 0�p0t + STSg0�r0(t+1)) (4.33)

which also has the left hand side equal to Ft+1+Bt. Summing Eq. (4.14) over (p0, r0) 2 J

gives

X

(p0,r0)2J

STf 0g0 �
X

(p0,r0)2J

MSTf 0g0 +
X

(p0,r0)2J

✓p0r0t 
X

(p0,r0)2J

(Bp0t + Fr0(t+1)) (4.34)

Note that right hand side of the inequality (4.34) is also equal to Ft+1 + Bt.
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Then from Eq. (4.30) and Eq. (4.31), we obtain following inequalities which are al-

ways true by definition of STPf 0 and STSg0 with respect to STf 0g0

X

(f 0,g0)2I

STf 0g0�
E
f 0t 

X

(p0,r0)2J

(STPf 0�p0t + STSg0�r0t) (4.35)

X

(f 0,g0)2I

STf 0g0�
S
g0(t+1) 

X

(p0,r0)2J

(STPf 0�p0t + STSg0�r0t) (4.36)

Finally from Eq. (4.34) we obtain

X

(p0,r0)2J

STf 0g0 �
X

(p0,r0)2J

MSTf 0g0 +
X

(p0,r0)2J

✓p0r0(t+1) 
X

(f 0,g0)2I

(�E
f 0t + �

S
g0(t+1))� |I| (4.37)

The first to components of the left hand side is negative by definition of STf 0g0 and

MSTf 0g0 . Exploring the third component from Eq. (4.13) by summing over (p0, r0) 2 J

X

(p0,r0)2J

�p0t +
X

(p0,r0)2J

�r0(t+1) � |J | 
X

(p0,r0)2J

✓p0r0t (4.38)

Since,
P

(p0,r0)2J �p0t =
P

(f 0,g0)2I �
E
f 0t,

P
(p0,r0)2J �r0(t+1) =

P
(f 0,g0)2I �

S
g0(t+1 and |J | �

|I|, then (4.37) is also always true. Hence, for each fractional solution to S
FTBM , one

can find a corresponding solution in S
PTBM .

On the other hand, let p
FM1 and p

FM2 be two patterns ending with family

FM and allocated have corresponding � variables equal to 0.5 and 0.5 in period t

respectively in a feasible solution to PTBM. Similarly, let r
FM3 and r

MV 4 be two

patterns starting with families FM and MV respectively with corresponding � vari-

ables equal to 0.4 and 0.6 in period t + 1. Following Eqs. (4.11)–(4.13) variable

✓p(FM3)(t+1)r(MV 4)(t+1) � 0 � (0.5 + 0.4 � 1). Then Eq. (4.14) and Eq. (4.15), will

become redundant since ✓ can take value of zero. However, in FTBM, the corre-

sponding ✓ variable, namely ✓(FM3)(MV 4)(t+1), has a lower bound of 0.6 from Eq. (4.24).

This triggers Eq. (4.25) such that the left hand side has to equal ST(FM3)(MV 4) ⇤ 0.6.
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This might results in di↵erent setup duration for PTBM and FTBM. Hence there exists

a solution to the LP relaxation of PTBM, which is not a feasible solution of the LP

relaxation of FTBM.

4.5. Formulation Variations

In both formulations PTBM and FTBM, infeasible changeovers between families

over period boundaries are prohibited explicitly with Eq. (4.18) and Eq. (4.28) in

PTBM and FTBM, respectively. From another point of view, this is equivalent to the

condition that over period boundaries, only feasible family setups should be allowed.

Hence, this can be achieved with Eq. (4.39) for PTBM:

X

p,r2P
f=fT

p

g=fH
r

(f,g)/2�(f,g)

✓prt = 1 8 t 2 T, t � 1 (4.39)

and with Eq. (4.40) for FTBM:

X

f,g2F
(f,g)/2�(f,g)

✓fgt = 1 8 t 2 T, t � 1 (4.40)

Notice that Eqs. (4.39)–(4.40) may decrease the number of constraints significantly

depending on the number of patterns and families. In PTBM and FTBM, Eq. (4.18)

and Eq. (4.28) are written explicitly for each period transition and for each pair of

infeasible pattern and family pairs respectively. On the other hand, in variant models

PTBMV and FTBMV, a single equation exists as Eq. (4.39) and Eq. (4.40) for each

period transition. Model 4.3 and Model 4.4 represent the complete formulation for

PTBMV and FTBMV respectively.
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Model 4.3. Pattern Transition Based Model Variant (PTBMV)

Minimize
X

j2J
t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

p2P

cp�p +
X

t2T
(f,g)/2�(f,g)

cfg✓fgt

subject to (4.1)–(4.9)

(4.11)–(4.17)

(4.39)

Ijt, Xjt, Ujt � 0 8(j 2 J, t)

Sjtk � 0 8(j 2 J, t, k � t)

�pt 2 {0, 1} 8(p, t)

Fpt, Bpt, ✓pt � 0 8(p, t)

Model 4.4. Family Transition Based Model Variant (FTBMV)

Minimize
X

j2J
t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

p2P

cp�p +
X

t2T
(f,g)/2�(f,g)

cfg✓fgt

subject to (4.1)–(4.2)

(4.4)–(4.9)

(4.19)–(4.27)

(4.40)

Ijt, Xjt, Ujt � 0 8(j 2 J, t)

Sjtk � 0 8(j 2 J, t, k � t)

�pt 2 {0, 1} 8(p, t)

0  ✓fgt  1, nP
fgt, n

S
fgt � 0 8(f, g, t)
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�
S
ft, �

E
ft � 0 8(f, t)

Ft, Bt � 0 8(t)

We argue that the variant formulations are tighter than primary formulations.

The following proposition shows that PTBMV is tighter than PTBM.

Proposition 4.2. Let SPTB and S
PTBV be the feasible regions of linear programming

relaxations of PTBM and PTBMV respectively. Then, SPTBV ⇢ S
PTB.

Proof. Let I be the set of pattern pairs (p0, r0) such that ✓p0r0(t+1) > 0 in a feasible

solution to PTBMV. Then, for each (p0, r0) we have

�p0t � ✓p0r0(t+1)

�r0(t+1) � ✓p0r0(t+1)

from Eqs. (4.11)–(4.12) and since
P

(p0,r02I) ✓p0r0(t+1) = 1 by Eq. (4.39), then we have

X

(p0,r0)2I

�p0t =
X

(p0,r0)2I

�r0(t+1) = 1

Hence,

X

(p00,r00)/2I

�p00t =
X

(p00,r00)/2I

�r00(t+1) = 0

Note that such pattern couples include both feasible and infeasible pattern pairs and

such feasible pairs Eq. (4.18) is not relevant. Moreover, for pairs (p0, r0) 2 I such

that (p0, r0) setup is infeasible, since
P

(p0,r02I) ✓p0r0(t+1) = 1 by assumption, we have

�p0t + �r0(t+1)  1. Hence, each fractional solution of PTBMV is also feasible with

respect to PTBM.
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On the other hand, let f1, f2, f3, f4, f5 and f6 be families with no feasible

transition between any couple except within same family. Let us note patterns including

single families also as f1, f2 etc. Let � values in a solution of PTBM be �f1t = 0.4,

�f2t = 0.5, �f3t = 0.1, �f1(t+1) = 0.4, �f4(t+1) = 0.5 and �f5(t+1) = 0.1. Note that since

there is no feasible transition between any couples other than f1t to f1(t+ 1), for any

combination Eq. (4.18) is satisfied. However, since the only feasible transition (f1t to

f1(t+1)) implies that ✓f1f1(t+1)  0.4 then Eq. (4.39) is violated and hence there exists

a solution for the LP relaxation of PTBM, which is not feasible for the LP relaxation

of PTBMV.

Note that by similar approach, we can also prove the following proposition.

Proposition 4.3. Let SFTB and S
FTBV be the feasible regions of linear programming

relaxations of FTBM and FTBMV respectively. Then, SFTBV ⇢ S
FTB.



57

5. PARALLEL MACHINE PROBLEM

In this chapter, we extend the mathematical models for the campaign planning

problem formulated in Chapter 4 to parallel machines. Main e↵ects of parallel ma-

chines relate to production speed, size group and quality ratios, setup times and costs.

Note that we extend the variant formulations and name the models Pattern Transi-

tion Based Model Variant on Parallel Machines (PTBMV-PM) and Family Transition

Based Model Variant on Parallel Machines (FTBMV-PM) respectively. In addition,

Table 5.1 illustrates symbols used in both PTBMV-PM and FTBMV-PM.

Table 5.1. Symbols used in both parallel machine formulations.

Set Description

J Set of products

R Set of production lines

Q Set of quality groups

S Set of size groups

T Set of time periods

P Set of campaign patterns

F Set of product families

O Set of orders for timing of production in a period

(b: beginnig, m: middle, e: end)

P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

F
o(p) Set of families appearing in order o in pattern p

J(f) Set of products belonging to family f

�r(f, g) Set of product family couples that are infeasible

on production line r, f, g 2 F



58

Table 4.1. Symbols used in both parallel machine formulations. (cont.)

Parameter Description

Djt Demand of product j in period t

Ij(�1) Beginning inventory of product j

vjr Production speed of product j on production line r

At Available capacity of production lines in period t

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j

Rfqsr Maximum production ratio for quality group q

and size group s for family f on production line r

MDfr Minimum production duration for family f on production line r

NTfp Number of times family f appears in the middle order of pattern p

STpr Setup time needed for family order within pattern p

on production line r

STfgr Setup time needed for switching from product family f

to family g on production line r

hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period

ujr Unit production cost for producing product j on line r

cfgr Setup cost for switching from family f to family g

on production line r

cpr Total setup cost for family order within pattern p

on production line r

Variable Description

Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j in period k

Ujt Unsatisfied quantity of demand from period t of product j

Xjrt Production quantity of product j on production

line r in period t
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Table 4.1. Symbols used in both parallel machine formulations. (cont.)

Variable Description

�prt Binary indicator variable for selection of pattern p

on production line r in period t

d
o
frt Number of days spent for production of family f in order o

on production line r in period t

5.1. Pattern Generation Extension

As explained in Section 4.1.1, a pattern is simply an ordered list of families

to be assigned to a period of the single machine. Algorithm in Figure 4.3 generates

patterns for a given set of families respecting setup feasibility and minimum production

duration limitations. In parallel machine case, we can adapt this algorithm in a way

that it runs for each machine. For each machine r, let Fr be the set of families that

can be produced on r and Mr be the corresponding setup matrix. Hence, if we provide

them to the GeneratePatterns procedure defined in Figure 4.3, then algorithm shown

in Figure 5.1 will generate patterns for each r in set of machines, namely R

GenerateAllPatterns (R,F,M)
inputs : Set R of machines, set F of all families and setup matrix M

LL ; (LL is a list)

foreach machine r 2 R do
Fr  families that can be produced on machine r

Mr  setup matrix associated with machine r

LL LL [ GeneratePatterns(Fr,Mr)
return LL

Figure 5.1. Generate all patterns p on all machines R.
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5.2. Pattern Transition Based Model Variant on Parallel Machines

In this Section, we present the parallel machines extension of PTBMV, namely

PTBMV-PM. Table 5.2 lists the symbols used in PTBMV-PM in addition to common

symbols listed in Table 5.1 along with their brief descriptions. We present constraints

in Section 5.2.1. We present the objective and formulate the complete model in Section

5.2.2.

Table 5.2. Symbols used in PTBMV-PM.

Parameter Description

STPfr Maximum setup time such that product family f is predecessor

on production line r

STSfr Maximum setup time such that product family f is successor

on production line r

MSTfgr Maximum setup time needed for switching from product family f

to any other family or from any family to family g on production

line r, can similarly be expressed as max(STPfr, STSgr)

f
H
p First family in pattern p

f
T
p Last family in pattern p

Variable Description

✓psrt Auxiliary variable indicating whether machine switched from

pattern p to pattern s on production line r at the beginning

of period t

Fprt Setup time spent for pattern p on production line r

at the beginning of period t

Bprt Setup time spent for pattern p on production line r

at the end of period t
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5.2.1. Constraints

Eq. (5.1) ensures the consistency of demand satisfactions having demand backlog

and unsatisfaction allowed.

X

k2T
k�t

Sjtk + Ujt = Djt 8 j 2 J, t 2 T (5.1)

Eq. (5.2) is the inventory balance constraint linking the production quantity X,

inventory I and demand satisfaction S variables across time periods.

Ij(t�1) +
X

r2R

Xjrt �
X

k2T
kt

Sjkt = Ijt 8 j 2 J, t 2 T (5.2)

Eq. (5.3) formulates production line capacity usage ensuring 24/7 working. Note

that since we define the capacity of production lines as time within a period, the

capacity At does not depend on r.

X

f2F

X

o2O

d
o
frt +

X

p2P

(STpr�prt + Fprt +Bprt) = At 8 r 2 R, t 2 T (5.3)

Eq. (5.4) couples variables representing number of days of production allocated

in an order for a family to production quantity variables. Order translates into the

beginning, middle or ending of a period.

X

j2J

vjrXjrt =
X

o2O

d
o
frt 8 f 2 F, r 2 R, t 2 T (5.4)

Eq. (5.5) ensures that production quantities in a time period consist a feasible

composition within a specific family on a production line.

X

j2J(f)
Q(j)q
S(j)s

Xjrt 
X

j2J(f)

Xjrt Rfqrs 8 r 2 R, f 2 F, q 2 Q, s 2 S, t 2 T (5.5)
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Eq. (5.6) ensures allocation of patterns to production lines for each period.

X

p2P

�prt = 1 8 r 2 R, t 2 T (5.6)

Equations (5.7)–(5.9) serve to model a lower bound for production duration of

families that are produced in the middle of a pattern, split into two adjacent periods

and a proper upper bound, respectively.

d
m
frt �MDfrNTfp�pt 8 r 2 R, p 2 P, f 2 F

m(p), t 2 T (5.7)

d
e
fr(t) + d

b
fr(t+1) �MDfr�prt 8 r 2 R, p 2 P, f 2 F

b(p) [ F
e(p), t 2 T (5.8)

d
o
frt 

X

p2P o(f)

At�prt 8 r 2 R, f 2 F, o 2 O, t 2 T (5.9)

Equations (5.10)–(5.12) serve for relating ✓ variables with � variables to properly

handle setup crossover.

✓psrt  �pr(t�1) 8 r 2 R, p, s 2 P, t 2 T, t � 1 (5.10)

✓psrt  �srt 8 r 2 R, p, s 2 P, t 2 T (5.11)

✓psrt � �pr(t�1) + �rrt � 1 8 r 2 R, p, s 2 P, t 2 T, t � 1 (5.12)

Equations (5.13)–(5.14) manage setup time spent at the beginning and at the end

of a period t.

STfgr +MSTfgr(1� ✓psrt) � Bpr(t�1) + Fsrt 8 r 2 R, p, s 2 P,

f = f
T
p , g = f

H
s , t 2 T, t � 1 (5.13)

STfgr �MSTfgr(1� ✓psrt)  Bpr(t�1) + Fsrt 8 r 2 R, p, s 2 P,

f = f
T
p , g = f

H
s , t 2 T, t � 1 (5.14)
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Equations (5.15)–(5.16) ensure that setup time variables for period beginning and

ending are zero unless the corresponding pattern is selected.

Fprt  STSfr�prt 8 r 2 R, p 2 P, f = f
H
p , t 2 T, t � 1 (5.15)

Bprt  STPfr�prt 8 r 2 R, p 2 P, f = f
T
p , t 2 T, t � 0 (5.16)

Model avoids infeasible family transitions with Eq. (5.17).

