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“Whatever you do or dream you can, begin it!

Boldness has genius, power and magic in it.

Begin it now.”

Goethe.
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who has been in my thesis evaluation committee. She has always been positive and made

encouraging and constructive suggestions since April 2008. A tremendous debt of gratitude
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ABSTRACT

LOCATION-ALLOCATION PROBLEMS WITH

MULTI-COMMODITY FLOWS: EXACT AND APPROXIMATE

SOLUTION METHODS

A multi-commodity and capacitated extension of the Multi-facility Location-Allocation

Problem, namely the Multi-commodity Capacitated Multi-facility Weber Problem (MCMWP)

is considered, and exact and approximate solution methods are proposed. The MCMWP

is new in the literature and aims to locate new facilities on the plane in order to meet the

demand of customers for multiple types of products. The objective is to minimize total

transportation costs, which are proportional to the distances measured with `r-norm for

1 ≤ r < ∞ between the facilities and customers, while satisfying the demand and capacity

restrictions. The MCMWP has a non-convex objective function and it is difficult to solve.

In the first part of this work, approximate solution methods are suggested. The first one of

them is based on the Cooper’s alternate location-allocation (ALA) heuristic and both contin-

uous and discrete variants of the ALA heuristics are developed for the MCMWP. The second

approximate solution method employs Discrete Approximation (DA) strategies. When the

location of facilities are selected from a finite set of candidate sites it is possible to obtain

approximate solutions of the MCMWP. The proposed DA strategies enable to obtain not

only upper bounds but also lower bounds on the MCMWP. The third approximate solution

method employs a Lagrangean Relaxation (LR) scheme. The MCMWP is relaxed such that

the LR subproblems are variants of Multi-facility Weber Problems (MWP) with no capacity

restrictions. The last approximate solution method produces confidence intervals for the

optimal solution of the MCMWP using the Fisher-Tippett’s theorem. In the second part of

this work, exact solution methods are developed for both the Capacitated MWP (CMWP)

and MCMWP. In particular, two different branch-and-bound (BB) algorithms, which parti-

tion allocation and location spaces, are suggested to exactly solve the CMWP and MCMWP.

Lastly, a beam search heuristic using the location space based BB algorithm is implemented.
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ÖZET

ÇOK MALLI YERLEŞİM-DAĞITIM PROBLEMLERİ: KESİN

VE YAKLAŞIK ÇÖZÜM YÖNTEMLERİ

Tesis yer seçimi, ya da kısaca yerleşim problemleri fabrika, depo, bakkal, alışveriş

merkezi gibi tesisleri eniyi yerlere yerleştirmeyi amaçlar. Bir yandan eniyi yerleri bul-

maya çalışırken diğer yandan da müşterilerden elde edilecek kazancı enbüyüklemek veya

tesis açmaktan ve müşterilere hizmet etmekten kaynaklanan giderleri enküçüklemek gibi

iki temel amacı gerçekleştirmeye çalışır. Dağıtım problemleri genel olarak, tesislerin yerleri

yerine ürettikleri malların tüketicilere dağıtılmasıyla ilgilenirler. Amaçları alıcı istemlerini

doyuran, tesis sığalarını aşmayan ve dağıtım ağından kaynaklı kısıtları sağlayan enküçük

toplam giderli dağıtım planını belirlemektir. Bu ailenin bir bireyi olan taşıma proble-

minde tesisler ile tüketiciler, tesislerden tüketicilere doğru yönlenen oklarla bağlı yönlü

çift kümeli ağlar üzerindedir ve tesislerde tek bir ürün türünün üretildiğini varsayarlar.

Problemin çok mallı sürümü ise biraz daha geneldir ve bu varsayımı gevşetir: tesislerin

üretimi değişik ürün türlerini içerir ve taşıma ağındaki akış çok mallıdır. Bu durum tek

mallı problemin olağan kısıtlarına demetleme kısıtlarını ekleyerek matematiksel eniyileme

gösterimine yansıtılır ve çok mallı taşıma problemi gösterimi elde edilir. Çalışmada asıl olarak

bu iki problemi bütünleyen Sınırlı sığalı Çok mallı Çok tesisli Weber Problemi (SÇÇWP)

ele alınmakta, yaklaşık ve kesin çözüm algoritmaları geliştirilmektedir. Yapılanları iki ana

kümede özetlemek olanaklıdır. İlk küme SÇÇWP için yaklaşık çözüm yöntemleri içermektedir.

Bu amaçla etkinlik ve doğruluk başarımları yüksek sezgiseller önerilmiştir. Ayrıca, Fisher-

Tippet teoreminden yararlanılarak eniyi amaç değeri üzerinde güven aralıkları üretilmiştir.

İkinci kümede hem Sınırlı Sığalı ÇWP (SÇWP), hem de SÇÇWP için kesin çözüm yöntemleri

önerilmektedir. Özel olarak SÇWP ve SÇÇWP’yi kesin olarak çözen birisi taşıma diğeri tesis

yeri değişkenleri uzayını parçalayan iki değişik dal-sınır (DS) dizgi işlemi geliştirilmektedir.

Değişik dallanma kuralları denenmekte ve tesis yeri değişkenleri uzayını parçalayan DS dizgi

işlemini kullanan bir ışın arama sezgiseli de önerilmektedir.
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1. INTRODUCTION

Location-allocation problems (LAPs) address locating new facilities (service or pro-

duction centers i.e., warehouses, supermarkets, distribution centers, factories, etc.) to serve

existing facilities (customers) in order to meet their demand for services or products. The

objective is to minimize total transportation costs which are proportional to the distances

between new and existing facilities while satisfying the demand requirements. The founda-

tions of the LAP dates back to early 17th century. (Kuhn, 1967) attributes the following

problem to Pierre de Fermat (1601-1665) “let he who does not approve of my method attempt

the solution of the following problem: given three points in the plane, find a fourth point such

that the sum of its distances to the three given points is a minimum”. Although there is no

agreement in the literature that who has first proposed the Fermat’s problem, its solution

is on the intersection of three circles circumscribing three equilateral triangles which are

drawn on the sides of the triangle constructed by those “three given points”. The solution

to Fermat’s problem is often called as “Toricelli point” crediting to Evangelista Toricelli

(1609-1647). Toricelli point makes a 120o angle with the outer points of the equilateral tri-

angles constructed to find it. The solution of the problem becomes one of the “three given

points” (the point at the largest angle corner of the triangle) when the triangle formed by

“three given points” has an angle greater than 120o. In 1909, Alfred Weber has described

figures for the theory of locations of industries and considered the Fermat’s problem with

unequal weights on the three points. Actually, Weber has made a distinction between the

consumption (or demand) centers and raw material (supply) centers which feed the produc-

tion facility to be located. However, the consumption and supply centers can be interpreted

as existing facilities. Weber has also addressed the general case for more than three market

locations. The name Weber Problem (WP) and many others are then used to describe the

single facility location problems in which a new facility is located so as to minimize the sum

of transportation costs of serving several existing facilities (customers). More discussions

on the history of Fermat’s problem, as well as the WP and its synonyms used in different

domains of scientific areas can be found in (Wesolowsky, 1993) and (Drezner et al., 2002).

