
MATHEMATICAL PROGRAMMING AND STATISTICAL LEARNING

APPROACHES FOR MULTIPLE INSTANCE LEARNING

by
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ABSTRACT

MATHEMATICAL PROGRAMMING AND STATISTICAL

LEARNING APPROACHES FOR MULTIPLE INSTANCE

LEARNING

Many real-world applications of classification require flexibility in representing

complex objects to preserve the relevant information for class separation. Multiple

instance learning (MIL) aims to solve classification problem where each object is rep-

resented with a bag of instances, and class labels are provided for the bags rather than

individual instances. The aim is to learn a function that correctly labels new bags. In

this thesis, we propose statistical learning and mathematical optimization methods to

solve MIL problems from diversified application domains. We first present bag encoding

strategies to obtain bag-level feature vectors for MIL. Simple instance space partition-

ing approaches are utilized to learn representative feature vectors for the bags. Our

experiments on a large database of MIL problems show that random tree-based encod-

ing is scalable and its performance is competitive with the state-of-the-art methods.

Mathematical programming-based approaches to MIL problem construct a bag-level

decision function. In this context, we formulate MIL problem as a linear programming

model to optimize bag orderings for correct classification. Proposed formulation com-

bines instance-level scores to return an estimate on the bag label. All instances are

solved to optimality on various data representations in a reasonable computation time.

At last, we develop a quadratic programming formulation that is superior to previous

MIL formulations on underlying assumptions and computational difficulties. Proposed

MIL framework models contributions of instances to the bag class labels, and provide

a bag class decision threshold. Experimental results verify that proposed formulation

enables effective classification in various MIL applications.



v

ÖZET

ÇOKLU ÖRNEKLE ÖĞRENME İÇİN MATEMATİKSEL

PROGRAMLAMA VE İSTATİSTİKSEL ÖĞRENME

YAKLAŞIMLARI

Gerçek hayattaki pek çok sınıflandırma uygulaması sınıf ayrımı için gerekli olan

bilginin saklanması için karmaşık yapılı nesnelerin temsilinde bir esneklik gerektirir.

Çoklu Örnekle Öğrenme (ÇÖÖ), sınıflandırma problemini her nesnenin bir örnek tor-

bası ile temsil edildiği durumda çözmeyi amaçlar ve sınıf etiketleri bireysel örnekler

için değil, sadece torbalar için sağlanmaktadır. Amaç, yeni torbaları doğru şekilde

etiketleyen bir sınıflandırıcının öğrenilmesidir. Bu tezde, farklı uygulama alanlarına

ait ÇÖÖ problemlerini çözmek için istatistiksel öğrenme ve matematiksel eniyileme

yöntemleri öneriyoruz. İlk olarak, ÇÖÖ için torba seviyesinde öznitelik vektörleri

üreten torba kodlama izlemleri sunuyoruz. Torbaların temsili öznitelik vektörlerini

öğrenmek için örnek uzayını bölümleyen basit yaklaşımlar kullandık. Geniş bir ÇÖÖ

veritabanı üzerinde yaptığımız deneyler rastgele ağaç tabanlı kodlamanın ölçeklenebilir

olduğunu ve sınıflandırma başarımı açısından bilinen yöntemlerle rekabet edebildiğini

göstermektedir. Matematiksel programlama temelli ÇÖÖ yaklaşımları torba seviyesinde

bir karar fonksiyonu oluşturur. Bu bağlamda, ÇÖÖ probleminin doğru sınıflandırma

için torba sıralamasını eniyileyen bir doğrusal programlama gösterimini sunuyoruz.

Önerilen gösterim örnek seviyesindeki tahminleri birleştirerek torba etiketini tahmin

eder. Çeşitli veri gösterimleri üzerindeki problem örnekleri makul bir hesaplama za-

manında eniyiye çözülmektedir. Son olarak, dikkate alınan varsayımlar ve hesaplama

zorluğu açısından önceki ÇÖÖ gösterimlerinden üstün olan bir karesel programlama

gösterimi geliştiriyoruz. Önerilen ÇÖÖ yöntemi torba sınıfı etiketlerine örneklerin

katkısını modeller ve bir torba sınıfı karar eşiği sağlar. Deneysel sonuçlar önerilen

gösterimin farklı ÇÖÖ uygulamalarındaki sınıflandırma etkinliğini doğrulamaktadır.
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1

1. INTRODUCTION

The interplay between learning systems and scientific discovery processes has re-

ceived growing attention respecting the availability of large scaled and complex struc-

tured data. Learning is the process of efficiently and repeatability representing a system

by properly taking the collected information as an input in a special format. Machine

learning develops algorithms for numerous learning purposes such as understanding and

improving the learning, discovering new patterns and completing the missing parts of

the learning processes. The intersection of computational sciences and machine learn-

ing is referred to as statistical machine learning. Statistical machine learning is divided

into two main categories: supervised learning and unsupervised learning. Primary goal

of supervised learning is to model a functional relationship between the input sample

and their already given outputs, which are collectively named as data. The whole data

used during the development of the model forms the training set. The known outputs,

which are named as the labels, can take discrete values. In order to inspect the success

of the model, another set of inputs with known labels is evaluated by the model and

its resulting outputs are compared with the actual labels. The described set is the test

set, being a portion of the whole input, which is the dataset. Then, the last step is to

detect the label of an unlabeled object. Each input vector belongs to an object, which

is also entitled as an instance. Each instance includes values of different measurements

referred to as features.

Classification is a supervised learning task of identifying the categories of in-

stances by means of estimating their labels with discrete values, named as the classes.

If only two classes exist, binary classification takes place. Besides, multi-class classi-

fication classifies the objects into more than two classes. Unsupervised learning copes

with identification and improvement of dataset structure with neither benefiting from

the labels, nor splitting the whole dataset into training set and test set. Its main differ-

ence from the supervised learning is that there is no model building and no parameter

estimation. One of the most famous unsupervised learning approaches is clustering

where the input sample is categorized based on its inherent similarities.



2

Applying machine learning algorithms to big datasets for discovery of existing

patterns can be defined as data mining. Classification often takes place in data mining

tasks. However, it is sometimes costly to obtain labeled data. This fact attracted

researchers to benefit from the potentially supportive unlabeled data. In this sense,

semi-supervised learning (SSL) is taken into consideration to enable extraction of use-

ful information from unlabeled data for classification. Since it is expensive and time

consuming to acquire labeled data and unlabeled data is naturally much more frequent,

SSL covers a wide range of applications such as bioinformatics [1], text classification [2]

and image retrieval [3]. In short, proposed SSL methods either alter the supervised

classifiers and the data representation to include the information obtained from unla-

belled data, or iteratively labels the unlabelled instances.

Multiple instance learning (MIL) is a variation of supervised learning, where

instead of the instances, there are bags and each bag has certain number of instances

as exemplified in Figure 1.1. Bags are labeled whereas the individual instances inside

the bags do not have to be labeled. The lack of instance label information converts the

problem into a SSL problem where supervised learning procedures can be facilitated

with some unlabeled data [4]. Most of the MIL approaches generally solve the binary

classification problem, where there are only two classes such that the positive class and

the negative class. Figure 1.2 illustrates the difference between traditional supervised

learning and MIL in a binary classification problem.

Figure 1.1. Representation of 2 bags formed by 5 instances with d many features.

In the original MIL problem, musky and non-musky molecules form a collection

of bags [5]. For each molecule, instances describe molecule shapes and some of which

decide the smell of the molecule. A molecule with at least one effective shape induces
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a musky smell and is classified as positive. Otherwise, the molecule is classified as

negative. The described formal definition of first MIL application brings about the

most common MIL assumption on relating the instance labels to the bag label. Corre-

spondingly, standard MIL assumption states that a bag is labeled positive if it contains

at least one positive instance, and otherwise labeled as negative.

Later on, researchers follow common hypothesis of standard MIL and adapt this

setting to several machine learning applications. In the context of text classification,

authors of [6] treat text documents as a bag of passages and some of the passages

about relevant topics assigns a positive label to a document. In adaptation of MIL

framework for image classification [7–9], each image is represented by a bag of small

image segments (i.e. patches). An example on MIL for medical imaging is classification

of histopathology images to recognize cancer [9]. As an illustration, images belonging

to either malignant or benign cells are the bags and square patches of them are the

instances as shown in the top figure of Figure 1.4. Images of malignant cells form the

positive class.

Figure 1.2. Difference between regular supervised classification and multiple instance

classification. In the instance-feature space, blue color indicates positive instances

and red color indicates negative instances.

A more recent MIL application is classification of birdsong recordings [10]. A

spectrogram of each recording is a bag and segments of spectrogram are the instances.

Other MIL applications are protein identification [11], hard drive failure prediction [12],

stock selection [13], music information retrieval [14], prediction of student performance
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[15] and more recently medical video analysis [16], video event detection [17] and co-

saliency detection [18], etc.

A major challenge in MIL problems is ambiguity regarding instance labels. Specif-

ically, there is uncertainty on determination of the instances that are responsible for the

bag labels. In aforementioned MIL applications, relationships between the instances

inside bags need to be modeled to summarize the bag-level information. Standard

MIL assumption is the simplest way of representing bag label information. Definition

of standard MIL is compatible with molecular activity prediction since existence of an

effective shape is a strong evidence of bag positivity. However, incompatibility with

the standard assumption may occur in many other learning applications on complex

objects.

Consider an MIL problem of detecting person-object interactions in images such

as a person riding a horse. A positively classified image must contain not only a person

or a horse, but both. Besides, instances from person concept and horse concept must

reside in neighboring patches, and must be subjected to position measurements [19].

Therefore, instances from different data regions are required to observe a positively

labeled image. As a second example, consider event detection in video recordings. Each

video is a bag and the defined video segments of temporal intervals are the instances.

Furthermore, the event to be detected is attempting a board trick. To classify a bag as

positive, a certain portion of instances representing jumping is required, and negative

bags can also contain these instances such as a parkour event video [17]. Consequently,

standard MIL assumption is not suitable for this problem, either.

To overcome the limitations of standard MIL assumption, researchers advocate

new settings about modeling instance-level interactions to predict bag labels, which

are categorized in the context of generalized MIL [20–22]. Several assumptions with

increasing complexity are proposed to model MIL problems when there exists a higher

dependency of the bag label to the instance-level information. Considerably positive

instances in positive bags belong to a specific data region and jointly form the concept.
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In standard MIL, representative instances in positive bags are similar to each

other, and at least one instance from the concept region is enough to decide the pos-

itive label. A hierarchy of MIL assumptions is proposed in [20] to raise different MIL

problems to generalize the standard MIL assumption. The assumptions in Weidmann’s

hierarchy [20] are sorted by an increasing generality as standard MIL, presence-based

MIL, threshold-based MIL and count-based MIL. Figure 1.3 shows example positive

and negative bags following single instance learning and MIL under different assump-

tions.

Figure 1.3. An illustration of MIL assumptions.

Different from the previous complex definitions of positive bags, more general

hypotheses on bag label determination are required in some MIL applications. Alter-

native ways of defining positive bags considering the bags as a whole are introduced

in [21]. Under collective MIL assumption [21], the proportion of instances or all of the

instances in a bag decide the bag label collectively. Namely, the learning approach com-

bines instance-level decisions to come up with an estimation of bag labels. Figure 1.4

shows learning process following the collective MIL assumption. For each histopathol-

ogy image, a bag-level classification score is computed for cancer disease diagnosis. In

particular, a large value of bag score is associated with a potentially malignant cellular

image. During learning, a linear function determines an instance-level score for each

square patch of a training image. After model building, output classifier averages the

instance scores to assess bag-level class predictions for test bags.
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Figure 1.4. Generic description of MIL classification under collective MIL assumption.

There is a vast literature on MIL methods following the standard MIL assump-

tion, which are categorized as standard MIL methods. These methods are reviewed

in comprehensive surveys [21–23], and may not be suitable for certain types of MIL

problems arising in more complex real-world applications [24]. Therefore, generalized

MIL methods constitute the second main category of the proposed methods in the

literature. Figure 1.5 displays such a taxonomy of the state-of-the-art methods for

MIL. Generalized MIL methods do not require a specific MIL assumption and mostly

favour bag-level learning. Use of bag representations as an input to classical supervised

learning algorithms are shown to work well in MIL problems [8, 25–29].

The early standard MIL methods are dominated by generative approaches, which

depend on describing probability distributions of the instances in bags. The first MIL

algorithm [5] defines an axis parallel rectangle (APR) along with minimization of the

number of negative instances and maximization of positive instances inside APR. Di-

verse Density (DD) algorithm [13] assumes Gaussian distribution of positive instances

and extended by EM-DD [30]. DD is maximized in these methods by considering the
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instances in positive bags close to each other in the instance-feature space. MIL with

Gaussian processes (GP) latent variables GPMIL [31] generates a bag class likelihood

model.

A number of standard MIL methods primarily utilize discriminative approaches

via adaptation of supervised learning models. mi-SVM method in [7] estimates the

unknown instance labels, while a support vector machine (SVM) classifier is simulta-

neously being updated. MI-SVM is a second method in [7], where parameters of an

instance-level classifier are learned by SVMs. A sparse-MIL approach, sMIL is pro-

posed in [32] by mitigating the sparse structure of the positive bags, while adapting

the SVM formulation to the MI setting.

Mathematical programming formulations of sparse transductive MIL (stMIL) [32]

and multi-instance learning via semi-supervised support vector machine (MissSVM) [4]

are equivalent to MI-SVM [7], except for the additional constraints to improve class

separation and to prevent misclassification of witness instances. A witness selection

mechanism is employed in KI-SVM [33] by learning a convex combination of positive

instances, referred to as key instances. Another SVM-MIL formulation [34] outputs a

nonlinear kernel classifier in their proposed multiple instance classification algorithm

(MICA).

Standard MIL assumption is encoded in margin maximization based MIL for-

mulation proposed in [35]. A single-instance learner is used to classify bags without

integrating bag information. Later on, authors of [36] present robust SVM-based mod-

els highlighting a generalizable classification performance by utilization of different loss

functions and maximization of the bag margin. MIHMSVM [36] enforces a bag-level

hard margin, whereas MIHLSVM [36] enables bag misclassifications by the usage of

hinge loss.

A recent survey [37] compares and discusses extensions of SVM-based models for

MIL. Scalability to large-scaled datasets and generalizability to the assumptions other

than the standard MIL assumption are the main concerns on the mathematical models,
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which are mostly oriented on standard MIL assumption.

Most of the generalized MIL methods transform MIL problems into single in-

stance learning problems. First group of algorithms in this category either employs

extra constraints as in multiple instance online (MIO) algorithm [38] or utilizes kernel

functions as in MI-Kernel [39] and regularized MI-kernels [40].

MIL

methods

Standard

MIL methods

Generative methods:

APR [5], DD [13],

EM-DD [30] , GPMIL [31]

Discriminative methods:

SVM classification:

mi-SVM [7], MI-SVM [7],

SMIL [32], stMIL [32],

MissSVM [4], MICA [34],

KI-SVM [33],

Max-Margin MIL [35],

MIHMSVM [36],

MIHLSVM [36]

Decision trees:

MITI [41], MilBoosting [42],

MILBoost [43],

MIBoosting [44],

MIForests [45]

Generalized

MIL methods

Bag dissimilarity/kernels:

Citation-kNN [46], MIO [38],

MI-kernel [39], DD-SVM [25],

MILES [8], MILIS [28],

MILD [29], MILDS [27],

MInD [26], MIL-IBRT [47],

DRS-SVM [48]

Bag encoding:

CCE [49], TLC [20], miFV [50]

Dictionary learning:

MMDL [51], MIDL [52],

SCCE-MIL [53], GD-MIL [54],

RSIS [55]

Graph-based

representations:

miGraph [56], MIGraph [56],

MILSD [57], Multi-Graph

learning [58–60]

Figure 1.5. A taxonomy of MIL methods.
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A second category of generalized MIL methods introduce different ways of se-

lecting representative instances and represents the bags in a new feature space, which

includes DD-SVM [25], MILES [8], MILD [29], MILIS [28] and MILDS [27]. These

methods commonly train SVM classifiers in the bag space. RSIS [55] selects instance

prototypes by finding random subspaces that are obtained using clustering. An en-

semble of SVM classifiers are trained on subsets of the instances. Instead of clustering,

random subspaces are constructed by dissimilarities to prototypes in DRS-SVM [48].

Citation-kNN [46] measures the minimum distance between bags with a Hausdorff

distance. MInD [26] constitute bag-level representations by defining alternative bag-

to-bag dissimilarity measures. Unlike MInD, MIL-IBRT [47] assigns different weights

to each instance of a bag during measurements.

Bag encoding-based MIL forms the third group of generalized MIL methods.

TLC [20] is a two step classification approach with encoding instance-level information

using a decision tree in the first step and recovers bag class label in the second step.

Constructive clustering ensemble (CCE) [49] encodes each bag into a binary feature

vector after clustering the original instances. Another bag-level approach perform MIL

using Fisher vector encoding of bags (miFV) [50]. A Gaussian Mixture Model (GMM)

is learned in the instance space to estimate parameters of the density function to be

utilized to derive Fisher vector representation of bags. Recently, dictionary learning

methods such as MMDL [51], MIDL [52] and GD-MIL [61], and a sparse coding method,

SCCE [53] are proposed for MIL.

Graph-based representations are also utilized in several MIL methods [56–60].

Briefly, instances correspond to the nodes and edges between the node pairs are defined

based on instance relationships. miGraph [56] and MIGraph [56] employ different

graph kernels and MILSD [57] uses additional structural information on bags and

instances. Alternatively, a number of recent MIL methods represent a bag with multiple

subgraphs [58–60].

The main concern of MIL is to assign labels to bags rather than instances. More

importantly, interactions of the instances decide the bag label and this issue motivates
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generalized MIL. Generally, it is not obvious which MIL assumption holds for a real-life

MIL problem. The previous efforts to model and solve learning problems under MIL

framework mostly focus on resolving the uncertainty on instance labels, rather than

regarding internal bag structure information and modeling the instance-level contribu-

tions to the bag labels.

A conventional way of bag-level classification is to encode the instance-level in-

formation and obtain vectorial representation of the bags. The idea is to extract the

necessary information for bag encoding and thereby perform bag classification. After

each bag is represented with a feature vector, anyone can train a supervised learner

on the new representation. In this thesis, we first consider strategies to represent bags

without imposing any parameter estimation, and observe high classification accuracy

with requirements of less computational effort. Note that performance of the classifier

highly depends on the way of bag representation and selection of machine learning

algorithms to be utilized, which are heuristic approaches.

Correct classification of bags is a statistical learning problem and is closely related

with resolution of optimization problems. For instance, existing SVM classification-

based models for MIL require numerical optimization. Furthermore, solving opti-

mization problems promotes interpretability and reproducibility of the classification

scheme [62]. We briefly review existing optimization algorithms for MIL in terms of

model building and solution process. To overcome limitations of the previous ap-

proaches regarding computational requirements and adaptability to real-world scenar-

ios, we come up with promising alternative optimization frameworks for MIL. Solutions

to proposed formulations provide a linear mapping of instances to model their contribu-

tions to the bag labels. This way, implementation of novel mathematical formulations

present a simpler and more tractable process of learning under MIL paradigm.

In this thesis, we propose learning frameworks specialized to solve real world

learning problems that can be generalized to classify bags of multiple instances. The

main contributions of this thesis can be summarized as follows:
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• We propose a robust framework for solving multiple instance learning (MIL)

problems that uses random trees to partition the feature space together with a

path-based representation. Simple instance feature space partitioning approaches

are utilized to learn representative and MIL assumption-free feature vectors to

encode the bags (see Chapter 3).

• A mathematical programming-based method is presented for solving MIL prob-

lems that models instance level contributions to assess bag labels. Linear pro-

gramming models are solved to obtain a simple linear mapping of instance-level

information, which provides bag-level estimates and handles MIL problems from

various application domains (see Chapter 4).

• We present an efficient quadratic programming (QP) model and optimization

algorithm for MIL. Our QP-based approach to MIL aggregates instance-level

estimations to obtain a bag label estimation score along with a bag-level class

decision threshold. The proposed MIL framework is efficient in terms of solution

time, overcoming the computational difficulties in previous MIL formulations (see

Chapter 5).

• The proposed MIL approaches are robust to changes in parameter settings and

do not rely on any specific assumptions on bag formations and class labels. Af-

ter either bag encoding or optimization algorithms, resulting decision functions

provide solutions to bag classification in diverse application areas. Experimen-

tal results demonstrate classification success of the proposed methods compared

to the previous state-of-the-art MIL approaches on a wide range of real world

datasets.

• To promote reproducible research, implementations of proposed algorithms, bench-

mark datasets, computational results and the information regarding the experi-

mental settings are made available on our supporting website [63]. To the best

of our knowledge, our experimental setup considers the largest database in eval-

uation of the approaches.

The rest of this dissertation is structured in the following way. Chapter 2 for-

malizes the MIL problem and provides the necessary background. In Chapter 3, we
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describe alternative strategies for bag-level representations to solve MIL problems.

A comprehensive performance comparison is also provided including experiments on

large-scaled benchmarks and detailed sensitivity analysis on both proposed and state-

of-the-art methods. Chapter 4 presents what is, to the best of our knowledge, the first

linear programming-based approach for MIL. We describe the optimization model em-

bedding notion of bag ranking and introduce various data representation alternatives.

In Chapter 5, we propose a novel quadratic programming-based approach to classify

bags. This chapter also includes performance comparisons with an existing SVM-based

MIL method and leading machine learning algorithms for MIL. Chapter 6 draws the

conclusions by summarizing the contributions of thesis, and presents possible research

directions.
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2. BACKGROUND

This chapter presents formal description of the MIL problem and the details

about basic tools of machine learning that are relevant to our study. In Chapter 3,

random tree-ensembles and k-means clustering are utilized to transform multiple in-

stance representation to a single bag vector. This way, we simply employ a supervised

classification algorithm, random forests on the bag-level representations. Moreover,

we benefit from k-means clustering in Chapter 4 and Chapter 5 to obtain simplified

data representations and to introduce nonlinear relationships in the original data to

the classification model. In Chapter 5, we present a detailed overview of mathematical

programming approaches to MIL, which commonly extend support vector machines to

MIL setting.

2.1. Problem Description

Let xi be a d-dimensional feature vector of instance i and X = {xi : i = 1, .., n}

be a set of instances. Also let yi be a single, discrete-valued feature, specifically the

label of instance i. Then, instance set X = {xi : i = 1, .., n} forms the training set.

This set can be labeled with yi, i = 1, ..., n or can be unlabeled. A bag Bj is a set of xi’s

and nj is the number of the instances in Bj. Therefore, χ = {(Bj, lj) : j = 1, ..,m} is a

training bag set containing instances and a label lj of each bag. Let an instance-based

classifier be a function from instances to labels f(xi) → yi, and let g(Bj) → lj be the

function of a bag-based single classifier. Concisely, given a training set of bags with

given label information χ = {(Bj, lj) : j = 1, ..,m}, our MIL task is to learn a classifier

g(Bj) to predict the labels of input bags.

2.2. Tree-based Ensembles

Decision tree learners are one of the classifiers that are used to partition the

instance feature space to learn a bag-level representation in this study. Univariate

trees such as CART [64] and C4.5 [65] are built using an algorithm performing a
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series of axis-parallel splits, which are determined greedily by minimizing an impurity

measure, and divide the space formed by the input vectors to subregions at each node

of the tree.

Tree ensembles are proposed to mitigate the greedy nature of traditional decision

tree learners. A random forest (RF) classifier [66] will be used in this study to classify

the encoded bags. RF is a collection of multiple decision trees that are independent

from each other and claimed to be robust compared to a single tree. RF is a special

case of bagging (bootstrap aggregating) of decision trees, where at each node a random

subset of features is selected for splitting purposes. Formally, a random forest is an

ensemble of T decision trees, {rt, t = 1, . . . , T}. Each tree is constructed using a

different bootstrap sample from the original data. About one-third of the cases are

left out of the bootstrap sample and not used in the construction of the single tree.

These are called out-of-bag (OOB) samples. The prediction for instance x from tree

rt is ŷt(x) = argmaxc p
c
t(x), where pct(x) is the estimated proportion of class c in the

corresponding leaf of the t-th tree, for c ∈ C. Let G(x) denote the set of all trees in

the RF, where instance x is OOB. The OOB class probability estimate of x is

pc(x) =
1

|G(x)|
∑

rt∈G(x)

1(ŷt(x) = c)

where 1(·) is an indicator function that equals one if its argument is true, and zero

otherwise. The predicted class is ŷ(x) = argmaxc p
c(x). In summary, an instance is

labeled through a majority voting approach using the tree results for which it is OOB.

