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Finally, I want to specially thank to my favorite supporters at every time: my
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Gürşahbaz, and Fatih Uyanık.



iv

ABSTRACT

EFFICIENT STRATIFIED SAMPLING FOR FINANCIAL

RISK SIMULATION

Monte Carlo simulation is frequently the only method available for computing

financial risk, particularly under the realistic and complex portfolio models. The naive

simulation generally leads to large confidence intervals on typical risk measures. Thus,

to enhance the efficiency of the estimates, the necessity of variance reduction techniques

becomes apparent. In this thesis, we discuss the efficient implementation of stratified

sampling technique for Monte Carlo simulation problems. As the application field,

we consider the risk evaluation of a linear asset portfolio. For given portfolio and

the loss threshold, tail loss probability and conditional excess values are essential. To

understand the general risk situation, one needs to efficiently estimate these values for

multiple threshold levels in a single simulation. Stratified sampling is especially useful

for such a task as the allocation fractions can be used as decision variables to minimize

the overall error of all estimates. We develop an efficient simulation algorithm that

combines optimal stratification and importance sampling to estimate multiple tail loss

probabilities and conditional excess values for linear asset portfolios under the t-copula

model. Two different classes of objective functions are proposed to represent the overall

error. The first, including the mean squared and the mean squared relative error, allows

for a simple closed-form solution. For the second class of error functions, including the

maximal absolute and the maximal absolute relative error, a simple and fast heuristic

is proposed. The application of the new method, called “OASIS: optimal allocation

stratification and importance sampling”, is explained for linear asset portfolios under

the t-copula model and its performance is demonstrated with numerical examples.
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ÖZET

FİNANSAL RİSK BENZETİMİ İÇİN ETKİN KATMANLI

ÖRNEKLEME

Monte Karlo benzetimi, özellikle gerçekçi ve karmaşık portföy modelleri için fi-

nansal risk hesaplamasında kullanılabilecek tek yöntem olarak karşımıza çıkar. Sade

simulasyon, tipik risk ölçüleri için genellikle geniş güven aralıkları oluşturur. Bu ne-

denle, hesaplanan değerlerin etkinliğini arttımak için varyans azaltma tekniklerine

duyulan ihtiyaç ön plana çıkmaktadır. Bu tezde, Monte Karlo benzetim problem-

leri için katmanlı örnekleme tekniğinin etkin uygulaması incelenmektedir. Uygulama

alanı olarak, doğrusal varlık portföyünün risk değerlemesi düşünülmüştür. Verilmiş bir

portföy ve kayıp eşiği için, kuyruk kayıp olasılıkları ve koşullu kayıp değerleri önem

taşımaktadır. Genel risk durumunu anlamak için bu değerlerin tek bir benzetimde bir-

den farklı eşik değeri için hesaplanması gerekmektedir. Örneklem yerleşim fraksiyon-

larının hesaplanan değerlerin toplam hatasının enküçüklemesinde karar değişkeni olarak

kullanılabilmesi, katmanlı örneklemeyi bu iş için kullanışlı kılmaktadır. Çalışmada, t-

kopula ile modellenen doğrusal varlık portföyleri için birden fazla kuyruk kayıp olasılığı

ve koşullu kayıp değerini hesaplamak üzere, optimal katmanlandırma ve önem örnekle-

mesinin birleşiminden oluşan etkin bir benzetim yöntemi geliştirilmiştir. Toplam hatayı

temsil etmek üzere iki amaç fonkisyon sınıfı önerilmiştir. Birincisi, ortalama hata

karesi ve ortalama göreceli hata karesini içermekte ve kapalı formül çözümlere imkan

tanımaktadır. En büyük mutlak ve en büyük mutlak göreceli hatayı içeren ikinci amaç

fonksiyon sınıfı için basit ve hızlı bir sezgisel çözüm yöntemi sunulmuştur. “Optimal

yerleşimli katmanlandırma ve önem örneklemesi” adı verilen yeni yöntemin t-kopula ile

modellenen doğrusal varlık portfoyleri için uygulaması izah edilmiş ve performansı sayı-

sal örneklerle kanıtlanmıştır.
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ŷj An estimator of yj
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1. INTRODUCTION

The essence of control in the financial world relies on how well the used models

mimic reality and on the precision of the computational methods used. As the models

get more realistic and thus complex, the variety of applicable computational methods

decreases. Nevertheless, simulation is often one of the best alternatives as it leads to

confidence intervals on the pin-point values. In fact, Monte Carlo simulation is widely

used in estimating the profit and loss distribution of a portfolio and thus in computing

risk measures that summarize this distribution (Glasserman, 2004).

To enhance the efficiency of Monte Carlo simulation, one should perform tech-

niques to reduce the variance of Monte Carlo estimators to obtain narrower confidence

intervals. Well-known variance reduction techniques are conditional Monte Carlo (Trot-

ter and Tukey, 1956), antithetic variates (Hammersley and Morton, 1956), control vari-

ates1 , Latin hypercube sampling (McKay et al., 1979), importance sampling (Kahn and

Marshall, 1953), and stratified sampling (Cochran, 1977). While the main objective

of these methods are the same, their basics, ways of implementation and complexities

are different. Moreover, each method has certain advantages and disadvantages when

implemented to different type of problems.

This thesis is mainly focused on stratified sampling (STRS) and its combination

with importance sampling (IS). In both methods, the minimal variance is obtained by

directing sampling effort towards the most important regions of the sampling domain,

i.e., the regions which contribute a larger share to the output variance. Therefore,

they are most effective in rare event simulation problems where we need to observe an

unlikely event in order to estimate the quantity of interest. In these type of simulation

problems, naive Monte Carlo simulation yields a poor estimate since the rare event

may occur only a few times or not at all.

1Boyle et al. (1997) state that the earliest application of control variates to option pricing is Boyle
(1977).
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In fact, estimation of financial risk measures via Monte Carlo is a typical rare

event simulation problem. One value of interest is the tail loss probability, which is the

probability that the loss of the portfolio falls below a certain threshold level. Value-

at-risk, as a risk measure, is defined as the 1 − α quantile of the loss distribution

for a given probability α. There are many publications proposing efficient methods

for risk estimation under different portfolio models. Glasserman et al. (2002) develop

an efficient method for simulating the tail loss probabilities in option portfolios using

delta-gamma approximations. Kang and Shahabuddin (2005) and Basamboo et al.

(2008) use importance sampling for the estimation of multi-factor portfolio credit risk.

Although value-at-risk estimation is mentioned, the main objective of these studies is

to reduce the variance in tail loss probability estimates, as the calculation of value-

at-risk can be realized by interpolating the tail loss probabilities of several threshold

values.

In that context, estimation of multiple values from a single simulation, i.e., mul-

tiresponse simulation is of practical importance. Such an objective can easily be real-

ized using common random numbers (see e.g., Law, 2014). However, under this simple

approach, all estimates yield large variances. Variance reduction techniques can be

utilized to obtain more accurate estimates for multiple values. Among the ones known

in the literature, stratified sampling can be especially useful for such a task as the

sample allocation fractions can be used as decision variables to minimize the overall

error of all estimates.

There are studies on the statistical estimation of multiple values in a population

using stratified sampling (see e.g., Dı́az-Garćıa and Cortez, 2006, 2008; Miller et al.,

2007; Khowaja et al., 2012). However, the potential use of stratified sampling in mul-

tiresponse simulation is overlooked in the literature. The idea is first introduced in the

progress of this thesis - and in Başoğlu et al. (2013) - for minimizing the maximum rel-

ative error of multiple tail loss probability estimates for a linear asset portfolio. Later,

in Başoğlu and Hörmann (2014), the idea is generalized for different type of simulation

problems with a wider class of objective functions that represent the overall error of
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the simulation. These objective functions contain the mean squared (relative) error

and the maximum absolute (relative) error of all estimates. The resulting method is

called “Multiresponse Stratified Sampling” (MRS) and it exhibits a good performance

in simulation problems for which stratification reaches a good variance reduction in the

single response case. The analogy of MRS can also be used for minimizing the variance

of single or multiple ratio estimators.

Stratified sampling - or MRS - can be combined with IS to enhance the efficiency

of the estimates further. One of the objectives of the thesis is to understand why and

how this combination works well. Glasserman (2004) points out that STRS can be con-

sidered as a form of IS since the total stratified sample follows different distributions

under different sample allocations. In other words, STRS is an automatic implementa-

tion of IS restricted to a large family of sampling densities, which are constructed over

the original density by changing the allocation fractions. Using this analogy, the reason

why STRS and IS work well when they are combined is explained and demonstrated

with a numerical example.

The main objective of this thesis is to develop a combined algorithm based on

optimal allocation stratification (OAS) and IS - abbreviated as OASIS - that works

efficiently for both estimating single and multiple estimates. To demonstrate the prac-

tical use and the efficiency of the OASIS algorithm, the problem of risk estimation in

linear asset portfolios is considered. As for the values to be estimated, we consider

tail loss probability and the conditional excess, i.e., the expected portfolio loss given

that the loss exceeds a threshold level. Conditional excess has a ratio estimator and

its variance can be minimized using the analogy of MRS.

In the context of financial simulation, the combination of IS and stratification

was only considered in Glasserman et al. (1999) for option pricing and Glasserman et

al. (2000) for the risk quantification of an asset portfolio. The former paper develops

heuristics for optimal stratification of a single estimate whereas the latter considers

the multiple estimates case but does not use optimal allocation for the stratification.
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Neither of them tries a joint minimization of the errors for several estimates.

For a linear asset portfolio, a realistic assumption on the joint distribution of the

logarithmic asset returns is the t-copula model. Copulas are a popular way of modeling

dependence among financial variables and the necessity of using copulas is stressed by

many authors (see e.g., Frey and McNeil, 2001; Embrechts et al., 2002). Mashal et

al. (2003) suggest that the t-copula fits empirically better than the Gaussian copula

without assuming specific marginal distributions for asset returns. In a more recent

work, Kole et al. (2007) apply goodness-of-fit tests to the t, Gaussian and Gumbel

copula for the risk management of linear asset portfolios. The t-copula is reported

to have a better fit than the Gaussian and Gumbel copulas because it captures the

dependence in the tails better. According to these studies, the t-copula model is

currently one of the most flexible and realistic models for the joint distribution of

logarithmic asset returns.

Unfortunately, the t-copula model does not allow the simple calculation of tail loss

probabilities. Therefore, Sak et al. (2010) developed an efficient IS method to estimate

a single tail loss probability of a linear asset portfolio under the t-copula model. For

estimating multiple tail loss probabilities and conditional excess values under the t-

copula model, the OASIS algorithm combines the IS algorithm of Sak et al. (2010)

and stratified sampling under optimal allocation. The optimal allocation fractions are

determined by using the adaptive optimal allocation (AOA) algorithm suggested by

Étoré and Jourdain (2010) which works iteratively. In each iteration, a portion of the

sample size is allocated optimally based on the information gathered from the total

sample allocated in previous iterations.

The rest of this thesis is organized as follows: Chapter 2 presents a literature re-

view on importance sampling and stratified sampling, explaining some of the automatic

implementations of these methodologies such as the cross-entropy approach (see e.g.,

Rubinstein and Kroese, 2008) and the AOA algorithm of Étoré and Jourdain (2010). In

Chapter 3, typical strata structures for different types of random inputs are explained
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in detail. Chapter 4 describes how to implement OAS for estimating multiple values in

a single simulation. In this context, the MRS methodology of Başoğlu and Hörmann

(2014) is explained. In Chapter 5, a discussion is held on how OAS and IS enhance

the efficiency of the estimates when they are combined. Financial risk simulation is

explained in Chapter 6 along with the implementation details of the OASIS algorithm

for the t-copula model. Chapter 7 covers the numerical experiments on the developed

OASIS algorithm. Finally, in Chapter 8, concluding remarks are provided.

Note that, in this thesis, vectors and matrices are set in bold to enhance read-

ability.
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2. VARIANCE REDUCTION FOR RARE EVENT

SIMULATION

In this section, we mainly follow Glasserman (2004), Rubinstein and Kroese

(2008), and Lemieux (2009) to give the general description of the variance reduction

techniques which form the basis of this thesis. In Section 2.1, we describe general

definition of the Monte Carlo problem along with the Naive Monte Carlo simulation.

Then, in Section 2.2 and 2.3, we give the idea and the implementation details of IS and

STRS. We remind that both of these techniques are capable of reducing the variance

of the estimators in rare event simulations.

2.1. Naive Monte Carlo Simulation

LetX ∈ RD be a random vector with density f , and q : RD → R be a measurable

function2 such that Ef [q2(X)] <∞. Our goal is to compute the unknown value

y = Ef [q (X)] =

∫
x∈RD

q (x) f (x) dx. (2.1)

If the integrand in Equation 2.1 is simple, then we can calculate a closed-form solu-

tion for y. However, in most situations, the closed-form solution is not available. In

these situations, an estimate for y can be obtained by Monte Carlo simulation. The

naive Monte Carlo algorithm generates an independent and identically distributed (iid)

random sample X1, . . . ,XN from density f and returns the naive estimator

ŷNV = N−1

N∑
n=1

q (Xn),

which is unbiased.

2Henceforth, q will be called the simulation function.
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The variance of the naive estimator is V
[
ŷNV

]
= N−1Vf [q(X)] and according to

the central limit theorem (CLT), the asymptotic distribution of

ŷNV − y√
Vf [q (X)]/N

⇒ Normal (0, 1)

is standard normal. An unbiased estimator of Vf [q(X)] is the sample variance of

q (X1) , . . . , q
(
XN

)
, namely:

ŝ2 = (N − 1)−1
N∑
n=1

(
q (Xn)− ŷNV

)2
.

Using the sample standard deviation ŝ, we can construct a confidence interval for y:

ŷNV ± Φ−1 (1− α/2)
ŝ√
N
, (2.2)

where Φ−1 is the inverse of the cumulative distribution function (CDF) of standard

normal distribution and 1− α is the confidence level.

A simple way to reduce the variance of the naive Monte Carlo estimator ŷNV is to

increase the total sample size N . By this way, the error bound of the confidence interval

in Equation 2.2 will decrease with order O
(
N−1/2

)
. However, since the expected time

of the simulation algorithm will increase linearly in N , the efficiency of the naive

estimator will not be affected by this approach.

To find more efficient estimators than the naive Monte Carlo estimator, one must

reduce the variance of the estimator with a factor that must be greater than the factor

of increase in the expected simulation time (Lemieux, 2009). The idea of variance

reduction is to find another simulation function whose expectation is the same as

Ef [q (X)] but whose variance is smaller than Vf [q (X)].
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2.2. Importance Sampling

It is stated by several authors (see e.g, Koopman et al., 2009; Durbin and Koop-

man, 2012) that IS was introduced first in Kahn and Marshall (1953) and Marshall

(1956), and it was first described in the book of (Hammersley and Handscomb, 1964,

Section 5.4). Rubinstein and Kroese (2008) describe IS as the most fundamental vari-

ance reduction technique, as it quite often leads to a dramatic variance reduction, in

particular when estimating rare event probabilities.

IS involves choosing a new density fIS such that fIS(x) 6= 0 for any x ∈ RD for

which f(x) 6= 0. Then, the expectation in Equation 2.1 can be represented as:

Ef [q (X)] =
∫

x∈RD
q (x) f (x) dx =

∫
x∈RD

q (x) ρ (x) fIS (x) dx

= EfIS [q (X) ρ (X)] = EfIS [qIS (X)] ,

where qIS (x) = q (x) ρ (x) and ρ (x) = f (x)/fIS (x) denotes the likelihood ratio or

the Radon-Nikodym derivative of the two densities at x. Then, one can generate an

iid random sample X1
IS, . . . ,X

N
IS from density fIS and evaluate the IS estimator

ŷIS = N−1

N∑
n=1

qIS (Xn
IS) = N−1

N∑
n=1

q (Xn
IS) ρ (Xn

IS),

which is asymptotically normal (see Glasserman, 2004, page 256). The IS estimator ŷIS

is unbiased if the IS density fIS (x) has higher tails than |q (x) f (x)| (see Rubinstein

and Kroese, 2008, page 131).

The variance of the IS estimator is V
[
ŷIS
]

= N−1VfIS [qIS (X)] where:

VfIS [qIS (X)] = EfIS

[
q2 (X)

f 2 (X)

f 2
IS (X)

]
− EfIS

[
q (X)

f (X)

fIS (X)

]2

. (2.3)

It is easy to see that the subtracted expression in Equation 2.3 is equal to y2. By the
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change of the measure, the first expression in Equation 2.3 can be written as:

EfIS

[
q2 (X)

f 2 (X)

f 2
IS (X)

]
= Ef

[
q2 (X)

f (X)

fIS (X)

]
<∞,

where the last inequality is a necessary condition to have a bounded variance for the

IS estimator. This suggests that, preferably, the likelihood ratio ρ (x) = f (x)/fIS (x)

should be bounded (see Rubinstein and Kroese, 2008, page 133).

As a consequence, the variance of the IS estimator can be rewritten:

V [ŷIS] = N−1

(
Ef

[
q2 (X)

f (X)

fIS (X)

]
− y2

)
,

and it is smaller than the naive Monte Carlo estimator when:

Ef

[
q2 (X)

f (X)

fIS (X)

]
≤ Ef

[
q2 (X)

]
.

2.2.1. Optimal Importance Sampling Density

The optimal choice of the IS density is

f ∗IS (x) =
|q (x) f (x)|∫

x∈RD
|q (x) f (x)| dx

, (2.4)

which minimizes VfIS [qIS (X)] (see Rubinstein and Melamed, 1998). In particular, if

q (x) is non-negative, the importance sampling estimator yields zero variance under

the optimal IS density given in Equation 2.4 (Rubinstein and Kroese, 2008).

Since the denominator in Equation 2.4 is unavailable, it is impossible to obtain

f ∗IS in practice. Even if the analysis above gives us some intuition to guide us in our

choice of the IS density fIS, there is, generally, no way of constructing a probability

density function that will achieve the largest variance reduction, or even to construct
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one that will guarantee a variance reduction (Lemieux, 2009). Nevertheless, we might

be able to choose an IS density that imitates the function |q(x)f(x)|.

In practice, the IS density can be selected in a process of trial and error guided

by the following general rules:

• The IS density fIS (x) should mimic the behavior of |q (x) f (x)|.

• The IS density fIS (x) must have higher tails than |q (x) f (x)|.

• The likelihood ratio ρ (x) should be bounded.

If f is a parametric density function, an approach to ease the process of identifying

a good IS density is to restrict our attention to the same distribution family with

different parameters. The parameters of the new distribution are chosen so that the

variance in Equation 2.3 is reduced.

Once the choice of the IS density is restricted to the same distribution family, a

practical solution is to choose the IS parameters such that the mode of the IS density

coincides with the mode of the optimal IS density f ∗IS (see e.g., Glasserman et al., 1999;

Sak et al., 2010). This approach finds a suboptimal but effective IS density with a less

computational cost.

2.2.2. Cross-entropy Approach

An alternative approach is to choose the importance sampling density fIS such

that the cross-entropy (CE) distance between the optimal density f ∗IS in Equation 2.4

and fIS is minimal (Rubinstein and Kroese, 2008). The CE distance between two

densities f ∗IS and fIS is given by:

δ (f ∗IS, fIS) = Ef∗IS

[
ln

f∗IS(X)

fIS(X)

]
=

∫
x∈RD

f ∗IS (x) ln
f∗IS(x)

fIS(x)
dx

=
∫

x∈RD
f ∗IS (x) ln f ∗IS (x) dx−

∫
x∈RD

f ∗IS (x) ln fIS (x) dx,
(2.5)
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where the first expression is independent of the choice of the IS density. We are in-

terested in fCE = arg min {fIS : δ (f ∗IS, fIS)}. Here, fCE is called CE optimal density.

If we are in an unconstrained function space, then fCE = f ∗IS. However, if we restrict

ourselves to a parametric family of densities, then the problem turns out to be a min-

imization problem in the parameter space (see Rubinstein and Kroese, 2008). In that

case, the corresponding density function would be suboptimal in variance minimization.

