
DESIGN AND ANALYSIS OF COMMUNICATION SYSTEMS WITH HIGH

ERROR CORRECTION CAPABILITY THROUGH OPTIMIZATION

by

Banu Kabakulak

B.S., Industrial Engineering, Boğaziçi University, 2007

B.S., Mathematics, Boğaziçi University, 2007

M.S., Industrial Engineering, Boğaziçi University, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Industrial Engineering

Boğaziçi University

2018

iii

ACKNOWLEDGEMENTS

Foremost, I would like to thank my thesis supervisor Z. Caner Taşkın for intro-

ducing me to LDPC codes in telecommunications field, and for his great support as an

advisor. Not only did he guide me in every step of the thesis process, but he has also

been a great mentor. It has been a privilege working with him.

I am also greatful to my thesis supervisory committee members Ali Emre Pusane,

Ali Tamer Ünal and İbrahim Muter for their inspiring guidance at every step of the

thesis. I have benefited and enlightened much from İ. Kuban Altınel through his

extensive academic and personal experiences. I also like to thank to Barış Yıldız who

joined them as the final member of my thesis jury. My thesis profited considerably

from their insightful and constructive advices.

I would like to thank all my current and former colleagues for the supportive at-

mosphere they have created at Boğaziçi University Industrial Engineering Department.

Especially my lab mates at MMS Lab have been of great assistance: Zeynep Şuvak,

Kübra Tanınmış and Betül Ahat. Thank you all!

My special thanks go to my family for their moral support, guidance, patience

and love.

I gratefully acknowledge the financial support of TÜBİTAK through 1001 Re-

search Project Program with Grant No. 113M499.

iv

ABSTRACT

DESIGN AND ANALYSIS OF COMMUNICATION

SYSTEMS WITH HIGH ERROR CORRECTION

CAPABILITY THROUGH OPTIMIZATION

Channel coding is the term used for the collection of techniques that are employed

in order to minimize errors which occur during the transmission of digital information

from one place to another. Low–density parity–check (LDPC) code family takes at-

tention with its channel capacity–approaching error correction capability and sparse

parity–check matrix representation. Sparsity property of the matrix gives rise to the

development of heuristic iterative decoding algorithms with low complexity. Ease of

the application of iterative decoding algorithms brings the advantage of low decod-

ing latency. In spite of these benefits of LDPC codes, receiver can obtain erroneous

information because of both structural properties of LDPC codes and non–optimal

decoders.

In the first part of this thesis, we develop optimization–based LDPC decoding

algorithms for a communication system with high error performance and we compare

its performance with the existing methods in the literature. Error performance of a

communication system can still be improved by determining and eliminating small

cycles in LDPC codes that cause iterative decoding algorithms to halt or terminate

without a conclusive result during the decoding process. At the second place, we

implement heuristic and optimization–based approaches for efficiently designing high

quality LDPC codes of practically relevant dimensions. We carry out extensive com-

putational experiments to assess the efficiency of proposed methods.

v

ÖZET

YÜKSEK HATA DÜZELTME YETENEĞİNE SAHİP

İLETİŞİM SİSTEMLERİNİN ENİYİLEME YOLUYLA

TASARIM VE ANALİZİ

Kanal kodlaması, sayısal bilginin bir yerden başka bir yere iletimi sırasında mey-

dana gelebilecek hataları en aza indirgeyen tekniklerin bütününe verilen isimdir. Düşük–

yoğunluklu eşlik–denetim (LDPC) kod ailesi kanal kapasitesine giderek yaklaşan hata

düzeltme yeteneği ve seyrek eşlik–denetim matrislerine sahip olması ile dikkat çekmiştir.

Matrisin seyreklik özelliği, çok düşük karmaşıklığa sahip olan sezgisel yinelemeli kod

çözme algoritmalarının geliştirilmesine olanak vermektedir. Yinelemeli kod çözme al-

goritmalarının kolaylıkla uygulanabilmesi, düşük kod çözme gecikmesi avantajını da

beraberinde getirmektedir. LDPC kodlarının bu faydalarına rağmen, gerek LDPC

kodlarının yapısal özellikleri sebebiyle gerekse kod çözücünün hata giderme yeteneğinin

yetersizliği sebebiyle alıcı tarafından okunan bilgi hatalar içerebilir.

Bu tezde, ilkin düşük hata ile çalışan bir iletişim sistemi tasarlayabilmek için

eniyileme tabanlı LDPC kod çözme algoritmaları geliştirilmiş ve etkinliği literatürdeki

yöntemlerle karşılaştırılmıştır. İletişim sisteminin başarımı, LDPC kodlarının yinelemeli

kod çözme algoritmalarıyla çözülmesi sırasında algoritmanın ilerleyişinin durmasına

veya bir sonuç bulamamasına sebep olan küçük çevrimlerin belirlenmesi ve bertaraf

edilmesi durumunda daha da artabilir. İkinci kısmında, gerçek uygulamalarda kul-

lanılabilecek boyutta, yüksek kaliteli LDPC kodlarının hızlı şekilde tasarlanabilme-

sine olanak veren eniyileme tabanlı LDPC kod tasarım yaklaşımları uygulanmıştır.

Geliştirilen yöntemlerin etkinliği kapsamlı bilgisayısal deneylerle sınanmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 3

3. LDPC CODES PRELIMINARIES . 6

4. LDPC DECODING WITH HIGH ERROR CORRECTION CAPABILITY . 10

4.1. Introduction . 10

4.2. Branch–and–Price Algorithm . 12

4.2.1. Branching in BP Algorithm . 15

4.2.1.1. Branching on wjS variables 16

4.2.1.2. Branching on fi variables 18

4.2.2. Repairing Infeasibility in Node Relaxations 24

4.2.3. A Pruning Strategy . 29

4.2.4. On the Strength of LP Relaxation 31

4.2.5. Computational Results . 33

4.2.5.1. Performance of CPLEX 34

4.2.5.2. Performance of BP Algorithm 36

4.3. Feasible Solution Generation Methods 37

4.3.1. Gallager A and B Algorithms 38

4.3.2. Belief Propagation Algorithm 39

4.3.3. Partial IP Algorithm . 41

4.3.4. Coverage Algorithm . 42

4.3.5. Constraint Programming Algorithm 45

4.3.6. Simulated Annealing . 48

vii

4.3.7. G Matrix Applications . 51

4.3.7.1. Random Sum Heuristic 52

4.3.7.2. Best Combination Heuristic 53

4.3.7.3. Sum Pass Heuristic . 56

4.3.8. Diving Heuristic . 56

5. LDPC CONVOLUTIONAL CODE DECODING 58

5.1. Introduction . 58

5.2. SC Code Generation . 60

5.3. Sliding Window Decoders . 61

5.4. Complete Window (CW) Decoder . 63

5.5. Finite Window (FW) Decoder . 64

5.6. Repeating Windows (RW) Decoder . 65

5.7. Convolutional Code (CC) Decoder . 66

5.8. Computational Results . 67

5.8.1. SC Code Results . 69

5.8.2. Convolutional Code Results . 72

6. LDPC CODE DESIGN WITHOUT SMALL CYCLES 78

6.1. Introduction . 78

6.2. Mathematical Formulations . 79

6.3. Branch–and–Cut Algorithm . 82

6.4. Improvements on Branch–and–Cut Algorithm 86

6.4.1. Symmetry in MDD Solution Space 87

6.4.2. Symmetry Breaking with Variable Fixing 88

6.4.3. Valid Inequalities for Cycle Regions 92

6.4.4. Progressive Edge Growth (PEG) Algorithm 98

6.5. Computational Results . 100

7. CONCLUSIONS . 105

REFERENCES . 107

viii

LIST OF FIGURES

Figure 3.1. Digital communication system diagram. 6

Figure 3.2. Binary symmetric channel. 7

Figure 3.3. A parity–check matrix from (10, 5) LDPC code family. 8

Figure 3.4. Tanner graph representation of the parity–check matrix given in

Figure 3.3. 8

Figure 3.5. Gallager A and B algorithms . 9

Figure 4.1. Subproblem j solution algorithm 14

Figure 4.2. Branching strategy. 18

Figure 4.3. Subproblem j on a branch solution algorithm 22

Figure 4.4. IPM solution algorithm . 23

Figure 4.5. An example Tanner graph. 24

Figure 4.6. Dual constraint generation. 27

Figure 4.7. Dual constraint generation algorithm 30

Figure 4.8. Track of iterations for Input 5. 34

Figure 4.9. Belief propagation algorithm . 41

ix

Figure 4.10. Partial IP algorithm . 41

Figure 4.11. Coverage algorithm . 44

Figure 4.12. Simulated annealing algorithm . 50

Figure 4.13. Random sum algorithm . 52

Figure 4.14. (5, 10)–regular n = 60 BP iterations. 54

Figure 4.15. K value analysis. 55

Figure 4.16. Best combination algorithm . 55

Figure 4.17. Sum pass algorithm . 56

Figure 4.18. Diving algorithm . 57

Figure 5.1. Generic structure of a convolutional code. 58

Figure 5.2. A (3, 6)–regular LDPC SC code. 59

Figure 5.3. (5, 10)–regular base permutation matrix. 60

Figure 5.4. A and B matrices. 60

Figure 5.5. (5, 10)–regular SC code. 61

Figure 5.6. Generic sliding window algorithm 62

Figure 5.7. Sliding window algorithm . 62

x

Figure 5.8. Sliding window in CW decoder. 63

Figure 5.9. Sliding window in FW decoder. 65

Figure 5.10. Sliding window in RW decoder. 65

Figure 5.11. A part of convolutional code. 66

Figure 5.12. Error accumulation in decoding. 74

Figure 6.1. Message–passing among variable and check nodes. 78

Figure 6.2. An iteration of Gallager A algorithm. 79

Figure 6.3. Number of spanned nodes in a depth–(T − 2)/2 tree. 81

Figure 6.4. Branch–and–Cut algorithm . 83

Figure 6.5. Integral solution seperation algorithm 84

Figure 6.6. Depth–first–search in integral solution seperation. 84

Figure 6.7. Fractional solution seperation algorithm 86

Figure 6.8. Symmetry in MDD solution space. 87

Figure 6.9. Parity–check matrices for Tanner graphs in Figure 6.8. 87

Figure 6.10. Variable fixing algorithm . 88

Figure 6.11. Variable fixing on a (3, 6)–regular H matrix of dimension (30, 60). 89

xi

Figure 6.12. Cycles C1 and C2 on H1. 90

Figure 6.13. Alternating variable and check nodes, cases 1 and 2. 91

Figure 6.14. Alternating variable and check nodes, cases 3 and 4. 91

Figure 6.15. Reduced rectangle when (m,n) is given. 92

Figure 6.16. Subblocks and cycle regions with J = 3 and K = 6. 93

Figure 6.17. Cycle–4 regions with J = 3 and K = 6. 93

Figure 6.18. Cycle–4, Cycle–6 and Cycle–8 regions with J = 3 and K = 6. . . . 94

Figure 6.19. A cycle of size 6 on Cycle–8 region with J = 3 and K = 6. 95

Figure 6.20. A cycle of size 8 on Cycle–10 region with J = 3 and K = 6. 96

Figure 6.21. Reordered (J,K)–regular H matrix with girth T > t. 97

Figure 6.22. Reordering algorithm . 97

Figure 6.23. Modified PEG algorithm . 99

xii

LIST OF TABLES

Table 4.1. LP relaxation and optimal solution values. 33

Table 4.2. CPU in seconds for CPLEX and BP. 33

Table 4.3. Performance of CPLEX under low error rate (in seconds). 35

Table 4.4. Performance of CPLEX under high error rate (in seconds). 36

Table 4.5. Performance of BP under low error rate (in seconds). 37

Table 4.6. Performance of BP under high error rate (in seconds). 37

Table 4.7. Initial lower and upper bounds in BP. 37

Table 4.8. Performance of Gallager A for (s, 3, 6) codes (in seconds). 39

Table 4.9. Performance of Gallager A for (s, 5, 10) codes (in seconds). 40

Table 4.10. Performance of Gallager A for (s, 6, 12) codes (in seconds). 40

Table 4.11. Performance of Partial IP for (s, 3, 6) codes (in seconds). 42

Table 4.12. Performance of Partial IP for (s, 5, 10) codes (in seconds). 43

Table 4.13. Performance of Partial IP for (s, 6, 12) codes (in seconds). 43

Table 4.14. Performance of Coverage for (s, 3, 6) codes (in seconds). 45

xiii

Table 4.15. Performance of Coverage for (s, 5, 10) codes (in seconds). 46

Table 4.16. Performance of Coverage for (s, 6, 12) codes (in seconds). 46

Table 4.17. Performance of Constraint for (s, 3, 6) codes (in seconds). 48

Table 4.18. Performance of Constraint for (s, 5, 10) codes (in seconds). 49

Table 4.19. Performance of Constraint for (s, 6, 12) codes (in seconds). 49

Table 4.20. Simulated Annealing with Permutation codes under n/15 error bits

(in seconds). 50

Table 4.21. Random Sum with Permutation codes under 5 error bits (in seconds). 53

Table 4.22. Best Combination with Permutation codes under 5 error bits (in

seconds). 56

Table 4.23. Diving with Permutation codes under n/15 error bits (in seconds). 57

Table 5.1. List of computational parameters 67

Table 5.2. Performance of EMD with p = 0.02 and 0.05 68

Table 5.3. Performance of SBCW . 69

Table 5.4. Performance of ABCW . 69

Table 5.5. Performance of SBFW . 70

Table 5.6. Performance of ABFW . 71

xiv

Table 5.7. Performance of SBRW . 72

Table 5.8. Performance of ABRW . 72

Table 5.9. Performances of FW and RW decoders 73

Table 5.10. BER of Sliding Window Decoders 75

Table 5.11. Performance of Gallager A . 76

Table 5.12. Performance of Gallager B . 77

Table 6.1. Summary of solution methods . 100

Table 6.2. List of computational parameters 101

Table 6.3. Computational results for BC0 . 102

Table 6.4. Computational results for BC1 and BC2 103

Table 6.5. Computational results for BC3 and BC4 104

xv

LIST OF SYMBOLS

C Set of check nodes

cj Check node j

dj(di) Degree of cj(vi) in Tanner graph

dcj Target degree of cj

dcsj Slack for degree of cj

dvi Target degree of vi

dvsi Slack for degree of vi

fi ith bit of the decoded vector

G Generator matrix

H Parity–check matrix

hs Horizontal step size

k Length of the original information

kj An auxiliary integer variable

m n− k, number of rows in H

ms Width of the ribbon of a convolutional code

N(cj)(N(vi)) Set of variable (check) nodes adjacent to cj(vi)

n Length of the encoded information, number of columns in H

p Error probability in BSC

r hs/vs ratio

T Target girth

V Set of variable nodes

vi Variable node i

vs Vertical step size

w Height of the window

wjS 1 if local codeword S of cj is selected, 0 otherwise

Xji (j, i) entry of the H matrix

ŷ Received vector

xvi

εj Set of feasible local codewords for cj

γi Log–likelihood ratio for bit i

µj A dual variable for constraints (4.9)

τij A dual variable for constraints (4.10)

ζj Optimum objective function value of Subproblem(j)

xvii

LIST OF ACRONYMS/ABBREVIATIONS

ABCW All Binary Complete Window

ABFW All Binary Finite Window

ABRW All Binary Repeating Window

BC Branch–and–Cut

BCM Best Combination Model

BER Bit Error Rate

BP Branch–and–Price

BSC Binary Symmetric Channel

CC Convolutional Code

CP Constraint Programming

CW Complete Window

DLPM Dual Linear Programming Master

EM Exact Model

EMD Exact Model Decoder

FW Finite Window

GFM Girth Feasibility Model

IP Integer Programming

IPM Integer Programming Master

LDPC Low–Density Parity–Check Code

LDPC CC LDPC Convolutional Code

LDPC SC LDPC Spatially–Coupled Code

LEM Linear Relaxation of EM

LP Linear Programming

LPM Linear Programming Master

MDD Minimum Degree Deviation Model

MDDr Relaxed Minimum Degree Deviation Model

PEG Progressive Edge Growth

RLPM Restricted Linear Programming Master

xviii

RW Repeating Window

SBCW Some Binary Complete Window

SBFW Some Binary Finite Window

SBRW Some Binary Repeating Window

1

1. INTRODUCTION

Telecommunication is the transmission of messages from a transmitter to a re-

ceiver over a potentially unsafe communication environment. In digital communication

systems, code symbols are messages and they are transmitted in the form of electro-

magnetic radiation. In parallel to the rapid developments in technology, digital commu-

nication systems find several application areas: messaging via digital cellular phones,

fiber optic internet, TV broadcasting or agricultural monitoring through digital satel-

lites, and receiving high quality images under NASA’s Juno and Pluto missions [1, 2]

are some examples of digital communication.

In practice, numerous transmitter–receiver pairs use the same communication en-

vironment such as air or space. Hence, radio waves, electrical signals, and light waves

over fiber optic channels will accumulate some amount of noise on the medium. The

noise in the environment can cause transmission errors or failures. Channel coding is

the term used for the collection of techniques that are employed in digital communica-

tions to ensure a transmission is received with minimal or no errors. These techniques

encode the original information by adding redundant bits. When the receiver receives

information, decoder estimates the original information by detecting and correcting

errors in the received vector with the help of redundant bits.

Among the codes that are used in the decoding process at receiver, low–density

parity–check (LDPC) code family has received attention with its high error detection

and correction capabilities. LDPC codes were first proposed by Gallager in 1962 and

today they are used in wireless network standard (IEEE 802.11n), WiMax (IEEE

802.16e) and digital video broadcasting standard (DVB-S2) [3]. They have sparse

parity–check matrices, i.e. H matrix, and can alternatively be represented by bipartite

graphs known as Tanner graphs [4]. Iterative decoding algorithms, which have low

complexity and low decoding latency due to the sparsity property of parity–check

matrix, are developed on Tanner graph [5, 6]. In spite of these benefits of LDPC

codes, receiver can obtain erroneous information because of both structural properties

2

of LDPC codes and non–optimal decoders. In order to overcome these errors, better

LDPC codes need to be designed and decoding algorithms need to be improved.

For a communication system with high error performance the main focus in first

part of the thesis is development of optimization–based decoding algorithms. Taking

into account that the proposed decoding algorithms in the literature are heuristic ap-

proaches, one can argue that the inherent error correction capabilities in LDPC codes

are not fully utilized by existing decoding algorithms. For this purpose, we model the

decoding problem, which can be defined as estimating the original information cor-

rectly when the sent and received information is different, as an optimization problem

and develop solution methods as given in Chapters 4 and 5.

Error performance of a communication system can still be improved by determin-

ing and eliminating small cycles in Tanner graph of an LDPC code that cause iterative

decoding algorithms to halt or terminate without a conclusive result during the de-

coding process. Methods proposed in the literature are either heuristic designs, which

do not guarantee the best code design, or optimization–based approaches that do not

execute fast enough for real dimensional LDPC codes. One of the focal points of this

thesis is to develop optimization–based approaches for efficiently designing high quality

LDPC codes of practically relevant dimensions. For this aim, we introduce mathemat-

ical models to design LDPC code with given smallest cycle length in its Tanner graph

and develop optimization techniques in order to solve the models for practical code

lengths in Chapter 6.

In the next section, we summarize the literature related with LDPC decoding

and code design. We give some preliminary information about LDPC codes in Chapter

3. We explain our work on LDPC decoding in Chapters 4 and 5. In particular, we

introduce a decoder based on a branch–and–price method in Section 4.2 and sliding

window decoders for LDPC convolutional codes in Chapter 5. We give the details of

our branch–and–cut algorithm to design LDPC codes without small cycles in Chapter

6. We give the computational results of these methods in corresponding sections. We

list our concluding remarks and comments on future work in Chapter 7.

3

2. LITERATURE SURVEY

In this section, we summarize the related literature about LDPC decoding and

code design. While discussing the current status of the literature, we aim to state the

gaps in the literature that we filled in with this thesis.

Maximum likelihood (ML) decoding is the optimal decoding algorithm in terms

of minimizing error probability. Since ML decoding problem is known to be NP–

hard, iterative message–passing decoding algorithms for LDPC codes are preferred in

practice [7]. However, these heuristic decoding algorithms do not guarantee optimality

of decoded vector and they may fail to decode correctly when the graph representing

an LDPC code includes cycles. Feldman et al. use optimization methods and they

develop linear relaxation based maximum likelihood decoding algorithms for LDPC

and turbo codes in [8, 9]. However, the proposed models do not allow decoding in an

acceptable amount of time for codes with practical lengths.

LDPC convolutional codes, first introduced by Elias in 1955, differ from block

codes in that the encoder contains memory and the encoder outputs, at any time unit,

depend both on the current inputs and on the previous input blocks [10]. LDPC con-

volutional codes find application areas such as deep–space and satellite communication

starting from early 1970s. LDPC convolutional codes can be decoded with Viterbi

algorithm, which provides maximum–likelihood decoding by exaustive search, by di-

viding the received vector into smaller blocks of bits. Although Viterbi algorithm has a

high decoding complexity for convolutional codes with long block lengths, it can easily

implemented on hardware due to its highly repetitive nature [11,12].

For long block lengths, sequential decoding algorithms such as Fano algorithm [13]

and later stack algorithm that is developed by Zigangirov [14] and independently by

Jelinek [15] fit well. On the contrary to Viterbi algorithm, computational complexity of

a sequential decoding algorithm is independent of the block length. While Viterbi algo-

rithm finds the best codeword by enumerating all possibilities exhaustively, sequential

4

decoding is suboptimal since it focuses on a certain number of likely codewords [16].

Being sequentially decodable, LDPC convolutional codes are better than LDPC

block codes in encoding for the cases where information is obtained continuously. Al-

though LDPC convolutional codes provide short–delay and low–complexity in decod-

ing, they are not in communication standards such as WiMax and DVB-S2. This is

since application–oriented optimization of LDPC convolutional codes is not investi-

gated thoroughly yet [17].

In this thesis, we first consider LDPC codes and propose a branch–and–price de-

coding algorithm for the mathematical formulation given in [18]. We give the details of

the algorithm and the computational results in Section 4.2. Then, we consider LDPC

convolutional codes and propose optimization based sliding window decoders that can

give a near optimal decoded codeword for a received vector of practical length (approx-

imately n = 4000) in an acceptable amount of time. The mathematical formulation

and proposed decoding algorithms are explained in Chapter 5. Our proposed decoders

can be used in a real–time reliable communication system since they have low decod-

ing latency. Besides, they are applicable in settings such as deep–space communication

system due to their high error correction capability.

Iterative decoding algorithm decides on whether the code symbol is 0 or 1 by

calculating probabilities for the code symbols and estimate the original information.The

calculated probabilities are dependent on each other if there are cycles on the Tanner

graph. In order to minimize code symbol estimation errors, designing LDPC codes

to maximize the smallest cycle length, i.e. girth, is useful. In order to improve a

given LDPC code, certain edges are exchanged within Tanner graph to eliminate small

cycles without simultaneously creating any others in [19]. A heuristic approach, called

Progressive Edge Growth (PEG) which is based on adding edges to the Tanner graph

iteratively without constructing small cycles, is given in [20].

Bit–Filling heuristic in [21] starts with a large girth target and decreases target

as it inserts the edges to Tanner graph one–by–one. The heuristic terminates when a

prescribed girth is met. A randomized approach in [22] can create irregular LDPC codes

5

with high error correction capability. Algebraic properties of H matrix is considered

in [23] to obtain a regular LDPC code. In literature, interleaver methods are proposed

for designing Turbo LDPC codes with girth at least 8 [24].

PEG algorithm is adjusted to generate regular LDPC codes in [25] and irregular

LDPC codes in [26] for improving the error correction performance. A protograph is

a Tanner graph with a relatively small number of nodes. Design of LDPC codes with

simple protographs is investigated in [27] to obtain infinite dimensional LDPC codes.

Different works in the literature focus on the design of LDPC codes with large girth

using the protograph [28,29].

A method that can build quasi–cyclic LDPC codes with girth at least 6 using

Vandermonde matrices is introduced in [30]. In [31], an upper bound on the girth of

quasi–cyclic LDPC codes is given. Quasi–cycle constraints are added to PEG algorithm

in order to obtain regular and irregular quasi–cyclic LDPC codes in [32]. Other studies

also use PEG algorithm for this code family [33] – [35]. For the same code family, a

lifting method is given in [36] and generalized polygones are used in [37]. Patent [38]

describes a method for quasi–cyclic LDPC codes without stopping sets and guarantees

the girth is at least 8. The authors use their results to design hierarchical quasi–cyclic

LDPC codes [39]. Independent tree–based heuristic of [40] can iteratively construct

regular LDPC codes whose girth values are better than the ones obtained by PEG. The

common point of these methods in the literature is that they are heuristic methods

without an optimality guarantee.

In this thesis, we propose an integer programming formulation to generate LDPC

codes with a given girth value and develop a branch–and–cut algorithm for its solution

in Chapter 6. We investigate structural properties of the problem to improve our

algorithm by applying a variable fixing scheme, adding valid inequalities and utilizing

an initial solution generation heuristic. Our computational results indicate that our

proposed methods significantly improve solvability of the problem. To the best of our

knowledge, our work is the first in the literature that investigates the LDPC code

design problem from an optimization point of view.

