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ABSTRACT

MULTI-OBJECTIVE APPROACHES FOR

MULTI-TARGET LEARNING

Multi-target datasets (MTD) require simultaneous prediction of several variables

hence they are considered to be more challenging in terms of predictive tasks compared

to single-target datasets. Mining of MTD requires handling of several problems. To

exemplify, scale inconsistencies are widely encountered in the targets. Most of the

existing approaches resolve this issue by transforming the targets to the same scale,

yet those operations may change the statistical properties of the dataset. Besides,

features’ scale inconsistencies cause problems in semi-supervised learning (SSL) appli-

cations since distance-based calculations are required therein. Another issue with MTD

is, to explore alternative ways of including the target relations in learning applications.

In this thesis, I develop supervised learning (SL), SSL and feature ranking (FR) models

for MTD to deal with aforementioned problems. Benefiting from multi-objective opti-

mization concepts, I aim to propose learning strategies that are robust to the type of

the variables processed and utilize the target relations at the same time. Specifically,

I propose a multi-objective extension for standard decision trees and a selective clas-

sifier chaining strategy for SL tasks. Experimental studies show that proposed models

outperform their benchmark models. Besides, multi-objective trees extended to their

semi-supervised version so that proposed form could result a competitive performance

when the label information is not adequate. Performed experiments show a significant

improvement of the proposed model over its benchmarks. In addition, since high-

dimesionality and irrelevance in features reduce the effectiveness of a learning model,

an embedded feature ranking (FR) procedure to semi-supervised trees is given to ad-

dress this problem. Applications on several datasets show that, proposed FR procedure

enhances the predictive performance compared to its benchmark approaches.
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ÖZET

ÇOK DEĞİŞKENLİ ÖĞRENMEDE ÇOK HEDEFLİ

YAKLAŞIMLAR

Çok hedefli veri kümeleri (ÇHVK), birkaç değişkenin eş zamanlı olarak tahminini

gerektirir. Bu tip veri kümeleri birden fazla değişken için tahmin gerektirmesinden

ötürü tek hedefli veri kümelerine kıyasla daha zorlayıcı olarak kabul edilirler. ÇHVK

için olan öğrenme uygulamaları birtakım problemlerin ele alınmasını gerektirmektedir.

Örneğin, hedeflerde ölçek tutarsızlıklarına yaygın olarak rastlanmaktadır. Genellikle

bu durum dönüştürme işlemleriyle çözülmektedir ancak bu işlemler veri kümesinin is-

tatistiksel özelliklerini değiştirebilmektedir. Özelliklerde gözlenen ölçek tutarsızlıkları,

yarı denetimli öğrenme (YDÖ) uygulamalarında mesafeye dayalı hesaplamalara ihtiyaç

duyulduğundan sorunlara neden olmaktadır. ÇHVK ilgili olarak ele alınması gereken

bir başka konu da, hedefler arası ilişkileri öğrenme uygulamalarına dahil etmenin alter-

natif yollarını bulmaktır. Bu tez çalışmasında, yukarıda belirtilen konuları ele almak

için denetimli öğrenme (DÖ), YDÖ ve özellik sıralama (ÖS) modelleri geliştirdim.

Çok amaçlı en iyileme kavramlarından yararlanarak, işlenen değişkenlerin türüne karşı

dayanıklı ve aynı zamanda hedefler arası ilişkilerden yararlanan öğrenme stratejileri

önerdim. DÖ için, standart karar ağaçlarının çok amaçlı bir uzantısını ve seçici bir

sınıflandırıcı zincir stratejisi önerdim. Önerilen modellerin kıyas modellerden daha iyi

performans gösterdiğini deneylerle gösterdim. Ek olarak, çok amaçlı karar ağaçlarının,

değişkenlerin etiket bilgisinin kısıtlı olduğu durumlarda daha iyi bir tahmin performansı

göstermesini sağlayabilecek bir YDÖ modeli önerilmiştir. Yapılan deneylerle önerilen

bu modelin kıyas modellerden daha iyi sonuç verdiği gösterilmiştir. Ayrıca, özelliklerde

gözlenen yüksek boyutluluk ve ilgisizlik durumlarına karşın YD ağaçlara entegre edilmiş

bir ÖS prosedürü geliştirilmiştir. Önerilen ÖS prosedürünün, kıyas yöntemlere göre

tahmin performansını daha çok iyileştirdiği uygulamalarla gösterilmiştir.
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Ȳj Average of target j

Ŷm Column-wise prediction of target j for first step of training
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1. INTRODUCTION

Multi-target (or output) problems are wide-spread in different fields and present

more challenging predictive tasks than single output cases (see Figure 1.1). For ex-

ample, prediction of the tag categories for images are sometimes required in computer

vision applications. In retail analytics, some forecasting problems require the sales

estimations of multiple products. In predictive maintenance applications, prediction

of a machine’s failure time and its type might be required to prepare a maintenance

plan. In all these examples, there is a need for prediction of multiple categorical values,

numerical values and a mixture of both categorical and numerical values, respectively.

Features:

[X1, X2, . . . , Xp]

Features:

[X1, X2, . . . , Xp]

Target:

[Y1]

Targets:

[Y1, Y2, . . . , Yt]

D : [X1, X2, . . . , Xp : Y1]
Single target dataset

D : [X1, X2, . . . , Xp : Y1, Y2, . . . , Yt]
Multi-target dataset

Labeled Part

[Xl]

Unlabeled
Part
[Xu]

Labels: [Y ] D : [Xu] ∪ [X l : Y ]
Partially Labeled

Figure 1.1. Single target and multi-target dataset illustrations.

In dealing with multi-target predictive tasks, some certain characteristics of those

tasks need to be considered carefully. Initially, scale inconsistencies in the targets is

a common property for multi-target datasets. Therefore, unless an independent and

separate learning approach is employed for each of the predictive tasks, data trans-

formation techniques are required in derivation of the learning models. However, this

approach is problematic, as transformation techniques may change the statistical prop-

erties of the data. Besides, limited label information can be given as another property

of multi-target datasets. In performing learning tasks for limited label settings, semi-

supervised techniques are used. Majority of the semi-supervised techniques rely on

distance-based calculations. However, scale inconsistencies and high-dimesionality in

the features result in loss of effectiveness in distance-based calculations.



2

In addition to curse of dimensionality problem, another important challenge stems

from irrelevancy and redundancy in features. Considering the label availability and

scale inconsistencies issues, identification of the most useful features becomes more

challenging yet more promising towards improving the predictive performance of the

learning model.

Multi-target (multitask or multi-output) learning deals with simultaneous predic-

tion of several outputs. In doing that, two main approaches are employed. Considering

each target as separate learning problems is a trivial approach and known as local ap-

proaches [4]. That approach presents the most straightforward way of solutions as it

treats the multi-target datasets as independent and separate learning problems [5, 6].

Since each target is learnt in isolation, those methods cannot make use of the poten-

tial of target interrelations. In order to address that issue, idea of using targets as

additional inputs via stacking or constructing classifier chains to the feature space has

recently become popular [5–8]. In those approaches, targets are learnt via separate

learners and predictions of those learning models are added to the feature space, so

that predictions of the targets take place as a part of feature space. Although target

interrelations could take place in model building, still there is room for further im-

provement as those models do not consider the direction of the relations. To clarify, in

stacking procedure all learnt targets are added as a whole (see Figure 1.2) or classifier

chains are constructed with ensembles of random orders (see Figure 1.3), hence possible

irrelevance of targets issue is completely ignored.

Global approaches can be considered as extensions of single target classifiers to

their multi-target version [9–11]. Usually, this is realized by modifying the learning

criterion to joint one. To clarify, for a single target problem, error score consists

of values associated with that target. However, in multi-target case creating a joint

learning criterion in a weighted sum form transforms the learning model to a global

one. Despite those approaches inherently take into account the target relations, a

considerable shortcoming of that category is that they require scaling or transformation

operations when the targets are inconsistent in terms of their scales.
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h1 : D1 → Ŷ1D1 : [X][Y1]

Training
Stage 1

D′1 : [XŶ1 . . . Ŷm]

hm : Dm → ŶmDm : [X][Ym]
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h′1 : D′1 → Ỹ1

D′m : [XŶ1 . . . Ŷm] h′m : D′m → Ỹm
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Figure 1.2. Stacking flow diagram.

h1 : D1 → Ŷ1D1 : [X][Y1]

D2 : [XŶ1][Y2]

Dm−1 : [XŶ1 . . . Ŷm−1][Ym]

h2 : D2 → Ŷ2

hm : Dm−1 → Ŷm

Training

h1(xn) → ỹn1

Prediction

h2([xnỹ1]) → ỹn2

hm−1([xnỹ1 . . . ỹnm−1]) → ỹnm
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Figure 1.3. Chaining flow diagram.
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However, scaling operations are criticized as they distort or change the distribu-

tional properties of the data [12].

Besides their structural properties, availability of label information is another

issue with multi-target learning problems which makes predictive tasks more compli-

cated [13–15]. To exemplify, considering computer vision tasks such as image tagging,

an abundant amount of unlabelled (or anonymous) images can be easily found, how-

ever required labelled instance information is usually very limited compared to its

unlabelled counterpart. Since supervised learners usually fail to deliver solid results

when the target information is not enough, an integration of unsupervised and super-

vised approaches is utilized to handle predictive tasks for such environments [13]. That

category is known as semi-supervised learning and usually shows superior performance

compared to their supervised counterpart. However there are two major issues with

attempts on addressing semi-supervised learning problems. First of all, when in semi-

supervised setting global approaches are employed, this strategy would make learning

model vulnerable to inconsistencies in targets [16,17]. Second, semi-supervised models

require processing of unsupervised information and in general those are distance or

density based approaches to encode this information [18–20]. In doing that mostly on

distance based calculations are preferred as they do not require any distributional as-

sumption about the data. As a consequence, inconsistencies in features’ scales challenge

to define a distance metric that works well for such cases.

Another issue with features that deserve attention towards a better predictive

performance is about refining the features, so that irrelevancy or redundancy are re-

moved from features [21]. Those characteristics are undesirable as some classifiers,

e.g. linear models, are vulnerable to correlated features. Besides, some classifiers, e.g.

support vector machines, lose their effectiveness when irrelevant features exist in the

dataset. Another challenging property stems from features is their high-dimensionality.

In addition computational throughput, at higher dimensions position based properties,

e.g. distances between instances, may become indistinguishable. Apart from that,

reducing the number of features may increase interpretability and provide an easier

understanding of a learning model, specifically for the black box ones.
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By using features selection or ranking them, aforementioned issues could be re-

solved at the same time. Feature selection or feature ranking techniques from super-

vised and unsupervised perspectives are well-established in the literature [21,22]. How-

ever, contrary to those two perspectives, semi-supervised multi-target feature ranking

and selection tasks are not explored in depth [23]. In capturing feature characteristics

with a semi-supervised approach, aforementioned issues could be also resolved.

This thesis work aims to address the given problems for multi-target learning

problems as separate three works. The scope of the works are as follows:

1.1. The Benefits of Target Relations: A Comparison of Multitask

Extensions and Classifier Chains

The main theme of the first work covered in the thesis is about exploiting target

relations without being disturbed by scale inconsistencies in the targets. The tradi-

tional approaches handle this problem by optimizing a joint score function over multiple

targets such as weighted sum of the errors of each target. However this is problematic

when the scale of the targets do not agree. To overcome the scaling issues, transforma-

tion techniques are widely employed in several studies yet they can change statistical

properties of the data [12]. Considering the potential pitfalls of these operations, many

applications make use of the modification of decision trees with multi-criteria (or multi-

objective) learning strategies to learn a global model [4]. Although this revised design

allows trees to enjoy target relations with a reduced computational cost, their per-

formance is degraded when the targets are independent or irrelevant. To exploit the

target dependencies as a source of side information, local models for each target are

adapted by chaining strategies to expand the input space with the target information

gradually.

Basically, chaining approaches train individual models to each target in some

order and use the information from each model (i.e. estimations) to learn target inter-

actions similar to a global model.
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However, the success of the chaining approaches heavily depend on the training

order and the estimation quality of the individual models. Chapter 3 introduces alter-

native tree-based learning strategies to handle the problem of target scaling and the

order of the local learning in chaining strategies.

In the first proposal, the problems with target scaling are resolved using alterna-

tive splitting strategies which consider each objective in a multi-objective optimization

framework. Here, we propose various strategies on deciding the split selection by

evaluating the most promising trade-offs. Those promising solutions are referred as

Pareto frontier and in multi-criteria domain, evaluations are usually based on that set

of solutions. The second proposal deals with the problem of ordering in the chaining

strategies. We introduce an alternative estimation strategy, minimum error chain pol-

icy, that gradually expands the input space using the estimations that approximate to

true characteristics of outputs, namely out-of-bag estimations in tree-based ensemble

framework. Our experiments on benchmark datasets illustrate the success of the pro-

posed multitask extension of trees compared to the decision trees with de facto design

especially for datasets with large number of targets. In line with that, minimum error

chain policy improves the performance of the state-of-the-art chaining policies.

1.2. Semi-supervised Extensions of Multitask Tree Ensembles

In Chapter 4, we aim to handle multi-task designs for multi-target semi-supervised

learning (SSL) problems that are robust to scale differences both in feature and target

spaces. Similar to supervised cases, in order to handle scale inconsistencies data trans-

formation is often employed, however in addition to possible computational burden,

those operations may disturb the statistical properties of the data. SSL models require

processing of unsupervised information where distance measures are widely employed.

Use of classical distance metrics can be criticized as they lose efficiency when features

exhibit type or scale differences. Besides, in higher dimensions distance metrics cause

problems due to loss of discriminative power. Another problem with higher dimension

feature spaces stems from difficulty with detecting and deciphering cluster forms. We

propose a scale-invariant proximity measure with the use of tree-based ensembles.
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This strategy preserves the original representation of the data.

We introduce alternative semi-supervised tree-based strategies to tackle learning

problems with aforementioned issues. We update classical tree derivation procedure

to a multi-criteria form to resolve scale inconsistencies. We define proximity based

clustering indicators and extend the supervised model with unsupervised criteria. Our

experiments show that proposed method significantly outperforms its benchmark learn-

ing model, that is predictive clustering trees.

1.3. An Ensemble-based Semi-supervised Feature Ranking for

Multi-target Problems

Chapter 5 focuses on semi-supervised feature ranking (FR) applications for multi-

target problems (MTP). Here, this work is a subsequent of the second one where we use

the learning model proposed in the second work. We treat the split score function as a

vector rather than unified weighted sum form to make it suitable for considering each

criterion regardless of their scales. We propose a semi-supervised FR scheme embed-

ded to multi-objective trees that takes target and feature contributions into account,

simultaneously. Proposed FR score is compared with the state-of-the-art multi-target

FR strategies via statistical analyses. Experimental studies show that proposed score

significantly improves the performance of a recent tree-based and competitive multi-

target learning model, i.e. predictive clustering trees. In addition, proposed approach

outperforms its benchmarks when the available labelled data increase.

1.4. Contributions

Contributions of these works can be summarized as:

• In order to deal with given issues of scalarization, we borrow a multi-objective

notion, that is Pareto optimality. We consider the learning model as a multi-

objective optimization problem that respects the target trade-offs individually.
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• We propose a controlled extension strategy that is based on evaluating whether

an addition activity carries valuable information in learning of the rest or not. By

doing so, we aim to prioritize the most informative tasks in learning process so

that we create a better than random configuration by using a more comprehensive

and flexible dependency relation.

• We derive a SSL strategy that can process unsupervised and supervised infor-

mation without being tackled by the type of features and targets, simultane-

ously. Specifically, we consider supervised information obtained via processing

the targets by means of multi-objective trees proposed in Chapter 3. In pro-

cessing unsupervised information, usually distance based calculations required.

However, distance based calculations may fail to provide reliable information for

mixed type of features. In addition, at higher dimensions, those calculations may

lose their efficiency in discriminative power. Here, we propose use of totally ran-

domized trees in handling distance based calculations required for unsupervised

information obtained via processing the features.

• We propose a feature ranking score that is able to heuristically capture and iden-

tify the semi-supervised characteristics of the data. In doing that, we use the

semi-supervised tree structures proposed in Chapter 4 and propose an embedded

feature ranking score collected during derivation of the trees. Proposed score is

inspired by the quality measures used in evaluation of multi-criteria decision mak-

ing domain. Here, we aim to identify the contribution of a feature by considering

its characteristics from both supervised and unsupervised perspectives with the

aid of the proposed unified score.

1.5. Organization of the Thesis Work

The thesis work is organized as follows: In Chapter 2, we provide the necessary

background. In Chapter 3, we explain the proposed supervised learning models. Simi-

larly, Chapter 4 is devoted to semi-supervised learning models, and Chapter 5 provides

details on semi-supervised feature ranking study. Finally, the conclusions and future

directions are given in Chapter 6.
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2. BACKGROUND

This chapter introduces the notation used throughout the study and provides

the key concepts together with formulations of the proposed and other benchmark

methods.

2.1. Notation

Assuming a dataset D with N samples, let X ∈ RN×p and Y ∈ RN×t be the

input space with p features and output space with t targets, respectively. Each (xi, yi)

instance of dataset D consists of input vector of x = (xi1, ..., xip) and output vector

y = (yi1, ..., yit), where i ∈ {1, ..., N}. Each object i in dataset D associated with a set

of fully observed y values where there is no ambiguity in labels. The objective of an

MTL model is to learn model h : X → Y that maps a y vector with t values to each

input item x by using the training dataset D.

2.2. Multi-objective Optimization

Scalarized multi-objective optimization problem refers to sum of task wise (or

target wise) errors as a functional form of learning criterion. In case the learning

criterion is not aggregated then scalarized error function for multi-target prediction

tasks becomes a vector with t number of objectives (See Equation (2.1)).

E = [l(y1, h1(x)), ..., l(yt, ht(x))] (2.1)

Noting that, E is defined for supervised tasks where l are defined as loss function. To

clarify, if a target is continuous then l can be defined as sum of squared errors given

the predictions of learning model h. Similarly, for a categorical target loss function l

can be Gini index [24]. For unsupervised learning tasks, since the learning tasks are

not based on predictions, l can be defined as a criterion that reflects the quality of the

clustering, i.e. margin between data groups in terms of features.
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Generally, a solution that minimizes all the objectives does not exist due to the

conflicting objectives [25]. As a consequence, rather than looking for a single and global

optimal solution, multi-objective optimization problems are solved for set of efficient

solutions.

Let Υ denotes the image of the feasible set Ξ under the objective function mapping

where Υ = f(Ξ), for a multi-objective optimization problem defined as [26]:

min f(Ξ) = [f(ξ1), . . . , f(ξt)]

subject to ξ ∈ Ξ
(2.2)

Definition 1: A feasible solution ξ̂ ∈ Ξ is called efficient or Pareto optimal, if

there is no other ξ ∈ Ξ such that f(ξ) ≤ f(ξ̂).

Definition 2: If ξ̂ is efficient, f(ξ̂) is called nondominated point. If ξ1, ξ2 ∈ Ξ and

f(ξ1) ≤ f(ξ2) we say ξ1 dominates ξ2 and f(ξ1) dominates f(ξ2). The set of all efficient

solutions ξ̂ ∈ Ξ is denoted ΞE and called the efficient set. The set of all nondominated

points υ̂ = f(ξ̂) ∈ Υ, where ξ̂ ∈ ΞE, is denoted ΥND and called the nondominated set.

Definition 3: The collection of the nondominated elements of a decision space

is denoted as Pareto front. Since no other element of the Pareto frontier can be pre-

ferred over the other one, then the aim of optimizing a multi-objective problem can

be defined as approximating the Pareto set within the setting provided above. Figure

2.1 provides an example of a multi-objective optimization problem with two objectives

and its Pareto frontier [1]. Noting that, performance criterion A and B represent two

minimization objectives in Figure 2.1.

2.3. Decision Trees

Tree derivation process is based on partitioning of the data in a recursive manner

[24]. Split function partitions the input space into its subsets.
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Figure 2.1. The example of the Pareto-optimal front [1]

The selected split results axis-aligned hyperplanes as it considers one variable at

each time. The best partition value is selected considering a set of possible cut off

values for the inputs and a quality measure associated with the candidate splits. Split

quality is a function that is designed for providing information about the impurity

reduction corresponds to the cut off value. Sum of squared deviations can be used as

an impurity measure for a regression problem (see Equation (2.3)).

SSEj =
N∑

i=1

(yij − ŷij)2 (2.3)

For a classification problem Gini index assesses the node impurities by using relative

class frequencies, prc, r ∈ {left, right} and c ∈ C (see Equation (2.4)).

G =
C∑

c=1

(prc(1− prc)) (2.4)

Following the split of a node, partitioning process repeats recursively for the child nodes

until they meet a stopping condition (see Figure 2.3). These stopping conditions can

be parametrized with maximum depth of the tree or minimum number of the elements

appear in a node. Each leaf is associated with labels (see leaves at the bottom of the

tree given in Figure 2.2). Labels refer to the prediction of a leaf node. Average of the

leaf member associated with that target is assigned as the label of that target for a

continuous output.
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Figure 2.2. A general structure for decision trees and prediction by using them [2].

Likewise, the majority group of the leaf becomes the label for a categorical target.

