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for being part of my thesis committee and for their valuable comments.

My appreciation also extends to my dear friends and fellow colleagues. Thanks
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ABSTRACT

EVOLUTIONARY APPROACHES TO MANY-OBJECTIVE

COMBINATORIAL OPTIMIZATION PROBLEMS

Many-objective evolutionary approaches try to characterize and overcome the

challenges posed by the large number of objectives and have been shown to be very

effective for achieving good Pareto approximations. Despite the growing interest, most

of the existing studies work on well-defined continuous objective functions with de-

signed features, and studies on combinatorial problems are still rare. The proposed

many-objective evolutionary algorithm is characterized by elitist nondominated sort-

ing and reference set based sorting where the reference points are mapped onto a fixed

hyperplane obtained at the beginning of the algorithm by solving single-objective prob-

lems. All evolutionary mechanisms such as reference point guided path relinking, repair

and local improvement procedures are designed to complement the reference set based

sorting. Moreover, the reference set co-evolves simultaneously with the solution set,

using both cooperative and competitive interactions to balance diversity and conver-

gence, and adapts to the topology of the Pareto front in a self-adaptive parametric

way. The proposed algorithm works successfully both under binary and permutation

encoding, as well as for correlated objectives or objectives with different scales. Near

optimal solutions can be used to construct the hyperplane without any significant dete-

rioration in the quality of the Pareto approximation. Moreover, when an optimization

problem under scenario-based uncertainty is modeled as a many-objective problem,

the proposed algorithm can provide good solutions simultaneously for several robust

measures. Numerical experiments demonstrate the success of the proposed algorithm

compared to state-of-art approaches and confirm that it can be applied sustainably to

a variety of many-objective combinatorial problems.
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ÖZET

PEK-ÇOK AMAÇLI TÜMLEŞİK PROBLEMLERE

EVRİMSEL YAKLAŞIMLAR

Pek-çok amaçlı evrimsel eniyileme adı verilen araştırma alanında, çok sayıda

amacın getirdiği zorluklar aşılmaya çalışılmaktadır ve bu yordamların başarılı Pareto

yaklaşımlarına ulaşmak için çok etkili olduğu gösterilmiştir. Artan ilgiye rağmen, mev-

cut çalışmaların çoğu önceden tasarlanmış özelliklere sahip, iyi tanımlanmış sürekli

işlevler üzerinde geliştirilip denenmektedirler ve tümleşik problemlerle ilgili çalışmalar

oldukça nadirdir. Önerilen pek-çok amaçlı evrimsel yordamın farklı sürümleri seçkinci

baskılanmamış sıralama ve referans seti temelli sıralama kullanır, ancak referans nok-

taları yordamın başında tek amaçlı problemler çözülerek elde edilen sabit bir aşırı

düzlem üzerinde konumlandırılır. Tüm evrimsel mekanizmalar, referans seti temelli

sıralamayı tamamlayıcı şekilde tasarlanmıştır. Bu nedenle çaprazlama şeması olarak

referans noktası güdümlü yol birleştirme önerilmektedir. Onarım ve yerel iyileştirme

izlekleri de referans noktaları tarafından yönlendirilir. Ayrıca, referans seti, çeşitliliği ve

yakınsamayı dengelemek için hem işbirlikçi hem de rekabetçi etkileşimler kullanarak

çözüm seti ile eş zamanlı olarak birlikte-evrimleşir ve Pareto cephesinin topolojisine

kendi kendini uyarlayan bir parametrik yolla uyum sağlar. Önerilen algoritma, hem

ikili ve hem permütasyon kodlaması ile ilişkili amaç fonksiyonları ve farklı ölçeklere

sahip amaç fonksiyonları altında başarıyla çalışmaktadır. Hiper düzlemi inşa etmek

için en uyguna yakın çözümler de Pareto yaklaşımının kalitesinde önemli bir bozulma

olmadan kullanılabilir. Ayrıca, senaryoya dayalı belirsizlik altındaki eniyileme prob-

lemi pek-çok amaçlı bir problem olarak modellendiğinde, önerilen algoritma birçok

gürbüz ölçüt için aynı anda iyi çözümler sağlayabilmektedir. Sayısal deneyler, önerilen

algoritmanın başka güncel yordamlara kıyasla başarısını göstermekte ve pek-çok amaçlı

tümleşik problemlere sürdürülebilir şekilde uygulanabileceğini doğrulamaktadır.
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ing solution for objective i in RPEA

θ Angle between two vectors in PICEA-w

ρj Niche count of reference point j

τ Predefined number of generations used in A2-NSGA-III

Ω Set of all possible scenarios
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1. INTRODUCTION

Multi-objective optimization problems (MOPs) include two or more conflicting

objectives. Due to this conflicting nature, the optimal solutions to a MOP consist of

a set of compromised solutions known as the Pareto optimal set. A Pareto optimal

(or efficient) solution is characterized such that no single objective can be improved

without degrading at least one of the others, thereby corresponds to a nondominated

point in the objective space. Solving a MOP usually involves determination of the

entire Pareto optimal set or at least as many Pareto optimum solutions as possible.

Evolutionary algorithms, which can produce a set of efficient solutions in a single run

due to their population-based structures, have proven to be very effective for achieving

good Pareto approximations. Consequently, multi-objective evolutionary algorithms

(MOEAs) are often referred as “the methods” to deal with MOPs (Deb, 2001).

On the other hand, when MOPs have more than three objectives, they are con-

sidered to deserve a new name as many-objective optimization problems (MaOPs).

This is because, as the number of objectives increases, the number of nondominated

solutions becomes huge and maintaining diversity as well as convergence for a good

and well-spread approximation of the true Pareto front turns into a true challenge

(Chand and Wagner, 2015). This often renders conventional MOEAs mostly ineffec-

tive and improved mechanisms are required. Several recent studies have attempted

to characterize the challenges posed by MaOPs and propose approaches that adapt

or extend existing MOEAs to overcome these challenges. As a result, the so-called

many-objective evolutionary algorithms (MaOEAs) have become an emerging topic in

the field of multi-objective optimization (Li et al., 2015).

The reference set based approaches are one of the most promising branches of

MaOEAs. These approaches introduce a set of references (reference points, reference

vectors, or weight vectors) to assist the evolutionary process and the diversity of the re-

sulting Pareto set approximation. A good quality reference set should be less sensitive

to problem type and Pareto front geometry and should be scalable to keep algorithm
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performance successful despite the increase in the number of objectives. Therefore, it

is crucial to develop effective strategies for positioning and utilization of the reference

set. One of the fundamental research topic questions in this thesis is to investigate

several reference set positioning strategies in an attempt to develop an enhanced ap-

proach. Hence, the aim is to develop a successful MaOEA that can contribute to

present methodologies to overcome existing challenges in MaOPs.

It has been observed that most methodological studies attempting to build multi-

objective or many-objective evolutionary techniques use test suites consisting of well-

defined continuous mathematical functions such as DTLZ (Deb et al., 2005), ZDT

(Zitzler et al., 2000) and WFG (Huband et al., 2006). These problems are repeatedly

preferred because they are scalable to any number of objectives and decision variables,

and the exact positions and shapes of the resulting Pareto optimal fronts are known

in advance. Combinatorial optimization problems, on the other hand, still remain

uncharted for the studies of many-objective approaches, although they have a vast

amount of applications in real-life. However, these problems, which display specific

characteristics due to their discrete nature, also exhibit special needs. Therefore, the

problem domain of this thesis is combinatorial optimization problems.

Many-objective knapsack problem (MaOKP), many-objective traveling salesman

problem (MaOTSP), and many-objective quadratic assignment problem (MaOQAP)

are selected as benchmarks. Each of these benchmark problems serves different pur-

poses during the analysis. For instance, MaOKP, which is an easy problem to gener-

ate, is a good starting point within the domain of combinatorial optimization. The

constrained nature, and consequently infeasibility, is rarely a problem since infeasible

solutions are very easy to repair. In fact, most of the recent pioneering studies in

the field of combinatorial optimization assess the performance of MOEAs on MaOKP

(Ishibuchi et al., 2014a). Consequently, MaOKP is used as the benchmark during the

development stages of the proposed MaOEA. It is then adapted to permutation encod-

ing to validate the performance in different combinatorial problems such as MaOTSP

and MaOQAP.
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After exploring the prominent aspects of existing multi- and many-objective ap-

proaches, some of these features are combined with several effective evolutionary strate-

gies in an innovative fashion to design a successful MaOEA. The proposed MaOEA

uses elitist nondominated sorting and reference set based sorting, however the reference

points are mapped onto a “fixed hyperplane” obtained at the beginning of the algo-

rithm. The use of a fixed hyperplane is the first novel idea that provides a significant

improvement in performance. The construction of the fixed hyperplane requires single-

objective problems to be optimally/near optimally solved in advance at reasonable

times, resulting in a hybrid structure for the proposed algorithm.

The way to locate the reference points on this fixed hyperplane is a critical issue

investigated in detail. As opposed to the base policy where reference points are fixed

on a well-spread mesh on the hyperplane, in another strategy, they are allowed to move

form their original location on the mesh in an attempt to adapt to the progression of

evolution. Finally, the reference point set co-evolves simultaneously with the popula-

tion of candidate solutions. This “co-evolutionary” approach, which constitutes the key

innovative part of the proposed MaOEA, provides the necessary adaptability to achieve

both convergence and divergence, bringing also a conclusive success. Other successful

features of the proposed MaOEA are path relinking recombination scheme integrated

with complementing selection mechanisms and repair/local improvement procedures,

as well as the use of an external population structure to store nondominated solutions.

The proposed approaches in this thesis are aimed to be designed as generic and

adaptable to different problem characteristics as possible. In this way, the proposed

MaOEA can be used for a wider spectrum of combinatorial optimization problems.

In order to generalize the insights obtained from benchmark problems to other com-

binatorial optimization problems, extensive numerical experimentation is carried out

in different application areas such as constrained problems, problems with correlated

objectives and objectives of different scales. The performance of different versions

of the proposed MaOEA is examined and validated in comparison to some existing

state-of-the-art evolutionary algorithms.
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One of the main propositions of this thesis is modeling a problem under scenario-

based uncertainty as a MaOP where each uncertainty scenario results in a different

objective function realization. Consequently, a new and natural application area is

opened by developing the many-objective counterparts of the optimization problems

that are subject to scenario-based uncertainty. In addition, both stochastic and ro-

bust optimization fields are contributed by proposing this alternative perspective. By

achieving a successful Pareto approximation, satisfactory solutions in terms of many

stochastic and robust metrics are found simultaneously in a single execution of MaOEA.

In this way, the decision maker has the opportunity to choose efficient solutions that

cover a wide range of different performance metrics according to his/her preferences.

Based on the above, targeted contributions of the proposed approach in this thesis

are summarized as follows:

� A reference set based evolutionary approach using a fixed hyperplane obtained

at the beginning of the algorithm

� Innovative complementary evolutionary strategies and genetic operators such as

reference point guided path relinking

� Non-parametric and self-adaptive co-evolution of reference and solution sets in-

cluding both cooperative and competitive aspects

� Yielding the best results so far in the literature for all the benchmark problems

� A new natural application area combining the optimization problems under scenario-

based uncertainty and MaOEAs

The thesis consists of six chapters. In Chapter 2, related definitions, concepts and

notation are introduced with a historical overview of related studies in the literature.

Combinatorial optimization problems selected as benchmarks are described in Chapter

3. In Chapter 4, a detailed explanation for the proposed MaOEA is provided by going

through its development stages and its key aspects. Numerical experimentation con-

taining a variety of aspects such as the verification of the proposed MaOEA, correlated

objectives, different objective scales, and searching for robust solutions is presented in

Chapter 5. Finally, a conclusion is provided in Chapter 6.
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2. DEFINITIONS, PRELIMINARIES AND LITERATURE

REVIEW

This chapter provides an introduction to the basics in this field of study. Re-

lated definitions, notation and concepts are introduced, main challenges and suggested

solutions are discussed along with an historical overview of related literature. In Sec-

tion 2.1, definitions and studies related to multi-objective optimization and evolution-

ary approaches are presented. In Section 2.2, many-objective optimization problems

are explained with particular emphasis on the challenges they bring, and a literature

overview is provided together with a classification. Section 2.3 contains a discussion

about co-evolutionary algorithms. Finally, the performance assessment of Pareto front

approximations is reviewed in Section 2.4.

2.1. Multi-Objective Optimization Problems (MOPs)

Multi-objective optimization problems (MOPs) include two or more objective

functions to be minimized (or maximized) at the same time. For each feasible so-

lution, the objective function becomes a vector function representing values for each

objective. Two spaces are considered in MOPs: n-dimensional space of decision vari-

ables and m-dimensional space of objective functions (Branke et al., 2008). A point

in the former space represents a solution, and in the second, it gives a specific point

in terms of objective function values that display the quality of the corresponding

solution.

The concept and purpose of optimality in MOPs is to find good compromises (or

trade-offs) among the objectives rather than searching for a single global optimal point

(Marler and Arora, 2004). Unlike a single-objective optimization problem, where the

optimal solution is usually unique, it is almost impossible to have a unique solution

with the best performance on all objectives simultaneously. There is no single optimal

solution in a MOP, but there is a set of compromised solutions that reflect different
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trade-offs throughout the objective functions of the problem. These solutions are called

efficient solutions or Pareto optimal solutions. It is common to see conflicts between

different objectives, and a solution that performs well on one objective may not perform

well on other objectives. Even so, only one of the solutions in the Pareto optimal

solution set should ultimately be chosen. This fact makes it difficult for a decision

maker (DM) to evaluate and compare different solutions. As a result, MOPs involve

two vital tasks: the optimization task of finding Pareto optimal solutions and the

decision making task of choosing a single most preferred solution.

Despite the challenges and additional tasks, many real-life operations research

(OR) problems involve multiple non-trivial objectives and it is beneficial to model

the problems not only considering a single objective, but also optimizing multiple

objectives each considering different goals simultaneously. As a consequence, multi-

objective optimization is a relatively old, large and established field of research that

dates back to the early days of OR. Nevertheless, studies in MOPs usually involve two

or three objective functions, and currently available techniques operate appropriately

for relatively few objectives.

In this section, Pareto terminology and related definitions adopted in multi-

objective optimization are explained in Section 2.1.1. In Section 2.1.2, the classification

and methods in multi-objective optimization are presented. Finally, multi-objective

evolutionary algorithms (MOEAs) are introduced in Section 2.1.3.

2.1.1. Pareto Terminology and Related Definitions

The MOP, which assumes minimization objectives, is formulated in Equation 2.1.

min ~f(~x) = [f1(~x), f2(~x), ..., fm(~x)] (2.1a)

subject to ~x ∈ X (2.1b)
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where ~x = [x1, x2, ..., xn] is the vector of decision variables, n ∈ Z+ is the total number

of decision variables, fi : Rn → R, i = 1, ...,m are the objective functions of the

problem. Given two decision variable vectors ~u, ~v ∈ Rn, it is said that ~u Pareto

dominates ~v denoted by ~u � ~v if and only if ~u is partially less than ~v i.e. ∀i ∈

{1, ...,m} : fi(ui) ≤ fi(vi) ∧ ∃j ∈ {1, ...,m} : fj(uj) < fj(vj). Accordingly, ~u Pareto

strictly dominates ~v denoted by ~u ≺ ~v if and only if ~u is less than ~v in all objectives i.e.

∀i ∈ {1, ...,m} : fi(ui) < fi(vi). The former concept provides a basis for determining

the superiority of a solution over other solutions. Within a solution set, nondominated

solution set is a set of all solutions that are not dominated by any other member of

the solution set.

In Figure 2.1, the Pareto dominance concept is illustrated in the two-dimensional

objective space. As solution x1 is no worse than solution x2 in all objectives and it

is strictly better in at least one objective, it is said that x1 dominates x2 (i.e. x2

is dominated by x1). Other conclusions that can be made from the figure are x5 is

dominated by all, x2 and x4 cannot dominate each other but both are dominated by

x3, and x1 and x3 cannot dominate each other.

f2 (minimize)

f1 (maximize)

f(x5)

f(x2)

f(x4)

f(x3)

f(x1)

2 4 5 6 8

3

4

6

7

Figure 2.1. Illustration of the Pareto dominance concept.

It is said that a solution x∗ ∈ X is weakly Pareto optimum (weakly efficient so-

lution) if there is no other x ∈ X such that x ≺ x∗. Similarly, a solution x∗ ∈ X is

[strictly] Pareto optimum ([strictly] efficient solution) if there is no other x ∈ X such
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that x � x∗. The vectors in the objective (criterion, outcome) space that correspond to

efficient solutions are called nondominated points. In other words, efficiency and domi-

nance are counterparts of each other in the decision and objective spaces, respectively.

The relationship between decision and objective space is shown in Figure 2.2.

x2

x1

f2(x) (minimize)

f1(x) (minimize)

C

B
A

feasible decision space

Pareto optimal solutions

feasible objective space

Pareto optimal front

Figure 2.2. Relationship between the decision and objective space.

The set of all Pareto optimum points of the entire feasible decision space is called

the Pareto optimal set P∗, or the efficient set XE. The boundary defined by the set of

all points mapped from the Pareto optimal set in the objective space forms the [true]

Pareto Front (PF) or the nondominated set YND. In other words, P∗ and XE are

defined in the decision space whereas PF and YND are their corresponding image in

the objective space. It should be noted that multiple efficient solutions may correspond

to the same nondominated point. In this case, it is sufficient to find only one of these

efficient solutions.

The goal in MOPs is to determine the Pareto optimal set or at least as many

Pareto optimum solutions as possible. Methods in multi-objective optimization target

to find a set of solutions, called Pareto approximation that is as close as possible to

the Pareto optimal front and as diverse as possible. These goals can be seen in the

objective space in Figure 2.3.

Assuming the efficient set XE is nonempty and bounded, the lower and upper

bounds in the values of the nondominated set YND is acknowledged by the ideal and
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f2(x) (minimize)

f1(x) (minimize)

1

2

feasible objective space

Pareto optimal front

Figure 2.3. Goals of multi-objective optimization.

nadir point, respectively. The ideal (or utopian) point (or vector) ~yI = (yI1 , ..., y
I
m) is

defined in the objective space as according to the individual minima of each objective.

In other words, it is the best possible value for each criterion among the efficient set

and thereby the feasible set. Ideal point can be constructed by optimizing each of the

criteria separately and shown in Equation 2.2.

yIi := min
x∈XE

fi(~x) i = 1, ...,m (2.2)

On the contrary, the nadir point (or vector) ~yN = (yN1 , ..., y
N
m) is defined in the

objective space as according to the individual maxima of each objective. In other

words, it is the worst possible value for each criterion among the efficient set and it is

shown in Equation 2.3.

yNi := max
x∈XE

fi(~x) i = 1, ...,m (2.3)

It must be noted that the nadir point should not be confused with the worst

feasible solution. Ideal and nadir points are displayed in Figure 2.4.

Both ideal and nadir points are imaginary points defined in the objective space

and they do not necessarily correspond to a real solution in the decision space. Finding

both points is critical as various approaches use these points to scale each objective of

the Pareto front. However, it might be the case that finding these points, particularly
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f2(x) (minimize)

f1(x) (minimize)

D

C

B

A
feasible objective space

Pareto optimal front
Ideal point

Nadir point

Worst objective vector

Figure 2.4. Ideal and nadir point in the objective space.

the nadir point is not straightforward, especially for problems with more than two crite-

ria. Naturally, the convex hull of the nondominated set can be defined in the objective

space. Nondominated points that cannot be represented as a convex combination of

other nondominated points are called extreme nondominated points.

Another important concept regarding the nondominated set is supported and

unsupported nondominated points. Nondominated points corresponding to an optimal

solution for some single-objective problem obtained by any scalarization using weighted

sums of the form defined in Equation 2.4 are called supported nondominated points,

otherwise unsupported nondominated points.

min
~x∈X

m∑
i=1

λifi(~x) (2.4)

where
∑m

i=1 λi = 1,∀λi > 0. It should be noted that extreme nondominated points are

always supported. Consequently, definitions of extreme supported efficient, nonextreme

supported efficient and unsupported efficient solutions can be made as well in the

decision space.

The optimal solution for one of the criteria constitutes an individual minimum

with respect to that criterion. Individual minima are weakly efficient solutions, but
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they are not necessarily strictly efficient. On the other hand, a solution that is opti-

mum for a lexicographic ordering of the criteria is called lexicographic optimal solution.

These solutions are extreme supported [strictly] efficient solutions. These concepts and

definitions are illustrated in Figure 2.5.

f2

f1

Lexicographic optimal

Extreme supported nondominated

Nonextreme supported nondominated

Nonsupported nondominated

Individual minimum

Weakly nondominated

Dominated

Figure 2.5. Types of solutions in the objective space.

Distances between points in the objective space are measured using Lq-metric.

The Lq-distance between two vectors ~x, ~y ∈ Rm is measured in Equation 2.5.

‖~x− ~y‖q =

[
m∑
i=1

|xi − yi|q
]1/q

(2.5)

In the presence of a weight vector ~w = [w1, ..., wm], the weighted Lq-distance

between two vectors ~x, ~y ∈ Rm is measured in Equation 2.6.

‖~x− ~y‖~w,q =

[
m∑
i=1

wi|xi − yi|q
]1/q

(2.6)
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Different distance metrics can be obtained based on different values of the q

parameter. The most commonly used distance metrics are rectilinear, Euclidean, and

Tchebycheff. Their formulas are provided in Equation 2.7 to 2.9 in the respective order.

Rectilinear: L1 =
m∑
i=1

|xi − yi| (2.7)

Euclidean: L2 =

√√√√ m∑
i=1

|xi − yi|2 (2.8)

Tchebycheff: L∞ = max
i=1,...,m

|xi − yi| (2.9)

2.1.2. Classification and Methods

The classification of the multi-objective optimization methodologies can be made

based on the sequence of its phases (Branke et al., 2008). Multi-objective optimization

has three phases: model building, optimization, and decision making (or preference

articulation). Once a multi-objective model has been built, the next step should be

either an optimization phase or a decision making phase.

When the decision making process is put before optimization, this is called “a

priori” method. The advantages of this method are that the problem can be reduced

to a single-objective problem and optimization does not require much time and effort.

However, it is not easy articulate preference in advance and the resulting solutions

may not be the same as the solution the DM would choose from the Pareto optimal

set. A priori methods include value function method (Keeney and Raiffa, 1976), lex-

icographic ordering (Fishburn, 1974), goal programming (Charnes and Cooper, 1957;

Charnes et al., 1955) and fuzzy multi-objective optimization methods (Rommelfanger

and S lowiński, 1998).

When the decision making process and optimization interferes with each other,

this is called “an interactive” method. In interactive methods, the decision maker

plays an important role and preference information is gradually provided so that the
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most preferred solution can be found. In interactive methods, three types of preference

information are specified. These are trade-off information (Geoffrion et al., 1972; Zionts

and Wallenius, 1976), reference points (Wierzbicki, 1980), and classification of objective

functions (Larichev, 1992).

When the optimization phase comes before the decision phase, this method is

called “a posteriori”. A posteriori methods are also called the methods for generating

Pareto optimal solutions. In these methods, a satisfactory representation of Pareto

optimal solutions is produced and presented to the decision maker who will choose

one of these solutions as the most preferred final solution. The rationale behind a

posteriori approaches is that it is much easier to choose the most preferred solution

when a set of different Pareto optimal solutions is observed. The difficulties encountered

in a posteriori methods are that the generation process of the Pareto front is often

computationally expensive and difficult, and it can also be challenging to represent

and display the Pareto front in a comprehensible way. A posteriori methods include

weighted metrics (Zeleny, 1973), achievement scalarizing functions (Wierzbicki, 1980)

and approximation methods (Payne and Carlson, 1975; Polak, 1976). Apart from

these, weighting method (Gass and Saaty, 1955; Zadeh, 1963) and ε-constraint method

(Haimes et al., 1971) can also be used as a posteriori methods. More examples and

research can be found in all these categories (Coello et al., 2007).

When it comes to the methods of multi-objective approaches, it is worthwhile

to mention exact methods and approximation algorithms, although the methodology

used in this thesis follows an evolutionary approach. For instance, there exist multi-

objective versions for enumeration techniques such as branch and bound or dynamic

programming. In these methods, ideal and nadir points can be used as lower and upper

bounds for the nondominated point set. Nevertheless, since these two points might be

far away from the nondominated point set, they are inadequate to bound the search

area. Instead, a set of points called bound sets can be used to reduce the search area.

A detailed discussion about the bound sets can be found in Ehrgott and Gandibleux

(2007). In approximation algorithms, a set of points, which is expected to represent the

nondominated set and provide useful information, is generated. This set can consist
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of verified nondominated points which are obtained by an exact method Ruzika and

Wiecek (2005), or approximated nondominated points which are found by a heuristic

approach Ehrgott and Gandibleux (2004).

On the other hand, it is impractical to calculate the entire Pareto optimal set in a

posteriori methods, since it is very costly to enumerate the entire Pareto optimal set by

obtaining a single solution in a single run with the above-mentioned techniques. This

fact leads to the use of evolutionary methods for MOPs. Evolutionary algorithms are

well suited for solving MOPs as they are population based approaches. They are very

attractive solution techniques since they can simultaneously search different regions of

the objective space and find a diverse set of efficient solutions for any types non-convex,

discontinuous, and multi-modal problems (Coello et al., 2007).

2.1.3. Multi-Objective Evolutionary Algorithms (MOEAs)

Extensive research has been conducted on evolutionary approaches to solve MOPs

(Coello, 2000; Konak et al., 2006; Zitzler et al., 2004). Multi-objective evolutionary

algorithms (MOEAs), based on natural evolution principles, are widely applied to solve

MOPs. They are even referred as “the” method to explore the Pareto optimal front

in MOPs (Deb, 2001). The main reason for using MOEAs in the field of evolutionary

multi-objective optimization (EMO) is their capability to find multiple Pareto optimal

solutions in a single run (Jones et al., 2002). While working with a population of

solutions, they can offer the decision maker a set of alternatives simultaneously. As

a result, the field of EMO has grown rapidly in recent decades. Since MOEAs are

a type of the metaheuristic approaches, the attempt is to find an acceptable Pareto

approximation. Recently, MOEAs have also been used to find only a part or a specific

region of the Pareto optimal set.

Similar to conventional evolutionary approaches, solutions in the MOEAs are rep-

resented by chromosome and genes to construct their genotypes in decision space and

phenotypes in objective space. Throughout the evolutionary process, different sets of

solutions establish populations (generations), parent and child (offspring) populations.
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MOEAs also include genetic operators such as selection, recombination (crossover),

mutation, immigration, local improvement, and repair.

The differences between a generalized evolutionary algorithm (EA) and a MOEA

are shown in Figure 2.6. The main difference is observed in fitness function evaluation

(Task 2). MOEA computes multiple fitness functions, and sometimes an extra pro-

cedure is required to transform fitness vectors into a quantitative evaluation measure

(Task 2a). The rest of the MOEA is structurally the same as a generalized EA. The

most characteristic differences between MOEAs are often the selection of solutions of

the evolving population (Task 5).

1 2 3 4 2 5

Loop

2 2a 3 4 2 2a 51

Loop

1. Initializing population

2. Fitness evaluation

2a. Vector/fitness
transformation

3. Recombination

4. Mutation

5. Selection

Generalized EA

MOEA

Figure 2.6. Task decomposition in generalized EA and MOEA (Adapted from Coello

et al., 2007).

A successful MOEA should be able to achieve a Pareto approximation as close

as possible to the true Pareto front (Konak et al., 2006). Preferably, members of the

Pareto approximation should be a subset of the Pareto optimal set. In addition, mem-

bers of the Pareto approximation need to be distributed homogeneously and diversely

in order to provide a comprehensive representation of trade-offs to the decision maker.

In other words, the Pareto approximation should represent the entire true Pareto front

(Coello et al., 2007). Numerous techniques have been proposed to ensure diversity in

MOEAs such as fitness sharing (Deb and Goldberg, 1989), nearest neighbor approach

(Zitzler et al., 2001), crowding distance (Deb et al., 2002), restricted mating (Lu and

Yen, 2002), and weight vectors (Ishibuchi et al., 2003). In Zitzler et al. (2000), the

performances of MOEAs are evaluated in terms of the success of achieving a Pareto
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approximation as close as possible to the true Pareto front, and diversity concerns not

only avoiding local optima but also achieving the entire Pareto front.

The studies in this thesis adopt a posteriori approach and aim to find as many

solutions as possible on the Pareto front, leaving the remaining multi-criteria decision

making process to the DM with the chance to choose a solution from a set that com-

prehensively reflects the trade-offs between different objectives. In this way, no prior

preference information from the DM is required.

2.2. Many-Objective Evolutionary Algorithms (MaOEAs)

Multi-objective optimization problems (MOPs) with more than three objectives

are referred as many-objective optimization problems (MaOPs). MaOPs appear widely

in many real-world applications, engineering design problems in particular constitutes

a natural domain for this field. Many-objective evolutionary algorithms (MaOEAs)

constitute a new and key field of research for modern day evolutionary computation,

and have received a sustained attention in the EMO community. While some pioneering

studies can be encountered in the early 1990s, the majority of the research has been

done in the last decade. One of the earliest algorithms applied to MaOPs is by Fonseca

and Fleming (1998).

In this section, the sources of challenges in MaOPs are introduced next. Capabil-

ities of the existing approaches to deal with these encountered challenges are discussed

in Section 2.2.2. A brief literature survey is presented in Section 2.2.3. MaOEA cat-

egories are reviewed in Section 2.2.4. Reference set based MaOEAs are described in

Section 2.2.5 and a subset of such approaches involving adaptation the reference set

during the evolutionary process is specifically explored in Section 2.2.6.

2.2.1. Sources of Challenges

By definition, existing methods for MOPs can also be applied to MaOPs. Hence,

evolutionary approaches can be seen as a natural solution method for MaOPs, too.
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Unfortunately, during their implementation, especially for those based on Pareto domi-

nance, researchers have faced a number of serious challenges that are presented through-

out this section. Existing reviews on this topic present current challenges and the

studies to address these challenges (Chand and Wagner, 2015; Ishibuchi et al., 2008;

Jaimes and Coello, 2015; Von Lücken et al., 2014; Wagner et al., 2007).

Increase in Nondominated Population. When there is a large number of objec-

tives, more solutions become nondominated across the entire feasible set. When the

population of a MaOEA consists largely of Pareto optimal solutions, the equivalence of

the available solutions in the current population complicates the selection phase and ob-

scures finding a good direction to investigate a successful Pareto approximation. This

fact definitely undermines evolutionary approaches using selection procedures based

on Pareto dominance. Thus, the overall search process slows down. To overcome

this problem, Sato et al. (2010) propose Pareto partial dominance as an alternative to

the Pareto dominance approach. Aguirre and Tanaka (2009) recommend partitioning

the objective space into subspaces and searching in each subspace. The ε-domination

principle used by Laumanns et al. (2002) also aims to address the problem of a large

nondominated set of solutions. In this approach, a solution is said to dominate another

solution if their objectives are within ε-distance. This definition allows for a large num-

ber domination relationship between the solutions and creates a lower, finite number

of solutions in Pareto the optimal set.

Computational Efficiency in Assessment of Diversity Measures. As the number

of objectives increases, not only the number of Pareto optimal solutions increases but

also each solution is represented by a higher dimensional vector in the objective space.

This results in MaOEAs to be computationally expensive. Various performance met-

rics require exponentially more computational effort when higher dimensional points

are compared to each other. For example, it becomes computationally expensive to

identify neighbors of a particular solution in the objective space, such as the case when

calculating crowding distance (Deb et al., 2002). To solve this problem, faster and

more accurate algorithms have been proposed. Deb and Jain (2013) propose a refer-

ence point based approach where a number of well-spread reference points are used to
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find a set of well-spread Pareto optimal solutions. The ε-domination principle can also

be used to obtain a well-spread set of solutions, as computational complexity increases

only linearly with the increase in the number of objectives.

Recombination. Recombination operators used to produce new offspring solu-

tions are crucial for the success of evolutionary approaches, as they are considered

key search operators. When only a finite number of solutions are found in a high-

dimensional objective space, they tend to be far apart from each other in the objective

space, that is, if conventional recombination schemes are used, they might generate an

offspring far from the Pareto front (Jaimes and Coello, 2015). Conventional recombi-

nation operators developed for problems with fewer objectives become inefficient and

insufficient, as the aim is to find the Pareto front that is likely to consist of extreme

points in the solutions space. Even though the parent solutions are close to the Pareto

optimal front, their offspring need not to be close to the front. To handle this issue,

special recombination operators may be required and developed. For example, Deb and

Jain (2013) propose a special recombination scheme called simulated binary crossover.

In short, attention should be paid to the choice of the recombination operator and the

selection of candidate parents to participate in the recombination scheme.

Visualization. Visualization is an important issue in the decision making stage.

The DM should be able to grasp what is offered to them and choose according to

their preferences. When the number of objectives is more than three, it naturally

becomes difficult to visualize the objective space and therefore becomes difficult to

decide on a final solution. Possible way to eliminate the visualization problem might

be to visually switch between given objectives. In this way, the decision maker can shift

between objectives and view different trade-offs, and thereby not get overwhelmed by

the large number of objectives. Other approaches to assist the DM are to apply further

graphical methods such as parallel coordinates plot, heat maps radial visualization,

decision maps, and geodesic maps, etc. Reducing the number of objectives or mapping

objective vectors to a lower dimensional space can be beneficial approaches.
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2.2.2. Current Approaches

In this section, approaches to address the problems encountered in MaOPs are

briefly outlined. Although different classification alternatives can be found to group

these methodologies, they are divided into three categories in this section as methods

that include scalability improvement, preference information, and objective reduction.