(Weiszfeld, 1937)’s iterative method is the first solution procedure for the WP when J > 3

with unequal weights where J is the number of customers. Several independent discoveries of

the Weiszfeld’s algorithm are made two decades later by (Miehle, 1958), (Kuhn and Kuenne,

1962) and (Cooper, 1963).
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When there are more than one facility to be opened, the multi-facility location problem

arises. In this case, there are two decisions to be made: finding the locations of facilities and

deciding on the amount of shipment (allocation quantities) from a facility to a customer.

Multi-facility LAP (MLAP) is first introduced by (Cooper, 1963, 1964) and its objective

function is shown to be neither convex nor concave. For the MLAP, facilities are assumed to

have an unlimited capacity and the customers are served by the supplier with the smallest

transportation cost. However, when the facilities have capacity restrictions a customer can be

supplied by more than one facility (Cooper, 1972) which results in Capacitated MLAP (CM-

LAP). CMLAP is often called as the Capacitated Multi-facility Weber Problem (CMWP).

Actually, WP is the single facility location problem when the distances between facilities and

customers are measured using Euclidean distances on the plane. Without loss of generality,

in the sequel we refer to the location problem in which the sum of the transportation costs

is minimized as the WP regardless of the distance measure used. Generally speaking, we

distinguish the problems according to the particular distance measure used. Most of the

distance measures satisfy the following norm properties:

(i) d(x,0) ≥ 0,∀x ∈ RN (positivity) (1.1)

(ii) d(x,0) = 0 ⇔ x = 0 (definiteness) (1.2)

(iii) d(cx,0) = cd(x,0)∀x ∈ RN , c ≥ 0 (homogeneity) (1.3)

(iv) d(x + a,0) ≤ d(x,0) + d(a,0),∀x, a ∈ RN (triangle inequality) (1.4)

(v) d(x,0) = d(−x,0), ∀x ∈ RN (symmetry) (1.5)

where 0 is N dimensional zero vector and d(., .) is the distance function measuring the

distance between two given points (i.e., x and a). Symmetry property stated by Equation 1.5

need not be satisfied by all distance measures. However, its lack harms the norm property and

the distance measures are generally taken as (symmetric) norms in location problems. For

instance, `r-norm in the plane, is defined as d(x,0) =
(∑2

n=1 |xn|r
)1/r

, and its special cases

rectilinear (for r = 1) and Euclidean (for r = 2) distances, squared Euclidean (i.e., (`2)
2)

distances are mostly used for location problems. Several methods and functions to model

the distances have been analyzed in the literature. (Brimberg and Love, 1995), (Alpaydın

et al., 1996) and (Brimberg et al., 2007) are examples which also include concise surveys on

distance measures.
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When the facilities are to be located on a finite set of given points, discrete version

of LAPs, namely DLAPs arise. On the other hand, the LAPs can be named as continuous

LAPs when the location space is continuous. The location space is generally taken as the

two-dimensional space (i.e., Euclidean space). However, there are several studies considering

the case of more than two-dimensions (Plastria, 1995). DLAPs can be modeled using Mixed

Integer Linear Programming (MILP) formulations and facilities can have fixed opening costs

for some particular cases. Nevertheless, continuous LAPs consist of nonlinear terms (i.e.,

objective function and/or constraints) which result in non-convex optimization problems.

Therefore, it is frequently assumed that the number of facilities to be opened is known and

fixed costs are embedded in transportation costs for continuous LAPs.

In this thesis, we consider a multi-commodity (multiple types of products or services)

and capacitated extension of the continuous LAP with multiple facilities. Namely, we deal

with the “Multi-commodity Capacitated Multi-facility Weber Problem” (MCMWP). Given

the locations of J customers and their demands, the MCMWP is concerned with locating I

capacitated facilities in the Euclidean space in order to satisfy the demands of J customers

for K types of commodities so that the total transportation cost is minimized. Customer

locations, demands and capacities for each commodity, and bundle restrictions are known

a priori and thus, deterministic. The transportation costs, which are proportional to the

distance between customers and facilities, depend on the commodity type. We consider

`r-norm with 1 ≤ r < ∞ or its weighted form obtained by multiplying with a nonnegative

coefficient as the distance measure used within this work.

When there is only single commodity type (K = 1) and there is no bundle restrictions,

limiting the total flow quantity between each facility and customer, the MCMWP reduces

to the CMWP which is shown to be NP-hard even if the customer locations constitute a

straight line (Sherali and Nordai, 1988). The MCMWP is more realistic than the CMWP

since the number of product types produced in a facility is generally more than one. There

exist a few studies considering MLAPs with multiple commodities (Pirkul and Jayaraman,

1998; Gendron et al., 2003) where all of these are examples of DLAPs. For all we know,

there does not exist a continuous MLAP which consider multiple commodities. One of the

motivations of this work is to fill this gap in the literature by introducing heuristic algorithms

and exact solution procedures for the MCMWP. The outline of the thesis can be summarized

as follows. In the next chapter, we introduce two equivalent mathematical formulations for
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the MCMWP. The first formulation is the original MCMWP formulation. The second one

is equivalent to the first formulation but it includes redundant constraints which are useful

for relaxation techniques and decomposition. Chapter 3 presents a critical literature survey

on WP, multi-facility WP (MWP) and CMWP. Moreover, several extensions of the LAPs

and multi-commodity DLAPs are mentioned. This chapter also describes the motivation of

our research direction in the light of the existing techniques developed for the MWP and

CMWP.

Chapter 4 is dedicated to Alternate Location-Allocation (ALA) heuristics implemented

for the MCMWP. The MCMWP reduces to a multi-commodity transportation problem

(MTP) when the location of the facilities are known. Furthermore, when a feasible allocation

plan is given, the MCMWP decomposes into pure single facility location problems, namely

the WPs, which can be easily solved. ALA heuristics, first introduced by (Cooper, 1964),

sequentially solve the location and allocation problems by fixing locations or allocations

each time. We present both continuous and discrete variants of the ALA heuristics for the

MCMWP.

In Chapter 5, we present some discretization strategies resulting in heuristics which

are also capable to produce lower bounds for the MCMWP. Discretization strategies reduce

the continuous location space, which consists of the convex hull of customer locations, into

a finite set of candidate facility locations. Discretization results in a DLAP which can be

modeled as a MILP problem. We implement two Discrete Approximation (DA) formulations

to obtain approximate solutions of the MCMWP. These DA formulations are also combined

with a lower bounding norm function to produce lower bounds. Using the DA formulations

we also propose several DA heuristics. The efficiency of the DA heuristics are improved with

Lagrangean Relaxation (LR) schemes.

In Chapter 6, we give a LR scheme whose subproblems are variants of the MWP and

propose a Modified Subgradient (MS) algorithm. The Lagrangean subproblems are formu-

lated as equivalent Set Covering (SC) problems and a Column Generation (CG) procedure

is applied to solve them. Several strategies are combined with the MS algorithm to improve

the efficiency of the suggested LR scheme.
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Point and interval estimates on the objective value of the MCMWP are presented in

Chapter 7. The calculation of these estimates are based on using the famous (Fisher and

Tippett, 1928)’s theorem for the distribution of the extreme (i.e., minimum and maximum)

values of samples. Some of the heuristics implemented in Chapter 4 and Chapter 5 are

devised. A brief literature survey on the estimation methods suggested is also presented.

