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ABSTRACT

ANALYSIS OF THE IMPACT OF DECISION TIME ON

THE SYSTEM PERFORMANCE IN DISTRIBUTED

SYSTEMS

In this study, we investigate the effect of the time it takes to generate a schedule

on the performance of a stochastic dynamic scheduling system. To isolate the impact

of the decision time on the system performance, we devise a single machine stochastic

scheduling environment where the performance of the system is measured by average

earliness - tardiness cost. Our study is composed of two phases. In the first phase, we

construct a centralized scheduling system. We explicitly model the decision time. We

test the trade off between spending more time for the scheduling process by employing

more sophisticated scheduling algorithms and using simple fast heuristic algorithm. In

the second phase, we construct a distributed scheduling system. We test the trade off

between spending more time by including detailed global information to achieve global

optimality under a centralized control structure and using timely accessible local infor-

mation under distributed control. We simulated the system under various scheduling

environments controlled by due date tightness, urgent job ratios, operation time vari-

ability and utilization using different centralized control polices and distributed control

policies. Our experiments show that under certain shop conditions and control policies,

the shop may operate more efficiently if a simple fast heuristic is used instead of a slow

optimum algorithm to solve the scheduling problems. We have been able to also show

that, again under some specific operating conditions, the dynamic production system

will run more efficiently when we use fast distributed schedulers instead of a relatively

slow centralized scheduler.
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ÖZET

DAĞITIK SİSTEMLERDE KARAR VERME SÜRESİNİN

SİSTEM PERFORMANSINA ETKİSİNİN ANALİZİ

Biz bu çalışmada bir çizelge üretmek için geçen zamanın stokastik dinamik

çizelgeleme sistemi performansına etkisini inceledik. Karar verme süresinin sistem

performansı üzerindeki etkisini ayırdebilmek için tek makineli dinamik ve rastsal bir

çizelgeleme ortamı tasarladık. İşlerin ortalama erkenliği ve geçliği sistem performansı

ölçütü olarak kullanıldı. Çalışmamız iki aşamadan oluşuyor. İlk aşamada merkezi bir

çizelgeleme sistemi kurduk. Karar verme süresini modelledik. Çizelgeleme sürecinde

daha fazla zaman alan gelişmiş çizelgeleme algoritmaları kullanımını, basit hızlı sezgisel

algoritmaların kullanımı ile kıyasladık. İkinci aşamada dağıtık bir çizelgeleme sistemi

kurduk. Daha fazla zaman harcayarak ayrıntılı global bilgiyi dahil edip global eniy-

iliğe ulaşan merkezi kontrol yapısını, çabuk ulaşılan lokal bilginin kullanıldığı dağıtık

kontrol yapısı ile kıyasladık. Benzetim modelimizde termin tarihlerinin sıkılığı, acil

işlerin gelme oranı, üretim zamanlarındaki varyasyon, makina doluluğu parametreleri

ile çeşitli atölye koşulları yarattık ve sistemi alternatif merkezi ve dağıtık kontrol poli-

tikaları altında çalıştırdık. Deneylerimizde, belirli atölye ortamlarında ve kontrol poli-

tikaları altında, basit ve hızlı bir sezgisel yöntemin yavaş bir eniyileme algoritmasından

daha iyi sonuç verdiğini gösteriyoruz. Ayrıca, deneylerimizde yine belirli operasyon

koşullarında, nispeten yavaş merkezi çizelgeleyici yerine hızlı dağıtık çizelgeleyicileri

kullandığımızda, dinamik üretim sisteminin daha etkili yönetildiğini gösteriyoruz.
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Γ Scheduling period that statistics during the simulation are

collected

κ A uniform random number

λ Job arrival rate

ω Time it takes to synchronize

Ω Synchronization period length

ρ Machine utilization

φ Urgent job ratio

π A Schedule

πLt Latest schedule released by time t

σ A random sequence of jobs in the system (JSt )

σ(i) The ith job in sequence σ

τ Due date tightness
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1. INTRODUCTION

A stream of research, and most scheduling implementations in actual manufac-

turing companies, handle the dynamic and stochastic nature of the scheduling environ-

ment through a rolling scheduling process. At scheduling process trigger time points

the following steps are executed.

(i) Load the scheduling data, such as open orders, current shop floor status, prod-

uct specifications (processing times, setup requirements, routings, etc.), available

production capacities, and product and material inventories.

(ii) Based on the current captured state of the system in Step 1, run a static deter-

ministic scheduling algorithm to obtain an optimized schedule.

(iii) Evaluate the resulting schedule and perform manual overrides.

(iv) Dispatch the generated schedule to the shop floor.

In the literature, different forms of scheduling process trigger mechanisms, such

as periodic and event based trigger are analyzed [1]. Steps 1 and 4 are accomplished

through an integration with an enterprise data source, such as an ERP system. Steps

2 and 3 are optional. In Step 1, the data loaded from the data source is expected to

represent the state of the system at a time instance, and it is deterministic. Hence,

the scheduling problem on hand in Step 2 is static and deterministic in nature. The

stochastic nature of the system is handled by loading the data regarding the current

state of the system at each execution of the process.

Studies in the dynamic scheduling literature commonly assume that the whole

scheduling process is instantaneous, i.e. executing Steps 1 through 4 does not take time.

On the contrary, in real life, all steps take time. Actually, depending on the size and

extent of the underlying data source, the scheduling problem and the scheduling method

deployed, the time it takes to perform the scheduling process may be very significant.

We have accounts of scheduling systems deployed in manufacturing companies where

the scheduling process time is in the magnitude of several hours.
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Issues related to the integration process (Steps 1 and 4) within a dynamic envi-

ronment (see [2]) is out of the scope of this paper. Hence, for simplification, we will

assume that Steps 1 and 4 do not take time, and the loaded data in Step 1 accurately

represent the state of the system at that instance. Since both Steps 2 and 3 deal with

the actual scheduling, and there is no added value by considering them separately, we

will assume that, within the scheduling process, only Step 2 takes time, and all other

processes are instantaneous. We will call the time spent to perform the scheduling

process as the decision time.

Even when we assume that the decision time is zero, i.e. scheduling process takes

no time, using optimum static deterministic scheduling algorithms within the schedul-

ing process to manage dynamic stochastic systems, under some specific operating con-

ditions, may be inferior to using simple heuristics. [3,4] analyze the deterioration of the

performance of optimized static schedules under processing time uncertainty and vari-

ability in machine availability. [5,6] focus on the robustness of optimum seeking off-line

scheduling versus on-line scheduling under uncertainty and processing time variability.

Further studies on different issues regarding scheduling dynamic systems can be

found in survey papers [7–9]. Especially [10,11] investigate the dynamic single machine

scheduling problem where the performance measure is related to earliness and tardiness

of jobs.

Note that, the scheduling process captures the current state of the system at the

beginning of the process (Step 1), and the scheduling algorithm runs on that static

data. As we discussed previously, running the scheduling algorithm takes some time.

Since our system is dynamic and stochastic, the state of the system changes within that

time period. Hence, the state of the system when the schedule is released at the end

of the process (Step 4) may be significantly different from the data considered within

the scheduling algorithm. Hence, the solution obtained may not be a good (or even

feasible) solution for the current shop conditions

In a reasonable scheduling setting, this process inherently exposes a basic trade-
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off: If we spend more time for the scheduling process, by including more detailed

information and by employing more sophisticated scheduling algorithms, we will be

able to generate better solutions at each instance of the algorithm run. However, con-

sequently, this may increase the discrepancy between the state of the system known to

the scheduling algorithm and the actual state of the system at the time we implement

the resulting schedule. Hence, we conjecture that, under some specific operating condi-

tions, the dynamic production system will run more efficiently when we use fast simple

heuristics instead of relatively slow optimization algorithms. We conjecture also that,

again under some specific operating conditions, the dynamic production system will

run more efficiently when we use timely accessible local information instead of more

detailed global information.

In this study, we investigate the effect of the time it takes to generate a schedule

on the performance of a dynamic stochastic production system. Our study is composed

of two phases. In the first phase, we test the trade off between spending more time for

the scheduling process by employing more sophisticated scheduling algorithms and us-

ing simple fast heuristic algorithm. In the second phase, we test the trade off between

spending more time by including detailed global information to achieve global optimal-

ity under a centralized control structure and using timely accessible local information

under distributed control.

In the first phase, we devise a centralized scheduling system. We explicitly model

the decision time and analyze its impact on the system performance. To the best of

our knowledge, there is very small number of studies in the literature where decision

time is explicitly modeled. [12] works on the meeting scheduling problem, where they

include the time needed to schedule meetings in their model without analyzing the

effects on the system performance. [13] investigates the effect of factors such as agent

population, bandwidth, message sizes and decision times in individual agents on the

performance of communication system and auctioning process. [14] studies the effect

of scheduling time and dispatching time for a specific queuing system. [15, 16] are the

only studies which are in the same line of research as our work. The basic difference

between those studies and this work is that we consider a scheduling problem where
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pre-emption is not allowed.

Centralized control structure is in concert with optimization but it requires to

manage the data globally, hence it is impractical to timely respond unexpected events

in dynamic stochastic systems (i) due to the complexity of scheduling problems, (ii) if

the nature of the organization is distributed (i.e. when agents are locally isolated and

administratively independent [17]) and (iii) if information sharing is restrictive [11,18].

To handle the dynamic nature of the problem in a responsive manner, one of the

proposed solutions is to decompose the problem and distribute to various scheduling

servers. This approach is called distributed scheduling. In distributed scheduling, a

number of schedulers observe a specific part of the decomposed system, and generate

solutions.

Distributing the scheduling problem brings in additional issues such as: (i) Choice

of the decomposition methodology [18–20] and the control structure [21–27]; (ii) Han-

dling mechanism for coupling constraints (shared resource) between schedulers [6, 11,

27–33]; (iii) Accuracy and timing of representation of local reality in each scheduler.

We devise a distributed scheduling system for the second phase, then the sys-

tem performance under the control of fast distributed schedulers is compared with

the system performance under a relatively slow centralized scheduler. The centralized

scheduler is assumed to has access to all global information at the start of schedul-

ing process but it necessitates more time for running the scheduling algorithm. As

mentioned before, the centralized scheduler can provide a global optimum solution ac-

cording to the state of the system when scheduling process is triggered. However the

state of the system when the schedule is released at the end of the scheduling process

may be significantly different since our system is dynamic and stochastic. On the other

hand, distributing the scheduling problem among various schedulers may improve re-

activity by providing smaller local problems. However lack of global information may

reduce the quality of the solutions.
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Our distributed scheduling system composes of two schedulers. Distributed sched-

ulers handle the dynamic and stochastic nature of the scheduling environment through

again a rolling scheduling process. Distributed schedulers observe different parts of

scheduling problem, hence in Step 1 distributed schedulers will load the local schedul-

ing data. For simplification we continue to assume that loading local data do not take

time and loaded data is accurate. We continue to consider Steps 2 and 3 together.

Remember that, in the first phase, a central scheduler running a scheduling algorithm

(Step 2) takes time. Under the expectation that distributing the scheduling problem

among various schedulers may improve reactivity by providing smaller local problems,

we assume that scheduling process does not take time in distributed scheduling sys-

tem. In Step 4, each scheduler instantaneously dispatch its own generated scheduler

that ensures feasibility for its own jobs. We will test the effect of synchronization

among schedulers on the distributed scheduling system performance. Besides, we want

to test the trade-off between using fast-distributed asynchronous schedulers and the

slow-centralized scheduler.

The rest of the report is organized as follows: In Chapter 2, related literature

is presented. In Chapter 3, we formally define the dynamic scheduling environment

that we investigate. Chapter 4 explains the simulation setup and experimental set-

tings. Experimentation results are discussed in Chapter 5. We conclude the paper in

Chapter 6.
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2. LITERATURE REVIEW

2.1. Static Deterministic Scheduling with Earliness/Tardiness Penalties

In this section we review the single machine earliness/tardiness scheduling prob-

lem in literature. The earliness/tardiness scheduling problem can be divided into two

categories: the problems with distinct due dates and the problems with common due

dates. Another distinction on the problem can be made by allowing or not allowing

machine idle times. Final categorization of the problems with equal release dates or dis-

tinct release dates. In this section, we only review the papers considering the problem

with distinct due dates.

2.1.1. Scheduling without Machine Idle Times

Most of the earliness/tardiness studies in the literature avoid the issue of inserted

idle time by assuming a common due date for all jobs [34]. The earliness/tardiness

problem with distinct due dates, equal release dates and no idle time is studied by [35].

[35] decomposes the problem into earliness and tardiness subproblems and shows that

the lower bound of the problem is the sum of the lower bounds of the two problems.

Lagrangean relaxation method is used to obtain a lower bound of each subproblem.

[36, 37] use the same decomposition technique and presents exact approaches for the

same problem but with distinct release dates.

2.1.2. Scheduling with Inserted Machine Idle Times

Schedules with inserted idle times may be beneficial when when the objective

function is not regular [11, 34]. In this section we present exact and approximate

studies for the single machine earliness/tardiness scheduling problem in the literature

that allow machine idle times.

[38] considers the objective of minimizing the mean tardiness and earliness when
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due dates of jobs are not common. [38] proves several properties of an optimal solution.

A branch and bound algorithm and heuristic algorithms are developed by using these

properties. [39] improves the lower bounds of [38]. [39] presents a nonlinear program

for the completion of a partial sequence that is solved by using a timetabling algo-

rithm [40] proposes an approach based on a preemptive relaxation of the problem. [41]

proposes the combination of a Lagrangean relaxation of resource constraints and new

dominance rules that can solve instances with up to 50 jobs. [42] suggests combining

dynamic programming and branch and bound techniques with the application of a

transportation problem based lower bound procedure.

For the distinct due date problem, it is shown that insertion of idle time could

improve the objective function and this result gave rise a two step procedure to evolve in

heuristic procedures [11]: in the first step, a good job processing sequence is determined;

in the second step, idle time is inserted optimally [43, 44]. The insertion of idle time

problem can easily be solved either by solving a linear program or by using a specialized

algorithm [42]. Beside these two step procedures, as a very recent heuristic approach,

[45] has developed iterated local search algorithms based on fast neighborhoods. They

showed that very good solutions for instances with significantly more than 100 jobs

can be derived in a few seconds.

2.2. Deterioration of Static Schedules in Dynamic Stochastic Systems

Theoretical scheduling problems, which are concerned with searching for optimal

schedules subject to a limited number of constraints, have a combinatorial explosion

of possible solutions and are generally NP hard. Although the existence of this fact,

most of the literature dealing with production scheduling has been focused primarily on

finding optimal, or near-optimal, predictive schedules with respect to various criteria.

These approaches have used the implicit assumption of a static deterministic environ-

ment where complete knowledge of the problem was available without consideration of

any kind of failures. This is rarely the case in the real world.

[8] summarizes the most common unexpected events in the shop floor as; machine
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failure, urgent job arrival, job cancellation, due date change, delay in the arrival or

shortage of materials, change in job priority, over- or underestimation of process time,

and operator absenteeism. These real-time events not only interrupt system operation

but also upset the predictive schedule that was previously established.

[3] empirically shows that performance of “optimized” static schedules may dete-

riorate rapidly with processing time uncertainty and that simple dynamic dispatching

heuristics may provide a far superior performance. [4] reports similar observations when

considering uncertainties in job processing times and machine availability.

[5] works on a centralized solution methodology for flexible manufacturing sys-

tems and shows that online scheduling is more robust to uncertainty and variations in

processing times than the optimum seeking offline scheduling. [6] studies methods to

improve scheduling robustness under processing time variation for classical job shop

problems. Their approach is more robust than static optimization schemes while out-

performing best known dynamic heuristics in both performance and robustness.

Further studies on different issues regarding scheduling dynamic systems can be

found in survey papers [7–9]. [8] presents definitions appropriate for most applications

of rescheduling manufacturing systems and describe a framework for understanding

rescheduling strategies, policies and methods. They also discuss studies that show

how rescheduling affects the performance of a manufacturing system. [7] considers the

problem of executing production schedules in the presence of unforeseen disruptions

on the shop floor. A number of issues related to problem formulation is discussed. A

taxonomy of the different types of uncertainty is provided. [9] is one of the recent survey

of dynamic scheduling outlines the limitations of the static approaches to scheduling

in dynamic environments.

2.3. Dynamic Scheduling with Earliness/Tardiness Penalties

The dynamic scheduling problem with earliness/tardiness penalties is studied by

few researchers [11, 29,30].
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[10, 11] study the dynamic single machine scheduling problem by minimizing

earliness/tardiness penalties. They present procedures perform like dispatching proce-

dure to decide the next job to be processed while permitting schedules with idle time

between jobs. [10] constructs a schedule by following a two step process consisting of

generating a sequence and inserting idle time. [11] proposes an auction model by us-

ing Lagrangian relaxation to decompose the problem into job agents and the machine

agent and by using Lagrangian multipliers to construct and evaluate bids. [11] defines

a parameter to make the machine idle for an amount of time determined by that pa-

rameter to involve a new arriving urgent job into the auction. In these studies the

performance is evaluated against other well known dispatching procedures.

