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ABSTRACT

GRAPHS OF EDGE-INTERSECTING NON-SPLITTING

PATHS

In this work, we introduce and study a new graph class: namely the graphs of

Edge-Intersecting Non-Splitting Paths (ENP). First, we consider a special case where

the host graph is a tree: the graphs of Edge-Intersecting Non-Splitting Paths in a Tree

(ENPT). We study the characterization of the ENPT representations of chordless

cycles (holes) which are one of the important basic graph structures. Under some

assumption, we give an algorithm that returns the unique minimal representation if it

exists. However, we show that the problem is NP-complete in general that is when

this assumption does not necessarily hold. Then, we consider a more general case for

which the host graph can be an arbitrary graph. As opposed to the Edge Intersection

Graphs of Paths in an arbitrary graph which includes all graphs, we show that this

is not true for ENP that is there exist some graphs which are not ENP. We also

show that the class ENP coincides with the family of graphs of Edge-Intersecting and

Non-Splitting Paths in a Grid (ENPG). Following similar studies for EPG graph

class, we study the implications of restricting the number of bends of the individual

paths in the grid. We show that restricting the number of bends also restricts the

graph class. More concretely, by restricting the number of bends one gets an infinite

sequence of classes such that every class is properly included in the next one. In

particular, we show that one bend ENPG graphs are properly included in two bend

ENPG graphs. In addition, we show that trees and cycles are one bend ENPG graphs,

and characterize split graphs and co-bipartite graphs that are one bend ENPG. We

prove that the recognition problem of one bend ENPG graphs is NP-complete even

in a very restricted subclass of split graphs. Last, we provide a linear time recognition

algorithm for one bend ENPG co-bipartite graphs.



vi

ÖZET

KENAR KESİŞEN VE AYRILMAYAN YOLLARIN

ÇİZGELERİ

Bu çalışmada yeni bir çizge sınıfı olan kenar-kesişen ve ayrılmayan yollar (ENP)

çizge sınıfını sunuyor ve çalışıyoruz. İlk önce, özel ama nispeten doğal bir durum olan

evsahibi çizgenin bir ağaç olduğu bir ağaçta kenar-kesişen ayrılmayan yollar (ENPT)

durumunu ele aldık. Temel ve önemli yaplar olan kirişsiz halkaların ENPT gösterimini

çalıştık. Özel bir varsayım altında tekil enküçük gösterimi dönen bir algoritma verdik.

Ancak gösterdik ki bu problem genel haliyle NP-zordur. Daha sonra daha problemi

evsahibi çizgenin herhangi bir çizge olabildiği durum ile genelleştirdik. Herhangi bir

evsahibi çizgede yer alan kenar-kesişimli yollar tüm çizgeleri içerse de, gösterdik ki

bu durum ENP için doğru değildir. EPG çizge sınıfı için yapılan çalışmalara par-

alel olarak yolların ızgaradaki bükülme sayısını kısıtlamanın etkilerini çalıştık. So-

mut olarak, bükülme sayısının kısıtlanması ile birbirini tam olarak içeren sonsuz çizge

sınıfları dizesi vardır. Tek bükümlü ENPG çizge sınıfının çift bükümlü çizge sınıfının

tam olarak içerildiğini gösterdik. Ayrıca gösterdik ki ağaçlar ve halkaların tek bükümlü

ENPG’dir. Yarık (split) ve bütün-ikikümeli (co-bipartite) çizgelerin tek bükümlü

ENPG gösterimlerini karakterize ettik. Tek bükümlü ENPG tanıma probleminin

yarık çizge sınıfıyla sınırlandırıldığı durumda bile zor olduğunu kanıtladık. Son olarak

tek bükümlü ENPG bütün-ikikümeli çizgeler için doğrusal zamanlı bir tanıma algo-

ritması verdik.
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1. INTRODUCTION

Good planning in business is crucial since production costs, service quality etc.

are all determined by the execution of the plans. Moreover, planning becomes more and

more challenging as the supply chain systems grow. At some point, human intuition

and computational power fail to find good plans. In fact, these challenging problems

(e.g. production planning, fleet management, workforce management and supply chain

management) can be modeled as a mathematical problem which enables us to solve

these problems using computers thus with more computational power.

Modeling is an abstraction of the real-life and graphs are one of the abstraction

tools in mathematics. Graphs are mathematical structures able to model pairwise

relations between objects and graph theory is the study of graphs. Graphs can be

used to model many types of relations and processes in physical, social and informa-

tion systems. Many practical problems (production scheduling, job assignment etc)

can be represented by graphs and modeled as a graph optimization problems. Some

fundamental graph optimization problems are: maximum matching, maximum flow,

maximum clique, maximum independent set, minimum coloring etc. Unfortunately

efficient algorithms are not known for many of the graph optimization problems. Of

course the efficiency of an algorithm has a precise definition in computer science, we

can however simply say that an algorithm is efficient if it terminates correctly in a

reasonable time, i.e. the running time of the algorithm is a polynomial of the input

size. A problem for which most probably no efficient algorithm exists is technically

called NP-hard.

Considering special cases of a problem is one of the approaches to cope with

NP-hardness. A typical example is restricting a graph optimization problem to a

special graph class where a graph class is usually defined by some structural property.

Structural graph theory deals with the characterization of various properties of graphs

in order to use them in the design of efficient algorithms. In the literature, hundreds

of graph classes are introduced and studied. Some classical graph classes are: trees,



2

bipartite graphs, interval graphs and planar graphs. There exist efficient optimization

algorithms (for NP-complete problems) for these graph classes. There are many ways of

defining a graph class. For example bipartite graphs are graphs whose vertex set can be

partitioned into two independent sets. They are equivalently defined as (odd cycle)-free

graphs. Trees are connected cycle-free graphs, or equivalently graphs in which any two

vertices are connected by a unique path. These characterizations play a fundamental

role for designing efficient algorithms. The main tools in structural graph theory are (i)

detecting forbidden substructures and (ii) describing decomposition methods of graphs

enabling to design divide-and-conquer algorithms.

Intersection graphs are graphs defined by intersection of a collection of objects,

i.e. objects are represented by vertices and an edge between two vertices exists if the

corresponding objects intersect. Any graph can be seen as an intersection graph by

considering the set of edges incident to each vertex as objects. However, the intersection

of geometric objects (e.g. intervals, disks, rectangles) defines graph classes that are used

to model real-life applications. Similarly some interesting graph classes are defined by

the intersection of graph theoretic objects such as trees and paths. For example, the

well-known graph class of triangulated graphs coincides with the intersection graphs

of subtrees of a tree. Motivated by applications in telecommunication networks, the

Edge Intersection Graphs of Paths in a Tree (resp. in a Grid) EPT (resp. EPG) are

also well studied graphs in the literature.

We say that two paths are splitting (and we call the corresponding edges red)

if their union is not a path/cycle, otherwise two paths do not split from each other

(and we call the corresponding edges blue). In some sense, we color the edges of EPT

(or EPG) graphs such that the edges now contain an extra information which can

be useful in some applications. In this work, we introduce and study a new graph

class: Graphs of Edge-Intersecting Non-Splitting Paths (ENP) which are essentially

the graphs consisting of only blue edges.
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1.1. Motivating applications

We continue by presenting some applications which motivate the study of these

graph classes.

EPT graphs have applications in communication networks. Consider a commu-

nication network of a tree topology T . The message routes to be delivered in this

communication network are paths on T . Two paths conflict if they both require the

use of the same link. This conflict model is equivalent to an EPT graph. Suppose

we try to find a schedule for the messages such that no two messages sharing a link

are scheduled in the same time interval. Then a vertex coloring of the EPT graph

corresponds to a feasible schedule on this network.

EPT graphs also appear in all-optical telecommunication networks. The so-called

Wavelength Division Multiplexing (WDM) technology can multiplex different signals

onto a single optical fiber by using different wavelength ranges of the laser beam [1,2].

WDM is a promising technology enabling us to deal with the massive growth of traffic

in telecommunication networks, due to applications such as video-conferencing, cloud

computing and distributed computing [3]. A stream of signals traveling from its source

to its destination in optical form is called a lightpath. A lightpath is realized by signals

traveling through a series of fibers, on a certain wavelength. Specifically, Wavelength

Assignment problems (WLA) are a family of path coloring problems that aim to assign

wavelengths (i.e. colors) to lightpaths, such that no two lightpaths with a common

link receive the same wavelength and a certain objective function (depending on the

problem) is minimized.

In optical networks, regenerators have to be placed on lightpaths in order to

amplify (regenerate) the signal. Traffic Grooming is the term used for the combination

of several low capacity requests (modeled by paths of a network) into one lightpath

(modeled by a path or cycle of the network) using Time Division Multiplexing (TDM)

technology [4]. Traffic grooming decreases the required number of regenerators since

requests in the same lightpath share the same regenerators. In this context a set of



4

paths can be combined into one lightpath, as long as they satisfy the following two

conditions:

• The load condition: On any given fiber, at most g requests can use the same

lightpath, where g is an integer called the grooming factor.

• The no-split condition: a lightpath (i.e. the union of the requests using the

lightpath) constitutes a path or a cycle of the network.

Clearly, the second condition cannot be checked in the EPT model. For this reason,

we introduce ENPT graphs that provide the required information.

Readers unfamiliar with optical networks may consider the following analogous

problem in transportation. Consider a set of transportation requests modeled by paths,

and trucks traveling along paths or cycles. Trucks are able to load and drop items

during their journey as long as at any given time their load does not exceed their

capacity. The no-split condition reflects the fact that a truck has to follow a path or a

cycle.

By the no-split condition, a (feasible) traffic grooming corresponds (in graph

theoretical terms) to a vertex coloring of the graph consisting of red edges (EPT \
ENPT). Moreover, by the load condition, every color class induces a sub-graph of an

EPT graph with its clique number at most g. Therefore, it makes sense to analyze the

structure of these graph pairs (EPT and ENPT).

Under this setting one can consider various objective functions such as:

Minimize the number of wavelengths / trucks. When the number of wavelengths

(resp. trucks) is scarce, one aims to minimize this number. We note that when the

parameter g is sufficiently big (i.e. g =∞ and resp. no capacity constraint for trucks)

the problem boils down to the minimum vertex coloring problem of the graph consisting

of red edges. Note that in the transportation case, we assume that disjoint itineraries
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l1

l2

l3

ln

L

Figure 1.1. The gain obtained by grooming n requests of length l1, l2, l3, . . . ln into a
lightpath of length L.

can be traveled by the same truck.

Minimize the number of regenerators / total distance traveled. The signal trav-

eling on a lightpath has to be regenerated along its way, implying a regeneration cost

roughly proportional to its length [5] (similarly, a truck incurs operational expenses

proportional to the distance it travels). The problem of minimizing the number of

regenerators is equivalent to maximizing the gain obtained by grooming requests. By

definition, the gain obtained by grooming the requests is equal to the length of these

requests minus the length of the lightpath, see Figure 1.1. If g = ∞ then we can

assume that no path is included in another path since such paths do not increase the

cost (the length of a lightpath); indeed we can omit such paths during the optimization

process and add them afterwards. In such a setting, the requests of a lightpath have

an order according to their (both left and right) endpoints.

Observation 1.1. Let σ be the increasing order of the endpoints of requests of a

lightpath. The gain obtained by grooming these requests is equal to the sum of the

overlaps of each two consecutive requests in σ.

In order to model this problem in graph theoretical terms, one has to assign

weights to the ENPT edges indicating the length of the overlap of two non-splitting

requests. Any feasible solution corresponds to a partition of the vertex set of ENPT

(equivalently the vertices of EPT) into sets V1, . . . Vk, called blue components, such that

the ENPT graph induced by Vi is connected and its clique number is less than g, and
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the EPT graph induced by Vi is empty. Note that these blue components correspond

to some collection of paths whose union is still a path.

Observation 1.2. The gain corresponding to a blue component is equal to the heaviest

(in terms of weight) path in that component.

Sketch of Proof. First note that every path of a blue component corresponds to an or-

dering of the requests (corresponding to the vertices of that blue component). Consider

a blue component and its corresponding requests, and number them according to the

increasing orders of their endpoints. From Observation 1.1, it follows that the gain is

equal to the sum of the overlaps of each two consecutive requests. It is enough to show

that this sum is the maximum (heaviest) among all possible orders of requests. Let σ

is the ordering corresponding to the heaviest path of the blue component. Suppose σ

is not equal to the increasing order. Consider the smallest i such that σ(i+1) = i+ k,

k > 1. Let σ′ be the order obtained by swapping i + 1 and i + k in σ. One can

easily checked that σ′ also corresponds to a heavier path in the blue component, a

contradiction.

In [5], it is shown (under the assumption g =∞) that a greedy algorithm, in which

the paths are merged in decreasing order of their overlaps, is an optimal algorithm.

Consider a set of requests in a tree yielding a pair of EPT and ENPT graphs. We

can simulate the greedy algorithm in this (ENPT,EPT) pair in the following fashion:

contract an edge having the maximum weight to a vertex. After this operation parallel

edges will possibly appear, replace them with the following rule: if there is a red edge

replace parallel edges with that red edge otherwise replace them with the edge having

maximum weight. This greedy algorithm is optimal if we assume that the host graph is

a tree and g =∞. Our motivation to study the structural properties of related graph

classes is to enrich the collection of tools to solve further applications.
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1.2. Literature Survey

The related graph class EPT has been extensively studied in the literature. It

is shown that recognizing EPT is NP-complete [6]. Similarly, the minimum vertex

coloring problem remains NP-complete in EPT graphs [6]. In contrast, one can solve

in polynomial time the maximum clique problem [6]. The basic idea is to show that

there are two types of cliques and therefore the maximal cliques can be enumerated

in polynomial time by a graph search on the host tree. The problem can be solved in

polynomial time even if the representation is not available using a clique enumeration

algorithm [7] since the number of maximal cliques is polynomial.

In [8] Tarjan proposes a decomposition algorithm, “decomposition by clique sepa-

rators”, which is applicable to EPT graphs; this approach is used to solve the maximum

independent set problem in polynomial time. The main idea is to find at each iteration

a clique whose removal separates at least two connected components. Tarjan calls an

atom a subgraph which is not decomposable. This decomposition can be represented

by a tree. He describes how to form recursively a solution at some parent node given

the optimal solutions of its children. Therefore if we can solve a problem in polynomial

time in the atoms then we can solve it in polynomial time in the whole graph. This

approach works in EPT graphs mainly because of the following observation. Let T

be the host tree and e an edge of T . The removal of e divides T into two trees T1

and T2. We can partition the set of paths into three: (i) the paths sharing the edge

e which constitutes a clique (ii) the set of paths completely in T1 (iii) and the set of

paths completely in T2. The later two sets are disjoint and therefore the atoms of EPT

graphs have a very specific structure.

After these studies on EPT graphs in the early 80’s, this topic neglected until

very recently. The studies of Golumbic et al. [9,10] compare various intersection graphs

of paths in a tree and their relation to chordal and weakly chordal graphs. Also,

some tolerance model is studied via k-edge intersection graphs where two vertices are

adjacent if their corresponding paths intersect on at least k edges [11].
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Several recent papers consider the edge intersection graphs of paths on a grid

(e.g [12]). Since all graphs are EPG (see [13]), studies focus mostly on the sub-classes

of EPG where the paths have a limited number of bends. An EPG graph is Bk-EPG

if it admits a representation in which every path has at most k bends. The bend number

of a graph G is the minimum number k such that G has a Bk-EPG representation.

Clearly, a graph is B0-EPG if and only if it is an interval graph. B1-EPG graphs

are studied in [13] in which every tree is shown to be B1-EPG, and a characterization

of C4 representations is given. In [14] it is shown that there exists an outer-planar

graph that is not a B1-EPG. The recognition problem of B1-EPG graphs is shown to

be NP-complete in [15]. The work [14] investigates the bend number of some special

graph classes. In [16] the authors give a characterization of B1-EPG graphs belonging

to some subclasses of chordal graphs. It is shown in [17] that the minimum coloring and

maximum independent problems remain NP-complete even in B1-EPG and provide

in the same paper a 4-approximation algorithm for both problems assuming that the

representation is given.

1.3. Structure of the thesis

Chapter 2 contains a brief list of graph-theoretical definitions and notations es-

sential to the rest of the thesis.

Chapter 3 explores different ENPT representations of cycles which are simple

yet important structures in graph theory. We observe that there can be multiple

representations for the same cycle therefore we also consider the underlying EPT

graph and call them a pair. We propose a pair recognition problem. We define three

properties and we characterize the pairs and the corresponding representations (under

some minimality definition) satisfying these properties. Then, we relax the properties

one by one and provide each time a recognition algorithm except for the last property.

Finally, we present an NP-completeness proof for the general pair recognition problem

(if we don’t assume the last property holds).

Chapter 4 covers the generalization of the host graph from a tree to an arbitrary



9

graph, namely ENP graphs. We start with two important theorems, showing that not

all graphs are ENP and the graph classes ENP and ENPG are equivalent. Therefore,

it is sufficient to consider without loss of generality ENPG graphs. As in the case

of EPG graphs, we consider the graphs having representation on the grid where the

paths have at most k bends, namely Bk-ENPG graphs. We analyze the inclusion of

graph classes Bk-ENPG parametrized by k.

Chapter 5 deals with the case k = 1. We present some basic results showing

that all trees and cycles are B1-ENPG. We then consider two subclasses B1-ENPG

split and B1-ENPG cobipartite graphs. We show that the recognizing B1-ENPG

split is NP-complete whereas decide whether a given cobipartite graph is B1-ENPG

is decidable in polynomial time.

Chapter 6 summarizes the main results and proposes some future research direc-

tions.
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2. PRELIMINARIES

In this chapter we will consider some notions essential for the understanding of

the thesis. We start with basic graph terminology, followed by basic definitions for

EPT and ENPT graphs. For the omitted definitions and notations see [18].

2.1. General Definitions

A graph is an ordered pair (V,E) where E ⊆ V ×V . V is the vertex (or node) set

and E is the edge set of G. We assume throughout this work that graphs are undirected

and simple (no loops and multiple edges). We say that two vertices u ∈ V, v ∈ V are

adjacent in G if uv ∈ E. Given a graph G = (V,E) and a vertex v of V , we denote

by δG(v) the set of edges of G incident to v, by NG(v) the set consisting of v and its

neighbors (the vertices adjacent to v) in G, and by dG(v) = |δG(v)| the degree of v in G.

Whenever there is no ambiguity we omit the subscript G and write d(v), δ(v) and N(v).

We call a vertex v isolated if d(v) = 0. Given a graph G = (V,E) and a subset V ′ ⊆ V ,

H = (V ′, E ′) is the (induced) subgraph of G induced by V ′ where E ′ ⊆ E is the set of

edges whose both endpoints are in V ′. Given a graph G = (V,E), V̄ ⊆ V and Ē ⊆ E

we denote by G[V̄ ] and G[Ē] the subgraphs of G induced by V̄ and by Ē, respectively.

For a graph G = (V,E), Ḡ = (V, Ē = V × V \E) is its complement graph. The union

of two graphs G, G′ is the graph G ∪ G′ def
= (V (G) ∪ V (G′), E(G) ∪ E(G′)). The join

G + G′ of two disjoint graphs G,G′ is the graph G ∪ G′ together with all the edges

joining V (G) and V (G′), i.e. G+G′ def
= (V (G)∪V (G′), E(G)∪E(G′)∪(V (G)×V (G′))).

A path is a sequence of edges which connect a sequence of distinct vertices. We say

that the length of a path is k if it contains k edges. A cycle is a sequence of adjacent

vertices starting and ending at the same vertex. A cycle C of a graph G = (V,E) is

Hamiltonian if V (C) = V . A graph is connected if there is a path between any pairs

of vertices Two graphs G and H are isomorphic if there is a bijection f from V (G) to

V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).

Given a graph, we call a subset of its vertices independent or stable (resp. a
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clique) if no vertex in this subset has a neighbor in this subset. A set is maximal with

respect to some property if it is not a subset of another set satisfying the property, i.e.

the set cannot be expended with vertices without losing this property.

The maximum independent set (resp. clique) problem is the problem of finding a

maximum cardinality independent set (resp. clique) in a given graph. The minimum

vertex coloring problem consists in partitioning the vertices of a graph into a minimum

number of independent sets. A graph is k-colorable if its vertices can be partitioned

into k independent sets.

A family of graphs (or a graph class) is a collection of graphs satisfying some

specific property. Given a graph G and a graph class F , we call F recognition the

problem of deciding whether G belongs to F or not.

A tree is a connected graph that does not contain any cycles, we usually call

the vertices of a tree as nodes. A subtree is an induced subgraph of a tree. We can

make any tree rooted by choosing an arbitrary node as root node which introduces a

parent-child relationship between the nodes. A node of a tree is called a leaf (resp.

intermediate node, junction) if dG(v) = 1 (resp. = 2, ≥ 3). For two nodes u, v of a

tree T we denote by pT (u, v) the unique path between u and v in T . A star denoted

by K1,k is a tree consisting of one intermediate node and k leaves. A star with 3 edges

is called a claw.

A graph is bipartite (resp. co-bipartite, resp. split) if its vertex set can be parti-

tioned into two independent sets (resp. two cliques, resp. a clique and an independent

set). Note that these partitions are not necessarily unique. We denote bipartite, co-

bipartite and split graphs as X(V1, V2, E) where

(i) X = B (resp. C, S) whenever G is bipartite (resp. cobipartite, split),

(ii) V1 ∩ V2 = ∅,
(iii) for bipartite graphs V1, V2 are stable sets,

(iv) for co-bipartite graphs V1 and V2 are cliques,
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(v) for split graphs V1 is a clique and V2 is a stable set, and

(vi) E ⊆ V1 × V2 (in other words E does not contain the cliques’ edges).

Unless otherwise stated, we assume that G is connected and none of V1, V2 is empty.

An n×m grid graph Gn,m = (V,E) where V = [n]× [m] and (i, j)(i′, j′) ∈ E ⇔
|i− i′| + |j − j′| = 1. A bend of a path P in a grid H is an internal point of P whose

edges have different directions, i.e. one vertical and one horizontal.

Given a graph G and a cycle C of it, a chord of C in G is an edge of E(G)\E(C)

connecting two vertices of V (C). The length of a chord connecting vertices i,j is the

length of a shortest path between i and j on C. C is a hole (chordless cycle) of G if

G does not contain any chord of C. This is equivalent to saying that the subgraph

G[V (C)] of G induced by the vertices of C is a cycle. For this reason a chordless cycle

is also called an induced cycle.

A graph G is chordal (resp. weakly chordal) if every cycle of G (resp. G and Ḡ)

of length at least 4 (resp. at least 5) has a chord.

Let P be a set of paths in a graph H. The graphs Ep(P) and Enp(P) are such

that V (Enp(P)) = V (Ep(P)) = V , and there is a one-to-one correspondence between

P and V , i.e. P = {Pv : v ∈ V }. Given two paths Pu, Pv ∈ P , {u, v} is an edge of

Ep(P) if and only if Pu and Pv have a common edge, whereas {u, v} is an edge of

Enp(P) if and only if Pu ∼ Pv. Clearly, E(Enp(P)) ⊆ E(Ep(P)). A graph G is

ENP if there is a graph H and a set of paths P of H such that G = Enp(P). In this

case 〈H,P〉 is an ENP representation of G. When H is a tree (resp. grid) Ep(P) is
an EPT (resp. EPG) graph, and Enp(P) is an ENPT (resp. ENPG) graph; these

graphs are denoted also as Ept(P), Epg(P), Enpt(P) and Enpg(P). We say that

two representations are equivalent if they are representations of the same graph.

Let 〈H,P〉 be a representation of an ENP graph G. Pe
def
= {P ∈ P| e ∈ P}

denotes the set of trails of P containing the edge e of H. For a subset S ⊆ V (G)
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we define PS
def
= {Pv ∈ P : v ∈ S}. When H is a tree (resp. grid) Ep(P) is an EPT

(resp. EPG) graph, and Enp(P) is an ENPT (resp. ENPG) graph; these graphs are

denoted also as Ept(P), Epg(P), Enpt(P) and Enpg(P).

Given two paths P = (e1, e2, . . . , eℓ) and P ′ = (e′1, e
′
2, . . . , e

′
ℓ′), a segment of P ∩P ′

is a maximal path that constitutes a sub-path of both P and P ′. Clearly, P ∩P ′ is the

union of edge disjoint segments. We denote the set of these segments by S(P, P ′).

2.2. The EPT and ENPT graphs

For the following discussion we refer the reader to Figure 2.1. Given two paths

P , P ′ in a graph, we write P ‖ P ′ to denote that P and P ′ are non-intersecting, i.e.

edge-disjoint. The split vertices of P and P ′ is the set of junctions in their union P ∪P ′

and is denoted by split(P, P ′). Whenever P and P ′ intersect and split(P, P ′) = ∅ we
say that P and P ′ are non-splitting and denote this by P ∼ P ′. In this case P ∪ P ′ is

a path or a cycle. When P and P ′ intersect and split(P, P ′) 6= ∅ we say that they are

splitting and denote this by P ≁ P ′. Clearly, for any two paths P and P ′ exactly one

of the following holds: P ‖ P ′, P ∼ P ′, P ≁ P ′. When the graph G is a tree, the union

P ∪ P ′ of two intersecting paths P, P ′ on G is a tree with at most two junctions, i.e.

|split(P, P ′)| ≤ 2 and P ∪ P ′ is a path whenever P ∼ P ′. A vertex w of a path P that

is not an endpoint of P is called an internal vertex of P . We also say that P crosses

w. For an edge e = {p, q} we use split(e) as a shorthand for split(Pp, Pq). Throughout

this work, in all figures, the edges of the tree T of a representation 〈H,P〉 are drawn

as solid lines whereas the paths on the tree are shown by dashed, dotted, etc. edges.

For the following discussion please refer to Figure 2.1. The pairs of paths (P2, P4)

and (P3, P4) do not share a common edge, therefore P2 ‖ P4 and P3 ‖ P4. P1 and P4

have a common edge 11, 12, and 12 is a common internal vertex constituting a split of

P1 and P4, therefore P1 ≁ P4. Similarly P1 and P3 have three common edges and 10 is

a split vertex of P1 and P3, therefore P1 ≁ P3. P1 and P2 have three common edges but

no splits, then P1 ∼ P2. The same holds for the pair (P2, P3). However, we note that in
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Figure 2.1. A set of paths in an arbitrary graph.

the latter case the common edges are separated into two segments. The vertex 8 is not

a split point of P1 and P2 because the only internal points of P1 involving this vertex are

(e7,8, 8, e7,9), (e14,8, 8, e8,15), and the only internal point of P2 involving it is (e7,8, 8, e7,9).

Moreover, |{e7,8, e7,9} ∩ {e7,8, e7,9}| = 2 6= 1 and |{e7,8, e7,9} ∩ {e14,8, e7,15}| = 0 6= 1.

When the graph G is a tree, the union P ∪ P ′ of two intersecting paths P, P ′ on

G is a tree with at most two junctions, i.e. |split(P, P ′)| ≤ 2 and P ∪ P ′ is a path

whenever P ∼ P ′.
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3. GRAPHS OF EDGE-INTERSECTING

NON-SPLITTING PATHS IN A TREE

3.1. Overview

In this chapter, we consider Graphs of Edge-Intersecting Non-Splitting Paths

in a Tree (ENPT). The results presented in this chapter are organized in several

papers [19–21]. The host graph being a tree implies the host graph itself does not

contain any cycle. However the corresponding ENPT graph can contain arbitrarily

large cycles. We study ENPT representations of trees and cycles. For the later we

show that they are more complex compared to EPT representations of cycles, see

Figure 3.1. In Section 3.6, we showed that all ENPT representations satisfying the

condition (P3), defined in Section 3.3, of a cycle have the form as in Figure 3.1c.

b
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Figure 3.1. (a) The EPT representation of a C12, (b) a simple ENPT representation
of a C12 (c) a broken planar tour with cherries representation of a C12, (d) a non-planar
tour representation of a C12, (e) a non-tour representation of a C10.

Our work in this section mainly follows the lines of Golumbic and Jamison’s
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research [6, 22] in which they defined the EPT graph class, and characterized the

representations of chordless cycles (holes). It turns out that ENPT holes have a more

complex structure than EPT holes. Even for a small cycle of length 4, we can observe

that there are two different ENPT representations, however the corresponding EPT

graphs are different, see Figure 3.6. For this reason, in our analysis, we assume that

the EPT graph corresponding to a representation of an ENPT hole is given. We also

introduce three assumptions (P1), (P2), (P3) defined on EPT, ENPT pairs of graphs.

In Section 3.2 we start with definitions and notations. We obtain in Section

3.3 some basic results regarding ENPT graphs, and their relationship with EPT

graphs. We consider pairs of graphs (G,C) where C is a Hamiltonian cycle of G,

such that Ept(P) = G and Enpt(P) = C. Given a pair (G,C) we call the prob-

lem of determining whether there is a minimal representation 〈T,P〉 of (G,C) as

HamiltonianPairRec.

We introduce the properties (P1), (P2) and (P3) under which, in Section 3.4, we

characterize the representations of pairs in Theorem 3.19. It turns out that the unique

minimal representation is a planar tour of the weak dual tree of G where a planar tour

of a tree is a collection of two types of paths; short (from a leaf to its parent) and long

(from a leaf to another leaf consecutive in the cyclic permutation), see Figure 3.10.

In Section 3.5, we relax assumption (P1). We present basic results regarding

the contraction operation and describe an algorithm for pairs satisfying assumptions

(P2) and (P3). In Theorem 3.30, we showed that these representations are exactly

broken planar tours where a broken tour is a representation obtained from a tour by

subdividing edges and breaking apart some long paths. When a long path is broken

apart into two paths, the non-leaf endpoint for each one of the two paths should

be determined. We call this procedure AdjustEndpoint which is a subroutine in

Algorithm FindMinimalRepresentation-P2-P3.