We implement two branch-and-bound (BB) exact solution algorithms and a Beam

Search (BS) heuristic for the CMWP and MCMWP. One of the BB algorithm considers

partitioning of the allocation space while the other one considers partitioning of the location

space. In Chapter 8, we present allocation space based BB (ABB) algorithms for both

CMWP and MCMWP. Several lower bounding procedures are embedded within the ABB

algorithm and various branching variable selection strategies are tested. In Chapter 9, a

brand new BB algorithm, namely location space based BB (LBB) algorithm, is proposed

for both CMWP and MCMWP. We devise two lower bounding schemes for LBB algorithm

together with a specially tailored branching strategy. The LBB algorithm is later used to

develop a BS heuristic for both problems. Our test bed and computational results are given

in Chapter 10. Finally, we conclude with Chapter 11 where future research directions are

discussed.
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2. PROBLEM FORMULATION

Given fixed customer demands and their locations, the MCMWP consists of locating I

capacitated facilities in the Euclidean plane to satisfy the demand of J customers for K types

of commodities with minimum transportation cost under capacity restrictions on the total

quantity of commodities shipped from facilities to customers. The objective is to determine

the locations of the facilities and to determine how to allocate the capacity of facilities to

customers while minimizing the sum of total transportation costs. This chapter is devoted to

present two equivalent mathematical formulations for the MCMWP. The first formulation

is directly based on the given definition of the MCMWP. The second formulation uses a

different point of view than the first one and replicates each facility for each commodity.

These two formulations are presented in the following.

2.1. First Formulation

Let I, J and K denote respectively the number of facilities, the number of customers

and the number of commodities that each facility can ship. aj = (aj1 aj2)
T and qjk represent

the coordinates of customer j and its demand for commodity k. The capacity of facility i for

commodity k is given by sik. xi = (xi1 xi2)
T and wijk are the unknown coordinates of facility

i and the unknown amount of commodity k shipped from facility i to customer j with the

unit shipment cost cijk per unit distance, respectively. The distance between facility i and

customer j is measured by `r-norm with 1 ≤ r < ∞ given as follows.

d(xi, aj) = (|xi1 − aj1|r + |xi2 − aj2|r)1/r
(2.1)

where d(xi, aj) denotes the function measuring the distance. Then, the first formulation of

the MCMWP can be stated as follows.
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MCMWP1:

min Z =
I∑

i=1

J∑
j=1

K∑

k=1

wijkcijkd(xi, aj) (2.2)

s.t.
J∑

j=1

wijk = sik i = 1, . . . , I; k = 1, . . . , K, (2.3)

I∑
i=1

wijk = qjk j = 1, . . . , J ; k = 1, . . . , K, (2.4)

K∑

k=1

wijk ≤ uij i = 1, . . . , I; j = 1, . . . , J, (2.5)

wijk ≥ 0 i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K. (2.6)

The objective function given by Equation 2.2 is the sum of total transportation costs.

Constraints given by Equation 2.3 make sure that the total amount of commodity k produced

by facility i should be exactly shipped. Constraints given by Equation 2.4 state that the

total amount of commodity k required by customer j should be exactly satisfied. We assume

that, according to regulations, total amount of allocations on a road connecting facility i

with customer j should not be larger than the given upper bound uij. These regulations

may be legislative stipulations such as narrow straits which have limitations on the size of

ships that can pass, the restrictions on the total amount of hazardous materials that can be

shipped, etc. For instance, there may be capacity and cost restrictions on the transportation

fleet of companies. What is more, business contracts between suppliers and customers may

also impose some upper bounds. These situations can be formulated with the flow capacity

constraints or the bundle constraints given by Equation 2.5. In this formulation we assume

that the problem is balanced, i.e.,
J∑

j=1

qjk =
I∑

i=1

sik holds for k = 1, . . . , K, and the equalities

in Equation 2.3 and 2.4 can be replaced with “≤” and “≥”, respectively without changing

the optimal solution. In anyway, in case the problem is not balanced, say the total capacity

of facilities is larger than or equal to the demand of customers then the problem can be

transformed into a balanced form by using dummy customers with zero transportation costs.

Moreover, note also that, whenever bundle constraints given by Equation 2.5 are relaxed the

remaining problem can not be decomposed into K subproblems because the facility location

variables xi are common for the subproblems.
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It can be observed that, in the MCMWP formulation, the transportation costs are

directly proportional to the quantity of commodities sent from facilities to customers and

the distance between facilities and customers. The MCMWP has always an optimum solution

which occurs at one of the extreme points of the polyhedron defined by multi-commodity

transportation constraints given by Equation 2.3 – 2.6. This is guaranteed as long as the

transportation cost is a function of only location variables without additional conditions on

its structure such as convexity of the distance function d(xi, aj).

2.2. Second Formulation

In developing the second formulation a different strategy has been followed. The first

formulation assumes that each facility i produce all its K commodities at the same location.

On the other hand, it is possible that facility i produces each commodity at different produc-

tion centers somewhere in the plane. The second formulation initially relaxes this restriction

and then enforces all K production centers of a facility i to be opened at the same location.

Hence, each production center producing commodity k for facility i has its own location

variable but they are restricted to be equal for each facility i. Let xk
i = (xk

i1 xk
i2)

T denote

the unknown location of the production center of a facility i producing commodity k. Then

the second formulation as follows.

MCMWP2:

min Z =
I∑

i=1

J∑
j=1

K∑

k=1

wijkcijkd(xk
i , aj) (2.7)

s.t.
J∑

j=1

wijk = sik i = 1, . . . , I; k = 1, . . . , K, (2.8)

I∑
i=1

wijk = qjk j = 1, . . . , J ; k = 1, . . . , K, (2.9)

K∑

k=1

wijk ≤ uij i = 1, . . . , I; j = 1, . . . , J, (2.10)





x1
i − xK

i = 0 i = 1, . . . , I

xk
i − xk−1

i = 0 i = 1, . . . , I; k = 1, . . . , K
(2.11)

wijk ≥ 0 i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K. (2.12)
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Constraints given by Equation 2.11 guarantee that each production center k of facility

i is opened at the same location and the rest of the MCMWP2 formulation is the same as

MCMWP1. In other words, each facility has K copies that must be located at the same point.

Actually, constraints given by Equation 2.11 are redundant for MCMWP1 and add additional

location variables to MCMWP2. In particular, we can directly discard these constraints when

K = 1. However, their relaxation enables the decomposition of the MCMWP2 into smaller

subproblems for each commodity k, which is not the case for the MCMWP1. An alternative

representation of the MCMWP2 for the discrete LAP case is given in Chapter 5 and we

explain details on how the problem is decomposed into subproblems within the DA context.
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3. LITERATURE SURVEY

3.1. The Weber Problem

The Weber Problem (WP) tackles with locating single facility in the plane to satisfy

demand of J customers with known locations at a minimum total transportation cost. Let

x = (x1 x2)
T denotes the unknown location of a facility to be located, then the WP can be

stated as

WP:

min
x

ZWP =
J∑

j=1

c′jd(x, aj), (3.1)

where c′j = cjqj and qj is the known demand of customer j with a unit transportation cost of

cj. The WP is a pure location problem and one may think that the optimum facility location

occurs in the weighted average of the customer locations at the first glance. However, this

intuitive argument is valid for the case where the distances are measured with the squared

Euclidean norm and can be misleading with other norms. As a reminder, the WP is the

problem where the distances are measured with the Euclidean norm. Yet, we use the name

WP with any distance function and make a distinction of the WP according to the particular

distance measure (i.e., norms) used.