In order to make prediction for an unseen instance, it is enforced to traverse through

the tree (see Figure 2.2 for prediction example). Label of the last visited leaf along the

path yields test instance’s prediction.
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Require Training set D = [XY ] with n instances, stopping conditions

if termination criterion then

Create leaf node and label it with its target averages;

Return leaf node;

else

Examine all possible binary splits for each of the input variables;

Find the best split with respect to the quality measure;

Apply the best split and create left node and right node;

Return Recursive Partitioning(left node);

Return Recursive Partitioning(right node);

end if

Figure 2.3. Recursive Partitioning Algorithm.

2.4. Random Forests

Decision trees are widely in use due to some certain advantages they have. De-

riving a decision tree is a fast process and tuning its parameters is easy. Moreover,

the flow of the split events and their interpretation is not hard for the modeler. In

other words, by interpreting the structure of the decision tree, one can gain insights

easily about the data. Additionally, extending the single output decision trees into

a multiple output one depends on modification of the split function. To exemplify, a

weighted combination of the impurity measure transforms the single response tree into

its multiple response version. Nevertheless, decision trees are susceptible to have high

prediction variance and that weakens the generalization power a single decision tree.

In order to fix the shortcoming stems from this undesired property, one can utilize

ensemble methods [27].

In order to improve the generalization power of the decision trees various methods

are given in the literature.
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Bootstrap aggregation (henceforth bagging) is one of these methods and the idea

behind bagging is generating training datasets in a repetitively and randomly selective

manner. Each bootstrapped data is associated with a classifier and for each classifier

correspondent predictions are collected. For a regression problem averaging the collec-

tion values results the prediction. Likewise, for a classification problem majority vote

is taken from the classifiers. Yet another classifier ensemble method is random forests

(RF) that is a collection of independently derived decision trees. Using a random sub-

set of the training data and considering a random subset of features at each split is the

fundamental modification for a member tree of a random forest. Once the members

are created, then the prediction task boils down to combining the results of each tree

yields likewise in bagging.

Some certain properties of RF, e.g. out-of-bag (OOB) error, variable importance

and margin maximizing property, make them preferable for predictive tasks. A useful

concept of a random forest is, its OOB error estimations. Once a bootstrapped sample

is drawn, a certain proportion of the data is classified as leftover or in other words

these unselected data are the OOB instances of the bootstrapped sample. Overall

prediction error can be computed by using all the data merely considering whether an

instance is kind of OOB for a classifier or not. By using this OOB concept, the decision

maker does not need cross validation any more that is a computational benefit of OOB

estimates. Additionally, the data can be exploited to its full extent since each of the

instance potentially contributes to both model construction and prediction phases.

Variable importance and proximity matrices are byproducts of a random forest

setting and these concepts are the natural extents of OOB predictions of the trees.

In order to come up with an evaluation of the variables in terms of their importance

one can make use of OOB errors as follows: after calculating OOB error of the default

setting, a feature is selected and only this selected feature is permuted. OOB error

is calculated one more time and an importance value is assigned to the feature of the

interest with regarding to the difference between these two OOB errors.
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Proximity matrix refers to similarities between the instances and by using this

matrix one can obtain a gauge that serves as distances between the instance pairs. In

order to obtain the proximity matrix each instance is pushed through to the associated

trees and whenever a pair of instance meets in the same terminal node of a decision tree

then their proximity is increased by one. And finally off diagonals of total proximity

matrix is divided by number of trees. This proximity matrix is also easily converted

to a distance measure by subtracting the matrix components from 1 and taking square

root of the results.

And finally, maximum margin behavior is another important property of random

forests and it can be defined as follows: when a classifier is created for a random

sample, the boundary it provides passes through a less dense region. Intuitively, the

margin that boundary yields does not need to be optimal since any decision boundary

passes within this gap results the same value for the entropy function. What makes

the random forest having maximum margin property is, it uses a combination of the

randomly created decision trees’ wisdom to make conclusion about an unseen data [2].

2.5. Decision Trees for Unsupervised Learning Tasks

Unsupervised learning is utilized in various descriptive tasks such as clustering,

density estimation and dimensionality reduction. Among several types of unsupervised

learning tasks, our focus is on clustering. Discovering homogeneous groups constitutes

main concern of clustering tasks [24]. Clustering algorithms require similarity or dis-

similarity information between instances to assign similar ones to the same subgroup.

Likewise in supervised learning, an indicator that measures how well clustering cap-

tures the data characteristics, is optimized. Here, various concerns and associated

indicators can be given. To exemplify, instance assignments to the subgroups is a good

practice when within cluster variation is reduced by doing so. To measure deviation,

differences between cluster medoids are employed where medoid of a cluster represents

the instance with lowest distance to the samples that are in the same group. As another

example, well separation of those groups is preferred, hence distance between cluster

medoids should be increased whenever possible.
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In order to quantify within cluster deviation or separation information, different

measures are used. In addition to classical distance based measures, similarity or

dissimilarity based ones are widely employed in clustering. To clarify similarity, it

refers to strength of the relations between samples [28]. Correlation and proximity

are typical representatives of similarity. Among various alternatives, proximity values

between instances provide a flexible measure when trees are used in their derivation.

Due to the given property, proximity measure enjoys the benefits of decision trees,

i.e. be able to capture nonlinear relations, can handle data with scale differences and

robust to high dimensionality issues. In order to obtain in an unsupervised way, total

random forests is an efficient alternative [29]. Unlike supervised decision trees, in a

tree of a total random forest, a random split for a random feature is directly selected

without being evaluated from a performance perspective. Once a total random forest is

generated, for each pair of instances number of their meets at the same leaf is counted

and then normalized by forest size. Following that, a dissimilarity information can also

be derived as suggested in [27], and can be replaced with any distance based measure

used in clustering applications.

Another idea of benefiting from trees in unsupervised learning appears in density

estimation tasks [2]. Likewise in derivation of supervised trees, unsupervised trees try

to find a good approximation to the underlying distributions. Following work of [2], at

each node split unsupervised entropy is aimed to reduce. To achieve that, they propose

a Shannon entropy based information gain indicator which is summarized in Equation

(2.5):

Ij = log(|Λ(Sj)|)−
∑

i∈{R,L}

|Si
j|
Sj

log(|Λ(Si
j)|) (2.5)

In Equation (2.5), Λ, |Λ(.)|, and |.| refers to d× d covariance matrix, determinant and

cardinality of nodes, respectively. L,R, indexed by i for S, stands for left and right

child of the parent node Sj. Noting that, they assume that data can be modelled with

a mixture of Gaussian distributions, hence the use of given structure is limited with

continuous form feature sets.



17

Figure 2.4 represent a toy application of unsupervised trees for a given training

dataset [2]. Figure 2.4 represents use of unsupervised decision trees for density estima-

tion purpose. In derivation of those trees, it is assumed that the data can be modelled

via a mixture of Gaussian distributions. To clarify, three trees with different depths

are trained in Figure 2.4. Here, obtained leaf nodes are used to estimate parameters

of Gaussian distributions in modelling the data.

Figure 2.4. Unsupervised trees and associated partitions for various depths [2].

2.6. Semi-supervised Learning

Semi-supervised learning (SSL) is in the intersection of two learning schemes,

namely supervised and unsupervised learning models. Target based learning is classi-

fied as supervised, whereas no target correspondence implies a need for unsupervised

techniques. A third variant is the semi-supervised learning, where amount of labeled

data is limited compared to unlabeled data on hand, and utilizes both of these sources

in order to consolidate the model for unseen data [30]. Success of semi-supervised

models generally depends on satisfying some certain conditions [13].
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Considering a pair of instances, smoothness assumption requires the instances

to have similar labels if they are close in features’ space. Low density (or clustering)

assumption guarantees that, the decision boundaries pass through less dense areas

of the features’ space. Manifold assumption is another condition that requires to be

satisfied and refers to have a lower-dimensional representation for data compared to

its original input space.

The two main branches on SSL taxonomy are based on inductive and transductive

methods [13]. Transductive methods consist of graph based methods and generally

similarity graphs of the data points are exploited in identifying the weighting schemes

and inferences. Categorization of inductive methods is based three main groups. First

group is wrapper methods and those methods are generally developed on the training

datasets which are iteratively enlarged by the predictions of the classifiers. Self-training

is a wrapper method where a single learning model is trained over an initial dataset.

Once the dataset is enlarged with classifier’s predictions, several rounds of trainings

are realized by using updated training sets. Co-training is another category of wrapper

methods which is similar to self-training. In co-training applications, usually datasets

are divided into two groups and independent classifiers are derived by using those

datasets. Upon completion of a training phase, the most confident predictions of each

group are selected and added to the associated group.

Second category of inductive methods can be given as unsupervised preprocess-

ing. In those methods, usually labelled and unlabelled data information are used in

consecutive steps. To exemplify, majority of feature extraction methods can be given

as applications of unsupervised preprocessing. Besides, cluster-then-label method is

another strategy used as unsupervised preprocessing where resultant clusters are em-

ployed for augmenting the classification process. Third category of inductive meth-

ods consists of intrinsically semi-supervised methods. To exemplify, methods consider

max-margin property such as support vector machines, naturally exploit low density

(or clustering) assumption of SSL.
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3. THE BENEFITS OF TARGET RELATIONS: A

COMPARISON OF MULTITASK EXTENSIONS AND

CLASSIFIER CHAINS

3.1. Introduction

During the last decade a vast range of techniques for multi-target prediction

(MTP) have been proposed [4]. Taxonomy of MTP models is based on two categories,

which are defined as local models and global models. In addition, problem transfor-

mation and algorithm adaptation are respectively substituted for these categories. In

local approaches, separate learners for each of the target and a collection of outcomes

from individual models are required. Unlike local approaches, global models are one-off

learners, in other words values returned by a global model cover all necessary predic-

tions (see Figure 3.1). None of these approaches can universally outperform the other,

indeed, both have certain merits and limitations. Global models require adaptation of

local learners to provide joint prediction of several targets. This adapted design per-

mits global models to enjoy task relations during training phase therefore these models

correspond to an important learning paradigm known as multitask learning (MTL).

From taxonomy perspective, MTL is a particular group of transfer learning and ben-

efits from transferring information between tasks [31]. In MTL, task relatedness is

exploited in various forms. To exemplify, task relations can be based on either the as-

sumption that they share a common representation [32] or the assumption that there is

a relation between their parameters [33]. Moreover, from side information perspective,

these assumptions can be considered as prior forms where local models lack [34].

Local models frequently have higher computational costs than global models. As

the number of targets grows, it gets correspondingly more complicated to train local

models. In addition, global approaches produce more compact models compared to

the set of individual learners.
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h1 : D1 → Ŷ1D1 : [X][Y1]

Local Models

D : [X][Y1 . . . Ym]

hm : Dm → ŶmDm : [X][Ym]

Global Models

h : D → Ŷ1 . . . Ŷm

.

.

.
.
.
.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 3.1. Local and global modelling in multi-target prediction framework.

From generalization point of view, global models tend to present better results

since they can benefit from statistical dependencies between targets [9]. Noting that,

exploiting target relations is not limited with global models. Local approaches can

also utilise target dependencies yet they require tailored strategies like stacking and

chaining.

Despite the given advantages of global approaches, local models outperform the

others when a dataset’s outputs are irrelevant or independent. Enforcing dissimilar

learning tasks to share the same learning structure results degradation in predictive

performance of global classifiers [33]. This phenomenon is known as negative transfer

and badly affects the predictive power of the learner [31]. In addition, global models

become more problematic when the targets exhibit scale differences. To address the

predictive tasks with scale differences, various data transformation techniques are em-

ployed. However, transformation operations may ruin the statistical properties of the

data [12].

An independent learner for each target is the standard local strategy for MTP

tasks. This policy is immune to scale differences and can only exploit input-target

dependencies. Use of the targets or their estimations as additional inputs is a simple

approach to integrate target-target relations with the training process. This approach

implicitly introduces the conditional label dependencies from a probabilistic point of

view as discussed by [?].
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It is argued that unconditional and conditional label dependencies are different

than each other and modelling these dependencies lifts the predictive performance of

the learners [?]. They show that local meta-learners can model these dependencies,

namely stacking can be considered as a modelling instance for the former. Likewise,

classifier chains are representatives for the latter type of dependency. From a deep-

learning perspective, local meta-learners serve as nodes of inner layers and hence the

proposed design allow them to behave alike deep learners [?, ?]. And lastly, when

target-target relations are discovered, they deliver a form of knowledge which can be

used in reinforcing the predictive performance from side information perspective [4].

The main focus of this study is to develop mechanisms to capture and exploit

target relations in MTP models that are robust to scale differences in targets. We

employ random forests as they construct competitive benchmarks for both local and

global strategies. Specifically, we used predictive clustering trees [9] and ensembles of

random chains [5] as benchmarks and measured the impact of applying our methods

to MTP tasks. Predictive clustering trees consider a unified score measure in split

evaluation during tree growth. We replace this score measure with a multi-criteria one

which allows us to keep the targets and therefore corresponding scores in their original

scales. To clarify, multi-criteria score handle targets with different scales including

mixture of target types. By doing so, we aim to preserve statistical properties of the

data throughout tree derivation. Moreover, since our model is an instance of multitask

learning model therefore target interactions inherently take place in model.

Ensembles of regressor chains proposed in [5] require a limited number of random

sequence in chain construction. Another chaining strategy given in [6]’s study is an

alternative yet they only consider linear dependence among targets. Classifier chains

need individual models for targets, hence scaling is not a matter of concern. Target

relations are exploited by introducing their estimations as additional inputs. We pro-

pose a flexible and entirely data-driven chaining strategy for chain order derivation.

It is flexible since it hints about a more general dependency than correlation and can

identify relations targets including mixtures of descriptive and numerical values.
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This strategy is not entirely a multitask learning model yet it still utilizes target

relations in a one-way manner as targets are treated as additional features.

This study proposes a multiobjective learning framework for MTP and an al-

ternative input space expansion method that benefits from the task relatedness. Our

experimental results show that proposed approaches either significantly improve or

perform at least as good as their benchmarks in terms of predictive performance. Our

results encourage further exploitation of task relatedness in learning processes. In ad-

dition, our findings support the need of data-driven information transfer structures for

better learning practices.

The rest of the chapter is organized as follows; Section 3.2 provides related work

and Section 3.4 delivers the algorithms proposed. Section 3.5 introduces the experi-

ments and discusses the results.

3.2. Related Work

The survey by [4] summarizes the works on MTP problems and offers several

different settings as a learning problem. The methods are basically described under

five categories. They consider i) independent models as the standard method for MTP

and learn each target in isolation. They are local models that cannot exploit target

relations. ii) Similarity enforcing methods are based on the communality assump-

tion of task representations or parameters. iii) Relation-exploiting methods require

side information like hierarchies, dependencies or graph representations. iv) Relation-

constructing methods discover the relation by themselves, this information is not given

unlike previous groups. In addition, kernel methods consist v) representation-exploiting

models.

Each of these method groups have certain benefits and drawbacks. Independent

models miss target relations however they show superior performance when the targets

are irrelevant. In similarity enforcing models, a joint learning criterion in a weighted

sum form is usually defined and optimized.
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They enjoy power of well-established optimization techniques yet require data

transformation when target scales are different. Relation-exploiting methods benefit

a priori target interrelations hence cannot be applied for problems with no priors.

Relation-constructing methods allow various forms of relations such as task clusters,

hierarchies or classifier chains based on training data. And finally kernel methods are

criticized due to computational costs.

Our proposals benefit from the similarity enforcing and relation-construction

methods. Therefore, this section focuses on the comparison of the existing literature

with the proposed methods. This comparison is restricted to the decision-tree based

multitask learning approaches as our proposals utilize decision trees as base learners.

Learning decision trees in multitask setting appears in a number of papers [10,

11, 35–37]. These studies optimize a joint learning criterion greedily throughout the

decision tree learning. In other words, splitting is performed using a weighted sum of

scores of each task in forest setting by [10, 11, 35, 36]. Multi-objective ensembles are

reported to perform better than single objective counterparts in these studies. As an

alternative strategy, [37] constructs population of randomized trees and they introduce

an evolutionary algorithm to refine the ensemble using the Pareto optimal regressors.

Node cardinality is considered as an additional score in their study for generalization

purposes (i.e. to avoid overfitting).

Despite the simplicity in implementation, these multitask decision trees have

certain issues to handle. An aggregated learning criterion needs hyperparameter cali-

bration in advance. In addition, greedily optimizing the aggregated function may result

overfit in tree setting [37] and reduce diversity of the trees. Moreover, merely optimiz-

ing the selected weight configuration may result missing to explore potential trade-offs

between tasks. Scaling may resolve some of those problems however it comes with a

price of errors in measurements and inference derivations [38,39].

Exploitation of task relations is considered in many MTL approaches.
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Besides MTL, the target values used as predictor is an example of side information

which is based on task relatedness [5]. In this approach, task interactions do not need

to be symmetrical contrary to the MTL. For example, stacking is a procedure that

benefits the task relations. It initially constructs independent classifiers for each of the

targets by using the inputs only. Following step 1, new learners are separately derived

by using the target-extended inputs for each task (see Fig 1.2). Stacking diverges

from MTL since all the information gathered from outputs is stored in the input space

where the knowledge transfer is allowed from the new and transformed input space

to a single task. Gradually chaining the targets in a random [5], a lattice [7] or a

predetermined order [6] is another way of utilizing the task relatedness (see Figure

1.3). Limited number of target orders to construct an ensemble is considered in [5].

The correlation chains are proposed by [6]. Both of these studies are instances of local

models and designed for regression tasks. Methods given in [5] can be criticized as

they randomly generate the target orders and they may cover the best target order for

small number of targets case. Study given in [6] is an attempt to obtain chains better

than random orders by considering the target correlations. They only consider the

correlations between targets and employ an add-and-learn chaining strategy. However,

use of a linear measure to quantify the correlation between targets is problematic when

the target relations are not linear. More importantly, they add the actual target values

in training phase although the real target values are not available in real prediction

scenario. As a consequence, learning models resemble the training dataset rather than

a set that is more similar to unseen examples.

3.3. Methods

We refer Chapter 2 and information given therein for key concepts used in pro-

posed methods and benchmark studies. Assuming a datasetD = {(x1, y1), ..., (xN , yN)}
with N by p+ t dimensions, single task (ST) or independent type of learning refers to

separate derivation of t number of hj models approximating the true output Yj best. In

order to extend the ST model to an instance of MTL model, we employ multi-objective

adaptation of the selected base learner.
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We implement the following two models, i.e. multi-objective random forest, and

selectively chained random forest.

3.3.1. Multi-objective Random Forest

In order to promote the diversity and handle the targets with different scales in

a natural way, we employ Pareto-optimality approach in split selection step of the tree

derivation procedure. Once the candidate splits are created, objective vector regarding

to sum of squared errors and Gini index are calculated for numerical and categorical

targets, respectively. In order to extract the solutions that approximate the Pareto

frontier, we employ nondominated sorting procedure [40]. Nondominated sorting helps

to segment the obtained solution set into layers (frontiers). This procedure creates

the frontiers regarding to dominance relation between the solutions. According to the

non-dominated sorting procedure given in [40], each solution is compared with others

in terms of domination and the number of times a solution is dominated are recorded.

If no other solution dominates a specific solution, then it becomes the member of first

layer. In that sense, first frontier approximates the Pareto front the best. Figure

3.2 illustrates the results of the non-dominated sorting procedure for an optimization

model with two minimization objectives.

Figure 3.2. Ordering of the solutions with non-dominated sorting [3].
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Once we obtain the first frontier we employ three split selection strategies. In

the first strategy, we pick a random split from first frontier (see Figure 3.3). Corre-

sponding classifier ensemble will be referred as Pareto based Multi-objective Random

Forest (PMORF). As a second alternative we compare the crowding distance of the so-

lutions and pick the solution with maximum crowding distance. The associated learner

group will be referred as Crowding Distance based Multi-objective RF (CDMORF).

Crowding distance is a metric we borrow from multi-objective evolutionary algorithms

and basically it aids to maintain the diversity as it favors the solutions from less dense

areas [40]. In doing that, Euclidean distances between neighbor solutions are used for

an m-dimensional space (see Figure 3.3).

Require Solution set Q

q = |Q|;
for Each member of the solution set do

Set Q[i]distance = 0;

end for

for Each objective m do

Q = sort(Q,m);

Set distance of the first and the last solutions to ∞;

for i = 2 to q − 1 do

Q[i]distance = Q[i]distance + (Q[i+ 1].m−Q[i− 1].m)/(fmax
m − fmin

m );

end for

end for

Figure 3.3. Crowding Distance Calculation Algorithm.

And the last selection alternative is based on comparing overall the ranks of

the solutions and henceforth it will be Rank-based Multi-objective RF (RMORF) (see

Figure 3.4). For each target we assign ranks to each split candidate considering the

quality measure they produce.
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By doing so, each split candidate has a position label. Once we obtain the position

information of a split candidate, we pick the solution with lowest average in terms of

rank values.

Each of these evaluation methods transforms the ordinary tree derivation process

into an instance of multitask learning hence utilize the task interrelations. In addition

to that, they are insensitive to scaling differences of the targets and do not need special

handling for such cases. Figure 3.5 is fed with multi-objective trees, hence it results

in a multi-objective random forest. Noting that, the aforementioned split selection

policies create different types of multi-objective random forests.