In Section 3.6, we aslo relax assumption (P2). We first characterize the represen-

tations of (K4, P4) and call them cherries. We then provide in Theorem 3.33 a family of
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graphs which does not belong to ENPT. It should be noted that non-ENPT graphs do

not directly follow from their definition. Indeed showing that a given graph do not ad-

mit an ENPT representation requires the knowledge of some structural properties on

ENPT. We define aggressive contraction operations, see Figures 3.19 and 3.20. Using

these results, we present Algorithm FindMinimalRepresentation-P3 that returns

the minimal representation of a given pair (G,C) satisfying (P3) in polynomial-time.

In Section 3.7, we show that in general, i.e. in the case where assumption (P3)

does not hold, there does not exist a polynomial-time algorithm that provides the

minimal representation of a given pair (G,C), unless P = NP. This result extends

the NP-completeness result for EPT-recognition problem. More specifically EPT-

recognition problem remains NP-complete even the edges of graphs corresponding to

the splitting paths are labeled. The main difficulty originates from deciding whether

a given clique is represented by an edge clique or a claw clique. The complexity of

the recognition problem when this information is provided by an oracle is open. On

the other hand, ENPT recognition in general is open. We showed that pair recog-

nition is NP-complete however this result does not imply that ENPT recognition is

NP-complete. Given an ENPT graph, the flexibility of choosing EPT edges in various

ways might render the recognition problem polynomial-time solvable.

In Section 3.7, we provide a recognition algorithm for a pair satisfying (P3) and

we characterize the representation of such pairs. However a stronger result is still

missing: the characterization of pairs satisfying (P3), we achieve a partial result in

Section 3.5 by characterizing pairs satisfying (P1), (P2), (P3).

We know that ENPT \EPT is not empty since the wheel graph on five vertices

(a graph consisting of a cycle and a vertex adjacent to all vertices of this cycle) is an

element of this set. However whether EPT * ENPT is still open.

Optimization problems in EPT graphs is another interesting research direction.

The clique enumeration algorithm described in [7] is output-sensitive. This means that

the time complexity of the algorithm depend on the output, i.e. number of cliques.
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As in the case of EPT graphs maximum clique problem is polynomial-time solvable in

ENPT graphs with a clique enumeration algorithm since there are polynomial number

of maximal cliques. Searching for a more efficient algorithm instead of this generic

approach is another research topic. Independent set problem in EPT is polynomial-

time solvable using Tarjan’s decomposition by clique separators [8]. In this approach

we recursively decompose the graph using a clique into two connected components. We

call non-decomposable components as atoms. In the same paper Tarjan considers some

fundamental problems, e.g. independent set, minimum vertex coloring and describe

how to combine the solutions of these problems in the atoms to get a global solution.

Therefore if one can solve a problem from this list efficiently in some graph class then

this problem is polynomial-time solvable. Following this approach it is shown in the

same paper that independent set problem in EPT graphs is polynomial-time solvable

and there is a 3
2
-approximation algorithm for the minimum vertex coloring problem

in the same graph class. Is there a special structure of the atoms of ENPT graphs?

Probably not. Consider a representation 〈T,P〉 of an EPT graph. Since T is a tree for

any edge e, e divides T into two subtrees T1 and T2 and the set of paths into three sets:

the set of paths containing e (the corresponding vertices form a clique) and the set of

paths in T1 \ e and T2 \ e (the corresponding vertices form two connected components).

However this is not true for ENPT graphs. Consider a set of paths containing an

edge e, note that the corresponding vertices do not necessarily form a clique. For this

reason if we remove a clique we do not have necessarily two connected components.

One research direction is to investigate decomposition algorithms for ENPT. On the

other hand since ENPT is a partial graph of EPT an independent set of EPT is

also an independent set of ENPT. Based on this fact, another interesting question is

whether the maximum independent set problem remains polynomial in ENPT graphs.

3.2. Preliminaries

In this Section, we give necessary definitions, present known results related to our

work, and develop basic results. In Section 3.2.1 we present known results on EPT

graphs that are closely related to our work. In Section 3.2.2 we show that cycles, trees
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and cliques are ENPT graphs.

3.2.1. EPT Graphs

We now present definitions and results from [6] that we use throughout this work.

Two graphs G and G′ such that V (G) = V (G′) and E(G′) ⊆ E(G) are termed

a pair (of graphs) denoted as (G,G′). If Ept(P) = G (resp. Enpt(P) = G) we say

that 〈T,P〉 is an EPT (resp. ENPT) representation for G. If Ept(P) = G and

Enpt(P) = G′ we say that 〈T,P〉 is a representation for the pair (G,G′). Given a

pair (G,G′) the sub-pair induced by V̄ ⊆ V (G) is the pair (G[V̄ ], G′[V̄ ]). Clearly, any

representation of a pair induces representations for its induced sub-pairs, i.e. the pairs

have the hereditary property. We note that e is a red edge if and only if split(e) 6= ∅.

Given a (simple) graph G and e ∈ E(G), we denote by G/e the (simple) graph

obtained by contracting the edge e of G, i.e. by coinciding the two endpoints of

e = {p, q} to a single vertex p.q, and then removing loops and parallel edges. Let

Ē = {e1, e2, . . . ek} ⊆ E(G). We denote by G/e1,...,ek the graph obtained from G/e1,...,ek−1

by contracting the (image of the) edge ek. The effect of such a sequence of contractions

is equivalent to contracting every connected component of G[{e1, . . . , ek}] to a vertex.

Therefore the order of contractions is not important, i.e. for any permutation π of

{1, . . . , k} we have G/e1,...,ek−1
= G/eπ(1),...,eπ(k−1)

. Based on this fact, we denote by G/Ē

the graph obtained by contracting the edges of Ē (in any order).

An outerplanar graph is a planar graph that can be embedded in the plane such

that all its vertices are on the unbounded face of the embedding. An outerplanar graph

is Hamiltonian if and only if it is biconnected; in this case the unbounded face forms

the unique Hamiltonian cycle. The weak dual graph of a planar graph G is the graph

obtained from its dual graph, by removing the vertex corresponding to the unbounded

face of G. The weak dual graph of an outerplanar graph is a forest, and in particular

the weak dual graph of a Hamiltonian outerplanar graph is a tree [23]. When working

with outerplanar graphs we use the term face to mean a bounded face.
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Figure 3.2. The representation of EPT cycle; a pie.

A cherry of a tree T is a connected subgraph of T consisting of two leaves of T

adjacent to an internal vertex of T . Similarly a cherry of a representation 〈T,P〉 is a
cherry of T with leaves v, v′ such that v (resp. v′) is an endpoint of exactly one path

P (resp. P ′) of P , and P 6= P ′.

A pie of a representation 〈T,P〉 of an EPT graph is an induced star K1,k of T

with k leaves v0, v1, . . . , vk−1 ∈ V (T ), and k paths P0, P1, . . . Pk−1 ∈ P , such that for

every 0 ≤ i ≤ k − 1 both vi and v(i+1) mod k are vertices of Pi. We term the central

vertex of the star as the center of the pie (See Figure 3.2). It is easy to see that the

EPT graph of a pie with k leaves is the hole Ck on k vertices. Moreover, this is the

only possible EPT representation of Ck when k ≥ 4.

Theorem 3.1. [6] If an EPT graph contains a hole with k ≥ 4 vertices, then every

representation of it contains a pie with k paths.

Let Pe
def
= {p ∈ P| e ∈ p} be the set of paths in P containing the edge e. A star

K1,3 is termed a claw. For a clawK of a tree T , P [K]
def
= {p ∈ P| p uses two edges of K}.

It is easy to see that both Ept(Pe) and Ept(P [K]) are cliques. These cliques are

termed edge-clique and claw-clique, respectively. Moreover, these are the only possible

representations of cliques.

Theorem 3.2. [6] Any maximal clique of an EPT graph with representation 〈T,P〉
corresponds to a subcollection Pe of paths for some edge e of T , or to a subcollection

P [K] of paths for some claw K of T .
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Note that a claw-clique is a pie with 3 leaves.

3.2.2. Some ENPT graphs

In this section we show that trees, cycles and cliques are contained in the family

of ENPT graphs, and give a complete characterization of the ENPT representations

of cliques:

Lemma 3.3. Every clique K of Enpt(P) corresponds to an edge-clique, such that the

union of the paths representing K is a path.

Proof. Enpt(P) is a subgraph of Ept(P). Therefore a clique K of Enpt(P) is a

clique of Ept(P). Assume, by way of contradiction that K does not correspond to an

edge-clique. By Theorem 3.2, K corresponds to either an edge-clique or a claw-clique.

A claw-clique that is not an edge-clique, contains two paths Pp, Pq each of which uses

a different pair of the three edges of the claw. Therefore Pp ≁ Pq, i.e. {p, q} /∈ E(K),

a contradiction. Therefore K corresponds to an edge-clique. To show the second part

of the claim, assume that the union of the paths corresponding to the vertices of K is

not a path. Then it contains at least one split vertex, i.e. it contains two paths Pp, Pq

such that Pp ≁ Pq, i.e. {p, q} /∈ E(K), a contradiction.

A direct consequence of Lemma 3.3 is that the maximum clique problem in ENPT

graphs can be solved in polynomial time. Let G be an ENPT graph and 〈T,P〉
be an ENPT representation for G. Consider an edge e of T , the union of paths

in Pe induces a subtree Te of T . Let l1, l2, . . . , lk ∈ V (T ) be the leaves of Te. Let

P li,lj
e

def
= {P ∈ Pe|P ⊆ pT (li, lj)}. The maximal cliques of G correspond to the sets

P li,lj
e . Therefore, there are at most O(V (T )3) maximal cliques in G. We conclude that

(even if a representation 〈T,P〉 is not given) a maximum clique can be found using

a clique enumeration algorithm, e.g. [7], since there are only a polynomial number of

maximal cliques.

Lemma 3.4. Every tree is an ENPT graph.
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Proof. Given a tree T ′, the following procedure provides an ENPT representation

〈T,P〉 of T ′: 1) T ← T ′, 2) choose an arbitrary vertex r as the root of T and hang T

from r, 3) add two vertices r̄, ¯̄r and two edges {¯̄r, r̄} {r̄, r} to T , 4) P = {Pv| v ∈ T ′}
where Pv is a path of length 2 between v and its ancestor at distance 2. It remains

to show that {u, v} ∈ T ′ if and only if Pu ∼ Pv. Indeed, let {u, v} ∈ T ′, and assume

without loss of generality that u is the parent of v in T . Then Pu intersects Pv because

they both use the edge connecting u to its parent. Moreover they do not split, because

their union is the path from v to its ancestor at distance 3. Therefore Pu ∼ Pv.

Conversely, assume that Pu ∼ Pv. Then Pu and Pv intersect. As every vertex is a

starting vertex of at most one path and the paths are of length 2, the second edge of

one of the paths, say Pv is the first edge of Pu, therefore u is the parent of v in T , i.e.

{u, v} ∈ T ′.

Let T be a tree with k leaves and π = (π0, . . . , πk−1) a cyclic permutation of the

leaves. The tour (T, π) is the following set of 2k paths: (T, π) contains k long paths,

each of which connecting two consecutive leaves πi, πi+1 mod k. (T, π) contains k short

paths, each of which connecting a leaf πi and its unique neighbor in T (see Figure 3.3c).

Note that ENPT((T, π)) is a cycle.
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Figure 3.3. (a) A minimal representation of C4, (b) a minimal representation of C5 (c)
a tour representation of the even hole C10, (d) a representation of the odd hole C11.

A planar embedding of a tour is a planar embedding of the underlying tree such

that any two paths of the tour do not cross each other. A tour is planar if there exists

a planar embedding of it. The tour in Figure 3.3c is a planar embedding of a tour.

Note that a tour (T, π) is planar if and only if π corresponds to the order in which the

leaves are encountered by some DFS traversal of T .



23

The opposite of a sequence of union operations that create one path is termed

breaking apart. Namely, breaking apart a path P is to replace it with paths P1, . . . , Pk

such that ∪k
i=1Pi = P , ∀1 ≤ i < k, Pi ∩ Pi+1 6= ∅, and Pi ⊆ Pj if and only if i = j. A

broken tour is a representation obtained from a tour by subdividing edges and breaking

apart long paths of a tour. Clearly, if the tour is planar the broken tour is also planar,

i.e. has a planar embedding.

Lemma 3.5. Every cycle Ck is an ENPT graph.

Proof. C3 = K3 is an ENPT graph by Lemma 3.3. As for C4 and C5, possible ENPT

representations are shown in Figures 3.3a and 3.3b, respectively. Any even hole C2k,

(k ≥ 3) is an ENPT graph. Indeed, for any tree T with k leaves, and a cyclic

permutation π of its leaves, the tour (T, π) constitutes an ENPT representation of

C2k. Any odd hole C2k+1, (k ≥ 3) is an ENPT graph. Let T be a tree with k leaves.

Split any long path of some tour (T, π) into two intersecting sub-paths such that no

chord is created (if necessary subdivide an edge of the tree into two edges) (see Figure

3.3d). The set of 2k+1 paths obtained in this way constitutes an ENPT representation

for C2k+1.

3.3. Basic Properties of EPT,ENPT Pairs

In this section we develop the basic tools that we use in subsequent sections

towards our goal of characterizing representations of ENPT,EPT pairs. We define an

equivalence relation on representations, namely two representations will be equivalent

in this relation if they are representations of the same pair. We also define a partial

order on representations. In this work, we focus on finding representations that are

minimal with respect to this partial order. We define the contraction operation on

pairs, and the union operation on representations. The contraction operation is a

restricted variant of graph contraction operation that operates on both graphs of a

pair. The union operation is the operation of replacing two paths by their union

whenever possible.
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Equivalent and minimal representations. We say that the representations 〈T1,P1〉
and 〈T2,P2〉 are equivalent, and denote it by 〈T1,P1〉 ≅ 〈T2,P2〉, if their corresponding
EPT and ENPT graphs are isomorphic under the same isomorphism (in other words,

if they constitute representations of the same pair of graphs (G,G′)).

We write 〈T1,P1〉  〈T2,P2〉 if 〈T2,P2〉 can be obtained from 〈T1,P1〉 by one of

the following two operations that we term minifying operations :

• Contraction of an edge e of T1 (and of all the paths in P1 using e)

• Removal of an initial edge (tail) of a path in P1.

The partial order & is the reflexive-transitive closure of the relation  , and

〈T1,P1〉 . 〈T2,P2〉 is equivalent to 〈T2,P2〉 & 〈T1,P1〉. 〈T,P〉 is a minimal representa-

tion if it is minimal in the partial order . restricted to its equivalence class [〈T,P〉]≅
i.e., over all the representations representing the same pair as 〈T,P〉. Throughout the
work we aim at characterizing minimal representations.

Lemma 3.6. Let 〈T1,P1〉 & 〈T2,P2〉, and s be a minimal sequence of minifying oper-

ations transforming 〈T1,P1〉 to 〈T2,P2〉. Then every permutation of s also transforms

〈T1,P1〉 to 〈T2,P2〉.

Proof. If contract(e) is an operation of s then there is no other operation in s in-

volving e. This is because such an operation is impossible after contract(e), and if it

appears before contract(e) it contradicts the minimality of s. To conclude the result,

we observe that any two successive operations in s are interchangeable. Indeed, for two

distinct edges e, e′ the operations contract(e), contract(e′) (resp. contract(e), tr(P, e′))

are interchangeable, and for two not necessarily distinct edges e, e′ the operations

tr(P, e), tr(P ′, e′) are interchangeable.

Lemma 3.7. If 〈T1,P1〉 & · · · & 〈Tn,Pn〉 and 〈T1,P1〉 ≅ 〈Tn,Pn〉, then 〈T1,P1〉 ≅
· · · ≅ 〈Tn,Pn〉.
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Proof. Let Gi = Ept(Pi) and G′
i = Enpt(Pi). We observe that both minifying opera-

tions are monotonic in the sense that they neither introduce neither new intersections,

nor new splits. Namely, for 1 ≤ i < n, E(Gi+1) ⊆ E(Gi) and E(Gi+1) \ E(G′
i+1) ⊆

E(Gi) \ E(G′
i). As 〈T1,P1〉 ≅ 〈Tn,Pn〉 we have (G1, G

′
1) = (Gn, G

′
n), i.e. E(Gn) =

E(G1) and E(Gn) \ E(G′
n) = E(G1) \ E(G′

1). Therefore E(G1) = · · · = E(Gn) and

E(G1) \ E(G′
1) = · · · = E(Gn) \ E(G′

n), concluding (G1, G
′
1) = · · · = (Gn, G

′
n).

EPT Holes.

Lemma 3.8. A hole of size at least 4 of an EPT graph does not contain blue (i.e.

ENPT) edges.

Proof. Consider the pie representing the hole under consideration. For any two paths

Pp, Pq of this pie, we have either Pp ≁ Pq or Pp ‖ Pq, therefore {p, q} is not an ENPT

edge.

Combining with Theorem 3.1, we obtain the following characterization of pairs

(Ck, G
′):

• k > 3. In this case Ck is represented by a pie. Therefore G′ is an independent

set. In other words Ck consists of red edges. We term such a hole, a red hole.

• k = 3 and Ck consists of red edges (G′ is an independent set). We term such a

hole a red triangle.

• k = 3 and Ck contains exactly one ENPT (blue) edge (G′ = P1 ∪ P2). We term

such a hole a BRR triangle, and its representation is an edge-clique.

• k = 3 and Ck contains two ENPT (blue) edges (G′ = P3). We term such a hole

a BBR triangle, and its representation is an edge-clique.

• k = 3 and Ck consists of blue edges (G′ = C3). We term such a hole a blue

triangle.
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EPT contraction. Let 〈T,P〉 be a representation and Pp, Pq ∈ P such that Pp ∼
Pq. We denote by 〈T,P〉/Pp,Pq

the representation that is obtained from 〈T,P〉 by replac-

ing the two paths Pp, Pq by the path Pp∪Pq, i.e. 〈T,P〉/Pp,Pq

def
= 〈T,P \ {Pp, Pq} ∪ {Pp ∪ Pq}〉.

We term this operation a union, and note the following important property of split ver-

tices with respect to the union operation:

Observation 3.9. For every Pp, Pq, Pr ∈ P such that Pp ∼ Pq, split(Pp ∪ Pq, Pr) =

split(Pp, Pr) ∪ split(Pq, Pr).

Lemma 3.10. Let 〈T,P〉 be a representation for the pair (G,G′), and let e = {p, q} ∈
E(G′). Then G/e is an EPT graph. Moreover G/e = Ept(〈T,P〉/Pp,Pq

).

Proof. Let s be the vertex of G/e created by the contraction of e. We claim that

s corresponds to the path Ps = Pp ∪ Pq. Consider a path Pr ∈ P \ {Pp, Pq}. We

observe that {r, s} ∈ E(G/e) ⇐⇒ {r, p} ∈ E(G) or {r, q} ∈ E(G) (by definition

of the contraction operation) ⇐⇒ Pr intersects with at least one of Pp and Pq in

T (because G = Ept(P)) ⇐⇒ Pr intersects Pp ∪ Pq = Ps in T ⇐⇒ {r, s} ∈
E(Ept(〈T,P〉/Pp,Pq

)).

We now extend the definition of the contraction operation to pairs. Based on

Observation 3.9, the contraction of an ENPT edge does not necessarily preserve

ENPT edges. More concretely, let Pp,Pq and Pq′ such that Pp ∼ Pq, Pp ∼ Pq′

and Pq ≁ Pq′ . Then G′
/p,q is not isomorphic to Enpt(〈T,P〉/Pp,Pq

) as {q′, p.q} /∈
E(Enpt(〈T,P〉/Pp,Pq

)). Let (G,G′) be a pair and e ∈ E(G′). If for every edge

e′ ∈ E(G′) incident to e, the edge e′′ = e△e′ (forming a triangle together with e

and e′) is not an edge of G then (G,G′)/e
def
= (G/e, G

′
/e), otherwise (G,G′)/e is unde-

fined. Whenever (G,G′)/e is defined we say that (G,G′) is contractible on e, and when

there is no ambiguity about the pair under consideration we say that e is contractible.

A pair (G,G′) is contractible if it contains at least one contractible edge. Clearly,

(G,G′) is non-contractible if and only if every edge of G′ is contained in at least one

BBR triangle.
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HamiltonianPairRec

Input: A pair (G,Cn) where Cn is a Hamiltonian cycle of G
Output: A minimal representation 〈T,P〉 of (G,Cn) if such a
representation exists, “NO” otherwise.

Figure 3.4. The general pair recognition problem.

P3-HamiltonianPairRec

Input: A pair (G,Cn) where Cn is a Hamiltonian cycle of G and
n ≥ 4.
Output: A minimal representation 〈T,P〉 of (G,Cn) that satisfies
(P3) if such a representation exists, “NO” otherwise.

Figure 3.5. The pair recognition problem under assumption (P3).

Problem Definition. Our goal in this work is to characterize the representations

of ENPT holes. More precisely we characterize representations of pairs (G,Cn) where

Cn is a Hamiltonian cycle of G. For this purpose we define the following problem.

The ENPT representations of C3 are characterized by Lemma 3.3. Therefore

we assume n > 3, which implies that (G,Cn) does not contain blue triangles. In the

sequel we confine ourselves to pairs (G,Cn) and representations 〈T,P〉 satisfying the

following three assumptions:

• (P1): (G,Cn) is not contractible.

• (P2): (G,Cn) is (K4, P4)-free, i.e., it does not contain an induced sub-pair iso-

morphic to a (K4, P4).

• (P3): Every red triangle of (G,Cn) is a claw-clique, i.e. corresponds to a pie of

〈T,P〉.

Note that (P1) and (P2) are assumptions about the pair (G,C) and (P3) is an

assumption about the representation 〈T,P〉. We say that (P3) holds for a pair (G,C)

if it has a representation 〈T,P〉 satisfying (P3). It will be convenient to define the

following problem.

Without loss of generality we let V (G) = V (Cn) = {0, 1, . . . , n− 1} where the
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numbering of the vertices is consistent with their order in C. All arithmetic operations

on vertex numbers are done modulo n. We denote the corresponding set of paths in

the representation as P = {P0, . . . , Pn−1}.

3.4. Pairs (G,C) Satisfying (P1), (P2) and (P3)

In this section we characterize the minimal representations of (G,C) pairs sat-

isfying (P1), (P2) and (P3). To achieve this goal we present an algorithm solving

the P3-HamiltonianPairRec problem for instances satisfying (P1) and (P2). In

Section 3.4.1 we handle the case n = 4. In Section 3.4.2 we analyze properties of weak

dual trees based on which, in Section 3.4.3 we present an algorithm for the case n > 4.

C4 is exceptional because all its representations satisfy assumptions (P1−3), but some

of our results that we prove for n > 4 fail to hold in this case.

3.4.1. The pair (G,C4)

Lemma 3.11. (i) All the representations of (G,C4) satisfy assumptions (P1− 3), (ii)

G is one of the two graphs in Figure 3.6, and (iii) each of these two graphs has a unique

minimal representation (also depicted in Figure 3.6).

Proof. (i) (G,C4) is clearly (K4, P4)-free. Moreover it satisfies (P3) vacuously, because

it does not contain any red triangle. G 6= C4, because otherwise C4 would constitute

a blue hole of length 4, contradicting Lemma 3.8. Without loss of generality let {1, 3}
be a red edge of G. We observe that {1, 3} is incident to all the edges of C4, therefore

(G,C4) is not contractible, so it satisfies (P1).

(ii) Depending on whether or not {0, 2} ∈ E(G), G is one of the two graphs in

Figure 3.6.

(iii) Consider a representation 〈T,P〉 of (G,C4), and consider the path P =

P1 ∩P3. Let e0 (resp. e2) be an edge defining the edge-clique {1, 3, 0} (resp. {1, 3, 2}).
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Both of e0 and e2 are in P . Let u ∈ split(P1, P3). u is an endpoint of P . As P0 intersects

P (at e0), it can not cross u, because in this case it has to split from at least one of

P1, P3 at u. The same holds for P2. Therefore neither one of P0, P2 crosses a vertex of

split(P1, P3). We consider two cases: (Case 1) G is isomorphic to K4. Then there is one

edge defining the clique, i.e. without loss of generality e0 = e2. If |split(P1, P3)| = 2

then, none of these two vertices can be crossed by P0 or P2. Therefore P0 ⊆ P and

P2 ⊆ P , we conclude that they can not split, a contradiction. Therefore split(P1, P3)

consists of one vertex that is not crossed by P0 and P2. We conclude that P0 and P2

cross the other endpoint of P and split. The representation in Figure 3.6a is the only

minimal representation satisfying these conditions. (Case 2) G is not isomorphic to

K4. Therefore e0 6= e2, and without loss of generality e0 ∈ P0 \ P2, e2 ∈ P2 \ P0. P

has at least one endpoint u in split(P1, P3). Without loss of generality e0 is closer to

u than e2. Therefore P0 lies between u and e2, and P2 starts after P1 and crosses e2.

The representation in Figure 3.6b is the only minimal representation satisfying these

conditions.
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Figure 3.6. The two minimal ENPT representations of C4.

3.4.2. Weak Dual Trees

We extend the definition of the weak dual tree of Hamiltonian outerplanar graphs

to any Hamiltonian graph as follows. Given a pair (G,C) where C is a Hamiltonian

cycle of G, a weak dual tree of (G,C) is the weak dual tree W(G,C) of an arbitrary

Hamiltonian maximal outerplanar subgraph O(G,C) of G. O(G,C) can be built by

starting from C and adding to it arbitrarily chosen chords from G as long as such

chords exist and the resulting graph is planar. We note that under the assumptions of
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(P1− 3), G will be shown to be outerplanar, and therefore there is actually one weak

dual tree.

By definition of a dual graph, vertices ofW(G,C) correspond to faces of O(G,C).

By maximality, the faces of O(G,C) correspond to holes of G. The degree of a vertex

of W(G,C) is the number of red edges in the corresponding face of O(G,C). To

emphasize the difference, for an outerplanar graph G we will refer to the weak dual

tree of G, whereas for a (not necessarily outerplanar) graph G we will refer to a weak

dual tree of G.

We proceed with observations on W(G,C):

• Edges of W(G,C) correspond to red edges of O(G,C) (by definition of a weak

dual graph, and observing that the edges of the unbounded face are exactly the

blue edges).

• The degree of a vertex ofW(G,C) is the number of red edges in the corresponding

face of O(G,C), therefore the leaves (resp. intermediate vertices, junctions) of

W(G,C) correspond to BBR triangles (resp. BRR triangles, red holes) of (G,C)

(recalling Lemma 3.8).

• |V (G)| = |V (C)| = |E(C)| = 2ℓ + i where ℓ is the number of leaves of W(G,C)

and i is the number of its intermediate vertices.

Lemma 3.12. Let n > 4 and (G,Cn) be a pair satisfying (P1 − 3). Then every edge

of Cn is in exactly one BBR triangle.

Proof. Let 〈T,P〉 be a representation of (G,Cn) satisfying (P3). As (G,Cn) is not

contractible, every edge of Cn is in at least one BBR triangle. Assume, by contradiction

and without loss of generality, that the blue edge {1, 2} is part of the two possible BBR

triangles {0, 1, 2} and {1, 2, 3}. {0, 3} is not an edge of Cn, because n > 4. Moreover, it

is not an edge of G, because otherwise the sub-pair induced by {0, 1, 2, 3} is isomorphic

to a (K4, P4). Let e0 (resp. e3) be an edge of T defining the edge-clique {0, 1, 2} (resp.
{1, 2, 3}) such that e3 is closest to e0. Clearly, e0 6= e3, because otherwise we get a
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(K4, P4). The vertices {4, . . . , n− 1} constitute a connected component of G, therefore

the union of the corresponding paths is a subtree T ′ of T . T ′ intersects both P0 and P3,

therefore there is at least one path Pj /∈ {P0, P1, P2, P3} that contains e3. We conclude

that {1, 2, 3, j} is an edge-clique. If j = 4 then it induces a pair isomorphic to (K4, P4),

otherwise {1, 3, j} is a red edge-clique. Both cases contradict our assumptions.

Lemma 3.13. Let (G,C) be a pair satisfying (P2), (P3) and let W(G,C) be a weak

dual tree of (G,C). Then (i) there is a bijection between the contractible edges of

(G,C) and the intermediate vertices of W(G,C), (ii) the tree obtained from W(G,C)

by smoothing out the intermediate vertex corresponding to a contractible edge e is a

weak dual tree of (G,C)/e.

Proof. (i) We define the bijection f as follows: Let W(G,C) be the weak dual tree

corresponding to some O(G,C), and let e be a contractible edge of (G,C). Then e

is not part of any BBR triangle. As every blue edge must be in some triangle, e is

in a non-empty set of BRR triangles. Exactly one of these triangles is in O(G,C),

and this triangle corresponds to an intermediate vertex of W(G,C) that we designate

as f(e). f is one-to-one because every intermediate vertex corresponds to one BRR

triangle of O(G,C), and every BRR has one blue edge. We now show that f is

onto. Assume by contradiction that f is not onto. Then, without loss of generality

there is a BRR triangle {1, 2, j} (j /∈ {0, 1, 2, 3}) of O(G,C) where e = {1, 2} is not

contractible. Then either {0, 2} or {1, 3} is an edge of E(G) \ E(C). Let, without

loss of generality {0, 2} be an edge of E(G) \ E(C). Then {0, 1, 2} is an edge-clique.