[30] develops a multi agent method in flexible job shop environment for earli-

ness/tardiness objectives. Multi agent scheduling method is compared with two con-

tract net approaches which are used to minimize average tardiness in heterarchical

scheduling of flexible manufacturing systems.

[29] develops a heuristic method based on a multi agent architecture for a parallel

identical machine scheduling model and earliness/tardiness objectives. The heuristics

of [10] and [46] and EDD are adopted to the online parallel machine case as non agent

based heuristics. The performance of multi agent approach is compared with non agent

based heuristics to show the effectiveness of such an approach.

[46] investigates the conditions where inserting machine idle times are necessary

by considering mean tardiness single machine problem. [46] proposes a decision theory

based heuristic by using a simple look ahead procedure to produce tactically delayed

schedules. [46] suggests that tactically delayed schedules are important when due dates

are arbitrary and utilization low.

2.4. Distributed Scheduling

Scheduling problem of manufacturing systems corresponds to a distributed prob-

lem from both the physical and the logical point of view. Physically, the system involves
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several resources and from the logical point of view it is also a distribution problem

because several tasks can be carried out at the same time. The studies in literature

vary corresponding to decomposition techniques. [19] makes a comprehensive survey on

the decomposition of the scheduling problem where the issues such as how the problem

is decomposed, how or to whom it is assigned, and the organization for solving the

subproblems, strategies used for resolving conflicts, the manner in which communica-

tion is conducted, etc. are used as parameters to compare and contrast the approaches

reported in the literature

When the problem is decomposed, the subproblems are distributed to various

agents. Distributed agents are organized in three different architectures: heterarchical,

hierarchical, and a hybrid-based. In hierarchical architectures, the distributed agents

are organized in a centralized control structure by using a supervisor agent to act as the

controller. In heterarchical architectures, the distributed agents run on a completely

decentralized control structure, without the presence of supervisory agent. Hybrid-

based systems are organized like hierarchical systems but enabling the self-organization

capability of the lower level agents.

This section is to present a survey on several decomposition methodology and

the control structure for manufacturing problems in literature, and the handling mech-

anisms to resolve conflicts among distributed agents.

2.4.1. Choice of the Decomposition Methodology

A decomposed problem is not necessarily organized in a decentralized control

structure. For example, a single machine problem can be decomposed by using relax-

ation method, then the information is distributed in multiple sub-production systems

(distributed agents). If the entire global information is required to solve the problem,

then a supervisory agent is required to manage global data in a centralized control

structure.

[18] represents a centralized control structure by using Lagrangian relaxation with
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a sub gradient method as a decomposition technique. [18] compares it to a Lagrangian

relaxation technique modified to require less global information by considering static

single machine problems for total weighted completion times objective. Later method

is shown to yield close-to-optimal solutions, so it is beneficial to be applied to situations

with more restrictive information sharing.

[20] compares their distributed approach with a centralized system using shifting

bottleneck algorithm. The performance measure is weighted make-span for flow shop

and job shop configurations. [47] considers a modified shifting bottleneck heuristic for

complex job shops as a decomposition technique.

The scheduling system can be decomposed physically into task and resource

agents. In this kind of decomposition, the problem is to assign tasks to the resources.

The indecision problem may arise either when multiple tasks negotiate with the same

resources or multiple resources compete to process the same task. The agreement

about which task has to be processed by which resource is made through a message

passing among agents. There is a bidding protocol among the agents to achieve mutual

agreement. The proposed bids include price and schedule information. This negotia-

tion scheme called the contract net and is the common approach when the system is

decomposed into task and resource agents.

The studies in literature vary with the choice of prising mechanism, the selection

criterion of the most favorable bids, the communication mechanism among agents,

the information required to propose a bid, etc.. The bids are proposed according to

local information or global information. The evaluation of bids may be done according

to local criteria or a global criterion. There may be direct communication among the

group of agents eligible to propose bids in a decentralized negotiation structure, or there

is a need for a supervisory agent to manage the negotiation. The selections made on

these issues determines the control structure of this kind of distributed systems. [21–25]

decompose the system physically, and propose various control mechanisms.
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2.4.2. Choice of the Control Structure

[21] defines an adaptive production control system by introducing supervisory

agents to provide hierarchical control as the production load on resources increases.

They compare their conceptual model with a non-hierarchical production control sys-

tem and they achieve improvements in throughput, resource utilization and work-in-

process inventories over non-hierarchical production control system.

As a similar approach, [25] invents a hybrid- based structure by allowing to in-

crease the autonomy of distributed agents when an unexpected disturbance is detected.

The proposed idea is that distributed agents should follow the schedule advises pro-

posed by the supervisory agent, and in case of disturbance a faster rescheduling so-

lution is obtained by forcing agents to evolve a heterarchical structure. Superiority

of the proposed approach is presented by making comparison with both heterarchical,

hierarchical structures.

[22] simulates the behaviors of two heterarchical control structures, characterized

by a different degree of decision-making delegation assigned to physical and information

units in the production system. The performances of the two architectures are mea-

sured both under stable and predictable conditions, and under unexpected events, such

as the release of urgent manufacturing orders and the occurrence of failures in produc-

tion resources. [23] compares a heterarchical control architecture with their proposed

unconstrained hierarchical architecture. [24] evaluates the performance of heterarchical

and hybrid-based agent control structures.

[26] being a recent review study on distributed scheduling concepts, states that

most of distributed scheduling literature focus on designing factors without considering

how these factors affect computational time and solution quality. The the study of [27]

is the exception.

[27] investigates the computational benefits of distributed decision making in

a centralized control structure. They compare a network of four processors with a
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single processor by monitoring communication delays, CPU utilization, system utiliza-

tion and average number of bytes/s transmitted over the network. Moving from a

single processor to multiple processors would speed up the computing time for each

subproblem but would involve additional communication delays. The result is that if

communication delays are less than time taken to solve all subproblems serially on a

single processor then distributed implementation provides computing benefits despite

network delays. They investigate also the performance of auction-based method over

popular dispatching rules when the objective is to minimize weighted squared deviation

and presents improvement over the best dispatch rule.

2.4.3. Handling Mechanism for the Shared Resource Between Schedulers

[28] studies the performance and design issues in multi-agents information sys-

tems for dynamic scheduling in manufacturing. The design and performance issues

considered in this research are coordination between agents, number of agents, and fre-

quency of learning. The results indicate that coordination between agents, and learning

frequency play a significant role in the performance of multi-agent intelligent systems.

As mentioned above, the contract net negotiation scheme is common in literature

and various negotiation mechanisms may be designed by specifying the prising mecha-

nism, the selection criterion of the most favorable bids, the communication mechanism

among agents, the information required to propose a bid, etc.. In this section we do

not investigate the designing factors of negotiation mechanisms. We rather present

several solution approaches to the situations arise in distributed systems.

Distributed agents negotiate with contract net protocol may either present pro-

cedure like a dispatching procedure to decide the next job to be processed [11, 29, 30]

or may produce a schedule to be used for a length of time horizon [27].

[31] proposes least commitment scheduling and dispatching for dynamic order

processing. The distributed decision mechanism is based on the following principles:

1-Any task may be assigned to multiple resources. 2-Resources may have alternative
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assignments. The negotiation protocol is as follows: management agent announces

iteratively the first unprocessed task of a job, machine agents (with matching resources)

prepare schedules and submit bids. Each machine agent may send no, one or several

bids to the management agent. Whenever a task has been selected by a machine agent,

management agent prompts the other machines to remove all the assignments of this

task from their schedules and it announces the successor task of this job.

[6] handles the case of asymmetric information for the independent distributed

agents, which may not share private information about their state. A schedule selection

game is designed where all participating agents state their preferences via a valuation

scheme, and the mechanism selects a final schedule based on the collective input.

The scheduling problems discussed thus far are all single criteria scheduling prob-

lems, i.e. either a central scheduler or distributed schedulers try to achieve a global

goal. There are also multi criteria scheduling problems. Different agents may have

different objectives. [32, 33] investigate the complexity of some scheduling problems

with a single machine in which agents, each owing a set of nonpreemtive jobs have to

negotiate the usage of the common resource and only the jobs belonging to an agent

contribute to that agent’s criterion. [32] considers maximum of regular functions, num-

ber of late jobs and total weighted completion time. [33] provides extensions for two

agent scheduling problem for single machine and considers also identical machines in

parallel.

2.5. Scheduling Time Considerations

To the best of our knowledge, there is very small number of studies in the liter-

ature where decision time is explicitly modeled. [12] works on the meeting scheduling

problem, where they include the time needed to schedule meetings in their model

without analyzing the effects on the system performance. [13] investigates the effect of

factors such as agent population, bandwidth, message sizes and decision times in indi-

vidual agents on the performance of communication system and auctioning process. [14]

studies the effect of scheduling time and dispatching time for a specific queuing sys-



15

tem. [15,16] are the only studies which are in the same line of research as our work. The

basic difference between those studies and this work is that we consider a scheduling

problem where pre-emption is not allowed, and a different performance measure Lmax

is considered in these studies.
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3. SCHEDULING ENVIRONMENT

In this study, we investigate a single machine system where jobs arrive randomly.

Let aj indicate the arrival time of job j, and Jt indicate the set of jobs that has arrived

by time t. We assume that jobs are indexed in nondecreasing order of their arrival

times. There is an infinite queue in front of the machine. Upon arrival, a due date dj

and an estimated processing time p̂j are assigned to job j. Let π represent a schedule.

The start time of job j in schedule π is denoted as sj(π). Machine may process one

operation at a time. A job which is started on the machine cannot be interrupted or

canceled. Hence, cj(π) = sj(π) + p̂j is the estimated completion time of j on schedule

π.

Let sRj indicate the realized start time of job j on the machine. Since processing

times are not deterministic, the machine may complete the processing of job j at time

cRj , where pRj = cRj − sRj , and pRj 6= p̂j. Originally, sRj , c
R
j and pRj values of jobs are set to

zero. Let JSt = {j : j ∈ Jt, and (cRj = 0 or cRj > t)} indicate the set of jobs that are in

the system at time t. We will denote the job which is being processed on the machine

at time t as j(t). If j(t) = 0 then the machine is idle at time t; otherwise, j(t) ∈ JSt
and 0 < sRj(t) ≤ t.

Let realized earliness and tardiness of job j be defined as ER
j = max(0, dj − cRj )

and TRj = max(0, cRj − dj), respectively. The performance of the system is measured

by

lim
n→∞

∑n
j=1 E

R
j +

∑n
j=1 T

R
j

n
.

For the first phase of the study, in order to model the issues originating from

decision time, we decouple and simplify the scheduling process described in Chapter 1

into two separate processes: the scheduling process, performed by the scheduler, and

the dispatch process, performed by the dispatcher. The scheduling process combines
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Steps 1, 2 and 3. while the dispatch process covers Step 4. The operation of the

centralized scheduler and the dispatcher is explained in Section 3.1.

For the second phase of the study, we continue with the same simplification as

in the first phase. However, distributed schedulers observe different parts of the global

problem, hence they have access to load different scheduling data in Step 1 of the

scheduling process. Moreover, since each scheduler performs its own manual overrides

in Step 3, there may be more than one generated schedule to dispatch in Step 4. The

operation of the distributed scheduler and the dispatcher in distributed scheduling

system is explained in Section 3.2.

3.1. The Centralized Scheduling System

The overall system works as depicted in Figure 3.1.

Figure 3.1. Overall Architecture of the Centralized Scheduling System.

Stochastic Arrival Process generates NewJobArrived events at each time a new

job has arrived to the shop, which immediately triggers the Scheduling Process. Com-

pletion of the Scheduling Process releases a new schedule (πL) and generates a Dispatch

command to trigger a Dispatch Process. The Dispatch Process either sends a Start-

Processing command to the machine to start the processing of a job (j), or it sends a

SetWakeupCall command to the Wakeup Call Process, which may trigger the Dispatch

Process again at the requested wakeup time (twakeup) by generating a Wakeup event.
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When the machine completes processing a job, it updates the realization info of the

job that is being processed and generates a JobCompletion event, which again triggers

the Scheduling Process.

In the next sections, we explain the dynamics of the system by providing detailed

workings of the scheduler and the dispatcher.

3.1.1. The Centralized Scheduler

The centralized scheduler starts the execution of a scheduling process upon receiv-

ing a scheduling trigger. As shown in Figure 3.1, arrival of a new job (NewJobArrived

event) and completion of the processing of a job on the machine (JobCompletion event)

generate scheduling triggers.

Assume that we are at time t, and the scheduler receives a scheduling trigger.

Let decision take δ time units, then the scheduler releases the new schedule at time

t+ δ. We say that the scheduler is busy at time t, if the scheduler had already started

running the scheduling algorithm in response to a previous scheduling trigger at time

t1, where t1 < t and t1 + δ > t.

If the scheduler is not busy at time t but JSt = ∅, then there is no job left in the

system to schedule, and the scheduler ignores the trigger. However, if JSt 6= ∅, then it

constructs the following single machine static deterministic scheduling problem, solves

it, and releases the resulting schedule.

Problem PSP(t) : Given p̂j and dj, generate a schedule π = {sj, cj : j ∈ JSt } to

minimize
∑

j∈JSt
Ej +

∑
j∈JSt

Tj, where Ej = max(0, dj−cj), and Tj = max(0, cj−

dj), subject to sj(t) = sRj(t) and cj(t) = max(t, sRj(t) + p̂j(t)) if j(t) > 0.

Problem PSP(t) is the well-known non-preemptive 1||
∑

(Ej+Tj) problem, which

is known to be strongly NP-hard [41]. In the literature, there are a number of studies

proposing lower bounds and dominance rules to be used within a branch and bound
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schema to optimally solve the problem. [40] proposes an approach based on a preemp-

tive relaxation of the problem. [41] combines Lagrangean relaxation of resource con-

straints and new dominance rules. [42] develops a technique which combines dynamic

programming and branch and bound by applying a transportation problem based lower

bound procedure.

Since the objective of our problem is non-regular, inserting idle time between

operations may improve the objective function. Based on this observation a two step

heuristic procedure can be defined [11]: in the first step, a good job sequence is ob-

tained; in the second step, idle time is inserted optimally [44, 48]. Insertion of idle

time problem can easily be solved either by solving a linear program or by using a

specialized algorithm [42]. Beside these two step procedures, [45] reports an iterated

local search algorithm based on fast neighborhoods.

Let schedule π be a solution to Problem PSP(t) generated and released by the

scheduler. We will indicate the latest schedule released by time t as πLt , hence, πLt′ = π

for all t′ ≥ t+ δ until the scheduler releases a new schedule. We let J(π) = JSt indicate

the set of jobs considered while generating π, tS(π) = t indicate the time the scheduling

process has started and tG(π) = t+ δ indicate the time that π is generated.

In case the scheduler is busy at the time that a new scheduling trigger is received,

the response of the scheduler to this trigger depends on the response mode installed as

a control policy. In this study, we define three response modes: Instantaneous, busy

and available response modes.

3.1.1.1. Instantaneous Mode of the Scheduler. The instantaneous mode is related to

the case when executing the scheduling process does not take time, i.e., δ = 0.

Instantaneous Mode: Every scheduling trigger starts a new scheduling algorithm

run, and the resulting schedule is released instantaneously, which immediately generates

a dispatch trigger.
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3.1.1.2. Busy Mode of the Scheduler. In the case when executing the scheduling pro-

cess takes time, say δ > 0 time units, during the execution of the scheduling process,

the scheduler is said to be busy and cannot run a second process simultaneously. Busy

mode defines one of the two alternative behaviors for the scheduler when a scheduling

trigger is received while it is busy.

Assume that we are at time t, and the scheduler started running the scheduling

algorithm at time t1 < t. Note that tG(πLt ) ≤ t1.

Busy Mode: The scheduler ignores the new scheduling trigger and continues with

the scheduling process execution.

In the busy mode, a new schedule is not released at time t, hence, as a conse-

quence, a dispatch trigger is not generated. In effect, the system waits at least until

t1 + δ, when the scheduler completes the execution of the scheduling process. Hence, in

this mode, δ is a determinant of the length of time that the system stays idle waiting

for the scheduler to make a decision.

3.1.1.3. Available Mode of the Scheduler. The available mode is related to the case

when executing the scheduling process takes time, i.e., δ > 0. Available mode defines

one of the two alternative behaviors during the execution of the scheduling process.

Assume again that we are at time t, and the scheduler started running the schedul-

ing algorithm at time t1 < t.

Available Mode: The scheduler releases πLt again at time t and simultaneously,

continues with the scheduling process execution.

In the available mode, although the scheduler continues executing the scheduling

process to generate a new schedule, at time t, it also releases the latest schedule it

generated (πLt ) one more time. Although, πLt is generated based on the state of the
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system as of time tS(πLt ) ≤ t1 − δ < t, and hence, it contains relatively old data, as a

direct result of releasing a schedule, a dispatch trigger is generated, and possibly, a job

is dispatched to the machine. In this mode, if δ gets larger, the difference between the

state of the system captured in πLt , which corresponds to time tS(πLt ), and the current

system state increases.