Require Training set D = [XY ] with n instances, stopping conditions

if termination criterion then

Create leaf node and label it with its target averages;

Return leaf node;

else

Draw a S∗ random subset of the input variables;

Examine all possible binary splits for each of the input subset S∗;

Create the set of first frontier with respect to the quality measure in vector

form;

Select a random split from first frontier;

Apply the best split and create left node and right node;

Return Recursive Partitioning(left node);

Return Recursive Partitioning(right node);

end if

Figure 3.4. Base Multi-objective Tree Algorithm.
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Require Training set D = [XY ] with n instances, stopping conditions, ensemble

size

forest=∅;
for Ensemble size do

Create a D∗ random sample of the training set D;

regression tree ← Base Multi-objective Tree Algorithm(D∗);

forest ←forest ∪ regression tree;

end for

Figure 3.5. Base Multi-objective Forest Algorithm.

Require Training set D = [XY ] with n instances, stopping conditions

if termination criterion then

Create leaf node and label it with its target averages;

Return leaf node;

else

Draw a S∗ random subset of the input variables;

Examine all possible binary splits for each of the input subset S∗;

Create the set of first frontier with respect to the quality measure in vector

form;

Select the split with minimum average rank;

Apply the best split and create left node and right node;

Return Recursive Partitioning(left node);

Return Recursive Partitioning(right node);

end if

Figure 3.6. Rank Based Tree Algorithm.
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3.3.2. Selective Chained Random Forest

Using the targets as additional inputs change the trajectory of the learning for the

better yet its implementation needs to be handled carefully. In order to cope with the

shortcomings of the state-of-the-art models given in Section 3.2, we prefer to create the

chains in a more principled way rather than randomly generating them. It is desired

to avoid an exhaustive search for the best chain configuration, hence a simple and data

driven selection strategy is an obvious need specifically for larger number of targets.

Correlation matrix is a natural option yet its drawbacks are given above.

In line with this purpose, we propose a selective chaining heuristic. In this strat-

egy, the target orders are based on the observed OOB errors of the candidate target

sets. Target with the lowest OOB error is selected and its OOB predictions are ap-

pended to the input space. We refer to Section 2.4 for details in calculating OOB

errors for a given ensemble. It proceeds recursively until each of the target has its

own learning model. See Figure 3.7 for an illustration of selective chaining algorithm

(Figure 3.8). Ensemble learning models are promoted to used in such space expansion

strategies as they aid to reduce the additional noise to the ingredients [5]. In this study

random forests are used as the base learners. In addition to this, ensemble models al-

low to create and use the predictions, namely OOB predictions, that resemble unseen

instances in training phase. Adding the ground truth values of the targets is an option

yet in testing phase targets are not available to the model (see Figure 3.9). Keeping in

mind that all the targets other than the first added one, needs the information of its

predecessors. As a consequence, using the models that are akin to the unseen instances

hints for a better practice.

An advantage of selective chaining heuristic appears in the best target configu-

ration search for datasets with a large number of targets. Another advantage of such

strategy can be given from outlier task point of view. A controlled expansion strat-

egy that pushes the most irrelevant target would be more beneficial and the proposed

selection algorithm intuitively operates in that way.
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Figure 3.7 represents the way selective chaining algorithm trains dataset D with

three outputs. Initially, three separate models are built for each target and the target

with the lowest OOB error is selected. In the example above second is picked and

its OOB predictions are concatenated to X space. By using extended input space

independent models are derived for the leftover targets, namely first and third targets.

The same selection procedure holds and third is selected next. OOB predictions of

third target are appended to the current space. The last model is created for first

target and process ends.

Figure 3.7. Selective chaining flow diagram.
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Require Training set D = [XY ] with n instances

S = {1, . . . ,m};
while S 6= ∅ do

for j ∈ S do

hj : D → Yj;

Calculate OOB error(hj(X));

end for

k ← argmin(OOB error(hj(X));

Ŷk = OOB prediction(hk(X));

X ←− X ∪ Ŷk;

D ←− X ∪ Y ;

S = S \ k;

end while

Figure 3.8. Selective Chaining Algorithm.

Require Test instance x̃, chain models hj, j = 1, ...,m

ỹ=∅;
for j = {1, ...,m} do

ỹj = hj(x̃);

if j < m then

x̃←− x̃ ∪ ỹj;
end if

end for

Figure 3.9. Selective Chaining Prediction Algorithm.



32

3.3.3. Algorithmic Complexity

Computational complexities of a multi-objective and an ordinary decision tree

differ with respect to the split selection policy used. Complexity of a Pareto based

multi-objective tree is O(MP 2N logN), where M is the number of targets compared at

each split, P is the number of features and N is the number of instances considered.

Algorithmic complexity of a Pareto based Multi-objective Random Forest (PMORF)

with size J becomes O(JMPN logN) as an RF requires
√
P number of features for

evaluation purpose. Crowding Distance based Multi-objective RF (CDMORF) in-

volves additional calculations of the distance metric hence its overall complexity is

O(JMN logN(P+
√
P log

√
P )). Likewise, Rank based Multi-objective RF (RMORF)

requires a sorting procedure for each of the targets, hence associated complexity is

O(JN logN(MP+
√
P log

√
P )).

Considering the Selective Chaining (SC) procedure, we perform M(M+1)
2

many

times single target RF, hence overall chain estimate results a complexity of O(JM(M+1)
2

(P+M
2

)N logN). Following [5], M−1
2

number of additional targets take place as input

in a chained model on the average. Prediction time takes M many times traversing J

number of trees in the forest for SC. For the multi-objective RF variants, prediction

complexity is defined J many times tree traverse.

3.4. Experiments and Results

3.4.1. Experiments

All 18 datasets used in these experiments are publicly available and they are

accessible through the websites given in [6]. Dataset identifications are given in Table

3.1. In order to compare our proposed algorithms we used the methods presented

in [5] as their implementation framework is open and moreover, their work provides

competitive performance benchmarks. The base learners in [5] are also bagging trees

which is similar to the proposed ensembles.
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In line with that, we select Ensemble of Regressor Chains (ERC) [5], Single Target

(ST) [5], Multi Target Stacking Corrected (MTSC) [5] and Multi-objective Random

Forests (MORF) [36] for our experiments. We refer the reader for the details of the

algorithms. These methods are implemented by [5] in WEKA and we use the software

provided by the authors in [5]. We employ the same parametrization given in [5] for

these algorithms, i.e. bagging of 100 trees with 10-fold cross validation. For ERC

10 chains are generated for the ensemble. And finally, size of the ensemble set to

100 for MORF method. We propose four methods: Pareto based Multi-objective RF

(PMORF), Crowding Distance based Multi-objective RF (CDMORF), Rank based

Multi-objective RF (RMORF), and Selective Chaining (SC). We also set the ensemble

size to 100 for our methods. We perform ten-fold cross validation with five repetitions.

Our proposals are implemented in MATLAB R2014A and the codes are shared in a

github project for reproducibility purposes [41]. In addition to the codes, we share

the training datasets we used throughout the experimental study. For the sake a fair

comparison, we used the same training and test sets regarding to methods without any

exception. And finally, no data preprocessing performed.

In line with [5], Relative Root Mean Squared Error (RRMSE) is used as the per-

formance indicator of the algorithms. RRMSE of a given model hj is computed as:

RRMSE(hj, Dtest) =

√√√√√√

∑
(x,y)∈Dtest

(ŷj − yj)2

∑
(x,y)∈Dtest

(
Ȳj − yj

)2 (3.1)

In Equation (3.1), ŷj is the predicted value of model hj for target j. In addition to

that, yj refers to the ground truth of the test set’s target j and Ȳj is the average of

training dataset’s target j.
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Table 3.1. Datasets.

Dataset Samples (N) Features (p) Targets (m)

EDM 145 16 2

ENB 763 8 2

Jura 359 15 3

Slump 103 7 3

Water quality 1060 16 14

OES10 403 298 16

OES97 334 263 16

ATP1D 201 411 6

ATP7D 188 411 6

Andro 49 30 6

Wisconsin Cancer 198 34 2

Stock 950 10 3

CalHouse 1032 7 2

Puma8NH 2457 6 3

Polymer 41 10 4

M5SPEC 700 80 3

MP5SPEC 700 80 4

MP6SPEC 700 80 4
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3.4.2. Results and Discussion

To find out whether a statistical significance of the difference between methods

exists or not, we employ the methodology given in [42]. Our experiments consist of

multiple algorithms with multiple datasets. For such experiment settings Friedman

test, a nonparametric version of ANOVA, is recommended in [42]. Friedman test uses

the average ranks of the algorithms. We consider two settings for the comparison of

predictive performances. In per dataset analysis we consider the errors that belong to

a dataset and use the average of them for comparison purpose. In per target analysis,

we pool the errors regarding to targets and compare targetwise results separately. In

order to find out which methods are significantly different from the others, we perform

Nemenyi test. In this test, all the methods are compared with each other in terms of

their average rank. If the difference between a pair of classifiers is at least different

than a critical value, then these two performances are significantly different than each

other. Running Nemenyi test produces a difference matrix and by using it a compact

representation of the results is given on a scale with groupings. To clarify, methods

that are not significantly different than each other are tied with line. All the results

can be seen in Table A.1 and its subsequent tables given in Appendix A.

3.4.2.1. Screening of Multi-objective Alternatives. We tested the multi objective meth-

ods to find out the one with the best performance amongst alternatives. Figure 3.10 re-

veals that, there is no significant difference in multi objective extensions, yet, RMORF

has the lowest average rank. In other words, RMORF shows superior performance than

its competitors in terms of predictive performance. Hence we proceed our experiments

by considering RMORF. In addition we include MORF in our experiments as it is state

of the art benchmark of multi objective methods.

It is worth mentioning that, any of the multi-objective strategy outperforms

MORF. Results in Figure 3.10 support alternative tree modelling approaches in split

evaluation as they enhance predictive performance of classical tree splits with weighted

sum of errors.
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This result encourages to implement various ranking and selection in split evalu-

ation during tree growth.

3.4.2.2. Per Target Analysis. Considering per target performances, there is a statis-

tically significant evidence to reject equivalence of the algorithm performances (p =

1.106e − 6) (see Figure 3.11). Considering the results for Nemenyi tests, we obtain a

critical difference (CD) value equal to 0.76.

Figure 3.10. Per target multi-objective method comparisons using Nemenyi test.
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Figure 3.11. Per target method comparisons using Nemenyi test.

Considering the connected groups in Figure 3.11, we observe that SC results

the lowest average rank and competitive with state of the art methods. In addition

to that, Figure 3.12 represents a comparison of the errors and it also supports that,

SC mostly makes equivalent or better predictions than ERC as most of the points

scatter around or below of the line. In line with [5], our experiments verify that multi

target approaches cannot significantly defeat single target versions. This is expected

as the base regressor method is so powerful that it can take advantage of datasets’ own

information to a great extent. In addition, SC is significantly better than multi target

methods, yet ERC and ST are not. In other words, a potent single target method can

better utilize the target relations with a proper chaining design. Another remark on

the importance of chain configuration reveals considering MTSC method.
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Default MTSC flow actually complicates the learning process which is a sign of

being cautious about transferring information.

Another observation can be made about the performance of MORF and PMORF

methods. These methods also do not exhibit a significant difference in terms of perfor-

mance. Keeping in mind that, MORF and RMORF methods are based on scalarization

and Pareto approaches, respectively. With reference to the Figure 3.11, RMORF re-

sults superior performance than MORF.

In addition to its competitive performance, SC can aid to explain the way targets

relate to each other. Moreover, sequence information in chain provide interesting infer-

ences such as insights on dependency of the targets. Besides its predictive power, these

chains could be used as tools for verification of prior information about a particular

domain. This knowledge cannot be revealed by ERC therefore from practical point of

view SC offers a valuable additional benefit besides its predictive power.
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Figure 3.12. Per target errors of SC and ERC algorithms.
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3.4.2.3. Per Dataset Analysis. And finally, we compare the method performances con-

sidering per dataset analysis (see Figure 3.13). Per dataset analysis requires averaging

the prediction errors for each dataset. In other words, in per data set analysis we

compared 18 observations which equivalent with total number of datasets used in the

experiments. Half of the datasets have less than or equal to 3 targets and although there

is no significant difference in terms of performances, another remark can be made by

observing ERC, ST and SC are the methods with the lowest ranks. This situation also

supports a better utilization potential of targets by using a suitable chaining strategy

rather than multi task extensions of the selected classifier.

Figure 3.13. Method comparisons using Nemenyi test for per dataset.

3.4.2.4. Effect of Target Cardinality. In order to find out whether the number of tar-

gets are important on the effectiveness of the methods we grouped the datasets into

two.
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Considering the first group, we perform Nemenyi test for the datasets with num-

ber of targets less than or equal to 3 (see Figure 3.14). For such kind of datasets, ERC

yields the lowest average rank however its performance is not significantly different

from the proposed methods. ERC is good at in dealing datasets with less number of

targets as a result of its chaining strategy since it covers the best chain configuration

for sure.

For the datasets with greater number of targets, namely more than 4, SC ob-

tains the lowest average ranks and is significantly better than multi target approaches.

However, considering Figure 3.11 and 3.15, RMORF and ERC performances do not

result in a significant difference which implies, RMORF is as good as ERC in terms of

exploiting target information. As the number of targets grow, contribution of target

interrelation as a side information become more apparent. In a sense, Figure 3.14 and

Figure 3.15 support the effectiveness of use side information in learning algorithms by

the comparison between SC and other algorithms.

3.4.2.5. Synthetic Experiments. We performed an experimental study in order to show

whether multitask learning is a better practice than weighted sum or not. In this ex-

periment we used a synthetically generated dataset with a heterogeneous target com-

bination. We consider a multi-target dataset as heterogeneous if its target sets con-

sist of categorical variables and continuous values, respectively. This specific problem

structure allows us to explore the scaling effect on the learning process since entropy

measures of a classification and a regression problem do not agree without scaling oper-

ation. To clarify, considering the classification task, range of the Gini entropy measure

is simply [0, 0.5]. Likewise, for a regression task with mean squared error measure,

the range is bounded by the continuous target itself. As a result, without scaling an

equally weighted combination of the entropy measures is susceptible to be governed by

the regression task. Or alternatively, considering a pure multi output regression prob-

lem where targets have different ranges, still the target/s with greater upper limit/s

govern the learning process.
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Figure 3.14. Method comparisons using Nemenyi test for datasets with number of

targets less than or equal to 3.
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Figure 3.15. Method comparisons using Nemenyi test for datasets with number of

targets greater than or equal to 4.
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In addition to examination of the scaling effect, we generate the dataset by relat-

ing the targets with each other so that task relatedness would become an opportunity

towards a better modelling practice (see Figure 3.16).

We prefer an XOR problem that is illustrated in Figure 3.16 as we want to test

whether the given methods can benefit from task relatedness or not independent from

type of task. The dataset contains two continuous features in addition to a mixture

of different target types, i.e. one of the targets is categorical and the other one is

numerical. In other words, the problem requires a classification and a regression task

simultaneously. Figure 3.16 represents XOR dataset. We generate the XOR dataset

as follows. We fix the covariances as an identity matrix and create four groups of

multivariate normal random variables with means of [5, 5], [15, 15], [5, 15], [15, 5]. We

used the random variables generated with the first two means and assign the result

of the sum of x1, x2. In addition, we add a Gaussian noise to numerical target y1

and assign a label A for the categorical target y2. Likewise, we consider the random

variable group created by using 3rd and 4th means and subtract x2 from x1. We repeat

the Gaussian normal variable addition to the results and assign a label B for the

categorical target y2. The dataset can be found in [41].

Algorithms applied to XOR dataset are (i) RMORF, (ii) SC and (iii) equally

weighted sum minimizer. Noting that, RMORF is a multitask method and it considers

each target impurity in Pareto optimality sense throughout its derivation. In addition,

SC is a single target method by its definition. And finally, we consider a tree ensemble

that minimizes the sum of the Gini measure and a mean squared error that is scaled

to [0 , 0.5]. Table 3.2 illustrates ten-fold cross validation results in terms of the classi-

fication accuracy of y1 and the RRMSE of y2. Considering classification accuracy SC

yields the best result however its regression quality is outperformed by its competitors.

RMORF and Weighted Sum methods yield similar results in terms of both targets,

yet Weighted Sum slightly outperforms RMORF for classification task and RMORF

outperforms the rest for regression task. These results support that benefiting target

relations changes the learning trajectory towards better.
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Figure 3.16. XOR dataset.

Table 3.2. Test results for XOR dataset (y1: categorical, y2: continuous).

Target RMORF SC Weighted Sum

y1 0.9300 0.9950 0.9475

y2 0.0964 0.1207 0.0980
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3.4.3. Computational Time Analysis

The aim of the analyses in this section is to check whether the theoretical esti-

mations of algorithmic complexities are consistent with empirical results or not. We

run our experiments by using a standard notebook with MS operating system and 16

GB RAM. The system contains four physical cores (i7-7700HQ, 2.8 GHz) and a single

thread used throughout the experiments. We perform our experiments with OES97

dataset since it has adequate number of targets, features and instances to observe the

behaviour of the algorithms when they are subject to various settings.

We consider the following parameters p, m and n as the number of features,

targets and instances, respectively. We set the experimental conditions based on the

changes of these parameters. In each run we randomly select γ ∈ {0.2, 0.4, 0.6, 0.8, 1}
proportions for each of the parameters, and update the dataset accordingly. We col-

lected results for updated datasets and represented the result with their average. All

the values represent an average of five replications. And the ensemble size is fixed to

100 for each run. Observed training complexity of the SC and RMORF algorithms are

given in Figures 3.17 and 3.19, respectively. Likewise, empirical test complexities of

the algorithms are given in Figure 3.21 and Figure 3.22.

3.4.3.1. Empirical Training Complexity. Figure 3.17 and Figure 3.18 represent the

time results based on γ proportions of N and M for learning with SC algorithm.

In line with theoretical calculations, an increment in the number of targets implies

a polynomial increase in corresponding time complexity for SC algorithm. On the

other hand, Figure 3.18 illustrates the experiments based on γ proportions of N and

p. Results given in Figure 3.18 supports the claim that SC algorithm is almost linear

with number of features, namely p. Noting that, usually p � m and a linear growth

in number of features does not yield a polynomial increase in time complexity, hence

we can conclude that SC algorithm is suitable for most of the dataset settings.
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Figure 3.17. Empirical complexity results of training with SC algorithm for OES97

dataset with respect to number of targets.
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Figure 3.18. Empirical complexity results of training with SC algorithm for OES97

dataset with respect to feature proportions.

Figure 3.19 and Figure 3.20 illustrate the time results regarding to N and M

data subsets for RMORF algorithm, and the observed linear increase is consistent

with algorithmic complexity discussed in Section 4.3. In addition to that, Figure 3.20

represents the results for N and p varieties so that it supports the linear increase with

increasing number of features and is consistent with theoretical algorithmic complexity.



48

3 6 9 12 16
0

50

100

150

200

250

m

T
ra

in
 T

im
e 

(i
n 

se
co

nd
s)

 
0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

γ
P

T
ra

in
 T

im
e 

(i
n 

se
co

nd
s)

 

γ
N

=0.2

γ
N

=0.4

γ
N

=0.6

γ
N

=0.8

γ
N

==1

γ
N

=0.2

γ
N

=0.4

γ
N

=0.6

γ
N

=0.8

γ
N

=1

Figure 3.19. Empirical complexity results of training with RMORF algorithm for

OES97 dataset with respect to number of targets.
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Figure 3.20. Empirical complexity results of training with RMORF algorithm for

OES97 dataset with respect to feature proportions.
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It is worth noting that time required to train SC is approximately four times larger

than training RMRF under same conditions. In addition, we observe the superiority

of global models over local models in terms of time complexity as RMORF is a global

learner and SC is a combination of local learners.

3.4.3.2. Empirical Test Complexity. Test time refers to time elapsed in order to make

prediction for a single instance. Considering test complexities, we specifically focused

on effect of the targets as tree traverse for an instance during prediction requires rela-

tively short time. Figure 3.21 shows that as the number of targets increase, it takes a

longer time to make prediction for SC however this increment is in linear with number

of targets. This is expected since it actually requires a gradual derivation of output.

In other words, SC creates a sequence of local learners where length of the sequence is

equal to number of targets.

In contrast to SC test time, RMORF prediction does not get worse as sharp as

SC (see Figure 3.22). This is also not a surprising inference since RMORF produces

multiple results in a-one-off manner. Combining these empirical evidences, our exper-

iments support the benefit of using global learners when time is the major concern.
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Figure 3.21. Empirical complexity results of testing with SC algorithm for OES97

dataset.
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Figure 3.22. Empirical complexity results of testing with RMORF algorithm for

OES97 dataset.
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4. SEMI-SUPERVISED EXTENSIONS OF MULTITASK

TREE ENSEMBLES

4.1. Introduction

Recent advances in hardware technologies and measurement techniques result in

massive accumulation of anonymous data. However, there appears to be a consensus

of opinion that manually labelling the data is a costly and challenging activity. For

example, data identification may require experts with special skills or knowledge, i.e.

in bioinformatics domain, or an abundant budget to evaluate specific designs of expen-

sive experiments [43]. To overcome those issues, researchers have developed various

strategies for gaining descriptive or predictive information. Unsupervised learning is

an option to describe the patterns hidden in data and requires no label information.