6

3. LDPC CODES PRELIMINARIES

Transmitter sends information to receiver through communication channel in a

digital communication system. Communication channel is common for many transmitter–

receiver pairs in use which creates noise in the environment. Transmission of the in-

formation is affected from the noise, which may result in lost or value change of some

information bits. In coding theory, encoding original information improves transmis-

sion security [41].

H =

A

B

Digital Source Encoder

Coding ChannelNoise

DecoderDigital Sink

u

v

r
û

Generator Matrix

G

Parity-Check Matrix

H

Figure 3.1. Digital communication system diagram.

Figure 3.1 shows information flow in a digital communication system. In Figure

3.1, let the original information be a binary vector u = (u1u2...uk) of k–bits, i.e.

ui ∈ {0, 1}. Encoder adds redundant parity–check bits to vector u by utilizing a k× n
generator matrix G. That is codeword v = (v1v2...vn) of n–bits, where n ≥ k and

vi ∈ {0, 1}, is obtained through operation v = uG. In a codeword v, there are k

information bits and (n − k) parity–check bits, which are used to test whether there

are errors in the transmission. For integrity of the communication, codeword v should

be in the null space of H matrix, i.e. vHT = 0 (mod 2) holds.

7

After transmission, receiver gets vector r of n–bits as shown in Figure 3.1. De-

coder detects whether the received vector r includes errors or not by checking the

expression rHT is equal to vector 0 in (mod 2) or not. In the case r is erroneous,

decoder attempts to determine the error locations and fix them [42]. As a result, the

information u sent from the source is estimated as û at the sink. In the literature,

there are models for noisy channels on which the information is transmitted. Among

these, in this work the main focus will be on the binary symmetric channels (BSC). As

shown in Figure 3.2, in BSC an error occurs with probability p and the transmitted

bit flips. The transmission is completed without any errors with probability 1− p [43].

0

1

0

1
p

1− p

p

1− p

Figure 3.2. Binary symmetric channel.

(n, k) LDPC codes are members of linear block codes that can be represented by

a parity–check matrix H of dimension (n− k)×n. The only difference of LDPC codes

from linear block codes is that H matrix of LDPC code is sparse, i.e. the number of

ones at every row and column of H matrix is forced to be very small. The common

property of the codes in (3, 6)–regular LDPC code family is that H matrix has only

3 ones at each column and 6 ones at each row independent from the dimension of H.

This means, for (3, 6)–regular LDPC code with dimension 1500× 3000, only % 0.2 of

the matrix elements are nonzero. The expression “regular” in the name of the code

family means there is a constant number of ones at each row and column of the matrix.

An example, (10, 5) LDPC code that is (3, 6)–regular given below.

One can obtain a k×n generator matrix G, which is not necessarily unique, from

(n − k)× n parity-check matrix H by carrying out binary arithmetic. Vectors v that

satisfy the equation vHT = 0 (mod 2) are codewords. One can observe that each row

of generator matrix G is a codeword, since GHT = 0 (mod 2) holds for any (G,H)

8

H =


0 1 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 1 0 1


Figure 3.3. A parity–check matrix from (10, 5) LDPC code family.

pair. From geometrical point of view, the codewords are in the null space of H matrix

and G matrix constitutes a basis for the null space. For any original information u,

encoded vector v = uG (mod 2) is a codeword, since (uG)HT = 0 (mod 2) is satisfied.

The channel decoder concludes that whether the received codeword r has changed or

not by checking the value of expression rHT is equal to vector 0 in (mod 2) or not [44].

1 2 3 4 5

1 2 3

1 2 3 4 5

1 2 3

6 7 8 9 10

4 5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

Figure 3.4. Tanner graph representation of the parity–check matrix given in Figure
3.3.

An LDPC code can alternatively be represented as Tanner graph, which is a

sparse bipartite graph, corresponding to H matrix [4]. On one part of Tanner graph

there is a variable node i (vi), i ∈ {1, ..., n}, for each bit of received vector. Each

row of H matrix represents a parity–check equation and corresponds to a check node

j (cj), j ∈ {1, ..., n − k}, in the other part of Tanner graph. A check node is said

to be satisfied if its parity–check equation is equal to zero in (mod 2). The set of

adjacent check (variable) nodes to a variable node i (check node j) is represented by

N(vi)(N(cj)). The degree of vi (cj) is the number of adjacent check nodes (variable

9

nodes) on Tanner graph. That is degree of vi is di = |N(vi)| and cj is dj = |N(cj)|.
Hence, H matrix is the adjacency matrix of Tanner graph. This representation of LDPC

codes is practical due to the advantage of applying iterative decoding algorithms easily.

Figure 3.4 shows Tanner graph representation of H matrix defined in Figure 3.3.

Input: Received vector, ŷ
1. Calculate all parity–check equations
2. If all check nodes are satisfied, Then STOP.
3. Else Calculate the number of all unsatisfied parity–check

equations for each received bit, ui for bit i.
4 - A. Let l = argmaxi{ui}. If ul > dl/2, Then flip bit l.
4 - B. If ui > di/2, Then flip bit i.
5. End If
6. If stopping is satisfied, Then STOP.
7. Else Go to Step 1.
8. End If
Output: A feasible decoded codeword, or no solution.

Figure 3.5. Gallager A and B algorithms.

We can generate a regular H matrix by permuting identity matrices. In permu-

tation codes, a (3, 6)− regular code with codelength n = 6 × s can be obtained by

randomly shuffling the columns of a s× s identity matrix and putting 6 of them next

to each other. We have a (3, 6)− regular code with m = 3×s many rows and n = 6×s
many columns by repeating this process 2 more times and putting each submatrix

down to each other.

The sparsity property of LDPC codes allows to apply iterative decoding algo-

rithms, such as Gallager A and B given in Figure 3.5, with low complexity [42]. In

Gallager A and B, vi is incident to di many check nodes on Tanner graph and ui many

of them are unsatisfied. A bit i is candidate to be flipped, if ui > di/2. At each

iteration, Gallager A flips only a candidate bit i with largest ui value. On the other

hand, in Gallager B, all candidate bits are flipped. Gallager A guarantees to decrease

the number of unsatisfied check nodes, since it flips only one bit at each iteration. This

is not for sure in Gallager B due to multiple flipping at an iteration. In the following

chapters, we explain the details of methods that we develop for LDPC codes.

10

4. LDPC DECODING WITH HIGH ERROR

CORRECTION CAPABILITY

4.1. Introduction

In this chapter, we summarize our work on designing a decoding algorithm with

high error correction capability for LDPC codes. We give the details of our Branch–

and–Price (BP) algorithm in Section 4.2. We consider to improve the performance of

BP algorithm with some existing and developed feasible solution generation techniques

in Section 4.3.

The decoding problem can be represented with Exact Model (EM) which is given

in [18]. The columns and rows of a (n − k) × n parity–check matrix H of a binary

linear code can be represented with index sets V = {1, ..., n} and C = {1, ..., n − k},
respectively. In EM, Hji is the (j, i)−entry of parity–check matrix H, fi is a binary

variable denoting the value of the ith code bit and kj is an integer variable. Here, ŷ is

the received vector.

Exact Model (EM):

min
∑
i:ŷi=1

(1− fi) +
∑
i:ŷi=0

fi (4.1)

s.t.∑
i∈V

Hjifi = 2kj, ∀j ∈ C (4.2)

fi ∈ {0, 1}, ∀i ∈ V, (4.3)

kj ≥ 0, kj ∈ Z, ∀j ∈ C. (4.4)

11

Constraints (4.2) guarantee that the decoded vector f satisfies the equality fHT =

0 (mod 2). The objective (4.1) minimizes the Hamming distance between the decoded

vector f and the received vector ŷ. That is, the aim is to find the nearest codeword to

the received vector. Constraints (4.3) and (4.4) set the binary and integrality restric-

tions on decision variables f and k, respectively.

An alternative objective function is log–likelihood objective which can be given

as

min
∑
i∈V

γifi. (4.5)

Here, γi, as given in equation (4.6), is a term that represents the error probability

for received bit i. In this equation, ŷi represents the received value of bit i and fi is

the decoded value of the bit i.

γi = log(Pr(ŷi|fi=0)
Pr(ŷi|fi=1)

) (4.6)

The linear relaxation of EM (LEM) can be obtained by replacing the constraints

(4.3) and (4.4) with the followings:

0 ≤ fi ≤ 1, kj ≥ 0, ∀i ∈ V, j ∈ C. (4.7)

Since EM is an integer programming formulation, it is not practical to obtain

an optimal decoding using commercial solver for real–sized LDPC codes. Hence, we

develop branch–and–price algorithm and sliding window decoders explained in the

following sections for decoding problem.

12

4.2. Branch–and–Price Algorithm

In this section, we introduce a branch–and–price (BP) algorithm for the integer

programming formulation in [45] in order to find the nearest codeword to the received

vector ŷ.

Integer Programming Master (IPM) formulation given in [45] is a maximum like-

lihood decoder utilizing Tanner graph representation of H matrix. A local codeword

can be formed by assigning a value in {0, 1} to each variable node i ∈ N(cj) that

is adjacent to cj. A local codeword is feasible if sum of the values of variable nodes

i ∈ N(cj) is zero in (mod 2). For a check node cj, the set of feasible local codewords

can be given as εj := {S ⊆ N(cj) : |S| even}. We can satisfy cj if we set each bit in S

to 1, and all other bits in N(cj) to 0. One can observe that S = ∅ trivially satisfies a

check node and ∅ ∈ εj for all cj.

Integer Programming Master (IPM):

min
∑
i∈V

γifi (4.8)

s.t.∑
S∈εj

wjS = 1, ∀j ∈ C (4.9)

fi −
∑

S∈εj ,i∈S

wjS = 0, ∀ edges (i, j) (4.10)

fi ≥ 0, ∀i ∈ V, wjS ∈ {0, 1}, ∀j ∈ C, ∀S ∈ εj. (4.11)

In IPM model, binary decision variable wjS takes value 1 if feasible local codeword

S ∈ εj of check node cj is selected and zero otherwise. Hence, decision variables w

represent a feasible solution of parity–check equations and fi variable represents the

decoded value of bit i. We can obtain a trivial solution of IPM with wj∅ = 1 for all

13

j ∈ C and fi = 0 for all i ∈ V . We obtain Linear Programming Master (LPM) model

by relaxing the constraints (4.11) as

fi ≥ 0, ∀i ∈ V, wjS ≥ 0, ∀j ∈ C, ∀S ∈ εj. (4.12)

We define dual variables µj for constraints (4.9) and τij for constraints (4.10) in

LPM and obtain Dual LPM (DLPM) model.

Dual LPM (DLPM):

max
∑
j∈C

µj (4.13)

s.t.∑
i∈S

τij ≥ µj, ∀j ∈ C, S ∈ εj (4.14)

∑
j∈N(vi)

τij ≤ γi, ∀i ∈ V (4.15)

µj free, ∀j ∈ C, τij free, ∀ edges (i, j). (4.16)

We consider a Restricted LPM (RLPM) that has limited number of columns cor-

responding to wjS variables. At each iteration of our column generation algorithm,

we search for columns corresponding to variables wjS that have positive reduced cost,

i.e. µj −
∑

i∈S τij > 0, and add them to RLPM. Such wjS columns are equivalent to

the violated constraints from constraints (4.14) in DLPM. If ζj = max{µj −
∑

i∈S τij :

S ∈ εj} > 0 for some j, then we add the column

[
0
ej
Ak

]
for variable wjS. Here,

ej is a m−column vector, that has a 1 at jth row and 0 otherwise, and Ak is a

(
∑n

i=1 di)−column vector which has −1 at kth row if kth edge is the edge (i, j) with

i ∈ S. If ζj = 0 ∀j, then we are at optimum solution of LPM.

14

The above discussion means, at each iteration of column generation algorithm,

we are trying to solve the following subproblem for each j:

Subproblem(j):

min
∑

i∈N(cj)

τijxi − µj (4.17)

s.t.∑
i∈N(cj)

xi = 2k, (4.18)

xi ∈ {0, 1}, k ∈ Z+. (4.19)

We can solve the jth subproblem with algorithm given in Figure 4.1. The algo-

rithm runs in O(n log n) time due to sorting step where n is the number of variable

nodes.

Input τij values
1. Sort the τij values in nondecreasing order.

Let τ tij be the tth smallest τij value.
2. Set xi = 0 ∀i ∈ N(cj), set t = 1.
3. If τ ti1,j + τ t+1

i2,j
< 0, Then set xi1 = xi2 = 1, Else STOP.

4. t← t+ 2, go to Step 3.
Output Subproblem(j) is solved.

Figure 4.1. Subproblem j solution algorithm.

As we mentioned before, wj∅ = 1 for all j ∈ C is a feasible solution for LPM.

Hence, for all j ∈ C we can take (j, ∅) columns for the starting RLPM problem. We

can solve LPM to optimality by introducing columns to RLPM until we have ζj = 0 for

all j. Since our ultimate goal is to solve IPM, we need to branch on decision variables

if optimum solution of LPM is fractional. In the next section we discuss the alternative

branching strategies in detail.

15

4.2.1. Branching in BP Algorithm

If we have a fractional optimal solution of LPM, they we have either wjS or fi

variables fractional. Before determining a branching strategy, we will first prove the

following proposition.

Proposition 4.1. In LPM problem, fi values are integral ∀i if and only if wjS values

are integral ∀(j, S).

Proof. (⇐) Assume that wjS values are integral ∀(j, S). Constraints (4.10) imply

that fi values are integral ∀i, since each fi is the sum of integer numbers. Besides, we

observe that wjS values can be either 0 or 1, so do the fi values.

(⇒) Assume for contradiction fi integral but ∃j such that wjS values are not

integral ∀S. By constraints (4.9), we know
∑

S∈εj wjS = 1. Hence, for at least two wjS

variables, say wj,S1 = p and wj,S2 = q with p, q > 0 and p + q ≤ 1, we have fractional

values. Since S1 6= S2, there exists k ∈ S2 \ S1.

For variable node k and check node j, we have the constraint fk =
∑

S∈εj ,k∈S wjS

for edge (k, j). Edge (k, j) exists, since k ∈ S2 ∈ εj which implies that k ∈ N(cj).

We know that k 6∈ S1, meaning that wj,S1 = p will not be in the sum. This means

fk =
∑

S∈εj ,k∈S wj,S ≤ 1− wj,S1 = 1− p < 1. Moreover, wj,S2 will be in the sum, since

k ∈ S2. This gives fk ≥ wj,S2 = q > 0. As a result, 0 < fk < 1 and fk is a fractional

value. This contradicts with our assumption that fi values are all integral. Hence, we

conclude that if fi integral ∀i, then wjS values are also integral ∀(j, S).

Combining two results, we see that fi values are integral ∀i if and only if wjS values

are integral ∀(j, S). �

As a result of this proposition, in order to have an integral solution to the LPM

problem, we should either branch on wj,S variables to have integral wjS values or branch

on fi variables to have integral fi values. Having integral wjS values (or integral fi

values) will guarantee that all decision variables are integral.

16

4.2.1.1. Branching on wjS variables. In this strategy, we consider to branch on some

fractional wjS at a node. This means we have in one branch wjS = 0 and wjS = 1 in

the other branch. In wjS = 0 branch, we never select local codeword S for check node

j. Let y ∈ Bn be the characteristic vector of S, i.e. yi = 1 if node vi is in S and yi = 0

otherwise.

Subproblem(j0):

ζ0j = min
∑

i∈N(cj)

τijxi − µj (4.20)

s.t.∑
i∈N(cj)

xi = 2k, (4.21)

|xi − yi| = zi, i ∈ N(cj) (4.22)∑
i∈N(cj)

zi ≥ 1, (4.23)

xi ∈ {0, 1}, k ∈ Z+, zi ∈ R. (4.24)

Constraints (4.22) and (4.23) guarantee that the selected local codeword char-

acterized by vector x is different from the prohibited local codeword characterized by

vector y at least in one neighbor vi. We observe that as we proceed with the branching

process, for cj if we set wj,S1 = wj,S2 = ... = wj,Sr = 0 as branch condition, we add

the following constraints (4.25) and (4.26) instead of constraints (4.22) and (4.23) to

subproblem j:

|xi − yki | = zki , i ∈ N(cj); k = 1, ..., r, (4.25)∑
i∈N(cj)

zki ≥ 1, k = 1, ..., r. (4.26)

17

In wjS = 1 branch, we always select local codeword S for cj. Hence, we satisfy

the constraints (4.9) as equality for cj. This means, we cannot select any other local

codeword for cj. Hence, we solved subproblem j for cj. For the other check nodes

j′ 6= j, subproblem j′ can be solved with the following formulation, where y is the

characteristic vector of set S:

Subproblem(j′1):

ζ1j′ = min
∑

i∈N(cj′)

τij′xi − µj′ (4.27)

s.t.∑
i∈N(cj′)

xi = 2k, (4.28)

xi = yi, i ∈ N(cj′) ∩N(cj) (4.29)

xi ∈ {0, 1}, k ∈ Z+. (4.30)

As we proceed with the branching process, if we have set wj1,S1 = wj2,S2 =

... = wjr,Sr = 1 as branch condition, we say that for subproblem jk the selected local

codeword is Sk for k = 1, 2, ..., r. For a subproblem j /∈ {j1, j2, ..., jr}, we can solve the

subproblem by replacing constraints (4.29) with the following constraints where yk is

the characteristic vector of set Sk for k = 1, 2, ..., r.

xi = yki , i ∈ N(cj′) ∩N(cjk); k = 1, ..., r. (4.31)

In more general case, for check nodes j ∈ C1 ⊆ C we may have wj,S1 = wj,S2 =

... = wj,Srj
= 0 for and for check nodes j ∈ C2 ⊆ C we may have wj,Sj = 1. Then,

we solve subproblem j by selecting Sj as local codeword for j ∈ C2. For j ∈ C1, in

18

order to solve subproblem j, we add constraints (4.25) and (4.26) by replacing r with

rj, instead of constraints (4.22) and (4.23). Besides, for the subproblem j /∈ C2, we

should add constraints (4.31).

However, we observe that we can add at most (dj + 1) · 2dj−1−many constraints

to Subproblem(j) model for cj. That is the number of constraints in the subproblem

j grows exponentially in terms of dj (number of neighbors of cj). Besides, since the

structure of the problem has changed after adding these constraints, we can no more

make use of Figure 4.1 as a solution procedure. From this analysis, we conclude that

branching on wjS variables is not practical in use.

4.2.1.2. Branching on fi variables. Assume that we solve the RLPM and find that for

some vi, fi is fractional. Then, we consider to branch the problem by assigning fi = 0

in one branch and fi = 1 in the other branch. We continue to branch on the f variables

until we have an integral solution in RLPM. In that case, we have an integer feasible

solution for LPM problem, which is a feasible solution of IPM.

Figure 4.2. Branching strategy.

In fi = 0 branch, constraints (4.10) become
∑

S∈εj ,i∈S wjS = 0 for all (i, j) edges,

implying that each check node j ∈ N(vi) with i ∈ S will have wjS = 0. This means in

fi = 0 branch, we permanently set these wjS values to 0. As a result, we can eliminate

the (j, S) columns if check node j ∈ N(vi) and i ∈ S from the RLPM. There can be

some other (j, S) columns of RLPM such that i 6∈ S. These (j, S) columns can still be

in the fi = 0 branch, since check node j ∈ N(vi) and i 6∈ S with wjS > 0 implies fi = 0

19

and for check node j 6∈ N(vi) nodes fi value is not affected. We name new RLPM in

the fi = 0 branch as RLPM0.

The subproblem for cj in the fi = 0 branch can be given as follows:

Subproblem(j0):

ζ0j = min
∑

l∈N(cj)

τljxl − µj (4.32)

s.t.∑
l∈N(cj)

xl = 2k, (4.33)

xi = 0, if i ∈ N(cj), (4.34)

xl ∈ {0, 1}, k ∈ Z+. (4.35)

The subproblem j determines a local codeword S characterized with (x1, x2, ..., xdj)

for cj. For a cj, if variable node i 6∈ N(cj) then selected local codeword S cannot include

vi anyway. Hence, the constraint (4.34) will not be in the subproblem. On the other

hand, if variable node i ∈ N(cj) then selected local codeword S should not include vi

in order to agree with fi = 0 condition. This is satisfied by adding constraint (4.34).

As we proceed with branching, say we are at the rth level with the conditions

fi1 = fi2 = ... = fir = 0, we will have constraints (4.36) given below instead of

constraint (4.34) in subproblem j:

xik = 0, if ik ∈ N(cj), k = 1, ..., r. (4.36)

20

Then, we can solve Subproblem(j0) by simply applying Figure 4.1 after we discard

the τik,j values and xik variables for ik ∈ N(cj), k = 1, ..., r. If the objective function

value ζ0j < 0, then we can introduce column (j, S) to the RLPM0.

In fi = 1 branch, constraints (4.10) become
∑

S∈εj ,i∈S wjS = 1, for all (i, j) edges.

The (j, S) columns having j ∈ N(vi) and i 6∈ S with wjS > 0 imply that fi = 0.

Since this contradicts with the branch condition fi = 1, we conclude that wjS = 0

permanently for such columns. Hence, in the fi = 1 branch we can eliminate the (j, S)

columns if j ∈ N(vi) and i 6∈ S from RLPM. There can be some other (j, S) columns

that have j ∈ N(vi) and i ∈ S. Additionally, there can be (j, S) columns having

j 6∈ N(vi), and they do not affect the value of fi. We name new RLPM in the fi = 1

branch as RLPM1. We solve RLPM1 and obtain the current optimal dual variables

(µ∗, τ ∗). We solve the subproblem in order to determine the new entering columns.

The subproblem for cj in the fi = 1 branch can be given as follows:

Subproblem(j1):

ζ1j = min
∑

l∈N(cj)

τljxl − µj (4.37)

s.t.∑
l∈N(cj)

xl = 2k, (4.38)

xi = 1, if i ∈ N(cj), (4.39)

xl ∈ {0, 1}, k ∈ Z+. (4.40)

The subproblem j determines a local codeword S for cj. For a check node cj, if

variable node i 6∈ N(cj) then selected local codeword cannot include vi anyway. Hence,

constraint (4.39) is not in the subproblem. On the other hand, if i ∈ N(cj) then

selected local codeword S should include vi in order to agree with the fi = 1 condition.

21

This is satisfied by adding constraint (4.39).

As we proceed with branching, say we are at the rth level with the conditions

fi1 = fi2 = ... = fir = 1, we have constraints (4.41) given below instead of constraint

(4.39) in subproblem j:

xik = 1, if ik ∈ N(cj), k = 1, ..., r. (4.41)

Then, we can solve Subproblem(j1) after we plug in xik = 1 values and obtain an

additional constant term from the corresponding τik,j values. The remaining problem

can be solved by applying Figure 4.1 with a small update: if n is even then already

constructed set with xik variables is an even set, and we can continue adding even

number of elements to this set as long as they have negative marginal cost. If n is odd,

then we have an odd set initially. Hence, we should consider to add one element at

the first iteration. We observe that we have to add the first candidate element even

it has a positive marginal cost in order to have an even set, a feasible local codeword.

The algorithm will consider to add even number of elements in the next iterations if

they have negative marginal cost. But this is not possible when the first candidate

element has positive τij value. Since we order the τij values in nondecreasing order, the

remaining elements cannot have a negative marginal cost. Hence, in this case we will

stop after adding the first element to the set. If the objective function value ζ1j < 0,

then we can introduce column (j, S) to RLPM1.

A more general case in a branch is that we have some fi variables are set to 0

and some of them are set to 1. When we are at the rth level, we can say that fi = 0

for i ∈ N0 and fi = 1 for i ∈ N1, where N0 ∪N1 = V̄ ⊆ V , |V̄ | = r and N0 ∩N1 = ∅.
In this branch, we have added the following constraints to the subproblem j:

xi = 0, if i ∈ N(cj) ∩N0, and xi = 1, if i ∈ N(cj) ∩N1. (4.42)

22

In order to solve Subproblem(j), we eliminate the xi variables for i ∈ N(cj)∩N0

and we plug in the xi = 1 values for i ∈ N(cj)∩N1 to obtain an additional constant term

from the corresponding τij values. We can solve the remaining problem by applying

Figure 4.3, modified Figure 4.1, given below. The algorithm runs in O(n log n) time

due to sorting step where n is the number of variable nodes.

Input: Sets N0 and N1, where fi = 0 for i ∈ N0 and fi = 1 for i ∈ N1.
0. Set xi = 0, if i ∈ N(cj) ∩N0, and xi = 1, if i ∈ N(cj) ∩N1.

Let Ij = N(cj) \ (N0 ∪N1).
1. Sort the τij values in nondecreasing order for i ∈ Ij.