X

p,s2P
f=fT

p

g=fH
s

(f,g)/2�r(f,g)

✓psrt = 1 8 r 2 R, t 2 T, t � 1 (5.17)

5.2.2. Objective and Complete Model

We define the objective function as cost minimization. Other than having resource

indices in � and ✓ variables, the major di↵erence is PTBMV-PM objective also includes

production costs, namely ujr. Demand satisfaction related costs are formulated with

the same approach we explain in Section 4.2.2. Model 5.1 represents the complete

formulation for PTBM.

Model 5.1. Pattern Transition Based Model Variant on Parallel Machines (PTBMV-

PM)

Minimize
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P

cpr�pr

+
X

r2R

X

p2P

X

t2T

X

f=fT
p

g=fH
s

(f,g)/2�r(f,g)

cfgr✓psrt
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subject to (5.1)–(5.17)

Ijt, Ujt � 0 8(j, t)

Sjtk � 0 8(j, t, k � t)

d
o
frt � 0 8(f, r, t)

Xjrt � 0 8(j, r, t)

�prt 2 {0, 1} 8(p, r, t)

Fprt, Bprt, ✓psrt � 0 8(p, s, r, t)

5.3. Family Transition Based Model Variant on Parallel Machines

In this Section, we present the parallel machine extension of FTBMV. Table 5.3

lists the symbols used in FTBMV-PM in addition to common symbols listed in Table

5.1 along with their brief descriptions. We present constraints in Section 5.3.1 and

complete model with objective in Section 5.3.2.

5.3.1. Constraints

We defined requirement and inventory balance constraints with Equations (5.1)–

(5.2) respectively. Since these concepts do not change in FTBM-PM, they’re still valid.

Similarly, Eq. (5.4) relating production duration and quantity variables and Eq. (5.5)

formulating production composition regarding size group and quality are also valid for

FTBM-PM. Lastly, Hence,(5.6) formulating pattern selection per production line in

addition to minimum duration constraints formulated with Equations (5.7)–(5.9) are

also valid in FTBMV-PM.

Eq. (5.18) is formulating resource balance as follows.

X

f2F

X

o2O

d
o
frt +

X

p2P

STpr�prt + Frt +Brt = At 8 r 2 R, t 2 T (5.18)
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Table 5.3. Symbols used in FTBMV-PM.

Parameter Description

P
S(f) Patterns that family f is the first family

P
E(f) Patterns that family f is the last family

Variable Description

�
S
frt Indicator for selection of family f as starting on production line r

in period t

�
E
frt Indicator for selection of family f as ending on production line r

in period t

✓fgrt Auxiliary variable indicating whether production line r switched

from family f to family g at the beginning of period t

n
P
fgrt Number of days spent for setup on production line r

in predecessor period t� 1 for switched from family f to family g

at the beginning of period t

n
S
fgrt Number of days spent for setup on production line r

in successor period t for switched from family f to family g

at the beginning of period t

Frt Setup time spent on production line r at the beginning of period t

Brt Setup time spent on production line r at the end of period t
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Equations (5.19)–(5.20) determine starting and ending family within a period.

Notice that Eq. (5.6) combined with Equations (5.19)–(5.20), variables (�S
, �

E) can

only have values from {0, 1} and hence be relaxed as �S
, �

E � 0.

�
S
frt =

X

p2PS(f)

�prt 8 r 2 R, f 2 F, t 2 T (5.19)

�
E
frt =

X

p2PE(f)

�prt 8 r 2 R, f 2 F, t 2 T (5.20)

✓ variables indicate whether a changeover is performed from family f to family g

at the beginning of period t on each production line, and they are related to � variables

with Equations (5.21)–(5.23).

✓fgrt  �
E
fr(t�1) 8 r 2 R, f, g 2 F, t 2 T, t � 1 (5.21)

✓fgrt  �
S
grt 8 r 2 R, f, g 2 F, t 2 T (5.22)

✓fgrt � �
E
fr(t�1) + �

S
grt � 1 8 r 2 R, f, g 2 F, t 2 T, t � 1 (5.23)

Eq. (5.24) ensures that each production line allocates necessary setup time for

color transition.

n
P
fgrt + n

S
fgrt = STfgr✓fgrt 8 r 2 R, f, g 2 F, (f, g) /2 �r(f, g), t 2 T (5.24)

Equations (5.26)–(5.25) relate setup time variables for families (nS
, n

E) to period

based variables (F,B).

Frt =
X

(f,g)/2�r(f,g)

n
S
fgrt 8 r 2 R, f, g 2 F, t 2 T (5.25)

Brt =
X

(f,g)/2�r(f,g)

n
P
fgr(t+1) 8 r 2 R, f, g 2 F, t 2 T (5.26)
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Model avoids infeasible family transitions with Eq. (5.27).

X

f,g2F
(f,g)/2�r(f,g)

✓fgrt = 1 8 r 2 R, t 2 T, t � 1 (5.27)

5.3.2. Objective and Complete Model

The objective function is the same as PTBMV-PM explained in Section 5.2.2.

Model 5.2 represents the complete formulation for PTBM.

Model 5.2. Family Transition Based Model Variant with (FTBMV-PM)

Minimize
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P

cpr�pr

+
X

r2R

X

p2P

X

t2T

X

f=fT
p

g=fH
s

(f,g)/2�r(f,g)

cfgr✓psrt

subject to (5.1)–(5.2)

(5.4)–(5.9)

(5.18)–(5.26)

(5.27)

Ijt, Ujt � 0 8(j, t)

Sjtk � 0 8(j, t, k � t)

d
o
frt � 0 8f, r, t

Xjrt � 0 8(j, r, t)

�prt 2 {0, 1} 8(p, r, t)

0  ✓fgrt  1 8(f, g, r, t)
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�
S
frt, �

E
frt � 0 8(f, r, t)

Frt, Brt � 0 8(r, t)

n
P
fgrt, n

S
fgrt � 0 8(f, g, r, t)

5.4. Branch-and-Price Algorithm

In this Section, we introduce a new representation, namely extended patterns , for

campaign plans enabling us formulate the problem in a simpler form, which drives the

implementation of a branch-and-price (B&P) algorithm. We first describe the concept

of extended pattern and present the reformulation based on the extended patterns.

We then describe the CG specifics in Section 5.4.3, followed by the modeling of pricing

problem as a shortest path problem in Section 5.4.4. Finally, we explain our initial

column set generation, branching and node selection strategies, root node processing

approach in addition to upper bound generation in Section 5.4.5.

5.4.1. Concept of Extended Pattern

Formulations FTBMV-PM and PTBMV-PM allocate a pattern from a pre-defined

set of patterns, which are feasible in terms of minimum production duration of fam-

ilies involved, to each period of the production line. Moreover, a campaign plan

is the sequence of families to be produced on a specific production line with start

and end times of setups and production runs of families. A campaign plan is it-

self, from another point of view, another pattern covering the entire planning horizon.

The reason is that is also a sequence of families to be executed on the corresponding

line. Hence, we define each campaign plan as an extended pattern.

We define micro period as a unit amount of time multiplies of which can

represent the continuous data we need to incorporate into our models. Recall from

Section 3 that data with continuous time resolution includes setup times and mini-

mum production duration of families.
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Extended patterns represent the sequence of families and their respective dura-

tions, with the exception that durations are expressed as “number of micro periods”.

From another perspective, we divide the planning horizon into micro periods, and an

extended pattern is an ordered representation of family allocations to each one of these

micro periods. Figure 5.2 illustrates four di↵erent extended pattern examples for a

set of two families F1 and F2. Families have 2 micro periods of minimum production

duration each, and 1 and 3 micro periods of sequence-dependent setup times from F1

to F2 and from F2 to F1 respectively.

Figure 5.2. Valid extended patterns

5.4.2. Reformulated Mathematical Model

An extended pattern covers the entire planning horizon by definition, and assum-

ing such patterns will be constructed ensuring the minimum production duration of

families and setup transition feasibility, it enables us to simplify FTBMV-PM. We can

associate each production line with an extended pattern for the entire planning hori-

zon, hence reformulate the campaign planning problem. We name the reformulation

as Extended Pattern Based Campaign Planning Model (CPM-EP). Table 5.4 lists the

symbols used in CPM-EP along with their brief descriptions.



70

Table 5.4. Symbols used in CPM-EP.

Set Description

J Set of products

R Set of production lines

Q Set of quality groups

S Set of size groups

T Set of time periods

P Set of extended campaign patterns

F Set of product families

P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

J(f) Set of products belonging to family f

Parameter Description

Djt Demand of product j in period t

Ij(�1) Beginning inventory of product j

vjr Production speed of product j on production line r

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j

Rfqsr Maximum production ratio for quality group q

and size group s for family f on production line r

dfpt Number of days family f appears in extended pattern p

in period t
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Table 5.4. Symbols used in CPM-EP. (cont.)

Parameter Description

hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period

ujr Unit production cost for producing product j on line r

cpr Total setup cost for family order within extended pattern p

on production line r

Variable Description

Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j

in period k

Ujt Unsatisfied quantity of demand from period t of product j

Xjrt Production quantity of product j on production line r

in period t

�pr Binary indicator variable for selection of extended pattern p

on production line r

Model 5.3. Extended Pattern Based Campaign Planning Model (CPM-EP)

Minimize
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P

cpr�pr

subject to
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X

k2T
k�t

Sjtk + Ujt = Djt 8 j 2 J, t 2 T (5.28)

Ij(t�1) +
X

r2R

Xjrt �
X

k2T
kt

Sjkt = Ijt 8 j 2 J, t 2 T (5.29)

X

j2J(f)
Q(j)q
S(j)s

Xjrt 
X

j2J(f)

Xjrt Rfqrs 8 r 2 R, f 2 F, q 2 Q, s 2 S, t 2 T (5.30)

X

p2P

�pr = 1 8 r 2 R (5.31)

X

j2J(f)

vjXjrt �
X

p2P (f)

dfpt�pr = 0 8 f 2 F, r 2 R, t 2 T (5.32)

Ijt, Ujt � 0 8(j, t) (5.33)

Sjtk � 0 8(j, t, k � t) (5.34)

Xjrt � 0 8(j, r, t) (5.35)

�pr 2 {0, 1} 8(p, r) (5.36)

Model 5.3 represents the complete formulation of CPM-EP. The objective is the

same cost minimization with the exception that it has fewer terms since there is no

need to represent the setup costs incurred separately for within period and over period

boundaries as in Model 5.2. Equations (5.28)–(5.30) are requirement balance, inventory

balance and size group quality constraints exactly the same as in Model 5.2. Eq. (5.31)

ensures only a single extended pattern is assigned to a production line. Eq. (5.32)

couples production quantity variables (X) with designated duration of corresponding

families in the selected extended pattern, ensuring the plan respects the capacity of

each production line. Finally, Equations (5.33)–(5.36) define variable domains.

Note that Model 5.3 is a reformulation of Model 5.2 with only five sets of con-

straints and variable bounds. Moreover, Model 5.3 has an exponential number of

variables making it a candidate for column generation (CG) approach.
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5.4.3. Column Generation

The main decision in CPM-EP is the assignment of an extended pattern to ma-

chines, and the number of extended patterns for each machine varies according to the

number of families that can be produced on the machine, their respective minimum

production durations and feasibility of setups between families. Hence, there can be

an exponential number of extended patterns, which means in an optimal solution to

CPM-EP, most of the corresponding � variables will be equal to zero. As a first step

of our column generation strategy, we relax the binary variables, �, in CPM-EP and

obtain the linear programming relaxation of restricted master problem as follows:

Model 5.4. Restricted Extended Pattern Based Campaign Planning Master Model

(RCPM-EP)

min
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P 0

cpr�pr

subject to

(5.28)–(5.32) (5.37)

Ijt, Ujt � 0 8(j, t) (5.38)

Sjtk � 0 8(j, t, k � t) (5.39)

Xjrt � 0 8(j, r, t) (5.40)

0  �pr  1 8(p, r), p 2 P
0 (5.41)

RCPM-EP considers a subset of extended patterns denoted with P
0.

To generate columns which are not already in P
0, we are interested in the reduced cost

value associated with each potential extended pattern to be added to P
0.
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By definition, reduced cost is the amount of necessary improvement in the objective

coe�cient of the corresponding variable so that the variable becomes a basic variable.

Moreover, reduced cost can be calculated by using optimal dual multipliers of the

master problem.

We denote the dual variables associated with Equations (5.31) and (5.32) by

⇡r and µfrt respectively. We can find a new column, namely an extended pattern, by

checking its reduced cost such that reduced cost with respect to Eq. (5.42) is minimized,

⇡̄r �
X

f2P (f)

X

t2T

dfptµ̄frt  cpr 8 r 2 R (5.42)

where ⇡̄r and µ̄frt are optimal dual multipliers from RCPM-EP. Given an optimal

solution of RCPM-EP, pricing subproblem (SP(⇡̄r,µ̄frt)) can be formulated as follows:

Model 5.5. Pricing Subproblem (SP(⇡̄r,µ̄frt))

Minimize cpr � ⇡̄r +
X

f2P (f)

X

t2T

dfptµ̄frt

subject to p 2 P

dfpt 2 Z

5.4.4. Pricing Subproblem as Shortest Path Problem

We define the pricing problem with Model 5.5 for each production line r, with ⇡̄r

and µ̄frt being parameters to (SP(⇡̄r,µ̄frt)) as optimal dual multipliers from RCPM-

EP. The aim of pricing problem is to construct an extended pattern such that the

minimum production duration of each family f is respected, the transitions, namely

setups, between families are feasible and its associated reduced cost is as small as

possible.
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We can represent an extended pattern as a path on a special network of the

corresponding machine. For each micro period in the planning horizon we create a

node for each family f . Hence, when a node is in a path, it means that the production

line r is dedicated to producing products of the corresponding family f in that micro

period. In addition, we create a source and a sink node so that a path maps to a

directed flow between them. Arcs of this network is constructed in a way that:

• the minimum production duration of each family is respected

• there exist arcs between family pairs such that a setup is feasible

• when an arc corresponds to a setup, it respects both the setup duration in between

families and the minimum duration of the successor family.

Note that, for arcs corresponding to a setup and minimum duration of the successor

family, nodes of the family in related micro periods are not in the path but they are in

the production plan.

In order to illustrate the idea, let F1 and F2 be two families to be produced on

a machine in a planning horizon of 8 micro periods, with 2 micro periods of minimum

production duration each. Sequence-dependent setup times from F1 to F2 and from

F2 to F1 are 1 and 3 micro periods respectively. We further assume that, each period

consists of four micro periods. Figure 5.3 shows the corresponding network.

All the paths in this network are valid extended patterns. To further clarify the

illustration, we provide in Figure 5.4 the gantt representation of the path consisting of

arcs in dotted lines. Arc covering micro periods 3 to 7 corresponds to a setup from F1

to F2 on micro periods 3 to 5, and minimum duration of F2 on micro periods 6 and 7.

Considering our motivation to generate a new column for RCPM-EP with a

promising reduced cost defined as the objective function of Model 5.5, it is su�cient

for us to calculate proper costs on arcs. For outbound arcs of source and inbound arcs of

sink node, the associated cost is zero. For all other arcs, the cost is calculated as follows:
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Figure 5.3. An illustrative s-t network

Figure 5.4. Illustration of an s-t network path
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we determine the duration of production in each period and multiply with the proper

dual multiplier of the family associated with to node. Moreover, if family associated

with from node is di↵erent than the one associated with to node, we account for a setup

cost and the minimum duration of this destination family. Once we calculate the arc

costs, the most promising candidate extended pattern is given by the s-t shortest path

in this network.