In fact, in literature, most IS densities are obtained by changing the parameter of

the original sampling density f (see e.g., Glasserman et al., 1999, 2000, 2002; McLeish,

2010; Sak et al., 2010; Başoğlu et al., 2013). Let u denote the vector of original

parameters which are subject to change in IS and let υ be the vector of new parameters

for the IS density. Then, the CE optimization problem turns into:

υCE = arg min {υ : δ (f ∗IS, f (.;υ))} ,

where υCE is called the CE optimal parameter vector. Since the first expression of the

CE distance in Equation 2.5 is independent of υ, the CE optimal parameter vector can

be found by:

max
υ

∫
x∈RD

f ∗IS (x) ln f (x;υ) dx. (2.6)

Under the assumption that q (x) ≥ 0, the expression in Equation 2.6 is equivalent to:

max
υ

∫
x∈RD

q (x) f (x;u) ln f (x;υ) dx = Ef(.;u) [q (x) ln f (x;υ)] .

The solution for this problem can be approximated by:

max
υ

Np∑
n=1

q (Xn) ln f (Xn;υ),

using an iid pilot sample X1, . . . ,XNp of size Np generated from the original density
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f(.;u) (see e.g., Rubinstein and Kroese, 2008).

2.3. Stratified Sampling

The earliest use of stratification is to increase the precision of population esti-

mates. In statistical surveys, when sub-populations within an overall population vary,

it is advantageous to sample each sub-population independently. Stratification is the

process of dividing members of the population into homogeneous subgroups (strata)

before sampling. The strata should be mutually exclusive (every element in the pop-

ulation must be assigned to only one stratum) and also collectively exhaustive (no

population element can be excluded). Then, simple random sampling or systematic

sampling is applied within each stratum. This often improves the representativeness

of the sample by reducing sampling error and may produce a weighted mean that has

less variability than the arithmetic mean of a simple random sample of the population.

As a variance reduction technique, it contains the ideas that are used in statistical

sampling (Cochran, 1977). The main idea is to partition the sample space into I disjoint

and covering subsets (strata) and estimate y using the information in each stratum.

Let ξi, i = 1, . . . , I be a partition of RD into I strata and pi = Pr{X ∈ ξi} is

known for i = 1, . . . , I. We are interested in the estimation of

y = Ef [q (X)] =
I∑
i=1

piEf [q (X) |X ∈ ξi]

based on the latter equality. Let Xi denote the random vector that follows the condi-

tional distribution of X given X ∈ ξi and

yi = Ef [q (X) |X ∈ ξi] = Ef [q (Xi)]

denote the expectation conditional on the i-th stratum.
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The stratified Monte Carlo estimator is calculated using a total sample of size

N . Let Ni be the amount of drawings allocated to stratum i such that N =
∑I

i=1Ni,

and Xn
i , n = 1, . . . , Ni be the independent drawings of Xi. Then, the unbiased Monte

Carlo estimator ŷi of the conditional expectation yi is:

ŷi = N−1
i

Ni∑
n=1

q (Xn
i ), i = 1, . . . , I,

and the stratified Monte Carlo estimator ŷSTRS of y is:

ŷSTRS =
I∑
i=1

piŷi.

The conditional expectation estimates ŷi, i = 1, . . . , I and ŷSTRS are asymptotically

normal for large values of Ni and N , respectively (Glasserman, 2004).

In order to calculate the variance of the stratified Monte Carlo estimator, let s2
i

denote the variance of q(X) conditional on the i-th stratum, namely:

s2
i = V [q (Xi)] = Vf [q (X) |X ∈ ξi] .

Then, the variance of the stratified estimator is:

V
[
ŷSTRS

]
=

I∑
i=1

p2
i

s2
i

Ni

. (2.7)

2.3.1. Optimal Allocation Stratification

To achieve a maximum efficiency with stratified sampling, two questions must be

solved:

• How should we decompose RD into I strata?
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• For given strata, how should we select the sample sizes for the different strata?

Unfortunately, the answer of the first question depends both on the type of the

random input X and on the simulation function q. To see this, we define the stratum

index function S(X) = i if X ∈ ξi. Using the conditional variance formula, the

variance of q (X) can be decomposed into two parts:

Vf [q (X)] = V [Ef [q (X) |S (X)]] + E [Vf [q (X) |S (X)]] . (2.8)

The variance of the stratified estimator in Equation 2.7 uses only the conditional vari-

ances. Thus, it is only influenced by the second component of the decomposition

in Equation 2.8. Therefore, we need to choose strata such that they maximize the

first component of the decomposition in Equation 2.8. On the other hand, the strata

should be computationally tractable, so that we can generate all conditional vectors

Xi, i = 1, . . . , I easily. This issue will be handled in detail in Chapter 3.

Once the strata are fixed, the second question can be answered by defining allo-

cation fractions, πi = Ni/N , the portion of the sample to be allocated in stratum i.

We rewrite the variance of the stratified estimator in terms of allocation fractions:

V
[
ŷSTRS

]
=

I∑
i=1

p2
i

s2
i

Ni

=
1

N

I∑
i=1

p2
i s

2
i

πi
≥ 1

N

(
I∑
i=1

pisi

)2

. (2.9)

The lower bound given in Equation 2.9 is an immediate result of Jensen’s inequality

(1906), since:

I∑
i=1

p2
i s

2
i

πi
=

I∑
i=1

(
pisi
πi

)2

πi ≥

(
I∑
i=1

(
pisi
πi

)
πi

)2

=

(
I∑
i=1

pisi

)2

.

For the choice of allocation fractions, we have two practical possibilities. The first

one is proportional allocation, i.e. to choose allocation fractions πi equal to pi. With
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proportional allocation stratification (PAS), the variance of the stratified estimator will

be:

V
[
ŷSTRS

]
=

1

N

I∑
i=1

p2
i s

2
i

pi
= N−1

I∑
i=1

pis
2
i = N−1E [Vf [q (X) |S (X)]]

which is clearly less than or equal to the variance of the naive estimator, since it uses

only the second component of the variance decomposition in Equation 2.8. However,

it is also greater than or equal to the lower bound given in Equation 2.9, again as a

result of Jensen’s inequality:

I∑
i=1

pis
2
i ≥

(
I∑
i=1

pisi

)2

.

The second choice is the optimal allocation (also called Neyman allocation) strat-

ification (OAS). We can find values πi for which V
[
ŷSTRS

]
is minimized. To do this,

we need to solve the optimization problem:

min
∑I

i=1 π
−1
i p2

i s
2
i

s.t.
∑I

i=1 πi = 1, and πi > 0, i = 1, . . . , I

We can use a Lagrange multiplier λ and rewrite the problem as:

min
∑I

i=1 π
−1
i p2

i s
2
i + λ (π1 + . . .+ πI − 1)

s.t. πi > 0, i = 1, . . . , I

The gradient of the objective function with respect to π = (π1, . . . , πI)
′ is:

(
−π−2

1 p2
1s

2
1 + λ, . . . ,−π−2

I p2
Is

2
I + λ

)
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which is equal to 0 for:

πi = λ−1/2pisi, i = 1, . . . , I

with λ =
(∑I

i=1 pisi

)2

, so that
∑I

i=1 πi = 1. Thus, for fixed strata, the optimal allo-

cation fractions are:

π∗i =
pisi∑I
l=1 plsl

, i = 1, . . . , I (2.10)

which, in fact, attains the lower bound given in Equation 2.9.

The main drawback of OAS is that the calculation of optimal fractions requires

prior information on the conditional standard deviations si, i = 1, . . . , I. Therefore,

it is not possible to determine the optimal allocation fractions directly. A practical

approach is to use the estimates ŝi of conditional standard deviations si obtained

through a pilot study with Np replications. Then, in the main run, the remaining

N − Np replications can be allocated using the estimates of the optimal allocation

fractions in Equation 2.10. At the end of the simulation, the sample generated in the

pilot study is combined with the sample generated in the main run. By this approach,

no drawings are wasted.

Using this idea, Étoré and Jourdain (2010) propose an adaptive optimal allocation

(AOA) algorithm that works iteratively. In each iteration, it modifies the proportion of

further drawings by using conditional standard deviation estimates. These proportions

converge to the optimal allocation fractions through the iterations. Étoré and Jourdain

(2010) show that the stratified estimator of the AOA algorithm is asymptotically nor-

mal and its asymptotic variance is minimal. We use their algorithm with some minor

modifications. In Section 2.3.2, we provide the implementation details of our version

of the AOA algorithm.
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2.3.2. The Modified Adaptive Optimal Allocation Algorithm

The AOA algorithm terminates in K iterations, each of which is denoted by the

index k = 1, . . . , K. The total sample size is denoted by N and Nk is the sample size

used in iteration k. Let Nk
i be the size of the sample drawn in iteration k conditional

on stratum i. Then, the following equation holds:

N =
K∑
k=1

Nk =
K∑
k=1

I∑
i=1

Nk
i . (2.11)

Étoré and Jourdain (2010) suggest using an increasing sequence of Nk, k = 1, . . . , K.

In their numerical experiments, they allocate 10%, 40% and 50% of the total sample

size in K = 3 iterations, sequentially.

In the first iteration, the allocation fractions are selected as π1
i = pi and N1

i ,

i = 1, . . . , I are determined proportionally. However, the sample size in each stratum

must be an integer and they should satisfy (2.11). Therefore, small variations may

occur between N1
i and the allocated sample sizes. Our first modification is that we do

not try to satisfy N1 =
∑I

i=1N
1
i and let N1

i = max {dpiN1e , 10}. Thus, the size of

the sample allocated in the first and also in any iteration does not necessarily match

exactly the aimed sample size. At the end of the first iteration, the standard deviation

conditional on stratum i is estimated as ŝ1
i and the allocation fractions of the next

iteration π2
i are calculated using the following general formula.

πki =
piŝ

k−1
i∑I

l=1 plŝ
k−1
l

, i = 1, . . . , I, k = 2, . . . , K. (2.12)

Finally, the allocation sizes of the next iteration are determined using:

Nk
i = max

{⌈
πkiN

k
⌉
, 10
}
, i = 1, . . . , I, k = 1, . . . , K. (2.13)

Étoré and Jourdain (2010) suggest allocating at least one drawing to each stratum



18

to ensure the asymptotic convergence of the stratified estimates. However, in our

extensive experiments with tail loss simulation, we have observed that this often leads

to suboptimal allocations in early iterations and, thus, to poor variance estimates and

coverage probabilities for the calculated confidence intervals. Therefore, as a second

modification, we increase the minimum allocation size to 10 as in Equation 2.13 to

ensure better variance estimates and coverage probabilities.

At the end of iteration k, the conditional standard deviations si, i = 1, . . . , I are

estimated with ŝki by using also the drawings of earlier iterations. With this approach,

the asymptotic optimality of the allocation sizes is guaranteed and no drawings are

wasted. Each drawing made in stratum i is collected in set Hi. Let ŷki be the mean

of the sample that is collected in Hi at the end of iteration k. Then, the stratified

estimator of the final iteration is calculated using:

ŷAOA =
I∑
i=1

piŷ
K
i . (2.14)

Let Mk
i be the size of the sample accumulated in Hi at the end of iteration k, namely

Mk
i =

∑K
k=1N

k
i = Mk−1

i + Nk
i , with M0

i = 0. Then, ŷAOA is an unbiased estimator of

y with variance:

V
[
ŷAOA

]
=

I∑
i=1

p2
i s

2
i

MK
i

(2.15)

which can be estimated by replacing si with the conditional standard deviation esti-

mates ŝKi of the final iteration.

The proofs for the asymptotic optimality of the allocation sizes and the asymp-

totic convergence of the stratified estimate are given in Étoré and Jourdain (2010).

The pseudo code of the modified AOA algorithm is given in Figure 2.1
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Require: Simulation function q : RD → R; density function of the random input

f ; strata ξi of the sampling domain and respective probabilities pi, i = 1, . . . , I;

number of iterations K; the aimed sample sizes in each iteration Nk, k = 1, . . . , K

Ensure: Stratified estimator ŷAOA and its variance V [ŷAOA]

1: set M0
i = 0 and π1

i = pi for i = 1, . . . , I

2: for iteration k = 1, . . . , K do

3: if k ≥ 2 then

4: calculate πki for i = 1, . . . , I using Eq. 2.12

5: end if

6: for stratum index i = 1, . . . , I do

7: calculate Nk
i using Eq. 2.13 and set Mk

i = Nk
i +Mk−1

i

8: for drawing n = 1, . . . , Nk
i do

9: generate X from density f conditional on X ∈ ξi
10: compute q(X) add it to set Hi

11: end for

12: set Mk
i = Mk−1

i +Nk
i

13: compute sample standard deviation ŝki in set Hi

14: if k = K then

15: compute sample mean ŷki in set Hi

16: end if

17: end for

18: end for

19: compute and return ŷAOA and V
[
ŷAOA

]
using respectively Eq. 2.14 and 2.15

Figure 2.1. The modified AOA algorithm.
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3. EFFICIENT STRATA STRUCTURES

In Section 2.3.1, we have mentioned that the decomposition of the sampling

domain into strata is an essential issue in stratified sampling. We have stated that the

strata should be chosen in such a way that the variance of the conditional expectations

is large. We have also stated that it should be easy to generate random input from the

conditional distribution in each stratum.

To simplify these objectives, we define the stratification function S (X), as a

surjective mapping from RD onto R∆ where ∆ ≤ D, and stratify each element of

S (X) independently. For this reason, we have the following requirements for the

stratification function S (X): The elements of S (X) must be independent and their

marginal distributions should be available, and it must be possible to sample X from

its original distribution conditional on any stratum of S (X).

We rewrite the conditional variance formula of Equation 2.8

Vf [q (X)] = V [Ef [q (X) |S (X)]] + E [Vf [q (X) |S (X)]] . (3.1)

Among the possible choices of S, we choose one for which V [Ef [q (X) |S (X)]] is large,

as this component of the variance is removed by the stratified estimator. Moreover, as

each element of S (X) is stratified independently, it is better to choose a projection to

small dimensions (∆ = 1, 2, or rarely 3) to avoid a large number of strata.

In Section 3.1, we explain how to stratify the random inputX (or S (X)) through

uniform random variables. Then, we give possible projection forms for stratification un-

der multivariate uniform, multivariate normal, and multivariate t-distributed random

variables in Section 3.2, 3.3, and 3.4, respectively .
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3.1. Stratification Through Uniform Random Variables

It is possible to stratify random variables through stratified uniform random

variables using the inverse CDF of the marginal distributions. This also helps to

define equiprobable strata for the subject random variable, since equiprobable strata

are equivalent to equidistant strata for the uniform distribution.

Suppose we are given a decomposition of the unit interval into I intervals, namely

[bi−1, bi), i = 1, . . . , I with b0 = 0 and bI = 1. Using a standard uniform variable

U ∼ Unif (0, 1), the transformation below generates a uniform random variable Y in

[bi−1, bi).

Y = bi−1 + (bi − bi−1)U. (3.2)

A continuous random variable X can be stratified using its inverse CDF F−1 as

long as it is available. Given stratum probabilities p = (p1, . . . , pI)
′ that sum up to

one, we can evaluate the stratum borders b0, . . . , bI for random variable X.

b0 = inf {x : F (x) > 0}

bi = F−1

(
i∑
l=1

pl

)
bI = sup {x : F (x) < 1}

⇒
ξ1 = [b0, b1) , (b1 = −∞⇒ ξ1 = (b0, b1))

ξi = [bi−1, bi)

ξI = [bI−1, bI)

In order to obtain a single draw from stratum ξi, we generate a uniform random variable

Y in the interval [F (bi−1), F (bi)) with

Y =

(
i−1∑
l=1

pl

)
+ piU.

and, then, evaluate and return F−1 (Y ).

The above procedure can be generalized for random input vectors X if the el-
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ements of X are independent and the inverse CDF of their marginal distributions

F−1
1 , . . . , F−1

D are available. In that case, using a vector U = (U1, . . . , UD) of iid uni-

form variables, the vector X can be generated by:

(
F−1

1 (U1) , F−1
2 (U2) , . . . , F−1

d (UD)
)′
,

and it can be stratified by stratifying U . The stratification of uniform vectors is

explained in Section 3.2.

3.2. Stratifying the Multivariate Uniform Distribution

In this section, we assume a multivariate uniform input U = (U1, . . . , UD)′ where

Ud, d = 1, . . . , D are iid standard uniform variables. Stratification of the multivariate

uniform distribution is important as it enables the stratification of other type of random

inputs as described in Section 3.1.

We consider the identity function S (U) = U as the stratification function. For

the sake of simplicity, we assume that each dimension d of the unit hypercube [0, 1)D

is divided into Id equiprobable strata. The strata can be denoted by:

ξ(i1,...,iD)′ =
D∏
d=1

[
id − 1

Id
,
id
Id

)
, ∀d : id = 1, . . . , Id

with identical probabilities
∏D

d=1 I
−1
d . We can generate a uniform vector Y in stratum

ξ(i1,...,iD)′ as follows:

Yd =
id − 1 + Unif (0, 1)

Id
, d = 1, . . . , D,

and by changing index vector (i1, . . . , iD)′, we can sample from any stratum. Figure 3.1

gives the plot of a stratified uniform sample of size 50 in [0, 1)2 where both dimensions

are stratified with five equiprobable strata and proportional allocation is used.
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Figure 3.1. Stratification of multivariate uniforms in [0, 1)2 with five equiprobable

strata over each dimension.

This type of stratification is easy to use, however it often needs too many strata

to achieve reasonable variance reduction for practical problems with moderate or high

dimension.

3.3. Stratifying Multinormal Distribution

In this section, we assume a multinormal input Z = (Z1, . . . , ZD)′ where Zd,

d = 1, . . . , D, are iid standard normal variables. Multinormal vectors can be stratified

with special strata structures due to special properties of the normal distribution.

Normal variables are typical random inputs in simulating stochastic models of

financial variables, thus have highest practical importance. For other input variables

with similar distributions (e.g., generalized hyperbolic or t-distribution), the random

input can be stratified through standard normal variables using the CDF Φ of standard

normal distribution and the inverse CDF of the specified distribution.
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The following subsections consider two stratification functions for the multinor-

mal input.

3.3.1. Directional Stratification

For a fixed direction v ∈ RD with ‖v‖ = 1, we consider the linear projection

S (Z) = v′Z of Z as stratification function, which also follows the standard normal

distribution.

Given that v′Z = z, the conditional distribution of Z is also multinormal with

mean vector vz and a variance covariance matrix Λ = ID − vv′ where ID denotes the

D dimensional identity matrix. Since vv′ is orthogonal, we have ΛΛ′ = Λ. Thus, we

do not have to compute a square-root of this matrix to sample Z from the conditional

distribution given that v′Z = z.

Suppose the unit interval is partitioned into I disjoint intervals with borders

b0 = 0, b1, . . . , bI−1, bI = 1. We can generate Z conditional on Φ (v′Z) ∈ [bi−1, bi) by

the steps shown in Figure 3.2.

Require: A stratum in the unit interval [bi−1, bi);

Ensure: A random drawing of Z conditional on Φ (v′Z) ∈ [bi−1, bi)

1: Generate Y ∼ Unif (bi−1, bi) using Equation 3.2

2: Compute Z = Φ−1 (Y )

3: Generate standard multinormal vector Z ∼ N (0, ID) independent of Y

4: Compute and return Z̃ = vZ + (ID − vv′)Z

Figure 3.2. Generator for multinormal random vector with a stratified linear

projection over direction v ∈ RD.

For the last step in Figure 3.2, Jourdain et al. (2011) suggest to compute vZ +

(ID − vv′)Z as vZ+Z−v (v′Z) which requires O (D) operations rather than O (D2).