The solution of the WP when J > 3 with unequal weights is accomplished by (Weiszfeld,

1937). The Weiszfeld’s algorithm is an iterative procedure which employs the derivative of

the distance function. In the late 50’s and early 60’s, three studies by (Miehle, 1958), (Kuhn

and Kuenne, 1962) and (Cooper, 1963) independently rediscover the Weiszfeld’s algorithm.

The iterative method updates the facility location using its previous iteration value (namely,

an iterate) within the first derivative of the distance function. However, the derivative is not

defined on the customer coordinates and the algorithm may fail when such a case occurs.

In particular, (Wesolowsky, 1993) states that the convergence of the algorithm is slow when

the facility location falls in the close vicinity of the customer locations at an iteration.
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Initial convergence results for the Weiszfeld’s algorithm are given in the studies by

(Kuhn, 1973) and (Ostresh, 1977). (Brimberg and Love, 1993) show the global convergence

of the algorithm under the assumption that an iterate does not coincide with the coordinates

of customer locations. Their proof holds for `r distances with 1 ≤ r ≤ 2 while the global

convergence is not guaranteed when r > 2. These results are all generalizations of the (Kuhn,

1973)’s results for the Euclidean distance (i.e., r = 2). (Rosen and Xue, 1993) argue that

a hyperboloid approximation procedure is always convergent for the Euclidean distance and

their approach eliminates the problem with the derivatives which are not defined on customer

locations. (Frenk et al., 1994) extend the results by (Brimberg and Love, 1993). (Frenk et al.,

1994) also use a hyperbolic approximation of the WP and work on a perturbed problem to

show the convergence of the Weiszfeld’s algorithm again for 1 ≤ r ≤ 2. (Brimberg et al.,

1998) propose a scheme to accelerate the convergence of the Weiszfeld’s algorithm with

`r distance by using a step size factor. When r > 2 the WP can be solved by classical

unconstrained minimization techniques (Bazaraa et al., 1993). (Love et al., 1988) assert the

necessary and sufficient optimality conditions of the WP when optimal facility location is

on any customer locations. Briefly, the WP can be solved without much difficulty using

the convexity of the distance measure. A more detailed survey on the WP can be found in

(Wesolowsky, 1993) and (Drezner et al., 2002).

3.2. The Multi-facility Weber Problem

The Multi-facility Weber Problem (MWP) is concerned with locating I uncapacitated

facilities in the plane and allocating them to J customers with known locations in order to

satisfy their demand. Let w′
ij ∈ {0, 1} for i = 1, . . . , I;j = 1, . . . , J be the binary decision

variables indicating whether customer j is served from facility i or not with an associated

unit transportation cost cij. Then, the MWP formulation which is introduced by (Cooper,

1963, 1964) is as follows.

MWP:

min ZMWP =
I∑

i=1

J∑
j=1

w′
ijqjcijd(xi, aj) (3.2)

s.t.
I∑

i=1

w′
ij = 1 j = 1, . . . , J, (3.3)

w′
ij ∈ {0, 1} i = 1, . . . , I; j = 1, . . . , J, (3.4)
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where the rest of the notation is the same as in the WP and MCMWP. The objective

function of the MWP is shown to be neither convex nor concave by (Cooper, 1972). An

equivalent formulation of the MWP can be obtained by substituting binary variables w′
ij =

wij

qj
where wij ≥ 0 and qj > 0 hold, which makes the constraint set linear. Nevertheless, this

transformed formulation does not make the solution of the MWP easier. Thus, we prefer to

represent the MWP by Equation 3.2 – 3.4. Each customer is served from a single facility

which has the smallest weighted transportation cost in the MWP. Hence, in an optimal

solution of the MWP, the demand of each customer is satisfied by exactly one facility. This

is also indicated by constraints given by Equation 3.3. Actually, a feasible solution of the

MWP can be obtained by partitioning the set of customers into I distinct subsets and finding

optimal facility locations for the resulting allocations of customers to facilities. Once all such

I distinct subsets of customers are generated, an optimal solution of the MWP can be found

by selecting the minimum cost solution among them. However, the number of such subsets

is given by the Stirling number of second type as

1

I!

I∑
i=0

(
I

i

)
(−1)i(I − i)J , (3.5)

which makes the solution of the MWP difficult even for small numbers of facilities and

customers. Indeed, the MWP is shown to be NP-hard by (Megiddo and Supowit, 1984) and

heuristics take place an important part of the research to on the MWP. ALA heuristic is still

one of the most used algorithm to produce feasible solutions for the MWP (Cooper, 1964).

It consists of two phases: allocation and location phases. In the allocation phase, facility

locations are assumed given and it remains to allocate each customer to the least weighted

transportation cost facility. Note that when all transportation costs between each customer

and facility are equal, the assignment of a customer is made to the nearest facility. In the

location phase, it is assumed that customers are already allocated to facilities and optimal

facility locations are calculated. In this case, the problem decomposes into pure location

problems as given in Equation 3.1. Each one of them is a single facility problem and can be

solved by one of the methods developed for the WP.

(Cooper, 1963) suggests a heuristic for small problems. This heuristic is later enhanced

by (Cooper, 1964) where its randomized version is also proposed. These heuristics consider

generating subsets of customers on which the facilities is to be opened. However, the number
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of combinations grow rapidly and the optimum facility locations are not guaranteed to be

on customer locations, which deteriorates the performance of these heuristics. (Eilon et al.,

1971) perform a series of experiments on the ALA heuristic and observed that a multi-start

ALA can yield 40.9% deviation on a 50 customers 5 facilities instance. (Brandeau and Chiu,

1993) apply Fisher and Tippett’s theorem and made a worst case performance analysis on

the ALA heuristic. The authors observe a maximum deviation varying from 8.4% to 73%

corresponding to the best and worst performance of the ALA heuristic on the instances

having facilities from 3 to 7 and customers from 50 to 75.

(Love and Juel, 1982) propose five heuristics based on ALA heuristic where they define

a neighborhood structure. The neighborhood structure starts from a solution and exchanges

the assignment of customers to facilities accordingly until no further improvement is possible.

Their algorithm moves from one solution to its adjacent solutions by exchanging only single

assignment of a customer to a facility. The authors also test exchanging the pair of customers

assigned to a facility in order to increase the chance of finding an improved solution. (Chen,

1983) employs an everywhere differentiable approximation of the objective function given

by Equation 3.2 in order to apply a quasi-Newton method. The author states that this

algorithm produces slightly better results than the ones reported by (Eilon et al., 1971) who

apply a multi-start ALA heuristic. (Bongartz et al., 1994) use a projection method after

relaxing the binary restrictions on the allocation variables. They employ the second-order

information of location and first-order information of allocation variables to determine the

descent direction and, propose an iterative algorithm to find a local minima. Their results

are better than the ones multi-start ALA heuristic finds, but the method is slower than the

multi-start ALA heuristic.

(Hansen et al., 1998) benefit from the idea of selecting facility locations on customer

locations introduced previously by (Cooper, 1963, 1964). First of all, the authors offer

to solve a p-median problem which uses the customer locations as candidate facility sites.

Then, an improvement step namely an ALA heuristic, which is initialized with the locations

obtained from the solution of the p-median problem, is applied. The p-median problem

based heuristic is shown to have an outstanding performance on their test instances.