3.1.2. The Dispatcher in the Centralized Scheduling System

The dispatcher starts a dispatch process upon receiving a dispatch trigger. As

shown in Figure 3.1, completion of a scheduling process execution (Dispatch command)

and a wakeup call previously set by a previous dispatch process (Wakeup event) gen-

erate dispatch triggers.

Assume that we are at time t, and the dispatcher receives a dispatch trigger. As a

response, the dispatcher runs the following Dispatch(t, π) algorithm in Figure 3.2, given

a previously generated schedule π to dispatch. Note that, in case decision takes time,

tS(π) < t, hence it is possible that there are jobs such that j ∈ J(π) and 0 < cRj ≤ t.

Let us define J̄(t, π) = {j : j ∈ J(π) and (cRj = 0 or cRj > t)} as the set of jobs that

can be processed at time t that exists in schedule π.

Require t, π are defined.

Step 1. If j(t) > 0 then the machine is busy, EXIT.

Step 2. If J̄(t, π) = ∅ then there are no jobs left in schedule π that can be

processed, EXIT.

Step 3. If there exists a job j ∈ J̄(t, π) such that sj(π) ≤ t then start processing

j on the machine, i.e., set sRj = t and EXIT.

Step 4. If for all j ∈ J̄(t, π), sj(π) > t then put the dispatcher to sleep, and set

a wakeup call at time twakeup = minj∈J̄(t,π){sj(π)}.

Figure 3.2. Dispatch(t, π) Algorithm.

Note that in Step 1, we stop the dispatch process because preemption is not



22

allowed. Step 2 checks if there are jobs to be dispatched in the queue that are included

in the current schedule. We physically start processing a job in Step 3. We assume

that executing the dispatch process does not take time and selected the job can be

started immediately at time t. In Step 4, although there are jobs in the queue, we leave

the machine idle. This may be the optimum behavior since we have a non-regular

performance measure.

If a dispatch trigger is received while there is an active wakeup call, the wakeup

call is removed.

3.1.3. Idle Times on the Machine

Based on the definition of Dispatch(t, π) algorithm in Figure 3.2 in Section 3.1.2

and the response modes of the scheduler explained in Section 3.1.1, idle time on the

machine may be identified as one of the three types.

3.1.3.1. Queue Idleness (QI). The machine is kept idle until a new dispatch trigger

arrives if, in Step 2 of Dispatch(t, π) algorithm in Figure 3.2, we realize that the queue

is empty (JSt = ∅). Hence, we call this case the queue idleness.

3.1.3.2. Forced Idleness (FI). In Step 4 of Dispatch(t, π) algorithm in Figure 3.2, al-

though there are jobs in the queue and the machine is idle, based on schedule π, we

choose to keep the machine idle with the expectation that the performance of the system

will be improved. Hence, we call the inserted idle time between t and minj∈J̄(t,π){sj(π)}

as the forced idleness.

3.1.3.3. Decision Idleness (DI). Decision idleness is related to the operation modes of

the scheduler in case decision time is nonzero. Hence, in a sense, idleness is caused by

the scheduling process, and that is why we call this type of idleness the decision idleness.

For the busy and available response modes, decision idleness appears as follows: For

the busy mode, any scheduling trigger is denied by the scheduler if it is already busy.
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Hence, no job is dispatched until the scheduling process is completed, and the machine

is kept idle.

For the available mode, appearance of the idle time is a bit more obscure. In

this mode, although the scheduler keeps releasing schedule πL while it is busy with

scheduling, at some time t, J̄(t, πL) may become empty, and the machine may be kept

idle in Step 2 of Dispatch(t, π) algorithm in Figure 3.2. Note that since t(πL) < t, there

may be jobs that has arrived between t(πL) and t. This means that actually, there are

jobs in the queue, but since the dispatcher is unaware of this situation, the machine is

kept idle.

3.1.4. Example Run of the Centralized Scheduling System

In this section, we provide example runs of the system for the three distinct

modes of the scheduler explained in Section 3.1.1. We use Figure 3.3, 3.4 and 3.5 to

demonstrate the generated triggers and commands within the system and activation

of processes on a time line (horizontal axis).

In all three figures, t0 indicates the initial state of the system that is captured.

The first line indicates job arrivals. The second line represents the scheduler, where

a box indicates that the scheduler is busy (executing the scheduling process) in that

time period. The third line shows the schedules that are released by the scheduler.

Cross symbols are placed on this line at the times that a new schedule is released. The

job sequence of the corresponding schedule is also shown close to the cross symbols.

The fourth line shows the messages received and sent by the dispatcher. Fifth line

shows the wakeup calls set by the dispatcher, where shaded boxes are the times that

the dispatcher is sleeping. The sixth line shows the actual processing of jobs and the

types of the idle times on the machine.

Figure 3.3 shows a sample run of the system when the scheduler operates under

the instantaneous mode. As it can be seen from Figure 3.3, πLt0 = {0, 1}, j(t0) = 0 and

cR0 = t1. At time t1, the machine generates a JobCompletion event, which triggers the
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Figure 3.3. Sample Run Using the Instantaneous Response Mode.

scheduler. The scheduler generates schedule π1, where the job sequence is {1}, and

releases. From Figure 3.3 we deduce that s2(π1) = t2 > t1. Hence,the dispatcher sets a

wakeup call, which eventually triggers the dispatcher to command the machine to start

processing job 1 at time t2. Note that, since the machine idle time between t1 and t2

is imposed by the inserted idle time in schedule π1, it is identified as FI. However, the

reason for the idle time between t3 and t4 is that there are no jobs left in the system,

hence it is a QI.

At time t4 Job 2 arrives, and the scheduler releases schedule π2. Apparently the

due date of job 2 is very large and the dispatcher sets a wakeup call. Hence an FI

period starts for the machine. This lasts until time t5 when job 3, which is an urgent

job, arrives. At this instance, the scheduler releases schedule π3, which includes the

sequence {3, 2}. This immediately cancels the current wakeup call, and the dispatcher

commands the machine to start job 3. Note that, although the arrival of job 4 triggers

the scheduler to release schedule π4, the dispatcher does not dispatch the new schedule

since the machine is already busy and the current processing cannot be interrupted.
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Figure 3.4. Sample Run Using the Busy Response Mode.

Note again that, there are no boxes in the scheduler line and there are no idle times of

type DI on the machine, since, in this mode, the scheduling process is instantaneous.

Figure 3.4 depicts the case when the scheduler operates under the busy mode.

Note that in this case the scheduling process takes time, and if a scheduling trigger

is received while the scheduler is busy, such as at time t5, the trigger is ignored. At

time t3 job 1 is completed, but since there are no jobs left in the system, the machine

enters a QI. At time t4 job 2 arrives. Hence, there is a job that can be processed

now. However, since the scheduling process takes time and the job cannot be started

on the machine without being dispatched based on a schedule, the system waits until

t6. Hence, time period between t4 and t6 is a DI. One interesting issue that originates

due to the blindness of the scheduler during the scheduling process is that job 3, which

arrives at time t5, can only be included into a released schedule at time t9, i.e. although

job 3 is in the system between t5 and t9, it is invisible to the scheduling system.

The difference between the busy mode and the available mode is apparent in Fig-
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Figure 3.5. Sample Run Using the Available Response Mode.

ure 3.5. At time t1 job 0 completes processing, which triggers execution of a scheduling

process in the scheduler. In the busy mode, the system was put into a stand still until

the scheduling is over. However, in the available mode, simultaneously, the scheduler

releases the last schedule π0 it had previously generated. In π0, the job sequence is

{0, 1}. Since, job 0 is already completed, and from Figure 3.5 we can deduce that

s1(π0) = t2, the dispatcher sets a wakeup call. Hence, eventually, the dispatcher can

command the machine to start processing job 1 at time t2.

When we compare the three realizations in Figure 3.3, 3.4 and 3.5, instantaneous

mode is able to process jobs 1 and 3 as efficiently as possible. Busy mode significantly

delays both job 1 and job 3, which can be attributes to the inserted DI periods. Al-

though, available mode handles job 1 better, it still significantly delays the start of job

3 due to the blindness of the scheduling system.
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3.2. The Distributed Scheduling System

The overall system works as depicted in Figure 3.6.

Figure 3.6. Overall Architecture of the Distributed Scheduling System.

There are two types of jobs arriving to the system: type A and type B. Jobs are

considered separately by two different schedulers A and B that share a single machine.

Each scheduler always knows its own type of arrivals and is informed periodically about

other type of arrivals. Schedulers provide solutions for their own local problems, and

the dispatcher aims to resolve conflicts among these schedules to dispatch the machine.

Stochastic Arrival Process generates NewJobAArrived and NewJobBArrived events

according to the type of arrived jobs at the time a new job has arrived to the shop.

NewJobAArrived event is received by Synchronization Process and Scheduling Process

of Scheduler A. Synchronization Process stores the information of new arrivals and pe-

riodically sends to its self Sychronize event to update the list of jobs of each scheduler
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by sending NewAJobs and NewBJobs events.

NewJobAArrived immediately triggers the Scheduling Process of Scheduler A.

Completion of the Scheduling Process of Scheduler A releases a new schedule αL and

generates a Dispatch command to trigger a Dispatch Process. The operation is similar

for NewJobBArrived which results the generation of a new schedule βL and a Dispatch

command to trigger a Dispatch Process.

From now on, a schedule generated by the scheduler A is indicated by α and a

schedule generated by the scheduler B is indicated by β. The Dispatch Process considers

the schedules αL and βL on hand ,then it either sends a StartProcessing command to

the machine to start the processing of a job (j), or it sends a SetWakeupCall command

to the Wakeup Call Process, which may trigger the Dispatch Process again at the

requested wakeup time (twakeup) by generating a Wakeup event. When the machine

completes processing a job, it updates the realization info of the job that is being

processed and generates a JobCompletion event, which again triggers the Scheduling

Process of Scheduler A and the Scheduling Process of Scheduler B.

3.2.1. The Distributed Schedulers

The distributed schedulers start the execution of a scheduling process upon re-

ceiving a scheduling trigger. As shown in Figure 3.6, arrival of a new job triggers the

corresponding scheduler according to the the type of arrived job and completion of

the processing of a job on the machine generate scheduling triggers for both of the

schedulers.

Under the expectation that distributing the scheduling problem among various

schedulers improves reactivity, we assume that distributed schedulers run a scheduling

algorithm instantaneously, i.e. upon receiving a scheduling trigger both schedulers

are capable of releasing their schedules based on the information that they have at

the time of the trigger (for other possible operating modes of a scheduler please see

Section 3.1.1).
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Suppose that we are at time t. We will denote the most recent synchronization

time that both schedulers are synchronized by tsynch. The scheduler A(B) considers

both types of schedulable jobs that are in the system at time tsynch and type A(B) jobs

that are arrived during [tsynch, t].

Let jtype denote the type of the job j. The set JAt = {j : (j ∈ JS
tsynch

) or (j ∈ JSt
and jtype = A} indicate the schedulable jobs of scheduler A when it generates the

schedule α. The set JBt = {j : (j ∈ JS
tsynch

) or (j ∈ JSt and jtype = B} indicate the

schedulable jobs of scheduler B when it generates the schedule β.

Let tx denote the time that the recent synchronization process starts. Let Ω rep-

resent synchronization period length, and ω represent the time it takes to synchronize.

If Ω = 0 and ω = 0, then tsynch = t. Otherwise there is a synchronization period

and it takes some time to synchronize (i.e. Ω > 0 and ω ≥ 0). In this case tsynch is

determined by following relations: if (tx + ω) ≤ t then the recent synchronization pro-

cess is completed before t and the schedulers can access the information of the system

at time tx, hence tsynch = tx. Else if tx ≤ t < tx + ω, then the recent synchroniza-

tion is not completed yet, so the schedulers can use the previous information at time

tsynch = (tx − Ω).

Suppose that the scheduler A is received a scheduling trigger at time t. If JAt = ∅,

then there is no job left in its local system to schedule, and the scheduler A ignores the

trigger. If JAt 6= ∅, then the local scheduler A constructs the following single machine

static deterministic scheduling problem, solves it, and releases the resulting schedule

α.

Problem PSPA(t) : Given p̂j, dj and j(t), generate a schedule α = {sj, cj : j ∈ JAt } to

minimize
∑

j∈JAt
Ej+

∑
j∈JAt

Tj, where Ej = max(0, dj−cj), and Tj = max(0, cj−

dj), subject to sj(t) = sRj(t) and cj(t) = max(t, sRj(t) + p̂j(t)) if j(t) > 0.

Remember that if j(t) = 0 then the machine is idle at time t; else 0 < sRj(t) ≤ t.
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Similarly, suppose that the scheduler B is received a scheduling trigger at time t,

and that JBt 6= ∅, then the local scheduler B constructs the following single machine

static deterministic scheduling problem, solves it, and releases the resulting schedule

β.

Problem PSPB(t) : Given p̂j, dj and j(t), generate a schedule α = {sj, cj : j ∈ JBt } to

minimize
∑

j∈JBt
Ej+

∑
j∈JBt

Tj, where Ej = max(0, dj−cj), and Tj = max(0, cj−

dj), subject to sj(t) = sRj(t) and cj(t) = max(t, sRj(t) + p̂j(t)) if j(t) > 0.

3.2.2. Issues in Distributed Systems

Perfect Synchronization: If JAt = JBt = JSt ∀t then schedulers A and B are

perfectly synchronized.

Perfect synchronization among distributed schedulers is possible only when Ω = 0

and ω = 0.

Conflicting Schedules : Schedules α and β are conflicting schedules, if at least one

of the following is true: 1. ∃j ∈ J(α) ∩ J(β) 3 sj(α) 6= sj(β); 2. ∃i ∈ J(α) and

j ∈ J(β) and t 3 si(α) < t < ci(α) and sj(β) < t < cj(β).

Problem 1 : When Ω > O, ∃t 3 JAt 6= JSt or JBt 6= JSt , hence αLt and βLt may be

conflicting schedules.

Although the scheduling algorithms are same for both schedulers, they produce

different schedules regarding to their local informations even they are triggered at the

same time.

Problem 2 : ∃t such that tS(α) = t′ < t and tS(β) = t. When JAt′ 6= JBt , α and

β are conflicting schedules. When JAt′ = JBt and tS(α) 6= tS(β) , α and β may be

conflicting schedules.
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If the timing of scheduling triggers are different for each scheduler, schedulers may

release conflicting schedules even under the assumption that perfect synchronization

is possible (i.e. when Ω = 0 and ω = 0). Consider the case when Ω = 0, ω = 0

tS(α) = t′ < t and tS(β) = t, then JAt′ = JSt′ and JBt = JSt . If JSt′ 6= JSt , then α and β

are conflicting schedules.

As it can be seen from Figure 3.6, type A arrivals trigger scheduler A and not B.

Similarly type B arrivals trigger only scheduler B. Hence, Problem 2 is realized in this

system.

Moreover, different scheduling start times may produce different schedules for

the same problem. For example, lets consider Problems PSPA(0) and PSPB(3) when

JA0 = JB3 . Suppose that JA0 = {1, 2} with p̂1 = 5, p̂2 = 1, d1 = 6 and d2 = 5, hence

αL0 = {s1 = 1, c1 = 6, s2 = 6, c2 = 7}. For JB3 = {1, 2}, βL3 = {s1 = 4, c1 = 9, s2 =

3, c2 = 4}. αL0 and βL3 are conflicting schedules.

3.2.3. The Dispatcher in the Distributed Scheduling System

The dispatcher starts a dispatch process upon receiving a dispatch trigger. In the

distributed system presented in Figure 3.6, completion of a scheduling process execution

(Dispatch command) and a wakeup call previously set by a previous dispatch process

(Wakeup event) generate dispatch triggers.

In this distributed system the dispatcher may have two different schedules on

hand from the two schedulers when it receives a dispatch trigger. In case these are

conflicting schedules, the dispatcher resolves conflicts by prioritizing one of them to

dispatch the machine.

Suppose that α and β are the schedules on hand that we are at time t. Let us

define j̄α = {j : (cRj = 0 or cRj > t) and sj(α) = mini∈J(α) si(α)} as the job selected to

be processed at time t according to the schedule α. Similarly, define j̄β = {j : (cRj = 0

or cRj > t) and sj(β) = mini∈J(β) si(β)} as the job selected to be processed at time
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t according to β. When there are two schedules on hand, possible decisions that the

dispatcher takes are defined as follows:

Dispatch(-/-): If j̄α = 0 and j̄β = 0, then there are no jobs selected to be

processed.

Wait(-/w): If j̄α = 0 and j̄β > 0 with sj̄β(β) > t, then the dispatcher needs to

wait until sj̄β(β).

Wait(w/-): If j̄α > 0 with sj̄α(α) > t and j̄β = 0, then the dispatcher needs to

wait until sj̄α(α).

Dispatch(-/s): If j̄α = 0 and j̄β > 0 with sj̄β(β) ≤ t, then the dispatcher needs to

start j̄β.