Scalability Improvement. Scalability improvement in many-objective optimiza-

tion includes ideas that aim to improve existing evolutionary multi-objective approaches

to achieve successful solution techniques for MaOPs. There are numerous improvement

methods proposed in the literature which are principally based on existing MOEAs.

To improve the scalability of MOEAs, their capabilities for selection should be

improved. Sato et al. (2007) modify the Pareto dominance concept to reduce the

number of nondominated solutions in each generation by expansion or contraction of

the dominance area. In Corne and Knowles (2007) and Sülflow et al. (2007), alterna-

tive rankings such as average ranking and ε-preferred are assigned to nondominated

solutions namely, respectively.

Another idea is to use different fitness evaluation mechanisms instead of Pareto

dominance. Indicator-based evolutionary algorithm in Wagner et al. (2007) use indica-

tor functions such as hypervolume to evaluate each solution. Purshouse and Fleming

(2003) use a number of different scalarizing functions for fitness evaluation. It should

be noted that there are numerous examples of research employing scalability improve-

ment since almost every evolutionary methodology proposed for MaOPs is based on

an existing algorithm developed for MOPs.

Incorporation of Preference Information. The design goal of evolutionary algo-

rithms is to achieve a set of nondominated solutions that successfully approximates the

entire Pareto front. However, as mentioned earlier, the number of solutions required for

a good approximation increases exponentially with the number of objectives. There-

fore, some researchers suggest utilizing the decision maker’s preference to focus on a
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particular region of the Pareto front. The idea is simply to incorporate preference in-

formation interactively throughout the course of optimization process to focus on the

region of the decision maker’s interest, hence avoiding to evaluate an enormous num-

ber of solutions. In addition, preference information can be used to rank incomparable

nondominated solutions and to deal with the large number of objectives.

Fonseca and Fleming (1998) used preference information to compare solutions and

extend ranking mechanisms. In Fleming et al. (2005), preference information is used

to cope with conflicting objectives; and in Deb and Sundar (2006), the reference points

are extracted from the decision maker. Thiele et al. (2009) propose a variant of the

indicator-based evolutionary algorithm, where preference information is incorporated

through an achievement scalarization function. In López-Jaimes and Coello (2014),

preference information based on Tchebycheff achievement function is used to analyze

a real-world many-objective design problem.

Objective Reduction Approaches. The difficulties faced in MaOEAs may vanish

if important objectives can be chosen and search is focused only on the dimensions

specified on them. Deb and Saxena (2005) propose a method to reduce the number of

objectives based on principal component analysis. The aim is to remove unnecessary

objectives while maintaining the shape of the Pareto front in the reduced objective

space. Brockhoff and Zitzler (2006, 2007) define two objective reduction algorithms

based on the idea to remove an objective when it does not change the Pareto dominance

relationship between solutions.

2.2.3. An Overview of Problem Domains in MaOEA Studies

In this section, a brief overview is provided for the related literature with respect

to problem domains by grouping a non-exhaustive set of studies in two tables. In

both tables the number of objectives, application area and main type of methodology

are displayed. Design problems are a natural problem domain for many-objective

approaches. As such, the first table, Table 2.1 is devoted to studies that try to solve a

many-objective design problem.
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Table 2.2. Literature review, test problem suites.

Reference
Objective

count
Test problem Methodology

Deb and Saxena (2005) 5 - 30 DTLZ NSGA-II with PCA

Deb and Saxena (2006) 3 - 50 DTLZ NSGA-II with PCA

Praditwong and Yao (2006) 2 - 8 DTLZ TAA

Brockhoff and Zitzler (2007) 5 - 9 DTLZ δ-MOSS, k-EMOSS

Wagner et al. (2007) 3 - 6 DTLZ
ε-MOEA, MSOPS, IBEA, SMS-

EMOA

Zhang and Li (2007) 2 - 4 DTLZ, WFG MOEA/D

Thiele et al. (2009) 5 ZDT PBEA

Bader and Zitzler (2011) 2 - 50 DTLZ, WFG HypE

Deb and Jain (2013) 3 - 15 DTLZ NSGA-III

Jain and Deb (2013) 3 - 8 DTLZ A2-NSGA-III

Wang et al. (2013) 2 - 10 WFG PICEA-g

Jain and Deb (2014) 3 - 15 DTLZ A-NSGA-III

Mohammadi et al. (2014) 4 - 10 DTLZ R-MEAD2

Wang et al. (2014) 2 - 10 DTLZ Two Arc2

Wang et al. (2015) 2 - 7 WFG PICEA-w

Cheng et al. (2016) 3 - 10 DTLZ RVEA

Goulart and Campelo (2016) 5 - 20 DTLZ R-NSGA-II, PBEA

Asafuddoula et al. (2017) 3 - 15 DTLZ g-DBEA

Liu et al. (2017) 6 - 15 DTLZ RPEA

Liu et al. (2020) 5 - 15 DTLZ, WFG AnD

Most of the studies in the area, on the other hand, are methodological studies

that try to develop improved solution methods for MaOEA. Nearly all of these use

some scalable test problem suites constructed to perceive the performance of different

evolutionary algorithms. These conventional test sets do not rely on real-world prob-

lems; however, they use well-defined continuous mathematical functions as objective

functions. DTLZ (Deb et al., 2005), ZDT (Zitzler et al., 2000), WFG (Huband et al.,

2006) are examples in this class and are exercised extensively in many-objective op-

timization research. They are preferred because they are scalable to any number of

objectives and decision variables, and the exact positions and shapes of the resulting
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Pareto optimal fronts are known in advance. These studies are displayed in Table 2.2.

An important remark is that there are very few applications for OR problems. The

literature on combinatorial many objective problems will be surveyed in Chapter 3.

2.2.4. Categories of MaOEAs

MaOEAs can be broadly categorized into seven classes based on the main idea

used in their algorithms (Li et al., 2015). In the first class, the dominance rule is

modified to distinguish the excessive amount of nondominated solutions and direct

the selection pressure towards the Pareto front. Such approaches can be called as

relaxed dominance-based approaches. The ε-dominance rule suggested by Laumanns

et al. (2002) is an example studied and applied in this thesis. The second class, called

diversity-based approaches, primarily addresses the maintenance of a diverse popula-

tion by actively promoting density-based criteria to support the primary dominance-

based criterion in the evolutionary selection. In the third class, called indicator-based

approaches, performance indicator values used to evaluate the approximation sets are

used to drive the evolutionary process. Hypervolume estimation algorithm (HypE)

proposed by Bader and Zitzler (2011) uses the hypervolume indicator, the only met-

ric known to be strictly monotonic to Pareto dominance. Fourth, it is the class of

preference-based approaches, where the decision makers’ preferences are incorporated

in the search process to focus on the respective subset of the Pareto front. The fifth

class, called dimensionality reduction approaches, aims to deal with MaOPs with redun-

dant objectives. This is done by reducing the number of objectives and converting the

original MaOPs into another problems with fewer objectives but with a similar Pareto

set. The sixth class contains aggregation-based or decomposition-based approaches,

where the objective functions of MaOPs are aggregated into a single-objective function

and the Pareto front is decomposed into several sub-regions. Zhang and Li (2007),

which uses alternative scalarizing functions such as weighted sum, weighted Tcheby-

cheff, and boundary intersection methods, is an example of such an algorithm. Refer-

ence set-based approaches, the final class of MaOEAs in which the approach proposed

in this thesis can be considered, are examined in detail in the next section.



24

2.2.5. Reference Set Based MaOEAs

The final class of MaOEAs is one of the most promising and it is called reference

set based approach. In this approach, a set of reference points or solutions is used to

guide the search process and measure the quality of the solutions. As a result, the

quality of the reference set becomes an important issue as it is responsible for ensuring

convergence and maintaining a diversified solution set. In other words, the balance

between convergence and diversity is sustained by the reference set. A good quality

reference set should be less sensitive to the problem type and Pareto front geometry and

should be scalable to MaOPs to keep the algorithm’s performance successful despite

the increase in the number of objectives.

Pioneering approaches in the literature often adopt only a single reference point,

representing the decision maker’s preferred ideal solution. In Wierzbicki (1980), the

aim is to achieve Pareto optimal solutions closest to a particular reference point, while

in Deb and Sundar (2006) the goal is to obtain a set of solutions as close as possible to

the reference point. Mohammadi et al. (2012) integrate decomposition methods with

reference point based approaches to search preferred regions of the Pareto front. On

the other hand, when the main interest is obtaining an approximation of the entire

Pareto-front for a posteriori decision making, as is the case in this thesis, a set of

well-distributed reference points can be employed.

In Figueira et al. (2010), after approximating the boundaries of the Pareto front,

ideal and nadir points, a set of reference points is generated and solutions close to each

reference point are found in parallel by the decomposition of the objective space using

reference points. The fitness values of individuals are evaluated using achievement

scalarizing functions.

In general, there are two issues with reference set based approaches. The refer-

ence set based methods differ from each other in how they construct the reference set

and how they measure the quality of the solutions relative to the reference set during

evolution. Regarding the first problem, some algorithms use real solutions in the refer-
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ence set, where some members of the population are treated as reference points, while

other algorithms use a virtual reference set that is used to create a set of virtual points

in the objective space, i.e. an ideal front to lead the search process. Although more

information about the population is included in a real reference set, virtual reference

set approaches are more common as their locations and distributions can be better

organized. The second issue is usually about how solutions in the population are asso-

ciated with reference points. Different distance metrics and scalarizing functions such

as Euclidean and Tchebycheff have been adopted by different algorithms.

In NSGA-III proposed by Deb and Jain (2013), the entire objective space is

expected to be covered by a hyperplane that is built based on the current population.

Reference points are evenly distributed over this hyperplane for diversity maintenance.

After normalizing the objective function values of current population members, the

reference points are placed on this normalized hyperplane. After using the conventional

Pareto rule of domination, a niche-preservation strategy is used to measure the fitness of

the individuals. In this algorithm, the hyperplane, which includes all reference points,

evolves as the base population evolves whereas the reference points on the hyperplane

are fixed.

In MOEA/D proposed by Zhang and Li (2007), a multi-objective problem is de-

composed into a number of single-objective problems identified using the same scalar-

izing function with different weight vectors. While this algorithm is categorized as a

decomposition based algorithm, there is a strong analogy between its weight vectors and

the reference points. The solution corresponding to each weight vector is generated by

recombining a pair of parent solutions randomly selected from the neighborhood. The

new solution is compared with the existing solution of the corresponding weight vector

and the existing solutions of its neighbors. It replaces those with a worse scalarizing

function value in terms of the corresponding weight vector.

Two archive algorithm (TAA) and its modified version (Two Arch2) are proposed

by Praditwong and Yao (2006) and Wang et al. (2014), respectively. An important as-

pect of these algorithms is that they explicitly distinguish two goals of evolutionary
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multi-objective optimization, convergence and diversity. In both algorithms, the so-

lution set of each generation is divided into two groups, a convergence archive and

a divergence archive. The convergence archive only includes nondominated solutions

that once dominated existing archive members, and the diversity archive contains the

solutions with the greatest distances to convergence archive members. In this approach,

the solutions of the convergence archive can be seen as adaptive real reference points

that are updated online.

2.2.6. Adaptation Methods in the Reference Set Based MaOEAs

The use of adaptive reference points is recommended to deal with irregular Pareto

fronts and different scales of objectives. Irregular Pareto fronts include degenerate

fronts, discontinuous fronts, inverted fronts and highly nonlinear fronts. The difficulties

faced by the decomposition-based and reference set based methods on irregular Pareto

fronts have been pointed out by several researchers (Hua et al., 2018; Ishibuchi et al.,

2019; Liu et al., 2019). It is claimed that sampling reference vectors from a uniform set

of points inherently assumes that the Pareto front is bounded by the reference vectors,

and it is nondegenerate, continuous, smooth, and without significant nonlinearity. On

the other hand, methods with dynamic reference points can be challenged as their

convergence speed may be degraded (Giagkiozis et al., 2013) and added parameters may

cause additional complexity. As a result, it is crucial to develop effective positioning

and adaption strategies for the reference set.

In RPEA by Liu et al. (2017), reference points are updated only in some itera-

tions and the frequency of the reference set regeneration is determined by a predefined

parameter value. Reference points are formed as superior hypothetical solutions using

nondominated solutions with the largest crowding distances. As a result, the reference

points provide up-to-date information of the Pareto approximation.

In the reference vector guided evolutionary algorithm (RVEA) proposed by Cheng

et al. (2016), two sets of reference vectors are used. One set maintains an even distribu-

tion over the objective space and the other set is adaptively adjusted to the normalized
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values of the solutions. It is emphasized that an adaptive reference set strategy is

required to deal with problems with different scales of objectives and irregular Pareto

fronts such as degenerate, discontinuous, inverted and highly nonlinear fronts.

In generalized decomposition-based evolutionary algorithm (g-DBEA) proposed

by Asafuddoula et al. (2017), reference vectors are periodically adapted based on the

information collected during a learning period. Two sets of reference vectors are used:

an active set consists of adaptive reference vectors and an inactive set contains discarded

vectors that have the chance to return to the active set throughout evolution. Adaptive

reference point mechanisms are applied to an indicator based evolutionary algorithm in

Tian et al. (2017) and an entropy based evolutionary algorithm in Zhou et al. (2018).

It is noteworthy to explore two algorithms proposed by the NSGA-III authors

using adaptive reference point sets. In the adaptive NSGA-III (A-NSGA-III) by Jain

and Deb (2014), the reference point set structure of the NSGA-III is converted into an

adaptive structure so that the algorithm is able to find a more suitable distribution of

the reference points during the evolutionary process. The reference points are adjusted

according to their association with the solutions in each iteration. The adaption method

has two stages: adding new reference points close to crowded reference points with high

niche counts and occasionally deleting the reference points with zero niche counts. In

the addition phase, a simplex is created around a chosen crowded reference point and

at most m number of new reference points are added which are believed to share the

niche count with the current reference point. Adding new reference points continues

until no reference point with niche count greater than one is left.

In a similar adaptive algorithm called A2-NSGA-III proposed by Jain and Deb

(2013), it is claimed that a more efficient approach is applied to create new reference

points. In this approach, the followed simplex structure results in the addition of

fewer new reference points. Creation of new reference points is only allowed when

niche counts of crowded reference points remain constant for a predefined number of

generations. There is also a limit on the maximum number of reference points and as

a result, deletion is triggered more frequently.
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2.3. Co-evolutionary Algorithms

Co-evolutionary algorithms, first developed in the 90s, provide a way to decom-

pose and solve complex problems consisting of multiple interrelated subproblems, while

respecting the interdependency between these subproblems. As an extension of classical

evolutionary algorithms (Coello and Sierra, 2003), co-evolutionary algorithms imitate

the process of symbiotic evolution in nature, where different species evolve in a way to

adapt to each other. The problem is decomposed into subproblems and multiple pop-

ulations are used to optimize different subproblems simultaneously. During evolution,

populations of different species can interact with each other in different ways. The

fitness value of a solution is calculated based on its interaction with other species.

Antonio and Coello (2017) provide a survey for the application of co-evolutionary

techniques in MOEAs based on different ways of interaction among the species. In this

regard, co-evolutionary approaches can be classified as cooperative or competitive. In

the cooperative structure, good collaborators are encouraged and rewarded. Under the

competitive scheme, the interaction is negative, as in the case where one population

tries to develop increasingly difficult inputs for the other. It is also possible to have

a hybrid structure that combines cooperative and competitive motives to promote

diversity and avoid early convergence as the species work together to obtain good

solutions to the problem.

Ma et al. (2018) provide a survey on cooperative co-evolutionary algorithms that

is not exclusive to multi-objective problems. In limited applications involving multi-

objective problems, the co-evolutionary structure is built almost exclusively among the

cooperatively designed subpopulations of the solution set. In this context, co-evolution

implies reciprocal or disproportional genetic changes in members of one subpopulation

in response to another subpopulation.

In applications involving multi-objective problems, the cooperative structure is

more common, and the decomposition is based on either the decision space or the

objective space. In Iorio and Li (2004), the co-evolutionary structure is embedded in
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NSGA-II for multi-objective continuous test problems. In the cooperative structure,

good collaborators are encouraged and rewarded. In Tan et al. (2006) and in Zhao

et al. (2014), co-evolutionary algorithms are developed for multi-objective optimization

where decision variables are divided into smaller components. Similarly, Antonio and

Coello (2016) apply co-evolutionary techniques to an indicator-based algorithm each

subpopulation represents a particular component of the problem in the decision space,

so members from all subpopulations are required to assemble a complete solution.

Zhan et al. (2013) adopt co-evolutionary techniques to a particle swarm optimization

algorithm in which each subpopulation is responsible for one objective. Nguyen et al.

(2013) and Jiang et al. (2017) cooperative co-evolutionary structures are implemented

across subpopulations for large-scale optimization problems, where each subpopulation

is responsible for the subcomponents of the master problem.

There are also a few studies that involve many-objective cases. Zhang et al. (2017)

implement a cooperative co-evolutionary structure in decomposition-based MaOEA.

Each of the multiple cooperative subpopulations corresponds to a decomposition weight

vector, while evolving in parallel, mating pools collect solutions from these subpopula-

tions for recombination. Liu et al. (2018) introduce a co-evolutionary particle swarm

optimization methodology to many-objective problems where multiple swarms are dis-

tributed to different areas of the Pareto front to maintain diversity and concentrate on

these limited areas.

As a noteworthy approach, preference-inspired co-evolutionary algorithm using

weight vectors (PICEA-w) proposed by Wang et al. (2015) presents an adaptive mod-

ification of decomposition weights (similar to reference points) by co-evolving them

with candidate solutions. They advocate that the use of fixed reference points can be

seen analogous to a priori methods and is not convenient for finding the entire Pareto

front. In each iteration, the number of both solutions and decomposition weights are

sequentially duplicated and truncated. The neighborhood structure between solutions

and decomposition weights creates a ranking matrix used to sort and truncate both

solutions and decomposition weights. In order for a candidate decomposition weight

to be selected in the truncation procedure, it must be one of the weights that best
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ranks a survived solution, or in the case of ties, it should be the furthest from the

corresponding solution.

2.4. Performance Assessment of Pareto Front Approximations

The task of MOEAs is often to find a successful representation that will substitute

the true Pareto front. When evaluating the success of an algorithm or comparing

the performances of the Pareto approximations offered by different algorithms, the

assessment need to be based on a group of vectors that constitute the Pareto front

approximation. There are numerous solution set comparison metrics, each of which

takes notice of different aspects.

Performance assessment indices are mainly classified into three subcategories de-

pending on the aspects being investigated. These three categories are cardinality-based,

accuracy-based, and distribution/spread-based performance indices. Accuracy-based

performance indices can also be classified into two according to how accuracy is mea-

sured as distance-based or volume-based. There are various performance indices for

each subcategory and several articles are available for a comprehensive review (Knowles

and Corne, 2002a; Okabe et al., 2003; Tan et al., 2002; Zitzler et al., 2002, 2003). As

revealed in these reviews, there is no single “best” method to evaluate the quality of a

solution set. Moreover, not all of the methods can be employed in every case.

For some performance metrics, the real Pareto must be known in advance. For

some, there must be a bounded and discrete feasible space. Yet others can only be

defined for two- or three-dimensional evaluations. Moreover, these techniques may lead

to conflicting results and must be cross-checked to prevent misleading inferences.

This section contains a brief discussion of the different performance assessment

indices. Representative metrics from each category are provided such that one ex-

ample for each category requires the true Pareto information and makes performance

evaluation selected, while the other can work in the absence of the true Pareto front

information. For the sake of this discussion, some numerical analysis is also performed
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with these selected indices using alpha versions of the proposed algorithm. This experi-

mentation (see Appendix A) can be regarded as a preliminary study, both to choose the

performance metric to be employed throughout the thesis and to assess the plausibility

of some of the approaches to be used in the proposed algorithm.

Cardinality-based Performance Indices. Ratio of the Reference Points Found

(C1R) proposed by Hansen and Jaszkiewicz (1998) can be used when the true Pareto

front is known. C1R is simply the ratio of the number of solutions in the set S which

is also in the Pareto optimal solution set P∗. The higher ratio indicates success in

obtaining members of the true Pareto front.

In the absence of the true Pareto information, Coverage of Two Sets C(S1,S2)

proposed by Zitzler and Thiele (1999) can be used to compare two solutions sets S1

and S2 that are obtained from different algorithms as in Equation 2.10.

C(S1,S2) = |{s2 ∈ S2;∃s1 ∈ S1 : s1 � s2}|/|S2| (2.10)

C(S1,S2) counts the number of solutions from the solution set S2 that are domi-

nated by the members of S1 on the average. Thus, higher values are desired when it is

computed for S1. It is important to remark that C(S1,S2) is not equal to 1−C(S2,S1).

The C(S1,S2) metric simply measures the average domination count for each of the

two compared sets. While this metric is very useful when comparing two Pareto front

approximations in the absence of the true Pareto front, the results can be difficult to

interpret when there are multiple Pareto front approximations in evaluation.

Distance-based Performance Indices. Inverse Generational Distance (IGD) (Sato

et al., 2004) and Coverage Error (CE) (Sayın, 2000) are used when the true Pareto

front is known. These metrics can provide combined information for both convergence

and diversity of the solutions obtained, and widely used under the names such as

Average Distance from Reference Set (DIST1) and Worst Distance from Reference Set

(DIST2) (Czyzżak and Jaszkiewicz, 1998) or Maximum Pareto Front Error (MPFE)

(Van Veldhuizen, 1999). They request that the Pareto optimal set or a reference set
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be given or calculated since the distance is calculated according to these sets. IGD

is defined as the average distance of the points in the true Pareto front to the closest

members in the obtained solution set. Similarly, CE is the maximum distance from

the points in the true Pareto front to the closest members in the obtained solution

set. In other words, CE states the worst-represented element in the true Pareto front.

Considering the Pareto optimal set consisting of a finite number of solutions, when these

two metrics are calculated, lower values are desired for both. For distance calculations,

any reasonable Lq metric, e.g. Euclidean distance (q = 2) or Tchebycheff distance

(q =∞) can be selected. It should be noted that, if the Tchebycheff distance is used,

the maximum difference in each coordinate might be determined by the same objective

due to the scale difference in objective parameters. When analyzing these metrics, the

scale of the problem parameters should be taken into account.

Distribution and Spread-based Performance Indices. Performance indices se-

lected for distribution and spread criteria are Uniformity Level (UL) (Sayın, 2000) and

Maximum Spread (M∗
3 ) (Zitzler and Thiele, 1999), respectively. UL can be expressed

as the minimum distance between two different solutions. Higher UL values indicate

that the solution set is uniformly and well-distributed and does not contain any re-

dundant solutions. It should be noted that this performance metric may conflict with

cardinality-based performance metrics. As the number of solutions in the Pareto ap-

proximation increases, the distance between these solutions decreases. In M∗
3 , after

obtaining the hypercube by finding the ideal and nadir points, the length of the diag-

onal line of this hypercube is assigned as M∗
3 metric. Distance measurement can be

made by Euclidean metric.

Volume-based Performance Indices. Hypervolume (or Hyperarea) Ratio (HR)

proposed by Zitzler and Thiele (1999) is used. For a given objective vector set, hyper-

volume is defined as the area dominated by this vector set. In Figure 2.7, an illustration

is provided for two-dimensional objective space. In order to bound the measured space,

it is usually required to define an ideal point and a nadir point from the true Pareto

front. Nevertheless, it should be emphasized that the requirement of these two bound-

ary points does not mean that HR values can only be computed when the true Pareto
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front is known. A detailed discussion of finding satisfactory bounds is provided in

Section 5.10.

f2 (minimize)

f1 (minimize)

Hypersquare

Dominated area

Solution set, S

Figure 2.7. Hyperarea dominated by the solution set S.

To calculate the dominated area by an objective vector set, the dominated area

for each single solution should be measured and then their union should be calculated.

Since this task has an excessive computational load for higher dimensional objective

spaces, dominated areas can also be computed using Monte Carlo simulation by gen-

erating uniform random coordinate points within the hypercube (hypersquare) and by

counting which of them belong to the dominated area.

HR provides information about the difference between the areas dominated by

the objective vector set of a solution set S and by the Pareto optimal set P∗. Higher

ratios (or percentages) are preferred. HR metric is claimed to be the most beneficial

metric as it uniquely quantifies the approximation set in a strictly monotonic manner

with regard to Pareto dominance (Bader and Zitzler, 2011). This means that when

comparing two Pareto sets, the HR value of the dominant set is always better than

other. Higher values indicate that the corresponding Pareto approximation achieves to
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dominate more volume in the objective space. Consequently, throughout this thesis,

the HR value is calculated for each approximation obtained by different algorithms

using Monte Carlo simulation by uniformly generating 105 random coordinate points

within the hypercube. Although there are several other performance metrics each

measuring different, desirable aspects of a Pareto approximation, HR is suggested to

be a suitable metric even in the absence of true Pareto front information. Moreover,

a higher HR result indicates not only a close approximation to the true Pareto front,

but also a diverse and well-distributed approximation.

An alternative and similar analysis can be made by calculating the hypervolume

of different region types when comparing two objective vector sets. After computing the

ideal and nadir points and constructing the hypersquare where both sets appear, there

are four possible regions for a randomly generated coordinate point in the objective

space: a point that is not dominated by any of the sets (R1), dominated by both sets

(R2), dominated by the set S1 but not by the set S2 (R3), and vice versa (R4). This is

illustrated in Figure 2.8 in the two-dimensional objective space. When R3 and R4 are

used to compare the performance of the two Pareto front approximations, the results

show resemblance to the C(S1,S2) metric. It must be noted that these areas can only

be defined when two Pareto approximation pairs are compared to each other, whereas

HR value can be used when multiple approaches are evaluated. Based on the findings

obtained in both literature search and preliminary numerical analysis, HR is found as

the most appropriate performance metric in terms of both interpretation accuracy and

applicability. As a result, HR is the performance metric that will be used throughout

this thesis.

Preliminary Numerical Experimentation. A preliminary numerical investigation

with different performance metrics is performed using six-objective QAP instances.

Problem instances are divided into two categories according to their sizes. For large size

problem instances, 12 test problems are taken from QAPLIB (Burkard et al., 1997).

The selected instances cover a wide range of problem sizes and obey the triangular

inequality in their distance matrices. The original flow matrix given in QAPLIB for

each instance is taken as the first objective of the problem. Five more objectives are
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S1
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R3

R4

Figure 2.8. Hyperareas created by two solution sets, S1 & S2.

generated by randomly distorting the original flow matrix for each problem. For small

size problem instances, nine more test problems are generated by reducing the sizes

of three existing test problems scr15, had16, and nug20 to eight, 10, and 12. The

entire true Pareto front can be obtained by enumerating all permutations for these

small problems. It should be recalled that the total number of feasible solutions in a

n sized QAP is n!. Therefore, for large size problems, performance evaluation is made

by comparing Pareto approximation pairs, each obtained by two algorithms.

The properties and behaviors of different performance metrics are analyzed through

numerical experimentation using two evolutionary algorithms (Şahinkoç, 2014), a MOEA

and a MaOEA. In order to verify the quality of the MOEA and MaOEA, the mean

values of the selected performance indices are calculated for the final populations in 10

replications. In Appendix A, comparison results of Pareto front approximation pairs

are given for large size problems in Table A.1. In Table A.2, comparison results with

the true Pareto front are presented for small size problems.

From the results, a significant improvement is observed when using the MaOEA

instead of the MOEA in all performance metrics. The only exceptions are the UL and
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M∗
3 metrics. This is because for the UL metric, the number of solutions obtained by

the MaOEA is much higher than the MOEA. For large size problem instances, as the

feasible region grows, the points in the Pareto approximation of MaOEA are distributed

more uniformly leading to higher UL. Since the Pareto front approximations reported

by both algorithms consists of populations of the same size, larger feasible regions result

in scarce approximations in both algorithms. Nevertheless, solutions are distributed

uniformly in the MaOEA whereas the formation of clusters is more likely to occur

in the MOEA. For the M∗
3 metric, while it is guaranteed that seeded single-objective

optimal solutions exist in the final population of MOEA due to crowding distance, this

is not the case for MaOEA. Since the comparison is based on the final populations and

the hypercube is obtained with ideal and nadir points, the hypercube becomes narrow

and the spread shrinks in the absence of single-objective optimal solutions. This is an

important observation that will lead to the necessity of the use of external populations.

As an alternative method, different weighted linear aggregations of the objectives

can be used to measure the performance of Pareto front approximations. Using each

decomposition vector, the best solutions from both approximations are found by solving

the corresponding single-objective problems and these solutions are evaluated. When a

sufficient number of well-spread decomposition vectors are used in this evaluation, the

results show which Pareto approximation includes a diverse set of trade-off solutions.

The same principle will be used to create the reference point set in the proposed

MaOEA.

Table A.3 in Appendix A presents the percentages of the number of vectors where

the particular algorithm performs better than the other along with the improvement

achieved by applying the MaOEA when the difference between solutions obtained from

both algorithms for each decomposition vector is averaged.

Still another alternative to evaluate the performance of Pareto approximation is

to use stochastic and robust performance measures to evaluate the performances of

Pareto approximations. For instance, when the objectives correspond to different sce-

nario realizations caused by uncertainty, as will be described in detail in Section 5.9, it
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is an intriguing idea to evaluate the performance of the Pareto approximations using

robust performance metrics. As stated in Iancu and Trichakis (2013), robust optimiza-

tion problems can be modeled as MOPs with an (in)finite number of objectives (cor-

responding to uncertainty scenarios), and at least one of the robust optimal solutions

must also be a Pareto optimal solution. The same fact applies to the weighted linear

aggregations of scenario objectives. Some examples of robust measures are minimizing

maximum cost, minimizing maximum absolute regret, and minimizing maximum rela-

tive regret. The best solutions obtained from both algorithms report the corresponding

robust objective value in Table A.3 in Appendix A. The results indicate a significant

improvement in finding more robust solutions when using the MaOEA instead of the

MOEA.

Based on the preliminary analysis on several performance metrics, each exploring

different aspects of the Pareto approximation, it is confidently concluded that it is

worthwhile to pursue the approaches tested in MaOEA. As stated before, it is also

concluded that HR can adequately assess the performance of different algorithms testes

in this thesis.
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3. MANY-OBJECTIVE COMBINATORIAL

OPTIMIZATION PROBLEMS

This chapter describes the many-objective problems chosen as benchmark for

in both developing and evaluating the proposed evolutionary algorithm. After pro-

viding the relevant definitions, notation and properties of combinatorial optimiza-

tion problems, the benchmark problems namely, the many-objective knapsack problem

(MaOKP), the many-objective traveling salesman problem (MaOTSP), and the many-

objective quadratic assignment problem (MaOQAP) are introduced together with their

mathematical formulations and literature overview. Finally, how to model optimization

problems under scenario-based uncertainty as MaOPs is discussed.

3.1. Combinatorial Optimization Problems

In the field of mathematical programming, combinatorial optimization has been

widely studied for decades and has numerous real-life applications including portfolio

optimization, vehicle routing, layout planning, artificial intelligence etc. Wolsey and

Nemhauser (1999) can be consulted for the theory of combinatorial optimization, and

Korte et al. (2012) can be consulted to review theories and algorithms on combinatorial

optimization problems. Knapsack, linear assignment, quadratic assignment, traveling

salesman, minimum spanning tree, shortest path, and set covering problems are well-

known examples of combinatorial optimization problems.

Combinatorial optimization problems, which are special cases of integer program-

ming problems, have feasible sets consisting of a finite number of elements, although

an exhaustive search is not tractable. Certain combinatorial structures such as paths,

trees, tours and flows can be associated with combinatorial problems. In combinato-

rial optimization problems, The feasible set X is defined as a subset of the power set,

X ⊆ P(A) where A = {a1, ..., an}, n ∈ Z+ is a finite set and it is composed of 2A

elements. A combinatorial problem can also be formulated in terms of binary variables
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by introducing a variable xi for each element ai ∈ A. As a result, a feasible solution

S is represented by a binary vector x ∈ {0, 1}n. When this definition is used, a fea-

sible solution becomes S = {ai : xi = 1}. Consequently, a feasible solution S can be

described as a subset of A and binary vectors can be used to represent it: S ⊆ {0, 1}n.

Combinatorial problems typically have two types of objective functions: the sum

objective and the bottleneck objective. Using a weight function w : X → Z, both can

be formulated for a feasible solution S as in Equation 3.1 and 3.2.

Sum objective: f(S) =
∑
a∈S

w(a) (3.1)

Bottleneck objective: f(S) = max
a∈S

w(a) (3.2)

Accordingly, the multi-objective combinatorial optimization (MOCO) problem,

which is a subcategory of multi-objective integer programming problem, can be formu-

lated as in Equation 3.3 to 3.8.

min
x
f(x) = Cx (3.3)

subject to

Ax = b (3.4)

x ∈ {0, 1}n (3.5)

where

x ∈ {0, 1}n ← n variables, j = 1, ..., n (3.6)

C ∈ Nm×n ← m objectives, i = 1, ...,m (3.7)

A ∈ Np×n and b ∈ Np×1 ← p constraints, k = 1, ..., p (3.8)

Dealing with MOCO problems is generally difficult for a variety of reasons. Find-

ing the entire efficient solution set is generally intractable, since the number of efficient

solutions increases exponentially depending on the problem size. MOCO problems are



40

generally NP-complete, even when their single-objective counterparts are not. Sec-

ondly, due to the discrete nature of MOCO problems, the solutions space is not convex

and there exists quite a lot of unsupported efficient solutions. This fact persists even

if the constraint matrix of the regarding problem is unimodular (Ulungu and Teghem,

1995). Since these solutions are not optimum for any weighted sum of the objectives,

they are more difficult to find. As shown for the knapsack problem (Visée et al., 1998),

the number of unsupported efficient solutions is much higher than the supported effi-

cient solutions, especially when the number of objectives is high. In addition, unlike

a linear increase in the number of supported efficient solutions, the number of unsup-

ported efficient solutions increases with an exponential function when there are multiple

sum objectives. As a result, unsupported efficient solution set is essential to achieve a

successful Pareto approximation.