Let E ′ be the set of edges of (the path of) T defining this edge-clique. We claim that

∀k /∈ {0, 1, 2} , Pk ∩ E ′ = ∅. Indeed, if k = n − 1 and Pk contains an edge of E ′, then

{n− 1, 0, 1, 2} induces a (K4, P4), and if k 6= n − 1 then {k, 0, 2} induces a red edge-

clique. In both cases we reach a contradiction. Consider the subtrees of T separated

by E ′. As Pj ∩ E ′ = ∅ it is completely contained in one of these subtrees, say Tj. P1

and P2 intersect Pj, therefore they intersect Tj. However P0 does not intersect Tj as

this would either contradict the definition of E ′ or P0 would split from P1. On the

other hand, the vertices {j + 1, j + 2 . . . , 0} constitute a connected component of G,

therefore the union of the paths {Pj+1, Pj+2 . . . , P0} is a subtree T ′ of T . T ′ intersects
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both P0 and Pj, therefore T ′ intersects E ′. In other words there is at least one path

Pl ∈ {Pj+1, Pj+2 . . . , P0} that intersects E ′, a contradiction.

(ii) Let e = {i, i+ 1} and {i, i+ 1, j} the BRR triangle of O(G,C) (that cor-

responds to f(e)). After the contraction of e, this triangle reduces to a red edge.

The same holds for O(G,C)/e that contains all the faces of O(G,C) except the BRR

triangle that disappeared. The corresponding weak dual tree is W(G,C) with f(e)

smoothed out.

We note that if n = 4 Lemma 3.12 does not hold. However the following corollary

of lemmata 3.12 and 3.13 holds for every n.

Corollary 3.14. If (G,C) is a pair satisfying (P1−3) with C isomorphic to Cn, then:

(i) W(G,C) does not have intermediate vertices, (ii) n is even and W(G,C) has n/2

leaves, and (iii) W(G,C) is a path if and only if n = 4.

3.4.3. The Minimal Representation

In this section we present an algorithm solving P3-HamiltonianPairRec for

n ≥ 5, provided that assumptions (P1) − (P2) hold. The representation returned by

the algorithm is a planar tour. We show that it is the unique minimal representation

of (G,C) satisfying (P3).

Lemma 3.15. If (G,C) is a hamiltonian pair with n = |V (G)| > 4 for which properties

(P1− 3) hold then G is outerplanar and the unique minimal representation of (G,C)

satisfying (P3) is a planar tour of the weak dual tree of G.

Proof. The proof is by induction on the smallest number h of junctions of a weak

dual tree of (G,C). Let W(G,C) be a weak dual tree of (G,C) with h junctions, and

O(G,C) the corresponding maximal outerplanar graph. Index arithmetic is modulo n

through the proof, and 〈T,P〉 is a minimal representation of (G,C) satisfying (P3).

We first recall that since (G,C) satisfies (P1), by Corollary 3.14, W(G,C) contains
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only junctions and leaves. In the sequel we show that T is isomorphic to W(G,C) and

P is a planar tour of T . We do this by combining planar tours of subtrees into a planar

tour a tree. Two basic tools that we use in the construction are the following two claims

that state, roughly speaking, (i) that two adjacent holes of O(G,C) are represented by

two pies with distinct centers, and (ii) that the representations associated with disjoint

subtrees of W(G,C), reside in disjoint subtrees of T .

For a junction x ofW(G,C), letHx be the set of vertices of the hole corresponding

to x in O(G,C). By Property (P3), Hx is represented by a pie. We denote by f(x) be

the center of the pie in 〈T,P〉 representing Hx.

Claim 3.16. If u, v are two adjacent junctions of W(G,C) then f(u) 6= f(v).

Proof. Let {i, j} be the edge common to the holes Hu and Hv. In other words {i, j} is
the dual of the edge {u, v} ofW(G,C). Let k 6= i and k′ 6= i be the vertices adjacent to

j in these two holes. Assume for a contradiction that f(u) = f(v) (see Figure 3.7 for an

illustration). Pi, Pj , Pk are consecutive in one pie and Pi, Pj , Pk′ are consecutive in the

b b

b b

b

b i

j

k k′

u v
b

i k′

kj

f(u) = f(v)

Figure 3.7. Adjacent holes of O(G,C) are mapped to different centers.

other. Then Pk and Pk′ intersect Pj on the same edge (incident to f(u)), thus forming

an edge-clique of G. We will show that this is a red edge-clique of G, contradicting

(P3). Indeed, {j, k} and {j, k′} are red edges of O(G,C). If {k, k′} is a blue edge then

{j, k, k′} constitutes a BRR triangle of O(G,C) that corresponds to an intermediate

vertex of W(G,C), contradicting Corollary 3.14.

Claim 3.17. Let u be a junction of degree d of a weak dual tree of (G,C). Let

S1, S2, . . . , Sd be the connected components of C \ Hu, and let Pi be the set of paths
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representing the vertices of Si in a minimal representation. Then Hu is represented by

a pie with edges e1, e2, . . . , ed whose removal together with f(u) divides T into subtrees

T1, T2, . . . , Td, such that:

(i) ∪Pi ⊆ Ti + ei for every i ∈ [d],

(ii) ∪Pi ⊆ Ti whenever Si is not a singleton, and

(iii) E(Ti) = ∅ whenever Si is a singleton.

Proof. (i,ii) The removal of f(u) from T (together with its incident edges) defines at

least d subtrees T1, T2, . . . Td of T where ei has one endpoint in Ti for i ∈ [d]. We

consider two vertices i, j consecutive on the hole Hu. Without loss of generality Pi

contains e0 and e1, Pj contains e1 and e2. Consider the segment (i.e. connected

component) S = {i+ 1, i+ 2, . . . , j − 1} of G \Hu. We will conclude the proof of (i,ii)

by showing that ∪PS ⊆ T1 where PS is the set of paths in P that represent the vertices

of S.

If S contains at least two vertices, then the hole adjacent to Hu is a red hole Hv.

By Claim 3.16, f(u) 6= f(v). Since f(u), f(v) ∈ split(Pi, Pj) and |split(Pi, Pj)| ≤ 2 this

implies that split(Pi, Pj) = {f(u), f(v)}.

Let P = pT (f(u), f(v)) and let Tu, Tv, T
′
1, T

′
2, . . . be the trees of the forest obtained

by the removal of the edges of P from T , where V (Tu)∩V (P ) = f(u), V (Tv)∩V (P ) =

f(v) and V (T ′
ℓ) ∩ V (P ) is an intermediate vertex of P . We observe that if a path Pk

intersects some subtree T ′
ℓ in at least one edge and also intersects P , then {i, j, k} is a

red edge-clique, contradicting property (P3). Therefore, every path intersecting T ′
ℓ is

contained in T ′
ℓ implying that set of vertices represented by such paths are disconnected

from the rest of G, contradicting the connectedness of G. We conclude that the tree

T ′
ℓ contains no paths and since 〈T,P〉 is minimal, T ′

ℓ consists of a single vertex, namely

an intermediate vertex of P . Summarizing, we have T = Tu ∪ Tv ∪P . Finally, we note

that T1 = P ∪ Tv. In the sequel we show that PS ⊆ Tv and P consists of the edge e1.
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Let S ′ = S\{i+ 1, j − 1}. Hv contains at least one vertex k ∈ S ′, and Pk is part of

the pie centered at f(v). Therefore, Pk ⊆ Tv, implying that PS′ ∩Tv 6= ∅. If Pk′ crosses

v for some k′ ∈ S ′ then {i, j, k′} constitutes a red edge clique, contradicting property

(P3). Therefore, ∪PS′ ⊆ Tv. We now show that Pi+1 ∪ Pj−1 ⊆ Tv. Since i + 1 (resp.

j− 1) is adjacent to i+2 ∈ S ′ (resp. j− 2 ∈ S ′), both of Pi+1 and Pj−2 intersect ∪PS′

implying that the both intersect Tv. We now consider the BBR triangle j, j +1, j +2.

We have Pj ≁ Pj+2, therefore ∅ 6= split(Pj, Pj+2) ⊆ V (Pj+2) ⊆ V (Tv). Let x be vertex

of split(Pj, Pj+2) closest to v (possibly x = v). Assume, by way of contradiction that

Pj+1 crosses v. If Pj+1 does not cross x then Pj+1 ‖ Pj+2, otherwise Pj+1 ≁ Pj+2

or Pj+1 ≁ Pj. Both cases contradict the fact that j, j + 1, j + 2 are consecutive in

C. Therefore, Pj+1 does not cross v, i.e. Pj+1 ⊆ Tv. Similarly, Pi−1 ⊆ Tv. We

conclude that ∪PS ⊆ Tv. Since the only paths intersecting P are Pi and Pj , and by the

minimality of the representation, P consists of only one edge, namely e1, concluding

the proof of (i) and (ii) for this case. Otherwise, S is a singleton. Then S = {i+ 1}
and i, i+ 1, j are consecutive in C. Therefore, Pi+1 ∼ Pi and Pi+1 ∼ Pj. Then, Pi+1 is

contained in T1 + e1

(iii) If S is a singleton, the only paths intersecting T1 + e1 are Pi, Pi+1, Pj , since

all the other paths are in their respective subtrees, each disjoint from T1. Together

with the minimality of the representation, this implies that Pi+1 consists of the single

edge e1 and E(T1) = ∅.

We now proceed with the proof the lemma. If h = 0, W(G,C) contains at most

two vertices implying that n ≤ 4. Therefore, h ≥ 1.

Consult Figures 3.8a and 3.8b for the following discussion. To keep the figure

simple, most of the paths are omitted and the segments having more than one ver-

tex, i.e. S1, S3, S5, are depicted by arcs. Let u be a junction of W(G,C), Hu =

{h0, h1, . . . , hd−1}, Si be the segment of C \Hu between hi and hi+1, and let e1, . . . , ed,

T1, . . . , Td as in Claim 3.17.



36

If h = 1 all the segments Si, i ∈ [0, d − 1] are singletons. Then Ti = ∅ and the

only vertex hi+1 of Si is represented by a path consisting of ei, for every i ∈ [0, d− 1].

Therefore, T is a star isomorphic to W(G,C) and P is a planar tour of it.

If h > 1 for a singleton segment Si we have Ti = ∅ and the only vertex hi + 1 of

Si is represented by a path consisting of ei. For a segment Si consisting of at least two

vertices we proceed as follows: the edge hi, hi+1 separates Hu from another red hole Hv

where f(u) 6= f(v) by Claim 3.16. This implies that split(Phi
, Phi+1

) = {f(u), f(v)},
and without loss of generality f(v) ∈ V (Ti).

For the following discussion see Figures 3.8c and 3.8d. Let S̄i = Si ∪ {hi, hi+1}
and let (Ḡi, C̄i) be the pair obtained from the pair (G[S̄i], C[S̄i]) by adding to it a

new vertex vi and two edges {vi, hi} , {vi, hi+1}. Let also T̄i = Ti + ei and P̄i =

PSi
∪
{

Phi
∩ T̄i, Phi+1

∩ T̄i, Pvi

}

where Px is the path consisting of the edge ei. Then
〈

T̄i, P̄i

〉

is a representation of (Ḡi, C̄i), since the paths Phi
and Phi+1

split in a vertex

f(v) of Ti and the other parts are completely contained in Ti, by Claim 3.17.

We note that a minifying operation applied to an edge of Ti to get a representation

equivalent to
〈

T̄i, P̄i

〉

can be applied to 〈T,P〉 to get an equivalent representation to

〈T,P〉 contradicting the minimality of 〈T,P〉. Moreover, any minifying operation on ei

will cause Pvi to have an empty intersection with Phi
or with Phi+1

. Therefore,
〈

T̄i, P̄i

〉

is minimal. By the inductive hypothesis (i) Ḡi is outerplanar, (ii) P̄i is a planar tour of

T̄i, and, (iii) T̄i is isomorphic to the weak dual tree of Ḡi. Consider W(G,C) as rooted

at u, and let Wi be the subtree of u containing v. We note that the weak dual tree of

Ḡi is isomorphic to Wi.

It remains to observe that T is the union of all trees T̄i, i.e. isomorphic to

W(G,C), and that P is a planar tour of it. G is outerplanar, since each Gi is outer-

planar, and if G is not outerplanar, then there is an edge between a vertex of Si and

a vertex of Sj for i, j ∈ [d] and i 6= j. However, this is a contradiction to the fact that,

by Claim 3.17, ∪Si ⊆ T̄i, ∪Sj ⊆ T̄j and T̄i, T̄j are edge-disjoint.
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Figure 3.8. (a), (b), (c), (d) An induction step of the proof of Lemma 3.15 illustrated
for d = 5, (e) The unique minimal representation of (G,C) satisfying (P3) obtained by
combining the subtrees and the paths of the segments with a representation of a hole
Hu.
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Lemma 3.18. If (G,C) is a hamiltonian pair on n > 4 vertices and G is outerplanar

such that every edge of the outer face of G is contained in a BBR triangle, then

properties (P1− 3) hold for (G,C).

Proof. (G,Cn) satisfies (P1) since every edge of Cn is in a BBR triangle. Since G is

outerplanar it does not contain a K4. Therefore, (G,Cn) satisfies (P2). To prove that

(P3) holds, we show by induction on the number h of junctions of the weak dual tree

W(G,C) of G that a planar tour of W(G,C) is a representation of (G,Cn) satisfying

(P3):

If h = 1 then W(G,C) is a star, and G = O(G,C) is a hole surrounded by BBR

triangles. Then, a planar tour of W(G,C) is a representation of (G,Cn) satisfying

(P3).

If h > 1 we pick an chord e = {i, j} of C separating two red holes of G and

construct two pairs (G′, C ′), (G′′, C ′′) in a way similar to the proof of Lemma 3.15.

V ′ = {i, i+ 1, . . . , j} and V ′′ = {j, j + 1, . . . , i}. (G′, V ′) (resp. (G′′, V ′′)) consists

of (G[V ′], C[V ′]) (resp. (G[V ′′], C[V ′′])) and an additional vertex with two adjacent

edges closing the cycle. By the inductive assumption, a planar tour ofW(G′, C ′) (resp.

W(G′′, C ′′)) is a representation of (G′, C ′) (resp. (G′′, C ′′)). Removing from these

planar tours the short paths corresponding to the vertices not in V (G) and gluing

together the rest by identifying the common endpoints of the paths Pi, Pj we get a

planar tour of W(G,C) that represents (G,C).

We get the following theorem as a corollary of lemmata 3.12, 3.15 and 3.18.

Theorem 3.19. The following statements are equivalent whenever n > 4:

(i) (G,Cn) satisfies assumptions (P1− 3).

(ii) (G,Cn) has a unique minimal representation satisfying (P3) which is a planar

tour of a weak dual tree of G.
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(iii) G is Hamiltonian outerplanar and every face adjacent to the unbounded face F

is a triangle having two edges in common with F , (i.e. a BBR triangle).

Algorithm BuildPlanarTour calculates a planar tour of a weak dual tree

W(G,C). Therefore,

Theorem 3.20. Instances of P3-HamiltonianPairRec satisfying properties (P1), (P2)

can be solved in polynomial time.

Require: |V (G)| ≥ 5
Require: (G,C) satisfies assumptions (P1), (P2)
Ensure:

〈

T̄ , P̄
〉

is the unique minimal representation of (G,C) satisfying (P3)
if G is not outerplanar then

return “NO”
T̄ ←W(G,C). ⊲ Corresponding to O(G,C)
Build the planar tour:
Let {v0, v1, . . . , vk−1} be the leaves of T̄ ordered as they are
encountered in a DFS traversal of T̄ corresponding to the planar embedding
suggested by O(G,C).
Let Li = pT̄ (vi, v(i+1) mod k)
Let Si be the path of length 1 starting at vi.
P̄L ← {Li| 0 ≤ i ≤ n− 1}.
P̄S ← {Si| 0 ≤ i ≤ n− 1}.
Let P̄i =

{

Li/2 if i is even
S⌊i/2⌋ otherwise

P̄ ←
{

P̄i| 0 ≤ i ≤ 2n− 1
}

⊲ = P̄L ∪ P̄S

return
〈

T̄ , P̄
〉

Figure 3.9. BuildPlanarTour(G,C) algorithm.

Figure 3.10 depicts a YES instance of P3-HamiltonianPairRec.

3.5. Pairs (G,C) Satisfying (P2) and (P3)

In this section we characterize the minimal representations of (G,C) pairs sat-

isfying (P2) and (P3). Similar to the previous section, our first goal is to present

an algorithm solving the P3-HamiltonianPairRec problem for instances satisfying

(P2). In other words, our goal is to extend Theorem 3.20 to pairs that do not satisfy

(P1), i.e. which are contractible. In Section 3.5.1 we investigate the properties of the
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Figure 3.10. A pair (G,C), its weak dual tree W(G,C) and the representation of
(G,C) returned by BuildPlanarTour.

contraction operation, in Section 3.5.2 we analyze the special case of n ≤ 6 and finally

in Section 3.5.3 we present the algorithm and characterization for n > 6.

3.5.1. Contraction of Pairs

In this section we show that (i) the contraction operation preserves ENPT edges,

(ii) the order of contractions is irrelevant, and (iii) the contraction operation preserves

(P2), (P3).

Lemma 3.21. Let 〈T,P〉 be a representation for the pair (G,G′), and let e = {p, q} ∈
E(G′). If (G,G′)/e is defined then 〈T,P〉/Pp,Pq

is a representation for the pair (G,G′)/e.

Proof. By Lemma 3.10 〈T,P〉/Pp,Pq
is an EPT representation for G/e. It remains

to show that it is an ENPT representation for G′
/e, i.e. that for any two paths

Pp′ , Pq′ ∈ 〈T,P〉/Pp,Pq
, the edge e′ = {p′, q′} is in E(G′

/e) ⇐⇒ Pp′ ∼ Pq′ . Let

Ps = Pp ∪ Pq and s be the vertex obtained by the contraction. We assume first that

Ps /∈ {Pp′ , Pq′}. Then e′ ∈ E(G′
/e) ⇐⇒ e′ ∈ E(G′) ⇐⇒ Pp′ ∼ Pq′ as required. Now

we assume without loss of generality that Pp′ = Ps and we recall that e = {p, q} ∈ E(G′)

is the contracted edge. We have to show that e′ = {s, q′} ∈ E(G′
/e) ⇐⇒ Ps ∼ Pq′ .
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We observe that

{s, q′} ∈ E(G′
/e) ⇐⇒ {p, q′} ∈ E(G′) ∨ {q, q′} ∈ E(G′)

⇐⇒ Pp ∼ Pq′ ∨ Pq ∼ Pq′ (3.1)

and

Ps ∼ Pq′ ⇐⇒ (Pp ∪ Pq) ∩ Pq′ 6= ∅ ∧ split(Pp ∪ Pq, Pq′) = ∅

⇐⇒ (Pp ∩ Pq′ 6= ∅ ∨ Pq ∩ Pq′ 6= ∅) ∧ split(Pp, Pq′) = ∅ ∧ split(Pq, Pq′) = ∅.(3.2)

Clearly, (3.2) implies (3.1). To conclude the proof, assume that (3.1) holds. Then

Pp ∩ Pq′ 6= ∅ ∨ Pq ∩ Pq′ 6= ∅. Now assume, by way of contradiction, that (3.2) does

not hold. Then split(Pp, Pq′) 6= ∅ ∨ split(Pq, Pq′) 6= ∅ implying Pp ≁ Pq′ ∨ Pq ≁ Pq′ .

Combining with (3.1) this implies that exactly one of Pp ∼ Pq′ and Pq ∼ Pq′ holds.

Therefore without loss of generality Pp ∼ Pq′ , Pq ≁ Pq′ . Then e′ = {p, q′} ∈ E(G′) and

e△e′ ∈ E(G), therefore (G,G′)/e is undefined, thus constituting a contradiction to the

assumption of the lemma.

Let Ē = {e1, e2, . . . , ek} ⊆ E(G′). For every k > 1 we define (G,G′)/e1,...,ek
def
=

(G,G′)/e1,...,ek−1/ek
provided that both contractions on the right hand side are defined,

otherwise it is undefined. The following Lemma follows from Lemma 3.21 and states

that the order of contraction of the edges is irrelevant.

Lemma 3.22. Let (G,G′) be a pair, Ē = {e1, e2, . . . , ek} ⊆ E(G), and π a permutation

of the integers {1, . . . , k}. Then (G,G′)/e1,...,ek is defined if and only if (G,G′)/eπ(1),...,eπ(k)

is defined. Moreover when they are defined (G,G′)/e1,...,ek = (G,G′)/eπ(1),...,eπ(k)
.

Proof. Assume that (G,G′)/e1,...,ek is defined. By k−1 successive applications of Lemma

3.21 we conclude that a representation of (G,G′)/e1,...,ek can be obtained from a repre-
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sentation of (G,G′) by applying a sequence of k − 1 union operations. The result of

k − 1 union operations yield a set of paths. As union is commutative and associative,

this result will remain the same, (i.e. a set of paths) if we change the order of the

operations. On the other hand as union preserves split vertices, and the result does

not contain split vertices, there are no split vertices at any given step of new sequence

of union operations. We conclude that (G,G′)/eπ(1),...,eπ(k)
is defined. The other di-

rection holds by symmetry. Whenever both (G,G′)/e1,...,ek and (G,G′)/eπ(1),...,eπ(k)
are

defined we have (G,G′)/e1,...,ek=(G/e1,...,ek , G
′
/e1,...,ek)= (G/eπ(1),...,eπ(k), G

′
/eπ(1),...,eπ(k)) =

(G,G′)/eπ(1),...,eπ(k)
.

Based on this result, we denote the contracted pair as (G,G′)/Ē and say that Ē

is contractible.

If 〈T2,P2〉 = 〈T1,P1〉/Pp,Pq
for two paths Pp, Pq ∈ P1 we denote this by 〈T1,P1〉 U

〈T2,P2〉. The relation &U is the reflexive-transitive closure of  U , and 〈T1,P1〉 .U

〈T2,P2〉 is equivalent to 〈T2,P2〉 .U 〈T1,P1〉.

(G1, G
′
1) C (G2, G

′
2) if (G2, G

′
2) = (G1, G

′
1)/e for some e ∈ E(G′

1). The relation

&C is the reflexive-transitive closure of  C , and 〈T1,P1〉 .C 〈T2,P2〉 is equivalent to
〈T2,P2〉 .C 〈T1,P1〉.

By Lemma 3.21, .U is homomorphic to .C .

Following the above definitions, a non-contractible pair of graphs is said to be

contraction-minimal, because it is minimal in the partial order .C .

We proceed by showing that the contraction operation preserves assumptions

(P2), (P3).

Lemma 3.23. Let {p, q, r} be a BBR triangle of (G,G′)/e with {p, r} being the red

edge. Then q ∈ V (G), i.e. q is not the vertex obtained by the contraction.
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Proof. Assume, by contradiction that e = {q′, q′′} and q is the vertex obtained by the

contraction of e. Assume without loss of generality that {p, q′} and {q′′, r} are edges

of G′. Then both {p, q′′} and {r, q′} are non-edges of G, because otherwise e is not

contractible. Then {p, q′, q′′, r} is a hole of size 4 with blues edges, a contradiction.

Lemma 3.24. (i) If (P2) holds for (G,G′) then (P2) holds for (G,G′)/e.

(ii) If (P3) holds for (G,G′) then (P3) holds for (G,G′)/e.

Proof. (i) Assume, by contradiction, that (G,G′) does not have an induced sub-pair

isomorphic to (K4, P4) and without loss of generality (G,G′)/e has a sub-pair isomorphic

to (K4, P4) induced by the vertices U = {p, q, r, s} where p and s are the endpoints of

the subgraph isomorphic to P4. Let v be the vertex created by the contraction of e. If

v /∈ U then the sub-pair induced by U is also a sub-pair of (G,G′), contradicting our

assumption. Therefore v ∈ U . By Lemma 3.23 we have that v /∈ {q, r}. Therefore,

let without loss of generality v = p, e = {p′, p′′} and p′′ is adjacent to q in G′. {p′, q}
is a non-edge of G, because e is contractible. As {p, s} and {p, r} are edges of G/e,

{p′, s} or {p′′, s} is an edge of G, and {p′, r} or {p′′, r} is an edge of G. If {p′′, s} is an
edge of G then {p′′, r} is a non-edge of G since otherwise {p′′, q, r, s} induce a sub-pair

isomorphic to (K4, P4) in (G,G′). Therefore {p′, r} is an edge of G. Then {p′, p′′, q, r}
induces a hole of size 4 with blue edges, a contradiction. Thus {p′, s} is an edge of G,

since {p′, q} and {p′′, s} are non-edges of G, {p′, p′′, q, s} induce a hole of length 4 with

blue edges, a contradiction.

(ii) Assume, by contradiction, that (G,G′) has a representation 〈T,P〉 satisfy-
ing (P3) and that no representation of (G,G′)/e satisfies (P3). Let v be the vertex

created by the contraction of e = {v′, v′′}. Then by Lemma 3.10 〈T,P〉/Pv′ ,Pv′′
is a rep-

resentation of (G,G′)/e and it contains a red edge-clique {p, q, r}. If v /∈ {p, q, r} then
{p, q, r} is an edge-clique of 〈T,P〉, contradicting our assumption. Assume without loss

of generality that v = p. Let e0 be an edge of T defining the edge-clique {v, q, r}. Since
e0 ∈ Pv′∪Pv′′ , without loss of generality e0 ∈ Pv′ . Then {v′, q, r} induces an edge-clique

on e0. This is clearly a red edge-clique since e is contractible, a contradiction.
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We now describe how minimal representations of (G,G′)/e can be obtained from

minimal representations of (G,G′).

Lemma 3.25. Let 〈T,P〉 be a minimal representation, 〈T ′,P ′〉 a representation such

that 〈T ′,P ′〉 . 〈T,P〉/Pp,Pq
and 〈T ′,P ′〉 ≅ 〈T,P〉/Pp,Pq

. Let e be an edge of T involved

in a minimal sequence of minifying operations s that obtains 〈T ′,P ′〉 from 〈T,P〉/Pp,Pq
.

There is an operation of s and a path P such that the operation removes e from P

(tr(P, e), or contract(e) and e ∈ P ) where at least one of the following holds:

(i) e is a tail of Pp ∩ Pq, P ∩ Pp ∩ Pq = {e} and P ∩ (Pp ∪ Pq) ) {e}.
(ii) e is incident to an internal vertex u of Pp ∪ Pq, e is a tail of P , P is not in a pie

with center u.

Proof. Let G = Ept(P) and G′ = Enpt(P) and consider an operation op of s. With-

out loss of generality we can assume that op is the first operation of s, by Lemma

3.6. Furthermore, by Lemma 3.7, the representation obtained by applying op is also

equivalent to 〈T,P〉/Pp,Pq
. Therefore without loss of generality op is the only operation

of s. Note that op is defined on 〈T,P〉/Pp,Pq
except when op is tr(Pp ∪ Pq, e). In this

case e is a tail of Pp or Pq (or both). In the following discussion, whenever we apply

op to 〈T,P〉, we mean that we apply tr(Pp, e) or tr(Pq, e) one of which is well defined

on 〈T,P〉.

By the minimality of 〈T,P〉, op cannot be applied to 〈T,P〉. More precisely,

if op is applied, either an edge of G becomes a non-edge, or a red edge of (G,G′)

becomes a blue edge. We term such an edge of (G,G′) an affected edge and the

corresponding paths of 〈T,P〉 affected pair of paths. Let {r, s} be an affected edge

of (G,G′). If {Pr, Ps} ∩ {Pp, Pq} = ∅ then Pr, Ps is a pair of affected paths in

〈T,P〉/Pp,Pq
, contradicting the fact that op can be applied to 〈T,P〉/Pp,Pq

. We con-

clude that {Pr, Ps} ∩ {Pp, Pq} 6= ∅. Assume without loss of generality that Ps = Pp,

i.e. Pr, Pp is an affected pair of paths. We consider two disjoint cases:

Case 1) {r, p} becomes a non-edge after applying op. Then Pr∩Pp = {e} for some

edge e of T , and after the removal of e the intersection becomes empty. On the other
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hand Pr ∩ (Pp ∪ Pq) ) {e}, because otherwise Pr and Pp ∪ Pq constitute an affected

pair of paths in 〈T,P〉/Pp,Pq
. Then e is a tail of Pp ∩ Pq (see Figure 3.11a) and Pr is

the claimed path P (note that possibly r = q as opposed to the figure). In this case i)

holds.

Case 2) {r, p} is a red edge, and it becomes a blue edge after applying op. Then

Pr ≁ Pp (therefore r 6= q) and Pr, Pp do not split after applying op. Therefore

split(Pr, Pp) = {u} for an endpoint u of e, e is a tail of exactly one of Pr, Pp, and

u is an internal vertex of Pp thus of Pp ∪ Pq. Let {P, P ′} = {Pr, Pp} such that e is a

tail of P , and e /∈ P ′. If P is not in a pie with center u then ii) holds. Otherwise P

has two neighbors {P ′, P ′′} in this pie. e ∈ P ′′ because e /∈ P and e is an edge incident

to u, the center of the pie. Recalling that e is a tail of P we conclude that after the

removal of e from P , its intersection with P ′′ becomes empty. Therefore i) holds.

Pp

Pq

b

b
b b

b

b

e

a)

b

b

Pr

Pp

Pq

b

b

b

b

e

b)

Pr

b
b

b

b

u

v

Figure 3.11. Possible minifying operations on 〈T,P〉/Pp,Pq
.

Lemma 3.26. Every split vertex of a path P of a broken planar tour is a center of a

pie containing P .