We note that the network is a directed acyclic graph (DAG). Since there is no

cycle in a DAG by definition, no negative cost cycle can exist. Hence, shortest paths

are well defined, and we can solve it e�ciently with topological ordering, in O(|A|)

time complexity following from [54], where |A| is the number of arcs in the network.

Pricing subproblem (SP(⇡̄r,µ̄frt)) can be represented as a DAG and at each iteration

we can generate a new column, namely an extended pattern, in polynomial time by

calculating proper arc costs.

5.4.5. Algorithm Details

We will apply a B&P algorithm, which focuses on generating columns for tighten-

ing an LP relaxation, for the solution of CPM-EP. We defined column generation and

pricing problem as shortest path problem in Section 5.4.3 and Section 5.4.4 respectively.

In this section, we will focus on the details of the algorithm.

5.4.5.1. Generating Initial Set of Columns. Starting the algorithm requires an initial

set of columns to be assumed as P 0 that RCPM-EP will run with. In principal, such

a subset can be determined by running constructive heuristics. We generate “unit”

extended patterns, which are patterns such that only a single family f is produced on

a production line during the entire planning horizon. We generate all possible unit

patterns Pu for all resources and start the B&P algorithm using them as initial set of

columns.
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5.4.5.2. Branching and Node Selection Strategy. At each iteration, we solve RCPM-

EP with P
0, followed by solving the pricing subproblem to identify columns to enter the

basis for improved objective. Note that we solve the pricing s-t shortest path problem

for each production line and add all new columns to P
0. When the pricing problem is

unable to generate a column that will price out, the solution to RCPM-EP is optimal

if it is integer feasible. Otherwise, this means some � variables are fractional and we

need to do branching.

There are fundamental di�culties in applying column generation techniques for

linear programming in integer programming solution methods [50]. It is essential

to choose a branching rule which does not increase the complexity of pricing prob-

lem solution. Considering conventional branching on variables, it has the potential

to destruct the structure of the pricing problem, which is the case for our network

representation. Suppose that we obtain a fractional value in the optimal solution

to RCPM-EP on the illustrative network in Figure 5.3 for the extended pattern p
0.

This p0 is composed as F1�F1�F1�SETUP �F2�F2�F2�F2. In order to branch

on corresponding � variable, for the upper branch we can remove all the arcs other than

representing p
0 from the network of the production line. However, for the lower branch,

to have �p0 = 0, if we remove the arcs not included in p
0, then we also cut o↵ some

other feasible extended patterns as well, of which F1�F1�F1�F1�F1�F1�F1�F1

is an example in the example on Figure 5.3. Such branching destructs the structure

of the pricing problem since we will need a special algorithm, which in the worst case

requires enumerating all the paths leading to exponential complexity in |N |. Hence, we

need to adopt another branching rule. An intuitive approach is to define a branching

strategy that will correspond to removal of some arcs and/or nodes from the network.

We define a branching strategy based on family nodes in the network of each

production line r. When the CG is unable to generate new columns, we calculate, for

each arc on the network, a weight index such that for each arc we calculate the sum of

all the extended pattern variables with positive value. This provides us a “superposi-

tion” of these patterns. Then starting from the source node, we start tracking paths.
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At some node, the paths will need to be separated which provides reasonable branching

point on the network.

Figure 5.5. An illustrative branching instance

Figure 5.5 illustrates such an instance. There are two di↵erent paths and each

one reaches F1 in micro period 2 from source, continues on F1 onto micro period 3.

At the end of micro period 3, there are two possible next nodes to reach: F1 in micro

period 4 and F2 in micro period. Suppose that weights on corresponding arcs are 0.2

and 0.8. We select the arc with highest value, which in this case is the arc from F1

in micro period 3 to F2 in micro period 6. Our branching decision is then on upper

branch, the network should have to provide a path being in F2 producing state in micro

period 4 from now on throughout the algorithm. On the lower branch, the network

should not provide any path being in F2 producing state in micro period 4.

Note that we do the branching in the adjacent micro period of the last common

node and that being in the setup for destination family f is admitted as producing f , in

this case F2. Moreover, we add B&P node of single production line at each iteration.
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This is to avoid redundant search in the tree. We select the resource to create the

branches such that the resource has its separation at the earliest micro period. If there

are multiple resource separation at same micro period, then we select the resource with

highest number of families that can be produced on.

At each node, we simply activate or deactivate a node from the network corre-

sponding to a family in a micro period, which we call the branching rule. In practical

terms, this corresponds to deciding whether to produce a family in a specific micro pe-

riod on a production line or not. Considering the branching instance described above,

we can intuitively remove the node F2 in micro period 4 for the lower branch so that

the machine produces F1. However, this approach is incomplete since there exist arcs

which implicitly adds up to the undesired state. In Figure 5.3 which is the complete

network, arc from F1 in micro period 2 to node F2 in micro period 5 means that the

machine is producing F2 in micro period 4. Hence, it requires to carefully account for

all nodes and arcs and remove as necessary to ensure the desired state of the machine

on the lower and upper branches.

Dashed arcs (in green) in Figure 5.6 means the machine will produce F2 in micro

period 4 and dotted arcs (in red) impose the opposite. Solid arcs are unrelated to

the machine state in micro period 4. Figure 5.7 shows the residual network for upper

branch in (a) and for lower branch in (b). Note that, we also removed F1 node in the

upper and F2 node in the lower branch along with their inbound and outbound arcs.

Since we employ all the related branching rules to the network at each B&P node

to be processed , any generated column throughout the algorithm respects all of these

rules. Hence, going down the B&P search tree, we will not get any infeasibility and will

work on more and more sparse s-t networks. We apply three most common strategies

for the node selection from the search tree: depth-first-search (DFS), breadth-first-

search (BFS) and best-bound-selection (BBS).
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Figure 5.6. Color coded arcs related to producing F2 in micro period 4

Figure 5.7. Upper (a) and Lower (b) branches related to producing F2 in micro

period 4
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5.4.5.3. Upper Bound Generation. Upper bound generation is an essential part of

B&P algorithms in the sense that it potentially provides an incumbent solution leads

to pruning of branches yielding lower bounds higher than the upper bound. Hence, it

is necessary to come up with an improved approach such that it is capable of balancing

running time e�ciency with quality of the solutions found.

As a heuristic approach we propose to run the CPM-EP with P
0 such that P

0

contains all generated columns if we are processing the root node. Otherwise, P 0 will

consist of extended patterns with positive � variable value in the latest solution of

RCPM-EP. In this way, the heuristic can search within a larger set of columns while

processing the root node and a limited subset while processing any other node.

We limit the execution time of CPM-EP models by 300 seconds for each execution

of our heuristic. Since the model in the root node contains, in general, a much larger

set of columns compared to other nodes, it might terminate without proven optimality.

The CPM-EP on other nodes in the B&P tree reaches to an optimal solution within

30 seconds according our preliminary observations.

5.4.5.4. Adaptive Root Node Processing. Root node is by definition the first node in

the search tree. Intuitively, we start with P
0 generated as described in Section 5.4.5.1.

However, using unit extended patterns as P
0 is questionable in the sense that the

CG algorithm might converge slowly to the state where it cannot generate any column.

It can be possible for CG to converge faster with a di↵erent initial set of P
0.

Making use of micro-period concept can provide another means of generating initial

set of patterns such that the root node processing performance is better with respect

to processing time.

We defined micro-periods as a unit amount of time multiplies of which

can represent problem data, especially the input data in continuous resolution.

The longer the micro-period length is, the more lightweight will be the shortest

path network structure. Consequently, the CG algorithm may converge faster.
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On the other hand, having longer micro-periods will result in discrepancy in the sense

that the input data is not incorporated into the model fully. We suggest an approach

to dynamically change the micro-period length throughout the processing of root node,

which we call adaptive micro-period length.

We set an initial positive integer k value, and for each k, we process the root

node setting the micro-period length to 2k unit amount of time. Note that, we use

unit extended patterns as P 0 for the initial k value. Once CG converges, we keep the

incumbent solution in P
0, remove all other patterns, reduce k by 1 and iterate on until

k = 0. For each value of k, the network is a ‘shrunk’ version of the one with k + 1.

Hence, an extended pattern, a path in the network context, can be represented in either

of the networks. Note also that, for k = 0, we have the original problem but this time

with a di↵erent initial column set than unit extended patterns. This structure allows

us to adaptively change the sensitivity of the model to input data and obtain initial

solutions that will help CG convergence faster.
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6. MULTIPLE LEVEL NETWORK PROBLEM

In this chapter, we extend the parallel machine problem defined in Chapter 5 to

multiple levels and to network structure. As defined in Chapter 3, float glass is used

to produce mirrored, coated, and laminated glass, which all have discrete production

lines as opposed to float glass. Hence, there exists a bill of material (BOM) for such

products. Moreover, some coated glass are produced from laminated glass, which is

produced from float. A product is consumed to satisfy its own customer demand as

well as a component for downstream products.

For the network consideration, we introduce facilities that contain the production

lines. Moreover, we also allow customers to exist within the network as locations.

To satisfy a demand at a customer location, we introduce transportation between

locations. Figure 6.1 illustrates a network with three facilities denoted as L1, L2 and

L3, and two customer locations denoted as C1 and C2. Blue circles correspond to

float glass production lines whereas orange pentagons correspond to secondary discrete

production lines. Moreover, arrows stand for transportation options. Note that, a

product can be shipped from di↵erent facilities to the same customer as a result of the

campaign plan. The decision depends on the production costs on each production line

in locations as well as the corresponding transportation cost.

Figure 6.1. Illustration of multiple level network
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We extend FTBMV-PM and B&P methods formulated in Chapter 5. Note that

we do not further extend the PTBMV-PM since it is outperformed by other methods

in both single and parallel machine instances. Following some preliminary tests, we

design mathematical programming based heuristic algorithms for this multiple level

network variant of the campaign planning problem.

6.1. Family Transition Based Model Variant on Multiple Level Network

In this Section, we present the multiple facility multiple level extension of FTBMV,

namely FTBMV-MLN. Table 6.1 lists the symbols used in FTBMV-MLN. We present

constraints in Section 5.3.1 and complete model with objective in Section 5.3.2.

Table 6.1. Symbols used in FTBMV-MLN.

Set Description

J Set of products

J
0(j) Set of products that consume product j

L Set of facilities

R Set of production lines

R(l) Set of production lines in facility l

R
C Set of continuous production lines

R
D Set of discrete production lines

Q Set of quality groups

S Set of size groups

T Set of time periods

P Set of campaign patterns

F Set of product families

O Set of orders for timing of production in a period

(b: beginning, m: middle, e: end)

P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

F
o(p) Set of families appearing in order o in pattern p

J(f) Set of products belonging to family f
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Table 6.1. Symbols used in FTBMV-MLN. (cont.)

�r(f, g) Set of product family couples that are infeasible

on production line r, f, g 2 F

P
S(f) Patterns that family f is the first family

P
E(f) Patterns that family f is the last family

Parameter Description

Djlt Demand of product j in facility l in period t

Ijl(�1) Beginning inventory of product j in facility l

vjr Production speed of product j on production line r

kjj0 Amount of product j consumed to produce one unit

of product j0, j0 2 J
0(j)

At Available capacity of production lines in period t

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j

Rfqsr Maximum production ratio for quality group q and

size group s for family f on production line r

MDfr Minimum production duration for family f on production line r

NTfp Number of times family f appears in the middle order of pattern p

STpr Setup time needed for family order within pattern p

on production line r

STfgr Setup time needed for switching from product family f to family g

on production line r

hjl Inventory holding cost for product j in facility l

bjl Cost of backlogging a demand of product j in facility l

for a single period

ujr Unit production cost for producing product j on line r

njlm Unit transportation cost of product j from facility l to facility m

cfgr Setup cost for switching from family f to family g

on production line r

cpr Total setup cost of pattern p on production line r
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Table 6.1. Symbols used in FTBMV-MLN. (cont.)

Variable Description

Ijlt Inventory of product j in facility l at the end of period t

Sjltk Satisfied quantity of demand of product j in facility l

from period t in period k

Ujlt Unsatisfied quantity of demand of product j in facility l

from period t

Xjrt Production quantity of product j on production line r in period t

Tjlmt Transported quantity of product j from facility l to facility m

in period t

�prt Binary indicator variable for selection of pattern p

on production line r in period t

d
o
frt Number of days spent for production of family f in order o

on production line r in period t

�
S
frt Indicator for selection of family f as starting on production line r

in period t

�
E
frt Indicator for selection of family f as ending on production line r

in period t

✓fgrt Auxiliary variable indicating whether production line r switched

from family f to family g at the beginning of period t

n
P
fgrt Number of days spent for setup on production line r in predecessor

period t� 1 for switched from family f to family g

at the beginning of period t

n
S
fgrt Number of days spent for setup on production line r in successor

period t for switched from family f to family g

at the beginning of period t

Frt Setup time spent on production line r at the beginning of period t

Brt Setup time spent on production line r at the end of period t
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6.1.1. Constraints

Eq. (6.1) ensures the consistency of demand satisfactions having demand backlog

and unsatisfaction allowed. Note that, we introduced the index l to represent locations.

X

k2T
k�t

Sjltk + Ujlt = Djlt 8 j 2 J, l 2 L, t 2 T (6.1)

Eq. (6.2) is the inventory balance constraint. It links the production quantity X,

transportation T inventory I and demand satisfaction S variables across time periods.

Also note that, consumption of the inventory by other products through consumption

rate k.

Ijl(t�1)+
X

r2R(l)

Xjrt+
X

m2L
m 6=l

Tjmlt�
X

k2T
kt

Sjlkt�
X

j02J 0(j)

X

r2R(l)

kjj0Xj0rt�
X

m2L
m 6=l

Tjlmt = Ijlt

8 j 2 J, l 2 L, t 2 T (6.2)

Eq. (6.3) couples variables representing number of days of production allocated in

an order for a family to production quantity variables. Note that, we only have such

constraints for continuous production lines.

X

j2J

vjrXjrt =
X

o2O

d
o
frt 8 f 2 F, r 2 R

C
, t 2 T (6.3)

Eq. (6.4) formulates production line capacity for continuous, and Eq. (6.5) for

discrete production lines.

X

f2F

X

o2O

d
o
frt +

X

p2P

STpr�prt + Frt +Brt = At 8 r 2 R
C
, t 2 T (6.4)

X

j2J

vjrXjrt  At 8 r 2 R
D
, t 2 T (6.5)
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Eq. (6.6) ensures that production schedule consists of a feasible composition in

terms of size group and quality for a continuous production line.

X

j2J(f)
Q(j)q
S(j)s

Xjrt 
X

j2J(f)

Xjrt Rfqrs 8 r 2 R
C
, f 2 F, q 2 Q, s 2 S, t 2 T (6.6)

Eq. (6.7) allocates patterns to continuous production lines for each period.

X

p2P

�prt = 1 8 r 2 R
C
, t 2 T (6.7)

Equations (6.8)–(6.10) serve for modeling a lower bound for duration of families

that are produced in the middle of a pattern, split into two adjacent periods and a

proper upper bound respectively.

d
m
frt �MDfrNTfp�pt 8 r 2 R

C
, p 2 P, f 2 F

m(p), t 2 T (6.8)

d
e
fr(t) + d

b
fr(t+1) �MDfr�prt 8 r 2 R

C
, p 2 P, f 2 F

b(p) [ F
e(p), t 2 T (6.9)

d
o
frt 

X

p2P o(f)

At�prt 8 r 2 R
C
, f 2 F, o 2 O, t 2 T (6.10)

Equations (6.11)–(6.12) determine starting and ending family within a period for

continuous production lines. Similar to FTBMV-PM, we can relax (�S
, �

E) as �S
, �

E �

0.