This algorithm requires the generation of one additional uniform number.
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Figure 3.3 gives the plot of a stratified multinormal sample of size 100 in R2

where the sampling domain is stratified with 20 equiprobable strata over the direction

v =
(√

2/2,
√

2/2
)′

and the sample is allocated proportionally.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
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Z
2

Figure 3.3. Stratification of multinormals in R2 with 20 equiprobable strata over

direction v =
(√

2/2,
√

2/2
)′

.

With the algorithm given in Figure 3.2, the sampling domain RD is stratified by

parallel hyperplanes orthogonal to direction v. Now, suppose we are given a matrix

V̄ ∈ RD×∆ of ∆ orthogonal stratification directions, i.e., V̄ = (v1, . . . ,v∆) and V̄ V̄ ′ =

ID. Using the same approach, we can stratify RD with parallel hyperplanes orthogonal

to each direction. Thus, we can stratify the linear projection of the random input Z

over the ∆ dimensional subspace that is spanned by the columns of V̄ .

The linear projection S (Z) = V̄ ′Z ∈ R∆ follows the standard multinormal

distribution and, given that V̄ ′Z = z, the conditional distribution of Z is also multi-

normal with mean vector V̄ z and a variance covariance matrix Σ = ID − V̄ V̄ ′.

Suppose now the unit hypercube [0, 1)∆ is partitioned into strata ξ1, . . . , ξI as
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described in Section 3.2. We can generate Z conditional on (Φ (v′1Z) , . . . ,Φ (v′∆Z))′ ∈

ξi by the steps shown in Figure 3.4.

Require: A stratum in the unit hypercube ξi;

Ensure: A random drawing of Z conditional on (Φ (v′1Z) , . . . ,Φ (v′∆Z))′ ∈ ξi
1: Generate multivariate uniform Y ∈ ξi ⊆ [0, 1)∆ as described in Section 3.2.

2: Compute Z̄ = (Φ−1 (Y1) , . . . ,Φ−1 (Y∆))
′

3: Generate standard multinormal vector Z ∼ N (0, ID) independent of Y

4: Compute and return Z̃ = V̄ Z̄ +
(
ID − V̄ V̄ ′

)
Z

Figure 3.4. Generator for multinormal random vector with a stratified linear

projection over the subspace spanned by the columns of V ∈ RD×∆.

Again, for the last step in Figure 3.2, replacing V̄ Z̄ +
(
ID − V̄ V̄ ′

)
Z by V̄ Z̄ +

Z − V̄
(
V̄ ′Z

)
reduces the complexity of the algorithm from O (D2) to O (D). This

algorithm requires the generation of ∆ additional uniform numbers.

In this thesis, we only use stratification over orthogonal directions. Jourdain et

al. (2011) also investigate the possibility of stratification over different directions which

are not necessarily orthogonal.

3.3.1.1. Linear Transformation. The complexity of the generators given in Figures

3.2 and 3.4 can be reduced to O (D) operations. However, for practically relevant

simulation examples, the simulation function q is already of O (D2) or a higher order.

Linear transformation is another method that stratifies the multinormal input which

is of O (D2) but simpler, and does not require the generation of additional uniform

variables. This method changes the basis of the generated multinormal input as the

multinormal distribution is symmetric around the origin.

Suppose V ∈ RD×D is an orthogonal matrix, i.e., V V ′ = ID. In the simulation

algorithm, we can replace q (Z) by q (V Z), since V Z also follows the multivariate

standard normal distribution and E [q (Z)] = E [q (V Z)]. Here, V is called the linear

transformation matrix.
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If we are given ∆ stratification directions v1, . . . ,v∆, we can form a linear trans-

formation matrix V = (v1, . . . ,vD) by generating remaining D−∆ columns arbitrarily

without breaking the orthogonality rule. Once the linear transformation is applied, first

∆ elements of Z will correspond to respective stratification directions. Thus, strat-

ifying Z1, . . . , Z∆ through uniform random variables will stratify the random input

V Z over directions v1, . . . ,v∆. The pseudo code for the construction of the linear

transformation matrix V is given in Figure 3.5.

Require: Stratification directions V̄ ∈ RD×∆

Ensure: Linear transformation matrix V ∈ RD×D

1: Define matrix V ∈ RD×D with all entries equal to zero

2: Set the first ∆ columns of V as V̄

3: for index d = ∆, . . . , D − 1 do

4: Set vD,d+1 = 1

5: Define B ∈ Rd×d as the sub-matrix of V between the elements vD−d,1 and

vD−1,d

6: Define b ∈ Rd as the sub-vector of V between the elements vD,1 and vD,d

7: Find the unique solution of B′v̄ + b = 0

8: Set the elements between vD−d,d+1 and vD−1,d+1 as v̄ ∈ Rd

9: Scale the column d+ 1 of V to the unit length.

10: end for

11: return V

Figure 3.5. Generator for multinormal random vector with a stratified linear

projection over the subspace spanned by the columns of V ∈ RD×∆.

The complexity of linear transformation is O (D2), however it does not require

the generation of any additional standard normal variables.

3.3.1.2. Optimal Stratification Directions. There are three different approaches to de-

termine efficient stratification directions, i.e., the columns of the linear transformation

matrix.
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The first one is a standard approach based on the principle component construc-

tion of the variance covariance matrix. Suppose, ZΛ follows a multinormal distribution

with zero mean vector and variance covariance matrix Λ. The covariance of the random

input may also be introduced as a part of the simulation function q by multiplying the

standard multinormal vector with the Cholesky factor of Λ. Instead, principle compo-

nent construction uses eigenvalue factorization of the variance covariance matrix Λ to

obtain a linear transformation matrix.

For a positive definite matrix Λ ∈ RD×D, there exist non-negative real eigenvalues

λ1, ..., λD and orthogonal set of eigenvectors v1, . . . ,vD which satisfy v′dvd = 1 and

Λvd = λdvd for d = 1, . . . , D. Then, we can generate ZΛ by:

ZΛ =
D∑
d=1

vd
√
λdZd.

Here, the random variables λdZd are called the principal components of the random

vector ZΛ and the eigenvectors vd are referred as the direction of the d-th principal

component (see e.g., Kreinin et al., 1998; Glasserman, 2004). In other words,
√
λd

is a scaling factor of a standard normal variable through the direction vd to get ZΛ.

Thus, the share of the variance contribution of Zd in ZΛ becomes proportional to λd.

Suppose the eigenvalues and the respective eigenvectors of Λ are reordered so that

λ1 ≥ . . . ≥ λD. Then, instead of stratifying each element of Z, we can stratify just the

first ∆ elements of Z. The main drawback of this approach is the fact that the principle

component construction does not consider the variance of the simulation function q but

only the variance coming from the variance covariance matrix of the input variables

when finding effective directions.

The second approach determines efficient stratification directions with respect to

the simulation function q. We again consider the conditional variance formula in Equa-

tion 3.1. We need to choose the directions such that V
[
E
[
q (Z) |V̄ ′Z

]]
is maximized,

which is equivalent to the minimization of E
[
V
[
q (Z) |V̄ ′Z

]]
, since the total variance

V [q (Z)] is fixed.
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In case of a single stratification direction, the above statement is in parallel with

Jourdain et al. (2011): A good candidate for a stratification direction is the one that

maximizes the “explained” component of the variance, or minimizes the “unexplained”

part. Such a direction is the solution of the following problem.

v∗ = arg min
v∈RD,‖v‖=1

∞∫
−∞

V [q (Z) |v′Z = z]φ (z) dz (3.3)

Suppose that q is differentiable. Jourdain et al. (2011) suggest approximating the

optimization problem in Equation 3.3:

v∗ = arg min
v∈RD,‖v‖=1

∞∫
−∞

∇q (0)V [Z|v′Z = z]∇′q (0)φ (z) dz

by replacing q (Z) with its linear approximation q (Z) ≈ q (0) + ∇q (0)Z around 0.

The variance V [Z|v′Z = z] = ID − vv′ is independent of z, thus the optimization

problem reduces to:

v∗ = arg min
v∈RD,‖v‖=1

∇q (0) (ID − vv′)∇′q (0) = arg max
v∈RD,‖v‖=1

(∇q (0)v)2 (3.4)

The optimal direction v∗ of the optimization problem in Equation 3.4 is:

v∗ = ± ∇
′q (0)

‖∇q (0)‖
(3.5)

for which a detailed proof is given in Jourdain et al. (2011).

Jourdain et al. (2011) suggest calculating the gradient at different points in or-

der to produce multiple directions, however, the proposed approach provides non-

orthogonal directions.

The third method produces ∆ orthogonal stratification directions using the itera-

tive algorithm of Imai and Tan (2006). They use their algorithm to optimally determine
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the columns of the linear transformation matrix V which minimizes the effective direc-

tions of the multinormal input in underlying simulation function. The produced linear

transformation matrix is then used to enhance the quasi-Monte Carlo method. We can

use the columns of this linear transformation matrix as stratification directions.

For our use, the algorithm of Imai and Tan (2006) terminates in ∆ steps. In

the first iteration, we find the main stratification direction v∗1 by maximizing its vari-

ance contribution and, in the remaining steps d = 2, . . . ,∆, we solve the following

optimization problem:

max variance contribution of the d− th dimension

s.t. vd ∈ RD, ‖vd‖ = 1, 〈v∗l ,vd〉 = 0, l = 1, . . . , d− 1,
(3.6)

so that the orthogonality of V is preserved.

However, the variance contribution of the d-th dimension may not be expressed

analytically for general simulation functions. Imai and Tan (2006) suggest approxi-

mating the objective function by linearizing the simulation function qV (Z) = q (V Z)

and, then, maximizing the variance contribution accordingly. They use the first-order

Taylor series expansion around an arbitrary point z:

qV (Z) ≈ qV (z) +
∑D

d=1
(Zd − zd)

∂qV (Z)

∂Zd

∣∣∣∣
Z=z

,

which is linear in normal variables Zd−zd, d = 1, . . . , D. Thus, the variance contributed

by the d-th dimension is denoted by:

(
∂qV (Z)

∂Zd

∣∣∣∣
Z=z

)2

,

and the optimization problem in Equation 3.6 can be reformulated as follows:

max
(
∂qV (Z)
∂Zd

∣∣∣
Z=z

)2

s.t. vd ∈ RD, ‖vd‖ = 1, 〈v∗l ,vd〉 = 0, l = 1, . . . , d− 1
(3.7)
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The main direction v1 is optimized by assuming a linearization at z = 0. Imai and

Tan (2006) consider higher order Taylor series expansions when finding a subsequent

optimal direction. Then, in optimizing vd, it requires a d-th order expansion. As this

is a very complex approach, they again suggest a first order approximation but at a

different point. Thus, given an optimum v∗l , l = 1, . . . , d−1, for optimizing the column

vd, they propose to set z = (1, . . . , 1, 0, . . . , 0)′ with d− 1 leading ones.

After the linearization procedure, the maximization problem simplifies. In Imai

and Tan (2006, 2009), the iterative maximization procedure is explained in detail.

Lemma 3.1. If we linearize qV (Z) around z = 0, the optimal linear transformation

matrix V ∗ of the maximization problem in Equation 3.7 has its first column equal to

the optimal stratification direction in Equation 3.5 proposed by Jourdain et al. (2011).

Proof. For the first column of the linear transformation matrix V , the maximization

problem in Equation 3.7 simplifies to:

max
(
∂qV (Z)
∂Z1

∣∣∣
Z=0

)2

s.t. v1 ∈ RD, ‖v1‖ = 1

We can rewrite the objective function:

(
∂qV (Z)

∂Z1

∣∣∣∣
Z=0

)2

=

(
∂q (V Z)

∂Z1

∣∣∣∣
Z=0

)2

=

(
∂q (V Z)

∂V Z

∣∣∣∣
Z=0

∂V Z

∂Z1

∣∣∣∣
Z=0

)2

= (∇q (0)v1)2

and reformulate the optimization problem as in Equation 3.4.

If q(Z) is not everywhere differentiable, the procedures of this section can be

implemented to the differentiable components of q (see e.g, Jourdain et al., 2011). One

can also implement Conditional Monte Carlo (Trotter and Tukey, 1956) priorly to

smooth out q and obtain a differentiable simulation function.
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3.3.2. Radial Stratification

The fact that the multinormal distribution is symmetric around the origin makes

it possible to draw samples from this distribution with a stratified Euclidean norm.

For a standard multinormal vector Z ∈ RD, the Euclidean norm ‖Z‖ is the radius

of the sphere on which Z falls and the squared norm of the vector ‖Z‖2 is a chi-

square distributed random variable with D degrees of freedom. The vector Z/‖Z‖ is

uniformly distributed over the unit hypersphere and the vector RZ/‖Z‖ is uniformly

distributed over the sphere which has radius R.

If we stratify the random variable χ2
D through uniform random variables, the

random vector Z̃ =
√
χ2
DZ/‖Z‖ will be stratified radially.

We consider the stratification function S (Z) = Fχ2
D

(
‖Z‖2) where Fχ2

D
is the

CDF of chi-squared distribution with D degrees of freedom. Suppose the unit interval

is partitioned into I disjoint intervals with borders b0 = 0, b1, . . . , bI−1, bI = 1. We can

generate Z conditional on S (Z) ∈ Fχ2
D

(
‖Z‖2) by following steps in Figure 3.6.

Require: A stratum in the unit interval [bi−1, bi);

Ensure: A random drawing of Z conditional on Fχ2
D

(
‖Z‖2) ∈ [bi−1, bi)

1: Generate Y ∼ Unif (bi−1, bi) using Equation 3.2

2: Compute R =
√
F−1
χ2
D

(Y )

3: Generate standard multinormal vector Z ∼ N (0, ID) independent of Y

4: Compute and return Z̃ = RZ/‖Z‖

Figure 3.6. Generator for a radially stratified multinormal random vector.

Figure 3.7 gives the plot of a radially stratified multinormal sample of size 50 in

R2 where the sampling domain is stratified with 10 equiprobable strata and the sample

is allocated proportionally.

Radial stratification can also be combined with directional stratification. Suppose

the first ∆ elements of the random vector Z is subject to directional stratification. The
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Figure 3.7. Radial stratification of multinormals in R2 with 10 equiprobable strata.

remaining D − ∆ elements still can be radially stratified since the elements of Z are

independent. Figure 3.8 is an illustration of the described stratification for D = 3

and ∆ = 1. The space is stratified through the direction that corresponds to the first

element Z1 of the input vector. Then, the remaining directions are radially stratified

with circles, or namely hyperspheres on D −∆ = 2 dimensional space.

A detailed explanation about radial stratification can be found in Glasserman

(2004), page 227.

3.4. Stratifying Multivariate t-Distribution

Let T = (T1, . . . , TD)′ be a random vector, the elements of which are iid t-

distributed random variables with ν degrees of freedom. The standard approach to

generate multivariate t-distributed vector requires a standard multinormal random

vector Z = (Z1, . . . , ZD)′ and an independent chi-squared random variable χ2
ν with ν
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Figure 3.8. An illustration of R3 that is stratified over a single direction and the

remaining directions are stratified radially.

degrees of freedom, such that:

T = Z
(
χ2
ν/ν
)−1/2

.

Then, we can apply directional stratification to the multinormal input Z following the

procedures described in Section 3.3.1. Simultaneously, chi-squared random variable χ2
ν

can be stratified through uniform random variables.

An alternative way to generate multivariate t-distributed vectors based on the

polar method and numerical inversion is proposed by Hörmann and Sak (2010). That

method requires only a standard multinormal random vector. The generated T vec-

tors are highly correlated with the multinormal input. In this case, one can use any

stratification technique for the multinormal distribution described in Section 3.3.
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4. MULTIRESPONSE STRATIFIED SAMPLING

4.1. Introduction to MRS

We define the response function r(θ) as the expectation of a random valued

function under parameter θ where Θ is the set of possible parameter values. We

assume that r(θ) can only be estimated via simulation for each θ ∈ Θ. Moreover,

we assume that the dimension of the random input is not changed by the parameters.

Then, it is possible to simulate r for several θ values in a single simulation. Such an

objective can easily be realized using common random numbers (Law, 2014). However,

under this simple approach, all r(θ) values are estimated with comparatively large

variances. To obtain more accurate estimates for several r(θ) values, one can apply

variance reduction methods such as antithetic variates (Myers and Montgomery, 2002),

control variates (see e.g., Rubinstein and Marcus, 1985), and importance sampling (see

e.g., Glasserman and Li, 2005; Sak and Hörmann, 2012).

A variance reduction method that can be very useful for the above problem

is stratified sampling. This seems to be a fact overlooked in the literature. In the

progress of this thesis, we have published two papers which are closely related to the

use of stratified sampling in multiresponse simulation. The idea is first used in Başoğlu

et al. (2013) to minimize the maximum relative error of tail loss probabilities in a

linear asset portfolio. Also, Başoğlu and Hörmann (2014) show how stratification can

be used to minimize the overall error of multiple estimates in general Monte Carlo

simulation problems. The latter work introduces objective functions that measure the

overall error and develops simple methods to minimize (approximately) these objective

functions. For the optimization problem, the allocation fractions are used as decision

variables. The optimal allocation fractions are then used in the sampling phase. The

resulting method is called “multiresponse stratified sampling (MRS)” and it is appli-

cable to simulation problems where the size of the random input is independent of the

parameter space, and it exhibits a good performance for simulation problems for which



36

stratification reaches a good variance reduction in the single response case.

This chapter closely follows Başoğlu et al. (2013) and Başoğlu and Hörmann

(2014). It explains how stratification and allocation fractions can be used to minimize

the overall error of multiple estimates.

4.2. Minimizing the Overall Error

We define the response function r(θ) = E [q (X,θ)], where r : Θ → R and

X ∈ RD follows a common distribution that is independent of θ. We assume that

for each θ ∈ Θ, r(θ) can only be estimated via simulation. If we can find an effec-

tive stratification function S (X) that has a large contribution to V [q (X,θ)] and is

computationally tractable (i.e., we can generate X conditional on strata defined for

S (X)), then that stratification will effectively reduce the variance of the estimates.

Suppose we are given J points, θ1, . . . ,θJ , in Θ. Our goal is to estimate yj =

r(θj) for j = 1, . . . , J in a single simulation using stratified sampling. Let ŷij be the

mean conditional on stratum i estimated under parameter θj. Then, the stratified

estimator of yj is calculated as ŷj =
∑I

i=1 piŷij. Each of these estimates is unbiased

and asymptotically normal Étoré and Jourdain (2010). Let ŝ2
ij be the variance of the

sample in stratum i drawn under parameter θj. We also define ŝijk as the covariance

of the samples in stratum i drawn under parameters θj and θk. Given the total sample

size, N , and the vector of allocation fractions π = (π1, . . . , πI)
′, the elements of the

sample variance covariance matrix Σ of ŷ = (ŷ1, . . . , ŷJ)′ can be calculated as a function

of the allocation fractions:

Σjj (π) = N−1

I∑
i=1

π−1
i p2

i ŝ
2
ij, j = 1, . . . , J, (4.1)

Σjk (π) = N−1

I∑
i=1

π−1
i p2

i ŝijk, j = 1, . . . , J, k = 1, . . . , J, j 6= k. (4.2)
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We define the objective function ω(π) = g(Σ(π)), where g : RJ×J → R+ ∪ {0}

is a continuous function of the variance and covariance values. This objective function

is used for representing the overall error of all J estimates, for example:

• ωMSE(π) =
∑J

j=1 Σjj(π), the mean squared error of all estimates,

• ωMSR(π) =
∑J

j=1 ŷ
−2
j Σjj (π), the mean squared relative error of all estimates,

• ωSUM(π) =
∑J

j=1

∑J
k=1 Σjk (π), the sum of all elements in the variance covariance

matrix,

• ωMAXE(π) = max{j : Σjj (π)}, the maximum of the absolute errors of all esti-

mates,

• ωMAXR(π) = max{j : ŷ−2
j Σjj (π)}, the maximum of the absolute relative errors

of all estimates,

all of which are convex in π. Therefore, we assume ω to be a convex function of π

for practically relevant examples. Our objective is to solve the following optimization

model:

min ω (π)

s.t.
∑I

i=1 πi = 1 and πi ≥ 0, i = 1, . . . , I.
(4.3)

The constraints of the model in Equation 4.3 form a convex and bounded feasible

region. Thus, the mathematical model in Equation 4.3 becomes a convex programming

problem and a local optimum found in the feasible solution set will also be a global

optimum. If a closed-form optimal solution is unavailable, the optimal solution of

the problem in Equation 4.3 can be found by using an interior-type method with trust

regions (Byrd et al., 2006). However, since we use the estimates of conditional variance

and covariance values, ŝ2
ij and ŝijk, the optimal solution of an instance will only be an

estimate for the real optimal allocation fractions. Thus, a sub-optimal solution for the

model in Equation 4.3 is enough in practice.