Dispatch(s/-): If j̄α > 0 with sj̄α(α) ≤ t and j̄β = 0, then the dispatcher needs to

start j̄α.

Wait(w/w): If j̄α > 0 with sj̄α(α) > t and j̄β > 0 with sj̄β(β) > t and j̄α 6= j̄β,

then the dispatcher waits until min{sj̄α(α), sj̄β(β)}.

Dispatch(w/s): If j̄α > 0 with sj̄α(α) > t and j̄β > 0 with sj̄β(β) ≤ t then the

dispatcher starts j̄β. (Note that if j̄α = j̄β then α and β are conflicting schedules.)

Dispatch(s/w): If j̄α > 0 with sj̄α(α) ≤ t and j̄β > 0 with sj̄β(β) > t then the

dispatcher starts j̄α. (Note that if j̄α = j̄β then α and β are conflicting schedules.)

Dispatch(s/s): If j̄α > 0 with sj̄α(α) ≤ t and j̄β > 0 with sj̄β(β) ≤ t and j̄α 6= j̄β

then the dispatcher selects the job to start arbitrarily from {j̄α ∪ j̄β}.

Wait(w): If j̄α > 0 with sj̄α(α) > t and j̄β > 0 with sj̄β(β) > t and j̄α = j̄β

then the dispatcher waits until min{sj̄α(α), sj̄α(β)}.(Note that if sj̄α(α) 6= sj̄α(β) then
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α and β are conflicting schedules.)

Dispatch(s): If j̄α > 0 with sj̄α(α) ≤ t and j̄β > 0 with sj̄β(β) ≤ t and j̄α = j̄β

then the dispatcher selects the job j̄α to start.(Note that if sj̄α(α) 6= sj̄α(β) then α and

β are conflicting schedules.)

Let j̄ denote the job selected to be started on the machine. Upon receiving a

dispatch trigger at time t, the dispatcher runs the following algorithm Dispatch(t, α, β)

in Figure 3.7 given schedules α and β to dispatch.

Require t, α, β are defined.

Step 1. If j(t) > 0 then the machine is busy, EXIT.

Step 2.1. If Dispatch(-/-) then there are no jobs left in schedules α and β that

can be processed, EXIT.

Step 2.2. If Wait(-/w) then set twakeup = sj̄β(β) and go to Step 3.

Step 2.3. If Wait(w/-) then set twakeup = sj̄α(α) and go to Step 3.

Step 2.4. If Dispatch(-/s) then set j̄ = j̄β and go to Step 4.

Step 2.5. If Dispatch(s/-) then set j̄ = j̄α and go to Step 4.

Step 2.6. If Wait(w/w) then set twakeup = min{sj̄α(α), sj̄β(β)} and go to Step 3.

Step 2.7. If Dispatch(w/s) then set j̄ = j̄β and go to Step 4.

Step 2.8. If Dispatch(s/w) then set j̄ = j̄α and go to Step 4.

Step 2.9. If Dispatch(s/s) then set j̄ arbitrarily from {j̄α ∪ j̄β} and go to Step 4.

Step 2.10. If Wait(w) then set twakeup = min{sj̄α(α), sj̄β(β)} and go to Step 3.

Step 2.11. If Dispatch(s) then then j̄ = j̄α = j̄β and go to Step 4.

Step 3. Set a wakeup call at time twakeup and EXIT.

Step 4. Start processing j̄ on the machine, i.e., set sRj̄ = t.

Figure 3.7. Dispatch(t, α, β) Algorithm.

Note that in Step 1, we stop the dispatch process because preemption is not

allowed. Step 2.1 checks if there are jobs to be dispatched in the queue that are

included in the current schedules. In Steps 2.2 - 2.5, empty schedules are ignored.
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Steps 2.6 - 2.9 handle with the situations when two different jobs are selected. If both

jobs have slacks to start, then the machine is left idle until the minimum scheduled

start time. If one of the jobs is needed to be started, then it is started immediately. If

both of the jobs are needed to be started then selection is done arbitrarily. In Steps

2.10 and 2.11, the two schedules offers the same job. In that case smaller scheduled

start time is considered if scheduled start times are different. In Step 3, although there

are jobs in the queue, we leave the machine idle. This may be the optimum behavior

since we have a non-regular performance measure. We physically start processing a

selected job in Step 4.

If a dispatch trigger is received while there is an active wakeup call, the wakeup

call is removed.

3.2.4. Example Run of the Distributed Scheduling System

The Figure 3.8 demonstrates the generated triggers within the system and acti-

vation of processes on a time line (horizontal axis). The first line indicates job arrivals.

We show the types of arrivals at the top of the figure. Two types of jobs arrive to

the system: A and B. On the arrival line, dashed arrows point the synchronization

start times and denoted by tsynch. The duration between two tsynch is equal to Ω. Black

boxes on this line are the times that it takes to complete a synchronization process,

their durations are equal to ω. The second line shows the messages received and sent

by schedulers A and B. The third and fourth lines are the schedules that are released

by the scheduler A and the scheduler B respectively. Cross symbols are placed on these

lines at the times that a new schedule is released. The sequence of corresponding sched-

ule is shown close to the cross symbols. The fifth line represents the dispatcher. The

wakeup calls set by the dispatcher are shown in the sixth line, where shaded boxes are

the times that the dispatcher is sleeping. The machine line shows the actual processing

of jobs and the idle times on the machine.

As it can be seen from Figure 3.8, αLt0 = {1} and βLt0 = {2}. Apparently JSt0 =

{1, 2}, JAt0 = {1} and JBt0 = {2}. A synchronization process starts at time t1, and it
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Figure 3.8. Sample Run of Distributed Schedulers.

ends at time t5. At time t2, Job 3 arrives. Since type of Job 3 is A, this arrival triggers

the scheduler A, and it releases schedule α1. Note that Job 2 is not included in α1. The

scheduler A does not know the information of Job 2 that the scheduler B knows, since

the synchronization has not completed yet at the time t2. The dispatcher ignores the

dispatch trigger since the machine is already busy at time t2. Similarly,at time t3, type

B arrival triggers the scheduler B to release the schedule β1 which does not include

Job 1. The dispatcher does not dispatch the schedules α1 and β1 since the machine

is still busy at time t3. At time t4, the machine generates a JobCompletion event,

which triggers both of the schedulers. They generate α2 and β2 and release them.From

Figure 3.8 we deduce that s1(α2) > t4 and s4(β2) > t4. Hence the dispatcher sets a

wakeup call, and an FI period starts for the machine. The synchronization process

started at time t1 is completed at time t5. At time t6 the arrival of B type Job 5 results

the release of the schedule β3. Since the synchronization is completed before time t6
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all type of jobs that arrived before recent synchronization start time t1 and B type

jobs arrived between t1 and the current time t6 are included in β3. The completion of

schedule generation triggers the dispatcher to dispatch the machine according to α2

and β3. Figure 3.8 shows that both schedules offer Job 1 to be selected to dispatch.

From the figure we can deduce that s1(β3) ≤ t6 hence the dispatcher stops sleeping

and starts Job 1.

When Job 1 is completed at time t7, both schedulers update their released sched-

ules. JAt7 includes all type of jobs arrived before t1 and type A jobs arrived between t1

and t7 that are not processed yet. Similarly, JBt7 includes all type of jobs arrived before

t1 and type B jobs that arrived between t1 and t7 that are not processed yet. According

to α3 and β4, the dispatcher starts Job 4 at time t7. At t8 a new synchronization period

starts. While synchronizing, the scheduler A receives a trigger due to the arrival of

Job 6, but can not access the information of type B arrivals after t1. Thus it produces

the schedule α4. At time t10 synchronization process is completed, thus at t11 both of

the schedulers can access the information of the system at time t8.
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4. EXPERIMENTATION

We control the experimental environment by using two sets of parameters: schedul-

ing environment parameters control the design and characteristics of the production

system; control policy parameters define alternative styles of management.

We simulated the system under various conditions. In total, there are 20 dis-

tinct scheduling environment settings, 10 centralized control policy settings and 11

distributed control settings. Hence, for the first phase of the study, we have 200 ex-

periment settings to examine the impact of decision time on the system performance.

Similarly, for the second phase of the study, we have 220 experiment settings to examine

the impact of synchronization among distributed schedulers.

We obtained results from 10 replications on each experimental setting, and re-

ported the average values. Each replication is run until 1600 jobs are completed. The

first 100 completed jobs are excluded from the statistics. Let N = 1500 denote the

number of jobs over which we collected statistics. Details of parameters tested will be

explained in the rest of the chapter.

4.1. Scheduling Environment Settings

Scheduling environments with different characteristics are generated using the

following parameters.

• Job arrival rate parameter λ,

• Machine utilization ρ,

• Processing time variability parameter γ

• Urgent job ratio parameter φ, and

• Due date tightness parameter denoted by τ.
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Without loss of generality, we set λ to a fixed value and report the value for all other

time related variables as a multiple of λ. We generate job arrival times such that (aj+1−

aj) ∼ Exponential(λ). Let µ = λ
ρ
.We generate estimated and realized processing times,

and due date of job j as follows:

p̂j ∼ Exponential(µ)

pRj ∼ p̂jU(1− γ, 1 + γ)

dj = aj + p̂j + κ
1

µ
,

where

L =
ρ

(1− ρ)
, and

κ ∼ U(τ
L

2
, τ

3L

2
).

Note that, L is the expected queue length for an M/M/1 system, and κ is uniformly

distributed with mean τL. and range τ L
2
. Hence, a larger value for τ indicates a looser

due date.

To analyze the impact of jobs occasionally arriving to the shop with very tight

due dates, we designate some of the arriving jobs as urgent jobs and set their τ values

to zero. We control the ratio of urgent jobs using parameter φ, which indicates the

probability that an arriving job is indicated as urgent.

Table 4.1 presents the tested values for the scheduling environment parameters

in the experiments. Note that, when τ = 0, all jobs are urgent, and parameter φ has
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Table 4.1. Values tested for the scheduling environment parameters.

ρ 0.5 0.7

γ 0 1

φ 0 0.3

τ 0 2 4

no significance. Hence, there are five valid combinations for τ and φ pairs.

4.2. Control Policy Settings

4.2.1. Centralized Control Policy Settings

We denote a centralized control policy as a triplet {x, y, z}. Parameter x indicates

the response mode of the scheduler that we discussed in Section 3.2.1, and may assume

values I, B and A to indicate instantaneous, busy and available modes. Parameter y is

the length of the decision time as a multiple of λ. Parameter z represents the scheduling

algorithm used by the scheduler. As we introduced in Chapter 1, we want to test

the trade-off between using fast - heuristic algorithms and slow - optimal algorithms.

Hence, in our tests we used two algorithms to solve Problem PSP(t): an optimum

algorithm and a heuristic algorithm, denoted by Opt and H, respectively.

As an example for the notation, triplet {B, 1
4
, Opt} indicates the centralized con-

trol policy, where the scheduler operates in the busy mode and running the optimal

scheduling algorithm takes δ = 1
4
λ time units. {I, 0, Opt} indicates the centralized con-

trol policy, where the scheduler runs the optimal scheduling algorithm instantaneously,

so {I, 0, Opt} represents the studies in the dynamic scheduling literature which as-

sumes that whole scheduling process is instantaneous. Since the heuristic algorithm

is expected to be fast, we assume that running the heuristic algorithm does not take

time, and consequently, used only during the instantaneous response mode. Hence, the

only centralized control policy using algorithm H is {I, 0, H}.
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Values that we tested for parameter y are { 1
16
, 1

8
, 1

4
, 1

2
}. Table ?? summarizes the

tested values for the centralized control policy parameters in the experiments.

Table 4.2. Values tested for the centralized control policy parameters.

x I B A

y 1/16 1/8 1/4 1/2 1 2

z Opt H

In our simulation runs, the optimum solution to Problem PSP(t) explained in

Section 3.1.1 is obtained by solving a mixed integer linear program by CPLEX solver.

[49, 50] study the computational performance of different mixed integer programming

formulations for single machine scheduling problem. Based on these studies and our

experience, we use the fallowing mixed integer linear program. Let [j] indicate the job

assigned to the jth position in the sequence.

Program P∗(t) :

min (
∑

j∈JSt
E[j] +

∑
j∈JSt

T[j]) (4.1)

s. t. ∑
i∈JSt

xi[j] = 1 j = 1, . . . , |JSt | (4.2)∑|JSt |
j=1 xi[j] = 1 ∀i ∈ JSt (4.3)

c[1] ≥
∑

i∈JSt
xi[1]pi (4.4)

c[j] ≥ c[j−1] +
∑

i∈JSt
xi[j]pi j = 2, . . . , |JSt | (4.5)

c[j] + E[j] − T[j] =
∑

i∈JSt
xi[j]di j = 1, . . . , |JSt | (4.6)

E[j], T[j], c[j] ≥ 0 j = 1, . . . , |JSt |

xi[j] ∈ {0, 1} ∀i ∈ JSt , j = 1, . . . , |JSt |,

where xi[j] = 1, if job i is assigned to the jth position, and E[j] and T[j] are earliness

and tardiness values of the job assigned to the jth position, respectively.
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The heuristic algorithm represents the worst case in terms of performance to

isolate the effect of execution speed on the system performance. Therefore, we devised

a random algorithm as a heuristic. Let us assume that we run the heuristic algorithm

at time t. We first generate a random sequence, say σ, of jobs in the system (JSt ), and

use the following linear program to optimally insert idle times [40] to generate schedule

π. Let σ(i) indicate the ith job in sequence σ.

Program PI(σ) :

min
∑

j∈JSt
Ej +

∑
j∈JSt

Tj (4.7)

s. t.

sσ(i)(π) + pσ(i) ≤ sσ(i+1)(π) i = 1, . . . , |JSt | − 1 (4.8)

sσ(i)(π) + pσ(i) + Eσ(i) − Tσ(i) = dσ(i) i = 1, . . . , |JSt | (4.9)

Ej, Tj, sj(π) ≥ 0 ∀j ∈ JSt (4.10)

4.2.2. Distributed Control Policy Settings

We denote a centralized control policy as a triplet {x, y, z} where parameter x

indicates the response mode of the scheduler, parameter y is the length of the decision

time as a multiple of λ, and parameter z represents the scheduling algorithm used

by the scheduler. For the current phase, additional to these parameters, we have

two more parameters: the synchronization period length Ω and the duration that

a synchronization process takes ω which are also defined as a multiple of λ. Hence,

we may denote a distributed control policy of the distributed schedulers as a quintet

{x, y, z,Ω, ω}.

We want to test the effect of synchronization on the distributed scheduling sys-

tem performance by testing various Ω, and ω combinations. Besides, we want to

test the trade-off between using fast-distributed asynchronous schedulers and the slow-

centralized scheduler. Under the expectation that distributing the scheduling problem

among various schedulers improves reactivity, we assume that distributed schedulers
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run the optimal scheduling algorithm instantaneously. So x, y, and z parameters are

fixed and equal to I, 0, and Opt, respectively for the control policies of the distributed

schedulers. Hence, instead of using a quintet to denote a control policy of the dis-

tributed schedulers, we may use a pair {Ω, ω} for the convenience of reporting the

results.

As an example for the notation, pair {10, 1
2
} indicates the distributed control

policy, where the schedulers run the optimal scheduling algorithm instantaneously,

the synchronization period length is Ω = 10λ and the synchronization process takes

ω = 1
2
λ.

The distributed scheduler A solves Problem PSPA(t) and the distributed sched-

uler B solves Problem PSPB(t) (explained in Section 3.2.1) optimally by solving the

mixed integer linear program P∗(t) defined in previous section.

Table 4.3 summarizes the tested values for the control policy parameters in the

experiments.

Table 4.3. Values tested for the distributed control policy parameters.

Ω 0 1 10 100 1000

ω 0 1/2 1

When Ω = 0, parameter ω has no significance. Distributed control policy {0, 0}

is tested to make a comparison with the centralized policy {I, 0, Opt}, and close values

obtained provides a validation of simulation. When Ω = 1000, the synchronization

period is so long that the distributed scheduler operates almost always asynchronously,

thus the effect of parameter ω is not noticeable, and only {1000, 0} is tested. Hence,

there are eleven valid combinations for Ω and ω pairs.
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5. RESULTS

The results are discussed based on Figure 5.1 - 5.27. Figure 5.1 - 5.19 are drawn

by using the results of the first phase, and examined in the next Section 5.1. Figure 5.20

- 5.27 are drawn by using the results of the second phase, and examined in Section 5.2.

In all the figures, the objective values are given as multiples of the job arrival rate (λ)

averaged over all jobs (N). Hence, as an example, reported objective value 1.5 means

that the actual objective value over N completed jobs is 1.5λ×N.

We will refer the time period between the completion time of the 100th job and

the completion time of the 1600th job (the period that we collect statistics during the

simulation) as the scheduling period and denote by Γ.