�
S
frt =

X

p2PS(f)

�prt 8 r 2 R
C
, f 2 F, t 2 T (6.11)

�
E
frt =

X

p2PE(f)

�prt 8 r 2 R
C
, f 2 F, t 2 T (6.12)
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Equations (6.13)–(6.15) are the counterpart of Equations (5.21)–(5.23), formulat-

ing ✓ variables for correct color transition management.

✓fgrt  �
E
fr(t�1) 8 r 2 R

C
, f, g 2 F, t 2 T, t � 1 (6.13)

✓fgrt  �
S
grt 8 r 2 R

C
, f, g 2 F, t 2 T (6.14)

✓fgrt � �
E
fr(t�1) + �

S
grt � 1 8 r 2 R, f, g 2 F, t 2 T, t � 1 (6.15)

Eq. (6.16) ensures that each continuous production line allocates necessary setup

time for color transition.

n
P
fgrt + n

S
fgrt = STfgr✓fgrt 8 r 2 R

C
, f, g 2 F, (f, g) /2 �r(f, g), t 2 T (6.16)

Equations (6.17)–(6.18) relate setup time variables for families (nS
, n

E) to period

based variables (F,B).

Frt =
X

(f,g)/2�r(f,g)

n
S
fgrt 8 r 2 R

C
, f, g 2 F, t 2 T (6.17)

Brt =
X

(f,g)/2�r(f,g)

n
P
fgr(t+1) 8 r 2 R

C
, f, g 2 F, t 2 T (6.18)

Eq. (6.19) is the counterpart of Eq. (5.27). to avoid infeasible family transitions.

X

f,g2F
(f,g)/2�r(f,g)

✓fgrt = 1 8 r 2 R
C
, t 2 T, t � 1 (6.19)

6.1.2. Objective and Complete Model

The objective function, similar to all previous instances, is minimizing demand

satisfaction, inventory holding, production and setup costs. Additionally FTBMV-

MLN includes transportation costs. Model 6.1 represents the complete formulation.



91

Model 6.1. Family Transition Based Model Variant on Multiple Level Network (FTBMV-

MLN)

Minimize
X

j2J

X

l2L

X

t2T

2

64hjl Ijlt + bjl (|T |� t+ 1) Ujlt +
X

k2T
kt

(bj (t� k) Sjlkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

j2J

X

l2L

X

m2L
m 6=l

X

t2T

njlmTjlmt

+
X

r2RC

X

p2P

cpr�pr +
X

r2RC

X

t2T

X

(f,g)/2�r(f,g)

cfgr✓fgrt

subject to (6.1)–(6.19)

Ijlt, Ujlt � 0 8(j, l, t)

Sjltk � 0 8(j, l, t, k � t)

d
o
frt � 0 8(f, r 2 R

C
, t)

Xjrt � 0 8(j, r, t)

Tjlmt � 0 8(j, l,m 6= l, t)

�prt 2 {0, 1} 8(p, r 2 R
C
, t)

0  ✓fgrt 8(f, g, r 2 R
C
, t)

�
S
frt, �

E
frt � 0 8(f, r 2 R

C
, t)

Frt, Brt � 0 8(r 2 R
C
, t)

n
P
fgrt, n

S
fgrt � 0 8(f, g, r 2 R

C
, t)
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6.2. Branch-and-Price Algorithm on Multiple Level Network

In this Section, we present the multiple facility multiple level extension of the

B&P algorithm presented in Section 5.4. Recall that the main driver of the CG and

B&P algorithm is the concept of extended pattern def in Section 5.4.1. We observe

that it is still applicable for this extension of the problem, which lets us to adapt also

the reformulated mathematical model CPM-EP for multiple level network. We name

this new model CPM-EPMLN. Table 6.2 lists the symbols used in CPM-EPMLN along

with their brief descriptions.

Table 6.2. Symbols used in CPM-EPMLN.

Set Description

J Set of products

J
0(j) Set of products that consume product j

L Set of facilities

R Set of production lines

R(l) Set of production lines in facility l

R
C Set of continuous production lines in facility l

R
D Set of discrete production lines in facility l

Q Set of quality groups

S Set of size groups

T Set of time periods

P Set of extended campaign patterns

F Set of product families

P (f) Set of patterns containing family f at least once

F (p) Set of families belonging to pattern p

J(f) Set of products belonging to family f
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Table 6.2. Symbols used in CPM-EPMLN. (cont.)

Parameter Description

Djt Demand of product j in period t

Ij(�1) Beginning inventory of product j

vjr Production speed of product j on production line r

kjj0 Amount of product j consumed to produce one unit

of product j0, j0 2 J
0(j)

S(j) Index of the size group of product j

Q(j) Index of the quality group of product j

Rfqsr Maximum production ratio for quality group q

and size group s for family f on production line r

dfpt Number of days family f appears in extended pattern p

in period t

hj Inventory holding cost for product j

bj Cost of backlogging a demand of product j for a single period

ujr Unit production cost for producing product j on line r

njlm Unit transportation cost of product j from facility l to facility m

cpr Total setup cost for family order within extended pattern p

on production line r

Variable Description

Ijt Inventory of product j at the end of period t

Sjtk Satisfied quantity of demand from period t of product j

in period k

Ujt Unsatisfied quantity of demand from period t of product j

Xjrt Production quantity of product j on production line r in period t

Tjlmt Transported quantity of product j from facility l to facility m

in period t

�pr Binary indicator variable for selection of extended pattern p

on production line r
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Model 6.2. Extended Pattern Based Campaign Planning Model on Multiple Level

Network (CPM-EPMLN)

Minimize
X

j2J

X

l2L

X

t2T

2

64hjl Ijlt + bjl (|T |� t+ 1) Ujlt +
X

k2T
kt

(bj (t� k) Sjlkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

j2J

X

l2L

X

m2L
m 6=l

X

t2T

njlmTjlmt

+
X

r2RC

X

p2P

cpr�pr

subject to

X

k2T
k�t

Sjltk + Ujlt = Djlt 8 j 2 J, l 2 L, t 2 T (6.20)

Ijl(t�1) +
X

r2R(l)

Xjrt +
X

m2L
m 6=l

Tjmlt�
X

k2T
kt

Sjlkt �
X

j02J 0(j)

X

r2R(l)

kjj0Xj0rt�

X

m2L
m 6=l

Tjlmt = Ijlt 8 j 2 J, l 2 L, t 2 T

(6.21)

X

j2J(f)
Q(j)q
S(j)s

Xjrt 
X

j2J(f)

Xjrt Rfqrs 8 r 2 R
C
, f 2 F, q 2 Q, s 2 S, t 2 T (6.22)

X

p2P

�pr = 1 8 r 2 R
C (6.23)

X

j2J(f)

vjXjrt �
X

p2P (f)

dfpt�pr = 0 8 f 2 F, r 2 R
C
, t 2 T (6.24)

X

j2J

vjrXjrt  At 8 r 2 R
D
, t 2 T (6.25)
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Ijlt, Ujlt � 0 8(j, l, t) (6.26)

Sjltk � 0 8(j, l, t, k � t) (6.27)

Xjrt � 0 8(j, r, t) (6.28)

Tjlmt � 0 8(j, l,m 6= l, t) (6.29)

�pr 2 {0, 1} 8(p, r 2 R
C) (6.30)

Model 6.2 represents the complete formulation of CPM-EPMLN. The objective

is the same as the objective of 5.3 with the addition of transportation cost. Equations

(6.20)–(6.22) are requirement balance, inventory balance and size group quality con-

straints. Eq. (6.23) ensures only a single extended pattern is assigned to a production

line. Eq. (6.24) couples production quantity variables (X) with designated duration of

corresponding families in the selected extended pattern. Eq. (6.25) is the resource ca-

pacity constraint for discrete production lines. Finally, Equations (6.26)–(6.30) define

variable domains.

Similar to building the CG as explained in Section 5.4.3, we relax the binary vari-

ables, �, in CPM-EPMLN and obtain the linear programming relaxation of restricted

master problem as follows:

Model 6.3. Restricted Extended Pattern Based Campaign Planning Master Model on

Multple Level Network (RCPM-EPMLN)

min
X

j2J

X

l2L

X

t2T

2

64hjl Ijlt + bjl (|T |� t+ 1) Ujlt +
X

k2T
kt

(bj (t� k) Sjlkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

j2J

X

l2L

X

m2L
m 6=l

X

t2T

njlmTjlmt

+
X

r2RC

X

p2P

cpr�pr
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subject to

(6.20)–(6.24) (6.31)

Ijlt, Ujlt � 0 8(j, l, t) (6.32)

Sjltk � 0 8(j, l, t, k � t) (6.33)

Xjrt � 0 8(j, r, t) (6.34)

Tjlmt � 0 8(j, l,m 6= l, t) (6.35)

0  �pr  1 8(p, r 2 R
C), p 2 P

0 (6.36)

RCPM-EPMLN considers a subset of extended patterns, P 0. we need the reduced

cost associated with extended patterns, which are not already in P
0. We denote the

dual variables associated with Equations (6.23) and (6.24) by ⇡r and µfrt respectively.

We can generate an extended pattern minimizing the reduced cost expressed with

Eq. (6.37)

⇡̄r �
X

f2P (f)

X

t2T

dfptµ̄frt  cpr 8 r 2 R (6.37)

where ⇡̄r and µ̄frt are optimal dual multipliers from RCPM-EPMLN. Given an optimal

solution of RCPM-EPMLN, pricing subproblem (SP(⇡̄r,µ̄frt)) can be formulated with

Model 6.4.

Model 6.4. Pricing Subproblem (SP(⇡̄r,µ̄frt))

Minimize cpr � ⇡̄r +
X

f2P (f)

X

t2T

dfptµ̄frt

subject to p 2 P

dfpt 2 Z
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To solve the pricing subproblem, we formulated it as a shortest path problem in

parallel machine instance, as explained in Section 5.4.4. We observe that the pricing

problem is no di↵erent for multiple machine network extension. Hence, we adopt the

same pricing problem approach. Moreover, regarding the details of the B&P algorithm,

everything described in Section 5.4.5 is still applicable.

6.3. Demand Projection Heuristics

In this Section we develop a new matheuristic exploiting the definition of the

multiple level network structure of the campaign planning problem. We observe that

not only demands for float glass products from various customer locations need to

be addressed to production lines in di↵erent facilities, but also dependent demands

from secondary products needs to be addressed. Hence, if we can come up with an

e�cient allocation of demands to float production locations, then we reduce the problem

to the parallel machine instance. We formulate the matheuristic by making use of

this observation. We give details of the demand projection approach in Section 6.3.1.

We explain the algorithm as well as some variations of the algorithm in Section 6.3.2.

6.3.1. Reducing Network with Demand Projection

Multiple level network extension of the campaign planning problem considers sec-

ondary products, which consume float glass as a semi-product and multiple locations.

With multiple product levels, we introduce a new source of demand for float glass

products, which need to be produced in campaigns. Demands for secondary products,

need to be planned on discrete production lines, and that production is only possible

provided a su�cient amount of float glass, which translates into dependent demands.

On the other hand, with the introduction of locations, L, we also introduced cus-

tomer locations as explained previously. With transportation decisions, the model is

supposed to reduce all the demands to float level and decide on the campaign plan.

Consequently, production schedule, quantities and demand satisfaction plan follow.
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This leads us to the idea of projecting demands upstream to float glass, which reduces

the network and the problem to parallel machine instance.

Figure 6.2 illustrates a small network consisting of two customer locations C1

and C2 and three facilities L1, L2 and L3. We assume that transporting products

between all of these locations is possible with an associated cost. Circles represent float

production lines F1, F2 and F3, whereas pentagons represent secondary production

lines S1 and S2. Note that, for the sake of simplicity, we do not make distinction

between di↵erent secondary product types. Let C1 have demand for float glass. Then

there exist three possible projection alternatives, represented with blue solid arrows.

Let C2 have demand for secondary glass. As represented with orange dashed arrows,

L1 and L2 are two projection alternatives due to S1 and S2. The secondary glass

production results in dependent demand for float glass, which can be satisfied from F1

in L1 or from F2 or F3 in L3. We illustrate these second level projection with yellow

round dotted arrows.

Figure 6.2. Illustration of demand projection alternatives

The cost associated with each projection alternative equals to sum of transporta-

tion and production costs for all of the steps included. Note that since we build

projection alternatives for all float production lines regardless of their location, it is

possible to have multiple paths between the same couple of customer and float line

locations, but with di↵erent costs unless all included costs sum up to same amount.
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Algorithm shown in Figure 6.3 calculates all projection alternatives and associated costs

between couples of customer locations and float production locations that is accessible

with a projection alternative path.

6.3.2. Algorithm and Variations

In this Section we explain the matheuristics we propose making use of the re-

duction we explained in Section 6.3.1 of the campaign planning problem. All the

algorithms are based on the variation of the Family Transition Based Model FTBMV-

MLN, namely Model 6.1.

6.3.2.1. Demand Projection Heuristic. We project demands from customer locations

to facilities with production lines using alternatives generated with algorithm in shown

Figure 6.3. The algorithm builds the paths from product inventories with demand,

down to float inventories with at least one production line. A final alternative a has

an associated cost.

Each time algorithm is about to extend the current path, namely create a new al-

ternative a, we increase the associated cost of the alternative by either the adjusted

unit production or transportation cost. Adjustment means multiplying the current cost

with parameter kjj0 while extending the path with the component product j0.

In demand projection heuristic (DPH), we intuitively project demands to the

alternative with the lowest overall cost. This reduces the problem to parallel machine

instance. Hence, we can use FTBMV-PM, Model 5.2. Note that this new FTBMV-PM

instance also excludes the secondary products and discrete production lines. We recall

that FTBMV-PM is a MIP with binary pattern assignment variables �. In demand

projection heuristic, we solve FTBMV-PM with projected demand set D
P . We then

solve the original FTBM-MLN with � variables fixed to the values in the solution of

FTBMV-PM denoted as �̄ in order to calculate the objective function for the original

problem. Note that final FTBMV-MLN run is an LP. and Figure 6.4 represents DPH.
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GenerateProjectionAlternatives (J, L)
inputs : Set of all products J and locations L with demand

Initialize A as ;

foreach inventory (j, l) such that j 2 J, l 2 L do
Create projection alternative a using i

Merge alternatives from Extend(a, j, l) into A

return A

Extend (a, j, l)
inputs : A projection alternative a, an inventory (j, l) to keep extending the alter-

native a

Initialize A as ;

if i has any production alternative r in location l of i then

foreach production line r of (j, l) do
Create projection alternative a

0 using a and r

if j has any component j0 then
Merge alternatives from Extend(a0, j0, l) into A

else
Add a

0 to A

else

foreach transportation option Tjl0l of j from l
0 to l do

Create projection alternative a
0 using a and Tjl0l

Merge alternatives from Extend(a0, j, l0) into A

return A

Figure 6.3. Generate demand projection alternatives A.