(Gamal and Salhi, 2001) put forward two constructive heuristics where they apply

Cooper’s ALA heuristic whose initial facility locations are constructed by preprocessing pro-

cedures rather than a random initialization. The first constructive procedure tries to locate
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facilities as far as possible on the customer locations. The second constructive procedure

finds a feasible solution for the p-median problem by a heuristic procedure to initialize the

facility locations. Note that in the second constructive heuristic the p-median problem is

not solved exactly as it is done in (Hansen et al., 1998). These heuristics are efficient in par-

ticular on large MWP instances. Later, (Gamal and Salhi, 2003) suggest a cellular heuristic

in which the customer plane is divided into grids and a random multi-start ALA heuristic

is run. The cells containing facility locations, which come from multi-start ALA heuristic,

are merged or divided such that their number equals to the number of facilities. Then, the

center of facility locations in each cell is found to initialize an ALA heuristic. The results

obtained by cellular heuristic are not better than the ones of the constructive heuristic by

(Gamal and Salhi, 2001).

The performance of the p-median problem based heuristic by (Hansen et al., 1998)

deteriorates on large instances in spite of its excellent accuracy. (Brimberg et al., 2000) report

improvements on the existing metaheuristic approaches which includes Genetic Algorithm

(GA), Tabu Search (TS) and Variable Neighborhood Search (VNS) for the MWP where

they outperform the p-median problem based heuristic. (Salhi and Gamal, 2003) explain a

GA based heuristic which performs better than GA approach but worse than the TS and

VNS approaches by (Brimberg et al., 2000). Recently, (Brimberg et al., 2006) associate a

decomposition strategy with the VNS approach for large-scale problems, which outperforms

the results by (Brimberg et al., 2000) on a set of instances with 1060 customers.

Exact methods for the MWP are considered in several studies. The first exact method

is a BB algorithm developed on the allocation space by (Kuenne and Soland, 1972). This BB

algorithm is limited to only small instances and halts quickly. The size of instances changes

between (I = 2, J = 20) and (I = 4, J = 15), which are solved within 0.5% of the optimal

value.

(Ostresh, 1975) and (Drezner, 1984) consider the special case where there are only

two facilities with unit transportation costs. The optimal partitioning of customers can be

done by a straight line when I = 2 since each customer is served from the nearest facility

and both studies employ this argument. Then, they generate all possible lines separating

the customers into two distinct sets where there are at most J(J − 1)/2 such partitions.

(Drezner, 1984) analyzes instances up to 100 customers (i.e., J = 100).
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(Rosing, 1992) develops a modified SC problem formulation to exactly solve the MWP.

This method first generates all distinct nonintersecting convex hulls of customers and then

each convex hull, which is interpreted as a column, is added to the SC problem formulation.

However, this approach halts quickly on medium instances since the number of convex hulls

grows exponentially. (Rosing, 1992) reports optimal partitions for instances of sizes up to

(I = 5, J = 30) and (I = 6, J = 25).

(Chen et al., 1998) express the MWP as the Difference of Convex (D.C.) functions.

The minimization of D.C. functions can be transformed into a concave minimization problem

and then this problem can be solved by an outer approximation procedure (Horst and Tuy,

1996). However, this method is not applicable for instances with I > 3. (Chen et al., 1998)

obtain very efficient solutions on instances with two facilities and 1000 customers. The D.C.

programming based approach can not solve problems having larger than 3 facilities and 30

customers in reasonable CPU times.

(Krau, 1997) considers the SC problem formulation and focuses on a CG procedure

combined with a Branch-and-Price (BP) algorithm to exactly solve the MWP. This method is

based on generating customer subsets rather than their convex hulls as suggested by (Rosing,

1992). Krau’s approach increased the size of instances that can be solved up to 50 facilities

and 287 customers.

(Righini and Zaniboni, 2007) prefer to replace the solution approach used by (Krau,

1997) for the Pricing Subproblem (PS) with a polynomial time algorithm developed by

(Drezner et al., 1991) for the solution of the facility location problem with limited distances.

The authors solve instances with hundreds of facilities (i.e., I = 800) and thousands of

customers (i.e., J = 2000). (Righini and Zaniboni, 2007) claim that their approach performs

better than the Krau’s approach in particular when I/J ratio is relatively high. As a recent

and brief survey on the MWP including exact, heuristic and metaheuristic methods, we refer

to the work of (Brimberg et al., 2008). The Lagrangean heuristic, which will be presented in

Chapter 6, benefits from the strengths of both exact methods by (Krau, 1997) and (Righini

and Zaniboni, 2007) on the MWP.
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3.3. The Capacitated Multi-facility Weber Problem

The CMWP deals with locating I capacitated facilities in the plane to satisfy the

demand of J customers with the minimum total transportation cost of a single commodity.

The CMWP is introduced by (Cooper, 1972) and also known as the transportation-location

problem. Let the decision variable wij stands for the unknown allocation quantity sent from

facility i to customer j and consider the decision variable xi denoting the unknown location

of facility i with a given capacity of si for i = 1, . . . , I. Then, the mathematical formulation

of the CMWP can be stated as

CMWP:

min ZCMWP =
I∑

i=1

J∑
j=1

wijcijd(xi, aj) (3.6)

s.t.
J∑

j=1

wij = si i = 1, . . . , I, (3.7)

I∑
i=1

wij = qj j = 1, . . . , J, (3.8)

wij ≥ 0 i = 1, . . . , I; j = 1, . . . , J. (3.9)

Notice that the rest of the notation is as defined for the MWP. This formulation assumes

that the CMWP is balanced, i.e., the total demand and total supply are equal, namely
∑J

j=1 qj =
∑I

i=1 si holds. When the total supply is larger than the total capacity the problem

is unbalanced and it can be transformed into a balanced one by adding artificial customers

to the formulation. However, the problem is infeasible when the total demand is larger than

the total capacity. The objective function given by Equation 3.6 is the total transportation

cost. Constraints given by Equation 3.7 ensure that the total amount produced by facility i

should be completely shipped. Constraints given by Equation 3.8 enforce that the demand

of customer j should be met.

The transportation cost is usually assumed to be proportional to both the amount

shipped and the distance between the facilities and customers. In the CMWP customers

can be served from more than one facility and these facilities need not be the closest ones
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as in the MWP case. Moreover, the allocation quantities wij can take a value within the

interval [0, qj]. For the MWP w′
ij values are equal to either 0 or qj. The CMWP with unit

transportation costs (i.e., cij = 1 for all facility and customer pairs) is defined by (Cooper,

1967) as a preliminary formulation given by (Cooper, 1972). The CMWP is shown to be

NP-hard by (Sherali and Nordai, 1988) even if the customers are located on a straight line.

(Cooper, 1967) implements a heuristic which produces solutions for the CMWP with

unit transportation costs. The heuristic algorithm locates facilities on a selected subset of

customer locations and initially treats the CMWP as a MWP to determine the allocation

quantities by assigning each customer to its closest facility. Then, the initial solution (feasible

for the MWP but probably infeasible for the CMWP) is improved by reallocating surplus or

deficit in facility capacities among customers. This may occur since the allocations are made

according to the nearest facility regardless of the capacity of the facilities. (Cooper, 1972)

generalizes this algorithm and earlier ALA heuristic by replacing the usual allocation phase

with the solution of the Transportation Problem (TP) with constraints given by Equation

3.7 – 3.9 of the CMWP. We call this version of the ALA heuristic as the Capacitated ALA

(CALA) heuristic in the sequel.

(Cooper, 1976) introduces a neighboring structure defined on the allocation quantity

assignments of the TP. The author initializes a feasible allocation plan with the classical

northwest corner rule for the TP and find a local optimum with the CALA heuristic. A local

optimum is a feasible solution at which neither facility locations nor allocation quantities

change when one of them is fixed within the allocation and location phases, respectively.