Proof. By construction, every split vertex of a path P of a tour is a center of a pie

containing P . We will show that the same holds for a broken planar tour. Let P ′
1, P

′
2

be two paths of a broken planar tour such that v ∈ split(P ′
1, P

′
2). These paths are

sub-paths of two paths P1, P2 of a tour and v ∈ split(P1, P2). Then v is a center of a pie
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containing P1, P2 and also other paths. Each one of the other paths has at least one

sub-path in the broken planar tour that crosses v. These paths, together with P ′
1, P

′
2

constitute a pie with center v of the broken planar tour. We conclude that every split

vertex of P is a center of a pie, and therefore case (ii) of Lemma 3.25 is impossible.

We notice that by Lemma 3.26 it follows that the case (ii) of Lemma 3.25 is

impossible in the context of this section.

We now return to the study of the representations of pairs (G′, C ′) satisfying

(P2), (P3). Without loss of generality we let V (G′) = V (C ′) = {0, 1, . . . , n− 1}, n ≥ 5

and note that all arithmetic operations on vertex numbers are done modulo n.

3.5.2. Small Cycles: the pairs (G,C5) and (G,C6)

In this Section we analyze the special cases of n ∈ {5, 6}. This cases are special

because our technique for the general case is based on contraction of cycles to smaller

ones and assumes that the representation of a non-contractible pair is a planar tour

(Theorem 3.20). However this theorem does not hold when n = 4. The following

lemma analyzes the case n = 5. We note that in this case (P3) holds vacuously.

Lemma 3.27. If (G′, C5) satisfies (P2) then (i) G′ is the graph depicted in Figure 3.12,

and (ii) (G′, C5) has a unique minimal representation also depicted in Figure 3.12.

Proof. (i) G′ contains at least two non-crossing red edges, because otherwise there is a

hole of size 4 with blue edges. Without loss of generality, let these edges be {1, 3} and
{1, 4}. If one of {2, 4} or {0, 3} is a red edge, then we have a (K4, P4), contradicting

our assumption. If {0, 2} is a red edge, then we have a hole of size 4 containing blue

edges, contradicting Lemma 3.8. Therefore {1, 3} and {1, 4} are the only red edges in

this pair.

(ii) We contract {3, 4} of (G′, C5) and obtain the pair (G,C4) with one red edge

{1, 3.4}. This pair has a unique minimal representation 〈T ′,P ′〉 characterized in [20].
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Any representation of (G′, C5) is obtained by splitting the path P ′
3.4 of 〈T ′,P ′〉 into two

overlapping paths and making sure that both of them split from P1. This leads to the

minimal representation depicted in Figure 3.12.

P1

P0 P2

P4

P3

1

4 3

0 2

b

b

b b

b

b

b bu v

(a) (b)

Figure 3.12. (a) The unique ENPT representation of C5 satisfying (P2) and (b)
corresponding pair (G,C5).

Lemma 3.28. If (G′, C6) satisfies (P2) and (P3) then it is not contractible, i.e. it

satisfies (P1).

Proof. Assume, by way of contradiction, that (G′, C6) satisfies (P2) (P3) and the edge

e = {0, 1} is contractible. Therefore, {0, 2} and {5, 1} are non-edges of G′. {2, 5} is

also a non-edge, because otherwise {0, 1, 2, 5} is a hole of size 4 with blue edges. Then

{0, 1} must be in a BRR triangle. From the two possible options remaining, assume

without loss of generality that this triangle is {0, 1, 4}. At least one of {2, 4} and {1, 3}
is an edge of G′ because otherwise {1, 2, 3, 4} is a hole of size 4 with blue edges. On

the other hand, if both of them are edges then {1, 2, 3, 4} is a (K4, P4), a contradiction.

Therefore exactly one of them is an edge of G′. We analyze these cases separately.

• {2, 4} is an edge of G′, {1, 3} is not an edge of G′: In this case {0, 3} is not an
edge, because otherwise {0, 1, 2, 3} is a hole of size 4 with blue edges. Then {3, 5}
is not an edge, because otherwise {0, 1, 2, 3, 5} is a hole of size 5 with blue edges.

Then {5, 0, 1, 2, 3} induces a path on 4 vertices in G′. Since none of the paths

P0, P1, P2, P3, P5 split from another, their union is a graph with maximum degree

two, i.e. every representation of them is an interval representation where no three

paths intersect at one edge. Now P4 ∼ P5 and P4 ∼ P3. Therefore, P4 intersects

all of P0, P1 and P2 and does not split from them. Then {4, 0} , {4, 1} , {4, 2} are
blue edges, a contradiction.
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• {1, 3} is an edge of G′, {2, 4} is not an edge of G′: Assume by way of contradiction

{0, 1} is contracted, the contracted pair is the same as the pair in Figure 3.12b

where contracted edge {0, 1} corresponds to vertex 1 of (G,C5). We will show that

1 can not be a vertex obtained by a contraction. Let {1′, 1′′} be the contracted

edge. For the following discussion consult Figure 3.12a. One endpoint of each one

of P1′ , P1′′ is the same as the endpoints of P1 since P1 = P1′ ∪P1′′ . P1′ (resp. P1′′)

can not cross v since otherwise {1′, 2} (resp. {0, 1′′}) is a blue chord. P1′ ∼ P1′′ ,

therefore there exist some edge e such that P1′ ∩ P1′′ ∋ e and e ∈ pT (u, v). But

e ∈ pT (u, v) ⊆ P3 ∪ P4 then either {1′, 3} or {1′′, 4} (or both) is a blue chord.

3.5.3. The General Case

Algorithm shown in Figure 3.13 is a recursive description of FindMinRep-P2-P3.

It follows the paradigm of obtaining a non-contractible pair by successive contractions,

and then reversing the corresponding union operations in the representation. The re-

versal of the union operation, i.e. the breaking apart of a path is done by duplicating

the path and then moving one endpoint of each path to an appropriate internal vertex

of the original path, and possibly subdividing an edge. The key to the correctness of

the algorithm is the following lemma that, among others, enables us to consider at this

stage, only one minifying operation.

Lemma 3.29. Let 〈T,P〉 be a minimal representation of (G,C), 〈T ′,P ′〉 a broken pla-

nar tour representation such that 〈T ′,P ′〉 . 〈T,P〉/Pp,Pq
and 〈T ′,P ′〉 ≅ 〈T,P〉/Pp,Pq

.

Every operation in a minimal sequence of operations that obtains 〈T ′,P ′〉 from 〈T,P〉/Pp,Pq

is a contract(e) operation, where e is a tail of Pp ∩ Pq.

Proof. Consider an operation in a minimal sequence of minifying operations as in the

statement of the lemma. Let e be the edge involved in the operation, and let Pr be

a path whose existence is guaranteed by Lemma 3.25. By Lemma 3.26, case (ii) of

Lemma 3.25 is impossible. Then case (i) of the lemma holds, i.e. there is a path Pr
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such that (i) the minifying operation removes e from Pr, (ii) e is a tail of Pp ∩ Pq, c)

Pr ∩ Pp ∩ Pq = {e}, and d) Pr ∩ (Pp ∪ Pq) ) {e}.

The minifying operation is either contract(e) or tr(Pr, e). We will show that if

tr(Pr, e) can be applied, i.e. no affected pair after applying tr(Pr, e), then contract(e)

can also be applied. For the following discussion consult Figure 3.11a where split(Pr, Pp) =

∅, i.e. the dotted part of Pr adjacent to e in the figure, is empty.

Without loss of generality we assume that e is a tail of Pp. Since e is not a tail of

Pp ∪ Pq, we have r 6= p.q. e divides T into two subtrees T1, T2. As e is a tail of Pp, Pp

can not intersect both subtrees. We assume without loss of generality that T2∩Pp = ∅.
Let P̄ denote the set of paths of 〈T,P〉/Pp,Pq

, i.e. P̄ = P\{Pp, Pq}∪{Pp ∪ Pq} and e′ be

the edge adjacent to e in Pr ∩ (Pp ∪Pq). Every path of P ∈ P̄ that contains e contains

also e′, because otherwise P ∩ Pr = {e} and (P, Pr) would constitute an affected pair

of tr(Pr, e). For k ∈ {1, 2}, let Pk =
{

P ∈ P̄| P ∩ Tk 6= ∅ ∧ e is a tail of P
}

. Note

that by definition, P1 ∩ P2 = ∅. As e′ ∈ T2 ∩ Pr, we have Pr ∈ P2. We note that for

every path Ps ∈ P2, Pp ∼ Ps, i.e. {p, s} is an edge of C. As the degree of p is 2 in C

and both of q and r neighbors of p in C, we conclude that P2 = {Pr}. On the other

hand, P1 = ∅ because for every path Ps ∈ P1, {s, r} is an affected pair of tr(Pr, e) (as

Ps ∩ Pr = {e}). Therefore P1 ∪ P2 = {Pr}, i.e. the only path with tail e is Pr.

Assume by way of contradiction that there exists an affected pair {s, t} of contract(e).
As e′ ∈ Ps ∩Pt, they intersect after the contraction. Therefore {s, t} is a red-edge that

becomes blue after the contraction. This can happen only if e is a tail of exactly one

of Ps, Pt. Therefore, r ∈ {s, t} from the above discussion. But then {s, t} constitute
an affected pair of tr(Pr, e), contradicting to our initial assumption. We conclude that

contract(e) has no affected pairs.

Theorem 3.30. Instances of P3-HamiltonianPairRec satisfying property (P2) can

be solved in polynomial time. “YES” instances have a unique solution, and whenever

n ≥ 6 this solution is a broken planar tour.
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Require: C ′ = {0, 1, . . . , |V (G′)| − 1} is an Hamiltonian cycle of G′, |V (G′)| > 5
Ensure: A minimal representation

〈

T̄ ′, P̄ ′〉 of (G′, C ′) satisfying (P3) if any
if (G′, C ′) is contraction-minimal then

if G′ is outerplanar then
return BuildPlanarTour(G′, C ′)

else
return “NO”

Contract:
Pick an arbitrary contractible edge e = {i, i+ 1} of C ′, (G,C)← (G′, C ′)/e
Let j be the vertex of (G,C) created by the contraction of the edge e
Recurse:
〈

T̄ , P̄
〉

← FindMinRep-P2-P3(G,C).
Uncontract:
〈

T̄ ′, P̄ ′〉←
〈

T̄ , P̄
〉

Let u and v be the endpoints of Pj such that u (resp. v) is contained in Pi−1

(resp. Pi+2)
Replace Pj ∈ P̄ ′ by two copies Pi and Pi+1 of itself
AdjustEndpoint(

〈

T̄ ′, P̄ ′〉 , G, i, u), AdjustEndpoint(
〈

T̄ ′, P̄ ′〉 , G, i+ 1, v)
Validate:
if Ept(P̄ ′) = G′ and

〈

T̄ ′, P̄ ′〉 satisfies (P3) then
return

〈

T̄ ′, P̄ ′〉

else
return “NO”

function AdjustEndpoint(
〈

T̄ , P̄
〉

, G, p, w) ⊲ w will be adjusted
ew denotes the tail of Pp incident to w
Xw denotes {Px : ew ∈ Px and {p, x} /∈ E(G)}
Yw denotes {Py : Pp ∩ Py = {ew} and {p, y} ∈ E(G)}
while Yw = ∅ and Xw 6= ∅ do

tr(Pp, ew)

if Xw 6= ∅ then ⊲ Also Yw 6= ∅ as the while loop terminated
Subdivide ew into two edges ew, e

′
w ⊲ Revert the minifying operation

for Px ∈ Xw do
tr(Pw, ew′)

tr(Pp, ew)

Figure 3.13. FindMinRep-P2-P3(G′, C ′) algorithm.
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Figure 3.14. The effect of union and minifying operations, and the reversal of this
effect by Procedure AdjustEndpoint (invoked with p = i).

Proof. If n = 5 the result follows from Lemma 3.27. If (G′, C ′) is a “NO” instance, then

FindMinRep-P2-P3 returns “NO” in the validation phase. Therefore we assume that

n ≥ 6, and that (G′, C ′) is a “YES” instance, i.e. it has at least one representation

satisfying (P3). We will show that for any pair (G′, C ′) satisfying (P2), and a mini-

mal representation 〈T ′,P ′〉 of (G′, C ′) that satisfies (P3), the representation
〈

T̄ ′, P̄ ′〉

returned by FindMinRep-P2-P3 is a broken planar tour and that

〈

T̄ ′, P̄ ′〉 ∼= 〈T ′,P ′〉 and
〈

T̄ ′, P̄ ′〉 . 〈T ′,P ′〉 .

We will prove by induction on the number k of contractible edges of (G′, C ′).

If k = 0 then (G′, C ′) is not contractible, therefore satisfies (P1). In this case the

algorithm invokes BuildPlanarTour and the claim follows from Theorem 3.20.

Otherwise k > 0. We assume that the claim holds for k − 1 and prove that

it holds for k. As (G′, C ′) contains at least one contractible edge, one such edge

{i, i+ 1} is chosen arbitrarily by the algorithm and contracted. The resulting pair

(G,C) = (G′, C ′)/{i,i+1} has the following properties:

• Satisfies (P2), (P3). (By Lemma 3.24)

• The number of contractible edges is k − 1.
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• |V (G)| ≥ 6. This is because |V (G)| = |V (G′)| − 1 and |V (G′)| > 6. Indeed, if

|V (G′)| = 6, we have k = 0 by Lemma 3.28.

Therefore, (G,C) satisfies the assumptions of the inductive hypothesis. Let

〈T ′,P ′〉 be a minimal representation of (G′, C ′) satisfying (P3). Then 〈T ′,P ′〉/Pi,Pi+1

is a representation of (G,C) = (G′, C ′)/{i,i+1}. By the inductive hypothesis,
〈

T̄ , P̄
〉

is

a broken planar tour that satisfies

〈

T̄ , P̄
〉 ∼= 〈T ′,P ′〉/Pi,Pi+1

and
〈

T̄ , P̄
〉

. 〈T ′,P ′〉/Pi,Pi+1
.

In other words
〈

T̄ , P̄
〉

is obtained from 〈T ′,P ′〉 by replacing the two paths Pi, Pi+1 with

the path Pi ∪Pi+1, then applying a (possibly empty) sequence of minifying operations.

By Lemma 3.29, these minifying operations are contract(e) for a tail e of Pi ∩Pi+1. In

the Uncontract phase, FindMinRep-P2-P3 performs a reversal of these transforma-

tions. See Figure 3.14 for the following discussion. One endpoint of each one of Pi and

Pi+1 is an endpoint of Pi ∪ Pi+1. Therefore one needs to determine only one endpoint

of each one of Pi and Pi+1. First Pi ∩ Pi+1 is duplicated and the so obtained paths are

called Pi, Pi+1.

For p ∈ {i, i+ 1}, let w be the endpoint of Pp to be adjusted. ew denotes the tail

of Pp incident to w. We denote by Xw the set of paths containing ew such that vertices

of G′ corresponding to these paths are not adjacent to p. We denote by Yw the set of

paths intersecting Pp only on ew and whose corresponding vertices in G′ are adjacent

to p. If Yw is empty (that is, every path that intersects Pp also intersects Pp \ {ew}, ew
can be safely removed from Pp without losing intersections. If Xw is non-empty this

removal is a necessary operation. The algorithm performs these tail removals as long

as they are necessary and safe. If at the end of this loop, Xw is empty then we are

done. Otherwise Xw and Yw are non-empty, then ew can not be safely removed from Pp.

In this case AdjustEndpoint subdivides ew (thus reversing the minifying operation

contract(e)) and removes one tail from Pp and one tail from every path X ∈ Xw, so

that Pp does not intersect X but still intersects every path Y ∈ Yw.
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3.6. Pairs (G,C) Satisfying (P3)

In the previous section we relaxed assumption (P1). In this section we relax

assumption (P2), i.e. we allow sub-pairs isomorphic to (K4, P4). In Section 3.6.1 we

investigate the basic properties of the representations of such sub-pairs, and character-

ize the representations of pairs (G,C) with at most 6 vertices. In Section 3.6.2 we show

that in bigger cycles such pairs can intersect only in a particular way, and we define

the aggressive contraction operation that transforms a pair (G′′, C ′′) with a (K4, P4) to

a pair (G′, C ′) with one less vertex and at least one (K4, P4) less. Using these results,

in Section 3.6.3 we present an algorithm that finds the unique minimal representation

of a given pair (G,C) satisfying (P3) and having more than 6 vertices.

3.6.1. Representations of (K4, P4) and Small Cycles

We denote a set of 4 vertices inducing a sub-pair isomorphic to (K4, P4) as an

ordered quadruple where the first vertex is one of the endpoints of the the induced

P4, the second vertex is its neighbor and so on. (p, q, r, s) is a (K4, P4) of (G,G′)

whenever {p, q, r, s} induces a sub-pair (K4, P4) of (G,G′) and p, s are the endpoints

of the induced sub-path isomorphic to P4. Clearly, (p, q, r, s) = (s, r, q, p).

We start with a Lemma that characterize representations of (K4, P4) pairs in

general. This lemma will be useful in developing our results. Then we present the

unique minimal representation of (G,C5) pairs containing a (K4, P4). Together with

Lemma 3.27 this completes the characterization of all the (G,C5) pairs because a

(G,C5) satisfies (P3) vacuously. We continue by proving more properties of minimal

representations of induce (K4, P4) sub-pairs of pairs (G,C) with at least 6 vertices.

Using these properties we show that a (G,C6) satisfying (P3) does not contain sub-

pairs isomorphic to (K4, P4).

Lemma 3.31. Let K = (i, i+1, i+2, i+3) be a (K4, P4), 〈T,P〉 be a representation of

K, and
⋂PK

def
= Pi ∩ Pi+1 ∩ Pi+2 ∩ Pi+3. There is a path core(K) of T with endpoints

u, v such that:
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(i) split(Pi, Pi+2) = {u}, split(Pi+1, Pi+3) = {v}, Pi+1 (resp. Pi+2) does not cross u

(resp. v).

(ii) ∅ 6= ⋂PK ⊆ (Pi+1 ∩ Pi+2) ⊆ core(K). In particular u 6= v.

(iii) At least one of Pi, Pi+3 crosses both endpoints of core(K) and ∅ 6= split(Pi, Pi+3) ⊆
{u, v}.
(iv) Pi+1 ∪ Pi+2 crosses both endpoints of core(K).

(v) The removal of the edges of Pi+1 ∪ Pi+2 from T disconnects Pi from Pi+3.

Proof. (i) Assume, by way of contradiction, that |split(Pi, Pi+2)| = 2. Let these two

vertices be w,w′. As Pi+1 ∼ Pi and Pi+1 ∼ Pi+2 we conclude that Pi+1 ⊆ pT (w,w
′).

Pi+3 ≁ Pi+1 therefore Pi+3 splits from Pi+1 in at least one vertex w′′ that is an inter-

mediate vertex of pT (w,w
′). Then Pi+3 splits from Pi+2 at w′′ contradicting the fact

that {i+ 2, i+ 3} is an ENPT edge. Therefore |split(Pi, Pi+2)| = 1 and by symmetry,

|split(Pi+1, Pi+3)| = 1. Let split(Pi, Pi+2) = {u} and split(Pi+1, Pi+3) = {v}. We define

core(K) = pT (u, v). For the rest of the claim, assume by contradiction that Pi+1 crosses

u. Then either Pi+1 ≁ Pi or Pi+1 ≁ Pi+2, contradicting the the fact that {i, i+ 1} and
{i+ 1, i+ 2} are ENPT edges.

At this point we can uniquely define the following edges that will be used in the

rest of the proof: ei (resp. ei+2) is the edge of Pi \ Pi+2 (resp. Pi+2 \ Pi) incident to

split(Pi, Pi+2), and ei+1 and ei+3 are defined similarly. Note that ei 6= ei+2 and ei+1 6=
ei+3, but the definition does not exclude the possibility that, for instance ei = ei+1.

(ii) A claw-clique of size 4 contains exactly one ENPT edge, however a path

isomorphic to P4 contains three edges. Therefore the representation of K4 is an edge-

clique. Let e be an edge defining this edge-clique, i.e. e ∈ ⋂PK . The removal of e from

T disconnects it into two subtrees. In order to prove that
⋂PK ⊆ core(K) it suffices to

show that u and v are in different subtrees. Assume, by way of contradiction that u, v

are in the same subtree Tr with root r where r is an endpoint of e. Let r′ be the least

common ancestor of u, v in Tr (possibly u = v in which case r′ = u = v). All the 4 paths

contain e and cross r′ (so that each one crosses at least one of u, v), i.e. they “enter”
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r′ from the same edge e′ (where possibly r′ = r and e′ = e). If r′ /∈ {u, v} then as Pi+1

crosses v and Pi+2 crosses u, r
′ ∈ split(Pi+1, Pi+2), contradicting Pi+1 ∼ Pi+2. Therefore

we can assume without loss of generality that r′ = u. Then the edges ei and ei+2 are

incident to r′. Then Pi+1 (resp. Pi+3) contains ei (resp. ei+2) because Pi+1 ∼ Pi (resp.

Pi+3 ∼ Pi+2). Therefore r′ ∈ split(Pi+1, Pi+2), contradicting Pi+1 ∼ Pi+2. Therefore

u and v are in different subtrees, i.e. e ∈ pT (u, v) = core(K). As e can be any edge

defining the edge-clique this implies that
⋂PK ⊆ core(K). It remains to prove that

Pi+1 ∩ Pi+2 ⊆ core(K). For this purpose, it is sufficient to show that both of Pi+1 and

Pi+2 have one endpoint in core(K). Indeed, assume without loss of generality that

Pi+1 does not have an endpoint in core(K). Then Pi+1 crosses u and does not include

at least one of the edges ei, ei+2. Therefore Pi+1 ≁ Pi or Pi+1 ≁ Pi+2, a contradiction.

Consult Figure 3.15 for the rest of the proof.

(iii) By the above discussion u (resp. v) is an intermediate vertex of Pi and Pi+2

(resp.Pi+1 and Pi+3), and they all intersect in at least one edge e ∈ core(K). In order

to see the first part of the claim assume, by way of contradiction, that both of Pi and

Pi+3 have an endpoint in core(K), in this case
⋂PK is between these two endpoints.

Therefore Pi ∼ Pi+3, a contradiction.

We now proceed to show the rest of the claim: Let w ∈ split(Pi, Pi+3). ei /∈ Pi+3

because otherwise Pi+3 ≁ Pi+2, and by symmetry ei+3 /∈ Pi. Therefore, w is on core(K).

On the other hand w is not an intermediate vertex of core(K). Indeed, consider the

two sub-paths obtained by removing e from core(K). If w is an intermediate vertex of

core(K), then at least one of Pi+3 ≁ Pi+2, Pi ≁ Pi+1 holds, depending on the sub-path

w belongs. We conclude w ∈ {u, v}. Together with Pi ≁ Pi+3, this implies the claim.

Note that split(Pi, Pi+3) = {u, v} if and only if both of Pi and Pi+3 cross both endpoints

u, v of core(K).

(iv) As {i+ 1, i+ 2} is an ENPT edge, Q
def
= Pi+1 ∪ Pi+2 is a path. Moreover,

ei+1 ∈ Pi+1 and ei+2 ∈ Pi+2, therefore {ei+1, ei+2} ⊆ Q, implying the claim.
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(v) It suffices to show that core(K) separates Pi and Pi+3. Suppose that after

the removal of core(K) the two paths still intersect. This is possible only if ei+3 ∈ Pi

or ei ∈ Pi+3. Assume without loss of generality that ei+3 ∈ Pi. Then Pi ≁ Pi+1, a

contradiction.

b

b

Pi Pi+1

Pi+3Pi+2

b b
e

ei+2

ei ei+1

ei+3

b

b

split(Pi, Pi+3) = {u, v}

vu b b

b

b

Pi Pi+1

Pi+3Pi+2

b b
e

ei+2

ei ei+1

ei+3

b

b

split(Pi, Pi+3) ( {u, v}

vu b b

Figure 3.15. Representations of (K4, P4) pairs where split(Pi, Pi + 3) = {u, v} and
split(Pi, Pi + 3) ( {u, v}, respectively.

Pairs (G,C5) with induced (K4, P4) pairs are different than bigger cycles in a

few respects. Therefore we analyse this case separately. We recall that a pair (G,C5)

satisfies (P3) vacuously, and that in Section 3.5.2 we found the unique minimal repre-

sentation of a pair (G,C5) that satisfies (P2). We now investigate the representation

of a pair (G,C5) that does not satisfy (P2).

Theorem 3.32. If (G,C5) does not satisfy (P2) then (i) G is isomorphic to the graph

depicted in Figure 3.16, and (ii) (G,C5) has a unique minimal representation also

depicted in Figure 3.16.

Proof. Assume without loss of generalityK = (0, 1, 2, 3) is a (K4, P4) of (G,C5), and let

core(K) = PTu, v. If split(P0, P3) = {u, v} then P4 ⊆ core(K), implying that P4 ∼ P1

or P4 ∼ P2, i.e. at least one of {1, 4} or {2, 4} is an ENPT edge, a contradiction.

Assume without loss of generality split(P0, P3) = {u}, and that P3 crosses both

u and v. Then P0 has one endpoint u′ in core(K), and P0 ∩ P3 = pT (u, u
′).

As P4 ∼ P0 and P4 ∼ P3, we have P4 ∼ pT (u, u
′) and P4 does cross u. Therefore

P4 intersects core(K). By Lemma 3.31 (iv) core(K) ⊆ P1 ∪ P2. We conclude that
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P4∩ (P1∪P2) 6= ∅, i.e. P4∩P1 6= ∅ or P4∩P2 6= ∅. As {4, 1} and {4, 2} are not ENPT

edges, we have that P4 ≁ P1 or P4 ≁ P2. On the other hand P4 does not cross u and

by Lemma 3.31 (i), P2 does not cross v, thus split(P2, P4) = ∅. Therefore P4 ≁ P1 and

P4 ‖ P2. Moreover, split(P4, P1) = {v}, i.e. P4 crosses v. Therefore one endpoint u′′ of

P4 is in pT (u, u
′), and must be between u′ and the endpoint of P1 in core(K).

It is easy to see that the path
⋂PK can be contracted to one edge e without

affecting the relationships between the paths. Similarly, any edge between u and e, and

any edge between e and u′′ can be contracted. The path pT (u
′, u′′) can be contracted

to one edge, and the path pT (u
′, v) can be contracted to a single vertex v. This leads

to the representation in Figure 3.16.

bb b

P3P2

P1P0

P4

u v

0

4

3

21

Figure 3.16. The unique (G,C5) pair that does not satisfy (P2) and its unique minimal
representation.

We now observe a property of the representations of (G,C5) in order to demon-

strate the first family of non-ENPT graphs.

Theorem 3.33. G+ C5 is not an ENPT graph whenever G is not a complete graph.

Proof. A pair (G′, C5) satisfies (P3) vacuously. If (G′, C5) satisfies (P2) then by Lemma

3.27, its unique minimal representation is the one depicted in Figure 3.12. Otherwise,

by Theorem 3.32, its unique minimal representation is the one depicted in Figure 3.16.

Let i ∈ V (G). i is adjacent to every vertex of C5. We observe that in both cases above

(i) Pi is a sub-path of pT (u, v), and (ii) there is a specific edge e of pT (u, v) that is also

in Pi. Therefore, for any two vertices i, j ∈ V (G) Pi and Pj are intersecting sub-paths

of pT (u, v), thus Pi ∼ Pj. We conclude that G is a complete graph.
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We now extend Lemma 3.31. As opposed to Lemma 3.31 that investigates the

structure of a (K4, P4) regardless of any specific context, the next lemma provides us

with further properties of minimal representations satisfying (P3) of pairs (G,C).

Lemma 3.34. Let K = (i, i + 1, i + 2, i + 3) be a (K4, P4) of a pair (G,C) satisfying

(P3) with at least 6 vertices. Let 〈T,P〉 be a minimal representation of (G,C) and let

PK = {Pi : i ∈ K}.
(i)

⋂PK = {e} for some edge e which is used exclusively by the paths of PK, i.e.

e ∈ Pj ⇒ j ∈ K.

(ii) e divides T into two subtrees T1, T2 such that T1 is a cherry of < T,PK > with

center w1. We denote this subtree as cherry(K).

(iii) split(Pi, Pi+3) = {w2} ⊆ V (T2).

(iv) NG(j) = K if and only if split(Pj , Pi) ∪ split(Pj, Pi+3) = {w1}. The unique vertex

j satisfying this condition is one of i+ 1, i+ 2.

Proof. Consult Figure 3.17 for this proof.

(i) Let without loss of generality i = 0. By Lemma 3.31,
⋂PK is not empty. By

contradiction assume that a path Pj /∈ PK intersects
⋂PK . Then K ∪ {j} is an edge-

clique of G. We claim that this K5 contains at least one red triangle, contradicting

(P3). Indeed, as C has at least 6 vertices, j is adjacent in C to at most one vertex

k ∈ {0, 3}. K \ {k} contains one red edge. The endpoints of this edge together with

j constitute a red edge-clique. Therefore, no path of P \ PK intersects
⋂PK . Then

no intermediate vertex of
⋂PK is a split vertex. By the minimality of 〈T,P〉, ⋂PK

consists of one edge, say e.

(ii) Let T1, T2 be the subtrees obtained by the removal of e from T . As V (G) \K
is a connected component of G, the union of the paths P \ PK is a subtree T ′ of T .

T ′ is a subtree of T1 or a subtree of T2, because otherwise there is at least one path

of P \ PK using e, contradicting (i). Without loss of generality let T2 be the subtree

containing T ′, and T1 be the subtree that intersects only paths of PK . By Lemma 3.31

(ii), T1 contains exactly one endpoint of core(K). For i ∈ {1, 2}, let wi be the endpoint
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of core(K) that is in Ti. w1 is the only split vertex in T1 because it contains only paths

of PK . As the representation is minimal, there are no edges between e and w1, as

otherwise they could be contracted. Any subtree of T1 starting with an edge incident

to w1 can be contracted to one path because the subtree does not contain split vertices.