The above examples for the objective function ω(π) can be categorized in two
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general classes. The first three examples are all linear functions of the elements of the

variance-covariance matrix Σ. It is possible to find closed-form solutions under this

class of objective functions. The second class consists of the last two examples where

we consider the maximum of the variances, Σjj, which are weighted with non-negative

coefficients. We provide a heuristic method for the second class.

4.2.1. Minimizing a Linear Combination of the Elements of the Variance

Covariance Matrix

As a first example, suppose, we want to minimize the mean squared relative error

of all estimates. We consider the objective function

ωMSR(π) =
J∑
j=1

ŷ−2
j Σjj (π) = N−1

I∑
i=1

π−1
i p2

i

J∑
j=1

ŷ−2
j ŝ2

ij,

which has a form that is similar to the variance of the stratified estimator given in

Equation 2.9, only the expression of the conditional variances, s2
i , is now replaced by∑J

j=1 ŷ
−2
j ŝ2

ij. The lower bound for ωMSR(π) is:

ω∗MSR(π) = N−1

 I∑
i=1

pi

(
J∑
j=1

ŷ−2
j ŝ2

ij

)1/2
2

and, according to Equation 2.10, it can be attained if we choose the allocation fractions:

π∗i = pi

(
J∑
j=1

ŷ−2
j ŝ2

ij

)1/2/ I∑
l=1

pl

(
J∑
j=1

ŷ−2
j ŝ2

lj

)1/2

, i = 1, . . . , I. (4.4)

Using the pilot sample, we estimate the response values, ŷj, j = 1, . . . , J , and con-

ditional variances, ŝ2
ij, i = 1, . . . , I, j = 1, . . . , J . Then, we can use Equation 4.4 to

determine the optimal allocation of the sample in the main simulation, so that the

mean squared relative error of all estimates is minimized.
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Clearly, the arguments of above remain valid if we replace s2
i of Equation 2.9 by

arbitrary non-negative constants. Thus, we can generalize the previous example by

assuming g to be a linear function of the elements of Σ(π).

Theorem 4.1. Assume the objective function ω(π) =
∑J

j=1

∑J
k=j cjkΣjk(π) with real

coefficients. We plug in the variance and the covariance values given in Equation 4.1

and 4.2 into this objective function and obtain:

ω(π) = N−1

I∑
i=1

π−1
i p2

i

(
J∑
j=1

cjj ŝ
2
ij +

∑
j<k

cjkŝijk

)
.

For ω(π) to be convex in the feasible region of Equation 4.3, a simple necessary con-

dition is the non-negativity of
∑J

j=1 cjj ŝ
2
ij +

∑
j<k cjkŝijk for i = 1, . . . , I. Under this

assumption, the optimal solution that minimizes ω(π) is:

π∗i =

pi

(
J∑
j=1

cjj ŝ
2
ij +

∑
j<k

cjkŝijk

)1/2

I∑
l=1

pl

(
J∑
j=1

cjj ŝ2
lj +

∑
j<k

cjkŝljk

)1/2
, i = 1, . . . , I. (4.5)

As a first application of Theorem 4.1, we have already considered ωMSR(π). As

a second example, we consider minimizing the variance of a convex combination of all

estimates,
∑J

j=1 λj ŷj where λj ≥ 0, j = 1, . . . , J , are fixed and
∑J

j=1 λj = 1. This

is of practical relevance since, in response surface applications, we require linear ap-

proximations of the intermediate values using the estimates of r(θj), j = 1, . . . , J (Box

and Wilson, 1951). Our objective function is, then, ω (π) =
∑J

j=1

∑J
k=1 λjλkΣjk (π).

If we aim to minimize the variance of the average of all estimates, the coefficients λj

become all equal and the objective function simplifies to the sum of all elements in the

variance covariance matrix, ωSUM (π) =
∑J

j=1

∑J
k=1 Σjk (π). For any case, the optimal

solution can be found using Equation 4.5 and the estimates of the conditional variance

and covariances.
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A third example in this class of objective functions is related to the estimation

of the ratio r (θ1)/r (θ2). We obtain the stratified estimates, ŷ1 and ŷ2, using a sin-

gle simulation. Then, we can estimate the ratio with ŷ1/ŷ2 which has bias (see e.g.,

Fishman, 1996, page 109):

Bias [ŷ1/ŷ2] = ŷ1ŷ
−3
2 Σ22 (π)− ŷ−2

2 Σ12 (π) +O
(
N−2

)
.

Here, the leading term is of order O (N−1). It is possible to reduce the bias by subtract-

ing the estimate of the leading term from the ratio estimate. However, the squared

bias is of order O (N−2), which is small compared to the variance. Thus, we rather

consider reducing the variance that is approximated by:

V [ŷ1/ŷ2] ≈ ŷ2
1 ŷ
−4
2 Σ22 (π)− 2ŷ1ŷ

−3
2 Σ12 (π) + ŷ−2

2 Σ11 (π) . (4.6)

The approximate variance in Equation 4.6 is of order O (N−1) and found by using the

multivariate Taylor series expansion of the variance of the ratio (see e.g., Glasserman,

2004). Equation 4.6 defines an objective function that is a linear function of the

variance-covariance matrix. It is easy to show that it satisfies the sufficient condition

for convexity stated in Theorem 4.1. Therefore, we can find optimal allocation fractions

using Equation 4.5:

π∗i =
pi
(
ŷ2

1 ŷ
−4
2 ŝ2

i2 − 2ŷ1ŷ
−3
2 ŝi12 + ŷ−2

2 ŝ2
i1

)1/2

I∑
l=1

pl
(
ŷ2

1 ŷ
−4
2 ŝ2

l2 − 2ŷ1ŷ
−3
2 ŝl12 + ŷ−2

2 ŝ2
l1

)1/2
, i = 1, . . . , I. (4.7)

where the conditional sample variances, ŝ2
i1 and ŝ2

i2, the conditional sample covariances,

ŝi12, and the estimates, ŷ1 and ŷ2, are found using the pilot sample for i = 1, . . . , I.

Note that the allocation fractions given in Equation 4.7 minimize the variance of

a single ratio estimate. We can also use the MRS algorithm for minimizing the overall

error of multiple ratio estimates.
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4.2.2. Minimizing the Maximum of the Variances Weighted with Nonneg-

ative Coefficients

We consider minimizing ω(π) = max {j : cjΣjj(π)} for non-negative cj values.

We use the short notation ωj(π) for functions cjΣjj(π), j = 1, . . . , J . The objective

function is non-differentiable at some points in the solution set; thus, the model in

Equation 4.3 is replaced by:

min ω̂

s.t. ω̂ − ωj (π) ≥ 0, j = 1, . . . , J,∑I
i=1 πi = 1, and πi > 0, i = 1, . . . , I.

(4.8)

Remark 4.1. If the number of strata, I, is much larger than the number of estimates

J , it is likely that the relative errors of all estimates are equal at the global optimum.

Then, it might be better to transform the first set of inequalities to strict equations to

enforce that all relative errors are equal. However, there might be none or uncountably

many points satisfying this condition. Thus, we choose to proceed with the model in

Equation 4.8.

For the model in Equation 4.8, we develop a simple allocation heuristic which

yields a satisfactory sub-optimal solution in a short period of time. The heuristic

method calculates the respective optimum allocation fractions πj ∈ RI which minimize

the variances of the stratified estimates, Σjj(π), j = 1, . . . , J ,

πji = piŝij

/∑I

l=1
plŝlj, i = 1, . . . , I,

and searches for the best solution in the convex hull of these points. In other words,
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the allocation heuristic searches the optimal solution of the following model:

min ω̂

s.t. ω̂ − ωj(π) ≥ 0, j = 1, . . . , J, πi −
∑J

j=1 λjπ
j
i = 0, i = 1, . . . , I,∑J

j=1 λj = 1, and λj ≥ 0, j = 1, . . . , J.

(4.9)

Thus, the equality and the non-negativity constraints of the model in Equation 4.8

are automatically satisfied and the dimension of the problem is clearly reduced for

practically relevant settings.

The main idea of the heuristic method is as follows: For every point in the convex

hull, the objective value ω(π) is attained by one of the convex functions, say, ωj(π).

Then, we expect the objective value to decrease if we move towards the respective

optimum solution πj. We stop moving towards πj if we reach a point for which

the objective value is attained by another function ωk(π), k 6= j; then, we can move

towards πk. In summary, for every point in the convex hull, the heuristic automatically

determines a descent direction at the function evaluation. The size of the move is

determined by the iteration number.

We continue with a more-detailed description of the heuristic algorithm. Assume

a feasible solution π in the convex hull of πj, j = 1, . . . , J . The objective value at π is

ω(π) = max {j : ωj(π)} , (4.10)

and the index of the function which attains this objective value is obtained by

j (π) = arg max {j : ωj (π)} . (4.11)

Assume further that ω is differentiable at π. Then, the two functions, ω and ωj(π)

are equal in an open neighborhood of π, and ωj(π) decreases as we move towards πj.

Hence, πj − π forms a simple descent direction for ω at π.
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The allocation heuristic algorithm starts with an initial feasible solution in the

convex hull of πj, j = 1, . . . , J . The average of vectors πj, j = 1, . . . , J , is a simple

candidate. The current and the best solution are denoted by πc and πh, respectively.

Therefore, we initialize πh = πc = J−1
∑J

i=1 π
j and set the best and the current

objective value ωh = ωc = ω(πc). We also determine the index of the function which

attains the current objective value, jc = j(πc).

We expect an improvement in the objective value if we make a move towards

πj
c
. Let η denote the iteration count as the algorithm is run. When the algorithm is

started, η is initialized to 1. We update the current solution according to the recursion

πc =
(
ηπc + πj

c)
/ (η + 1). As η increases, the current solution πc and, since ω is

continuous, the current objective value ωc converge.

After each move, we update the current objective value ωc and set j′ = j(πc) as

the index of the function which attains this value. At this point, we sequentially check

the following two conditions:

• If ωc ≤ ωh, we update the best solution πh = πc and the best objective value

ωh = ωc.

• If j′ 6= jc, then the current solution can be improved by moving in another

direction. We set jc = j′ and increase η by one.

Then, we return to the step where we update the current solution. The algorithm

terminates when ωc converges.

Remark 4.2. In order to find the optimal solution in the convex hull, we have also

implemented bisection method on the simple descent direction we have suggested. How-

ever, we have observed that the convergence becomes too slow around the non-differ-

entiable points of ω (π). Comparatively, the heuristic provides a faster convergence but

it is not necessarily monotone.

Let us demonstrate how the heuristic works on a simple instance. Assume that
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I = J = 3 and we have the following ωj (π) for j = 1, 2, 3,

ω1 (π) = .01π−1
1 + .09π−1

2 + .36π−1
3 ,

ω2 (π) = .09π−1
1 + .25π−1

2 + .04π−1
3 ,

ω3 (π) = .16π−1
1 + .04π−1

2 + .16π−1
3 .

Since π3 = 1 − π1 − π2, we can search the heuristic solution πh in the subspace

spanned by π1 and π2 with the restriction that π1+π2 < 1. Figure 4.1 shows the contour

plot of the objective function ω(π) = max {ω1 (π) , ω2 (π) , ω3 (π)} in the subspace

spanned by π1 and π2. The heuristic searches the sub-optimal solution in the convex

hull of the respective minima, πj, j = 1, 2, 3. The heuristic terminates after 12 moves.

The moves which result in an improvement in the objective value are emphasized.
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Figure 4.1. Contour plot of ω(π) = max {j : ωj(π)} for given instance.

The global minimum π∗ = (.237, .356, .407)′ is in the convex hull of the respective

minima π1 = (.1, .3, .6)′, π2 = (.3, .5, .2)′ and π3 = (.4, .2, .4)′ with an objective value

ω∗ = ω (π∗) = 1.18. The heuristic algorithm starts the search at πc = (.3, .38, .32) and
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terminates after 12 moves. The objective value improves at the 1st, 2nd, 4th, 6th, 9th

and 11th moves. The heuristic solution found in the 11th move is πh = (.233, .357, .41)′

with an objective value ωh = ω(πh) = 1.188, which is very close to the optimal objective

value ω∗.

We give the pseudo code of the heuristic method in Figure 4.2.

Require: The functions ωj of the model in Equation 4.8, j = 1, . . . , J ; optimal

solutions πj of each respective problem, j = 1, . . . , J ; an initial feasible solution

πc in the convex hull of πj

Ensure: A sub-optimal solution πh for the model in Equation 4.8.

1: set ε =∞, η = 1 and πh = πc

2: set ωh = ωc = ω(πc) and jc = j(πc) using respectively Equations 4.10 and 4.11

3: while |ε|/ωh > ε do

4: update the current solution πc =
(
ηπc + πj

c)/
(η + 1)

5: set ω′ = ω(πc) and j′ = j(πc) using respectively Equations 4.10 and 4.11

6: if ω′ ≤ ωh then

7: set ε = ωh − ω′

8: update the best solution πh = πc and the best objective value ωh = ω′

9: end if

10: if j′ 6= jc then

11: set η = η + 1 and ε = ωc − ω′

12: set ωc = ω′ and jc = j′

13: end if

14: end while

15: return πh

Figure 4.2. A heuristic method for determining optimal allocation fractions for

minimizing the maximum of ωj(π) of J different estimates.
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4.3. A Numerical Example

We now present an example where we demonstrate the practical aspects of the

optimization models given in this section. MRS yields comparatively good results if

stratification is also successful in the estimation of a single value, for example, the

simulation function is of rare-event type or the random input has a small number of

stratification variables S (X) that have a large contribution to the output variance.

For this reason, we choose such a rare-event problem where the size of the random

input is small.

We consider a simulation function where we can achieve successful variance re-

duction by applying stratification over a single direction.

q (Z,θ) = min
{

max
{

(Z1 + Z2)2 + θ1Z1, θ2

}
, θ2 + θ3

}
. (4.12)

Here, Z1 and Z2 are independent standard normal variables. Our aim is to estimate

xj = r(θj), j = 1, . . . , 6, in a single simulation for θj = (θj1, θj2, θj3)′ vectors:

θ1 = (.1, 1.1, .722)′, θ2 = (.1, 1.2, .688)′, θ3 = (.2, 1.1, .291)′,

θ4 = (.2, 1.2, .342)′, θ5 = (.3, 1.1, .148)′, θ6 = (.1, 1.2, .192)′.
(4.13)

We divide the sampling domain into 100 equiprobable subsets with planes that

are orthogonal to the direction (
√

2/2,
√

2/2)
′
. In other words, we stratify the random

variable Z1 +Z2 with I = 100 equiprobable strata (see Figure 3.3 for a demonstration

with 20 equiprobable strata).

We run MRS under the objective functions listed in the beginning of this section

and also, for minimizing the variance of each single estimate, with the objective func-

tions Σjj(π), j = 1, . . . , 6. This allows us to observe the minimal error reachable for

each θj.
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We remind that in all MRS runs, the pilot samples use the same random se-

quence. For each example, we also run naive Monte Carlo simulation using common

random numbers and find the variance of multiple estimates in a single simulation. The

efficiency results are presented as variance reduction factors, V R [ŷ] = V
[
ŷNV

]/
V [ŷ]

where ŷNV and ŷ denote the naive Monte Carlo and stratified estimators, respectively.

The execution times of the methods are also reported.

The variance and the percentage relative error of all estimates obtained under

each of these objective functions are listed in Table 4.1. Variance reduction factors are

also given for performance comparison. The total sample size used in all simulations

is N = 106 and Np = 105 of the drawings are used in a pilot study to determine the

optimal allocation fractions via Equation 4.5 or the allocation heuristic described in

Section 4.2.2.

If we minimize the variance of a single estimate rather than focusing on the

overall error, we observe in Table 4.1 that the variance for that estimate is reduced,

however, we also see severe losses in the variance reduction factors for most of the other

estimates. The last five objective functions aim to minimize the overall error of the

simulation and, in those cases, we observe reasonably good variance reduction with

only moderate losses compared to the maximum variance reduction factors. For the

last two objective functions, we utilize the allocation heuristic to determine sub-optimal

allocation fractions. The objective function ωMAXE leads to very close variances. A

similar result is also valid for relative error values under the objective function ωMAXR.

Thus, for this specific problem, we conclude that the allocation heuristic successfully

determines the allocation fractions which minimize the maximum variance and the

relative error, respectively.
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Table 4.1. The variance and the percentage relative error of all estimates obtained

under different objective functions.

θj θ1 θ2 θ3 θ4 θ5 θ6

Method ω (π) ∼ yj 1.385 1.462 1.226 1.340 1.166 1.281

Naive - V [ŷj ] 1.14E-07 1.03E-07 2.00E-08 2.71E-08 5.30E-09 8.78E-09

1.80 sec. - %RE [ŷj ] ±0.04785 ±0.04307 ±0.02262 ±0.02410 ±0.01224 ±0.01434

Multiresponse min Σ11 (π) V [ŷj ] 1.08E-10 1.04E-10 2.26E-10 1.46E-10 5.90E-10 3.52E-10

Stratified 2.52 sec. %RE [ŷj ] ±0.00147 ±0.00137 ±0.00240 ±0.00177 ±0.00409 ±0.00287

Sampling V R [ŷj ] 1059 989 89 186 9 25

min Σ22 (π) V [ŷj ] 1.35E-10 9.09E-11 5.44E-10 2.36E-10 1.01E-09 6.64E-10

2.54 sec. %RE [ŷj ] ±0.00164 ±0.00128 ±0.00373 ±0.00225 ±0.00534 ±0.00394

V R [ŷj ] 849 1136 37 115 5 13

min Σ33 (π) V [ŷj ] 7.39E-10 1.14E-09 1.07E-10 1.99E-10 1.50E-10 2.01E-10

2.46 sec. %RE [ŷj ] ±0.00385 ±0.00453 ±0.00166 ±0.00207 ±0.00206 ±0.00217

V R [ŷj ] 155 90 187 136 35 44

min Σ44 (π) V [ŷj ] 1.82E-10 2.47E-10 1.41E-10 1.20E-10 3.33E-10 2.11E-10

2.52 sec. %RE [ŷj ] ±0.00191 ±0.00211 ±0.00190 ±0.00160 ±0.00307 ±0.00222

V R [ŷj ] 629 418 142 226 16 42

min Σ55 (π) V [ŷj ] 8.10E-10 1.12E-09 1.31E-10 2.29E-10 8.78E-11 1.50E-10

2.52 sec. %RE [ŷj ] ±0.00403 ±0.00449 ±0.00183 ±0.00222 ±0.00158 ±0.00187

V R [ŷj ] 141 92 153 119 60 59

min Σ66 (π) V [ŷj ] 2.62E-10 3.50E-10 1.23E-10 1.49E-10 1.03E-10 1.20E-10

2.51 sec. %RE [ŷj ] ±0.00229 ±0.00251 ±0.00178 ±0.00178 ±0.00171 ±0.00168

V R [ŷj ] 437 295 162 182 52 73

Multiresponse minωSUM (π) =
∑J

j=1

∑J
k=1 Σjk (π) V [ŷj ] 1.37E-10 1.49E-10 1.28E-10 1.34E-10 1.34E-10 1.33E-10

Stratified 2.50 sec. %RE [ŷj ] ±0.00166 ±0.00164 ±0.00181 ±0.00169 ±0.00194 ±0.00176

Sampling V R [ŷj ] 835 692 156 203 40 66

minωMSE(π) =
∑J

j=1 Σjj (π) V [ŷj ] 1.32E-10 1.35E-10 1.35E-10 1.43E-10 1.22E-10 1.32E-10

2.47 sec. %RE [ŷj ] ±0.00163 ±0.00156 ±0.00186 ±0.00175 ±0.00186 ±0.00176

V R [ŷj ] 864 763 148 190 43 67

minωMSR(π) =
∑J

j=1 ŷ
−2
j Σjj (π) V [ŷj ] 1.37E-10 1.42E-10 1.32E-10 1.44E-10 1.18E-10 1.30E-10

2.53 sec. %RE [ŷj ] ±0.00165 ±0.00160 ±0.00184 ±0.00176 ±0.00182 ±0.00174

V R [ŷj ] 837 726 151 188 45 68

minωMAXE(π) = max{j : Σjj (π)} V [ŷj ] 1.31E-10 1.33E-10 1.36E-10 1.38E-10 1.31E-10 1.35E-10

2.12 sec. %RE [ŷj ] ±0.00162 ±0.00155 ±0.00187 ±0.00172 ±0.00192 ±0.00178

V R [ŷj ] 874 776 147 197 41 65

minωMAXR(π) = max{j : ŷ−2
j Σjj (π)} V [ŷj ] 1.54E-10 1.69E-10 1.23E-10 1.46E-10 1.11E-10 1.26E-10

2.14 sec. %RE [ŷj ] ±0.00176 ±0.00174 ±0.00177 ±0.00177 ±0.00177 ±0.00172

V R [ŷj ] 741 611 162 185 48 70
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5. RELATIONS BETWEEN OAS AND IS

It is easier to use STRS than IS as determining an efficient IS density is a delicate

operation. If it is not chosen carefully, IS can also increase the variance. STRS has its

own complexity and restrictions depending on the type of the random input, the strata,

and the way of generating conditional random vectors in each stratum. The strata con-

struction (i.e., the stratification function S, the number of strata, the location of strata

boundaries) is a important operation which affects the estimator performance. On the

other hand, for given strata, PAS never increases the output variance. Implementing

stratified sampling with any other allocation (such as OAS) may be viewed as a form

of importance sampling (Glasserman, 2004).