Then, the local optimum solution is subjected to one, two and three-variable exchanges

respectively until no further improvement is possible in each case. The variable exchanges

starts from scratch and a CALA heuristic is applied to find another local optimum as long as

an improvement is obtained. This work produces superior results than the CALA heuristic

with multi-start initializations. In addition, this algorithm can be regarded as an early VNS

procedure presented by (Hansen and Mladenović, 2001).

(Zainuddin and Salhi, 2007) modify Cooper’s heuristic by combining with a perturbation-

based procedure. The modified Cooper’s heuristic alternates the transportation-location-

allo- cation-location phases, respectively. The location and the transportation phases are

the same with the CALA heuristic. However, in the additional allocation phase the cus-
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tomers are assigned to their nearest facilities as in the MWP. This phase may play a role for

shaking the facility locations towards other local optima and may increase the chance to find

better solutions. Once the alternating steps are finished, current solution is improved by a

perturbation-based procedure. The perturbation procedure enforces some customers to be

served from their nearest facility in case they are (fully or partially) served from their second

nearest facility. Lastly, a reduced neighborhood is also scanned to obtain improved solu-

tions when possible. The reduced neighborhood exchanges allocation of customers among a

smaller subset of selected facilities.

(Aras et al., 2007) present a MILP formulation which approximates the CMWP. The

authors consider a finite set of candidate facility locations which transform the CMWP into

a DLAP to obtain approximate solutions. Their work is concerned with the `r-norm CMWP

(LCMWP) with 1 < r ≤ 2 and they offer three heuristic procedures. First heuristic employs

a LR scheme on the approximating MILP formulation which uses a candidate location set

defined on the intersection points of a predefined grid structure by dividing the customer

plane into uniform rectangular areas. The second heuristic uses the p-median problem based

heuristic idea of (Hansen et al., 1998), which employs the customer locations as candidate

sites. The third heuristic is an adaptation of the cellular heuristic by (Gamal and Salhi,

2003) to determine the candidate facility sites. The second and third heuristics solve the

MILP with suggested candidate facility locations and apply the CALA heuristic to obtain

better feasible solutions. (Aras et al., 2007) observe that the second heuristic, which uses

the customer locations, produce results with excellent accuracy. Their second heuristic finds

almost all best known solution values on standard test instances.

Rectilinear distance (`1-norm) CMWP (RCMWP) is addressed in the study by (Aras

et al., 2008) which is an earlier version of the DA heuristics designed by (Aras et al., 2007).

Actually, the publication years of these two studies may mislead the reader that the work by

(Aras et al., 2007) is prior to (Aras et al., 2008). The MILP formulation proposed by (Aras

et al., 2008) gives the exact solution of the RCMWP where the optimum facility locations

occur on a finite set of points defined by the intersection points of the horizontal and vertical

lines drawn on customer locations (Wendell and Hurter, 1973). (Aras et al., 2008) provide

also similar DA heuristics to the ones presented in (Aras et al., 2007) but in this case, the

suggested DA heuristics are for the more general `r distance CMWP (i.e., for 1 ≤ r ≤ ∞).
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In their recent work, (Luis et al., 2009) come up with Region-Rejection (RR) heuristics

for the CMWP. Their heuristics gradually initialize facility locations within the smallest

rectangle covering customer locations. Once a set of facilities are randomly located, the

regions that are close to these already located facilities are forbidden for a new facility

to be located. Actually, a new facility can not be located within the circles centered at

previously located facilities. Furthermore, the radius of these circles are iteratively adjusted

until all facilities are initially located. With this initialization of facilities a CALA heuristic

is followed to produce heuristic solutions. RR heuristic is similar to the first constructive

heuristic by (Gamal and Salhi, 2001) for the MWP. The computational results indicate that

the constructive heuristic is more efficient but more inaccurate than the DA heuristic of

(Aras et al., 2007) which uses customer locations as candidate facility sites.

(Aras et al., 2006) put forward several metaheuristic approaches including Simulated

Annealing (SA), Threshold Accepting (TA) and GA on the LCMWP. One and two-variable

exchange neighborhood structure is devised for the SA and TA methods. The SA method

with two-variable exchange outperforms the other metaheuristics in their study. However,

these results are also slightly inferior to the ones obtained in the study by (Aras et al., 2007).

Recently, (Luis et al., 2011) examine a Greedy Randomized Adaptive Search Procedure

(GRASP), which is a two-phase metaheuristic method using a randomized multi-start local

search technique, for both MWP and CMWP. In the first phase a feasible initial solution

is constructed from a candidate list of the facility locations defined over a selected subset

of customer locations. The second phase consists of the CALA heuristic as the local search

procedure. These two phases are repeated several times and the best feasible solution found

is reported as the final outcome. This metaheuristic approach does not perform better than

the DA heuristic results by (Aras et al., 2007) on standard test instances. A comparative

analysis is not reported on additional data sets which are larger than the standard instances

in (Luis et al., 2011). However, the standard MWP instance results indicate that GRASP

has lower accuracy than the heuristic by (Brimberg et al., 2006).

Since its introduction by (Cooper, 1972), several researchers address exact solution pro-

cedures on the CMWP. The first exact algorithm attempt to solve the Euclidean distance

CMWP (ECMWP) is performed by (Cooper, 1972) where the author proposes a complete

enumeration strategy of generating all extreme points of the transportation polyhedron. An-
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other exact solution procedure is proposed in the unpublished dissertation by (Selim, 1979)

in which a biconvex programming cutting plane procedure has been devised. Unfortunately,

both of these exact procedures can only solve ECMWP instances with few facilities and cus-

tomers. (Cooper, 1972) solves instances with sizes up to (I,J) = (2,4) while (Selim, 1979)

considers instances with sizes up to (I,J) = (5,5).

For different types of distance functions used for the CMWP, different BB algorithms

are developed. For the squared-Euclidean distance CMWP (SECMWP), (Sherali and Tunçbilek,

1992) propose a BB algorithm which employs (Sherali and Adams, 1999)’s Reformulation-

Linearization Technique (RLT). The authors transform the SECMWP into an equivalent

convex maximization problem. Then, they develop three closed form upper bounding func-

tions of allocation variables that require the solution of several Linear Programming (LP)

problems. These three upper bounds and the RLT bound is employed together within the

BB algorithm. (Sherali and Tunçbilek, 1992) can find solutions of the SECMWP test in-

stances with sizes up to (I,J) = (4,20) – (6,14) within 1% to optimality. Another exact

solution algorithm is suggested by (Sherali et al., 1994) for the RCMWP. The authors apply

the RLT to an equivalent RCMWP formulation with bilinear objective function. They im-

plement a BB algorithm which works in a partial location space consisting of the customer

coordinates in each of the x-axis and the y-axis. (Sherali et al., 1994) can solve test instances

with sizes up to (I,J) = (4,20) – (5,12) within 1% to optimality. In their excellent study,

(Sherali et al., 2002) propose a BB algorithm for the LCMWP with 1 ≤ r < ∞. This BB

algorithm employs the RLT based lower bounds and the authors have noted that they can

solve instances with sizes up to (I,J) = (5,10) within 0.1% to optimality.