Let τ tij be the tth smallest τij value.
2. Set xi = 0 ∀i ∈ Ij, set t = 1.
3. If |N(cj) ∩N1| is even
4. Then set xi1 = xi2 = 1 if τ ti1,j + τ t+1

i2,j
< 0, otherwise STOP.

5. t← t+ 2, go to Step 4.
6. Else set xi = 1 for τ tij
7. If τ tij < 0, Then t← t+ 1 and go to Step 4, Else STOP.
8. End If
Output: A local codeword S with objective value

ζj =
∑

i∈Ij τijxi +
∑

i∈N(cj)∩N1
τij − µj.

Figure 4.3. Subproblem j on a branch solution algorithm.

From the above analysis, we observe that branching on fi variables does not

change the structure of the subproblems. Hence, we can still find the optimal solution

of a subproblem in polynomial time. As a result, in this study we prefer to branch on

fi variables.

The general branch–and–price algorithm for IPM problem is given in Figure 4.4.

In Figure 4.4 we try two integer values, namely 0 and 1, for fi variables. Hence, we

can have at most n(2n + 1)−many nodes in the branch–and–price tree, i.e. at most

n(2n + 1)−many problems in the LIST . For each element in the LIST , we solve a

linear programming problem which has at most e = (n+
∑m

j=1 2dj−1)−many variables,

where dj is the number of neighbors of a check node j. The problem can be encoded

in L input bits, can be solved with Karmarkar’s interior point algorithm in O(e3.5 · L)

time [46]. Besides, we apply Figure 4.3 for branching which takes O(n log n) time as

we have seen. As a result, Figure 4.4 runs in O(n2 · e3.5 · L) time. Since, e grows

exponentially in number dj, Figure 4.4 is an exponential time algorithm.

23

Input: A set of feasible local codewords that constitutes RLPM
(∅ ∈ εj, ∀j).

0. Set LIST = {RLPM}, let z̄ =∞ and z = −∞.
1. While LIST 6= ∅ Do
2. Select the last problem in LIST , say problem P .

/* depth–first search*/
3. Solve P and obtain optimal primal (f∗,w∗)

and dual (µ∗, τ ∗) solutions with value zi.
Prunning /* delete P from the LIST*/

4. If P is infeasible, Then prune by infeasibility and go to Step 1.
5. If zi ≥ z̄, Then prune by bound and go to Step 1.
6. If P has an integer optimal solution, Then z̄ = zi,

solve the subproblems with Figure 4.3.
7. If ζj = 0 for all j, Then prune by optimality, go to Step 1.
8. Else add the columns with ζj > 0 to P , go to Step 1.
9. End If
10. End If

Branching /* add P to the LIST*/
11. If P has a fractional optimal solution,

Then choose a fractional fi
Left Branch

12. Let RLPM0 = P ∩ {(f ,w) : fi = 0},
add xi = 0 to subproblem j, if i ∈ N(cj).

13. Solve the subproblems with Figure 4.3
and add the columns with ζj > 0 to RLPM0.

14. Add RLPM0 to LIST , and go to Step 1.
Right Branch

15. Let RLPM1 = P ∩ {(f ,w) : fi = 1},
add xi = 1 to subproblem j, if i ∈ N(cj)

16. Solve the subproblems with Figure 4.3,
and add the columns with ζj > 0 to RLPM1.

17. Add RLPM1 to LIST , and go to Step 1.
18. End If
19. End While
Output: An integral solution (f∗,w∗) to LPM with objective value z̄.

Figure 4.4. IPM solution algorithm.

24

4.2.2. Repairing Infeasibility in Node Relaxations

In the application of Figure 4.4 explained above, we observe that a branch can

be prunned although there exists a feasible solution on that branch. This may happen

if the currently generated columns are not sufficient to construct a feasible solution on

the branch. As an example, consider we are at the f2 = 1 and f4 = 1 branch of Tanner

graph in Figure 4.5.

Figure 4.5. An example Tanner graph.

The set of all feasible local codewords for check node 1 is ε1 = {∅, {1, 2}, {1, 4}, {2, 4}}
and for check node 2 is ε2 = {∅, {2, 3}, {2, 4}, {3, 4}}. On the f2 = 1 and f4 = 1 branch,

one can see that (0 1 0 1) is a feasible codeword if we can choose local codeword {2, 4}
of check node 1 and {2, 4} of check node 2. However, we cannot find this feasible solu-

tion on the branch if we have only generated the local codewords ∅, {1, 2} and {1, 4} for

check node 1 and the local codeword ∅ for check node 2. Moreover, we cannot find any

other feasible solution on this branch with these limited number of local codewords.

In such a case, the f2 = 1 and f4 = 1 branch is prunned by infeasibility by

Figure 4.4 although there is a feasible solution for LPM on the branch. In order to

overcome this situation, we developed a column generation method based on the dual

formulation. Let P be the primal problem representing the RLPM and D is the dual

of RLPM. We first prove the following proposition:

25

Proposition 4.2. P is infeasible if and only if D is unbounded.

Proof. From the duality theory, we know that infeasible P implies D is unbounded

or infeasible. We know that LPM is bounded since the variables fi and wjS ∈ [0, 1]

and it is feasible since 0−codeword is a trivial solution. Then the dual of the LPM is

also feasible.

D being the dual of a restricted LPM, will be feasible since it contains the feasible

region defined by LPM dual. This means that D cannot be infeasible in any case. From

here, we get P is infeasible =⇒ D is unbounded.

Moreover, we can say that unbounded D implies P is infeasible from the duality

theory. As a result, we conclude that P is infeasible ⇐⇒ D is unbounded. �

At an infeasible branch, either the current P is really infeasible or it occurs to

be infeasible since we could not generate the columns that are necessary to construct

a feasible solution. Then, we can make use of Proposition 4.2 to generate the required

columns for P if there is a feasible solution for LPM on the branch.

If there is a feasible solution on the branch, then D should give a finite optimum

solution. Then, we can able to find a dual constraint, a feasible local codeword for

primal, such that we can find a finite solution. This dual constraint can be determined

using the Farkas’ Lemma. Consider the following primal and dual formulations:

Primal: Dual:

min
[
f w

]γ
0

 max c

µ
τ


s.t. s.t.[

f w
]

A = c A

µ
τ

 ≤
γ

0


f ≥ 0,w ≥ 0 µ and τ unrestricted

26

Here f and w are primal, µ and τ are dual decision variables, A is the matrix

for the constraints and c =
[
1 0

]
is the right–hand–side vector of P . Let System 1

and System 2 are defined as follows:

System 1:
[
f w

]
A = c and f ≥ 0,w ≥ 0

System 2: Ad ≤ 0 and cd > 0,d unrestricted.

Since primal formulation is infeasible in the current branch, System 1 is infeasible.

This means System 2 will have a feasible solution according to the Farkas’ Lemma.

Proposition 4.3. The solution d of System 2 is a recession direction for D. The dual

objective is unbounded in direction d.

Proof. Let

µ
τ

 is a feasible dual solution. Then, A

µ
τ

 ≤
γ

0

 ,µ and τ are

unrestricted.

A

µ
τ

+ λAd ≤

γ
0

, since A

µ
τ

 ≤
γ

0

, λ ≥ 0 and Ad ≤ 0.

This means that

µ
τ

 + λd is also dual feasible for all λ ≥ 0. That is d is a

recession direction for the dual problem.

Besides, the dual objective c

µ
τ

+ λd

 = c

µ
τ

 + λcd is unbounded since

λ ≥ 0 and cd > 0.

Hence, the solution d of System 2 is a recession direction and the dual objective

is unbounded. �

27

Since all constraints (4.15) are already exist in all RLPM duals, the candidate

constraints that can bound the unbounded dual objective of P can be among the

constraints (4.14). This idea is demostrated in Figure 4.6 below, where the dashed line

is the constraint that we are trying to find.

Figure 4.6. Dual constraint generation.

We can observe that for this dual constraint, there exist dual feasible solutionsµ
τ

 that the constraint is satisfied. But as we proceed from this feasible point in the

direction of d, we will violate the constraint for sufficiently large λ ≥ 0 value. That is

for sufficiently large λ, the vector

µ
τ

+ λd will be an infeasible vector.

Let a

µ
τ

 = µj −
∑

i∈S τij ≤ 0 for some j ∈ C and S ∈ εj be the constraint that

we would like to find. Here, a is the corresponding coefficients of the constraint.

Proposition 4.4. An unbounded problem D will be bounded if the constraints such

that adt > 0,∀t are added to the problem D. Here dt is a recession direction of D with

cdt > 0.

28

Proof. Let dt be a recession direction with cdt > 0 and

µ
τ

 be a feasible solu-

tion of D . Then, for all λ ≥ 0 the vector

µ
τ

+ λdt is feasible for problem D.

Let a

µ
τ

 ≤ 0 be a constraint with adt > 0. Then, for sufficiently large λ

values the vector

µ
τ

 + λdt does not satisfy the constraint, i.e. a

µ
τ

+ λdt

 =

a

µ
τ

+ λadt > 0, since the constraint has the property adt > 0.

Hence, adding the constraint a

µ
τ

 ≤ 0 to the problem D will bound the problem

in direction dt.

Repeating this argument for all directions dt, we can obtain a bounded objective

function value for problem D. �

One can observe that if there is no such constraint, then the problem D is un-

bounded implying that the restricted primal problem P on the branch is infeasible.

Another observation is that there can be more than one constraint that bounds the

direction dt. Then, our aim will be to find the constraint that has the largest adt > 0

value.

The a matrix is the coefficient matrix of a constraint µj −
∑

i∈S τij ≤ 0 for some

j ∈ C and S ∈ εj. Hence, a has (m+ e)−many entries where m is the number of check

nodes and e is the total number of edges in Tanner graph. The first m entries of a

matrix are the coeffiecients for µ variables. Then, we have zeros except a 1 for the jth

entry. The following e entries are the coefficents for τ variables and all zero except for

the -1 entries for the jth check node and the elements i in the local codeword S. Let

29

dt =

dµ

dτ

, where dµ and dτ are the entries of the dt corresponding to the indices of

the variables µ and τ , respectively. Then adt = dµ −∑i∈S dτ and maximizing adt is

equivalent to maximizing dµj −
∑

i∈S d
τ
ij for each check node j.

Hence, we have to solve the following direction subproblem for each cj:

Direction Subproblem(j):

min
∑

i∈N(cj)

dτijxi − dµj (4.43)

s.t.∑
i∈N(cj)

xi = 2k, (4.44)

xi ∈ {0, 1}, k ∈ Z+. (4.45)

We observe that the direction subproblem is actually in the same format with

the column generation subproblem. Hence, on a branch we can solve the direction

subproblem with Figure 4.3 after replacing τij and µj with dτij and dµj , respectively.

As a result, we can summarize our dual method for generating dual constraints, i.e.

primal columns, with Figure 4.7.

4.2.3. A Pruning Strategy

In a BP algorithm, we are applying three pruning rules, namely prune by opti-

mality, by infeasibility and by value dominance. We will consider an additional pruning

rule that is based on the difference between the objective function values of two feasible

integral solutions.

As we explained in Section 4.1, there are two alternative objective function defini-

tions in literature for decoding problem. First is Hamming distance (given as equation

30

Input: An infeasible restricted primal problem, P
1. Solve the dual Farkas system and obtain a recession direction d

that D is unbounded.
2. Solve Direction Subproblem(j) for each check node j.

Add generated local codewords, i.e. columns, to P .
3. If no columns generated, Then conclude P is infeasible.

Prune the branch by infeasibility and STOP.
4. Solve problem P .
5. If P is feasible, Then STOP.
6. Else Go to Step 1.
7. End If
Output: A feasible restricted primal problem P or prune P by infeasibility.

Figure 4.7. Dual constraint generation algorithm.

(4.1)) and second is log–likelihood (given as equation (4.5)) objectives.

Proposition 4.5. Log–likelihood and Hamming distance objectives are equivalent. That

is both objectives give the same optimum solution set for decoded codeword f .

Proof. First consider the log–likelihood objective. As it is given in study [9],

γi = log[(p)/(1− p)] if received bit ŷi = 1 and γi = log[(1− p)/(p)] if ŷi = 0 where p is

the error probability for BSC. Then, the objective can be written as

min−
∑
i:ŷi=1

afi +
∑
i:ŷi=0

afi (4.46)

where a = log[(1 − p)/(p)]. In practical applications p is a small number, i.e.

p = 0.001, which implies a ≥ 0.

On the other hand, Hamming distance objective can be written as

min−
∑
i:ŷi=1

fi +
∑
i:ŷi=0

fi + c1 (4.47)

31

where c1 =
∑

i:ŷi=1 1.

One can observe that Hamming distance objective is a scaled version of log–

likelihood objective by choosing a = 1 and adding a constant term c1. Hence, both

objectives have the same optimum solution set. �

Proposition 4.6. Let f be a feasible integral solution of LPM with objective function

value z. Then, there is no feasible integral solution of LPM with objective function

value in the range (z − a, z) with log–likelihood objective.

Proof. From log–likelihood objective (4.46), we can see that z is an integral

multiple of a since f is integral, i.e. z = k · a where k ∈ Z. Let f ′ be another integral

feasible solution of LPM. Then, its objective value z′ is also an integral multiple of a, say

z′ = k′ ·a and where k′ ∈ Z. The difference among the objectives is z−z′ = (k−k′) ·a.

From here, we can conclude that the nearest objective function value to z can be either

z′ = z + a or z′ = z − a. Hence, there is no feasible integral solution of LPM with

objective function value in the range (z − a, z). �

In another words, the minimum difference between two feasible integral solutions

is a with log–likelihood objective and 1 with Hamming distance.

Proposition 4.7. Let z be the optimum solution of a RLPM at a branch. Prune the

branch if z > zUB − a where zUB is the best upper bound on the IPM and a is the

minimum difference between two feasible integral solutions.

Proof. A branch can be pruned by value dominance if z > zUB. Besides, as

shown in Proposition 4.6, there cannot be an integral feasible solution in the range

(zUB − a, zUB). Hence, we can prune the branch if z > zUB − a. �

4.2.4. On the Strength of LP Relaxation

We first observe that the objective function of EM minimizes the Hamming dis-

tance to the received codeword ŷ. Then, the optimum function value of EM is non-

32

negative for all instances, i.e. zEM ≥ 0. Let zEM = minf zEM(f). We have zEM(f) = 0

if f = ŷ and for any feasible solution f 6= ŷ the objective function value zEM(f) > 0.

Proposition 4.8. The optimum objective function value of LEM is 0 for all instances,

i.e. zLEM = 0.

Proof. Let f be a fractional solution of LEM. Then, there is i ∈ V such that

0 < fi < 1. If ŷi = 1, then we will have cost (1 − fi) > 0 and if ŷi = 0, then we

will have cost fi > 0 to be added to the objective function. Then, for any fractional

solution we have zLEM(f) > 0. In general if f 6= ŷ, then zLEM(f) > 0.

Let f = ŷ, then f is feasible for LEM since 0 ≤ fi ≤ 1 ∀i and kj =
∑

i∈V Hijfi
2

≥ 0

sinceHji is a matrix of 0s and 1s. Then, the optimum objective function value zLEM = 0

for all H instances. �

Proposition 4.9. LPM problem with Hamming distance objective (4.1) has strictly

positive optimum objective value, i.e. zLPM > 0, if received codeword ŷ is not a feasible

codeword.

Proof. If received vector ŷ is a feasible codeword, then f = ŷ be a feasible solution

for LPM and it will be optimal. Let ŷ is not a feasible codeword. Then, LPM problem

will have a fractional or integral feasible solution f 6= ŷ. This means the Hamming

distance objective will be strictly positive for this optimal solution. Hence, zLPM > 0,

if received codeword ŷ is not a feasible codeword. �

To summarize, linear relaxation of EM formulation gives zLEM = 0 for all H in-

stances. The linear relaxation of IPM problem gives zLPM = 0 if the received codeword

ŷ is a feasible codeword, otherwise zLPM > 0. This means that LPM gives a better

lower bound for IPM objective than LEM.

33

4.2.5. Computational Results

The computations have been carried out on a computer with 2.6 GHz Intel Core

i5-3230M processor and 4 GB of RAM working under Windows 10 Professional operat-

ing system. We test the perfromance of our branch–and–price (BP) algorithm against

CPLEX 12.6.0 using EM formulation. In order to understand the characteristics of

the decoding problem, we carry out some pre–computations with 11 LDPC codes. In

Table 4.1, we observe that lower bound obtained from LPM formulation is better than

LEM.

Table 4.1. LP relaxation and optimal solution values.

Input No (m, n) LEM LPM z∗

0 (5, 8) 0 2 3
1 (8, 8) 0 2 2
2 (6, 15) 0 3 3
3 (12, 15) 0 3 3
4 (9, 18) 0 2 2
5 (15, 21) 0 3 5
6 (20, 30) 0 2 4
7 (24, 36) 0 1.56 3
8 (30, 40) 0 2 6
9 (36, 48) 0 1.68 5
10 (40, 52) 0 2 6

Average: 0 2.20 3.82

In Table 4.2, CPU seconds consumed by CPLEX and our BP algorithm to find

the optimum solution are listed. The results show that our algorithm is not performing

better than CPLEX.

Table 4.2. CPU in seconds for CPLEX and BP.

Input No (m, n) CPLEX BP
0 (5, 8) 0.16 0.20
1 (8, 8) 0.20 0.17
2 (6, 15) 0.08 0.20
3 (12, 15) 0.22 0.50
4 (9, 18) 0.36 0.27
5 (15, 21) 0.23 2.15
6 (20, 30) 0.31 8815.70
Average: 0.22 1259.88

34

The performance of our algorithm can be further visualized in Figure 4.8. In

the first subfigure, the upper bound for the current the relaxation problem at the

node is given with a dot. As we process the nodes, the best upper bound reaches to

the optimum integer solution of value 5 starting form an initial upper bound 9. The

second subfigure shows the number of iterations performed at the current node before

branching or pruning. It can be seen that we are consuming 28 iterations at the root

node before branching. On the average, we are carrying out 2 iterations per node.

From these observations, a tight upper bound on the optimum solution will be helpful

for early pruning the nodes.

Figure 4.8. Track of iterations for Input 5.

4.2.5.1. Performance of CPLEX. In this section, we test the performance of CPLEX

with EM formulation under different H instances. We would like to understand the

response of CPLEX to the density of H matrix and length of the codeword.

35

H matrix becomes denser as the number of ones in the matrix gets larger. Keeping

the (m,n) dimensions of H matrix constant, we generate (3, 6), (5, 10), (6, 12), (10,

20), (15, 30), (30, 60)–regular codes. When the matrix dimensions are the same, a

(5, 10)–regular code is denser than a (3, 6)–regular code. One expects that solving an

instance with a denser H matrix is more difficult since the decision variables become

more dependent to each other (see Constraints (4.2)).

The length of the codeword, n, also affect the performance of the solver. When

H matrices are from the same code family, by increasing n means the dimension of the

matrix gets larger which adds new constraints to EM. For a (3, 6)–regular code n = 60

means m = 30 and n = 120 means m = 60. Here m is both the number of rows of

H matrix and the number of constraints in EM. We tried 8 different codeword lengths

from n = 60 to n = 480.

For the results in Table 4.3, 0−codeword is damaged with an error rate p = 0.01

and a received codeword is obtained. As we move to the right on a row, for example

n = 360, the dimension of H matrix is constant but its density increases. Hence, we

observe that for (6, 30, 60) code, i.e. s = 6 to have n = s × 60 (360 = 6 × 60), the

solution cannot be found due to memory limitations. As we move to down on a column,

for example (s, 30, 60), the dimension of H increases. We can observe that when the

dimension becomes (s × 30, s × 60) = (180, 360) for s = 6, finding a solution is not

possible due to memory.

Table 4.3. Performance of CPLEX under low error rate (in seconds).

(s, 3, 6) (s, 5, 10) (s, 6, 12) (s, 10, 20) (s, 15, 30) (s, 30, 60)
n z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU
60 3 0,33 3 0,15 3 0,18 3 0,30 3 0,34 1 0,18
120 5 0,32 5 0,13 5 0,22 5 0,24 5 0,38 5 1,77
180 5 0,32 5 0,13 5 0,20 5 0,19 5 0,42 5 1,43
240 6 0,34 6 0,14 6 0,20 6 0,24 6 0,41 6 7,05
300 7 0,36 7 0,38 7 0,23 7 0,23 7 0,44 7 25,65
360 9 0,38 9 0,28 9 0,24 9 0,22 9 0,48 −−
420 10 0,35 10 0,18 10 0,23 10 0,25 10 0,34 −−
480 10 0,36 10 0,17 10 0,22 10 0,26 10 0,29 −−
Avg: 0,34 0,20 0,22 0,24 0,39 7,23

36

Another performance analysis is carried out with the received codeword is ŷ =

0101...01. For all instances this received codeword is used with approporiate length n.

One should change half of the bits of 0−codeword in order to obtain ŷ. Hence, we are

considering a case with high error rate.

The results are given in Table 4.4 below. As we can see from the results that as

the error rate increases it is more difficult to find a solution for CPLEX. This analysis

shows that CPLEX gets stuck when the density of H matrix increases and the codeword

gets longer.

Table 4.4. Performance of CPLEX under high error rate (in seconds).

(s, 3, 6) (s, 5, 10) (s, 6, 12) (s, 10, 20) (s, 15, 30) (s, 30, 60)
n z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU
60 8 0,22 6 0,84 6 0,52 6 2,09 4 0,72 0 0,14
120 14 0,37 14 725,84 −− −− −− −−
180 22 4,40 −− −− −− −− −−
240 30 99,54 −− −− −− −− −−
300 36 1222,51 −− −− −− −− −−
360 −− −− −− −− −− −−
420 −− −− −− −− −− −−
480 −− −− −− −− −− −−
Avg: 265,41 363,34 0,52 2,09 0,72 0,14

4.2.5.2. Performance of BP Algorithm. In addition to BP algorithm that is explained

in Section 4.2, we add the columns that has zero reduced cost to the RLPM in order

to speed up the column generation procedure. We provide a time limit of 10 minutes

to BP algorithm.

The results given in Table 4.5 and 4.6 show that the performance of BP is not

better than CPLEX in terms of computation time. For some of the instances we give

the best solution, LP relaxation lower bound and 0−codeword upper bound in Table

4.7. From these results we can see that optimum solution is around the initial lower

bound. This means BP devotes most of the time of to find an upper bound.

Then, we expect that providing a tight upper bound can improve the perfor-

mance of BP algorithm. For this purpose, methods that exist in the literature and the

37

Table 4.5. Performance of BP under low error rate (in seconds).

(s, 3, 6) (s, 5, 10) (s, 6, 12) (s, 10, 20) (s, 15, 30) (s, 30, 60)
n z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU
60 3 0,18 3 0,15 3 0,18 3 0,27 3 0,32 1 4,44
120 5 0,16 5 0,18 5 0,24 5 8,65 5 0,91 5 91,45
180 5 0,16 5 0,20 5 0,22 5 20,17 5 276,37 time
240 6 0,17 6 0,20 6 0,26 6 0,43 6 554,08 time
300 7 0,17 7 0,22 7 0,26 7 64,36 time time
360 9 0,16 9 0,19 9 0,31 9 279,82 time time
420 10 0,18 10 0,26 10 0,25 10 488,74 time time
480 10 0,21 10 0,32 10 0,53 10 566,64 time time
Avg: 0,17 0,22 0,28 178,64 207,92 47,95

Table 4.6. Performance of BP under high error rate (in seconds).

(s, 3, 6) (s, 5, 10) (s, 6, 12) (s, 10, 20) (s, 15, 30) (s, 30, 60)
n z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU z∗ CPU
60 8 0,81 6 306,01 time time time time
120 14 49,02 time time time time time
180 time time time time time time
Avg: 24,91 306,01 0 0 0 0

Table 4.7. Initial lower and upper bounds in BP.

(s, k, l) z∗ z z̄
(10, 3, 6) 8 6,3 30
(20, 3, 6) 14 12,89 60
(30, 3, 6) 22 19,99 90
(40, 3, 6) 30 26 120
(50, 3, 6) 36 32,83 150
(6, 5, 10) 6 4,44 30
(12, 5, 10) 14 8,5 60
(5, 6, 12) 6 4,11 30
(3, 10, 20) 6 3,02 30

new heuristic methods are tried and their performances are reported in the following

sections.

4.3. Feasible Solution Generation Methods

In this section, we list our feasible solution (upper bound) generation techniques.

We test their affects on the performance of BP algorithm computationally.

38

4.3.1. Gallager A and B Algorithms

Gallager A and B algorithms (given in Chapter 3) are hard–decision decoding

algorithms [42]. That is the decoded codeword is a sequence of 0s and 1s.

Gallager A and B algorithms are quite similar. For each bit of the received

codeword ŷ, the algorithm collects the opinions of each check node. If the neighboring

check node is unsatisfied, then this is considered as an indication of an error in the

corresponding bit. If most of the neighbors of a bit are unsatisfied, we have a strong

intuition that the bit is erroneous.