Exact methods for MOCO problems include weighted sum scalarization method,

compromise solution method, goal programming and ranking method. Other methods

adapted from single-objective optimization include branch-and-bound and two-phase

methods. To review MOCO theory, methodology and applications; the reader is re-

ferred to Ehrgott and Gandibleux (2000) and Ehrgott and Gandibleux (2003).

In this thesis, the problem domain is MOCO problems. These problems have

important applications in real-life and still remain uncharted for the studies of many-

objective approaches. One of the main goals of this thesis is to develop solution ap-

proaches that can be used for a wide spectrum of MOCO problems, therefore selected

MOCO problems exhibit different features and applications. Nevertheless, they also ex-

hibit some common features. The objective functions of the selected MOCO problems

are sum objective type as they are more common for many-objective modeling and

application. Also, the objective function coefficients of the benchmark formulations

have the same type of distribution and scales, unless otherwise stated.
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3.2. Many-Objective Knapsack Problem (MaOKP)

The 0-1 knapsack problem is one of the best known fundamental combinatorial

optimization problems as it has real-life applications in many different areas, its solution

methodologies include mathematical programming, dynamic programming, exact and

heuristic algorithms, and metaheuristics. Briefly, in the knapsack problem, given a set

of items each with a weight and a profit value, the objective is to decide whether each

item will be included in a collection so that the total profit is as large as possible while

the total weight is less than a given capacity.

The many-objective knapsack problem (MaOKP) is used in the development

and performance evaluation of the proposed algorithm since this problem has been

frequently used in the literature as a benchmark for several multi-objective and many-

objective evolutionary approaches. Moreover, the effects of alternative operators and

parameters can be easily observed in the knapsack problem, since the computation

time is relatively small. In the provided formulation (Ulungu and Teghem, 1994),

profit coefficient pij is defined for each objective i and for each item j in Equation

3.9. The binary decision variable xj in Equation 3.11 corresponds to whether item j is

included in the knapsack collection or not. In multi-constrained (or multi-dimensional)

MaOKP, different weight parameters wjk are generated for each item and constraint,

and the capacity parameter Ck is defined for each constraint in Equation 3.10.

max
x

fi(x) =
∑
j

pijxj ∀i (3.9)

subject to∑
j

wjkxj ≤ Ck ∀k (3.10)

xj ∈ {0, 1} ∀j (3.11)

The chromosome structure of the MaOKP uses binary encoding, where the geno-

type of a solution is represented by a n-length binary string in the decision space and

its phenotype corresponds to its location in the m-dimensional objective space.
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Literature Survey of MaOKP. A detailed literature survey is provided for the

multi- and many-objective knapsack problem since it is used in the development and

performance evaluation of the proposed algorithm. Research using exact methods

involve dynamic programming (Bazgan et al., 2009b; Klamroth and Wiecek, 2000),

two-phase branch and bound method (Gandibleux and Freville, 2000; Visée et al.,

1998), ε-constraint method (Kirlik and Sayın, 2014; Laumanns et al., 2006) and other

methods (Delort and Spanjaard, 2010; Florios et al., 2010); whereas approximation

algorithms can be exemplified by Erlebach et al. (2002) and Bazgan et al. (2009a).

Since single-objective and thereby multi-objective knapsack problem is NP-hard,

various heuristic methods are also applied. Heuristic methods include simulated anneal-

ing (Czyzżak and Jaszkiewicz, 1998), tabu search (Abdelaziz et al., 1999; Gandibleux

and Freville, 2000), scatter search (da Silva et al., 2006), labelling algorithm (Captivo

et al., 2003), and local search (Alsheddy and Tsang, 2010; Lust and Teghem, 2010b;

Vianna and Arroyo, 2004). As seen in Table 3.1, most the exact methods, approxi-

mation algorithms, and heuristic approaches other than evolutionary methods are for

multi-objective knapsack problem. It should be noted that these approaches generally

have some practical and theoretical limitations, preventing them from scaling for a

higher number of objectives.

When it comes to the field of evolutionary optimization, Zitzler and Thiele (1999)

can be viewed as an influential pioneering study. In their study, they compared five

different multi-objective genetic algorithms and showed that a Pareto evolutionary

algorithm called SPEA was successful. Their method for creating create problem in-

stances is used by many other researchers and as well as this study. Other evolution-

ary approaches include M-PAES (Knowles and Corne, 2000), MOGLS (Jaszkiewicz,

2002b), MOTGA (Alves and Almeida, 2007), NSGA-II (Sato et al., 2007), multi-start

search combined with path relinking (Beausoleil et al., 2008), and MEMOTS (Lust and

Teghem, 2008).

In recent years, in parallel with the rising popularity of MaOEAs, new algorithms

have been proposed and tested on MaOKP, as well. Two algorithms, δ-MOSS and k-
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Table 3.1. Literature review of non-evolutionary methods for MaOKP.

Name (Year) Method Objective Count

Czyzżak and Jaszkiewicz (1998) Simulated annealing 2 - 4

Visée et al. (1998) Two-phase B&B 2

Abdelaziz et al. (1999) Tabu search 2 - 3

Gandibleux and Freville (2000) Two-phase B&B, tabu search 2

Klamroth and Wiecek (2000) Dynamic programming 2

Erlebach et al. (2002) Approximation algorithm no experimentation

Captivo et al. (2003) Labeling algorithm 2

Vianna and Arroyo (2004) Local search 2 - 4

da Silva et al. (2006) Scatter search 2

Laumanns et al. (2006) ε-constraint 2 - 3

Bazgan et al. (2009a) Approximation algorithm 2 - 3

Bazgan et al. (2009b) Dynamic programming 2 - 3

Alsheddy and Tsang (2010) Local search 2

Delort and Spanjaard (2010) Hybrid of two-phase and DP 2

Florios et al. (2010) Multi-criteria B&B 3

Lust and Teghem (2010b) Local search 2

Kirlik and Sayın (2014) ε-constraint 3 - 4

EMOSS, with the goal of objective reduction are suggested in Brockhoff and Zitzler

(2006). Other examples are a correlation-based weighted sum approach by Murata and

Taki (2009), a hyperplane-based evolutionary algorithm, HypE by Bader and Zitzler

(2011), and an artificial fish swarm optimization algorithm by Azad et al. (2014).

Recent studies have identified difficulties encountered in MaOPs and improvements

have been suggested to existing MOEAs to overcome these difficulties. Modifications

are offered to NSGA-II in Sato et al. (2007), in Tanigaki et al. (2014), and in Ishibuchi

et al. (2014b); whereas a search for correct parameterization for MOEA/D is carried

out in Sato (2015).

In another line of research, the performance of existing MOEAs is evaluated as the

number of objectives in MaOKP increases. While NSGA-II and I-IBEA are evaluated in

Ishibuchi et al. (2008), the performances of different scalarizing functions of MOEA/D

are verified in Ishibuchi et al. (2013). NSGA-II, SPEA2, IBEA, and MSOPS are
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compared in Sato et al. (2013). Ishibuchi et al. (2014a) compare the performances

of four evolutionary algorithms, namely NSGA-II, MOEA/D, SMS-EMOA, and HypE

including the problems with different correlation levels.

Table 3.2 summarizes the literature for MOEAs and MaOEAs. As far as it is

reported, reference point set based sorting algorithm proposed in NSGA-III (Deb and

Jain, 2013) has not yet been adapted to MaOKP.

Table 3.2. Literature review of evolutionary methods for MaOKP.

Name (Year) Evolutionary Algorithm Objective Count

Zitzler and Thiele (1999) SPEA 2 - 4

Knowles and Corne (2000) M-PAES 2 - 4

Jaszkiewicz (2002b) MOGLS 2 - 4

Brockhoff and Zitzler (2006) δ-MOSS, k-EMOSS 5 - 25

Alves and Almeida (2007) MOTGA 2 - 4

Sato et al. (2007) NSGA-II 2 - 5

Beausoleil et al. (2008) multi-start search, path relinking 2 - 4

Ishibuchi et al. (2008) NSGA-II 2 - 6

Lust and Teghem (2008) MEMOTS 2 - 3

Murata and Taki (2009) Correlation-based weighed sum 10

Bader and Zitzler (2011) HypE 2 - 50

Ishibuchi et al. (2013) MOEA-D 2 - 10

Sato et al. (2013) NSGA-II, SPEA2, IBEA, MSOPS 2 - 10

Azad et al. (2014) Artificial Fish Swarm 2 - 30

Ishibuchi et al. (2014a) NSGA-II, MOEA/D, SMS-EMOA, HypE 2 - 10

Ishibuchi et al. (2014b) NSGA-II 2 - 10

Tanigaki et al. (2014) NSGA-II 2 - 10

Sato (2015) MOEA/D 2 - 8

3.3. Many-Objective Traveling Salesman Problem (MaOTSP)

Traveling salesman (salesperson) problem (TSP) is one of the well-known and

intensively studied combinatorial optimization problems. Several other optimization

problems such as sequential ordering problem, vehicle routing problem are derived

from TSP. Because of wide variety of its applications, its multi- and many-objective
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versions are also of interest. However, it is seldom studied in the field of multi-objective

optimization (Jaszkiewicz, 2018; Jozefowiez et al., 2008; Peng et al., 2009; Ulungu

and Teghem, 1994). Different applications of TSP in the literature include different

definitions or treatments for the objectives of the problem. They can be defined as cost,

distance, time, risk, energy or touristic attractiveness, each with their own distinctive

characteristic and scale. Simultaneous optimization of these objective alternatives is

within the domain of the many-objective optimization.

In TSP, given a set of cities SC, the aim is to find a minimal cost (or distance,

time) tour that visits each city exactly once and returns to the initial city. In the

provided formulation of the TSP, the binary decision variable xjk in Equation 3.16

corresponds to whether the edge from city j to city k is included in the tour or not. In

the many-objective version, the cost of traveling from city j to city k, cijk, is defined

for each objective i as seen in Equation 3.12. Equation 3.13 and 3.14 ensure that each

city is visited exactly once and 3.15 is the subtour elimination constraint defined for

each subset of cities Q.

min
x
fi(x) =

∑
j,k

cijkxjk ∀i (3.12)

subject to∑
j 6=k

xjk = 1 ∀k (3.13)

∑
k 6=j

xjk = 1 ∀j (3.14)

∑
j,k∈Q

xjk ≤ |Q| − 1 ∀Q ⊆ SC (3.15)

xjk ∈ {0, 1} ∀j, k (3.16)

Depending on the structure of the cost matrix, different types of problems can

be obtained. When the cost from city j to city k is always equal to the cost from

city k to city j, the problem is called symmetric TSP. These problems have undirected

graph networks. Otherwise, it is called asymmetric TSP (ATSP) with directed graph

networks. Secondly, it is important whether the cost matrix obeys the triangular



46

inequality. Finally, there might be cases where some cjk in the cost matrix do not have

a finite value, in other words, it is not possible to use the edge between city j and city

k. When the graph is not complete and the problem becomes finding a feasible tour,

it is called the hamiltonian cycle problem.

Since the permutation encoding is used for a TSP solution in the evolutionary

methodology, this benchmark is different from the knapsack problem. All genetic

operators need to be revised and aligned with this new encoding structure. In this

way, the proposed algorithm can be claimed to be generic and adaptable to problems

with different characteristics.

3.4. Many-Objective Quadratic Assignment Problem (MaOQAP)

Quadratic assignment problem (QAP), which also belongs to NP-hard class, is

used to model many real-life problems such as facilities location and combinatorial data

analysis. In Loiola et al. (2007), some of the most important QAP formulations are

identified and classified, and a detailed discussion is made about exact and heuristic

solution techniques, including metaheuristics. In addition, the main research trends

are identified to guide future researches, providing a basis for the QAP research.

In the formulation of many-objective QAP (MaOQAP) similar to that introduced

by Knowles and Corne (2002b), given a set of departments j, k ∈ D and locations

r, s,∈ L, the problem is to assign all departments to different locations with minimal

cost calculated as the product of flows fijk between departments with corresponding

distances drs between locations. In MaOQAP, the flow parameter is defined for each

objective i as seen in Equation 3.17. The binary decision variable xjr in Equation 3.20

corresponds to whether the department j is assigned to location r. Equation 3.18 and

3.19 ensure that each department is assigned to exactly one location and vice versa,

respectively.
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min
x
fi(x) =

∑
j,k,r,s

fijkdrsxjrxks ∀i (3.17)

subject to∑
j

xjr = 1 ∀r (3.18)

∑
r

xjr = 1 ∀j (3.19)

xjr ∈ {0, 1} ∀j, r (3.20)

It is stated in Knowles and Corne (2002b) that multi-objective version of QAP

is useful for some layout problems, such as hospital layout with different flow types;

i.e. doctors, patients, and nurses lead to different objectives. They investigate land-

scape analysis issues to approximate the Pareto front with a hybrid local search al-

gorithm, and in Knowles and Corne (2003), some instance generators and test suites

are formulated. In Paquete and Stutzle (2006), a two-phased local search procedure is

followed to solve the bi-objective QAP and ant colony optimization (ACO) is used for

the bi-objective QAP in López-Ibánez et al. (2004). Among the studies that applied

MOEA, Kleeman et al. (2004) and Day and Lamont (2005) use some variations of

multi-objective messy genetic algorithms.

MaOQAP is chosen as a benchmark for two reasons. The first reason is the

additional challenge it imposes due to the difficulty in obtaining optimal solutions even

for the single-objective versions. Thus, it can be used to test the limits of the proposed

algorithm.

Secondly, MaOQAP is also used to test the proposition regarding modeling opti-

mization problems with scenario-based uncertainty as MaOPs. This proposition creates

a novel research stream as well as a new and natural problem domain for MaOEAs.

The foundations, main assumptions and contribution of this approach will be discussed

in the next section. The relevant numerical experimentation is provided in Section 5.9.
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3.5. Scenario-based Uncertainty

Optimization problems involving random parameters occur in almost all fields of

science and engineering, from power generation to telecommunication and medicine.

Most of the real-life applications of optimization models in the domain of operations re-

search, such as facility location, aggregate production planning, or investment planning,

involve decisions with a long time-span in which the environment they are modeling

may change substantially. Thus, the parameters used as inputs in these models are

often quite ambiguous. Uncertain parameters can be either continuous or discrete.

Continuous parameters are generally restricted within some predetermined intervals,

while in the discrete case, uncertainty is described by a set of alternative scenarios,

each representing a particular realization. Furthermore, there may be cases where the

DM has some information on the probability distributions that govern the values of

random parameters, in other cases such information may not be available.

In the scenario-based approach, a probability pω can be associated with each

scenario alternative ω, ω ∈ Ω where Ω is the set of all possible scenarios, if such

probability information is available. Only a finite number of sampled instances of

uncertainty is considered and the stochastic problem reduces to a deterministic problem

for a given scenario realization. In the literature, it is argued that the scenario approach

generally results in more tractable models (Snyder, 2006) and it can successfully reflect

the probabilistic characteristics of system uncertainties (Wu et al., 2011). In addition,

it has the advantage of allowing parameters to be statistically dependent, which is not

the case when parameters are represented by probability distributions. Dependence is

usually necessary to build realistic models, for instance, demands are usually correlated

through time periods or geographical regions and costs are usually correlated through

suppliers. In this thesis, the focus is on the discrete scenario-based approach.

Two main paradigms that address the scenario-based uncertainty in optimization

problems are stochastic programming and robust optimization. Instead of using tech-

niques derived from these methodologies, a novel approach employing many-objective

optimization methodologies is proposed in this thesis. In this approach, the prob-
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lem under analysis is modeled as a MaOP where the number of objectives is equal

to the number of scenarios under consideration. Since the number of required scenar-

ios may be quite high, such a problem definition becomes a natural domain for the

many-objective optimization research area.

In this way, a new and natural field of application to many-objective optimization

is introduced by developing many-objective counterparts of the OR problems that

are subject to uncertainty. On the other hand, a contribution is also made to both

stochastic programming and robust optimization by offering an alternative perspective.

By obtaining a Pareto optimal set, optimal solutions for many metrics covered in

stochastic and robust approaches are obtained simultaneously at a single step. In this

way, after the optimization process, the decision maker will have the opportunity to

choose efficient solutions that cover a wide range of different performance metrics and

satisfy their preferences.

According to Snyder (2006), the scenario approach has two main drawbacks.

First, identifying scenarios and assigning probabilities to them is a difficult task, and

the other disadvantage is that people want to define relatively few number of scenarios

for computational reasons, but this limits the range of future states in which decisions

will be evaluated. Both issues cease to be disadvantages under the proposed approach.

3.5.1. Optimization Under Scenario-based Uncertainty

When optimizing under scenario-based uncertainty, the aim is to find solutions

that perform well in all scenarios, and this is usually handled using either stochastic pro-

gramming or robust optimization. In stochastic programming, uncertain parameters

are managed with probability distributions previously known by the decision maker,

and usually the goal is to optimize the expected behavior. In robust optimization,

these probability distributions are not required or are not available in some cases, and

the common attempt is to optimize the worst case performance of the system (Snyder,

2006). For a detailed theory and applications of robust discrete optimization, Kouvelis

and Yu (2013) can be consulted.
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One of the most common robustness measures is to minimize the cost of the sce-

nario where the maximum cost occurs (minimax cost). Robustness measures involving

the concept of regret are also very common. Regret for a scenario is the absolute or

percentage deviation of the objective value of a solution from the objective value of

the optimal solution for the corresponding scenario. Models try to minimize maxi-

mum regret in all scenarios (minimax absolute regret or minimax relative regret). The

main appeal of such robustness measures is that the decision maker does not require to

estimate scenario probabilities. Aissi et al. (2009) provide a survey on the discrete min-

imax cost and minimax regret versions of combinatorial optimizations problems. Other

approaches include p-robustness Snyder and Daskin (2006), γ-robustness, α-reliability,

and conditional value at risk.

Choosing an appropriate performance measure to deal with uncertainty in a par-

ticular problem is a critical issue, since the definition of good performance in all scenar-

ios depends on the particular application and the DM. Techniques that are driven from

both stochastic and robust approaches offer different ways to convert objective values

given by a feasible solution under each scenario realization into a single performance

measure. This approach is analogous to the a priori preference articulation paradigm

in multi-objective optimization. As mentioned earlier, a priori approaches require the

decision maker to define the importance and preference relationships of the objectives

before searching for feasible solutions (Coello et al., 2007). Any stochastic or robust

measure is a particular predetermined function of scenario objectives and will lead to

a compromising decision.

3.5.2. Relationship with Many-Objective Optimization

Stating that robust optimization is indifferent to the scenarios that are not the

worst case scenario, Iancu and Trichakis (2013) argue that the classical robust opti-

mization framework does not need to produce Pareto optimal solutions and therefore

may lead to inefficiencies and suboptimal performance in practice. They point out

that robust optimization can be seen as a MOP with an (in)finite number of objectives

(corresponding to uncertainty scenarios) and introduce the concept of Pareto efficiency
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in the context of robust optimization methodology. They provide a theoretical charac-

terization of “Pareto robustly optimal (PRO)” solutions, stating that one of the robust

optimal solutions should also be a Pareto optimal solution. By solving an additional

model derived from the original robust optimization problem, they propose to generate

a robust optimal solution that also exists in the Pareto optimal set.

A posteriori approach to analyze the performance of different decisions in an un-

certain environment can be used instead of obtaining a Pareto robustly optimal solution

that corresponds to a particular robust performance measure (i.e. a priori approach).

A posteriori techniques can be applied to achieve the efficient set including all robust

optimal solutions and optimal solutions of weighed linear aggregations (i.e. expected

value). Note that an efficient solution in this context is such that there exists no other

feasible solution to improve the objective for some scenarios, without worsening the ob-

jective in at least one other scenario. See Aissi et al. (2009) for the proof that efficient

sets contain PRO solutions that correspond to minimax cost and minimax regret. To

the best of our knowledge, there are no studies where optimization problems under dis-

crete scenario-based uncertainty are treated using MaOEA techniques. Consequently,

the study in this section contributes to both stochastic programming/robust optimiza-

tion and many-objective evolutionary optimization research streams. Specifically:

� An a posteriori approach is implemented that achieves the efficient solution set

for the problems modeled using scenario-based uncertainty.

� Once a satisfactory Pareto optimal set has been achieved, it provides better ways

to help the decision maker comprehend what is offered to them and tailor their

choices to their preferences.

� The basic shortcoming of missing the efficient solutions in robust optimization.

� The difficulties in identifying scenarios, assigning probabilities to them and limi-

tation in the number of scenarios due to computational reasons are alleviated.
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3.5.3. Characterization of Scenario Structures

The nature of scenario-based uncertainty that will allow a particular problem to

be treated as a MaOP with respect to the scenarios can be discussed by analyzing the

decision variables, coefficients of the objective function, parameters in the technology

matrix or resource vector.

Decision Variables and Objective Function Coefficients. If a set of decision vari-

ables is defined over a set of scenarios, it can be interpreted as the DM has the chance

to declare or update these decision variables after observing which scenario alternative

has been realized. As a result, if all decision variables are defined over the scenario

set, the uncertainty vanishes and the problem becomes deterministic. In such cases,

all that needs to be done is to solve separate problems with distinct sets of parameters

and decision variables. Therefore, although there is a chance to model some decision

variables as scenario-based, it should not be the case to model all decision variables

as scenario-based. Coincidentally, this requirement is also consistent with reality. In

many real-life problems, decision variables must be determined often before realizing

scenarios. In other words, some decisions must include a priori commitments. On the

other hand, in order to have multiple objectives and lend the problem to multi-objective

approaches, the objective function must contain some scenario-based coefficients or de-

cision variables. For instance, the profit coefficients in the knapsack problem, flow

parameters in QAP, and cost parameters in TSP may be scenario dependent.

Parameters in the Technology Matrix and Resource Vector. When the parame-

ters in the technology matrix or resource coefficients are defined on the scenario set,

the feasible space is affected. A feasible solution obtained through a set of parameters

defined for a particular scenario alternative may be infeasible in other scenarios. The

term “model robustness” (Mulvey et al., 1995) reflects the idea that a solution is pre-

ferred when it is feasible in all scenarios. Also, in reality, it is extremely undesirable

and risky to accept a solution that has no chance to be employed under some possible

scenario realizations. In this way, the feasible space becomes the intersection of all sce-

nario specific constraint sets. If scenario dependency does not exist in the parameters



53

in the technology matrix or resource coefficients, it can be said that a solution that

is shown to be feasible in one scenario is feasible in other scenarios and the feasible

solution sets of different scenarios overlap.

3.5.4. QAP Under Scenario-based Uncertainty

QAP under scenario-based uncertainty is used to demonstrate and validate these

ideas. In this case, each objective in Equation 3.17 corresponds to a different flow

scenario. As there is no option for alteration in the constraints, uncertainty in QAP

does not arise infeasibility. Scenario-based QAP is suitable to be used for proof-of-

concept since it is difficult to obtain stochastic and robust optimal solutions with exact

methods and heuristic approaches are required.
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4. PROPOSED MANY-OBJECTIVE EVOLUTIONARY

ALGORITHM

This chapter provides a detailed explanation for the proposed many-objective

evolutionary algorithm (MaOEA), reviewing its development stages and identifying

its important aspects. Along with the parameters and genetic operator schemes, the

pseudo-codes of the key parts are also elaborated. Additionally, variations of the

proposed MaOEA regarding different procedures for adaptation of the reference point

set are presented.

The proposed MaOEA adopts an elitist framework and requires a set of prede-

fined reference points as input. In each generation, current population and offspring

population are combined and sorted first by nondominated sorting and then the ref-

erence set based sorting, similar to NSGA-III (Deb and Jain, 2013). The main novel

features of the proposed MaOEA are highlighted below:

� The algorithm starts by solving each objective separately and uses m individual

optima (or near optima) solutions to construct a hyperplane that remains fixed

over the course of the evolution. For this reason, the basic form of the algorithm

is called fixed hyperplane fixed reference points nondominated sorting algorithm

(FHFR).

� The recombination operator and selection mechanisms are designed in a way to

complement and support the reference set based sorting. Reference point guided

path relinking is proposed as the recombination scheme for this purpose. Addi-

tionally, repair and local improvement procedures are also guided by reference

points.

� Reference points are mapped uniformly onto the fixed hyperplane and their al-

location remains unchanged throughout the algorithm. Their locations on the

fixed hyperplane can be changed when the algorithm has a reference point up-

date feature (FHMR) or when the reference set is allowed to co-evolve with the
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solution population (FHCo). These two alternatives are elaborated in Section

4.4 and Section 4.5, respectively.

� An archive structure called external population stores all nondominated solutions

and reports at the end of the algorithm.

These features are presented within the main framework in Algorithm 1 in Figure

4.1 and elaborated in the subsequent subsections.

Algorithm 1: Proposed MaOEA

Input: parameterSetting, TerminationCriteria

1. Find optimal (near optimal) solutions of single-objective problems

2. Set fixed hyperplane and referencePoints : R
3. Generate initial population: P
4. Set external population : Pext
5. While not TerminationCriteria:

6. parentPairs : Ppairs := Select Pairs(P)

7. offspring : Poff :=Reference Point Guided Path Relinking(Ppairs)
8. Mutation(Poff), Repair(Poff) and Local Improvement(Poff)

9. Reference Set Based Sorting(P ∪ Poff ,R)

10. Trim P ∪ Poff and update P
11 Update Pext using eliminated, nondominated solutions in Poff
12. Reference Set Update Procedure (for FHMR)

13. Reference Set Co-evolution (for FHCo)

14. End while

Output: Pext

Figure 4.1. Pseudo-code of the main framework of the proposed algorithm.

4.1. Reference Set Based Sorting with a Fixed Hyperplane

In the Nondominated Sorting Algorithm-II (NSGA-II) originally implemented

in Deb et al. (2002), members of the current population and offspring population

are combined and ranked at the end of each iteration using dominance comparison.

Among this combined population, the set of best individuals equal to a population

size parameter is retained and declared as the new generation population. In order to

keep the previously found good quality solutions in the population and use them in
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genetic operators, elitism is achieved as all existing and new members are included in

the combined population.

The preliminary results display the shortcomings of NSGA-II to approximate a

Pareto front successfully when the problem under investigation has more than three

objectives. Since the difficulties and challenges arising in MaOPs have been identified

in numerous studies, a framework based on NSGA-II is proposed in Deb and Jain

(2013), called NSGA-III. Although the overall evolutionary structure of NSGA-II has

been preserved, it claimed that NSGA-III is equipped to handle MaOPs.

In NSGA-III, the Pareto front is attempted to be embraced by a hyperplane

which is constructed repeatedly in each iteration of the algorithm based on the evolv-

ing population. The main difference between NSGA-III and NSGA-II is the way of

imposing diversity among population members. NSGA-III ensures diversity by pro-

viding and updating a number of well-spread reference points instead of the crowding

distance concept used in NSGA-II. Both algorithms use the conventional Pareto dom-

inance rule, but then a niche-preservation strategy is used to measure the fitness of

individuals in NSGA-III. The reference points in NSGA-III are placed on the hyper-

plane restructured in each iteration based on the current population and expected to

cover the feasible region in the objective space.

In the first stage of the sorting procedure of NSGA-III, nondominated fronts

are identified as done in NSGA-II by calculating their usual domination ranks. All

solutions are examined in regard to whether they are dominated by any other solution

or not. After that, all nondominated solutions are ranked as one. The same procedure

is repeated after these nondominated solutions are excluded. Nondominated solutions

in the remaining set are ranked as two and the procedure is repeated until all individuals

in the entire population are assigned a rank.

After the assignment of nondomination ranks, a front is formed for each rank.

Fronts with lower nondomination ranks are added to the population St in order from

level one to level l, where t is the iteration count during the evolution. This is done
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until the number of solutions in St exceeds the predefined threshold level N which is

equal to the half size of the combined population, consisting of the current population

and an equally sized offspring population. If |St| = N , no further operation is required

and St is set as the population of the next generation. If |St| > N , members from the

fronts of level one to level (l− 1) are selected as the population of the next generation

and the remaining members are selected out of those at level l. Reference points are

used select members at this level in a well-spread way. Elitism is achieved by using

this truncation methodology.

The reference set based algorithm uses a predefined set of reference points to

maintain diversity among population members. In general, the algorithm not only

emphasizes nondominated solutions, but also emphasizes population members associ-

ated with these reference points. If the reference point set is widely distributed over

the objective space, the resulting population is also likely to be widely distributed

on the Pareto optimal front. The reference point set can be predefined or provided

preferentially by the decision maker. If no preference information is supplied by the

decision maker, the structurally located reference points can be implemented, as in the

systematic approach proposed by Das and Dennis (1998) where reference points are

distributed uniformly on the hyperplane for diversity maintenance. In this approach,

reference points are placed on a normalized hyperplane with intercept points equal to

one on each objective axis. The total number of reference points H is determined using

d number of divisions for each objective in the m-objective problem, as given in Equa-

tion 4.1. An example reference point set structure for four divisions in a three-objective

problem is presented in Figure 4.2.

H =

m+ d− 1

d

 (4.1)
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Figure 4.2. Reference points on the normalized hyperplane d = 4,m = 3.

The hyperplane creation procedure takes the population St as input and gives the

reference point set as output. For a problem with all minimization objectives, the ideal

point yI is determined from St by finding the minimum values observed in St for each

objective function and creating the vector composed of these values. Then, objective

vectors of solutions in St are transformed by subtracting the ideal vector from them.

In this way, the ideal vector becomes the origin point and the objective vectors of the

solutions in St always have non-negative values. For each objective value, at least one

solution in St is guaranteed to have a corresponding objective value that equals zero.

Second, extreme points of St for each objective axis are identified by finding a

solution with a minimum achievement scalarizing function (ASF) value. It should be

noted at this point that these extreme points have different meanings than the extreme

points of a feasible region or the extreme supported points of a MOCO. ASF is taken

from Miettinen and Mäkelä (2002) but not from Deb and Jain (2013) due to differences

in the definitions given in these two articles.

ASF using a weight vector ~w is defined for a solution ~x as in Equation 4.2.

ASF (~x)~w = max
i=1,...,m

wifi(xi) (4.2)
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By using unit vectors as the weight vectors, an extreme solution is obtained for

the corresponding objective axis. In other words, extreme solutions for the objective

axes are those that minimize the corresponding ASF. Eventually, m extreme solutions

should be obtained.

These m extreme solutions are used to obtain the hyperplane equation using

Gaussian elimination. The generated hyperplane contains all the extreme solutions.

After that, each objective axis is normalized using the intercepts of the hyperplane.

Objective space, therefore, solutions in St are transformed by dividing each objective

axis by the corresponding intercept value. Thus, the intercept values and the total

coordinates of all points on the hyperplane become equal to one. This procedure is

illustrated in Figure 4.3.

f2(x)

f1(x)

f ′2(x)

f ′1(x)

f ′2(x)

f ′1(x)

Solution set, S
Extreme solutions

Ideal point

Hyperplane

Figure 4.3. Construction of the hyperplane in normalized objective space.

An important note to take is the possibility that a single solution in St may be-

come the extreme solution for multiple objective axes. In this case, an infinite number

of hyperplane equations can be created due to this degeneracy, and therefore the ref-

erence point set becomes unstable. Another important remark is that the constructed

hyperplane might have negative intercepts in some objective axes. After the hyper-

plane is constructed and the objective space is transformed, the reference points are

identified and placed on the normalized hyperplane. As a result, the sum of the coor-

dinates of all reference points is equal to one. This transformed objective space is used

to determine which solution in St gets associated with which reference point.
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In the association phase, the reference rays corresponding to each reference point

are defined by starting from the origin point and passing through the corresponding

reference points. Then, distance between the solutions in St and the reference rays

is calculated. Each solution in St becomes associated with the reference point whose

reference ray is the closest to this particular solution. It is important to emphasize

that a reference point may have more than one solution associated with it, or similarly

there may be no solution associated with it. The number of solutions associated with

the reference point j is called the niche count ρj. At the end of the association phase,

the reference point set R is said to consist of two mutually exclusive sets, associated

reference set RA and empty reference set RE. The association of the solutions set with

the reference point set is illustrated in Figure 4.4 for an example with two-dimensional

objective space. It should be noted that not all solutions need to be “behind” the fixed

hyperplane.

f2

f1

Normalized hyperplane
Reference point
Reference ray
Solution
Association

(0,0) (1,0)

(0,1)

Figure 4.4. Association of the solution and reference point set.

A niche-preserving operation is followed to determine which solutions at the non-

domination level l are added to the next generation population. Solution selection

begins with reference points with the smallest niche counts. Each reference point adds

its closest associated solution to St, if it has not yet been added. If all reference points
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are taken into account and more solutions need to be added, the closest second solu-

tions are taken into account. This procedure is followed until all vacancies within St are

filled and the next generation population of size equal to the predetermined population

size parameter is formed.

NSGA-III has O(N2m) complexity and does not require any additional parame-

ters other than usual genetic parameters except for division number d and number of

reference points H. The population size parameter is made dependent on the number

of reference points. To avoid idle reference points, it is preferred to have more solutions

than the number of reference points, and the algorithm is considered successful if it

does not require a large population size. With these in mind, it is generally accepted

to work with a population size equal to the number of reference points. In this way,

the purpose of the algorithm is to achieve niche counts equal to one for all reference

points.

Problems Encountered in NSGA-III and Proposal to Use a Fixed Hyperplane. In

NSGA-III, as the existing population evolves with each iteration, the equation defining

the hyperplane containing all reference points changes. Although the positions of the

reference points remain unchanged relative to the hyperplane, it is claimed that altering

the hyperplane equation makes the necessary adaption for the reference points to guide

the search.