Random tree (RT) embedding is a variation of tree-based ensembles, where fea-

tures to be splitted and the corresponding splitting points are selected randomly. RT-

encoding works under the unsupervised setting, and provides a sparse representation of

the instance feature space. Sparsity of the data representation is a desired property for

classification to support linear separability in a new space. In some MIL datasets, non-

linear boundaries are inevitable since there exists common concepts between classes and

complex objects are represented by multiple instances. Thus, projecting the datasets
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to a higher dimensional feature space is beneficial. Instances are embedded to the

new space by encoding binary vectors extracted from node visits of the instances for

each tree in the forest. When the nodes in a tree are considered as instance clusters,

nonlinear separability is provided by this representation.

2.3. Support Vector Machines

SVMs are built on the idea of maximizing the margin between the convex hulls of

the classes. The margin boundaries are represented by some instances from each class.

These instances are referred to as the support vectors. It is shown in [67] that support

vector set contains all the information that a classifier needs to build the decision

function.

Formally, given χ = {(xi, yi) : i = 1, . . . , n}, SVM classification finds a hyperplane

H(w, b) = {x : wTx+b = 0}, which is formed by selected w ∈ <d and b ∈ < to separate

the classes. Then, the goal is to build a decision function f(x) = sgn(〈w,x〉 + b) by

maximizing the misclassification margin 2
||w|| , or equivalently minimizing a quadratic

loss 1
2
||w||2 subject to the constraints yi(w

Txi + b) ≥ 1 for i = 1, . . . , n. Note that the

described margin is a hard margin since there exists no misclassified instances after

training the SVM. If we allow misclassifications, soft margin takes place with resolving

a trade-off between the misclassification margin width and number of misclassified

instances by minimizing 1
2
||w||2+C

∑n
i=1 ξi subject to the constraints yi(w

Txi + b) ≥

1− ξi for i = 1, . . . , n. The trade-off parameter is C, which controls the effect of slack

variables ξi ≥ 0, i = 1, . . . , n to the solution. The Lagrangean dual of this formulation

is L(α) =
∑n

i=1 αi −
1
2

∑n
i=1,j=1 αiαjyiyi 〈xi,xj〉 where αi ≥ 0, i = 1, . . . , n are the

Lagrange multipliers satisfying
∑n

i=1 αiyi = 0.

Generally, the classes are not linearly separable in the underlying space. In order

to obtain a separation in another space, an evaluation of a kernel function maps the

feature space to a higher dimensional embedding space H with a mapping φ : <d → H

by calculating the inner products 〈xi,xj〉 in the dual formulation using a selected kernel

function K(·, ·). In other words, the inner products 〈xi,xj〉 in the formulation can be
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replaced with corresponding evaluation of a kernel K(xi,xj) = 〈φ(xi), φ(xj)〉.

2.4. K-Means Clustering

Clustering is an unsupervised process that groups together similar objects so

that intra-cluster objects are similar, whereas inter-cluster objects are dissimilar to

each other. K-means method employs Euclidean distance as a measure of similarity

and starts with a random or previously determined initial partition of the data. The

aim is to minimize the sum of squared distances between each point and its nearest

cluster center.

The algorithm of k-means clustering is a hard partitioning algorithm, which di-

vides a dataset into a set of exhaustive and mutually exclusive clusters. That is, for

a given dataset X = x1, . . . ,xn ∈ Rd, k-means algorithm iteratively divides X into κ

clusters C1, . . . , Cκ, subject to X = ∪κi=1Ci and Ci ∩Cj = ∅, for all 1 ≤ i 6= j ≤ κ. The

steps of k-means clustering algorithm are summarized below:

Input: An instance set X = {xi : i = 1, . . . , n}, number of clusters κ

Initialize the centers of clusters cj, j = 1, . . . , κ randomly.

Repeat

for all xi, i = 1, . . . , n do

Assign point xi to the nearest center such that

xi ∈ Cj ⇐⇒ j = argminj∈1,...,κ||xi − cj||.

end for

for all cj, j = 1, . . . , κ do

Recalculate the cluster centers as

cj = 1
|Cj | ∗

∑
xi∈Cj

xi.

end for

Until cj, j = 1, . . . , κ converge.

Figure 2.1. K-means algorithm.
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3. BAG ENCODING STRATEGIES FOR MULTIPLE

INSTANCE LEARNING

3.1. Introduction

Classification, one of the important class of supervised learning problems, often

takes place in data mining tasks. In traditional classification tasks, each object is

represented with a feature vector, and the aim is to predict the label of the object

given some training data. However, this representation is not flexible when the data

has a certain structure. For example, in image classification, images are segmented into

patches and instead of a single feature vector, each image is represented by a set of

feature vectors derived from the patches. This way, important information regarding

the certain invariances such as location and scale can be taken into account [68]. Change

of object representation provides benefits for a wide range of applications such as

bioinformatics [5], document retrieval [7], computer vision [69] and etc. This type of

applications fits well to Multiple Instance Learning (MIL) setting where each object is

referred to as bag and each bag contains certain number of instances.

Most of the MIL approaches generally solve the binary classification problem,

where bags are labeled as either positive, or negative [5,13,30,43]. The firstly described

formal MIL problem is a drug activity prediction problem, which considers molecules as

bags and distinct shapes of the same molecule as instances [5]. A molecule is positively

labeled if it includes at least one effective shape, otherwise it is negatively labeled.

In text categorization problems [56], each document can be considered as a bag and

its instances are the collection of relevant passages inside it. In all these applications,

training bags are labeled and instances belonging to each bag do not necessarily have

labels. The aim of MIL is to learn a classifier on the training bags to predict the label

of a test bag.
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Ambiguity about the instance labels has made researchers focus on certain as-

sumptions regarding the instance labels. The so called standard MIL assumption is

given as: if a bag is labeled positive, then at least one instance in that bag is la-

beled as positive; otherwise, labels of all instances in negative bags are negative [5].

It is obvious that when a bag is known to be positively labeled, the labels of its in-

stances are not completely known. Standard MIL assumption is too restrictive to

handle real-life problems. For example, optimal combination therapy is used in cancer

treatment to overcome drug resistance. An optimal combination of drugs is consid-

ered to be capable of circumventing drug resistance among individual patients. Since

there exists enormous number of possible drug combinations, the prediction problem

of optimal combinatorial therapy can be modeled as a MIL problem where drugs are

the instances, and collections of drugs are the bags. A bag is positive if a subset of its

instances forms an effective drug combination, otherwise the bag is negative. Optimal

combination therapy discovers an effective combination of drugs, rather than identi-

fying a single type of drug that supports the treatment. Instead of a single positive

instance, this MIL problem searches for a combination of multiple instances referring

to various drugs.

Criticizing the potential problems with the standard MIL assumption, MIL prob-

lems are categorized as presence-based, threshold-based and count-based MIL prob-

lems [20]. A specific region of feature space where the positive instances are located are

referred to as a concept by [20]. Presence-based MIL has the standard MIL assumption

for multiple concepts, whereas threshold-based MIL forces a lower bound on the num-

ber of necessary instances of each concept. Finally, in addition to the previous lower

bound, count-based MIL requires an extra upper bound on the number of necessary

instances from each concept. Extensions and variations of the described categorization

of generalized MIL problems are presented in [21,22,24]. Based on the experiments on

synthetic and real datasets following various assumptions, the bag-level classification is

indicated to be successful on datasets from different categories [24]. These approaches

require each bag to be represented with a feature vector which summarizes the in-

stance level information. Since bag-level methods are competitive, we focus on bag

classification by representing each bag with a single feature vector in this study.
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Earlier, many approaches from the computer vision literature utilized the well-

known Bag-of-Features (BoF) or Bag-of-Words (BoW) representations to perform sim-

ilar tasks. After clustering the patches (i.e. instances), the image (i.e. bag) is repre-

sented by the frequency of cluster assignments of the corresponding instances in the

simple BoW setting [70]. These approaches implicitly transform the instance-level

probabilistic distribution information to a bag-level summary [13, 50]. Recently, [26]

has approached the problem by considering the geometric view of the instance space

and obtain a bag-level summary using the similarities between the instances. Moti-

vated by the success of the bag-level representations and their robustness to the MIL

assumptions, this study proposes bag encoding strategies for MIL problems [71]. Fig-

ure 3.2 presents a summary of the bag representation algorithms, each of which will be

discussed in detail in Section 3.2.

Most of the existing proposals to obtain bag-level summary require numerical fea-

tures as an input since they involve transformations such as principal component analy-

sis [50], density estimation [13] or distance calculations [26,50]. However, a MIL dataset

can have features other than numeric. When there are categorical features, dummy

variables are required to be introduced. Moreover, standardization/normalization is re-

quired but standardization of the dummy variables introduced to represent categorical

variables is not well-defined. Hence, an approach that can treat each variable without

any modification may be required for certain applications. Considering this fact, our

approach utilizes tree-based ensembles to partition the instance feature space. A tree

learner trained on the raw data assigns each instance to a terminal node of the tree.

Use of trees for feature induction is a relatively new research direction, which

is also named as hashing [72]. This method transforms each node in the tree to a

feature. Moreover, the new representation is easy to be modified by changing the tree

parameters. Each level of the tree provides a different partition of the instance feature

space as they imply simple splitting rules on the features. An instance traverses the

tree based on the splitting rules (i.e. follows a path in the constructed tree). The

path followed by an instance implies regions of the feature space an instance belongs

to and it provides an hierarchical information regarding the feature space an instance
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resides. Tree-based encoding of the feature space does not require scaling of the data

as opposed to the approaches requiring distance calculations or density estimation.

Figure 3.1 illustrates the path-encoding of an instance. Next to each tree in Figure 3.1,

the traversed path by an instance is detected, and a binary vector is encoded conceiving

whether a node is on that path, or not. Thus, these paths can be used to learn a BoW

type representation. Our approach inherits the properties of tree-based learners. That

is, it can handle numerical or categorical data. Besides, tree-based encoding is scale

invariant and robust to missing values. The same tree can be used to encode the

instances based only on terminal nodes. Earlier, [73] used a similar strategy for image

classification problems using supervised randomized trees and has shown to provide

successful results. This strategy has potential to lose information since two instances

residing at sibling terminal nodes follow the same path, and therefore, they are closely

similar to each other.

Figure 3.1. An example of path-encoding.

The first implementation of tree-based encoding to generate bag representations

is proposed by TLC [20] in MIL setting. However, TLC builds a supervised tree on all

instances in the training data assuming that the instances share the same label with

their owner bags. This strong assumption regarding the instance labels and greediness

of a single tree is problematic. To avoid potential problems with these assumptions, we

propose randomized tree ensembles to convert MIL problem into a supervised learning

problem. To best of our knowledge, this is the first study exploring the use of multi-

ple unsupervised trees together with path-encoding to solve MIL problems. As shown

by the seminal work by [74], unsupervised randomized trees are a generalization of
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Gaussian Mixture Models (GMM), where each leaf of a randomized clustering tree is

considered as a Gaussian component. Hence, our representation implicitly takes the

density information into account. This way, parametrized optimization processes that

are common in generative learning models are avoided in tree-based encoding. The

proposed approach scales well with large datasets and it is embarrassingly parallel.

Once the bags are encoded, a supervised learning algorithm can be trained on the

new representation. Our experiments on a large database of MIL problems show that

performance of the proposed representations is competitive with the state-of-the-art

algorithms. Classification of bags instead of individual instances is reasonable while

solving MIL problem on large datasets. We also present experimental results on PAS-

CAL Visual Object Classes (VOC) 2007 dataset [69] to verify the scalability of our

proposed bag encoding algorithms.

The earliest MIL algorithm [5] maximizes the number of positive instances resid-

ing in a single axis parallel rectangle (APR), and minimizes the number of negative

instances inside APR. Then, Diverse Density (DD) algorithm is proposed in [13], where

positive instances are assumed to follow a Gaussian distribution. In DD and its variant

EM-DD [30], gradient descent with multiple starts is employed to maximize the diverse

density, which is the aggregation of closeness of instances to every positive bags’ dis-

tance to the negative bags. MILBoost [43] solves MIL problem with deriving the bag

probabilities through a Noisy-OR model. A dictionary-based MIL method [75] benefits

from bag-labels and inactivates irrelevant instances during dictionary learning for bag

representation. These approaches follow the standard MIL assumption and it has been

discussed in many papers that this assumption may not reflect the reality for certain

types of MIL problems. Hence, the methods requiring standard MIL assumption are

left out of scope of this study. We refer reader to [21, 22] for details of the methods

requiring the standard MIL assumption.

Use of bag-level representations as an input to supervised learning algorithms are

shown to perform well in MIL problems [8, 26–29]. Exploitation of the similarity or

dissimilarity information relevant to bags and their instances forms the common ground

of these methods. For instance, MILES [8] measures bag similarities by their minimum
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instance distances. Instances in the training set are used as prototypes, and the bags are

represented by using distances to these prototypes. Since the distances to all instances

in the training set are calculated, MILES is time consuming and become impractical

for large datasets. The instance selection in MILDS [27] is done by identification of

the most representative examples in the positive and negative training bags using a

pairwise clustering algorithm. A kernel density estimator on the negative instances

is used for instance selection in MILIS [28]. MILD [29] identifies the true positive

instances in positive bags to reveal instance-level and bag-level representation schemes.

Another instance selection method, Random Subspace Instance Selection (RSIS) [55]

finds random subspaces using clustering to identify witness instances in positive bags

and determines bag labels by training an ensemble of SVM classifiers on subsets of

instances.

A recent dissimilarity-based method DRS-SVM [48] finds dissimilarities of bags in

a random subspace (RS) formed by random selection of instances. However, calculated

dissimilarities may include noisy or uninformative features, which may deteriorate the

performance of the final classifiers. Another recent method, MInD [26] solves MIL

problem using different dissimilarity-based bag representations. Bags are compared by

defining various bag-to-bag dissimilarity measures. Then, logistic regression or SVM

classifiers are employed for bag classification. Utilization of alternative bag dissimilarity

functions provides diversification across MIL datasets with different characteristics.

MInD [26] performs significantly better than the existing MIL methods.

Another class of approaches introduce graph-based representations to solve MIL

problem. Similar to [26], spatial relationships between instances are modeled using

similarity information. miGraph [56] builds a graph where nodes are the instances, and

edges are weighted by the affinities between the instances. A graph kernel is defined

in miGraph [56] by forming cliques of similar instances. MIGraph [56] also employs a

graph kernel to capture underlying manifold structure of the data. In addition to the

instance relationships, a MIL approach on structured data (MILSD) [57] examines the

relational structure between bags, or instances in different bags. A recent graph-based

proposal targets MIL via multi-graph learning such that every bag consists of several
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graphs [60]. Representative subgraphs are generated in various ways to differentiate

positive and negative bag classes.

The closest works to our bag representation approaches also follow simple strate-

gies to transform instance feature space [20, 49, 50]. Then, bags are represented by

the number of instances in the transformed space. A two step classification algorithm,

TLC [20] represents the bags by their instances using a standard decision tree. The

first step learns instance-level concepts using a decision tree. The tree is built on

the instances in training bags after setting the label of each instance as the label of

its owner bag. This study trains a single tree in a supervised manner, and fails to

be generalized to the MIL problems with assumptions other than the standard MIL

assumption [20]. The second approach, constructive clustering ensemble (CCE) [49],

clusters the instances to encode the bags by a binary feature vector indicating that

whether a bag has an instance in a cluster or not. A feature value is set to one if at

least one instance of the bag appears in the corresponding cluster. This method is very

similar to the BoW representation with k-means clustering, namely k-means-encoding.

However, CCE [49] takes only the presence of the cluster member into consideration,

which might be problematic for the MIL problems encoding threshold-based or count-

based assumptions. CCE [49] repeats clustering to encode much more information,

and obtains an improved representation in a higher dimensional space. In k-means-

encoding, all the training instances are clustered into a fixed number of clusters. Then,

each bag is considered individually by counting its neighboring instances to each clus-

ter center. The encoded bag vector conveys more precise and distinctive information

and its dimension equals to the number of clusters. A single repeat of clustering in

k-means-encoding is enough to generate better results compared to CCE [49].

Finally, MIL based on the Fisher vector representation (miFV) is proposed in [50],

where the bags are mapped to a higher dimensional feature space by benefiting from

a Fisher kernel in a GMM. In miFV, Fisher vector (FV) is characterized as a gradi-

ent vector describing a bag. Generation of the FV is modeled by a density function.

Parameters of the density function are estimated by a GMM. Density forests are a gen-

eralization of GMMs, where each leaf of a randomized clustering tree is considered as a
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Gaussian component. A comprehensive study on random decision forests [74] demon-

strates that better density estimations can be achieved by generating unsupervised

randomized trees. In that sense, both approaches share similar ideas. Partitioning the

instances inside bags by a random tree ensemble is capable of representing bags with-

out imposing any parameter estimation. It also pursues the advantages of tree based

learning such as fast application without data preprocessing, handling all types of data

and easy interpretation. The resulting bag vector is numeric and any classifier can

be trained on the new representation. Although miFV scales well with large number

of instances, its time and memory utilization rapidly increases on datasets with large

number of features due to the covariance calculations.

The remainder of this chapter is organized as follows: Section 3.2 introduces the

bag representation schemes and the proposed solution algorithms. Density modeling

success of randomized trees are discussed in Section 3.3. Description of real world

datasets, the results of the carried out experiments followed by parametric and com-

putational analysis are demonstrated in Section 3.4. Finally, Section 3.5 draws the

conclusions.

3.2. Multiple Instance Learning with Bag Encoding

3.2.1. Summary of Bag Encoding for MIL

The proposed approach has two main stages: bag encoding and bag-level clas-

sification. The first stage provides bag representation vectors {bj : j = 1, . . . ,m}

by transforming the instance level information. The bag set can be described as

B′ = {bj : j = 1, . . . ,m}, which will be denoted as the encoded bag set. The sec-

ond stage learns a classifier g(bj) to predict the labels of input bags. The underlying

technical steps of bag encoding are illustrated in Figure 3.2, consisting of k-means-

encoding, path-encoding and terminal node-encoding. Initially, all of our proposals

for bag encoding simply partition the feature space of instances as shown in stage

one of Figure 3.2. In k-means-encoding, k-means algorithm is utilized to cluster the

instances. In RT-based encoding, multiple randomized decision trees are built to parti-
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tion the instances into different nodes. This partitioning can be performed using either

terminal nodes, which cannot be splitted any further, or all the nodes in trees of the

RT-ensemble.

After partitioning the instance feature space, bags are represented as the number

of instances residing at each partition, as shown in stage two of Figure 3.2. In k-

means-encoding, bags are represented by the number of instances belonging to different

clusters. In a tree, each node on a path or a terminal node indicates an instance space

region. Bags are represented either by the path vectors, or the terminal node vectors.

Namely, number of instances residing in a terminal node, or a leaf node on the traversed

path forms a feature of the bag-level representation, as illustrated for a single bag in

stage two of Figure 3.2.

Once the bag representation is obtained, we utilize an RF classifier for bag-level

classification, which scales well with large number of features and instances. After

obtaining the encoded feature vector for training bags in the first main stage, a su-

pervised RF is learned as a final bag classifier in the training phase. For testing, the

bag-level representation is obtained after mapping instances of a test bag to the new

feature space using the trained encoding model. Then, the test bag is classified by

simply traversing the trees of the RF classifier. All aforementioned encoding schemes

output simple and sparse vectors describing internal structures of training bags through

time-efficient computations.

3.2.2. A Baseline Encoding Approach: K-Means-Encoding

Success of BoW representations using k-means-encoding has been illustrated for

several computer vision applications [70]. As a baseline approach, k-means-encoding is

considered for comparison purposes. We provide the details of k-means-encoding, and

a simple extension of it. In the original k-means-encoding, instances are clustered into

κ clusters and each instance is assigned to its closest cluster center based on Euclidean

distance. Each bag is then represented by a feature vector counting the number of

its instances’ cluster assignments. In other words, a feature vector of size κ represents
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Figure 3.2. Bag representation algorithms.

each bag, entry of which counts the number of instances of the bag that are one-nearest

neighbor to the corresponding cluster center. miFV [50] uses a similar information.

However, since the bags are represented by using Fisher vectors, the information loss

is less when compared to the frequency-based representation.

We also extend the traditional k-means-encoding, in which the instances of pos-

itive and negative bags are clustered separately. Since our MIL experiments are on

binary classification datasets, we entitled this encoding algorithm as k-means two class-

encoding. Bags are represented with a feature vector of size 2κ with this encoding. For

MIL problems following the standard MIL assumption, this approach provides bene-

fits since potential noisy instances in positive bags cannot distort the clustering of the

instances in negative bags. Since both approaches require similarity calculations, they
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also suffer from the same problems discussed for similarity-based approaches.

3.2.3. Random Tree (RT) Encoding

To avoid from aforementioned problems with the earlier proposals, we make use

of tree learners as they are robust to different variable types, noise and missing values.

Each terminal node of a decision tree defines axis-parallel decision boundaries based

on certain rules learned on the training data. Furthermore, each non-terminal node

of a tree agglomerates the similar instances. As in BoW representations, the instance

frequencies at terminal nodes constitute the new representation. For each tree, the

count of the instances at each terminal node can be used to represent the bag as shown

in Figure 3.4(a).

Our tree learners (i.e. ensemble) do not use the bag labels and partition the

feature space in a randomized manner. Given the depth of the tree (h), we select

one random feature and a random splitting point at each tree building step. In order

to capture the information from different regions of the feature space, we train T

trees. This strategy is computationally efficient and multiple concepts can be explored

through the randomization. The steps of RT-encodings are described in Figure 3.3.

Compared to approaches requiring distance calculations (i.e. k-means-encoding), RT-

encodings are computationally more efficient. In particular, RT-encodings only require

the traversal of trees in the forest to determine the corresponding terminal nodes or

visited paths. All bag vectors are normalized with the total number of instances residing

in the corresponding bag.

A terminal node of the tree implies a region in the feature space, which can be

considered as a cluster. However, since each terminal node is considered as a separate

cluster, the relational information between these clusters is lost. To avoid this problem,

we propose a path-based representation as described in Figure 3.4(b). Suppose there are

seven instances in a bag, and the instances reside in the corresponding terminal nodes.

Consider two instances following the same path except the last split (i.e. instance 1

and 7). Although these instances share similar information, they reside in different
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Input: A bag set χ = {(Bj, lj) : j = 1, . . . ,m}, number of trees T

Output: RT-encoded bag set B′ = {bj : j = 1, . . . ,m}

Build T unsupervised random trees of depth h using instance features

for all bags Bj do

for all instances xi ∈ Bj do

Find the node frequencies of xi by traversing the trees

end for

Terminal node-encoding: Construct the RT-encoded bag vector bj by combin-

ing the terminal node frequencies

Path-encoding: Construct the RT-encoded bag vector bj by combining the path

node frequencies

end for

Figure 3.3. RT-encoding algorithm.

terminal nodes. Hence, a representation based on the terminal nodes has potential

to lose information. We encode each instance according to the visited nodes by that

instance. The encoding basically forms a binary vector indicating whether the rule

leading to a node is satisfied by an instance or not. Figure 3.4(b) illustrates the path-

based representation. As opposed to the terminal node-encoding with a feature vector

of length eight, instance frequencies at all nodes on the traversed paths constitute the

new representation, which forms a feature vector of length fourteen.

In Figure 3.4(b), a sample bag has seven instances. For each instance in Fig-

ure 3.4(b), all trees in the forest are traversed. For each path in a tree, the nodes in

this path are converted to a binary feature vector, which takes value one for a visited

node, and takes value zero otherwise. For each instance in a bag, the path vectors are

encoded as illustrated in Figure 3.4(b). Accordingly, the path vectors are summed to

obtain the final bag representation in a tree. Each tree is traversed by all instances in

a bag. When we consider the traversal of a tree for a single bag, all instances visit the

root node of the tree. Since we count the visits of instances at each node and the root

node is visited by all instances, the feature value corresponding to the root node will

be the same for all trees. Hence, collected traversal information of the root nodes of
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(a) Terminal node-encoding (b) Path-encoding

Figure 3.4. An example of bag-level RT-encoding.

trees is excluded from the representation. As a last step, constructed vectors of each

tree in the ensemble are concatenated to obtain path-encoding of bags.

3.2.4. Classification

After the bags are encoded, a classifier is trained on the new representation. De-

pending on parameter settings, the number of variables in the bag-level representation

might be very large. Therefore, a scalable classifier, which can handle large number

of variables and their interactions such as RF is preferred for this task. Also, RFs are

known to be robust to outliers [66] and they are embarrassingly parallel.