As given in Figure 3.5, Gallager A algorithm prefers to flip the bit that has the

maximum number of unsatisfied checks. At each iteration of the algorithm, we flip only

one bit which guarantees that the number of unsatisfied checks will decrease at each

iteration. In Gallager B algorithm, decrease in the unsatisfied checks at each iteration

is not for sure since it applies multi–flip at an iteration.

Stopping criterion can be the number of iterations. The major problem with

these algorithms is that they may get stuck when there is a cycle in the LDPC code.

When the code gets denser, the probability of observing a cycle in the Tanner graph

increases. Since our aim is to solve respectively denser codes, the expectation is that

these algorithms performs poorly in finding an upper bound.

For the computational experiments, (3, 6), (5, 10) and (6, 12)–regular codes of

different dimensions are used. The codeword 0101 ... 01 is used as the received vector.

The results of BP with Gallager A is compared with the ones of CPLEX in Tables 4.8,

4.9 and 4.10.

The best known solution in 10 minutes time limit is reported as z∗ for BP. The

initial lower bound obtained from LPM model given in z column. The initial upper

bound obtained from 0−codeword is given in column z̄. When the values z∗, z and

z̄ are compared, one can see that z∗ is closer to the z. That is most of the time

39

Table 4.8. Performance of Gallager A for (s, 3, 6) codes (in seconds).

CPLEX BP with Gallager A
s z∗ CPU Nodes z∗ CPU Nodes z z̄
2 0 0,16 0 0 0,13 0 0 6
3 3 0,15 0 3 0,17 2 3 9
4 4 0,13 0 4 0,15 0 4 12
5 3 0,15 0 3 0,16 0 3 15
6 4 0,21 0 4 0,17 0 4 18
7 5 0,24 40 5 0,70 216 5 21
8 6 0,25 393 6 0,54 130 6 24
9 7 0,16 11 7 0,27 26 5,21 27
10 8 0,20 16 8 0,68 140 6,33 30
11 9 0,17 0 9 4,86 1794 7,74 33
12 8 0,20 0 8 3,54 866 6,68 36
13 9 0,21 193 9 6,18 1636 7,66 39
14 10 0,48 390 10 3,60 712 7,35 42
15 11 0,20 0 11 0,37 28 9,36 45
16 12 0,34 1294 12 8,41 1820 10,36 48
17 13 0,71 819 13 19,25 3540 10,29 51
18 12 0,12 0 12 10,46 1500 11,75 54
19 13 0,19 11 13 2,73 252 11,53 57
20 14 0,29 124 14 45,63 5864 12,88 60
21 15 0,48 52 15 114,63 20668 14,08 63

Avg: 8,3 0,3 167,2 8,3 11,1 1959,7 7,3 34,5

is consumed to find an improving upper bound. Total number of nodes used in the

branch–and–bound tree for CPLEX and BP are given under the “Nodes” columns. We

apply Gallager A algorithm at the end of each node in BP. Then, “Nodes” column

represents the number of callings of Gallager A algorithm. It can be observed that

Gallager A algorithm is poor to give an improving upper bound.

The performance of Gallager B algortihm is quite similar with Gallager A in

terms of finding an improving upper bound.

4.3.2. Belief Propagation Algorithm

Belief Propagation is a soft–decision decoding algorithm [47]. The algorithm

calculates the log–likelihood ratios (LLRs) which are used as messages from variable

nodes to check nodes. The LLRs can be calculated by equation 4.6.

40

Table 4.9. Performance of Gallager A for (s, 5, 10) codes (in seconds).

CPLEX BP with Gallager A
s z∗ CPU Nodes z∗ CPU Nodes z z̄
2 2 0,14 0 2 0,18 0 2 10
3 3 0,18 0 3 1,07 74 3 15
4 6 0,29 0 6 36,01 1368 2,26 20
5 5 0,34 1457 5 65,06 1986 5 25
6 6 0,64 885 6 293,22 10366 4,44 30
7 9 2,34 9332 17 time 24491 5,59 35
8 8 1,66 1455 28 time 33514 5,58 40
9 9 21,70 45240 39 time 35879 5,82 45
10 10 25,94 85628 48 time 34080 7,27 50
12 14 705,66 1823416 60 time 30509 8,5 60

Avg: 7,2 75,9 196741,3 25,8 79,1 17879,7 5,3 36,4

Table 4.10. Performance of Gallager A for (s, 6, 12) codes (in seconds).

CPLEX BP with Gallager A
s z∗ CPU Nodes z∗ CPU Nodes z z̄
2 2 0,22 0 2 1,17 98 2 12
3 4 0,22 307 4 16,33 560 2,62 18
4 4 0,43 762 4 238,01 4316 4 24
5 6 0,59 3326 10 time 9666 4,11 30
6 8 11,22 33733 28 time 24935 4,72 36
7 8 81,26 270502 42 time 20698 4,97 42
8 10 99,33 440923 48 time 17970 6,59 48
9 12 7326,56 15428940 54 time 15678 6,53 54

Avg: 6,8 939,9 2022311,6 28 85,2 12175,9 4,8 36

The initial message sent from variable k to check j, i.e. mvckj , will be these

LLRs. The message sent from check j to variable i, i.e. mcvji , can be calculated with

the following formula

mcvji = 2 tanh−1

(∏
k 6=i

tanh(mvckj/2)

)
. (4.48)

As in the case of Gallager, belief propagation (in Figure 4.9) can get stuck when

there are cycles in the Tanner graph. Hence, the performance of it is similar with

Gallager A and B algorithms which is not tabulated here.

41

Input: An infeasible received vector, ŷ
1. Initialize the LLRs using Equation (4.6) and

messages to check nodes, i.e. mvckj .
2. For each check node calculate messages to variable nodes, i.e. mcvji

using Equation (4.48).
3. For each variable node calculate the overall LLR and

make a hard decision for each bit based on the sign of the LLR.
4. If all check nodes are satisfied or iteration limit is reached,

Then STOP.
5. Else Go to Step 1 with the new LLR and mvckj values.
6. End If
Output: A feasible decoded codeword, or no solution

Figure 4.9. Belief propagation algorithm.

4.3.3. Partial IP Algorithm

The main idea of Partial Integer Programming algorithm in Figure 4.10 is to

solve the integer programming problem version of the RLPM at the end of each node

of the branch–and–price tree. The model starts with the best known integer solution

and try to find a better feasible solution with the generated columns upto that time.

In order to save some time the method is applied at the initial nodes of the tree and

the application frequency decays to the end of the branch–and–price tree. Again to

save time, we generate only one solution that is better than the starting solution. A

time limit of 10 minutes for the BP is enforced.

Input: A RLPM problem at a node, current best solution f
1. Convert the RLPM to an IP problem.
2. Set a limit on time and the number of solutions generated.
3. Solve the IP problem and update f if a solution has found.
Output: A better feasible solution, or no solution

Figure 4.10. Partial IP algorithm.

The main disadvantage of this method is that we are solving integer models at

the nodes. The computation time increases due to these IP models. The results of

the computational experiments are given in Tables 4.11, 4.12 and 4.13. The “Impr”

column shows the number of solutions that improve the upper bound.

42

Although the results are not better than CPLEX, we can see that the number

of nodes in the branch-and-price tree decreased in (3, 6)–regular codes compared with

Gallager A in the expense of time. This means, the algorithm is succesful to find better

upper bounds than Gallager A. But this is not sufficient to surpass CPLEX. When the

density of the code increases, the performance of Partial IP algorithm decreases both

in terms of computational time and number of nodes compared with Gallager A. As a

result, this method does not seem to be practical.

Table 4.11. Performance of Partial IP for (s, 3, 6) codes (in seconds).

CPLEX BP with Partial IP
s z∗ CPU Nodes z∗ CPU Nodes Impr
2 0 0,16 0 0 0,14 0 0
3 3 0,15 0 3 0,62 6 3
4 4 0,13 0 4 0,17 0 0
5 3 0,15 0 3 0,15 0 0
6 4 0,21 0 4 0,16 0 0
7 5 0,24 40 5 0,94 94 10
8 6 0,25 393 6 1,15 164 9
9 7 0,16 11 7 0,43 20 4
10 8 0,20 16 8 0,43 16 4
11 9 0,17 0 9 1,09 130 2
12 8 0,20 0 8 0,44 6 2
13 9 0,21 193 9 0,34 8 1
14 10 0,48 390 10 3,92 690 5
15 11 0,20 0 11 1,43 28 2
16 12 0,34 1294 12 0,62 20 4
17 13 0,71 819 13 9,52 1114 2
18 12 0,12 0 12 0,37 2 1
19 13 0,19 11 13 2,79 150 3
20 14 0,29 124 14 0,65 4 2
21 15 0,48 52 15 8,68 820 1

Avg: 8,3 0,3 167,2 8,3 1,7 163,6 2,8

4.3.4. Coverage Algorithm

Coverage algorithm in Figure 4.11 works on a coverage problem for a given infea-

sible vector ŷ. Since ŷ is not a feasible codeword, there is a set of check nodes, say Cu,

that are not satisfied. Besides, there is a set of variable nodes, say Vc, that are incident

to the checks in Cu. This heuristic tries to find the minimum cardinality subset of Vc

that cover Cu. The problem can be expressed by a coverage model with binary decision

43

Table 4.12. Performance of Partial IP for (s, 5, 10) codes (in seconds).

CPLEX BP with Partial IP
s z∗ CPU Nodes z∗ CPU Nodes Impr
2 2 0,14 0 2 0,18 0 0
3 3 0,18 0 3 2,97 152 9
4 6 0,29 0 6 40,26 1368 12
5 5 0,34 1457 5 95,12 2164 37
6 6 0,64 885 6 334,23 10366 41
7 9 2,34 9332 17 time 21767 48
8 8 1,66 1455 30 time 23867 53
9 9 21,70 45240 39 time 7941 61
10 10 25,94 85628 50 time 33 33
12 14 705,66 1823416 60 time 4 4

Avg: 7,2 75,9 196741,3 21,8 94,6 6766,2 29,8

Table 4.13. Performance of Partial IP for (s, 6, 12) codes (in seconds).

CPLEX BP with Partial IP
s z∗ CPU Nodes z∗ CPU Nodes Impr
2 2 0,22 0 2 3,64 148 21
3 4 0,22 307 4 18,21 416 31
4 4 0,43 762 4 267,00 4508 35
5 6 0,59 3326 10 time 9842 43
6 8 11,22 33733 28 time 21782 51
7 8 81,26 270502 42 time 12589 59
8 10 99,33 440923 48 time 2911 64
9 12 7326,56 15428940 54 time 38 38

Avg: 6,8 939,9 2022311,6 24 96,3 6529,2 42,8

variable xi which takes value 1 if variable node i is selected and 0 otherwise.

Coverage Model (CM):

min
∑
i∈Vc

xi (4.49)

s.t.∑
i∈N(cj)

xi ≥ 1, ∀j ∈ Cu (4.50)

xi ∈ {0, 1}, ∀i ∈ Vc. (4.51)

44

The coverage problem can be solved by a greedy heuristic. We choose the variable

node that has the largest number of neighbors, then eliminate the check nodes that

are covered by this variable node. For the remaining uncovered check nodes we repeat

the greedy procedure.

The set of variable nodes that covers the unsatisfied check nodes can be flipped.

We can guarantee that the check nodes in Cu will be satisfied in the next iteration, but

it is possible that some of the satisfied checks become unsatisfied. That is we continue

with this flipping algorithm based on the coverage problem until we find a feasible

solution or terminate due to the iteration limit.

Input: An infeasible vector ŷ
1. Determine the unsatisfied checks Cu and

their variable neighbors Vc.
2. Solve the CM with greedy heuristic.
3. If all check nodes are satisfied or iteration limit is reached,

Then STOP.
4. Else Go to Step 1.
5. End If
Output: A feasible solution, or no solution.

Figure 4.11. Coverage algorithm.

If we can generate a feasible solution, we add the corresponding columns to

our RLPM problem if they are not yet added. We can apply this heuristic to the

received codeword and also intermediary infeasible solutions during the branch-and-

price algorithm.

We apply this algorithm at the end of each node with a decreasing probability.

The results are summarized in Tables 4.14, 4.15 and 4.16. The Coverage algorithm is

called Nodes–many time. Among these Feas–many of them give a feasible solution and

Impr–many of them improve the best upper bound.

The performance of Coverage algorithm is similar to Gallager A. The Coverage

algorithm slightly better than Gallager A in terms of the number of nodes and com-

45

putational time. However this is not sufficient to perform better than CPLEX.

Table 4.14. Performance of Coverage for (s, 3, 6) codes (in seconds).

CPLEX BP with Coverage
s z∗ CPU Nodes z∗ CPU Nodes Impr Feas
2 0 0,16 0 0 0,13 0 1 1
3 3 0,15 0 3 0,21 2 0 1
4 4 0,13 0 4 0,18 0 0 0
5 3 0,15 0 3 0,17 0 0 0
6 4 0,21 0 4 0,22 0 0 0
7 5 0,24 40 5 0,79 188 2 31
8 6 0,25 393 6 0,69 130 0 6
9 7 0,16 11 7 0,31 26 0 3
10 8 0,20 16 8 0,78 106 2 14
11 9 0,17 0 9 3,83 986 2 28
12 8 0,20 0 8 3,66 720 1 26
13 9 0,21 193 9 6,12 1292 2 19
14 10 0,48 390 10 3,62 514 1 17
15 11 0,20 0 11 0,46 28 0 1
16 12 0,34 1294 12 6,85 1162 4 25
17 13 0,71 819 13 21,69 3540 0 11
18 12 0,12 0 12 11,89 1500 0 5
19 13 0,19 11 13 3,26 252 0 7
20 14 0,29 124 14 50,5 5864 0 6
21 15 0,48 52 15 101,50 14422 1 7

Avg: 8,3 0,3 167,2 8,3 10,8 1536,6 0,8 10,4

4.3.5. Constraint Programming Algorithm

Constraint programming is a well–known method to solve problems [48]. In order

to apply constraint programming, a practical representation of the feasible solutions

of the problem is found. Then the problem is expressed as a Constraint Satisfaction

Problem (CSP). The experiences with this method indicate that if an efficient model

can be generated, it is possible to find solutions for combinatorial optimization problems

in an acceptable amount of time.

In our case, the sequence of the bits of a codeword, f = (f1, f2, ..., fn), will be

the representation of the solution. Each decision variable, i.e. fi, can take values from

{0, 1}. The constraints to have a feasible solution are added to the model.

46

Table 4.15. Performance of Coverage for (s, 5, 10) codes (in seconds).

CPLEX BP with Coverage
s z∗ CPU Nodes z∗ CPU Nodes Impr Feas
2 2 0,14 0 2 0,18 0 0 0
3 3 0,18 0 3 1,13 72 2 8
4 6 0,29 0 6 27,49 1044 1 12
5 5 0,34 1457 5 61,95 1976 0 9
6 6 0,64 885 6 290,00 10366 0 0
7 9 2,34 9332 17 time 23727 0 5
8 8 1,66 1455 28 time 32621 0 3
9 9 21,70 45240 39 time 36097 0 2
10 10 25,94 85628 48 time 33433 0 2
12 14 705,66 1823416 60 time 31128 0 2

Avg: 7,2 75,9 196741,3 21,4 76,2 17046,4 0,3 4,3

Table 4.16. Performance of Coverage for (s, 6, 12) codes (in seconds).

CPLEX BP with Coverage
s z∗ CPU Nodes z∗ CPU Nodes Impr Feas
2 2 0,22 0 2 1,72 154 3 18
3 4 0,22 307 4 5,25 142 2 12
4 4 0,43 762 4 256,71 4564 1 6
5 6 0,59 3326 10 time 9657 0 2
6 8 11,22 33733 28 time 24086 0 2
7 8 81,26 270502 42 time 20269 0 2
8 10 99,33 440923 48 time 17405 0 3
9 12 7326,56 15428940 54 time 14816 0 0

Avg: 6,8 939,9 2022311,6 24 87,9 11386,6 0,8 5,6

Constraints 1: For each check j, the neighboring variable nodes should sum to

zero in modulo 2

∑
i∈N(j)

fi = 0 (mod 2) ∀j ∈ C. (4.52)

It is known that dummy constraints may improve the performance of constraint

programming. Then, the following dummy constraints are added to the model.

Constraints 2: Assume that for a check j the constraint (4.52) is written as

f2 + f3 + f8 + f10 = 0 (mod 2). Then, we add the following constraints for check j:

47

f2 (mod 2) = f3 + f8 + f10 (mod 2) (4.53)

f2 + f3 (mod 2) = f8 + f10 (mod 2) (4.54)

f2 + f3 + f8 (mod 2) = f10 (mod 2) (4.55)

When we are at a new branch, we add the branching rule as a constraint to the

constraint programming model.

Constraints 3: Assume that we are at a branch fi = 0 for i ∈ N0 and fi = 1 for

i ∈ N1. Then the branch constraints are

fi = 0 i ∈ N0 (4.56)

fi = 1 i ∈ N1 (4.57)

The objective is to minimize the Hamming distance as given in (4.1).

We would like to find a better upper bound at each call of the constraint pro-

gramming algorithm.

Constraint 4: We force that the objective should be less than the best known

upper bound, say z̄.

−
∑
i:ŷi=1

fi +
∑
i:ŷi=0

fi + c1 < z̄. (4.58)

We utilize Constraint Programming (CP) tool of CPLEX for the implementation.

We set a 1 minute time limit for CP and we run it until we find 2 feasible solutions.

48

Table 4.17. Performance of Constraint for (s, 3, 6) codes (in seconds).

CPLEX BP with Constraint
s z∗ CPU Nodes z∗ CPU Nodes Impr Call
2 0 0,16 0 0 0,38 0 1 1
3 3 0,15 0 3 0,35 0 1 1
4 4 0,13 0 4 0,38 0 1 1
5 3 0,15 0 3 0,37 0 1 1
6 4 0,21 0 4 0,73 0 1 2
7 5 0,24 40 5 27,38 26 3 27
8 6 0,25 393 6 5,99 4 3 5
9 7 0,16 11 7 321,19 22 1 24
10 8 0,20 16 8 time 12 1 14
11 9 0,17 0 9 540,76 8 2 10
12 8 0,20 0 10 time 13 5 14
13 9 0,21 193 11 time 13 4 14
14 10 0,48 390 10 time 14 5 15
15 11 0,20 0 11 time 14 5 15
16 12 0,34 1294 14 time 15 6 16
17 13 0,71 819 15 time 16 7 17
18 12 0,12 0 16 time 15 7 16
19 13 0,19 11 15 time 16 8 17
20 14 0,29 124 18 time 14 7 15
21 15 0,48 52 21 time 16 9 17

Avg: 8,3 0,3 167,2 9,5 99,7 10,9 3,9 12,1

In order to explore different parts of the solution space at each call of the algo-

rithm, we randomly select the variable to branch in the CP tree. We apply constraint

programming when we are at a new branch or we have updated the upper bound. The

results are given in Tables 4.17, 4.18 and 4.19. The CP algorithm is tried Call–many

times and the upper bound is updated Impr–many times. The results show that this

algorithm takes more time for (3, 6)–regular codes but it is more efficient than all other

methods in denser codes to find a upper bound in the given time limit. Besides, it uses

less nodes to solve the instances for denser codes. Again it is not better than CPLEX.

4.3.6. Simulated Annealing

Simulated annealing is one of the well known metaheuristics in the literature [49].

In our case, we will search around the n bit long received vector ŷ. Among n bits of

ŷ, randomly selected n/2 bits are considered to be changed. The value of the bit is

49

Table 4.18. Performance of Constraint for (s, 5, 10) codes (in seconds).

CPLEX BP with Constraint
s z∗ CPU Nodes z∗ CPU Nodes Impr Call
2 2 0,14 0 2 0,37 0 1 1
3 3 0,18 0 3 0,53 0 1 1
4 6 0,29 0 6 507,41 668 3 669
5 5 0,34 1457 7 time 77 3 78
6 6 0,64 885 8 time 30 4 31
7 9 2,34 9332 13 time 12 4 13
8 8 1,66 1455 14 time 12 4 13
9 9 21,70 45240 41 time 0 1 1
10 10 25,94 85628 28 time 11 6 12
12 14 705,66 1823416 50 time 10 4 11

Avg: 7,2 75,9 196741,3 22 169,4 82 3,1 83

Table 4.19. Performance of Constraint for (s, 6, 12) codes (in seconds).

CPLEX BP with Constraint
s z∗ CPU Nodes z∗ CPU Nodes Impr Call
2 2 0,22 0 2 0,76 0 1 1
3 4 0,22 307 4 32,90 26 2 27
4 4 0,43 762 4 377,57 50 4 51
5 6 0,59 3326 10 time 33 5 34
6 8 11,22 33733 14 time 10 4 11
7 8 81,26 270502 20 time 10 5 11
8 10 99,33 440923 38 time 9 2 10
9 12 7326,56 15428940 46 time 9 2 10

Avg: 6,8 939,9 2022311,6 17,2 137,1 18,4 3,1 19,4

changed with probability 0.50. If the solution is feasible, we move to that solution and

update the upper bound if it is improving. If the solution is infeasible, we move to that

infeasible solution with a probability.

In Figure 4.12, state s is the current solution and energy e is its objective function

value. Initial state is s0 and the best solution is kept with sbest with objective function

value ebest. The maximum number of iterations is limited with value kmax = 100. Initial

temperature T = 20 is halved at every 10 iteration.

For computational experiments we generate (3,6)–regular codes from permutation

codes with n/15 error bits. The code length changes from n = 60 to n = 480. BP

algorithm has a time limit of 30 minutes. The heuristic is applied at each node of the

50

Input: An infeasible received vector, ŷ
1. Initialize s← s0, e← E(s), sbest ← s, ebest ← e, k = 0.
2. While k < kmax and e > emax

3. T = temperature(k/kmax)
4. snew = neighbor(s), enew = E(snew)
5. If P (e, enew, T) > random(), Then
6. s = snew, e = enew
7. End If
8. If enew < ebest, Then
9. sbest = snew, ebest = enew
10. End If
11. k = k+1
12. End While
Output: A feasible codeword, sbest.

Figure 4.12. Simulated annealing algorithm.

branch–and–price tree except the root node.

Table 4.20. Simulated Annealing with Permutation codes under n/15 error bits (in
seconds).

(s, 3, 6) CPLEX (s, 3, 6) BP
n z∗ CPU Nodes z∗ CPU CPU Node Heur Nodes
60 4 0,16 0 4 0,15 0 0
120 8 0,46 198 8 0,25 0 0
180 12 0,22 0 12 0,36 0 0
240 16 0,23 0 16 0,61 0 0
300 20 0,20 0 138 time 62,66 25538
360 24 0,30 0 24 1,67 0 0
420 28 0,25 0 28 2,04 0 0
480 32 0,27 0 32 2,16 0 0
Avg: 18 0,26 24,75 32,75 225,91 7,83 3192,25

The results indicate that if the problem is solved at the root node the performance

of CPLEX and BP are not very different. For n = 300 instance CGA cannot solve

it at the root node and terminated with the 30 minutes time limit without finding

the optimal solution. Observations reveal that solving subproblems with a parallel

computing approach may improve the performace of BP when evaluating the nodes.

51

4.3.7. G Matrix Applications

A detailed analysis of the solution space of the problem indicates that as the

codeword length n increases the number of possible solutions, 2n, increases exponen-

tially. On the other hand, the number of feasible solutions among them is very few.

As an example, for a (3, 6)–regular code when the code length is n = 30, only the

0.012% of the solutions is feasible. Besides, for a well designed code it is desired that

the distance between the feasible solutions is as large as possible. From this result, one

can deduce that the probability to find a feasible solution around ŷ is not high. This

also explains the poor performance of the above applied methods.

Another approach is to produce feasible solutions using the generator matrix G.

When a parity–check matrix H is given, carrying out elementary row operations under

binary arithmetic, we can have a form H = [A|In−k] where A is some (n − k) × k

matrix of 0’s and 1’s, and In−k is (n − k) × (n − k) identity matrix. Then a k × n

generator matrix G = [Ik|AT] can be obtained using this A matrix. Since one can

obtain different A matrices, the generator matrix G is not unique.

Each of the k rows of G is a feasible solution, since GHT = 0 (mod 2). From here

we can see that any binary combination, u, of the rows of G is also a feasible solution,

since uGHT = 0 (mod 2). Moreover, G is a basis for the solution space of vHT = 0

(mod 2). That is any feasible solution can be written as a binary combination of the

rows of G.

The decoding problem can be alternatively formulated by using G matrix. In Best

Combination Model (BCM) given below, variable x represents the binary combination

of the rows of G matrix. The binary representation of this combination can be given

by variable v and we are minimizing the distance of v to the received vector ŷ in the

objective.

52

Best Combination Model (BCM):

min
∑
i∈V

γivi (4.59)

s.t.

GTx + v = 2s (4.60)

x ∈ Bk, v ∈ Bn, si ∈ Z+, ∀i ∈ V. (4.61)

This formulation is as hard as the EM for CPLEX. However, we make use of

this formulation in order to find an upper bound for our BP algorithm by giving a

time limit. The heuristic approaches that are making use of G matrix summarized in

the following subsections. Three different methods are applied, namely Random Sum

Heuristic, Sum Pass Heuristic and Best Combination Heuristic.