However a number of drawbacks of this implementation have been observed. For

instance, since the members of the population in the early stages of the evolution might

be all dominated, the hyperplane constructed from these solutions can be misleading.

As a result, the reference points might be poorly structured and the algorithm may

proceed in the wrong directions. In addition, when the hyperplane changes with the

evolving population, the locations of the entire reference point set shift drastically and

the sorting procedure used so far now becomes useless. In other words,it is highly

probable that instabilities of the reference points and the association of population

members disrupt the optimization efforts.
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Furthermore, degeneracy is observed occasionally during hyperplane construc-

tion. This degeneracy may occur due to failing to obtain m distinct extreme solutions

to construct the hyperplane or obtaining a hyperplane with negative intercept values

for some objective axes. Finally, the construction of the hyperplane in each itera-

tion imposes a heavy computational burden and makes the algorithm impractical for

MaOPs.

A fundamental novelty in the proposed reference set based sorting algorithm com-

pared to NSGA-III is the way to construct the hyperplane. To avoid the instabilities

mentioned above, a fixed hyperplane is constructed at the very beginning of the al-

gorithm and used throughout the entire evolutionary process contrary to the original

approach. By producing a hyperplane wide enough to include all possible feasible so-

lutions and using this hyperplane throughout evolution, the mentioned problems with

the NSGA-III are expected to vanish. It is observed that the ultimate hyperplane

obtained from the extreme points of all feasible solutions will never require an update

when new solutions are introduced. When these extreme solutions are seeded in the

initial population, the widest possible hyperplane can be obtained at the beginning of

the algorithm.

An important remark is that the extreme solutions used to construct the hyper-

plane are not obtained by calculating some kind of ASF. These extreme solutions are

actually the optimal solutions for separate objectives, thus individual minima. These

solutions can also be found from the set of solutions called lexicographic optimal so-

lutions. This means that m different objectives must be solved optimally in advance,

each using a distinct lexicographic ordering. As a result, it can be said that obtain-

ing the fixed hyperplane requires that the single-objective version of the problem be

solved at reasonable times. It should be noted that the algorithm becomes hybridized

in this way. When this is not possible, a heuristic approach can be implemented and

near optimal solutions can be used. In short, the time consumption of the proposed

algorithm should include the computation times required to obtain m single-objective

optimal/near optimal solutions. In spite of this, using a fixed hyperplane shortens the

computation time of the reference set based sorting algorithm. Instead of finding the
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ideal solution, extreme solutions, equation and the intercepts of the hyperplane in each

iteration; all these steps are taken only once in the beginning. Most importantly, the

performance is improved since the algorithm does not have to search for the hyperplane

over the course of generations, while a good one is readily available from the beginning.

4.2. Genetic Operators

The reference set based sorting, which is the main component of the algorithm,

aims to provide sufficient representation for all reference points to achieve an all-

embracing Pareto front approximation. The rest of the genetic operators and mecha-

nisms within the proposed MaOEA are designed in a way to complement and sustain

this endeavor to enhance its power and success.

This section describes the genetic operators and the key features of the proposed

MaOEA. Parameters and operator schemes as well as the pseudo-codes for the key

algorithm segments are going to be presented in the order in which they are executed

in each iteration of evolution. It should be noted that prior to the beginning of the

evolutionary process, single-objective problems must be solved and the initial popula-

tion must be generated. Members of the initial population are randomly generated and

repaired if they happen to be infeasible, except for the seed solutions found by solving

the single-objective problems.

In this section, the parent pair selection mechanism is defined in Section 4.2.1.

The path relinking recombination scheme is described in detail in Section 4.2.2. Mu-

tation and immigration operators are explained in Section 4.2.3. Repair and local

improvement procedures are provided in Section 4.2.4. Finally, stopping criteria and

external population structure are given in Section 4.2.5.

4.2.1. Selection

Instead of an independent selection procedure that first creates a parent pool

and then randomly selects parents from the pool, a selection mechanism has been
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devised to facilitate the crossover scheme by choosing parents deliberately as couples

that will enter recombination together. The target is to associate an equal number of

solutions with each reference point, e.g., when the population size is specified equal to

the number of reference points, all reference points need to have niche counts equal to

one. Empty regions where reference points do not have any representative solutions

must be populated. The target of the selection mechanism becomes to generate a

parent couple whose offspring will be associated with a reference point whose niche

count is equal to zero.

On that account, two solutions associated with reference points adjacent to a

randomly selected empty reference point (target reference point) are selected as a

parent couple. The neighborhood structure of the reference points is illustrated in a

three-dimensional hyperplane in Figure 4.5. Six points within the 15 reference points

are neighbors RN of the reference point r. It is anticipated that a path built between

these pairs during recombination is envisaged to generate an offspring suitable for the

purpose.

reference point, r
neighbors, RN

f1 f2

f3

(1,0,0) (0,1,0)

(0,0,1)

Figure 4.5. Reference point neighborhood structure, d = 4,m = 3.

On the other hand, there are some conditions required to successfully identify

such parent pairs. For instance, to avoid short and inadequate paths, the parent pair

cannot be formed by the same reference point or reference points that are themselves
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adjacent to each other. When a suitable set of reference points is found, solutions

that are associated with a minimum distance to the corresponding associated reference

points are selected as the parent pair. In case the second parent cannot be found

using this rule, it is selected by means of a binary tournament scheme. The decision in

the binary tournament is based on the similarity/dissimilarity to the already selected

parent, i.e. Hamming distance (Ribeiro and Resende, 2012).

In the crossover schemes, an offspring is produced by a parent pair, and the

number of offspring generated in each iteration should be equal to the size of the

current population in the reference set based sorting phase. As a result, not all the

necessary parent pairs can be generated by the selection mechanism described above.

The rest of the parent pairs are generated by a variant of the binary tournament

procedure that is modified to overcome the challenges posed by MaOPs. In this binary

tournament procedure, the first parent is selected by randomly picking two solutions

and comparing them according to the order they received in the reference set based

sorting of the previous iteration. In this manner, solutions favored by the reference

set based sorting algorithm have a higher chance of entering the recombination pro-

cedure. The second parent of the pair is selected by randomly picking two solutions

and comparing them according to how different genotypes they have from the already

selected first parent. At the end, the selection mechanism provides the recombination

operator with the parent pairs and their target reference points. The pseudo-code of

the parent pair selection, where the dissimilar candidate for second parent is preferred

in the binary tournament scheme, is provided in Algorithm 2 in Figure 4.6.

In the development phase of the proposed algorithm, two alternative methods

are considered to choose between the two candidates to form a parent pair with the

already selected first parent. The first is to choose the similar candidate to recombine

similar parents to obtain a “close” parent pair. On the other hand, by choosing the

dissimilar candidate, a “far” parent pair can prevent possible premature convergence

and create pressure for improvement by providing a diverse gene pool. As a result,

both alternatives are tested in numerical experimentation in Section 5.2.
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Algorithm 2: Select Pairs

Input: population : P, referencePoints : R = RA ∪RE
1. Set parentPairs : Ppairs = ∅
2. Set guidingReferencePoints : RG = ∅
3. For each reference point r in RE :

4. Set neighbors : RN from RA in the neighborhood of r

5. If RN .Count ≥ 2:

6. Choose two references points: r1 and r2 from RN
7. Set the closest associated solution of r1 as p1

8. Set the closest associated solution of r2 as p2

9. Add (p1, p2) to Ppairs
10. Add r to RG
11. Else if RN .Count = 1:

12. Choose the reference point: r1 from RN
13. Set the closest associated solution of r1 as p1

14. Choose two candidate solutions: s1, s2 randomly from P
15. Set p2 by BinaryTournament(s1, s2) based on Dissimilarity with p1

16. Add (p1, p2) to Ppairs
17. Add r to RG
18. Else if RN .Count = 0:

19. Continue

20. End if

21. End for each

22. While Ppairs.Count < P.Count:
23. Choose two candidate solutions: s1, s2 randomly from P
24. Set p1 by BinaryTournament(s1, s2) based on Reference Set Based Sorting

25. Choose two candidate solutions: s1, s2 randomly from P
26. Set p2 by BinaryTournament(s1, s2) based on Dissimilarity with p1

27. Add (p1, p2) to Ppairs
28. End while

Output: Ppairs, RG

Figure 4.6. Pseudo-code for parent pair selection algorithm.

In summary, the selection of the parent pairs consists of these two methods:

reference point based selection and binary tournament. The binary tournament plays a

complementary role and two alternative strategies are tested for it. The total number of

parent pairs is equal to the population size and is constant throughout the evolutionary

algorithm. The relative use of these two methods depends on the number of reference
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points whose niche counts are equal to zero and therefore varies throughout the search.

In addition to this variability, it is not guaranteed that for each reference point with

zero niche count, there will be a suitable parent pair in each iteration. Based on the

parameter setting, it can be argued that the majority of the parent pair generation

might be handled by the binary tournament. As the evolutionary algorithm advances

through iterations, the number of reference points with zero niche counts decreases

because it is one of the main goals of the reference set based sorting algorithm.

4.2.2. Recombination

Recombination (crossover) operators, which play a key role in evolutionary ap-

proaches, become even more critical in MaOEAs. It is reported that conventional

recombination schemes may be proven inadequate in MaOPs, since the offspring whose

parents are close to the Pareto optimal front need not to be close to the front them-

selves. Therefore, devising successful recombination operators is regarded as another

challenge of MaOPs (Jaimes and Coello, 2015).

The proposed algorithm employs a reference point guided path relinking as the

recombination method. Path relinking suggested by Glover et al. (2000) is used to

generate new high-quality solutions by exploring paths that connect previously found

high quality elite solutions (Ribeiro and Resende, 2012). Starting from one of the

solutions as the initiating solution, some move operations in the neighborhood space are

performed towards the other guiding solution (Glover et al., 2000). The neighborhood is

restricted in such a way that each move introduces an attribute of the guiding solution

that is not present in the initiating solution. For example, Beausoleil et al. (2008)

use back-and-forward path relinking strategy applied to a multi-objective knapsack

problem.

The implementation in this thesis uses a randomized mixed path relinking strat-

egy (Glover et al., 2004), in which two paths are initiated simultaneously from both

parents. The moves selected at each step are guided by the reference points. The

nodes of the path generated at each step correspond to the objective space positions of



68

candidate solutions for offspring. The path that connects parents is formed by creating

new solutions from both parents through some move operations, which makes parents

look more similar at every step.

In the path relinking scheme, starting from a random position of the chromo-

somes, the genes of the two parents at that position are examined. If the corresponding

genes of the two parents are different, a flip operation is performed for both parents.

Specifically, when using binary encoding as in the knapsack problem, the move cor-

responds to switching a binary gene in one parent from 0 to 1 and vice versa in the

other. When using permutation encoding as in the TSP and QAP, the move for both

parents corresponds to the copying of the other parent’s gene of that specific point. In

Figure 4.7, the move operations are illustrated for binary and permutation encoding.

Binary encoding:

0 1 1 0 1 0 1 0 0 1 0 1 0 1

1 0 1 0 1 1 0 1 1 1 0 1 1 0

nlt

nrt

clt

crt

Permutation encoding:

2 5 3 4 1 7 6 5 2 3 4 1 7 6

1 2 3 4 5 6 7 1 5 3 4 2 6 7

nlt

nrt

clt

crt

Figure 4.7. Move operations in binary and permutation encoding.

In each more iteration t, the end nodes of the two paths, namely nlt and nrt , create

two candidate solutions, namely clt and crt , respectively. After each move operation, the

resulting two candidate solutions are inspected and the move that yields the “better”

candidate is performed by the corresponding parent, thereby forming a new node on

the path. In the next move iteration, this new node replaces the parent from which it

is obtained. Then, the move operation is applied for this new solution along with the

solution at the end of the other path. Moves continue until all the genes of the two

end points become the same meaning that the full path has been formed. At the end,

the last node generated on the path is declared as the offspring solution. It should be

noted that the procedure yields one offspring in this path relinking scheme.
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In the comparison stage of the two candidate solutions, the feasibility is checked

first. If only one candidate is feasible, this solution is chosen as the next node of

the path. It must be noted that at most one of the candidates (the one obtained by

switching the binary gene of 0 to 1) can be infeasible given the fact that the move is

made from two feasible knapsack solutions. In TSP and QAP, both candidate solutions

are always guaranteed to be feasible.

When both candidate solutions are feasible, the dominance is checked. This is

very likely to be inconclusive when the conventional dominance relationship is applied.

As a result, two alternative strategies, which differ in the way that they address this

issue, have been developed and tested. Both strategies are named according to how the

two candidate solutions in the nodes of a path are compared with each other: “ε-path”

and “reference point guided path”.

ε-path. The first strategy uses one of the dominance rules called ε-dominance

suggested by Laumanns et al. (2002). From two objective vectors ~f , ~g ∈ Rm, ~f is said

to ε-dominate ~g for some ε > 0, denoted as ~f >ε ~g, if and only if the condition in

Equation 4.3 is satisfied for a minimization problem or the condition in Equation 4.4

for a maximization problem.

(1− ε)fi ≤ gi ∀i ∈ {1, ...,m} (4.3)

(1 + ε)fi ≥ gi ∀i ∈ {1, ...,m} (4.4)

When using the ε-dominance principle, even if none of the solutions dominate

the other, both have a certain ε-value, where they ε-dominate the other. Whichever

solution has the smallest ε-value, this solution is better. The main advantage of using

the ε-dominance principle is that ε is no longer a user-defined parameter, similar to

the additive ε-indicator in Zitzler et al. (2003). A comparison using ε-dominance for

three-objective problem with minimization objectives is demonstrated in Figure 4.8.

This modification improves the ability to compare different individuals. It should be

noted that the ε-domination principle is applied only in recombination, not in selection.
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min : f1 f2 f3

6 18 15

f(x)

f(y)

0.8f(x)

f(y)

f(x)

0.75f(y)

Figure 4.8. Demonstration of ε-dominance.

Reference point guided path. In the second path relinking strategy, candidate

solutions are compared based on their move-values δ. Denoting the Euclidean distance

between the parent node and the guiding reference ray (the ray starting from origin and

passing through the target reference point) as dt, and similarly, the distance between

the candidate node and the guiding ray as dt+1, the move-value δ is calculated as their

difference.

The candidate solution with a minimum move-value, in other words whose move

operation shortens the distance to the guiding reference ray more than the other, is

chosen as the next node of the path. An illustrative example of how the move-values

are measured is shown in Figure 4.9.

nlt

clt

nrt
crt

rguide

dlt+1

dlt

drt
drt+1

Figure 4.9. Reference point guided path relinking.
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Algorithm 3: Reference Point Guided Path Relinking

Input: parentPairs : Ppairs, referencePoints : R = RA ∪RE ,

guidingReferencePoints : RG
1. Set offspring : Poff = ∅
2. For each parentPair : (p1, p2) in Ppairs:
3. Set rg = RG[0]

4. If rg 6= ∅
5. Set ntotal as total difference in genotypes of p1 and p2

6. Set nl1 = p1 and nr1 = p2

7. Set path = ∅
8. For t in (1, ntotal):

9. Apply Move Operation(nlt, n
r
t ) to obtain (clt, c

r
t )

10. δl = Euclidean Distance(rg, c
l
t)− Euclidean Distance(rg, nlt)

11. δr = Euclidean Distance(rg, c
r
t )− Euclidean Distance(rg, nrt )

12. If δl < δr:

13. Add clt to path

14. Set nlt+1 = clt and keep nrt as nrt+1

15. Else:

16. Add crt to path

17. Set nrt+1 = crt and keep nlt as nlt+1

18. End if

19. Find rassociate as association of the most recent node in path

20. If rassociate ∈ RE : Break

21. End for

22. Select soff as the most recent node in path

23. RG = RG\rg
24. Else:

25. Select soff from a generic crossover between (p1, p2)

26. End if

27. Add soff to Poff
28. End for each

Output: Poff

Figure 4.10. Pseudo-code for reference point guided path relinking.

Another important aspect of the proposed path relinking crossover strategies is

that it is not always required to form the full path. After each move, if the most

recent node happens to be associated with a reference point (does not have to be the

guiding reference point) whose niche count equals to zero, the corresponding solution
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is stated as the offspring and crossover is terminated. In this way, reference points with

zero niche count are removed and the time requirement of the crossover operation is

decreased by avoiding to form the full path. The pseudo-code of the reference point

guided path relinking recombination scheme is shown in Algorithm 3 in Figure 4.10.

As a final note, when the binary tournament is used to determine the parent pair

in the absence of guiding reference points, a crossover scheme which is computationally

less expensive is preferred to substitute the path relinking. (e.g. uniform crossover for

the knapsack problem, two-order crossover for TSP and QAP). Selection mechanisms

and recombination schemes are summarized in Table 4.1.

Table 4.1. Selection and recombination alternatives.

Selection Recombination

Reference point based

+ ↪→ Path relinking 1: ε-path

↪→ Binary tournament 1: close ↪→ Path relinking 2: guided-path

↪→ Binary tournament 2: far

↪→ Binary tournament 1: close Uniform (binary encoding)

↪→ Binary tournament 2: far Two-order (permutation encoding)

4.2.3. Mutation and Immigration

In evolutionary algorithms, the mutation operator is widely used to prevent pre-

mature convergence and provide a diverse population. In the implementation of the

knapsack problem, the proposed MaOEA uses bit-flip mutation. Following recombi-

nation, each newly generated offspring undergoes a bit-flip mutation and randomly

selected binary genes are reversed using a predetermined mutation rate. After the

mutation, each offspring gets associated with a reference point, and if the offspring is

infeasible, it enters a repair procedure. Among the feasible offspring solutions, those

randomly selected ones enter the local improvement procedure based on the local im-

provement rate parameter.
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For TSP and QAP, a variation of the mutation operator, the immigration oper-

ator aims to increase diversity in the population by bringing new solutions that are

significantly different from existing solutions. In each iteration, a predetermined per-

centage of offspring is produced by the participation of immigrants. For the production

phase of immigrants, Ahuja et al. (2000) propose a process using historical frequency

information similar to the long term memory in the tabu search literature (Glover and

Laguna, 1998). All past and present information regarding how many times each gene

is assigned to each location of the chromosome is stored in the n× n matrix called the

population history. Higher values in the population history matrix indicate that the

corresponding assignment has been observed in many individuals whereas lower values

indicate fewer individuals in the past and existing populations have the corresponding

assignments in their permutations. The methodology targets to create new assignments

with low values in the population history matrix by selecting genes in random order

and distributing them to the lowest possible chromosome location assignment. This

procedure allows searching unexplored regions of the objective space.

It is observed that immigrants obtained with this methodology are likely to be

dominated and be expelled in the ranking phase. Therefore, all immigrant solutions are

generated randomly and subjected to a local improvement operation immediately after

they are created. In this way, unexplored regions of the objective space are extensively

investigated and successfully incorporated into the population, which improves overall

quality.

4.2.4. Repair and Local Improvement

Due to the capacity constraints in the knapsack, it is possible to produce in-

feasible offspring during the recombination process. To repair infeasible offspring two

approaches are tested. The first approach is a “greedy repair” as in Zitzler and Thiele

(1999). In this repair strategy, an infeasible solution is turned into a feasible solution

by taking into account all the items included in the knapsack. The calculation is done

to decide which items can be removed with a minimum loss in profit values in the

objective functions. This means that for each item, the following value is calculated
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in Equation 4.5 and all items are sorted in ascending order based on their qj values.

Items are removed until the capacity constraints are satisfied.

qj = max
i,k

{
pij
wjk

}
∀j (4.5)

The repair procedure is followed by a similar greedy local improvement procedure.

Unlike the repair procedure, items that are not included in the knapsack are taken to

account in the local improvement procedure. These items are sorted in descending

order of the calculated values as in Equation 4.5 and added accordingly, unless the

capacity constraints are violated.

An alternative strategy is reference point guided weighted repair. For both repair

and local improvement procedures, the items are sorted by taking the reference points

into consideration. In this way, both of repair and local improvement procedures are

guided by the reference point to which the corresponding offspring is associated. When

a reference point ~r = [r1, ..., rm] :
∑m

i=1 ri = 1, ∀ri ≥ 0 is used to guide procedures,

knapsack items are sorted by calculating the qj(~r) values for each item as in Equation

4.6. In this way, the coordinate of the associated reference point is used to assess the

importance of the knapsack items.

qj(~r) =

∑
i ripij

max
k
{wjk}

∀j (4.6)

High qj(~r) value in the local improvement procedure indicates that the inclusion

of item j into the knapsack provides great benefit in the direction of ~r whereas low ~r

value in the repair procedure means that item j can be removed from the knapsack

with no major loss that would take away from ~r. The repair and local improvement

procedures obtained in this manner are called “weighted repair”.

For TSP and QAP, repair method is not required, and a greedy two-exchange

neighborhood local search is used as the local improvement procedure. In this local

search, neighboring solutions are generated by swapping two genes in the permutation
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of an existing solution. If a candidate neighbor dominates the existing solution, the

existing solution is converted to that candidate neighbor and the same local search

procedure is restarted. This local improvement process continues until a nondominated

individual in the neighborhood is reached.

Although repairs are made to every infeasible offspring immediately after the mu-

tation step, it is not certain that every offspring enters a local improvement procedure.

The proportion of offspring entering this procedure and the proportion of genes enter-

ing the mutation procedure will be investigated in the numerical analyses regarding

the development stages of the proposed algorithm in Section 5.2.

4.2.5. Stopping Criteria and External Population

There are several alternatives to terminate the evolution in the proposed MaOEA.

Limitations can be applied to the number of iterations, solution generation or repair

calls, or there might be time limits. Based on the preliminary analysis, all algorithms

are terminated when 500×N (population size) repair calls are made in the knapsack

problem, to obtain a fair comparison (Zhang and Li, 2007). In the absence of repair

calls, as in the cases of TSP and QAP, the algorithms are terminated when the number

of iterations reaches 500.

Another important feature of the proposed MaOEA is keeping an external pop-

ulation which is basically an archive structure that stores all the nondominated points

created throughout evolution. Archive mechanism is reported to be very useful for

evolutionary algorithms whose sorting principles are not based on the dominance rela-

tionship, e.g., MOEA/D (Zhang and Li, 2007). Although nondominated sorting based

algorithms do not have to use external populations in their original framework, it is

presumed that archiving is necessary for MaOPs, since the huge number of nondom-

inated points that get eliminated from the internal populations throughout iterations

is a waste that may cause loss of important information. The computational effort re-

quired to update the external population can be reduced by limiting its size or applying

some clustering techniques.
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4.3. Constraint Handling Techniques

One of the main goals of this thesis is to develop a MaOEA that can cope with

various different optimization problems. Different combinatorial problems have their

own specific objective function and constraint structures that need be handled care-

fully. Differences in problem structure can affect both the design and operators of both

MOEAs and MaOEAs. In some problem structures, repair operation may not always

be possible or require great computational effort. Moreover, infeasible solutions, al-

though ultimately undesirable, can provide useful information to the population during

evolution. This section explains the necessary modifications and alternatives to con-

straint handling techniques, instead of repairing an infeasible solution as soon as it is

created. The multi-constrained MaOKP is chosen for the analysis in this section since

it is the benchmark problem which uses a repair procedure.

The comprehensive survey by Coello (2002) provides a discussion of well-known

constraint handling techniques used with evolutionary algorithms. The review ranges

from elementary changes in penalizing techniques to some sophisticated hybrid meth-

ods. Although there are numerous approaches to constraint handling techniques in

evolutionary algorithms, most of these techniques can be classified into the following

two categories: methods based on preserving the feasibility of solutions and methods

based on penalty functions.

In the first category, it is ensured that only feasible offspring solution are cre-

ated and that individuals always remain feasible. This is done by crossover operators

designed to reproduce only feasible offspring or some repair mechanisms. The FHFR

described above is in this category. Two versions of the repair method called “greedy

repair” and “weighted repair” are provided for MaOKP, as described in Section 4.2.4.

In both versions, items included in the knapsack are removed until all capacity con-

straints are met and an infeasible solution is converted into a feasible solution.

In the method of using penalty functions, the constrained problem is transformed

into an unconstrained problem. For a particular solution, the amount of violation
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is added (or subtracted) to the objective function value as a penalty. In this way,

infeasible solutions are allowed to exist in the population, but with a penalty, calculated

by adjusting the amount of violation by means of a weight. The penalty is so that the

corresponding solution becomes undesirable compared to a feasible solution. In the

implementation, the total violation amount is used to penalize all objective functions.

The penalty coefficient can be static or dynamic. In static penalties, the penalty

coefficient does not depend on the stage of the algorithm and remains constant through-

out the entire evolutionary process. The penalty coefficient should be low enough to

allow some infeasible solutions to exist in the population but also high enough to pre-

vent them from outweighing feasible solutions.

It is claimed that dynamic penalties work better than static penalties. By increas-

ing the penalty coefficient over the course of the algorithm, genetic materials obtained

from infeasible solutions are used at the beginning of the algorithm and these infeasible

solutions are alienated from the population towards to the last generations of the algo-

rithm. When using dynamic penalty approach, it is important to derive good dynamic

penalty functions since the approach itself is very sensitive to changes in parameter

values. As careful parameter search and tuning is necessary to obtain reliable results, a

preliminary study for determining appropriate coefficient for both static and dynamic

penalty approaches has been carried out. In the dynamic case, the penalty amount is

increased linearly by the iteration count and the age of the corresponding solution.

Another approach for using dynamic penalties is adaptive penalty functions where

the penalty amount is controlled by the information obtained from the evolutionary

algorithm. In this thesis, the adaptive penalty function used originates from a method

called self-adaptive penalty (Woldesenbet et al., 2009). In the self-adaptive penalty

approach, the amount of penalty is determined by the number of feasible solutions in

the population.

For these three penalty approaches, the transformed objective function for a par-

ticular solution ~x is provided in Equation 4.7. Since the objectives are of maximization
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type in the multi-constrained MaOKP, the penalty amount, P (~x), is subtracted from

all objective functions.

f̃i(~x) =
n∑
j=1

pijxj − P (~x) ∀i (4.7)

where

P (~x) =


penaltyCoef × V (~x) static penalty (4.8)

penaltyCoef × t× age(~x)× V (~x) dynamic penalty (4.9)

penaltyCoef × (1− rf )× V (~x) adaptive penalty (4.10)

V (~x) is the total constraint violation amount of a particular solution ~x and it is

calculated as in Equation 4.11 :

V (~x) =
∑
k

(
n∑
j=1

wjkxj − Ck

)
(4.11)

For the dynamic penalty approach in Equation 4.9, the current iteration number

t and the age of the corresponding solution age(~x) are used as multipliers.

In adaptive penalty approach in Equation 4.10, the feasibility ratio rf , is obtained

by dividing the number of feasible solutions by the population size. If the number of

feasible solutions in the population is low, the coefficient (1 − rf ) approaches to one

and infeasible solutions are penalized in proportion to the total amount of constraint

violations. In this way, infeasible solutions become undesirable and the algorithm seeks

to find feasible solutions. On the other hand, if the number of feasible solutions in the

population is high, the coefficient (1− rf ) approaches to zero and the penalty amount

for infeasible solutions decreases to zero. Infeasible solutions with good objective func-

tion values become desirable. The feasibility ratio value appears to fluctuate over the

duration of the algorithm and converge after several iterations.

The last used technique is different from the others since no transformation has

been made to the objective functions of infeasible solutions. In this method, feasible
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solutions are always preferred to those that are infeasible. This technique is similar

but not the same with superiority of feasible solution method in Qu and Suganthan

(2011). In the implementation, feasible solutions always dominate infeasible solutions.

If there is a feasible solution in the population, it means that infeasible solutions can

never have rank one. Comparison of infeasible solutions among themselves is made

by their violations. Infeasible solutions are mapped to a space called violation space

where each dimension is represented by a constraint. In the violation space, objective

functions become the minimization of violations and the nondomination principle is

applied accordingly when two infeasible solutions are compared.

In numerical analysis on this subject in Section 5.3, the performance of all the

constraint handling techniques mentioned in this section is evaluated. The names of

these six alternatives are (i) greedy repair, (ii) weighted repair, (iii) static penalty, (iv)

dynamic penalty, (v) adaptive penalty and (vi) feasible preferred.

Methods (i) and (ii) always ensure the feasibility of solutions using different repair

procedures. For these methods, the proposed MaOEA is applied directly without

any changes. For the rest of the methods which allow infeasible solutions, the path

relinking recombination scheme is modified. When comparing two candidate solutions

during the construction of the path, regardless of the infeasibility of a candidate, it

is compared based on the relevant criteria (i.e. distance from the guiding reference

point, or dominance). Additionally, when an infeasible solution is eliminated, greedy

repair procedure is performed before the solution is checked for entering the external

population. Similarly, all infeasible solutions in the final population enter greedy repair

procedure in termination of the algorithm.

In methods (iii) to (v), the objective functions of the infeasible solutions are

transformed using some penalty functions. As a result, their location on the hyperplane

and their association with the reference points depend on how the penalty amount

is defined during the algorithm. In dynamic and adaptive penalty approaches, the

location and association of an infeasible solution change as the penalty amount changes.

It is suspected that it may cause disorder for the association results and two alternatives
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are experimented in numerical analysis. Based on some preliminary analysis, it is

decided to map infeasible solutions according to their original objective function values

so that their association remains the same during evolution.

4.4. Alternative Positioning for the Reference Set

This section includes the search for alternative positioning methods for the ref-

erence point set. Since the reference set based sorting constitutes the core of the

proposed MaOEA, alternative ideas that can contribute to its quality should be care-

fully investigated. It should be noted that the solutions are first sorted according to

the nondomination principle and the reference set based sorting is applied after the

fronts are formed. In this way, reference set based sorting is used as a tie breaker for

the solutions of the same rank. On the other hand, since it is one the main challenges

observed in many-objective optimization, the number of nondominated solutions can

be large and reference set based sorting becomes a decisive stage in the assessment of

solutions. A successful Pareto approximation and the diversity of its members heavily

rely on the reference set based sorting. As a result, its attributes and requirements are

always kept mind when developing operators and mechanisms.

In the implementation, the population size and number of reference points are

fixed as equal. In this way, the ultimate goal of the algorithm becomes associating one

solution for each reference point. As a result, the distribution of the reference points

governs the distribution of the population in the objective space.

No matter how well the reference points spread, they may still fail to represent

the Pareto front effectively. In many real-life problems, Pareto optimal fronts have

irregular shapes including degeneracy, discontinuity and nonlinearity (Ishibuchi et al.,

2019). Combinatorial optimization problems with discrete feasible solutions spaces are

examples of problems in nature. Due to these irregularities in Pareto front shapes,

some reference points will have no solutions that can be associated with them. Since it

is often not possible to recognize this landscape in advance, it may be useful to update

the positions of the reference points during the search. In other words, although the
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systematic mesh approach proposed by Das and Dennis (1998) is used at the beginning,

this can be changed during the course of the evolutionary algorithm. The update

mechanism must be generic so that it can be applied to various different types of

problems.

As a matter of fact, while using the proposed algorithm in its basic form (FHFR),

it seems that a large number of reference points remain unassociated during the algo-

rithm even though the complementary selection and recombination schemes attempt

to fill these reference points. This is simply because there is no feasible nondominated

solution that can be associated with one of these reference points. This means that the

algorithm must be equipped to detect these reference points and take the necessary

measures to avoid further effort. In the implementation of this thesis, when a reference

point remains unassociated for a certain number of iterations, it is concluded that its

surrounding region in objective space is void and its position needs to be updated.

Removing these reference points may be a straightforward approach. Two alter-

natives can be considered at this stage. Since the population size is determined equal to

the number of reference points, the decrease in the number of reference points implies a

decrease in the population size. In this way, the goal of holding one associated solution

for each reference point is maintained and a significant improvement in time consump-

tion is achieved. On the other hand, a decrease in population size can be expected

to lead to poor performance. As a result, fixing the population size while reducing

the number of reference points may be a second alternative. In this way, a smaller

reference point set can reduce time consumption while preventing a possible deteriora-

tion in performance. Although these alternatives do not promise much improvement in

performance, they are retained to check if they can lower the time requirement without

a deterioration in quality. These methods are referred to as “expiring references and

population” (ER1) and “expiring references” (ER2) in the numerical results.

More promising approaches are developed by updating the locations of reference

points with void association rather that discarding them. While doing this, it is ensured

that the reference points are always on the original fixed hyperplane.
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Reference set update procedure works on the reference set as the second stage of

the algorithm after the reference set based sorting stage works on the solution set to

establish the population of the next iteration. This procedure, which relocates some

reference points based on the information gathered during the first stage, is designed

as an independent module so that it can be used in a plug-in manner. It must be noted

that the reference set update procedure does not necessarily need to be applied for

every iteration. When this stage is deactivated, the algorithm with a fixed reference

set is obtained.

In fact, activating the reference set update procedure for the first time is delayed

by some “learning period” (Asafuddoula et al., 2017) thus allowing the population that

is mostly composed of dominated solutions to mature in the initial iterations. The

population is said to be sufficiently mature when the number of solutions in its first

front has grown large enough such that nondominated points begin to be truncated. In

other words, reference set update procedure is applied for the first time when the front

count in the current population drops to one. In this manner, solution associations to

the initial uniform map of reference points get settled to convey meaningful information.

In many-objective problems, the front count rapidly decreases to one as the number of

nondominated points is extremely high.

By the same line of reasoning, after each reference set update epoch, the reference

set is allowed to settle for some time until the evolution process becomes more stable

in terms of how the solutions are associated with the reference points. Preliminary

experiments supported this concept showing that when the update procedure is applied

at each iteration, a deterioration in performance occurs due to its overuse. As a result,

the update procedure is applied only at the end of “cycles”. Based on the preliminary

numerical studies, when there is no change in how the solution set is associated with the

reference point set for 10 iterations, the cycle is said to be complete and the reference

point update procedure is activated.