Jourdain (2009) classifies variance reduction techniques in two categories: those

which guarantee a variance reduction however at a moderate level (e.g. antithetic vari-

ates, control variates, and conditional Monte Carlo) and those which may lead to a

significant variance reduction but may also increase the variance in an improper im-

plementation (e.g. importance sampling). Stratified sampling, as a variance reduction

technique, is considered to be at the boundary of these two categories. This is due to

two facts: A variance reduction is guaranteed under proportional allocation, yet other

allocation rules may increase the variance as well as they are capable to decrease it.

The similarity of IS and OAS is that they both intend to make more sampling

from the regions where q(X) has a large variance. Thus, both methods are capable

of reducing the variance in rare event simulations. Importance sampling intends to do

this by a change of measure. On the other hand, STRS achieves an initial variance

reduction by omitting the first component of the variance decomposition in (2.8) - or

(3.1). Then, OAS applies a change of measure by using optimal allocation fractions.

As a result, although they share a common objective, OAS has an exclusive variance

component that is not being reduced by IS. However, practically, OAS needs a clever

strata structure too many equiprobable strata to reach the efficiency of IS. Therefore,
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compared to the lean implementations, a combination of these methods may yield

further variance reduction. However, it is important to comprehend the reason why this

combination works well and, in order to do that, we have to point out the weaknesses

of both methods in practice.

As it was stated in Section 2.2.2, most IS densities are obtained by changing

the parameter of the original sampling density f . However, even with the change of

the parameter, the original densities are not generally capable of imitating closely the

optimal IS density for practical simulation functions. Thus, only a limited variance

reduction can be achieved. A solution to that is to choose a density from a larger

family of distributions.

In fact, as Glasserman (2004) points out, OAS can be considered as a form of

importance sampling which aims to find an optimal IS density from a large family

of distributions. This family is generated by multiplying the original density f with

a function c, that is constant in each stratum. In other words, for fixed strata ξi,

i = 1, . . . , I, the family of densities is:

Cf =

{
c (x) f (x) : c (x) =

I∑
i=1

πip
−1
i 1{x∈ξi},

I∑
i=1

πi = 1, πi ≥ 0, i = 1, . . . , I

}
(5.1)

where the function 1{.} takes the value of one if the indicated event occurs, and zero

otherwise. We define ‖p‖∞ = max {p1, . . . , pI} as the maximum of the stratum prob-

abilities. As ‖p‖∞ converges to zero, the family Cf starts to contain good approxima-

tions of the optimal IS density f ∗IS. However, the number of strata required for a close

approximation can be too large for practical situations where the difference between

the original density f and the optimal IS density f ∗IS is excessive.

If we construct this family with a density, say a suboptimal IS density fIS, which

is similar to the optimal IS density, then good approximations of f ∗IS can be observed in

CfIS even with a small number of strata. We can demonstrate this with the following

example.
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Example: Suppose, we want to estimate y = Eφ [q (Z)] where Z ∼ N(0, 1), φ is

the probability density function (PDF) of standard normal distribution, and q (x) =

{ex − 3.6}+. The true value of this expectation is:

Eφ [q (Z)] =

∞∫
ln 3.6

q (x)φ (x) dx = −3.6Φ (− ln 3.6) + e0.5Φ (1− ln 3.6) ∼= 0.2816

Then, the optimal IS density is:

f ∗IS (x) =
q (x)φ (x)∫∞

−∞ q (x)φ (x) dx
∼=

 (1.4168ex − 5.1003) e−0.5x2 x > ln 3.6

0 x ≤ ln 3.6

which attains its maximum at the point x∗ = 1.9828. We consider a suboptimal IS

density from the normal distribution family obtained by changing the location param-

eter. Thus, we choose the normal density with mean x∗ and unit variance. Figure 5.1

shows the standard normal density φ (x), the shifted IS density fIS (x) and the optimal

IS density f ∗IS (x).

Now, let us assume the family of densities Cφ that is constructed from the original

density φ with I strata. One density in this family is constructed with optimal allo-

cation fractions π∗i in (2.10). In other words, an optimally allocated stratified sample

follows a density fOAS in Cφ, which is constructed with π∗i values.

fOAS (x) = φ (x)
I∑
i=1

π∗i p
−1
i 1{x∈ξi}

In fact, this density converges to the optimal IS density f ∗IS as ‖p‖∞ goes to zero.

Figure 5.2 demonstrates this convergence for 100, 250, 500, and 1000 equiprobable

strata. Notice that the rare event probability Pr{q(Z) > 0} = Pr{Z > ln 3.6} ≈ 0.1.

Thus, the rare event region is divided into 100 strata in the best case (Figure 5.2d).

In Figure 5.2, the density fOAS of the optimally allocated stratified sample ap-

proaches to the optimal IS density. One needs to observe that the rare event occurs in
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Figure 5.1. The original density φ (x), the shifted IS density fIS (x) and the optimal

IS density f ∗IS (x).

the right tail of the standard normal density and the constructed densities are obtained

by multiplying the tail with piecewise π∗i p
−1
i constants. It is clearly seen in Figure 5.2a,

concave and increasing parts of f ∗IS are approximated by piecewisely convex and de-

creasing functions. Moreover, the tails of φ shows a fast exponential decrease, and so

does the right tail of constructed densities. Thus, especially far in the right tail, the

convergence occurs very slowly and the constructed density remains below the optimal

IS density f ∗IS.

Now, let us observe the same process if we construct the family given in Equation

5.1 from the density fIS, the shifted normal density with mean x∗ = 1.9828 and unit

variance. Here, we calculate pi values with respect to density fIS and calculate the

conditional standard deviations σi under the simulation function qIS (x) = q (x) ρ (x).

In order to be fair, we have fixed the maximum number of strata to 100 when we

construct the densities form density f ∗IS. In that case, 76 of the strata falls in the rare

event region. Figure 5.3 shows the convergence of fOAS(x) under five, 10, 25, and 100



53

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(a)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(c)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(d)

Input Domain

D
en

si
ty

 V
al

ue
s

φ(x) fIS
* (x)

fOA(x)

Figure 5.2. The densities fOAS(x) constructed as the product of the original density

φ(x) and the piecewise constant density of π∗i values under (a) 100, (b) 250, (c) 500,

and (d) 1000 equiprobable strata respectively.

equiprobable strata.

From Figure 5.3, we again observe that the density of the optimally allocated

stratified sample converges to the optimal IS density, yet the convergence occurs faster

in ‖p‖∞. Since fIS and the f ∗IS have a common mode and similar shape, the piecewise

density constructed from fIS approximates f ∗IS in the whole sampling domain including

the far right tail. Thus, it can be expected that the variance of the stratified estimator

obtained with this procedure is smaller.

For this toy example, we report also the variances for the naive Monte Carlo
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Figure 5.3. The densities fOAS(x) constructed as the product of the IS density fIS(x)

and the piecewise constant density of π∗i values under (a) five, (b) 10, (c) 25, and (d)

100 equiprobable strata respectively.

(NV), importance sampling with mean shift (IS), the modified AOA method with no

IS and 1000 equiprobable strata (OAS) and the modified AOA method combined with

IS and 100 equiprobable strata (OASIS). For the mean shift we use x∗ = 1.9828. In

each of these methods, the sample size is fixed to N = 105. Since the execution time

of all algorithms are about the same, we will consider the variance of each estimator

as an efficiency measure. Table 5.1 shows the estimates and their variances obtained

with each method.

As expected, the IS with a mean shift yields a moderate variance reduction.

Lean stratified sampling yields smaller variance, however due to the slow convergence
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Table 5.1. Comparison of NV, IS, OAS, and OASIS algorithms.

Estimate Variance

NV 0.27970 2.17E-05

IS 0.28192 3.77E-07

OAS 0.28155 2.73E-09

OASIS 0.28159 8.53E-11

observed in the last stratum in Figure 5.2, a certain amount of variance still remains.

About 97% of this variance is removed by combining IS and stratification, since fOAS

has a better convergence to f ∗IS when we generate the sample from a density that has

similar patterns to f ∗IS.

For practically relevant examples where D ≥ 2, it is not so simple to show that

fOAS approaches to f ∗IS. In fact, the density fOAS of optimally allocated stratified

sample does not always approach to fIS. For the counter example, see Appendix A.

The combined method achieves better variance reduction compared to lean im-

plementations of IS and STRS. In literature, both IS and STRS are considered as

effective methods for rare event simulation. But, still they have deficiencies that can

be removed by combining these two methods:

• IS remains weak since a practical choice of the IS density does not really succeed

in imitating the optimal IS density. Yet it provides an initial variance reduc-

tion. The simultaneous stratification first reduces V [EfIS [qIS (X) |S (X)]] from

V [qIS (X)]. Secondly, under the optimal allocation policy, the generated sample

follows a distribution which imitates the optimal IS density better.

• Lean stratification requires a large number of complex strata to achieve suc-

cessful variance reductions. This, sometimes, might lead to poor estimation of

conditional standard deviations. A simultaneous IS helps to reduce the number

of strata, thus, the complexity of stratification. Moreover, the conditional stan-
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dard deviation estimates and, thus, the optimal allocation fractions become more

accurate. Also, an equiprobable strata structure that is constructed under the IS

density provides a clever strata structure for the original density, thus, enhances

the efficiency of the stratified estimator.
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6. OASIS FOR FINANCIAL RISK SIMULATION

6.1. Risk Measures

In finance, risk measures are used for quantifying the risk level of investments.

Most of them are related with the loss distribution and the probabilistic analysis on

the amount of loss given that we lose more than a specified percentage.

One value of interest is the tail loss probability (TLP ), that is the probability

that the portfolio loss exceeds a certain threshold level τ at the and of a fixed horizon.

TLP (τ) = Pr {Loss > τ} = E
[
1{Loss>τ}

]
.

Estimating tail loss probabilities for many threshold values gives information about

the general behavior of the tail distribution.

Value-at-risk (VaR), as a risk measure, is defined as the 1−α quantile of the loss

distribution for a given probability α.

V aR (1− α) = inf {τ : Pr {Loss > τ} < α}

This particular value provides a simple way of summarizing information about the tail

distribution and is often interpreted as a reasonable worst-case loss level.

Any attempt to summarize a distribution in a single value is open to criticism,

but VaR has a particular deficiency stressed by Artzner et al. (1999): combining two

portfolios in a single portfolio may result in a VaR that is larger than the sum of the

VaRs for the two original portfolios. This runs counter to the idea that diversification

reduces risk.
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Another value of interest is the conditional excess (CEx), i.e., the expected loss

given that the loss exceeds a specified threshold τ :

CEx (τ) = E [Loss|Loss > τ ] =
E
[
Loss1{Loss>τ}

]
E
[
1{Loss>τ}

] . (6.1)

Some risk measures are free of the shortcomings of V aR. An important example

is the expected shortfall (ES), which is an alternative to VaR for being more sensitive

to the shape of the tail loss distribution. The expected shortfall at 1 − α level is the

expected loss of the portfolio in the worst α of the cases.

ES (α) = E [Loss|Loss > V aR (1− α)]

Expected shortfall is also a coherent risk measure and is frequently called with other

names: Conditional value at risk, average value at risk, and expected tail loss. By

satisfying the sub-additivity condition, conditional excess is regarded as a coherent

risk measure (see Artzner et al., 1999).

In our study, we mainly consider the problem of estimating tail loss probabil-

ity and conditional excess values. Because with tail loss probabilities estimated for

multiple threshold values, we can use spline interpolation to approximate the CDF of

the loss distribution and root finding algorithms to obtain V aR values for arbitrary

probabilities. If we have multiple conditional excess values as well, the same approach

can be used to calculate expected shortfall, again for arbitrary probabilities.

6.2. Risk of Asset Portfolios

An asset portfolio is an investment in several assets (typically stocks) at the same

time. The idea of holding a portfolio is that it is expected that this reduces the risk

according to the well known principle: “Do not put all eggs into a single basket”. It is

very important to understand that we cannot expect that the returns of different stocks
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are independent. It is therefore essential for a realistic stochastic model to model the

joint distribution of the logarithmic returns (logreturns) of all stocks contained in the

portfolio.

6.2.1. Multinormal Model

In the multinormal model, the logreturns are modeled with multinormal distribu-

tion. Assuming that the dependence across the assets are introduced within the model,

the portfolio loss then can be represented as a function of the latent variable Z that

follows standard multinormal distribution.

Consider a portfolio of D linear stocks. We assume that the stock log-returns

follow a multinormal distribution with mean vector, µ, volatility vector, σ, and corre-

lation matrix R. Then, the portfolio return is:

Return (Z) =
D∑
d=1

wd exp{µd + σd

D∑
k=1

LdkZk},

where w = (w1, . . . , wD)′ holds the fraction of investments in each stock and L is the

lower triangular Cholesky factorization of the correlation matrix R. The loss of the

portfolio is calculated as Loss (Z) = S0(1−Return (Z)) where S0 is the initial amount

of investment.

6.2.2. The t-Copula Model

In the t-Copula model, the logreturns are modeled with a copula and the latent

variable T follows a multivariate T distribution.

Consider a portfolio of D linear stocks. The weight vector w = (w1, . . . , wD)′

holds the shares invested in stocks. The log-return vector X = (X1, . . . , XD)′ of the

stocks is assumed to follow a t-copula with ν degrees of freedom. Gd denotes the CDF

of the marginal distribution of the d-th log-return and Fν denotes the CDF of a t-
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distribution with ν degrees of freedom. Let σd denote the yearly volatility parameter

and vard denote the variance of the d-th marginal distribution. We define the scaling

factor cd for the d-th log-return:

cd :=
[
σ2
d

/
(252 vard)

]1/2
. (6.2)

Then, the log-returns Xd := cdG
−1
d (Fν (Td)), d = 1, . . . , D are generated using a multi-t

distributed random vector T := (T1, . . . , TD)′ with ν degrees of freedom.

Suppose, we are given the correlation matrix Λ which represents the linear de-

pendence structure of the stocks and let L ∈ RD×D be the lower triangular Cholesky

factor of Λ satisfying LL′ = Λ. We use the standard approach to generate T described

in Section 3.4 using a standard multinormal vector Z ∈ RD and a chi-squared random

variable Y with ν degrees of freedom. However, this time we introduce dependence

across the elements of T :

T = LZ(Y/ν)−1/2. (6.3)

The portfolio return is formulated as the weighted average of stock returns, that

is:

Return (T ) :=
D∑
d=1

wd exp
(
cdG

−1
d (Fν (Td))

)
, (6.4)

with T = (T1, ..., TD)′ vector generated according to Equation 6.3. The loss of the

portfolio is calculated as

Loss (T ) = S0(1−Return (T )) (6.5)

where S0 is the initial amount of investment.
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Sak et al. (2010) propose an efficient IS algorithm in order to estimate tail loss

probability Pr {Loss(T ) ≥ τ}. The IS density is constructed by adding a shift µ to

the standard multi-normal vector Z. In addition, the chi-squared random variable Y

is considered as a gamma random variable with shape and scale parameters equal to

ν/2 and 2 respectively. Then, the algorithm sets a new value to the scale parameter.

The shift vector and the scale values are selected so that the mode of the resulting IS

density is equal to the mode of the zero-variance IS function (see e.g., Glasserman et

al., 1999). For determining the IS parameters, the algorithm utilizes an efficient quasi-

Newton method, namely the constrained version of the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm suggested by Byrd et al. (1995). Also, for generation of

the log-returns, a fast polynomial inversion (PINV) algorithm is used (see Derflinger

et al., 2010). The numerical results show that the IS algorithm is fast and reliable for

realistic marginal distributions such as the generalized hyperbolic distribution.

6.3. The OASIS Algorithm for the t-copula Model

As we have stated in Chapter 1, in the OASIS algorithm, we combine the IS with

the OAS. Our main aim is to use the OASIS algorithm to minimize the overall error of

multiple tail loss probability (or conditional excess) estimates. This section contains

the extensions of the stratified importance sampling algorithm of Başoğlu et al. (2013)

to different type of overall error functions given in Başoğlu and Hörmann (2014).

For the t-copula model, we suggest using the IS methodology of Sak et al. (2010)

in the OASIS algorithm. Therefore, in Appendix B, we give the pseudo-code of their

algorithm which returns the optimal IS parameters. As for OAS, the modified AOA al-

gorithm is used (see Figure 2.1). The random input is stratified with a two-dimensional

stratification. The multi-normal input Z is stratified over the direction of the IS shift

v = µ∗/‖µ∗‖. The gamma random variable Y , which was originally a chi-squared

random variable with ν degrees of freedom, is also stratified.
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6.3.1. Initialization

Stratification of a D-dimensional standard multi-normal vector Z along the di-

rection v can be realized through stratifying its linear projection over that direction.

This method requires O (D) operations and additional independent standard normal

variables by the number of stratified directions (see Section 3.3.1). It might be sensi-

ble to use this approach in order to decrease the computational cost when D is large.

However, the computational complexity of Equation 6.3 is already O (D2). Therefore,

we use the linear transformation of the multi-normal input (see Section 3.3.1.1) so that

the first element Z1 of the input vector Z will correspond to direction v. In that case,

Z1 will be the only element to be stratified in Z. This is achieved by premultiplying

Z with an orthogonal matrix V ∈ RD×D that has its first column equal to v and the

remaining columns can be selected using the algorithm in Figure 3.5.

Computationally, it is not cheap to multiply the Cholesky matrix L with the

transformed vector V Z each time we want to generate a multi-t vector. For this

reason, we save it in matrix A = LV and we replace Equation 6.3 by:

T = (LV )Z(Y /ν)−1/2 = AZ(Y /ν)−1/2. (6.6)

At this point, the initialization of the OASIS algorithm ends. The pseudo-code

of the initialization is given in Figure 6.1.

6.3.2. Main Run

For the main run, we set the total sample size to N and the sample sizes Nk for

each iteration k such that N =
∑K

k=1 N
k.