5.1. Effect of Decision Time on Scheduling System Performance

As discussed in Section 3.1.3, during the scheduling period, the machine may be

in one of the following states: Processing (P), Forced Idle (FI), Queue Idle (QI) and

Decision Idle (DI). In this section, in all Figure 5.1 - 5.19, the values reported in regards

to a state of the machine is the ratio of the time that the machine is in the respective

state within the scheduling period. So, the reported ratios for the four states always

add up to 1.

Figure 5.1 - 5.9 depict the behavior of the objective value under scheduling en-

vironment parameter setting for each of the centralized control policy respectively.

Figure 5.1 shows the performance of the policy {I, 0, Opt}, Figure 5.2 - 5.4 display B

policies, and Figure 5.7 - 5.9 display A policies.

Figure 5.10 and 5.19 show the objective values and the machine state probabilities

of all policies for each scheduling environment, respectively.
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5.1.1. General Observations

In Figure 5.1, based on the performance of the policy {I, 0, Opt}, we have the

following observations.

• The objective value increases as utilization (ρ) increases.

• The objective value increases as processing variability (γ) increases.

• For a given φ, the objective value increases as due dates become tighter (lower τ

values).

• For a given τ, the objective value increases as urgent job ratio increases (higher

φ values).

Figure 5.1. Objective Values and Machine State Percentages for {I, 0, Opt}.

5.1.2. Machine States

Figure 5.1 - 5.9 show the ratio of time the machine spends in specific states under

various scheduling environment parameters.

First let us consider the base policy, in Figure 5.1. DI does not happen since this

policy is in instantaneous mode. When τ = 0, jobs arrive to the system without due
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date slack. Hence, when τ = 0, FI does not happen, and the machine is idle only due

to QI. FI gets larger and QI gets smaller as due dates get looser. Hence, for a given

φ, FI increases as τ increases, similarly for a given τ , FI increases as φ decreases. But

there exist a limit that these ratios may each. As we mentioned in Section 5.1, the

ratio for the four P, FI, QI and DI states always add up to 1. We can detect from

Figure 5.1 that P ratio is 0.5 and 0.7 when ρ = 0.5, and when ρ = 0.7 respectively. As

due dates get looser, FI may reach up to (1− ρ).

Figure 5.2. Objective Values and Machine State Percentages for{B, 1
16
, Opt}.

In Figure 5.2, we observe the behavior of policy {B, 1
16
, Opt}. In this figure, DI is

almost constant under all scheduling environment settings, and its value is very close

to the δ value. Hence, when τ = 0,the machine is idle due to QI and DI. FI gets larger

and QI gets smaller as due dates get looser. P ratio is again close to the ρ value.

We have similar observations for other B policies in Figure 5.3 - 5.4. DI is almost

constant under all scheduling environment settings, and DI value is determined by

decision time parameter under B policies. As due dates get looser, FI gets larger and

QI gets smaller. Since DI is almost constant, FI may reach maximum ((1−DI)− ρ).

Figure 5.5 - 5.9 show the behavior of A policies respectively. For A policies, DI
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Figure 5.3. Objective Values and Machine State Percentages for{B, 1
8
, Opt}.

Figure 5.4. Objective Values and Machine State Percentages for{B, 1
4
, Opt}.
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Figure 5.5. Objective Values and Machine State Percentages for{A, 1
8
, Opt}.

Figure 5.6. Objective Values and Machine State Percentages for{A, 1
4
, Opt}.
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Figure 5.7. Objective Values and Machine State Percentages for{A, 1
2
, Opt}.

Figure 5.8. Objective Values and Machine State Percentages for{A, 1, Opt}.
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Figure 5.9. Objective Values and Machine State Percentages for{A, 2, Opt}.

happens when there are jobs in the system but, they cannot be dispatched because of

the decision process. DI happens when the the queue size are small. Note that, for a

constant φ, the queue size gets larger with larger τ values (looser due dates). Similarly,

for a constant τ , due date gets looser and the queue size gets larger as φ gets smaller.

The queue size gets larger as ρ increase. DI increases as utilization decrease and DI

decrease with looser due dates.

We summarize the results of this section as follows.

5.1.2.1. State P. The ratio of the processing state is mainly determined by the value

of the utilization (ρ) parameter. For a given value of ρ, processing state ratio is almost

equal to ρ, regardless the specific values of other parameters.

5.1.2.2. FI and QI States. Since our objective function includes minimization of ear-

liness, jobs are forced to be delayed until their due dates, which is the reason for FI to

occur. Hence, for a given ρ, as due dates get looser (larger τ values), FI gets larger.

Since jobs are kept in the system longer, number of jobs waiting in the queue increases

and the probability that the machine finds an empty queue and stays idle (QI) de-
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creases. Specifically, for τ = 0, FI is zero, and as τ increases FI gets larger and QI gets

very close to zero.

As ρ gets larger values, the same trend can be observed for FI and QI, while the

absolute values get smalller (note that FI + QI ≤ 1− ρ).

5.1.2.3. DI State. In the available mode, the relation of DI to varying τ values is

similar to the behavior of QI. DI happens only when there are jobs in the system

that are ready to be processed, but due to the decision process, the scheduler can not

dispatch them to the machine and the machine is kept idle. Hence, as the queue size

gets larger with larger τ values, probability of keeping the machine idle during the

scheduling process (DI) gets smaller.

In the busy mode, DI is not a function of the state of the queue. The machine

is always kept idle during the decision process even if there are jobs waiting in the

queue. Hence Figure 5.2 - 5.4 show that, depending on the δ value, almost a constant

percentage of the machine time is spent in the DI state.

As a general result we can state that, for a given δ value, DI percentage under

policy B is always higher then under policy A.

5.1.3. Impact of Decision Time

Figure 5.10 - 5.19 show the objective values and the machine state probabilities

of all policies for each scheduling environment, respectively. In the horizontal axis, the

policies are sorted in the non-decreasing order of their average objective values. In this

section results are discussed based on Figure 5.10 - 5.19.

Based on Figure 5.10 - 5.19, we can drive the following general observations.

• {I, 0, Opt} always performs better than A and B.
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Figure 5.10. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.5, τ = 0.

Figure 5.11. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.5, τ = 2, φ = 0.3.
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Figure 5.12. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.5, τ = 2, φ = 0.

Figure 5.13. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.5, τ = 4, φ = 0.3.
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Figure 5.14. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.5, τ = 4, φ = 0.

Figure 5.15. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.7, τ = 0.
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Figure 5.16. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.7, τ = 2, φ = 0.3.

Figure 5.17. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.7, τ = 2, φ = 0.
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Figure 5.18. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.7, τ = 4, φ = 0.3.

Figure 5.19. Objective Values and Machine State Percentages of All Centralized

Policies for ρ = 0.7, τ = 4, φ = 0.
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• For a given δ, A always performs better than B.

• For a given operating mode and given γ, φ, τ and ρ values, as δ gets higher,

performance of the system degrades.

• Performance of the system under {I, 0, H}, in comparison to A and B, depends

on specific system parameters, and will be discussed in detail in Section 5.1.4.

As a general observation, we state that as δ gets larger, the system performance

deteriorates. In this section, we will analyze the specific reason for this performance

loss. Decision time affects the performance of the system in two different ways.

• Inserted idle time. During the time period that the scheduler is making a decision,

the machine may be kept idle even though there are jobs that may be processed

(which appears as DI). These inserted idle times contribute to increased comple-

tion times and a higher objective value.

• Dispatching a wrong job to the machine. The scheduler generates a schedule based

on the state of the system at the start time of the decision process. Since decision

takes time, by the time the generated schedule is released, the state of the system

probably changes (e.g. new jobs with higher priority might have arrived) and the

schedule does not reflect the current state. Hence, it is possible that a wrong job

is dispatched, which eventually results with a higher objective value.

In Figure 5.10 - 5.19, we can observe by considering A policies alone that DI

is increased with increased objective value as decision times are increased. The same

situation is also true for B policies. As a result, increased DI (and hence, increased

inserted idle time) results with increased objective value.

To show the impact of dispatching the wrong job, consider Figure 5.10 - 5.19 by

comparing A policies with B policies. We can observe that in Figure 5.13, 5.16 and

5.18, there are B policies with higher DI values but they do not perform worse than

some A policies with longer decision times. More specifically in Figure 5.13, {B, 1
8
, Opt}

has larger DI than {A, 1
2
, Opt} but the performance of {B, 1

8
, Opt} is no worse than

{A, 1
2
, Opt}. Similarly, in Figure 5.16 by comparing {B, 1

16
, Opt} with {A, 1, Opt} and
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in Figure 5.18 by comparing {B, 1
8
, Opt} with {A, 2, Opt} we can obtain the same

result. We can explain the difference as the impact of dispatching the wrong job to the

machine as a result of using older information.

5.1.4. Responsiveness Versus Optimality

The trade off that we would like to emphasize in this section is between the

responsiveness of the decision process and the quality of the decisions. To show this

trade off, we compare the results for the base policy {I, 0, H} with A and B policies with

a non-zero decision time. Note that {I, 0, H} reflects the scenario where the scheduler

is highly responsive, i.e., it does not spend any time to make decisions, but the quality

of decisions are very low. Contrary to this, under policies A and B, the scheduler

spends time for decision making and this improves the quality of the decisions. Hence,

under policies A and B, the scheduler solves the static scheduling problem at each

decision epoch optimally.

When we examine the Figure 5.10 - 5.19, we can see that, when δ is small, the

quality of the solutions obtained compensates the performance lost during the decision

process. However, for large δ values, time lost during the decision process is so high

that being responsive (no matter how inferior the decision process is) results in a better

system performance. For example, in Figure 5.13, under, ρ = 0.5, φ = 0.3 and τ = 2,

{A, 1
8
, Opt} outperforms {I, 0, H}, but if we increase the δ value from 1

8
to 1 or higher

values, the impact of additional time lost becomes significant, and optimal scheduling

under A policies yield inferior system performance compared to the random dispatching

of jobs to the machine.

Even though control policy B seems to be quite restrictive and unintuitive, in some

scheduling environments and for some δ values, performance of the system is better

under B compared to {I, 0, H} and A. As an example, in Figure 5.13, {B, 1
8
, Opt}

performs better than all A policies with δ larger than 1
2
.

Another interesting observation based on Figure 5.10 - 5.19 is that the relative
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rank of policy {I, 0, H} among optimization based policies increases as we increase the

value of ρ or decrease the value of φ for a given τ or increase the value of τ for a given

φ, i.e., optimization based policies perform relatively better for larger utilization and

looser due date values. This can be explained by analyzing the value of scheduling.

For example, Figure 5.10 and 5.15 depict the case under τ = 0 where the due dates are

so tight that all the jobs are almost tardy when they arrive to the system. Especially

in low utilization environments (Figure 5.10 represents small ρ), queue lengths are

very small, hence there is no value that can be obtained by better scheduling, and

responsive dispatching performs favorably. Higher utilization and moderately loose

due dates generates local problems with significant queues, and the probability of

dispatching a wrong job to the machine increases considerably. Hence, the impact of

better scheduling can be observed.

A similar analysis applies for the comparison of A and B policies. As ρ and τ

get larger, policy A becomes more effective with larger δ values compared to B policies

with smaller δ values. Under A policies, ability to dispatch old schedules during the

decision process does not add too much value if the utilization is low and queue lengths

are small.

Note that, in our problem increasing the τ value does not necessarily generate a

more relaxed environment in terms of the scheduling problem, since we have a non-

regular performance measure. To minimize earliness, we keep the job in the queue until

its due date becomes tight (which increases FI), and this increases the average queue

lengths.

Based on these observations we can conclude that, for each dynamic system, there

exists an upper bound on the time that you can spend on the optimization process for

the optimization effort to yield better system performance compared to making random

decisions in a responsive manner.
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5.2. Effect of Synchronization on Distributed Scheduling System

Performance

Remember that, we refer the time period between the completion time of the

100th job and the completion time of the 1600th job (the period that we collect statistics

during the simulation) as the scheduling period. During the scheduling period, the

dispatcher decides to dispatch the machine 1500 times. As discussed in Section 3.2.3,

the type of the dispatch decision may be as one of the followings: (-/s), (s/-), (w/s),

(s/w), (s,s) and (s). While collecting statistics, we count the number of dispatch

decisions according to dispatch type then we divide these numbers by 1500 to obtain

dispatch decision percentages. Figure 5.20 and 5.21 show the objective value and

the dispatch decision percentages of all distributed policies for ρ = 0.5 and ρ = 0.7,

respectively.

Since we have a non-regular performance measure, the dispatcher decides some-

times to keep the machine idle and wait a duration of time. In Section 3.2.3 we define

the types of wait decisions as (w), (-/w), (w/-) and (w/w). While collecting statistics,

we count the number of all types of wait decisions then we calculate the wait deci-

sion percentages. Figure 5.22 and 5.23 show the objective value and the wait decision

percentages of all distributed policies for ρ = 0.5 and ρ = 0.7, respectively.

The percentage of (s) is an indicator of synchronization because both schedulers

suggest to start the same job. (s/-) and (-/s) reflect the times that one scheduler

suggest to start a job while the other scheduler is not aware of that job and any other

job. Hence (s/-) and (-/s) decisions in the distributed scheduling system reflect the

situations that if it were a centralized scheduling system, it also suggests to dispatch

the same job, and synchronization is inoperative. When the percentage of (s/s) and

(s/w) and (w/s) decisions increases the probability to dispatch the wrong job to the

machine increases and system performance may deteriorate.

With a similar discussion, the percentage of (w) is an indicator of synchronization

since both schedulers suggest to wait for the same job. (w/-) and (-/w) reflect the times
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that distributed scheduling system behaves like a centralized scheduling system. When

the percentage of (w/w) decisions increases, the system performance may deteriorate

because of keeping machine idle instead of dispatching a job.

5.2.1. Dispatch Decision Percentages

In Figure 5.20-5.23 the policies are sorted primarily in increasing order of Ω values

then secondarily in increasing order of ω values in the horizontal axis. Note that the

policy {0,0} reflects synchronous operation of the distributed schedulers.

Based on Figure 5.20- 5.23, we can drive the following observations.

• The percentage of (s) decisions decreases and the percentage of (s/-), (-/s), (s/w),

(w/s) and (s/s) decisions increases as Ω increases.

• The percentage of (w) decisions decreases and the percentage of (w/-), (-/w) and

(w/w) decisions increases as Ω increases.

• The objective value increases at a value and then it stays constant as synchro-

nization period length (Ω) increases. Hence, for a given ρ, τ, φ and γ, there is a Ω

value that separates the local problems of two schedulers and induce asynchronous

operation.

• The operation of the synchronization time (ω) is similar to the operation of

the synchronization period length (Ω). When both of these parameters take

comparable values, the effect of ω may be observable. The objective value slightly

increases as ω increases when Ω = 1. The effect of ω is not significant when Ω is

high.

• For a given a distributed policy and given ρ, τ, φ values, the objective value in-

creases as processing variability (γ) increases while dispatch decision percentages

are similar in Figure 5.20 - 5.21 and wait percentages are similar in Figure 5.22

- 5.23. Hence, deterioration in objective value is due to the uncertainty in pro-

cessing times but not due to synchronization.

We deduce from Figure 5.20-5.23 that the effect of ω is not significant, so we can
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Figure 5.20. Objective Values and Dispatch Decision Percentages of All Distributed

Policies for ρ = 0.5.
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Figure 5.21. Objective Values and Dispatch Decision Percentages of All Distributed

Policies for ρ = 0.7.
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Figure 5.22. Objective Values and Wait Decision Percentages of All Distributed

Policies for ρ = 0.5.
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Figure 5.23. Objective Values and Wait Decision Percentages of All Distributed

Policies for ρ = 0.7.
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consider only distributed policies with ω = 0. Processing variability γ does not effect

the dispatch decision percentages and wait decision percentages, so scheduling environ-

ments with processing variability are ignored when investigating decisions. Figure 5.24

provides a simplified version of Figure 5.20 and 5.21 where similar dispatch decisions

are presented together. Figure 5.25 provides a simplified version of Figure 5.22 and 5.23

where similar wait decisions are presented together. Based on Figure 5.24 and 5.25 we

can drive the following observations.

Figure 5.24. Objective Values and Dispatch Decision Percentages of Distributed

Policies with ω = 0 under γ = 0.

• For a given φ, (s/-) and (-/s) percentages increases as due dates become tighter

(lower τ values).

• For a given τ, (s/-) and (-/s) percentages increases as urgent job ratio increases

(higher φ values).

• For a given φ, (w/-) and (-/w) percentages increases as due dates become tighter

(lower τ values). But when τ = 0, the system never decide to wait.

• For a given τ, (w/-) and (-/w) percentages increases as urgent job ratio increases

(higher φ values).
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Figure 5.25. Objective Values and Wait Decision Percentages of Distributed Policies

with ω = 0 under γ = 0.

Under very tight due dates even when the distributed schedulers operate asyn-

chronously, the distributed scheduling system decide same as a centralized scheduling

system most of the time. In Figure 5.24, for τ = 0, (s/-) and (-/s) percentages reach

up to 86% under ρ = 0.5 and 70% under ρ = 0.7.