4.3.7.1. Random Sum Heuristic. Random sum heuristic in Figure 4.13 randomly com-

bines the rows of generator matrix G and produce a new feasible solution. In Figure

4.13, kmax represents the maximum number of trials and in our application it is set to

kmax = 1000. In order to speed up the row sums and objective function calculation,

BitArray data structure is utilized.

Input: A generator matrix, G, a received vector ŷ
0. Initialize z∗ =∞,y∗, kmax.
1. While k < kmax

2. Randomly set ui from {0, 1} for i = 1, ..., n.
3. Obtain a feasible solution by v = uG.
4. Calculate the objective function value zv of solution v.
5. If zv < z∗, Then
6. z∗ = zv, y∗ = v
7. End If
8. k = k+1
9. End While
Output: A feasible codeword y∗ with objective value z∗.

Figure 4.13. Random sum algorithm.

53

For the computational experiments, we generate (5,10)–regular codes from per-

mutation codes with code length from n = 60 to n = 480. The random sum heuristic

is also used to at the beginning of the BP in order to find a tight upper bound.

Table 4.21. Random Sum with Permutation codes under 5 error bits (in seconds).

(s, 5, 10) CPLEX (s, 5, 10) BP
n z∗ CPU Nodes z∗ CPU CPU Node Heur Nodes Initial UB
60 4 0,41 816 4 787,96 126,13 6966 16
120 4 0,02 0 4 1,66 0,06 0 40
180 3 0,02 0 3 3,13 0,13 0 63
240 4 0,02 0 4 5,13 0,24 0 88
300 5 0,03 0 5 7,47 0,36 0 117
360 5 0,03 0 5 8,69 0,49 0 141
420 5 0,05 0 5 11,07 0,63 0 165
480 4 0,04 0 4 15,46 0,89 0 192
Avg: 4,25 0,08 102 4,25 105,07 16,12 870,75 102,75

The CPU time of the BP is increasing as the size of the instance increases when

it is solving at the root node. If the problem cannot be solved at the root node the

time gets very large compared to the performance of CPLEX. For n = 60 case Figure

4.14 shows how the upper and lower bounds are updated during the BP iterations. It

is clear from the figure that there is a need for a tight upper bound for early prunning.

4.3.7.2. Best Combination Heuristic. In random sum method, we are randomly gener-

ating feasible solutions. However, the main problem is to find nearest feasible solution

to the received codeword ŷ. We have modeled this problem with BCM formulation.

In BCM formulation, it may possible to limit the number of rows that are used in

producing new solution, say K, by adding the following constraint:

k∑
j=1

xj ≤ K. (4.62)

In order to understand the affect of K on the objective function value, we carry

out analysis with (3,6)–regular codes with different code lengths, i.e. n = 60, 120, 180,

54

Figure 4.14. (5, 10)–regular n = 60 BP iterations.

240. The results are given in Figure 4.15 below. For each instance, we generate 10

different G matrices and generate a solution pool with the rows of these matrices. In

n = 60 case, we have 300 many solutions in the pool. Then we try K = 300, 150 and

75 values. The results indicate that the limiting value of the K has not a significant

affect on the objective function value, since for n = 60 the smallest K value is better

but for n = 240 the largest K value is better.

Then, we have decided not to use constraint (4.62) and use only one generator

matrix G, since it is suffient to represent any feasible solution. Best combination

heuristic in Figure 4.16 runs with 10 minutes time limit. Computational experiments

in Table 4.22 show that the initial upper bound is improved compared with the random

sum heuristic for n = 60.

55

Figure 4.15. K value analysis.

Input: A generator matrix, G, a received vector ŷ
0. Initialize z∗ =∞,y∗, timeLim.
1. Solve BCM with CPLEX in the given timeLim.

Let v is the solution with objective value zv.
2. If zv < z∗, Then
3. z∗ = zv, y∗ = v
4. End If
Output: A feasible codeword y∗ with objective value z∗.

Figure 4.16. Best combination algorithm.

56

Table 4.22. Best Combination with Permutation codes under 5 error bits (in seconds).

(s, 5, 10) CPLEX (s, 5, 10) BP
n z∗ CPU Nodes z∗ CPU CPU Node Heur Nodes Initial UB
60 4 0,41 816 4 807,34 126,13 6958 8
120 4 0,02 0 4 1,83 0,06 0 40
180 3 0,02 0 3 3,30 0,13 0 63
240 4 0,02 0 4 4,62 0,24 0 88
300 5 0,03 0 5 7,45 0,36 0 117
360 5 0,03 0 5 8,59 0,49 0 141
420 5 0,05 0 5 11,64 0,63 0 165
480 4 0,04 0 4 16,61 0,89 0 192
Avg: 4,25 0,08 102 4,25 107,67 16,12 869,75 101,75

4.3.7.3. Sum Pass Heuristic. Sum pass heuristic in Figure 4.17 starts with an initial

feasible solution, takes 0− codeword by default. If the sum of the solution with a

row of G has a better objective function value the next solution is updated with this

one. In the next iteration the sum of the solution and another row of G is taken. The

algorithm continues as the objective function value improves. This approach improves

the current feasible solution in a greedy fashion. Computational results are similar to

the above cases.

Input: A generator matrix, G, a feasible codeword y
0. Initialize ybest = y, zbest = zy,ytemp, ztemp, impr = true.
1. While impr
2. impr = false
3. ForEach row in G
4. ytemp = y+ row of G
5. If ztemp < zbest, Then
6. impr = true, zbest = ztemp, ybest = ytemp.
7. End If
8. If impr, Then zy = zbest,y = ybest.
9. End ForEach
10. End While
Output: A feasible codeword y with objective value zy.

Figure 4.17. Sum pass algorithm.

4.3.8. Diving Heuristic

If the optimum solution cannot be found at the root node of the BP algorithm, it

is possible to fix some of the bits of the fractional solution to integer values if the bits

57

are so close to 0 or 1. The problem can be resolved with these fixed bits in a continuous

fashion until we end up with an integer feasible solution or an infeasibility. Compared

with the simulated annealing results, diving algorithm in Figure 4.18 evaluates more

nodes. This may since diving heuristic takes less time compared with the simulated

annealing.

Input: A fractional solution y found at the root node
1. While true
2. If yi < 0.01, Then yi = 0, If yi > 0.99, Then yi = 1.
3. Solve the model with these bounds with CPLEX.
4. If feasible, Then
5. If integer, Then Update y∗, STOP.
6. Else Update bounds, go to Step 4.
7. End If
8. Else (infeasiblity), STOP.
9. End If
10. End While
Output: A feasible codeword y∗ or infeasibility.

Figure 4.18. Diving algorithm.

Table 4.23. Diving with Permutation codes under n/15 error bits (in seconds).

(s, 3, 6) CPLEX (s, 3, 6) BP
n z∗ CPU Nodes z∗ CPU CPU Node Heur Nodes
60 4 0,16 0 4 0,39 0 0
120 8 0,46 198 8 0,31 0 0
180 12 0,22 0 12 0,41 0 0
240 16 0,23 0 16 0,63 0 0
300 20 0,20 0 138 time 0,06 26374
360 24 0,30 0 24 1,94 0 0
420 28 0,25 0 28 2,11 0 0
480 32 0,27 0 32 2,22 0 0
Avg: 18 0,26 24,75 32,75 226,00 0,01 3296,75

58

5. LDPC CONVOLUTIONAL CODE DECODING

5.1. Introduction

In this part of the thesis, we focus on LDPC convolutional codes. Convolutional

codes divide the original information into smaller blocks and decode each block by

considering the previous blocks [50]. In the code, the nonzero elements are located on

the diagonal as a ribbon and the code has infinite dimension. As given in Figure 5.1

below, a convolutional code consists of ms–many small parity–check matrices at each

column, where ms parameter represent the width of the ribbon. The diagonal pattern

is obtained by shifting the columns down as the dimension increases.

H =



H0(1)
H1(1) H0(2)

... H1(2)
. . .

Hms(1)
...

. . . H0(L)

Hms(2)
. . . H1(L)

. . .
...

. . .

Hms(L)
. . .


Figure 5.1. Generic structure of a convolutional code.

These codes find application areas such as satellite communication and video

streams where the information is received continuously. Finite dimension convolutional

codes, namely spatially–coupled (SC) codes, can be obtained by limiting the dimension

of convolutional code by specifying a finite row or column size [51]. In Figure 5.2, an

example of finite dimensional (3, 6)–regular LDPC SC code obtained by limiting the

row size is given.

The term “(3, 6)–regular” means that there are exactly 3 ones at each column

and 6 ones at each row of H matrix. This regular structure cannot be seen for the

first and the last parts of the code. For example, the number of ones for the first five

59

H =



010000000000000000000000000000000000
101000000000000000000000000000000000
010101000000000000000000000000000000
101010010000000000000000000000000000
011001100100000000000000000000000000
100110011001000000000000000000000000
000101101010010000000000000000000000
000010010101101000000000000000000000
000000100110010101000000000000000000
000000001001101010010000000000000000
000000000010011001100100000000000000
000000000000100110011001000000000000
000000000000001011010100010000000000
000000000000000010011001101000000000
000000000000000000100110010101000000
000000000000000000001001101010010000
000000000000000000000010011001100100
000000000000000000000000100110011001


Figure 5.2. A (3, 6)–regular LDPC SC code.

rows of the (3, 6)–regular code in Figure 5.2 is less than 6. Similarly, number of ones

is less than 3 in the last nine columns of the code. One can observe the (3, 6)–regular

structure for the intermediary rows and columns.

The repeating structure of the convolutional codes allow the application of sliding

window decoding approaches which use decoding algorithms such as Viterbi algorithm

[11] at each window. Viterbi algorithm finds maximum likelihood estimate of the

received vector, but it is based on exhaustive enumeration. Heuristic approaches like

Gallager A and B algorithms are easily applicable, however they cannot guarantee

that the solution is near optimal. They may even fail to decode if the received vector

includes errors.

Our goal in this study is to develop algorithms to decode a finite length received

vector encoded with SC codes on BSC. Then we generalize these decoding algorithms to

practically infinite length received vectors that are encoded with convolutional codes.

60

Our proposed decoders can give a near optimal feasible decoding for any real sized

received vector in acceptable amount of time.

5.2. SC Code Generation

We implement the SC code generation scheme given in [52] which is also explained

in this section. We generate an SC code with the help of a base permutation matrix. As

shown in Figure 5.3, by randomly permuting the columns of an s×s identity matrix Is,

we can obtain a (5, 10)–regular base permutation matrix of dimension (m, 2m) where

m = 5× s. Regularity of the matrix is provided through augmenting identity matrices

10 times at each row and 5 times at each column. In Figure 5.3, Iis represents the ith

randomly permuted identity matrix.

Hbase =


I1s I2s I3s I4s I5s I6s I7s I8s I9s I10s
I11s I12s I13s I14s I15s I16s I17s I18s I19s I20s
I21s I22s I23s I24s I25s I26s I27s I28s I29s I30s
I31s I32s I33s I34s I35s I36s I37s I38s I39s I40s
I41s I42s I43s I44s I45s I46s I47s I48s I49s I50s


Figure 5.3. (5, 10)–regular base permutation matrix.

Then, we split the base permutation matrix into two matrices, namely lower

triangular A and upper triangular B as shown in Figure 5.4.

Hbase = A
B

A

B
A

B

Hbase = A
B

Horizontal Step
Vertical Step

=

hs

vs

=

Figure 5.4. A and B matrices.

We divide Hbase with a horizontal step length hs and a vertical step length vs.

One can observe that when Hbase is (5, 10)–regular, its dimension is (m, 2m) for some

61

m. Then, r = hs/vs = 2, since there is a number c such that hsc = 2m and vsc = m.

A

B
A

B
A

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

Horizontal Step

V
ertical S

tep

hs

vs
Figure 5.5. (5, 10)–regular SC code.

Then, these A and B matrices are repeatedly located until the desired SC code

size is obtained. After t–many repetitions, SC code has size (tm, 2tm) as shown in

Figure 5.5. The ribbon size is ms = m+ vs for such a code.

5.3. Sliding Window Decoders

Sliding window decoders in practical applications make use of special structure

of the convolutional codes [53, 54]. As explained above, convolutional codes have all

nonzero entries on a ribbon, with width ms, that lies on the diagonal. Then, one can

consider a window on the convolutional code with height w and decode the received

vector partially. Decoding of the received vector proceeds iteratively by sliding the

window hs units horizontally and vs units vertically.

In sliding window decoders, we can pick window row size w > ms and column

size larger or equal to rw where r = hs/vs. For the rows of the convolutional code

corresponding to the window, all entries in the columns after the window are zero with

this window dimension selection.

62

Figure 5.6 explains the main steps of a generic sliding window decoder. Part of

the received vector corresponding to the current window is decoded with an algorithm.

Hence, performance of a sliding window decoder depends on how fast and correctly the

windows are decoded. As we mention in Chapter 2, Viterbi algorithm adversely affects

decoding time when used in window decoding. In the case we implement Gallager A or

B algorithm for windows, decoded vector may not close to the original information. We

investigate the performance of Gallager A and B algorithms in sliding window decoder

with computational experiments in Section 5.8.

Input: Received vector ŷ, Binary code H
1. Decode the current window with an algorithm.
2. Move the window hs units horizontally, vs units vertically.
3. Fix the decoded values of hs–many leaving bits.
4. If all bits decoded, Then STOP, Else go to Step 1.
Output: A decoded codeword.

Figure 5.6. Generic sliding window algorithm.

In our approach, we solve each window with EM formulation that is written

for the decision variables and constraints within the window. At each iteration, hs–

many bits and vs–many constraints leave the window. Exiting bits are decoded in the

previous window and can be fixed to their decoded values in the proceeding iterations.

The decoded bits will affect the upcoming bits by appearing as a constant in the

constraints (4.2). Our sliding window decoding algorithm has main steps that are

given in Figure 5.7.

Input: Received vector ŷ, Binary code H
1. Solve EM for the current window.
2. Move the window hs units horizontally, vs units vertically.
3. Fix the decoded values of hs–many leaving bits.
4. Update constraints (4.2) with the fixed bits.
5. If all bits decoded, Then STOP, Else go to Step 1.
Output: A decoded codeword.

Figure 5.7. Sliding window algorithm.

63

It is possible to apply different strategies in window dimension selection and win-

dow solution generation. This gives rise to our four different sliding window decoders,

i.e. complete window, finite window and repeating windows decoders for SC codes and

a convolutional code decoder, that are explained in the next sections.

5.4. Complete Window (CW) Decoder

Complete window (CW) decoder requires that binary code has finite dimension.

Hence, it is applicable for SC–Convolutional codes. In CW, the window height is w

and width is n (the length of the received vector ŷ). This means in a window we have

w–many constraints and n–many bits as fi decision variables.

We consider two diffrent ways in window decoding. In the first approach, i.e.

Some Binary CW (SBCW), we restrict the first undecoded hs bits of the window to be

binary and relax the bits coming after those as continuous variables. As an example,

when we solve the first window of the code in Figure 5.8, first hs bits (corresponding

to the dotted rectangle) are binary and we relax all the remaining bits as continuous.

When we move to the next window by shifting the window vs units down, first hs bits

have been fixed to their decoded values, the next hs bits are set to be binary and the

bits coming after are continuous variables. The decoder proceeds in this fashion.

LEF dual

D

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

Figure 5.8. Sliding window in CW decoder.

64

One can see that the dashed rectangle in Figure 5.8 covers all nonzero entries in

the window. From this observation as a second approach, i.e. All Binary CW (ABCW),

we consider to force the first undecoded (rw)–many bits (corresponding to the dashed

rectangle) of the window to be binary and the ones after these are continuous. As we

move to the next window, hs–many bits are fixed and the dashed rectangle shift to

right hs units. Moving from one window to the other requires removing first vs–many

constraints and including new vs–many constraints.

The method of fixing some of the decision variables and relaxing some others

is known as Relax–and–Fix heuristic in the literature [55, 56]. In general, fixing the

values of the variables may lead to infeasibility in the next iterations. However, we

do not observe such a situation in our computational experiments when we pick the

window that is sufficiently large to cover all nonzero entries for the undecoded bits

in the corresponding rows. We can observe that a window of size w × (rw) (dashed

rectangle) can cover the undecoded nonzero entries.

5.5. Finite Window (FW) Decoder

In finite window (FW) decoder, we have smaller window of size w × (rw). That

is we have w–many constraints and (rw)–many fi decision variables. At each iteration,

after solving EM model for the window, we fix first hs–many bits and slide the window.

In Some Binary FW (SBFW) decoder, we restrict first hs–many bits to be binary and

relax the rest as continuous. For All Binary FW (ABFW) method, all (rw)–many bits

are binary variables.

The window position can be seen in Figure 5.9 as the window slides. The previous

decoded bits appear as a constant in constraints (4.2) of EM formulation for the current

window. In FW, we store only one window model. This means we are storing w–many

constraints and (rw)–many fi decision variables in the memory at a time.

As we move from one window to the other, we remove hs–many decision variables

and introduce hs–many new ones. Also, we remove vs–many constraints and add vs–

65

A

B
A

B
A

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

Horizontal Step

V
ertical S

tep

hs

vs

Figure 5.9. Sliding window in FW decoder.

many new constraints.

5.6. Repeating Windows (RW) Decoder

As explained in Section 5.2, an SC code is obtained by repetitively locating A

and B matrices. As can be seen in Figure 5.10, a window will come out again after

m–iterations, where m is the number of rows in Hbase.

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

Horizontal Step

V
ertical S

tep

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0
1 0 1 0
0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 1 1 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0 1

hs

vs

ms

w

hs

vs

Figure 5.10. Sliding window in RW decoder.

This means that there are m–many different windows. However, the first and the

(m+1)st windows still differ from each other in terms of their EM formulation. That is

the constant term in constraints (4.2) and the objective function coefficients change but

66

the coefficients of the decision variables stay same. Hence, we store m–many window

models and when its turn comes we solve the window after updating the constant term

and the objective function.

Assuming that a window is of size w × (rw), having m–many window models

requires to store (mw)–many constraints and (mrw)–many fi decision variables in

the memory. However, we do not need to add or remove constraints and decision

variables. FW decoder has the burden of add/remove operations and the advantage of

low memory usage. On the other hand, RW decoder directly calls the window models

on the expense of memory.

In Some Binary RW (SBRW) only first hs–many bits are binary, whereas All

Binary RW (ABRW) has all (rw)–many bits as binary variables.

5.7. Convolutional Code (CC) Decoder

The decoders CW, FW and RW assume that we are given a finite dimensional

code that can be represented by a H matrix. Hence, they are applicable for SC codes.

However, as explained before, convolutional codes are practically infinite dimensional

codes and cannot be represented by a compact H matrix on computer. On the other

hand, they are generated from A and B matrices. Therefore, we can store a part of

convolutional code as given in Figure 5.11 that includes the required information.

A

B

Figure 5.11. A part of convolutional code.

67

With this part of the convolutional code, we can represent the (i, j)th entry of

the convolutional code with a function. Hence, we can represent the current window

model using this small matrix. This allows the application of FW and RW decoders to

convolutional codes. Note that our CW decoder is not applicable to CC, since it takes

into account all bits of the received vector.

5.8. Computational Results

The computations have been carried out on a computer with 2.6 GHz Intel Core

i5-3230M processor and 4 GB of RAM working under Windows 10 Professional.

In our computational experiments, we evaluate the performance of our sliding

window decoders. In our decoders, the number of the constraints and decision variables

in EM formulation limited with the size of the window. We make use of CPLEX 12.6.0

to solve EM for the current window (see Step 1 of Figure 5.7). We compare the

performance of our sliding window decoders with Exact Model Decoder (EMD). In

EMD, EM formulation includes all constraints and decision variables corresponding to

the SC code. That is, for a SC code of size (n/2, n) we have n/2−many constraints

(4.2) and n−many fi decision variables in EM. We again utilize CPLEX for solving

EM of EMD.

Table 5.1. List of computational parameters.

Parameters

n 1200, 3600, 6000, 8400, 12000

p 0.02 (low), 0.05 (high)

m 150

w m + 1 (small), 3m
2

+ 1 (large)

hs 2

vs 1

A summary of the parameters that are used in the computational experiments

are given in Table 5.1. We generate a base permutation matrix of size (m, 2m) =

(150, 300). We obtain a (5, 10)–regular SC code H of desired dimensions from this

68

base permutation matrix. In our experiments, we consider four different code length,

i.e. n = 1200, 3600, 6000, 8400 for SC codes. In order to test the algorithms for

convolutional codes, we consider a larger code length n = 12000. For each code length

n, we experiment 10 random instances and report the average values. We investigate

two levels of error rate, i.e. low error p = 0.02 and high error p = 0.05. There are two

alternatives for the window sizes, namely small window w = m + 1 and large window

w = 3m
2

+ 1.

In our sliding window algorithms, we solve the window models with CPLEX

within 1 minute time limit. On the other hand, we set a time limit of 4000 seconds

to EMD for solving a SC code instance. Since we are testing a larger code length, i.e.

n = 12000, for convolutional codes, we set a time limit of 5000 seconds to EMD to find

a solution.

Table 5.2. Performance of EMD with p = 0.02 and 0.05.

p 0.02 0.05

n z CPU Gap (%) # OPT z CPU Gap (%) # OPT

1200 23.9 0.16 0 10 56.3 221.42 0 10

3600 72.7 0.23 0 10 736.0 1797.72 35.44 6

6000 121.0 0.32 0 10 1358.3 3890.06 43.37 4

8400 169.9 0.54 0 10 3623.7 4049.98 80.45 1

12000 238.6 0.85 0 10 4300.6 4457.34 70.84 2

Table 5.2 gives the performance of EMD under low and high error rates. The

column “z” shows the objection function value of the best known solution found within

the time limitation. “CPU” is the computational time in terms of seconds. “Gap (%)”

is the relative difference between the best lower and upper bounds. “# OPT” is the

number of instances that are solved to optimality among 10 trials. The first four rows

in Table 5.2 are average results for SC codes. The last row is the average result for

convolutional code. As the error rate increases, EMD has difficulty in finding optimal

solutions. A similar pattern is observed when the length of the received vector n

increases. That is, the optimality gap increases when the code gets longer as expected.

69

5.8.1. SC Code Results

In this section, we discuss the results of the computational experiments of n =

1200, 3600, 6000, 8400 for error probabilities 0.02 and 0.05 and two levels of window

size, i.e., small and large.

Table 5.3. Performance of SBCW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 5.48 0 10 23.9 6.31 0 10

3600 72.7 31.89 0 10 72.7 39.05 0 10

6000 121.0 83.77 0 10 121.0 97.54 0 10

8400 169.9 168.97 0 10 169.9 187.91 0 10

0.05 1200 56.3 26.70 0 10 107.3 334.28 9.03 10

3600 181.8 224.30 2.83 10 1052.1 1056.68 53.46 10

6000 564.2 1165.43 14.92 10 2504.2 1419.37 80.25 10

8400 2243.75 2188.73 48.27 10 4016.5 1346.33 89.48 10

Tables 5.3 and 5.4 summarize the results for CW decoder explained in Section

5.4. “Gap (%)” column represents the percent difference from the best known lower

bound found by CPLEX while obtaining the results in Table 5.2. “# SOLVED” column

shows the number of instances that can be decoded by the method.

When p = 0.02, CW decoder can find optimal solutions as EMD in Table 5.2.

However, CW completes decoding in longer time for both SB and AB variants and

both window sizes. This is since solving EM model with CPLEX (in EMD) under low

error probability is easy and decoding in small windows takes longer time in CW.

Table 5.4. Performance of ABCW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 6.33 0 10 23.9 7.65 0 10

3600 72.7 34.05 0 10 72.7 43.86 0 10

6000 121.0 88.51 0 10 121.0 107.59 0 10

8400 169.9 177.23 0 10 169.9 201.58 0 10

0.05 1200 58.3 17.85 2.59 10 56.3 57.01 0 10

3600 181.8 67.58 2.83 10 614.9 494.62 26.82 10

6000 392.9 537.07 16.81 10 1279.3 941.14 36.05 10

8400 533.5 642.54 17.50 10 3119.4 761.03 67.13 10

70

When the error probability increases to 0.05 and window size is small, we can see

that CW finds better feasible solutions in shorter time than EMD (in Table 5.2) for

SB and AB variants. As the window size gets larger, only AB alternative gives better

gap and time values compared with EMD.

In general, with high error probability AB takes shorter time and obtains better

gaps than SB (see results for p = 0.05 in Tables 5.3 and 5.4, Tables 5.5 and 5.6, Tables

5.7 and 5.8). Note that this is somewhat counter intuitive since the number of binary

variables in AB variant is larger than SB. However, note that AB has the advantage

of being able to use the integral solution of the previous window as a starting solution

of the new window. Hence, AB has more time to find a better solution in the current

window within the time limit compared with SB.

When p = 0.05, the performance of CW deteriorates as the window size gets

larger. Solving a larger model in a window decreases the quality of the solution obtained

within the time limit. Size of the window model also depends on the length of the

received vector n. Hence, the gap values increase as n increases.