Besides unsupervised learning, predictive tasks could be totally based on label infor-

mation, that is supervised learning. However, supervised learners can hardly provide

reliable inferences when limited label information is available. Efforts on utilizing unla-

belled data in predictive tasks result a hybrid of two learning strategies: semi-supervised

learning (SSL).

Both supervised and unsupervised learning methods require optimization of spe-

cific score measures in model derivation. For supervised learning, those criteria could

be sum of squared errors or impurities. For clustering, as a type of unsupervised learn-

ing, distance metrics or other measures quantifying similarity or dissimilarity among

instances might be employed. From SSL perspective, integrating information from su-

pervised and unsupervised sources is a strategy for better utilization of all the data on

hand when it meets i) smoothness, ii) clustering and iii) manifold assumptions [13,18].

To clarify, smoothness assumption results similar labels for instances with similar fea-

ture information. Clustering assumption aids to benefiting from setting decision bound-

aries passing through low density regions. Manifold assumption allows to find lower

dimensional representations of higher dimensional data.
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In this study, our SSL methodology relies on smoothness and clustering assump-

tions. Since the labelled and unlabelled parts share the similar distributional proper-

ties, we aim to exploit abundant unlabelled part to discover statistical and geometric

properties to improve predictive performance for multi-target data sets [15].

To illustrate our motivation, we refer to the example in Figure 4.1. In this exam-

ple, we generated a data set that consists of a single feature (X) and a single target

(Y ). 50 instances are drawn from two Gaussian distributions and they are shown

on Figure 4.1. Four instances are randomly selected to represent the labelled data

and the remaining part are left as unlabelled. Under these conditions, supervised and

semi-supervised strategies for decision trees result in two different splits. Noting that,

supervised strategy merely considers the labelled instances as available information,

however semi-supervised approach enriches its selection by taking into account the un-

supervised knowledge, that is the distributional property of unlabelled part. When

predictive performances of these two models are compared, semi-supervised strategy

helps to enhance the performance of its supervised counterpart by shifting the deci-

sion boundary towards the void area between data groups. This inference hints for a

better predictive performance for semi-supervised strategy against the supervised one.

Despite the proven power of SSL, there are various pitfalls that need special attention

in design of it.

A major shortcoming about distance measures is that they lose their function-

ality in higher dimensions [12]. Obviously, alternative information types other than

traditional distances to measure the affinities (or similarities) between instances are

essential to handle high dimensional data. Moreover, targets and/or features could be

in a mixed form of categorical, ordinal and continuous values, and distance notion is

not well defined for mixed type of values. As a consequence, traditional distance based

calculations are susceptible to get easily complicated by types of feature or target

values.

In SSL, though sequential use of supervised and unsupervised modules does not

pose problem, their simultaneous usage deserves careful handling.
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Figure 4.1. Splits generated by semi-supervised and supervised trees.
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To clarify scales of supervised (e.g., sum of squared errors) and unsupervised (e.g.,

distance between two instances) learning criteria which are used in model derivation,

do not need to agree. Data transformation may aid to handle those issues yet it is

undesirable due to several reasons. The best transformation methods that fits the

data cannot be known in advance, hence it requires additional effort to reveal the

optimum technique [44]. In addition, it may risk of changing the statistical properties

of the data [12]. To exemplify, discretization of continuous values may result in loss

of information or converting country or gender type of information into numbers does

not result comparable outputs as before. Even some type of linear transformations do

not harm the structural properties of the values, they fail to handle values that are

out of range [45]. Yet another issue with data transformation stems from omitting

the similarity informations hidden in original values and as a consequence structural

characteristics of the data sets cannot be preserved [46]. To conclude, handling scale

differences is a worthwhile challenge to consider in learning problems.

Although existing SSL methods are well-established, they can be criticized as

their design allows to model single target data sets [16]. Very few SSL studies can be

found for multi-target data sets nevertheless they can only handle either homogeneously

categorical [17, 19], or continuous targets [16, 20, 47]. Aforementioned approaches can

be criticized as they train the learning model based on a weighted sum form as a

combination of normalized score measures separately.

From side information point of view, exploiting the target relations via multi-

task learning (MTL) rather than individual calculations, may reinforce the model’s

prediction quality [4]. Unlabelled part of the data can be considered as another source

of side information as it provides insights about the data in addition to labelled part.

We argue that, combining multi-task models in semi-supervised setting assists for a

better learning trajectory specifically when access to the labelled data is limited.

As an instance of multi-task learning model, multi-objective adaptation of deci-

sion trees allows to integrate information for multiple tasks without being challenged

by scaling issues.
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Decision trees are known to be handy as they can handle high dimensional data

and allows to create similarity measures based on the possible partitions. In addition,

they do not make any assumption about the underlying structure of the data. However

a single decision tree may not be enough to explore and exploit the most of the data [48].

Besides, one single classifier may not be enough to capture several local distributions

since in higher dimensions cluster structures may not be detectable and scanning all

possible feature combinations is not feasible [19]. Moreover, a single classifier may not

result in stable models and may be sensitive to parametrizations. Ensemble learning

is proven to be a working alternative in addressing those problems [49].

Similarity information between instances is an important by-product of tree en-

sembles and constitutes the linchpin of our study. We propose to derive the unsu-

pervised criteria by using the similarity information delivered by total random forests

[27, 29]. By doing so, we aim to explore the unsupervised information without being

challenged by features with scale differences. In addition, considering data sets with

large number features similarity information provides more meaningful comparisons

than classical norm type distances at higher dimensions.

In this study, we propose to extend multi-objective supervised learning strategy

to its semi-supervised version by including the clustering criteria to the supervised

criteria set in an ensemble setting.

Our experimental results show that proposed approaches are promising in semi-

supervised applications without being challenged by scale differences either in targets

or features.

The rest of Chapter 4 is organized as follows: Section 4.2 provides the relevant

literature and positions our study in the field. Section 4.3 introduces the proposed semi-

supervised methods. We report the experimental results in Section 4.4 and discuss the

findings.
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4.2. Related Work

This section focuses on semi-supervised extensions of multi-target tree ensem-

bles, hence the scope of literature review is limited to SSL applications of tree learners.

Decision trees are often used for supervised learning tasks, however handling unsu-

pervised tasks is possible with minor modifications. To clarify, in training of classical

supervised trees target related loss functions are optimized. Since there exists no tar-

get information in unsupervised tasks, error functions should be replaced with some

criteria which measure the partition quality from unsupervised point of view. Those

functional forms could be used to measure either within cluster variation [50] or some

probabilistic entropies [2] in the partitions. Noting that supervised trees can be used

for unsupervised tasks yet those approaches are beyond scope of this paper [51].

As an unsupervised learner, clustering trees assume the data as a hierarchy of

clusters. As an earlier attempt, study given in [50] constructs trees by reducing intra-

cluster variation at each split without considering target influence. In [52], trees are

created via a feature homogeneity evaluation procedure unlike classical target based

losses. In [53], attributes contribute the tree construction in addition to target guid-

ance. Their study considers multiple classification tasks and combines two kind of

information in a weighted sum form. Their work considers supervised setting for clas-

sification tasks and its performance is not well defined for data sets with scarce label

information.

Semi-supervised RFs are used for co-training purpose in [54]. Co-training is a SSL

technique where separate learners assists to increase the labelled instances by relying

their most confident predictions. Another semi-supervised RF study can be found

in [55]. In this study a compact but non-convex loss function is defined for the node

splits. In order to solve the optimization problem, a deterministic simulated annealing

heuristic is used therein. Study given in [55] is criticized as the classifier is susceptible

to overfit and it does not provide robust results. This issue stems from its solution

procedure since it suffers from being sensitive to inefficient initialization and getting

captured to local maxima [56].
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Another semi-supervised RF construction procedure is given in [56]. They eval-

uate split quality by kernel based density estimation function. This study is valid for

data sets with homogeneously numerical features hence cannot be applied for mixed

type of data sets. Moreover, they consider a classification problem for single target

setting which cannot be effectively used for multi target problems. Study given in [57]

is a more recent SSL application for single target classification problem. This study

augments its labelled data pool with self training and uses standard decision trees as

base learners. They train trees iteratively and at each iteration the tree enlarges its

training set with its own most confident predictions.

Utilizing multi-objective structures is another approach in modelling SSL prob-

lems. One of multi-objective SSL attempt is given [58]. In this study language mod-

elling problem is considered as a sum of two Bayesian risk measure. They use ε-

constraint method to solve their model. In [59] a self-training based RF is used for

multiple target regression problem. Their base learners are predictive clustering trees

given in [50] where they do not consider target information in classifier derivation.

They evaluate the reliability of label predictions with an approximation of variance of

errors and select the most confident labels to augment the labelled data pool.

In more recent studies, multi-objective predictive clustering trees are given in [16]

and [17]. In those works, the authors design the split function as a weighted sum of

supervised and unsupervised impurities for multi target regression and classification

problems, respectively. In [16], authors extend the classical predictive clustering trees

(PCT) into their semi-supervised version by including the target contribution in tree

derivation. Classical PCTs handle supervised learning tasks and in training PCTs a

score measure based on reduction of target variances is used. Here, individual changes

of the variances are calculated and an overall difference is obtained by averaging those

values. Split value with the largest variance reduction on the average is selected as

the best partition and it is applied to obtain child nodes. Authors update supervised

PCT split score to its semi-supervised version by adding a weighted term to control

the change in terms of features in parallel with targets.
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Reduction in average of individual variance and Gini values are considered for

numerical and categorical features, respectively.

Our study departs from studies given in [16, 17] in different aspects. First of

all, our aim is to avoid setting of weight parameters as they introduce additional

processing overhead. Clearly, classifier performance depends on accurate estimation of

those parameters which may not be an easy task for users. Moreover, those studies

can handle pure classification or regression problems. Our second aim is to derive

a SSL strategy so that it can handle mixed type of targets simultaneously. Third, in

those studies features individually contribute in terms of their variances and impurities

for numerical and categorical data, respectively. We consider cluster homogeneities

and the goodness of separations simultaneously. By doing so, our strategy complies

with clustering assumption and resembles to margin maximization approaches and

serves towards better partitions by favouring less dense areas in a tractable fashion.

In addition, not to transform either data itself or the values appear in split function is

our another concern.

4.3. Methods

4.3.1. Semi-supervised Multitask Random Forests

In this section we introduce SSL algorithms designed for decision trees. We will

describe the modified split function and proposed labelling policy as well. We develop

this method to simultaneously handle mixed type of inputs and outputs for multi-task

tree ensembles in semi-supervised setting. We employ multi-objective adaptation of

supervised trees so that we can seamlessly extend the split function with unsupervised

information inclusion. Supervised score measure used in multi-objective trees consists

of t values. Each value returns a measure for partition quality in terms of sum of

squared error (SSE) or Gini index for continuous and categorical targets, respectively.
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Assuming a child node r ∈ {left, right}, SSEj
r is the sum of squared differences

of target value (yij) and the mean response (ŷij) of instances contained thereof:

SSEr =
∑

i∈noder
(yij − ŷij)2 (4.1)

For categorical targets, Gini index Gj
r for a node r assesses the node impurities by

using relative class frequencies, prc, r ∈ {left, right} and c ∈ C:

Gj
r =

∑

c∈Cj

(prc(1− prc)) (4.2)

Values in the middle of each consecutive observation selected for split performance

evaluation. By using each split candidate, SSE and Gini indices are calculated and

combined in a vector form, that is Ωs. Assuming first s of m targets are categorical and

remaining targets are continuous, then Ωs vector for each split candidate is represented

with Equation (4.3):

Ωs = {G1, . . . , Gs, SSEs+1, . . . , SSEm} (4.3)

In order to convert a completely supervised score to a semi-supervised one, we combine

Ωs with unsupervised scores (Ωu). We assume each child node as a cluster, hence

cluster quality indicators are included in split evaluation. We employ two different

unsupervised measure set.

4.3.1.1. Unsupervised Scores with Euclidean Distance. Ωu criteria consist of i) dis-

tance between node medoids, ii) information gain based on Shannon entropy (see

Equation (2.5)), and iii) distance between nodes. Criterion i aids to keep the intense

areas of the clusters as separate as possible. Criterion ii aims to provide a measure

for cluster compactness [2]. Criterion iii acts like a margin score similar to the min-

linkage in derivation of hierarchical clustering. In other words, Criterion iii refers to

the distance between the closest instances from two data groups (in this case nodes).
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For each partition these values are calculated and Ωu part of the overall score

measure is calculated. Noting that, these calculations are valid when the features

are continuous. In order to handle this issue, we replace Euclidean calculations with

dissimilarity measures as an alternative. Henceforth, we name the semi-supervised

algorithm based on Euclidean distance as Euclidean random forest (ERF).

4.3.1.2. Unsupervised Scores with Dissimilarities. Similarity information of the in-

stances are derived by using total random forests before creating the semi-supervised

model [29]. Following that, similarity information is divided by number of trees and

then converted to dissimilarity information by using the relation proposed by [27] (See

Equation (4.4)).

DISij =
√

1− SIMij (4.4)

Concerns and structures of criteria i and iii remain the same yet we consider the

dissimilarities rather than Euclidean distance in their derivation. Since dissimilarity

measure is not challenged by scale issues, we consider to minimize the deviations from

cluster medoids similar to sum of squared error calculations as an alternative for clus-

ter compactness. Figure 4.2 illustrates a toy example for dissimilarity calculations.

Assuming a group of three trees are created for a dataset with 8 instances. Rectan-

gles and ellipticals refer to root or intermediate nodes and leaves, respectively. We

denote each instance on the leaf where it falls. To exemplify, considering the tree on

the leftmost of Figure 4.2, instance 1 and 2 terminates at the same node. Visit counts

matrix represents number of times meet at the same leaf among three trees. Proximity

matrix is obtained by simply dividing by three each element appears in V isit count

matrix. And finally, by using the relation given in Equation (4.4), we obtain well-known

Dissimilarity matrix presented by [27].



63

S0

S1

1, 2 3, 4

S2

5, 6 7, 8

S0

S1

1, 4 5, 8

2, 3, 6, 7

S0

1, 2, 3 S1

5, 6, 7 4, 8

Visit counts=




3 2 1 1 0 0 0 0

2 3 2 0 0 1 1 0

1 2 3 1 0 1 1 0

1 0 1 3 0 1 0 1

0 0 0 0 3 2 1 1

0 1 1 0 2 3 2 0

0 1 1 0 1 2 3 1

0 0 0 1 1 0 1 3




→ Proximity=




1 0.67 0.33 0.33 0 0 0 0

0.67 1 0.67 0 0 0.33 0.33 0

0.33 0.67 1 0.33 0 0.33 0.33 0

0.33 0 0.33 1 0 0.33 0 0.33

0 0 0 0 1 0.67 0.33 0.33

0 0.33 0.33 0 0.67 1 0.67 0

0 0.33 0.33 0 0.33 0.67 1 0.33

0 0 0 0.33 0.33 0 0.33 1




Dissimilarity=




0 0.57 0.81 0.81 1 1 1 1

0.57 0 0.57 1 1 0.81 0.81 1

0.81 0.57 0 0.81 1 0.81 0.81 1

0.81 1 0.81 0 1 0.81 1 0.81

1 1 1 1 0 0.57 0.81 0.81

1 0.81 0.81 1 0.57 0 0.57 1

1 0.81 0.81 1 0.81 0.57 0 0.81

1 1 1 0.81 0.81 1 0.81 0




Figure 4.2. A toy example for dissimilarity matrix calculations.

Once we calculate unsupervised criteria Ωu, we combine them with Ωs and obtain

semi-supervised split score Ω = {Ωs,Ωu}. We represent the semi-supervised algorithm

based on total random forest proximities with TRF.

Despite its several merits, multi-criteria comparison may suffer from curse of di-

mensionality. Proposed design is susceptible to the given phenomena when the number

of targets inflates. For example, a data set with 16 targets is associated with super-

vised criteria vector Ωs consists of 16 values. To cope with this issue, we provide an

alternative method based on random selection of the targets in node split evaluation.

To clarify, in TRF all the targets contribute to the supervised learning criteria Ωs. In

the alternative version, we randomly select three targets (if available), and consider

their individual SSE values.
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In other words, if the number of targets less than or equal to three, procedure

uses all the targets’ SSE values, otherwise it uses a random three of those values.

Henceforth this strategy is called Random TRF (R-TRF). Noting that, at each split

selection, this approach implicitly assigns zero weights to unselected targets.

4.3.1.3. Training. Training procedure is based on the algorithm given in Figure 4.3

with modified vector of split scores Ω. Combination of supervised and unsupervised

criteria results the overall score measure. For each criterion, values are arranged in

ascending order and they are associated with their ranks. Candidate with the lowest

average rank is selected and child nodes are created recursively until a stopping criterion

is met.

Require Training set D with n instances, stopping conditions

if termination criterion then

Create leaf node and label it with its target averages;

Return leaf node;

else

Draw a P ∗ random subset of the input variables;

Examine all possible binary splits for each of the input subset P ∗;

Create the set of first frontier with respect to the quality measure in vector

form;

Select the split with minimum average rank;

Apply the best split and create left node and right node;

Return Recursive Partitioning(left node);

Return Recursive Partitioning(right node);

end if

Figure 4.3. Rank Based Semi-Supervised Tree Algorithm.
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4.3.1.4. Prediction. Another key point of a SSL algorithm is prediction policy em-

ployed therein. In order to obtain a prediction for an unlabelled instance, it is enforced

to traverse the tree until it visits a leaf node. Tree traversal may terminate in two

different type of leaves:

• Case 1: Some of the instances in a leaf have their own labels.

• Case 2: All instances in a leaf are unlabelled.

We directly associate yi target values of originally labelled instance xi, to the leaf

that belongs to (Case 1 leaf). Hence, any instance terminates at a Case 1 leaf is

associated with available target information. Since Case 2 leaves do not have any

labelled instance, those leaves inherit the label information of its parent node.

4.3.2. Algorithmic Complexity

Computational complexity of a standard decision is O(PN logN) where P and

N refer to number of features and instances, respectively. In our models we use
√
P

features in split evaluation. In addition, we consider each of the target one by one,

hence complexity of computations at each split becomes multiple of number of targets,

that is M . Since we also need to consider an additional U number of unsupervised

criteria at each split, overall computational complexity of a single TRF tree O((M +

U)
√
PN logN). Assuming ensemble size is set to J , complexity of TRF is concluded

as O(J(M + U)
√
PN logN).

4.4. Experiments and Results

4.4.1. Experiments

Data set properties are given in Table 4.1 and they are available in website given

in work of [5]. We compared our algorithms with semi-supervised PCTs presented

in [16] as the software is accessible and their results provide competitive benchmarks.

We refer the reader to details of the algorithm given in [16].
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Following the setting given [16], we consider the performance of a single PCT and

PCT ensembles (PCTF). Benchmark algorithm is implemented in WEKA and can be

found in website provided in [16]. In line with their study, 100 bagged trees are used

with the same parametrizations given therein. We propose multi-task semi-supervised

forests with different unsupervised information based on i) Euclidean distances and ii)

dissimilarities between instances. We employ ten-fold-cross validation with an ensem-

ble size of 100 trees. We define stopping condition by setting maximum number of

labelled instances to one. We implement the methods in MATLAB 2016A. For similar-

ity calculations we use a ready implementation of total random forests of 100 trees in

Python environment with default parametrizations [29, 60]. All the experiments were

performed by using a standard notebook with MS operating system and 16 GB RAM.

The system contains four physical cores (i7-7700HQ, 2.8 GHz) and a single thread used

throughout the experiments.

Code and data files are shared in a github project for the sake of reproducibility

[41]. In addition, for fair comparison we use the same training and testing instance

sets for all methods.

Table 4.1. Datasets for semi-supervised experiments.

Dataset Samples (N) Features (p) Targets (m)

ENB 763 8 2

Water Quality 1060 16 14

OES10 403 298 16

OES97 334 263 16

CalHouse 1032 7 2

MP5 700 80 4

MP6 700 80 4

We construct the set of labelled instances by randomly selecting 5%, 10% and

20% of the data and use the remaining as unlabelled. Following the scenarios given

in [16], we evaluate the performances for two settings.
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Figure 4.4. Transductive evaluation illustration.

First experiment series are designed for tranductive evaluations where all the

unlabelled data is used in training and the performances are reported based on those

data which are previously seen in model derivation (see Figure 4.4). Second exper-

imental set-up is designed for inductive evaluation where 10% of the labelled data

initially is kept apart from learning phase and the performance results are collected

based on those unseen part (see Figure 4.5). Noting that, those evaluation settings

are not directly comparable as their training and testing sets are different that each

other. In addition, performances results are based on previously seen examples, hence

inevitably results are biased in transductive evaluation.

4.4.2. Results and Discussions

We want to compare performances of multiple algorithms for multiple data sets

hence we use the statistical methods proposed in [42]. In order to understand whether

the difference in performances of the algorithms is statistically significant we employ

Friedman test which is a non-parametric version of ANOVA. Following that, we use

Nemenyi test to find out the whether an algorithm significantly outperforms the others.
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Figure 4.5. Inductive evaluation illustration.

Nemenyi test represents average ranks with a scale and on this scale algorithms with

no statistical difference in terms of predictive performance are connected each other.