DemandProjectionHeuristic

Project demands with Algorithm 6.3, obtain D
P

Solve FTBMV-PM with D
P , obtain �̄

Solve FTBMV-MLN with D and � = �̄

Figure 6.4. Demand Projection Heuristic (DPH).
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6.3.2.2. Dynamic Demand Projection Heuristic. In DPH, we project demands to the

cheapest projection alternative. Although this is intuitive and preferred, we note that

this can result in a costly campaign plan due to capacity restrictions. Demand sat-

isfaction related costs might raise unexpectedly due to aforementioned overflow with

not balanced demand allocations. In an optimal solution to an instance with capacity

shortage on some production lines, demands would be satisfied from their second, third

or even last best projection alternative. Hence, we propose to allow the heuristic to

dynamically decide on demand projections. and the number of projection alternatives

to be included in the model for each product j will be an input parameter to the

heuristic. We represent this number with n.

We introduce new set of variables, ⇢jlta, which holds the amount of demand of

product j in customer location l in period t to its alternative a. To complete the

model, we need to make sure that total amount of each demand is projected properly

to allowed alternatives. Eq. (6.38) serves this purpose. Note that A(j, l, n) represent

the set of first n demand projection alternatives of product j from location l, ordered

by associated cost of the alternative.

X

a2A(j,l,n)

⇢jlta = Djlt 8 j 2 J, l 2 L, t 2 T (6.38)

We create demand satisfaction variables, S, and unsatisfied quantity variables,

U , such that for each alternative a, there exists corresponding S and U variables for

product j in location l. Also note that we modify Eq.(5.1) such that the right hand

side of the equation is equal to the corresponding ⇢ variable. Note that A(j) represent

the set of projection alternatives such that there is an alternative a from product j
0

and from location l. Following the definition of n, |A(j)| = n, Eq.(6.39) is the new

demand satisfaction constraints.

X

k2T
k�t

Sjtk + Ujt = ⇢j0lta 8 j, j
0 2 J, l 2 L, a 2 A(j), t 2 T (6.39)
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Adding Eq. (6.38) to FTBMV-PM and replacing Eq.(5.1) with Eq.(6.39), we ob-

tain Dynamic Demand Projection Model (DDPM). Model 6.5 represents the complete

formulation for DDPM.

Model 6.5. Dynamic Demand Projection Model (DDPM)

Minimize
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P

X

t2T

cpr�prt

+
X

r2R

X

p2P

X

t2T

X

f=fT
p

g=fH
s

(f,g)/2�r(f,g)

cfgr✓psrt

subject to (5.2)

(5.4)–(5.9)

(5.18)–(5.26)

(6.38)

(6.39)

Ijt, Ujt � 0 8(j, t)

Sjtk � 0 8(j, t, k � t)

d
o
frt � 0 8f, r, t

Xjrt � 0 8(j, r, t)

⇢jlta � 0 8(j, l, t, a)

�prt 2 {0, 1} 8(p, r, t)

0  ✓fgrt  1 8(f, g, r, t)

�
S
frt, �

E
frt � 0 8(f, r, t)

Frt, Brt � 0 8(r, t)

n
P
fgrt, n

S
fgrt � 0 8(f, g, r, t)
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DynamicDemandProjectionHeuristic
inputs : n, number of projection alternatives

Build projection alternatives with Algorithm 6.4, obtain A

Solve DDPM with A and n, obtain �̄

Solve FTBMV-MLN with D and � = �̄

Figure 6.5. Dynamic Demand Projection Heuristic (DDPH).

Finally, algorithm shown in Figure 6.5 represent the dynamic demand projection

heuristic (DDPH). Note that, the heuristic requires n as in input.

6.3.2.3. Dynamic Demand Projection Heuristic with Relax & Fix. R&F heuristic is

an iterative construction heuristic used generally to solve MIP. The main idea in R&F

consists of keeping the integrality restriction on a subset of discrete variables which

are not yet fixed and relax the remaining unfixed discrete variables. Then solving the

resulting sub-MIP, fix subset of the integer variables that are currently part of the

integrality subset, and move on to the next iteration. The algorithm stops when all

the variables are fixed or the output of the sub-MIP is integral. To construct the R&F

algorithm, an important decision is related to the decomposition of the integer vari-

ables, in other words deciding on which variables are to be restricted at each iteration.

Moreover, determination of the subset to be fixed is another important building block

of the R&F. Model 6.6 represent the formulation to solve for a given start S and end

E period of integrality restrictions.

Model 6.6. Dynamic Demand Projection Model with Relax-and-Fix (DDPM-RNF)

Minimize
X

j2J

X

t2T

2

64hj Ijt + bj (|T |� t+ 1) Ujt +
X

k2T
kt

(bj (t� k) Sjkt)

3

75

+
X

r2R

X

j2J

X

t2T

ujrXjrt +
X

r2R

X

p2P

cpr�pr

+
X

r2R

X

p2P

X

t2T

X

f=fT
p

g=fH
s

(f,g)/2�r(f,g)

cfgr✓psrt
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subject to (5.2)

(5.4)–(5.9)

(5.18)–(5.26)

(6.38)

(6.39)

Ijt, Ujt � 0 8(j, t)

Sjtk � 0 8(j, t, k � t)

d
o
frt � 0 8f, r, t

Xjrt � 0 8(j, r, t)

⇢jlta � 0 8(j, l, t, a)

�prt 2 {0, 1} 8(p, r, t � S, t  E)

0  ✓fgrt  1 8(f, g, r, t)

�
S
frt, �

E
frt � 0 8(f, r, t)

Frt, Brt � 0 8(r, t)

n
P
fgrt, n

S
fgrt � 0 8(f, g, r, t)

DDPH we described in Section 6.3.2.2 results in a bigger MIP than DPH in terms

of number of variables and constraints. Moreover, the campaign planning is a period

based problem and it hence is decomposable with respect to periods. We suggest to

run the DDPM with R&F with the number of periods to be solved integrality restricted

denoted with N
I and the number of periods to be fixed at each iteration denoted with

N
F . The heuristic starts from first period and progressively moves the integrality and

fixed sets of periods with these parameters. Note that, when a period t is in integrality

set, then all the � variables with index t are defined binary, fixed when in fixed set and

relaxed otherwise.

Figure 6.6 illustrates the algorithm based on sub-matrix of the technology matrix

including � variables. Note that we use m = |P |, n = |R| to facilitate the notation.
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We illustrate two iterations with starting period being equal to 1 and to 4 with pa-

rameters N
I = 3, NF = 1. With red dashed line rectangle we mark the variables

with integrality restriction at iterations and with green solid green line we mark the

variables to be fixed.

Figure 6.6. DDPH-RNF illustration regarding � variables.

We describe the dynamic demand projection heuristic with R&F with algorithm

shown in Figure 6.7.

DynamicDemandProjectionHeuristicWithRNF

inputs : Number of periods to be set integer N I , number of periods to be fixed at

each iteration N
F , where N

I � N
F

Initialize current starting period S with 0 and current ending period E with N
I

do
Solve DDPM-RNF with S and E

Fix �prt with S  t  S +N
F

S  S +N
F

E  S +N
I

while E < |P |;

Figure 6.7. Dynamic Demand Projection Heuristic with Relax-and-Fix (DDPH-RNF).
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7. COMPUTATIONAL RESULTS

In this Chapter, we present the numerical results for all the formulations and

methods. Following problem structure, we present the results for Single Machine in-

stance in Section 7.1, for Parallel Machine instance in Section 7.2.4 and finally for

Multiple Level Network in Section 7.3. We implemented all the formulations and algo-

rithms with C# language of the .NET Framework and used commercial solver CPLEX

(12.8). We also used Gurobi (8.1) for comparing commercial solvers in Section 7.1. We

executed all experiments on a PC with Intel Core i7-8750H CPU 2.20 GHz and 32 GB

RAM.

7.1. Single Machine

7.1.1. Dataset and Problem Instances

The data used in the numerical experiments is based on real life data provided

by a major float glass manufacturer in Turkey. Hence, the data is realistic in terms of

production, setup and cost perspective. The data set contains 153 unique products of

di↵erent color, size, quality, coating, thickness and packaging type attributes.

Color is the primary attribute a↵ecting the duration and the cost of a changeover.

Hence, we include color in the family structure. In addition, coating is another attribute

that requires setup between products of the same color. Hence, color and coating will

be considered as attributes that form a family. Moreover, in order to investigate the

significance of adding or removing an attribute in family structure, we will work with

three di↵erent structures. We can enumerate them as follows:

• Color: The simplest structure. Only color forms a family, and all coating types

are considered in the same family
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• Color & C/NC: In addition to color, coating is incorporated into family struc-

ture in a binary form: C = Coated, NC = Not Coated

• Color & Coating: Both color and coating attributes are considered in families.

There are three colors, namely fume (FM), bronze (BR) and blue (MV), and

three coating types, namely without coating (Z), pyrolitic (P) and titanium (T). For

each di↵erent family structure explained above, we have 3, 6 and 8 families respectively

aggregating 153 unique products.

7.1.2. Single Machine Numerical Results

In order to compare the performances of the four models proposed with the data

set explained in Section 7.1.1 we designed a set of run instances. We can list the main

attributes for the instances as follows:

• Number of Periods: 4, 6 and 8 periods

• Formulation: PTBM, FTBM, PTBMV and FTMBV

• Family Structure: Color, Color & C/NC and Color & Coating

Table 7.1 shows values for the number of continuous and binary variables and

the number of constraints. The mfamily structures Color, Color & C/NC and Color &

Coating have 24, 115 and 135 patterns respectively.

We note that the number of patterns depends on the family structure. Similarly,

the number of variables in each formulation depends on the formulation and the number

of periods in addition to the family structure. The number of binary variables, on the

other hand, depends on the number of patterns and periods (�pt).

We can observe that the number of variables and constraints increase in all formu-

lations with respect to the family structure. However, the increase rate is much higher

in Pattern Transition Based (PTB) models (PTBM and PTBMV).
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Table 7.1. Characteristics of run instances.

Model

Structure Number of FTBM FTBMV PTBM PTBMV

Col.

Binary Vars. 96 96 96 96

Continuous Vars. 2426 2426 4187 4187

Constraints 1312 1315 9981 9984

Col. & C/NC

Binary Vars. 460 460 460 460

Continuous Vars. 2621 2621 42716 42716

Constraints 2412 2361 185886 170670

Col. & Coat.

Binary Vars. 540 540 540 540

Continuous Vars. 2769 2769 57860 57860

Constraints 3000 2877 245986 215494

Col.

Binary Vars. 144 144 144 144

Continuous Vars. 4125 4125 7064 7064

Constraints 1997 2002 16434 16439

Col. & C/NC

Binary Vars. 690 690 690 690

Continuous Vars. 4440 4440 71273 71273

Constraints 3701 3616 309423 284063

Col. & Coat.

Binary Vars. 810 810 810 810

Continuous Vars. 4680 4680 96509 96509

Constraints 4639 4434 409537 358717

Col.

Binary Vars. 192 192 192 192

Continuous Vars. 6205 6205 10322 10322

Constraints 2703 2710 22908 22915

Col. & C/NC

Binary Vars. 920 920 920 920

Continuous Vars. 6640 6640 100211 100211

Constraints 5011 4892 432981 397477

Col. & Coat.

Binary Vars. 1080 1080 1080 1080

Continuous Vars. 6972 6972 135539 135539

Constraints 6299 6012 573109 501961
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The number of variables and constraints are expected to be much higher in Pattern

Based models. This is the case for family structure Color & Coating and eight periods

instance. However, we observe that when coating is not selected as a family-forming

attribute the results are somewhat surprising. For instance when we compare PTBM

and PTBMV in Color family structure and four periods instance, we see that the

number of variables remains constant and that the number of constraints increases in

Variant version. We observe that the reason behind such a case is the following: once

the coating attribute is removed from the family structure, the family sequence setup

restrictions disappear as it is possible to change colors in any sequence (with di↵erent

setup durations). Hence, PTBM does no contain Eq. (4.18) and its variant version

contains Eq. (4.39). A similar situation is also observed in Family Transition Based

models.

In order to analyse the e�ciency of the pattern preprocessing, let us share the

details about the number of patterns per family structure. In Color structure, algorithm

in Figure 4.3 generates 42 patterns and algorithm shown in Figure 4.4 eliminates 18

of them resulting in 43% decrease. Similarly, respective numbers for Color & C/NC

are 165, 115 and 30%, and for Color & Coating are 171, 135 and 21%. Note that

the number of patterns decreases by 31% on average, which is important in terms of

performance since the number of binary variables depends on the number of patterns.

Regarding the solution performance, let us first observe the Linear Programming

(LP) relaxation objective values of the formulations. Table 7.2 shows the objective

values of LP relaxation of the proposed formulations. We observe that Family Transi-

tion Based (FTB) formulations generate significantly tighter LP relaxation objectives

compared to PTB models.

Moreover, for both PTB and FTB models, variant formulations produce higher

LP relaxation objectives in all run instances compared to their respective original

formulations, which is in alignment with Propositions 4.2 and 4.3.
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Table 7.2. LP relaxation objective values.

Number of LP-Relaxation Objective of

Structure Periods Patterns PTBM PTBMV FTBM FTBMV

Col. 4 24 2103 3123 100603 100603

Col. & C/NC 6 24 18498 19411 232606 232606

Col. & Coat. 8 24 41707 44333 436680 436680

Col. 4 115 4438.83 5609 100608 100608

Col. & C/NC 6 115 20401 21971 232611 232611

Col. & Coat. 8 115 48904 52107 436686 436686

Col. 4 135 5296.56 6478 100656 100656

Col. & C/NC 6 135 22239 23881 232711 232721

Col. & Coat. 8 135 51904 55198 436847 436857

We implemented a general purpose optimization layer in our implementation. It

enables us to use both CPLEX and Gurobi solvers.

Table 7.3 and Table 7.4 illustrate Central Processing Unit (CPU) time in seconds,

relative MILP gap and incumbent solution objective value per run instance for CPLEX

and Gurobi respectively. All instances are solved with a time limit of 8 hours (28800

seconds).

We note that for each family structure and number of period combination, at

least one of the formulations was able to find an optimal solution. Moreover, some of

the solution runs, such as PTBM in eight periods and Color & C/NC family structure,

were able to find an optimal objective value but were not able to prove the optimality.

Regarding the formulations, we note that in all instances FTB models outperform

PTB models. We investigate the performances of CPLEX for the sake of simplicity in

summary.
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Considering FTBM and its variant, FTBMV, the variant performs better than the

original formulation regarding computational time except a single instance, 6 periods

and Color as family structure. We observe that FTBM finds an optimal solution in

the root node, whereas FTBMV also finds an optimal solution at the root but couldn’t

prove the optimality without exploring 383 nodes consting an extra second.

On the other hand, PTBMV consistently performs worse than PTBM regarding

computational time. To further investigate, we checked the solver logs and observed

that root node solution time is consistently taking much longer in variant formulations.

For example, in 8 periods and Color & Coating family structure, root node processing

takes 1708 seconds in PTBMV while 201 seconds in PTBM. A potential reason for such

a di↵erence is related to PTBM having many more constraints than its variant except

for one case explained above. PTBM has more and sparser constraints as in Eq. (4.18)

whereas the variant PTBMV has less and denser set of constraints with Eq. (4.39).

Considering the solvers’ working mechanism of working with sparse algebra, we can

explain the di↵erence in computational performance.

Table 7.3. CPLEX performance by run instance.