3.4. Other Variants and Extensions

In a variant of the multi-facility location problem, there are interactions among the new

facilities to be opened without making the allocation decisions (Miehle, 1958). This problem

is an unconstrained convex minimization problem, which is not everywhere differentiable,

and several solution techniques exist for it (see (Rosen and Xue, 1993; Al-Loughani, 1997)).

There are also several extensions of the location problems in which the location space is

continuous but restricted to lie within some specified regions and/or barriers limiting the

passage (Aneja and Parlar, 1994; Fliege and Nickel, 2000). The WP transforms to the

Obnoxious Facility Problem (OFP) when the facility to be opened is desired to be as far
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as possible by the customers (Hansen et al., 1981). Similar to the OFP, in some cases

customer weights may be negative which implies that the facility is unwanted resulting in

Weber problem with Attraction and Repulsion (WAR) (Chen et al., 1992; Plastria, 1995).

When the objective is to minimize the maximum distance between facilities and customers,

the problem is called a minimax problem introduced by (Rawls, 1971) in a totally different

context: theory of justice in a social framework (Plastria, 1995). Another variant of the WP

may arise when the customer locations are not known exactly i.e., when customer locations

are scattered on the Euclidean space according to a probability density function (Altınel

et al., 2009). Surveys and more details on WP and LAPs can be found in (Drezner et al.,

2002), (Plastria, 1995), (Wesolowsky, 1993), (Love et al., 1988) and (Francis et al., 1992).

Moreover, (Hamacher and Nickel, 1998) present a 5-position classification scheme by which

all location problems can be described. (Nickel and Puerto, 2005) implement a unifying

approach to construct a standard framework for the location theory.

3.5. The Multi-commodity Location-Allocation Problems

For all we know, the multi-commodity LAPs are limited to DLAPs having fixed costs.

In DLAPs, facilities can be located on the points which are selected from a predefined candi-

date location set resulting in MILP formulations. Then, the problem reduces to finding the

minimal cost location for each facility within the candidate location set and to determining

the allocations. The evolution of the multi-commodity location problems is parallel to their

continuous counterparts, MLAPs. Initial models consider facilities without capacity limi-

tations (Neebe and Khumawala, 1981; Karkazis and Boffey, 1981) while later formulations

integrate facility capacities, multiple production stages (i.e., multiple types of facilities) and

periods into the model (Pirkul and Jayaraman, 1998; Canel et al., 2001).

We can site the early studies by (Neebe and Khumawala, 1981) and (Karkazis and

Boffey, 1981) as two examples for the uncapacitated muti-commodity LAPs. Both stud-

ies address the multi-commodity extension of the classical Uncapacitated Facility Location

(UFL) problem (Wolsey, 1998) with fixed costs. In both studies BB algorithms are devel-

oped. (Neebe and Khumawala, 1981) modify the first UFL formulation by (Wolsey, 1998)

and use three lower bounding schemes for their BB algorithm. (Karkazis and Boffey, 1981)

adapt the alternative (stronger) UFL formulation by (Wolsey, 1998). They suggest a dual-

based approach and Lagrangean dual-based approach with hill-climbing.
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(Pirkul and Jayaraman, 1998) consider a two-stage distribution network with multiple

commodities subject to capacity limitations of both production plants and warehouses which

are to be located with fixed opening costs. They use an efficient LR scheme to solve the

resulting DLAP. (Canel et al., 2001) take into account not only multi-stage (three level)

distribution networks but also multiple production periods. Their sophisticated algorithm

consists of two parts including BB and Dynamic Programming algorithms. (Gendron et al.,

2003) formulate a multi-commodity capacitated DLAP with balancing requirements which

incorporates the conservation of flow constraints in their formulation. The authors implement

a parallel heuristic in which an iterative and a neighborhood heuristic are simultaneously

applied such that each heuristic exchanges their outcomes during the run of the proposed

method.
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4. ALTERNATE LOCATION-ALLOCATION HEURISTICS

LAPs aim to determine the optimal locations of a set of facilities and optimal allocations

of customer demands to the facilities subject to the capacity and demand restrictions at

minimum total transportation cost. Clearly, any LAP becomes a pure multi-facility location

problem when an allocation scheme is given. On the other hand, a LAP becomes a pure

allocation problem when facility locations are known. First, (Cooper, 1964) observes this

property and proposes ALA heuristic for the MWP, which simply consists of the solution

of the location and allocation problems alternately, starting with an initial set of facility

locations until no further improvement is possible. ALA heuristic ends up with a local

optima. Namely, no better locations can be found given the current allocations and no

better allocations can be found given the current locations. The author also implements the

capacitated version of ALA (i.e., CALA) heuristic in his subsequent work on the CMWP

(Cooper, 1972).

In this chapter1 we suggest several ALA heuristics for the MCMWP. We first present

the multi-commodity extension of the ALA heuristic. Namely, we introduce the Multi-

commodity Capacitated Alternate Location-Allocation (MCALA) heuristic. Then, we focus

on multi-commodity extensions of two Region Rejection (RR) heuristics which are originally

devised for the CMWP by (Luis et al., 2009). RR heuristics are extensions of the CALA

heuristic with sophisticated initialization procedures. We should note that there are several

ALA heuristics that can be adapted for the MCMWP. However, RR heuristics are more

efficient and more accurate than other ALA heuristics such as the cellular heuristics by

(Gamal and Salhi, 2003) and (Aras et al., 2007) for the MWP and CMWP, respectively. (Luis

et al., 2009) also reports that RR heuristics are superior than the perturbation based heuristic

by (Zainuddin and Salhi, 2007) for the CMWP. Encouraged by their superior performance,

we adapt the RR heuristics for the MCMWP. Lastly, we propose discrete enhancements of

the MCALA and RR heuristics resulting in totally six ALA heuristics for the MCMWP.

1The article by (Akyüz et al., 2012), and the technical report (Akyüz et al., 2010a) are partially based on
this chapter.
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4.1. Multi-commodity Capacitated Alternate Location Allocation Heuristic

The MCMWP is also a LAP, and given a feasible transportation plan, it reduces to

solving I WPs which can be given as

min
xi

ZWP =
J∑

j=1

c′ijd(xi, aj), (4.1)

where c′ij is defined as c′ij =
K∑

k=1

wijkcijk for each facility i = 1, . . . , I. Note that Equation 4.1

is the same as Equation 3.1, which can be solved by Weiszfeld’s algorithm (Weiszfeld, 1937)

and one of its generalizations (Brimberg and Love, 1993; Frenk et al., 1994; Brimberg et al.,

1998). Although the summation is taken over all customers, it only considers |Ii| of them,

which is the size of the set Ii = {(j, k) : wijk > 0}. Clearly,
∑I

i=1 |Ii| ≥ J ×K holds since

a customer can be served by more than one facility. In short, when a feasible assignment of

wijk variables is given, the problem reduces to the determination of the optimal locations of

single facilities with respect to |Ii| customers.

The MWP, CMWP and MCMWP consist of similar location components. However,

their allocation problems differ. For the MWP, the allocation problem consists of the assign-

ment of each customer to the least weighted cost facility. The allocation problem becomes

the solution of an ordinary transportation problem for the CMWP and the solution of the

Multi-commodity Transportation Problem (MTP) for the MCMWP which is as follows.

MTP:

min ZMTP =
I∑

i=1

J∑
j=1

K∑

k=1

ĉijkwijk (4.2)

s.t. Equation 2.3− 2.6. (4.3)

Here, given the current facility locations, unit transportation costs are defined as ĉijk =

cijkd(xi, aj). In short, the MCALA heuristic uses the alternate solutions of the I WPs given

by Equation 4.1 and a MTP given by Equation 4.2 – 4.3 until a local optima is obtained. A

formal outline of the MCALA heuristic is given in Figure 4.1.