• Higher utilization and moderately loose due dates generates local problems with

significant queues. In such environments, the probability of dispatching a wrong

job to the machine increases as (s/w) and (w/s) and (s/s) decisions increases

and the probability of giving a wrong wait decision increases as (w/w) increases.

Hence, the impact of synchronization can be observed.

In low utilization environments (small ρ), queue lengths are very small, hence

there is a little value that can be obtained by synchronization. For example, consider

τ = 4 with φ = 0 in Figure 5.24, under ρ = 0.5 the performance of {0,0} is around

0.23λ and the performance of {1000,0} is around 0.34λ, so the deterioration is around
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0.11 λ. Whereas under ρ = 0.7, the performance of {0,0} is around 0.59λ and the

performance of {1000,0} is around 0.98λ, the deterioration is around 0.39 λ.

In Figure 5.24 for ρ = 0.7, as Ω gets higher, the deterioration in system perfor-

mance under τ = 0 is small whereas it is higher under τ = 4 and φ = 0.

For τ = 0, we can confirm from Figure 5.25 that the schedulers never decide to

wait, so there is no chance for a wrong wait decision (w,w). Similarly we can check

from Figure 5.24 that (s/w) and (w/s) percentages are zero. Thus deterioration in

system performance is induced by some of (s/s) decisions.

5.2.2. Centralized Versus Distributed Scheduling Systems

The centralized scheduler is able to generate better solutions at each instance

of the algorithm run by including more detailed information but it necessitates more

time for the scheduling process. This may increase the discrepancy between the state

of the system known to the scheduling algorithm and the actual state of the system at

the time the resulting schedule is implemented. Distributing the scheduling problem

among various schedulers may improve reactivity by providing smaller local problems.

However, lack of global information may reduce the quality of the solutions. In this

section, we want to compare the performance of the fast distributed schedulers with

the slow centralized scheduler.

In Section 3.1.1, we define three response mode of a scheduler: instantaneous,

busy and available response modes. As mentioned in Section 3.2.1, we assume that

distributed schedulers run the optimal scheduling algorithm in instantaneous response

mode. For the centralized scheduler, we show in Section 5.1.3 that for a given response

mode and given γ, φ, τ and ρ values, as δ gets higher, performance of the system

degrades. Hence, for this section we select a representative control policy for each

operating modes A and B instead of presenting the performance of all centralized

control policies.
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Figure 5.26 and 5.27 show the objective values of selected centralized and dis-

tributed policies for ρ = 0.5 and ρ = 0.7 respectively. In the horizontal axis, the

policies are sorted in the non-decreasing order of their average objective values.

Figure 5.26. Objective Values of Selected Centralized and Distributed Policies for

ρ = 0.5.

Based on Figure 5.26 and 5.27, we can drive the fallowing observations.

• Centralized policy {I, 0, Opt} and distributed policy {0, 0} performs very close

to each other. The little difference between objective values of these policies

is caused by scheduling trigger mechanism in distributed system mentioned as

Problem 2 in Section 3.2.2.

• All distributed policies outperform the centralized policy {B, 1
16
, Opt}.

• For γ = 0, and for a given τ, the performance of centralized A policy degrades as

urgent job ratio increases (higher φ values) and approximates to the performance

of asynchronous distributed policy {1000, 0}.

• For γ = 0, and for φ = 0.3, the relative rank of A policy increases as due dates
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Figure 5.27. Objective Values of Selected Centralized and Distributed Policies for

ρ = 0.7.
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become tighter (lower τ values).

• The ranking of centralized A and B policies increases as processing variability

increase for ρ = 0.7 in Figure 5.27. The effect of processing variability on the

ranking of policies is not that significant for ρ = 0.5 in Figure 5.26.

We conclude that, all distributed policies outperform the selected centralized B

policy. We also conclude that selected centralized A policies perform relatively better

for looser due date values. This can be explained by analyzing the queue length. For a

given τ, queue length increases as φ decreases. For a given φ, queue length increases as

τ increases. Hence, the impact of better scheduling can be observed in problems with

significant queues.

In summary, we conjecture that, under some specific operating conditions, the

dynamic production system will run more efficiently when we use fast distributed asyn-

chronous schedulers instead of relatively slow centralized scheduler.
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6. CONCLUSION

In this study, we analyze a single machine dynamic scheduling environment with

both a centralized and a distributed scheduling system. The objective is to minimize

the summation of earliness and tardiness. In the scheduling literature involving similar

problems, a common assumption is that, at an instance that the scheduler needs to

dispatch a job to the machine, regardless of how complex the scheduling algorithm is,

the schedule can be obtained instantaneously. Our experience in real life scheduling

environments is that, depending on the complexity of the algorithm deployed and

depending on the details of information included, the scheduling process may take a

significant amount of time.

In this study we explicitly model the scheduling (decision) time and analyze its

impact on the system performance. We define two basic modes of operation for the

scheduler during the decision process. In the available mode, the scheduler continues

dispatching the machine using the last schedule it generated, although the schedule

may not reflect the current state of the system correctly. In the busy mode, the

scheduler ignores all dispatch requests and keeps the machine idle until a new schedule

is obtained.

Our study is composed of two phases. In the first phase, we test the trade off

between spending more time for the scheduling process by employing more sophisti-

cated scheduling algorithms and using simple fast heuristic algorithm. In the second

phase, we test the trade off between spending more time by including detailed global

information to achieve global optimality under a centralized control structure and using

timely accessible local information under distributed control.

For the first phase, we define various centralized control polices by using different

operation modes and decision times. One of these centralized control policy represents

a fast simple heuristic. Another one represents the studies in the dynamic scheduling

literature which assumes that whole scheduling process is instantaneous. The rest of
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the centralized control policies denotes slow optimization algorithms.

We simulated the system under various scheduling environments controlled by

due date tightness, urgent job ratios, operation time variability and utilization using

different centralized control polices. The results of the first phase indicate that decision

time is a very significant determinant of system performance. If the time it takes to

make a decision is relatively high, even a responsive system using a random dispatching

mechanism may outperform a system guided by an optimal scheduling process. In other

words, in order for an optimization algorithm to be effective in a scheduling system,

the time it takes to obtain the optimal result must be relatively short.

For the second phase of the study, we devise a distributed scheduling system com-

poses of two schedulers, each owing different sets of jobs. The schedulers are allowed to

synchronize their local information periodically. We define various distributed control

polices by using different synchronization period lengths. We simulated the system

again under various scheduling environments controlled by due date tightness, urgent

job ratios, operation time variability and utilization using different distributed con-

trol polices. We analyze how lack of global information affects solution quality 1-

by examining the effect of synchronization period on the performance of distributed

schedulers, 2- by making comparison between the selected centralized and distributed

control policies.

The results indicate that synchronization period length affect the distributed

system performance and lack of global information results the deterioration in system

performance. If the synchronization period length is relatively high, the schedulers

operates almost always asynchronously, and over this synchronization period length

value, deterioration stops and the performance stays constant.

The comparison between the performance of a fast distributed scheduling system

with slow centralized scheduling system reveals that if the time it takes to make a

decision is relatively high, even an asynchronous distributed system may outperform a

centralized system guided.
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APPENDIX A: DISCRETE EVENT SIMULATION

In this study, dynamic single machine scheduling system is simulated by discrete

event simulation. Simulation events and processes are explained by referring the data

flow diagram of simulation shown in Figure A.1. In the data flow diagram, processes

are shown in circles, data stores are shown in contours defined by parallel lines, and

simulation events are shown in diamonds.

Figure A.1. The Data Flow Diagram of the Simulation.

A black dashed arrow points to an event represents creation of a new simulation

event. A skewed arrow points to a process is a process trigger. There are two types of

triggers: (i) black skewed arrows represent a simulation event triggers a process; (ii) red

skewed arrows represent a process sends a command to trigger another process. There
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may be more than one trigger points to a process. Each process trigger calls a specific

function or functions defined in that process. Processes may result modifications of

data: updating /writing data is represented by straight black arrows coming into data

stores; synchronizing /reading data is represented by straight black arrows going out

from data stores. A process may end by creating a new simulation event and/or a new

process trigger.

The simulator has a simulation clock to control simulation time, and has an

events list to operate simulation. Current Simulation Time (CST ) is initialized in the

beginning of simulation, and initial event(s) is created by defining a specific event time

(ET ), and put into events list. In discrete-event simulation, the operation is represented

as a chronological sequence of events. If all events in events list have greater ET than

CST , then CST is raised up to the smallest ET present in events list. Later the event

is handled and removed from the list when the CST is equal to the ET . At any time

in simulation, CST is equal to the ET of currently activated event. Each event is

designed to create the consecutive event by defining next event time as CST plus a

positive number/time.

Each simulation event starts one of the process of simulation. As shown in Fig-

ure A.1, there are four process of simulation: Arrival, Scheduling, Dispatching and

Production. In Figure A.1, name of events are consistent with the context of Sec-

tion 3.1 and 3.2. However in implementation, the event names are different.

A.1. Arrival Process

The Arrival Process triggered by a NewJobArrived event, controls new job arrivals

to the system. Assume that job j is the new job arrived to the scheduling system. The

arrival time of the new job is assigned to event time, aj = ET. The other attributes

(p̂j, p
R
j , dj) of the job j are initialized according to the guidelines defined in Section 4.1.

Arrived Jobs data store is updated by writing the information of recently arrived job.

Remember that job arrival times are generated such that (aj+1−aj) ∼ Exponential(λ).

Note that CST = ET . Hence the next NewJobArrived event is created by ET =
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CST +RN ∼ Exponential(λ).

A new job arrival may or may not trigger a scheduling process. For periodic

scheduling policies, new arrivals are collected and contained in a set until the next

scheduling period starts, and then they are released to system as a set of jobs. In

this study, we assume that (re)scheduling is triggered with each new job arrival, there-

fore NewJobArrived command is send to the Scheduling process at the end of Arrival

Process.

A.2. Scheduling Process

The Scheduling Process includes loading recent data of the dynamic system and

running a scheduling algorithm, and releasing the generated schedule. As explained

in Section 3.1.1, three different operation modes of the scheduler are defined. In in-

stantaneous response mode, the schedule is assumed to be generated immediately, else

scheduling generation takes time. In busy and available response modes where schedul-

ing generation takes time,Scheduling Process is divided into two sequential processes:

1- Schedule Generation Process 2-Schedule Release Process.

Referring to Figure A.1, NewJobArrived and JobCompletion commands may trig-

ger the Schedule Generation Process. SchedulingCompletion event triggers the Schedule

Release Process.

In the Schedule Generation Process, the scheduler recognizes released jobs by

reading recent data from arrived jobs data store JCST = {j : aj > 0}, and it follows

up shop floor realizations by synchronizing with shop floor data store {cRj : j ∈ JCST}.

Then it starts schedule generation by considering the set of jobs that are in the system

at time CST , i.e. JSCST = {j : j ∈ JCST , and (cRj = 0 or cRj > CST )}.

Schedule Generation Process takes δ time. During that process, the schedule in

generation is incomplete and cannot be used. Once a Schedule Generation Process

starts, it cannot be interrupted (retriggered) by events occurring during δ. At the end
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of Schedule Generation Process 1- The corresponding SchedulingCompletion event is

created by defining ET = CST + δ, 2- A Dispatch command to start the Dispatch

Process is send.

SchedulingCompletion event determines the end of the Schedule Generation Pro-

cess and the start of the Schedule Release Process. In Schedule Release Process, last

generated schedule πL is written in Latest Schedule data store. The Schedule Release

Process ends by sending a Dispatch command to start then Dispatch Process.

The details of response modes are provided in following subsections.

A.2.1. Instantaneous Mode

In instantaneous mode, Schedule Generation Process and Schedule Release Pro-

cess are executed together without creating a SchedulingCompletion event.

Referring to Figure A.1, suppose that a Job Release (or Job Completion) trigger

at CST is handled. It considers recent realizations JSCST , and starts scheduling process

to generate schedule π, tS(π) = CST . Scheduling takes no time, π is generated instan-

taneously tG(π) = CST . Latest schedule data store is updated by writing πLCST . The

Dispatch command is send at time CST .

A.2.2. Busy Mode

In busy mode, Schedule Generation Process and Schedule Release Process are

executed separately by creating a SchedulingCompletion event.

Referring to Figure A.1, suppose again that a Job Release command (or Job Com-

pletion event) at CST is handled. If the scheduler is not already generating a schedule,

then it starts Schedule Generation Process to generate schedule π, tS(π) = CST by

considering JSCST . In busy response mode at the beginning of Schedule Generation

Process, the current schedule πL in Latest Schedule data store is removed. At the end



77

of the process SchedulingCompletion event is created by defining ET = CST+δ, and it

is put into the event list of simulation. If the scheduler is already generating a schedule

when it receives a Scheduling Process trigger, this trigger is ignored in busy mode.

A.2.3. Available Mode

In available mode, Schedule Generation Process and Schedule Release Process are

executed separately by creating a SchedulingCompletion event. Unlike busy mode, in

available response mode at the beginning of Schedule Generation Process, the current

schedule in Latest Schedule data store is not removed so that previously generated old

schedule πL with tG(πL) < CST is available.

Suppose again that a Scheduling Process trigger is received at CST. If the sched-

uler is not already generating a schedule, then it starts Schedule Generation Process

to generate schedule π, tS(π) = CST by considering JSCST . At the end of the process

1- SchedulingCompletion event is created by defining ET = CST + δ, and put into

the event list of simulation. 2- Dispatch command is send at time CST . If there is

an ongoing Schedule Generation Process, then any initiator event realized in the mean

time is ignored by saying that the scheduler is busy.

A.3. Dispatch Process

In this study, the assumption is that scheduling is the decision process that takes

time, but dispatching is done instantaneously. In Figure A.1, a Dispatch command

or a Wakeup event triggers Dispatch Process. The operation of the dispatcher in the

centralized scheduling system and in the distributed scheduling system is explained

in Section 3.1.2 and Section 3.2.3 respectively in details. At the end of the Dispatch

Process either the machine is dispatched by sending StartProcessing (j) command to

the machine or the machine is kept idle by creating a Wakeup event with ET = twakeup.

The Wakeup event is created to remind the time to dispatch a job. The Wakeup

event is active if it is included in the events list of the simulator. There may be at most
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one Wakeup event in the events list. If a dispatch trigger is received while there is an

active Wakeup event, then the Wakeup event becomes redundant and it is removed

from the events list.

To illustrate, suppose that events list contains an active Wakeup event with

ET = t1 and a NewJobArrived event with ET = t2. Let CST < t2 < t1. If all events

in events list have greater ET than CST , then CST is raised up to the smallest ET

present in events list. Hence, NewJobArrived event is handled first. From Figure A.1,

NewJobArrived event results triggering of Scheduling Process. As explained above, if

the operation is in instantaneous mode or in available mode a Dispatch command is

send to Dispatch Process. Note that CST = t2. The dispatcher decides according to

conditions at time CST. If the schedule in Latest Schedule data store is changed, the

previous dispatch decision may become useless. Else if Latest Schedule data store is

still the same, then a Wakeup event with ET = t1 is created again and it is put into

the events list.

A.4. Machine Process

Machine Process process controls shop floor realizations by updating shop floor

data store. It is initiated either by a StartProcessing (j) command or a JobCompletion

event.

When StartProcessing (j) command is received, the real start time of the job sRj is

recorded in Shop Floor data store as sRj = CST , then the corresponding JobCompletion

event created by defining its ET as ET = CST + pRj at the end of the process.

When JobCompletion event is handled, real completion time of recently processed

job j(CST ) is recorded as cRj = ET . At the end of the process, JobCompletion com-

mand is sent to Scheduling Process in order to start new decision process.
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APPENDIX B: ICRON IMPLEMENTATION

In this study, ICRON Planning and Optimization applications software is chosen

to implement the simulator and evaluate the issues discussed. ICRON is a general

purpose visual algorithm modeling software. It has a very special visual modeling

tool named GSAMS. GSAMS is an object-oriented graphical algorithm modeling sys-

tem which is used to construct and modify algorithms within graphical environments.

GSAMS allows users to drag and drop algorithmic objects on the design window and

visually construct algorithms, thereby the algorithms are presented as graphical flow

charts and it is easy to follow and understand the logic.

In order to model an algorithm, the user works on nodes. Each node represents a

particular operation on the current object. Nodes have input and output link points.

Objects flow between the nodes through link points and all of the data manipulations

are managed by node and link structures of the algorithm model. GSAMS provides ba-

sic nodes to execute elementary programming operations under the classifications like

Datasource Manipulation, Execution Flow, Input/Output, List Manipulation, Messag-

ing, Object Model Navigation, Reporting, System Construction and XML. GSAMS

offers a rich set of planning objects. The user can benefit from existing system com-

ponents, and also can define new components or extend existing ones. In addition to

these advantages, ICRON uses the latest available versions of CPLEX, COIN-Clp and

COIN-Cbc solvers.