Model Structure Nb. of

Periods

Nodes CPU

Time(s)

Relative

Gap

Objective

FTBM Col. 4 0 0 0% 2877988.95

FTBMV Col. 4 0 0 0% 2877988.95

PTBM Col. 4 0 2 0% 2877988.95

PTBMV Col. 4 204 5 0% 2877988.95

FTBM Col. & C/NC 4 1817 8 0% 3809582.14

FTBMV Col. & C/NC 4 1500 8 0% 3809582.14

PTBM Col. & C/NC 4 2720 118 0% 3809582.14

PTBMV Col. & C/NC 4 2429 823 0% 3809582.14

FTBM Col. & Coat. 4 3023 18 0% 5022123.81

FTBMV Col. & Coat. 4 1574 14 0% 5022123.81

PTBM Col. & Coat. 4 2863 161 0% 5022123.81
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Table 7.3. CPLEX performance by run instance. (cont.)

PTBMV Col. & Coat. 4 2358 1282 0% 5022123.81

FTBM Col. 6 0 1 0% 3120228.39

FTBMV Col. 6 383 2 0% 3120228.39

PTBM Col. 6 1513 15 0% 3120228.39

PTBMV Col. 6 1517 37 0% 3120228.39

FTBM Col. & C/NC 6 16945 223 0% 4063448.72

FTBMV Col. & C/NC 6 22796 184 0% 4063448.72

PTBM Col. & C/NC 6 62674 11514 0% 4063448.72

PTBMV Col. & C/NC 6 17324 28800 37% 4125956.22

FTBM Col. & Coat. 6 43557 813 0% 4968043.49

FTBMV Col. & Coat. 6 23491 426 0% 4968043.49

PTBM Col. & Coat. 6 69062 16175 0% 4968043.49

PTBMV Col. & Coat. 6 10976 28800 51% 5242480.08

FTBM Col. 8 3339 16 0% 3710685.29

FTBMV Col. 8 2699 11 0% 3710685.29

PTBM Col. 8 7144 91 0% 3710685.29

PTBMV Col. 8 8722 399 0% 3710685.29

FTBM Col. & C/NC 8 195853 3433 0% 4316352.78

FTBMV Col. & C/NC 8 84820 1901 0% 4316352.78

PTBM Col. & C/NC 8 53867 28800 38% 4316352.78

PTBMV Col. & C/NC 8 9053 28800 51% 4316352.78

FTBM Col. & Coat. 8 269178 15487 0% 5015743.52

FTBMV Col. & Coat. 8 257728 8873 0% 5015743.52

PTBM Col. & Coat. 8 51628 28800 26% 5015743.52

PTBMV Col. & Coat. 8 6103 28800 62% 5737056.49
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Table 7.4. Gurobi performance by run instance.

Model Structure Nb. of

Periods

Nodes CPU

Time(s)

Relative

Gap

Objective

FTBM Col. 4 136 0 0% 2877988.95

FTBMV Col. 4 148 0 0% 2877988.95

PTBM Col. 4 622 3 0% 2877988.95

PTBMV Col. 4 888 5 0% 2877988.95

FTBM Col. & C/NC 4 4818 6 0% 3809582.14

FTBMV Col. & C/NC 4 6753 8 0% 3809582.14

PTBM Col. & C/NC 4 3552 423 0% 3809582.14

PTBMV Col. & C/NC 4 3753 1585 0% 3809582.14

FTBM Col. & Coat. 4 3552 16 0% 5022123.81

FTBMV Col. & Coat. 4 4456 16 0% 5022123.81

PTBM Col. & Coat. 4 3807 459 0% 5022123.81

PTBMV Col. & Coat. 4 6232 5155 0% 5022123.08

FTBM Col. 6 733 1 0% 3120228.39

FTBMV Col. 6 461 1 0% 3120228.39

PTBM Col. 6 1607 17 0% 3120228.39

PTBMV Col. 6 1618 23 0% 3120228.39

FTBM Col. & C/NC 6 33341 79 0% 4063448.72

FTBMV Col. & C/NC 6 25937 58 0% 4063448.72

PTBM Col. & C/NC 6 32195 4326 0% 4063448.72

PTBMV Col. & C/NC 6 1509 28800 64% 4443022.34

FTBM Col. & Coat. 6 45772 175 0% 4968043.49

FTBMV Col. & Coat. 6 55325 202 0% 4968043.49

PTBM Col. & Coat. 6 39070 10074 0% 4968043.49

PTBMV Col. & Coat. 6 4302 28800 64% 5074585.78

FTBM Col. 8 2210 7 0% 3710685.29

FTBMV Col. 8 1236 3 0% 3710685.29

PTBM Col. 8 2831 45 0% 3710685.29
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Table 7.3. Gurobi performance by run instance. (cont.)

PTBMV Col. 8 3235 70 0% 3710685.29

FTBM Col. & C/NC 8 146623 1083 0% 4316352.78

FTBMV Col. & C/NC 8 153040 1745 0% 4316352.78

PTBM Col. & C/NC 8 71633 28800 21% 4316352.66

PTBMV Col. & C/NC 8 1535 28800 69% 4316352.78

FTBM Col. & Coat. 8 176128 16785 0% 5015743.52

FTBMV Col. & Coat. 8 135685 17534 0% 5015743.52

PTBM Col. & Coat. 8 25495 28800 30% 5015743.52

PTBMV Col. & Coat. 8 1272 28800 72% 5496831.64

A solver outperforms the other if it obtains a solution with lower optimality

gap. If both obtain an optimal solution within the time limit, then whichever proves

optimality earlier is noted as the winner. Let us summarize the number of “wins” per

solver as follows:

• 4 Periods: Gurobi wins 5 times while CPLEX wins remaining 7

• 6 Periods: Gurobi wins 8 times while CPLEX wins remaining 4

• 8 Periods: Gurobi wins 7 times while CPLEX wins remaining 5

We observe that, in more cases Gurobi outperforms CPLEX and especially in FTB

models, Gurobi obtains provably optimal solutions faster than CPLEX. As the prob-

lem instance becomes more complex, Gurobi tends to outperform CPLEX. However, in

the most complex instance, which is 8 periods with Color & Coating family structure,

CPLEX finds a provably optimal solution in 8873 seconds whereas Gurobi is able to

solve the instance in 17534, which is almost twice the time. Moreover, in smaller in-

stances, those with 4 periods namely, CPLEX outperforms Gurobi.
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Hence, we can conclude that there is no clear superiority of one solver to the other.

Nevertheless, we will use FTBMV and Gurobi for further experiments, being the com-

bination most frequently performing better than the others.

7.1.3. Business Insights

Analysis presented in Section 7.1.2 discusses the problem and formulations in

detail from a mathematical point of view. Set of experiments up to now measure the

performance of di↵erent formulations proposed. However, since the problem has some

unique challenges, it is also valuable to elaborate the analysis on some business insights

perspective. Our main goal is to observe the characteristics of the generated campaign

plans with respect to di↵erent business scenarios.

As stated in Section 7.1.2, we will use FTBMV in a set of experiments for testing

further scenarios. Our main goal in the next is to analyse the changes in number

campaigns and average duration per campaign overall. Total setup duration driven

by campaign plan is also another metric to be observed. We expect to gather further

insights from other business indicators such as average total ending inventory per month

and total backlogged or unsatisfied demand.

Costs associated with inventory holding and demand backlog/unsatisfaction are

subject to some business requirements and assumptions. Moreover, setup costs have a

crucial role in campaign decisions being a significant expense item and having physical

counterpart. Since all these costs mentioned are in the objective function to be mini-

mized, we decided to design a new set of run instances that will enable us to observe

the marginal e↵ect of each cost component to the resulting campaign plan.

We adapt an approach similar to [6] in order to evaluate e↵ects of cost compo-

nents. We first assume a baseline run instance with family structure Color & Coat-

ing and 8 periods. Then, for each cost component, we solve the campaign planning

problem having corresponding coe�cients multiplied with 0.1, 0.2, 0.5, 2, 5 and 10.
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In each case, we observe the changes in various measures such as the number of cam-

paigns, total setup duration and average ending inventory. Figure 7.1 shows an optimal

campaign plan for our baseline instance.

Figure 7.1. Optimal Campaign Plan for Baseline Instance

We first analyze the e↵ect of setup costs. Figure 7.2 shows some metrics that

will help us interpret the behavior of the outcoming campaign plans compared to the

expectations. In each one of the charts, term Mx corresponds to a run instance where M

stands for the multiplier used. Note that 1x is the Baseline instance. With increasing

the setup costs, we expect to have fewer setups, which is validated with Figure 7.2

(a). Considering the average campaign duration, although the trend is increasing as

expected with fewer campaigns per family, in 5x instance we observe the measure

against our expectation. The di↵erence is driven by family BRP, which in 5x instance

has a single campaign of 5.06 days whereas in 2x instance there are two BRP campaigns

with average duration of 17.72 days. We further observe that the ending inventory at

the end of the planning horizon for family BRP is 14247 in 2x instance whereas this

figure is only 331 in 5x instance. The inventory to be held shifted to FMZ family in

5x instance, which did not have any ending inventory in 2x instance. We anticipate

that with increased setup costs, model could decrease the overall costs with such a

combination regarding inventory holding costs. With fewer number of campaigns, the

total setup duration spent is expected to be less as well, which can be observed in Figure

7.2 (c). With longer campaign durations higher amount of inventory is expected to be

carried, which we validate with Figure 7.2 (b) and we observe a similar behavior for

total backlogged and unsatisfied demand quantity.
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Figure 7.2. Measures for instances with modified setup coe�cients

Figure 7.3 shows the e↵ects of the changes in backlog coe�cients. With increasing

backlog costs, in order to decrease the cost due to backlogging, we expect to have more

campaigns in shorter duration. Figures 7.3 (a) and (b) illustrate the increase in both

number of campaigns and total setup duration. However, average campaign duration

fluctuates even though the trend is downwards.

Clearly, with increasing backlog cost, models tend to have less and less backlogged

demand and average ending inventory is also decreasing since there is a larger number

of shorter campaigns.

Inventory holding cost is the expense item with the least e↵ect on resulting cam-

paign plans as observed in Figure 7.4. With increasing inventory cost, we expect to

have more campaigns having shorter duration to avoid holding more inventory longer.

This is observed with Figure 7.4 (a). Also with more campaigns, we observe eventually

longer total setup duration. The average ending inventory tends to decrease but only

a significant change in inventory costs can drive this.
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Figure 7.3. Measures for instances with modified backlog coe�cients

Figure 7.4. Measures for instances with modified inventory coe�cients
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7.2. Parallel Machine

7.2.1. Preliminary Tests on Family and Pattern Transition Based Model

Extensions

In this Section, we present the results of preliminary tests on formulations defined

in Sections 5.2 and 5.3. Similar to the single machine instance, we use a dataset

corresponding to a realistic data set. As we focus on parallel machine environment in

this Section, we extracted a dataset from the entire production network of the company,

including identical and unrelated parallel machines. Moreover, we run the experiments

with 5 di↵erent data sets including 8 periods of planning horizon, and with color and

coating in family structure. Table 7.6 shows the number of patterns, the number of both

continuous and binary variables and the number of constraints. We observe that the

number of continuous variables and constraints are much higher in PTBMV compared

to FTBMV. In detail, PTBMV has 12 times more continuous variables and 19 times

more constraints thant FTBMV. Moreover, we note that machines being identical or

unrelated does not have direct impact on the number of patterns.

Regarding the solution performance, we present the results in 7.6 Let us first focus

on the Linear Programming (LP) relaxation objectives. We observe that FTBMV-PM

generate better LP relaxation objectives compared to PTBMV-PM 8% on average for

unrelated machines and more than 20% on average for identical machines. We note

that in these preliminary results, none of the formulations were able to find an optimal

solution within 8 hour time limit. In all instances, FTBMV-PM models outperform

PTBMV-PM in all instances. In particular, FTBMV-PM finds solutions with better

relative gaps than FTBM. Another note is that, PTBMV-PM can explore much less

nodes in the search tree compared to FTBMV-PM. Preliminary results reveal that

both PTBMV-PM and FTBMV-PM are unable to solve the problems to optimality

within 8-hours. For the rest, we will focus on building a nouvel approach to solve the

problem with better quality and in less time. Moreover, since PTBMV-PM proves to

be ine�cient for larger problems, we will proceed with FTBMV-PM only.
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Table 7.5. Characteristics of run instances.

Number of Formulation

Structure Resources Patterns Number of PTBMV FTBMV

Identical 2 170

Bin. 1360 1360

Cont. 111020 9286

Constr. 414794 21356

Unrelated 2 184

Bin. 1472 1472

Cont. 132521 12465

Constr. 469788 24736

Identical 3 255

Bin. 2040 2040

Cont. 164201 11600

Constr. 621257 31100

Unrelated 3 252

Bin. 2016 2016

Cont. 167673 15018

Constr. 600917 32633

Table 7.6. Characteristics of run instances.

Resource

Structure Count Model LP-

Relaxation

Nodes CPU

Time(s)

Relative

Gap

Identical 2

PTBMV-PM 101985763.6 1 28800 23.56%

FTBMV-PM 129336184.8 113783 28800 1.20%

Unrelated 2

PTBMV-PM 122689627.1 89 28800 14.22%

FTBMV-PM 133218387.9 54895 28800 1.75%

Identical 3

PTBMV-PM 152978645.4 1 28800 24.90%

FTBMV-PM 194004277.2 50707 28800 1.10%

Unrelated 3

PTBMV-PM 183072382.1 1 28800 13.13%

FTBMV-PM 199918218.2 38975 28800 1.14%
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7.2.2. Data Set and Problem Instances

The data used in the numerical experiments, similar to single machine instance, is

based on real life data from the same major float glass manufacturer in Turkey. Hence,

the data is realistic in terms of production, setup and cost perspective. We defined

three di↵erent family structures in Section 7.1.1, which have e↵ect on the complexity

of the problem. Having color and coating in the structure is the most complex case,

and we will use this structure in our experiments.

The di�culty in problem stems from the decision on pattern allocation to re-

sources. In FTBMV-PM, we need to make this decision for each resource and macro

period. In B&P for CPM-EP, we progressively generate the extended patterns. The

number resources and the number of macro periods e↵ect the number of all possible

extended patterns. Hence, it is important to test the performance of B&P for CPM-EP

and FTBMV-PM with datasets ranging in terms of number of resources and periods.

We have two base datasets each containing 1482 unique products of di↵erent

color, size, quality, coating, thickness and packaging type attributes. Two datasets

di↵er from each other with respect to the number of machines; one has 3 production

lines whereas the other has 5 lines. In each case, all the machines are unrelated in

terms of production speed for products. For each of these base datasets, we have 5

di↵erent demand scenarios, and for each one of the demand scenarios, we solve the

problem for 5 di↵erent planning horizon length. In detail, we solve the instances for 4,

6, 8, 10 and 12 periods.

We assume the micro-period length as days and note that it can be modified

according to data or practical needs. Moreover, we adjusted the minimum production

durations and setup times to be allocated over period boundaries between adjacent

patterns in FTBMV-PM.
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7.2.3. Preliminary Tests on Node Selection Strategy

We define di↵erent node selection strategies, namely DFS, BFS and BBS, in Sec-

tion 5.4.5.2 to be employed throughout the solution. We first run some preliminary

tests to determine whether a strategy outperforms the others. In order to capture

performance against di↵erent complexities, we randomly selected 3 instances for com-

binations of 3 and 5 machines with 4, 8 and 12 periods. We limit the overall solution

time to 3600 seconds for all instances. Note that we do not employ the adaptive root

node processing explained in Section 5.4.5.4 in our preliminary tests.