Alternatively, any classifier can be trained on the proposed representation. How-

ever, an important issue regarding path-encoding is the correlated features in the repre-

sentation. Each node on a traversed path is related to its predecessor node. Resulting

features emanating from the paths in RT-ensemble are correlated to each other in

the final bag representation. Although this kind of encoding stores a richer informa-

tion, potential problems related to feature redundancy reveal during bag classification.

Therefore, we recommend to use a supervised learner that inherits a feature selection



30

procedure to classify bag-level feature vectors.

3.2.5. Computational Complexity

The time complexity of training an RT-ensemble takes O(Tdh) times assuming

that tree depth is h. Since we randomly select a single feature at each split, time com-

plexity of RT generation becomes independent from d. Therefore, complexity O(Tdh)

of training RT becomes O(Th). The testing complexity of RT ensemble equals to the

complexity of traversing all of the trees, which takes O(Th) times. For the ensem-

ble, finding the frequencies for all instances takes O(Tnh) times. Although the time

complexity of obtaining two RT-encodings is the same, space requirements for path-

encoding is large compared to terminal node-encoding. However, using a sparse matrix

representation efficiently handles this difficulty.

3.3. Comparison of miFV and RT-encoding in Density Estimation

In miFV [50], density of the instance feature space is modeled by a GMM. The

parameters of Gaussian components are estimated to obtain the Fisher vector (FV)

representation. Similarly, unsupervised RTs perform instance partitioning to represent

the data, where each leaf implies a Gaussian component. We provide a discussion

on parameter insensitivity and density modeling success of randomized trees on a toy

example in this section. As mentioned in [74], density forests are generalizations of

GMM models, which estimate the densities by randomly partitioning instance feature

space.

Our experiments include a toy dataset, which has 1500 points on 2D space imply-

ing a spiral shape. The main motivation behind this selection is to test both encoding

approaches in highly nonlinear datasets. We expect miFV [50] performance to dete-

riorate since miFV [50] relies on covariance information, which is a linear measure.

The nonlinearity can be captured by introducing more components in GMM, how-

ever estimation of parameters is problematic in such cases. Both of the approaches

encode given data, and output a new high dimensional representation. miFV [50]
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Figure 3.5. Application of FV-based encoding on spiral data. Input instances are

plotted in the left. Other plots are 2D projections of FV-based encoding with varying

number of components (K) performed with or without PCA.

Figure 3.6. Application of terminal node-encoding on spiral data. Input instances are

plotted in the left. Other plots are 2D projections of terminal node representations

with varying number of trees (T ) and tree depths (h).

estimates GMM parameters and obtains FVs, whereas a RT-ensemble is learned in

terminal node-encoding. Then, principal component analysis is used to map the new

representations on a 2D space to inspect the reconstructions. FV and terminal node

representations are schematized in Figure 3.5 and Figure 3.6, respectively for different

parameter combinations.
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In FV-based transformation, increasing the number of components affects the re-

construction. However, the 2D projection is still a deformed version of the left plot of

Figure 3.5. Additionally, applying principal component analysis (PCA) before learn-

ing the FV representation is also ineffective to describe the original data structure.

Evaluated parameters of terminal node-encoding are number of trees and depth of the

trees in the forest. Compared to original scatter plot on left, all remaining plots in

Figure 3.6 demonstrate that the form of spiral data is reconstructed independently

from varying depths and number of trees. The underlying nonlinear structure of spiral

data is easily captured by terminal node representation. Unsupervised trees of RT-

based encoding represent every instance with multiple partitions, and therefore, model

the data with nonlinear relations. In GMM, Gaussian distribution of instances in the

components is assumed. However, this assumption is not realistic for datasets with

complex distributions, as in the case of spiral data.

As shown in Figure 3.6, terminal node representation preserves the spatial struc-

ture of the original data. In GMM, Gaussian components are generated from all in-

stances with covariance matrices, mean vectors and mixture weights. After parameter

estimation, FVs are obtained to map the input data to the new representation of

miFV [50]. In contrast, RT generation does not require parameter estimation and is

insensitive to user specified parameters as depicted in Figure 3.6. Besides, terminal

node-encoding implicitly learns a generalization of GMM more accurately compared to

miFV [50].

3.4. Experiments and Results

We test our proposals on a wide range of MIL datasets from different categories

to avoid the application bias. Unfortunately, most of the MIL studies follow different

strategies for experimentation, which complicates the comparisons. For instance, some

studies do not report performance on certain datasets because of its computational

requirements, others use different settings for the cross-validation or split train data

randomly and report test performance. Due to this fact, a comprehensive database is

created for the future work in this area. Most of the MIL datasets are provided by [26].
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The datasets are considered under two categories to highlight the success and the

scalability of our proposals. First category consists of the union of the datasets that

are commonly used for comparison and it is referred to as “Common MIL datasets”.

The data characteristics and their references are summarized in Table 3.1. The second

category includes “The PASCAL VOC challenge 2007” dataset, which consists of 9963

images containing 20 object classes in realistic scenes. The goal of the challenge is to

predict object classes given the labeled natural images for training. To solve object

recognition problem using MIL, we use the same setting as [76] including a training

set of 5011 images and a test set of 4952 images. The bag classes are decided based

on a one-versus-all approach in binary classification. Each image is a bag containing

50 region proposals, which are represented by a feature vector of size 500. Ultimately,

there are 250550 training instances and 247600 test instances. The scalability of the

proposed approach is illustrated on the datasets from this category.

We utilize a stratified ten-fold cross-validation to demonstrate the success of

proposed and existing approaches. The performance of a classifier is evaluated based on

the procedure described by [77], when there are multiple parameters to tune. For each

fold in cross-validation, we run an inner cross-validation to tune the parameters. Once

the parameters are optimized, we re-run training with the selected parameters, and

thereafter measure the performance on the test fold. To promote reproducible research,

our codes, datasets, results and the information regarding the cross-validation indices

are made available on our supporting page [63], together with the implementations

of k-means-encodings in R [78], and RT-encodings in Python using scikit-learn [79]

library. Our second set of experiments illustrates the empirical performance of the

encoding approaches in terms of their computation requirements and sensitivity to the

problem characteristics and algorithm parameters in Sections 3.4.3 and 3.4.4.

Popular metrics used to compare the approaches in the literature are area under

the receiver operating characteristic curve (ROC) [80], and accuracy. ROC curve plots

the true positive rate versus the false positive rate of a classifier depending on a thresh-

old parameter. Area under ROC curve (AUC) guides the learner to select the most

suitable classifier for an individual dataset. When the number of test bags is small, [81]



34

emphasizes the necessity for AUC to measure the success of a bag-level classifier.

Moreover, bag classes are highly imbalanced in some MIL datasets such as Web

recommendation [82]. Hence, calculated accuracies for cross-validation folds may be

misleading. For instance, an audio recording dataset, Hermit thrush, has only 15 posi-

tive bags in a total of 548 bags. With stratified sampling, there is only one positive bag

in each fold and classifying all bags as negative will achieve high accuracy. Therefore,

our primary performance measure of interest is AUC. We replicate the cross-validation

five times and report average and standard deviation of these metrics.

We compare the performance of tree-based encoding with the following approaches:

BoW representations with k-means-encoding, citation-kNN [46], MILES [8], CCE [49],

miFV [50] and Dissimilarity-based representations (MInD) [48] with Dmaxmin, Dmeanmin

and Dminmin dissimilarity measures. RSIS [55] is not included for comparison because

of the run-time considerations. The computational effort of RSIS method is investi-

gated in Section 3.4.4. Citation-kNN [46], MILES [8] and MInD [48] are implemented

in PRTools [83] and the MIL toolbox [84]. Other compared approaches are also imple-

mented in MATLAB [85]. It is important to emphasize that the same cross-validation

indices are used for all approaches.

3.4.1. Parameter Settings

We modify the experimentation strategy proposed by [77] slightly for k-means

and RT-encodings to avoid additional computation required for inner cross-validation.

Instead of performing an inner cross-validation, the parameters are tuned based on the

out-of-bag (OOB) performance of RF in the training fold. OOB predictions are known

to provide a good approximation of the generalization error [66]. After obtaining the

representation for each parameter combination, an RF is trained and the evaluation is

done based on OOB performances.
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Table 3.1. Common MIL datasets

Name Instances Min Max Features Bags + bags - bags

Musk 1 [5] ♣ 476 2 40 166 92 47 45

Musk 2 [5] ♣ 6598 1 1044 166 102 39 63

Mutagenesis 1 (easy) [86] ♣ 10486 28 88 7 188 125 63

Mutagenesis 2 (hard) [86] ♣ 2132 26 86 7 42 13 29

Protein [11] ♣ 26611 35 189 8 193 25 168

Elephant [7] ♥ 1391 2 13 230 200 100 100

Fox [7] ♥ 1302 1 13 230 200 100 100

Tiger [7] ♥ 1220 2 13 230 200 100 100

Corel, African [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Antique [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Battleships [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Beach [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Buses [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Cars [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Desserts [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Dinosaurs [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Dogs [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Elephants [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Fashion [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Flowers [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Food [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Historical [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Horses [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Lizards [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Mountains [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Skiing [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Sunset [8] ♥ 7947 2 13 9 2000 100 1900

Corel, Waterfalls [8] ♥ 7947 2 13 9 2000 100 1900

UCSB Breast Cancer [9] ♥ 2002 21 40 708 58 26 32

Newsgroups 1, alt.atheism [56] ♠ 5443 22 76 200 100 50 50

N.g. 2, comp.graphics [56] ♠ 3094 12 58 200 100 50 50

N.g. 3, comp.os.ms-windows.misc [56] ♠ 5175 25 82 200 100 50 50

N.g. 4, comp.sys.ibm.pc.hardware [56] ♠ 4827 19 74 200 100 50 50

N.g. 5, comp.sys.mac.hardware [56] ♠ 4473 17 71 200 100 50 50

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠

text classification, ♦ audio recording classification.
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Table 3.1. – Common MIL datasets (cont.).

Name Instances Min Max Features Bags + bags - bags

N.g. 6, comp.windows.x [56] ♠ 3110 12 54 200 100 50 50

N.g. 7, misc.forsale [56] ♠ 5306 29 84 200 100 50 50

N.g. 8, rec.autos [56] ♠ 3458 15 39 200 100 50 50

N.g. 9, rec.motorcycles [56] ♠ 4730 22 73 200 100 50 50

N.g. 10, rec.sport.baseball [56] ♠ 3358 15 58 200 100 50 50

N.g. 11, rec.sport.hockey [56] ♠ 1982 8 38 200 100 50 50

N.g. 12, sci.crypt [56] ♠ 4284 20 71 200 100 50 50

N.g. 13, sci.electronics [56] ♠ 3192 12 58 200 100 50 50

N.g. 14, sci.med [56] ♠ 3045 11 54 200 100 50 50

N.g. 15, sci.space [56] ♠ 3655 16 59 200 100 50 50

N.g. 16, soc.religion.christian [56] ♠ 4677 21 71 200 100 50 50

N.g. 17, talk.politics.guns [56] ♠ 3558 13 59 200 100 50 50

N.g. 18, talk.politics.mideast [56] ♠ 3376 15 55 200 100 50 50

N.g. 19, talk.politics.misc [56] ♠ 4788 21 75 200 100 50 50

N.g. 20, talk.religion.misc [56] ♠ 4606 25 79 200 100 50 50

Web recommendation 1 [82] ♠ 2212 4 131 5863 75 17 58

Web recommendation 2 [82] ♠ 2212 5 200 6519 75 18 57

Web recommendation 3 [82] ♠ 2212 5 200 6306 75 14 61

Web recommendation 4 [82] ♠ 2291 4 200 6059 75 55 20

Web recommendation 5 [82] 2546 5 200 6407 75 61 14

Web recommendation 6 [82] ♠ 2462 4 200 6417 75 59 16

Web recommendation 7 [82] ♠ 2400 4 200 6450 75 39 36

Web recommendation 8 [82] ♠ 2183 4 200 5999 75 35 40

Web recommendation 9 [82] ♠ 2321 5 200 6279 75 37 38

Birds, Brown creeper [10] ♦ 10232 2 43 38 548 197 351

Birds, Chestnut-backed chickadee [10] ♦ 10232 2 43 38 548 117 431

Birds, Dark-eyed junco [10] ♦ 10232 2 43 38 548 20 528

Birds, Hammonds flycatcher [10] ♦ 10232 2 43 38 548 103 445

Birds, Hermit thrush [10] ♦ 10232 2 43 38 548 15 533

Birds, Hermit warbler [10] ♦ 10232 2 43 38 548 63 485

Birds, Olive-sided flycatcher [10] ♦ 10232 2 43 38 548 90 458

Birds, Pacific slope flycatcher [10] ♦ 10232 2 43 38 548 165 383

Birds, Red-breasted nuthatch [10] ♦ 10232 2 43 38 548 82 466

Birds, Swainsons thrush [10] ♦ 10232 2 43 38 548 79 469

Birds, Varied thrush [10] ♦ 10232 2 43 38 548 89 459

Birds, Western tanager [10] ♦ 10232 2 43 38 548 46 502

Birds, Winter Wren [10] ♦ 10232 2 43 38 548 109 439
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In k-means-encoding, the only parameter is the number of clusters (i.e. κ), which

is selected from the set {50, 100, 200}. RT-encodings require the setting of the depth h

and the number of trees T to learn the representation. Although our proposal is robust

to these settings, h is selected from the set {6, 8, 10} and T is fixed to 500. For tuning h,

50 trees are used to obtain the encoding. Then, an RF with 500 trees is trained on the

encoded bags and the best value of h is determined based on resulting OOB predictions.

We further discuss the robustness of RT-encodings to the parameter selection in Section

3.4.3. Similar strategy is employed for tuning κ in k-means-encoding. Final bag-level

classifier is an RF with 1000 trees.

Default parameters are used for citation-kNN [46], MILES [8], CCE [49] and

MInD [48]. Based on the authors’ advice, we select the parameters of miFV [50] by

using an inner ten-fold cross-validation. The percentage of information left after PCA

is selected from the set {0.8, 0.9, 1} whereas evaluated number of Gaussian components

are {1, 2, 3, 4, 5}. Finally, cost parameter levels for the bag-level linear SVM classifier

are {0.05, 1, 10}.

3.4.2. Classification Accuracy

3.4.2.1. Path-Encoding vs Terminal Node-Encoding. RT-encodings aggregate the in-

stance level information to obtain a new feature representation for bags. Both algo-

rithms use the same information content, but their way of structural representation

differs as described in Section 3.2.3. Dimensionality of the encodings does not directly

depend on the dimensionality of the input data. Namely, size of the encoding vector

depends on the parameters of the RT-ensemble according to the experimental setting

provided in Section 3.4.1. Terminal node-encoding is a smaller sized representation

compared to path-encoding, and therefore, renders computational simplicity.

We perform an experiment to compare the success of terminal node-encoding and

path-encoding. Since similar information content is encoded with these representations,

we generate equal number of trees, T for both to ensure a fair comparison. The value

of h is determined as dlog2 ne and T is fixed to 50. Based on the AUC results of the two
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encoding algorithms, we conclude that there is no significant performance difference

between them. Table 3.2 serves the dominance results of RT-encodings based on their

AUC rankings on each MIL problem category. We count the wins, ties and losses

for both encodings on each problem category. Path-encoding is better in 43 datasets,

whereas terminal node-encoding is better in 23.

In particular, terminal node-encoding obtains superior results on Web recommen-

dation benchmark [82], which has the highest number of features as shown in Table 3.1.

For many instances, most of the features rarely have a nonzero value since each feature

is related to frequency of a word on the web page. In path-encoding of these datasets,

nodes in lower depth levels form too general features in the bag-level representation.

The inferior performance of path-encoding for Web recommendation datasets is mostly

due to overfitting as the final random forest classifier tends to put more emphasis to the

features from lower depth levels. In these datasets, number of bags is relatively small

(i.e. 75) and class imbalance is abundant. Under these settings, proposed RF classifier

suffers from overfitting. This is illustrated in Figure 3.7. For each Web recommen-

dation dataset, we draw a bar plot of average AUC results after RT-encodings. The

number of instances in minority class are also shown in Figure 3.7. Path-encoding has

lower AUC values compared to terminal node-encoding especially when class imbalance

is present. Please note that we report the average AUC for each fold (i.e. average of

50 AUC values) and each fold contains approximately 8 bags. Therefore, in Table 3.2,

we observe the similar behavior in Protein [11], which has a severe class imbalance.

In contrast, path-encoding offers the following utilities. A frequent challenge in

MIL problems is a low rate of concept instances in positive bags [55]. For instance,

in Newsgroups datasets [56], most of the instances are not effective on bag class label.

Thus, relationships between concept instances become substantial for bag-level classi-

fication [8,26]. A possible way of identifying instance relationships is based on the use

of decision trees. However, since number of the concept instances is low in Newsgroups

datasets, these instances may not reside in the same terminal-node depending on the

tree depth level. The authors of [72] argue that similar instances have a higher prob-

ability of jointly following the same path on a tree due to the random selection of a
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Figure 3.7. Bar plot of classification AUC after RT-encodings of Web

recommendation datasets. y-axis show average AUC values for each dataset. x-axis

list the dataset names (number of bags for minority class). Red bars indicate

terminal node-encoding, and blue bars show path-encoding.

feature and a split value in each level. In a similar fashion, path-encoding identifies the

similarities between informative instances using the richer information level obtained

by the hierarchical representation as described in Section 3.2.3. Compared to terminal

node-encoding, a better classification ranking of path-encoding in Newsgroups datasets

is observed in Table 3.2.

3.4.2.2. Common MIL Datasets. We first compare the variations of k-means encod-

ing and RT-encoding. k-means two class encoding and path-encoding provide more

detailed information regarding the instance distribution compared to their counter-

parts as discussed in the earlier sections. Pairwise comparisons of AUC in Figure 3.8

support the superiority of these approaches. Each axis corresponds to a method and

a dot represents the average AUC for a particular dataset. x = y line represents the

region, where both methods perform about the same. A point above the line indicates

that the approach on the y axis has better accuracy than the one on the x axis for

the corresponding dataset. As illustrated, k-means two class-encoding provides better

AUC values than k-means-encoding in 42 datasets, and performs equally in two of

them. On this regard, we determine to report and analyze the overall results only for
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Table 3.2. Win-loss table of bag classification AUC results after RT-encodings of

datasets from different problem categories. Each row represents wins, losses and ties

of path-encoding compared to terminal node-encoding.

Dataset Path-encoding

Wins Losses Ties

Musk ♣ 2 0 0

Mutagenesis ♣ 2 0 0

Protein ♣ 0 1 0

Elephant, Fox, Tiger ♥ 0 3 0

Corel ♥ 15 4 1

UCSB Breast Cancer ♥ 0 1 0

Newsgroups ♠ 13 6 1

Web recommendation ♠ 2 7 0

Birds ♦ 9 1 3

Total 43 23 5

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text classification, ♦

audio recording classification.

k-means two class-encoding. When RT-encodings are compared, path-encoding pro-

vides better results in 41 datasets, whereas the performance is equal for four datasets.

Moreover, pairwise differences of RT-encodings are not statistically significant. We

only consider path-encoding into multiple comparisons since proposed statistical com-

parison is affected negatively by addition of alternative approaches. Concordantly,

with the discussions of Section 3.4.2.1, we exclude terminal node-encoding from the

reported numerical results and statistical tests.

The performances based on AUC and accuracy are summarized in Tables 3.3 and

3.4, respectively. In most of the papers, AUC results are not reported for both the

proposed or the state-of-the art algorithms. Only accuracy performances are reported

on the paper of miFV, which is one of the methods included in our comparison. Since

the probabilistic classification estimates in the original implementation are not realistic

due to the used classifier, we do not report the AUC performance for this method.

Comparison of multiple classifiers over all datasets is done using a procedure suggested

by [87]. We first employ a Friedman test [88], followed by the Nemenyi test [89] if a

significant difference in the average ranks is identified by Friedman test. This approach
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(a) AUC comparison of k-means-encoding and

k-means two class-encoding

(b) AUC comparison of path-encoding and ter-

minal node-encoding

Figure 3.8. Pairwise AUC comparison of similar bag encoding algorithms on 71

real-world datasets.

is a non-parametric form of Analysis of Variance based on ranks of the methods on

each dataset.

Figure 3.9(a) and Figure 3.9(b) show the average ranks for all classifiers on 71

datasets based on AUC and accuracy, respectively. Based on the Friedman test, we find

that there is a significant difference between the classifiers at 0.05 level. Proceeding

with the Nemenyi test, we compute the critical difference (CD). This test concludes

that two classifiers have a significant difference in their performances if their average

ranks differ by at least the critical difference [87]. Figure 3.9(a) demonstrates that

critical difference of AUC results at significance level 0.05 is 1.246. Path-encoding is

significantly different from other methods, except Dmeanmin. Path-encoding has best

average rank, Dmeanmin is the second best and k-means two class-encoding is the third

best as shown in Figure 3.9(a). When accuracies are compared, similar discussion

holds for Dmeanmin and miFV is ranked third as shown in Figure 3.9(b). The accuracy

performance of path-encoding is not significantly different from Dmeanmin and miFV at

significance level 0.05, and corresponding critical value is 1.426.
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(a) Mean AUC performance (b) Mean accuracy performance

Figure 3.9. The average ranks for all classifiers on 71 datasets based on mean AUC

and accuracy measures. The critical difference at 0.05 is 1.246 for AUC and is 1.426

for accuracy.

Path-encoding is quite successful compared to the other methods on molecular

activity prediction datasets (i.e. Mutagenesis and Protein). In Musk 1, highest ac-

curacy and AUC values are obtained by path-encoding, whereas MInD with Dmeanmin

is the leading method in Musk 2. In most of the Corel datasets, path-encoding and

Dmeanmin perform around the same. In other image datasets such as UCSB Breast

Cancer, Elephant and Tiger, path-encoding has the best performance. Fox is one of

the hardest datasets and results of path-encoding is very close the leading method

MILES. In text classification, MInD performs better than bag encoding especially

for Newsgroups datasets, where there are large number of instances and small num-

ber of features. However in Web recommendation datasets, there are higher number

of features and less number of instances compared to Newsgroups and k-means two

class-encoding performs better than others in most of the cases. In audio recording

classification, path-encoding is the leading method with the best classification results

on the extent of Birds datasets.
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3.4.2.3. PASCAL VOC 2007 Dataset. Path-encoding is also evaluated on PASCAL

VOC 2007 dataset to illustrate performance of the approach on large-scaled datasets.

We also report the average Precision (AP) for this dataset since AP is the selected

evaluation metric in PASCAL VOC 2007 challenge, as proposed in [69]. AP is given

by area under the precision/recall curve. Table 3.5 summarizes the performance of

path-encoding on 20 classes. As mentioned in previous sections, parameter selection

part of miFV method is computationally expensive. For example, our experiment on

miFV with the inner cross-validation takes more than 24 hours to encode training bags

and learn the bag classifier. Similarly, Dmeanmin involves distance calculations between

instances and computation times increase significantly for this dataset in our exper-

imental setup. Therefore, Dmeanmin is also excluded from performance comparisons.

Potential problems about the computational requirements of these approaches are fur-

ther discussed in Section 3.4.4. Path-encoding provides satisfactory results with an

average AUC of 97.0%, accuracy of 96.2% and AP of 81.5%.

3.4.3. Parameter Sensitivity

To elaborate on the robustness of RT-encodings to the parameter settings, we

report the AUC performances with changing number of trees T ∈ {100, 250, 500, 1000}

and depth h ∈ {2, 4, 6, 8}. Figure 3.10 shows the average AUC results of RT-encodings

on Elephant dataset. Both parameters control the size of the final bag representation,

and a larger representation is expected to provide a more detailed view of the feature

space. Increasing number of trees in the ensembles of both RT-encodings increases

the AUC. Since Elephant is a small dataset with less number of instances, AUC value

starts decreasing after a certain representation size. Although the decrease in the

performance is not significant due to the randomness in tree learning, the approach

slightly suffers from overfitting with the increase in the number of trees. On the other

hand, the sensitivity to depth decreases significantly with sufficiently large number

of trees. Nevertheless, our parameter selection procedure based on OOB probability

estimates provides slightly better results with efficient computation times.
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Table 3.5. Performance summary of path-encoding on 20 classes of PASCAL VOC

2017 dataset.