Moreover this path can be contracted to one edge, because all the paths entering the

subtree intersect in its first edge. There are only two such subtrees, therefore T1 is

isomorphic to P3 and w1 is its center.

(iii) Assume that |split(P0, P3)| = 2. Then by Lemma 3.31, split(P0, P3) =

{w1, w2}, i.e. w1 is an internal vertex of both P0 and P3. In this case, one can re-

move from P0 its unique edge in T1 without affecting the relationships between the

paths. This contradicts the minimality of 〈T,P〉. Indeed, (i) any change in T1 affects

relationships between paths of PK only, (ii)
⋂PK is not affected, therefore all the paths

of PK still intersect, (iii) {w1} = split(P0, P3) = split(P0, P2) and {w2} = split(P1, P3)

hold after the tail removal.

Now assume that split(P0, P3) = {w1}. P0 crosses w2 because split(P0, P2) =

{w2}. Then P3 does not cross w2. As P4 ∼ P3, P4, P2, P0 intersect in the last edge

of P3, and thus constitute a red edge-clique, contradicting (P3). We conclude that

split(P0, P3) = {w2}.

(iv) First assume j /∈ {i+ 1, i+ 2}. Clearly, NG(j) 6= K. Moreover, we have

split(Pj , Pi)∪ split(Pj, Pi+3) 6= {w1}. Indeed, if j /∈ K then w1 is not a vertex of Pj and

if j ∈ {i, i+ 3} the condition holds because (iii).

We now assume j ∈ {i+ 1, i+ 2}. By Lemma 3.31 (v), the removal of P1 ∪ P2

disconnects P0 from P3. Then the tree T ′ intersects P1 ∪P2. Therefore, at least one of

P1, P2 intersects T ′. By Lemma 3.31 i) one of P1, P2 does not cross w2, i.e. does not

intersect T2 which in turn includes T ′, a contradiction. We conclude that exactly one of

P1, P2 intersects T
′. In other words exactly one of 1, 2 is adjacent to V (G)\K. Assume

NG(i+1) = K. Then Pi+1∩T1 6= ∅, therefore split(Pi+1, Pi) = ∅, i.e. split(Pi+1, Pi+3) =

{w1}, concluding the claim. The case NG(i+ 2) = K is symmetric.
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w1
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⋂PK
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Figure 3.17. A minimal representation of a pair (G,C) with an induced (K4, P4) with
NG(i+ 1) = K.

We term, as isolated, the vertex j ∈ {i+ 1, i+ 2} of K = (i, i + 1, i + 2, i + 3)

satisfying NG(j) = K whose existence and uniqueness are guaranteed by Lemma 3.34

(iv). We recall that (i, i + 1, i + 2, i + 3) = (i + 3, i + 2, i + 1, i), and in view of this

result, we introduce an alternative notation: We denote K as [i, i + 1, i + 2, i + 3] if

i+ 1 is its isolated vertex, and as [i+ 3, i+ 2, i+ 1, i] otherwise.

Lemma 3.35. Let K = [i, i + 1, i + 2, i + 3] a (K4, P4) of a pair (G,C) with at least

6 vertices, 〈T,P〉 a minimal representation of (G,C) satisfying (P3). If there is a

path Pj /∈ PK intersecting core(K), then j = i − 1 and |core(K)| = 2, otherwise

|core(K)| = 1.

Proof. Let
⋂PK = {e}, and assume that j /∈ K and Pj ∩core(K) 6= ∅. Recall that e /∈

Pj. If Pj splits from core(K) then it splits from each one of Pi, Pi+2, Pi+3. In particular

{j, i, i+ 2} constitutes a red edge-clique, thus violating (P3). If Pj ⊆ core(K) then

Pj ∼ Pi+2 implying j ∈ {i+ 1, i+ 3} ⊂ K, contradicting our assumption. Therefore Pj

crosses the endpoint w2 of core(K). Then Pj intersects with each one of Pi, Pi+2, Pi+3

in the last edge of core(K). Therefore (i) Pj ≁ Pi+2 because j /∈ {i+ 1, i+ 3}, and (ii)

Pi ≁ Pi+2. If Pj ≁ Pi then {j, i, i+ 2} constitutes a red edge-clique, violating (P3).

Therefore Pj ∼ Pi, implying j = i − 1. Note that Pi+1 ∩ Pi−1 = ∅ because i + 1 is

isolated. Pi−1 ∩ core(K) consists of a single edge e′( 6= e), because otherwise they can

be contracted to a single edge without affecting the relationships between the paths

Pi−1, Pi, Pi+2, Pi+3 that are the only paths that intersect the contracted edges. Then

core(K) consists of the two edges e, e′. If Pi−1 does not intersect core(K) then PK

are the only paths that intersect core(K). Therefore, all the edges of core(K) can be
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contracted to one edge.

Lemma 3.36. A pair (G,C) with 6 vertices satisfying (P3) does not contain an induced

(K4, P4).

Proof. Assume without loss of generality that [0, 1, 2, 3] is a (K4, P4) of (G,C). Let

〈T,P〉 be a representation of (G,C) satisfying (P3). For i ∈ {0, 3} let Ti be the unique

connected component of T \ core(K) intersecting Pi. By Lemma 3.35, P4 does not

cross w2. Therefore P4 is completely in T3. As P4 ∩ P5 6= ∅, P5 intersects T3. If P5 is

completely in T3 then P5 ‖ P0, otherwise P5 ≁ P0. Both cases contradict the fact that

{5, 0} is an edge of C.

3.6.2. Intersection of (K4, P4) pairs and Aggressive Contraction

We now focus on pairs with at least 7 vertices. We start by analyzing the inter-

section of their (K4, P4) sub-pairs.

Lemma 3.37. Let (G,C) be a pair with at least 7 vertices satisfying (P3), and K =

[i, i+ 1, i+ 2, i+ 3] a (K4, P4) of (G,C). Then

(i) there is at most one (K4, P4), K
′ 6= K such that E(C[K]) ∩ E(C[K ′]) 6= ∅ and if

such a (K4, P4) exists then K ′ = [i + 5, i + 4, i + 3, i + 2] (and therefore {i+ 2, i+ 4}
is an edge of G);

(ii) if {i+ 2, i+ 4} is an edge of G then K ′ = [i+5, i+4, i+3, i+2] induces a (K4, P4)

of (G,C).

Proof. Let without loss of generality i = 0.

(i) Since 1 is isolated, 1 /∈ K ′. Therefore if E(C[K]) ∩ E(C[K ′]) 6= ∅ for some

(K4, P4) K
′ then E(C[K])∩E(C[K ′]) = {{2, i}}, i.e. K ′ = (2, 3, 4, 5). As 3 is adjacent

to 1, 3 is not isolated in K ′. Therefore, K ′ = [5, 4, 3, 2].

(ii) Assume {2, 4} is an edge of G and that, by way of contradiction, K ′ =
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{2, 3, 4, 5} is not a (K4, P4). Consult Figure 3.18 for the following discussion. For

j ∈ {0, 3} let Tj be the connected component of T \ core(K) intersecting Pj. As

P4 ∼ P3, Lemma 3.35 implies that P4 is completely in T3. P4 ≁ P2, by our assumption.

Let w3 be the endpoint of P3 in T3 and w4 be the split vertex of P2 and P4. Then

w3 ∈ pT (w2, w4) (possibly w3 = w4). P5 does not intersect at least one of P2 and

P3, because otherwise K ′ is a (K4, P4). Then it does not intersect P3. The union of

the paths P6, . . . Pn−1 constitutes a subtree T ′ of T that intersects both P0 and P5.

Therefore there is at least one path Pj ∈ {P6, . . . Pn−1} crossing the last edge of P3

(incident to w3). Then {2, 4, j} is an edge-clique defined by this edge. Moreover, (i)

P2 ≁ P4, (ii) Pj ≁ P2 because j /∈ {1, 3}, Pj ≁ P4 because j /∈ {3, 5}. Therefore

{2, 4, j} is a red edge-clique, contradicting the assumption that (P3) is satisfied.

P0

P2

P3

P4

P5

Pj

w2

w4

w3

b

b

b

Figure 3.18. Proof of Lemma 3.37.

By the above lemma (K4, P4) sub-pairs may intersect only in pairs. We term two

intersecting (K4, P4) pairs as twins, and a (K4, P4) not intersecting with another as a

single (K4, P4).

Given a (K4, P4) K = [i, i+ 1, i+ 2, i+ 3] of a pair (G′′, C ′′) satisfying (P3), the

aggressive contraction operation is the replacement of the vertices i+2, i+3 by a single

vertex (i+2).(i+3). We denote the resulting pair (G′′
/e, C

′′
/e) (where e = {i+ 2, i+ 3})

as (G′′, C ′′)/K . The following lemma characterizes the aggressive contraction operation

in the representation domain.
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Lemma 3.38. Let (G′′, C ′′) be a pair with at least 7 vertices, 〈T ′′,P ′′〉 be a represen-

tation of it satisfying (P3), and K = [i, i+1, i+2, i+3] be a (K4, P4) of (G
′′, C ′′). Then:

(G′′, C ′′)/K is a pair satisfying (P3) and a representation 〈T ′,P ′〉 of (G′, C ′) = (G′′, C ′′)/K

satisfying (P3) is obtained from 〈T ′′,P ′′〉 by first removing cherry(K) and also cherry(K ′)

if K and K ′ are twins, and then applying the union operation to Pi+2 and Pi+3.

Proof. Let without loss of generality i = 0. Recall that by Lemma 3.37, {2, 4} is an

edge of G′′, if and only if K is a twin. Figure 3.19 illustrates the following two steps

in the case that K is a single.

(Step 1) We remove cherry(K) (and also cherry(K ′) when K and K ′ are twins)

from T ′′. By Lemma 3.34 we know that by removing cherries we don’t lose any edge

intersection, and we loose exactly one split vertex per cherry, namely the center of

the cherry. This vertex (or vertices) is split(P1, P3) (and also split(P2, P4) when K is

a twin). Thus the edge {1, 3} (and also {2, 4} when K is a twin) becomes blue. As

no new red edges are introduced, the resulting representation does not contain red

edge-cliques, i.e. satisfies (P3).

(Step 2) We contract the resulting graph on the edge {2, 3}. We claim that this

contraction is defined. Indeed assume by contradiction that {2, 3} participates in a

BBR triangle. This BBR triangle is one of {1, 2, 3} and {2, 3, 4}. Then one of {1, 3}
and {2, 4} is a red edge, contradicting the fact that these edges (if exist) becomes blue

after step 1. This contraction corresponds to the union operation on the paths P2, P3,

and by Lemma 3.24 the resulting graph satisfies (P3).

3.6.3. Algorithm

Lemma 3.38 implies an algorithm for finding the unique minimal representation of

pairs satisfying (P3). Algorithm FindMinimalRep-P3 is a recursive algorithm that

processes a single (K4, P4) or a twin of (K4, P4)s at every invocation. The processing is

done by applying aggressive contraction to convert the involved (K4, P4)(s) to (K3, P3)
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Figure 3.19. Aggressive contraction of a single (K4, P4).
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(s), solving the problem recursively, and finally transforming the representation of

the (K3, P3) to a representation of a (K4, P4). In the Build Representation phase,

Algorithm FindMinimalRep-P3 performs the reversal of steps 1 and 2 described in

Lemma 3.38, (see Figures 3.19, 3.20).

A broken tour with cherries is a representation obtained by adding cherries to a

broken tour.

Theorem 3.39. P3-HamiltonianPairRec can be solved in polynomial time. “YES”

instances have a unique solution, and whenever n ≥ 6 this solution is a broken planar

tour with cherries.

Proof. As the case |V (G′′)| < 6 is already solved, we will show that for any given pair

(G′′, C ′′) with |V (G′′)| ≥ 6, FindMinimalRep-P3 solvesP3-HamiltonianPairRec.

If (G′′, C ′′) is a “NO” instance, then the instance has no representation satisfying (P3).

In this case then the algorithm returns “NO” at the validation phase. Therefore we

assume that (G′′, C ′′) is a “YES” instance, and prove the claim by induction on the

number k of induced (K4, P4) pairs of (G
′′, C ′′).

If k = 0 then (G′′, C ′′) does not contain any (K4, P4) pairs, therefore satisfies

(P2). In this case the algorithm invokes FindMinRep-P2-P3 and the claim follows

from Theorem 3.30.

Otherwise k > 0. We assume that the claim holds for any k′ < k and prove that

it holds for k. In this case, as the pair contains at least one (K4, P4), one such pair K

is chosen arbitrarily by the algorithm and aggressively contracted. The resulting pair

(G′, C ′) = (G′′, C ′′)/K has the following properties:

• Satisfies (P3). (By Lemma 3.38)

• The number of (K4, P4) pairs is less then k.

• |V (G′)| ≥ 6. This is because |V (G′)| = |V (G′′)| − 1 and |V (G′′)| > 6. Indeed, if

|V (G′′)| = 6, we have k = 0 by Lemma 3.36.
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Require: C ′′ = {0, 1, . . . , |V (G′′)| − 1} is an Hamiltonian cycle of G′′ and
|V (G′′)| ≥ 6

Ensure: A minimal representation
〈

T̄ , P̄
〉

of (G′′, C ′′) satisfying (P3) if any
if (G′′, C ′′) is (K4, P4)-free then

return FindMinRep-P2-P3(G′′, C ′′,W(G′′, C ′′))

Aggressive Contraction:
Pick a (K4, P4), K = [i, i+ 1, i+ 2, i+ 3] of (G′′, C ′′). ⊲ Renumber vertices if
necessary.
(G′, C ′)← (G′′, C ′′)/K .

Recurse:
〈

T̄ ′, P̄ ′〉← FindMinimalRep-P3(G′, C ′).

Build Representation:
〈

T̄ , P̄
〉

←
〈

T̄ ′, P̄ ′〉.
Replace P(i+2).(i+3) by two copies Pi+2 and Pi+3 of itself.
if i+ 2 is adjacent to i+ 4 in G′′ then

⊲ K ′ = [i+ 5, i+ 4, i+ 3, i+ 2] is the twin of K in (G′′, C ′′)
MakeCherry(

〈

T̄ , P̄
〉

, i+ 4, i+ 2).
else ⊲ K is a single

w ← the endpoint of Pi+2 which is not in core(K).
AdjustEndpoint(

〈

T̄ , P̄
〉

, G′′, Pi+2, w).

MakeCherry(
〈

T̄ , P̄
〉

, i+ 1, i+ 3).

Validate:
if Ept(P̄) = G′′ and P̄ satisfies (P3) then

return
〈

T̄ , P̄
〉

else
return “NO”

function MakeCherry(
〈

T̄ , P̄
〉

, p, q)
Let v ∈ V (T̄ ) be the common endpoint of Pp, Pq.
Add two new vertices v′, v′′ and two edges {v, v′} , {v, v′′} to T̄ .
Extend Pp so that the endpoint v is moved to v′.
Extend Pq so that the endpoint v is moved to v′′.

Figure 3.21. FindMinimalRep-P3(G′′, C ′′) algorithm.
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Therefore, (G′, C ′) satisfies the assumptions of the inductive hypothesis. Then,
〈

T̄ ′, P̄ ′〉 is the unique minimal representation of (G′′, C ′′)/K satisfying (P3). It remains

to show that the representation
〈

T̄ ′, P̄ ′〉 is obtained from the representation
〈

T̄ , P̄
〉

returned by the algorithm, by applying the steps described in Lemma 3.38.

Let without loss of generality K = [i, i + 1, i + 2, i + 3]. By Lemma 3.37, K has

a twin K ′ = [i+ 5, i+ 4, i+ 3, i+ 3] if and only if {i+ 2, i+ 4} is an edge of G′′. The

algorithm checks the existence of this edge and takes two different actions, accordingly.

If K is not a twin then step 2, i.e. the union operation is reversed by breaking

apart the path P(i+2).(i+3) into two paths Pi+2 and Pi+3. Then step 1 is reversed by

invoking procedure MakeCherry (see Figure 3.19).

If K is a twin, then cherry(K) and cherry(K ′) are uniquely determined by

Lemma 3.34 (ii) and procedure MakeCherry acts accordingly. This determines all

the endpoints of Pi, Pi+1, Pi+2, Pi+3, Pi+4, Pi+5 that are different from the representation
〈

T̄ ′, P̄ ′〉 (see Figure 3.20).

3.7. General Pairs (G,C)

In this section we show that it is impossible to generalize the algorithms presented

in the previous sections to the case where (P3) does not hold, unless P = NP.

We start with a definition and a related lemma that are central to this section.

Given a pair (G,G′) and a subset S of V (G), the component graph comp(G,G′, S) is

a graph whose vertices correspond to the connected components G1, G2, . . . of G \ S
and two vertices corresponding to components Gi, Gj are connected by an edge if and

only if there is a vertex v ∈ S adjacent to both of Gi and Gj in G′ (see Figure 3.23

for an example). Whenever G′ is a cycle we term a connected component of G′ \ S an

arc of G′ separated by S. Clearly, whenever |S| ≥ 2 every arc is adjacent to exactly 2

vertices of S.
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Lemma 3.40. Let (G,C) be a pair where C is a Hamiltonian cycle of G, and K be

a maximal clique of G \ C. If there is a representation 〈T,P〉 of G where ∆(T ) ≤ 3,

then comp(G,C,K) is 3-colorable.

Proof. If |K| ≤ 3, G \K has at most 3 connected components, thus comp(G,C,K) is

3-colorable. Therefore we assume |K| > 3. If K is an edge-clique defined by an edge e

then the paths PK = {Pv : v ∈ K} are exactly the paths in P that contain e. The edge

e divides T into two subtrees T1, T2 rooted at the endpoints r1, r2 of e. Similarly, if K

is a claw-clique defined by a claw {e1, e2, e3}, as T has maximum degree 3, the claw

divides the tree into three subtrees T1, T2, T3, rooted at the center r1 = r2 = r3 = r of

the claw. In both cases the following two statements hold: (i) every path of P \ PK is

contained in one of these subtrees, (ii) every path of PK that intersects a subtree Ti

crosses its root ri.

All the vertices of a connected component Gi are represented by paths that are

in the same subtree Tj (j ∈ {1, 2, 3}). This is because otherwise there are at least two

adjacent vertices in Gi that are in two different subtrees, a contradiction. We color

every vertex Gi of comp(G,C,K) with color j ∈ {1, 2, 3} depending on the subtree

on which the paths representing its vertices reside. It remains to show that if two

connected components are adjacent in comp(G,C,K) they are colored with different

colors.

Assume by contradiction that two components G1, G2 of G\K which are adjacent

in comp(G,C,K) are colored with the same color i. Then, there is a vertex v ∈ K

and two vertices v1 ∈ G1, v2 ∈ G2 adjacent to v in C. Moreover v1 and v2 are not

adjacent in G, because they are in different connected components. Therefore, (i)

Pv ∼ Pv1 , Pv ∼ Pv2 , (ii) Pv1 ‖ Pv2 , (iii) Pv1 and Pv2 are in Ti, (iv) Pv intersects Ti

and crosses its root ri. Furthermore, we assume without loss of generality that Pv1

is closer to ri than Pv2 (see Figure 3.22). Consider the subtree T ′ = ∪u∈G2Pu of Ti.

Pv1 ∩ T ′ = ∅, because otherwise there is a path Pu representing a vertex u ∈ G2 that

intersects Pv1 , in other words u ∈ G2 is adjacent to v1 ∈ G1, a contradiction. Let
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{v, v′} be the vertices of K adjacent to the arc v2 belongs to. Pv′ intersects Ti and

crosses its root ri. Moreover, Pv′ intersects T
′, as it is adjacent to at least one vertex

of G2. We conclude that Pv′ contains Pv1 . Then v1 ∼ v′, i.e. v′ and v1 are adjacent in

C. Therefore K = {v, v′}, contradicting |K| > 3.

b

ri

Ti

b
Pv

bb

Pv1

T ′

b

Pv2

Pv′

Figure 3.22. Proof of Lemma 3.40.

Lemma 3.41. It is NP-hard to determine whether a given pair (G,C) where C is a

Hamiltonian cycle of G has representation 〈T,P〉 with ∆(T ) ≤ 3.

Proof. The proof is by reduction from the 3-colorability problem. Given a graph H,

we transform it to a pair (G,C) such that (G,C) has a representation on a tree with

maximum degree 3 if and only if H is 3-colorable.

Consult Figure 3.23 for the following construction. Let V (H) = {v0, . . . , vn−1},
E(H) = {e0, . . . , em−1}, and let di = dH(vi). The pair (G,C) consists of 6m ver-

tices. For every edge ek = {vi, vj} we build a path Sk = (ui,k − u′
i,k − uj,k − u′

j,k −
uk − u′

k) with 6 vertices. The graph C is a cycle obtained by concatenating these m

paths, in the order S0, S1, . . . , Sm−1, S0, i.e. u′
k is connected to ui′,k+1 where ek+1 =

{vi′ , vj′}. K is a clique of all the vertices in the even positions of the paths, i.e.

K =
{

u′
i,k, u

′
k : 0 < k < m, i ∈ ek

}

(most of the edges induced by K are not shown

in the figure). For every i < n, Qi is a path (ui,k1 − · · · − ui,kdi
) where ek1 , . . . , ekdi

are the edges incident to vi in H. The set EKQ
i of edges connects vertices of Qi

with vertices of K. Specifically, EKQ
i =

{{

ui,kj , u
′
i,kj′

}

| 1 ≤ j′ < j ≤ di

}

. Finally,

G = C ∪K ∪ (∪i<nQi) ∪
(

∪i<nE
KQ
i

)

.
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We claim that the vertices of the graph H ′ = comp(G,C,K) can be partitioned

into two sets A,B such that (i) H ′[A] is isomorphic to H, (ii) H ′[B] is an independent

set, (iii) dH′(v) ≤ 2 for every vertex v ∈ B. Indeed, G \ K contains the vertices

{ui,k, uk : k < m, i ∈ ek} where each uk is an isolated vertex and the rest is the disjoint

union of the paths Qi. Therefore the component graph H ′ consists of the vertices

A = {Qi : i < n} and B = {uk : k < m}. For two vertices vi, vj of H, Qi and Qj are

connected by the vertex u′
i,k ∈ V (K) if and only if ek = {vi, vj} is an edge of H.

Therefore H ′[A] is isomorphic to H. Moreover, a vertex uk of G is connected to at

most two paths Qi via its two neighbors in C. Therefore H ′[B] is an independent set

and every vertex of B has degree at most 2 in H ′. We conclude that H is 3-colorable if

and only if H ′ is 3-colorable. If (G,C) has a representation 〈T,P〉 with ∆(T ) ≤ 3 then,

by Lemma 3.40, H ′ is 3-colorable. It remains to show that if H ′ is 3-colorable then

(G,C) has such a representation. Given a 3-coloring of H ′, in the sequel we present

such a representation 〈T,P〉 (see Figure 3.24).

We start with the construction of the tree T . T has a vertex r of degree at most

3 that divides it into at most 3 subtrees T1, T2, T3, each of which with maximum degree

3. Each Ti corresponds to one color of the given 3-coloring of H ′. We describe in detail

the subtree T1, assuming without loss of generality that the vertices of H ′ colored with

color 1 are Q1, Q2, . . . , Qn′ and u1, u2, . . . , um′ . T1 contains a path (r− e1− · · · − em′ −
v1− · · · − vn′). Each vertex ek starts a path (ek− ℓk) of length 1. Each vertex vi starts

a path (vi − wi − wi,k1 − · · · − wi,kdi
) where ek1 , . . . , ekdi are the edges incident to vi in

G. Each vertex wi,k starts a path (wi,k − ℓi,k) of length 1.

We proceed with the construction of the paths P . Every vertex uk of G is repre-

sented by a path Pk of length 1 starting at vertex ℓk. Each vertex ui,k of G is represented

by a path Pi,k of length 3 starting at ℓi,k and towards r. It remains to describe the

representation of the vertices of K. Every vertex u′ of K is adjacent to two vertices of

V (C) \K in C. We represent u′ by a path between two leaves of T (not all of them

shown in the figure). These leaves are exactly the leaves that constitute endpoints of

the paths corresponding to the two neighbors of u′. Specifically:
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• A vertex u′
i,k of Sk that is between two vertices ui,k and uj,k of Sk is represented

by a path P ′
i,k between the two leaves ℓi,k and ℓj,k.

• A vertex u′
j,k of Sk that is between two vertices uj,k and uk of Sk is represented

by a path P ′
j,k between the two leaves ℓj,k and ℓk.

• A vertex u′
k of Sk that is between two vertices uk of Sk and ui,k+1 of Sk+1 is

represented by a path P ′
k between the two leaves ℓk and ℓi,k+1.

The vertices ui,k and uj,k are in the connected components Qi and Qj respectively,

which in turn are adjacent in H ′ (by the existence of u′
i,k ∈ K between them). They are

therefore assigned different colors, i.e. the leaves ℓi,k and ℓj,k are in different subtrees

of T . Therefore P ′
i,k crosses r. It can be verified that this holds for the other two cases

too. We conclude that the vertices of K are represented by paths that cross r. If H ′ is

2-colorable then they constitute an edge-clique, otherwise they constitute a claw-clique.

We leave to the reader to verify that 〈T,P〉 is a representation of (G,C).
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Figure 3.23. A graph H, the corresponding pair (G,C) and the component graph
comp(G,C,K) where K =

{

u′
i,k, u

′
k : 0 < k < m, i ∈ ek

}

.

Theorem 3.42. HamiltonianPairRec is NP-hard.

Proof. We claim that the decision version of the problem is NP-hard even when G is

restricted to the family of VPT graphs. If the instance is a “YES” instance, then G

is both a VPT and an EPT graph. In this case, by Theorem 2 of [6], (G,C) has a

representation on a tree with maximum degree 3. If the instance is a “NO” instance
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Figure 3.24. A representation 〈T,P〉 of a pair (G,C) corresponding to some 3-colorable
graph H.

then, clearly, (G,C) does not have a representation on a tree with maximum degree 3.

By Lemma 3.41 it is NP-hard to decide whether (G,C) has a representation on a tree

with maximum degree 3.
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4. GRAPHS OF EDGE-INTERSECTING

NON-SPLITTING PATHS IN A GRID

4.1. Overview

The family of paths on graphs is a commonly studied family of sets. To distinguish

the graph on which the paths are defined, from the resulting intersection graph, this

graph is called the host graph. Often the host graphs are restricted to certain families

such as paths, cycles, trees, grids, etc. When H is restricted to paths and cycles we get

the well known families of interval graphs [24] and circular arc graphs [25], respectively.

When H is restricted to trees, we obtain the family of Edge Intersection Graph of Paths

in a tree (EPT) [22], and when H is a grid, the corresponding graph is called an EPG

graph [13].

In the previous chapter we assumed that the host graph was a tree, now we

generalize it to any graph. This chapter is based on our recent publication [26]. In

Section 4.2 we start with necessary definitions and notations. In Section 4.3 we show

in Theorem 4.5 that cobipartite graphs are not included in ENP. This result implies

that although the Edge Intersection Graphs of Paths in an arbitrary graph includes all

graphs, this is not the case for ENP. By a counting argument, we show that not all

cobipartite graphs are ENP. The main observation is that the ENP representations

of cliques are the collections of paths whose union is a path or a cycle. Therefore in the

representation of a cobipartite graph we consider the intersections, called segments, of

two paths (or cycles). The number of possible graphs is a function of the number of

segments and the number of endpoints in these segments. An analysis shows that this

number is less than the number of possible cobipartite graphs.

In the same section, Theorem 4.6 shows that the class ENP coincides with the

family of graphs of Edge-Intersecting and Non-Splitting Paths in a Grid (ENPG).

Given an arbitrary representation, we first transform the host graph into a planar
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graph. We then replace every vertex of the host graph having degree more than 4 and

the paths crossing this vertex with a special gadget, see Figure 4.2. Finally using a

known result we embed this planar graph in a grid.

In a grid, a bend of a path is a pair of consecutive edges of the path one of

which is vertical and the other is horizontal. Following similar studies for EPG graph

class, we study in Section 4.4 the implications of restricting the number of bends of

the individual paths in the grid. It is shown in [27] that for every odd integer k,

Bk-EPG ( Bk+1-EPG, i.e. the bend numbers imply an infinite hierarchy within the

family of EPG graphs. We showed in Theorem 4.13 that there is an infinite sequence

of integers {ki : i = 1, 2, . . .} such that B0-ENPG ( B1-ENPG ( Bk1-ENPG (

Bk2-ENPG ( · · · . Later in Chapter 5 we show that B1-ENPG ( B2-ENPG however

the question whether B2-ENPG ( B3-ENPG ( · · · is still open.

4.2. Definitions and Notations

A walk in a graph G = (V (G), E(G)) is a sequence P = (e1, e2, . . . , eℓ) of edges

of E(G) such that there are vertices v0, v1, . . . , vℓ satisfying ei = {vi−1, vi} for every

i ∈ [ℓ]. Clearly, the reverse sequence (eℓ, . . . , e1) is also a walk. The length of P is

the number ℓ of (not necessarily distinct) edges in the sequence. In this work we do

not consider trivial (zero length) walks, as such walks do not intersect others. P is

closed whenever v0 = vℓ, and open otherwise. A trail is a walk consisting of distinct

edges. A (simple) path is a walk consisting of distinct vertices except possibly v0 = vℓ.

A contiguous sub-sequence of a walk (resp. trail, path) is termed a sub-walk (resp.

sub-trail, sub-path).