Table 5.5. Performance of SBFW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 10.91 0 10 23.9 11.90 0 10

3600 72.7 24.25 0 10 72.7 47.47 0 10

6000 121.0 41.98 0 10 121.0 74.04 0 10

8400 169.9 62.48 0 10 169.9 129.44 0 10

0.05 1200 56.3 15.07 0 10 56.3 364.67 0 10

3600 196.6 348.29 5.89 10 177.0 3581.46 0.78 10

6000 353.9 973.76 12.89 10 300.3 6889.76 0.86 10

8400 629.8 3561.43 26.65 10 427.0 11445.70 1.03 10

Results given in Tables 5.5 and 5.6 show that FW (see Section 5.5) can find

optimal solution in all cases when p = 0.02. With this error probability, FW needs

more time to find the optimal solution for SB and AB alternatives when the window

size gets larger. The computational times are larger than EMD for both alternatives.

71

Table 5.6. Performance of ABFW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 6.59 0 10 23.9 15.80 0 10

3600 72.7 22.95 0 10 72.7 65.66 0 10

6000 121.0 39.22 0 10 121.0 114.59 0 10

8400 169.9 56.45 0 10 169.9 165.71 0 10

0.05 1200 58.3 21.48 2.59 10 56.3 72.78 0 10

3600 214.6 387.94 10.97 10 177.0 999.93 0.78 10

6000 368.1 653.55 16.05 10 300.3 2087.41 0.86 10

8400 617.8 1792.25 25.96 10 427.0 3061.82 1.03 10

However, as error probability gets higher, FW can find better solutions than

EMD in shorter time for SB and AB methods. AB method is faster than SB, since it

can make use of integral solution found in the previous window. Note that a similar

pattern also appears in CW as discussed before.

FW takes more time than CW for both SB and AB alternatives, since it needs

to add and remove variables while moving to the next window position. On the other

hand, the size of the window model is independent from code length n, hence we can

find better solutions within the time limit. As a result, the gap values are better than

CW decoder.

We also observe that, at p = 0.05 increasing the window size improves the gap

values in contrast to CW decoder. In FW decoder, although the window size does

not depend on n, gap values still depend on n due to error accumulation during the

iterations. That is, if a window is not decoded optimally, this near optimal window

solution will propagate to the upcoming window decodings. As the code length n gets

larger, this effect becomes more apparent and the gap values increases. If the window

size is larger, then we are considering more information during the window decoding,

which improves the gap values. This effect is explained graphically in Figure 5.12.

From Tables 5.7 and 5.8, we can see that RW cannot complete decoding at all

cases. RW decoder stores m–CPLEX models in memory and CPLEX needs additional

memory for branch–and–bound tree while solving the window model. Hence, when the

72

Table 5.7. Performance of SBRW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 6.52 0 10 23.9 55.84 0 10

3600 72.7 24.42 0 10 72.7 258.60 0 10

6000 168.9 766.64 11.17 10 122.1 410.82 0 9

8400 234.2 1088.18 7.86 10 168.8 438.66 0 7

0.05 1200 75.2 330.79 18.42 10 109.0 6542.20 35.10 10

3600 269.9 2094.05 27.82 10 480.5 74868.29 62.15 5

6000 628.5 7330.18 50.52 10 – – – 0

8400 999.0 13140.1 57.29 10 – – – 0

window size gets larger, we see that memory is not sufficient to complete the iterations

for some instances.

Table 5.8. Performance of ABRW.
w small large

p n z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

0.02 1200 23.9 6.25 0 10 23.9 8.77 0 10

3600 72.7 24.78 0 10 72.7 38.88 0 10

6000 121.0 42.41 0 10 121.0 67.53 0 10

8400 169.9 61.40 0 10 169.9 98.08 0 10

0.05 1200 56.3 10.24 0 10 56.3 155.94 0 10

3600 217.6 674.08 11.35 10 175.9 1498.80 0.68 8

6000 369.1 845.82 16.20 10 300.3 5067.35 0.86 10

8400 616.2 2806.38 25.81 10 432.5 9445.67 1.23 8

Comparison of Tables 5.6 and 5.8 shows that ABFW and ABRW methods give

similar gap values as expected. However, ABRW method requires more time to manage

window models. As the window size gets larger, the computational time of ABRW is

even worse than EMD (in Table 5.2) with high error probability.

5.8.2. Convolutional Code Results

We also investigate the performance of FW and RW decoders for very large

code length. For this purpose we take n = 12000 and consider high (p = 0.05) error

probability, small and large window sizes. CW method is inapplicable in practice for

very large code lengths, since it includes all the bits of the codeword as a decision

variable to the window model. Performance of EMD for n = 12000 is given in the last

row of Table 5.2.

73

Table 5.9. Performances of FW and RW decoders.
w small large

z CPU Gap (%) # SOLVED z CPU Gap (%) # SOLVED

FW SB 926.6 5796.79 30.93 10 597.6 14749.46 0.77 10

AB 990.2 3686.91 34.03 10 597.6 3999.73 0.77 10

RW SB 1434.1 20013.34 58.21 10 – – – 0

AB 907.0 4537.75 27.74 10 596.4 5428.56 0.45 5

Table 5.9 summarizes the average results of 10 instances for FW and RW decoders

with SB and AB alternatives. When we have small window size, all methods can decode

the received vector. Among all, ABFW completed decoding within shortest time.

When the window size gets larger, RW decoder cannot solve all instances due

to memory limit. On the other hand, FW decoder can solve all instances with better

gap values compared with the small window size. ABFW takes less time by making

use of integral starting solution advantage over SBFW. Moreover, compared with the

EMD (last row of Table 5.2), ABFW finds near optimal solutions in shorter time for all

instances. However, EMD can solve only 2 instances to optimality. For the 5 instances

that ABRW can decode, ABFW and ABRW get the same objective values. For these

cases, ABFW is faster than ABRW as expected.

Considering the computational results for convolutional codes, we can see that

ABFW is the best alternative for decoding process in terms of both time and solu-

tion quality. We further evaluate the performances of the methods by analyzing their

decoding errors with respect to the original vector as given in Figure 5.12.

In this figure, the average decoding errors of the 10 instances for code length

n = 12000 with error probability p = 0.05 are given. We divide n into 120 sections

each include 100 bits. For each section, average errors from the original code vector

is plotted. When the window size is small, average error gets larger as the iterations

proceeds. That is when we make error in decoding in early steps of the decoding

process, this error will increase the probability that we are decoding erroneously in the

upcoming windows. On the other hand, when the window size gets larger, we have

74

Section
0 20 40 60 80 100 120

E
rr

or
 (

bi
ts

)

0

2

4

6

8

10

12

14

ABFW, w small
ABFW, w large
ABRW, w small
ABRW, w large

Figure 5.12. Error accumulation in decoding.

more information about the convolutional code, which decreases the error accumulation

during the iterations. However, taking a large window size requires more decoding time.

As a result, one should take into account the trade off between computational time

and the solution quality when deciding on the window size.

The performance of decoding algorithms are interpreted with Bit Error Rate

(BER) in telecommunications literature. BER is the percentage of the decoded bits

that are different than the original vector [44].

BER =

∑n
i=0 | yoi − ydi |

n
× 100 (5.1)

BER can be calculated with the formula given in equation (5.1), where yo is the

original and yd is the decoded codeword.

75

Table 5.10. BER of Sliding Window Decoders.

w ABFW ABRW

small 6.918 5.402

large 0.008 0.003

We can calculate the BER values for our decoding algorithms using the data

of Figure 5.12. The BER results given in Table 5.10 show that the error correction

capability increases when we have larger window. For example, among 100 bits of

the codeword that is decoded by ABFW method, approximately 7 bits (% 6.918) are

different from the original codeword when window size is small. As the window size

gets larger, this difference drops to 8 bits among 100,000 bits (% 0.008).

In our final experiment, our goal is to compare our proposed decoding algorithms

with two commonly used algorithms. In practical applications, decoding of a received

vector is done with iterative algorithms. Among these Gallager A and B algorithms

are popular due to their ease of application [42,57]. The performance of our proposed

decoding algorithm (ABFW) can be tested against a sliding window decoder that uses

Gallager A or B algorithm for decoding windows (see Figure 5.6).

Gallager A and B algorithms are quite similar. For each bit of the received

codeword ŷ, the algorithm collects messages, which are the values of the parity–check

equations, from each check node. If the neighboring check node is unsatisfied, then

this is considered as an indication of an error in the corresponding bit. If most of the

neighbors of a bit are unsatisfied, we have a strong intuition that the bit is erroneous.

Let di be the number of neighbors of variable node i in the Tanner graph of the code.

As given in Algorithm 3.5, Gallager A algorithm prefers to flip the bit that has

the maximum number of unsatisfied checks. At each iteration of the algorithm, we flip

only one bit which guarantees that the number of unsatisfied check nodes will decrease

at each iteration. Gallager B algorithm decides whether to flip or not each bit at an

iteration. For each bit, Gallager B flips the bit if the number of unsatisfied check nodes

76

is larger than the satisfied ones. In Gallager B algorithm, decrease in the unsatisfied

check nodes at each iteration is not for sure since it applies multi–flip at an iteration.

We apply Gallager algorithm at each window of the sliding window algorithm

instead of solving window model with CPLEX. A known problem with these algorithms

is that they may get stuck when there is a cycle in the LDPC code [58]. In such a

case, the algorithm may terminate with no conclusion. To avoid such a situation, we

take the stopping criterion as the number of iterations and bound it with value 100.

Note that this may result in ending with an infeasible solution when the algorithm

terminates.

Table 5.11. Performance of Gallager A.

w small large

p n z CPU Gap (%) # FEAS BER z CPU Gap (%) # FEAS BER

0.02 1200 159.2 10.69 84.99 0 11.94 234.1 20.79 89.79 0 18.23

3600 213.1 49.32 65.99 0 4.33 276.9 99.38 73.81 0 5.89

6000 268.3 99.14 54.96 0 2.81 338.2 192.15 64.27 0 3.74

8400 323.9 159.23 47.63 0 2.21 386.4 299.31 56.12 0 2.72

12000 395.1 261.76 39.65 0 1.67 451.5 506.70 47.22 0 1.85

0.05 1200 191.3 11.44 70.62 0 15.43 259.1 20.74 78.31 0 19.7

3600 348.9 52.08 49.66 0 10.57 387.5 99.06 54.69 0 10.13

6000 518.7 102.85 42.59 0 9.96 539.3 192.02 44.71 0 8.78

8400 684.8 163.59 38.83 0 9.64 684.8 299.04 38.74 0 7.99

12000 917.7 252.25 35.35 0 9.22 879.1 485.53 32.39 0 7.11

Table 5.11 shows the average of 10 instances with Gallager A algorithm when it is

applied in the windows of sliding window decoder. Gallager A algorithm cannot find a

feasible solution for any of the cases, as given in “# FEAS” column. That is the decoded

vector does not satisfy the equality vHT = 0 (mod 2). Besides, decoded vectors are far

away from the best known lower bounds (found by CPLEX while obtaining the results

in Table 5.2) which can be seen from the “Gap (%)” column.

“BER” column shows the percent difference from the original codeword. When

the values compared with the ones in Table 5.10 for n = 12000 and p = 0.05, our

proposed ABFW algorithm provides significantly higher quality solutions compared to

Gallager A.

77

Table 5.12. Performance of Gallager B.

w small large

p n z CPU Gap (%) # FEAS BER z CPU Gap (%) # FEAS BER

0.02 1200 174.2 10.75 86.15 0 13.55 469.7 21.19 94.69 0 38.67

3600 781.1 50.46 85.63 0 20.96 1645.2 100.27 95.53 0 45.51

6000 1854.7 93.83 92.02 0 30.49 2846.3 193.40 95.74 0 47.34

8400 3037.8 149.39 94.11 0 35.85 4056.3 301.41 95.81 0 48.19

12000 4816.4 250.38 94.95 0 39.95 5865.5 489.15 95.93 0 48.83

0.05 1200 519.4 11.63 89.01 0 42.87 591.4 21.11 90.48 0 49.29

3600 1704.5 47.87 89.69 0 47.22 1791.3 100.43 90.19 0 49.69

6000 2889.0 94.72 89.69 0 48.09 2983.8 194.52 90.02 0 49.88

8400 4073.6 150.02 89.71 0 48.49 4184.2 302.27 89.99 0 50.03

12000 5847.9 251.29 89.85 0 48.71 5973.1 489.25 90.07 0 49.96

As summarized Table 5.12, BER values are high since on the contrary to Gallager

A algorithm, Gallager B does not guarantee to decrease the error as its iterations

proceed. That is error accumulation effect appears in BER results more dramatically

for Gallager B. Both Gallager A and B algorithms are faster than ABFW method.

However, their solutions are usually not feasible and are distant from the best known

lower bound.

These results indicate that ABFW is a strong candidate for decoding problem

in communication systems. Gallager A and B algorithms give quick but poor quality

solutions. These algorithms may be practical for TV broadcasting and video streams

since fast decoding is crucial for these applications. On the other hand, as in the

case of NASA’s Mission Pluto, we may have some received information that cannot

be reobtained from the source. For such cases high solution quality is the key issue

instead of decoding speed. Hence, ABFW method is more practical for these kind of

communication systems.

78

6. LDPC CODE DESIGN WITHOUT SMALL CYCLES

6.1. Introduction

In this chapter, we explain the details of our branch–and–cut algorithm to design

LDPC codes without small cycles. In practical applications, iterative decoding algo-

rithms, such as Gallager A, are applied. The performance of iterative algorithms are

adversely affected with the existance of small cycles in Tanner graph.

An example of Gallager A algorithm on a Tanner graph is demostrated in Figure

6.1. For the Tanner graph given in Figure 6.1a, we can see that vector v = (0 0 0 1 1)

is a codeword since it satisfies all parity–check equations. Assuming that we received

vector r = (0 0 0 0 1), Gallager A algorithm sends these bits to the check nodes in

order to evaluate the parity–check equations as in Figure 6.1a. We can see that second

and third parity–check equations are unsatisfied. Then, each check node sends the

information of whether it is satisfied (S) or unsatisfied (U) to its neigboring variable

nodes.

1 2 3 4 5

1 2 3

v1 v2 v3 v4 v5

c1 = v1 + v2 + v3 c2 = v1 + v2 + v3+ v4 + v5 c3 = v3+ v4 + v5

1 2 3 4 5

1 2 3

0 0 0 1 1

0 = 0 + 0 + 0 0 = 0 + 0 + 0 + 1 + 1 0 = 0 + 1 + 1

1 2 3 4 5

1 2 3

SU SU SUU UU UU

1 2 3 4 5

1 2 3

0 0 0 0 1

0 = 0 + 0 + 0 0 = 0 + 0 + 0 + 0 + 1 0 = 0 + 0 + 1 0 = 0 + 0 + 0 0 = 0 + 0 + 0 + 0 + 1 0 = 0 + 0 + 1

(a) (b)

(a) (b)

Figure 6.1. Message–passing among variable and check nodes.

For Gallager A algorithm, v3, v4 and v5 are candidate bits to be flipped since

ui = 2 for these bits and ui > di/2. Since algorithm picks only one bit at each

iteration, let us flip v3 to 1 as shown in Figure 6.2a.

79

n - ccr ccr

m
 -

 r
c
r

r c
r

n - ccr ccr

m
 -

 r
c
r

r c
r

R

1 2 3 4 5

1 2 3

0 0 1 0 1

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

(a) (b)

1 2 3 4 5

1 2 3

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

US US USS SS SS

Figure 6.2. An iteration of Gallager A algorithm.

The resulting vector (0 0 1 0 1) satisfies c2 and c3 while violating c1. However, the

algorithm terminates with this vector since none of the bits satisfy ui > di/2 condition

after check nodes pass their information to variable nodes in Figure 6.2b. Hence, vector

r = (0 0 1 0 1) is an infeasible stationary point for Gallager A algorithm.

Existance of small cycles (such as (v1, c1, v2, c2) in Figure 6.2b) is known to

cause decoding failures [59]. The size of the smallest cycle is known as the girth of

the graph [60]. In this part of the thesis, we will focus on designing LDPC code whose

Tanner graph does not contain small cycles. In particular, we aim to construct a Tanner

graph with a given target girth value.

6.2. Mathematical Formulations

In our Girth Feasibility Model (GFM), our aim is to generate H matrix of dimen-

sion (m,n), where m = n− k, with a girth no smaller than a given value T . In GFM

model given below, Xji variable represents the (j, i) entry of the H matrix, dvi is the

degree of variable node i, dcj is the degree of check node j. Constraints (6.2) and (6.3)

allow to generate an irregular code with given degree values. As a special case, picking

dvi = J for all i and dcj = K for all j, one can obtain a (J,K)−regular H matrix.

80

We introduce cycle breaking constraints (6.4) for the cycles with size less than

target girth T . In GFM, the objective is a constant since target girth T is a given

value. Hence, any feasible solution of the model will be optimal.

Girth Feasibility Model (GFM):

max T (6.1)

s.t.:
m∑
j=1

Xji = dvi, i = 1, ..., n (6.2)

n∑
i=1

Xji = dcj, j = 1, ...,m (6.3)

∑
(j,i)∈C

Xji ≤ |C| − 1, ∀C cycle with |C| < T (6.4)

Xji ∈ {0, 1}, j = 1, ...,m, i = 1, ..., n. (6.5)

An alternative modeling approach is to assume dvi and dcj as the target degrees

of vi and cj, respectively. In Minimum Degree Deviation Model (MDD), the objective

is to minimize the degree deviations dvsi of vi and dcsj of cj from target values.

Minimum Degree Deviation Model (MDD):

min
n∑

i=1

dvsi +
m∑
j=1

dcsj (6.6)

s.t.:
m∑
j=1

Xji + dvsi = dvi, i = 1, ..., n (6.7)

n∑
i=1

Xji + dcsj = dcj, j = 1, ...,m (6.8)

(6.4)− (6.5) (6.9)

dvsi , dc
s
j ≥ 0, j = 1, ...,m, i = 1, ..., n. (6.10)

81

One can observe that MDD is always feasible since Xji = 0 for all (j, i), dvsi = dvi

for all i and dcsj = dcj for all j is a trivial solution. Moreover, if optimum objective

function value of MDD is zero, which means constraints (6.2) and (6.3) are satisfied

without deviation, we get a feasible (optimum) solution of GFM. In the following

proposition, we introduce some necessary conditions on (m,n) dimensions of H matrix.

Proposition 6.1. For a (J,K)–regular H matrix having girth T and dimension (m,n)

(1) n = 2m if K = 2J ,

(2) n ≥ 1 +
∑(T−2)/2

l=2 J(K − 1)[(J − 1)(K − 1)]l−2.

Proof. For a (J, 2J)–regular H matrix, each variable node has J neighbors and

each check node has 2J neighbors in Tanner graph. Hence, total variable degree should

be equal to total check degree in a bipartite graph, nJ = m(2J) =⇒ n = 2m.

Moreover, there cannot be cycles in Tanner graph of size less than or equal to

T − 2 since its girth is T . A cycle of size T − 2 includes (T − 2)/2 variable nodes. As

given in Figure 6.3, in order not to have a cycle of size less than or equal to T −2, each

spanning tree with depth (T − 2)/2 emanating from a variable node should include

distinct variable nodes.

1 2 3 4

1 2 3

1 4 3 2

1 2 3

(a) (b)

...
Depth 1

J

...

...

...

...

......

...

J(K-1)

J(K-1)(J-1)

JK(J-1)(K-1)

J(K-1)[((J-1)K-1)](T 6)/2

...
Depth 2

Depth

(T – 2)/2

J(K-1)(J-1)[(K-1)(J-1)]T/

2- 2

...

Depth 1

Depth 0

Depth 2

Depth 3

Depth

T - 4

Figure 6.3. Number of spanned nodes in a depth–(T − 2)/2 tree.

82

Since H matrix is (J,K)–regular, we can reach J check nodes from a variable

node and K variable nodes from a check node. At depth l ≥ 2, we can visit J(K −
1)[(J − 1)(K − 1)]l−2 variable nodes. That is, we need at least 1 +

∑(T−2)/2
l=2 J(K −

1)[(J − 1)(K − 1)]l−2 variable nodes to generate a (J,K)–regular H matrix with girth

T . �

From Proposition 6.1, we deduce that for a given (m,n) dimension, existance of

a (J,K)–regular H matrix having girth T is not guaranteed. As an example, there

is no (3, 6)–regular H matrix with n < 1 + 15
∑3

l=2 10l−2 = 166 and girth T = 8.

That is GFM can be infeasible depending on the value of target girth T . Hence, in our

study we work with MDD model. Since there can be exponential number of cycles in a

Tanner graph, we can have exponential number of constraints (6.4) in MDD model. In

order to obtain a solution in acceptable amount of time, we add the constraints (6.4)

in a cutting–plane fashion to MDD. This gives rise to our branch–and–cut algorithm

explained in the next section.

6.3. Branch–and–Cut Algorithm

The main steps of our Branch–and–Cut (BC) approach are listed in Figure 6.4.

In BC approach, we are given a target girth value T and the dimension of H matrix as

(m,n). We initialize our algorithm by relaxing constraints (6.4) from MDD, to obtain

relaxed model MDDr.

We can find either an integral or a fractional solution after solving the relaxed

MDD. In the case we find an integral solution, we test its feasibility with respect to

the relaxed constraints (6.4) with Figure 6.5. The integral solution is seperated from

the solution space by adding required constraints from (6.4) if solution is not feasible.

Similarly, we try to seperate a fractional solution from the solution space with Figure

6.7, in order to strengthen the linear relaxation of MDD.

83

Input: Target girth value T , (m,n)
0. Obtain MDDr by removing constraints (6.4) from MDD,

add MDDr to list L, set x∗ = null and z∗ =∞.
1. While list L is not empty
2. Select and remove a problem from L.
3. Solve LP relaxation of the problem.
4. If solution infeasible, Then prune the branch and go to Step 1.
5. Else let the current solution be x with objective value z.
6. End If
7. If z ≥ z∗, Then prune the branch and go to Step 1.
8. If x is an integer solution,

If Figure 6.5 finds cycles smaller than T ,
Then add cuts (6.4) and go to Step 3.
Else set z∗ ← z, x∗ ← x.
End If

9. Else If Figure 6.7 generates any cuts,
Then add cuts (6.4) and go to Step 3.

10. Else branch to partition the problem into subproblems.
Add these problems to L and go to Step 1.

11. End If
12. End While
Output: H matrix with girth at least T .

Figure 6.4. Branch–and–Cut algorithm.

In integral solution seperation problem, we find all cycles in Tanner graph whose

length is less than T with a depth–first–search algorithm using Figure 6.5. In Figure

6.6, we explain Figure 6.5 with T = 6 on Tanner graph given in Figure 6.1. In Figure

6.6a, the search algorithm starts with v1 at level 0, i.e. l = 0, and it is labeled. We

label c1 at l = 1, v2 at l = 2 and c2 at l = 3 since they are the first untracked neighbors

of their predecessors. At l = 4, we visit v1 but it is labeled. This means we have a

cycle of length–4 consisting of nodes stored in nodeTrack array and we add this cycle

to C set which keeps all cycles whose length is less than T in current integral H matrix.

In Figure 6.6b, we consider other untracked neighbors of c2 at level 4. After

observing that none of v3, v4 and v5 form a cycle, we unlabel them and return to level

3. At l = 3, we see that there are no other untracked neighbors of c2 and backtrack to

level 2. In Figure 6.6c, we see v3 is untracked and we label it at l = 2. We label c2 at

l = 3 and v1 at l = 4. Hence, we found another cycle of length–4 and add this to set C.

84

Input: A solution of MDDr with integral Xji values, T target girth
1. Let set of cycles C = ∅ and nodeTrack be an array
2. For Each variable node i, let l = 1
3. While l > 0, Do set nodeTrack[0] = i and label node i
4. For Each level l from 1 to T − 2
5. Set nodeTrack[l] to first untracked neighbor of nodeTrack[l − 1]
6. If nodeTrack[l] is labeled, Then a cycle of size l is added to C

unlabel nodeTrack[l] and
go to next untracked neighbor of nodeTrack[l − 1]
If no such neighbor, Then l← l − 1

7. Else label nodeTrack[l] and l← l + 1, End If
8. For Each
9. End While
10. End For Each
Output: Set of cycles C.

Figure 6.5. Integral solution seperation algorithm.

1 2 3 4 5

1 2 3

0 0 1 0 1

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

(a) (b)

1 2 3 4 5

1 2 3

1 2 3 4 5

1 2 3

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 1 + 0 0 = 1 + 1 + 0

(a) (b)

0 0 1 1 0

1 2 3 4 5

1 2 3

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 0 + 1 0 = 1 + 0 + 1

US US USS SS SS

US US USS SS SS

0 = 0 + 0 + 1 0 = 0 + 0 + 1 + 1 + 0 0 = 1 + 1 + 0

l = 0

l = 1

l = 2

l = 3

l = 4

1

1

l

l

2
l

2
l

1
c

nodeTrack = (v1, c1, v2, c2, v1)

(a)

l = 0

l = 1

l = 2

l = 3

l = 4

1

1

l

l

2
l

2
l

1
c

Move to l = 3 and then to l = 2

3
l

4
l

5
l

1
c

(b)

l = 0

l = 1

l = 2

l = 3

l = 4

1

1

l

l

2
l

2
l

1
c

nodeTrack = (v1, c1, v3, c2, v1)

3
l

2
l

(c)

Figure 6.6. Depth–first–search in integral solution seperation.