Class AUC Accuracy AP Class AUC Accuracy AP

aero 99.3 98.2 95.0 table 98.0 96.4 67.7

bike 97.9 97.3 91.5 dog 96.4 93.0 80.3

bird 97.7 95.5 88.1 horse 98.5 97.7 93.2

boat 98.1 98.3 89.8 mbike 98.1 97.1 87.2

bottle 92.1 95.9 51.4 person 95.4 88.9 94.9

bus 98.5 97.7 87.5 plant 94.9 95.9 65.6

car 97.3 93.4 92.4 sheep 98.6 98.7 83.7

cat 96.7 96.7 86.0 sofa 96.3 95.9 63.7

chair 92.5 92.7 59.9 train 99.4 98.1 96.0

cow 98.1 98.2 84.5 tv 96.5 96.5 71.1

(a) Terminal node-encoding (b) Path-encoding

Figure 3.10. Curves of the AUC values of RT-encodings on Elephant dataset obtained

for different number of trees and number of maximum tree depths.

3.4.4. Computational Time Analysis

Our experiments use a Windows 10 system with 8 GB RAM, dual core CPU (i5-

3470, 3.2 GHz). Although the CPU can handle four threads in parallel, only a single

thread is used. Elephant and PASCAL VOC 2007 datasets are used to demonstrate the

effect of the number of training bags (m) and the number of features (d) on the com-

putation times empirically. We select the two best performing methods, Dmeanmin [26]
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and miFV [50] for comparison. The same set of parameters in Section 3.4.1 is used to

evaluate the performance of the two approaches. A recent method, RSIS [55] is also

included for comparison by using the following setting. As advised by the authors,

four parameter values of RSIS are determined in each experiment by an inner cross

validation loop. The levels for number of clusters are {5, 10, 15, 20}, whereas the tem-

perature for instance selection is chosen from the set {0.00001, 0.001, 10}. In addition,

cost parameter of the SVM classifier is selected from the set {1, 10, 100}, together with

the width parameter γ of the Gaussian kernel from {0.000001, 0.0001, 0.1}. Because

of the computational requirements of miFV and RSIS, comparisons to these meth-

ods are performed only on Elephant dataset. In order to discuss potential problems

with similarity-based approaches, PASCAL VOC 2007 dataset is used for comparisons

to Dmeanmin. For each dataset, we randomly selected proportions of the number of

bags (δm) and the number of features (δd) from the set {0.2, 0.4, 0.6, 0.8, 1}. Here, 10

replications are conducted for each setting combination.

Reported training times for Dmeanmin and path-encoding are the time required to

learn the representation for training bags. For Dmeanmin, it involves the distance calcu-

lations between the training instances and aggregation of these distances to obtain a

bag representation. For miFV, it involves the clustering of the training instances and

obtaining the Fisher vector representation. For path-encoding, it includes the param-

eter tuning, training of random tree ensemble, traversal of the trees and aggregation

of instance representations. Training time of RSIS comprises of clustering the data in

random subspaces to compute instance selection probabilities, and classifier ensemble

generation on the probabilistically formed training subsets. We also measure the time

for parameter selection in miFV and RSIS, which is included in the training time.

Testing time for Dmeanmin contains the distance calculation between test and train in-

stances and aggregation of these distances to obtain a bag representation. miFV maps

the test instances to the new space and obtains bag representation in testing. In RSIS,

individual instances of a test bag are fed into the trained classifiers in the ensemble

and instance positivity scores are calculated to decide bag labels. Path-encoding has

the same steps as in the training except the tree training phase.
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(a) Path-encoding (b) miFV [50]

(c) RSIS [55]

Figure 3.11. Training times of path-encoding, miFV and RSIS on Elephant dataset

with changing values of δm and δd.

The training and test times of path-encoding, miFV and RSIS on Elephant

dataset are illustrated in Figure 3.11 and Figure 3.12, respectively. A linear increase in

training time of path-encoding with increasing δm values in Figure 3.11(a) is consistent

with the complexity discussed in Section 3.2.5. It is insensitive to the changes in the

number of features because of the totally random selection of features in tree learning.

Consequently, path-encoding is computationally very efficient for large databases with

large number of features. The training time of miFV is schematized in Figure 3.11(b).

The training time increases linearly with the increase in both δm and δd. A similar

behavior is observed for RSIS in Figure 3.11(c), where the time required for training

is highly affected from dataset dimensionality and number of bags. Along with the

effect of classifier parameters and the dataset size, ensemble learning also increases
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(a) Path-encoding (b) miFV [50]

(c) RSIS [55]

Figure 3.12. Test times of path-encoding, miFV and RSIS on Elephant dataset with

changing values of δm and δd.

the time requirements of this method. Since longer training times might be due to

implementation bias, we only compare trends in the run times.

Time required to obtain the test representation using path-encoding is insensitive

to the problem characteristics as shown in Figure 3.12(a). Since testing requires only

tree traversal in the ensemble and the tree building parameters are fixed, this result is

expected. Testing time trend of miFV is shown in Figure 3.12(b). For each instance in

the bag, distances to the centroids are calculated in this encoding algorithm. However,

miFV test times are not affected by the dataset size as shown in Figure 3.12(b). This

method is very efficient in obtaining the test representation. Finally, Figure 3.12(c)

shows the increasing trend of RSIS testing times in terms of δm and δd. Scoring the
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(a) Path encoding (b) Dmeanmin [26]

Figure 3.13. Training times of path-encoding and Dmeanmin on PASCAL VOC 2007

dataset with changing values of δm and δd.

(a) Path-encoding (b) Dmeanmin [26]

Figure 3.14. Test times of path-encoding and Dmeanmin on PASCAL VOC 2007

dataset with changing values of δm and δd.

instances in test bags according to multiple base classifiers introduces scalability issues

in contrast with miFV and path-encoding, since these methods evaluate performance

on a single bag-level learner in testing.

The representation learning times of path-encoding and Dmeanmin on PASCAL

VOC 2007 dataset are illustrated in Figure 3.13. The behavior of path-encoding is

illustrated in Figure 3.13(a), which is quite similar to the one observed for Elephant

dataset. On the other hand, Dmeanmin is severely affected by the increase in number of

training bags. This is due to the pairwise distance calculations between the instances



55

of bags. Observed training time for path-encoding remains acceptable even for δm = 1,

compared to the training time of Dmeanmin schematized in Figure 3.13(b). In testing,

dissimilarity calculations are still needed for Dmeanmin, which increases the time for

testing linearly with changing δm and δd as shown in Figure 3.14(b). Moreover, Dmeanmin

requires storage of whole training data to test a new bag, which is problematic while

working on big datasets. Figure 3.14(a) demonstrates efficient testing time of path

encoding on PASCAL VOC 2007 dataset.

The main advantage of path-encoding is its robustness to the encoding parameter

selection. Overall, computational experiments indicate that miFV and path-encoding

are computationally preferable. If the gain in computation time is of first priority,

terminal node-encoding can be preferred instead of path-encoding as terminal node-

encoding generates smaller representations. Moreover, proposed approaches are embar-

rassingly parallel and computation times can be decreased significantly by exploiting

parallelism.

3.5. Conclusions

Use of bag-level representations for MIL has been shown to provide successful

results in the literature. This study proposes a robust framework that uses random

trees to partition the feature space together with either a terminal node, or a path-

based representation. Our encoding implicitly learns generalized Gaussian Mixture

Model (GMM) on the instance feature space and this information is transformed into a

bag-level summary. Proposed representations provide very fast and competitive results

on benchmark datasets from different domains.

Tree-based encoding inherits the desirable properties of decision tree learners. As

opposed to earlier proposals, our methods do not impose any distribution assumptions

for the instances. Without any preprocessing step such as standardization, instance

vectors are partitioned randomly and a simple sparse representation based on the

frequency of instances is obtained to represent the bags. This enables the use of

standard classification algorithms on the new representation. Proposed approaches are



56

reasonably different from the methods following standard MIL assumption.

Many existing studies lack a standard experimentation strategy which compli-

cates comparison of the approaches. The experimental results are reported as the

averages of randomly selected train/test splits and the same splits are not being used

for all benchmarking methods in some studies. Moreover, classification performance

is reported on only a few datasets. To promote reproducible research, we create a

website that serves our implementations and codes of the competitive methods. We

also share the datasets and corresponding cross-validation indices used for comparison.

To the best of our knowledge, this study considers the largest database in evaluation

of classification approaches in MIL.

To conclude, simple instance feature space partitioning approaches are utilized

to learn representative and assumption-free feature vectors for the bags. Although not

explored thoroughly, the encoding algorithms can also be used for the classification

of multi-class MIL problems. Another interesting research direction is incorporation

of the bag label information in bag encoding phase. As a subclass of semi-supervised

learning problem, MIL can benefit from the bag labels.
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4. A LINEAR PROGRAMMING APPROACH TO

MULTIPLE INSTANCE LEARNING

4.1. Introduction

Multiple instance learning (MIL) concerns with classifying objects where each

object is represented with a bag containing multiple instances. The main motivation

of MIL is to respect the complete internal structure of an object with a collection of

multiple instances. Compared to standard supervised learning problems, where each

instance has a label, only the bags are labeled. For example, images are generally

represented by a collection of patches in computer vision. This way, certain problems

regarding the location or scale invariance can be avoided. Moreover, MIL framework

is suitable to a diverse domain of applications such as molecule activity prediction [5],

image categorization [8], web mining [82] and audio recording classification [10]. In

MIL, the label information is provided for bags and instance labels are unknown.

Even when instance labels are known, there should be a rule/model providing the bag

label information. In any case of (labeled/unlabeled) instances, bag-level summary

of the instance distribution is required. To resolve this problem, most of the existing

studies make assumptions regarding the instance labels. For example, standard MIL

assumption prevails in most of the existing MIL approaches. In standard MIL problem,

there is at least one positive instance in positive bags and all other instances in given

data are negative. Since bag positivity is determined by a few instances, standard MIL

methods focus on labeling these potentially positive instances.

Considering the limited structure of standard MIL, a variety of assumptions on

relating instance labels with bag labels are introduced in [90] as generalized MIL. In

generalized MIL, a certain portion of potentially positive instances must be contained

in positive bags. Moreover, these positive instances may belong to different data re-

gions of the instance-feature space and are effective on the bag labels. A hierarchy of

MI assumptions in generalized MIL problems is proposed by Weidmann as presence-
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based, threshold-based, and count-based MI assumptions [20]. A concept is a formation

defined in the underlying instance-feature space which characterizes some subset of

instances. Requirement of at least one instance from each concept forms the presence-

based assumption in Weidmann’s hierarchy. Presence-based assumption is followed by

threshold-based assumption where certain number of instances from multiple concepts

define bag positivity. Finally, count-based assumption requires existence of additional

upper and lower bounds on number of the instances from multiple concepts. Weid-

mann’s hierarchy [20] is later comprehensively extended in [21]. Beside the standard

assumption, they proposed so called collective assumption [91] in which each instance

equally and independently contributes to the bag label.

A wide range of MIL methods prioritize generalized MIL to embrace different

MIL applications by managing multi-instance data [22]. Main point of the discussion

in [22] is that MIL methods differ from each other based on how they managed the

relationships between instances residing in bags. To tackle generalized MIL problems,

we predict bag class labels by aggregation of instance contributions. Instance-level

scores are obtained by an appropriate mapping function of feature weights. Then, a

bag is represented by simply averaging the instance-level scores, which is analogous to

the collective assumption. This kind of approach deals with a variety of MI assump-

tions by optimizing feature weights to assess contribution of each instance to the bag

label. In the cases where only a few instances in positive bags are responsible for class

differentiation, equally weighting the instance-level scores may not be capable of repre-

senting the bag classes. Therefore, weighted collective assumption is proposed in [91] to

highlight the predictions associated with the representative instances in positive bags

while computing the bag class estimates.

Researchers make use of margin maximization based approaches to solve MIL

problem [7, 36, 92]. Generally, inter-bag margin is maximized but the ways of relat-

ing instance margin to bag margin differ. More importantly, most of the existing

optimization-based methods suffer from scalability problems, which is a major chal-

lenge in MIL problems. Considering the limitations of previous approaches, we propose

a novel linear programming-based MIL framework [93]. As opposed to margin maxi-
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mization based MIL models, we build MIL classifiers using a simplified optimization

framework. Our approach models the contributions of instances to the bag labels

rather than individually labeling them. The instance level contributions are implicitly

mapped into a latent variable to obtain the bag class membership estimates.

Figure 4.1 shows the way of mitigating instance information to obtain a bag-

level mapping on an illustrative example from UCSB Breast Cancer dataset [9]. Two

cellular images belonging to malignant (positive) class and benign (negative) class are

considered as bags. Instances of the bags are sampled as square patches of the images

on a grid as exemplified in Figure 4.1. In classification, the aim is to predict the

label of a bag given its set of instances. Instance-level estimates between 0 and 1 are

calculated by a linear decision function. For each bag, scores of corresponding instances

are averaged to assess bag-level class probability estimate. Classification scores of the

bags in Figure 4.1 are predicted as 0.76 for the positive bag, and 0.22 for the negative

bag by simply averaging the pseudo-class memberships of corresponding instances.

In our proposal, we also process all training instances and their relationships to

determine bag classes. It is shown in [94] that there is weak correlation between bag-

level and instance-level performance of MIL classifiers. Hence, instance labels are not

necessarily to be predicted correctly and true labels of instances are not known in most

of the datasets. Besides, instances of a bag may contain both relevant and irrelevant

information, which is the drastic structure of MIL compared to supervised learning. In

the described example, only the final bag label estimate is sufficient for diagnosis of the

disease as shown in Figure 4.1. This way, instances and corresponding bags are related

without enforcing any requirements on the binding MIL assumption. Note that certain

informative instances from the concept regions are prioritized by using a scoring idea

to assess bag-level estimates. Similarly, insignificant instances are ineffective through

proper determination of their scores. Bag class labels are determined based on instance

level pseudo-membership scores analogical with the collective MI assumption [91].

Resulting classifiers are linear functions in the given feature space, and have low

capability of modeling nonlinear decision boundaries. An appropriate transformation
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Figure 4.1. An example of bag class membership estimation.

of the original features is needed to apply classifiers to nonlinear data. As mentioned

in [56], bags are not independently identically distributed samples of the underlying

instance-feature space. Exploiting unsupervised dissimilarities leads to capture the

unknown and potentially nonlinear relationships between instances from positive and

negative bags. An instance selection method, MILES [8] selects the most important

pairwise instance dissimilarities that characterize positive and negative classes. To cap-

ture nonlinear relationships among all training instance vectors, we consider an instance

dissimilarity based data representation. The new features are the dissimilarities to all

training instances which embed bags to a higher dimensional space. Increased number

of instances introduces computational difficulties to classifier training especially for

large scale datasets. To reduce dimensionality of the new space, we propose a simple

and unifying data representation alternative. Using clustering, a low dimensional and

summarized representation of the instances is obtained. Instances in training bags are

pooled and then clustered to form the new features. Instead of instance dissimilarities,

new features of the representation are distances to cluster centers. Dimensionality of

the constructed data representation only depends on the number of clusters.

Our mathematical programming approach to MIL takes into consideration rank-

ings of positive and negative bags. Pairwise comparisons of positive and negative

bag label estimates form the rankings. The idea is to ensure that each positive bag

has a higher label estimation value than the negative bags. After optimization, the
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output linear scoring function is used to find instance-level pseudo-class membership

estimates. Bag class labels are determined based on their instances’ scores without

forcing a specific MIL assumption. Most of the instance-level MIL approaches adopt

standard MIL assumption. The first MIL paper [5] introduces formal descriptions of

both MIL problem and standard MIL assumption whereas [23] presents a survey on

standard MIL methods. In addition to the first MIL method axis parallel rectangles

(APR) [5] and Citation-kNN [46], a generative method Diverse Density (DD) [13] and

its variant EM-DD [30] also solve standard MIL problem. A famous MIL method,

MILES [8] performs embedded instance selection iteratively and assumes instances in

both positive and negative bags belong to the target concept. Prevention of long com-

putational times in MILES [8] is achieved in MILIS [28] via pruning instances after

density estimation and then updating the classifier iteratively.

Aforementioned methods incorporate machine learning algorithms and their per-

formance depend on the adaptation process to given data, such as fine tuning of pa-

rameters and data preprocessing. Hence, it is hard to prove that these methods suit

up to a wide range of datasets. Mathematical programming approaches are also con-

sidered to solve MIL problems. MIL formulations in the literature are extensions of

generic SVM model [7, 32, 34–36] where instance level margin maximization is per-

formed for bag classification initially assuming that all instances in positive bags are

positive. To compensate the impact of this assumption, a witness selection procedure

is employed [7, 35, 36]. For each bag from positive class, an instance is selected as a

witness to represent that bag. However, only standard MIL assumption suits this spec-

ification. Sparse transductive MIL formulation (stMIL) [32] handles the issue of low

witness rates by pulling all the negative instances in the bag closer to the hyperplane.

A Concave Convex Procedure (CCCP) is proposed to solve resulting non-convex for-

mulation. However, this method approach poorly performed when the witness rate is

high. To resolve this issue, they proposed sparse balanced MIL (sbMIL) formulation

where the number of witness instances is controlled. In mi-SVM and MI-SVM for-

mulations [7], two types of constraints are added to the SVM formulation satisfying

at least one sample in each positive bag has a label of one in mi-SVM and a witness

instance is present for positive bags in MI-SVM. A 1-norm SVM-based formulation [34]
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incorporating the assumption “arbitrary convex combination of instances in the pos-

itive bags represents each positive bag” is proposed, which is a linear program with

bilinear constraints. Their solution approach guarantees convergence to a local opti-

mal solution, rather than the global optimal. MIL problem is formulated as a mixed

0 − 1 quadratic programming problem in [35], where the MIL is reduced to instance-

level learning and only the standard MIL assumption is taken into account. Their

proposed branch and bound heuristic outperformed the direct solutions of the models.

In [36], SVM formulations of MIL problem are derived as a hard margin maximization

formulation (MIHMSVM) and two soft margin maximization models, MIHLSVM and

MIRLSVM with additional bag-level misclassification penalties. A penalty is incurred

if all instances in a positive bag are misclassified or at least one instance in the negative

bag is misclassified. Exact solution methods like CCCP in [32] are time consuming.

Heuristic methods proposed in [35,36] are considerably fast in problems with moderate

sized datasets but do not guarantee the quality of final solution [34]. As opposed to

quadratic or mixed-integer quadratic programs, we solve models with a linear objective

function and constraints. Furthermore, instead of repeatedly solving subproblems, we

solve a single linear program, which is solvable in polynomial time. Instances and cor-

responding bags are related without enforcing any requirements on the binding MIL

assumption.

Discriminative methods Citation-kNN [46], mi-SVM [7], MI-SVM [7] and KI-

SVM [33] perform instance level learning and permit witness identification. However,

these methods require a higher rate of witness instances in positive bags to shift the

classification success [55]. Moreover, witness instances selected from positive bags may

belong to various regions of the instance-feature space. This alternative characteriza-

tion is called multiple concept assumption. When positivity of bags is due to multiple

concepts that spread into distant regions, relationships between instances must be

identified to represent the bags. A typical way of modeling instance relationships is

using the dissimilarities between instances. A subset of instances or a representative

set selected from the instance-feature space is referred to as prototypes. Dissimilarity

based MIL methods [8,27,29,56,95] exploit dissimilarities to the prototypes to extract

useful information with various data representations. MILES [8] and MILD [29] embed



63

instances to a new space using dissimilarities to a set of instances and therefore heavily

depend on the instance selection procedure. MILDS [27] is another bag embedding

approach that utilizes an output set of a pairwise clustering algorithm referred to as

dominant sets. For each bag, the instance that is farthest from the negative prototypes

is selected to obtain positive prototypes. A similar prototype is constructed in Clus-

tering MIL [95], which is a spherical area obtained by clustering all positive instances.

MILES [8] and MILD [29] assume that instances from different concepts are indepen-

dently identically distributed, whereas MILDS [27] and Clustering MIL [95] select only

some instances as prototypes thereby waiving instance relationship information. Dif-

ferently from the aforementioned methods, we learn representations by processing all

instances and subsequently model instance contributions to bag labels.

In some MIL applications, bags may have common instances like overlapping

passages in text classification [7] or noisy inputs like instances extracted by bounding

boxes in image segmentation [96]. A graph kernel is employed in MIGraph [56] to cap-

ture underlying manifold structure of data assuming that bags are not independently

and identically distributed samples. A recent method, Random Subspace Instance Se-

lection (RSIS) [55] inherits required knowledge by projecting data onto several random

subspaces and subsequently clustering instances to calculate instance positivity scores.

Then, it averages instance scores to estimate bag labels. This method eliminates the as-

sumptions about instance distributions and robust to various witness rates. Similarly,

our optimization procedure aims to discover effective instances for bag classification

and outputs an instance-level scoring function.

Previously, the multiple concept structure is captured at bag level by using bag

kernels [39], Hausdorff distances between bags in Citation-kNN [46] and bag dissimi-

larities in MInD [26]. In bag-level MIL approaches, a set of vectors are determined to

represent bags and thereafter a bag dissimilarity measure is used to calculate bag-to-

bag distances. In particular, MInD [26] compares bags by defining various bag-to-bag

dissimilarity measures and demonstrates successful performance on a wide range of

MIL datasets. Main advantage of bag level representation is the direct application of

standard supervised learning methods. Instead of bag-to-bag dissimilarities, we classify
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bags by simply using the instance dissimilarities. Instance-level relationships are con-

sidered to benefit from the informative instances in bags since positive and negative bag

classes may possess instances that are very similar to each other. Therefore, concept

instances are promoted by modeling the instance relationships during optimization.

The remainder of this chapter is organized as follows. Section 4.2 describes the

proposed linear optimization based MIL framework. The computational results and

discussions are presented in Section 4.3. Finally, the conclusions are given in Section

4.4.

4.2. Linear Programming for Multiple Instance Learning

To formulate MIL problem as a linear programming (LP) model, we define the

sets, parameters and decision variables used in the model as follows.

Indices:

i = 1, 2, . . . , n: indices for the instances

j = 1, 2, . . . ,m: indices for the bags

Sets:

J+ = {j : lj = 1}: set of positive bags

J− = {j : lj = −1}: set of negative bags

J = J+ ∪ J−: set of all bags

I+ = {i : i ∈ Ij ∧ j ∈ J+}: set of instances in positive bags

I− = {i : i ∈ Ij ∧ j ∈ J−}: set of instances in negative bags

I = I+ ∪ I−: set of all instances

Parameters:

xi ∈ <d, i = 1, 2, . . . , n: instance vectors

lj, j = 1, 2, . . . ,m: bag labels

Decision variables:

w: d-dimensional feature weight vector

b: bias of the linear function

mi, i = 1, 2, . . . , n: instance pseudo class memberships

βj, j = 1, 2, . . . ,m: bag class memberships
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σjl, j ∈ J+, l ∈ J− : bag class membership differences

Our learning approach ranks the bags in a binary classification problem. Namely,

a positive bag is ranked before an arbitrary negative bag after classification. Area under

the ROC curve (AUC) is the most commonly used measure to evaluate the success of

ranking problems. Using a least-squares SVM algorithm, [97] solves AUC maximization

problem by comparing positive and negative instance pairs. AUC can be calculated

using Wilcoxon-Mann-Whitney (WMW) statistic [98], which can be written for positive

and negative bags as

W =

∑
j∈J+

∑
l∈J− 1(βj ≥ βl)

|J+||J−|

where 1(·) is an indicator function that equals one if its argument is true, and equals

zero otherwise.

WMW statistic yields the quantity of positive bags having higher rank compared

to the negative bags, which is divided by the number of all possible bag pairs. Our

LP model minimizes pairwise positive and negative bag class membership differences,

which is also improves the bag ranks [99]. Therefore, comparison of positive and

negative bag pairs can also be casted as solving AUC maximization problem.

Instead of labeling each instance individually, determination of class membership

scores permits contributions of instances from multiple concepts with different impor-

tance degrees to the bag class. Hence, membership values are not assessed by favoring

a specific target concept as observed in the standard MIL problem. This property em-

phasizes the superiority of our approach compared to the margin maximization based

methods where standard MIL assumption is deemed [7,33,46]. Finally, a linear binary

MIL classifier is built by solving the following model:
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(LP) max
w,b,β,m,σ

∑
j∈J+

∑
l∈J−

σjl (4.1a)

st 〈w,xi〉+ b = mi ∀i ∈ I (4.1b)

βj =
1

nj

∑
i∈Ij

mi ∀j ∈ J (4.1c)

βj = βl + σjl ∀j ∈ J+,∀l ∈ J− (4.1d)

0 ≤mi ≤ 1 ∀i ∈ I (4.1e)

The values of variables mi, ∀i = 1, 2, . . . , n correspond to instance pseudo class

memberships which are bounded by Constraint (4.1e). As introduced, w is the feature

weight vector, whereas b is the bias parameter that are optimized to form an instance

level separating hyperplane. This hyperplane decides the instance pseudo class mem-

berships in Constraint (4.1b). Constraint (4.1c) forms the bag class memberships

βj,∀j = 1, . . . ,m based on the summation of instance pseudo class memberships for

each bag, which is normalized with the size of the corresponding bag, nj. Constraint

(4.1d) characterizes the bag differences for each positive and negative bag pair which

are imposed by the slack variables σjl, ∀j ∈ J+ and ∀l ∈ J−. Finally, the objective

function (4.1a) maximizes the summation of these slack variables to maximize bag

class separation. The resulting model is efficient to solve since it has a linear objective

function and constraints. All the instances in training bags constitute to the classifier

during optimization. LP solution provides a classifier 〈w,xi〉 + b which determines

instance pseudo-class membership value for an arbitrary d-dimensional instance vector

xi, i.e. mi = 〈w,xi〉+ b.