In the implementation of this thesis, when it is detected that no solution is as-

sociated with a particular reference point throughout a cycle, this reference point is
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relocated near another densely populated reference point. In this manner, it is hoped

that the new reference point relieves the crowd and create balanced niche counts for

the reference set based sorting algorithm. When a solution is chosen randomly and its

associated reference point is selected, similar to a roulette wheel selection mechanism,

reference points with higher association counts are given a higher chance. The new ref-

erence point is positioned between the selected reference point and one of its randomly

chosen neighbors. The exact location is given by a randomly generated proportion

that determines the convex combination of selected neighboring reference points. In

this way, the new reference point is also guaranteed to be located on the fixed hyper-

plane. This approach is referred to as “mobile references” in numerical analysis and

the resulting proposed MaOEA will yield the second version of the proposed algorithm

with fixed hyperplane and mobile reference points: FHMR. The pseudo-code of the

reference set update procedure in FHMR is shown in Algorithm 4 in Figure 4.11. An

important remark on the reference set update procedure is that it is independent of

the problem and the same in all benchmark problems.

Algorithm 4: Reference Set Update Procedure (for FHMR)

Input: population : P, referencePoints : R = RA ∪RE , Association(P,R)

1. Detect empty reference points throughout the cycle RDEL from RE
2. For each reference points r in RDEL:

3. Select a solution s randomly from P
4. Set r1 = Association(s,R)

5. Select a reference point r2 randomly from the neighborhood of r1

6. Relocate r = αr1 + (1− α)r2 using a random α : 0 ≤ α ≤ 1

7. Update the neighborhoods of r, r1 and r2

8. Update Association(P,R)

9. End for each

Output: R, Association(P,R)

Figure 4.11. Pseudo-code of the reference set update procedure in FHMR.

4.5. Co-evolutionary Reference Set Algorithm

While the reference point update procedure in Section 4.4 occasionally relocates

some of the reference points, the co-evolutionary approach defines a coherent and natu-

ral mechanism that allows for more flexible adaptation of the entire reference set. In the
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co-evolutionary structure of the proposed MaOEA, the solution set and the reference

point set are defined as two concurrently evolving populations. Solutions are evaluated

based on how strongly they are associated with the reference point set, and reference

points evolve based on how many solutions are associated with them. The evolution

of a reference point corresponds to an update of its location on the fixed hyperplane.

The co-evolutionary structure shows both cooperative and competitive aspects, as the

balance between cooperation and competition is necessary to avoid stagnation in the

algorithm and to ensure that the co-evolutionary framework is self-adaptive. It is also

independent of the problem and the same in all benchmark problems.

Selection

Crossover Mutation Repair

Sorting
Pn

Ppairs

Poff Poff

Poff
Pn Pn+1

Association Selection Mutation

Crossover

Immigration

Rn RA RA

Rpar

RA

Roff Rimm

Rn+1

RE

Co-evolution of solution set

Co-evolution of reference point set

Cooperation

Competition

Figure 4.12. Flow chart of the co-evolution of solution and reference point sets.

In general, the two species evolve in a cooperative manner, and the members of

both sets are rewarded if they manage to associate decisively with the counter set.

On the other hand, they also involve in competition to diversify the search area. The

diagram in Figure 4.12 displays the sequential progress of evolution processes and their

co-evolutionary relationship. All interactions, except for the mutation of the reference

set, include cooperative features. All these interactions are essential to improve the
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performance of both species. It is worth mentioning that the evolution of the two sets

have different paces, i.e. while the evolution of solution set occurs at each iteration,

the evolution of reference set is activated only at the end of the cycles.

The reference set evolution resembles to a classic evolutionary approach with

typical genetic operators such as selection, crossover, immigration and mutation. The

pseudo-code for the main framework of the evaluation of the reference set is presented

in Algorithm 5 in Figure 4.13.

Algorithm 5: Reference Set Co-evolution (for FHCo)

Input: referencePoints : R = RA ∪RE , Association(P,R)

1. Rpar := Selection(R)

2. Roff := Crossover(Rpar)
3. Rimg := Immigration

4. Mutation(RA)

5. R ← RA ∪Roff ∪Rimg
6. Update Association(P,R)

Output: R, Association(P,R)

Figure 4.13. Pseudo-code of the reference set co-evolution in FHCo.

It is important to recall that in the parametric setting, the number of reference

points is equal to the population size, so each reference point is intented to be exactly

associated with one solution. The number of solutions associated with a reference

point is denoted as its niche count. It is aimed to balance niche counts. The algorithm

tries to fill empty reference points if possible. As a result, the reference point set is

divided into two subsets: associated reference points RA and empty reference points

RE. A predefined proportion of associated reference points mutates and changes their

locations on the hyperplane to force the evolution process to search diverse regions

of the objective space. Empty reference points on the other hand, are replaced by

newly generated reference points. This can happen either by introducing new offspring

or with immigrated reference points. RE will be completely replaced by these new

reference points.
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4.5.1. Selection in Co-evolution

Binary tournament is used for selection. Two candidates are randomly selected

from the reference point set, then the one with higher niche count is preferred. In the

case of a tie, the distance to the closest solution is measured and the one with greater

distance is selected. In order to give each reference point a chance, the choice for the

second parent is random.

4.5.2. Crossover in Co-evolution

The crossover scheme involves a convex combination of the locations of the two

parent reference points in the objective space to generate the location of an offspring

reference point. By denoting the locations of the parent points as L(~rx) and L(~ry), the

location of the offspring reference point L(~ro) is calculated by Equation 4.12.

L(~ro) = αL(~rx) + (1− α)L(~ry) (4.12)

where, α : 0 ≤ α ≤ 1 is a randomly generated non-negative coefficient. In other words,

the location of the offspring reference point is in the line segment drawn between its

parents. Since all existing reference points on the normalized hyperplane, the offspring

reference points produced by this scheme are also located on the normalized hyperplane.

f(x)

x
0 0.5 1

Figure 4.14. PDF of the convex combination ratio.
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In the preliminary numerical analysis to determine the ratio α, it is observed

that using a uniform random ratio produces an offspring which does not bear any

common features with either of its parents. There must be bias towards either one of

the parents. Additionally, it is observed that the bias towards the parent selected with

binary tournament must be more. For this purpose, a quadratic piecewise probability

density function (PDF) as shown in Figure 4.14 is used to generate convex combination

ratio. The formulations of the probability density function f(x), and the cumulative

density function F (x) are presented in Equation 4.13 and 4.14, respectively.

f(x) =

 18(x− 0.5)2, 0 ≤ x ≤ 0.5.

6(x− 0.5)2, 0.5 < x ≤ 1.

(4.13)

F (x) =

 6x3 − 9x2 + 9
2
x, 0 ≤ x ≤ 0.5.

2x3 − 3x2 + 3
2
x+ 3

4
, 0.5 < x ≤ 1.

(4.14)

4.5.3. Immigration in Co-evolution

In order to explore different regions of the objective space, new reference points

with random coordinates are also generated. These reference points are called im-

migrant reference points and they are used to complement the crossover scheme in

replacing some portion of the empty reference points. The relative ratio at which these

two methods are used to replace empty reference points depends on the current state

of evolution. The ratio of immigrant count to crossover count is equal to the ratio of

number of empty reference points to the number of associated reference points. In this

way, the immigration process shows a self-adaptive behavior to reduce its use as the

share of empty reference points decreases throughout the evolutionary process. In or-

der to obtain better immigrants, twice as many are created and a binary tournament is

applied between them. Immigrants with a prospective associated solution are selected.
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4.5.4. Mutation in Co-evolution

As the number of nondominated points increases exponentially in many-objective

problems, the task of a posteriori approaches becomes more difficult since avoid-

ing premature convergence becomes even more challenging. In the application of a

co-evolutionary structure, it is natural to prefer solutions/reference points that are

closely associated with the counter set. However, there is a clear threat that the ref-

erence points and their best associated solutions will “stick” together so that they are

never eliminated in the sorting procedure. This will result in the stagnation of the

co-evolutionary framework and thus a premature convergence.

Mutation is used to avoid this kind of behavior and to constitute the competitive

part of the co-evolutionary structure. In order to generate as distinct nondominated

points as possible, the associated reference points also move on the hyperplane and

search different regions of the objective space. The mutation is applied only to a

percentage, not to all associated reference points. This percentage is equal to the

associated reference point percentage. In this manner, as the percentage of associated

reference points increases during the evolution, the use of the mutation also increases.

In order to direct the search to the unexplored regions of the objective space,

mutated reference points move away from their closest associated solutions. The oppo-

site direction on the line segment between the reference point and its closest associated

solution is used. The length of this move is critical since large values cause the refer-

ence point to drift away and small values are ineffective. After investigating different

alternatives in a preliminary study, it is decided to use a random coefficient between 0

and 1 to determine the move length. In this way, the move length can be at most equal

to the distance between the corresponding reference point and its closest associated

solution. The mutated reference points are also ensured to stay on the normalized

hyperplane.
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5. NUMERICAL EXPERIMENTATION

This chapter contains all the numerical experimentation conducted to verify, eval-

uate and compare the performance of the proposed algorithm, as well as its detailed

investigation relative to the different features and properties of the many-objective

combinatorial optimization problems. One or more of the benchmark problem sets are

used for each of these analyses, as required.

First, the experimental setting is provided in Section 5.1. The development stages

of the proposed fixed hyperplane fixed reference point set (FHFR) algorithm are illus-

trated in Section 5.2 using MaOKP and MaOQAP. Section 5.3 and 5.4 present the

experiments on MaOKP with different constraint handling/reference point positioning

strategies and reference point association behavior of three proposed MaOEA versions.

In Section 5.5, performance evaluation of three proposed MaOEA versions is made

using all three benchmark problems. Additional experimentation involving the con-

struction of the fixed hyperplane with near optimal solutions is shown for MaOTSP

and MaOQAP in Section 5.6. Experimentation including test problems with corre-

lated objectives and test problems having different objective function characteristics

are presented in Section 5.7 and 5.8, respectively. In Section 5.9, the numerical results

for finding robust solutions are illustrated. Finally, numerical research on alternative

limit specification for hypervolume calculation is explained in Section 5.10.

5.1. Experimental Setting

The most important issue in the experimental setting is the size of the reference

point set and the population adjusted accordingly. In the numerical studies for the

proposed MaOEA, the sizes of the solution set is equal to the size of the reference point

set. In this way, the goal of the algorithm becomes associating exactly one solution with

each reference point. It should be reminded that when using the systematic simplex

lattice design by Das and Dennis (1998), the number of reference points depends on

the objective and division counts as in Equation 4.1. The number of reference points
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required for different division counts corresponding to each objective count is given in

Table 5.1. Here, the options shown with asterisks are chosen as the reasonable reference

point set and solution population sizes for each objective count.

Table 5.1. Setting of the reference point set.

Division

count (d)

Objective count (m)

2 4 6 8 10 15 20 30

2 3 10 21 36 55 120* 210* 465*

3 4 20 56 120* 220* 680 1540 4960

4 5 35 126* 330 715 3060 8855 40920

7 8 120* 792 3432 11440 ... ... ...

119 120* ... ... ... ... ... ... ...

All algorithms are coded in C# programming language in Microsoft Visual Studio

2017 and all experiments are carried out on a PC with 3.60 GHz Intel® CoreTM i7-3820

CPU and 16 GB RAM running on a 64-bit Windows 10 operating system. In MaOKP,

all algorithms are terminated when 500 × N (population size) repair calls are made

(Zhang and Li, 2007). Based on preliminary fine-tuning experiments, algorithms are

terminated when the iteration count hits 500 in MaOTSP and MaOQAP.

5.2. Development Phases of the Fixed Reference Set Algorithm

This section includes the development stages of the proposed fixed hyperplane

fixed reference point set (FHFR) algorithm. Experiments on alternative genetic oper-

ators and fine-tuning of algorithm parameters will be demonstrated. MaOKP is used

for this experimentation phase. The performances of alternative genetic operators are

evaluated using the Hypervolume (or Hyperarea) Ratio (HR). For a particular set of

points in objective space, HR is defined as the ratio of the volume dominated by this

set to the hypercube volume where the set points are located. HR for each algorithm

is calculated using Monte Carlo simulation, generating 105 random coordinate points

uniformly in the hypercube. High HR results indicate not only a close approximation

of the true Pareto front, but also a diverse and well-distributed approximation.



91

5.2.1. Genetic Operators

There are three selection mechanisms and two crossover schemes to be tested.

The selection mechanism are random selection (random), binary tournament selection

(bt) and reference point based selection (ref ). Random selection is used to observe

whether searching for alternative selection mechanisms has the potential to improve

performance, and the classic binary tournament forms a standard example which is

easy to adopt. The crossover schemes are uniform (uniform) and ε-dominance path

relinking (ε-path). The former is presented as a standard crossover method, frequently

used in binary encoding, and is evaluated as a control group against path relinking

method. In this phase of the analysis, only ε-path strategy is tested to observe the

potential of path relinking.

Additionally at this stage of the analysis, the mutation and local improvement

rates are fine-tuned. The fine-tuning step is implemented for a six-objective 500-item

knapsack problem. Two levels are experimented for the mutation rate and three lev-

els for the local improvement rate. The first level for the local improvement rate

corresponds to bypassing the local improvement altogether whereas the third level

corresponds to the implementation of local improvement to every recently generated

offspring. At the second level, the probability of applying local improvement increases

linearly at each iteration.

NSGA-III (Deb and Jain, 2013) is used as the base case for the experiments to

observe the progress attained by introducing genetic operator alternatives. It should

be noted that the algorithms that implement these genetic operators employ the fixed

hyperplane concept, whereas NSGA-III is in its original form. HR results for the

fine-tuning step are presented in Table 5.2. Since the objectives are maximization

in MaOKP, the origin and the ideal point obtained from the single-objective optimal

solutions are used in HR calculations. The best result is shown with an asterisk. Best

results are obtained when the mutation rate is set at 0.004 and local improvement

increases linearly at a rate equal to 0.01. In the rest of the numerical experimentation,

this setting will always be used.
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Table 5.2. HR results for fine-tuning, m = 6, n = 500.

Mutation rate Local imp. rate
Selection & crossover

NSGA-III
random &

uniform

ref &

ε-path

0.004

0 0.383 0.568 0.648

0.01× t 0.493 0.653 0.675*

1 0.554 0.595 0.628

0.04

0 0.344 0.517 0.559

0.01× t 0.444 0.621 0.643

1 0.527 0.604 0.652

Next, the performances of selection and crossover alternatives are tested for larger

number of objectives using 500-item knapsack problems from two to 15 objectives. In

this way, their performance is examined with respect to the increase in the number of

objectives. Table 5.3 displays the mean HR results in 10 replications. In Table 5.4,

these results are normalized using the mean HR results of NSGA-III. In this way, the

improvement achieved through selection and crossover alternatives can be observed in

relative percentages allowing easier interpretation. In both tables, the best result for

each objective count is displayed with an asterisk.

Table 5.3. HR results for selection & crossover, n = 500.

Selection & crossover
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.873 0.704 0.493 0.444 0.357 0.129

random & uniform 0.987* 0.855 0.653 0.589 0.499 0.207

bt & uniform 0.983 0.883 0.666 0.594 0.506 0.206

ref & uniform 0.984 0.851 0.657 0.566 0.452 0.182

random & ε-path 0.978 0.803 0.498 0.463 0.371 0.188

bt & ε-path 0.986 0.886* 0.673 0.635* 0.522 0.445*

ref & ε-path 0.978 0.878 0.675* 0.612 0.523* 0.294
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Table 5.4. Relative HR results for selection & crossover, n = 500.

Selection & crossover
Objective count (m)

2 4 6 8 10 15

NSGA-III 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

random & uniform 113.1%* 121.5% 132.5% 132.8% 139.7% 160.4%

bt & uniform 112.6% 125.4% 135.1% 133.7% 141.6% 160.0%

ref & uniform 112.7% 120.9% 133.1% 127.5% 126.6% 141.5%

random & ε-path 112.0% 114.0% 101.1% 104.3% 103.9% 146.2%

bt & ε-path 112.9% 125.8%* 136.4% 143.1%* 146.2% 345.2%*

ref & ε-path 112.0% 124.7% 137.0%* 137.8% 146.4%* 228.5%

From these results, it can be claimed that a significant improvement is achieved

using a fixed hyperplane compared to its original implementation in NSGA-III. As the

number of objectives increases, the relative HR results also increase, indicating that

using the fixed hyperplane together with alternative selection and crossover methods

responds better to the objective increase and is therefore more suitable for MaOKP.

Although the results are close to each other except for the 15-objective case, it is ob-

served that path relinking strategy stands out when combined with a selection method

other than random.

Another analysis can be done this time by fixing the number of objectives (m =

10) and changing the number of knapsack items. In this way, the effect of problem size

on performances can be observed. Relative HR results are shown in Table 5.5. The

results support the argument that the main source of complexity in MaOPs is not due

to an increase in the size of the problem, but an increase in the number of objectives.

The main analysis for the development of the proposed algorithm (FHFR) cov-

ers all genetic operator alternatives, including alternatives for repair and local im-

provement produces. All algorithm alternatives use fixed hyperplane obtained using

single-objective optimal solutions. Since this modification alone significantly improves

performance, a version called “fixed NSGA-III ” is also provided in numerical results.
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Table 5.5. Relative HR results for selection & crossover, m = 10.

Selection & crossover
Item count (n)

250 500 750 1000

NSGA-III 100.0% 100.0% 100.0% 100.0%

random & uniform 122.5% 139.7% 142.1% 158.5%

bt & uniform 121.1% 141.6% 140.9% 163.9%

ref & uniform 114.8% 126.6% 135.6% 154.5%

random & ε-path 68.8% 104.0% 136.0% 157.4%

bt & ε-path 135.3%* 146.2% 152.1%* 171.1%*

ref & ε-path 130.9% 146.4%* 148.3% 167.3%

Different from the original NSGA-III, in fixed NSGA-III, single-objective optimal solu-

tions are provided to the initial population, and the algorithm uses the fixed hyperplane

throughout evolution while all the remaining mechanisms are as in the original.

Based on previous experiments, the benefits of reference set based parent pair

selection and path relinking recombination have been clearly observed. As a result, the

binary tournament is used only when there are not enough guiding reference points.

In this way, the binary tournament becomes a complementary and integral part of the

reference set based parent pair selection.

Two versions are experimented for the binary tournament, where either simi-

lar/close parents (close) or dissimilar/far parents (far) are favored. Apart from these,

random selection is still retained as a reference. Two versions of path relinking are

experimented, namely path relinking using ε-dominance (ε-path) and reference point

guided path relinking (guided-path). There are two repair and local improvement pro-

cedures called greedy and weighted.

Table 5.6 displays the mean HR results in 10 replications for MaOKP with 500

items. In Table 5.7, HR results are normalized again using the HR results of NSGA-III.

The best result for each objective count is shown with an asterisk.
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Table 5.6. HR results for genetic operator alternatives, n = 500.

Selection, crossover, repair/local Imp.
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.885 0.663 0.521 0.384 0.339 0.117

NSGA-III (fixed), greedy 0.965 0.769 0.605 0.463 0.412 0.148

NSGA-III (fixed), weighted 0.984 0.758 0.569 0.435 0.412 0.139

close, ε-path, greedy 0.986 0.783 0.604 0.486 0.427 0.163

close, ε-path, weighted 0.984 0.743 0.546 0.430 0.360 0.135

close, guided-path, greedy 0.979 0.778 0.599 0.441 0.379 0.117

close, guided-path, weighted 0.985 0.858* 0.699* 0.623* 0.532 0.241*

far, ε-path, greedy 0.987* 0.760 0.588 0.482 0.411 0.166

far, ε-path, weighted 0.986 0.739 0.539 0.434 0.362 0.135

far, guided-path, greedy 0.981 0.776 0.595 0.467 0.388 0.142

far, guided-path, weighted 0.986 0.828 0.691 0.617 0.541* 0.193

Table 5.7. Relative HR results for genetic operator alternatives, n = 500.

Selection, crossover, repair/local imp.
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed), greedy 109% 116% 116% 121% 122% 127%

NSGA-III (fixed), weighted 111% 114% 109% 113% 122% 119%

close, ε-path, greedy 111% 118% 116% 127% 126% 139%

close, ε-path, weighted 111% 112% 105% 112% 106% 116%

close, guided-path, greedy 111% 117% 115% 115% 112% 100%

close, guided-path, weighted 111% 130%* 134%* 162%* 157% 207%*

far, ε-path, greedy 112%* 115% 113% 126% 121% 142%

far, ε-path,weighted 111% 112% 103% 113% 107% 116%

far, guided-path, greedy 111% 117% 114% 122% 115% 121%

far, guided-path, weighted 111% 125% 133% 161% 160%* 165%

It should be restated that a significant improvement is achieved using the fixed

hyperplane compared to the original implementation. As the number of objectives

increases, the performance gap in relative HR results also increases, suggesting that

the proposed genetic operator alternatives react better to the objective increase and
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are therefore more suitable for MaOKP. It can be argued that it is necessary to have

more than six objectives to clearly observe the difference in performance.

It is observed that when complemented with weighted repair/local improvement

strategy, guided-path crossover becomes more powerful and does better than other

combinations. While the performance of close binary tournament is slightly better

than the far binary tournament, it is decided to keep both alternatives for further

analysis.

5.2.2. External Population

External populations are mainly used to store nondominated solutions found

during the search. Although the proposed MaOEA is based on nondominated sort-

ing where nondominated solutions are given the highest priorities to be kept in the

population, nondominated solutions might also be eliminated in some iterations. To

protect valuable information obtained during the course of the evolution, an external

population is stored and reported for performance assessment. All HR results given

up to now have been calculated based on final populations. As external populations

also include solutions in the final generation, an improvement in HR results is natural.

Here, the contribution of an external population structure included in the algorithm

will be tested. The comparison of HR results is presented in Table 5.8 and 5.9 for the

original NSGA-III, for the algorithm obtained only by fixing the hyperplane and for

two algorithm versions that have shown successful results in previous analyses.

5.2.3. Testing of the Proposed Configuration for FHFR on MaOKP

As seen in Table 5.8 and 5.9, the algorithm using reference set based parent pair

selection complemented by far binary tournament, reference point guided path relinking

recombination, and weighted repair/local improvement procedure surpasses others in

every problem instance. As a consequence, this configuration becomes the first version

of the proposed algorithm using fixed hyperplane with fixed reference point set (FHFR).
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Table 5.8. HR results, internal vs. external.

Population
Selection, crossover,

repair/local imp.

Objective count (m)

2 4 6 8 10 15

Internal

NSGA-III 0.885 0.663 0.521 0.384 0.339 0.117

NSGA-III (fixed), greedy 0.965 0.769 0.605 0.463 0.412 0.148

close, guided-path, weighted 0.985 0.858 0.699 0.623 0.532 0.241

far, guided-path, weighted 0.986* 0.828 0.691 0.617 0.541 0.193

External

NSGA-III 0.901 0.756 0.591 0.454 0.395 0.173

NSGA-III (fixed), greedy 0.979 0.863 0.722 0.575 0.451 0.207

close, guided-path, weighted 0.985 0.890 0.772 0.645 0.544 0.288

far, guided-path, weighted 0.986* 0.893* 0.783* 0.662* 0.560* 0.301*

Table 5.9. Relative HR results, internal vs. external.

Population
Selection, crossover,

repair/local imp.

Objective count (m)

2 4 6 8 10 15

Internal

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed), greedy 109% 116% 116% 121% 122% 127%

close, guided-path, weighted 111% 130% 134% 162% 157% 207%

far, guided-path, weighted 111%* 125% 133% 161% 160% 165%

External

NSGA-III 102% 114% 113% 118% 117% 148%

NSGA-III (fixed), greedy 111% 130% 139% 150% 133% 178%

close, guided-path, weighted 111% 134% 148% 168% 161% 247%

far, guided-path, weighted 111%* 135%* 150%* 173%* 165%* 258%*

The next stage of numerical analysis also includes MOEA/D (Zhang and Li,

2007). The performance of FHFR is compared to MOEA/D using both weighted sum

(ws) and Tchebycheff (tc) approaches for decomposition. To see the progress made, the

results of NSGA-III and fixed NSGA-III (with greedy repair and local improvement)

are also presented. The mean HR and relative HR results are shown in Table 5.10

and 5.11, respectively. It can be seen that the proposed algorithm FHFR outperforms

other algorithms including MOEA/D. It can also be noted that even the fixed NSGA-III

performs better than MOEA/D, that is, using a fixed hyperplane significantly improves

performance.
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Table 5.10. HR results for FHFR, n = 500.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.901 0.756 0.591 0.454 0.395 0.173

NSGA-III (fixed) 0.979 0.863 0.722 0.575 0.451 0.207

FHFR 0.986* 0.893* 0.783* 0.662* 0.560* 0.301*

MOEA/D (ws) 0.985 0.818 0.617 0.455 0.389 0.202

MOEA/D (tc) 0.929 0.802 0.595 0.415 0.359 0.167

Table 5.11. Relative HR results for FHFR, n = 500.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 109% 114% 122% 127% 114% 120%

FHFR 109%* 118%* 133%* 146%* 142%* 174%*

MOEA/D (ws) 109% 108% 104% 100% 98% 117%

MOEA/D (tc) 103% 106% 101% 92% 91% 97%

The mean time requirement results for a single replication in Table 5.12 show

that FHFR requires less time compared to MOEA/D. This is due to the fact that

every generated solution is checked to see whether it is a nondominated solution to

be added to the external population or not in MOEA/D. In nondominated sorting

based algorithms, only solutions that are not dominated by the current population

are checked for the external population. For all algorithms, it is observed that the

formation of the external population takes most of the total time. The last row reports

the computation times by the CPLEX solver to find single-objective optimal solutions.

included . Computation times for all algorithms, except for NSGA-III, include these

reported times.

Another analysis can be made by fixing the objective count (m = 10) but changing

the knapsack item count. In this way, the effect of problem size on performances can

be observed. It appears that HR results shown in Table 5.13 are not severely affected

by the knapsack item count compared to the objective count.
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Table 5.12. Computation time (sec) for FHFR, n = 500.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.5 0.6 0.7 0.9 2.1 1.2

NSGA-III (fixed) 0.6 0.8 1.0 1.2 2.6 2.0

FHFR 2.1 2.6 3.4 3.8 7.5 5.2

MOEA/D (ws) 0.9 2.7 4.6 5.2 12.5 10.0

MOEA/D (tc) 1.3 2.7 4.3 5.1 11.3 9.9

CPLEX 0.2 0.3 0.4 0.5 0.6 0.8

Table 5.13. HR results for FHFR, m = 10.

Algorithm
Objective count (m)

250 500 750 1000

NSGA-III 0.399 0.395 0.322 0.330

NSGA-III (fixed) 0.481 0.451 0.411 0.388

FHFR 0.593* 0.560* 0.519* 0.521*

MOEA/D (ws) 0.441 0.389 0.352 0.351

MOEA/D (tc) 0.416 0.359 0.322 0.315

As a further analysis, the Pareto front approximations are evaluated using a

cardinality-based performance index, Coverage of Two Sets C(S1,S2) proposed by

Zitzler and Thiele (1999). This performance index can be used to compare two solution

sets from different algorithms as in Equation 2.10. The results are provided for the

six-objective 500-item MaOKP in Table 5.14. The ratios in the row of an algorithm

show how many members of the external populations of other algorithms are dominated

by members of the corresponding algorithm’s external population. In short, the high

values in the row of an algorithm indicate the success of the algorithm compared to

other algorithms. The ratios in the column of an algorithm, on the contrary, show

how much of the external population members of the corresponding algorithm are

dominated by members of another algorithm’s external population.

The results reveal that the members of the Pareto front approximation of NSGA-

III are often dominated by others. While the two versions of MOEA/D are more
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Table 5.14. Coverage of Two Sets C(S1,S2) results, m = 6.

Algorithm NSGA-III
NSGA-III

(fixed)
FHFR

MOEA/D

(ws)

MOEA/D

(tc)

NSGA-III - 0.008 0.001 0.001 0.002

NSGA-III (fixed) 0.822 - 0.001 0.017 0.002

FHFR 0.662 0.308 - 0.148 0.147

MOEA/D (ws) 0.944 0.668 0.002 - 0.022

MOEA/D (tc) 0.725 0.400 0.016 0.203 -

successful than FHFR to dominate the original and fixed NSGA-III members, compar-

isons between FHFR and two versions of MOEA/D show that the members of FHFR

are rarely dominated by members of any other algorithm.

5.2.4. Testing of the Proposed Configuration for FHFR on MaOQAP

In the early stages of developing of the proposed MaOEA, extensive numerical

tests are also carried out using QAP in order to verify its quality and to observe its

response to different problem types. QAP instances with six objectives are used at

this stage. Test problems are taken from QAPLIB (Burkard et al., 1997). The selected

instances cover a wide range of problem sizes and properties, and obey the triangular

inequality in distance matrices. The original flow matrix given in QAPLIB for each

of the instances is taken and used for the first objective function of the problem. The

rest of the objective functions are generated by randomly distorting the original flow

matrix.

Obviously, some changes need to be made in the algorithm when dealing with

QAP. The main alteration is made by replacing binary encoding with permutation

encoding. Consequently, the genetic operators such as crossover, mutation, and local

improvement are affected, although the main framework of the algorithm remains the

same. While the reference point guided path relinking remains in use, the two-order

crossover replaces the uniform crossover. There is no need for a repair method, as there

is no possibility to create infeasible offspring. The mutation procedure is replaced by
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immigration and two-opt local improvement is used. After preliminary analysis, the

immigration rate is set to 0.04 and local improvement rate is increased linearly with

a rate of 0.01 per iteration. Algorithms are terminated after 500 iterations. It should

be noted that when the immigration procedure is not adaptable for the use of other

algorithms, e.g. MOEA/D, it is omitted. Necessary alterations are also made in

the dominance relationship and performance assessment, since QAP is a minimization

problem.

Relative HR results shown in Table 5.15 indicate that the proposed algorithm

continues to perform better than other evolutionary algorithms. Time requirements

are shown in Table 5.16. It should be noted that since it is not possible to solve single-

objective QAP optimally, a genetic algorithm (GA) is used to obtain near optimal

solutions, which are seeded into the initial population, to construct the fixed hyper-

plane. The last row reports the computation times of 10 replications of the GA to

find near optimal solutions. Computation times for all algorithms, except the original

NSGA-III, include these reported times.

Table 5.15. Relative HR results for FHFR in MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 112% 127% 113% 119% 106%

FHFR 113%* 150%* 137%* 158%* 143%*

MOEA/D (ws) 109% 118% 59% 88% 128%

MOEA/D (tc) 108% 132% 90% 105% 116%

Similar inferences on the performance of the proposed algorithm can be made

using the Coverage of Two Sets C(S1,S2) metric in Table 5.17. The clear success of

the proposed algorithm in both performance metrics verifies that FHFR is applicable

to combinatorial MaOPs.
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Table 5.16. Computation time (sec) for FHFR in MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 39 56 54 212 473

NSGA-III (fixed) 50 105 106 463 1268

FHFR 63 130 121 534 1385

MOEA/D (ws) 59 106 103 357 945

MOEA/D (tc) 57 108 104 359 951

10 replications of GA 12 52 55 265 817

Table 5.17. Coverage of Two Sets C(S1,S2) results for ste36a , m = 6.

Algorithm NSGA-III
NSGA-III

(fixed)
FHFR

MOEA/D

(ws)

MOEA/D

(tc)

NSGA-III - 0.123 0.078 0.165 0.412

NSGA-III (fixed) 0.324 - 0.078 0.164 0.374

FHFR 0.448 0.309 - 0.325 0.503

MOEA/D (ws) 0.285 0.155 0.057 - 0.373

MOEA/D (tc) 0.228 0.221 0.155 0.237 -

5.3. Experiments on Constraint Handling and Reference Point Positioning

In this section, the proposed algorithm (FHFR) is tested under different con-

straint handling techniques and reference point positioning strategies. The goal in

expanding the problem structure is to claim that the proposed algorithm can be ap-

plied to a wider spectrum of optimization problems.

The numerical analysis for performance evaluation of different strategies related to

constraint handling and reference point positioning are handled simultaneously because

these two issues are regarded to be interdependent. Reference point sets are particularly

important when examining irregular Pareto front structures that may result from highly

constrained discrete solution spaces. As a result, numerical analysis on these two issues

has been done together and multi-constrained MaOKP is used in these experiments.
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The names of the six constraint handling techniques are greedy repair, weighted

repair, static penalty, dynamic penalty, adaptive penalty and feasible preferred.

Four options are used for reference point positioning. The first option for algo-

rithm configuration is the basic form of the proposed algorithm, which uses a fixed

positioned reference point set on the fixed hyperplane, FHFR. In the second and third

options, when it is concluded that a region in the objective space is void during evo-

lution , the reference points in these regions are removed, with or without a compan-

ionship of a removal of solutions in the population. In the case where it is decided to

remove a solution, it is the last qualified solution in the most recent reference point

based sorting. The second option is called “expiring references and population” (ER1 )

and the third option is called “expiring references” (ER2 ), respectively. Finally in the

fourth option, the algorithm occasionally relocates some reference points on the fixed

hyperplane, as described in detail in Section 4.4, called “fixed hyperplane and mobile

reference points, FHMR.

The experimentation is done in two levels for the capacity Ck of the knapsack:

50% or 20%, and different levels for the number of capacity constraints. HR values

are calculated using external populations. The mean HR results in 10 replications are

displayed in Table 5.18. The columns represent different constraint handling techniques

and rows represent different reference point positioning strategies. The differences

between the alternatives can be clearly seen when the number of objectives is high, and

therefore only the results of problems with 15 objectives are presented. The reference

point positioning strategy that yields the best result for each constraint capacity-count

setting is always FHMR, while the constraint handling technique that yields the best

result in each setting is shown in italics. The overall best result with each setting is

shown with a dagger. Note that the cells corresponding to weighted repair and FHFR

are the original version of the proposed algorithm and marked with an asterisk.