In this study, we develop a simulation model named SFSim in ICRON. Both of

the Centralized Scheduling System Simulator (CSSS) and the Distributed Scheduling

System Simulator (DSSS) are constructed by using SFSim model. In following sections,

the SFSim model is explained in details by using Object Orientation terminology. Ob-

ject Orientation allows programmers to separate program-specific data types through

the use of classes. Classes define types of data structures and the functions that operate

on those data structures. Instances of these data types are known as objects.
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The structured design of SFSim explained in Chapter A is common for both of

CSSS and DSSS. However some of the classes are modified according to the type of

the simulator. We present the implementation according to the type of the simulator.

The common attributes and the algorithms belong to each class will be given in a

main section. Algorithms specific to CSSS and DSSS are separately explained under

subsections. Hence, for example, in order to examine the attributes of a job object in

DSSS implementation, the reader should consider both of the Section B.2 and B.2.2.

The type of an attribute is specified in parenthesis after its name is declared.

In Chapter 5, we present the results of experiments where the distributed sched-

ulers operates only in the instantaneous mode. However, by using DSSS implementa-

tion, it is possible to simulate the other cases where the distributed scheduler’s decision

process takes time. In following subsections, while explaining DSSS implementation,

algorithms required only for instantaneous mode will be presented.

B.1. Event Class

There is a base Event class in SFSim model, and all simulation events inherit

from this base class. The attributes of Event class are:

• TheSimulator (object)

• Time (time)

• Code (string)

Event class has an algorithm named Handle shown in Figure B.1. Handle algo-

rithm is overloaded in the classes inherit from Event class. The algorithm shown in

Figure B.1 evaluates the event, and finds the base object of the Event type arrived,

and invokes the Handle algorithm of the base object. For example, if the event type

is NEWJOB, then this algorithm invokes the Handle method of the NEWJOB event

object. This is same for all the other event types inherits from Event class.
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Figure B.1. Handle Algorithm of Base Event Class.

B.1.1. NEWJOB Event for CSSS

The name of NewJobArrived event in Figure A.1, is NEWJOB in implementation.

NEWJOB is an Event class. Overloaded Handle algorithm in CSSS implementation is

shown in Figure B.2. The steps of the algorithm are as follows:

Handle Algorithm

Step 1. The Jobs list of the simulator is reached. The first job in the list that is not

assigned an ArrivalTime yet is picked.

Step 2. The attributes of the selected job are assigned by using InitializeTheJob algo-

rithm of the Job class presented in Figure B.9 in Section B.2.1.

Step 3. If the centralized scheduler is in a scheduling process, (IsScheduling variable

returns true), then Dispatch algorithm of the simulator is called, else the Sched-

ule algorithm of the simulator is called. Schedule and Dispatch algorithms are

presented in Figure B.17 in Section B.6.1 and Figure B.19 in Section B.6.2

respectively.

Step 4. At the end of algorithm the next NEWJOB event is created by calling Creat-

eNewJobEvent algorithm in Figure B.13 in Section B.6.
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Figure B.2. Overloaded Handle Algorithm of NEWJOB Event in CSSS

Implementation.

B.1.2. NEWJOB Event for DSSS

In DSSS implementation, according to the JobType of arriving job, one of the

schedulers is triggered. Overloaded Handle algorithm of NEWJOB event in DSSS

implementation is shown in Figure B.3. The steps of the algorithm are as follows:

Handle Algorithm

Step 1. The Jobs list of the simulator is reached. The first job in the list that is not

assigned an ArrivalTime yet is picked.

Step 2. The attributes of the selected job are assigned by using InitializeTheJob algo-

rithm of the Job class presented in Figure B.11 in Section B.2.2. Note that,

JobType of the job is determined by using InitializeTheJob algorithm.

Step 3. TheCurrentSchedulerType variable of DSSS is set to JobType of the job. The-

CurrentSchedulerType denotes the type of scheduler relevant to the arrival.
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Step 4. If TheCurrentSchedulerType is “A” and the the scheduler A is not busy (IsS-

chedulingA variable returns false), or If TheCurrentSchedulerType is “B” and

the the scheduler B is not busy (IsSchedulingB variable returns false), then

Schedule algorithm in Figure B.17 in Section B.6.1 is called. If the relevant

scheduler is busy, it ignores the trigger and Dispatch algorithm in Figure B.19

in Section B.6.2 is called.

Step 5. At the end of algorithm the next NEWJOB event is created by calling Creat-

eNewJobEvent algorithm in Figure B.13 in Section B.6.

Figure B.3. Overloaded Handle Algorithm of NEWJOB Event in DSSS

Implementation.

B.1.3. OPERATIONCOMPLETED Event for CSSS

The name of JobCompletion event in Figure A.1, is OPERATIONCOMPLETED

in implementation. OPERATIONCOMPLETED is an Event class. Overloaded Handle

algorithm in CSSS is shown in Figure B.4.
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The steps of the algorithm are as follows:

Figure B.4. Overloaded Handle Algorithm of OPERATIONCOMPLETED Event in

CSSS Implementation.

Handle Algorithm

Step 1. TheRealCompletionTime field of TheCurrentJobInProcess object of the simu-

lator job is set to CurrentTime.

Step 2. TheCurrentJobInProcess is set to zero.

Step 3. CompletedJobs number is increased by one.

Step 4. If the centralized scheduler is in a scheduling process, (IsScheduling variable

returns true), then Dispatch algorithm of the simulator is called, else the Sched-

ule algorithm of the simulator is called. Schedule and Dispatch algorithms are

presented in Figure B.17 in Section B.6.1 and Figure B.19 in Section B.6.2

respectively.
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B.1.4. OPERATIONCOMPLETED Event for DSSS

In DSSS, OPERATIONCOMPLETED event triggers both of the schedulers.

Overloaded Handle algorithm of OPERATIONCOMPLETED event in DSSS imple-

mentation is shown in Figure B.5. The steps of the algorithm are as follows:

Figure B.5. Overloaded Handle Algorithm of OPERATIONCOMPLETED Event in

DSSS Implementation.

Handle Algorithm

Step 1. TheRealCompletionTime field of TheCurrentJobInProcess object of the simu-

lator job is set to CurrentTime.
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Step 2. TheCurrentJobInProcess is set to zero.

Step 3. CompletedJobs number is increased by one.

Step 4. In DSSS implementation OPERATIONCOMPLETED event triggers both of

the schedulers to start a new scheduling process.

Step 5. If the scheduler A is not busy, (IsSchedulingA variable returns false), then

TheCurrentSchedulerType is set to “A” and Schedule algorithm is executed.

If IsSchedulingB variable returns false, then TheCurrentSchedulerType is set

to “B” and Schedule algorithm is executed, else Dispatch algorithm is called.

Schedule and Dispatch algorithms are presented in Figure B.17 in Section B.6.1

and in Figure B.19 in Section B.6.2 respectively.

B.1.5. SCHEDULINGCOMPLETED Event

The name of SchedulingCompletion event in Figure A.1, is SCHEDULINGCOM-

PLETED in implementation. SCHEDULINGCOMPLETED is an Event class. Over-

loaded Handle algorithm is shown in Figure B.6.

Figure B.6. Overloaded Handle Algorithm of SCHEDULINGCOMPLETED Event.

The steps of the algorithm are as follows:

Handle Algorithm
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Step 1. ReleaseLatestSchedule algorithm is called. In CSSS, the algorithm is developed

as shown in Figure B.21 in Section B.6.3.1. In DSSS, the algorithm is developed

as shown in Figure B.21 in Section B.6.4.1.

Step 2. After the latest schedule released, Dispatch presented in Figure B.19 in Sec-

tion B.6.2 is called.

B.1.6. WAKEUPTODISPATCH Event

The name of Wakeup event in Figure A.1, is WAKEUPTODISPATCH in imple-

mentation. WAKEUPTODISPATCH is an Event class. Overloaded Handle algorithm

in Figure B.7 calls emphDispatch algorithm presented in Figure B.19 in Section B.6.2

Figure B.7. Overloaded Handle Algorithm of WAKEUPTODISPATCH Event.

B.2. Job Class

The attributes of Job class are:

• Index (number)

• PredictedProcessingTime (number)

• RealProcessingTime (number)

• ArrivalTime (time)

• DueDate (item)

• RealCompletionTime (time)

• RealStartTime (time)
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• TempCompletionTime (time)

• TempStartTime (time)

When a job is created, it is assigned an index. PredictedProcessingTime, Re-

alProcessingTime, ArrivalTime, DueDate, RealCompletionTime, RealStartTime vari-

ables are used for p̂j, p
R
j , aj, dj, c

R
j , s

R
j of job j respectively. TempCompletionTime,

TempStartTime variables of a job are used in the schedule generation process. In a

scheduling algorithm, TempCompletionTime, TempStartTime variables of each job are

scheduled completion time and scheduled start time respectively.

B.2.1. Job Class for CSSS

A job in CSSS implementation has all of the attributes defined in Section B.2

and additional to those it has the following attributes:

• ReleasedCompletionTime (time)

• ReleasedStartTime (time)

As it is explained in Section A.2, in case that scheduling generation takes time,

scheduling process is divided into two sequential processes: (i) Schedule Generation

Process, (ii) Schedule Release Process. In schedule generation TempCompletionTime,

TempStartTime variables of a job are used to determine scheduled times. When the

schedule is released ReleasedCompletionTime and ReleasedStartTime variables are as-

signed to TempCompletionTime, TempStartTime variables respectively. Hence, Re-

leasedCompletionTime and ReleasedStartTime variables denotes scheduled completion

and start times in latest available schedule.

A job object has two functions: SetDefaultValuesofTheJob algorithm in Fig-

ure B.8 and InitializeTheJob algorithm in Figure B.9. Originally, PredictedProcessing-

Time, RealProcessingTime, ArrivalTime, DueDate, RealCompletionTime, RealStart-

Time, TempCompletionTime, TempStartTime, ReleasedCompletionTime and Released-
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StartTime of a job is set to zero by SetDefaultValuesofTheJob algorithm.

Figure B.8. SetDefaultValuesofTheJob Algorithm of Job Class in CSSS

Implementation.

The input of InitializeTheJob algorithm an Event-NewJobArrived object as shown

in Figure B.9. ArrivalTime is set to Time of Event, PredictedProcessingTime, Real-

ProcessingTime, DueDate of the job is calculated as explained in Section 4.1 by using

this algorithm.
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Figure B.9. InitializeTheJob Algorithm of Job class in CSSS Implementation.
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B.2.2. Job Class for DSSS

A job in DSSS implementation has the following additional attributes to those

defined in in Section B.2:

• ReleasedCompletionTimeA (time)

• ReleasedCompletionTimeB (time)

• ReleasedStartTimeA (time)

• ReleasedStartTimeB (time)

• TempCompletionTimeA (time)

• TempCompletionTimeB (time)

• TempStartTimeA (time)

• TempStartTimeB (time)

• JobType (string)

As explained in Section B.2.1, for the busy and available operation modes, schedul-

ing process is divided into two sequential processes: (i) Schedule Generation Process

(ii) Schedule Release Process. In schedule generation, TempCompletionTime, Temp-

StartTime variables of a job are used.

In DSSS there are two schedulers A and B. The scheduled start time and the

scheduled completion time determined by the scheduler A are denoted by TempStart-

TimeA and TempCompletionTimeA respectively. Similarly, TempStartTimeB and

TempCompletionTimeB are determined by the scheduler B. Since the scheduling algo-

rithms are common for both of the schedulers, TempCompletionTime, TempStartTime

variables are used to determine scheduled times, then TempCompletionTime, Temp-

StartTime variables are assigned to either TempStartTimeA, TempCompletionTimeA

variables or TempStartTimeB, TempCompletionTimeB variables according to the type

of the scheduler.

When a schedule generated by the scheduler A is released, then ReleasedComple-

tionTimeA and ReleasedStartTimeA variables are assigned to TempCompletionTimeA,
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TempStartTimeA variables respectively. Otherwise, ReleasedCompletionTimeB and

ReleasedStartTimeB variables are assigned to TempCompletionTimeB, TempStart-

TimeB variables respectively.

SetDefaultValuesofTheJob and InitializeTheJob algorithms in Section B.2.1 mod-

ified in DSSS implementation are presented in Figure B.10 and B.11. Originally, all

of the attributes expect Index of a job is set to zero by SetDefaultValuesofTheJob

algorithm.

Figure B.10. SetDefaultValuesofTheJob Algorithm of Job Class in DSSS

Implementation.

The input of InitializeTheJob algorithm an Event-NewJobArrived object as shown

in Figure B.9. ArrivalTime is set to Time of Event, PredictedProcessingTime, Real-

ProcessingTime, DueDate of the job is calculated as explained in Section 4.1. Finally,

a RN∼ U [0, 1] is generated . if RN<= 0.5 then JobType is assigned as “A”, else it is

assigned as “B”.
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Figure B.11. InitializeTheJob Algorithm of Job Class in DSSS Implementation.
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B.3. PolicyType Class

PolicyType object is a control policy to define alternative styles of management

in experimentation. Control Policy Settings are explained in Section 4.2. Each Policy-

Type object has the following attributes:

• DecisionTime (number)

• OperatingMode (string)

• SchedulingAlgorithm (string)

As their name imply, OperatingMode, DecisionTime, SchedulingAlgorithm pa-

rameters are used for x, y, and z respectively.

B.3.1. PolicyType Class for DSSS

The additional attributes of a PolicyType object in DSSS implementation are:

• SynchronizationDelta (number)

• SynchronizaitionPeriod(number)

SynchronizationDelta is the parameter ω and SynchronizaitionPeriod is the pa-

rameter Ω in SFSim model.

B.4. ProblemSetting Class

The attributes of a ProblemSetting object are:

• EarlinessWeight (number)

• MaxNoOfJobsArrived (number)

• MaxNoOfJobsCompleted (number)

• NoOfReplications (number)
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• Pivot (number)

• TardinessWeight (number)

EarlinessWeight and TardinessWeight parameters are the penalty weights for re-

alized earliness and tardiness of a job. In SFSim model, it is possible to test weighted

earliness/tardiness problem. In this study, we present the experiments where these pa-

rameters are set to 1. MaxNoOfJobsArrived parameter determines the number of jobs

arrived to the system. We stop the experiment when the number of completed jobs

reach the value of MaxNoOfJobsCompleted parameter. NoOfReplications parameter

determines the number of replication of each problem instance.We collect statistics over

the completed jobs list of the simulator. Pivot determines the number of completed

jobs that is excluded from the statistics.

B.5. ProblemType Class

PolicyType object is a scheduling environment to control the design of the pro-

duction system. Scheduling environment settings are explained in Section 4.1. The

attributes of a PolicyType object are:

• DDMean (number)

• DDRange (number)

• JobInterarrival (number)

• ProcessingVariability (number)

• UrgentJobRatio (number)

• Utilization (number)

• AvgProcessingTime (expression)

As their names imply JobInterarrival, DDMean, ProcessingVariability, UrgentJo-

bRatio and Utilization parameters are λ, τ, γ, φ and ρ respectively. DDRange parameter

determines the range of the interval that the due date of a job is generated. Utilization

is multiplied with JobInterarrival to obtain AvgProcessingTime.
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B.6. Simulator Class

The attributes of a Simulator object are:

• CurrentReplicationIndex (number)

• CompletedJobs (number)

• NoOfUrgentJobs (number)

• Seed (number)

• CurrentTime (time)

• SchedulingPeriodStartTime (time)

• SchedulingProcessStartTime (time)

• TheCurrentJobInProcess (Job object)

• TheCurrentPolicyType (Policy Type object)

• TheCurrentProblemSetting (Problem Setting object)

• TheCurrentProblemType (Problem Type object)

• Events (a list of event objects)

• Jobs (a list of job objects)

• PolicyTypes (a list of Policy Type objects)

• Problem Types (a list of Policy Type objects)

• ArrivedJobs (expression)

• CompletedJobsList (expression)

NoOfUrgentJobs is used to count the number of urgent jobs during simulation.

The ratio of NoOfUrgentJobs to MaxNoOfJobsArrived of TheCurrentProblemSetting

object should be close to UrgentJobRatio of TheCurrentProblemType object for the

verification of simulation.

A problem instance can be repeated by using the same seeds to generate random

numbers. The experiments can be conducted by repeating specific instances with the

help of the Seed attribute. CurrentReplicationIndex is used to control the replication

number.



97

CurrentTime is the current simulation time CST. SchedulingProcessStartTime is

the time that a scheduling generation starts i.e. tS(π) to generate π. SchedulingPe-

riodStartTime determines the beginning of a schedule. ArrivedJobs expression filter

the jobs with ArrivalTime > 0 in Jobs list. TheCurrentJobInProcess is j(t). Complet-

edJobsList expression filter the jobs with RealCompletionTime > 0 in Jobs list, and

this list is used in statistic calculations. CompletedJobs denotes the value of Com-

pletedJobsList list size. A simulation ends when CompletedJobs reaches the value of

MaxNoOfJobsCompleted of TheCurrentProblemSetting object of the simulator.

Figure B.12. InitializeOnce Algorithm of Simulator Class.