For each instance in the dataset, a membership value between 0 and 1 must

be decided to map the bag level estimates onto the 0 to 1 interval. We regard this

membership value as pseudo class label estimate. If the membership value is less

than a threshold, the instance can be assigned to the negative class. Otherwise, the

instance is considered to belong to the positive class. The threshold can be selected
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based on the highest accuracy level on training bags. We assess the pseudo-membership

values of instances to find bag-level estimates, not for instance labeling since the actual

instance labels are not known in MIL tasks. Each bag has a class membership value

which is obtained related to membership values of its instances. Class membership

estimates for bags are determined by averaging pseudo class membership values of its

possessed instances as βj = 1
nj

∑
i∈Ij mi, ∀j ∈ J . This representation eliminates

single witness instance selection encountered in previous proposals and leads to an

optimization problem with continuous variables and linear constraints. To classify a

test bag, instance level scores are calculated and then averaged to find bag class label

estimates. Such an approach is simple and efficient to implement and optimize and

there are no hyperparameters that need to be tuned.

4.3. Experiments and Results

4.3.1. Data Representation

Input data representation plays a crucial role in data mining tasks. Success of

the proposed algorithms are varied based on selected feature representation. Many

research works have benefited from instance dissimilarity-based representation instead

of feature-based representation [100]. In MIL, it is not enough to describe objects with

multiple instance vectors, the relationships between these vectors must also be repre-

sented. The researchers conducted MIL experiments on various data representations

by calculating the dissimilarities to selected prototypes [8,26–29]. As discussed before,

methods like MILES [8], MILIS [28] and MILDS [27] perform instance selection during

prototype generation to reduce data dimension. Moreover, a summarized information

inherited by bag-to-bag dissimilarities as in [26] may extinguish some effective instance

dissimilarities for classification. To overcome this issue, same authors propose ran-

domly selecting the instances to form multiple subspaces and then training a classifier

in each subspace [48]. In our LP-based MIL framework, we preprocess the input data

to allow learning different characteristics of MIL datasets. Solving LP model produces

a decision boundary by means of a linear classifier. Most of MIL datasets are formed of

complex objects with potentially nonlinear instance relationships. The input data can
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be transformed to carry out nonlinear classification in a new, possibly higher dimen-

sional space. A linear classifier is simple to apply and capable of nonlinear separation

in the new feature space [100].

Given a set of bags χ = {B1, . . . , Bm}, each bag Bj is composed of nj many

instances. The original instance-feature space is described with d many features. It

is practical to transform the original input χ using function φ(xi), which admits to

another representation of input data, say χ′. For instance, the similarities to proto-

type instances [8], or a graph kernel [56] transforms the original data to discover its

underlying structure. Given χ or χ′ with bag labels lj, j = 1, . . . ,m, our MIL task is

to predict labels of unseen bags based upon a linear decision function.

Initially, both training set and test set are preprocessed by standardization using

the feature means and standard deviations throughout the experiments. Preliminar-

ily, we processed pairwise training instance dissimilarities to learn a MIL classifier.

The dissimilarities between instances xi and xk are calculated by using the squared

Euclidean distance d(xi,xk) = (xi − xk)
T (xi − xk). In a test bag, distances to all

training instances are calculated for each instance of that bag. The dimensionality

of the new space equals to total number of instances in training bags, i.e., n and the

new representation is referred to as Rinstance. When n is large, there are large number

of variables in LP model which introduce computational difficulties. Moreover, since

the n × n dimensional instance dissimilarity matrix is large and dense, the resulting

mathematical model also has dense columns. Consequently, the solution time is af-

fected from dense columns especially for large datasets. Curse of dimensionality and

overfitting due to noisy features in the enlarged representation are categorized as the

further problems. Thus, alternative representations can be considered to avoid solu-

tion of large models and prevent overfitting on large datasets. To solve LP model on

large-scale MIL problems, we offer a simplified version of the first data representation

using clustering.

Clustering instances is conducted in MIL setting either to detect the target con-

cept [95] or to obtain a new bag-level data representation [49, 101]. Constructive
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clustering-based ensemble (CCE) utilizes data clustering to obtain a new represen-

tation. All instances in bags are pooled and then repeatedly clustered. In each repeat,

different number of clusters are generated. Representative instances in positive bags

which belong to various concepts may reside in too small clusters after k-means clus-

tering in some MIL datasets. Hence, processing only a subset of the clusters (i.e. the

largest cluster) as in [95] is not always effective. In our clustering-based data represen-

tation, instead of all instances in training bags, cluster centers are selected as proto-

types. After clustering the instances using k-means algorithm, instance-to-prototype

distances build up the input data. Since dimensionality of the input dissimilarity ma-

trix is decreased by clustering (i.e., there exists κ many clusters), clustering-based data

representation is advantageous in datasets with large number of instances. We define

the dissimilarity between instance xi and cluster center cj as rcij = (xi − cj)
T (xi − cj)

where c1, . . . , cκ are the cluster centers. As a result, each instance is described by a

κ-dimensional feature vector. In the final representation, which is denoted by Rcluster,

the total number of distance calculations are reduced compared to Rinstance since the

selected prototypes are cluster centers instead of all training instances.

The assumption that positively considered instances form a compact cluster in

instance-feature space reveals in some MIL problems. For instance, in Newsgroups [56],

the number of witnesses is low and these outlying witnesses are dissimilar to each other

as discussed in [26,55]. Assuming generation of enough number of clusters, dissimilar-

ities to the outlying instances form meaningful feature vectors for classification. Since

instance label information and binding MI assumption are the two main ambiguities

of MIL problems, determination of the informative instance dissimilarities is necessary

to remove uncertainty in bag classification. The two alternative representations can

be tested on a subset of the given data to understand the underlying structure of the

whole data. Simple calculations are performed by selected Euclidean distance metric

and no parametrization is required to obtain Rinstance representation. In order to reduce

computational time, Rcluster representation can be exploited.
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4.3.2. Experimental Setup and Evaluation Criteria

Initially, we transform the data to zero mean and unit variance. We perform 5

repeats of a stratified ten-fold cross validation to evaluate the classifier performance

on each dataset. LP problems are modeled in Gurobi Python interface and solved

using Gurobi 7.5 [102]. Input data representations are acquired using scikit-learn [79]

library. All the experiments are carried out on a Windows 10 system with dual core

CPU (i5-3470, 3.2 GHz) and 12 GB of RAM. In order to perform a fair comparison

over state-of-the-art MIL methods, we use the same train/test split indices for each

method and experiment. All the scripts, datasets and cross-validation indices are made

available on our supporting page [63]. Rinstance representation has no parameters to be

predetermined whereas Rcluster has the input parameter number of clusters κ. The

commonly used statistical approach of setting the best number of clusters is cross-

validation. We simply identify value of κ using the elbow method based on total

within cluster variance and increase the gain in computational time. After learning the

representations, LP formulation in Model (4.1) is solved to obtain the bag classifier.

The convergence tolerance for the barrier algorithm is set to 0.01 and default val-

ues of the solver are used for the other parameters. Finally, state-of-the art approaches

are experimented via their provided MATLAB [85] implementations. We followed the

settings proposed by the authors. MInD [26] employs default parameters. The pa-

rameters of miFV [50] are PCA energy, number of components and cost parameter of

linear SVM. These parameters are selected by an inner ten-fold cross-validation. PCA

energy is selected from the set {0.8, 0.9, 1} and the number of Gaussian components

alternatives are {1, 2, 3, 4, 5}. The cost parameter levels of the linear SVM classifier

are {0.05, 1, 10}.

Performance of a MIL classifier can be evaluated by AUC [80]. AUC is a more

discriminative measure than accuracy [103] since a predetermined decision threshold is

necessary to report accuracy. Besides, AUC maximization is related to maximization

of positive and negative bag membership differences in LP model. In particular, the

probability of a bag from positive class has a higher class membership score than a
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bag from the negative class is estimated by AUC given a MIL classifier. AUC also

improves classification accuracy by ranking positive bags ahead the negative bags, and

is therefore an appropriate evaluation metric for our experiments.

4.3.3. Results

We perform experiments on real world MIL datasets to verify the effectiveness

of our approach. MIL datasets are described in Table 3.1 and are categorized based

on the application domain. To the best of our knowledge, this is the largest MIL

dataset repository with reported results on a proposed MIL framework. Each dataset

has different characteristics such as number of bags, number of instances in bags and

number of features. In addition, minimum and maximum number of instances in bags,

number of positive bags and number of negative bags are also provided in Table 3.1.

For some datasets such as Corel [8] and Birds [10], class imbalance occurs at bag-level.

Another property of the datasets is discussed in [55] is the low proportion of positive

instances in positive bags, as observed in Newsgroups [56]. As a consequence, we

tackled MIL problems from different application domains and investigate the utility of

our MIL framework across various data characteristics.

To demonstrate the effectiveness and superiority of LP-based approach on real-

world datasets, we also experimented the following baseline methods: miFV [50] and

dissimilarity-based representations (MInD) [26] with Dmeanmin representation. We solve

LP problem (Model (4.1)) on Rinstance and Rcluster representations of the datasets de-

scribed in Table 3.1. At first, the significance of the differences are discussed according

to the procedure recommended by [87]. A Friedman test [88] is applied to the ranks of

the algorithms over all datasets. Since the null hypothesis that all methods have equal

AUC performance at the 0.05 level, we proceed with the Nemenyi test [89] to check

whether the pairs of classifiers are significantly different from each other. Pairwise

differences of the methods are significant if their average ranks differ by at least the

critical difference (CD). The resulting CD value for four classifiers at significance level

0.05 is 0.561. By using the rankings of the algorithms on each dataset and the average

ranks, a CD diagram [87] shown in Figure 4.2 is obtained. Performances of LP with
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Figure 4.2. The average ranks for MIL methods on 71 datasets based on mean AUC

performance. The critical difference at 0.05 is 0.561.

Rinstance, MInD with Dmeanmin and miFV are not significantly different from each other

according to the differences demonstrated in Figure 4.2. miFV and LP with Rcluster

are not significantly different from each other since their average rank difference is be-

low the CD. Performance of LP model critically differs when either Rinstance or Rcluster

representations form the input data.

Scatter plots in Figure 4.3 shows the pairwise comparisons of the approaches.

Two methods equally perform on a dataset if the corresponding point falls on the line

x = y. The points falling below the line x = y represent the datasets that are more

accurately classified by the method on the x axis. Otherwise if a point is above the

line x = y, the approach on the y axis is more successful on the corresponding dataset.

Figure 4.3(a) shows the scatter plot comparison of LP results on Rinstance and Rcluster

representations and performance of Rinstance is more successful in 48 datasets. As seen

in Figures 4.3(b) and 4.3(c), AUC results of LP with Rinstance are competitive with the

other two methods. However, on a group of datasets performances of both Dmeanmin

and miFV are superior, which are the text classification datasets. In real-world MIL

applications except for text classification, LP with Rinstance is the leading method as the

ranking results in Figure 4.4 indicates that and its difference with all other methods
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(a) AUC comparison of Rinstance and Rcluster

representations

(b) AUC comparison of LP with Rinstance

and MInD with Dmeanmin

(c) AUC comparison of LP with Rinstance

and miFV

Figure 4.3. Pairwise AUC comparison of various MIL methods on 71 real-world

datasets.

is larger than the CD 0.733. We also compare LP solutions on Rinstance representation

with Dmeanmin and miFV in detail using the scatter plots without Newsgroups and Web

datasets as shown Figure 4.5. On the remaining problem categories, LP with Rinstance

is slightly better than the other approaches as shown in the pairwise comparisons in

Figure 4.5.
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Figure 4.4. The average ranks for MIL methods on 42 datasets based on mean AUC

performance. The critical difference at 0.05 is 0.733.

(a) AUC comparison of LP with Rinstance and

MInD with Dmeanmin

(b) AUC comparison of LP with Rinstance and

miFV

Figure 4.5. Pairwise AUC comparison of various MIL methods on biology, image

categorization and audio recording classification datasets.

AUC results of all methods on 71 datasets are provided in Table 4.1. LP model

has superior performance on Musk 1 and Mutagenesis 2 datasets especially with the

Rinstance representation. The best AUC result on Protein dataset is obtained by LP

solution on Rcluster representation. Result of LP with Rinstance representation on Pro-
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tein dataset is not provided due to the memory restrictions. In Musk 2, MInD with

Dmeanmin has the best classification performance which is followed by miFV. Best aver-

age results for Mutagenesis 1 are obtained by miFV and LP with Rcluster is the second

best method. In most of the Corel image datasets, LP with Rinstance representation

is the leading method in addition to its best performance on image datasets UCSB

Breast Cancer, Elephant, Fox and Tiger. MInD with Dmeanmin also successful on Corel

image datasets. MInD with Dmeanmin has the best performance on Newsgroups datasets

whereas miFV performs better than other methods in Web recommendation datasets.

The poor performance of LP formulations on text classification datasets and the pro-

posals for improving the classification success are discussed in Section 4.3.5. Finally,

LP with Rinstance representation is quite successful compared to the other methods in

Birds datasets.

4.3.4. Computational Time Analysis

Time complexity of obtaining Rinstance representation using Euclidean distances

to instances in training bags is O(n2d) and no parametrization is required. We use

k-means clustering algorithm to form the Rcluster representation. Time complexity of

k-means algorithm is O(Inκd) where κ is the number of clusters and I is the necessary

number of iterations until convergence. After determining the κ many cluster centers,

it takes O(nκd) times to have the final Rcluster representation. LP problems belong to

the complexity class P [104]. We solved LP formulations using barrier solver of Gurobi

version 7.5, which means that the solutions are generated in polynomial time. Besides,

the testing times after LP solutions are O(n) for Rinstance and O(κ) for Rinstance. The

execution times are recorded including the data representation and classifier generation

times. Specifically, we report training and testing times of data representation learning

and the time taken to build a classifier which is the model solution time. We also report

representation learning times of the leading methods miFV [50] and MInD [26] with

Dmeanmin. Unlike LP-based MIL, both miFV [50] and MInD [26] represents bags using

a new bag-level feature vector. Then, bag representation vectors form the input of

the linear SVM classifier in polynomial time. LibLinear package [105] is employed in
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Table 4.1. AUC and standard error (× 100) results of various MIL methods.

Dataset Algorithm AUC (%)

LP

Rinstance Rcluster MInD (Dmeanmin) miFV

Musk 1 ♣ 95.7 (0.9) 96.8 (0.8) 94.5 (1.2) 94.1 (1.2)

Musk 2 ♣ 93.1 (1.0) 92.7 (1.1) 97.6 (0.8) 94.7 (1.2)

Mutagenesis 1 ♣ 85.2 (1.5) 86.7 (1.3) 85.1 (1.2) 88.7 (1.2)

Mutagenesis 2 ♣ 78.8 (3.9) 78.5 (4.0) 64.7 (5.3) 68.3 (5.0)

Protein ♣ - 83.9 (1.4) 52.3 (3.7) 80.0 (1.9)

Elephant ♥ 94.9 (0.5) 90.5 (1.0) 93.6 (0.9) 91.4 (0.9)

Fox ♥ 68.6 (1.4) 64.2 (1.5) 61.2 (1.7) 67.5 (1.5)

Tiger ♥ 90.5 (0.9) 89.3 (1.0) 85.3 (1.1) 87.5 (1.1)

Corel, African ♥ 94.5 (0.6) 93.2 (0.7) 96.7 (0.4) 94.4 (0.6)

Corel, Antique ♥ 89.4 (0.8) 90.0 (0.5) 92.2 (0.6) 90.8 (0.6)

Corel, Battleships ♥ 93.3 (0.6) 95.2 (0.4) 98.1 (0.2) 92.9 (0.6)

Corel, Beach ♥ 99.5 (0.1) 98.8 (0.2) 98.3 (0.4) 97.4 (0.4)

Corel, Buses ♥ 97.9 (0.2) 96.3 (0.3) 97.3 (0.4) 94.0 (0.7)

Corel, Cars ♥ 94.6 (0.6) 92.6 (0.7) 94.8 (0.5) 91.7 (0.7)

Corel, Desserts ♥ 98.8 (0.1) 95.9 (0.4) 97.4 (0.3) 97.3 (0.4)

Corel, Dinosaurs ♥ 98.5 (0.2) 95.3 (0.3) 98.3 (0.2) 94.4 (0.5)

Corel, Dogs ♥ 92.4 (0.6) 88.6 (0.8) 91.9 (0.7) 86.4 (1.2)

Corel, Elephants ♥ 97.0 (0.2) 96.4 (0.2) 98.2 (0.2) 95.7 (0.4)

Corel, Fashion ♥ 98.9 (0.4) 98.1 (0.1) 99.0 (0.1) 98.9 (0.2)

Corel, Flowers ♥ 96.2 (0.4) 93.8 (0.5) 94.7 (0.6) 93.8 (0.6)

Corel, Food ♥ 99.8 (0.0) 98.3 (0.1) 99.8 (0.1) 98.7 (0.1)

Corel, Historical ♥ 99.8 (0.0) 98.8 (0.1) 99.8 (0.0) 98.5 (0.3)

Corel, Horses ♥ 90.6 (0.6) 89.3 (0.7) 92.0 (0.6) 88.9 (0.8)

Corel, Lizards ♥ 97.1 (0.3) 95.7 (0.5) 98.0 (0.3) 95.8 (0.5)

Corel, Mountains ♥ 99.9 (0.1) 99.7 (0.1) 100 (0.0) 99.9 (0.0)

Corel, Skiing ♥ 96.9 (0.3) 93.1 (0.5) 96.0 (0.3) 95.9 (0.4)

Corel, Sunset ♥ 80.4 (1.2) 83.1 (0.9) 83.7 (1.0) 77.1 (1.3)

Corel, Waterfalls ♥ 97.0 (0.3) 95.4 (0.3) 97.5 (0.2) 93.4 (0.5)

UCSB Breast Cancer ♥ 93.0 (2.0) 90.3 (2.2) 83.1 (2.7) 86.8 (2.5)

Newsgroups 1, alt.atheism ♠ 47.0 (2.5) 66.8 (2.8) 94.1 (1.0) 91.1 (1.2)

N.g. 2, comp.graphics ♠ 61.0 (2.3) 50.4 (3.0) 89.8 (1.6) 57.2 (3.2)

N.g. 3, comp.os.ms-windows.misc ♠ 44.6 (2.8) 63.4 (2.5) 81.0 (2.1) 66.8 (2.2)

N.g. 4, comp.sys.ibm.pc.hardware ♠ 53.0 (2.7) 56.5 (3.2) 85.7 (2.2) 69.5 (2.4)

N.g. 5, comp.sys.mac.hardware ♠ 50.6 (2.2) 64.6 (3.2) 85.2 (1.6) 65.0 (2.6)

N.g. 6, comp.windows.x ♠ 59.5 (2.6) 57.8 (2.8) 89.0 (1.7) 82.2 (2.0)

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠ text classification, ♦

audio recording classification.



77

Table 4.1. – AUC and standard error (× 100) results of various MIL methods (cont.).

Dataset Algorithm AUC (%)

LP

Rinstance Rcluster MInD (Dmeanmin) miFV

N.g. 7, misc.forsale ♠ 53.5 (2.3) 56.9 (3.1) 79.0 (2.0) 72.6 (2.5)

N.g. 8, rec.autos ♠ 48.5 (2.5) 43.0 (3.3) 87.0 (1.7) 72.7 (2.5)

N.g. 9, rec.motorcycles ♠ 63.0 (2.8) 43.8 (2.7) 32.6 (3.2) 81.2 (2.4)

N.g. 10, rec.sport.baseball ♠ 64.3 (2.4) 49.8 (3.0) 91.4 (1.4) 86.4 (1.8)

N.g. 11, rec.sport.hockey ♠ 49.0 (2.5) 45.8 (3.2) 95.8 (0.8) 87.9 (1.5)

N.g. 12, sci.crypt ♠ 52.2 (2.6) 55.5 (2.8) 84.0 (1.9) 85.1 (1.8)

N.g. 13, sci.electronics ♠ 45.8 (2.1) 48.8 (4.0) 94.6 (1.0) 61.6 (2.6)

N.g. 14, sci.med ♠ 61.2 (2.5) 46.8 (3.2) 94.2 (0.8) 84.3 (1.7)

N.g. 15, sci.space ♠ 43.0 (2.3) 51.6 (3.1) 90.5 (1.4) 82.9 (1.9)

N.g. 16, soc.religion.christian ♠ 41.6 (2.7) 43.7 (3.0) 89.8 (1.4) 84.9 (1.5)

N.g. 17, talk.politics.guns ♠ 41.6 (2.7) 50.8 (2.8) 87.4 (1.5) 82.7 (2.0)

N.g. 18, talk.politics.mideast ♠ 56.7 (2.5) 49.0 (3.1) 87.4 (1.7) 85.8 (1.9)

N.g. 19, talk.politics.misc ♠ 51.5 (1.9) 50.8 (2.3) 80.2 (1.9) 67.2 (2.9)

N.g. 20, talk.religion.misc ♠ 38.6 (2.3) 61.9 (2.7) 83.4 (2.2) 80.9 (2.3)

Web 1 ♠ 75.9 (3.0) 64.2 (3.2) 63.4 (4.2) 83.2 (2.3)

Web 2 ♠ 46.3 (4.1) 64.7 (3.6) 47.4 (4.2) 37.1 (2.5)

Web 3 ♠ 64.5 (4.2) 62.2 (3.9) 70.8 (4.6) 73.3 (3.6)

Web 4 ♠ 74.1 (3.7) 60.4 (3.8) 79.9 (3.6) 81.2 (3.4)

Web 5 ♠ 73.2 (3.5) 53.4 (4.0) 71.1 (3.7) 68.7 (3.4)

Web 6 ♠ 56.4 (4.4) 41.7 (4.4) 52.5 (4.2) 64.6 (3.6)

Web 7 ♠ 64.3 (2.9) 46.1 (3.2) 69.0 (2.8) 69.7 (3.4)

Web 8 ♠ 50.7 (3.0) 46.9 (2.4) 40.9 (2.6) 53.7 (2.4)

Web 9 ♠ 44.0 (3.2) 45.5 (3.0) 73.5 (2.7) 68.5 (3.1)

Birds, Brown creeper ♦ 99.4 (0.1) 98.4 (0.2) 89.9 (0.5) 98.8 (0.2)

Birds, Chestnut-backed chickadee ♦ 93.9 (0.4) 88.8 (0.7) 85.3 (0.8) 92.3 (0.8)

Birds, Dark-eyed junco ♦ 95.4 (0.6) 93.4 (0.7) 85.6 (1.3) 88.1 (1.2)

Birds, Hammonds flycatcher ♦ 100.0 (0.0) 100 (0.0) 94.4 (0.7) 94.0 (0.7)

Birds, Hermit thrush ♦ 93.9 (1.4) 90.9 (1.0) 57.8 (4.4) 66.2 (3.1)

Birds, Hermit warbler ♦ 98.6 (0.2) 98.2 (0.2) 78.1 (1.5) 94.0 (0.6)

Birds, Olive-sided flycatcher ♦ 97.4 (0.2) 96.2 (0.3) 89.6 (0.6) 95.9 (0.4)

Birds, Pacificslope flycatcher ♦ 96.6 (0.3) 94.5 (0.4) 75.4 (1.0) 98.6 (0.2)

Birds, Red-breasted nuthatch ♦ 98.5 (0.2) 94.7 (0.4) 87.6 (0.7) 94.6 (0.5)

Birds, Swainsons thrush ♦ 98.8 (0.2) 94.5 (0.4) 76.7 (1.7) 91.4 (1.0)

Birds, Varied thrush ♦ 100.0 (0.0) 99.6 (0.1) 84.0 (1.2) 93.0 (0.7)

Birds, Western tanager ♦ 99.2 (0.1) 97.0 (0.3) 84.9 (1.8) 98.9 (0.2)

Birds, Winter wren ♦ 99.2 (0.1) 98.5 (0.2) 93.1 (0.7) 99.7 (0.1)
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miFV [50] to build a linear SVM classifier and corresponding time complexity is O(n),

whereas MInD [26] uses LiBSVM [106] implementation where the linear SVM classifier

learning time scales between O(n2) and O(n3). Prediction time of a test bag takes

O(h) times where h is the dimensionality of the obtained bag representation. Note

that the testing times of LP solutions and SVM classifiers of miFV [50] and MInD [26]

are negligible since only a few vector multiplications and arithmetic operations are

performed.