In Table 5.19, HR values are normalized using HR result of the algorithm al-

ternative using weighted repair and FHFR. In this way, the amount of improvement

achieved with alternative algorithm settings can be observed in percentages and inter-
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Table 5.18. HR results for constraint handling & reference positioning, m = 15.

Ck

Constraint

count
Algorithm

Greedy

repair

Weighted

repair

Static

penalty

Dynamic

penalty

Adaptive

penalty

Feasible

preferred

50%

1

FHFR 0.299 0.301* 0.289 0.283 0.289 0.273

ER1 0.266 0.272 0.235 0.234 0.235 0.230

ER2 0.300 0.301 0.286 0.284 0.286 0.276

FHMR 0.317 0.326† 0.306 0.301 0.306 0.297

15

FHFR 0.072 0.069* 0.074 0.096 0.086 0.069

ER1 0.069 0.063 0.069 0.087 0.081 0.063

ER2 0.072 0.069 0.074 0.092 0.093 0.069

FHMR 0.092 0.091 0.098 0.118† 0.109 0.090

20%

1

FHFR 0.273 0.272* 0.254 0.250 0.255 0.218

ER1 0.220 0.236 0.192 0.201 0.205 0.172

ER2 0.276 0.271 0.248 0.252 0.258 0.223

FHMR 0.296† 0.296† 0.279 0.271 0.283 0.252

15

FHFR 0.026 0.024* 0.032 0.049 0.057 0.024

ER1 0.024 0.022 0.025 0.047 0.050 0.022

ER2 0.026 0.024 0.025 0.049 0.051 0.024

FHMR 0.046 0.043 0.052 0.069 0.075† 0.043

preted more straightforwardly. As a further analysis, Pareto front approximations are

evaluated using Coverage of Two Sets C(S1,S2). Results are given for two algorithm

settings in Table 5.20. Superior results are shown with asterisks.

When the alternatives for different reference point positioning methods are ex-

amined, it is observed that the results are independent of the number of constraints

and how tight the constraints are. While ER1 has the lowest performance, ER2 is as

successful as the original algorithm. Significant improvement in HR results is observed

when mobile references method is used and this method clearly demonstrates superior

performance. Additionally, it is observed that reference point positioning methods and

constraint handling techniques have no influence on each other.

In the analysis of constraint handling techniques, when the number of objec-

tives increases or constraints become tighter, dynamic and adaptive penalty methods
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Table 5.19. Relative HR results for constraint handling & reference positioning,

m = 15, 15 constraints, Ck = 20%.

Algorithm
Greedy

repair

Weighted

repair

Static

penalty

Dynamic

penalty

Adaptive

penalty

Feasible

preferred

FHFR 109% 100%* 134% 205% 237% 99%

ER1 101% 92% 103% 197% 210% 91%

ER2 109% 102% 104% 207% 212% 101%

FHMR 192% 182% 219% 289% 315%† 181%

Table 5.20. Coverage of Two Sets C(S1,S2) results, m = 15.

Objective

count (m)

Constraint

count
Ck%

FHFR FHMR

Weighted

repair

Adaptive

penalty

15

1
50 0.135* 0.041

20 0.067* 0.053

3
50 0.020 0.052*

20 0.018 0.059*

5
50 0.016 0.092*

20 0.012 0.203*

15
50 0.007 0.112*

20 0.005 0.233*

achieve higher performance. However, the effects of using different constraint handling

techniques appear to be more limited than using different reference point positioning

methods. As a result, it is decided to continue using weighted repair strategy in both

the FHFR and FHMR versions of the proposed MaOEA.

5.4. Reference Point Association Behavior

In this section, an analysis is performed on MaOKP to see the effectiveness of the

reference point update procedures. The three main versions of the proposed MaOEA,

FHFR, FHMR and FHCo, are evaluated based on how they manage to associate the

solutions set with the reference point set. The average associated reference point

percentages in the termination stage of the algorithms are shown in Table 5.21. From
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the results, the success of the reference point update procedures, especial the version

with the co-evolutionary approach, can be observed. It should noted that FHCo is

designed to be self-adaptive so it does not require parametric search and can be easily

adapted to different problem types.

Table 5.21. Percentage of associated reference points in MaOKP.

Algorithm
Objective count (m)

6 8 10 15 20 30

FHFR 27.3% 38.2% 39.4% 45.7% 57.6% 42.1%

FHMR 54.5% 65.8% 54.2% 73.7% 78.4% 75.2%

FHCo 63.3% 79.8% 56.3% 79.3% 92.1% 90.3%

5.5. Comparisons Between Proposed and Existing MOEAs

This section describes the numerical experimentation conducted to evaluate the

performance of the proposed MaOEA. The contribution of the different crucial aspects

of the proposed MaOEA is assessed and discussed by comparing its performance with

those of the following seven state-of-the-art MaOEAs whose key properties are outlined

in Appendix B.

� NSGA-III (Deb and Jain, 2013),

� A-NSGA-III (Jain and Deb, 2014),

� A2-NSGA-III (Jain and Deb, 2013),

� Two Arch2 (Wang et al., 2014),

� RPEA (Liu et al., 2017),

� MOEA/D (Zhang and Li, 2007), and

� PICEA-w (Wang et al., 2015).

Three versions of the proposed algorithm are included in the numerical analysis to

explore the effects of the reference point set adaptation strategies. The first version of

the proposed algorithm (FHFR) that uses a fixed reference point set is kept in the ex-

perimentation to demonstrate the benefits gained solely from using a fixed hyperplane.
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In the second version, reference points can be repositioned during the evolutionary

process. This dynamic reference set approach, detailed in Section 4.4, is abbreviated

as FHMR where MR stands for mobile references. The third and final version of the

proposed algorithm is the co-evolutionary algorithm described in detail in Section 4.5

and abbreviated as FHCo. Both FHMR and FHCo work on fixed hyperplane and are

designed to bring further improvement on FHFR.

In order to make the algorithms comparable, necessary modifications and param-

eter settings are made. For instance, the population size (total of convergence archive

and divergence archive sizes in the case of Two Arc 2) and the number of reference

points (the number of decomposition vectors in the case of MOEA/D and PICEA-w)

are kept the same for all algorithms. The exceptions are A-NSGA-III and A2-NSGA-

III, where the number of reference points is allowed to increase.

It should be noted that lexicographic optimal solutions are fed into the initial pop-

ulations of all algorithms for a fair comparison. However, when single-objective optimal

solutions are offered to an algorithm which works on hyperplanes, namely NSGA-III,

A-NSGA-III or A2-NSGA-III, its hyperplane becomes fixed throughout evolution, re-

sulting into a new algorithm whose behavior changes drastically. Therefore, numerical

experimentation includes both original and fixed hyperplane versions of these algo-

rithms. For MOEA/D, two versions with different decomposition methods, weighted

sum and Tchebycheff are included in the experiments. As a result, the numerical

analysis covers a total of 14 algorithm versions.

The primary analysis carried out is to investigate the performance of these algo-

rithms as the number of objectives increases. All algorithms are allowed to carry ex-

ternal populations, and evaluation is done on final external populations. The following

subsections include experimentation on many-objective knapsack problem (MaOKP),

many-objective traveling salesman problem (MaOTSP) and many-objective quadratic

assignment problem (MaOQAP) in the respective order.
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5.5.1. MaOKP Results

In the parameter setting of the knapsack problem, as in previous analyses, the

values for profit pij and weight wjk parameters are randomly specified using discrete

uniform distribution in the interval [10, 100]. The capacity of the knapsack Ck is 50%

of the sum of all the weights of the corresponding constraint. The analysis is per-

formed using single constraint, 500-item knapsack problems with six to 30 objectives.

The mean HR results in 10 replications are displayed in Table 5.22 and the standard

deviations of HR results are provided in Table 5.23. In all tables, the last three rows

correspond to three versions of the proposed MaOEAs.

In Table 5.24, the nonparametric Wilcoxon rank-sum test at 95% confidence level

is carried out for each objective count instance in order to verify statistical differences

between the HR results of algorithm alternatives. Similarly, Friedman’s test is carried

out to determine the overall ranks of the algorithms. Wilcoxon rank-sum test results

are presented in three digits: w-t-l representing win, tie and lose, respectively. The

average of Friedman’s test results over all problem instances and the overall final results

(given in parentheses) are provided.

Additionally, the behavior of algorithms as the number of objectives increases can

be observed in terms of relative HR values in Table 5.25 and in Figure 5.1 where results

are normalized according to NSGA-III results. In this way, the relative performances

of the algorithms can be observed and another view is obtained to interpret the results.

These results reveal that all three algorithms, NSGA-III, A-NSGA-III and A2-

NSGA-III, benefit significantly when their hyperplanes are fixed. Among them, the

fixed hyperplane version of A2-NSGA-III performs the best. However, although this

algorithm employs a reference set update mechanism, it is still surpassed by FHFR.

In fact, FHFR is more successful than all its competitors and it is surpassed only by

its adaptive versions. Its performance can be significantly enhanced by using mobile

reference points (FHMR). In spite of this improvement, the reference point relocation

strategy of FHMR remains rather restrictive compared with its co-evolutionary coun-
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Table 5.22. Mean HR results for MaOKP.

Algorithm
Objective count (m)

6 8 10 15 20 30

NSGA-III 0.591 0.454 0.395 0.173 0.0320 0.0022

NSGA-III (fixed) 0.722 0.575 0.451 0.207 0.0429 0.0031

A-NSGA-III 0.532 0.418 0.348 0.167 0.0428 0.0034

A-NSGA-III (fixed) 0.762 0.590 0.524 0.229 0.0567 0.0044

A2-NSGA-III 0.611 0.552 0.445 0.228 0.0626 0.0049

A2-NSGA-III (fixed) 0.771 0.618 0.543 0.231 0.0655 0.0054

Two Arch2 0.775 0.635 0.521 0.225 0.0664 0.0052

RPEA 0.735 0.495 0.412 0.214 0.0550 0.0043

MOEA/D (ws) 0.617 0.455 0.389 0.202 0.0408 0.0031

MOEA/D (tc) 0.595 0.415 0.359 0.167 0.0333 0.0022

PICEA-w 0.767 0.622 0.568 0.263 0.0722 0.0058

FHFR 0.783 0.662 0.560 0.301 0.0715 0.0055

FHMR 0.811 0.708 0.590 0.326 0.0844 0.0067

FHCo 0.835 0.735 0.631 0.352 0.0970 0.0078

Table 5.23. Standard deviation of HR results for MaOKP.

Algorithm
Objective count (m)

6 8 10 15 20 30

NSGA-III 0.0467 0.0586 0.0588 0.0050 0.0000 0.0007

NSGA-III (fixed) 0.0247 0.0360 0.0549 0.0148 0.0009 0.0005

A-NSGA-III 0.0367 0.0477 0.0519 0.0050 0.0005 0.0001

A-NSGA-III (fixed) 0.0233 0.0343 0.0493 0.0068 0.0006 0.0002

A2-NSGA-III 0.0292 0.0375 0.0505 0.0052 0.0005 0.0010

A2-NSGA-III (fixed) 0.0278 0.0221 0.0496 0.0073 0.0002 0.0000

Two Arch2 0.0296 0.0299 0.0498 0.0138 0.0005 0.0007

RPEA 0.0250 0.0438 0.0455 0.0124 0.0004 0.0001

MOEA/D (ws) 0.0260 0.0504 0.0470 0.0124 0.0001 0.0002

MOEA/D (tc) 0.0428 0.0557 0.0523 0.0036 0.0001 0.0005

PICEA-w 0.0205 0.0220 0.0455 0.0064 0.0009 0.0005

FHFR 0.0258 0.0239 0.0487 0.0578 0.0001 0.0000

FHMR 0.0227 0.0289 0.0334 0.0468 0.0009 0.0007

FHCo 0.0252 0.0242 0.0281 0.0591 0.0003 0.0006
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Table 5.24. Wilcoxon rank-sum test and Friedman test results on MaOKP.

Algorithm
Wilcoxon rank-sum test, objective count (m)

Friedman test
6 8 10 15 20 30

NSGA-III 0-4-9 0-4-9 0-6-7 2-0-11 0-0-13 0-1-12 12.5 (12)

NSGA-III (fixed) 5-1-7 5-3-5 3-4-6 3-3-7 3-1-9 2-2-9 9.333 (10)

A-NSGA-III 0-1-12 0-3-10 0-3-10 0-1-12 3-1-9 3-1-9 12.5 (12)

A-NSGA-III (fixed) 7-4-2 6-2-5 5-6-2 6-3-4 6-0-7 6-1-6 7 (7)

A2-NSGA-III 1-3-9 5-1-7 2-5-6 6-3-4 7-0-6 5-3-5 8.333 (8)

A2-NSGA-III (fixed) 7-4-2 6-4-3 7-5-1 6-3-4 8-0-5 8-1-4 5.333 (5)

Two Arch2 7-4-2 8-3-2 7-2-4 4-5-4 9-0-4 7-4-2 5.667 (6)

RPEA 5-1-7 2-2-9 2-3-8 4-2-7 5-0-8 5-1-7 9.167 (9)

MOEA/D (ws) 1-3-9 0-4-9 0-6-7 3-1-9 2-0-11 2-1-10 11.333 (11)

MOEA/D (tc) 1-3-9 0-3-10 0-3-10 0-1-12 1-0-12 0-1-12 13.333 (14)

PICEA-w 7-4-2 8-2-3 8-4-1 10-1-2 11-0-2 9-2-2 4 (4)

FHFR 7-4-2 10-1-2 8-4-1 10-3-0 10-0-3 9-2-2 3.5 (3)

FHMR 12-1-0 12-0-1 9-4-0 11-2-0 12-0-1 12-0-1 2 (2)

FHCo 12-1-0 13-0-0 12-1-0 11-2-0 13-0-0 13-0-0 1(1)

Table 5.25. Relative HR results for MaOKP.

Algorithm
Objective count (m)

6 8 10 15 20 30

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 122% 127% 114% 120% 134% 141%

A-NSGA-III 90% 92% 88% 97% 134% 153%

A-NSGA-III (fixed) 129% 130% 133% 132% 177% 198%

A2-NSGA-III 103% 122% 113% 132% 196% 218%

A2-NSGA-III (fixed) 131% 136% 137% 134% 205% 243%

Two Arch2 131% 140% 132% 130% 207% 234%

RPEA 124% 109% 104% 124% 172% 192%

MOEA/D (ws) 104% 100% 98% 117% 128% 136%

MOEA/D (tc) 101% 92% 91% 97% 104% 97%

PICEA-w 130% 137% 144% 152% 226% 260%

FHFR 133% 146% 142% 174% 223% 246%

FHMR 137% 156% 149% 188% 264% 301%

FHCo 141% 162% 160% 203% 303% 349%



111

NSGA-III

A-NSGA-III

A2-NSGA-III

NSGA-III (fixed)

A-NSGA-III (fixed)

A2-NSGA-III (fixed)

Two Arch2 RPEA

MOEA/D (ws)

MOEA/D (tc)

PICEA-w

FHFR

FHMR

FHCo

6 8 10 15 20 30

100%

150%

200%

250%

300%

350%

Figure 5.1. Relative HR values with regard to the objective count.

Table 5.26. Computation time (sec) for MaOKP.

Algorithm
Objective count (m)

6 8 10 15 20 30

NSGA-III 0.7 0.9 2.1 1.2 2.6 10.1

NSGA-III (fixed) 1.0 1.2 2.6 2.0 5.5 24.2

A-NSGA-III 1.4 1.9 4.1 3.1 7.0 31.4

A-NSGA-III (fixed) 1.6 2.1 4.4 3.9 12.4 65.3

A2-NSGA-III 1.0 1.6 3.8 2.9 6.9 31.5

A2-NSGA-III (fixed) 1.3 1.8 4.2 3.5 11.5 57.9

Two Arch2 1.2 1.9 4.1 3.4 7.0 29.9

RPEA 0.8 1.0 2.3 1.6 3.5 16.4

MOEA/D (ws) 4.6 5.2 12.5 10.0 18.2 68.9

MOEA/D (tc) 4.3 5.1 11.3 9.9 17.8 67.1

PICEA-w 3.9 4.9 9.7 8.7 19.2 77.8

FHFR 3.4 3.8 7.5 5.2 12.7 54.5

FHMR 2.9 3.1 7.1 4.9 13.6 67.6

FHCo 4.1 4.6 9.5 8.4 18.1 83.4

CPLEX 0.4 0.5 0.6 0.8 2.2 3.4
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terpart FHCo, which allows all reference points to evolve in a manner more responsive

to the information gathered from the population about the shape of the Pareto front.

As a result, the algorithm is capable of searching different and relevant regions in

the objective space and producing a crowded external archive. For the proposed co-

evolutionary algorithm, the relative HR results increase as the number of objectives

increases, which indicates that it responds better to the objective count, and is therefore

more suitable for many objectives. Finally, the Friedman’s test results reveal a perfect

score for the co-evolutionary algorithm FHCo. In summary, the proposed algorithm is

the best approach to solve MaOKP among the tested algorithms.

Table 5.26 presents the time requirement for a single replication of each algorithm.

The last row reports the computation times of the CPLEX solver to find single-objective

optimal solutions. Computation times for all algorithms, except for the original versions

of NSGA-III, A-NSGA-III and A2-NSGA-III, include these reported times.

5.5.2. MaOTSP Results

This section includes the performance evaluation of the versions of the pro-

posed algorithm, as well as the benchmark algorithms selected from the literature,

on many-objective symmetric TSP (MaOTSP) and many-objective asymmetric TSP

(MaOATSP). For MaOTSP, 100-city problem instances are produced with two to 15

objectives. The cijk values in the cost matrix are generated using the same methodology

in “kroa” problem instances in TSPLIB (Reinelt, 1991) and they obey the triangular

inequality. The locations of 100 cities are randomly generated in a rectangle with

dimensions 4000 by 2000. Cost matrix values are calculated by rounding Euclidean

distances to nearest integers. For MaOATSP, 50-city problem instances are produced

with two to 15 objectives. Cost matrix values are randomly specified using discrete uni-

form distribution in the interval [0, 1000] (Cirasella et al., 2001) and do not necessarily

meet the triangular inequality. In both problem types, cost matrices are reproduced

for each objective using the same methodology so that the feasible region in objective

space has the same scale and properties in each objective dimension.
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Table 5.27. Mean HR results for MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.876 0.612 0.513 0.418 0.356 0.324

NSGA-III (fixed) 0.952 0.788 0.644 0.528 0.425 0.414

A-NSGA-III 0.873 0.617 0.517 0.429 0.396 0.389

A-NSGA-III (fixed) 0.934 0.741 0.589 0.489 0.417 0.421

A2-NSGA-III 0.875 0.613 0.589 0.472 0.431 0.422

A2-NSGA-III (fixed) 0.901 0.753 0.639 0.587 0.486 0.492

Two Arch2 0.948 0.781 0.566 0.467 0.398 0.402

RPEA 0.881 0.612 0.468 0.367 0.327 0.298

MOEA/D (ws) 0.892 0.615 0.470 0.431 0.409 0.416

MOEA/D (tc) 0.916 0.699 0.527 0.464 0.382 0.411

PICEA-w 0.934 0.772 0.547 0.486 0.421 0.445

FHFR 0.964 0.804 0.657 0.522 0.448 0.452

FHMR 0.976 0.822 0.683 0.617 0.541 0.558

FHCo 0.985 0.841 0.703 0.664 0.596 0.601

Table 5.28. Standard deviation of HR results for MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.0140 0.0122 0.0159 0.0275 0.0428 0.0064

NSGA-III (fixed) 0.0120 0.0117 0.0134 0.0138 0.0265 0.0176

A-NSGA-III 0.0154 0.0150 0.0226 0.0160 0.0242 0.0308

A-NSGA-III (fixed) 0.0125 0.0134 0.0191 0.0322 0.0184 0.0200

A2-NSGA-III 0.0139 0.0097 0.0309 0.0406 0.0555 0.0212

A2-NSGA-III (fixed) 0.0167 0.0127 0.0052 0.0324 0.0194 0.0316

Two Arch2 0.0089 0.0197 0.0223 0.0243 0.0466 0.0435

RPEA 0.0186 0.0211 0.0525 0.0415 0.0348 0.0032

MOEA/D (ws) 0.0090 0.0072 0.0323 0.0186 0.0271 0.0232

MOEA/D (tc) 0.0148 0.0131 0.0216 0.0283 0.0296 0.0154

PICEA-w 0.0129 0.0110 0.0140 0.0285 0.0226 0.0293

FHFR 0.0224 0.0118 0.0101 0.0128 0.0338 0.0410

FHMR 0.0116 0.0183 0.0169 0.0119 0.0167 0.0312

FHCo 0.0097 0.0147 0.0147 0.0158 0.0772 0.0119



114

Table 5.29. Relative HR results for MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 109% 129% 126% 126% 119% 128%

A-NSGA-III 100% 101% 101% 103% 111% 120%

A-NSGA-III (fixed) 107% 121% 115% 117% 117% 130%

A2-NSGA-III 100% 100% 115% 113% 121% 130%

A2-NSGA-III (fixed) 103% 123% 125% 140% 137% 152%

Two Arch2 108% 128% 110% 112% 112% 124%

RPEA 101% 100% 91% 88% 92% 92%

MOEA/D (ws) 102% 100% 92% 103% 115% 128%

MOEA/D (tc) 105% 114% 103% 111% 107% 127%

PICEA-w 107% 126% 107% 116% 118% 137%

FHFR 110% 131% 128% 125% 126% 140%

FHMR 111% 134% 133% 148% 152% 172%

FHCo 112% 137% 137% 159% 167% 185%

Table 5.30. Mean HR results for MaOATSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.896 0.718 0.598 0.521 0.409 0.376

NSGA-III (fixed) 0.931 0.782 0.631 0.554 0.436 0.414

A-NSGA-III 0.936 0.743 0.609 0.549 0.437 0.432

A-NSGA-III (fixed) 0.955 0.801 0.669 0.580 0.506 0.447

A2-NSGA-III 0.966 0.794 0.655 0.570 0.436 0.422

A2-NSGA-III (fixed) 0.933 0.844 0.699 0.581 0.507 0.492

Two Arch2 0.936 0.718 0.545 0.415 0.412 0.402

RPEA 0.902 0.627 0.525 0.414 0.331 0.298

MOEA/D (ws) 0.868 0.666 0.567 0.504 0.456 0.356

MOEA/D (tc) 0.873 0.659 0.526 0.483 0.433 0.378

PICEA-w 0.927 0.792 0.612 0.564 0.484 0.425

FHFR 0.956 0.788 0.601 0.581 0.486 0.452

FHMR 0.974 0.784 0.672 0.604 0.509 0.558

FHCo 0.973 0.871 0.688 0.603 0.583 0.601
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Table 5.31. Standard deviation of HR results for MaOATSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.0139 0.0236 0.0172 0.0140 0.0279 0.0334

NSGA-III (fixed) 0.0115 0.0179 0.0147 0.0374 0.0371 0.0197

A-NSGA-III 0.0190 0.0186 0.0109 0.0156 0.0213 0.0267

A-NSGA-III (fixed) 0.0283 0.0115 0.0181 0.0175 0.0236 0.0402

A2-NSGA-III 0.0239 0.0176 0.0088 0.0111 0.0488 0.0392

A2-NSGA-III (fixed) 0.0102 0.0182 0.0149 0.0290 0.0148 0.0318

Two Arch2 0.0166 0.0178 0.0376 0.0235 0.0562 0.0464

RPEA 0.0121 0.0137 0.0103 0.0245 0.0325 0.0061

MOEA/D (ws) 0.0105 0.0252 0.0228 0.0376 0.0463 0.0389

MOEA/D (tc) 0.0123 0.0169 0.0285 0.0220 0.0375 0.0251

PICEA-w 0.0128 0.0066 0.0129 0.0122 0.0254 0.0566

FHFR 0.0167 0.0205 0.0205 0.0197 0.0712 0.0197

FHMR 0.0131 0.0168 0.0158 0.0222 0.0073 0.0214

FHCo 0.0119 0.0284 0.0170 0.0193 0.0213 0.0132

Table 5.32. Relative HR results for MaOATSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 104% 109% 106% 106% 107% 110%

A-NSGA-III 104% 103% 102% 105% 107% 115%

A-NSGA-III (fixed) 107% 112% 112% 111% 124% 119%

A2-NSGA-III 108% 111% 110% 109% 107% 112%

A2-NSGA-III (fixed) 104% 118% 117% 112% 124% 131%

Two Arch2 104% 100% 91% 80% 101% 107%

RPEA 101% 87% 88% 79% 81% 79%

MOEA/D (ws) 97% 93% 95% 97% 111% 95%

MOEA/D (tc) 97% 92% 88% 93% 106% 101%

PICEA-w 103% 110% 102% 108% 118% 113%

FHFR 107% 110% 101% 112% 119% 120%

FHMR 109% 109% 112% 116% 124% 148%

FHCo 109% 121% 115% 116% 143% 160%
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Table 5.33. Wilcoxon rank-sum test and Friedman test results on MaOTSP.

Algorithm
Wilcoxon rank-sum test, objective count (m)

Friedman test
2 4 6 8 10 15

NSGA-III 0-4-9 0-4-9 2-2-9 1-2-10 1-1-11 1-0-12 12.833 (13)

NSGA-III (fixed) 8-3-2 8-3-2 9-1-3 9-1-3 3-7-3 2-6-5 5.167 (5)

A-NSGA-III 0-3-10 0-4-9 2-2-9 1-2-10 2-4-7 2-4-7 11.667 (12)

A-NSGA-III (fixed) 7-3-3 6-1-6 7-1-5 4-4-5 4-5-4 3-6-4 7 (7)

A2-NSGA-III 0-3-10 0-4-9 7-1-5 4-4-5 4-6-3 3-7-3 8.5 (9)

A2-NSGA-III (fixed) 4-1-8 6-2-5 9-1-3 11-0-2 11-0-2 11-0-2 5 (4)

Two Arch2 8-3-2 8-2-3 6-0-7 4-4-5 2-7-4 2-6-5 8 (8)

RPEA 0-4-9 0-4-9 0-1-12 0-0-13 0-0-13 0-0-13 13.333 (14)

MOEA/D (ws) 2-3-8 0-4-9 0-1-12 1-3-9 2-7-4 2-7-4 10.333 (11)

MOEA/D (tc) 6-0-7 5-0-8 2-2-9 3-5-5 1-4-8 2-6-5 9.833 (10)

PICEA-w 7-1-5 7-3-3 5-0-8 4-4-5 4-5-4 6-4-3 6.667 (6)

FHFR 9-2-2 10-1-2 11-0-2 9-1-3 8-2-3 8-2-3 3.667 (3)

FHMR 12-1-0 12-0-1 12-0-1 12-0-1 12-0-1 12-0-1 2 (2)

FHCo 12-1-0 13-0-0 13-0-0 13-0-0 13-0-0 13-0-0 1 (1)

Table 5.34. Wilcoxon rank-sum test and Friedman test results on MaOATSP.

Algorithm
Wilcoxon rank-sum test, objective count (m)

Friedman test
2 4 6 8 10 15

NSGA-III 2-1-10 3-1-9 4-3-6 3-1-9 1-3-9 1-2-10 11.333 (11)

NSGA-III (fixed) 4-4-5 6-4-3 8-0-5 5-5-3 1-6-6 4-5-4 8.167 (9)

A-NSGA-III 4-5-4 5-0-8 4-3-6 5-1-7 2-5-6 4-6-3 7.833 (8)

A-NSGA-III (fixed) 7-4-2 10-1-2 10-1-2 7-4-2 9-3-1 5-5-3 4.333 (4)

A2-NSGA-III 9-4-0 6-4-3 9-0-4 6-4-3 2-6-5 4-5-4 6 (6)

A2-NSGA-III (fixed) 4-4-5 12-0-1 12-1-0 6-7-0 10-2-1 11-0-2 3.5 (3)

Two Arch2 4-5-4 3-1-9 1-2-10 0-1-12 1-5-7 4-4-5 10.5 (10)

RPEA 2-1-10 0-0-13 0-1-12 0-1-12 0-0-13 0-0-13 13.5 (14)

MOEA/D (ws) 0-1-12 1-1-11 2-1-10 2-2-9 3-6-4 1-2-10 11.333 (11)

MOEA/D (tc) 0-1-12 1-1-11 0-2-11 2-1-10 1-6-6 1-2-10 12.167 (13)

PICEA-w 4-4-5 6-4-3 4-3-6 6-3-4 7-3-3 4-6-3 7 (7)

FHFR 9-2-2 6-5-2 4-3-6 9-2-2 6-3-4 7-3-3 5.167 (5)

FHMR 11-2-0 6-4-3 10-1-2 11-2-0 10-2-1 12-0-1 2.667 (2)

FHCo 11-2-0 13-0-0 12-1-0 11-2-0 13-0-0 13-0-0 1.5 (1)
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Concorde TSP Solver (Applegate et al., 2006) for MaOTSP and CPLEX Solver

for MaOATSP are used to obtain single-objective optimal solutions. The results for

mean HR, standard deviation of HR, and relative HR in 10 replications are displayed

in Table 5.27 to 5.29 for MaOTSP, in Table 5.30 to 5.32 for MaOATSP. The results of

Wilcoxon rank-sum test at 95% confidence level and Friedman’s test are displayed in

Table 5.33 for MaOTSP, and in Table 5.34 for MaOATSP.

The results for both problem types show that the proposed MaOEA has superior

performance over the performance of other existing algorithms. From relative HR

results, as the number of objectives increases, the gaps between all versions of the

proposed MaOEA and the original NSGA-III also increase, indicating that all algorithm

versions can better handle many objective problems more successfully. Thus, it has

been shown that the proposed MaOEA works significantly better also for problems

with permutation encoding.

Table 5.35. Computation time (sec) for MaOTSP and MaOATSP.

Algorithm
MaOTSP, objective count (m) MaOATSP, objective count (m)

6 8 10 15 6 8 10 15

NSGA-III 48.0 55.0 80.6 76.2 54.4 63.9 94.0 92.1

NSGA-III (fixed) 49.5 56.7 80.8 81.0 60.4 70.5 98.0 98.3

A-NSGA-III 52.8 59.7 86.3 81.0 62.3 71.2 97.3 98.6

A-NSGA-III (fixed) 52.2 60.2 85.5 82.8 63.8 72.5 100.5 103.5

A2-NSGA-III 54.9 62.8 90.3 83.3 63.0 71.1 103.0 100.6

A2-NSGA-III (fixed) 53.3 59.8 86.7 86.0 65.2 70.9 101.1 105.2

Two Arch2 64.8 74.5 102.8 98.9 73.3 85.7 119.2 116.9

RPEA 41.3 53.1 64.6 69.2 49.5 64.7 79.7 88.7

MOEA/D (ws) 51.0 58.2 74.8 75.9 62.2 72.0 89.6 96.5

MOEA/D (tc) 49.9 56.8 73.2 74.3 61.3 68.0 87.5 94.2

PICEA-w 68.4 79.2 127.8 109.1 78.9 90.8 142.5 129.9

FHFR 90.3 108.9 184.8 175.3 101.4 119.8 199.0 192.9

FHMR 95.3 112.6 193.3 180.9 103.6 124.8 210.5 197.8

FHCo 94.0 112.3 199.8 190.9 105.4 126.8 215.0 208.4

Concorde/CPLEX 3.2 3.9 4.4 10.5 5.1 6.7 8.2 12.4
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Table 5.35 presents the mean time requirements for a single replication of each

algorithm alternative. The last row reports the computation times of Concorde and

CPLEX solvers to find single-objective optimal solutions for which all algorithms, ex-

cept for NSGA-III, A-NSGA-III and A2-NSGA-III, include.

5.5.3. MaOQAP Results

The performance of the proposed MaOEA is also evaluated for MaOQAP using

problem instances with six and 10 objectives. Test problems are taken from QAPLIB

(Burkard et al., 1997). The selected instances cover a wide variety of problem sizes

and properties, and obey the triangular inequality in distance matrices. It is chosen

to solve the single-objective problems using a previously validated GA that provides

the optimal results for a wide range of QAP instances in QAPLIB (Şahinkoç, 2014).

Relative HR results are presented in Table 5.36 and Table 5.37, the results of Wilcoxon

rank-sum test at 95% confidence level and Friedman’s test are displayed in Table 5.38

and Table 5.39 for the problem instances with six and 10 objectives, respectively.

Table 5.36. Relative HR results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 112% 127% 113% 119% 106%

A-NSGA-III 102% 118% 114% 117% 105%

A-NSGA-III (fixed) 114% 131% 124% 129% 111%

A2-NSGA-III 101% 112% 134% 128% 121%

A2-NSGA-III (fixed) 121% 161% 154% 131% 148%

Two Arch2 85% 95% 72% 92% 98%

RPEA 73% 88% 61% 81% 87%

MOEA/D (ws) 109% 118% 59% 88% 128%

MOEA/D (tc) 108% 132% 90% 105% 116%

PICEA-w 107% 112% 94% 83% 104%

FHFR 113% 150% 137% 158% 143%

FHMR 111% 158% 159% 162% 173%

FHCo 135% 165% 181% 192% 204%
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Table 5.37. Relative HR results for MaOQAP, m = 10.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 115% 129% 112% 120% 108%

A-NSGA-III 107% 126% 118% 123% 109%

A-NSGA-III (fixed) 126% 143% 138% 143% 122%

A2-NSGA-III 97% 110% 132% 127% 120%

A2-NSGA-III (fixed) 127% 169% 162% 137% 157%

Two Arch2 94% 105% 80% 101% 109%

RPEA 67% 80% 56% 76% 81%

MOEA/D (ws) 130% 137% 71% 103% 150%

MOEA/D (tc) 128% 159% 110% 125% 138%

PICEA-w 124% 129% 109% 98% 123%

FHFR 131% 179% 163% 190% 171%

FHMR 121% 173% 177% 180% 188%

FHCo 164% 208% 221% 238% 257%

Table 5.38. Wilcoxon rank-sum test and Friedman test results on MaOQAP, m = 6.