For the IS part, we use the IS parameters µ∗ and γ∗ calculated with algorithm in

Figure B.1. In the OASIS algorithm, after the linear transformation, the first element
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Require: Parameters of the t-copula model; portfolio loss threshold τ

Ensure: IS parameters µ and γ; premultiplier matrix A

1: compute Cholesky factor L of Σ, i.e., LL′ = Σ

2: compute cd, for d = 1, . . . , D, using Equation 6.2

3: compute µ∗ and γ∗ using Algorithm in Figure B.1

4: set v = µ∗/µ∗

5: call the algorithm in Figure 3.5 with input v to construct linear transformation

matrix V

6: compute the premultiplier matrix A = LV

7: return µ∗, γ∗ and A

Figure 6.1. OASIS Algorithm for the t-copula model: Initialization.

Z1 of the standard multi-normal input corresponds to the shift direction. Therefore,

we add the shift ‖µ∗‖ to Z1. The remaining elements Z2, . . . , ZD are not changed.

Similarly, the gamma random variable Y will be stratified under the IS scale parameter

γ∗. The IS algorithm moves the sampling process to the main region where the portfolio

returns are small. As a consequence, the variance of the simulation function decreases

over the sampling domain, especially over the stratification directions. Therefore, for

both Z1 and Y , it is sufficient to use a moderate number of equiprobable strata. As

we use two-dimensional stratification, we require the index sets i1 = 1, . . . , I1 for the

multi-normal input and i2 = 1, . . . , I2 for the gamma random variable. Thus, the

total number of equiprobable strata is I = I1 × I2. The stratum index i = 1, . . . , I

corresponds to the equiprobable interval i1 = di/I1e of the standard normal distribution

and the equiprobable interval i2 = i − (i1 − 1) I1 of the gamma distribution. The

stratum probabilities pi, i = 1, . . . , I are simply equal to I−1.

The stratified random variables are generated through independent and identi-

cally distributed standard uniform variables U1 and U2. We generate Z1 conditional on

the equiprobable interval i1 using the inverse CDF of the standard normal distribution
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Φ−1:

Z1 = ‖µ∗‖+ Φ−1 ((i1 − 1 + U1) /I1) , (6.7)

and the gamma random variable conditional on the equiprobable interval i2 using the

inverse CDF of the gamma distribution F−1
Γ :

Y = F−1
Γ ((i2 − 1 + U2) /I2; ν/2, γ∗) , (6.8)

under the shape parameter ν/2 and the scale parameter γ∗. Unfortunately, the com-

putational cost of F−1
Γ is large. Therefore, we suggest using the PINV algorithm of

Derflinger et al. (2010) to generate the stratified gamma random variable as well. Fig-

ure 6.2 gives the pseudo code of the generator of stratified multivariate t-distributed

vector for the OASIS algorithm.

Require: Stratum index i

Ensure: A random drawing of T conditional on stratum i

1: set i1 = di/I1e and i2 = i− (i1 − 1) I1

2: generate U1 = U(0, 1) and set Z1 using Eq. 6.7

3: generate Zd ∼ N(0, 1), d = 2, . . . , D independently

4: generate U2 = U(0, 1) independently and set Y using Eq. 6.8

5: compute and return T using Eq. 6.6 and the PINV algorithm

Figure 6.2. Generator for stratified multi-t vector for the OASIS algorithm.

The loss of the portfolio is calculated using Equation 6.5. The simulation function

1{Loss(T )>τ} will be weighted with the IS ratio:

ρ (T ) = ρ (Z1, Y ) = e−Z1‖µ∗‖+‖µ∗‖2/2−Y /2+Y /γ∗+ln(γ∗/2)ν/2, (6.9)

and the weighted values generated in stratum i will be stored in set Hi.

At the end of iteration k, the sample standard deviation ŝki in each set Hi is com-
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puted. The allocation fractions for iteration k are determined by Equation 2.12 and,

subsequently, the allocation of the drawings in iteration k is determined by Equation

2.13.

Finally, in the last iteration, the sample mean ŷKi in each set Hi is computed. The

tail loss probability estimate and its variance are calculated using Equations 2.14 and

2.15. The pseudo code of OASIS for a single probability estimate is given in Figure 6.3.

Require: Parameters of the t-copula model; portfolio loss threshold τ

Ensure: Tail loss probability estimate ŷOASIS and its variance V
[
ŷOASIS

]
1: initialize with the algorithm in Figure 6.1

2: set Hi = ∅, M0
i = 0, and π1

i = pi for i = 1, . . . , I

3: for iteration k = 1, . . . , K do

4: calculate Nk
i using Eq. 2.12 and 2.13, and set Mk

i = Nk
i +Mk−1

i for i = 1, . . . , I

5: for stratum index i = 1, . . . , I do

6: for drawing n = 1, . . . , Nk
i do

7: generate T using algorithm in Figure 6.2

8: compute ρ (T )1{Loss(T )>τ} using Eq. 6.5 and 6.9, and add it to set Hi

9: end for

10: compute sample mean ŷki and sample standard deviation ŝki in set Hi

11: end for

12: end for

13: compute and return ŷOASIS and V
[
ŷOASIS

]
using respectively Eq. 2.14 and 2.15

Figure 6.3. OASIS algorithm for the t-copula model: Single tail loss probability

estimate.

In order to estimate the conditional excess E [Loss (T ) |Loss (T ) > τ ], we follow

Glasserman et al. (2002) and use the same IS density and the likelihood ratio when

estimating the numerator and the denominator in Equation 6.1. In fact, we do not

require an optimal IS density for conditional excess, since the variance that is not

reduced by the IS algorithm is reduced by the subsequent stratification. Thus, we just

use the IS density that is optimal for tail loss probability estimates.
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The OASIS algorithm for the conditional excess is similar to the one for the tail

loss probability except a few changes. The conditional excess has a ratio estimator (see

Equation 6.1). Therefore, we need to evaluate two simulation functions for each draw-

ing of the random input T : Loss (T )1{Loss(T )>τ} and 1{Loss(T )>τ}. Both simulation

functions will be weighted with the IS ratio in Equation 6.9 and the weighted values

generated in stratum i will be stored respectively in sets Hi1 and Hi2.

At the end of iteration k, the sample mean ŷki1 and the sample standard deviation

ŝki1 in set Hi1, the sample mean ŷki2 and the sample standard deviation ŝki2 in set Hi2,

and the sample covariance ŝki12 of sets Hi1 and Hi2 are computed. The estimators of the

numerator and the denominator of Equation 6.1 are also calculated as ŷk1 and ŷk2 using

Equation 2.14. The allocation fractions for iteration k are determined by plugging

in these values in Equation 4.7 and, subsequently, the allocation of the drawings in

iteration k is determined by Equation 2.13.

Finally, at the end of the final iteration, the conditional excess estimate is cal-

culated as the ratio ŷKi1/ŷ
K
i2 . The variance of the ratio estimator is calculated using

Equation 4.6. The pseudo code of OASIS for a single conditional excess estimate is

given in Figure 6.4.

6.3.3. Multiresponse Setting

As we have stated previously, we are mainly interested in efficient estimation

of tail loss probabilities (or conditional excess values) for several threshold values τj,

j = 1, . . . , J in a single simulation.

In order to minimize the overall error of tail loss probability estimates, we utilize

the OASIS algorithm and consider the optimization models described in Section 4. For

the IS density, one can suggest using density mixtures as described in Sak and Hörmann

(2012) since the optimal IS parameters are different for each threshold value. However,

since the stratification of mixture distributions is too complicated, we use a single IS
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Require: Parameters of the t-copula model; portfolio loss threshold τ

Ensure: Conditional excess estimate ŷOASIS and its variance V
[
ŷOASIS

]
1: initialize with the algorithm in Figure 6.1

2: set Hi1 = Hi2 = ∅, M0
i = 0, and π1

i = pi for i = 1, . . . , I

3: for iteration k = 1, . . . , K do

4: calculate Nk
i using Eq. 4.7 and 2.13, and set Mk

i = Nk
i +Mk−1

i for i = 1, . . . , I

5: for stratum index i = 1, . . . , I do

6: for drawing n = 1, . . . , Nk
i do

7: generate T using algorithm in Figure 6.2

8: compute ρ (Z, Y )Loss (T )1{Loss(T )>τ} using Eq. 6.5 and 6.9, and add it

to set Hi1

9: compute ρ (Z, Y )1{Loss(T )>τ} using Eq. 6.5 and 6.9, and add it to set Hi2

10: end for

11: compute sample mean ŷki1 and sample standard deviation ŝki1 of set Hi1

12: compute sample mean ŷki2 and sample standard deviation ŝki2 of set Hi2

13: compute sample covariance ŝki12 of sets Hi1 and Hi2

14: compute ŷk1 and ŷk2 using Equation 2.14

15: end for

16: end for

17: compute and return ŷOASIS = ŷK1 /ŷ
K
2 and V

[
ŷOASIS

]
using Eq. 4.6

Figure 6.4. OASIS algorithm for the t-copula model: Single conditional excess

estimate.

density that is reasonably appropriate for all estimates. As stated in Section 6.3.2, we

do not require an optimal IS density since the variance that is not reduced by the IS

algorithm is reduced by the subsequent stratification. For that matter, we choose a

threshold value between τmin and τmax and determine an IS density with respect to

that threshold. We denote this threshold with τ ∗ = ζτmax+(1−ζ)τmin where ζ ∈ [0, 1].

Since the IS part of the OASIS algorithm is not too critical, we can obtain reasonably

good results unless ζ is too close to zero or one. Once we choose τ ∗, we utilize the

initialization algorithm in Figure 6.1 to set the IS parameters.
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For the stratification part, the strata structure and the generation of the stratified

random input remains the same as in Figure 6.2. Assuming that we are in stratum i,

Loss(T ) and the IS weights ρ(T ) are calculated using Equations 6.5 and 6.9, respec-

tively. At this point, the weighted responses ρ(T )1{Loss(T )>τj} are calculated for each

threshold value τj, j = 1, . . . , J and stored in respective sets Hij. At the end of it-

eration k, the sample mean ŷkij and the sample standard deviation ŝkij of each set Hij

are computed. The tail loss probability estimates found at the end of iteration k are

calculated as ŷkj = I−1
∑I

i=1 ŷ
k
ij for j = 1, . . . , J .

The allocation fractions π1
i of the first iteration are again selected proportionally

as pi = I−1, i = 1, . . . , I. To determine the allocation fractions πki , i = 1, . . . , I for

k ≥ 2, we first choose an objective function which represents the overall error of the

simulation (see Section 4). Then, we solve for the optimal allocation fractions πki using

the appropriate methodology.

• If the objective is to minimize the mean squared error of all estimates, we consider

objective function ωMSE(π) =
∑J

j=1 Σjj(π). We use Equation 4.5 by setting

pi = I−1 for i = 1, . . . , I, all coefficients cjj = 1 for j = 1, . . . , J , and the

remaining coefficients to zero.

• If the objective is to minimize the mean squared relative error of all estimates,

we consider objective function ωMSR(π) =
∑J

j=1 ŷ
−2
j Σjj (π). We use Equation

4.5 by setting pi = I−1 for i = 1, . . . , I, all coefficients cjj = ŷ−2
j for j = 1, . . . , J ,

and the remaining coefficients to zero.

• If the objective is to minimize the maximum absolute error of all estimates, we

consider objective function ωMAXE(π) = max{j : Σjj (π)}. We call the heuristic

algorithm in Figure 4.2 by setting ωj(π) =
I∑
i=1

π−1
i ŝ2

ij for j = 1, . . . , J .

• If the objective is to minimize the maximum absolute relative error of all esti-

mates, we consider objective function ωMAXR(π) = max{j : ŷ−2
j Σjj (π)}. We

again call the heuristic algorithm in Figure 4.2 by setting ωj(π) = ŷ−2
j

I∑
i=1

π−1
i ŝ2

ij

for j = 1, . . . , J .
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Require: Iteration index k; conditional estimates ŷij, ŝij for i = 1, . . . , I and j =

1, . . . , J calculated in the previous iteration; the objective function that represents

the overall error

Ensure: Optimal allocation fractions πki .

1: if k = 1 then

2: set πki = I−1 for i = 1, . . . , I

3: else

4: if objective function is ωMSE(π) then

5: set πki =
(∑J

j=1 ŝ
2
ij

)1/2
/∑I

l=1

(∑J
j=1 ŝ

2
lj

)1/2

for i = 1, . . . , I

6: else if objective function is ωMSR(π) then

7: compute ŷj = I−1
∑I

i=1 ŷij for j = 1, . . . , J

8: set πki =
(∑J

j=1 ŷ
−2
j ŝ2

ij

)1/2
/∑I

l=1

(∑J
j=1 ŷ

−2
j ŝ2

lj

)1/2

for i = 1, . . . , I

9: else if objective function is ωMAXE(π) then

10: set ωj(π) =
∑I

i=1 π
−1
i ŝ2

ij for j = 1, . . . , J

11: call the heuristic algorithm in Fig. 4.2 for πki

12: else if objective function is ωMAXR(π) then

13: compute ŷj = I−1
∑I

i=1 ŷij and set ωj(π) = ŷ−2
j

∑I
i=1 π

−1
i ŝ2

ij for j = 1, . . . , J

14: call the heuristic algorithm in Fig. 4.2 for πki

15: end if

16: end if

17: return πki

Figure 6.5. Optimal allocation fractions for multiple tail loss probability estimates.

The number of drawings from stratum i in iteration k is determined using πki and

Equation 2.13 for i = 1, . . . , I and k = 1, . . . , K.

Finally, in the last iteration, we use the values ŷKij and ŝKij to estimate the tail

loss probabilities

ŷj = I−1

I∑
i=1

ŷKij , j = 1, . . . , J, (6.10)
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their variances

V [ŷj] = I−2

I∑
i=1

(
ŝKij
)2
/
MK

i , j = 1, . . . , J, (6.11)

and percentage relative errors

RE [ŷj] = 100× ŷ−1
j Φ−1 (0.975)V [ŷj]

1/2, j = 1, . . . , J. (6.12)

The pseudo code of OASIS for multiple probability estimates is given in Algo-

rithm 6.6.

In order to estimate multiple conditional excess values E [Loss (T ) |Loss (T ) > τj]

for j = 1, . . . , J , we use the same IS density and the likelihood ratio used for estimating

multiple tail loss probabilities.

The OASIS algorithm for multiple conditional excess values is similar to the one

for multiple tail loss probabilities except the changes regarding to the ratio estimator

of conditional excess. We need to evaluate two simulation functions for each drawing of

the random input T and each threshold τj: Loss (T )1{Loss(T )>τj} and 1{Loss(T )>τj} for

j = 1, . . . , J . Both simulation functions will be weighted with the IS ratio in Equation

6.9 and the weighted values generated in stratum i will be stored respectively in sets

Hij1 and Hij2. At the end of iteration k, the sample mean ŷkij1 and the sample standard

deviation ŝkij1 in set Hij1, the sample mean ŷkij2 and the sample standard deviation ŝkij2

in set Hij2, and the sample covariance ŝkij12 of sets Hij1 and Hij2 are computed for

j = 1, . . . , J and each stratum i. The estimators of the numerator and the denominator

of Equation 6.1 are also calculated as ŷkj1 and ŷkj2 for each response j using Equation

2.14.

The allocation fractions π1
i of the first iteration are again selected proportionally

as pi = I−1, i = 1, . . . , I. To determine the allocation fractions πki , i = 1, . . . , I for
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Require: Parameters of the t-copula model; portfolio loss thresholds τj, j = 1, . . . , J

Ensure: Tail loss probability estimates ŷOASISj , their variance V
[
ŷOASISj

]
and rela-

tive errors RE
[
ŷOASISj

]
for j = 1, . . . , J

1: initialize with Algorithm 6.1 with respect to τ ∗ = ζτmax + (1− ζ)τmin

2: set Hij = ∅ for i = 1, . . . , I and j = 1, . . . , J

3: set M0
i = 0 and π1

i = pi for i = 1, . . . , I

4: for iteration k = 1, . . . , K do

5: for stratum index i = 1, . . . , I do

6: determine πki using algorithm in Figure 6.5

7: calculate Nk
i using πki and 2.13, and set Mk

i = Nk
i +Mk−1

i

8: for drawing n = 1, . . . , Nk
i do

9: generate T using algorithm in Figure 6.2

10: for threshold j = 1, . . . , J do

11: compute ρ (T )1{Loss(T )>τj} using Eq. 6.5 and 6.9, and add it to set Hij

12: end for

13: end for

14: for threshold j = 1, . . . , J do

15: compute sample mean ŷkij and sample standard deviation ŝkij of set Hij

16: end for

17: end for

18: compute ŷkj = I−1
∑I

i=1 ŷ
k
ij for j = 1, . . . , J

19: end for

20: compute and return ŷOASISj , V
[
ŷOASISj

]
, and RE

[
ŷOASISj

]
for j = 1, . . . , J using

Eq. 6.10, 6.11, and 6.12

Figure 6.6. OASIS algorithm for the t-copula model: Multiple tail loss probability

estimates.

k ≥ 2, we calculate ŷj = ŷj1/ŷj2 for j = 1, . . . , J and

ŝij = ŷ2
j1ŷ
−4
j2 ŝ

2
ij2 − 2ŷj1ŷ

−3
j2 ŝij12 + ŷ−2

j2 ŝ
2
ij1, i = 1, . . . , I, j = 1, . . . , J (6.13)
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using the estimates calculated in the k-th iteration. Then, we choose an objective

function which represents the overall error of the simulation (see Section 4) and solve

for the optimal allocation fractions πki using the algorithm in Figure 6.5.

The number of drawings from stratum i in iteration k is determined using πki and

Equation 2.13 for i = 1, . . . , I and k = 1, . . . , K.

Finally, in the last iteration, we use the values ŷKij1, ŷKij2 to calculate the numerator

ŷj1 = I−1
I∑
i=1

ŷKij1 and the denominator ŷj2 = I−1
I∑
i=1

ŷKij2 for all ratio estimators j =

1, . . . , J . The conditional excess estimates are calculated as:

ŷj = ŷj1/ŷj2, j = 1, . . . , J. (6.14)

We use ŷj1, ŷj2 together with the conditional standard deviation estimates ŝKij1,

ŝKij2 and the conditional covariance estimates ŝKij12 to estimate the variance of the esti-

mators of conditional excess values

V [ŷj] = I−2

(
I∑
i=1

ŷ2
j1ŷ
−4
j2

(
ŝKij2
)2 − 2ŷj1ŷ

−3
j2 ŝ

K
ij12 + ŷ−2

j2

(
ŝKij1
)2

MK
i

)
, j = 1, . . . , J, (6.15)

and the percentage relative errors can be calculated using Equation 6.12.

The pseudo code of OASIS for multiple conditional excess estimates is given in

Algorithm 6.7.
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Require: Parameters of the t-copula model; portfolio loss thresholds τj, j = 1, . . . , J

Ensure: Conditional excess estimates ŷOASISj , their variance V
[
ŷOASISj

]
and relative

errors RE
[
ŷOASISj

]
for j = 1, . . . , J

1: initialize with Algorithm 6.1 with respect to τ ∗ = ζτmax + (1− ζ)τmin

2: set Hij1 = Hij2 = ∅ for i = 1, . . . , I and j = 1, . . . , J

3: set M0
i = 0 and π1

i = pi for i = 1, . . . , I

4: for iteration k = 1, . . . , K do

5: for stratum index i = 1, . . . , I do

6: determine πki using algorithm in Figure 6.5

7: calculate Nk
i using πki and 2.13, and set Mk

i = Nk
i +Mk−1

i

8: for drawing n = 1, . . . , Nk
i do

9: generate T using algorithm in Figure 6.2

10: for threshold j = 1, . . . , J do

11: compute ρ (T )Loss (T )1{Loss(T )>τj} using Eq. 6.5 and 6.9, and add it

to set Hij1

12: compute ρ (T )1{Loss(T )>τj} using Eq. 6.5 and 6.9, and add it to set Hij2

13: end for

14: end for

15: for threshold j = 1, . . . , J do

16: compute sample mean ŷkij1 and standard deviation ŝkij1 of set Hij1

17: compute sample mean ŷkij2 and standard deviation ŝkij2 of set Hij2

18: compute sample covariance ŝkij12 of sets Hij1 and Hij2

19: compute ŷkj1 and ŷkj2 using Equation 2.14 and ŷj = ŷkj1/ŷ
k
j2 for j = 1, . . . , J

20: compute ŝij using Equation 6.13

21: end for

22: end for

23: end for

24: compute and return ŷOASISj , V
[
ŷOASISj

]
, and RE

[
ŷOASISj

]
for j = 1, . . . , J using

Eq. 6.14, 6.15, and 6.12

Figure 6.7. OASIS algorithm for the t-copula model: Multiple conditional excess

estimates.
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7. NUMERICAL EXPERIMENTS

In this chapter, we present experiments and their results to measure the perfor-

mance of the OASIS algorithm for the risk simulation for linear asset portfolios under

the t-copula model. Some of these results are also presented in Başoğlu et al. (2013).