4.4.2.1. Out-of-Bag Analysis. In order to understand the effect of semi-supervised

strategy from feature and target perspectives, we analyse out-of-bag (OOB) error

curves. To calculate OOB error for a sample, predictions are taken from trees which

have not seen that sample before in its training. We use a data set with eight features

and two targets (ENB data set) for OOB analysis. Both of two targets and five out of

eight features are continuous, and three of them are ordinal. In OOB experiments we

always set proportion of the labelled instances to 10%. In Figure 4.6, RRMSE values

for each target are given on the left. As it is expected, RRMSE curve for each target

decreases and tends to saturate as the size of the ensemble grows. The results are

consistent with the inversely proportional relation between OOB error and ensemble.

In Figure 4.6, sum of squared error (SSE) for features are given on the right.

Similar to estimations made for targets, we calculate the sum of squared errors for

features. Our purpose is to understand whether the semi-supervised model captures

the distributional properties of the data or not.
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Apart from ordinal features, Figure 4.6 shows that deviations from correspond-

ing average value decrease following a peak point. That behaviour supports model’s

ability of capturing the distributional properties of the data hence it suggests about

the strength and contribution potential of the unsupervised criteria to the learning

process. Predictive performances are reported with Relative Root Mean Squared Error

(RRMSE). RRMSE of a learning model hj is given in Equation (3.1)
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Figure 4.6. Out of bag errors for TRF algorithm using ENB dataset.

4.4.2.2. Robustness Analysis. In order to analyse the robustness of the proposed

method in terms of target numbers, we compared TRF method with R-TRF. Fig-

ure 4.7 demonstrates a pairwise comparison of RRMSE values for transductive and

inductive settings. Transductive experiments refer to predictive performance for the

unlabelled data used in training. In inductive experiments totally unseen (test) in-

stances are under consideration. We observe that, almost all error values accumulate

around the y = x line. This observation implies consistent results for the data sets

with related targets. We can recommend R-TRF for such data sets since it has a lower

computational complexity than TRF with a similar performance.



70

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(a)

R
−

T
R

F

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(b)

R
−

T
R

F

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(c)

R
−

T
R

F

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(d)

R
−

T
R

F

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(e)

R
−

T
R

F

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

TRF
(f)

R
−

T
R

F

Figure 4.7. RRMSE values of R-TRF and TRF for experiments with (a and d) 5%,

(b and e) 10% and (c and f) 20% labelled samples. (Upper and lower panels represent

transductive and inductive tests, respectively.)

4.4.2.3. Transductive Evaluation. In transductive experiments test sets consist of all

unlabelled instances used during training hence the RRMSE values obtained are not

suitable for comparison with respect to labelled proportions. In all Figure 4.8, Figure

4.9 and Figure 4.10 methods with no significant difference are connected with a bar

and their positions on the scale represent the ranks of their predictive performances.

However, a common observation based on the scales given in Figure 4.8, Figure 4.9 and

Figure 4.10 is that, PCT for a single tree is always ranked as the worst and significantly

outperformed by other methods. In line with that, in Table A.2 and Table A.2 we ob-

serve that all ensemble methods over-perform PCT in terms of predictive performance.

Considering those inferences, use of ensemble models can be recommended if data sets

permit.
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Considering the connected groups and ranks given in Figure 4.8, Figure 4.9 and

Figure 4.10, at least any two of ERF, TRF or R-TRF methods perform significantly bet-

ter than PCTF. Noting that, unsupervised information is exploited as feature variances

and/or Gini index in PCTF method. However proposed methods benefit unsupervised

information in forms of Euclidean distance and dissimilarity measures, respectively.

The results suggest that unsupervised information is captured and smoothness as-

sumption of SSL is modelled better when those forms are used. Figure 4.11 illustrates

the pairwise comparison of ERF and TRF algorithms in order to understand the effect

of distance and similarity based calculations. Comparing results represented in Figure

4.8, Figure 4.9 and Figure 4.10, and Figure 4.11, particularly in Figure 4.11 (c), we

could observe that due to high sensitivity of Nemenyi test, it returns ERF algorithm

as the best one, i.e. differences between RRMSE values of the algorithms mostly occur

second or third digit after decimal. However by visual inspection of Figure 4.11, we

notice that almost all of the RRMSE values scatter around or on the line which implies

these algorithms perform almost equivalently.

In addition to RRMSE values given Table A.2, rankings shown on Figure 4.8,

Figure 4.9 and Figure 4.10 imply that processing unsupervised information as a whole

by means of distances or dissimilarities at instance level lifts the predictive performance

of models with individual feature treatment. Multi-task structure of ERF, TRF and

R-TRF models helps to exploit task relations. Besides, feature interactions cannot

be fully utilized when they are separately involved in training. As a consequence,

specifically dissimilarity information appears to be a handy alternative for integrating

feature characteristics for a better extent.



72

Figure 4.8. Nemenyi test results for transductive setting for data sets given 5%

labelled instances.

Figure 4.9. Nemenyi test results for transductive setting for data sets given 10%

labelled instances.
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Figure 4.10. Nemenyi test results for transductive setting for data sets given 20%

labelled instances.
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Figure 4.11. RRMSE values of ERF and TRF for transductive setting for

experiments with (a) 5%, (b) 10% and (c) 20% labelled samples.

4.4.2.4. Inductive Evaluation. In inductive tests similar to ten-fold cross-validation,

we keep one-tenth of the instances as test set and separate them from training process.

In line with transductive tests, we compare the algorithm performances by changing

proportion of the available labelled part. All three scales given in Figure 4.12, Figure

4.13 and Figure 4.14 represent the ranks of the predictive performances.
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Noting that, algorithms without significant difference in terms of RRMSE are

combined with a line.

In order to understand whether the differences between performances given in

Table A.3 are significant or not, we perform Friedman test. Tests result in extremely

small p-values (2.2e-16), hence we cannot reject the significance of differences in per-

formances. Similarly to transductive experiments, PCT is the method with the lowest

predictive performance. We can observe from Figure 4.12, Figure 4.13 and Figure 4.14

that TRF is always ranked first and TRF method is not connected to any other meth-

ods used except R-TRF. In other words, TRF and R-TRF significantly outperform the

other alternatives. In particular, when the number of labelled instances grows, PCTF

performances shift towards a better position. Contrary to transductive observations,

ERC is outranked by other ensemble methods in inductive setting. This could stem

from Euclidean calculations’ tendency to overfitting to the unsupervised part which re-

duces attractiveness of ERC for inductive experiments. In order to be cautious about

the high sensitivity of Nemenyi tests, we provide graphical illustrations of RRMSE

values for ERF and TRF algorithms in Figure 4.15. All sub-figures (a), (b) and (c) of

Figure 4.15 clearly shows the over-performance of TRF compared to ERF as almost

all values locate above the line.

Similar to transductive setting, we can observe TRF and R-TRF’s success in inte-

grating task relatedness with feature interactions in inductive setting, too. Predictive

accuracy of these two methods in experiments with lower number of labelled instances

suggests that, TRF and R-TRF models gain higher benefit from semi-supervised learn-

ing. This indicates the importance of treating the features in a holistic approach for

semi-supervised method design, rather than as separate parts.
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Figure 4.12. Nemenyi test results for inductive setting for data sets given 5% labelled

instances.

Figure 4.13. Nemenyi test results for inductive setting for data sets given 10%

labelled instances.
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Figure 4.14. Nemenyi test results for inductive setting for data sets given 20%

labelled instances.
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Figure 4.15. RRMSE values of ERF and TRF for inductive setting for experiments

with (a) 5%, (b) 10% and (c) 20% labelled samples.

4.4.3. Computational Time Analysis

We design a series of experiments to check whether theoretical complexity of the

TRF algorithm agrees with empirical analysis.
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We use OES97 data set since the feature, target and instance cardinalities are

large enough to observe changes when various conditioning defined over them. Ex-

periments devoted to time analysis were performed under the same technological con-

ditions with previous predictive performance analysis. We randomly select γ pro-

portion of the features, targets and instances. Range of the γ is set as follows:

γ ∈ {0.2, 0.4, 0.6, 0.8, 1}. Average of the results obtained by using a TRF ensemble

with 100 trees are reported.

Figure 4.16 represents the time elapsed to train a TRF ensemble. On the left

hand side of Figure 4.16, we fixed the number of targets to 16 for all experiments. We

changed the number of instances (features) by taking a random γN (γm) proportion

of the whole instance (feature) set. We can observe that train time is almost linear

with number of features which is consistent with discussions given in Section 4.3.2.

Likewise, on the right hand side of the Figure 4.16, we illustrate the required training

times where number of features is equal to 263 for all experiments. We can observe a

linear increment in training times as the number of targets grows which supports the

proposed algorithmic complexity.

Calculations for node splitting procedure constitutes the bottleneck of the com-

putational burden. Assuming the proportion of the features we used in training set to

80%. We observe that, changing the number of training instances results a larger range

and considerable differences in required times. However, the number of instances used

in training yield more compressed rather than elongated results. Moreover, elapsed

times tend to accumulate near to the maximum value unlike the cases given on the left

hand side of the Figure 4.16. This characteristic stems from relatively smaller number

of split evaluations required values given in the left hand side of Figure 4.16.

Empirical test complexity refers to elapsed time to make a prediction for an

instance. This operation requires an instance to traverse 100 trees. Prediction of

an instance is nearly instantaneous and after spike the differences between times are

almost negligible (see Figure 4.17).
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We clearly observe the time advantage of using a global model rather than local

one since we would be collecting the predictions one by one from each local learner

which would increase the time for prediction. In addition, same advantage of using a

global learner is valid for train times.
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Figure 4.16. Empirical complexity results of training with TRF algorithm for OES97

dataset.
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5. AN ENSEMBLE-BASED SEMI-SUPERVISED

FEATURE RANKING FOR MULTI-TARGET PROBLEMS

5.1. Introduction

Handling predictive tasks for multi-target datasets requires addressing some cer-

tain properties of those datasets. As it is mentioned and shown in Chapter 3, resolving

scale inconsistencies and including target interrelations, have significant roles in suc-

cess of the classifiers for supervised learning tasks. While dealing with semi-supervised

learning applications, considering those properties in building a classifier provides a

better learning practice, and therefore a better predictive performance (see Chapter

4). Another challenge that needs to be resolved for multi-target predictive tasks, stems

from feature characteristics, i.e. high-dimensionality, irrelevance and redundancy.

Redundant and irrelevant features with high-dimensionality may cause the learn-

ing model to fail to deliver the desired results. Therefore, combination of those two

issues can be thought as highly problematic. Feature selection (FS) or ranking (FR)

methods help to identify the convenient features and utilize those features in model

derivation to enhance the predictive performance of learning model. Moreover, FS

methods aid to reduce the dimensionality and as a result they make saving in memory

and time. Noting that, numerous studies show the benefits of FS use in both SL and

SSL algorithms for single target problems [61] and in SL algorithms for multi-label clas-

sification tasks [62], however very few studies can be found for multi-target regression

cases [63].

Considering the aforementioned challenges, we focus on to develop an alternative

semi-supervised score for FS purpose that does not get adversely affected by scale dif-

ferences. In Chapter 4, decision trees are extended to a multi-task and semi-supervised

form without using weighting schemes or scaling operations. In doing that, we employ

a rank based heuristic that selects the candidate with the highest rank as split point.
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We set semi-supervised trees as proposed in Chapter 4 as base classifier, we

estimate the importance of the selected feature immediately after a splitting step by

including information gains from both supervised and unsupervised parts. Once an

ensemble is constructed, average of the feature importances are calculated and they

are listed in an descending order. After selecting varying proportion of the features,

we run the predictive clustering trees [36, 50] with those features and compared with

benchmark FR methods [63]. We use predictive clustering trees as base learners as

benchmark scores are embedded in their learning process and they present a well-

known SSL approach for multi-target learners. Our experimental studies show that

the proposed method performs better compared to its state-of-the-art. Specifically,

proposed method significantly improves the predictive performance compared to the

cases used entire feature set. Besides, proposed FR score outperforms the benchmark

scores as the labelled data increase.

The rest of the Chapter 5 is organized as follows: Section 5.2 presents related

work and the proposed method is positioned here. Section 5.3 delivers the proposed

methodology. Next, in Section 5.4 experimental set-up is given and the results are

discussed.

5.2. Related Work

We consider semi-supervised FS and FR methods for multi-target problems hence

we limit the related work in respect thereof. The distinction between FS and FR can

be expressed via the way they are used in reducing the number of features. The former

group of algorithms are used to identify the subset of the most powerful features that

improves a learning model’s performance yet the latter group’s output is an order of the

features which considers the relation between the learning tasks and the features [23].

The choice of a taxonomy for dimensionality reduction methods depends upon different

concerns.
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In [64], those concerns are listed as i) learning forms (supervised, unsupervised

and semi-supervised), ii) connection between learning model and FS method (filter,

wrapper and embedded), iii) evaluation measures (information theoretic, distance-

based, dependency-based), iv) search types (forward increment, backward elimination,

random search), and v) produced results (subset, rank).

We briefly present SSL related FS and FR strategies following the categorization

given in [61]. Basically, filter methods require a score measure to evaluate various

characteristic of the features. Those characteristics could be based on feature-target

relation, i.e. Fisher score and pairwise linkages, or based on properties of the feature

in an individual or a relative form, i.e. variance, Laplacian score. To make those scores

suitable for SSL, they require proper modifications to include the missing unsupervised

or supervised information. Filter methods interact with the learning algorithm in a

sequential manner, in other words they return a ranking of the features and a certain

amount of them should be selected and those values are used in training.

Wrapper methods are used for in the search of best subset of features in an

iterative manner. They require training the learning model multiple times similar

to self-training or co-training in SSL approaches. Likewise, recursive elimination of

the features is also another strategy used as a wrapper technique and unlike ensemble

learning the model is trained until all features are assigned with a rank [65]. Embedded

methods return the most useful subset or a ranking of the features as an output of the

learning algorithm. In these methods, learning models by-products are exploited such

as out-of-bag (OOB) estimations for an ensemble [66] or a regularization parameter in

the loss function determines the selected features [67]. Each of those approaches have

certain advantages and disadvantages. To summarize, filter methods are known to be

fast yet their predictive performance is lower compared to others. Wrapper methods

have superior performance yet they are disadvantageous from computational point

of view. Since feature selection is not an isolated phase from training process, they

have superior accuracy than filter methods. In addition, they do not require recursive

training unlike wrapper methods hence their computational burden can be considered

as lower.
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Majority of FS and FR techniques are designed for handling either numerical

or categorical values. In addition to mixed features, those algorithms require weight

calculation or transformation operations for targets since supervision of the outputs

is required. Noting that, decision trees are able to handle mixed features and various

ways to exploit trees for FS and FR are given in the literature [68]. In [27], random

forests (RF) are used in estimating variable importances (VI). In calculating VI of a

feature, first an RF is created and following that selected feature is permuted for OOB

instances. Those instances are pushed down the trees and an overall error is calculated

for the selected feature. The higher error outcomes imply the higher importances.

In [66], they extend the [27]’s work to semi-supervised setting as VI given therein is

valid for supervised application. They use a self-training where the most confident

unlabelled instances are included to the labelled examples set. The idea of combining

self-training and ensemble learning for FS appears in [69]. Similar to [66]’s study, they

enlarge the set of labelled examples with the most confident predictions however they

perform FS upon completion of semi-supervised training phase. A natural outcome of

self-training is propagation of earlier estimation errors throughout the training. This

issue may weaken the outcome either in embedded or wrapper FS.

Another ensemble application of FS with SSL is given in [70] where a boosting

mechanism is employed. Increasing the labelled instances depending on the most con-

fident estimations is not limited with self-training approaches, co-training also works

in a similar way with a slight difference. Co-training requires separate datasets and

classifiers to train on those datasets are used to feed each other. In [71], a co-training

scheme is used in identifying the feature relevancies. Despite slight differences in their

FS and FR procedures, they are all able to handle single-target problems.

Apart from treating an MTP as a combination of single-target models, few studies

on FS and FR applications with multi-target algorithms can be found for classification

problems [23, 72, 73]. However, for regression cases the only study uses a multi-target

strategy is given in [63] for supervised setting. To the best of our knowledge, our

study proposed here presents the first multi-target application of semi-supervised FR

for regression problems.
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Ranking strategies given in [63] provide the several score variants embedded in

predictive clustering trees (PCT). Ensembles of PCTs are able to handle MTP as a

weighted sum of target information forms the score function in derivation of PCT [9].

In their study, [63] show the benefit of multi-target strategies in terms of computational

performance when they are combined with various scores. Those scores are collected

throughout the derivation of the PCTs and are simple heuristics using such as depth

or information gain at a given split. In addition to saving time, those algorithms are

competitive from predictive power perspective compared to their single-target versions.

Besides, the same scores are extended to SSL models for multi-target classification

problems in [23]. Their study sets the benchmark models for semi-supervised MTPs.

5.3. Methods

In this section, we refer the preliminaries on derivation of decision trees for super-

vised and unsupervised tasks as we develop a semi-supervised FR mechanism based on

combination of those ideas. Details on use of decision trees for supervised and unsuper-

vised learning are given in Section 2.1.2 and Section 2.1.4. We use the semi-supervised

multi-objective trees given in Chapter 4 as base learner. Hence we refer Section 4.3 for

details on derivation of semi-supervised trees.

5.3.1. Feature Ranking

We propose a multi-objective score that captures both supervised and unsuper-

vised characteristics of the features (see Figure 5.1). Separate calculation of feature

contributions in learning processes via Gini index or other type of indicators, is a trivial

option. However, as it is shown in Chapter 4, semi-supervised applications are better in

reflecting the necessary data characteristics. Hence, we aim to provide a unified form to

capture the feature contributions that considers potential semi-supervised contribution

throughout the training phase.

In evaluating performance of a solution consists of several criteria, various indi-

cators are proposed in multi-objective optimization domain [74].
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In that domain, usually a set of optimal solutions exist and is characterized as

Pareto front which consists of solutions that are not dominated by any other feasible

decision vector. A specific category of aforementioned indicators are based on the

convergence to Pareto frontier and in doing that, usually reference points are used.

Following that, we build a scoring strategy based on evaluation of the performance a

feature similar to the approximation to Pareto frontier by using ideal point. An ideal

point refers to the minimum solution of each single criterion and in our calculations

we fixed it to origin. At each split step we calculate a semi-supervised score (SSS)

subsequent to split decision.

Require Training set D with n instances, stopping conditions

if termination criterion then

Create leaf node and label it with its target averages;

Return leaf node;

else

Draw a P ∗ random subset of the input variables;

Examine all possible binary splits for each of the input subset P ∗;

Create the set of first frontier with respect to the quality measure in vector

form;

Select the split with minimum average rank;

Calculate SSS of the selected feature for split;

Apply the best split and create left node and right node;

Return Recursive Partitioning(left node);

Return Recursive Partitioning(right node);

end if

Figure 5.1. Rank Based Semi-Supervised Tree and SSS Algorithm.

We illustrate SSS calculation with a toy example given in Figure 5.2. We assume

that in Figure 5.2 c1 and c2 axes represent two criteria to be assessed.
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In this case, we set c1 and c2 are supervised (e.g. SSE of a target) and unsuper-

vised (e.g. overall distance from node medoid) scores obtained from a partition based

on feature f . Let d0, d1 and d2 be Euclidean distances of a parent node and its child

nodes considering (ci1, c
i
2) coordinates from origin. SSS of feature f is the result of

the relation given in Equation (5.1). In Equation (5.1), ni values refer to number of

instances placed in node j.

SSSf = d0 − (
n1

n0

d1 +
n2

n0

d2) (5.1)
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Figure 5.2. Toy example for semi-supervised feature score.

In our calculations supervised ci scores consist of target-wise SSE values for la-

belled instances. Unsupervised ci scores are the values of within cluster distance from

node medoids divided by root within cluster distance from root medoid. To clarify,

for a dataset with m number of targets, elements of ci vector is equal to m+ 1, hence

associated di distance is calculated based on those dimensions.
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As a semi-supervised tree in the ensemble grows, an SSS value is recorded for

the most beneficial feature. By scanning entire ensemble, SSS values for each feature

are combined and normalized by the number of trees. At the end of that procedure

features are related with an SSS (see Figure 5.1). Ranks of the features are obtained

by listing SSS values in descending order.

5.3.2. Algorithmic Complexity

A standard decision has a computational complexity of O(PN logN) where P

and N refer to number of features and instances, respectively. Since for dissimilarity

calculations a TRT ensemble with size J is used, an additional computational com-

plexity of O(JN logN) occurs. In semi-supervised trees
√
P features are used in split

evaluation. All targets are considered one by one, hence complexity of computations

at each split becomes multiple of number of targets, that is M . Besides, we also

need to consider an additional U number of unsupervised criteria at each split, over-

all computational complexity of a single semi-supervised tree O((M +U)
√
PN logN).

For an ensemble with size J , complexity of a semi-supervised tree is concluded as

O(J(M + U)
√
PN logN). Besides, for SSS calculations performed at each split, an

additional O(JN logN) operations required.