Let P = (e1, e2, . . . , eℓ) be a trail with vertices v0, v1, . . . , vℓ as above. For every

i ∈ [ℓ− 1], the triple (ei, vi, ei+1) is an internal point of P . Whenever P is closed, the

triple (eℓ, vℓ = v0, e1) too, is an internal point of P . We denote the set of internal points

of P by INT(P ). We say that a vertex v is an internal vertex of P , or equivalently

that P crosses v if v is in (i.e. is the second entry of) a triple in INT(P ). If P is

open END(P )
def
= {v0, vℓ} and TAIL(P )

def
= {(e1, v0), (eℓ, vℓ)} are the sets of endpoints
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of P and tails of P , respectively. Given a set P of trails, we define TAIL(P) def
=

∪P∈PTAIL(P ), END(P) def
= ∪P∈PEND(P ) and INT(P) def

= ∪P∈PINT(P ). For brevity,

in the text we often refer to internal points as vertices and to tails as edges. Moreover,

when we apply the intersection and union operations on two trails we consider them

as sets of internal points and endpoints.

Given two trails P = (e1, e2, . . . , eℓ) and P ′ = (e′1, e
′
2, . . . , e

′
ℓ′), a segment of P ∩P ′

is a maximal trail that constitutes a sub-trail of both P and P ′. Since P and P ′ are

trails, P ∩ P ′ is the union of edge disjoint segments. We denote this set by S(P, P ′).

A tail (resp. endpoint) of a segment is terminating if it is in TAIL(P, P ′) (resp.

END(P, P ′)). A split of P and P ′ is a pair of internal points (ei, vi, ei+1), (e
′
j, v

′
j, e

′
j+1) ∈

INT(P ) × INT(P ′) such that vi = v′j and
∣

∣{ei, ei+1} ∩
{

e′j, e
′
j+1

}∣

∣ = 1. Note that the

common edge and the common vertex constitute a non-terminating tail of a segment

of P ∩P ′ and conversely every non-terminating tail of a segment corresponds to a split.

We denote by split(P, P ′) the set of all splits of P and P ′, which corresponds to the set

of all non-terminating tails of the segments S(P, P ′).

Lemma 4.1. Let K be a clique of an ENP graph. Then one of the following holds:

(i) ∪PK is an open trail and ∩PK 6= ∅.
(ii) ∪PK is a closed trail, and for every edge e of ∪PK there exists an edge e′ of ∪PK

such that P ∩ {e, e′} 6= ∅ for every path P ∈ PK.

Proof. Assume that ∪PK contains two internal points (e1, v, e2) and (e′1, v, e
′
2) such that

|{e1, e2} ∩ {e′1, e′2}| = 1, then there are two paths P, P ′ ∈ PK such that (e1, v, e2) ∈
INT(P ) and (e′1, v, e

′
2) ∈ INT(P ′). Therefore, split(P, P ′) 6= ∅ and P ≁ P ′ contradicting

the fact that K is a clique. Therefore, ∪PK is a disjoint union of trails. However, if

∪PK contains two disjoint trails, then P ‖ P ′ for any two paths P, P ′ from two distinct

trails of ∪PK , contradicting the fact that K is a clique. Therefore ∪PK is one trail.

(i) If ∪PK is an open trail, then we can embed it on the real line, so that the

individual paths of PK are intervals on the real line. Then, the result follows
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from the Helly property of intervals.

(ii) If ∪PK is an closed trail, let e be any edge of this trail. Let Pe be the set of

trails in PK containing the edge e. Then ∪(PK \ Pe) is an open trail. By the

previous result there is an edge e′ of this trail that is contained of all these paths.

Therefore, all the paths of PK contain either e or e′.

Based on this lemma we say that K is an open (resp. closed) clique if ∪PK is an

open (resp. closed) trail. It will be convenient to use the following corollary of Lemma

4.1 in order to unify the two cases into one.

Corollary 4.2. Let K be a clique of an ENP graph, with a representation 〈H,P〉.
Then ∪PK is a sub-trail of a closed trail in which for every edge e there exists an edge

e′ such that P ∩ {e, e′} 6= ∅ for every P ∈ PK.

We denote a closed trail whose existence is guaranteed by Corollary 4.2 as P (K).

Note that P (K) consists of at most one edge more than ∪PK .

4.3. ENP

In this section we show that (i) the family of ENP graphs does not include all

co-bipartite graphs (Theorem 4.5), and (ii) the family of ENP graphs coincides with

the family of ENPG graphs (Theorem 4.6).

We proceed with definitions regarding the relationship between the representa-

tions of two cliques. Given two vertex disjoint cliques K,K ′ of an ENP graph G with a

representation 〈H,P〉, we denote S(K,K ′)
def
= S(P (K),P (K′)). A segment S ∈ S(K,K ′)

is quiet in K if it does not contain tails of paths of PK , and busy in K, otherwise. The

importance of segments stems from the following observation:

Observation 4.3. Consider a pair of trails (P, P ′) ∈ PK × PK′. Then,
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(i) P ∩ P ′ ⊆ ∪S(K,K ′), and

(ii) split(P, P ′) corresponds to the set of all non-terminating segment endpoints crossed

by both P and P ′.

Cn,n is the set of all co-bipartite graphs G(K,K ′, E) where K = [n] and K ′ =

{i′ : i ∈ [n]}. We first prove the following lemma that bounds the number of graphs of

this form as a function of the number of segments.

Lemma 4.4. For any s ≥ 0, the number of graphs G = (K,K ′, E) ∈ Cn,n with a

representation 〈H,P〉 such that |S(K,K ′)| ≤ s is at most (4n)!((2n+ 2s)!)2.

Proof. Let G ∈ Cn,n ∩ ENP, with a representation 〈H,P〉. As K and K ′ are cliques,

their representations satisfy Corollary 4.2, i.e. ∪PK and ∪PK′ are sub-trails of two

closed trails P (K),P (K′). We now consider all the possible orders of END(PK) ∪
END(PK′) ∪ END(S(K,K ′)) on P (K) and P (K′). This is only an upper bound on

the number of possible representations, thus to the number of graphs. This is because

some of the orders do not induce a representation of the cliques K and K ′, and some

others may imply two intersecting segments.

Let s = |S(K,K ′)|, and consider the set ΠK of all the cyclic orders on the

closed trail P (K) of the at most 2n endpoints END(PK) and the at most 2s endpoints

END(S(K,K ′)). |ΠK | ≤ 2(2n + 2s− 1)!/(2s)!, because the 2s endpoints are identical

except for a circular shift by one position (that cause segments to become non-segments

and vice versa). For any order π ∈ ΠK we consider the set ΠK′(π) of all the orders,

on the closed trail P (K′), of the at most 2n endpoints END(PK′) and the at most

2s endpoints END(S(K,K ′)). This time the segments are umbered according to the

order π and are therefore considered as distinct. Clearly, |ΠK′(π)| ≤ (2n + 2s − 1)!.

Summarizing, there are at most 2((2n+2s−1)!)2/(2s)! possible orders, not considering
the different orders of vertices of END(PK) and END(PK′) within the same segment.

We fix an order π′ ∈ ΠK′(π). Let k(S) (resp. k′(S)) be the number of endpoints

of END(PK) (resp. END(PK′)) within segment S, i.e. k(S) = |END(PK) ∩ V (S)|
and k′(S) = |END(PK′) ∩ V (S)|. The k(S) + k′(S) endpoints can be ordered within
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S in





k(S) + k′(S)

k(S)



 different ways because the order of the vertices within each

set is fixed. We have
∏

S∈S(K,K′)





k(S) + k′(S)

k(S)



 <
∏

S∈S(K,K′)(k(S) + k′(S))! <

(

∑

S∈S(K,K′)(k(S) + k′(S))
)

! = (4n)! orders. Therefore, the total number of possible

orders of the 4n+ 2s endpoints is at most 2(4n)!((2n+ 2s− 1)!)2/(2s)! < (4n)!((2n+

2s)!)2.

Theorem 4.5. Co-Bipartite * ENP.

Proof. |Cn,n| = 2n
2
because there are n2 pairs of vertices (v, v′) ∈ K × K ′, and for

every such pair, either (v, v′) ∈ E or (v, v′) /∈ E. In the rest of the proof we show

that every G ∈ Cn,n has a representation 〈H ′,P ′〉 for which s = |S(K,K ′)| ≤ 12n.

By Lemma 4.4, the number of such representations and therefore |Cn,n ∩ ENP| is
at most (4n)!((2n + 2s)!)2 ≤ (4n)!((2n + 24n)!)2 = (4n)!(26n)!(26n)!. Therefore,

log |Cn,n ∩ ENP| = O(n log n), whereas log |Cn,n| = n2 concluding the proof. It re-

mains to show that G has a representation with s ≤ 12n segments.

The number of busy segments of S(K,K ′) is at most 4n, because |END(PK)| = 2n

and an endpoint can be in at most 2 segments. We now bound the number of quiet

segments of S(K,K ′). Consider two endpoints from END(PK) that are consecutive on

P (K) and let P be the sub-trail of P (K) between these two endpoints. By this choice,

every trail of PK intersecting P includes P . Let S̄ be the set of segments S that are

sub-trails of P (thus V (S) ⊆ INT(P )). Suppose that
∣

∣S̄
∣

∣ > 4. Consider the two edges

ea′ and eb′ of P (K′) whose existence are guaranteed by Corollary 4.2. These two edges

divide P (K′) into at most two open trails. One of these open trails contains (at least)

3 segments S1, S2, S3 ∈ S̄ where the indices are in the order they appear on this open

trail from ea′ to eb′ (see Figure 4.1). Let also vi1, vi2 be the endpoints of Si in the

same order. We claim that the representation obtained by adding to H a new vertex x

and two edges {v21, x} , {x, v22} and finally modifying all the trails intersecting P (that

therefore include S2) so that the segment S2 is replaced by the trail ({v21, x} , {x, v22}) is
an equivalent representation. Clearly, any trail that does not intersect S2 is not affected
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ea′ eb′

S1
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S3
v11

v12

v21 v22

v31

v32

b

b
b
b

b

b

Pv

Pv′

b

x

Figure 4.1. Getting a representation with at most 8n quiet segments in the proof of
Theorem 4.5. Whenever there are 3 segments on one side of the closed trail, the middle
one can be bypassed.

by this modification. Consider two trails Pv and Pv′ such that (v, v′) ∈ K×K ′ and both

intersect S2. Pv includes P and therefore includes all the vertices of S2, in particular

crosses v21 and v22. On the other hand, by Corollary 4.2, Pv′ contains at least one of ea′

and eb′ . Without loss of generality let eb′ ∈ Pv′ . Then, v22 is an internal vertex of Pv′ .

We conclude that v22 ∈ split(Pv, Pv′), i.e. (v, v′) /∈ E(G). After the modification, we

have v31 ∈ split(Pv, Pv′), thus (v, v
′) is not an edge of the resulting graph. Therefore,

the new representation is equivalent to 〈H,P〉. After this modification, S is not a

segment of S(K,K ′) and the new representation has one segment less. We can apply

this transformation until we get an equivalent representation 〈H ′,P ′〉 having at most

4 quiet segments between every two consecutive vertices of END(PK). In other words,

〈H ′,P ′〉 has at most 8n quiet segments of S(K,K ′). Adding the at most 4n busy

segments, we conclude that s ≤ 12n.

Theorem 4.6. ENP=ENPG

Proof. Clearly, ENPG ⊆ ENP. To prove the other direction, consider an ENP graph

G with a representation 〈H,P〉. We transform this representation into an equivalent

ENPG representation, in three steps. In the first step, we obtain an equivalent rep-

resentation 〈H ′,P ′〉 where H ′ is planar. In the second step, we transform 〈H ′,P ′〉 to
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an equivalent representation 〈H ′′,P ′′〉 where H ′′ is planar and ∆(H ′′) ≤ 4. Finally, we

transform 〈H ′′,P ′′〉 to an ENPG representation.

The host graph H can be embedded in a plane such that the vertices are mapped

to a set of points in general position on the plane and the edges are drawn as straight line

segments. Specifically, no three points are co-linear and no three segments intersect

at one point. Note that the mapping of the edges might intersect, however as the

points are in general position, we can assume that no three edges intersect at the same

point. For every intersection point of two edges e, e′, we can add a vertex v to H and

subdivide the edges e and e′ (and consequently the paths in P containing e and e′)

such that the resulting 4 edges are incident to v. Every pair of paths P, P ′ that include

e and e′ respectively now intersect at v. However as we are not concerned with vertex

intersections, the resulting representation is a representation of G. We continue in this

way until all intersection points are replaced by a vertex. The graph H ′ of the resulting

representation 〈H ′,P ′〉 is clearly planar.

We now transform the representation 〈H ′,P ′〉 to a representation 〈H ′′,P ′′〉 where
H ′′ is planar with maximum degree at most 4. We start with 〈H ′′,P ′′〉 = 〈H ′,P ′〉,
and as long as there is a vertex v with dH′′(v) > 4, we eliminate such a vertex without

introducing new vertices of degree more than 4 using the following procedure described

in Figure 4.2: we number the edges incident to v as e1, e2, . . . , edv in counterclockwise

order according to the planar embedding of H ′. Then e1 and edv are in the same face

F of H ′′. We replace the vertex v with a path of dv vertices v1, v2, . . . , vdv such that

each edges ei is incident to vi. Clearly, the constructed path is part of F . We now

construct the gadget in Figure 4.2 within the face F , where every path crossing v from

an edge ei to another edge ej with i < j is modified as described in the figure. Clearly,

we do not lose intersections in this process. On the other hand, every pair of paths

that intersect within the gadget have at least one edge incident to v in common before

the transformation. Moreover, two paths have a split vertex within the gadget if and

only if they split at v before the transformation.

The last step is implied by the following theorem.
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Figure 4.2. The gadget used in the second transformation in the proof of Theorem 4.6.

Theorem 2.3 [28]: A planar graph H ′′ with maximum degree at most 4 can be

embedded in a grid graph H ′′′ of polynomial size: the vertices u′′ of H ′′ are mapped

to vertices u′′′ of H ′′′; each edge e′′ = {u′′, v′′} of H ′′ is mapped to a path e′′′ between

u′′′ and v′′′ in H ′′′; the intermediate vertices of e′′′ belong to exactly one such path.

Given an embedding of H ′′ guaranteed by the theorem, we embed every trail P ′′ ∈ P ′′

to a trail P ′′′ of H ′′′ by embedding every edge e′′ of it to the corresponding path e′′′

of H ′′′. P ′′′ is clearly a walk. P ′′′ a trail, because otherwise there is an edge of H ′′′

that is contained in the embedding of two distinct edges of H ′′, contradicting the last

guarantee of the theorem. Clearly two trails P ′′
1 , P

′′
2 of P ′′ intersect if and only if the

corresponding paths P ′′′
1 , P ′′′

2 in P ′′′ intersect. Moreover a split (e′′11, v
′′, e′′12), (e

′′
21, v

′′, e′′22)

of two paths P ′′
1 , P

′′
2 is mapped to a split (e′′′11, v

′′′, e′′′12), (e
′′
21, v

′′′, e′′22) of the corresponding

paths P ′′′
1 , P ′′′

2 and this mapping is one to one.

4.4. Bk-ENPG

An ENPG graph is Bk-ENPG if it has an ENPG representation 〈H,P〉, in
which every path P ∈ P has at most k bends. By definition, Bk-ENPG ⊆ Bk′-ENPG

whenever k ≤ k′. However, the question whether Bk-ENPG ( Bk′-ENPG holds is

not trivial and is the subject of this section. We show in Theorem 4.13 that for some

infinite and increasing sequence of numbers k1, k2, . . . there is a graph in Bki+1
-ENPG

that is not Bki-ENPG, thus proving the existence of an infinite hierarchy within the

family of ENPG graphs.
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Figure 4.3. A B(6x+1)-ENPG representation of the graph Pm(6x2+5x−3) for x = 3. The
solid and dotted lines represent the union of the paths corresponding to two cliques.
The individual paths are intentionally omitted but described in detail in Figure 4.4.

The graph Pmn ∈ Cn,n is the co-bipartite graph (K,K ′, E) with |K| = |K ′| = n

and E constitutes a perfect matching. We denote by n̂k the biggest number n such

Pmn ∈ Bk-ENPG. In Corollary 4.8 and Lemma 4.12 we present lower and upper

bounds for n̂k, respectively. Using these bounds we show in Theorem 4.13 that n̂k1 <

n̂k2 < . . . for some infinite increasing sequence of integers k1, k2, . . .. We start with the

lower bound.

Lemma 4.7. Pm(6x2+5x−3) ∈ B(6x+1)-ENPG for every integer x > 1.

Proof. Given an integer x > 1 we construct aB(6x+1)-ENPG representation ofPm(6x2+5x−3).

Figure 4.3 depicts the structure of the open clique representations ∪PK and ∪PK′ . The

segments S(K,K ′) are numbered from 0 to 2x in increasing distance from the edge e.

The non-segments of ∪PK (maximal paths of ∪PK \ ∪PK′) are numbered in the same

manner, and the non-segments of ∪PK′ (maximal paths of ∪PK′ \∪PK) are numbered

in decreasing order of their distance from e′.

Let αi = min(3x + 1− i, 2x) and α′
i = max(0, x + 2− i) for i ∈ [0, 2x]. αi (resp.

α′
i) is chosen as the most distant non-segment reachable by a path of PK (resp. PK′)

starting at segment i and having at most 6x+1 bends. We observe that αi, α
′
i ∈ [0, 2x]

for every i. Indeed, (i) 3x + 1 − i ≥ x + 1 > 1 implying that αi is positive, (ii) α′
i is

non-negative by definition, (iii) αi is at most 2x by definition, and (iv) if α′
i > 0 we

have α′
i = x + 2 − i ≤ x + 2 ≤ 2x. Furthermore, we observe that α′

i ≤ αi for every

i ∈ [0, 2x]. Indeed α′
i > αi would imply x + 2 − i > 3x + 1 − i which is equivalent to

2x < 1, a contradiction. We conclude that 0 ≤ α′
i ≤ αi ≤ 2x.
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Figure 4.4. The paths terminating at segment i.

Given the above facts, we proceed with our construction. A segment numbered

i contains αi − α′
i + 1 internal vertices numbered from 0 in decreasing order of their

distance from e. Every non-segment consists of one horizontal and one vertical edge as

shown in Figure 4.3. For every i ∈ [0, 2x] and every j ∈ [0, αi − α′
i] our construction

contains four paths, two of which start at segment i on the left (as shown in Figure

4.4) and two of which start at segment i on the right.

• The path Pi,j ∈ PK (resp. P̄i,j ∈ PK) starts at vertex j of segment i on the left

(resp. right) side of e and ends at the unique intermediate vertex (the bend) of

the non-segment αi − j of ∪PK on the right (resp. left) side of e.

• The path P ′
i,j ∈ PK′ (resp. P̄ ′

i,j ∈ PK′) starts at vertex j + 1 of segment i on

the left (resp. right) side of e′ and ends at the unique intermediate vertex of the

non-segment αi − j of ∪PK′ on the right (resp. left) side of e′.

We note that all the paths Pi,j and P̄i,j cross the edge e and therefore correctly represent

the clique K. Similarly, the paths P ′
i,j and P̄ ′

i,j represent the clique K ′.

We now show that every path contains at most 6x + 1 bends. For this purpose

we first observe that the number of bends between

• segment i and the edge e is 2i,

• segment i and the edge e′ is 4x− 2(i− 1),

• non-segment ī and the edge e is max(2̄i− 1, 0),
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• non-segment ī and the edge e′ is 4x− 2̄i+ 3.

Since the path Pi,j starts from segment i and ends at non-segment αi − j, its number

of bends is

2i+max(2(αi − j)− 1, 0) ≤ 2i+max(2αi − 1, 0)

≤ 2i+max(6x+ 1− 2i, 0) = max(6x+ 1, 2i)

≤ max(6x+ 1, 4x) = 6x+ 1.

Similarly, the number of bends of P ′
i,j is

4x− 2(i− 1) + (4x− 2(αi − j) + 3)

= 8x+ 5− 2i− 2(αi − j) ≤ 8x+ 5− 2i− 2α′
i

= 8x+ 5− 2i− 2max(0, x+ 2− i) ≤ 8x+ 5− 2i− 2(x+ 2− i)

= 6x+ 1.

Since the paths P̄i,j and P̄ ′
i,j are symmetric to Pi,j and P ′

i,j respectively we conclude that

our construction is a B(6x+1)-ENPG representation of the cobipartite graph (K,K ′, E).

It remains to show that this graph is Pm(6x2+5x−3).

The number of vertices of K is the number of paths Pi,j and P̄i,j which is equal

to twice the number of paths Pi,j . Therefore

|K| = 2
2x
∑

i=0

(αi − α′
i + 1) = 2

2x
∑

i=0

αi − 2
2x
∑

i=0

α′
i + 4x.
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This is also the number of vertices of K ′. Moreover we have

2x
∑

i=0

αi =
x

∑

i=0

2x+
2x
∑

i=x+1

(3x+ 1− i) =
7

2
x2 +

5

2
x

and

2x
∑

i=0

α′
i =

x+2
∑

i=0

(x+ 2− i) =
(x+ 2)(x+ 3)

2
.

By combining the above equations we conclude

|K| = 6x2 + 5x− 3.

We now conclude the proof by showing that the edges E constitute a perfect matching

of K and K ′. We will show that given two paths P ∈ PK and P ′ ∈ PK we have P ∼ P ′

if and only if P = Pi,j and P ′ = Pi,j for some i, j or P = P̄i,j and P ′ = P̄ ′
i,j for some

i, j. Since the case for paths P̄i,j is symmetric, we will consider only paths Pi,j and P ′
i,j .

We observe that every path crosses at least one segment boundary. Therefore, P ∼ P ′

if and only if (i) P and P ′ intersect in a segment that contains an endpoint from both

P and P ′, and (ii) P and P ′ do not cross a common segment endpoint. Then for two

paths Pi,j and P ′
i′,j′ we have Pi,j ∼ P ′

i′,j′ only if i = i′ and they intersect at segment

i. By our construction, this can happen only if j′ ≥ j in which case Pi,j ∩ P ′
i,j′ is the

path between vertices j and j′ + 1 of segment i. We now recall that Pi,j and P ′
i,j′ end

at non-segments αi − j of ∪PK and αi − j′ of ∪PK′ , respectively. Then, whenever

j′ > j Pi,j and P ′
i,j′ cross a common segment endpoint. Therefore, Pi,j ∼ P ′

i′,j′ only

if i = i′ and j = j′. By the same observations, Pi,j ∼ P ′
i,j for every i ∈ [0, 2x] and

j ∈ [0, αi − α′
i].

Corollary 4.8. n̂6x+1 ≥ 6x2 + 5x− 3 for every positive integer x.
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We now provide an upper bound on n̂k. We first show an upper bound on

the number of bends in a Bk-ENPG representation of a clique (Lemma 4.9). Then

we show that this bound implies an upper bound on the number of segments in the

representation (Lemma 4.11), and finally using this result we bound n̂k from above

(Lemma 4.12).

Lemma 4.9. Let K be a complete graph with Bk-ENPG representation 〈H,P〉 where
every path contains at least m bends. Then ∪PK contains at most 2

⌊

2k+m·δK
2

⌋

bends,

where δK is 1 whenever K is a closed clique and 0 otherwise.

Proof. If K is an open clique (δK = 0), then there exists an edge e contained in every

P ∈ PK . e divides ∪PK into two trails each of which contains at most k bends.

Therefore, ∪PK contains at most 2k = 2
⌊

2k+m·δK
2

⌋

bends. If K is a closed clique

(δK = 1), consider a trail P = (e1, . . . , eℓ) of PK with m bends. Let P1 (resp. Pℓ) be a

trail containing e1 (resp. eℓ) with the maximum number of edges from ∪PK \ P . We

have ∪PK = P ∪ P1 ∪ Pℓ, because otherwise there is an edge e ∈ ∪PK \ (P ∪ P1 ∪ Pℓ)

that is included in some trail P ′ that contains neither e1 nor eℓ and P ′ is not contained

in P . Then P ′ does not intersect P , contradicting the fact that K is a clique. Since P

has m bends and P1, Pℓ have at most k bends each, the number of bends of ∪PK is at

most 2k+m. Moreover, this number is even because ∪PK is a closed trail. Therefore,

the number of bends of ∪PK is at most 2⌊2k+m
2
⌋ = 2

⌊

2k+m·δK
2

⌋

.

Corollary 4.10. A clique K of a B1-ENPG graph is an open clique and ∪PK has at

most 2 bends.

Lemma 4.11. Let G = (K,K ′, E) ∈ Cn,n with a Bk-ENPG representation 〈H,P〉
where the minimum number of bends of a path P ∈ PK (resp. P ′ ∈ PK′) is m (resp.

m′). Then

|S(K,K ′)| ≤ 2k +
max(m, 2) + max(m′, 2)

2
.

Proof. Let δ
def
= 2− δK − δK′ ∈ [0, 2] be the number of open cliques among K,K ′, and

s
def
= |S(K,K ′)|. If ∪PK = ∪PK′ then s = 1, satisfying the claim. Otherwise, there
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are exactly 2s segment endpoints at most 2δ of which can be terminating. At every

non-terminating segment endpoint there is at least one bend of one of ∪PK ,∪PK′ .

Therefore, the total number of bends of ∪PK and ∪PK′ is at least 2s− 2δ. By Lemma

4.9, ∪PK (resp. ∪PK′) contains at most 2
⌊

2k+m·δK
2

⌋

(resp. 2
⌊

2k+m′·δK′

2

⌋

) bends. There-

fore,

2s− 2δ ≤ 2

⌊

2k +m · δK
2

⌋

+ 2

⌊

2k +m′ · δK′

2

⌋

s− δ ≤
⌊

2k +m · δK
2

⌋

+

⌊

2k +m′ · δK′

2

⌋

≤ 2k +
m · δK +m′ · δK′

2

s ≤ 2k +
m · δK +m′ · δK′

2
+ 2− δK − δK′

≤ 2k +
max(m, 2) + max(m′, 2)

2

where the last step can be easily verified by substituting the three possible values of

the pair δK , δK′ .

Lemma 4.12.

n̂k ≤ 8k2 + 8k + 4.

Proof. Let Pmn = (K,K ′, E) with a Bk-ENPG representation 〈H,P〉. Let S =

S(K,K ′), and m (resp. m′) the smallest number of bends of a path of PK (resp. PK′).

For an edge e = {v, v′} ∈ E we say that e is realized in segment S ∈ S if

Pv ∩ Pv′ ∩ S 6= ∅. Every edge {v, v′} is realized in at least one segment, because

otherwise Pv ∩Pv′ = ∅, contradicting the fact that {v, v′} ∈ E. For a segment S let ES

be the set of edges realized in segment S. Then E = ∪S∈SES. In the following, we first

provide an upper bound on |ES|, and using Lemma 4.11 which bounds the number of

segments we derive a bound on |E|.

Let without loss of generality ES = {{v1, v′1} , {v2, v′2} , . . .}. Let PS = {Pv1 , Pv2 , . . .}
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Figure 4.5. The structure of the path PS and P ′
S in the proof of Lemma 4.12.

and P ′
S =

{

Pv′1
, Pv′2

, . . .
}

. We first assume that every path PS ∪ P ′
S crosses at least

one endpoint of S, an assumption that will be relaxed at the end of the proof. Then,

every such path crosses exactly one endpoint of S, since if a path, say Pvi , crosses both

endpoints of S, Pvi splits from every other path of PS∪P ′
S contradicting Pvi ∼ Pv′i

. Let

without loss of generality Pv1 , . . . , Pvℓ be the paths of PS that cross a given endpoint,

say a, of S. Then, Pv′1
, . . . , Pv′

ℓ
are paths that cross the other endpoint, say b, of S,

since Pvi and P ′
vi
cannot cross the same endpoint.

Consult Figure 4.5 for the rest of the discussion. Let ci (resp. c
′
i) be the endpoint

of Pvi (resp. Pv′i
) in S. Let also ai (resp. bi) be the endpoint of Pvi (resp. Pv′i

) that is not

in S. Assume without loss of generality that the vertices ai are ordered in decreasing

distance from a (on Pi). Since Pv1 and Pv′1 have an intersection in S, c′1 is between c1

and a. We claim that c2 is between c′1 and a. Indeed, otherwise Pv2∩Pv′1
6= ∅, and since

{v2, v′1} /∈ ES, it must be the case that Pv2 ≁ Pv′1
, i.e. Pv2 and Pv′1

cross a common

segment endpoint. Then Pv1 crosses this endpoint too, implying that Pv1 ≁ Pv′1
, a

contradiction.

For the same reason as above, c′2 is between c2 and a. Then Pv′2
∩ Pv1 6= ∅.

Therefore, there is a segment endpoint s2 common to Pv′2
and Pv1 . Clearly, s2 is not in

INT(Pv2), since in such a case Pv2 ≁ Pv′2
, implying that {v2, v′2} /∈ E. We conclude that

s2 ∈ INT(Pv1)∩INT(Pv′2
)\INT(Pv2). Continuing in this way, we get segment endpoints

s3 ∈ INT(Pv2)∩ INT(Pv′3
) \ INT(Pv3), . . . sℓ ∈ INT(Pvℓ−1

)∩ INT(Pv′
ℓ
) \ INT(Pvℓ). From
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this relations it follows that all these endpoints are distinct elements of INT(Pv1) \
INT(Pvℓ). By symmetry, we conclude that INT(Pv′

ℓ
) \ INT(Pv′1

) contains at least ℓ− 1

segment endpoints.