Algorithm
Wilcoxon rank-sum test, problem instance

Friedman test
had16 scr20 nug20 kra30a ste36a

NSGA-III 2-1-10 2-0-11 5-0-8 4-0-9 2-0-11 11.0 (12)

NSGA-III (fixed) 8-2-3 7-0-6 6-0-7 7-0-6 3-2-8 7.2 (6)

A-NSGA-III 3-1-9 5-1-7 7-0-6 6-0-7 3-2-8 8.6 (9)

A-NSGA-III (fixed) 11-0-2 8-1-4 8-0-5 8-1-4 6-0-7 5.6 (5)

A2-NSGA-III 2-2-9 3-1-9 9-0-4 8-1-4 8-0-5 7.8 (7)

A2-NSGA-III (fixed) 12-0-1 12-0-1 11-0-2 10-0-3 11-0-2 2.8 (2)

Two Arch2 1-0-12 1-0-12 2-0-11 3-0-10 1-0-12 12.4 (13)

RPEA 0-0-13 0-0-13 0-1-12 0-0-13 0-0-13 13.8 (14)

MOEA/D (ws) 6-1-6 5-1-7 0-1-12 1-1-11 9-0-4 9.4 (10)

MOEA/D (tc) 6-1-6 8-1-4 3-0-10 5-0-8 7-0-6 8.0 (8)

PICEA-w 5-0-8 3-1-9 4-0-9 1-1-11 3-2-8 10.6 (11)

FHFR 9-1-3 10-0-3 10-0-3 11-0-2 10-0-3 3.8 (4)

FHMR 8-1-4 11-0-2 12-0-1 12-0-1 12-0-1 3.0 (3)

FHCo 13-0-0 13-0-0 13-0-0 13-0-0 13-0-0 1.0 (1)
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Table 5.39. Wilcoxon rank-sum test and Friedman test results on MaOQAP, m = 10.

Algorithm
Wilcoxon rank-sum test, problem instance

Friedman test
had16 scr20 nug20 kra30a ste36a

NSGA-III 3-0-10 1-0-12 3-0-10 2-1-10 1-0-12 12.0 (13)

NSGA-III (fixed) 5-0-8 5-1-7 6-0-7 5-0-8 2-2-9 9.4 (11)

A-NSGA-III 4-0-9 4-0-9 7-0-6 6-0-7 2-2-9 9.2 (10)

A-NSGA-III (fixed) 7-3-3 8-0-5 9-0-4 10-0-3 6-1-6 5.8 (5)

A2-NSGA-III 1-1-11 3-0-10 8-0-5 8-0-5 5-0-8 8.8 (8)

A2-NSGA-III (fixed) 8-2-3 10-0-3 10-1-2 9-0-4 10-0-3 4.4 (4)

Two Arch2 1-1-11 2-0-11 2-0-11 2-1-10 2-2-9 11.6 (12)

RPEA 0-0-13 0-0-13 0-0-13 0-0-13 0-0-13 14.0 (14)

MOEA/D (ws) 11-1-1 7-0-6 1-0-12 4-0-9 9-0-4 7.6 (7)

MOEA/D (tc) 8-2-3 9-0-4 4-1-8 7-0-6 8-0-5 6.2 (6)

PICEA-w 7-1-5 5-1-7 4-1-8 1-0-12 6-1-6 9.0 (9)

FHFR 11-1-1 12-0-1 10-1-2 12-0-1 11-0-2 2.4 (2)

FHMR 6-0-7 11-0-2 12-0-1 11-0-2 12-0-1 3.6 (3)

FHCo 13-0-0 13-0-0 13-0-0 13-0-0 13-0-0 1.0 (1)

The results indicate the superior performance of the three versions of the pro-

posed MaOEA, especially FHCo, compared with other existing algorithms. It has an

increasing rate of HR results as the number of objectives or the problem size increases.

Computation times are investigated in more detail, together with studies using near

optimal solutions in Section 5.6.

5.6. Constructing the Fixed Hyperplane with Near Optimal Solutions

Finding single-objective optimal solutions (or, near optimal solutions as in this

section) is crucial to the proposed MaOEA for two main reasons. First, the genetic

materials of the single-objective optimal solutions are very useful for improving the

quality of the initial and thus final populations. Secondly and more importantly, these

single-objective optimal solutions are used to construct the fixed hyperplane used to

place the reference point set. Properly positioning the hyperplane and the initial
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reference point set is crucial for finding a successful and diverse Pareto approximation.

Extreme solutions used at the construction phase of the hyperplane should result in

such a hyperplane that all efficient solutions can be mapped onto it uniformly.

The proposed MaOEA uses lexicographic optimal solutions for each objective

prior to the algorithm. However, for several combinatorial optimization problems,

solving the single-objective problems may be very time consuming or even impossible.

In such cases, it may be an option to skip finding single-objective optimal solutions

and to initiate the evolutionary algorithm using near optimal solutions. This section

investigates the corresponding level of deterioration in the quality of Pareto front ap-

proximation versus the savings in computational time.

In this context, numerical experimentation is carried out using MaOTSP and

MaOATSP. Near optimal solutions are obtained by using different predefined gap levels

from optimal solutions. Single-objective optimization is fathomed when the objective

value of the best feasible solution has an objective value that is a predefined gap from

the known optimal. Five gap levels are tested: 1%, 5%, 10%, 30% and 50%. These

are gaps between the upper bound and the optimal, not between the lower and upper

bounds. The experimentation is conducted with objective counts from two to 15 and

the three versions of the proposed MaOEA.

It is observed that none of these near optimal solutions found prior to the evolu-

tionary algorithm remain in the final population at the end of the evolutionary algo-

rithm. During the course of evolution, they are eliminated by the reference set based

sorting algorithm because they are either dominated solutions or have a weak associa-

tion with the reference point set. In addition to their absence in the final population,

these near optimal solutions are always absent in the external population. This implies

that they are definitely dominated solutions. There are some solutions with better

objective function values in all objectives, and the evolutionary algorithm is capable

of detecting these solutions. However, this should not mean that they are completely

useless since their most important mission is to construct the fixed hyperplane.
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When the hyperplane is not constructed using the lexicographic optimal solu-

tions, some nondominated solutions may be found outside the non-negative orthant of

the m-dimensional normalized objective space. In other words, there are nondominated

solutions with negative coordinate values in some dimensions of normalized objective

space. As a matter of fact, solutions with negative coordinate values can be observed

during evolution and in the external population. In this case, it can be argued that

the fixed hyperplane does not span the Pareto front and the reference points cannot

properly represent all nondominated solutions. For this reason, some modifications are

made in the evolutionary process of the reference point set. In particular, the muta-

tion operator is modified to allow mutated reference points to have negative values. In

order to prevent large deviations from the non-negative orthant, there is a limit on the

allowed negative values, and these limits are dynamically determined using solutions

with negative coordinate values discovered so far. These limits are also used in the

immigration operator. When all these modifications come into effect, an alternative

co-evolutionary algorithm (FHCo-) is developed to work with fixed hyperplanes con-

structed using near optimal solutions. It should also be noted that when FHCo- is used

with a fixed hyperplane constructed using optimal solutions, it reduces to FHCo since

no negative coordinate values will be encountered during evolution.

Table 5.40 shows HR results for alternatives using different levels of gap per-

centages between the near optimal solutions and single-objective optimal solutions for

symmetric TSP. In Table 5.41, relative HR results are obtained normalizing by the

original versions of algorithms that use single-objective optimal solutions. In this way,

one can observe the depreciation in performance caused by using near optimal solutions

instead of real ones. HR and relative HR results are presented similarly for asymmetric

TSP in Table 5.42 and Table 5.43, respectively.

Obviously, there is a decrease in HR results when near optimal solutions are used

instead of optimal solutions and the amount of decrease increases when the gap between

the objectives of near optimal and optimal solutions is increased. Better interpretation

can be made by examining relative HR results. The depreciation in performance is

similar in both MaOTSP and MaOATSP instances. Besides, it can be observed that
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Table 5.40. HR results with near optimal solutions for MaOTSP.

Algorithm Gap %
Objective count (m)

2 4 6 8 10 15

FHFR

optimal 0.964 0.804 0.657 0.522 0.448 0.452

near 1% 0.956 0.792 0.640 0.501 0.432 0.419

near 5% 0.949 0.783 0.630 0.490 0.424 0.407

near 10% 0.914 0.735 0.594 0.450 0.411 0.376

near 30% 0.893 0.718 0.574 0.433 0.382 0.354

near 50% 0.841 0.684 0.526 0.387 0.349 0.277

FHMR

optimal 0.976 0.822 0.683 0.617 0.541 0.558

near 1% 0.969 0.815 0.677 0.611 0.536 0.552

near 5% 0.955 0.794 0.657 0.591 0.521 0.524

near 10% 0.934 0.779 0.636 0.573 0.509 0.507

near 30% 0.917 0.771 0.629 0.565 0.501 0.479

near 50% 0.865 0.711 0.574 0.505 0.455 0.346

FHCo

optimal 0.985 0.841 0.703 0.664 0.596 0.601

near 1% 0.980 0.836 0.698 0.659 0.592 0.594

near 5% 0.970 0.819 0.680 0.638 0.579 0.566

near 10% 0.951 0.800 0.674 0.637 0.574 0.554

near 30% 0.931 0.792 0.660 0.613 0.556 0.536

near 50% 0.901 0.759 0.607 0.563 0.522 0.419

FHCo-

optimal 0.985 0.841 0.703 0.664 0.596 0.601

near 1% 0.982 0.839 0.700 0.658 0.597 0.609

near 5% 0.976 0.833 0.694 0.654 0.593 0.591

near 10% 0.967 0.834 0.691 0.651 0.587 0.585

near 30% 0.965 0.827 0.683 0.638 0.585 0.570

near 50% 0.933 0.801 0.645 0.578 0.542 0.480

depreciation amounts are generally less than the given gap between the objectives of

near optimal and optimal solutions. This means that the algorithms are capable of

covering the deficiency in performance in some extend. The most striking observation

is the fact that the co-evolutionary versions of the proposed MaOEA give impressive

performance. When the gap is as small as one percent, their performances are as good

as using optimal solutions. Their performances are always better than FHFR and

FHMR and are more robust against increased gap percentage and objective count.
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Table 5.41. Relative HR results with near optimal solutions for MaOTSP.

Algorithm Gap %
Objective count (m)

2 4 6 8 10 15

FHFR

optimal 100% 100% 100% 100% 100% 100%

near 1% 99% 98% 97% 96% 96% 93%

near 5% 98% 97% 96% 94% 95% 90%

near 10% 95% 91% 90% 86% 92% 83%

near 30% 93% 89% 87% 83% 85% 78%

near 50% 87% 85% 80% 74% 78% 61%

FHMR

optimal 100% 100% 100% 100% 100% 100%

near 1% 99% 99% 99% 99% 99% 99%

near 5% 98% 97% 96% 96% 96% 94%

near 10% 96% 95% 93% 93% 94% 91%

near 30% 94% 94% 92% 92% 93% 86%

near 50% 89% 86% 84% 82% 84% 62%

FHCo

optimal 100% 100% 100% 100% 100% 100%

near 1% 100% 99% 99% 99% 99% 99%

near 5% 98% 97% 97% 96% 97% 94%

near 10% 97% 95% 96% 96% 96% 92%

near 30% 95% 94% 94% 92% 93% 89%

near 50% 91% 90% 86% 85% 88% 70%

FHCo-

optimal 100% 100% 100% 100% 100% 100%

near 1% 100% 100% 100% 99% 100% 101%

near 5% 99% 99% 99% 99% 99% 98%

near 10% 98% 99% 98% 98% 99% 97%

near 30% 98% 98% 97% 96% 98% 95%

near 50% 95% 95% 92% 87% 91% 80%

Furthermore, the new co-evolutionary algorithm, FHCo- provides better perfor-

mance than the original FHCo. This proves the success of operator modifications in

the evolution of the reference point set. When single-objective optimal solutions are

difficult to find, FHCo- can be used with a hyperplane constructed with near optimal

solutions. Its performance even with 50% near optimal solutions is better than the

performance of FHFR that uses optimal solutions.
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Table 5.42. HR results with near optimal solutions for MaOATSP.

Algorithm Gap %
Objective count (m)

2 4 6 8 10 15

FHFR

optimal 0.956 0.788 0.601 0.581 0.486 0.452

near 1% 0.954 0.763 0.580 0.560 0.460 0.419

near 5% 0.950 0.777 0.584 0.540 0.457 0.406

near 10% 0.898 0.720 0.551 0.490 0.444 0.378

near 30% 0.872 0.709 0.530 0.482 0.423 0.361

near 50% 0.848 0.622 0.473 0.432 0.373 0.274

FHMR

optimal 0.974 0.784 0.672 0.604 0.509 0.558

near 1% 0.966 0.782 0.656 0.602 0.506 0.541

near 5% 0.964 0.768 0.645 0.579 0.482 0.531

near 10% 0.939 0.755 0.616 0.571 0.484 0.500

near 30% 0.920 0.749 0.631 0.544 0.477 0.488

near 50% 0.861 0.643 0.514 0.483 0.426 0.344

FHCo

optimal 0.973 0.871 0.688 0.603 0.583 0.601

near 1% 0.966 0.862 0.682 0.591 0.587 0.600

near 5% 0.947 0.845 0.653 0.580 0.556 0.574

near 10% 0.935 0.817 0.669 0.586 0.562 0.542

near 30% 0.920 0.803 0.656 0.549 0.540 0.546

near 50% 0.880 0.780 0.560 0.492 0.496 0.423

FHCo-

optimal 0.973 0.871 0.688 0.603 0.583 0.601

near 1% 0.960 0.876 0.678 0.606 0.586 0.607

near 5% 0.954 0.855 0.666 0.580 0.575 0.591

near 10% 0.932 0.832 0.642 0.566 0.565 0.574

near 30% 0.907 0.814 0.645 0.565 0.546 0.571

near 50% 0.880 0.784 0.568 0.494 0.496 0.465

Similar experimentation is also made using MaOQAP. Since QAP cannot be

optimally solved even for the single-objective problem instances that are not too large.

The assessment is made by putting a time limit on the GA that is used to obtain the

near optimal solutions. In this way, it is aimed to see the effects of the time limits of

the preprocess stage and ultimately to reduce the time requirement without decreasing

the quality.
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Table 5.43. Relative HR results with near optimal solutions for MaOATSP.

Algorithm Gap %
Objective count (m)

2 4 6 8 10 15

FHFR

optimal 100% 100% 100% 100% 100% 100%

near 1% 100% 97% 97% 96% 95% 93%

near 5% 99% 99% 97% 93% 94% 90%

near 10% 94% 91% 92% 84% 91% 84%

near 30% 91% 90% 88% 83% 87% 80%

near 50% 89% 79% 79% 74% 77% 61%

FHMR

optimal 100% 100% 100% 100% 100% 100%

near 1% 99% 100% 98% 100% 99% 97%

near 5% 99% 98% 96% 96% 95% 95%

near 10% 96% 96% 92% 95% 95% 90%

near 30% 94% 96% 94% 90% 94% 88%

near 50% 88% 82% 76% 80% 84% 62%

FHCo

optimal 100% 100% 100% 100% 100% 100%

near 1% 99% 99% 99% 98% 101% 100%

near 5% 97% 97% 95% 96% 95% 96%

near 10% 96% 94% 97% 97% 96% 90%

near 30% 95% 92% 95% 91% 93% 91%

near 50% 90% 90% 81% 82% 85% 70%

FHCo-

optimal 100% 100% 100% 100% 100% 100%

near 1% 99% 101% 99% 100% 101% 101%

near 5% 98% 98% 97% 96% 99% 98%

near 10% 96% 96% 93% 94% 97% 95%

near 30% 93% 93% 94% 94% 94% 95%

near 50% 90% 90% 83% 82% 85% 77%

As seen in the case of TSP, it is possible to achieve satisfactory results despite

the absence of single-objective optimal solutions. Relative HR results are presented

in Table 5.44 and computation times are shown in Table 5.45. The experimentation

is conducted on the problem instances with six objectives. In these experiments, it

is attempted to reduce the time requirement caused by the preprocess stage of single-

objective GAs that are carried out separately for each objective. The number of repli-

cations of the single-objective GA is reduced from 10 to one, and it is observed that
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Table 5.44. Relative HR results for time reduction in MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 112% 127% 113% 119% 106%

A-NSGA-III 102% 118% 114% 117% 105%

A-NSGA-III (fixed) 114% 131% 124% 129% 111%

A2-NSGA-III 101% 112% 134% 128% 121%

A2-NSGA-III (fixed) 121% 161% 154% 131% 148%

Two Arch2 85% 95% 72% 92% 98%

RPEA 73% 88% 61% 81% 87%

MOEA/D (ws) 109% 118% 59% 88% 128%

MOEA/D (tc) 108% 132% 90% 105% 116%

PICEA-w 107% 112% 94% 83% 104%

FHFR 113% 150% 137% 158% 143%

FHMR 111% 158% 159% 162% 173%

FHCo 135% 165% 181% 192% 204%

FHCo- 135% 165% 181% 193% 203%

FHFR
(single rep. of GA) 113% 146% 148% 155% 147%

FHMR
(single rep. of GA) 110% 156% 153% 156% 165%

FHCo
(single rep. of GA) 132% 162% 173% 187% 182%

FHCo-

(single rep. of GA) 135% 165% 181% 191% 199%

FHFR
(single rep. of GA, halved time) 113% 144% 147% 128% 136%

FHMR
(single rep. of GA, halved time) 110% 155% 152% 150% 154%

FHCo
(single rep. of GA, halved time) 131% 161% 172% 180% 171%

FHCo-

(single rep. of GA, halved time) 135% 165% 180% 196% 194%

the single-objective GA is still capable of finding near optimal solutions sufficient for

the purpose. The fixed hyperplane constructed in this way results in the same quality
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Table 5.45. Computation time (sec) for time reduction in MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 39 56 54 212 473

NSGA-III (fixed) 50 105 106 463 1268

A-NSGA-III 47 62 59 208 361

A-NSGA-III (fixed) 57 129 121 391 1195

A2-NSGA-III 41 50 44 182 455

A2-NSGA-III (fixed) 54 101 88 365 1392

Two Arch2 74 137 137 392 1113

RPEA 93 221 216 746 1508

MOEA/D (ws) 59 106 103 357 945

MOEA/D (tc) 57 108 104 359 951

PICEA-w 119 179 153 469 1223

FHFR 63 130 121 534 1385

FHMR 74 152 141 682 1687

FHCo 82 163 162 702 2081

FHCo- 83 165 165 708 2083

FHFR
(single rep. of GA) 53 85 75 301 662

FHMR
(single rep. of GA) 62 104 93 437 921

FHCo
(single rep. of GA) 69 112 108 443 1317

FHCo-

(single rep. of GA) 70 114 111 451 1347

FHFR
(single rep. of GA, halved time) 53 81 71 277 585

FHMR
(single rep. of GA, halved time) 62 100 89 415 865

FHCo
(single rep. of GA, halved time) 69 109 105 427 1286

FHCo-

(single rep. of GA, halved time) 70 111 106 438 1314

single-objective problems
(10 replications of GA) 12 52 55 265 817
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approximation although there is a significant reduction in the time requirement. To

test further time reduction, alternatives are obtained for each of the proposed MaOEA

versions, where the time allowed for the preprocess GA is halved.

The experimentation has shown that in the event of difficulties in obtaining single-

objective optimal solutions or when a great effort is required for this, it is possible to

construct the hyperplane with near optimal solutions and still achieve satisfactory

Pareto approximations. In the case of QAP, most of the computational effort are spent

at this preprocessing stage. The results indicate that when the fixed hyperplane is

constructed from the solutions obtained from shortened processes, there is no significant

depreciation in the quality of the Pareto front approximation. Therefore, this is a valid

compromising approach for problems like QAP, especially when FHCo- is used.

5.7. Test Problems with Correlated Objectives

In this section, the performances of the three versions of the proposed MaOEA

and other existing state-of-the-art evolutionary algorithms are examined in the presence

of a correlation between the objectives of a MaOP. For this purpose, MaOTSP and

MaOATSP instances with 10 objectives are selected.

Many-objective TSP instances with correlated objectives are generated as follows:

the first two objectives, f1(~x) and f2(~x), are generated as before. The rest of the

objectives are generated using the methodology in Ishibuchi et al. (2011) to obtain

correlated objectives as shown in Equation 5.1 and 5.2.

fi(~x) = αf1(~x) + (1− α)gi(~x), i = 3, 5, 7, 9 (5.1)

fi(~x) = αf2(~x) + (1− α)gi(~x), i = 4, 6, 8, 10 (5.2)

where correlation coefficient α is a positive real number in the (0, 1) interval. In this

formulation, gi(~x) represents random objectives and fi(~x) represents correlated objec-
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tives. Two groups are obtained using this methodology: {fi(~x) : i = 1, 3, 5, 7, 9} and

{fi(~x) : i = 2, 4, 6, 8, 10}. When α is close to zero, fi(~x) values are almost the same

as randomly generated objectives. When α is close to one, fi(~x) values become almost

the same as other objectives in their groups. This methodology ensures to have a

controlled correlation within the groups but not between them.

In computational experiments, four levels are examined for α, 0.2, 0.4, 0.6, and

0.8, where high values indicate strong correlation between the objectives. It should be

noted that negative correlation values have not been tested. The reason is that the

presence of negative correlations between objective functions makes the problem even

more complicated as almost all feasible solutions become nondominated. As a result, it

is not seen in the literature, and the question of how to generate test instances remains

open. Performance comparison is done in the same way as before. HR and relative HR

results are presented in Table 5.46 and Table 5.47 for symmetric TSP, and in Table

5.48 and Table 5.49 for asymmetric TSP.

Table 5.46. HR results with correlated objectives for MaOTSP.

Algorithm
Correlation coefficient (α)

0 0.2 0.4 0.6 0.8

NSGA-III 0.356 0.478 0.602 0.703 0.794

NSGA-III (fixed) 0.425 0.513 0.627 0.727 0.806

A-NSGA-III 0.396 0.496 0.620 0.723 0.812

A-NSGA-III (fixed) 0.417 0.514 0.637 0.742 0.844

A2-NSGA-III 0.431 0.568 0.684 0.794 0.885

A2-NSGA-III (fixed) 0.486 0.594 0.701 0.815 0.915

Two Arch2 0.398 0.538 0.673 0.784 0.887

RPEA 0.327 0.420 0.521 0.604 0.680

MOEA/D (ws) 0.409 0.497 0.583 0.663 0.732

MOEA/D (tc) 0.382 0.484 0.572 0.623 0.673

PICEA-w 0.421 0.533 0.658 0.761 0.842

FHFR 0.448 0.593 0.723 0.823 0.905

FHMR 0.541 0.624 0.732 0.835 0.917

FHCo 0.596 0.660 0.743 0.854 0.943
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Table 5.47. Relative HR results with correlated objectives for MaOTSP.

Algorithm
Correlation coefficient (α)

0 0.2 0.4 0.6 0.8

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 119% 107% 104% 103% 102%

A-NSGA-III 111% 104% 103% 103% 102%

A-NSGA-III (fixed) 117% 107% 106% 106% 106%

A2-NSGA-III 121% 119% 114% 113% 112%

A2-NSGA-III (fixed) 137% 124% 116% 116% 115%

Two Arch2 112% 113% 112% 111% 112%

RPEA 92% 88% 87% 86% 86%

MOEA/D (ws) 115% 104% 97% 94% 92%

MOEA/D (tc) 107% 101% 95% 89% 85%

PICEA-w 118% 111% 109% 108% 106%

FHFR 126% 124% 120% 117% 114%

FHMR 152% 130% 121% 119% 116%

FHCo 167% 138% 123% 121% 119%

Table 5.48. HR results with correlated objectives for MaOATSP.

Algorithm
Correlation coefficient (α)

0 0.2 0.4 0.6 0.8

NSGA-III 0.409 0.513 0.638 0.724 0.796

NSGA-III (fixed) 0.436 0.542 0.656 0.737 0.798

A-NSGA-III 0.437 0.534 0.660 0.749 0.819

A-NSGA-III (fixed) 0.506 0.610 0.714 0.779 0.844

A2-NSGA-III 0.436 0.537 0.640 0.719 0.779

A2-NSGA-III (fixed) 0.507 0.578 0.670 0.758 0.827

Two Arch2 0.412 0.519 0.637 0.724 0.801

RPEA 0.331 0.417 0.515 0.578 0.627

MOEA/D (ws) 0.456 0.518 0.587 0.637 0.665

MOEA/D (tc) 0.433 0.512 0.572 0.618 0.652

PICEA-w 0.484 0.569 0.663 0.750 0.803

FHFR 0.486 0.576 0.696 0.771 0.825

FHMR 0.509 0.610 0.706 0.786 0.843

FHCo 0.583 0.653 0.733 0.818 0.882
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Table 5.49. Relative HR results with correlated objectives for MaOATSP.

Algorithm
Correlation coefficient (α)

0 0.2 0.4 0.6 0.8

NSGA-III 100% 100% 100% 100% 100%

NSGA-III (fixed) 107% 106% 103% 102% 100%

A-NSGA-III 107% 104% 104% 104% 103%

A-NSGA-III (fixed) 124% 119% 112% 108% 106%

A2-NSGA-III 107% 105% 100% 99% 98%

A2-NSGA-III (fixed) 124% 113% 105% 105% 104%

Two Arch2 101% 101% 100% 100% 101%

RPEA 81% 81% 81% 80% 79%

MOEA/D (ws) 111% 101% 92% 88% 84%

MOEA/D (tc) 106% 100% 90% 85% 82%

PICEA-w 118% 111% 104% 104% 101%

FHFR 119% 112% 109% 107% 104%

FHMR 124% 119% 111% 109% 106%

FHCo 143% 127% 115% 113% 111%

As the correlation strength increases, the performance of nondominated sorting

based algorithms (NSGA-III, A-NSGA-III, and A2-NSGA-III) significantly improves.

Likewise, the performance of the proposed algorithm also improves since it possesses

Pareto dominance-based characteristic. When the objectives are highly correlated, the

number of nondominated solutions decreases and the Pareto dominance comparison

becomes more conclusive. On the contrary, the performance of MOEA/D relatively

deteriorates, since it is a decomposition-based algorithm and uses static weight vector

set. When there is a correlation between the objectives, most of the static weight

vectors become useless. In other words, Pareto dominance reinstates its importance in

the presence of correlation between objectives. This is an important fact since some

level of correlation is always expected when dealing with real-world problems.

Obviously, if there is a significant correlation between the objectives of a MaOP,

it is possible to reduce the number of objectives and transform the problem into a less

dimensional problem where the difficulties encountered in many-objective optimization
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vanish. As can be seen from the results, higher correlation leads to higher HR values

for all algorithms and the difference between the algorithm alternatives become less

pronounced.

5.8. Test Problems with Different Objective Scales

In this section, analyses on the performances of the proposed MaOEA and other

examined algorithms are presented with problem instances with objective functions of

different scales. All experimentation made so far include problem instances using the

same distribution and scale in objective function parameters. For this purpose, many-

objective TSP is chosen. TSP can have objective functions such as cost, distance, time,

energy consumption, risk, and attractiveness, each defined at different scales.

In Lust and Teghem (2010a), four types of problem instances are produced for

TSP. In the first type of problem instance, called Euclidean instances, cjk cost val-

ues correspond to the Euclidean distance between two points randomly located in a

two-dimensional plane. In this way, the cost parameter values obey the triangular

inequality, cxz ≤ cxy + cyz ∀x, y, z, and they become symmetrical, cxy = cyx ∀x, y.

Symmetric TSP instances used in this thesis fit such problem types. Second, in ran-

dom instances, cjk cost values are randomly generated using a uniform distribution.

Asymmetric TSP instances used in this thesis fit the second type of problems. In

the third type, in mixed instances, some objectives follow Euclidean instances, while

others follow random instances. The last problem type is clustered instances where

cities are randomly partitioned into clusters, and the objective is to visit the cities of

each cluster consecutively. It should be noted that the last problem type is not used

in experimentation as they correspond to a fundamentally different problem structure.

Many-objective TSP instances with two to 15 objectives are selected to observe

the impact of the increase in the number of objectives on performances. In symmetric

TSP, the locations of 100 cities are randomly generated in a rectangle with dimensions

(2000× i) by (1000× i), for every objective i = 1, 2, ..., 15. In asymmetric TSP, 50×50

cost matrix values are randomly specified using discrete uniform distribution in the
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interval [1000× i− 1000, 2000× i− 1000], for every objective i = 1, 2, ..., 15. In mixed

TSP, half of the objective functions are specified as in symmetric TSP, while the other

half comes from asymmetric TSP.

Performance comparison is done in the same way as before. HR and relative HR

results are presented in Table 5.50 and Table 5.51 for symmetric TSP, in Table 5.52

and Table 5.53 for asymmetric TSP, and in Table 5.54 and Table 5.55 for mixed TSP.

Table 5.50. HR results with different objective scales, MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.881 0.608 0.503 0.415 0.351 0.323

NSGA-III (fixed) 0.958 0.786 0.643 0.527 0.424 0.413

A-NSGA-III 0.878 0.611 0.508 0.426 0.387 0.388

A-NSGA-III (fixed) 0.939 0.737 0.586 0.481 0.416 0.420

A2-NSGA-III 0.881 0.607 0.586 0.465 0.426 0.418

A2-NSGA-III (fixed) 0.912 0.752 0.638 0.582 0.481 0.486

Two Arch2 0.953 0.776 0.565 0.463 0.392 0.395

RPEA 0.893 0.606 0.459 0.361 0.321 0.291

MOEA/D (ws) 0.897 0.605 0.462 0.427 0.402 0.415

MOEA/D (tc) 0.919 0.682 0.518 0.463 0.374 0.408

PICEA-w 0.938 0.768 0.542 0.486 0.420 0.440

FHFR 0.969 0.800 0.651 0.515 0.446 0.444

FHMR 0.981 0.817 0.676 0.609 0.537 0.550

FHCo 0.986 0.836 0.702 0.661 0.591 0.595

The results display the ongoing superiority of the proposed MaOEA versions,

especially FHCo. Nevertheless, the relative HR results of the proposed MaOEA are

not as high in the mixed instances as in symmetric instances. As a matter of fact, a

decrease in relative HR values is observed in almost all algorithms indicating that the

performance of NSGA-III is relatively improved.

Additionally, the relative HR values in almost every row proceed similarly, i.e.

algorithms respond similarly to the increase in the number of objectives. The differ-
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Table 5.51. Relative HR results with different objective scales, MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 109% 129% 128% 127% 121% 128%

A-NSGA-III 100% 100% 101% 103% 110% 120%

A-NSGA-III (fixed) 107% 121% 116% 116% 118% 130%

A2-NSGA-III 100% 100% 116% 112% 121% 129%

A2-NSGA-III (fixed) 104% 124% 127% 140% 137% 150%

Two Arch2 108% 128% 112% 112% 112% 122%

RPEA 101% 100% 91% 87% 92% 90%

MOEA/D (ws) 102% 100% 92% 103% 115% 129%

MOEA/D (tc) 104% 112% 103% 112% 107% 126%

PICEA-w 106% 126% 108% 117% 120% 136%

FHFR 110% 132% 129% 124% 127% 137%

FHMR 111% 134% 134% 147% 153% 170%

FHCo 112% 138% 140% 159% 169% 184%

Table 5.52. HR results with different objective scales, MaOATSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.894 0.716 0.592 0.519 0.401 0.371

NSGA-III (fixed) 0.931 0.781 0.625 0.550 0.433 0.409

A-NSGA-III 0.936 0.742 0.605 0.545 0.435 0.418

A-NSGA-III (fixed) 0.955 0.800 0.668 0.575 0.503 0.435

A2-NSGA-III 0.965 0.793 0.649 0.567 0.431 0.413

A2-NSGA-III (fixed) 0.931 0.841 0.693 0.581 0.497 0.480

Two Arch2 0.935 0.715 0.542 0.413 0.407 0.389

RPEA 0.900 0.625 0.524 0.410 0.322 0.293

MOEA/D (ws) 0.866 0.665 0.564 0.496 0.452 0.355

MOEA/D (tc) 0.873 0.659 0.523 0.478 0.433 0.368

PICEA-w 0.926 0.790 0.606 0.559 0.483 0.417

FHFR 0.954 0.784 0.599 0.574 0.477 0.441

FHMR 0.972 0.781 0.669 0.601 0.500 0.551

FHCo 0.973 0.871 0.686 0.603 0.579 0.590
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Table 5.53. Relative HR results with different objective scales, MaOATSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 104% 109% 106% 106% 108% 110%

A-NSGA-III 105% 104% 102% 105% 109% 113%

A-NSGA-III (fixed) 107% 112% 113% 111% 126% 117%

A2-NSGA-III 108% 111% 110% 109% 108% 111%

A2-NSGA-III (fixed) 104% 117% 117% 112% 124% 129%

Two Arch2 105% 100% 92% 80% 102% 105%

RPEA 101% 87% 88% 79% 80% 79%

MOEA/D (ws) 97% 93% 95% 96% 113% 96%

MOEA/D (tc) 98% 92% 88% 92% 108% 99%

PICEA-w 104% 110% 102% 108% 120% 113%

FHFR 107% 110% 101% 111% 119% 119%

FHMR 109% 109% 113% 116% 125% 149%

FHCo 109% 122% 116% 116% 144% 159%

Table 5.54. HR results with different objective scales, mixed MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 0.873 0.648 0.547 0.463 0.396 0.348

NSGA-III (fixed) 0.959 0.788 0.610 0.531 0.421 0.395

A-NSGA-III 0.904 0.654 0.556 0.494 0.424 0.423

A-NSGA-III (fixed) 0.937 0.784 0.608 0.510 0.442 0.422

A2-NSGA-III 0.933 0.714 0.606 0.527 0.402 0.390

A2-NSGA-III (fixed) 0.931 0.790 0.682 0.566 0.501 0.486

Two Arch2 0.949 0.727 0.557 0.418 0.411 0.403

RPEA 0.916 0.626 0.509 0.393 0.298 0.273

MOEA/D (ws) 0.880 0.618 0.509 0.449 0.446 0.384

MOEA/D (tc) 0.905 0.678 0.532 0.467 0.408 0.395

PICEA-w 0.909 0.759 0.568 0.499 0.428 0.439

FHFR 0.940 0.785 0.600 0.521 0.443 0.416

FHMR 0.956 0.792 0.657 0.619 0.498 0.548

FHCo 0.980 0.843 0.696 0.645 0.571 0.576
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Table 5.55. Relative HR results with different objective scales, mixed MaOTSP.