7.1. Preliminaries

To evaluate the performance of the OASIS algorithm, we need a measure of

efficiency for its estimators. As explained in Section 2.1, the efficiency of an unbi-

ased estimator is measured by its error bound and its expected computation time. In

Lemieux (2009), the efficiency of an estimator ŷ for a quantity y is defined as:

Eff (ŷ) = [MSE (ŷ)× TM (ŷ)]−1 (7.1)

where MSE (ŷ) = V [ŷ] + Bias2 [ŷ] is the mean-square error of ŷ, Bias [ŷ] = E [ŷ]− y

is the bias of ŷ, and TM (ŷ) is the expected computation time of ŷ. Since the methods

that are used in the OASIS algorithm yield asymptotically unbiased estimators (or

estimators with smaller bias compared to the mean squared error), the bias in Equation

7.1 can simply be ignored.

For a specified estimator, the efficiency ratio is defined as the ratio of the efficien-

cies of the naive estimator and the specified estimator. Namely:

ER (ŷ) =
Eff (ŷ)

Eff (ŷNV )
=
V
[
ŷNV

]
TM

(
ŷNV

)
V [ŷ]TM (ŷ)

.

Thus, if the efficiency ratio is greater than one, then the specified estimator is considered

to be more efficient than the naive estimator.

The performance results provided in this chapter are given in efficiency ratios.
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Occasionally, the variance reduction factors V RF (ŷ) = V
[
ŷNV

]/
V [ŷ] and the execu-

tion time TM (ŷ) of the algorithms are tabulated.

For our experiments, we use real world portfolios of D stocks (D = 2, 5, and 10)

with equal weights (wd = D−1, d = 1, . . . , D). The initial investment is fixed as S0 = 1.

We assume that the marginal distributions of the log-returns follow t or generalized

hyperbolic distributions. As parameters of the marginal distributions, the fitted values

for New York Stock Exchange (NYSE) data reported in Halulu (2012) are used. Halulu

(2012) uses a two-step maximum likelihood procedure for estimating the parameters of

the marginal distributions and, then, the copula parameters for the daily log-returns.

Therefore, it is safe to consider that the numerical tests for variance reduction factors

and execution times reflect the values that could be obtained for real world stock

portfolios. We provide an instance of the fitted parameters of daily log-returns for

D = 5 stocks under the t-copula model with generalized hyperbolic marginals, since

the generalized hyperbolic distribution is considered to be the best fitting and the most

flexible distribution due to its asymmetric density (see e.g. Aas and Haff, 2006; Behr

and Potter, 2009). The fitted degrees of freedom of the t-copula is ν = 8.195. The

parameters of the marginal distributions are presented in Table 7.1 and the correlation

matrix for the t-copula model is presented in Table 7.2. The abbreviations respectively

stand for C: Citigroup Inc., CMS: CMS Energy Corp., F: Ford Motor Co., MO: Altria

Group Inc, WMT: Wal-Mart Stores. We direct the reader to Halulu (2012) for more

information on the other portfolio instances and parameter sets.

Table 7.1. Fitted parameters of generalized hyperbolic marginals for D = 5 stocks in

NYSE under the t-copula model.

Stocks lambda alpha delta beta mu

C -0.602828 8.52771 0.014492 -0.533197 -0.000091

CMS -1.331923 2.72759 0.019891 -2.573416 0.001388

F -1.602705 3.26482 0.035139 1.456542 -0.001662

MO -1.131092 15.13351 0.014771 -1.722396 0.001304

WMT -0.955118 31.14005 0.015362 0.896576 -0.000238



76

Table 7.2. Fitted correlation matrix for D = 5 stocks in NYSE under the t-copula

model with generalized hyperbolic marginals.

Stocks C CMS F MO WMT

C 1 0.554 0.632 0.419 0.400

CMS 0.554 1 0.495 0.540 0.479

F 0.632 0.495 1 0.426 0.445

MO 0.419 0.540 0.426 1 0.443

WMT 0.400 0.479 0.445 0.443 1

The total sample size N used in all simulations is selected as 105, however due to

the sample allocation in Equation 2.13, the OASIS algorithm might slightly exceed the

aimed total sample size. Following the suggestions of Étoré and Jourdain (2010), the

OASIS algorithm terminates in three iterations, using approximately 10%, 40%, and

50% of the total sample size in each iteration, sequentially.

For all implementations of the OASIS algorithm in this chapter, the number of

strata for both the multi-normal and the gamma input are selected as 22. Increasing

the number of strata promises for more variance reduction. However, the marginal con-

tribution of adding a stratum eventually decreases and the variance reduction becomes

saturated. Increasing the number of strata also decreases the number of drawings to be

allocated in each stratum in the first iteration of the OASIS algorithm, and may result

in poor estimates of the conditional standard deviations. Thus, we decide I1 = I2 = 22,

so that the number of strata does not exceed 500. In the general use of the OASIS algo-

rithm, the choice for the number of strata should be decided on the simulation function

q and the size of the sample used in the first iteration of the OASIS algorithm.

All simulation experiments in this chapter are implemented using the R software

with the most recent version 3.1.1.
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7.2. The OASIS Algorithm: Single Estimates Case

Our first set of experiments measure the performance of the OASIS algorithm in

the estimation of a single tail loss probability. Along with the OASIS algorithm, the

naive simulation and the IS algorithm proposed in Sak et al. (2010) is implemented.

The timing results (TM), variance reduction factors (V R) and the efficiency ratios

(ER) for the IS and OASIS algorithms are presented in Table 7.3. For each instance,

we select two threshold values τ such that the tail loss probabilities are approximately

equal to 0.05 and 0.001, as the efficiency results highly depend on the probability of

the rare event.

Table 7.3. Variance reduction factors, execution times in seconds, and the efficiency

ratios of tail loss probability estimates for IS and OASIS under t and GH marginals.

Pr{Loss(T } > τ) ≈ 0.05 Pr{Loss(T } > τ) ≈ 0.001

IS OASIS IS OASIS

Marginals D V R TM ER V R TM ER V R TM ER V R TM ER

t 2 5.5 1.09 4.3 103.2 1.64 54.1 224.3 0.96 217.2 6533.2 1.45 4190.3

5 9.0 3.11 6.4 95.7 3.24 65.3 277.8 2.67 228.9 1867.2 2.88 1426.3

10 9.6 5.72 7.6 154.6 6.01 116.5 213.8 5.22 180.2 685.1 5.41 557.2

GH 2 6.2 1.04 5.2 274.4 1.56 151.3 178.8 1.14 131.7 3829.7 1.51 2130.4

5 9.2 3.06 6.7 81.2 3.34 54.4 289.6 2.84 222.3 3429.4 3.14 2381.0

10 9.6 5.64 7.1 183.3 5.85 130.7 285.5 5.89 197.8 4296.9 6.36 2756.5

Table 7.3 shows that the combined method, OASIS, leads to considerable variance

reduction compared to the lean IS methodology. The execution time of the OASIS

algorithm does not significantly differ from the execution time of the IS algorithm in

any of the instances. Thus, we can conclude that the OASIS algorithm outperforms

the IS methodology in the estimation of tail loss probabilities for practically relevant

examples. Moreover, the efficiency ratio of the OASIS estimators are considerably large,

which means that the OASIS algorithm can be used as an efficient tool for practical

applications.

Under the same experimental design, we run all algorithms for estimating a single
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conditional excess value. Following Glasserman et al. (2002), we use the same IS density

that is used for estimating the tail loss probability in both IS and OASIS. For the

OASIS algorithm, we use optimal allocations that minimize the variance of the ratio

estimator of conditional excess (see Figure 6.4). The timing results (TM), variance

reduction factors (V R) and the efficiency ratios (ER) for the IS and OASIS algorithms

are presented in Table 7.4.

Table 7.4. Variance reduction factors, execution times in seconds, and the efficiency

ratios of conditional excess values for IS and OASIS under t and GH marginals.

Pr{Loss(T } > τ) ≈ 0.05 Pr{Loss(T } > τ) ≈ 0.001

IS OASIS IS OASIS

Marginals D V R TM ER V R TM ER V R TM ER V R TM ER

t 2 8.5 0.94 7.9 34.3 1.36 22.0 542.2 0.80 589.6 1389.0 1.23 982.5

5 15.1 2.65 12.7 42.5 3.09 30.7 203.9 2.43 189.6 374.0 2.81 300.8

10 15.7 5.68 12.0 56.8 6.12 40.2 505.7 4.86 452.7 1056.8 5.23 879.0

GH 2 7.8 0.89 7.4 35.9 1.45 21.1 258.0 1.00 221.9 686.2 1.35 437.2

5 12.8 2.90 27.4 38.9 3.31 73.0 497.9 2.69 409.1 1080.2 3.10 770.1

10 12.6 5.17 10.1 51.0 5.66 37.3 405.6 5.81 288.3 949.5 6.24 628.5

In Table 7.4, we observe that the OASIS algorithm outperforms the lean IS

methodology also in the estimation of conditional excess values. Compared to the

estimation of a single tail loss probability, the difference in the efficiency ratios is not

too much, especially in the extreme rare event case (Pr{Loss(T } > τ) ≈ 0.001). How-

ever, the difference is enough to make the OASIS algorithm preferable also for the

estimation of a single conditional excess value.

Remark 7.1. Our experiments on lean stratification showed that, compared to OASIS,

we obtain worse results with the same strata size and strata structure. Introducing IS

allows to use a small number of equiprobable strata, which reduces the complexity of the

stratification procedure. Moreover, the conditional standard deviation estimates become

more accurate even with a small sample size.
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7.3. The OASIS Algorithm: Multiple Estimates Case

In our second set of experiments, we consider computing tail loss probabilities at

multiple threshold values in a single simulation. We use the algorithm in Figure 6.6

to estimate multiple tail loss probabilities for a portfolio of D = 5 stocks under the

t-copula model with generalized hyperbolic marginals. For the marginal distributions,

we use the parameters given in Table 7.1 and the correlation matrix of the t-copula is

given in Table 7.2. The degrees of freedom is fixed to ν = 8.195.

We consider J = 10 equidistant threshold values. The threshold values τ1 and

τ10 are chosen such that they produce loss probabilities approximately equal to 0.1 and

0.01 respectively. The IS parameters in the OASIS algorithm are selected for threshold

value τ ∗ = 0.75τ1 + 0.25τ10 and determined using Algorithm 6.1.

For the OASIS algorithm, we consider four different functions to represent the

overall error of the simulation: mean squared error ωMSE(π), mean squared relative

error ωMSR(π), the maximum absolute error ωMAXE(π), and the maximum absolute

relative error ωMAXR(π). We run the OASIS algorithm for minimizing each of these

functions, and also for minimizing the variance of each single estimate, with the ob-

jective functions Σjj(π), j = 1, . . . , 10. In those cases, the IS parameters are selected

for the respective threshold value τj. This procedure allows us to observe the minimal

error reachable for each τj and how much variance reduction is lost in other estimates.

We remind that in all OASIS runs, the first iteration use the same random sequence,

which means that the sample allocations of further iterations are based on the same

conditional standard deviation estimates for each run. In each iteration of the OASIS

algorithm, optimal allocation fractions of the next iteration is determined by using the

algorithm in Figure 6.5.

In order to calculate efficiency ratios, we run naive Monte Carlo simulation using

common random numbers and find the variance of multiple estimates in a single sim-

ulation. We also run the combined method under proportional allocation (PASIS) to
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see the efficiency loss when the optimization procedure is removed.

The relative errors (RE) and the efficiency ratios (ER) of all estimates obtained

under each of these objective functions are listed in Table 7.5. The execution time

(TM) of the algorithms are also given.

Before commenting on Table 7.5, we present a plot of the overall error obtained

under some of the objective functions used in the experiment. Figure 7.1a shows the

logarithms of percentage relative errors of all tail loss probability estimates obtained

with the naive simulation and the OASIS algorithm. The dashed line shows naive

simulation (0) results whereas the dotted lines correspond to OASIS minimizing the

variances of the first (1), the fifth (2), and the tenth (3) estimates. The remaining

plots correspond to OASIS under objective functions (4) ωMSR (π), (5) ωMAXR (π)

and (P) PASIS. In Figure 7.1b, the logarithms of absolute errors of tail loss probability

estimates is shown. To reduce the overall relative error in tail loss probability estimates,

the objective functions (6) ωMSE (π), and (7) ωMAXE (π) are considered.
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Figure 7.1. The plot diagram of (a) the log-percentage relative errors and (b) the

log-absolute errors of tail loss probability estimates under different algorithms.
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Table 7.5. Relative errors and the efficiency ratios of multiple tail loss probability

estimates of the OASIS algorithm with respect to different objective functions.

τj τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

ω (π) ∼ yj 0.099 0.074 0.056 0.043 0.033 0.026 0.021 0.017 0.014 0.011

Naive 2.25 sec. RE [ŷj ] 1.87 2.20 2.55 2.93 3.36 3.82 4.31 4.83 5.36 5.93

OASIS min Σ11 (π) RE [ŷj ] 0.23 0.41 0.57 0.71 0.83 0.96 1.07 1.22 1.35 1.52

4.15 sec. ER (ŷj) 37.2 15.9 11.2 9.7 8.9 8.5 8.7 8.2 8.2 7.9

min Σ22 (π) RE [ŷj ] 0.57 0.25 0.40 0.57 0.70 0.80 0.92 1.05 1.17 1.31

4.54 sec. ER (ŷj) 5.8 42.7 21.9 14.4 12.4 11.8 11.2 10.8 10.8 10.5

min Σ33 (π) RE [ŷj ] 0.86 0.66 0.25 0.40 0.59 0.72 0.84 0.97 1.09 1.11

4.51 sec. ER (ŷj) 2.6 6.1 60.9 29.8 18.0 15.4 14.0 13.3 12.7 14.9

min Σ44 (π) RE [ŷj ] 1.01 0.89 0.60 0.26 0.39 0.55 0.67 0.76 0.87 0.98

4.73 sec. ER (ŷj) 1.8 3.3 10.0 72.4 38.5 25.3 21.2 20.1 18.8 17.9

min Σ55 (π) RE [ŷj ] 1.20 1.00 0.88 0.61 0.34 0.40 0.53 0.66 0.77 0.86

5.35 sec. ER (ŷj) 1.3 2.7 4.7 12.9 53.1 47.6 34.3 27.3 25.1 24.7

min Σ66 (π) RE [ŷj ] 1.33 1.19 1.05 0.90 0.58 0.38 0.45 0.55 0.66 0.75

4.27 sec. ER (ŷj) 1.1 1.9 3.4 6.1 19.2 57.4 50.4 40.4 35.1 32.8

min Σ77 (π) RE [ŷj ] 2.32 1.41 1.26 1.06 0.82 0.58 0.38 0.47 0.62 0.65

4.23 sec. ER (ŷj) 0.4 1.4 2.5 4.5 9.9 25.0 72.3 59.0 42.2 46.8

min Σ88 (π) RE [ŷj ] 2.01 1.55 1.40 1.23 1.09 0.89 0.62 0.32 0.37 0.51

4.24 sec. ER (ŷj) 0.5 1.2 1.9 3.4 5.7 10.6 27.3 124.9 118.7 75.1

min Σ99 (π) RE [ŷj ] 2.09 1.74 1.49 1.34 1.21 1.08 0.79 0.59 0.42 0.42

4.35 sec. ER (ŷj) 0.5 0.9 1.7 2.7 4.3 6.8 15.8 34.6 86.6 105.0

min Σ1010 (π) RE [ŷj ] 2.78 2.44 1.75 1.49 1.30 1.20 1.05 0.77 0.59 0.40

4.34 sec. ER (ŷj) 0.3 0.5 1.2 2.3 3.9 5.7 9.5 22.0 45.2 119.7

minωMSE (π) RE [ŷj ] 0.35 0.32 0.35 0.37 0.41 0.48 0.52 0.59 0.68 0.78

4.34 sec. ER (ŷj) 16.6 27.6 31.1 36.7 37.2 35.7 36.6 36.1 33.9 30.8

minωMSR (π) RE [ŷj ] 0.43 0.40 0.39 0.39 0.39 0.40 0.41 0.43 0.46 0.52

4.35 sec. ER (ŷj) 10.9 17.6 24.9 32.8 40.9 49.4 58.7 66.7 71.0 69.7

minωMAXE (π) RE [ŷj ] 0.25 0.33 0.42 0.49 0.61 0.75 0.87 1.01 1.15 1.26

4.95 sec. ER (ŷj) 29.8 23.4 19.5 19.1 16.0 13.5 12.7 11.5 11.1 11.2

minωMAXR (π) RE [ŷj ] 0.43 0.42 0.43 0.44 0.44 0.44 0.45 0.44 0.44 0.46

4.74 sec. ER (ŷj) 9.9 14.3 18.9 24.1 31.3 39.0 47.8 60.2 74.9 83.9

PASIS 3.89 sec. RE [ŷj ] 0.48 0.48 0.49 0.51 0.55 0.58 0.64 0.69 0.74 0.80

ER (ŷj) 11.2 15.7 19.6 23.1 26.8 29.5 31.6 33.3 35.8 37.1

An immediate result of Table 7.5 is that the OASIS algorithm successfully re-

duces the overall error under the objective functions ωMSE(π), ωMSR(π), ωMAXE(π),

and ωMAXR(π). Focusing on individual estimates may even result in a variance increase
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in the other estimates. For instance, a variance minimization for the tenth estimate in-

creases the variance of the first and the second estimates compared to naive simulation.

On the other hand, a variance minimization for the first or the fifth estimate reduces

the variance of other estimates to a moderate level (see Figure 7.1). If we choose to

minimize the mean-squared relative error, we can easily determine optimal allocation

fractions using Equation 4.5. However, by using the optimal allocation heuristic in

Figure 4.2, we can further decrease the maximum relative error using the allocation

heuristic and obtain similar relative errors, as can be seen in the last row of Table 7.5.

Since the loss probabilities converge to zero as the threshold increases, it would be a

better idea to reduce the relative error rather than the absolute error for all estimates.

In fact, this can easily be observed in Figure 7.1b, minimizing the mean-squared or the

maximum absolute error does not make much difference compared to the minimiza-

tion of the variance of the first estimate. On the other hand, the combined algorithm

under proportional allocation does not produce estimates as efficient as in the OASIS

algorithm.

Under the same experimental design, we run all algorithms for estimating mul-

tiple conditional excess values. The optimal IS parameters in OASIS are selected for

threshold value τ ∗ = 0.75τ1 + 0.25τ10 and determined using Algorithm 6.1. For the

OASIS algorithm, we use optimal allocations that minimize the overall error of the

ratio estimators of conditional excess values.

The variance and the efficiency ratios (ER) of all estimates obtained under each

of the objective functions are listed in Table 7.5. The execution time (TM) of the

algorithms are also given.

Before commenting on Table 7.6, similar to Figure 7.1, we present a plot of the

overall error obtained under some of the objective functions used in the experiment.