The solution time to find an optimal solution of MDD can be improved by re-

ducing the soluıtion space using cuts for fractional solutions. In such a case, we have

fractional Xji values in Tanner graph. We consider to find maximum average cost cycle

in Tanner graph with Xji as cost values. If this cycle violates constraints (6.4) and its

length is less than T , then we can add the corresponding violated constraint.

Minimum mean cost cycle is a well known network problem in literature and there

is a polynomial time solution algorithm for directed graphs [61]. The problem simply

aims to find a smallest mean cost
∑

(j,i)∈C Xji/|C| cycle among all directed cycles in

85

graph. However, we cannot implement this algorithm directly, since Tanner graph is

undirected. For the solution we can repeatedly implement a negative cycle detection

algorithm embedded within a binary search algorithm. Bellman–Ford algorithm can

detect negative cycles while searching 1–to–many shortest paths for directed graphs.

Bellman–Ford algorithm is also applicable for undirected graphs, if for an edge (j, i)

the algorithm updates distance label of node i when it is not the predecessor of node

j [61]. If the algorithm detects a negative cycle, we can track the predeccessor list to

form the cycle.

In fractional solution seperation problem, we use undirected Bellman–Ford algo-

rithm to detect negative cycles in a binary search method. We first set edge costs as

−Xji to turn our maximization problem to minimization. Let µ represent an estima-

tion on the minimum mean cycle cost, and µ∗ denote the (unknown) optimal value

of µ. Then, given a µ value, we update the edge costs to (−Xji − µ) and check for

existance of a negative cycle. If we start with a µ which is an upper bound for µ∗, we

can face with one of these cases in binary search for minimum mean cost µ∗.

Case 1: G has a negative cycle C. In this case,
∑

(j,i)∈C(−Xji − µ) < 0. This

means,

µ > −
∑

(j,i)∈C Xji

|C| > µ∗. (6.11)

Hence, µ is a strict upper bound on µ∗. We can update µ as µ = −
∑

(j,i)∈C Xji

|C| in

the next iteration.

Case 2: G has a zero–cost cycle C∗. In this case,
∑

(j,i)∈C∗(−Xji− µ) = 0. This

means,

86

µ = −
∑

(j,i)∈C∗ Xji

|C∗| = µ∗. (6.12)

Hence, µ = µ∗ and C∗ is a minimum mean cost cycle.

Input: A solution of MDDr with fractional Xji values, T target girth
1. Let µ = 0, set cost of edge (j, i) as (−Xji − µ)
2. While we can detect negative cycle C with undirected Bellman–Ford
3. If |C| < T and C is violating (6.4), Then add corresponding cut (6.4)

4. Update µ← −
∑

(j,i)∈C Xji

|C|
5. End While
Output: Cuts added to MDDr model.

Figure 6.7. Fractional solution seperation algorithm.

Fractional solution seperation algorithm is summarized in Figure 6.7. We set

initial µ = 0, since it is an upper bound on µ∗. If we can find a negative cycle with

size |C| < T , we can add a cut to MDD if it is violated. This means, C is a cycle with∑
(j,i)∈C Xji > |C| − 1. We continue updating µ values until we find a minimum mean

cycle. Negative cycles found are added as cuts if they violate constraints (6.4).

6.4. Improvements on Branch–and–Cut Algorithm

In this section we propose some improvements on the BC algorithm given in the

previous section. We first observe that the solution space of MDD includes symmetric

solutions. Hence, we consider a variable fixing approach to decrease the adverse effect

of symmetry. Secondly, we introduce some valid inequalities to improve the linear

relaxation of MDD. Finally, we utilize an algorithm from telecommunications literature,

i.e. progressive edge growth (PEG), to provide an initial solution to BC algorithm.

87

6.4.1. Symmetry in MDD Solution Space

In combinatorial optimization problems such as scheduling, symmetry among

the solutions is an important issue which directly affects the performance of applied

solution methods [62,63]. We observe that feasible region of MDD contains symmetric

solutions. That is, for a Tanner graph there can be isomorphic representations by

permuting the variable and check nodes. As an example, the variable nodes are in the

order of {v1, v2, v3, v4} in Figure 6.8a and the names of v2 and v4 are switched in Figure

6.8b.

1 2 3 4

1 2 3

H¹ =

1 4 3 2

1 2 3

(a) (b)

Figure 6.8. Symmetry in MDD solution space.

In Figure 6.9, H1 and H2 are the parity–check matrices for Tanner graphs in Fig-

ures 6.8a and 6.8b, respectively. We see that although Tanner graphs are isomorphic,

their H matrix representations are not identical. In MDD solution space H1 and H2

are considered as two different solutions, which increases the complexity of the solution

algorithm.

H1 =

1 0 1 0
1 1 1 0
0 1 1 1

 H2 =

1 0 1 0
1 0 1 1
0 1 1 1


Figure 6.9. Parity–check matrices for Tanner graphs in Figure 6.8.

We can calculate the number of symmetric solutions for a Tanner graph as

(n!)(m!), since we can permute n variable nodes as (n!) and m check nodes as (m!)

different ways.

88

6.4.2. Symmetry Breaking with Variable Fixing

In literature, ordering the decision variables, adding symmetry–breaking cuts to

the formulation and reformulating the problem are some of the techniques to eliminate

symmetric solutions from the feasible region [62, 63]. In our case, we propose a fixing

scheme for nonzero Xji entries of H matrix that breaks symmetry and does not form

any cycles in Tanner graph.

In our variable fixing method (given as Figure 6.10) we consider (J,K)–regular H

matrices and two modes, i.e. basic and extended. In basic mode, we fix first K entries

in the first row to 1 and first J entries in the first column to 1. The remaining entries

in first row and column are set to 0 since constraints (6.2) for i = 1 and constraints

(6.3) for j = 1 are satisfied. We illustrate basic and extended modes in Figure 6.11 for

(3, 6)–regular codes of dimension (30, 60) below. Bold entries in Figure 6.11 are fixed

with basic mode.

Input: (m,n) dimension, (J,K) values, mode type
0. Let rcr = b(n− 1)/(K − 1)c and ccr = b(m− 1)/(J − 1)c

Set X1i = 0, i = 1, ..., n, Xj1 = 0, j = 1, ...,m
If mode = extended

For j = 2, ..., rcr, i = 1, ..., n, set Xji = 0
For j = rcr + 1, ...,m, i = 2, ..., ccr, set Xji = 0

End If
1. Set X1i = 1, i = 1, ..., K and Xj1 = 1, j = 1, ..., J
2. If mode = extended
3. For j = 2, ..., rcr + 1, i = 1, ..., K − 1,
4. If 1 + (j − 1)(K − 1) + i ≤ n, Then set Xj,1+(j−1)(K−1)+i = 1.
5. End For
6. For j = 1, ..., J − 1, i = 2, ..., ccr + 1,
7. If 1 + i(J − 1) + j ≤ m, Then set X1+i(J−1)+j,i = 1.
8. End For
9. End If
Output: Some Xji values are fixed.

Figure 6.10. Variable fixing algorithm.

In extended mode, we extend variable fixing further as (m,n) dimension of H

matrix allows. In Figure 6.11, the labels on the rows and colums show the sum of the

89

values in that row and column, respectively. We observe that for rcr = b(n−1)/(K−1)c
many row sums are equal to 6 and ccr = b(m − 1)/(J − 1)c many column sums are

equal to 3. Hence, for ccr–columns constraints (6.2) and for rcr–rows constraints (6.3)

are satisfied. We remain with a rectangle of size (m− rcr)× (n− ccr), which includes

unfixed Xji variables shown as dots.

ccr
333333333333332111



6 11111100
6 10000011111000
6 100000000001111100
6 010000000000000011111000000000000000000000000000000000000000
6 010000000000000000000111110000000000000000000000000000000000
6 001000000000000000000000001111100000000000000000000000000000
6 001000000000000000000000000000011111000000000000000000000000
6 000100000000000000000000000000000000111110000000000000000000
6 000100000000000000000000000000000000000001111100000000000000
6 0000100011111000000000

rcr 6 0000100111110000
5 00000100000000. 1111
1 00000100000000. .
1 00000010000000. .
1 00000010000000. .
1 00000001000000. .
1 00000001000000. .
1 00000000100000. .
1 00000000100000. .
1 00000000010000. .
1 00000000010000. .
1 00000000001000. .
1 00000000001000. .
1 00000000000100. .
1 00000000000100. .
1 00000000000010. .
1 00000000000010. .
1 00000000000001. .
1 00000000000001. .
1 000000000000001. .

Figure 6.11. Variable fixing on a (3, 6)–regular H matrix of dimension (30, 60).

90

Some characteristics of cycles in a Tanner graph can be visualized by considering

the Tanner graph given in Figure 6.8a and corresponding parity–check matrix H1 in

Figure 6.9. It can be seen that C1 = (v1, c1, v3, c2) and C2 = (c1, v1, c2, v2, c3, v3) are

two cycles in Tanner graph in Figure 6.8a. Figures 6.12a and 6.12b visualize cycles C1

and C2 on H1, respectively.

1 2 3 4

1 2 3

1 4 3 2

1 2 3

(a) (b)

...
Depth 1

J

...

...

...

...

......

...

J(K-1)

J(K-1)(J-1)

JK(J-1)(K-1)

J(K-1)[((J-1)K-1)](T 6)/2

...
Depth 2

Depth

(T – 2)/2

J(K-1)(J-1)[(K-1)(J-1)]T/

2- 2

...

Depth 1

Depth 0

Depth 2

Depth 3

Depth

T - 4

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

1 0 1 0

1 1 1 0

0 1 1 1

v1 v2 v3 v4

c1

c2

c3

vd

hr

hl

vu vd

hr
vd

hr

vu

hl

(a) (b)

Figure 6.12. Cycles C1 and C2 on H1.

We can observe that a cycle is an alternating sequence of horizontal and ver-

tical movements between cells having value 1. In particular, cycle C1 is a sequence

of horizontal right (hr), vertical down (vd), horizontal left (hl) and vertical up (vu)

movements. Similarly, cycle C2 can be expressed with sequence (vd, hr, vd, hr, vu, hl).

Moreover, we deduce that there needs to be at least one from each of hu, hd, vu and vd

movements in a cycle.

Proposition 6.2. Variable fixing on H matrix with extended mode does not form any

cycles in Tanner graph.

Proof. Assume we apply variable fixing with extended mode and consider cells

whose Xji values have been fixed to 1. There are four cases to have an alternating

sequence among variable and check nodes as given in Figures 6.13 and 6.14.

In Figure 6.13a, the sequence of case 1 is (vd, hr, vd, hr, ...) and in Figure 6.13b for

case 2, we have sequence (hr, vd, hr, vd, ...), which do not include vu and hl movements.

Hence, there cannot be any cycles in these cases.

91

vd

hr

hl

vu

vd

vd

vd

vd

vd

vd

vd

vd

hr

hr

hr

hr

hr

hr

hr

hr

hr hl
vd

vu

(a) (b)

(a) (b)

Figure 6.13. Alternating variable and check nodes, cases 1 and 2.

vd

hr

hl

vu

vd

vd

vd

vd

vd

vd

vd

vd

hr

hr

hr

hr

hr

hr

hr

hr

hr hl
vd

vu

(a) (b)

(a) (b)

Figure 6.14. Alternating variable and check nodes, cases 3 and 4.

In Figure 6.14a (case 3), we have two options to start, i.e. hr or hl movements.

Then the sequence will be (hr or hl, vd, hr, vd, hr, ...), which does not include vu move-

ment. In Figure 6.14b (case 4), vd or vu are candidates to begin the sequence. In this

case, the sequence will be (vd or vu, hr, vd, hr, vd, ...) which does not include hl move-

ment. Hence, there are no cycles in these cases either. �

We can use the partial solution obtained with Figure 6.10 to generate a feasible

solution of MDD. Since partial solution does not include any cycles (see Proposition

6.2), setting the nonfixed entries to zero gives a feasible solution (an upper bound).

92

6.4.3. Valid Inequalities for Cycle Regions

After applying extended fixing, MDD problem reduces to locating ones in reduced

rectangle of size (m−rcr)×(n−ccr). That is problem size reduced by
(

1− (m−rcr)×(n−ccr)
m×n

)
×100%. We can further improve the performance of BC algorithm by introducing

valid inequalities that help to break the symmetry in reduced problem assuming code

is (J,K)–regular. We first observe that when we are given a dimension (m,n), the

reduced rectangle always appears in between the two extending 1–blocks as given in

Figure 6.15.

(a) (b)

n - ccr ccr

m
 -

 r
c
r

r c
r

Figure 6.15. Reduced rectangle when (m,n) is given.

MDD model locates ones in reduced rectangle to minimize the degree deviation

without creating cycles of size smaller than girth T . Hence, we can generate valid

inequalities that eliminate cycles with size smaller than T in reduced rectangle. For

this purpose as given in Figure 6.16, we first divide the region between the extending

1–blocks into smaller rectangles, i.e. subblocks, having (J−1)(K−1) rows and (K−1)

columns since we assume a (J,K)–regular code.

We investigate the size of a cycle that will be formed when we locate only a

single 1 in a subblock and categorize the subblock according to this size. For example

in Figure 6.16, we observe that cycle size is common for all entries in the subblock and

we classify the subblocks as Cycle–4, Cycle–6, Cycle–8 and Cycle–10 regions. Moreover,

we observe that these cycle regions have repeating pattern due to (J,K)–regularity.

93

Figure 6.16. Subblocks and cycle regions with J = 3 and K = 6.

Figure 6.17. Cycle–4 regions with J = 3 and K = 6.

In particular, when there is a 1 in a Cycle–4 region (dotted area), we have a cycle

of length 4 as in the case of cycles C1 and C2 in Figure 6.17. Besides, Cycle–4 regions

repeats both horizontally and vertically.

Similar horizontal and vertical repeating patterns can be seen for Cycle–6 and

Cycle–8 regions in Figure 6.18. Making use of the patterns, one can express the cycle

region of an entry (j, i) as a function. We introduce valid inequalities for MDD based

on the cycle region information of the entries in the reduced rectangle.

94

Figure 6.18. Cycle–4, Cycle–6 and Cycle–8 regions with J = 3 and K = 6.

Proposition 6.3. Let (j, i) be an entry in the reduced rectangle, i.e. j ∈ {m−rcr, ...,m}
and i ∈ {n− ccr, ..., n} and let cycleRegion(j, i) represent the cycle region of the entry.

Let S denote the number of subblocks that intersects with the reduced rectangle and let

Bs, s ∈ {1, ..., S} represent the set of (j, i) entries in subblock s.

(1) If cycleRegion(j, i) < T , then constraint

Xji = 0 (6.13)

is valid.

(2) If T = 8 and (j, i) ∈ Bs with cycleRegion(j, i) = 8 or 10, then constraints

J−1∑
j=1

∑
((k−1)(J−1)+j,i)∈Bs

X(k−1)(J−1)+j,i ≤ 1, k ∈ {1, ..., K − 1} (6.14)

are valid.

(3) If T = 10 and (j, i) ∈ Bs with cycleRegion(j, i) = 10, then constraint

95

∑
(j,i)∈Bs

Xji ≤ 1 (6.15)

is valid.

Proof. Let us consider each item seperately.

(1) There cannot be cycles of size smaller than girth T . If Xji = 1, then we have a

cycle of size cycleRegion(j, i) < T , which is not desired. Hence, Xji = 0 in this

case.

(2) If T = 8, then there should not be any cycles of size 6. Let us consider a subblock

with cycle region 8 or 10, which is subdivided into K−1 equal pieces each includes

J − 1 rows. In Figure 6.19, we give an example for Cycle–8 subblock with J = 3

and K = 6 where we have (K − 1) = 5 subpieces each having (J − 1) = 2 rows.

As seen in figure, a cycle of size 6 forms when there is more than one nonzero

entry in a subpiece.

Figure 6.19. A cycle of size 6 on Cycle–8 region with J = 3 and K = 6.

A similar case appears for Cycle–10 subblocks. Hence, constraints (6.14) are

valid, since they force to have at most one nonzero entry in each subpiece when

cycle region of the subblock is either 8 or 10.

96

Figure 6.20. A cycle of size 8 on Cycle–10 region with J = 3 and K = 6.

(3) A cycle of size 8 is not allowed when T = 10. However, when there is more than

one nonzero entry in a subblock with cycle region 10, there is a cycle of size 8

as given in Figure 6.20. Constraint (6.15) is valid since it bounds the number of

nonzero entries from above with 1. �

As discussed in Section 6.4.1, a Tanner graph can be alternatively represented

by reordering its variable and check nodes. In Proposition 6.5, we show that any

(J,K)–regular H matrix of dimension (m,n) that has sufficiently large girth T can

be expressed as in Figure 6.21 by reordering the rows and columns. Before, we have

Proposition 6.4 for (J,K)−regular codes using the relationships J < K and n > K

which are valid in practical applications.

Proposition 6.4. For a (J,K)−regular code of dimension (m,n), we have rcr ≤ ccr

where rcr = b(n− 1)/(K − 1)c and ccr = b(m− 1)/(J − 1)c as in Figure 6.10, Step 0.

Proof. Let J
K

= a ∈ (0, 1), then we have mK = nJ =⇒ m = na. Then

we can write, m−1
J−1 = na−1

Ka−1 = a(n−1)+a−1
a(K−1)+a−1 >

n−1
K−1 since a < 1. From here we obtain

b n−1
K−1c ≤ bm−1J−1 c =⇒ rcr ≤ ccr. �

97

n - ccr ccr

m
 -

 r
c
r

r c
r

n - ccr ccr

m
 -

 r
c
r

r c
r

R

Figure 6.21. Reordered (J,K)–regular H matrix with girth T > t.

Proposition 6.5. Let H be a (J,K)–regular parity–check matrix of dimension (m,n).

Let rcr and ccr be defined as in Proposition 6.4. Let t = max(j,i)∈R{cycleRegion(j, i)}
where R is the region between the two extending 1–blocks and outside the reduced rectan-

gle as in Figure 6.21. Then, nonzero entries of H can be represented as two extending

1–blocks as in Figure 6.21 by reordering its rows and columns if it has a girth T > t.

Remaining nonzero entries are in the reduced rectangle.

Proof. Let H be (J,K)–regular matrix of dimension (m,n) with girth T > t. Let

us apply the reordering algorithm in Figure 6.22 on H.

Input: H, (m,n) dimension, (J,K) values, T value
1. Pick row 1, reorder columns such that all ones are in first K columns.

Pick column 1, reorder rows such that all ones are in first J rows.
2. For s ∈ {2, ..., rcr}
3. Pick row s, reorder columns such that (K − 1) ones are in first available
columns.

Pick column s, reorder rows such that (J−1) ones are in first available rows.
4. End For
5. For s ∈ {rcr + 1, ..., ccr}
6. Pick column s, reorder rows such that (J − 1) ones are in first available
rows.
7. End For
Output: Reordered H matrix.

Figure 6.22. Reordering algorithm.

98

At Step 1 of Figure 6.22, J many ones are located in first column. For second row,

i.e. s = 2, first available (K−1) columns to locate ones are columns (K+1, ..., 2K−1),

since otherwise a cycle with size less than T exists. Similarly for second column, i.e.

s = 2, first available (J−1) rows are (J+1, ..., 2J−1) without creating a cycle. The al-

gorithm continues in this fashion for rcr rows and columns. Since, in Proposition 6.4 we

see that rcr ≤ ccr, we continue to locate ones for remaining (ccr−rcr) many columns. �

Proposition 6.6. Let z∗ be the optimum objective value of MDD and z∗f be the optimum

objective value of MDD when variables are fixed with extended mode. Let t be defined

as in Proposition 6.5. Assume there exists a (J,K)–regular code with dimension (m,n),

then

(1) 0 = z∗ = z∗f if T > t,

(2) 0 = z∗ ≤ z∗f if T ≤ t.

Proof. For any dimension (m,n), we have z∗ ≤ z∗f since we fix some Xji variables

in extended mode. If there exists a (J,K)–regular code, then there is optimal solution

with objective value z∗ = 0. We know from Proposition 6.5 when T > t, a (J,K)–

regular code can be expressed as in Figure 6.21, which coincides with the case in

extended mode. Hence, we have z∗f = z∗ = 0.

In MDD if cycleRegion(j, i) ≥ T , then Xji can be nonzero without harming the

girth T . When T ≤ t, there are (j, i) ∈ R in Figure 6.21 with cycleRegion(j, i) ≥ T

and they are fixed to zero since we fix all entries in region R to zero in extended mode.

Then, we have 0 = z∗ ≤ z∗f in this case. �

6.4.4. Progressive Edge Growth (PEG) Algorithm

The last improvement for our BC algorithm is to introduce a starting solution

for initial upper bound. For this purpose, we adapt an existing algorithm from the

literature known as Progressive Edge Growth (PEG) algorithm [64]. We modify this

99

algorithm for our problem by starting PEG from partial initial solution generated by

our fixing algorithm given in Figure 6.10. We also update PEG such that the generated

solution has girth at least T .

Input: (m,n) dimension, dv and dc vectors, T value
0. Initialize X← 0, dvc ← 0, dvs ← dv and dcs ← dc, I ← 0
1. Apply Figure 6.10 and update slacks
dvsi ← dvsi −

∑
j Xji for all i and dcsj ← dcsj −

∑
iXji for all j

and current degrees dvci ←
∑

j Xji for all i
2. For i ∈ {1, ..., n} set I ← 0
3. For k ∈ {0, ..., dvci}
4. If k = 0, Then set Xji = 1 for j = argmaxj{dcsj}
5. Else apply BFS from vi to span check nodes, let tree has depth l
6. If 2l ≥ T or |N l

i | ≤ m, let I is incidence vector for N l
i

set Xji = 1 for j = argmaxj{(1− Icj)dcsj}
7. End If
8. Update dvci , dv

s
i , dc

s
j as in Step 1

9. End For
10. End For
Output: An initial solution for MDD.

Figure 6.23. Modified PEG algorithm.

In Figure 6.23, dv and dc are target degree vectors for variable and check nodes,

respectively. Let deviation from target degrees for variable and check nodes be given

by slack vectors dvs and dcs, and current degrees of variable nodes be listed in vector

dvc. Moreover, N l
i represents the set of all check nodes that can be reached from vi

with a tree of depth l. Hence, set N l
i \ N l−1

i collects check nodes that are reached at

the lth step from vi for the first time. We can represent the check nodes in set N l
i with

an incidence vector I as Icj = 1 if cj ∈ N l
i and zero otherwise.

Starting from the solution provided by Figure 6.10, PEG adds an edge (j, i), i.e.

Xji = 1, if this edge does not form a cycle (|N l
i | ≤ m) or the size of the cycle created

is greater or equal to T (Step 6). For edge assignment, the algorithm picks cj having

the maximum slack value dcsj to in order to fit the target degree dcj. The generated

solution is feasible for MDD since it has girth at least T .

100

6.5. Computational Results

The computations have been carried out on a computer with 2.0 GHz Intel Xeon

E5–2620 processor and 46 GB of RAM working under Windows Server 2012 R2 oper-

ating system. In computational experiments, we use CPLEX 12.6.2 to test the perfor-

mance of BC method and evaluate how different improvement strategies on BC given

in Section 6.4 affect the results. We implement all algorithms in C++ programming

language. We summarize the solution methods in Table 6.1.

Table 6.1. Summary of solution methods.

Method Mode Valid Inequalities PEG

BC0 – – –

BC1 basic – –

BC2 extended – –

BC3 extended
√

–

BC4 extended
√ √

In BC0, we apply BC method in Figure 6.4 without any improvement technique.

Figure 6.4 includes Figures 6.5 and 6.7 to seperate integral and fractional solutions,

respectively. In CPLEX, we implement Figure 6.5 using LazyCutCallback and Figure

6.7 with UserCutCallback routines. We utilize default branching settings of CPLEX.

In BC1 method, we apply Figure 6.10 to fix first row and column of H matrix with basic

mode. In BC2 method, Figure 6.10 is implemented with extended mode to fix rcr rows

and ccr columns (see Section 6.4.2). In BC3 method, we apply fixing with extended

mode and use valid inequalities explained in Section 6.4.3. Finally in BC4 method, we

provide initial solution with modified PEG (Figure 6.23) under extended mode and

use valid inequalities in Section 6.4.3. We list the parameters used in computational

experiments in Table 6.2.

Table 6.3 shows the computational results for method BC0 with respect to differ-

ent parameters. Column “z” is the objective function value of MDD found by CPLEX

within 3600 seconds time limit. Best known lower bound found by CPLEX in the time

101

Table 6.2. List of computational parameters.