In order to observe the time complexity, pseudo-synthetic datasets have various

properties such as number of bags and number of features are generated. All the

methods are experimented on pseudo-synthetic datasets that originate from Elephant

dataset. Proportion of bags δm and proportion of features δd are selected from the

set {0.2, 0.4, 0.6, 0.8, 1}. We repeat 10 replications of each setting combination and

plot the average results. Figure 4.6 shows representation learning times of LP-MIL,

miFV [50] and Dmeanmin [26] on the training set. Dmeanmin [26] and Rcluster increases

linearly in terms of the increase in number of features and number of bags. In Rinstance

representation and miFV [50], a cubic growth is followed as the number of bags in-

creases. It can be seen from Figure 4.7 that testing times of miFV [50] and Rcluster

representation are robust to the changes in the data size properties. Effect of distance

calculations degrade representation learning times both on training and test sets when

number of bags and number of features are increased in Rinstance representation and

Dmeanmin [26]. The performance of LP-based MIL especially depends on the model

solution time. Once the LP model is built, the elapsed time during optimization is

the classifier building time. Figure 4.8 shows the changes in model solution times for

Rinstance and Rcluster representations. Since dimensionality of Rinstance is proportional

to number of the training instances, LP solution times can be challenging in datasets

with large number of bags or instances as demonstrated in Figure 4.8(a). Rcluster rep-

resentation is simple and generally low-dimensional compared to Rinstance. Moreover,

linear increase in the solution time curve in Figure 4.8(b) when solving LP formulation

on Rcluster representation with increasing number of bags promotes this representation

on large datasets.
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(a) Rinstance (b) Rcluster

(c) miFV (d) Dmeanmin

Figure 4.6. Training times of LP-MIL, miFV and Dmeanmin on Elephant dataset with

changing values of δm and δd.

4.3.5. Weighting Instance Memberships

In the proposed LP model, all instances in a bag contribute equally to the bag

membership. Since instances can be related to bag labels in many different ways

depending on the application [21], we propose an alternative way of encoding the bag

class memberships. Besides, some real world datasets might have low witness rates [55].

For instance, there are multiple positive concepts and proportion of positive instances

in positive bags is low in Newsgroups datasets [56]. Namely, the influence of witness

instances to bag positivity is larger in positive bags. Our LP models poorly perform on

Newsgroups datasets [56] due to the equally weighted instance contributions to the bag

label, as considered in collective assumption of MIL. To support adaptability to this
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(a) Rinstance (b) Rcluster

(c) miFV (d) Dmeanmin

Figure 4.7. Testing times of LP-MIL, miFV and Dmeanmin on Elephant dataset with

changing values of δm and δd.

special type of MIL problem and other analogous MIL applications, we define additional

weight coefficients. Our instance weighting scheme resembles to label learning under

weighted collective assumption of MIL [21].

There are several ways of determining the membership of a bag such as taking

the minimum, maximum or the average of the membership values of its instances.

In [36], a subset of instances from positive bags and all instances from negative bags are

separated by a hyperplane. MI-SVM [7] selects the most positive instance in positive

bags and the least negative instance in negative bags. This idea is in alignment with the

standard MI assumption in which positive instances belong to a single target concept.

Taking the minimum and the maximum instance memberships are two extreme decision
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(a) Rinstance + LP (b) Rcluster + LP

Figure 4.8. Solution time of LP on representations Rinstance and Rcluster of Elephant

dataset with changing values of δm and δd.

alternatives to determine bag class estimate. In our proposals, membership estimates

for bags are determined by averaging membership values of its possessed instances as

βj = 1
nj

∑
i∈Ij mi ∀j ∈ J .

Instance pseudo class membership value of each instance is weighted by the sum-

mation of distances between this instance and all other instances in its owner bag.

The contribution of instances to the bag label is proportional with their distances to

the other instances in the corresponding bag. Let d(xi,xk) be the Euclidean distance

between instance i and instance k. The weights of instances in a bag are normalized

with the summation of all pairwise distances to sum up to one. Finally, the instance

weights are calculated using the following equation

ui =

∑
k∈Ij d(xi,xk)∑

i∈Ij

∑
k∈Ij d(xi,xk)

, ∀i ∈ Ij,∀j ∈ J. (4.2)

The normalized weight ui adjusts the contribution of instance i to the class membership

estimate of its owner bag. Therefore, the alternative statement of Constraint (4.1c) can

be written as βj =
∑

i∈Ij uimi, ∀j ∈ J where ui is the normalized weight associated

with instance i.
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As an illustration, instances from 50 positive and 50 negative bags are selected

from a compact cluster in a 2D feature space as shown in Figure 4.9. Each bag has 10

instances. Moreover, some instances from positive bags are selected from a perimeter

which is located away from the compact cluster of all other instances. This example

illustrates the situation in Newsgroups datasets [56] where instances in positive and

negative bags share high level of similarity and a few instances in positive bags are

identified as outliers. As mentioned earlier, these outlier instances are effective for

classification. To tackle this MIL problem, we solved our LP model by weighting in-

stance pseudo class memberships. The average of AUC values after 5 repeats of ten-fold

cross validation runs is 89.5 when data is represented by using instance dissimilarities.

For the non-weighted case, the resulting AUC value was 74.8.

Figure 4.9. Scatter plot of instances from positive (blue) and negative (red) bags in

2D. Instances from positive and negative bags are similar to each other except for the

instances located at the outer perimeter.

Table 4.2 shows the results of LP model including application of the weight func-

tion on Newsgroups datasets [56]. The best AUC results are marked with asterix.

Table 4.2 demonstrates the improved classification success by non-equally weighting

the instances in this MIL problem.
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Table 4.2. AUC results of LP model on Newsgroups [56] datasets with and without

instance membership weighting

Avg. of algorithm AUC (%)

Dataset Unweighted Weighted

LP + Rinstance LP + Rcluster LP + Rinstance LP + Rcluster

Newsgroups 1, alt.atheism 47.0 (2.5) 66.8 (2.8) 73.2 (2.3) 89.5 (1.3)*

N.g. 2, comp.graphics 61.0 (2.3) 50.4 (3.0) 80.2 (1.7)* 49.9 (3.2)

N.g. 3, comp.os.ms-windows.misc 44.6 (2.8) 63.4 (2.5) 68.6 (2.1) 70.6 (2.8)*

N.g. 4, comp.sys.ibm.pc.hardware 53.0 (2.7) 56.5 (3.2) 71.0 (2.7) 72.2 (2.6)*

N.g. 5, comp.sys.mac.hardware 50.6 (2.2) 64.6 (3.2) 78.8 (1.9)* 69.0 (2.9)

N.g. 6, comp.windows.x 59.5 (2.6) 57.8 (2.8) 79.1 (2.3)* 69.6 (3.0)

N.g. 7, misc.forsale 53.5 (2.3) 56.9 (3.1) 66.5 (2.3)* 57.2 (3.3)

N.g. 8, rec.autos 48.5 (2.5) 43.0 (3.3) 72.5 (2.3)* 49.8 (3.7)

N.g. 9, rec.motorcycles 63.0 (2.8) 43.8 (2.7) 79.6 (2.2) 85.9 (1.7)*

N.g. 10, rec.sport.baseball 64.3 (2.4) 49.8 (3.0) 87.7 (1.9)* 52.2 (3.2)

N.g. 11, rec.sport.hockey 49.0 (2.5) 45.8 (3.2) 77.1 (1.9)* 42.0 (3.2)

N.g. 12, sci.crypt 52.2 (2.6) 55.5 (2.8) 69.3 (2.0)* 66.8 (2.5)

N.g. 13, sci.electronics 45.8 (2.1) 48.8 (4.0) 85.0 (1.6)* 64.2 (3.6)

N.g. 14, sci.med 61.2 (2.5) 46.8 (3.2) 76.5 (2.3) 84.2 (1.6)*

N.g. 15, sci.space 43.0 (2.3) 51.6 (3.1) 71.8 (2.1) 72.7 (3.0)*

N.g. 16, soc.religion.christian 41.6 (2.7) 43.7 (3.0) 75.0 (2.1) 80.6 (1.8)*

N.g. 17, talk.politics.guns 41.6 (2.7) 50.8 (2.8) 61.4 (2.4)* 58.0 (2.5)

N.g. 18, talk.politics.mideast 56.7 (2.5) 49.0 (3.1) 74.9 (2.0)* 42.6 (3.2)

N.g. 19, talk.politics.misc 51.5 (1.9) 50.8 (2.3) 67.0 (2.0)* 61.9 (2.5)

N.g. 20, talk.religion.misc 38.6 (2.3) 61.9 (2.7) 60.2 (2.7) 80.7 (2.5)*

4.4. Conclusions

We propose a multiple instance learning framework including a new mathemat-

ical model of multiple instance classification and enhanced data representations. We

efficiently solve the MIL problem without imposing strict assumptions on object de-

scriptions. Our approach embeds instance relationships via inputting various data

representations and determines class memberships of the objects. To the best of our

knowledge, this is the first linear programming based classification approach in MIL.

We compare our learning procedure with state-of-the-art MIL methods on a wide range

of machine learning datasets to highlight the classification success on different applica-
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tion domains. Unlike the previous mathematical models of MIL, we do not force regular

margin maximization. This leads to avoiding quadratic optimization, which is compu-

tationally more difficult than linear programming. Moreover, a common initialization

setting of previous models is that all the instances in positive bags are positive and all

the instances in negative bags are negative. This strong assumption is not required in

our approach since we only calculate pseudo-class memberships of instances regardless

of the class label of their owner bag. We also exploit different data representations to

improve success of the linear classifier. Instance dissimilarity spaces are constructed to

represent the input data to perform nonlinear separation. In datasets with large number

of instances, it is computationally demanding to form the new instance-feature space.

In order to reduce amount of distance calculations between pairs of instances, we em-

ployed data clustering. Instead of instance dissimilarities, distances to the centers of

generated clusters are the new features. Finally, the internal structure of Newsgroups

datasets is not captured successfully by LP-based MIL. Therefore, an instance weight-

ing scheme is employed for each bag during calculation of bag-level class membership

estimates.

In this chapter, linear programs are solved to perform MIL classification. Pro-

posed mathematical models are efficient to solve on different input data representations.

Processing the instance-level relationships and forming the bag label estimates using

the instance-level scores deliver promising classification success on diversified real world

MIL applications. As an extension, MIL can be used in large scale data mining ap-

plications requiring decentralized data storage. To decrease the solution times and

considering the restrictions on data availability in such applications, subsets of the

original data can be used to form a MIL classifier. Inspections on the potential loss in

classification accuracy due to not being able to process whole data may give rise to a

reformulation of the proposed model. A commonly seen property in optimization-based

data mining approaches is overfitting. Both data representation and classifier gener-

ation processes may reinforce this situation. Potential overfitting problems on some

MIL datasets can be recovered by using an ensemble formed by repeatedly solving

mathematical models on different subsamples of the data.
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5. MULTIPLE INSTANCE CLASSIFICATION VIA

QUADRATIC PROGRAMMING

5.1. Introduction

Most data mining approaches focus on solving classification problems using ma-

chine learning and pattern recognition techniques. Classification tasks require input

samples with given outputs, known as the class labels. In multiple instance learning

(MIL), instances are grouped into bags and a class label is known for each bag, whereas

the instance labels are not fully provided. The data representation and learning setup

of MIL are in alignment with many real world applications. Current research areas

of MIL include image classification, drug activity prediction, text mining and many

others [107]. In these applications, global descriptions of the objects are decomposed

into multiple parts. When objects are represented by multiple parts, only some parts

may be relevant for classification. In addition, it is expensive and time consuming

to collect true labels of parts individually. MIL paradigm provides an opportunity to

solve classification problem under these circumstances.

For instance, consider sample images from Corel image classification dataset [8]

in Figure 5.1. Under MIL scenario, images correspond to bags and patches sampled

from the images correspond to the instances. In this example, images are classified

either as positive or negative based on the presence of a horse on its patches as shown

in Figure 5.1. Only some patches of an image are informative for classification and it

is sufficient to label the whole image instead of the individual instances.

Unknown instance labels and uncertainty on the bag formations contribute to the

difficulty of MIL problem. In Figure 5.2, a regular input data with 12 instances and 3

features is used to form a MIL data with 3 bags following the standard MIL assumption.

Although it is embraced by many methods, standard assumption is considered to be

restrictive for some MIL applications. For example, consider a document retrieval
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Figure 5.1. An illustration of MIL setting for image classification. Images on the left

with located horses inside the red rectangles are classified as positive whereas the

other images form the negative class.

application, where the bags are articles and multiple sections extracted from them are

the instances. The aim is to detect whether an article is about a specific subject (e.g.

finance) or not. A section including the predetermined words and word combinations

makes this section a positive instance. However, articles that are not relevant may

also contain these words in a particular section (e.g. including financial terms in the

introduction). Thus, standard MIL assumption is not well suited to this problem.

Generalized MIL [20–22] is formalized to describe MIL scenarios other than the

standard MIL under various constraints [20]. Alternative ways of defining positive bags

considering the bags as a whole are introduced in [21]. Collective MIL assumption [21]

reveals a holistic MIL problem where each instance in a bag equally contributes to the

bag label. The idea is to derive a bag-level classifier from an instance-level decision

function by averaging the learning results in underlying instance-feature space.

Since there is an ambiguity on validity of the deemed MIL assumption in a MIL

problem, prospective MIL methods are needed to be compatible with alternative MIL

assumptions arising in different MIL scenarios. We regard collective MIL assumption

in our proposed MIL method unlike the previous methods because of its modeling

capability of the standard assumption and coverage on other MIL assumptions by
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Figure 5.2. Multiple instance data representation of one positive bag and 2 negative

bags with 3 features.

means of the smooth average of instance-level decisions [108].

Previously, various data-mining and machine learning algorithms have been de-

vised to solve the MIL problem. These approaches are heuristic algorithms and optimal-

ity of their solutions cannot be guaranteed. In this study, we focus on optimization-

based approaches to solve MIL problem, and we refer the reader to comprehensive

surveys [22,107] for other categories of MIL methods.

Support vector machine (SVM) classification is a state-of-the-art discriminative

approach for solving traditional supervised learning problems. Classic SVM formu-

lations are quadratic or linear programs that maximize margin and minimize the

classification error [62]. SVM classification is extended to MIL setting previously

[4, 7, 33–36]. Table 5.1 describes and compares the Multiple Instance Support Vec-

tor Machine (MISVM) models in the literature. The level of the formulations indicates

whether the misclassification penalties are incurred for bags or not. The assumptions

are qualified as weak if only the standard MIL assumption holds. Otherwise, if there

are additional restrictions reflected to the mathematical model, assumption status is

entitled as strong.
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In MISVM models, an instance is selected from a positive bag as a witness to

represent that bag. Figure 5.3 illustrates standard SVM classification in instance space

and bag-level separation. To classify bags, a witness instance is selected from a positive

bag as shown in Figure 5.3. Witness instances are considered to be responsible from

bag positivity and must be correctly classified by the MISVM solution.

Figure 5.3. An illustration of witness selection in MISVM models. Red circles

indicate instances in negative bags. In positive bags, instances are represented with

blue triangles and witness instances are enclosed in dashed circles.

In mi-SVM and MI-SVM formulations [7], two types of constraints are added

to the SVM formulation satisfying at least one sample in each positive bag has a

label of one in mi-SVM and a witness instance is present for positive bags in MI-

SVM. MissSVM [4] is formulated upon MI-SVM [7] with additional constraints on the

positive bags. Minimizing the misclassification error at either extreme, an instance of

a positive bag is either positively or negatively labeled. Another method KI-SVM [33]

selects witnesses from positive bags as key instances. Since their witness selection

scheme incurs exponential number of constraints, the authors employ a cutting plane

algorithm for model solution.

Sparse transductive MIL formulation (stMIL) [32] has an additional constraint

that pulls all the negative instances in the bag closer to the hyperplane. The authors

propose a concave convex procedure (CCCP) to solve the non-convex formulation. An

`1-norm SVM-based formulation [34] incorporating the assumption “arbitrary convex
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combination of instances in the positive bags represents each positive bag” is proposed

which is a linear program with bilinear constraints. Their solution approach is a mul-

tiple instance classification algorithm with a nonlinear kernel (MICA), which holds the

bilinear terms constant while solving the linear programs iteratively. MICA guarantees

convergence to a local optimal solution.

MIL problem is formulated as a mixed 0 − 1 quadratic programming problem

in [35], where MIL is reduced to instance-level learning and only the standard MIL

assumption is taken into account. A branch and bound heuristic, which gives tight

upper bounds is presented. However, the formulation disregards the bag information,

therefore the classification performance is degraded.

In [36], SVM formulations of MIL problem are derived as a hard margin maximiza-

tion formulation, MIHMSVM, and a soft margin maximization formulation, MIHLSVM

with additional bag-level misclassification penalties. A penalty is incurred if all in-

stances in a positive bag are misclassified or at least one instance in the negative bag

is misclassified. The resulting formulations performing witness selection are mixed

integer quadratic programs (MIQPs), which are known to be NP-hard problems [35].

Most of the aforementioned MISVM models are analyzed in a recent survey [37].

It is emphasized in [37] that local convergence of the heuristic solution approaches

for solving non-convex MISVM formulations leads to a sacrifice from the classification

performance. The authors also discuss scalability of MISVM methods: Increased num-

ber of instances and bags affect model dimensionality and therefore increase both the

hyperparameter selection and model solution times.

Classical SVM formulations for supervised classification form large-scale quadratic

programs that have long training times. Instead of standard solvers, SVM formulations

are solved using specifically devised SVM solvers [109]. However, when SVMs are tai-

lored for MIL, these solvers can only be used solving subproblems of various heuristic

solution algorithms [4,7,33–35,110]. As we have noted, extra constraints regarding MIL

setting are involved in the models and complicate the solution process. We, therefore,
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propose a simplified quadratic programming (QP) formulation for MIL classification,

which can be directly solved to optimality using any commercial QP solver.

In addition to aforementioned drawbacks in [37], MISVM methods in Table 5.1

rely on standard MIL assumption and may fail to model generalized MIL problems.

The binary variables associated with witness selection and nonlinear constraints due

to the maximum operator complicate the MISVM models. Hence, they are unlikely

to be solved to optimality in reasonable amount of time. Convergence of heuristic

algorithms to local minima has unfavorable influence on the solution quality and hence

on the correctness of the resulting classifier.

Table 5.1. The comparison of MIL formulations.

Formulation Model type Level Assumptions Solution approach Main reference

mi-SVM MIQP instance weak mi-SVM opt. heuristic [7]

MI-SVM MIQP bag weak MI-SVM opt. heuristic [7]

stMIL NC-MINLP instance strong CCCP [32]

MissSVM NLP instance strong CCCP [4]

`1-norm SVM-MIL NLP instance strong MICA [34]

KI-SVM MIQP instance strong Cutting plane algorithm [33]

Max-Margin MIL 0-1 MIQP instance weak Branch and bound [35]

MIHMSVM MIQP instance strong Three-phase heuristic [36]

MIHLSVM MIQP bag strong Exact [36]

Motivated by the above discussions on SVM-based MIL methods, we propose a

novel Quadratic Programming-based Multiple Instance Learning (QP-MIL) framework

[111]. Our proposal is based on the idea of determining a single threshold value for

discriminating positive and negative bag classes. We model MIL problem as a QP

problem using the input data representation.

An optimal solution of our QP formulation returns an instance-level scoring func-

tion together with a bag-level classification threshold. For an unlabeled bag, instance-

level scores are averaged to assess the bag-level score. Finally, class label of the bag is

determined according to the predetermined threshold value. Rather than selecting bag

representatives as in standard MIL, QP-MIL processes the set of entire instances to out-
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put a simple bag classifier. This setting is also applicable to various MIL applications

which are referred to as generalized MIL.

A common initialization property of the MISVM formulations is that each in-

stance shares the same label with its owner bag. However, only a few instances in

positive bags are informative for classification. Elimination of additional assumptions

on relating instance labels to bag labels releases compact formulations to solve MIL

problem, which are easy to optimize by standard QP solvers. Instead of utilizing an

iterative heuristic procedure, we are able to report exact solutions of each problem

instance. Thus, repetition of the performed classification task is possible and the re-

sulting classifier is reproducible in this way.

Our study explores the utility of QP-MIL compared to the previous state-of-the-

art MIL approaches. Leading methods in MIL literature are various machine learning-

based approaches. We select several MIL algorithms as baseline methods to demon-

strate success of the MIL classifiers. Inspired by existing mathematical models in the

MIL literature, we carry out another comparison of QP-MIL considering SVM-based

MIL, in terms of model building and classifier testing. A mixed integer quadratic

programming (MIQP) formulation proposed in [36] enables robust representation of

outliers to perform a generalizable classification. Since direct solution of this formula-

tion requires considerable solution time especially for larger datasets, we also provide

a generalized Benders decomposition (GBD) [112] algorithm for comparison.

The remainder of the chapter is organized as follows: Section 5.2 describes the

proposed QP-MIL framework. Section 5.3 provides insights resulting from the numer-

ical comparisons of QP-MIL with MIHLSVM and presents the classification success

and computational efficacy of QP-MIL with the experiments on a wide-range of MIL

datasets. Conclusions and future extensions are discussed in Section 5.4.
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5.2. Quadratic Programming for Multiple Instance Learning

5.2.1. A Novel QP Formulation for MIL

The sets, parameters and decision variables used in the model are given as fol-

lows.

Indices:

i = 1, 2, . . . , n: index for the instances

j = 1, 2, . . . ,m: index for the bags

Sets:

J+ = {j : lj = 1}: set of positive bags

J− = {j : lj = −1}: set of negative bags

J = J+ ∪ J−: set of all bags

I+ = {i : i ∈ Ij ∧ j ∈ J+}: set of instances in positive bags

I− = {i : i ∈ Ij ∧ j ∈ J−}: set of instances in negative bags

I = I+ ∪ I−: set of all instances

Parameters:

xi ∈ <d, i = 1, 2, ..., n: instance vectors

lj: bag labels

Decision variables:

w: d-dimensional feature weight vector

mi, i = 1, 2, . . . , n: instance pseudo class memberships

βj, j = 1, 2, . . . ,m: bag class memberships

δ+
j , δ

−
j : slack variables for the positive and negative bag deviations

τ : decision threshold for bag classification

A bag classification rule along with a decision threshold can be found by solving

the following optimization model:
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(QP) min
w,β,m,τ,δ+,δ−

1

2
||w||2 − C

 1

m+

∑
j∈J+

δ+
j +

1

m−

∑
j∈J−

δ−j

 (5.1a)

s.t. 〈w,xi〉 = mi ∀i ∈ I (5.1b)

βj =
1

nj

∑
i∈Ij

mi ∀j ∈ J (5.1c)

βj ≥ τ + δ+
j ∀j ∈ J+ (5.1d)

βj ≤ τ − δ−j − ε ∀j ∈ J− (5.1e)

0 ≤mi ≤ 1 ∀i ∈ I (5.1f)

0 ≤δ+
j ≤ 1 ∀j ∈ J+ (5.1g)

0 ≤δ−j ≤ 1 ∀j ∈ J− (5.1h)

0 ≤τ ≤ 1 (5.1i)

The quadratic objective function (5.1a) performs maximization of bag class mem-

bership margin together with a regularization of feature weights. The second term of

the objective function (5.1a) maximizes the margin of bag class estimates formed by

the threshold variable. In order to handle potential problems due to class imbalances,

summations of the nonzero slack variables δ+
j , ∀j ∈ J+ and δ−j , ∀j ∈ J− in the ob-

jective function (5.1a) are normalized with the number of positive bags m+, and the

number of negative bags m−, respectively.

Constraint (5.1b) determines instance pseudo class memberships mi,∀i = 1, . . . , n

using the coefficient vector w entry of which corresponds to the weight assigned to a

feature of the input data. Constraint (5.1c) maps bag-level class estimates βj,∀j =

1, . . . ,m onto the [0, 1] interval by averaging instance-level scores, which are forced

to be between 0 and 1 by Constraint (5.1f). Constraints (5.1d) and (5.1e) are the

threshold determination constraints ensuring that absolute difference between class

membership estimate βj and the threshold τ are maximized in the objective function

for both positive and negative bags. Constraint (5.1i) restricts the decision threshold
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τ to be between 0 and 1. We set ε in Equation (5.1e) to a small positive value (10−6)

so that class membership value of a negative bag is strictly below the threshold τ .