5.3.3. Benchmark Scores and Predictive Model

Scores given in [63]’s are the state-of-the art measures for MTP. Besides, for semi-

supervised MTP [23] employ those scores for multi-target classification problems. In

our study, we use Symbolic, Genie3, and random forest importance (RFI) scores for

comparison purpose. Noting that all benchmark scores are produced by using PCTs

proposed by [9]. Symbolic score collects the counting information about the features

used in node partitions as the more important a feature is, the more it appears in the

partitions. Impurity reduction information at a given split forms the Genie3 scores for

the features. Similar to Symbolic score, information for Genie score of a feature is the

outcome of a split decision. Unlike Symbolic and Genie3 scores, RFI value for a feature

requires assessing OOB errors for original and permuted versions of a feature.



88

Greater predictive performance reduction for OOB samples implies higher degree

of importance for a feature.

5.4. Experiments and Results

Datasets used in the experiments are summarized in Table 5.1 and are available

in the project website given in [6]. We compare the predictive performances by using

PCTs as they provide a learning scheme based on multi-target architecture. A WEKA

based Java implementation of the PCT is publicly available as CLUS software and is

shared in [63]. We obtain Symbolic, Genie3 and RFI scores by using CLUS for all the

datasets. Proposed SSS ranks are obtained by a routine written in MATLAB R2016a.

Besides, in calculation of similarities we use an implementation of totally random trees

in Python 3.6.5 environment [60]. By using the same parametrizations given in [63],

we collect the benchmark scores with 100 bagged trees. Besides, we create a multi-

objective ensemble with the same size for SSS ranks. We perform all experiments with

10-fold cross-validation via a notebook with MS operating system and 16 GB RAM.

With available four physical cores (i7-7700HQ, 2.8 GHz) we use single thread for all

experiments. We set the same train and test instances in the experiments for fair

comparison. Implemented codes can be found within the github project [41]. We run

the experiments with various proportions for labelled instances. We randomly select

5%, 10% and 20% of the data and keep those instances labelled.

Table 5.1. Datasets for semi-supervised feature ranking experiments.

Dataset Samples (N) Features (p) Targets (m)

Water Quality 1060 16 14

OES10 403 298 16

OES97 334 263 16

ATP1D 337 411 6

ATP7D 296 411 6

MP5 700 80 4

MP6 700 80 4
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In evaluating predictive performances we collect the results in transductive set-

ting. To clarify, we consider entire unlabelled parts of the datasets that are used in

training phase. We compare predictive performance of full set of features case against

FR applied datasets. Once an FR method returns a ranking result, 50% of the features

are selected from the ordered list of ranks. We perform statistical analyses based on

the outcomes of original and reduced datasets. Assessments are based on relative root

mean squared error (RRMSE), we refer Equation (3.1) for RRMSE formula.

5.4.1. Results and Discussions

We compare the effect of various FR strategies on predictive performances by

using the statistical methods as suggested in [42]. Initially we perform Friedman test

as a non-parametric alternative of ANOVA to observe whether the difference in per-

formances is statistically significant or not. Besides, Nemenyi test is used to analyse

the significance of precedence in terms of predictive performance. Average rank results

of the Nemenyi test are ordered on a scale where the candidates with no statistical

difference are connected with a bar. All RRMSE results are given in Table A.4.

In Figure 5.3, Figure 5.4 and Figure 5.5 results for original feature sets are rep-

resented with No FR acronym. Considering Figure 5.3, Figure 5.4 and Figure 5.5,

benefit of applying a FR step is clearly seen as No FR alternative takes a position at

the right most of the scales. In other words, full feature set yields the last or second

to the last result in terms of predictive performance. Figure 5.3 shows that, Symbolic

score performs well for the cases with limited label information (e.g. 5%). However, as

the labelled instance proportion increases, SSS surpasses the rest and yields the best

rank.

Both in Figure 5.4 and Figure 5.5 Symbolic score takes the second place following

SSS. Considering the overall performance of SSS and Symbolic scores, we can deduce

that those two methods are able to capture feature characteristics in terms of semi-

supervised contribution.
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Figure 5.3. Average rank diagrams for experiments with 5% labelled instances.
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Figure 5.4. Average rank diagrams for experiments with 10% labelled instances.
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Figure 5.5. Average rank diagrams for experiments with 20% labelled instances.
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It is worth noting that, RFI is outperformed by its benchmark scores and differ-

ence of average ranks for RFI and No FR is not statistically significant. For 10% case,

RFI yields even a worse average rank compared to No FR case. Considering average

rank placements of the methods on diagrams, we observe that differences between per-

formances can be seen more clear when the labelled information increases. To clarify,

for 5% (e.g. Figure 5.3) and 10% (e.g. Figure 5.4) labelled cases performances of several

methods are not distinguishable as clear as given in 20% (e.g. Figure 5.5). We observe

that semi-supervised FR improves the overall performance of PCTs in predictive tasks.

Since Figure 5.3, Figure 5.4 and Figure 5.5 demonstrate that an increment in

labelled data provides better results, we decompose the supervised and unsupervised

contributions in calculation of SSS. To clarify, only supervised (or unsupervised) crite-

ria is used for SSS calculation. In Figure 5.6 criteria that construct SSS are given for

two datasets, i.e. OES97 and MP5. We select those datasets due to the difference in

their number of targets as that property may aid to understand the effect in a more

clear way. Horizontal axis for diagrams given Figure 5.6 consist of ranked features. To

clarify, first and last terms in axis are the best and worst ranked features for different

experimental settings. Considering the curves given Figure 5.6, trajectories are steeper

in approximately half of the features compared to the other part. That observation

may support the representative power of the selected features. Wide distances between

supervised and unsupervised curves in the upper panel of Figure 5.6 show that super-

vised contribution is higher than unsupervised part. In the lower panel of Figure 5.6,

a similar pattern with the upper panel can be seen, however distances between trajec-

tories become shorter. This observation is expected since OES97 dataset contains a

greater number of targets compared to MP5 dataset.
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6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

In this thesis, we investigate multi-objective approaches for multi-target learning.

While doing that, we aim to address scale inconsistencies observed in the multi-target

datasets. Another concern we aim to solve is utilization of target interrelations. To-

wards those aims, we propose multi-objective decision trees besides an alternatives

chaining policy for supervised problems. We extend multi-objective trees to their

semi-supervised version so that proposed models are able to show competitive predic-

tive performance. In addition, we propose a semi-supervised feature ranking scheme

as a subsequent work of semi-supervised learning methods given here.

In the first study, we investigate and compare two streams of target exploitation

in learning processes for multi-target datasets. We aim to handle multi-target pre-

diction problems with scale differences in their targets and utilize target relations in

training simultaneously. We use decision trees as base learners and propose a mul-

titask extension, and a data-driven space expansion strategy. Our experiments show

that, utilizing targets as additional inputs with proper sequence improves single tar-

get approach. Especially, SC method shows superior performance datasets with larger

number of targets. In addition, proposed multitask extension makes better predictions

than its multi objective counterpart. Both of these techniques go through the difficul-

ties arises scaling of data. Besides, they are able to transfer relevant information to the

training phase so that it can further improve the generalization power of the classifier.

In the second study, we consider semi-supervised learning problem for multi-

output data sets. Usually multi-output learning problems are handled by local learners

however learning each target in isolation results missing target relations. It becomes

more problematic in semi-supervised learning applications since the accessible label

information is limited and a valuable potential of information would be overlooked.
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In addition, target scales usually do not agree hence data transformation is in-

evitable for classifiers to work properly. However, transformation operations are crit-

icized due to several reasons such as loss or distortion of relational properties of the

data. To solve those issues, we propose to extend standard decision trees to multi-task

learners by introducing a score measure in a multi-criteria form that is used in split

evaluations.

Scale inconsistency issue is not only observed in targets, it is actually more com-

mon in features. Decision trees are inherently robust to features with scale differ-

ences for supervised learning applications, however this property may disappear in

semi-supervised setting. To clarify, semi-supervised applications require unsupervised

indicators which are defined over features. Noting that, defining an unsupervised in-

dicator that properly reflects the data characteristics is a challenging task. Moreover,

with the increase in number of features, capturing unsupervised information becomes

harder due to the curse of dimensionality. To exemplify, classical distance measures are

widely used as unsupervised indicators but they may result misleading inferences when

data set is subject to given condition. In order to cope with aforementioned issue, we

argue that dissimilarity information performs better in preserving and discovering the

original properties of the data. We use total random forests to derive the similarities

between instances. By converting them into dissimilarities, we model and combine the

unsupervised information with supervised criteria and obtain semi-supervised score

measure.

Experimental studies show that proposed algorithm outperforms its benchmark

that is semi-supervised predictive clustering forests. Besides its predictive performance,

our approach captures feature interrelations better than its benchmark as we evaluate

instance similarities as a whole. In addition, since our approach is a global one, it

has a reduced computational complexity than local learners without sacrificing task

relatedness.

In the third study, we aim to handle FR for multi-target datasets with limited

label information.
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Generally, for each target a separate classifier is trained yet that strategy is

criticised for failing to include target interrelations a consequence of being local learners.

Another issue with multi-target datasets arises when targets have scale inconsistencies.

In addition to local learning, that challenge is resolved by using various transformation

methods. However, those operations may change the statistical properties of the data.

Besides, redundant or irrelevant features further complicate the learning process and

as a result they may degrade the predictive performance. Considering aforementioned

issues, an alternative that handles scaling issues without losing target interrelations

is the main motivation of this study. More specifically, we focus on selecting the

most promising features and enhancing semi-supervised learning techniques by building

learners based on those selected features.

We extend multi-objective trees to make them suitable for capturing semi-supervised

characteristics of the data. In derivation of those trees we integrate an FR procedure to

collect the features’ contribution during learning process. We observe that, proposed

technique is ranked first and outperforms its state-of-the-art benchmark FR scores as

the labelled data increase.

We can summarize the contributions of this thesis work as follows: We propose

a multi-objective tree structure that considers the contribution of target that belongs

to a multi-target dataset. Besides, we provide a data-driven chaining strategy based

on prioritization of the targets with the largest contribution to the learning model.

There two aims of those proposed strategies. First we focus on handling the scale

inconsistencies observed in targets. Second, we aim to use the potential contribution

of target relations.

Another contribution of this thesis work can be given as providing a tree based

semi-supervised learning model that aims to deal with handling mixed type of targets

and features. We extend the proposed supervised model to its semi-supervised version

by including unsupervised criteria obtained via totally randomized trees. By doing so,

we aim to take advantage of unsupervised use of random forests in order to address

the required distance based calculations for features.
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In addition, we propose a semi- supervised feature ranking procedure that is

embedded to tree derivations. Proposed score is inspired by quality measures used

in multi-objective optimization domain and unifies the features’ contribution to the

learning process by considering both target and feature perspectives.

6.2. Future Work

6.2.1. Target Cardinality

From practical point of view, SC method can be used for discovering potential

dependencies between targets. Alternatively, SC can be used for testing the confidence

of an initial knowledge on target interrelations. Proposed multi-objective designs or

ERC methods cannot offer this opportunity. Apart from that, dealing with optimiza-

tion problems with more than three objectives, are known as many-objective problems

and evaluating trade-offs for such kind of problems becomes harder as the number of

objectives increases [75]. For many-objective problems in multi-objective optimization

domain, that research line can also be useful in reducing or handling many-objective

cases.

Despite its predictive performance, a possible pitfall of our classifier chain design

may arise when target cardinality is extremely large. This is due to number of evalu-

ations required to discover a good chain. Developing alternative tools for competitive

chaining policies with reduced computational costs could be a future direction.

6.2.2. Interactive Learning Extensions

Semi-supervised learning applications deal with learning cases with limited label

information. As it is stated before, manually labelling and increasing the available

information is an option. However, this is usually not preferred as manually labeling

may require expert opinion, expensive equipment or experiments with long duration.

Contrary to semi-supervised learning, interactive learning applications try to make the

best use of manually labelling opportunities given a limited budget for querying.
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Here, the aim is to select the most informative queries to perform so that the

learning trajectory improves at its highest. In a sense, those two learning approaches

try to work well under similar conditions, i.e. limited label information. Here, if those

approaches are integrated, semi-supervised learning would aid interactive mechanism

to make easier decisions on refining the candidate queries. To clarify, instances which a

semi-supervised classifier returns high confident results, can be eliminated from query

set. Integration of those approaches can be given as an alternative future direction of

this thesis study.

6.2.3. Computational Improvements

As we perform our experiments in an ensemble setting, one future application

can be based on parallelization of the methods for the sake of better time results

when dealing with large datasets. Since each tree in the random forests could be inde-

pendently trained, parallel training of the trees is a strategy that is commonly in use.

Besides, training an independent model for each target is possible in chaining, therefore

a strategy that is based on target-wise decomposition could be a different alternative

for parallelization. Another direction for future research can be on implementation of

SC algorithms for other kind of classifiers as it is ready to extend for usage. Chaining

strategy is readily available for adaptations with alternative base classifiers since the

method requires separate training sessions for each of the targets. Noting that, in SC

strategy out-of-bag (OOB) errors are used for chaining decisions. A major merit of

OOB error use is that, it prevents the learning model from overfitting. Therefore, if the

selected base classifier does not allow to calculate OOB errors unlike random forests,

an internal cross validation (CV) mechanism should be employed to measure the per-

formance of the trained models. Noting that, internal CV calculations result additional

computational burden in model derivation, hence this strategy could be considered as

more time-consuming compared to OOB calculations.

Despite its simplicity in use, a possible limitation of the proposed semi-supervised

approaches for both predicitve and FR tasks, arises when the sample size gets very

large.
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Here, despite the merit of dissimilarity information use in the proposed method,

required calculations could be problematic when the data gets larger. Hence, efficient

ways on discovering feature interrelation information can be given as another possible

search of direction.
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36. Kocev, D., C. Vens, J. Struyf and S. Džeroski, “Ensembles of Multi-Objective De-

cision Trees”, J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D. Mladenič
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APPENDIX A: EXPERIMENTAL RESULTS

Experimental results are given in Table A.1, Table A.2, Table A.3 and Table A.4.
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Table A.1. Relative root mean squared errors of the methods.

PMORF CDMORF RMORF SC ERC ST MTSC MORF

Andro 0.6235 0.6228 0.5573 0.5591 0.6624 0.6944 0.6837 0.5963

y1 0.5621 0.5370 0.4704 0.5317 0.6697 0.6800 0.6890 0.5521

y2 0.5266 0.4874 0.4781 0.3871 0.3440 0.3523 0.3561 0.4086

y3 0.5449 0.5897 0.5014 0.4505 0.5519 0.6021 0.5458 0.5141

y4 0.5428 0.5845 0.5033 0.5058 0.5542 0.6078 0.5552 0.5191

y5 0.7887 0.7763 0.7086 0.7341 0.9618 0.9861 1.0175 0.8039

y6 0.7756 0.7622 0.6820 0.7455 0.8926 0.9382 0.9386 0.7801

ATP1D 0.4352 0.4294 0.4288 0.3803 0.3858 0.3782 0.3786 0.4183

y1 0.4795 0.4697 0.4758 0.4718 0.4685 0.4692 0.4678 0.4768

y2 0.4675 0.4519 0.4680 0.4358 0.4437 0.4377 0.4438 0.4641

y3 0.4394 0.4376 0.4410 0.4304 0.4353 0.4351 0.4303 0.4330

y4 0.3817 0.3799 0.3621 0.2608 0.2706 0.2555 0.2544 0.3391

y5 0.4677 0.4568 0.4712 0.4519 0.4558 0.4555 0.4558 0.4706

y6 0.3753 0.3807 0.3548 0.2313 0.2410 0.2162 0.2197 0.3261

ATP7D 0.6046 0.5981 0.5755 0.5366 0.5693 0.5629 0.5570 0.5878

y1 0.7680 0.7540 0.7197 0.7606 0.7582 0.7710 0.7605 0.7620

y2 0.6153 0.6216 0.6106 0.6397 0.6667 0.6601 0.6646 0.6347

y3 0.5636 0.5592 0.5522 0.5632 0.5777 0.5820 0.5797 0.5719

y4 0.4885 0.4792 0.4505 0.2891 0.3559 0.3420 0.3199 0.4306

y5 0.7014 0.6933 0.6729 0.6940 0.7264 0.7193 0.7292 0.7050

y6 0.4909 0.4814 0.4470 0.2729 0.3307 0.3033 0.2880 0.4228

CalHouse 0.6610 0.6628 0.6676 0.6196 0.6154 0.6296 0.6438 0.6492

y1 0.6719 0.6715 0.6802 0.6452 0.6411 0.6569 0.6869 0.6717

y2 0.6501 0.6542 0.6550 0.5941 0.5896 0.6024 0.6008 0.6267

EDM 0.7166 0.7210 0.7232 0.7435 0.7319 0.7612 0.7620 0.7202

y1 0.7100 0.7063 0.7085 0.7663 0.7656 0.8143 0.8145 0.7322

y2 0.7231 0.7356 0.7380 0.7207 0.6981 0.7080 0.7095 0.7082

ENB 0.1504 0.1515 0.1518 0.1285 0.1168 0.1172 0.1211 0.1218

y1 0.1091 0.1105 0.1111 0.0725 0.0561 0.0536 0.0643 0.0597

y2 0.1916 0.1926 0.1925 0.1845 0.1776 0.1807 0.1778 0.1839
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Table A.1. Relative root mean squared errors of the methods (continued).

PMORF CDMORF RMORF SC ERC ST MTSC MORF

Jura 0.6049 0.6146 0.6099 0.5731 0.5903 0.5860 0.5880 0.5930

y1 0.6747 0.6788 0.6709 0.6765 0.7032 0.7013 0.7032 0.6847

y2 0.5416 0.5401 0.5445 0.5086 0.5318 0.5262 0.5274 0.5465

y3 0.5984 0.6250 0.6144 0.5342 0.5361 0.5305 0.5333 0.5477

M5Spec 0.7078 0.7044 0.7060 0.6645 0.6642 0.7025 0.7005 0.7172

y1 0.7095 0.7060 0.7077 0.6554 0.6770 0.7178 0.7255 0.7247

y2 0.7086 0.7051 0.7067 0.6671 0.6608 0.6994 0.6938 0.7174

y3 0.7053 0.7019 0.7035 0.6709 0.6548 0.6904 0.6822 0.7094

MP5Spec 0.6721 0.5909 0.6733 0.6433 0.6036 0.6109 0.6174 0.6380

y1 0.6724 0.5925 0.6736 0.6422 0.6015 0.6103 0.6185 0.6382

y2 0.6691 0.5856 0.6703 0.6428 0.6029 0.6087 0.6142 0.6356

y3 0.6746 0.5950 0.6759 0.6432 0.6066 0.6133 0.6190 0.6399

y4 0.6721 0.5903 0.6734 0.6449 0.6033 0.6114 0.6179 0.6384

MP6Spec 0.6680 0.6697 0.6674 0.6271 0.6257 0.6113 0.6402 0.6384

y1 0.6662 0.6679 0.6656 0.6262 0.6203 0.6100 0.6384 0.6369

y2 0.6670 0.6687 0.6664 0.6358 0.6308 0.6100 0.6390 0.6373

y3 0.6703 0.6721 0.6697 0.6229 0.6298 0.6133 0.6425 0.6403

y4 0.6685 0.6703 0.6679 0.6233 0.6219 0.6120 0.6410 0.6389

Polymer 0.6750 0.7126 0.6379 0.6914 0.6082 0.6335 0.6553 0.6418

y1 0.7899 0.8444 0.7260 0.7147 0.7050 0.6372 0.7547 0.6931

y2 0.8714 0.9066 0.7907 0.9606 0.7379 0.7591 0.7427 0.7872

y3 0.5520 0.5854 0.5452 0.5678 0.4997 0.5818 0.5775 0.5643

y4 0.4868 0.5138 0.4896 0.5226 0.4903 0.5558 0.5461 0.5224

Stock 0.7335 0.7359 0.7594 0.7082 0.7060 0.7075 0.7145 0.7232

y1 0.8472 0.8503 0.8565 0.8483 0.8213 0.8379 0.8528 0.8293

y2 0.7860 0.7880 0.7981 0.7797 0.7668 0.7674 0.7759 0.7708

y3 0.5672 0.5695 0.6238 0.4968 0.5299 0.5172 0.5148 0.5695

Slump 0.2596 0.2641 0.2660 0.2701 0.3039 0.3036 0.3163 0.2942

y1 0.2277 0.2263 0.2332 0.2398 0.2710 0.2722 0.2794 0.2388

y2 0.3135 0.3210 0.3191 0.3315 0.3616 0.3653 0.3720 0.3547

y3 0.2377 0.2450 0.2457 0.2390 0.2792 0.2733 0.2974 0.2892
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Table A.1. Relative root mean squared errors of the methods (continued).