Tables 7.7 and 7.8 show the outputs of preliminary test results with 3 and 5

parallel machines respectively. Note that Run column is a representation for the run

instance with the example that “m:3-p:4-d:3” stand for instances with 3 parallel ma-

chines (m), 4 macro periods (p) and demand scenario (d) 3. For each test instance and

node selection strategy, we report the MIP optimality gap (“Gap” column) and the

number of nodes explored in the search tree (“Nodes” column).

Results show that on 3 machine tests, BF outperforms the other strategies in 7

out of 9 runs. DF and BB strategies each are able to provide the best outputs in 1

instance. On 5 machine tests on the other hand, the outlook is exactly on the contrary.

DF outperforms other methods in 7 out of 9 runs with BB and BF having 1 best

performance each. First conclusion is that regarding the node selection strategy in the

solution approach we propose, BB is outperformed by the other methods. Moreover, for

di↵erent machine configurations we observe significantly better performing strategies.

Finally, in all test instances BB has the least number of nodes process from the search

tree. Hence, for the remainder of our numerical experiments, we will employ BF in 3

machine instances and DF in 5 machine instances.
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Table 7.7. Test results on node selection strategy on 3 machines.

BB DF BF

Run Gap Nodes Gap Nodes Gap Nodes

m:3-p:4-d:1 11.26% 9052 11.26% 8932 9.29% 5216

m:3-p:4-d:3 10.58% 8840 10.58% 8438 9.31% 3733

m:3-p:4-d:5 10.52% 9900 10.86% 9454 11.56% 5341

m:3-p:4-avg 10.79% 9264 10.90% 8941 10.05% 4763

m:3-p:8-d:2 14.69% 4485 14.69% 4247 13.21% 137

m:3-p:8-d:3 13.32% 1139 13.32% 1184 13.31% 151

m:3-p:8-d:4 15.43% 1163 15.43% 1106 11.66% 132

m:3-p:8-avg 14.48% 2262 14.48% 2179 12.73% 140

m:3-p:12-d:2 14.15% 11 14.15% 21 14.07% 11

m:3-p:12-d:3 13.90% 17 13.90% 22 13.20% 6

m:3-p:12-d:5 14.36% 6 13.45% 8 14.36% 1

m:3-p:12-avg 14.14% 11 13.83% 17 13.88% 6
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Table 7.8. Test results on node selection strategy on 5 machines.

BB DF BF

Run Gap Nodes Gap Nodes Gap Nodes

m:5-p:4-d:1 5.16% 6766 4.31% 9331 3.67% 1404

m:5-p:4-d:4 10.16% 505 2.89% 8639 5.84% 1545

m:5-p:4-d:5 5.63% 410 4.05% 8408 6.38% 2148

m:5-p:4-avg 6.98% 2560 3.75% 8793 5.30% 1699

m:5-p:8-d:1 6.40% 286 6.32% 1000 6.57% 157

m:5-p:8-d:2 7.41% 10 5.39% 252 7.09% 134

m:5-p:8-d:4 7.57% 14 3.87% 364 6.58% 147

m:5-p:8-avg 7.13% 103 5.19% 539 6.75% 146

m:5-p:12-d:1 10.04% 1 10.04% 1 10.04% 1

m:5-p:12-d:4 13.61% 1 13.61% 1 13.61% 1

m:5-p:12-d:5 11.86% 1 12.00% 1 12.00% 1

m:5-p:12-avg 11.84% 1 11.88% 1 11.88% 1
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7.2.4. Parallel machine numerical results

Considering dataset and algorithm settings described in Section 7.2.2, our numer-

ical experiments consist of 100 instances for the B&P algorithm. For the comparison,

we take FTBMV-PM runs for all datasets, which count up to additional 50 instances.

Similar to our approach in preliminary tests explained in Section 7.2.3, we limit the

overall solution time to 1-hour for all instances. For each unique dataset instance, we

also solve the model with FTBMV-PM with a 1-hour time limit. Moreover, since our

B&P algorithm is implemented to work on single thread, to have a fair comparison we

limit the number of threads to be used by CPLEX as one.

Tables 7.9 and 7.10 show the outputs of B&P for CPM-EP and FTMBV-PM for

3 and 5 parallel machines respectively. We report the average MIP optimality gap from

all run instances for FTBMV-PM, B&P and Adaptive B&P. Note that Run column is

a smart representation indicating number of machines with m and number of periods

with p as explained in previous Section. Note that, with the increase in number of

periods, the algorithms obtain solution with higher optimality gaps. Overall, FTBMV-

PM outperforms both of the B&P approaches for 3 machine instances, whereas on 5

machine instances, B&P algorithms significantly outperform FTBMV-PM. Amongst

B&P algorithms proposed, classical approach performs better than adaptive in 3 out

of the 5 3 machine instances. On the other hand, in 5 machine instances, adaptive

approach outperforms classical approach in 4 out of 5.

Table 7.9. Average gap FTBMV-PM compared to B&P algorithms on 3 machines.

Run FTBMV B&P B&P Adaptive

m:3-p:4 0.00% 10.33% 10.80%

m:3-p:6 2.30% 10.26% 10.26%

m:3-p:8 4.52% 12.91% 11.71%

m:3-p:10 9.72% 13.28% 12.87%

m:3-p:12 10.50% 14.11% 13.22%
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Table 7.10. Average gap FTBMV-PM compared to B&P algorithms on 5 machines.

Run FTBMV B&P B&P Adaptive

m:5-p:4 6.43% 4.09% 4.08%

m:5-p:6 68.26% 5.85% 5.63%

m:5-p:8 81.59% 5.81% 6.76%

m:5-p:10 87.35% 7.20% 7.10%

m:5-p:12 88.68% 11.62% 8.42%

Tables 7.11 and 7.12 present explicit results for all run instances comparing

FTBMV-PM with B&P with classical root node processing B&P with adaptive root

node processing for 3 parallel machines and for 5 parallel machines respectively. Note

that, with our approach, we need to have finished the root node processing in order to

provide an optimality gap. In cases where the B&P algorithms require more than the

given time limit to provide an optimality gap, we note the duration as ‘time’.

Table 7.11. Models compared on 3 machines.

FTBMV-PM B&P B&P Adaptive

Run Gap Time Gap Time Gap Time

m:3-p:4-d:1 0.00% 469 9.29% 3600 12.25% 3600

m:3-p:4-d:2 0.00% 340 10.02% 3600 10.02% 3600

m:3-p:4-d:3 0.00% 604 9.31% 3600 9.31% 3600

m:3-p:4-d:4 0.00% 370 11.49% 3600 11.44% 3600

m:3-p:4-d:5 0.00% 287 11.56% 3600 10.96% 3600

m:3-p:6-d:1 2.19% 3600 10.04% 3600 10.04% 3600

m:3-p:6-d:2 1.78% 3600 11.74% 3600 11.74% 3600

m:3-p:6-d:3 2.54% 3600 10.08% 3600 10.08% 3600

m:3-p:6-d:4 3.18% 3600 8.62% 3600 8.62% 3600

m:3-p:6-d:5 1.80% 3600 10.84% 3600 10.84% 3600

m:3-p:8-d:1 4.12% 3600 14.32% 3600 11.21% 3600

m:3-p:8-d:2 3.29% 3600 13.21% 3600 11.96% 3600
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Table 7.11. Models compared on 3 machines. (cont.)

m:3-p:8-d:3 4.52% 3600 13.31% 3600 12.14% 3600

m:3-p:8-d:4 4.76% 3600 11.66% 3600 11.41% 3600

m:3-p:8-d:5 5.93% 3600 12.07% 3600 11.83% 3600

m:3-p:10-d:1 7.17% 3600 12.58% 3600 13.78% time

m:3-p:10-d:2 11.43% 3600 13.64% 3600 12.20% time

m:3-p:10-d:3 10.80% 3600 15.39% 3600 14.29% time

m:3-p:10-d:4 8.48% 3600 12.61% 3600 11.46% time

m:3-p:10-d:5 10.71% 3600 12.16% 3600 12.60% time

m:3-p:12-d:1 13.62% 3600 13.10% 3600 12.54% time

m:3-p:12-d:2 10.06% 3600 14.07% time 12.69% time

m:3-p:12-d:3 9.81% 3600 13.20% 3600 12.94% time

m:3-p:12-d:4 10.82% 3600 15.84% time 12.89% time

m:3-p:12-d:5 8.21% 3600 14.36% time 15.03% time

Table 7.12. Models compared on 5 machines.

FTBMV-PM B&P B&P Adaptive

Run Gap Time Gap Time Gap Time

m:5-p:4-d:1 5.21% 3600 4.31% 3600 4.31% 3600

m:5-p:4-d:2 2.87% 3600 5.43% 3600 5.35% 3600

m:5-p:4-d:3 7.94% 3600 3.75% 3600 3.75% 3600

m:5-p:4-d:4 10.86% 3600 2.89% 3600 2.95% 3600

m:5-p:4-d:5 5.29% 3600 4.05% 3600 4.05% 3600

m:5-p:6-d:1 75.09% 3600 6.17% 3600 6.17% 3600

m:5-p:6-d:2 83.09% 3600 5.07% 3600 5.07% 3600

m:5-p:6-d:3 77.27% 3600 6.66% 3600 5.58% 3600

m:5-p:6-d:4 77.29% 3600 5.90% 3600 5.89% 3600
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Table 7.12. Models compared on 5 machines. (cont.)

m:5-p:6-d:5 28.56% 3600 5.44% 3600 5.44% 3600

m:5-p:8-d:1 82.05% 3600 6.32% 3600 6.29% 3600

m:5-p:8-d:2 83.02% 3600 5.39% 3600 6.32% 3600

m:5-p:8-d:3 82.02% 3600 7.00% 3600 8.17% 3600

m:5-p:8-d:4 79.06% 3600 3.87% 3600 5.62% 3600

m:5-p:8-d:5 81.80% 3600 6.48% 3600 7.39% 3600

m:5-p:10-d:1 87.36% 3600 7.31% 3600 7.40% time

m:5-p:10-d:2 87.38% 3600 7.01% 3600 5.95% time

m:5-p:10-d:3 87.34% 3600 7.42% 3600 7.00% time

m:5-p:10-d:4 87.31% 3600 6.72% 3600 7.06% time

m:5-p:10-d:5 87.37% 3600 7.54% 3600 8.08% time

m:5-p:12-d:1 88.66% 3600 10.04% time 8.04% time

m:5-p:12-d:2 88.69% 3600 11.66% time 9.29% time

m:5-p:12-d:3 88.65% 3600 10.80% time 8.43% time

m:5-p:12-d:4 88.63% 3600 13.61% time 8.45% time

m:5-p:12-d:5 88.77% 3600 12.00% time 7.87% time

We compare the results similar to the approach described in Section 7.1.2. An

algorithm outperforms the other if it obtains a solution with lower optimality gap.

As per the aggregated results, in 3 machine instances FTBMV-PM outperform all

B&P results except for one instance. In 5 machines instances on the other hand,

B&P algorithms perform better than FTBMV-PM, in 24 out of 25 instances. More-

over, the adaptive root node processing is able to provide better optimality gaps in

16 instances whereas the classical approach provides the best gap in 8 instances.

We note that, with the increase in complexity of the run instance through number

of resources and periods, the B&P algorithms tend to take more time to process.
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However, it generates better solutions. The algorithm we propose, according to the

numerical experiments, is capable of providing good quality solutions in more complex

instances when MIP formulation FTBMV-PM fails to do so. However, FTBMV-PM

appears to be more reliable option when there is a small number of parallel machines.

7.3. Multiple Level Network

7.3.1. Preliminary Tests on Family Based Model and B&P Extensions

In this Section, we present the results of preliminary tests on formulations ex-

tended to multiple level network instance. We will run the tests with FTBMV-MLN

described in Section 6.1 and B&P algorithm described in Section 6.2. Similar to pre-

vious tests, we use a dataset corresponding to a realistic data set from the same float

glass manufacturer. As we focus on multiple product level in multiple facilities and

locations this Section, we now use the full dataset from the entire production network

of the company. We run the experiments with 3 di↵erent data sets including 15 peri-

ods of planning horizon, and with color and coating in family structure. Finally, for

the B&P algorithm, we use the same settings from parallel machine case. Namely, we

generate unit extended patterns as P 0, employ DF for node selection and adaptive root

node processing.

We present the results obtained with 1 hour limit in 7.13. We note that in these

preliminary results, both FTBMV-MLN and B&P were unable to find an optimal

solution within 1 hour time limit. In all instances, B&P outperforms FTBMV-MLN.

In particular, B&P finds solutions with better incumbent objective values. However,

B&P is unable to provide good lower bounds, hence the reported relative MIP gap is

low. Moreover, FTBMV-MLN is also unable to obtain solutions better than 30% MIP

gap on average. These preliminary results reveal that both FTBMV-MLN and B&P

are unable to solve the problems to a reasonable quality within 1 hour. For the rest, we

will focus on building approaches to produce good quality solutions, namely improved

UB generation.
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Table 7.13. Preliminary runs for Multiple Level Network.

FTBMV-MLN B&P

Run Relative

Gap

Objective CPU

Time

(s)

Relative

Gap

Objective CPU

Time

(s)

p:12-d:1 34.42% 665213804634 3600 77.12% 490165407954 3600

p:12-d:2 33.12% 656148881920 3600 78.06% 476991708944 3655

p:15-d:1 36.17% 730784938402 3600 80.18% 503774973280 3753

7.3.2. Data Set and Problem Instances

In the numerical experiments, similar to single and parallel machine instances, we

use again a realistic dataset from the same major float glass manufacturer in Turkey.

The family structure still consists of color and coating. Moreover, we noted in Section

5.4.4 the importance of testing the performance of suggested methods with datasets

di↵ering in terms of number of resources and periods. Since we already extend the prob-

lem to multiple product hierarchy and facilities, the number of resources are already

overridden by this new network structure. Hence, we will focus in varying number of

periods only.

We have two base datasets containing 67 locations, 20 production lines continuous

and discrete combined, 373 products with 4748 product inventory combinations. The

datasets are di↵erent from each other with respect to the number of periods; one has

12 periods whereas the other has 15 periods. Similar to parallel machine instances, for

each of these base datasets, we have 5 di↵erent demand scenarios.

7.3.3. Preliminary Tests on Algorithms

In Section 7.3.1, preliminary tests revealed that FTBMV-MLN and CPM-EPMLN

failed to provide good quality solutions within 1-hour limit, and therefore we decided to

focus on matheuristics to obtain solution providing good quality UBs.
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The new algorithms are based on problem size reduction through projecting demands

to locations with production lines so that the problem becomes a multiple facility

parallel machines campaign planning problem.

DPH and DDPH are in essence MIP models and we limit the solution time to 3600

seconds. As explained in Section 6.3.2, we solve the FTBMV-MLN with �̂ variables

fixed in order to obtain the objective function value in the original problem. Since

this second model becomes an LP, the solution time is negligible. Since the DDPH-

RNF is an iterative algorithm, we need to properly limit the solution time for each

step such that the overall solution time does not exceed 3600 seconds. For that, we

calculate the number of iterations based on (N I
, N

F ) and split 3600 seconds equally

to each iteration. Furthermore, we determine the parameters for (N I
, N

F ) as (1, 1),

(2, 2), (3, 2), (3, 3) and (4, 2) to observe the sensitivity of short and longer horizons

when fixing pattern decisions. In order to benchmark against the classical R&F, we

also take runs applying R&F to FTBMV-MLN with the same set of parameters.