Regularization processes are introduced to supervised learning problems for re-

covering the important features and for satisfying model generalizability. The discrim-

inative features are designated by optimizing the weight coefficients w. In the first

term of the objective function (5.1a), standard `2-norm of the weight coefficients w

are minimized. Therefore, effect of redundant or uninformative features can also be

controlled. The hyperparameter C in the objective function (5.1a) tunes the trade-

off between regularization of w and maximization of bag class membership estimate

margin.

QP-MIL models the contributions of all instances in a bag to the bag label collec-

tively. Averages of pseudo-class membership estimates for instances determine the class

membership estimates for the bags. We conduct a thresholding scheme to determine

the class labels regarding the bag-level estimates. A bag is positively labeled if its class

membership value is above decision threshold τ , and negatively labeled otherwise. An

optimal value of τ is adaptively identified in QP-MIL during the optimization process.

This threshold is also applicable to the test bags. After solving the QP formulation

in (5.1) on the training set, instance scores are calculated by Equation (5.1b) for each

instance in a test bag and simply averaged in Equation (5.1c) to compute the bag-level

score. If the output is below the optimal value of τ , the classifier produces a negative

label, else a positive label.

The resulting bag-level classifier can be defined as

g(Bj) =

1 if βj ≥ τ,

−1 otherwise

where
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βj = 1
nj

∑
i∈Ij mi

and

mi = 〈w,xi〉 ∀i ∈ Ij.

Our proposed MIL framework is independent of the underlying MIL assumptions.

We seek to model bag structures by taking into account the reflection of instance scores

to the bag labels. Since all instances contribute to the bag-level scoring, this paradigm

resembles the collective MIL assumption [21]. It is shown in [108] that if an instance

level separation can be performed in an embedding space H with a classifier f in a

standard MIL problem, then the bags can also be separated in another embedding

space H′, which has a higher dimensionality than H, by scoring each bag with the

average of its instance-level estimates as g(Bj) = 1
nj

∑
i∈Ij f(xi). Therefore, various

MIL assumptions can be handled with a proper data representation and collective

modeling of the bag structures.

In order to perform class separation by correct classification, having class mem-

bership values above the threshold for positive bags and below the threshold for neg-

ative bags is desirable. Therefore, we maximize summation of the absolute differences

between bag class membership estimates. This paradigm defines the margin between

positive and negative class membership estimates, as well. Thus, optimal value of deci-

sion threshold τ leaves the maximum margin between bag class membership estimates.

Figure 5.4 illustrates a possible solution to the QP model (5.1). The selected value for

decision threshold τ is 0.55 and the class memberships estimates for three positive and

three negative bags are consistent with this threshold.

5.2.2. A Previous MIQP Formulation: MIHLSVM [36]

Multiple Instance Hinge Loss Support Vector Machines (MIHLSVM) [36] extends

traditional SVM for MIL. Unlike earlier SVM-based approaches to MIL, MIHLSVM
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Figure 5.4. An illustration of a solution to QP model (5.1). Instance level scores are

symbolized with red circles and blue triangles, for negative and positive bags,

respectively. The vertical green line indicates the decision threshold and each dashed

line maps bag class membership of a bag. For a positive and a negative bag, class

membership margins are indicated with horizontal arrows.

defines bag-level hinge loss to penalize bag misclassifications. The proposed model

handles the situation of nonlinearly separable classes and the resulting formulation is

a MIQP. The authors propose direct solution of MIHLSVM in [36] and do not present

a heuristic algorithm as those in other MISVM studies [4, 7,33–35]. Still, it is difficult

to get an exact solution to a MIHLSVM problem instance. MIHLSVM formulation

is considered to be investigated both in modeling and solution aspects for comparison

purposes. We devise a generalized Benders decomposition scheme for MIHLSVM in

Section 5.2.3. We present our comparisons in Section 5.3.4.1 by solving both the

original and the decomposed version of this problem.



97

A MIQP formulation of the described problem is given in [36] as below

(MIHLSVM) min
w,b,ξ,ξ+,ξ−,η,z

1

2
||w||2 + C

∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j

 (5.2a)

st − (〈w,xi〉+ b) ≥ 1− ξi ∀i ∈ I− (5.2b)

〈w,xi〉+ b ≥ 1− ξi ∀i ∈ I+ (5.2c)∑
i∈Ij

ηi = 1 ∀j ∈ J+ (5.2d)

ξi ≤ ξ−j ∀j ∈ J−,∀i ∈ Ij (5.2e)

ξ+
j =

∑
i∈Ij

zi ∀j ∈ J+ (5.2f)

zi ≥ ξi −M(1− ηi) ∀i ∈ I+ (5.2g)

zi ≤ ξi ∀i ∈ I+ (5.2h)

zi ≤Mηi ∀i ∈ I+ (5.2i)

zi ≥ 0 ∀i ∈ I+ (5.2j)

ξi ≥ 0 ∀i ∈ I (5.2k)

ηi ∈ {0, 1} ∀i ∈ I+. (5.2l)

In addition to maximization of the margin between bag classes, the objective

function (5.2a) also minimizes bag misclassifications where a selected constant C con-

trols the trade-off between two objectives. Constraints (5.2b) and (5.2c) are margin

constraints with the slack variables for penalization of misclassification using slack vari-

ables ξi for misclassified instances. The weight vector w and the offset parameter b

defines the instance-level separating hyperplane. Constraint (5.2d) forces a positive

bag to have a positive instance as a witness. Negative bag misclassifications are rep-

resented by constraint (5.2e) using slack variables ξ−j ,∀j ∈ J−. It is assumed that a

negative bag is misclassified if all of its instances are misclassified. Constraint (5.2l)

imposes binary restrictions on witness variables and nonnegativity restrictions on slack

variables are introduced by constraint (5.2k). Constraints (5.2g)–(5.2i) with the auxil-

iary variables zi ≥ 0,∀i ∈ I+, determine the positive bag misclassification of a bag as
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the misclassification of its selected witness instance.

After solving MIQP formulation, the following classifier can be used for bag clas-

sification

(5.3)sgn

(
max
i∈Ij

(〈w,xi〉+ b)

)
, j ∈ J.

5.2.3. A Generalized Benders Decomposition Approach to MIHLSVM

Benders decomposition algorithm [113] provides the opportunity of solving large-

scale problems especially with binary or integer variables, efficiently. The mechanism

of the algorithm is based on solving a master problem for a subset of variables including

the complicating variables and then solving the well-known structured subproblem for

the remaining subset of variables where the values of complicating variables are fixed.

By using LP duality in the subproblem, the Benders cut is obtained and added to the

master problem. To decompose nonlinear convex programming problems, Generalized

Benders Decomposition (GBD) [112] is developed. Its main difference from original

Benders decomposition is that the subproblem is a nonlinear program. Instead of

LP duality, the Benders cut is obtained by using nonlinear duality after solving the

subproblem.

The mathematical formulation of the standard SVM classifier has a quadratic

objective function with linear constraints and continuous variables. MIHLSVM has

additional binary variable set η and its objective function is also quadratic with some

linear constraints. Hence, the formulation is a nonlinear mixed integer programming

formulation and GBD is a suitable method for this type of mathematical models. Once

we know the set of binary variables η, the remaining problem is a convex optimization

problem. To obtain the generalized Benders cut to be added to relaxed problem, the

following subproblem (SP) is solved:
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(SP) min
w,b,ξ,ξ+,ξ−,z

1

2
||w||2 + C(

∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j ) (5.4a)

st − (〈w,xi〉+ b) ≥ 1− ξi ∀i ∈ I− (5.4b)

〈w,xi〉+ b ≥ 1− ξi ∀i ∈ I+ (5.4c)

ξ+
j =

∑
i∈Ij

zi ∀j ∈ J+ (5.4d)

zi ≥ ξi −M(1− ηi) ∀i ∈ I+ (5.4e)

zi ≤ ξi ∀i ∈ I+ (5.4f)

zi ≤Mηi ∀i ∈ I+ (5.4g)

ξi ≤ ξ−j ∀j ∈ J−,∀i ∈ Ij (5.4h)

zi ≥ 0 ∀i ∈ I+ (5.4i)

ξi ≥ 0 ∀i ∈ I−. (5.4j)

The Lagrangean dual can be written as follows:

(5.5)

Φ(η) = max
θ≥0,

ρ≥0,µ≥0,ν≥0,
π≥0,λ≥0

 min
w,b,ξ,
ξ+,ξ−,z

1

2
||w||2 + C

∑
j∈J−

ξ−j +
∑
j∈J+

ξ+
j


+
∑
i∈I−

θi (1 + 〈w,xi〉+ b− ξi) +
∑
i∈I+

ρi (1− 〈w,xi〉 − b− ξi)

+
∑
i∈I+

µi (−M(1− ηi) + ξi − zi) +
∑
i∈I+

νi (zi −Mηi)

+
∑
i∈I+

πi (zi − ξi) +
∑
j∈J−

∑
i∈Ij

λij
(
ξi − ξ−j

) .

Note that it is unnecessary to add Benders feasibility cuts since SP always has a feasible

solution during iterations. Next, the following generalized Benders optimality cut is
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obtained.

y ≥ Φ(ηk)−
∑
i∈I+

(
−Muki +Mvki

) (
ηi − ηki

)
(5.6)

After determination of the Benders cut, the following relaxed MIHLSVM model is

formulated by adding K many Benders cuts as the following Master Problem (MP):

(MP) min
v,η

v (5.7a)

st v ≥ Φ(ηk)−
∑
i∈I+

(
−Muki +Mvki

) (
ηi − ηki

)
∀k = 1, ..., K (5.7b)

∑
i∈Ij

ηi = 1 ∀j ∈ J+ (5.7c)

ηi ∈ {0, 1} ∀i ∈ I+. (5.7d)

We know that the MIHLSVM formulation given in (5.2) is a mixed integer

quadratic program, and therefore, can be solved directly by commercial MIQP solvers.

The efficiency of these two approaches along with QP-MIL are compared in Sec-

tion 5.3.4.1 to verify the modeling and solution quality of the proposed MIL framework.

5.3. Experiments and Results

5.3.1. Data Representation

In MIL, a specific data region representing the positive instance class is named

as a concept. The concept instances are informative for class discrimination. Based

on this idea, representative sets can be derived in many ways as prototypes to capture

the informative instance relationships. Several MIL methods benefit from the dissimi-

larities to selected prototypes to represent the bags [8, 26–29]. Moreover, a number of

similar algorithms [49,95] utilize clustering to learn a target concept in MIL problems.
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Inspired by success of aforementioned methods, we attempt to perform MIL classifica-

tion in a newly represented feature space. QP model (5.1) produces a linear classifier

and success of this classifier is limited only to linearly separable data.

In QP-MIL, the relationships between instances can be implicitly modeled by

preprocessing the input data. Instead of building a classifier in the original instance

feature space, we attempt to represent the instances using dissimilarities to the selected

prototypes. Aim of the representation is building a linear classifier, which is capable of

class separation in a different space. We pool instances in bags and then group them

by k-means clustering algorithm into an appropriate number of clusters. Then, the

cluster centers are taken as the prototypes. The new features are simply constructed

by calculating the Euclidean distances of each instance to these cluster centers. This

way, protoypes are derived as a summarized representation of the original data and the

linear classifier becomes applicable to the new features.

5.3.2. Multiple Instance Datasets

We evaluate our approach in image classification, molecular activity prediction,

text categorization and audio classification tasks. The datasets are categorized in

Table 3.1 based on their application domain and the dataset characteristics are also

provided. Datasets differ in terms of number of bags, instances and features. The first

category includes famous drug activity prediction tasks on Musks and Mutagenesis’

datasets and a protein identification task. Image classification datasets constitute the

second category containing the Corel image datasets, UCSB breast cancer dataset and

other smaller sized benchmarks Elephant, Fox and Tiger. Positive class is considered

as the target images and the remaining images determine the negative bag class.

Another dataset category covers web mining tasks on Newsgroups and Web rec-

ommendation datasets. In Newsgroups, blog posts are categorized into 20 groups based

on their subjects where a bag is formed by a collection of multiple posts (i.e. the in-

stances). In the positive class, the terms about a specific subject appears in a number

of posts, and the bags with posts about other subjects constitute the negative bags.
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In Web recommendation, a web page in the user history is a bag and the web pages

linked to that web page are the instances. Recommendations of a specific user form

the positive class and the bags constituted by the remaining eight users are negatively

labeled.

The last category is the bird song recordings from 13 different classes of birds,

where a recording is bag and segments of recording are the instances. The target bird

class is considered as positive, whereas the bags from the other classes are labeled as

negative. We follow an effective experimentation strategy on a wide range of MIL

datasets. Cross validation folds are generated by splitting the original dataset into the

training set and the test set. We utilize the same splitting indices across both our pro-

posed and the state-of-the-art methods from the literature to perform a comprehensive

comparison. All the datasets and cross validation indices are available online at [63].

5.3.3. Experimental Setup and Evaluation Criteria

Our experiments use a Windows 10 PC with 16 GB RAM, dual core CPU (Intel

Core i7-7700HQ 2.8 GHz). For each dataset, a stratified cross validation scheme is

conducted to assess the generalizability of the classifiers. Initially, we scale each fea-

ture to zero mean and unit variance. We obtain data representations in QP-MIL via

the implementation in Python that uses scikit-learn [79] library. We model QP for-

mulations using Gurobi Python interface and solve using barrier QP solver of Gurobi

8.0 [102]. The default parameters are accepted for the barrier algorithm except for the

convergence tolerance, which is set to 0.01.

QP-MIL has two parameters: number of clusters, κ in data representation and

cost parameter C of QP model (5.1). In k-means clustering, necessarily enough number

of clusters, κ is determined by using elbow approach [114]. Briefly, within cluster

variance after k-means clustering is plotted along with increasing values of κ and the

position of the elbow is identified to assign the corresponding value to κ. We run a

nested cross-validation with an inner cross-validation loop to choose hyperparameter

C from the set {0.01, 0.1, 1, 10, 100, 1000}. All of the instances of MIHLSVM and
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GBD-MIHLSVM formulations are also executed using Gurobi 8.0 [102].

The baseline MIL approaches selected for comparison are MILES [8], MInD [26]

with bag dissimilarity representation Dmeanmin and miFV [50]. MILES iteratively mea-

sures similarities of bags to the training instances, and builds a linear SVM classifier

along with `1-norm regularization at the same time. MInD defines a bag-level feature

representation by using the bag-to-bag dissimilarity measure Dmeanmin. miFV benefits

from Fisher vectorial coding to map each bag to a single vector. Both MInD and miFV

build a linear SVM classifier to classify bag vectors.

We execute MILES [8] and MInD [26] using the MIL toolbox [84], and use a

MATLAB [85] implementation to run miFV [50]. We accept the default parameters in

the original paper for MILES [8]. We use the parameter setting proposed in [26] for

MInD [26]. Following the authors’ advice, we employ an inner ten-fold cross-validation

to select the three parameters of miFV [50], which are enumerated as PCA energy,

number of components and cost parameter of linear SVM. PCA energy attains values

from the set {0.8, 0.9, 1}. The alternatives for the number of Gaussian components

is selected from {1, 2, 3, 4, 5}. The cost parameter of the linear SVM classifier are

{0.05, 1, 10}.

A receiver operation characteristics (ROC) curve visualizes the trade-off between

percentage of true positive predictions and percentage of false positive predictions.

The x and y axes in ROC curve plot range from 0 to 1. Area under the ROC curve

(AUC) can also be used to compare classifiers and asserted to be a reliable metric

for classification [115]. Larger AUC values indicate a better classifier. A random

classification produces an AUC value close to 0.5, whereas a perfect classification leads

to an AUC value of 1.

Another measure for classifier performance in MIL problems is classification ac-

curacy. For a specific decision threshold value, such as the value of τ in QP-MIL

after optimization, the bag classes are predicted and the accuracy of the classifier is

computed. The class imbalance problem is seen in MIL tasks such as Corel, Web
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recommendation and Birds benchmarks. The value of τ is optimized on the training

bags, and suffers from misleading accuracy when the bag classes are imbalanced. AUC

is more effective under class imbalance since all possible thresholds are evaluated to

report the classifier performance. Additionally, given the consistent performance of

AUC on MIL datasets [81], we qualify AUC as a primary comparison metric in our

study.

5.3.4. Results

5.3.4.1. Comparison of QP-MIL with MIHLSVM. In this section, we present a com-

parison between QP-MIL and MIHLSVM formulation given in Section 5.2 in terms of

computational efficiency and other indicators related to classification performance of

the derived solutions. In addition to MIHLSVM model, GBD-MIHLSVM approach

devised in Section 5.2.3 is considered for comparison. The clustering-based data repre-

sentation described in Section 5.3.1 is considered as the input of all compared formu-

lations.

Table 5.2 presents the overview of problem sizes on four moderate sized MIL

datasets. All datasets are modelled using QP-MIL formulation in (5.1) and MIHLSVM

formulation in (5.2). For each dataset in Table 5.2, ten separate models of QP-MIL

and MIHLSVM are built, where ten different partitioning of the original dataset form

the input in each model. The averages of problem dimension properties for ten models

are reported in Table 5.2. Formulations in (5.1) and (5.2) have quadratic objective

functions and number of the quadratic terms are equal for both. Since we solve the

formulations on a cluster center-based data representation, the number of quadratic

terms is equal to the dimensionality of this representation.

Problem size of MIHLSVM differs significantly from QP-MIL in terms of number

of constraints and continuous variables. In addition, there are extra binary variables in

MIHLSVM problem instances in proportion with the number of instances in positive

bags due to the witness selection. Motivated by the large problem sizes of MIHLSVM

even on moderated sized MIL datasets, we propose a generalized Benders decomposi-



105

Table 5.2. Model size summary of QP-MIL and MIHLSVM on problem instances of 4

datasets. 10 models of each formulation are built for each dataset, and the average

values are reported.

QP-MIL MIHLSVM
HHH

HHH
HHH

Dataset

#
Bags Instances Features Constraints

Cont.

variables

Binary

variables

Quad.

terms
Constraints

Cont.

variables

Binary

variables

Quad.

terms

Elephant 200 1391 230 1611.9 1881.4 0 267.5 4055.4 2952.3 1251.9 267.5

Fox 200 1302 230 1548.0 1827.5 0 277.5 3720.6 2834.5 1188.0 277.5

Musk 1 92 476 166 594.0 816.0 0 220.0 1314.0 1160.6 428.4 220.0

Musk 2 102 6598 166 6121.8 6381.3 0 257.5 13777.2 12226.7 5938.2 257.5

tion algorithm discussed in Section 5.2.3 to observe the effect of solving smaller sized

problems in MIL experiments.

In Table 5.3, we compare the performance of QP-MIL with the MIHLSVM. In

addition, experiments on the GBD approach to MIHLSVM described in Section 5.2.3

are reported in Table 5.3. MIHLSVM is an MIQP and can be directly solved by

standard MIQP solvers. We solve the MIHLSVM formulation in (5.2) and set the

cost parameter C in the objective function (5.2a) to 1. It is plausible to tune up the

appropriate value for C by a cross-validation procedure. However, the computation

time of parameter selection in MIHLSVM is a limitation [36].

We are unable to report overall results for MIHLSVM since each cross-validation

fold lasts longer than one day for relatively small datasets such as Elephant and Fox.

Therefore, we do not carry out a cross-validation loop, and manifest only the model

solution time for C = 1. In contrast with the described procedure in Section 5.2, we

do not embed parameter selection into QP-MIL during comparisons of this section and

the predetermined value of C is 1. The results in Table 5.3 are based on one repeat of

a ten-fold cross validation.

All methods are executed within a time limit of 1800 seconds. First column is

the number of problem instance from each dataset that is solved to optimality until

the time limit is reached. The mean percentage optimality gap [(upper bound- lower

bound)/upper bound] is reported for each algorithm and the corresponding average

model solution time in seconds is also presented. To observe generalizability of the
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learner, we evaluate obtained solutions on the test bags. Average accuracy and AUC

values over ten experiments are reported for all three approaches.

Table 5.3. Comparison of QP-MIL, MIHLSVM and MIHLSVM-GBD on problem

instances of 4 datasets. 10 models of each formulation are built for each dataset, and

the average values are reported.

QP-MIL

Dataset Solved Gap Time AUC Accuracy

Elephant 10 0 1.6 93.7 83.5

Fox 10 0 1.5 70.3 65.0

Musk 1 10 0 0.3 96.5 89.0

Musk 2 10 0 3.0 94.7 88.3

MIHLSVM

Dataset Solved Gap Time AUC Accuracy

Elephant 0 97.6 1800 87.3 63.5

Fox 0 98.6 1800 64.9 55.0

Musk 1 1 37.1 1721.4 89.3 71.7

Musk 2 0 91.0 1800 90.8 74.4

MIHLSVM-GBD

Dataset Solved Gap Time AUC Accuracy

Elephant 0 100 1800 87.3 77.5

Fox 0 100 1800 62.6 57.0

Musk 1 0 100 1800 90.5 81.3

Musk 2 0 100 1800 94.3 86.3

Computational study demonstrates that QP-MIL is significantly more efficient

and provides accurate solutions compared to the MIHLSVM formulation. All instances

of QP-MIL can be solved exactly without a sacrifice in classification success as demon-

strated by AUC and accuracy results in Table 5.3. Being the largest dataset in this

comparison, Musk 2 requires an average solution time of 3 seconds to solve QP model

(5.1) to optimality. On the other hand, only one MIHLSVM instance of Musk 1 dataset

can be solved to optimality within the time limit. Except for Musk 1, Gurobi is unable

to reduce the optimality gap below 90%.
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Moreover, GBD approach does not provide gain in computation time compared

to directly solving MIHLSVM formulation. However, acquired solutions of GBD-

MIHLSVM implementation led to an increase in accuracy. Although the corresponding

optimality gaps are lower than GBD-MIHLSVM, solution quality of MIHLSVM is de-

graded in terms of accuracy for all four datasets, concurrently with AUC values for

Musk 1 and Musk 2. This observation is a strong evidence of the overfitting problem,

which is frequently observed in classification tasks. Namely, the output classifier is

successful on training set but fails to produce generalizable results on testing data. For

the sake of fairness, we do not include MIHLSVM and GBD-MIHLSVM in the overall

comparison results in Section 5.3.4.2 due to the requirements of a higher runtime even

for small/moderate sized datasets.

5.3.4.2. Comparison to Baseline Methods. Table 5.4 summarizes the performance of

our proposed QP-MIL approach with MILES [8], MInD [26] with bag dissimilarity

representation Dmeanmin and miFV [50] on four different MIL application categories.

Their descriptions and implementation details are provided in Section 5.3.3.

AUC and accuracy results of MIL classifiers Table 5.4 are the averages of a ten-fold

cross validation repeated for five times. The best result for each dataset is in boldface.

In molecular activity prediction, the highest AUC results are obtained by QP-MIL in

Musk 1, and by Dmeanmin in Musk 2. Fisher vector based bag representation suits on

Mutagenesis 1 dataset, where second best AUC and accuracy results are obtained by

QP-MIL and miFV, respectively. In Protein, the leading method is MILES, which is

followed by QP-MIL.

QP-MIL has the best image classification success in Elephant, Tiger and USCB

Breast cancer datasets. The implicit instance selection mechanism of MILES is effective

on Fox dataset and QP-MIL follows MILES on this dataset. In Corel image datasets,

Dmeanmin has the highest average performance, and QP-MIL performs very close to

Dmeanmin. Results of QP-MIL and Dmeanmin are very close to each other on the average

on 20 Newsgroups datasets. In Web recommendation, performance of QP-MIL falls
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behind miFV and Dmeanmin. QP-MIL has the highest AUC and accuracy results in

almost all Birds datasets.

The average testing results based on problem categories are reported in Table 5.5.

For each problem category, results of the best method are in boldface, whereas the sec-

ond best results are shown in italic. Average AUC and accuracy results in Table 5.5

demonstrate that QP-MIL is competitive with other algorithms across all applica-

tion categories and provides the best classification results on some datasets. QP-MIL

achieves the best or the second best average AUC and accuracy performance on molec-

ular activity prediction datasets.

Image classification results in Table 5.5 reveal that QP-MIL is broadly comparable

with the competitors in all benchmarks. In text categorization, performance of QP-

MIL is competitive in Newsgroups datasets and miFV is the leading method in Web

recommendation datasets. QP-MIL yields the best average AUC and accuracy results

in audio recording classification as verified by the reported results on Birds competition.

Finally, QP-MIL has the best overall average AUC and accuracy results.