Algorithm
Objective count (m)

2 4 6 8 10 15

NSGA-III 100% 100% 100% 100% 100% 100%

NSGA-III (fixed) 110% 122% 112% 115% 106% 113%

A-NSGA-III 103% 101% 102% 107% 107% 122%

A-NSGA-III (fixed) 107% 121% 111% 110% 112% 121%

A2-NSGA-III 107% 110% 111% 114% 101% 112%

A2-NSGA-III (fixed) 107% 122% 125% 122% 126% 140%

Two Arch2 109% 112% 102% 90% 104% 116%

RPEA 105% 97% 93% 85% 75% 79%

MOEA/D (ws) 101% 95% 93% 97% 112% 110%

MOEA/D (tc) 104% 105% 97% 101% 103% 114%

PICEA-w 104% 117% 104% 108% 108% 126%

FHFR 108% 121% 110% 113% 112% 120%

FHMR 110% 122% 120% 134% 126% 157%

FHCo 112% 130% 127% 139% 144% 165%

ence between the algorithms becomes less significant as NSGA-III is not affected by

objectives with different scales due to its normalization procedure.

5.9. Search for Robust Solutions

This section includes numerical testing of the capability of the proposed MaOEA

versions, as well as other algorithm alternatives to achieve a Pareto approximation that

contains successful solutions regarding different robust metrics. MaOKP and MaOQAP

are used as benchmark problems for this purpose.

First, validation of the proposed MaOEA is done by comparing with the optimal

solutions for stochastic and robust performance metrics, namely expected cost, mini-

max cost, minimax absolute regret, and minimax relative regret found by CPLEX. The

ratio test in Table 5.56 presents the percentage values calculated by dividing the op-

timal values by the best objective values found in the Pareto approximation for the
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corresponding performance metric. The results indicate that the Pareto approximation

found by the proposed MaOEA (FHFR version) contains near optimal solutions for

different performance metrics.

Table 5.56. Percentage results for the ratio test in MaOKP, n = 500.

Criterion
Objective count (m)

2 4 6 8 10 15

Expected Cost 100% 100% 100% 100% 99.6% 100%

Minimax Cost 100% 99.8% 99.5% 99.1% 97.9% 98.4%

Minimax Abs. Regret 100% 100% 99.2% 98.7% 98.3% 98.6%

Minimax Rel. Regret 100% 100% 99.4% 99.2% 98.0% 99.1%

Performance evaluation of algorithm alternatives is made with six-objective MaO-

QAP instances since it is difficult to obtain any robust optimal solution with ex-

act methods and evolutionary approaches are required. FHCo- is used as the co-

evolutionary version of the proposed MaOEA.

Best robust objective values found in 10 replications by each algorithm alternative

are presented in Table 5.57 for minimax cost, in Table 5.58 for minimax absolute regret,

and in Table 5.59 for minimax relative regret. These values are normalized in Table

5.60 to 5.62 in the respective order. The ranking of the algorithms is provided next to

normalized results. It should be noted that smaller percentage values are desired. The

best result is shown with an asterisk for each robust metric.

Different versions of the proposed MaOEA have the best results in terms of

different robust measures. Nevertheless, FHCo- is ranked as the best alternative based

on Friedman’s test, and the results indicate the superiority of the proposed MaOEA

versions over other algorithms.
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Table 5.57. Minimax cost results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 7722 226850 4692 170946 17936

NSGA-III (fixed) 6954 218920 4550 179192 17190

A-NSGA-III 7288 238780 4696 173226 17452

A-NSGA-III (fixed) 7116 215950 4842 172650 17552

A2-NSGA-III 7646 227874 4836 176262 17946

A2-NSGA-III (fixed) 7146 222436 4556 175628 17824

Two Arch2 7156 219792 4730 169608 17320

RPEA 7582 243008 4872 170826 16732*

MOEA/D (ws) 7428 232924 4706 168840 17170

MOEA/D (tc) 7832 225352 4826 182152 18060

PICEA-w 6658 217560 4550 174648 16840

FHFR 6218 224986 4422* 172542 17736

FHMR 6122* 221778 4460 164992* 16834

FHCo- 6176 206520* 4422* 169762 16872

Table 5.58. Minimax absolute regret results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 226 23168 272 14130 1544

NSGA-III (fixed) 206 22776 272 14892 1534

A-NSGA-III 208 23468 284 15000 1498

A-NSGA-III (fixed) 202 22088 268 14796 1452

A2-NSGA-III 226 22794 292 14024 1560

A2-NSGA-III (fixed) 216 21916* 262 13992 1498

Two Arch2 216 22938 288 14236 1556

RPEA 218 25558 292 14020 1494

MOEA/D (ws) 208 22874 262 14356 1474

MOEA/D (tc) 224 22920 270 14604 1524

PICEA-w 206 21950 252 15034 1440

FHFR 196 23400 262 13990 1590

FHMR 190 22474 252 13566* 1410*

FHCo- 184* 22442 246* 13628 1426
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Table 5.59. Minimax relative regret results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a

NSGA-III 0.171 0.303 0.206 0.226 0.286

NSGA-III (fixed) 0.159 0.300 0.199 0.224 0.280

A-NSGA-III 0.148 0.294 0.208 0.238 0.282

A-NSGA-III (fixed) 0.145 0.284 0.199 0.231 0.275

A2-NSGA-III 0.176 0.310 0.211 0.227 0.300

A2-NSGA-III (fixed) 0.155 0.276 0.200 0.225 0.275

Two Arch2 0.165 0.294 0.216 0.234 0.291

RPEA 0.172 0.320 0.214 0.229 0.275

MOEA/D (ws) 0.156 0.294 0.207 0.222 0.267

MOEA/D (tc) 0.175 0.300 0.212 0.224 0.276

PICEA-w 0.155 0.297 0.185 0.230 0.255

FHFR 0.147 0.291 0.207 0.223 0.281

FHMR 0.138 0.273 0.191 0.221* 0.251*

FHCo- 0.135* 0.266* 0.184* 0.222 0.258

Table 5.60. Normalized minimax cost results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a Friedman test

NSGA-III 100% (13) 100% (10) 100% (7) 100% (6) 100% (12) 9.6 (12)

NSGA-III (fixed) 90% (5) 97% (4) 97% (5) 105% (13) 96% (6) 6.6 (5)

A-NSGA-III 94% (9) 105% (13) 100% (8) 101% (9) 97% (8) 9.4 (11)

A-NSGA-III (fixed) 92% (6) 95% (2) 103% (13) 101% (8) 98% (9) 7.6 (7)

A2-NSGA-III 99% (12) 100% (11) 103% (12) 103% (12) 100% (13) 12.0 (13)

A2-NSGA-III (fixed) 93% (7) 98% (7) 97% (6) 103% (11) 99% (11) 8.4 (9)

Two Arch2 93% (8) 97% (5) 101% (10) 99% (3) 97% (7) 6.6 (5)

RPEA 98% (11) 107% (14) 104% (14) 100% (5) 93% (1) 9.0 (10)

MOEA/D (ws) 96% (10) 103% (12) 100% (9) 99% (2) 96% (5) 7.6 (7)

MOEA/D (tc) 101% (14) 99% (9) 103% (11) 107% (14) 101% (14) 12.4 (14)

PICEA-w 86% (4) 96% (3) 97% (4) 102% (10) 94% (3) 4.8 (3)

FHFR 81% (3) 99% (8) 94% (1) 101% (7) 99% (10) 5.8 (4)

FHMR 79% (1) 98% (6) 95% (3) 97% (1) 94% (2) 2.6 (2)

FHCo- 80% (2) 91% (1) 94% (1) 99% (4) 94% (4) 2.4 (1)
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Table 5.61. Normalized minimax absolute regret results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a Friedman test

NSGA-III 100% (13) 100% (11) 100% (10) 100% (7) 100% (11) 10.4 (11)

NSGA-III (fixed) 91% (5) 98% (6) 100% (9) 105% (12) 99% (10) 8.4 (8)

A-NSGA-III 92% (7) 101% (13) 104% (11) 106% (13) 97% (8) 10.4 (11)

A-NSGA-III (fixed) 89% (4) 95% (3) 99% (7) 105% (11) 94% (4) 5.8 (5)

A2-NSGA-III 100% (14) 98% (7) 107% (13) 99% (6) 101% (13) 10.6 (14)

A2-NSGA-III (fixed) 96% (9) 95% (1) 96% (4) 99% (4) 97% (7) 5.0 (3)

Two Arch2 96% (10) 99% (10) 106% (12) 101% (8) 101% (12) 10.4 (11)

RPEA 96% (11) 110% (14) 107% (14) 99% (5) 97% (6) 10.0 (10)

MOEA/D (ws) 92% (8) 99% (8) 96% (5) 102% (9) 95% (5) 7.0 (6)

MOEA/D (tc) 99% (12) 99% (9) 99% (8) 103% (10) 99% (9) 9.6 (9)

PICEA-w 91% (6) 95% (2) 93% (2) 106% (14) 93% (3) 5.4 (4)

FHFR 87% (3) 101% (12) 96% (6) 99% (3) 103% (14) 7.6 (7)

FHMR 84% (2) 97% (5) 93% (3) 96% (1) 91% (1) 2.4 (2)

FHCo- 81% (1) 97% (4) 90% (1) 96% (2) 92% (2) 2.0 (1)

Table 5.62. Normalized minimax relative regret results for MaOQAP, m = 6.

Algorithm had16 scr20 nug20 kra30a ste36a Friedman test

NSGA-III 100% (11) 100% (12) 100% (7) 100% (8) 100% (12) 10.0 (11)

NSGA-III (fixed) 93% (9) 99% (11) 97% (5) 99% (5) 98% (9) 7.8 (8)

A-NSGA-III 87% (5) 97% (7) 101% (10) 105% (14) 99% (11) 9.4 (9)

A-NSGA-III (fixed) 85% (3) 94% (4) 97% (4) 102% (12) 96% (5) 5.6 (3)

A2-NSGA-III 103% (14) 102% (13) 103% (11) 100% (9) 105% (14) 12.2 (14)

A2-NSGA-III (fixed) 91%(7) 91% (3) 97% (6) 100% (7) 96% (6) 5.8 (4)

Two Arch2 97% (10) 97% (8) 105% (14) 103% (13) 102% (13) 11.6 (13)

RPEA 101% (12) 106% (14) 104% (13) 101% (10) 96% (7) 11.2 (12)

MOEA/D (ws) 91% (8) 97% (6) 101% (9) 98% (3) 94% (4) 6.0 (5)

MOEA/D (tc) 102% (13) 99% (10) 103% (12) 99% (6) 96% (8) 9.8 (10)

PICEA-w 91% (6) 98% (9) 90% (2) 102% (11) 89% (2) 6.0 (5)

FHFR 86% (4) 96% (5) 101% (8) 99% (4) 98% (10) 6.2 (7)

FHMR 81% (2) 90% (2) 93% (3) 98% (1) 88% (1) 1.8 (2)

FHCo- 79% (1) 88% (1) 90% (1) 98% (2) 90% (3) 1.6 (1)
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5.10. Alternative Limit Specification for Hypervolume Calculation

Researchers have suggested that the performance comparisons depend on the

location and size of the hypercube (Ishibuchi et al., 2017). In this section, additional

experimentation is carried out to analyze the effects of the choice for the boundaries

of the hypercube.

In a MaOKP, where the objectives of the problem are maximization, it is conve-

nient to use the ideal point as the upper limit and the origin as the lower limit for the

hypervolume calculation. For minimization on the other hand, although it is appropri-

ate to use the ideal point for the lower limit, the choice for the upper limit is ambiguous.

An estimate for the nadir point can be used, but in that case the hypercube becomes

too narrow. When the hypercube is too tight, the inconclusive area occupies most i.e.,

the region in which the Pareto approximation under examination is neither dominant

nor dominated. This results in very small HR values and performance comparison

of different Pareto approximations becomes difficult. On the other hand, very large

hypercubes may weaken the accuracy of the Monte Carlo simulation by increasing its

standard error. It is also suggested in the literature that different specifications for the

hypervolume box may lead to different comparison results. It is claimed that Pareto

approximations with a diverse solution set perform better in large hypercubes.

To analyze this issue, the performances of different algorithms on MaOTSP are

evaluated using different upper limit specifications for the hypercube. The upper limits,

which are 1%, 17%, 50%, and 100% worse than the nadir point estimate, are used to

calculate HR results in 10 replications in Table 5.63. The ranking of the algorithms is

provided next to HR results. Finding the nadir point is a difficult task in itself and

numerous algorithms (Kirlik and Sayın, 2015) and evolutionary approaches (Deb and

Miettinen, 2010) have been developed for this purpose. Here, the nadir point estimate

is obtained by combining external populations of all algorithms.

From Table 5.63 it can be seen that different algorithms lead to significantly dif-

ferent HR values as the specified upper limit moves away from the estimated nadir
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Table 5.63. HR results for hypervolume limit specification, MaOTSP, m = 10.

Algorithm
Upper limit ratio to nadir point

1.01 1.17 1.5 2

NSGA-III 0.009 (12) 0.028 (13) 0.234 (13) 0.356 (13)

NSGA-III (fixed) 0.011 (9) 0.033 (9) 0.278 (9) 0.425 (6)

A-NSGA-III 0.008 (13) 0.029 (12) 0.267 (12) 0.396 (11)

A-NSGA-III (fixed) 0.009 (11) 0.031 (11) 0.272 (11) 0.417 (8)

A2-NSGA-III 0.007 (14) 0.033 (10) 0.284 (7) 0.431 (5)

A2-NSGA-III (fixed) 0.012 (8) 0.049 (3) 0.354 (3) 0.486 (3)

Two Arch2 0.014 (6) 0.034 (7) 0.277 (10) 0.398 (10)

RPEA 0.014 (7) 0.026 (14) 0.212 (14) 0.327 (14)

MOEA/D (ws) 0.017 (3) 0.035 (6) 0.286 (6) 0.409 (9)

MOEA/D (tc) 0.011 (10) 0.034 (8) 0.279 (8) 0.382 (12)

PICEA-w 0.015 (5) 0.041 (5) 0.303 (5) 0.421 (7)

FHFR 0.016 (4) 0.045 (4) 0.312 (4) 0.448 (4)

FHMR 0.017 (2) 0.052 (2) 0.356 (2) 0.541 (2)

FHCo 0.019 (1) 0.056 (1) 0.393 (1) 0.596 (1)

point and the hypercube gets larger. It is important to use the appropriate specifica-

tion limits to differentiate the effects of different parameters and operators during the

algorithm development phase. Nevertheless, it should be noted that all versions of the

proposed MaOEA perform better than other algorithm alternatives in all upper limit

specifications.

Table 5.64. HR results for hypervolume limit specification, FHCo, MaOTSP.

Objective count (m)
Upper limit ratio to nadir point

1.01 1.17 1.5 2

2 0.618 0.756 0.886 0.985

4 0.437 0.564 0.714 0.841

6 0.213 0.356 0.639 0.703

8 0.086 0.121 0.453 0.664

10 0.019 0.056 0.393 0.596

15 0.005 0.012 0.311 0.601
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The choice of a suitable hypercube size largely depends on the number of objec-

tives. From the HR results of FHCo presented in Table 5.64, it can be said that as

the number of objectives increases, the hypercube needs to be larger. Based on the

results, the most appropriate level for the upper limit ratio to nadir point appears as

two, which has been used throughout the numerical studies presented in this chapter.
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6. CONCLUSION

In this thesis, the challenges imposed by many-objectives in discrete search spaces

are targeted in order to develop a successful MaOEA for combinatorial optimization

problems.

The proposed MaOEA, which uses a reference point set based approach that

employs reference based sorting along with elitist nondominated sorting, achieves to

increase the efficiency of this kind of approaches by introducing several innovative ideas

and strategies, especially related to the creation and management of the reference set.

While reference set based approaches are considered as powerful methodologies when

it comes to MaOEAs, this study demonstrates that their strength can be significantly

enhanced by fixing the hyperplane that encompasses the reference points at the begin-

ning. In the proposed algorithm, reference points are mapped on a hyperplane which

is constructed at the beginning of the algorithm using lexicographic minima for the

individual objectives, and its position in the objective space remains fixed throughout

the algorithm. It has also been shown that the efficiency can be improved further

by using evolutionary strategies and genetic operators specifically designed to comple-

ment the reference set concept. Reference point guided path relinking recombination

scheme, complementing parent selection mechanisms, mutation and local improvement

operators are the main features contributing to this success.

Nonetheless, the main strength of the proposed MaOEA comes from allowing the

reference set to adapt to the underlying Pareto front by moving on a fixed hyperplane

that has a good grip of the front. While the concept of co-evolution has been used in

a few MaOEAs in the literature before, it has not been used for a reference set based

approach in the sense it is proposed in this thesis. The proposed algorithm FHCo

provides a practical and robust co-evolutionary structure that involves both cooperative

and competitive aspects to achieve adaptation of the reference set to the topology of

the Pareto front. The self-adaptive parametric nature not only precludes parameter

fine-tuning efforts and the risk of overfitting to test problem instances, but also creates
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a flexible and convenient way to balance diversity and convergence. Since the reference

points are defined as coordinate points in the normalized objective space, the methods

used in their evolution need not to be problem specific. For instance, a problem such

as creating an infeasible reference point never arises. Thus, the development and use

of the evolution of the reference set can be generic.

The main contributions of this research consist not only of proposing a success-

ful reference set based algorithm, and introducing the concept of co-evolution of the

reference points, but also verifying that it can be applied to a variety of different com-

binatorial problems in a sustainable manner. Hence, the research builds upon three

well-known combinatorial optimization problems used as three main pillars.

The work done using MaOKP establishes the first pillar and leads to the method-

ological contribution to the field of evolutionary many-objective optimization to deal

with combinatorial problems. MaOKP serves as a perfect benchmark problem in the

development and performance evaluation of the proposed MaOEA, since the effects of

genetic operators and parameter selections can easily be observed on MaOKP as run

times are relatively low. Moreover, it is commonly used by various other studies exper-

imenting on MOEAs and MaOEAs, hence it is possible to compare the performance of

the proposed MaOEA with existing studies in the literature. The proposed MaOEA

solves MaOKP very effectively. As such, to the best of our knowledge, the presented

results are the best so far in the literature for MaOKP.

The second pillar, namely the research using MaOTSP as the benchmark prob-

lem, leads to the verification of the success of the proposed MaOEA under different

problem-specific features of combinatorial problems. First of all, the proposed MaOEA

can be easily extended to MaOTSP, once the genetic operators are adapted to han-

dle permutation encoding instead of binary. Next, the experimentation on symmetric,

asymmetric, and mixed TSP instances, correlated objectives and objectives with differ-

ent scales reveal that the proposed MaOEA always takes the lead among other tested

algorithms. MaOTSP also provides a controlled environment for testing the case where

near optimal solutions for the individual objectives are used to construct the hyper-
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plane. Such cases may occur when exact solutions for single-objective problems are

not available or computationally too expensive. Numerical experimentation reveals

that the amount of deterioration in the quality of the Pareto approximation remains

restricted, and that the use of a fixed hyperplane persists as the best methodology even

when near optimal solutions are used to construct it. Moreover, recognizing the fact

that negative coordinate values might be required to define some of the reference vec-

tors in such cases, a version FHCo- is developed where genetic operators are modified

to allow reference points with negative coordinates. Thus, FHCo- becomes the pro-

posed MaOEA for cases when one chooses to use near optimal solutions for hyperplane

construction.

Finally, the third pillar involves the research regarding the modeling of optimiza-

tion problems under scenario-based uncertainty as MaOPs. MaOQAP is used as a

benchmark, not only for corroborating the findings concerning the use of near optimal

solutions when constructing the fixed hyperplane, but also for demonstrating opti-

mization under scenario-based uncertainty as a new and natural problem domain for

MaOEAs. The proposed MaOEA can provide good solutions for several robust and

stochastic performance metrics simultaneously.

Future work can be directed to several fruitful paths. One of these research direc-

tions is incorporating decision maker’s preferences into the algorithm for an interactive

approach. Since the great potential of co-evolving the reference set together with the

solution set has been demonstrated, it is worthwhile to pursue this direction for possi-

ble new approaches. Optimization under scenario–based uncertainty is opened as new

application area for MaOEA, which can lead to several interesting research questions

including but not limited to scenario reduction, robustness measure based guidance

strategies and similar. Finally, other combinatorial optimization problems with differ-

ent properties and characteristics may be tested using the proposed method.
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dimensional search-based software engineering: Finding tradeoffs among 15 objec-

tives for automating software refactoring using nsga-iii”, in Proceedings of the Con-

ference on Genetic and Evolutionary Computation, pp. 1263–1270.

Mohammadi, A., M. N. Omidvar, and X. Li, 2012, “Reference point based multi-

objective optimization through decomposition”, in IEEE Congress on Evolutionary

Computation, pp. 1–8.

Mohammadi, A., M. N. Omidvar, X. Li, and K. Deb, 2014, “Integrating user preferences

and decomposition methods for many-objective optimization”, in IEEE Congress on

Evolutionary Computation, pp. 421–428.

Mulvey, J. M., R. J. Vanderbei, and S. A. Zenios, 1995, “Robust optimization of large-

scale systems”, Operations Research, Vol. 43(2), pp. 264–281.

Murata, T., and A. Taki, 2009, “Many-objective optimization for knapsack problems

using correlation-based weighted sum approach”, in International Conference on

Evolutionary Multi-Criterion Optimization, pp. 468–480.

Narukawa, K., and T. Rodemann, 2012, “Examining the performance of evolutionary

many-objective optimization algorithms on a real-world application”, in IEEE Sixth

International Conference on Genetic and Evolutionary Computing, pp. 316–319.

Nguyen, S., M. Zhang, M. Johnston, and K. C. Tan, 2013, “Automatic design of

scheduling policies for dynamic multi-objective job shop scheduling via cooperative



161

coevolution genetic programming”, IEEE Transactions on Evolutionary Computa-

tion, Vol. 18(2), pp. 193–208.

Okabe, T., Y. Jin, and B. Sendhoff, 2003, “A critical survey of performance indices

for multi-objective optimisation”, in IEEE Congress on Evolutionary Computation,

Vol. 2, pp. 878–885.

Payne, G., and R. R. Carlson, 1975, “Gaussian expansions in distorted-wave—born-

approximation calculations”, Physical Review C, Vol. 12(4), p. 1260.

Peng, W., Q. Zhang, and H. Li, 2009, “Comparison between moea/d and nsga-ii on the

multi-objective travelling salesman problem”, in Multi-objective Memetic Algorithms,

pp. 309–324, Springer, New York.

Polak, E., 1976, “On the approximation of solutions to multiple criteria decision making

problems”, in Multiple Criteria Decision Making, pp. 271–282, Springer, New York.

Praditwong, K., and X. Yao, 2006, “A new multi-objective evolutionary optimisation

algorithm: The two-archive algorithm”, in IEEE International Conference on Com-

putational Intelligence and Security, Vol. 1, pp. 286–291.

Purshouse, R. C., and P. J. Fleming, 2003, “Evolutionary many-objective optimisation:

An exploratory analysis”, in IEEE Congress on Evolutionary Computation, Vol. 3,

pp. 2066–2073.

Qu, B. Y., and P. N. Suganthan, 2011, “Constrained multi-objective optimization algo-

rithm with an ensemble of constraint handling methods”, Engineering Optimization,

Vol. 43(4), pp. 403–416.

Reinelt, G., 1991, “Tsplib-a traveling salesman problem library”, ORSA Journal on

Computing, Vol. 3(4), pp. 376–384.

Ribeiro, C. C., and M. G. Resende, 2012, “Path-relinking intensification methods for

stochastic local search algorithms”, Journal of Heuristics, Vol. 18(2), pp. 193–214.
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APPENDIX A: Preliminary Analysis on Performance

Assessment Methods

Table A.1. Comparison of Pareto front approximation pairs.

QAP C(S1,S2) R3&R4 UL M∗
3

instance MOEA MaOEA MOEA MaOEA MOEA MaOEA MOEA MaOEA

scr15 6.6% 10.1% 1.5% 4.9% 1226 1012 187769 114688

had16 2.1% 21.4% 4.4% 4.5% 12 12 2056 1487

els19 0.1% 18.6% 6.1% 6.6% 0 7217 137826680 95992927

had20 1.4% 34.0% 2.1% 4.6% 11 14 3421 2702

nug20 1.8% 29.9% 1.6% 4.6% 16 22 2498 1770

scr20 0.5% 35.8% 4.0% 7.8% 1210 1487 458547 254744

nug25 1.2% 28.8% 2.0% 4.9% 18 0 3428 2468

kra30a 3.9% 14.4% 1.4% 1.6% 469 910 116861 113357

kra30b 0.2% 14.7% 1.5% 1.7% 346 774 120575 106835

nug30 4.9% 16.2% 1.1% 2.3% 25 44 5669 5298

tho30 2.3% 20.0% 1.0% 2.7% 738 1281 194773 181310

ste36a 2.5% 22.6% 1.9% 4.7% 44 180 31619 27066
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APPENDIX B: Implementation Details for Algorithms Used

in Comparison

This section outlines a brief discussion about the properties and important as-

pects of some existing state-of-the-art evolutionary algorithms used in numerical ex-

perimentation throughout this chapter. Each of these algorithms possesses different

characteristics and has been shown to have a satisfactory performance.

Adaptive Approach for Elitist Nondominated Sorting Genetic Algorithm, A-NSGA-

III (Jain and Deb, 2014). This algorithm is based on the original NSGA-III and ev-

erything but the reference point structure has been kept the same. The reference point

structure of NSGA-III is revised and adapted so that the algorithm becomes capable

of finding better appropriate distribution of the reference points. Reference points are

adjusted depending on the distribution of current solutions in each generation.

The adaption method has two stages: addition of new reference points near

crowded reference points with high niche counts and occasional deletion of reference

points with zero niche counts. Since all reference points are defined on a hyperplane,

these two operations essentially relocate the reference points based on the niche counts.

In the addition stage, a simplex is built around a crowded reference point and

a maximum of m new reference points are added, which are believed to share the

niche count with the crowded reference point. The addition of new reference points

continues until no reference point with niche count greater than one is left. An example

of a reference point addition structure is presented in Figure B.1.

After the addition stage is over, new reference points with zero niche counts are

deleted, but the original reference points are not. It means that the number of reference

points might increase during the course of evolution.
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Figure B.1. Reference point structure in A-NSGA-III (Jain and Deb, 2014).

Improved Adaptive Approach for Elitist Nondominated Sorting Genetic Algo-

rithm, A2-NSGA-III (Jain and Deb, 2013). It is claimed that a more efficient ap-

proach is followed than A-NSGA-III. In this approach, the simplex structure results

in addition of fewer new reference points, and the creation of new reference points is

allowed only when the niche counts of crowded reference points remain constant for a

predefined number (τ) of generations. An example of reference point addition structure

is presented in Figure B.2.

Figure B.2. Reference point structure in A2-NSGA-III (Jain and Deb, 2013).
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In this algorithm, there is a cap over the maximum number of reference points,

and as a result, deletion process is triggered more often. In the implementation, the

cap over the maximum number of reference point is 10 times the number of originally

supplied reference points and the τ parameter is set to 10.

Improved Two Archive Algorithm, Two Arch2 (Wang et al., 2014). This algo-

rithm, which is an example of reference set based approaches that use real reference

points, separates the two goals of multi-objective optimization, namely convergence

and divergence, explicitly. The solution set of each generation is divided into two

groups: convergence archive (CA) and divergence archive (DA). The CA contains only

nondominated solutions that once dominated existing archive members, and DA in-

cludes solutions with the greatest distances to CA members. Thus, solutions of the

CA are adaptive real reference points, updated online.

An external population is maintained and reported for performance evaluation.

The sizes of the CA and DA are kept equal to half the population sizes of other

algorithms and equal. The binary additive epsilon-indicator (Iε+) (Zitzler et al., 2003)

is used as the selection principle for the CA, and the Pareto dominance-based selection

principle is used for the DA. Moreover, lexicographic optimal solutions are provided at

the beginning of the algorithm.

Reference Points Based Evolutionary Algorithm, RPEA (Liu et al., 2017). Ref-

erence points are created as superior hypothetical solutions (i.e. virtual reference

points) based on nondominated solutions with the largest crowding distances. For

each objective, α×N (population size) number of solutions with the largest crowding

distances are found and reference points are generated based on these selected solutions.

The distance between the generated reference point and the corresponding solution is

calculated for each objective i as in Equation B.1:

εi = δ(fmaxi − fmini ) (B.1)
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where fmaxi and fmini are the best and worst values observed for objective i in the

current iteration, respectively. In the implementation, δ parameter is set to 0.05 and

alpha parameter is set to 1/m. Reference points are generated separately for each

objective, so it is possible for a solution to produce multiple reference points.

Reference points are updated only in some iterations and the reference set re-

generation frequency is determined by a predefined tgrp parameter which is set to one

in the implementation, that is, the update procedure is triggered at each iteration. It

is claimed that the reference points provide up-to-date information about the Pareto

approximation at a moderate computation cost. At the end of each iteration, the com-

bined population of the current and offspring population is truncated by calculating

distance values with reference points. An example of reference point generation is

presented in Figure B.3.

Figure B.3. Reference point generation in RPEA (Liu et al., 2017).

Multi-Objective Evolutionary Algorithm Based on Decomposition,

MOEA/D (Zhang and Li, 2007). MOEA/D is a decomposition-based evolutionary

multi-objective algorithm. In MOEA/D, a multi-objective problem is decomposed into

a number of single-objective problems identified using the same scalarizing function

with different weight vectors. The number of weight vectors determines the population

size because a single solution is kept for each single-objective problem defined by the

corresponding weight vector.
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The set of closest weight vectors of a given weight vector is defined as its neighbor-

hood. The solution corresponding to each weight vector is generated by recombining a

pair of parent solutions randomly selected from the neighborhood. The newly gener-

ated solution is compared with the existing solution of the corresponding weight vector

and the existing solutions of its neighbors. It replaces those with a worse scalarizing

function value in terms of the corresponding weight vector.

Different crossover schemes, repair, mutation and local improvement procedures

can be adapted to MOEA/D, if no dominant solution is found in search, each solution

is added to an external population. The decomposition approach used in MOEA/D

is very important for the performance of the algorithm and different approaches may

behave in differently depending on the characteristics of the problem. There are several

decomposition approaches such as weighted sum, Tchebycheff and boundary intersec-

tion. The size of the neighborhoods of weight vectors is a user-defined parameter and

must be carefully adjusted to avoid mating restriction.

MOEA/D has been shown to be computationally efficient and successful with a

number of different problems (Ishibuchi et al., 2014a). It is claimed that its decompo-

sition -based structure handles many-objective problems better than approaches based

on Pareto dominance. While this algorithm is categorized as a decomposition-based

algorithm, there is a strong analogy between its weight vectors and the reference points.

In the implementation, the neighborhood structure of the decomposition weight

vectors is determined to be the same with the reference point neighborhood structure

of the proposed MaOEA. The weighted sum and Tchebycheff scalarizing functions are

used, and the ideal point is used for the so-called reference point z∗ mentioned on their

paper.

Preference-Inspired Co-evolutionary Algorithm Using Weight Vectors, PICEA-w

(Wang et al., 2015). Existing population and offspring solutions are combined and

truncation is applied to select the solutions of the next generation. The innovative part

of this algorithm is that the application of the same procedure to decomposition weight
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vectors. In each iteration, new weight vectors are generated and combined with the

existing weight vector set. The combined set is then truncated based on information

gathered from the current population.

It is a decomposition-based algorithm (i.e. the multi-objective problem is decom-

posed into a set of single-objective problems defined by different weighted scalarizing

functions, Tchebycheff function in this case). In each iteration, weight vectors are

generated randomly (Jaszkiewicz, 2002a).

A solution vector is said to be a neighbor of a weight vector if the angle between

two vectors is less than a predefined θ parameter which is adjusted by current iteration

number t and the maximum iteration number maxGen in Equation B.2 to implement

a local selection in the early stages of the algorithm, and a global selection in the late

stages of the algorithm. In the implementation, maxGen is set to 500.

θ =
π

2
× t

maxGen
(B.2)

The ranking matrix is produced by each candidate weighted scalarizing function

to store the ranks of neighboring candidate solutions based on their performance. Can-

didate solutions are ordered lexicographically according to the ranking matrix. (µ+λ)

elitist framework is used to select the solutions of the next generation. The selection

of the weight vector is made using survived candidate solutions. In order for a weight

to be selected, it must be one of the weights that a survived solution is best ranked.

In case of multiple weights, it must be the furthest from the corresponding solution.

Finally, an offline archive is used. A clustering technique called pruning archive (Zitzler

et al., 2001) is used to represent the Pareto approximation.