PMORF CDMORF RMORF SC ERC ST MTSC MORF

OES97 0.4134 0.4225 0.4156 0.3956 0.4144 0.4106 0.4110 0.4289

y1 0.4041 0.4196 0.4077 0.4011 0.4333 0.4359 0.4363 0.4310

y2 0.3514 0.3779 0.3476 0.3586 0.3806 0.3887 0.3869 0.3735

y3 0.3847 0.4038 0.3771 0.3853 0.3935 0.4025 0.4023 0.3879

y4 0.4617 0.4530 0.4656 0.4378 0.4410 0.4316 0.4330 0.4641

y5 0.4574 0.4496 0.4542 0.3869 0.4320 0.4178 0.4188 0.4562

y6 0.5690 0.5686 0.5773 0.5991 0.5913 0.5857 0.5864 0.6225

y7 0.3506 0.3737 0.3498 0.3174 0.3421 0.3276 0.3276 0.3543

y8 0.3644 0.3904 0.3625 0.3632 0.4014 0.4060 0.4060 0.3928

y9 0.6063 0.6093 0.5964 0.6004 0.6070 0.6148 0.6150 0.6285

y10 0.3547 0.3771 0.3503 0.3124 0.3304 0.3235 0.3247 0.3554

y11 0.4471 0.4286 0.4643 0.3394 0.3965 0.3678 0.3685 0.4477

y12 0.2305 0.2660 0.2274 0.2332 0.2647 0.2714 0.2721 0.2508

y13 0.5571 0.5257 0.5838 0.5016 0.5049 0.4904 0.4905 0.5654

y14 0.2252 0.2581 0.2241 0.2246 0.2642 0.2661 0.2671 0.2566

y15 0.4432 0.4567 0.4508 0.4502 0.4553 0.4540 0.4536 0.4555

y16 0.4063 0.4020 0.4113 0.4184 0.3926 0.3863 0.3869 0.4202

OES10 0.5278 0.5188 0.5335 0.5026 0.5248 0.5248 0.5253 0.5581

y1 0.2747 0.2780 0.2798 0.2791 0.3726 0.3739 0.3721 0.3192

y2 0.4741 0.4340 0.4765 0.3722 0.3851 0.3841 0.3881 0.4979

y3 0.6804 0.6854 0.6892 0.6842 0.6791 0.6797 0.6794 0.6972

y4 0.3879 0.4015 0.3965 0.3550 0.3778 0.3772 0.3785 0.4079

y5 0.7023 0.6687 0.7084 0.6377 0.6746 0.6718 0.6775 0.7246

y6 0.6598 0.6373 0.6762 0.5833 0.6005 0.6013 0.6006 0.6897

y7 0.6007 0.6008 0.6094 0.5845 0.5707 0.5704 0.5712 0.6300

y8 0.2734 0.2806 0.2642 0.2761 0.3523 0.3529 0.3518 0.3064

y9 0.2570 0.2927 0.2478 0.2409 0.3113 0.3108 0.3117 0.2581

y10 0.6082 0.5727 0.6163 0.5509 0.5582 0.5579 0.5597 0.6355



114

Table A.1. Relative root mean squared errors of the methods (continued).

PMORF CDMORF RMORF SC ERC ST MTSC MORF

y11 0.6056 0.5965 0.6128 0.6629 0.6443 0.6439 0.6448 0.6683

y12 0.5010 0.4857 0.5166 0.5228 0.5275 0.5283 0.5274 0.5567

y13 0.5469 0.5487 0.5476 0.5426 0.5538 0.5541 0.5533 0.5579

y14 0.7086 0.6554 0.7369 0.6235 0.6573 0.6586 0.6561 0.7640

y15 0.5797 0.5814 0.5760 0.5600 0.5617 0.5616 0.5628 0.6040

y16 0.5838 0.5823 0.5818 0.5656 0.5697 0.5697 0.5704 0.6125

Puma8NH 0.7768 0.7907 0.7780 0.7978 0.8131 0.8149 0.8269 0.7962

y1 0.9033 0.9019 0.9062 0.9109 0.9553 0.9582 0.9736 0.9344

y2 0.8977 0.8970 0.9062 0.9520 0.9553 0.9569 0.9716 0.9351

y3 0.5293 0.5731 0.5216 0.5306 0.5288 0.5296 0.5356 0.5189

Water Quality 0.9115 0.9126 0.9096 0.9209 0.9130 0.9154 0.9182 0.9124

y1 0.9284 0.9324 0.9306 0.9361 0.9286 0.9302 0.9337 0.9320

y2 0.9795 0.9773 0.9803 1.0008 0.9842 0.9876 0.9900 0.9802

y3 0.9453 0.9563 0.9504 0.9699 0.9513 0.9549 0.9594 0.9565

y4 0.9117 0.9070 0.9127 0.9320 0.9126 0.9189 0.9166 0.9165

y5 0.9126 0.9138 0.9044 0.9195 0.9136 0.9127 0.9227 0.9148

y6 0.8349 0.8385 0.8348 0.8410 0.8379 0.8412 0.8421 0.8353

y7 0.9620 0.9586 0.9615 0.9898 0.9689 0.9716 0.9724 0.9700

y8 0.9160 0.9192 0.9183 0.9269 0.9168 0.9183 0.9196 0.9159

y9 0.8283 0.8267 0.8153 0.8157 0.8189 0.8196 0.8259 0.8174

y10 0.9038 0.9052 0.9026 0.8952 0.8977 0.8976 0.9019 0.8998

y11 0.9232 0.9203 0.9127 0.9227 0.9272 0.9277 0.9334 0.9227

y12 0.9048 0.9073 0.9046 0.9228 0.9200 0.9232 0.9230 0.9119

y13 0.9497 0.9551 0.9499 0.9547 0.9522 0.9547 0.9590 0.9484

y14 0.8616 0.8589 0.8567 0.8651 0.8525 0.8572 0.8549 0.8528

Wisconsin Cancer 0.9503 0.9430 0.9453 0.9341 0.9141 0.9104 0.9133 0.9079

y1 0.9403 0.9216 0.9246 0.8952 0.8747 0.8693 0.8719 0.8807

y2 0.9603 0.9644 0.9660 0.9731 0.9534 0.9515 0.9546 0.9351
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Table A.2. Relative root mean squared errors of transductive methods.

5% 10% 20%

PCT PCTF ERF TRF R-TRF PCT PCTF ERF TRF R-TRF PCT PCTF ERF TRF R-TRF

WQ-y1 1.0000 0.9797 0.9730 0.9843 0.9815 1.0000 0.9637 0.9788 0.9653 0.9712 1.0118 0.9510 0.9531 0.9537 0.9557

y2 1.0000 10127 0.9949 1.0244 1.0258 1.0000 1.0109 1.0113 1.0199 1.0211 1.0171 0.9985 1.0065 1.0057 1.0059

y3 1.0000 0.9805 1.0001 0.9860 0.9905 1.0000 0.9777 1.0040 0.9829 0.9910 1.0070 0.9708 0.9760 0.9726 0.9772

y4 1.0000 0.9589 1.0145 0.9580 0.9581 1.0000 0.9445 0.9523 0.9360 0.9428 1.0124 0.9240 0.9167 0.9186 0.9206

y5 1.0000 0.9779 0.9853 0.9791 0.9845 1.0000 0.9521 0.9287 0.9493 0.9609 1.0109 0.9428 0.9423 0.9425 0.9498

y6 1.0000 0.8808 0.8804 0.8781 0.8816 1.0000 0.8746 0.9229 0.8755 0.8803 1.0130 0.8584 0.8570 0.8587 0.8597

y7 1.0000 0.9957 1.0116 1.0010 1.0061 1.0000 0.9812 0.9604 0.9845 0.9863 1.0066 0.9739 0.9769 0.9784 0.9738

y8 1.0000 0.9534 0.9651 0.9560 0.9577 1.0000 0.9357 0.9450 0.9387 0.9479 1.0113 0.9266 0.9298 0.9274 0.9337

y9 1.0000 0.9383 0.9383 0.9258 0.9350 1.0000 0.9058 0.8802 0.9026 0.9075 1.0190 0.8791 0.8753 0.8789 0.8832

y10 1.0000 0.9942 0.9864 0.9926 0.9976 1.0000 0.9625 1.0150 0.9593 0.9656 1.0100 0.9388 0.9407 0.9385 0.9461

y11 1.0000 0.9778 0.9955 0.9700 0.9794 1.0000 0.9678 0.9612 0.9572 0.9659 1.0157 0.9497 0.9451 0.9457 0.9476

y12 1.0000 0.9569 0.9446 0.9521 0.9667 1.0000 0.9547 0.9763 0.9465 0.9566 1.0046 0.9261 0.9222 0.9164 0.9255

y13 1.0000 1.0063 1.0191 1.0006 1.0062 1.0000 0.9891 0.9837 0.9917 0.9926 1.0114 0.9891 0.9873 0.9899 0.9874

y14 1.0000 0.8936 0.8680 0.8915 0.9022 1.0000 0.8757 0.9155 0.8751 0.8802 1.0079 0.8610 0.8635 0.8639 0.8680

MP6- y1 0.9074 0.8461 0.7453 0.7499 0.7735 0.7640 0.7157 0.6583 0.6640 0.6923 0.6774 0.6148 0.5836 0.5962 0.6082

y2 0.9081 0.8470 0.7470 0.7517 0.7753 0.7651 0.7171 0.6595 0.6655 0.6938 0.6786 0.6160 0.5849 0.5976 0.6096

y3 0.9101 0.8497 0.7522 0.7572 0.7810 0.7690 0.7214 0.6643 0.6701 0.6985 0.6825 0.6201 0.5890 0.6015 0.6139

y4 0.9090 0.8483 0.7494 0.7543 0.7780 0.7670 0.7192 0.6618 0.6677 0.6960 0.6805 0.6180 0.5868 0.5995 0.6116

MP5- y1 0.8550 0.7826 0.7160 0.7154 0.7101 0.8061 0.7996 0.8525 0.6642 0.6659 0.6929 0.6175 0.5690 0.5763 0.5878

y2 0.8509 0.7761 0.7092 0.7086 0.7035 0.8005 0.7937 0.8409 0.6576 0.6595 0.6870 0.6117 0.5644 0.5716 0.5828

y3 0.8570 0.7850 0.7185 0.7179 0.7128 0.8085 0.8017 0.8562 0.6666 0.6684 0.6955 0.6199 0.5713 0.5787 0.5902

y4 0.8543 0.7808 0.7141 0.7135 0.7086 0.8048 0.7980 0.8489 0.6625 0.6644 0.6917 0.6162 0.5683 0.5756 0.5870

OES10-y1 0.8122 0.7366 0.6928 0.6899 0.6746 0.7149 0.6459 0.6508 0.6130 0.5934 0.6305 0.6424 0.5630 0.5711 0.5470

y2 0.7637 0.6977 0.6398 0.6400 0.6100 0.6968 0.5811 0.5874 0.5268 0.5034 0.6800 0.5788 0.4816 0.4908 0.4605

y3 0.7805 0.7173 0.6519 0.6552 0.6307 0.7039 0.6117 0.6072 0.5813 0.5609 0.8366 0.6093 0.4994 0.5104 0.4842

y4 0.8395 0.7799 0.7466 0.7571 0.7326 0.7497 0.7187 0.6916 0.6860 0.6652 0.5982 0.7136 0.6065 0.6112 0.5813

y5 0.8937 0.8088 0.7688 0.7726 0.7505 0.7805 0.7055 0.6903 0.6576 0.6348 0.9251 0.7086 0.6137 0.6186 0.5883

y6 0.8928 0.8526 0.8324 0.8316 0.8260 0.8300 0.8115 0.6701 0.7896 0.7846 0.7986 0.8038 0.7513 0.7536 0.7316

y7 0.8377 0.7597 0.7189 0.7204 0.6895 0.7443 0.6876 0.7472 0.6418 0.6220 0.7504 0.6805 0.5961 0.6014 0.5570

y8 0.7886 0.7096 0.6588 0.6608 0.6369 0.6982 0.6338 0.6351 0.6013 0.5815 0.6272 0.6284 0.5518 0.5588 0.5294

y9 0.9343 0.8319 0.8131 0.8184 0.7942 0.8332 0.7611 0.8634 0.7323 0.7125 0.6140 0.7639 0.6873 0.6923 0.6726

y10 0.7665 0.6729 0.6173 0.6170 0.5960 0.6849 0.5775 0.5818 0.5216 0.5067 0.7749 0.5789 0.4659 0.4721 0.4622

y11 0.7919 0.7005 0.6552 0.6603 0.6288 0.7235 0.6254 0.6553 0.5935 0.5769 0.7821 0.6256 0.5754 0.5837 0.5487

y12 0.7585 0.6486 0.5861 0.5829 0.5761 0.6312 0.5564 0.5210 0.4871 0.4776 0.7077 0.5501 0.4378 0.4447 0.4200

y13 0.8935 0.8063 0.7927 0.7991 0.7823 0.8193 0.7721 0.6596 0.7473 0.7429 0.7110 0.7369 0.7073 0.6923 0.7051

y14 0.7761 0.7015 0.6445 0.6447 0.6226 0.6822 0.6203 0.5886 0.5679 0.5461 0.8379 0.6066 0.5343 0.5392 0.5007

y15 0.8294 0.7600 0.7188 0.7216 0.7004 0.7225 0.6573 0.5857 0.6068 0.6031 0.7581 0.6493 0.5513 0.5540 0.5455

y16 0.7947 0.7180 0.6705 0.6676 0.6559 0.6982 0.6405 0.5543 0.5995 0.5903 0.7517 0.6337 0.5789 0.5815 0.5664
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Table A.2. Relative root mean squared errors of transductive methods (continued).

5% 10% 20%

PCT PCTF ERF TRF R-TRF PCT PCTF ERF TRF R-TRF PCT PCTF ERF TRF R-TRF

OES97- y1 0.8170 0.7422 0.7038 0.7227 0.6739 0.7249 0.6741 0.6850 0.6343 0.6182 0.6305 0.5618 0.5150 0.5196 0.5134

y2 0.7995 0.7729 0.7455 0.7398 0.7108 0.7664 0.7224 0.7399 0.6977 0.6813 0.6800 0.6053 0.5789 0.5803 0.5825

y3 0.9934 0.8829 0.8643 0.9098 0.8569 0.9082 0.8339 0.8294 0.8072 0.8019 0.8366 0.7559 0.7441 0.7536 0.7393

y4 0.7625 0.7636 0.7243 0.7172 0.6967 0.6979 0.6248 0.6762 0.5953 0.5809 0.5982 0.5028 0.4706 0.4592 0.4845

y5 0.9383 0.8492 0.8403 0.8143 0.8200 0.9114 0.8139 1.0264 0.8115 0.7901 0.9251 0.7638 0.7465 0.7379 0.7367

y6 0.8909 0.8663 0.8485 0.8324 0.8289 0.8362 0.7769 0.8129 0.7630 0.7442 0.7986 0.7026 0.6864 0.6819 0.6752

y7 0.8414 0.8370 0.8037 0.8113 0.7813 0.8073 0.7733 0.7748 0.7464 0.7333 0.7504 0.6352 0.6460 0.6532 0.6351

y8 0.8328 0.7651 0.7250 0.7378 0.6972 0.7343 0.6876 0.6697 0.6440 0.6228 0.6272 0.5389 0.4927 0.5103 0.4935

y9 0.8458 0.7343 0.6904 0.7488 0.6633 0.7082 0.6425 0.6360 0.5910 0.5710 0.6140 0.5081 0.4533 0.4601 0.4592

y10 0.8381 0.8248 0.8007 0.7892 0.7755 0.8116 0.7719 0.8082 0.7512 0.7337 0.7749 0.7003 0.6818 0.6898 0.6803

y11 0.8763 0.8371 0.8057 0.8008 0.7867 0.8685 0.7976 0.8891 0.7729 0.7614 0.7821 0.7104 0.6903 0.7190 0.6828

y12 0.8262 0.8059 0.7752 0.7561 0.7535 0.7871 0.7358 0.8140 0.7215 0.7110 0.7077 0.6427 0.6077 0.6121 0.6072

y13 0.8365 0.7842 0.7546 0.7242 0.7328 0.7723 0.6792 0.6618 0.6515 0.6308 0.7110 0.6057 0.5756 0.5751 0.5761

y14 0.9311 0.8620 0.8505 0.8475 0.8276 0.8811 0.8625 0.9558 0.8467 0.8375 0.8379 0.7937 0.7667 0.7698 0.7672

y15 0.9328 0.8157 0.7898 0.8475 0.7692 0.8412 0.7399 0.8015 0.7091 0.6841 0.7581 0.6520 0.6401 0.6534 0.6391

y16 0.9454 0.8300 0.7960 0.8577 0.7735 0.8403 0.7761 0.7575 0.7498 0.7325 0.7517 0.6867 0.6675 0.6786 0.6648

ENB - y1 0.3140 0.2711 0.2926 0.2958 0.2958 0.2322 0.2123 0.2576 0.2247 0.2247 0.1422 0.1549 0.2018 0.2012 0.2012

y2 0.3344 0.3030 0.3245 0.3252 0.3252 0.2947 0.2535 0.3143 0.2648 0.2648 0.2400 0.2127 0.2486 0.2475 0.2475

CALHOUSE - y1 10211 0.9657 0.9539 0.9465 0.9465 0.9957 0.8926 0.8872 0.8927 0.8927 10157 0.8188 0.8252 0.8299 0.8299

y2 10360 0.9380 0.9332 0.9333 0.9333 10208 0.8651 0.8817 0.8772 0.8772 0.9955 0.7907 0.8161 0.8206 0.8206



117

Table A.3. Relative root mean squared errors of inductive methods.
5% 10% 20%

PCT PCTF ERF TRF RTRF PCT PCTF ERF TRF RTRF PCT PCTF ERF TRF R-TRF

WQ - y1 1.0246 1.0016 0.9877 0.9842 0.9832 1.0118 0.9848 0.9788 0.9708 0.9760 1.0258 0.9650 0.9859 0.9646 0.9574

y2 1.0233 1.0393 1.0079 1.0216 1.0247 1.0174 1.0261 1.0113 1.0028 1.0151 1.0308 1.0230 1.0188 1.0021 1.0101

y3 1.0165 1.0016 0.9956 0.9933 1.0057 1.0132 0.9958 1.0040 0.9911 0.9955 1.0144 0.9770 0.9701 0.9737 0.9895

y4 1.0107 0.9878 1.0197 0.9732 0.9673 1.0066 0.9499 0.9523 0.9354 0.9412 1.0477 0.9397 0.8936 0.9295 0.9171

y5 1.0097 1.0001 0.9853 0.9859 1.0035 1.0050 0.9538 0.9287 0.9444 0.9529 1.0163 0.9481 0.9054 0.9364 0.9557

y6 1.0119 0.9040 0.9567 0.8854 0.8928 1.0101 0.8792 0.9229 0.8722 0.8765 1.0297 0.8619 0.9388 0.8536 0.8570

y7 1.0058 0.9942 1.0028 0.9905 0.9969 1.0099 0.9841 0.9604 0.9775 0.9785 1.0131 0.9871 0.9258 0.9728 0.9797

y8 1.0158 0.9652 0.9074 0.9517 0.9596 1.0196 0.9522 0.9450 0.9261 0.9334 1.0198 0.9451 0.9151 0.9306 0.9250

y9 1.0181 0.9480 0.8658 0.9251 0.9259 1.0136 0.9151 0.8802 0.8935 0.9010 1.0267 0.8855 0.8454 0.8763 0.8765

y10 1.0182 1.0189 1.0131 0.9980 1.0022 1.0110 0.9786 1.0150 0.9685 0.9716 1.0096 0.9546 0.9454 0.9437 0.9494

y11 1.0060 0.9964 0.9596 0.9944 0.9963 1.0040 0.9763 0.9612 0.9644 0.9747 1.0182 0.9439 0.9175 0.9424 0.9465

y12 1.0093 0.9767 0.9773 0.9626 0.9760 1.0108 0.9727 0.9763 0.9494 0.9591 1.0218 0.9465 0.9637 0.9337 0.9429

y13 1.0153 1.0280 1.0233 1.0043 1.0062 1.0078 0.9863 0.9837 0.9846 0.9868 1.0225 0.9859 0.9860 0.9804 0.9829

y14 1.0224 0.9226 0.9528 0.9047 0.9150 1.0091 0.8952 0.9155 0.8767 0.8939 1.0318 0.8654 0.9243 0.8645 0.8717

MP6 - y1 0.8322 0.8526 0.6589 0.6837 0.6875 0.7462 0.7238 0.6583 0.6130 0.6329 0.6891 0.6421 0.6980 0.5505 0.5739

y2 0.8338 0.8536 0.6606 0.6851 0.6889 0.7474 0.7248 0.6595 0.6140 0.6339 0.6904 0.6432 0.6995 0.5518 0.5753

y3 0.8386 0.8569 0.6655 0.6892 0.6928 0.7515 0.7279 0.6643 0.6177 0.6373 0.6951 0.6468 0.7059 0.5558 0.5798

y4 0.8361 0.8552 0.6629 0.6871 0.6908 0.7494 0.7263 0.6618 0.6158 0.6356 0.6925 0.6449 0.7025 0.5537 0.5774

MP5 - y1 0.9244 0.8679 0.8727 0.7587 0.7748 1.0153 0.9323 0.8525 0.7253 0.7376 0.7222 0.6547 0.8195 0.6236 0.6393

y2 0.9230 0.8659 0.8669 0.7531 0.7691 1.0091 0.9264 0.8409 0.7190 0.7314 0.7176 0.6495 0.8095 0.6188 0.6336

y3 0.9263 0.8702 0.8762 0.7614 0.7777 1.0178 0.9351 0.8562 0.7280 0.7404 0.7248 0.6570 0.8229 0.6259 0.6419

y4 0.9251 0.8687 0.8724 0.7577 0.7739 1.0137 0.9311 0.8489 0.7240 0.7364 0.7218 0.6537 0.8162 0.6228 0.6382

OES10 - y1 0.7995 0.7036 0.6729 0.6177 0.6090 0.6827 0.6010 0.6508 0.5583 0.5416 0.7006 0.5391 0.6929 0.5147 0.5122

y2 0.7529 0.6688 0.6555 0.5816 0.5647 0.6468 0.5317 0.5874 0.4792 0.4674 0.6690 0.4758 0.5804 0.4568 0.4363

y3 0.7715 0.6928 0.6696 0.6066 0.6049 0.6677 0.5818 0.6072 0.5192 0.5193 0.6635 0.5161 0.6086 0.4767 0.4731

y4 0.7583 0.7158 0.7321 0.6832 0.6574 0.7155 0.6299 0.6916 0.6007 0.5697 0.7470 0.5448 0.6859 0.5377 0.5116

y5 0.8802 0.7849 0.8046 0.7345 0.7133 0.7659 0.6515 0.6903 0.6032 0.5777 0.8059 0.5839 0.7178 0.5708 0.5394

y6 0.8204 0.7406 0.7286 0.6886 0.7028 0.7367 0.6607 0.6701 0.6183 0.6240 0.7702 0.6046 0.7256 0.5954 0.5757

y7 0.8292 0.6908 0.7612 0.6394 0.6037 0.7343 0.6117 0.7472 0.5866 0.5480 0.8150 0.5654 0.7990 0.5463 0.5086

y8 0.8006 0.6865 0.6496 0.5760 0.5585 0.6650 0.6011 0.6351 0.5256 0.5067 0.6952 0.5258 0.6309 0.4783 0.4800

y9 0.9575 0.8583 0.8808 0.8168 0.7946 0.7906 0.7505 0.8634 0.7306 0.6862 0.8349 0.6669 0.8267 0.6416 0.6289

y10 0.7708 0.6814 0.6568 0.5849 0.5888 0.6530 0.5629 0.5818 0.5091 0.4987 0.6516 0.5030 0.5680 0.4710 0.4682

y11 0.7574 0.6798 0.6321 0.5886 0.5791 0.7179 0.6172 0.6553 0.5684 0.5502 0.7335 0.5476 0.6453 0.5359 0.5133

y12 0.7040 0.6084 0.5915 0.4974 0.5139 0.5456 0.4723 0.5210 0.3899 0.3962 0.5709 0.3831 0.5483 0.3531 0.3516

y13 0.8941 0.7392 0.7288 0.7028 0.6904 0.7679 0.6571 0.6596 0.6222 0.6142 0.8371 0.6701 0.7261 0.6565 0.6234

y14 0.7546 0.6217 0.6355 0.5248 0.5099 0.5739 0.4877 0.5886 0.4327 0.4103 0.5963 0.4027 0.5790 0.3717 0.3617

y15 0.7903 0.7122 0.7194 0.6321 0.6390 0.6818 0.5831 0.5857 0.5134 0.5228 0.6905 0.5259 0.6103 0.4716 0.4738

y16 0.6895 0.6108 0.5403 0.4982 0.4963 0.5652 0.5057 0.5543 0.4643 0.4502 0.6463 0.4466 0.5693 0.4444 0.4450
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Table A.3. Relative root mean squared errors of inductive methods (continued).