Both miFV and Dmeanmin are bag-level methods and they are mostly tuned for

computer vision and bioinformatics applications of MIL. However, QP-MIL is not tai-

lored for a certain MIL application and overall results of this section confirm generaliz-

ability of our approach to various application domains. Without forcing the standard

MIL assumption, QP-MIL matches or outperforms the state-of-the-art algorithms on

a broad range of applications.
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Table 5.6 shows the time taken up by experiments of QP-MIL on 71 datasets.

Again, reported results are the averages after 5 repeats of a ten-fold cross validation. We

divide the total time spent by QP-MIL into three main parts: representation learning

(RL) time, inner cross-validation (CV) time and model solution time. At first, we

obtain clustering-based data representation. We determine the required number of

clusters on the training instances and use the resulting cluster centers to represent the

training bags. Compared to the computational time on the training instances, RL time

for the test bags is negligible. Therefore, we only report the RL time consumed on

the training set. As described in Section 5.3.3, we report classification results after a

nested cross-validation procedure. The time spent for inner cross-validation loop is the

CV time. After parameter selection, we solve QP model and record execution time of

barrier algorithm as the model solution time.

Table 5.6 reveals that QP models are solved efficiently regardless of the dataset

dimensionality. Due to the repeated solution of the QP model within each inner fold,

significant amount of time is spent on parameter selection. However, RL times are

considerably longer compared to CV times in Web datasets since large number of

features complicates the dissimilarity calculations in data representation phase. In

Mutagenesis datasets, predetermined value of the threshold controlling parameter ε

may cause infeasibility in QP models. If infeasibility is detected, we solve an auxiliary

optimization problem to deal with this situation. Specifically, by keeping the original

constraints of (5.1), we convert ε into a decision variable and maximize its value. This

way, a suitable value of ε is derived. Then, QP model (5.1) is solved after stating the

selected ε value. This process increases both the CV time and model solution time on

these datasets as seen in Table 5.6. QP-MIL provides an efficient learning approach

concerning different MIL application categories. In the light of parameter sensitivity

discussions in Section 5.3.4.3, QP-MIL can be implemented without parameter selection

to gain from the execution time.
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Table 5.6. Average time results of QP-MIL.

Dataset Instances Features Bags RL time CV time Solution time

Musk 1 ♣ 476 166 92 5.3 15.4 0.3

Musk 2 ♣ 6598 166 102 59.4 187.0 2.7

Mutagenesis 1 ♣ 10486 7 188 47.8 844.1 27.4

Mutagenesis 2 ♣ 2132 7 42 25.7 570.8 20.0

Protein ♣ 26611 8 193 125.2 782.7 13.2

Elephant ♥ 1391 230 200 17.8 77.5 1.5

Fox ♥ 1302 230 200 19.5 77.1 1.6

Tiger ♥ 1220 230 200 16.1 69.9 1.6

Corel, African ♥ 7947 9 2000 34.2 294.6 5.0

Corel, Antique ♥ 7947 9 2000 36.6 346.2 7.4

Corel, Battleships ♥ 7947 9 2000 34.7 339.3 6.1

Corel, Beach ♥ 7947 9 2000 30.8 321.0 5.8

Corel, Buses ♥ 7947 9 2000 31.7 325.8 5.8

Corel, Cars ♥ 7947 9 2000 34.1 350.1 6.1

Corel, Desserts ♥ 7947 9 2000 37.0 345.9 5.7

Corel, Dinosaurs ♥ 7947 9 2000 35.5 329.8 6.0

Corel, Dogs ♥ 7947 9 2000 35.7 338.2 6.8

Corel, Elephants ♥ 7947 9 2000 32.6 341.0 6.0

Corel, Fashion ♥ 7947 9 2000 37.1 350.3 6.3

Corel, Flowers ♥ 7947 9 2000 41.7 336.2 6.2

Corel, Food ♥ 7947 9 2000 39.8 333.7 5.8

Corel, Historical ♥ 7947 9 2000 42.5 330.8 6.1

Corel, Horses ♥ 7947 9 2000 37.9 330.2 6.8

Corel, Lizards ♥ 7947 9 2000 32.4 321.0 5.7

Corel, Mountains ♥ 7947 9 2000 34.8 370.1 6.0

Corel, Skiing ♥ 7947 9 2000 40.0 316.1 5.6

Corel, Sunset ♥ 7947 9 2000 41.9 362.0 12.0

Corel, Waterfalls ♥ 7947 9 2000 28.4 348.6 6.6

UCSB Breast Cancer ♥ 2002 708 58 33.6 31.0 0.5

Newsgroups 1, alt.atheism ♠ 5443 200 100 41.2 129.6 1.8

N.g. 2, comp.graphics ♠ 3094 200 100 57.1 303.1 4.5

N.g. 3, comp.os.ms-windows.misc ♠ 5175 200 100 79.4 172.0 2.7

N.g. 4, comp.sys.ibm.pc.hardware ♠ 4827 200 100 85.3 179.8 2.7

N.g. 5, comp.sys.mac.hardware ♠ 4473 200 100 83.5 239.1 2.9

N.g. 6, comp.windows.x ♠ 3110 200 100 45.2 217.6 2.8

N.g. 7, misc.forsale ♠ 5306 200 100 75.7 162.9 2.4

N.g. 8, rec.autos ♠ 3458 200 100 53.7 282.2 3.0

N.g. 9, rec.motorcycles ♠ 4730 200 100 47.3 128.1 1.9

N.g. 10, rec.sport.baseball ♠ 3358 200 100 49.4 265.0 4.0

MIL application categories: ♣ molecular activity prediction, ♥ image annotation, ♠

text classification, ♦ audio recording classification.
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Table 5.6. – Average time results of QP-MIL (cont.).

Dataset Instances Features Bags RL time CV time Solution time

N.g. 11, rec.sport.hockey ♠ 1982 200 100 32.8 176.0 3.8

N.g. 12, sci.crypt ♠ 4284 200 100 30.4 97.5 1.3

N.g. 13, sci.electronics ♠ 3192 200 100 65.0 380.6 6.4

N.g. 14, sci.med ♠ 3045 200 100 26.1 143.9 2.0

N.g. 15, sci.space ♠ 3655 200 100 32.1 146.6 2.3

N.g. 16, soc.religion.christian ♠ 4677 200 100 35.9 112.1 1.6

N.g. 17, talk.politics.guns ♠ 3558 200 100 27.0 107.6 1.6

N.g. 18, talk.politics.mideast ♠ 3376 200 100 40.9 181.3 2.3

N.g. 19, talk.politics.misc ♠ 4788 200 100 39.3 108.7 1.5

N.g. 20, talk.religion.misc ♠ 4606 200 100 36.6 113.9 1.6

Web 1 ♠ 2212 5863 75 143.3 29.1 0.4

Web 2 ♠ 2212 6519 75 144.8 26.1 0.4

Web 3 ♠ 2212 6306 75 154.7 31.5 0.4

Web 4 ♠ 2291 6059 75 142.4 26.9 0.4

Web 5 ♠ 2546 6407 75 158.7 33.4 0.5

Web 6 ♠ 2462 6417 75 156.7 26.2 0.4

Web 7 ♠ 2400 6450 75 151.6 27.1 0.4

Web 8 ♠ 2183 5999 75 137.2 23.1 0.4

Web 9 ♠ 2321 6279 75 149.6 28.2 0.4

Birds, Brown creeper ♦ 10232 38 548 43.3 211.8 3.6

Birds, Chestnut-backed chickadee ♦ 10232 38 548 43.8 212.7 3.6

Birds, Dark-eyed junco ♦ 10232 38 548 39.3 241.7 4.3

Birds, Hammonds flycatcher ♦ 10232 38 548 40.9 220.2 4.3

Birds, Hermit thrush ♦ 10232 38 548 48.9 228.9 3.9

Birds, Hermit warbler ♦ 10232 38 548 47.6 229.7 4.0

Birds, Olive-sided flycatcher ♦ 10232 38 548 46.4 232.4 4.1

Birds, Pacificslope flycatcher ♦ 10232 38 548 47.4 232.6 3.9

Birds, Red-breasted nuthatch ♦ 10232 38 548 46.9 225.1 3.9

Birds, Swainsons thrush ♦ 10232 38 548 43.5 234.9 3.9

Birds, Varied thrush ♦ 10232 38 548 49.5 237.2 4.0

Birds, Western tanager ♦ 10232 38 548 48.5 241.1 4.3

Birds, Winter wren ♦ 10232 38 548 44.7 239.6 4.1
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5.3.4.3. Parameter Sensitivity. In this section, we conduct experiments on four real-

world datasets to examine the sensitivity of QP-MIL to C setting. Six different values

of C are tested with 50 replicates of the experiments. We select the tuning set of

C as {0.01, 0.1, 1, 10, 100, 1000}. We execute data representation and model solving

as described in Section 5.3.3 except for the inner cross validation. For each level of

C, we solve QP model (5.1) and record the classification results for the test bags.

Figure 5.5 presents the behavior of the QP-MIL classifier on four datasets. For each

dataset, boxplots show the AUC values for different levels of C. For Musk 2, value of

C does not have a significant effect on the AUC performance. Corresponding boxplots

in Figure 5.5 show that smaller C values yield slightly better AUC results in Elephant

dataset. Finally, analysis with the boxplots in Figure 5.5 demonstrates that changing

value of C does not significantly affect the AUC performance for other datasets.

Figure 5.5. Sensitivity of the QP-MIL to different values for C on 4 real-world

datasets.
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The reported results of the comparisons with baseline approaches are provided af-

ter a cross-validation procedure in Section 5.3.4.2. The trade-off between maximization

of bag class membership margin and sparsity of the weighting vector can be considered

as a practically dispensable criterion for learning. Since most of the computation time

is consumed by parameter selection as reported in Table 5.3, value of C can be fixed ini-

tially for run-time considerations. Setting a higher value of C introduces potential risk

of overfitting, and therefore may reduce generalization to unknown objects. As shown

in the boxplots of Figure 5.5, small C values yield higher AUC values in both Musk

2 and Elephant. Therefore, if the parameter selection phase is skipped, we suggest to

use small values of C to obtain satisfactory results.

5.4. Conclusions

In this chapter, we propose an optimization-based method, QP-MIL, to solve

multiple instance classification problem, where a bag of instances are classified in-

stead of single instances. Our algorithm is based on an quadratic programming (QP)

formulation, which performs classification without imposing additional constraints on

relating instance labels to the bag labels. Solving QP problem produces a decision

function, which computes a bag class membership score by aggregating instance-level

scores. Instance-level scores are obtained by a linear function of feature values. This

way, all instances contribute to the bag label and their contributions are modeled by

specifying the feature weights. The optimization process outputs a bag-level decision

threshold to classify new bags together with the decision function. Distances of bag

class memberships to the threshold value are maximized and the sparseness of feature

weight vector is controlled by a cost parameter.

We have tested our approach on a wide range of datasets from various categories

such as drug activity prediction, image categorization, text mining and audio recording

classification. In order to support further research on this area, we serve the used

datasets, codes and configurations on our supporting page [63]. We compared the

performance of our approach to state-of-the-art machine learning based approaches.

To model instance relationships, cluster centers are selected as prototypes and input
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features are the instance-to-prototype distances. For each dataset, generated problem

instances can be easily solved to optimality in seconds. Our experiments on 71 datasets

indicate that QP-MIL is competitive with the recent successful heuristic algorithms,

and provides the best classification results on a variety of datasets.

Since this study focuses on optimization-based MIL, we also performed compar-

isons with a recent method MIHLSVM in terms of problem size and computation time.

MIHLSVM solves mixed integer quadratic programs to learn a bag classifier. Our com-

parisons between QP-MIL and MIHLSVM indicate that MIHLSVM problem instances

have difficulties to scale to large datasets. We applied generalized Benders decompo-

sition (GBD) to MIHLSVM to inspect the possible reductions in solution time. Our

computational results show that neither direct solution of MIHLSVM nor GBD ap-

proach is able to retrieve satisfactory solutions to MIL problem within a reasonable

amount of time. Finally, we examined the effect of the cost parameter and illustrated

that the classification performance does not excessively depend on adjustment of the

cost parameter. Our MIL approach offers an efficient solution to MIL problem in

terms of classification accuracy and model solution time, and can be extended to large

real-world challenges as a future work.
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6. CONCLUSION AND FUTURE RESEARCH

In this thesis, we propose learning frameworks specialized to solve real world

learning problems that can be generalized to classify bags of multiple instances. Un-

availability of instance label information in MIL setting prevents the application of

regular supervised learning. To resolve this problem, researchers devise methods fo-

cusing on certain assumptions regarding the instance labels. However, it is not a trivial

task to determine which assumption holds for a new type of MIL problem. A bag-level

representation based on instance characteristics does not require assumptions about

the instance labels and is shown to be successful in MIL tasks. These approaches

mainly encode bag vectors using bag-of-features type of representations.

In Chapter 3, we propose bag encoding strategies that partition the instance fea-

ture space and represent the bags using the frequency of instances residing at each par-

tition. Proposed tree-based encoding algorithm implicitly learns a generalized Gaussian

Mixture Model (GMM) on the instance feature space, and transforms this information

into a bag-level summary. We show that bag representation using tree ensembles pro-

vides fast, accurate and robust representations. Our experiments on a large database

of MIL problems show that tree-based encoding is highly scalable and its performance

is competitive with recent successful MIL approaches.

Previous optimization based MIL approaches encode the standard MIL assump-

tion and form models with computational difficulties. To handle the potential problems

with the standard assumption, Chapter 4 proposes a linear programming (LP) frame-

work to learn instance level contributions to the bag labels. Each instance of a bag is

mapped to a pseudo-class membership estimate and these estimates are aggregated to

obtain the bag-level class membership in an optimization framework. A simple linear

mapping enables handling various MIL assumptions with adjusting instance contribu-

tions. Our experiments with instance-dissimilarity based data representations verify

effectiveness of the proposed MIL framework. Proposed LP formulation requires no

parameters to tune and can be solved efficiently in polynomial time.
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Existing MIL models in the literature make use of certain assumptions regard-

ing the instance labels and provide mixed integer quadratic programs, which intro-

duce computational difficulties. In Chapter 5, we present a novel quadratic program-

ming (QP)-based approach to classify bags. Solution of our QP formulation links the

instance-level contributions to the bag label estimates, and outputs a linear bag clas-

sifier along with a decision threshold. Our approach imposes no additional constraints

on relating instance labels to bag labels and can be adapted to learning applications

with different MIL assumptions. Unlike existing specialized heuristic approaches to

solve previous MIL formulations, our QP models can be directly solved to optimality

using any commercial QP solver. Our computational experiments show that proposed

QP formulation is efficient in terms of solution time, overcoming a main drawback of

previous optimization algorithms for MIL.

In our study, a wide range of real world datasets from different application

domains form the largest experimented repository to compare MIL algorithms. For

each experiment, the results presented are averages computed after a ten-fold cross-

validation repeated five times. The same cross validation folds are used in all ex-

periments to allow fair comparability. Our experiments demonstrate that resulting

performance of the proposed methods are competitive with the state-of-the-art algo-

rithms. Table 6.1 shows the average classification results of the proposed methods and

six competitors tested on various problem categories. The results on all individual

datasets are available on the website [116]. Highest result in each problem category is

in boldface and the second best results are in italic. Classification of bags after random

tree ensemble-based encoding formed by decision paths turned out to be the best over-

all approach for MIL. The second best method is QP-MIL, which points out a good

candidate benchmark to the studies employing mathematical programming approaches

to solve MIL problems. LP-MIL and BoW representation with k-means clustering pro-

vide competitive results with the state-of-the-art MIL methods miFV [50], MILES [8]

and MInD [26] with Dmeanmin dissimilarity measure.
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A large number of existing approaches to MIL comprise of machine learning algo-

rithms, which lead to heuristic solution methods. Most of them are commonly used to

solve the standard MIL problems. A portion of the heuristic methods attempt to solve

MIL problem with lower restrictions and benefit from bag-level class information. Mo-

tivated by the success of previous bag representation algorithms, we represent each bag

with constructed simple and sparse vectors. Subsequently, we train a bag-level classier

on the new feature space. Success of bag classification highly depends on the way of

bag representation because of encoding the required information for class separation.

In bag-encoding using random tree ensembles, bag representation vectors contain rich

information on instances and preserve the bag structure. Random tree ensembles can

be efficiently trained on large scaled data and as an extension, ensemble learning phase

can be easily parallelized for further acceleration. Besides, dimensionality reduction

by parallelization to improve learning performance on big data is tackled recently for

random forest classifiers [117], but not for random tree ensembles.

A higher level of stability on the solutions to MIL problem can be obtained by

solving optimization models. Namely, every time we repeat the experiment for a MIL

dataset, we will obtain the same results by solving the corresponding problem instance

to optimality. SVM-based MIL methods solve margin maximization formulations to

minimize the generalization error bound [118]. However, direct solutions to proposed

SVM-MIL formulations are impractical and a variety of heuristic approaches are pre-

sented. Particularly, these algorithms either converge to local optimal solutions, or

are incapable of returning optimal solutions within given time limits. Our proposed

LP and QP formulations have an advantage over the previous proposals since they

are efficiently solvable to optimality even for datasets with large number of bags and

instances. Still, it is more challenging to retrieve optimal solutions by commercial LP

and QP solvers for larger benchmarks, such as PASCAL VOC 2007 [69]. As a future

work, we can improve the scalability of solution procedure by solving mathematical

models on subsets of the original data. The idea is to train multiple models on re-

peated bootstrap samples, and then report the average results of multiple classifiers.

This approach is known as bagging in machine learning literature, in which a collection

of diversified solutions provides higher accuracy with reduced variance [119].
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Optimization-based algorithms provide practical and tractable tools for the area

of data mining applications under MIL framework. Mathematical models of MIL prob-

lem can also be based on graph theoretical learning models. Using relationships be-

tween instances or bags, we can construct a graph, in which each data item is a node

and relationships between the objects is represented by an edge between corresponding

nodes. Several MIL studies benefit from graph representation of bags [56–60]. Af-

ter learning graph-based bag representations, SVM classification is performed in [56],

whereas non-convex optimization problems are established in [57]. Traditional learn-

ing approaches are adapted after deriving multi-graph representations of bags [58,59].

In [60], multi-graph representation is obtained for bag classification by iteratively op-

timizing to selection of discriminative subgraph features. Success of bag classification

highly sensitive to graph construction. In a well-studied area of graph-theoretical

data mining, spectral clustering [120], popular ways of generating graph-based rep-

resentation are a k-nearest-neighbor graph and a fully connected graph. The aim is

to model nonlinear relationships between the instances as graph partitioning in spec-

tral clustering. Similarly, a graph is constructed by unipartite generalized matching

for semi-supervised learning (SSL) [121]. SSL problem is modeled as a constrained

maximum-cut problem in [122]. As a future research direction, one may model and

solve optimization problems of MIL on purposely-designed graphs. Leveraging the

previous effort on graph-theoretical data mining, MIL problem can be formulated as

extensions of classic graph theory problems such as maximum-cut and matching.

In MIL, there is an uncertainty on instance labels, which complicates the uti-

lization of traditional supervised algorithms for MIL. Stochastic programming models

can be derived to deal with such difficulties. In [123], multiple kernel learning problem

with noisy labels is considered. The authors defined a binary random variable for each

instance, which indicates whether the class estimate of a noisy instance is correct or

not. These variables are utilized to form a chance constraint of the stochastic program-

ming model, which is a relaxed version of a deterministic constraint. Hence, another

possible future research direction is to reformulate the MIL optimization model as a

stochastic program by introducing chance constraints to model uncertainties on the

instance labels.
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Approach to Multiple Instance Learning”, Technical Report , 2018.

94. Vanwinckelen, G., D. Fierens, H. Blockeel et al., “Instance-level accuracy ver-

sus bag-level accuracy in multi-instance learning”, Data Mining and Knowledge

Discovery , Vol. 30, No. 2, pp. 313–341, 2016.

95. Tax, D. M., E. Hendriks, M. F. Valstar and M. Pantic, “The detection of concept

frames using clustering multi-instance learning”, Pattern Recognition (ICPR),

2010 20th International Conference on, pp. 2917–2920, IEEE, 2010.

96. Wu, J., Y. Zhao, J.-Y. Zhu, S. Luo and Z. Tu, “Milcut: A sweeping line multiple

instance learning paradigm for interactive image segmentation”, Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 256–263,

2014.

97. Holst, A. et al., “Efficient AUC maximization with regularized least-squares”,

Tenth Scandinavian Conference on Artificial Intelligence: SCAI 2008 , Vol. 173,

p. 12, IOS Press, 2008.

98. Mann, H. B. and D. R. Whitney, “On a test of whether one of two random

variables is stochastically larger than the other”, The Annals of Mathematical

Statistics , pp. 50–60, 1947.



135

99. Ataman, K., W. Streetr and Y. Zhang, “Learning to rank by maximizing AUC

with linear programming”, Neural Networks, 2006. IJCNN’06. International Joint

Conference on, pp. 123–129, IEEE, 2006.

100. Duin, R. P. et al., The dissimilarity representation for pattern recognition: foun-

dations and applications , Vol. 64, World Scientific, 2005.

101. Li, Z., G.-H. Geng, J. Feng, J.-y. Peng, C. Wen and J.-l. Liang, “Multiple instance

learning based on positive instance selection and bag structure construction”,

Pattern Recognition Letters , Vol. 40, pp. 19–26, 2014.

102. Gurobi Optimization, I., Gurobi Optimizer Reference Manual , 2018.

103. Ling, C. X., J. Huang and H. Zhang, “AUC: a better measure than accuracy in

comparing learning algorithms”, Advances in Artificial Intelligence, pp. 329–341,

Springer, 2003.

104. Nelder, J. A. and R. Mead, “A simplex method for function minimization”, The

Computer Journal , Vol. 7, No. 4, pp. 308–313, 1965.

105. Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin, “LIBLINEAR:

A library for large linear classification”, Journal of Machine Learning Research,

Vol. 9, No. Aug, pp. 1871–1874, 2008.

106. Chang, C.-C. and C.-J. Lin, “LIBSVM: a library for support vector machines”,

ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 2, No. 3,

p. 27, 2011.

107. Carbonneau, M.-A., V. Cheplygina, E. Granger and G. Gagnon, “Multiple in-

stance learning: A survey of problem characteristics and applications”, Pattern

Recognition, 2017.

108. Fu, Z., G. Lu, K. M. Ting and D. Zhang, “Learning sparse kernel classifiers



136

for multi-instance classification”, IEEE Transactions on Neural Networks and

Learning Systems , Vol. 24, No. 9, pp. 1377–1389, 2013.

109. Fischetti, M., “Fast training of support vector machines with Gaussian kernel”,

Discrete Optimization, Vol. 22, pp. 183–194, 2016.
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113. Taşkın, Z. C., “Benders decomposition”, Wiley Encyclopedia of Operations Re-

search and Management Science. John Wiley & Sons, Malden (MA), 2010.

114. Ketchen Jr, D. J. and C. L. Shook, “The application of cluster analysis in strategic

management research: an analysis and critique”, Strategic Management Journal ,

pp. 441–458, 1996.

115. Huang, J. and C. X. Ling, “Using AUC and accuracy in evaluating learning

algorithms”, IEEE Transactions on Knowledge and Data Engineering , Vol. 17,

No. 3, pp. 299–310, 2005.

116. Kucukasci, E. S. and M. G. Baydogan, Multiple Instance Learning Repository ,

2018, http://www.multipleinstancelearning.com/, accessed at September

2018.

117. Chen, J., K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng and K. Li, “A parallel random

forest algorithm for big data in a spark cloud computing environment”, IEEE



137

Transactions on Parallel & Distributed Systems , Vol. 1, pp. 1–1, 2017.

118. Vapnik, V., Statistical learning theory. 1998 , Vol. 3, Wiley, New York, 1998.

119. Breiman, L., “Bagging predictors”, Machine Learning , Vol. 24, No. 2, pp. 123–

140, 1996.

120. Ng, A. Y., M. I. Jordan and Y. Weiss, “On spectral clustering: Analysis and

an algorithm”, Advances in neural information processing systems , pp. 849–856,

2002.

121. Jebara, T., J. Wang and S.-F. Chang, “Graph construction and b-matching for

semi-supervised learning”, Proceedings of the 26th Annual International Confer-

ence on Machine Learning , pp. 441–448, ACM, 2009.

122. Wang, J., T. Jebara and S.-F. Chang, “Semi-supervised learning using greedy

max-cut”, Journal of Machine Learning Research, Vol. 14, No. Mar, pp. 771–800,

2013.

123. Yang, T., M. Mahdavi, R. Jin, L. Zhang and Y. Zhou, “Multiple kernel learning

from noisy labels by stochastic programming”, arXiv preprint arXiv:1206.4629 ,

2012.