Table 7.14 shows the average outputs of preliminary test results. Similar to par-

allel machine preliminary tests, we randomly selected 3 instances. For each solution

approach, we report the MIP optimality gap (“Gap” column) in addition to the UB

obtained. Note that, it is not possible to report an optimality gap for the heuris-

tics. Therefore, we use best LB obtained from running FTBMV-MLN for the same

instances. Algorithm column in the table shows the solution algorithm with a smart

representation. For DDPH instances, a stands for the number of alternatives made

available in the model, e.g. DDPH-a:3 means there are 3 demand projecrtion alterna-

tives available. Finally, for RNF and DDPH-RNF, i stands for parameter N
I and f

for parameter NF .

Results show that for demand projection heuristics without R&F, extra alter-

natives help with the UB. DDPH consistently generate better UB values then DPH.

Moreover, between having 2 or 3 alternatives does not result in much di↵erence in

the objective value and the calculated gap with 2-alternatives model being better.
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Table 7.14. Preliminary test results on algorithms.

Method Calculated

Gap

CPU Time Objective

DPH 3.45% 3600 483086117111.16

DDPH-a:2 2.24% 3600 477127171537.39

DDPH-a:3 2.24% 3600 477127171537.39

RNF-i:1-f:1 100.00% 3600 #N/A

RNF-i:2-f:2 100.00% 3600 #N/A

RNF-i:3-f:2 3.91% 2100 485397993834.10

RNF-i:3-f:3 11.03% 1740 524230623554.69

RNF-i:4-f:2 2.52% 2700 478499108441.36

DDPH-RNF-i:1-f:1 9.28% 1264 522379559102.66

DDPH-RNF-i:2-f:2 2.21% 1372 476959291273.18

DDPH-RNF-i:3-f:2 2.17% 2244 476760695505.81

DDPH-RNF-i:3-f:3 2.58% 1699 478783994395.82

DDPH-RNF-i:4-f:2 1.92% 2665 475530622687.18
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Additionally, 3-alternatives model has more decision variables. Classical R&F algo-

rithms fail to generate any solution within 3600 seconds with parameters (1, 1) and

(2, 2) for (N I
, N

F ). This is mainly due to time spent at root node preprocessing in it-

erations, which leads to the termination of the algorithm without obtaining any integer

solution within time limit. Moreover, with other parameters, R&F still is outperformed

by DDPH-RNF solutions. We observe that, for DDPH-RNF generates the best qual-

ity UB values in shorter time than the time limit. Regarding other parameter sets,

none of them significanlty outperforms the others. Although (1, 1) seems to be low in

quality, when we drill down in detail, one specific instance with 24% calculated gap is

the root cause for the lower gap than other parameters. Following these preliminary

tests, for the remainder of our numerical experiments, we will continue with following

algorithms: DDPH-a:2, DDPH-RNF with parameters all the parameters tested.

7.3.4. Multiple Level Network Numerical Results

Similar to our previous tests in parallel machine results and multiple level net-

work preliminary tests, we limit the overall solution time to 1-hour and employ the

limiting strategy for iterative R&F combined algorithms. We run the experiments with

5 di↵erent datasets and for 12 and 15 planning periods.

Tables 7.15 and 7.16 show the outputs of numerical results for 12 and 15 period

datasets respectively. We report the MIP optimality gap calculated with the best LB

value obtained from running FTBMV-MLN, objective value and CPU time spent for

each algorithm. Note that, similar to previous results sections, Run column is a smart

representation. It indicates the number of available projection alternatives with a, and

the number of integer and fixed periods with i and f respectively. Finally, d stands

for the dataset id for each run. We will compare the results similar to the approach

described in Section 7.1.2, where an algorithm outperforms the others if it obtains a

solution with lower UB.
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In 12 period instances, DDPH-RNF with (1, 1) outperforms others in 3 out of

5 instances. DDPH with 2 alternatives and DDPH-RNF with (1, 1) both are best

performants in 1 instance. Regarding the CPU times, DDPH-RNF with (2, 2) is able

to provide an UB in 754 seconds on average, with significantly low run time with 673

seconds for dataset 3. The average calculated optimality gap is 1,48% being close to

average of 1,42% of DDPH-RNF with (2, 2). DDPH-RNF with (3, 3) is the algorithm

that provided the quickest UB across all datasets with a total run time of 638 seconds.

Another observation regarding the run times is related to the synchronization of N I

and N
F parameters. The instances (3, 2) and (4, 2) seem to consistently have longer

running times.

In 15 period instances, an immediate observation is the longer running times com-

pared to 12 period instances. Regarding the quality of the UB, DDPH-RNF with (1, 1)

outperforms all other methods in 4 out of 5 instances. For the remaining instance, i.e.

dataset 5, DDPH-RNF with (4, 2) is able to provide an UB with 2% of calculated gap.

The DDPH-RNF with (1, 1) was able to provide only a 24% calculated optimality gap

for this specific instance. As explained in previous Section, the longer node prepro-

cessing time spent by the solver in iterations seemed to be the cause when we analyze

the optimization log messages. We conclude that DDPH-RNF being able to provide

good quality UB values, hence integral solutions, with low run times is promising for

solving MLN campaign planning problem.
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Table 7.15. Results for instances with 12 periods.

Run Objective Calculated Gap CPU Time(s)

DDPH-a:2-d:1 440967615996.18 1.02% 3600

DDPH-a:2-d:2 445818037614.20 1.57% 3600

DDPH-a:2-d:3 442722918863.90 1.86% 3600

DDPH-a:2-d:4 444344475244.95 1.55% 3600

DDPH-a:2-d:5 443524737467.42 1.55% 3600

DDPH-RNF-i1-f:1-d:1 442528480402.77 1.37% 980

DDPH-RNF-i1-f:1-d:2 445041414435.98 1.39% 914

DDPH-RNF-i1-f:1-d:3 441085548415.43 1.50% 901

DDPH-RNF-i1-f:1-d:4 443717427310.98 1.41% 935

DDPH-RNF-i1-f:1-d:5 442853869579.62 1.40% 960

DDPH-RNF-i2-f:2-d:1 442905568597.18 1.45% 705

DDPH-RNF-i2-f:2-d:2 445432413294.81 1.48% 968

DDPH-RNF-i2-f:2-d:3 441076203317.50 1.50% 673

DDPH-RNF-i2-f:2-d:4 444082011329.05 1.49% 713

DDPH-RNF-i2-f:2-d:5 443244675850.15 1.49% 710

DDPH-RNF-i3-f:2-d:1 444714455629.32 1.85% 1261

DDPH-RNF-i3-f:2-d:2 447232849136.53 1.88% 1087

DDPH-RNF-i3-f:2-d:3 442882410146.80 1.90% 1330

DDPH-RNF-i3-f:2-d:4 445878042163.24 1.89% 1371

DDPH-RNF-i3-f:2-d:5 445866914921.08 2.07% 1344

DDPH-RNF-i3-f:3-d:1 445398547416.54 2.00% 801

DDPH-RNF-i3-f:3-d:2 447928050439.39 2.03% 648

DDPH-RNF-i3-f:3-d:3 443585814183.06 2.06% 703

DDPH-RNF-i3-f:3-d:4 446086652562.20 1.94% 787

DDPH-RNF-i3-f:3-d:5 445745017969.11 2.04% 1400

DDPH-RNF-i4-f:2-d:1 444714334614.87 1.85% 2948

DDPH-RNF-i4-f:2-d:2 447331390547.57 1.90% 2781

DDPH-RNF-i4-f:2-d:3 442882405119.92 1.90% 2794

DDPH-RNF-i4-f:2-d:4 445878037263.13 1.89% 2826

DDPH-RNF-i4-f:2-d:5 444947266391.36 1.86% 2562
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Table 7.16. Results for instances with 15 periods.

Run Objective Calculated Gap CPU Time(s)

DDPH-a:2-d:1 475448308190.12 1.98% 3600

DDPH-a:2-d:2 477135685517.33 2.14% 3600

DDPH-a:2-d:3 474395827910.45 1.78% 3600

DDPH-a:2-d:4 476685957865.65 1.97% 3600

DDPH-a:2-d:5 479001219346.38 2.44% 3600

DDPH-RNF-i1-f:1-d:1 473652870157.28 1.61% 1814

DDPH-RNF-i1-f:1-d:2 475823201336.41 1.87% 1814

DDPH-RNF-i1-f:1-d:3 473636165725.66 1.62% 1849

DDPH-RNF-i1-f:1-d:4 475443844777.58 1.71% 2357

DDPH-RNF-i1-f:1-d:5 617662605814.28 24.34% 1213

DDPH-RNF-i1-f:1-d:1 476548862482.78 2.21% 1311

DDPH-RNF-i2-f:2-d:2 477491277867.18 2.21% 1111

DDPH-RNF-i2-f:2-d:3 476485936838.88 2.21% 1192

DDPH-RNF-i2-f:2-d:4 477868777496.69 2.21% 1349

DDPH-RNF-i2-f:2-d:5 477895209268.78 2.21% 1283

DDPH-RNF-i3-f:2-d:1 478248865229.77 2.55% 2044

DDPH-RNF-i3-f:2-d:2 478241367852.03 2.37% 2441

DDPH-RNF-i3-f:2-d:3 476346538860.48 2.18% 2418

DDPH-RNF-i3-f:2-d:4 479468033121.02 2.54% 2071

DDPH-RNF-i3-f:2-d:5 479492303946.51 2.54% 1816

DDPH-RNF-i3-f:3-d:1 478229745439.84 2.55% 1746

DDPH-RNF-i3-f:3-d:2 478908207358.55 2.50% 1821

DDPH-RNF-i3-f:3-d:3 477221319263.33 2.36% 1829

DDPH-RNF-i3-f:3-d:4 477600752553.65 2.15% 2016

DDPH-RNF-i3-f:3-d:5 479718413430.60 2.58% 1678

DDPH-RNF-i4-f:2-d:1 480039967785.19 2.92% 3116

DDPH-RNF-i4-f:2-d:2 481830905083.43 3.09% 3277

DDPH-RNF-i4-f:2-d:3 475453892546.52 2.00% 3006

DDPH-RNF-i4-f:2-d:4 477595713775.92 2.15% 2672

DDPH-RNF-i4-f:2-d:5 476847730690.80 2.00% 2979
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8. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this Chapter, we focus on future research directions regarding the campaign

planning problem under sequence-dependent family setups and co-production, and the

instances we worked on, namely single machine, parallel machines and multiple level

network. The solution methods we propose can also be adapted and applied to other

process industries such as food and beverage, oil refineries, various chemical processes

of pharmaceuticals etc. Extension to oil industries can particularly be beneficial since

it also has co-production phenomenon. We share some general notes on the proposed

solutions as well as summarizing and pointing some potential improvement areas.

The mathematical formulations and methods are suitable for practical use as

decision support tool in practice. We note that, even though the last instance that

is multiple product hierarchy and network structure is the environment for most float

glass companies, there exist also manufacturers with single or parallel machines in a

single facility. Hence, the practical implication of each method separately is pertinent.

Moreover, the methods are able to cope with uncertainty up to a certain level. For

demand uncertainty, the planners can use methods for di↵erent demand scenarios and

combine the output campaign plans. Co-production is another source of uncertainty in

terms of production decisions and all the methods aim to provide flexibility for planners

to comply the realizations against the plans.

In single machine instance, we proposed two MIP formulations and their variants.

Numerical results revealed that, Family Transition Based Models outperform Pattern

Transition Based Models. We investigated the e↵ects of family structure and period

dimensions to the formulation characteristics and solution performance. Pattern Based

Models become much larger in terms of number of variables and constraints with

the increase in these dimensions. Moreover, Family Based Models provide higher LP

relaxation objectives in all test instances.
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Tests reveal that Family Based Models are able to provide optimal solution for all

instances. Run times on all numerical studies were ideal for a single machine instance

in practice. However, there seems to be still room for improvement to further reduce.

According to the optimization logs, models actually find an optimal solution earlier

than reported run time, which means there is di�culty in proving the optimality.

Introducing cuts exploiting costs would help improving the lower bound.

We provide additional analysis to analyze the sensitivity of the costs. Increasing

setup costs increases average campaign duration in most cases parallel to the expecta-

tion. We also provide some further insights that shows in combination with inventory

holding costs of di↵erent products, this trend can also change. In accordance with

longer campaigns, amount of total inventory carried also increases. Considering back-

log cost increase, average inventory carried also increases, which shows that the model

tries to avoid backlog as much as possible. Finally, inventory holding cost shows the

least impact on the campaign decisions since it is outdone by setup and demand sat-

isfaction related costs. Such analysis provide business insights to the behavior of the

models.

In parallel machine instance, we continue with the most complex instance of the

single machine case. We observe that, Pattern Based Models’ performance deteriorates

even more, and as a result we do not further investigate them as a viable solution option.

As per Family Base Models, they are significantly better. However, they lose e�ciency

when the problem becomes more and more complex with increased number of parallel

machines. The novel B&P algorithm is capable of providing better quality solutions

for those cases. However, in some instances both the models struggle with improving

MIP gap to under 5%.

We note that we limit the number of threads to one for both the methods to

have a fair comparison. However, this is a limitation and it would be a solid next

step to convert the B&P algorithm to parallel node processing mode. Moreover,

we also observe a similar behavior to single machine case when we analyze the logs.
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The lower bound improvement seems as a promising next step. Family Based Models

could benefit from symmetry breaking constraints in the existence of identical machines.

Another promising idea is to improve node selection criteria for B&P algorithm. Com-

mercial solvers employ sophisticated methods such as keeping track of pseudo-costs for

each node and using them as an indicator for likelihood of providing good solutions. A

similar approach could also be beneficial for B&P algorithm. Last but not least, root

node processing with C&G takes long time in some instances. Providing better initial

column set could help with this issue.

Finally, in network model we further extend the problem to multiple product

hierarchy and multiple facilities, to a network in other words. We extend the FTBMV

and B&P algorithm. However, preliminary tests show that these exact optimization

approaches fail to provide good quality solutions within time limits. Hence, we focus on

improving UB generation, namely integral solutions. We exploit the business insights

from the problem definition and reduce the problem again to float glass campaign

planning problem on multiple facilities by projecting demands to facilities. Numer-

ical experiments reveal that the 3 variants of the demand projection heuristics are

able to provide good quality UBs, with an indication from calculated MIP gaps using

best known LBs. Considering satisfactory run times obtained with demand projection

heuristics, a further improvement can be using these solutions as MIP warm start and

let the original problem to run until 1-hour limit. This can help with obtaining the

real MIP gaps, further improve the incumbent value or even prove the solution opti-

mal. Additionally, we can formulate another iterative heuristic algorithm exploiting

the concept of extended patterns and demand projection. Given an extended pattern

for each resource, we can determine optimal allocation of resource capacities to de-

mands with an LP based on families. The second part will then focus on determining

new extended patterns given the allocation of demands to resources, based on a local

search or another pricing problem similar to the one explained in Section 5.4.4 that

will modify the durations of families within the extended pattern.
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georgiou, “Optimal planning and campaign scheduling of biopharmaceutical pro-

cesses using a continuous-time formulation”, Computers and Chemical Engineer-

ing , Vol. 91, pp. 422–444, 2016.

45. Susarla, N. and I. Karimi, “Integrated campaign planning and resource allocation

in batch plants”, Computers and Chemical Engineering , Vol. 35, pp. 2990–3001,

2011.

46. Dhaenens-Flipo, C. and G. Finke, “An integrated model for an industrial produc-

tion distribution problem”, IIE Transactions , Vol. 33, pp. 705–715, 2001.
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