InitializeOnce algorithm presented in Figure B.12 is used to construct the sim-

ulator. The data is read from an Access database. ConstructProblemSettings node

creates TheCurrentProblemSetting object of the simulator. ConstructProblemTypes

and ConstructPolicyTypes nodes create ProblemTypes and PolicyTypes list of the sim-

ulator. The list size of Jobs is determined by MaxNumberOfJobsArrived parameter of

TheCurrentProblemSetting of the simulator and created by ConstructJobs node.

CreateNewJobEvent, CreateOperationCompletedEvent, CreateSchedulngCompleted

and CreateWakeupToDispatchEvent algorithms presented in Figure B.13, B.14, B.15,

B.16 respectively are used to create consecutive events during simulation. In event

creation algorithms, the common part of the algorithms starts from “Create Object
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info” node, and ends with the “Done” node. As its name implies, “Create Object” info

node creates necessary information object. “Create Objects From Object Info” node

use this information object and a sample object to create a new object. In order to

create an Event Object, Time and Code fields are needed. The created event object is

put into the Events list of simulator in Create Objects From Object Info node.

Figure B.13. CreateNewJobEvent Algorithm of Simulator Class.

In Figure B.13, the simulator navigates its jobs list, and pick the first job whose

ArrivalTime is zero. Then it calculates next arrival time by using Exponential(λ)

distribution and specify that time as Time of event object. The Code of the event is

set to “NEWJOB”.
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Figure B.14. CreateOperationCompletedEvent Algorithm of Simulator Class.

In Figure B.14, the simulator determines Time attribute of event object by adding

RealProcessingTime value of TheCurrentJobInProcess object of the simulator to its

CurrentTime field. The Code of the event is set to “OPERATIONCOMPLETED”.

CreateSchedulngCompleted algorithm is shown in Figure B.15. The simulator de-

termines Time of event object by adding DecisionTime value of TheCurrentPolicyType

object of the simulator to its SchedulingProcessStartTime. The Code of the event is

set to “SCHEDULINGCOMPLETED”.

As shown in Figure B.16, CreateWakeupToDispatchEvent algorithm requires a

time type input. Time of Event-Wakeup object is set to the input value. The Code of

the event is assigned as “WAKEUPTODISPATCH”.
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Figure B.15. CreateSchedulingCompletedEvent Algorithm of Simulator Class.

Figure B.16. CreateWakeupToDispatchEvent Algorithm of Simulator Class.
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B.6.1. Scheduling Process Algorithms

Schedule algorithm common in both of CSSS and DSSS, is presented in Fig-

ure B.17. In the first step, SchedulableJobs list is received. If there is no job to schedule

then, the simulator calls Dispatch algorithm given in Figure B.19. If SchedulableJobs

list is full, then the simulator calls StartScheduling algorithm. When StartSchedul-

ing algorithm is done, it is checked if the current operating mode takes time. If it is

so, then CreateSchedulingCompleted algorithm in Figure B.15 is run, else generated

schedule is released immediately by ReleaseLatestSchedule algorithm. At the end of

Schedule algorithm, Dispatch algorithm in Figure B.19 is called. Schedule algorithm is

done when Dispatch algorithm is done.

Figure B.17. Schedule Algorithm of Simulator Class.

StartScheduling and ReleaseLatestSchedule algorithms are different in CSSS and

DSSS implementations. StartScheduling and ReleaseLatestSchedule algorithms in CSSS

presented respectively in Figure B.20 and B.21 are explained in Section B.6.3.1. StartSchedul-

ing and ReleaseLatestSchedule algorithms in DSSS are shown respectively in Fig-

ure B.28 and B.30 are explained in Section B.6.4.1.
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Scheduling algorithms are RandomAlgorithm, Optimization and OptimalTiming

algorithms. As explained in Section 4.2, the optimum solution to the scheduling prob-

lem we considered is obtained by solving a mixed integer program. We solve the mixed

integer program in by Optimization algorithm. As we mentioned at the beginning of

this chapter, ICRON uses the latest available versions of CPLEX and COIN solvers.

We use CPLEX solver in emphOptimization algorithm.

Figure B.18. RandomAlgorithm of Simulator Class.

We devise RandomAlgorithm as a heuristic. In RandomAlgorithm, we generate a

random sequence of jobs. Given a sequence mixed integer program becomes a linear

program. OptimalTiming algorithm solves the linear program to optimally insert idle

times to generate a schedule.

Optimization and OptimalTiming algorithms are not presented in figures since

their implementations include lots of details specific to ICRON software. RandomAl-

gorithm is presented in Figure B.18.
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B.6.2. Dispatch Process Algorithms

Dispatch algorithm common in CSSS and DSSS, is presented in Figure B.19.

At the beginning of the algorithm it is check if TheCurrentJobInProcess exists or

not. If it exists, then Figure B.19 is done without doing anything, else one of the

DispatchBeforePivot or DispatchAfterPivot algorithms is invoked according to Pivot

value of TheCurrentProblemSetting.

We collect statistics over the CompletedJobsList of the simulator. When Com-

pletedJobs attribute to denote CompletedJobsList list size reaches Pivot value, we

start to collect statistics. In DispatchBeforePivot algorithm statistics are ignored. Dis-

patchAfterPivot algorithm is extended version of DispatchBeforePivot algorithm since

it includes the calculation of some of the statistics.

Figure B.19. Dispatch Algorithm of Simulator Class.

DispatchBeforePivot and DispatchAfterPivot algorithms are different in CSSS

and DSSS implementations. They are explained in Section B.6.3.2 B.6.4.2 according

to the type of simulator.

B.6.3. Simulator Class for CSSS

The additional attributes in CSSS implementation are:
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• IsScheduling (number)

• DecisionIdleness (number)

• ForcedIdleness (number)

• QueueIdleness (number)

• DecisionIdlenessStartTime (time)

• ForcedIdlenessStartTime (time)

• QueueIdlenessStartTime (time)

• SchedulableJobs (expression)

IsScheduling is used to control if the scheduler is in a schedule generation pro-

cess or not. SchedulableJobs expression filters the jobs with RealStartTime <= 0 in

ArrivedJobs list to obtain JS.

DecisionIdlenessStartTime is assigned to simulation time when the machine is

turn in DI state. The difference between the time when DI state ends and Decision-

IdlenessStartTime determines DecisionIdleness value. DecisionIdleness is accumulated

during each simulation. The ratio of DecisionIdleness to the simulation period Γ gives

DI ratio. The calculations are similar for ForcedIdleness and QueueIdleness attributes.

B.6.3.1. Scheduling Process Algorithms in CSSS. StartScheduling and ReleaseLatestSched-

ule algorithms are shown in Figure B.20 and B.21 respectively.

In schedule generation process, the scheduled times are determined by using Tem-

pCompletionTime, TempStartTime variables of each job in StartScheduling algorithm.

At the beginning of StartScheduling algorithm, IsScheduling field of the simulator is set

to 1. SchedulingProcessStartTime is set to CurrentTime. If the current operating mode

is busy mode, then ReleasedStartTime and ReleasedCompletionTime attributes of each

job is set to zero, hence the latest available scheduled times are removed. If TheCur-

rentJobInProcess exists then SchedulingPeriodStartTime is adjusted. Then according

to current control policy, either RandomAlgorithm in Figure B.18 and OptimalTiming

are run consecutively or Optimization algorithm is called.
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Figure B.20. StartScheduling Algorithm of Simulator Class in CSSS Implementation.

Figure B.21. ReleaseLatestSchedule Algorithm of Simulator Class in CSSS

Implementation.
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In schedule release process ReleasedCompletionTime and ReleasedStartTime vari-

ables are assigned to TempCompletionTime, TempStartTime variables respectively and

IsScheduling field is set to zero by ReleaseLatestSchedule algorithm.

B.6.3.2. Dispatch Process Algorithms in CSSS. DispatchBeforePivot and DispatchAfter-

Pivot algorithms are the implementation of the Dispatch algorithm given in Sec-

tion 3.1.2. DispatchAfterPivot in Figure B.23 algorithm includes the same steps of Dis-

patchBeforePivot in Figure B.22 algorithm and additional statistics calculation steps.

Figure B.22. DispatchBeforePivot Algorithm of Simulator Class in CSSS

Implementation.



107

In the first step of the algorithm displayed in Figure B.23, RemoveWakeupToDis-

patchEvent algorithm is called, i.e. if there is an active WakeupToDispatchEvent in

Events list of the simulator, it is deleted. The simulator navigates to Jobs list. It fil-

ters the jobs that has positive ReleasedStartTime. Then among those scheduled jobs,

jobs with positive RealStartTime are filtered. These are the jobs exist in the current

schedule but they are already started, hence they are excluded from the schedule by

assigning their ReleasedStartTime and ReleasedCompletionTime fields to zero.

Figure B.23. DispatchAfterPivot Algorithm of Simulator Class in CSSS

Implementation.

If the remaining list is full, the job with minimum ReleasedStartTime is picked

as a candidate to dispatch. If ReleasedStartTime of the selected job is less than or

equal to CurrentTime, then RealStartTime is set to CurrentTime, ReleasedStartTime
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and ReleasedCompletionTime are set to zero and TheCurrentJobInProcess is assigned

to selected job. PStarts in Figure B.24 and CreateOperationCompletedEvent in Fig-

ure B.14 are called consecutively, then the algorithm is done. If ReleasedStartTime of

the selected job is greater than CurrentTıme, CreateWakeupToDispatchEvent in Fig-

ure B.16 and FIStarts in Figure B.25 are executed consecutively, then the algorithm

is done.

If the remaining list after the shop floor realizations is empty, and if IsScheduling

is true then DIStarts algorithm in Figure B.26 is executed, else QIStarts algorithm in

Figure B.27 is executed.

Figure B.24. PStarts Algorithm of Simulator Class in CSSS Implementation.

PStarts, FIStarts, DIStarts, QIStarts algorithms are used to calculate the dura-

tion of time that the machine is in P, FI, DI, and QI states respectively. The machine

may be in one of these states at any time. Hence when one of the machine state starts,

the previous state ends by these algorithms.
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Figure B.25. FIStarts Algorithm of Simulator Class in CSSS Implementation.

Figure B.26. DIStarts Algorithm of Simulator Class in CSSS Implementation.
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Figure B.27. QIStarts Algorithm of Simulator Class in CSSS Implementation.

B.6.4. Simulator Class for DSSS

The additional attributes in DSSS implementation are:

• IsAScheduling (number)

• IsBScheduling (number)

• ReleaseType (string)

• TheCurrentSchedulerType (string)

• SchedulableJobs (expression)

• SynchronizationTime (expression)

• startAstartB

• startAwaitB

• waitAstartB

• startAnullB

• nullAstartB
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• startAB

• waitAwaitB

• waitAnullB

• nullAwaitB

• waitAB

IsAScheduling and IsBScheduling are used to control the schedule generation

process of the scheduler A and B respectively. SynchronizationTime expression re-

turns tsynch. If TheCurrentSchedulerType is “A”, SchedulableJobs expression returns

schedulable job set of the scheduler A, JAt . Else TheCurrentSchedulerType is “B” and

SchedulableJobs expression returns JBt . (Please refer Section 3.2.1 for details.)

Dispatch decisions startAstartB, startAwaitB, waitAstartB, startAnullB, nullAs-

tartB and startAB and wait decisions waitA,waitB, waitAnullB, nullAwaitB, waitAB

are defined in Section 3.2.1.

B.6.4.1. Scheduling Process Algorithms in DSSS. StartScheduling, and ReleaseLatestSched-

ule algorithms are shown in Figure B.28 and B.30 respectively.

In Figure B.28, at the beginning of StartScheduling algorithm, IsSchedulingA

or IsSchedulingB field of the simulator is set to 1 according to TheCurrentSched-

ulerType. SchedulingProcessStartTime is set to CurrentTime. If the current operat-

ing mode is busy mode, then RemoveLatestSchedule algorithm deletes ReleasedStart-

TimeA and ReleasedCompletionTimeA or ReleasedStartTimeB and ReleasedComple-

tionTimeB according toTheCurrentSchedulerType. If TheCurrentJobInProcess exists

then SchedulingPeriodStartTime is adjusted. Then according to TheCurrentPolicy-

Type, either RandomAlgorithm in Figure B.18 then OptimalTiming or Optimization

is called.

In schedule generation process, RandomAlgorithm or Optimization uses Tem-

pCompletionTime, TempStartTime variables of each job to calculate the scheduled
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Figure B.28. StartScheduling Algorithm of Simulator Class in DSSS Implementation.
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Figure B.29. AssignTempTimes Algorithm of Simulator Class in DSSS

Implementation.

Figure B.30. ReleaseLatestSchedule Algorithm of Simulator Class in DSSS

Implementation.
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times. TempCompletionTime, TempStartTime variables are assigned to either Temp-

StartTimeA, TempCompletionTimeA variables or TempStartTimeB, TempComple-

tionTimeB variables according to the type of the scheduler by using AssignTempTimes.

In schedule release process, if ReleaseType is “A”, then ReleasedCompletion-

TimeA and ReleasedStartTimeA variables are assigned to TempCompletionTimeA,

TempStartTimeA variables respectively and IsSchedulingA field is set to zero by Re-

leaseLatestSchedule algorithm. Otherwise“B” type attributes are assigned similarly.

B.6.4.2. Dispatch Process Algorithms in DSSS. DispatchAfterPivot algorithm includes

the same steps of DispatchBeforePivot algorithm and additional statistics calculation

steps for machine states. Since machine states results obtained in DSSS are not pre-

sented, only DispatchBeforePivot algorithm is explained in this section.

DispatchBeforePivot in DSSS is presented in Figure B.31. If there is an active

WakeupToDispatchEvent in Events list of the simulator, it is deleted by RemoveWake-

upToDispatchEvent algorithm in the first step. The simulator navigates to ArrivedJobs

list. Note that, a job is scheduled if it has positive ReleasedStartTimeA and/or Re-

leasedStartTimeB. Jobs exist in at least one of the schedules are filtered and among

them the jobs with positive RealStartTime are eliminated.

If the remaining list after the shop floor realizations is empty, then the algorithm

is done. If the remaining list is full, SelectTheJobToStart algorithm is called. The

figure of SelectTheJobToStart algorithm is not presented because it is very crowed and

unclear.

In SelectTheJobToStart algorithm, in the first step, jobs with ReleasedStart-

TimeA are filtered, and the job with minimum ReleasedStartTimeA is picked, hence

the candidate of α is received. The candidate of β is received in a similar way. If both

of the schedules offer the same candidate, this job is the output object of the algorithm.

Else there are two different candidates. When SelectTheJobToStart is executed, one
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Figure B.31. DispatchBeforePivot Algorithm of Simulator Class in DSSS

Implementation.
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of startAstartB, startAwaitB, waitAstartB, startAnullB, nullAstartB, startAB, wait-

AwaitB, waitAnullB, nullAwaitB, waitAB variables is increased by one. For example,

if there is a single candidate, and if it has greater ReleasedStartTimeA and Released-

StartTimeB fields than CurrentTime, then waitAB value is increased by one. The

output object is determined by executing the steps of the Dispatch algorithm given in

Section 3.2.3.

If the selected job has a scheduled start time that is less than CurrentTime,

then RealStartTime is set to CurrentTime, ReleasedStartTimeA, ReleasedComple-

tionTimeA, ReleasedStartTimeB, ReleasedCompletionTimeB are set to zero. The-

CurrentJobInProcess is assigned to selected job. CreateOperationCompletedEvent in

Figure B.14 is called. Else CreateWakeupToDispatchEvent in Figure B.16 is executed.

The algorithm is done.

B.7. Operation of the Simulator

Simulate algorithm displayed in Figure B.32 manages the creation and operation

of the simulator. In the first step, a new simulator object is created and InitializeOnce

algorithm presented in Figure B.12 is used to construct the simulator. After the con-

struction, the simulator has a full PolicyTypes list and a full ProblemTypes. Simulate

algorithm simulates each control policy under all scheduling environments. Hence Each

PolicyType is simulated iteratively for all ProblemTypes by using SimulateOneProb-

lemSetting algorithm given in Figure B.33.

SimulateOneProblemSetting algorithm invokes SimulateOneReplication algorithm

many times until the specified number of replication is reached. The simulator is ini-

tialized before each replication. Statistics of each replication is obtained by CalculateS-

tatistics algorithm. SimulateOneReplication algorithm is demonstrated in Figure B.34.

The simulator has a CurrentTime attribute to control simulation time, and has an

Events list to operate simulation. Each time the event object with minimum Time value

is selected from Events list. If Time is greater than CurrentTime, CurrentTime is raised
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Figure B.32. Simulate Algorithm of System Manager Class.

Figure B.33. SimulateOneProblemSetting Algorithm of Simulator Class.
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up to Time, else selected event is activated. According to the Code of the selected event

object one of the overloaded Handle algorithm explained in Section B.1 is invoked. The

executed event is removed from Events list. After Handle algorithm is done it is checked

if CompletedJobs reaches NoOfJobsCompleted value of TheCurrentProblemSetting or

not. SimulateOneReplication is done when the desired number of completed jobs is

achieved.

Figure B.34. SimulateOneReplication Algorithm of Simulator Class.
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