We are now ready to upper bound |ES| depending the lower and upper bounds

m,m′ and k on the number of bends of a path. |ES| will be shown to be decreasing

in m and m′. However, the number of segments are increasing with m and m′. In

the sequel we analyze this tradeoff. Pv1 has at most k bends and Pvℓ contains at least

m bends. Therefore, INT(Pv1) \ INT(Pvℓ) contains at most k − m bends. Similarly,

INT(Pv′
ℓ
)\ INT(Pv′1

) contains at most k−m′ bends. Every segment endpoint is a bend

of at least one of the involved paths. Therefore,

ℓ− 1 ≤ k −m+ k −m′.

Considering also the ℓ′ paths of PS that cross b and the paths of P ′
S that cross a, we

conclude that

|ES| = ℓ+ ℓ′ ≤ 4k + 4− 2(m+m′).

By Lemma 4.11, |S| ≤ min(2
⌊

2k+m·δK
2

⌋

, 2
⌊

2k+m′·δK
2

⌋

) ≤ 2k +m+m′. Therefore,

|E| ≤
∑

S∈S
|ES| ≤ (2k +M)(4k + 4− 2M)

where M is m+m′.

Finally we relax our assumption that every path crosses at least one segment

boundary. There is at most one path P ∈ PK that does not cross segment boundaries,

for two such paths do not intersect, thus cannot be in the representation of a clique.
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We conclude that

|E| ≤ (2k +M)(4k + 4− 2M) + 2 ≤ (2k + 1)(4k + 2) + 2 = 8k2 + 8k + 4

where the second inequality holds because the maximum of the left hand side is attained

at M = 1.

We are now ready to prove the main result of this section.

Theorem 4.13. There is an infinite increasing sequence of integers {ki : i = 1, 2, . . .}
such that

B0-ENPG ( B1-ENPG ( Bk1-ENPG ( Bk2-ENPG ( · · ·

where limi→∞
ki+1

ki
=
√
48.

Proof. We first note that C4 is not in the family of interval graphs which coincides

with the family of B0-ENPG graphs. On the other hand a B1-ENPG representation

of C4 ie easily obtained by surrounding a 2× 2 square with four L-shaped paths.

We now provide an infinite sequence k0 = 1, k1, k2, . . . such that n̂ki < n̂ki+1

for every i > 0, implying Bki-ENPG ( Bki+1
-ENPG. By Lemma 4.12 we have

n̂ki < 8k2
i +8ki+5 for any ki ≥ 1. Let xi be the smallest integer such that 8k2

i +8ki+5 ≤
6x2

i + 5xi − 3. Note that the left hand side is at least 21, and therefore xi > 1. Let

ki+1 = 6xi + 1. By Corollary 4.8, n̂ki+1
≥ 6x2

i + 5xi − 3. Therefore, n̂ki+1
> n̂ki .

We now show that ki+1/ki converges to
√
48:

6(xi − 1)2 + 5(xi − 1)− 3 < 8k2
i +O(ki)
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by the way xi is chosen. Therefore, xi =
2√
3
ki + o(ki), and finally ki+1 = 6xi + 1 =

√
48ki + o(ki).

We conclude this section by possible improvements of the above result. In the

construction of Lemma 4.7 we use open cliques. One can use closed cliques that, by

Lemma 4.9, lead to more segments than open cliques, consequently increasing the lower

bound. Another observation is that the non-segments of the construction contain bends

that are clearly not segment endpoints. Recalling the proof of Lemma 4.11, we conclude

that this example is not tight. One can modify the construction such that almost every

bend is an endpoint of a segment, implying a further improvement of the lower bound.

On the other hand, the upper bound can be improved by considering the minimum

number, say mS, of bends of a path in the set PS, instead of the global minimum m

that we consider in the proof of Lemmata 4.11 and 4.12. These improvements will

certainly decrease the ratio of
√
48 at the expense of overly complicating the analysis,

with the asymptotic behaviour of the sequence ki remaining exponential.
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5. GRAPHS OF EDGE-INTERSECTING

NON-SPLITTING ONE BEND PATHS IN A GRID

5.1. Overview

In this chapter, we consider graphs of Edge-Intersecting and Non-Splitting One

Bend Paths in a Grid (B1-ENPG). In the previous chapter we showed that ENP =

ENPG. Whenever the host graph is a grid, it is common to use the following notion:

a bend of a path on a grid is an internal point in which the path changes direction.

An ENPG graph is Bk-ENPG if it has a representation in which every path has at

most k bends. In the same chapter, it was shown that ENPG contains an infinite

hierarchy of subclasses that are obtained by restricting the number of bends in the

paths. Motivated by this result, in this chapter we focus on one bend ENPG graphs.

In Section 5.2 we start with some basic results. We show that cycles and trees

are B1-ENPG by providing a representation construction for an arbitrary input.

In Section 5.3 we consider a special case of B1-ENPG graphs: B1-ENPG∩ split

graphs. We first give a characterization of these graphs in Theorem 5.2: a split graph

G = S(K,S,E) is B1-ENPG if and only if S can be partitioned into two sets SL, SR

such that the K-SL and K-SR incidence matrices have the consecutive ones property

for its columns. By using this result, it is possible to design efficient algorithms for

problems known to be NP-complete in split graphs. For example maximum cut and

domination problems are NP-hard in split graphs. The complexity of these problems

in B1-ENPG split graphs is open. We then show in Theorem 5.8 that the B1-ENPG

recognition problem isNP-complete even for a very restricted subfamily of split graphs.

The hardness comes mainly from the difficulty of deciding the position of each path

(left or right of the common edge of paths representing the clique). This result however

do not necessarily imply the NP-completness of Bk-ENPG recognition problem. The

complexity of this problem is open. Another research direction is to investigate (G,S)
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pair recognition where G is an arbitrary graph and S ⊆ G is a split graph. Introducing

red edges can possibly make the problem polynomial time solvable.

In Section 5.4, we consider another special case ofB1-ENPG graphs: B1-ENPG∩
cobipartite graphs. We show that there are two types of representations and provide

a characterization for each type in Lemmata 5.17 and 5.18. Theorem 5.19 combines

these two results. This theorem implies a naive polynomial time O(n4) recognition

algorithm. In the sequel we provide a linear time recognition algorithm. The forbidden

subgraph characterization of this graph class is open. It would be also interesting to

consider Bk-ENPG cobipartite graphs.

The maximum cut problem is the problem of partitioning the vertices of a graph

such that the number of edges incident to both sets are maximum. This problem

remains NP-complete even in co-bipartite graphs and in split graphs. By Theorem 5.19

we know that if a cobipartite graph isB1-ENPG then either there are two connected co-

bipartite chain graphs or there are at most 4 vertices whose removal leave a co-bipartite

chain graph. In [29] we show that maximum cut problem in co-bipartite chain graphs

can be solved in polynomial time by using a dynamic programming algorithm. With

some adjustments, the same algorithm can be used to solve maximum cut problem in

B1-ENPG co-bipartite graphs. On the other hand, Theorem 5.3 characterizes similarly

B1-ENPG split graphs, a natural next step is to consider maximum cut problem in

this graph class.

5.2. Prelimineries

We first observe that some well-known graph classes are included in B1-ENPG.

Proposition 5.1. (i) Every cycle is B1-ENPG.

(ii) Every tree is B1-ENPG.

Proof. (i) For k = 3 three identical paths consisting of one edge constitutes a

B1-ENPG representation of C3. For k = 4 Figure 5.1a depicts a B1-ENPG
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Figure 5.1. (a) A B1-EPG representation of C4, (b) a B1-EPG representation of C11.

representation of C4. Finally for any k > 4, we can construct a Ck as shown in

Figure 5.1b for the case k = 11.

(ii) Given a representation 〈H,P〉 of a B1-ENPG graph G, we denote by RU the

bounding rectangle of PU for U ⊆ V (G). Let T be a tree with a root r. We prove

the following claim by induction on the structure of T (see Figure 5.2). T has a

B1-ENPG representation 〈H,P〉 in which the corners of RT can be renamed as

aT , bT , cT , dT in counterclockwise order such that i) every path of P has exactly

one bend, ii) bT is a bend of Pr, iii) aT is an endpoint of Pr, iv) aT is used

exclusively by Pr.

If T is an isolated vertex, any path with one bend is a representation of T .

Moreover, it is easy to verify that it satisfies conditions i) through iv).

Otherwise let T1, . . . , Tk be the subtrees of T obtained by the removal of r, with

roots r1, . . . , rk respectively. By the inductive hypothesis every such subtree Ti

has a representation with bounding box aTi
, bTi

, cTi
, dTi

satisfying conditions i)

through iv). We now build a representation of T satisfying the same conditions.

We shift and rotate the representations of T1, . . . , Tk so that the bounding rectan-

gles do not intersect and the vertices aT1 , bT1 , aT2 , bT2 , . . . , aTk
, bTk

are on the same

horizontal line and in this order. We extend the paths Pr2 , . . . , Prk representing

the roots of the trees T2, . . . , Tk such that the endpoint aTi
of Pri is moved to aT1 .

Since aTi
is used exclusively by Pri this modification does not cause Pri to split

from a path of PV (Ti). Therefore, the individual trees T1, . . . , TK are properly

represented. Clearly, if two paths from different subtrees Ti, Tj (i < j) intersect,

then one of the intersecting paths must be Prj . Prj intersects the bounding

rectangle of Ti only at the path between ai and bi. As every path of PV (Ti),

in particular one intersecting Prj has one bend, such a path splits from Prj .

Therefore, for any pair of vertices (vi, vj) ∈ Ti × Tj we have that vi and vj are
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Figure 5.2. A construction for B1-ENPG representation of trees.

non-adjacent in ENPG(P), as required.
We rename the corners of the bounding rectangle RT such that bT = aT1 . We now

add the path Pr from bT1 to aT with a bend at bT . The conditions i), ii), iii) are

satisfied. We extend Pr by one edge at aT to make sure that aT is exclusively used

by Pr, thus satisfying condition iv). Pr intersects only RT1 . This intersection is

the path between bT1 and dT1 bending at aT1 . Every path that intersects Pr and

does not split from it must bend at aT1 . As aT1 is used exclusively by Pr1 , Pr1 is

the only path that possibly satisfies Pr1 ∼ Pr. We now observe that Pri ∼ Pr for

every i ∈ [k]. Therefore r is adjacent to the root of Tj in ENPG(P), as required.

5.3. Split Graphs

In this section we present a characterization theorem (Theorem 5.3) forB1-ENPG

split graphs in Section 5.3.1. Then, Section 5.3.2 proceeds with some properties of these

graphs implied by this theorem. An interesting implication of one of these properties is

that the family of B1-ENPG is properly included in the family of B2-ENPG graphs.

Finally, using Theorem 5.3, we prove in Section 5.3.3 that the recognition problem of

B1-ENPG graphs is NP-complete even in a very restricted subfamily of split graphs.
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5.3.1. Characterization of B1-ENPG Split Graphs

We recall that a binary matrix has the consecutive ones property (for columns)

if there is a permutation of its rows such that in every column all the one entries are

consecutive.

The following lemma shows that if G is B1-ENPG then G has a representation

〈H,P〉 with H being a tree.

Lemma 5.2. B1-ENPG ∩ SPLIT ⊆ ENPT ∩ SPLIT.

Proof. Let G = S(K,S,E) be a B1-ENPG split graph with a representation 〈H,P〉.
We want to show that there is a representation 〈H ′,P ′〉 of G such that ∪P ′ is a tree,

i.e. ∪P ′ does not contain any cycle.

By Corollary 4.10, we know that ∪PK is a path with at most two bends in

every representation 〈H,P〉 of G. Suppose that there exists a vertex s ∈ S such that

|S(Ps,∪PK)| > 1. Then Ps ∪ ∪PK contains a cycle, therefore at least 4 bends. But

Ps has at most one bend and ∪PK has at most two bends, a contradiction. Therefore,

S(Ps,∪PK) consists of one segment for every vertex s ∈ S.

If ∪PK has two bends, (without loss of generality the subpath between the bends

is vertical) then we subdivide the top and bottom edges of this vertical subpath, so that

the vertical distance between any two horizontal edges in different subpaths of ∪PK is

at least three. Consider the path Ps for some s ∈ S. By the discussion in the previous

paragraph, Ps intersects PK in one segment. Consider the (at most two) subpaths

(that we term tails in this discussion) of Ps \ PK . Every such tail can be shortened to

one edge without affecting the relationship of Ps with the paths PK as Ps intersects

with PS in one segment. Moreover, for every s′ ∈ S, (i) s is not adjacent to s′, and (ii)

after the shortening of the tails of Ps and Ps′ , the two paths are non intersecting. Let

〈H ′,P ′〉 be the resulting representation. Then H ′ consists of a path P ′
K with at most

2 bends where the horizontal edges are at distance at least 3 to each other. Moreover,
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∪P ′ \ ∪P ′
K consists of edges each of which intersects P ′

K in one vertex. We conclude

that ∪P ′ is a tree. Therefore, S(K,S,E) is B1-ENPT.

In the rest of this section we assume without loss of generality that K is maximal,

i.e. that no vertex of S is adjacent to all vertices of K. We also assume that G does

not contain isolated vertices and twins.

Theorem 5.3. A split graph G = S(K,S,E) is B1-ENPG if and only if S can be

partitioned into two sets SL, SR such that the K-SL and K-SR incidence matrices have

the consecutive ones property. Moreover, if G is B1-ENPG it has a representation

〈H,P〉 such that

(i) Pu has no bends whenever u ∈ K, and

(ii) whenever v ∈ S (i) Pv has one bend, (ii) eK /∈ Pv, and (iii) Pv ∩ ∪PK 6= ∅.

Proof. (⇒) Assume that G is B1-ENPG. By Lemma 5.2, G has a representation

〈H,P〉 withH being a tree. We assume without loss of generality that ∪PK is a straight

line between two vertices qL ∈ TL, qR ∈ TR. Because otherwise we can transform ∪PK

into a straight line, by first replacing eK by a sufficiently long path and then rotating

the entire subtree hanging from a bend point by 90 degrees. The edge eK divides the

tree into two subtrees TL and TR and the path ∪PK into two paths PL and PR. We

subdivide the edge eK into three edges eL, eK , eR such that eL ∈ TL (resp. eR ∈ TR).

Consequently, every path P ∈ P that contains one of these three edges contains all of

them. Suppose that a path Pv representing a vertex v ∈ S contains eK . If Pv does not

have a bend then v is adjacent to all the vertices of K, contradicting the fact that K

is maximal. Therefore, Pv has one bend. Assume without loss of generality that the

bend of Pv is in TR. Then we can remove all the edges Pv ∩ (TL ∪ {eK}) from Pv to

get an equivalent representation in which Pv does not contain eK . Therefore, there is

a representation of G in which every path of PS is contained in one of TL, TR.

For X ∈ {L,R}, let SX
def
= {v ∈ S : Pv ⊆ TX}. By the preceding discussion

{SL, SR} is a partition of S. Consider a vertex v ∈ SX , i.e. Pv ⊆ TX . If Pv does not
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Figure 5.3. The representation of a B1-ENPG split graph.

have a bend then it does not split from any path of PK . Therefore, we can get an

equivalent representation in which Pv has one bend by first moving the endpoint of Pv

that is farther from eK to qX , and then adding an edge to Pv at qX so that qX becomes

a bend of Pv. Let P ′
v

def
= Pv ∩ ∪PK for every v ∈ S. If the bend of Pv is the endpoint

of P ′
v closer to eK then Pv splits from every path of PK that it intersects. In this case

v is isolated, contradicting our assumption. We conclude that the bend of Pv is the

endpoint of P ′
v that is farther from eK . Figure 5.3 depicts the subtree TR of such a

representation.

As every path Pu ∈ PK contains eK , it has one endpoint in PL and one endpoint

in PR. For X ∈ {L,R} the order of the endpoints of PK on PX induces a permutation

σX on K. Consider the K-SX incidence matrix, so that the rows representing vertices

u ∈ K are ordered in accordance to the permutation σX . Consider a vertex v ∈ SX

and its corresponding path Pv ⊆ TX . Let u ∈ K be a neighbor of v in G. We observe

that the endpoint of Pu in TX is in P ′
v. Then the endpoints of all the paths representing

neighbors of v are in P ′
v, i.e. they are consecutive in the permutation σX . In other

words all the ones in column v of the K-SX incidence matrix are consecutive.

(⇐) Assume that S is partitioned into two sets SL and SR such that for X ∈
{L,R} the K-SX incidence matrix has the consecutive ones property, and let σX be

a permutation of K that makes the ones of every column of the corresponding matrix

consecutive. We now construct a B1-ENPG representation of G. For a vertex u ∈ K,

Pu is the path between the vertices (−2σL(u), 0) and (2σR(u), 0). For v ∈ SX , let

u1(v), u2(v) be the indices of the first and last ones of column v of the K-SX incidence

matrix. If v ∈ SR then Pv is a one bend path from (2u1(v) − 1, 0) to (2u2(v) + 1, 1)

with a bend at (2u2(v) + 1, 0), otherwise Pv is a one bend path from (−2u1(v) + 1, 0)
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to (−2u2(v) − 1, 1) with a bend at (−2u2(v) − 1, 0). We first note that K is a clique

because PK is a horizontal path and every path of PK contains the edge (0, 0), (1, 0).

Second, we note that S is an independent set because all the paths of PS are L shaped

with the same orientation. Moreover, their bend points are distinct. Therefore any

two intersecting such pats split at one of these bend points. We now observe that for

any v ∈ SX and u ∈ K, Pu ∼ Pv if and only if σX(u) ∈ [u1(v), u2(v)]. By the way

u an v are chosen, the last statement holds if and only if the corresponding entry in

the K − SL incidence matrix is one, i.e. u and v are adjacent in G. Therefore, the

constructed paths constitute a representation of G.

5.3.2. Two Consequences of The Characterization of B1-ENPG Split Graphs

The next two results (Lemma 5.4 and Theorem 5.5) are implied by the above

characterization of Theorem 5.3.

Lemma 5.4. (i) If S(K,S,E) is a twin-free B1-ENPG split graph then

√

|K| ≤ |S| < |K|2 .

(ii) All split graphs S(K,S,E) with |K| ≤ 4 are B1-ENPG.

(iii) There is a split graph S(K,S,E) with |K| = 5 that is not B1-ENPG.

Proof. (i) Let {SL, SR} be a partition of S and σL, σR be the permutations of K

satisfying the conditions of Theorem 5.3. We order the rows of the K-SL and

K-SR incidence matrices by these permutations so that the one entries of every

column are consecutive. For X ∈ {L,R}, every column of K-SX has one row

containing its first 1 and at most one row containing its first zero after its last 1

entry. Consider the (at most) 2 |SX | rows defined in this way. We observe that

any other row of the K-SX incidence matrix is identical to one of these rows. To

see this observation, let i be a row from the 2 |SX | rows and j > i the first row

different from i. If there is a column that contains a 1 in the i-th row and a 0
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in the j-th row, then j contains the first 1 of this column. Similarly, if a column

contains a 0 in the i-th row and a 1 in the j-th row, then row j contains the first

0 after the 1-s of this column. Now suppose that |K| > 4 |SL| · |SR|. Then there

are at least two vertices of K whose corresponding rows in both of K-SL and

K-SR matrices are identical, contradicting our assumption that G is twin-free.

Therefore |K| ≤ 4 |SL| · |SR| ≤ |S|2.
Let Sd be the set vertices of S having degree d, and let v ∈ Sd ∩ SL. Then, when

the rows of the K-SL incidence matrix are ordered by the permutation σL, the

column v contains exactly d consecutive ones. There are |K|+1−d possible such

columns. As the graph is twin-free, we have |Sd ∩ SL| ≤ |K|+ 1− d implying

|Sd| ≤ 2(|K|+ 1− d). (5.1)

We conclude

|S| = |S1|+
|K|−1
∑

d=2

|Sd|+
∣

∣S|K|
∣

∣ ≤ |K|+
|K|−1
∑

d=2

2(|K|+ 1− d) + 1

= |K|+ (|K| − 2)(|K|+ 1) + 1 = |K|2 − 1.

(ii) It is sufficient to show for K = [4] and S = 2K where every vertex of S is

adjacent to a different subset of vertices of K. Every two permutations σL, σS

satisfy the consecutiveness condition for subsets of size 0, 1 and 4. Let σL be the

identity permutation and σR = (3142). It is easy to verify that they satisfy the

consecutiveness conditions of all the sets.

(iii) Consider a split graph G = (K,S,E) with K = [5] and |S| = 9 <





5

2



 where

every vertex of S is adjacent to a distinct pair of K. We have |S2| = |S| = 9.

Therefore, G is not B1-ENPG as otherwise it would constitute a contradiction

to (5.1).
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Figure 5.4. The B2-ENPG representation of a non-B1-ENPG split graph described
in the proof of Theorem 5.5.

Theorem 5.5. B1-ENPG ( B2-ENPG.

Proof. Consider the split graphG = (K,S,E) whereK = [5], S = {a, b, c, d, e, f, g, h, i}
and N(a) = {1, 2}, N(b) = {2, 3}, N(c) = {3, 4}, N(d) = {4, 5}, N(e) = {2, 5},
N(f) = {2, 4}, N(g) = {1, 4}, N(h) = {1, 3}, N(i) = {3, 5}. We have shown in the

proof of Lemma 5.4 that G /∈ B1-ENPG. Figure 5.4 depicts a B2-ENPG representa-

tion of G.

5.3.3. NP-completeness of B1-ENPG split graph recognition

We now proceed with the NP-completeness of B1-ENPG recognition. We first

present a preliminary result that can be useful per se. Clearly, if the edge set of a

graph G can be partitioned into two Hamiltonian cycles, then G is 4-regular. However,

in the opposite direction we have the following:

Theorem 5.6. The problem of determining whether the edge set of a 4-regular graph

can be partitioned into two Hamiltonian cycles is NP-complete.

Proof. The Hamiltonian cycle problem is NP-complete even for 3-regular graphs [30].

The theorem now follows from the fact that a 3-regular graph is Hamiltonian if and
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only if the edge set of its (4-regular) line graph can be partitioned into two Hamiltonian

cycles [31].

A graph is almost d-regular if it can be obtained by removing a vertex from a

d-regular graph. Clearly, a graph is almost d-regular if and only if all its vertices have

degree d, except for d vertices with degree d-1. If the edge set of a graph can be

partitioned into two hamiltonian paths, then it is almost 4-regular. On the other hand

the edge set of an almost 4-regular graph can be partitioned into two hamiltonian paths

if and only if the edge set of the corresponding 4-regular graph can be partitioned into

two hamiltonian cycles. Therefore,

Corollary 5.7. The problem of determining whether the edge set of an almost 4-regular

graph can be partitioned into two Hamiltonian paths is NP-complete.

Before stating the main result of this section we remark that a column of a binary

matrix containing at most one 1 entry has consecutive ones under every permutation

of the rows of the matrix. Therefore, a split graph is B1-ENPG if and only if the

graph obtained from it by the removal of all isolated vertices and degree 1 vertices is

B1-ENPG. However,

Theorem 5.8. The B1-ENPG recognition problem is NP-complete even for split

graphs (K,S,E) where d(v) = 2 for every v ∈ S.

Proof. The proof is by reduction from the problem of decomposing an almost 4-regular

graph into two Hamiltonian paths. Given an almost 4-regular graph G, we construct

the split graph (K,S,E) where K = V (G), S = E(G) and the edges of the split

graph E = {{e, u} , {e, v} : ∀e = {u, v} ∈ E(G)}. It remains to show that (K,S,E) is

B1-ENPG if and only if E(G) can be partitioned into two Hamiltonian paths.

Assume that E(G) can be partitioned into two Hamiltonian paths HL and HR.

This induces a partition of S into SL = E(HL) and SR = E(HR). Moreover, for

X ∈ {L,R} the order of the vertices of G in HX induces a permutation σX of the
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vertices of K = V (G). Let X ∈ {L,R} and e = {u, v} ∈ HX . Then u and v are

consecutive in the permutation σX . However, u and v are the only indices that contain

a one in the column of e. Therefore, the K-SL incidence matrix with rows ordered

according to σX has consecutive ones in every column. Therefore, by Theorem 5.3,

(K,S,E) is B1-ENPG.

Now assume that (K,S,E) is B1-ENPG. Then, by Theorem 5.3, S can be

partitioned into two sets SL and SR and there are two permutations σL, σR of K such

that for X ∈ {L,R} the K-SX incidence matrix has consecutive ones in every column

when its rows are ordered according to σX . The partition {SL, SR} induces a partition

{EL, ER} of E(G). The permutations σL, σR correspond to Hamiltonian paths HL, HR

of K (a priori, not necessarily a Hamiltonian path of G). Let e = {u, v} ∈ SX = EX .

Then u and v are consecutive in σX , thus adjacent in the Hamiltonian path HX .

Therefore, e ∈ E(HX). We conclude

EL ⊆ E(HL)

ER ⊆ E(HR)

E(G) = EL ∪ ER ⊆ E(HL) ∪ E(HR)

|E(G)| ≤ |E(HL)|+ |E(HR)| − |E(HL) ∩ E(HR)|

Let n = |V (G)|. As G is almost 4-regular, |E(G)| = (4(n − 4) + 3 · 4)/2 = 2n − 2.

Moreover, |E(HR)| = |E(HL)| = n − 1 as HL and HR are Hamiltonian paths of K.

Substituting in the above inequality, we get

2n− 2 ≤ 2(n− 1)− |E(HL) ∩ E(HR)|

implying that (i) E(HL)∩E(HR) = ∅ and that (ii) all inclusions above can be replaced

by equalities. By (i) HL and HR are disjoint Hamiltonian paths of K, and by (ii) all

their edges are edges of G, i.e. they are Hamiltonian paths of G.
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A double interval graph is the intersection graph of a set of pairs of intervals in

the real line. It is known that every 2-split graph is a double interval graph [32].

Corollary 5.9. The B1-ENPG recognition problem is NP-complete even when re-

stricted to double interval graphs.

5.4. Cobipartite Graphs

In Section 5.4.1, we characterize B1-ENPG co-bipartite graphs. We show that

there are two types of representations for B1-ENPG co-bipartite graphs. For each type

of representation, we characterize their corresponding graphs. These characterizations

lead to a polynomial-time recognition algorithm. However we show in Section 5.4.2

that there is also a linear-time recognition algorithm.

By the following two observations, in the sequel we focus on connected twin-free

graphs.

Observation 5.10. Let G be a graph and G′ obtained from G by removing a twin

vertex until no twins remain. Then, G is Bk-ENPG if and only if G′ is Bk-ENPG.

Observation 5.11. A graph G is Bk-ENPG if and only if every connected component

of G is Bk-ENPG.

5.4.1. Characterization of B1-ENPG Co-bipartite Graphs

We proceed with definitions and two related lemmas (Lemma 5.14, Lemma 5.15)

that will be used in each of the above mentioned characterizations.

Let S be a path of a graph H with endpoints u, v. Two path sets Pu, Pv meet at

S if (i) every path of Px contains x where x ∈ {u, v}, (ii) has an endpoint among the

internal vertices of S, and (iii) a pair of paths Pu ∈ Pu, Pv ∈ Pv may intersect only in

S (see Figure 5.5).
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S

Pu

u v
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Figure 5.5. Two path sets Pu, Pv meet at a path S with endpoints u and v.

A graph G = (V,E) is a difference graph (equivalently bipartite chain graph) if

every vi ∈ V can be assigned a real number ai and there exists a positive real number

T such that (i) |ai| < T for all i and (ii) {vi, vj} ∈ E if and only if |ai − aj| ≥ T . Every

difference graph is bipartite where the bipartition is according to the sign of ai.

Theorem 5.12. [33] If G = (V,E) be a bipartite with bipartition V = X ∪ Y . Then

the following statements are equivalent:

(i) G is a difference graph with bipartition V = (X ∪ Y ).

(ii) Let δ1 < δ2 < . . . δs be distinct nonzero degrees in X, and set δ0 = 0. Let

σ1 < σ2 < . . . σt be distinct nonzero degrees in Y , and set σ0 = 0. Let X =

X0 ∪ X1 ∪ . . . Xs, Y = Y0 ∪ Y1 ∪ . . . ∪ Yt, where Xi = {x ∈ X|d(x) = δi}, Yj =

{y ∈ Y |d(y) = δj}. Then s = t and for x ∈ Xi, y ∈ Yj, {x, y} ∈ E if and only if

i+ j > t.

Theorem 5.13. [33] A graph is a difference graph if and only if it is bipartite and

2K2-free.

Lemma 5.14. Given a difference graph G = (K,K ′, E) and a path S of length at least

t + 2 there is a B1-ENPG representation in which PK and PK′ meet at S where t is

the number of distinct nonzero degrees of K in G.

Proof. Let δ1 < δ2 < . . . δs (resp. σ1 < σ2 < . . . σt) be the distinct nonzero degrees in

K (resp in K ′). By Theorem 5.12 we have s = t. Assume that the given path S has a

length t+2. We construct the paths of PK (resp. PK′) between the vertex (0,−1) and
(0, i) (resp. between the vertex (0, t− j) and (0, t+1)) for x ∈ K (resp. x′ ∈ K ′) such

that d(x) = δi (resp. (d(x
′) = σj)). With this construction PK ,PK′ meet at S between

(0,−1) and (0, t+1). By Theorem 5.12 two paths Px ∈ PK , Px′ ∈ PK′ intersect if and
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only if i+ j > t. Now assume desired length of S is bigger than t+2 then we subdivide

the edges of S without changing the relations of paths in P .

Lemma 5.15. If two sets PK ,PK′ of one-bend paths meet at a path S then GB is a

difference graph.