Parameters

(J,K) (3, 6)– regular codes

(m,n) (10, 20), (15, 30), (20, 40), (30, 60),

(40, 80), (100, 200), (150, 300), (250, 500), (500, 1000)

T 6, 8, 10

Time Limit 3600 secs

limit is given in column “zl”. For each of the methods, we have an initial feasible

solution (an upper bound) with objective value ziu. In BC0 method, H = 0 is a trivial

solution providing an initial upper bound. In methods from BC1 to BC4 initial feasible

solution is obtained from variable fixing (see Section 6.4.2) or initial heuristic (PEG)

(see Section 6.4.4). Computational time in seconds is given with column “CPU (secs)”

and percentage difference among zl and z is under column “Gap (%)”. In column

“Lazy” we show number of cuts added to MDD using Figure 6.5, whereas column

“User” is the number of cuts added to MDD with Figure 6.7.

As explained in Section 6.2, we have a (J,K)–regular code if zl = z = 0. We

can conclude that it is not possible to have a (J,K)–regular code with given (m,n)

and girth T when we have z ≥ zl > 0 (see Proposition 6.1). In Table 6.3, we can see

that BC0 can find (3, 6)–regular code almost all instances when T = 6. As T and n

increase, BC0 method cannot improve initial upper bound ziu. For T = 8 and T = 10,

we observe that the number of lazy and user cuts added to MDD gets smaller as n

gets larger. This is since adding a cut takes more time as n increases, which causes the

algorithm to generate fewer cuts within the given time limit.

Table 6.4 shows our computational results for BC1 and BC2. We have better

initial upper bound (ziu) values compared to BC0 when we implement variable fixing

with basic mode in BC1 and we can improve ziu values more in BC2 with extended

mode. We observe that zl = 1 for T = 6 and n = 20 in BC1, which means it is not

possible to have a (3, 6)–regular code for this dimension.

102

Table 6.3. Computational results for BC0.

CPU Gap # Cuts

T n zl z ziu (secs) (%) Lazy User

6 20 0 20 120 time 100 7399 0

30 0 0 180 13.80 0 5784 0

40 0 0 240 0.39 0 331 0

60 0 0 360 0.45 0 184 0

80 0 0 480 0.41 0 94 0

200 0 0 1200 1.06 0 238 0

300 0 0 1800 2.62 0 165 0

500 0 0 3000 4.72 0 114 0

1000 0 0 6000 32.71 0 111 0

8 20 0 62 120 time 100 51759 19192

30 0 86 180 time 100 138018 9890

40 0 240 240 time 100 196066 4452

60 0 360 360 time 100 285614 2683

80 0 480 480 time 100 328598 2055

200 0 1200 1200 time 100 404838 736

300 0 1800 1800 time 100 327245 261

500 0 3000 3000 time 100 207064 61

1000 0 0 6000 905.21 0 2458 2

10 20 0 62 120 time 100 171969 31649

30 0 164 180 time 100 393619 7676

40 0 240 240 time 100 410765 5554

60 0 360 360 time 100 554898 3740

80 0 480 480 time 100 496226 2465

200 0 1200 1200 time 100 67718 406

300 0 1800 1800 time 100 22282 88

500 0 3000 3000 time 100 11548 10

1000 0 6000 6000 time 100 87546 65

103

Table 6.4. Computational results for BC1 and BC2.

BC1 BC2

CPU Gap # Cuts CPU Gap # Cuts

T n zl z ziu (secs) (%) Lazy User zl z ziu (secs) (%) Lazy User

6 20 1 20 104 time 95 3804 0 12 20 62 time 40 246 0

30 0 0 164 23.11 0 7016 0 0 0 92 0.10 0 2532 0

40 0 0 224 0.39 0 420 0 0 0 122 0.12 0 160 0

60 0 0 344 0.37 0 124 0 0 0 182 0.20 0 148 0

80 0 0 464 0.56 0 125 0 0 0 242 0.23 0 146 0

200 0 0 1184 1.43 0 108 0 0 0 602 0.48 0 109 0

300 0 0 1784 2.31 0 87 0 0 0 902 1.11 0 167 0

500 0 0 2984 4.73 0 94 0 0 0 1502 2.44 0 225 0

1000 0 0 5984 49.23 0 110 0 0 0 3002 21.83 0 165 0

8 20 0 44 104 time 100 19099 16644 42 42 62 0.08 0 0 0

30 0 74 164 time 100 73701 8222 64 64 92 0.33 0 244 0

40 0 92 224 time 100 131947 4385 56 84 122 time 32 2660 68

60 0 344 344 time 100 225388 1903 12 80 182 time 85 25418 0

80 0 464 464 time 100 240048 1703 0 242 242 time 100 61703 0

200 0 1184 1184 time 100 407426 895 0 602 602 time 100 229615 0

300 0 1784 1784 time 100 331382 487 0 902 902 time 100 292952 0

500 0 2984 2984 time 100 216118 124 0 0 1502 1633.83 0 148866 0

1000 0 0 5984 454.20 0 1386 6 0 0 3002 449.31 0 1263 0

10 20 0 58 104 time 100 57480 80057 54 54 62 0.09 0 0 0

30 0 164 164 time 100 242023 16891 92 92 92 0.09 0 0 0

40 0 224 224 time 100 342790 8174 122 122 122 0.11 0 0 0

60 0 344 344 time 100 290718 3953 182 182 182 0.14 0 0 0

80 0 464 464 time 100 471767 5285 236 236 242 142.56 0 3850 42

200 0 1184 1184 time 100 51505 675 66 602 602 time 89 310451 1

300 0 1784 1784 time 100 20565 135 0 902 902 time 100 461039 0

500 0 2984 2984 time 100 9568 60 0 1502 1502 time 100 467420 0

1000 0 5984 5984 time 100 90273 91 0 3002 3002 time 100 110798 0

In Table 6.4, we observe that we can solve more instances to optimality, i.e. Gap

(%) value is zero, with BC2 method. There are instances such as T = 10 and n = 80

that we have zl = z > 0, for which we can say that the best possible code includes

z/2 = 236/2 = 118 fewer ones than a (3, 6)–regular code (having Xj,i = 1 improves

MDD objective by 2).

Comparing Table 6.4 and 6.5, we can see that ziu values for BC2 and BC3 are

the same since we apply extended mode for both. On the other hand, we have better

ziu values in BC4 since we apply Figure 6.23 to generate an initial feasible solution

(see Section 6.4.4). Results show that z values get better, the number of cuts added

to MDD gets smaller and computational time improves on average as we have tighter

initial solutions.

Among the methods from BC0 to BC4, we can see that BC4 uses fewer cuts on

the average and solves more instances to optimality (19 instances out of 27 instances).

Besides, BC4 provides an evidence that there cannot be a (J,K)–regular code (when

104

Table 6.5. Computational results for BC3 and BC4.

BC3 BC4

CPU Gap # Cuts CPU Gap # Cuts

T n zl z ziu (secs) (%) Lazy User zl z ziu (secs) (%) Lazy User

6 20 12 20 62 time 40 260 0 13.9 20 26 time 37 238 0

30 0 0 92 0.15 0 1784 0 0 0 8 0.22 0 2522 0

40 0 0 122 0.14 0 160 0 0 0 2 0.36 0 441 0

60 0 0 182 0.20 0 160 0 0 0 2 0.16 0 154 0

80 0 0 242 0.24 0 148 0 0 0 2 0.33 0 184 0

200 0 0 602 0.55 0 109 0 0 0 4 0.56 0 104 0

300 0 0 902 1.02 0 167 0 0 0 2 1.11 0 167 0

500 0 0 1502 3.33 0 225 0 0 0 2 3.05 0 207 0

1000 0 0 3002 39.79 0 170 0 0 0 4 29.84 0 174 0

8 20 42 42 62 0.12 0 0 0 42 42 62 0.13 0 0 0

30 64 64 92 0.16 0 0 0 64 64 86 0.13 0 0 0

40 84 84 122 7.89 0 473 0 84 84 86 2.59 0 367 0

60 28 64 182 time 56 55860 0 28 60 66 time 53 58432 0

80 8 242 242 time 97 95449 0 8 38 38 time 87 83615 0

200 0 0 602 2181.18 0 154415 0 0 0 16 1893.82 0 166949 0

300 0 902 902 time 100 280596 0 0 10 10 time 100 284583 0

500 0 0 1502 614.80 0 33635 0 0 0 10 1414.95 0 71447 0

1000 0 0 3002 324.91 0 587 0 0 0 12 384.75 0 866 0

10 20 54 54 62 0.10 0 0 0 54 54 62 0.13 0 0 0

30 92 92 92 0.09 0 0 0 92 92 92 0.11 0 0 0

40 122 122 122 0.11 0 0 0 122 122 122 0.17 0 0 0

60 182 182 182 0.11 0 0 0 182 182 182 0.13 0 0 0

80 236 236 242 0.18 0 1 0 236 236 236 0.17 0 1 0

200 260 602 602 time 57 100732 4 260 314 314 time 17 78306 16

300 104 902 902 time 88 273318 0 104 274 274 time 62 335686 0

500 0 1502 1502 time 100 170322 0 0 174 174 time 100 165584 0

1000 0 3002 3002 time 100 52500 0 0 60 60 time 100 47637 0

zl > 0) for 13 instances within given time limit. Taking into account that code design

problem is an offline problem, one can implement BC4 method to construct a (J,K)–

regular code providing sufficiently large time.

105

7. CONCLUSIONS

In this thesis, we first consider to design decoders with high error correction ca-

pability in Chapter 4. In particular, we consider a Branch–and–Price (BP) algorithm

for LDPC decoding in Section 4.2. We explain a method to repair infeasibilities at

the nodes of BP algorithm. Besides, we implement different techniques to generate an

upper bound for early prunning the branch–and–bound tree of BP algorithm. Compu-

tational experiments show that our BP algorithm is not as fast as CPLEX running on

EM formulation in LDPC decoding. Some future research on generating tight upper

bound for feasible codeword is necessary in order to obtain better BP performance.

In Chapter 5 we proposed optimization–based sliding window decoders for SC

codes, namely complete window (CW), finite window (FW), repeating windows (RW)

decoders. We explained how one can utilize these algorithms to practically decode in-

finite dimensional convolutional codes and introduce convolutional code (CC) decoder.

The computational results indicate that within the given time limit sliding window de-

coders find better feasible solutions in shorter time compared with exact model decoder

(EMD). For each proposed decoder, we implement some binary (SB) and all binary

(AB) variants. Among the sliding window decoders, AB approach is better than SB

due to starting solution advantage.

For the decoding of convolutional codes, our proposed ABFW algorithm is the

best among all methods in terms of both computational time and solution quality. One

can obtain better solutions by increasing the window size in the expense of computa-

tional time.

Although, RW approach reveals worse performance than FW method, it can still

be a nice candidate to decode time invariant convolutional codes where all windows

are same. In such a case, one needs to store a single window model instead of m. This

can decrease the memory usage and improve the computational time.

106

Gallager A and B algorithms are popular in practical applications. Compared

with ABFW approach, these algorithms give poor quality solution in shorter time. Our

proposed algorithm ABFW can contribute to the communication system reliability

by providing near optimal decoded codewords. It is applicable in settings such as

deep space communications where obtaining a high–quality decoding within reasonable

amount of time is crucial.

In Chapter 6, we consider LDPC code design problem and provide an MIP for-

mulation for girth feasibility problem. For the solution of problem, we propose a

branch–and–cut (BC) method. We analyze structural properties of the problem and

improve our BC algorithm by using techniques such as variable fixing, adding valid

inequalities to model and providing an initial solution using a heuristic. Computa-

tional experiments indicate that each of these techniques improve BC one step further.

Among all, the method which combines all of these strategies, i.e. method BC4, can

solve largest number of instances to optimality and gives smallest gap values on average

in acceptable amount of time. One important gain of the method is that it can provide

an evidence whether there can be a (J,K)–regular code or not.

In this study, our focus has been on (J,K)–regular codes. In telecommunication

applications irregular LDPC codes are also utilized. Hence, extending these techniques

to irregular LDPC codes can be a track of future research. Spatially–coupled (SC)

LDPC codes are another code family which become popular due to their channel ca-

pacity approaching error correction capability. Design of SC LDPC codes without

small cycles will be a valuable contribution to the future communication standards.

107

REFERENCES

1. Vacchione, J. D., et al., “Telecommunications antennas for the Juno mission to

Jupiter”, in Proc. 2012 IEEE Aerospace Conf., pp. 1–16.

2. DeBoy, C. C. et al., “The RF Telecommunications System for the New Horizons

Mission to Pluto”, in Proc. 2004 IEEE Aerospace Conf., pp. 1463–1478.

3. Gallager, R. G., “Low-density parity-check codes,” IRE Transactions on Informa-

tion Theory, vol 8, no. 1, pp. 21–28, January 1962.

4. Tanner, R. M., “A recursive approach to low complexity codes,” IEEE Transactions

on Information Theory, vol IT-27, no. 5, pp. 533–547, September 1981.

5. Zhang, J., and M. P. C., Fossorier, “Shuffled iterative decoding,” IEEE Trans. on

Commun., vol 53, no. 2, pp. 209–213, 2005.

6. Chen, J., A., Dholakia, E., Eleftheriou, M. P. C., Fossorier, and X. Y., Hu,

“Reduced–complexity decoding of LDPC codes,” IEEE Trans. on Commun., vol

53, no. 8, pp. 1288–1299, 2005.

7. Berlekamp, E. R., R. J., McEliece, and H. C. A., van Tilborg, “On the inherent

intractability of certain coding problems,” IEEE Trans. Inf. Theory, vol. 24, pp.

384–386, May 1978.

8. Feldman, J., and D. R., Karger, “Decoding turbo-like codes via linear program-

ming,” Journal of Computer and System Sciences, vol 68, pp. 733-752, 2004.

9. Feldman, J., M. J., Wainwright, and D. R., Karger, “Using linear programming to

decode binary linear codes,” IEEE Transactions on Information Theory, vol 51, no.

3, pp. 954–972, March 2005.

108

10. Elias, P., “Coding for Noisy Channels”, MIT Res. Lab. of Electronics, Cambridge,

MA, IRE Convention Rec., Part 4, pp. 37–46, 1955.

11. Viterbi, A. J., “Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm”, IEEE Trans. on Information Theory, vol. 13, no. 2, pp.

260–269, April 1967.

12. Brice, P., W. Jiang, and G. Wan, “A Cluster-Based Context-Tree Model for Mul-

tivariate Data Streams with Applications to Anomaly Detection”, INFORMS J. on

Computing, vol. 23, no. 3, pp. 364–376, September 2010.

13. Fano, R. M., “A heuristic discussion of probabilistic decoding,” IEEE Trans. In-

form. Theory, vol. IT-9, no. 2, pp. 64–73, April 1963.

14. Sh. Zigangirov, K., “Some sequential decoding procedures,” Probl. Peredachi Inf.,

2, pp. 13–25, 1966.

15. Jelinek, F., “A fast sequential decoding algorithm using a stack,” IBM J. Res. and

Dev., 13, pp. 675–685, November 1969.

16. Han, Y. S., and P.-N., Chen, “Sequential decoding of convolutional codes” in Wiley

Encyclopedia of Telecommunications, Wiley, 2003.

17. Bocharova, I. E., B. D. Kudryashov, and R. Johannesson, “LDPC Convolutional

Codes versus QC LDPC Block Codes in Communication Standard Scenarios”, in

2014 IEEE Int. Symp. on Information Theory, pp. 2774–2778.

18. Keha, A. B., and T. M., Duman, “Minimum distance computation of LDPC codes

using branch and cut algorithm,” IEEE Transactions on Communications, vol 58,

no. 4, pp. 1072–1079, 2010.

19. McGowan, J. A., and R. C., Williamson, “Loop removal from LDPC codes,” IEEE

Inf. Theory Workshop, pp. 1–4, 2003.

109

20. Hu, X. Y., E., Eleftheriou, and D. M., Arnold, “Regular and irregular progressive

edge-growth Tanner graphs,” IEEE Trans. on Inf. Theory, vol 51, pp. 386–398,

2005.

21. Compello, J., and D. S., Modha, “Extended bit–filling and LDPC code design,”

Proc. of the IEEE Globecom Conf., vol 2, pp. 985–989, 25–29 November 2001.

22. Dinoi, L., F., Scottile, and S., Benedetto, “Design of variable–rate irregular LDPC

codes with low error floor,” IEEE Int. Conf. on Commun., vol 1, pp. 647–651, 16–20

May 2005.

23. Poulliat, C., M., Fossorier, and D., Declercq, “Design of regular (2, dc)–LDPC

codes over GF(q) using their binary images,” IEEE Trans. on Commun., vol 56, no.

10, pp. 1626–1635, October 2008.

24. Lu, J., and J. M. F., Moura, “TS–LDPC codes: Turbo–structured codes with large

girth,” IEEE Trans. on Inf. Theory, vol 53, no. 3, pp. 1080–1094, March 2007.

25. Chen, H., and Z., Cao, “A modified PEG algorithm for construction of LDPC codes

with strictly concentrated check–node degree distributions,” Wireless Commun. and

Networking Conf., pp. 564–568, 11–15 March 2007.

26. Healy, C. T., and R. C., de Lamare, “Decoder–optimised progressive edge growth

algorithms for the design of LDPC codes with low error floors,” IEEE Commun.

Lett., vol 16, no. 6, pp. 889–892, June 2012.

27. Divsalar, D., S., Dolinar, and C., Jones, “Low–rate LDPC codes with simple pro-

tograph structure,” Int. Symp. on Inf. Theory, pp. 1622–1626, 4–9 September 2005.

28. El-Khamy, M., J., Hou, and N., Bhushan, “Design of rate–compatible structured

LDPC codes for hybrid ARQ applications,” IEEE J. on Selected Areas in Commun.,

vol 27, no. 6, pp. 965–973, August 2009.

110

29. Etesami, S. J., and W., Henkel, “A protograph construction for LDPC unequal

error protection codes,” Bremen Jacobs University, August 2009.

30. Bonello, N., S., Chen, and L., Hanzo, “Construction of regular quasi–cyclic pro-

tograph LDPC codes based on Vandermonde matrices,” IEEE Trans. on Vehicular

Technology, vol 57, no. 4, pp. 2583–2588, July 2008.

31. Myung, S., K., Yang, and J., Kim, “Quasi–cyclic LDPC codes for fast encoding,”

IEEE Trans. on Inf. Theory, vol 51, no. 8, pp. 2894–2901, August 2005.

32. Li, Z., and B. V. K. V., Kumar, “A class of good quasi–cyclic low–density parity

check codes based on progressive edge growth graph,” Conf. Record of the Thirty–

Eight Asilomar Conf. on Signals, Systems and Computers, vol 2, pp. 1990–1994,

7–10 November 2004.

33. Prompakdee, P., W., Phakphisut, and P., Supnithi, “Quasi cyclic–LDPC codes

based on PEG algorithm with maximized girth property,” 2011 Int. Symp. on In-

telligent Signal Processing and Commun. Syst. (ISPACS), pp. 1–4, 7–9 December

2011.

34. Venkiah, A., D., Declercq, and C., Poulliat, “Design of cages with a randomized

progressive edge–growth algorithm,” IEEE Commun. Lett., vol 12, no. 4, pp. 301–

303, April 2008.

35. Xiao, H., and A. H., Banihashemi, “Improved progressive–edge–growth (PEG)

construction of irregular LDPC codes,” IEEE Commun. Lett., vol 8, no. 12, pp.

715–717, December 2004.

36. Myung, S., K., Yang, and J., Kim, “Lifting methods for quasi–cyclic LDPC codes,”

IEEE Commun. Lett., vol 10, no. 6, pp. 489–491, June 2006.

37. Liu, Z., and D. A., Pados, “LDPC codes from generalized polygons,” IEEE Trans.

on Inf. Theory, vol 51, no. 11, pp. 3890–3898, November 2005.

111

38. Yedidia, J., and Y., Wang, “Method for determining quasi–cyclic low–density

parity–check code, and system for encoding data based on quasi–cyclic low–density

parity–check code”, WO Patent 2013047258 A1, 4 April 2013.

39. Wang, Y., S. C., Draper, and J. S., Yedidia, “Hierarchical and high–girth QC

LDPC codes,” IEEE Trans. on Inf. Theory, vol 59, no. 7, pp. 4553–4582, July 2013.

40. Psota, E., and L. C., Pérez, “Iterative construction of regular LDPC codes from

independent tree–based minimum distance bounds,” IEEE Commun. Lett., vol 15,

no. 3, pp. 334–336, March 2011.

41. Ryan, W., and S., Lin, “Low–density parity–check codes,” in Channel Codes: Clas-

sical and Modern. 1st Ed. New York: Cambridge Univ. Press, 2009.

42. Leiner, B. M. J., “LDPC codes - a brief tutorial,” Wien Technical University, 2005.

43. Shokrollahi, A., “LDPC codes: an introduction,” Digital Fountain, Inc., 2003.

44. MacKay, D. J. C., Information theory, inference, and learning algorithms. Cam-

bridge, United Kingdom: Cambridge Univ. Press, 2003.

45. Feldman, J., T., Malkin, R. A., Servedio, C., Stein, and M. J., Wainwright, “LP

decoding corrects a constant fraction of errors,” IEEE Transactions on Information

Theory, vol. 53, No. 1, 2007.

46. Karmarkar, N., “A new polynomial-time algorithm for linear programming,” Com-

binatorica, vol. 4, no. 4, pp. 373-395, 1984.

47. Balatsoukas–Stimming, A., “Belief Propagation and LDPC Code Design (A Re-

view),” Technical University of Crete, 2011.

48. Smith, B. M., “Modeling”, Handbook of Constraint Programming, Eds. F., Rossi,

P. , van Beek, and T., Walsh, Elsevier, 2006.

112

49. Kirkpatrick, S., C. D., Gelatt, M. P., Vecchi, “Optimization by simulated anneal-

ing”, Science, New Series, vol. 220, no. 4598, pp. 671–680, 1983.

50. Jimenez-Feltström, A., and K., Sh. Zigangirov, “Time-varying periodic convolu-

tional codes with low-density parity-check matrix,” IEEE Trans. on Information

Theory, vol. 45, pp. 2181–2191, 1999.

51. Kudekar, S., T. J., Richardson, and R. L., Urbanke, “Threshold saturation via spa-

tial coupling: why convolutional LDPC ensembles perform so well over the BEC,”

IEEE Trans. on Information Theory, vol 57, no. 2, pp. 803–834, February 2011.

52. Ashrafi, R., and A. E., Pusane, “Spatially-coupled communication system for the

correlated erasure channel,” IET Communications, vol. 7, no. 8, pp. 755–765, May

2013.

53. Lentmaier, M., A., Sridharan, D. J., Costello, Jr., and K., Sh. Zigangirov, “Iter-

ative decoding threshold analysis for LDPC convolutional codes,” IEEE Trans. on

Information Theory, vol. 56, pp. 5274–5289, 2010.

54. Costello, Jr., D. J., A. E., Pusane, S., Bates, K., Sh. Zigangirov, “A comparison

between LDPC block and convolutional codes,” Proc. Inf. Theory and Applications

Workshop, San Diego, CA, USA, 2006.

55. Wolsey, L. A., Integer programming. New Jersey: Wiley, 1998, pp. 215–216.

56. Ferreira, D., R. Morabito, and S., Rangel, “Relax and fix heuristics to solve one-

stage one-machine lot-scheduling models for small-scale soft drink plants,” Comput-

ers and Operations Research, vol 37, no. 4, pp. 684–691, April 2010.

57. Moallemi, C. C., and B., Van Roy, “Resource Allocation via Message Passing,”

INFORMS J. on Computing, vol 23, no. 2, pp. 205–219, July 2010.

58. Sarıduman, A., A. E., Pusane, and Z. C., Taşkın, “An integer programming-based

113

search technique for error-prone structures of LDPC codes,” AEU - Int. J. of Elec-

tron. and Commun., vol. 68, no. 11, pp. 1097-1105, November 2014.

59. Richardson, T., “Error floors for LDPC codes,” Proc. Allerton Conferance on Com-

munication Control and Computing, vol 41, no. 3, pp. 1426–1435, September 2003.

60. Diestel, R., Graph Theory. 4th ed. Berlin, Germany: Springer-Verlag, June 2010.

61. Ahuja, R. K., T. L., Magnanti, and J. B., Orlin, Network Flows, Theory, Algorithms

and Applications. 1st ed. New Jersey, USA: Prentice Hall, 1993.

62. Walsh, T., “General Symmetry Breaking Constraints,” in Principles and Practice

of Constraint Programming, Nantes, France: Springer, 2006, vol 4204, pp. 650–664.

63. Sherali, H. D., and J. C., Smith, “Improving discrete model representations via

symmetry considerations,” Management Science, vol 47, no. 10, pp. 1396–1407,

2001.

64. Hu, X. Y., E., Eleftheriou, and D. M., Arnold, “Progressive edge-growth Tanner

graphs,” Proc. IEEE Global Telecommunications Conf., vol 2, pp. 995–1001, 2001.