Figure 7.2a shows the logarithms of percentage relative errors of all conditional excess

estimates obtained with the naive simulation and the OASIS algorithm. The dashed

line shows naive simulation (0) results whereas the dotted lines correspond to OASIS
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Table 7.6. Variances and the efficiency ratios of multiple conditional excess estimates

of the OASIS algorithm with respect to different objective functions.

τj τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

∼ yj2 0.099 0.074 0.055 0.042 0.033 0.026 0.020 0.016 0.013 0.011

ω (π) ∼ yj 0.033 0.037 0.042 0.046 0.051 0.055 0.060 0.064 0.069 0.073

Naive 2.56 sec. V [ŷj ] 3.3E-08 5.0E-08 7.4E-08 1.1E-07 1.6E-07 2.2E-07 3.1E-07 4.2E-07 5.6E-07 7.5E-07

OASIS min Σ11 (π) V [ŷj ] 4.7E-10 9.2E-10 1.5E-09 2.2E-09 3.3E-09 4.6E-09 6.3E-09 8.4E-09 1.1E-08 1.4E-08

6.52 sec. ER (ŷj) 27.5 21.4 20.1 19.1 18.6 19.3 19.6 19.8 20.1 20.7

min Σ22 (π) V [ŷj ] 2.0E-09 6.5E-10 1.1E-09 1.7E-09 2.4E-09 3.5E-09 5.1E-09 7.3E-09 8.7E-09 1.2E-08

6.54 sec. ER (ŷj) 6.6 30.3 27.6 24.7 25.9 25.0 23.9 22.9 25.2 25.1

min Σ33 (π) V [ŷj ] 3.4E-09 2.1E-09 8.2E-10 1.3E-09 2.0E-09 2.7E-09 3.8E-09 5.2E-09 7.1E-09 9.4E-09

6.48 sec. ER (ŷj) 3.9 9.3 35.9 33.2 30.7 32.7 32.6 32.3 31.5 31.6

min Σ44 (π) V [ŷj ] 5.4E-09 4.2E-09 2.5E-09 1.2E-09 1.5E-09 2.4E-09 2.9E-09 4.1E-09 5.7E-09 7.3E-09

6.59 sec. ER (ŷj) 2.4 4.7 11.8 34.6 41.4 37.0 41.4 39.9 38.5 40.0

min Σ55 (π) V [ŷj ] 6.9E-09 7.2E-09 5.0E-09 3.3E-09 1.2E-09 1.6E-09 2.3E-09 3.3E-09 4.5E-09 6.0E-09

7.77 sec. ER (ŷj) 1.6 2.3 4.9 11.0 43.5 46.4 44.0 41.9 41.1 41.4

min Σ66 (π) V [ŷj ] 2.4E-08 1.0E-08 6.6E-09 5.7E-09 3.3E-09 1.5E-09 1.8E-09 2.6E-09 3.7E-09 4.9E-09

6.38 sec. ER (ŷj) 0.5 1.9 4.5 7.6 19.4 58.2 69.3 64.5 61.3 61.6

min Σ77 (π) V [ŷj ] 1.6E-08 1.2E-08 1.3E-08 7.8E-09 6.8E-09 4.4E-09 1.8E-09 2.0E-09 2.9E-09 4.0E-09

6.35 sec. ER (ŷj) 0.8 1.7 2.2 5.6 9.4 20.7 70.7 84.5 77.3 76.1

min Σ88 (π) V [ŷj ] 1.5E-08 1.8E-08 1.7E-08 9.4E-09 8.9E-09 7.4E-09 4.8E-09 2.2E-09 2.8E-09 3.3E-09

6.82 sec. ER (ŷj) 0.8 1.0 1.6 4.3 6.7 11.3 24.4 71.3 74.5 86.2

min Σ99 (π) V [ŷj ] 2.2E-08 3.7E-08 5.2E-08 1.4E-08 1.2E-08 1.1E-08 8.6E-09 6.1E-09 2.1E-09 2.8E-09

6.80 sec. ER (ŷj) 0.6 0.5 0.5 3.0 4.9 7.7 13.7 26.3 98.9 99.6

min Σ10 10 (π) V [ŷj ] 1.9E-08 2.5E-08 2.5E-08 2.6E-08 1.3E-08 1.2E-08 1.1E-08 8.5E-09 5.6E-09 2.6E-09

6.44 sec. ER (ŷj) 0.7 0.8 1.2 1.7 4.9 7.4 10.9 19.9 39.8 115.7

minωMSE (π) V [ŷj ] 1.4E-09 1.4E-09 1.4E-09 1.6E-09 1.8E-09 2.1E-09 2.5E-09 3.1E-09 4.0E-09 5.3E-09

6.49 sec. ER (ŷj) 9.4 14.3 21.1 26.9 35.0 42.4 49.3 54.0 55.7 55.9

minωMSR (π) V [ŷj ] 1.1E-09 1.1E-09 1.2E-09 1.5E-09 1.9E-09 2.4E-09 2.9E-09 3.7E-09 4.8E-09 6.4E-09

6.51 sec. ER (ŷj) 11.6 18.6 23.8 28.4 33.1 37.4 42.5 44.9 46.2 46.6

minωMAXE (π) V [ŷj ] 2.7E-09 2.8E-09 2.9E-09 2.9E-09 3.0E-09 3.2E-09 3.3E-09 3.4E-09 3.5E-09 4.0E-09

6.77 sec. ER (ŷj) 4.6 6.8 9.9 14.1 19.8 26.3 36.0 47.9 61.3 71.5

minωMAXR (π) V [ŷj ] 1.0E-09 1.1E-09 1.5E-09 1.8E-09 2.2E-09 2.6E-09 3.0E-09 3.5E-09 4.0E-09 4.8E-09

7.10 sec. ER (ŷj) 11.6 15.8 18.3 22.4 26.3 31.6 37.9 43.8 50.8 56.5

PASIS 4.53 sec. V [ŷj ] 1.3E-09 1.5E-09 1.9E-09 2.6E-09 3.6E-09 4.8E-09 6.4E-09 8.6E-09 1.1E-08 1.5E-08

ER (ŷj) 15.6 20.7 24.1 25.9 27.9 29.7 30.7 31.3 30.9 31.4

minimizing the variances of the first (1), the fifth (2), and the tenth (3) estimates.

The remaining plots correspond to OASIS under objective functions (4) ωMSR (π),

(5) ωMAXR (π), and (P) PASIS. In Figure 7.2b, the logarithms of absolute errors of

conditional excess estimates is shown. To reduce the overall relative error in condi-

tional excess estimates, the objective functions (6) ωMSE (π), and (7) ωMAXE (π) are

considered.
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Figure 7.2. The plot diagram of (a) the log-percentage relative errors and (b) the

log-absolute errors of conditional excess estimates under different algorithms.

The results in Table 7.6 are similar to the ones in Table 7.5. The OASIS algorithm

successfully reduces the overall error under the objective functions ωMSE(π), ωMSR(π),

ωMAXE(π), and ωMAXR(π). However, this time, focusing on individual estimates does

not result in a variance increase in the other estimates. A variance minimization for

any of the estimates reduces the variance of other estimates to a moderate level (see

Figure 7.2). If we choose to minimize the mean-squared error, we can easily determine

optimal allocation fractions using Equation 4.5. However, by using the optimal allo-

cation heuristic in Figure 4.2, we can further decrease the maximum error using the

allocation heuristic and obtain similar absolute errors, as can be seen in Figure 7.2b.

The conditional excess values show an increasing trend as the threshold increases, thus,

reducing the relative error rather than the absolute error for all estimates does not have

a significant difference on the efficiency of the estimates. In fact, this can easily be

observed in Figure 7.2a, minimizing the mean-squared or the maximum relative error

does not make much difference compared to minimizing the mean-squared or the max-

imum absolute error. Again, the combined algorithm under proportional allocation

does not produce estimates as efficient as in the OASIS algorithm.
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7.4. Performance of the Optimal Allocation Heuristic

We make our third set of experiments to measure the performance of the optimal

allocation heuristic. We have generated ten realistic random instances of the opti-

mization problem in Equation 4.8 regarding to the simulation of the stock portfolios

described in this section. We consider D = 5 stocks under the t-copula model with

both t and the generalized hyperbolic marginals. The number of strata is equal to

484 and we have 10 different threshold values. For each model, we have generated

four instances with an approximate sample size N = 104 and a fifth instance with an

approximate sample size N = 2 × 106, which yields more precise variance estimates.

For each instance, we have used KNITRO solver to find the optimum objective value

ω∗ of the model in Equation 4.8 and the optimum objective value ω∗∗ of the model

in Equation 4.9. We also used the optimal allocation heuristic in Figure 4.2 to find

the sub-optimal objective value ωh. Table 7.7 shows these objective values with the

sub-optimality results compared to ω∗.

Table 7.7. Optimal and suboptimal objective values, ω∗ and ω∗∗, and the heuristic

solution ωh for five random instances of the model in Equation 4.8.

t GH

ω∗ ω∗∗ ωh ω∗ ω∗∗ ωh

Ins. Value Value Subopt. Value Subopt. Value Value Subopt. Value Subopt.

1 0.918 0.939 2.2% 0.944 2.8% 1.091 1.109 1.7% 1.112 1.9%

2 0.971 0.991 2.0% 0.997 2.6% 1.090 1.109 1.7% 1.122 2.9%

3 0.933 0.953 2.1% 0.962 3.0% 1.158 1.176 1.6% 1.180 1.9%

4 0.988 1.008 2.0% 1.015 2.7% 1.196 1.213 1.4% 1.215 1.6%

5 1.126 1.144 1.6% 1.147 1.9% 1.205 1.222 1.4% 1.236 2.6%

In Table 7.7, we can see that the objective values obtained by the optimal al-

location heuristic, ωh, are very close to the optimal objective values ω∗. Moreover,

reducing the dimension of the problem as in Equation 4.9 is a good idea since the ω∗∗

values are also very close to the ω∗ values.
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The optimal solutions obtained with the larger sample size (instance 5) are better

estimators of the real optimal allocation fractions. In Table 7.7, we also observe that

the optimal objective values obtained by using variance estimates with small sample

size (rows 1 to 4) are clearly smaller than the objective values obtained with large

sample size (bottom row). We can see that the sub-optimality results are insignificant

compared to this deviation and therefore conclude that it is not necessary to solve the

optimization problem in the OASIS algorithm more precise than the heuristic.
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8. CONCLUSIONS

In the scope of this thesis, stratified sampling and its combined implementation

with importance sampling is studied. As the application area, the risk estimation of

linear asset portfolios is selected. In the literature, there are rare comments on the

combination of these methods for financial applications, such as option pricing and

portfolio risk estimation. In none of these studies, an optimal implementation of the

combined methods for multiresponse simulation is considered.

In this thesis, a multiresponse simulation algorithm, OASIS, is developed as a

combination of optimal allocation stratification and importance sampling. The al-

gorithm is used for the estimation of multiple values in a single simulation, such as

multiple tail loss probabilities or conditional excess values in linear asset portfolios.

For the realistic t-copula portfolio model, the implementation of OASIS is explained in

detail.

For practically relevant examples, the OASIS algorithm increased the efficiency

of tail loss probability and conditional excess estimates under the t-copula model com-

pared to the naive simulation and other benchmark methods in the literature. The

variance of the estimates are substantially reduced without a significant increase in

the execution time. Therefore, the OASIS method can provide highly efficient tail loss

probability or conditional excess estimates for realistic stock portfolio models.

Moreover, OASIS enables the efficient estimation of tail loss probabilities or con-

ditional excess values for multiple loss thresholds in a single simulation. The IS part

of the method provides an initial variance reduction nearly in all estimates and the

stratification methodology allows the minimization of the overall error of the simula-

tion by considering allocation fractions as decision variables. In order to increase the

efficiency of all estimators, two general objective functions are proposed to represent

the overall error. In the first, we consider the minimization of the linear functions of the
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variance-covariance matrix of the stratified estimates. Whereas, in the second class, we

consider the minimization of the maximum of the variances which are weighted with

non-negative coefficients. For these objective functions, nonlinear optimization models

are introduced with allocation fractions as decision variables. A closed-form solution

is developed for the first class of objective functions. For the second class, an optimal

allocation heuristic is utilized to develop a sub-optimal solution. These solutions are

used in the sampling phase to minimize quantities that represent the overall error of

the simulation, such as the mean-squared (relative) error or the maximum absolute

(relative) error.

With multiple tail loss probability estimates in a single simulation, one can use

spline interpolation to approximate the CDF of the loss distribution and root finding

algorithms to obtain V aR values for arbitrary probabilities. Along with multiple tail

loss probability estimates, existence of multiple conditional excess values enable the

calculation of expected shortfall values in a similar fashion.

With the numerical examples, the OASIS algorithm is shown to be an efficient

and flexible method for simulation problems for which we can find efficient stratification

functions. The idea of the OASIS algorithm can be used to minimize the overall error

of an arbitrary simulation associated with multiple estimates. We remind that in our

examples, the size of the random input is independent of the parameter space. Whether

comparable results would be obtainable for all type of discrete event simulations is an

area in need of further research. Nevertheless, OASIS can be promisingly useful for

stochastic optimization and response surface estimation problems, as they require the

evaluation of the simulation function for many different parameter values.



89

APPENDIX A: A COUNTER EXAMPLE

Consider the function q(x) = 1{ex>3.6}. Then E [q (Z)] is simply equal to Pr{Z >

ln 3.6} ≈ 0.1, and the optimal IS density is f ∗IS (x) ≈ 10φ (x)1{x>ln 3.6}. The optimal

allocation rule in Equation 2.10 will asymptotically force the sample to be allocated

in the stratum that contains the root of ln 3.6. The strata, for which the conditional

variances are estimated as zero in preliminary iterations, will no longer be subject to

significant allocations in further iterations, even if the conditional expectations are

different than zero. Thus, the density fOAS will not be approaching to the optimal IS

density.

However, in the family of densities given in Equation 5.1, there exists a density

which approaches to the optimal IS density as ‖p‖∞ goes to zero. In order to define

that density, we divide the strata indices into two sets. In the first set P0, we col-

lect the indices of strata that has zero conditional variance and non-zero conditional

expectation. The remaining indices belong to the other set, P c
0 . We define:

πISi =


piσi∑
l∈P0

plσl
, i ∈ P0

1, i ∈ P c
0

(A.1)

In the family of densities given in Equation 5.1, the density that is constructed

with πi = πISi given in Equation A.1 and it approaches to f ∗IS as ‖p‖∞ goes to zero.
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APPENDIX B: OPTIMAL IS PARAMETERS FOR THE

t-COPULA MODEL

We give the pseudo-code of the algorithm of Sak et al. (2010) which returns the

optimal IS parameters for the t-copula model. For more details, we direct the reader

to Sak et al. (2010).

Require: Vector of investment shares in each stock w = (w1, . . . , wD); vector of

scaling factors c = (c1, . . . , cD) of the logreturns d = 1, . . . , D; Cholesky factor L

of correlation matrix Λ, threshold τ ; parameters of the t-copula model

Ensure: Optimal mean shift µ and scale parameter γ

1: compute direction vinit = L′ (c ∗w) (“∗” denotes a component-wise product)

2: call constrained BFGS algorithm with initial direction vinit, objective function

as given in the algorithm in Figure B.2, and non-negativity constraints for all

components of v. Get optimal direction v∗.

3: call algorithm in Figure B.2 direction v∗ and get the optimal mean shift µ∗ and

optimal scale parameter γ∗.

Figure B.1. Computation of optimal IS parameters for the t-copula model.

Require: Direction v

Ensure: the mean shift µ and scale parameter γ

1: Compute r0 by solving Return (r0v/‖v‖)− τ = 0 numerically

2: Return objective function value (ν/2− 1)
(

ln
(

(ν − 2) (1 + r2
0ν
−1)
−1
)
− 1
)

,

the scale parameter γ = 2(1 + r2
0ν
−1)
−1

, and the mean shift

µ = r0

(
(ν − 2) (ν + r2

0)
−1
)1/2

v/‖v‖

Figure B.2. Computation of IS parameters for direction v.
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Scientific Computing, Vol. 31, No. 3, pp. 2282-2302.

Jensen, J. L. W. V., 1906, “Sur les Fonctions Convexes et les Ingalits Entre les Valeurs

Moyennes”, Acta Mathematica, Vol. 30, No. 1, pp. 175-193.



94

Jourdain, B., 2009, “Adaptive Variance Reduction Techniques in Finance”, Radon

Series on Computational and Applied Mathematics, Vol. 8, pp. 1-18.

Jourdain, B., B. Lapeyre, and P. Sabino, 2011, “Convenient Multiple Directions of

Stratification”, International Journal of Theoretical and Applied Finance , Vol. 14,

No. 6, pp. 867-897.

Kahn, H., and A. W. Marshall, 1953, “Methods of Reducing Sample Size in Monte

Carlo Computations”, Journal of the Operations Research Society of America, Vol.

1, No. 5, pp. 263-278.

Kang, W. and P. Shahabuddin, 2005, “Fast Simulation for Multifactor Portfolio Credit

Risk in the t-copula Model”, In: Proceedings of the 2005 Winter Simulation Con-

ference, Edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, an J. A. Joines,

Orlando, Florida.

Khowaja, S., S. Ghufran, and M. J. Ahsan, 2012, “Multi-objective Optimization for Op-

timum Allocation in Multivariate Stratified Sampling with Quadratic Cost”, Journal

of Statistical Computation and Simulation, Vol. 82, No. 12, pp. 1789-1798.

Kole, E., K. Koedijk, and M. Verbeek, 2007, “Selecting Copulas for Risk Management”,

Journal of Banking and Finance, Vol. 31, No. 8, pp. 24052423.

Koopman, S. J., N. Shephard, and D. Creal, 2009, “Testing the Assumptions Behind

Importance Sampling”, Journal of Econometrics, Vol. 149, No. 1, pp. 2-11.

Kreinin, A., L. Merkoulovitch, D. Rosen, and M. Zerbs, 1998, “Principal Component

Analysis in Quasi Monte Carlo Simulation”, Algo Research Quarterly, Vol. 1, No.2,

pp. 21-30.

Law, A. M., 2014, Simulation Modeling & Analysis, McGraw-Hill, New York.

Lemieux, C., 2009, Monte Carlo and Quasi-Monte Carlo Sampling, Springer Series in

Statistics, New York.



95

Marshall, A., 1956, “The use of multi-stage sampling schemes in Monte Carlo com-

putations”, In: H. Meyer (Ed.) Symposium on Monte Carlo Methods, pp. 123-140,

John Wiley & Sons, New York.

Mashal, R., M. Naldi, and A. Zeevi, 2003, “Comparing the Dependence Structure of

Equity and Asset Returns”, Risk No. 16, pp. 8287.

McKay, M. D., W. J. Conover, and R. J. Beckman, 1979, “A Comparison of Three

Methods for Selecting Values of Input Variables in the Analysis of Output from a

Computer Code”, Technometrics, Vol. 21, No. 2, pp. 239-245.

McLeish, D. L., 2010, “Bounded Relative Error Importance Sampling and Rare Event

Simulation”, ASTIN Bulletin, Vol. 40, No. 01, pp. 377-398.

Miller, T. J., J. R. Skalski, and J. N. Ianelli, 2007, “Optimizing a Stratifield Sampling

Design When Faced with Multiple Objectives”, ICES Journal of Marine Science,

Vol. 64, No. 1, pp. 97109.

Myers, R., and D. Montgomery, 2002, Response Surface Methodology, Wiley, New York.

Rubinstein, R. Y., and D. P. Kroese, 2008, Simulation and the Monte Carlo Method,

John Wiley & Sons, New Jersey.

Rubinstein, R. Y., and R. Marcus, 1985, “Efficiency of Multivariate Control Variates

in Monte Carlo Simulation”, Operations Research Vol. 33, No. 3, pp. 661677.

Rubinstein, R. Y., and B. Melamed, 1998, Modern Simulation and Modeling, Wiley.
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