Proof. Let u, v be the endpoints of S. Let T = |E(S)| + 1 and ri (resp. lj) be the

endpoint of the path Pi ∈ PK (resp. Pj ∈ PK′) among the internal vertices of S.

Let ai = |E(pS(u, ri))| (resp. aj = − |E(pS(lj, v))|) where pT (x, y) is the unique path

between vertices x and y of a tree T . By definition, |ai| ≤ |E(S)| < T for every

i ∈ K ∪ K ′. Two paths Pi ∈ PK , Pj ∈ PK′ have an edge in common if and only if

|ai − aj| ≥ |E(S)|+ 1 = T . Therefore, GB is a difference graph.

Two representations 〈H,P〉 and 〈H ′,P ′〉 are bend-equivalent if they are represen-

tations of the same graph G and there is a one to one correspondence between P and P ′

such that the corresponding paths have the same number of bends. We proceed with

the following lemma that classifies all the B1-ENPG representations of a co-bipartite

graph into two types.

Lemma 5.16. Let G = (K,K ′, E) be a connected B1-ENPG co-bipartite graph with

a representation 〈H,P〉. Then

(i) |S(K,K ′)| ∈ {1, 2}, and
(ii) whenever |S(K,K ′)| = 1 there is a bend-equivalent representation 〈H ′,P ′〉 such

that ∪P ′ is a tree T ′ with ∆(T ′) ≤ 3 with at most two vertices of degree 3.

(iii) whenever |S(K,K ′)| = 2 the paths ∪PK and ∪PK′ intersect as depicted in Figure

5.6b.

Proof. By Corollary 4.10, ∪PK and ∪PK′ are two paths with at most 2 bends each.

Let eK (resp. eK′) be an arbitrary edge of ∩PK (resp. ∩PK′). ∪PK and ∪PK′ intersect

in at least one edge, because otherwise G is not connected. Therefore, |S(K,K ′)| ≥ 1.

We consider two disjoint cases:
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• |S(K,K ′)| = 1. In this case it is sufficient to prove ii). Let T = ∪P and S be the

unique segment of S(K,K ′). Any vertex of degree at least 3 in T is an endpoint

of S, therefore there are at most 2 such vertices. On the other hand an endpoint

of S has degree at most 3. Therefore ∆(T ) ≤ 3 and there are at most 2 vertices

of degree 3 in T .

If T does not contain a cycle then T is a tree and the claim holds. Assume ∪P
contains a cycle C. We will modify the paths and end up with a representation

where C does not exist and we will make sure that we keep the bends of the

paths. If ∪PK ⊆ ∪PK′ then C ⊆ ∪PK′ implying that ∪PK′ contains 4 bends,

a contradiction. Therefore there exist two edges e1 ∈ PK \ PK′ and e2 ∈ PK′ \
PK . We can also assume that e1 and e2 are consecutive, since otherwise either

S(K,K ′) > 1 or C ⊆ S but S may contain at most 2 bends.

We subdivide e1 and e2 into e′1, e
′′

1 and e′2, e
′′

2 respectively. Assume e′1 (resp e′2) is

closer to S in C than e
′′

1 (resp. e
′′

2). We remove all the edges of PK (resp. PK′)

starting from e
′′

1 (resp. e
′′

2) to the tail of PK (resp. PK′) which is closer to e1 (resp.

e2) to S. After this operation we do not lose any edge-intersection between any

pair of paths since they do not belong to S. We also do not lose any splitting

since any pair of splitting at e1 or e2 are now splitting at e′1 or e′2. Let v be the

common vertex of the consecutive edges e1, e2, v is not a bend since otherwise

∪P would have more than 4 bends. Therefore this new representation is bend

equivalent to 〈H,P〉.
• |S(K,K ′)| ≥ 2. We claim that ∪S(K,K ′) (= ∪PK ∩ ∪PK′) contains only hori-

zontal edges, or only vertical edges. Indeed, assume that there is a vertical edge

eV and a horizontal edge eH in ∪S(K,K ′). We observe that there is a unique

one bend path connecting eV and eH , and that any other connecting these edges

contains at least three bends. Therefore, both ∪PK and ∪PK′ contain this path.

We conclude that eV and eH are in the same segment. As any other edge is either

horizontal or vertical, we can proceed similarly for all the edges of ∪S(K,K ′) and

prove that they all belong to the same segment, contradicting the fact that we

have at least 2 segments. Assume without loss of generality that all the edges of

∪S(K,K ′) are vertical. Then every segment is a vertical path. No two segments
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Type II B1-ENPGType I B1-ENPG

(a) (b)

b b

Figure 5.6. Two types of B1-ENPG representation of connected co-bipartite graphs:
(a) Type I: |S(K,K ′)| = 1, ∪P is isomorphic to a tree T with ∆(T ) ≤ 3 and at most
two vertices u, v having degree 3, (b) Type II: |S(K,K ′)| = 2, PK (resp. PK′) has
exactly two bend points u, v (resp. u′, v′).

can be on the same vertical line, because this will require at least one of ∪PK ,

∪PK′ to contain four bends. Moreover, three vertical segments in distinct vertical

lines imply that PK and PK′ contain at least four bends each. Therefore, there

are exactly 2 vertical segments and PK (also PK′) has exactly two bends.

Let u, v (resp. u′, v′) be the bends of ∪PK (resp. ∪PK′). Then S(K,K ′) =

{Su, Sv} where Su (resp. Sv) is on the same vertical line as u and u′ (resp. v and

v′). Moreover eK (resp. eK′) is between u and v (resp. u′ and v′) since otherwise

we would have paths crossing both u and v (resp. u′ and v′) and thus 2 bends.

Now consider the situation where u and u′ are on the same side of Su on their

common vertical line. Every path intersecting with Su cross the same endpoint

of Su, implying that if a pair of paths from distinct cliques intersect at Su, they

split at this endpoint. As the same holds for the paths intersecting in Sv, we

conclude that G is not connected, contradiction to our assumption. Therefore,

u and u′ (resp. v and v′) are on different sides of Su (resp. Sv), as depicted in

Figure 5.6b.

Based on Lemma 5.16, a B1-ENPG representation of a connected co-bipartite

graph G = (K,K ′, E) is Type I (resp. Type II ) if S(K,K ′) = 1 (resp. S(K,K ′) = 2).

We proceed with the characterization of B1-ENPG graphs having a Type II
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representation that turns out to be simpler than the characterization of the others.

Lemma 5.17. A connected twin-free co-bipartite graph G = C(K,K ′, E) has a Type II

B1-ENPG representation if and only if the bipartite graph GB = B(K,K ′, E) contains

at most two non-trivial connected components each of which is a difference graph.

Proof. (⇒) Let 〈H,P〉 be a Type II B1-ENPG representation of G and u, v (resp.

u′, v′) be the bends of ∪P (resp. ∪P ′) as depicted in Figure 5.6b. For x ∈ {u, v},
let Sx be the segment contained in the path between x and x′. The paths of P not

intersecting with any of Su, Sv correspond to trivial connected components of GB.

There is at most one such path in PK (resp. PK′) as G is twin-free.

Each one of the remaining paths intersects exactly one of Su, Sv, as otherwise

such a path would contain two bends. For X ∈ {K,K ′} and x ∈ {u, v} let PXx
be

the paths of PX intersecting Sx. Then PKx
and PK′

x
meet at Sx. By Lemma 5.15,

GB[Kx ∪K ′
x] is a difference graph.

(⇐) We construct a Type II representation for the maximal case, i.e. GB con-

tains exactly two trivial connected components and two non-trivial connected com-

ponents. Let w ∈ K and w′ ∈ K ′ be the two trivial connected components of GB

and B(Ku, K
′
u, Eu), B(Kv, K

′
v, Ev) be the two non-trivial connected components of

GB. We construct a rectangle as depicted in Figure 5.6b having vertical lines with

max(min(|Ku| , |K ′
u|),min(|Kv| , |K ′

v|)) + 2 edges, and horizontal lines with one edge

eK = {u, v} and eK′ = {u′, v′}. For X ∈ {K,K ′}, and x ∈ {u, v} the paths PXx
start

with eX and enter segment Sx. The other endpoints of the paths will be in the segment

Sx. Then, for x ∈ {u, v}, PKx
and PK′

x
meet at Sx. Since B(Kx, K

′
x, Ex) is a difference

graph, by Lemma 5.14, the endpoints can be determined such that PKx
∪ PK′

x
is a

representation of B(Kx, K
′
x, Ex). Pw (resp. Pw′) consists of the edge eK (resp. eK′). It

is easy to verify that this is a representation of G.

We proceed with the characterization of the B1-ENPG graphs with a Type I

characterization. For this purpose we resort to the following definitions from [34].
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Let G = B(V, V ′, E) be a bipartite graph and M ⊆ V ∪ V ′. A vertex v ∈ V \M
(resp. v ∈ V ′ \M) distinguishes M if it has a neighbour in M ∩ V ′ (resp. M ∩ V )

and a non-neighbour in M ∩ V ′ (resp. M ∩ V ). A nonempty subset M of V ∪ V ′ is a

bimodule of G if no vertex distinguishes M . It follows from the definition that V ∪V ′ is

a bimodule of G, and so are all the singletons and all the pairs with exactly one vertex

from V . These bimodules are the trivial bimodules of G.

A zed is a graph isomorphic to a P4 or any induced subgraph of it. We note that

a trivial bimodule is a zed.

Lemma 5.18. A connected twin-free co-bipartite graph G = C(K,K ′, E) has a Type I

B1-ENPG representation if and only if G contains a zed Z such that

(i) Z is a bimodule of GB = B(K,K ′, E), and

(ii) GB \ Z is a difference graph.

Moreover, if Z is a minimal set of vertices that satisfies i),ii) and G[Z] is a set

of two isolated vertices, then for the unique segment S of S(K,K ′) the following hold

(i) S is contained in at least one of the paths of PZ,

(ii) the endpoints of S have degree 3 in ∪P and these endpoints constitutes split(∪PK ,∪PK′).

Proof. (⇒) Let 〈H,P〉 be a Type I B1-ENPG representation of G. By Lemma 5.16,

|S(K,K ′)| = 1 and ∪P is a tree. Let u, v be the endpoints of the unique segment S of

S(K,K ′). We consider the following disjoint cases

• {eK , eK′} * E(S): Let without loss of generality eK /∈ E(S) and u closer to eK

than v. Consider two paths Px′ , Py′ ∈ PK′ that cross u. We observe that these

paths are indistinguishable by the paths of PK . Namely, every path of PK either

does not intersect any one of Px′ , Py′ , or intersects both and splits from both at

u. Therefore the corresponding vertices x′, y′ are twins. As G is twin-free we

conclude that there is at most one path of PK′ that crosses u. Using the same
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a difference subgraph of GB
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a zed of G

Figure 5.7. (a) Four special paths which are corresponding to a zed (b) The type of
vertices and edge relations of a B1-ENPG cobipartite graph having a Type I repre-
sentation.

argument it can be shown that there is at most one path of PK that crosses v.

Let PZ′ be a set of these at most two paths. Namely, PZ′ consists of all the

paths of PK′ crossing u and all the paths of PK that cross v. We now observe

that ∪(P \PZ′) is a path. Let S ′ be the sub-path of this path between the edges

eK and eK′ . The paths P \ PZ′ meet at S ′. Therefore, GB \ Z ′ is a difference

graph. We note that the path Px ∈ PK′ that crosses u is an isolated vertex of

GB, therefore for Z = Z ′ \ {x} we have that GB \ Z is a difference graph too.

Since |Z| ≤ 1 we have: (i) Z is a trivial bimodule of GB, (ii) Z is a zed, (iii) the

second part of the claim holds vacuously.

• {eK , eK′} ⊆ E(S): Assume without loss of generality that eK is closer to u than

eK′ , see Figure 5.7. Consider two paths Px′ , Py′ ∈ PK′ that cross u but not v. We

observe that these paths are indistinguishable by the paths of PK . Therefore, the

corresponding vertices are twins. As G is twin-free we conclude that there is at

most one path P u
K′ of PK′ that crosses u and does not cross v. Similarly there is at

most one path P u,v
K′ of PK′ that crosses both u and v, at most one path P v

K of PK

that crosses v but does not cross u and at most one path Pu,v
K of PK that crosses

both u and v. Let PZ be the set of these at most four paths. As in the previous

case, after the removal of these paths we remain with a path and the GB \Z is a

difference graph. Assuming that all the four paths exist, it is easy to verify that

their corresponding vertices constitute a zed where the only edge is between the
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vertices corresponding to P v
K and P u

K′ . Therefore, Z is a zed. Finally, we observe

that P v
K and P u,v

K are distinguishable only by P u
K′ ∈ PZ . In other words they are

indistinguishable by paths from PK′ \PZ . By symmetry, we conclude that Z is a

bimodule of GB. Finally we note that if GB[Z] consists of two vertices and none

of the corresponding paths contains the segment S then these paths are P u
K′ and

P v
K . But P

u
K′ ∼ P v

K . Therefore, if GB[Z] consists of two isolated vertices then at

least one of the corresponding paths contains S. If both paths contain S, then

these paths are P uv
K and P uv

K′ and we have split(∪PK ,∪PK′) ⊇ split(P uv
K , P uv

K′ ) as

claimed. Otherwise, one of the paths does not contain S. Let, without loss of

generality this path be P u
K′ . Then no path of PK′ crosses v. We conclude that

∪(P \ {P u
K′}) is a path. Contradicting the assumption that Z is a minimal set

satisfying the claimed properties.

(⇐) Given a zed Z of G satisfying the conditions of the lemma, we construct a Type

I representation 〈H,P〉 as follows. Without loss of generality we assume that Z is

a P4. Let ℓ = min(|K| , |K ′|) + 2. The subgraph GB \ Z is a difference graph. Let

V (Z) = {y, x, x′, y′} where x, y ∈ K, x′, y′ ∈ K ′ and {x, x′} ∈ E. Px (resp. Py) is a

path between (0, 0) (resp. (−1, 0)) and (ℓ, 1) with a bend at (ℓ, 0). Px′ (resp. Py′) is a

path between (ℓ, 0) (resp. (ℓ+1, 0)) and (0,−1) with a bend at (0, 0). It is easy to verify

that this correctly represents Z. The representation of the difference graph GB \ Z is

two sets of paths that meet at the line segment between (0, 0) and (ℓ, 0). By Lemma

5.14, the endpoints of the paths within this segment can be determined according to the

difference graph GB \Z. The other endpoints of these paths are determined as follows.

As Z is a bimodule we haveNG(x)\{x′} = NG(y) andNG(x
′)\{x} = NG(y

′). The other

endpoint of every path of PK′∩NG(y) (resp. PK′\NG(y)) is (ℓ, 0) (resp. (ℓ + 1, 0)). The

other endpoint of every path of PK∩NG(y′) (resp. PK\NG(y′)) is (0, 0) (resp. (−1, 0)).

By Lemmata 5.17 and 5.18 we have

Theorem 5.19. Let G = C(K,K ′, E) be a connected, twin-free co-bipartite graph, and

GB = C(K,K ′, E). G is B1-ENPG if and only if at least one of the following holds:
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(i) GB contains at most two non-trivial connected components each of which is a

difference graph.

(ii) G contains a zed Z that is a bimodule of GB such that GB \ Z is a difference

graph.

Since all the properties mentioned in Theorem 5.19 can be tested in polynomial

time we have

Corollary 5.20. B1-ENPG co-bipartite graphs can be recognized in polynomial time.

5.4.2. Efficient Recognition Algorithm

In the sequel we describe an efficient implementation of the above idea.

Theorem 5.21. Given a co-bipartite graph G = (K,K ′, E), Algorithm 5.8 decides in

time O(|K|+ |K ′|+ |E|) whether G is B1-ENPG.

Proof. The correctness of the algorithm follows from Observations 5.10, 5.11, Lemma

5.16 and from the correctness of isTypeI and isTypeII that we prove in the sequel.

Let n = |K| + |K ′|, m = |E|. Let also Tdiff (n,m) be the running time of

isDifference on a graph with n vertices and m edges. Similarly, let Tbm(n,m) be

the running time of findBimoduleZed that finds the minimum zed of G that is a

bimodule of GB and contains a given zed Z. All the twins of a graph can be removed in

time O(n+m) by constructing its modular decomposition tree [35] and then searching

(near the leaves of the tree) modules consisting of two adjacent edges.

The correctness of isTypeI is based on Lemma 5.18. A zed Z of G that is a

bimodule of GB such that GB \Z is a difference graph is termed as an evidence through

this proof.

We show that given a twin-free co-bipartite graph G and Z ⊆ V (G), isTypeI

returns “YES” if and only if there exists an evidence Z ′ ⊇ Z. Moreover, we show that
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its running time is at most 55−|Z|(Tdiff (n,m) + Tbm(n,m)) when |Z| ≤ 4 and constant

otherwise. Since isTypeI is invoked initially with Z = ∅, by Lemma 5.18 this will imply

that the algorithm is correct and its running time is O(Tdiff (n,m) + Tbm(n,m)). We

first observe that if Z is not a zed, then no superset of Z is a zed, and the algorithm

returns correctly “NO” in constant time at line 7. Therefore, our claim is correct

whenever Z is not a zed. We proceed by induction on 5 − |Z|. If 5 − |Z| = 0, then

Z is not a zed and the algorithm returns “NO” at constant time. In the sequel we

assume that Z is a zed. In this case, isTypeI verifies at constant time that Z is a zed

and proceeds to line 8 to find (in time Tbm(n,m)) the minimal bimodule Z ′ of GB that

contains Z and is a zed of G. We consider three cases according to the branching of

isTypeI. We denote α(n,m)
def
= Tdiff (n,m) + Tbm(n,m).

• Z′ = Z (i.e. Z is a bimodule of GB), and GB \ Z is a difference graph:

isTypeI verifies at line 10 that GB \ Z is a difference graph. Finally it returns

“YES” which is correct by Lemma 5.18 since Z is an evidence. The running time

is α(n,m), and the result follows since 1 ≤ 55−|Z|.

• Z′ = Z (i.e. Z is a bimodule of GB), but GB \ Z is not a difference graph:

As GB \Z is not a difference graph, there is a set U ⊆ K∪K ′\Z such that GB[U ]

is a 2K2. Every evidence Z ′ ⊇ Z must contain at least one vertex of U because

otherwise GB \ Z ′ contains GB[U ] which is a 2K2. Therefore, the algorithm

proceeds recursively by guessing each time a vertex u ∈ U . The algorithm returns

“YES” if and only if one of the guesses succeeds. Then, the total running time

is at most α(n,m) + 4 · 55−(|Z|+1)α(n,m) =
(

1 + 4
5
· 55−|Z|)α(n,m). Since 1 ≤

54−|Z| = 1
5
55−|Z| we conclude that the running time is at most 55−|Z|α(n,m).

• Z′ 6= Z (i.e. Z is not a bimodule of GB): If Z
′ exists, by definition, any evidence

that contains Z has to contain Z ′. Therefore, isTypeI(G,Z ′) is invoked and its

result is returned. Otherwise, no evidence contains Z and “NO” is returned. The

running time of isTypeI is Tbm(n,m) + 55−|Z′|α(n,m) < 55−|Z|α(n,m).

We conclude that the running time of isTypeI is O(Tdiff (n,m) + Tbm(n,m)).

The correctness of isTypeII follows directly from Lemma 5.17. The connected
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components of GB can be calculated in time O(n + m) using breadth first search.

Therefore, the running time of isTypeII is O(Tdiff (n,m)). Summarizing, the running

time of Algorithm 5.8 is O(Tdiff (n,m) + Tbm(n,m)).

Tdiff (m,n) is O(m+n) [36]. We now show the correctness of findBimoduleZed

and calculate its running time Tbm(m,n).

• Z = ∅ or Z is a singleton or Z is a pair of vertices of K ×K ′. By definition, Z

is both a zed of G and a bimodule of GB. Therefore, Z is the minimal bimodule

of GB that is a zed of G, and contains Z. The algorithm returns Z in constant

time.

• Without loss of generality Z∩K contains at least two vertices u1, u2. We note that

Z ∩K = {u1, u2}, because otherwise Z contains a K3 contradicting the fact that

it is a zed. Let Z ′ be the superset of Z obtained by adding to it all the vertices

that distinguish u1 and u2. In other words, Z ′ def
= (NGB

(u1)△NGB
(u2)) ∪ Z. We

note that Z ′ can be calculated in time O(|K ′|). If Z ′ is not a zed we can return

at constant time that no superset of Z is both a zed of G and a bimodule of GB.

Assume Z ′ is a zed, let U ′ = Z ′ ∩K ′. If |U ′| ≤ 1 then Z ′ is the minimal subset

that contains Z and is both a zed of G and a bimodule of GB. If |U ′| ≥ 2 then

Z ′ is not a zed. Assume |U ′| = 2 and let U ′ = {u′
1, u

′
2}. We now add to Z ′, in

time O(K), the set of vertices of K that distinguish U ′ to get Z ′′. If Z ′′ = Z ′

then Z ′ is the minimal superset of Z that is both a zed of G and a bimodule of

GB. Otherwise every bimodule that contains Z ′ has to contain also Z ′′. However

|Z ′′ ∩K| > |Z ∩K| = 2, implying that Z ′′ contains a K3, is thus not a zed. In

this case, we conclude that there is no superset of Z as required.

We note that all the steps can be executed at time at most O(|K|+ |K ′|) = O(n), i.e.

Tbm(m,n) = O(m,n). Therefore, the running time of the algorithm is O(Tdiff (n,m) +

Tbm(n,m)) = O(n+m).

We conclude with an interesting remark, pointing to a fundamental difference
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Require: A co-bipartite graph G = (K,K ′, E)
if G is not connected then return “YES”
Make G twin-free using modular decomposition.
if isTypeI(G, ∅) or isTypeII(G) then return “YES”.

return “NO”.
function isTypeI(G = C(K,K ′, E), Z)

Require: G is connected, twin-free, Z ⊆ V (G)
Ensure: returns whether there is an evidence Z ′ ⊇ Z for G being Type I

GB ← B(K,K ′, E).
if G[Z] is not a zed then return “NO”.

Z ′ ← findBimoduleZed(G,Z).
if Z ′ = Z then ⊲ Z is a zed of G and also a bimodule of GB

if isDifference(GB \ Z) then return “YES”.

Let U ⊆ (K ∪K ′) \ Z such that GB[U ] is a 2K2.
for u ∈ U do

if isTypeI(G,Z ∪ {u}) then return “YES”.

return “NO”.
else

if Z ′ 6= NULL then return isTypeI(G,Z ′).
else return “NO”.

function isTypeII(G = C(K,K ′, E))
Require: G is connected, twin-free

GB ← B(K,K ′, E). Remove all isolated vertices from GB.
Calculate the connected components G1, . . . , Gk of GB.
if k > 2 then return “NO”.
if isDifference(G1) and isDifference(G2) then return “YES”.

return “NO”.
function findBimoduleZed(G = C(K,K ′, E), Z)

Require: G is twin-free, Z is a zed of G
Ensure: Returns the minimum superset of Z (a zed of G) and a bimodule of GB

if |Z ∩K| ≤ 1 and |Z ∩K ′| ≤ 1 then return Z.

Let without loss of generality Z ∩K = {u1, u2}.
Z ′ ← (NGB

(u1)△NGB
(u2)) ∪ Z.

if Z ′ is not a zed then return NULL.
U ′ ← Z ′ ∩K ′.
if |U ′| ≤ 1 then return Z ′.

Let without loss of generality U ′ = {u′
1, u

′
2}.

Z ′′ ← (NGB
(u′

1)△NGB
(u′

2)) ∪ Z ′.
if Z ′′ = Z ′ then return Z ′

else return NULL.
function isDifference(G) [36]

Require: G is bipartite
Ensure: Returns “YES” if G is a difference graph and a 2K2 of G otherwise.

Figure 5.8. B1-ENPG ∩ Co-bipartite Recognition Algorithm.
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between EPG and ENPG graphs. A graph is Bk-EPG if it has a EPG representation

〈H,P〉 such that every path has at most k bends. It is known that given a Bk-EPG

representation it is always possible to modify the paths such that every path has exactly

k bends. The following corollary shows that this does not hold for Bk-ENPG graphs.

Proposition 5.22. Every B1-ENPG representation of a graph G = C(K,K ′, E) such

that GB = B(K,K ′, E) is isomorphic to 3K2 contains at least one path with zero bend.

Proof. Let 〈H,P〉 be a representation of G. Since GB has three non-trivial connected

components, by Lemma 5.17, 〈H,P〉 is a Type I representation. By Theorem 5.13, GB

is not a difference graph since it contains 2K2. Let Z be a zed of G and a bimodule of

GB such that GB \ Z is a difference graph. If Z consists of two vertices of K (or K ′),

then these two vertices are twins, however G is twin-free. Therefore Z contains two

vertices x ∈ K, y′ ∈ K ′. Moreover, without loss of generality, {x, y′} /∈ E as otherwise

GB \ Z contains a 2K2. We now observe that Z = {x, y′} is a zed of G, a bimodule of

GB and GB \Z does not contain a 2K2. Let y and x′ be the unique neighbors in GB of

x and y′ respectively. Since G[Z] is a set of two isolated vertices, by Lemma 5.18, there

are two split points of ∪PK and ∪PK′ , say u and v. By the same lemma, Px or Py′

crosses u, v. Let Px be such a path. Then Px′ does not cross neither u nor v. Moreover

in any representation of G there is no bend point between two split points otherwise

Px would have more than one bend. Therefore Px′ is a path with zero bend.
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6. CONCLUSIONS

In this thesis, we introduced and studied a new family of graphs, called the graphs

of Edge- Intersecting Non-Splitting Paths (ENP). These graphs enable us to model

optimization problems arising in telecommunication networks. We do not focus on

solving this specific application but instead on establishing results characterizing vari-

ous properties of ENP graphs in order to use them in the design of efficient algorithms.

This work contains non-trivial results about this new graph class that opens a wide

field of research. Many interesting questions are still open and the “split” condition

introduced in this work is not limited to optical networks but enables new applications

to be modeled as a graph problem.

In Chapter 3, we start with a fairly natural case where the host graph is a tree,

namely ENPT graphs. We follow mainly the work of Golumbic and Jamison’s [22] for

a very related graph class EPT. Cycles are simple yet one of the fundamental graph

structures. EPT representation of cycles have a unique and simple characterization

[22]. It turns out that this is not the case for ENPT graphs. There are many non-

equivalent ENPT representations for a given cycle. To make the problem tractable, we

assume that the EPT graph is also given as an input. We propose a new problem; given

a pair of graphs (G,C) where G is an arbitrary graph and C is an Hamiltonian cycle

of G, is there any representation < T,P > such that Ept(P) is isomorphic to G and

Enpt(P) is isomorphic to C. We show that this problem is NP-complete in general,

however for a special case (which is a restriction on the representations) we propose

an algorithm which decides (and constructs a representation) in polynomial-time. As

a by-product, a family of non-ENPT graphs is presented.

In Chapter 4, we consider the general case where the host graph can be an

arbitrary graph. Although the Edge Intersection Graphs of Paths in an arbitrary graph

includes all graphs, we show that this is not true for ENP. We also show that the

class ENP coincides with the family of graphs of Edge-Intersecting and Non-Splitting

Paths in a Grid (ENPG). Following similar studies for EPG graph class, we study
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the implications of restricting the number of bends in the grid, of the individual paths.

We show that restricting the number of bends also restricts the graph class. More

concretely, by restricting the number of bends one gets an infinite sequence of classes

such that every class is properly included in the next one. In addition, we show that

one bend ENPG graphs are properly included in two bend ENPG graphs.

In Chapter 5, we show that trees and cycles are one bend ENPG graphs, and

characterize the split graphs and co-bipartite graphs that are one bend ENPG. We

prove that the recognition problem of one bend ENPG graphs is NP-complete even in

a very restricted subfamily of split graphs. Last, we provide a linear time recognition

algorithm for one bend ENPG co-bipartite graphs.

We now summarize open questions and research directions presented in the pre-

vious chapters.

It is known that EPT recognition is NP-complete. In this work, we show that

it remains NP-complete even if we label edges “splitting” in case of the corresponding

paths split in some representation. The main difficulty originates from deciding a given

clique whether it is represented by an edge clique or a claw clique. The complexity of

the recognition problem when this information is provided by an oracle is open. ENPT

recognition in general is also open. We showed that pair recognition is NP-complete

however this result does not imply that ENPT recognition is NP-complete. Given an

ENPT graph we have the flexibility to choose EPT edge in which case there could be

a polynomial time algorithm. Since the only known forbidden subgraphs of ENPT are

also forbidden for EPT, to answer this question we need more forbidden structures of

ENPT.

Recall that B1-ENPG split recognition is NP-complete. By following a similar

research direction as cycles, another interesting research direction is to investigate the

complexity of (G,S) recognition where (i) G and S are defined on the same vertex set

(ii) S is a split graph (3) Ept(P) = G and Enpt(P) = S.
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The maximum clique problem in ENPT graphs can be solved in polynomial

time using a clique enumeration algorithm even if the representation is not available.

Investigating a more efficient maximum clique algorithm can be an interesting research

direction. The time complexity of other important graph problems such as maximum

independent set and minimum vertex coloring are still open.

Even though Theorem 5.19 gives a characterization of B1-ENPG co-bipartite

graphs, a forbidden subgraph characterization is unkown. We have a list of forbidden

structures, however a complete characterization is work in progress. Theorems 5.3 and

5.19 give characterizations for B1-ENPG split and cobipartite graphs respectively.

Maximum cut problem is NP-complete in split and co-bipartite graphs however using

these structural properties one might be able to devise polynomial time algorithms for

respectively B1-ENPG split and co-bipartite graphs. We have some partial results for

B1-ENPG co-bipartite graphs [29].
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