5% 10% 20%

PCT PCTF ERF TRF RTRF PCT PCTF ERF TRF RTRF PCT PCTF ERF TRF R-TRF

OES97 - y1 0.7764 0.6461 0.7296 0.5629 0.5331 0.9782 0.5755 0.6850 0.4688 0.4463 0.6005 0.4255 0.5815 0.3732 0.3526

y2 0.7432 0.7179 0.7339 0.6599 0.6522 0.9817 0.6897 0.7399 0.6292 0.6291 0.6913 0.5854 0.7163 0.5527 0.5385

y3 1.0038 0.8780 0.8714 0.8263 0.8371 1.0456 0.8370 0.8294 0.7843 0.7871 0.9057 0.7582 0.8263 0.7153 0.7062

y4 0.8131 0.7443 0.7304 0.6633 0.6528 0.9174 0.6875 0.6762 0.5915 0.5871 0.6443 0.5404 0.6559 0.4824 0.4948

y5 1.1425 0.8855 0.9578 0.8247 0.8059 1.4654 0.9667 10264 0.8758 0.8422 1.1243 0.8648 0.9400 0.7861 0.7601

y6 0.9906 0.9050 0.8926 0.8488 0.8513 1.0028 0.8257 0.8129 0.7780 0.7725 0.9065 0.7707 0.7858 0.7457 0.7203

y7 0.8951 0.8097 0.8042 0.7387 0.7263 1.0418 0.7606 0.7748 0.6909 0.6896 0.7649 0.6570 0.7780 0.5968 0.5998

y8 0.8264 0.6706 0.7410 0.5898 0.5760 0.9532 0.5808 0.6697 0.4900 0.4799 0.6153 0.4217 0.6341 0.3835 0.3657

y9 0.8509 0.7057 0.7077 0.6075 0.5901 0.8025 0.6118 0.6360 0.5263 0.5036 0.6101 0.4380 0.5488 0.3649 0.3707

y10 0.8311 0.7929 0.8234 0.7414 0.7352 1.1016 0.7371 0.8082 0.6969 0.6923 0.8073 0.6856 0.8071 0.6630 0.6223

y11 0.9740 0.8063 0.8415 0.7406 0.7213 1.3308 0.7602 0.8891 0.7563 0.7604 1.0705 0.7873 0.9286 0.7528 0.7196

y12 0.9022 0.7367 0.7845 0.6831 0.6828 1.0994 0.7597 0.8140 0.6736 0.6519 0.8562 0.6848 0.7786 0.6089 0.5916

y13 0.8476 0.7797 0.7574 0.7239 0.7036 0.9541 0.6775 0.6618 0.6125 0.6201 0.7259 0.6112 0.6716 0.5669 0.5627

y14 0.9611 0.8615 0.8803 0.8345 0.8241 11277 0.9051 0.9558 0.8524 0.8513 0.8884 0.7754 0.8235 0.7577 0.7298

y15 10206 0.8865 0.8963 0.7854 0.7606 10990 0.7683 0.8015 0.6895 0.6735 0.7783 0.7137 0.8031 0.6228 0.6227

y16 0.9782 0.8521 0.8253 0.7632 0.7371 0.9681 0.7592 0.7575 0.6815 0.6684 0.8126 0.6651 0.7337 0.6055 0.6001

ENB - y1 0.4313 0.2632 0.3241 0.2833 0.2833 0.3490 0.2063 0.2576 0.2264 0.2264 0.2759 0.1544 0.2018 0.1955 0.1955

y2 0.4541 0.3016 0.3704 0.3234 0.3234 0.3991 0.2513 0.3143 0.2672 0.2672 0.3518 0.2124 0.2711 0.2399 0.2399

CALHOUSE - y1 10403 0.9782 0.9287 0.9604 0.9604 1.0093 0.8958 0.8872 0.8900 0.8900 0.9980 0.8031 0.9673 0.8034 0.8034

y2 1.0341 0.9679 0.9619 0.9455 0.9455 1.0437 0.8810 0.8817 0.8786 0.8786 0.9835 0.7859 0.8483 0.8064 0.8064
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Table A.4. Relative root mean squared errors of for feature ranking strategies.

%5 %10 %20

SSS No FR Symbolic Genie3 RFI SSS No FR Symbolic Genie3 RFI SSS No FR Symbolic Genie3 RFI

OES10 0.7408 0.7439 0.7389 0.7429 0.7390 0.6593 0.6629 0.6575 0.6604 0.6594 0.5785 0.6569 0.5669 0.5676 0.5684

y1 0.7333 0.7366 0.7319 0.7301 0.7321 0.6411 0.6459 0.6412 0.6416 0.6423 0.5551 0.6424 0.5761 0.5716 0.5741

y2 0.6934 0.6977 0.6938 0.6967 0.6924 0.5780 0.5811 0.5771 0.5827 0.5814 0.4899 0.5788 0.5056 0.5057 0.5059

y3 0.7163 0.7173 0.7142 0.7215 0.7143 0.6072 0.6117 0.6089 0.6105 0.6098 0.5004 0.6093 0.5131 0.5208 0.5208

y4 0.7814 0.7799 0.7762 0.7749 0.7762 0.7163 0.7187 0.7119 0.7162 0.7127 0.6105 0.7136 0.5777 0.5851 0.5816

y5 0.8145 0.8088 0.8049 0.8059 0.8057 0.7047 0.7055 0.6970 0.7055 0.6963 0.6315 0.7086 0.6012 0.6048 0.6071

y6 0.8546 0.8526 0.8502 0.8505 0.8516 0.8112 0.8115 0.8059 0.8074 0.8105 0.7422 0.8038 0.6734 0.6754 0.6776

y7 0.7537 0.7597 0.7542 0.7590 0.7546 0.6793 0.6876 0.6822 0.6849 0.6823 0.5904 0.6805 0.5720 0.5791 0.5749

y8 0.7033 0.7096 0.7010 0.7149 0.7033 0.6256 0.6338 0.6277 0.6309 0.6292 0.5442 0.6284 0.5480 0.5490 0.5505

y9 0.8353 0.8319 0.8270 0.8505 0.8301 0.7551 0.7611 0.7530 0.7574 0.7552 0.6853 0.7639 0.6901 0.6907 0.6895

y10 0.6666 0.6729 0.6676 0.6788 0.6669 0.5730 0.5775 0.5703 0.5755 0.5738 0.4916 0.5789 0.4878 0.4916 0.4906

y11 0.6867 0.7005 0.6897 0.6867 0.6892 0.6287 0.6254 0.6261 0.6235 0.6260 0.5625 0.6256 0.5751 0.5721 0.5786

y12 0.6396 0.6486 0.6412 0.6494 0.6389 0.5507 0.5564 0.5502 0.5531 0.5520 0.4445 0.5501 0.4123 0.4143 0.4133

y13 0.8078 0.8063 0.8055 0.8035 0.8048 0.7757 0.7721 0.7676 0.7675 0.7706 0.7360 0.7369 0.6915 0.6725 0.6800

y14 0.6935 0.7015 0.6932 0.6977 0.6929 0.6107 0.6203 0.6140 0.6169 0.6145 0.5222 0.6066 0.4872 0.4896 0.4906

y15 0.7572 0.7600 0.7563 0.7562 0.7568 0.6546 0.6573 0.6522 0.6553 0.6552 0.5667 0.6493 0.5745 0.5783 0.5765

y16 0.7158 0.7180 0.7155 0.7101 0.7150 0.6367 0.6405 0.6348 0.6381 0.6388 0.5828 0.6337 0.5842 0.5801 0.5824

OES97 0.8036 0.8108 0.8056 0.8084 0.8065 0.7128 0.7445 0.7407 0.7430 0.7427 0.6421 0.6479 0.6402 0.6458 0.6406

y1 0.7279 0.7422 0.7334 0.7360 0.7345 0.6373 0.6741 0.6681 0.6704 0.6683 0.5497 0.5618 0.5485 0.5555 0.5488

y2 0.7566 0.7729 0.7672 0.7843 0.7683 0.6740 0.7224 0.7192 0.7222 0.7207 0.5826 0.6053 0.5940 0.5986 0.5924

y3 0.8819 0.8829 0.8766 0.8743 0.8806 0.8048 0.8339 0.8330 0.8329 0.8283 0.7566 0.7559 0.7504 0.7595 0.7530

y4 0.7641 0.7636 0.7565 0.7623 0.7538 0.5770 0.6248 0.6187 0.6213 0.6292 0.4971 0.5028 0.4975 0.5089 0.5116

y5 0.8349 0.8492 0.8478 0.8492 0.8485 0.7964 0.8139 0.8017 0.8073 0.8024 0.7665 0.7638 0.7598 0.7651 0.7582

y6 0.8587 0.8663 0.8642 0.8641 0.8636 0.7482 0.7769 0.7794 0.7784 0.7733 0.7053 0.7026 0.7011 0.7000 0.6919

y7 0.8369 0.8370 0.8342 0.8342 0.8330 0.7250 0.7733 0.7694 0.7723 0.7668 0.6357 0.6352 0.6350 0.6356 0.6319

y8 0.7536 0.7651 0.7562 0.7616 0.7583 0.6436 0.6876 0.6825 0.6841 0.6859 0.5251 0.5389 0.5266 0.5359 0.5289

y9 0.7333 0.7343 0.7261 0.7234 0.7283 0.5936 0.6425 0.6338 0.6352 0.6452 0.5003 0.5081 0.4927 0.5006 0.5009

y10 0.8113 0.8248 0.8204 0.8257 0.8200 0.7590 0.7719 0.7676 0.7713 0.7650 0.6844 0.7003 0.6872 0.6984 0.6945

y11 0.8276 0.8371 0.8305 0.8331 0.8326 0.7832 0.7976 0.7993 0.8011 0.7994 0.7054 0.7104 0.7062 0.7068 0.6963

y12 0.7965 0.8059 0.8016 0.8030 0.8012 0.7159 0.7358 0.7353 0.7382 0.7350 0.6374 0.6427 0.6374 0.6448 0.6320

y13 0.7763 0.7842 0.7779 0.7828 0.7776 0.6585 0.6792 0.6785 0.6843 0.6919 0.5968 0.6057 0.6004 0.6029 0.5972

y14 0.8471 0.8620 0.8585 0.8624 0.8609 0.8343 0.8625 0.8528 0.8567 0.8544 0.7812 0.7937 0.7815 0.7880 0.7811

y15 0.8241 0.8157 0.8143 0.8122 0.8159 0.7085 0.7399 0.7402 0.7390 0.7413 0.6650 0.6520 0.6491 0.6531 0.6521

y16 0.8271 0.8300 0.8242 0.8257 0.8276 0.7455 0.7761 0.7712 0.7731 0.7763 0.6841 0.6867 0.6752 0.6796 0.6792
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Table A.4. Relative root mean squared errors of for feature ranking strategies

(continued).
%5 %10 %20

SSS No FR Symbolic Genie3 RFI SSS No FR Symbolic Genie3 RFI SSS No FR Symbolic Genie3 RFI

ATP1D 0.6623 0.6574 0.6497 0.6489 0.6495 0.5781 0.5765 0.5811 0.5774 0.5791 0.6561 0.6670 0.6638 0.6536 0.6635

y1 0.7238 0.7195 0.7174 0.7100 0.7110 0.6549 0.6398 0.6526 0.6577 0.6428 0.7355 0.7573 0.7508 0.7349 0.7490

y2 0.7264 0.7163 0.7128 0.6986 0.7033 0.6201 0.6113 0.6133 0.6140 0.6093 0.7046 0.7101 0.7139 0.7037 0.7094

y3 0.6364 0.6331 0.6228 0.6201 0.6193 0.5599 0.5554 0.5600 0.5466 0.5606 0.6171 0.6250 0.6243 0.6146 0.6261

y4 0.5759 0.5675 0.5560 0.5653 0.5659 0.4852 0.4922 0.4958 0.4849 0.4961 0.5458 0.5597 0.5470 0.5424 0.5509

y5 0.7318 0.7350 0.7258 0.7236 0.7227 0.6546 0.6554 0.6575 0.6633 0.6568 0.7816 0.7862 0.7947 0.7774 0.7901

y6 0.5792 0.5731 0.5635 0.5760 0.5745 0.4935 0.5046 0.5071 0.4978 0.5091 0.5523 0.5637 0.5520 0.5487 0.5555

ATP7D 0.8053 0.8047 0.8007 0.7974 0.8055 0.7144 0.7279 0.7701 0.7151 0.7270 0.6561 0.6670 0.6638 0.6536 0.6635

y1 0.8801 0.8760 0.8741 0.8855 0.8755 0.8025 0.8215 0.8540 0.8207 0.8221 0.7355 0.7573 0.7508 0.7349 0.7490

y2 0.8812 0.8730 0.8743 0.8704 0.8773 0.7562 0.7535 0.8379 0.7519 0.7644 0.7046 0.7101 0.7139 0.7037 0.7094

y3 0.7569 0.7558 0.7480 0.7371 0.7553 0.6819 0.7035 0.7270 0.6725 0.6805 0.6171 0.6250 0.6243 0.6146 0.6261

y4 0.7098 0.7148 0.7094 0.6983 0.7204 0.6003 0.6155 0.6600 0.5924 0.6145 0.5458 0.5597 0.5470 0.5424 0.5509

y5 0.8892 0.8881 0.8830 0.8876 0.8803 0.8381 0.8541 0.8919 0.8551 0.8597 0.7816 0.7862 0.7947 0.7774 0.7901

y6 0.7149 0.7205 0.7153 0.7054 0.7244 0.6077 0.6195 0.6496 0.5980 0.6209 0.5523 0.5637 0.5520 0.5487 0.5555

MP6 0.8260 0.8478 0.8481 0.8282 0.8291 0.7126 0.7184 0.7218 0.7217 0.7222 0.6039 0.6172 0.6178 0.6180 0.6201

y1 0.8239 0.8461 0.8465 0.8262 0.8271 0.7098 0.7157 0.7192 0.7190 0.7196 0.6015 0.6148 0.6153 0.6156 0.6177

y2 0.8250 0.8470 0.8474 0.8273 0.8281 0.7113 0.7171 0.7206 0.7204 0.7210 0.6027 0.6160 0.6166 0.6168 0.6189

y3 0.8284 0.8497 0.8500 0.8305 0.8314 0.7159 0.7214 0.7249 0.7247 0.7253 0.6067 0.6201 0.6206 0.6209 0.6229

y4 0.8266 0.8483 0.8486 0.8288 0.8297 0.7135 0.7192 0.7226 0.7225 0.7231 0.6046 0.6180 0.6185 0.6188 0.6208

MP5 0.8136 0.7811 0.8175 0.8176 0.8178 0.7411 0.7983 0.7299 0.7313 0.7410 0.6046 0.6163 0.6147 0.6161 0.6147

y1 0.8150 0.7826 0.8188 0.8190 0.8191 0.7430 0.7996 0.7313 0.7327 0.7427 0.6059 0.6175 0.6158 0.6173 0.6158

y2 0.8086 0.7761 0.8125 0.8127 0.8128 0.7352 0.7937 0.7248 0.7262 0.7354 0.6000 0.6117 0.6102 0.6117 0.6102

y3 0.8175 0.7850 0.8214 0.8215 0.8216 0.7455 0.8017 0.7338 0.7352 0.7452 0.6082 0.6199 0.6182 0.6196 0.6182

y4 0.8133 0.7808 0.8172 0.8174 0.8175 0.7406 0.7980 0.7297 0.7311 0.7406 0.6044 0.6162 0.6146 0.6160 0.6146

Water Quality 0.9762 0.9648 0.9743 0.9772 0.9862 0.9616 0.9497 0.9609 0.9674 0.9686 0.9464 0.9350 0.9474 0.9534 0.9545

y1 0.9922 0.9797 0.9847 0.9878 0.9883 0.9772 0.9637 0.9688 0.9720 0.9688 0.9650 0.9510 0.9566 0.9609 0.9650

y2 1.0181 1.0127 1.0161 1.0137 1.0064 1.0198 1.0109 1.0127 1.0153 1.0080 1.0073 0.9985 1.0076 1.0086 1.0075

y3 0.9986 0.9805 0.9848 0.9849 0.9956 0.9918 0.9777 0.9849 0.9914 0.9864 0.9770 0.9708 0.9695 0.9794 0.9948

y4 0.9636 0.9589 0.9731 0.9802 0.9816 0.9502 0.9445 0.9555 0.9640 0.9685 0.9255 0.9240 0.9290 0.9410 0.9461

y5 0.9857 0.9779 0.9876 0.9893 0.9983 0.9641 0.9521 0.9705 0.9718 0.9799 0.9504 0.9429 0.9580 0.9581 0.9584

y6 0.8971 0.8808 0.9109 0.9191 0.9432 0.8835 0.8746 0.8887 0.9136 0.9283 0.8659 0.8584 0.8687 0.8924 0.8779

y7 1.0091 0.9957 1.0061 1.0072 1.0090 1.0009 0.9812 0.9997 1.0041 1.0081 0.9959 0.9739 0.9931 0.9990 0.9983

y8 0.9681 0.9534 0.9497 0.9604 0.9761 0.9410 0.9357 0.9398 0.9490 0.9510 0.9409 0.9266 0.9312 0.9355 0.9469

y9 0.9614 0.9383 0.9429 0.9448 0.9628 0.9411 0.9058 0.9357 0.9167 0.9103 0.8989 0.8791 0.9194 0.8867 0.9054

y10 0.9939 0.9942 0.9994 0.9898 0.9952 0.9658 0.9625 0.9645 0.9829 0.9818 0.9432 0.9388 0.9418 0.9732 0.9501

y11 0.9953 0.9778 0.9799 0.9874 0.9911 0.9820 0.9678 0.9825 0.9726 0.9734 0.9706 0.9497 0.9687 0.9632 0.9702

y12 0.9708 0.9569 0.9748 0.9722 0.9904 0.9561 0.9547 0.9589 0.9674 0.9799 0.9298 0.9261 0.9402 0.9396 0.9588

y13 1.0059 1.0063 1.0075 1.0102 1.0094 1.0051 0.9891 1.0047 1.0041 1.0047 1.0036 0.9891 1.0081 1.0031 1.0041

y14 0.9069 0.8936 0.9233 0.9331 0.9593 0.8845 0.8757 0.8858 0.9193 0.9109 0.8751 0.8610 0.8713 0.9073 0.8794