In their work on the dominance and convexity in location theory, (Hansen et al., 1980)

prove that for `r-norm with r ≥ 1 the optimal facility locations of a multi-facility location
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1. Locate the facilities at arbitrarily selected points xi = (xi1 xi2)
T

i = 1, . . . , I.

2. For each facility i and customer j calculate the distance d(xi, aj) between

them, and set the new unit transportation cost as ĉijk = cijkd(xi, aj).

3. Determine feasible allocations wijk by solving the MTP with costs ĉijk.

4. Solve I Weber problems given by Equation 4.1 to relocate I facilities.

5. Repeat Step 2– Step 4 until either facility locations xi = (xi1 xi2)
T for

i = 1, . . . , I or allocations wijk for i = 1, . . . , I, j = 1, . . . , J , and

k = 1, . . . , K remain unchanged.

Figure 4.1. The MCALA heuristic.

problem lie within the convex hull of customers. Taking into consideration this result, the

MCALA heuristic is initialized by randomly choosing the facility locations within the convex

hull of customer locations. We refer to this version of the MCALA as the continuous MCALA

(C-MCALA) where in Step 1 of MCALA heuristic presented in Figure 4.1, the initial facility

locations are randomly selected within the convex hull of customers.

4.2. Region Rejection Heuristics

In a recent work (Luis et al., 2009) claim that if the initial facility locations are well

separated the accuracy of both Cooper’s ALA and CALA increase. They propose the basic

RR heuristic which accomplishes this task by randomly locating facilities one by one. The

RR heuristic checks each time whether or not there is an already placed facility that remains

within the circle of a given radius centered at the newly initialized facility. In case there

is at least one circle, a new random location is selected within the convex hull of customer

locations for the new facility. The initialization becomes complete when all the facilities are

placed. Then a solution is computed by running the usual alternating location and allocation

steps, i.e., CALA. According to their results a variant of RR performs better. In this one

the radius is not fixed but dynamically calculated according to the capacity of the facility

and the demands of the customers around the newly initialized facility. More precisely, in

this Dynamic radius enhancement (DRR) the rejection circle of a facility contains the set

of customers whose total demand is approximately equal to the facility capacity at which it

is centered. As can be noticed it is not difficult to adapt these two initialization strategies
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for the MCMWP. We call these multi-commodity extensions of RR and DRR, as MRR and

MDRR, respectively.

4.2.1. The Multi-commodity Region Rejection Heuristic

MRR heuristic gradually initializes facility locations within the convex hull of customer

locations. Once a set of facilities are randomly located, the regions that are close to those

already opened facilities are forbidden for a new facility to be located. Actually, a new

facility can not be located within the circles centered at the previously located facilities. In

addition, the radius of these circles are iteratively adjusted until all facilities are located.

The heuristic initially selects a predefined radius length which is the same for all facilities.

If it is not possible to generate locations (i.e., existing circles cover the entire convex hull

of the customers) for uninitialized facilities, all radii of the existing circles are shrunk with

an adjustment factor until all facilities are initialized. Then given these facility locations

a MCALA heuristic is run in order to produce the final solution. The outline of the fixed

radius MRR heuristic algorithm is given in Figure 4.2.

1. Choose a random point within the convex hull of customers and set

∆1 =

(

max
j∈J

{aj1} −min
j∈J

{aj1}

)

, ∆2 =

(

max
j∈J

{aj2} − min
j∈J

{aj2}

)

. Draw a

circle with radius τ = min(η∆1

I
, η∆2

I
).

2. Choose another random point. If the point is outside of existing circle(s)

fix this point and draw a circle with radius t. Otherwise repeat Step 2

until a fixed number of times.

3. In case no point found outside the existing circle(s) and the iteration limit

is exceeded, decrease the radii of all circles (e.g., by 10%) and start from

the beginning.

4. Run the MCALA heuristic with the facilities located on the centers of the

circles.

Figure 4.2. The MRR heuristic (fixed circle radius).

In the original version of the MRR heuristic, η is a parameter which is chosen from

the interval (0, 1) and used to control the radius τ = min(η∆1

I
, η∆2

I
). (Luis et al., 2009)

state that for the CMWP setting η = 0.5 seems to be a reasonable choice. We keep their

setting and use the suggested parameters for the MCMWP as well. In Step 1, the selection
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of facility locations are random within the convex hull of customers and we refer to this

continuous version as C-MRR heuristic.

4.2.2. The Multi-commodity Dynamic Region Rejection Heuristic

(Luis et al., 2009) put forward two versions of the RR. In the first one circle radius

is fixed, and in the second one circle radius is adjusted dynamically. The authors observe

that the dynamic radius version of the algorithm performs better than the fixed radius

version for the CMWP case. Now, we present the MDRR heuristic (RR with dynamic circle

radius adjustment) for the MCMWP. Recall that in Step 3 and Step 4 of MRR heuristic,

when the iteration limit is exceeded and there are still facilities to be initialized, the MRR

heuristic adjusts the radii of all circles together with an adjustment factor. On the other

hand, adjusting all circles together may be disadvantageous for some facilities. In order to

overcome this issue the MDRR heuristic takes into account the ratio of a facility’s capacity

to meet the demand of customers within its forbidden circle. Then the MDRR dynamically

adjusts only the radius of the corresponding facility while keeping others as they are. The

formal outline of the MDRR heuristic is presented in Figure 4.3.

We use the same parameter setting suggested by (Luis et al., 2009) for the CMWP.

Notice that the dynamic adjustment of circle radii may end up with a covering of the convex

hull of the customers. Then, there is no room to locate uninitialized facilities. In this case,

the MDRR heuristic pursues a random initialization for the remaining facilities and stops

adjusting circle radii of already located facilities. As the facility locations are initialized

within a continuous space defined by the convex hull of the customer locations, we refer to

this version as C-MDRR heuristic.

4.3. Discrete Enhancements of the Alternate Location-Allocation Heuristics

ALA, CALA and MCALA are all simple and efficient; but the quality of the final solu-

tion they compute depends very much on the initial solution. One quick remedy is to benefit

from its efficiency and to repeat this heuristic many times starting at random locations. We

also apply a multi-start strategy for C-MCALA, C-MRR and C-MDRR heuristics and select

random initialization within the convex hull of customers. Although a rigorous theoretical re-

sult does not exist, it is observed that optimal facility locations are usually either on customer
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1. Let cnt1 and cnt2 denote the number of iterations and the number of trials

for radius adjustments, respectively. Set ∆1 =

(

max
j∈J

{aj1} − min
j∈J

{aj1}

)

,

∆2 =

(

max
j∈J

{aj2} − min
j∈J

{aj2}

)

, cnt1 = 0 and cnt2 = 0.

2. Choose a random point within the convex hull of customers and draw a

circle with a radius τ = min(η∆1

I
, η∆2

I
). Increase cnt1 by one.

3. if cnt1 does not exceed J , then set cnt2 = 0 and go to Step 4.

else go to Step 6.

4. In case the total demand of the customers within the corresponding circle

is between 70% and 100% of the total capacity of the corresponding

facility fix this facility’s location and go to Step 5. The ratio used is

Γ = Total demand within the corresponding circle

Total capacity of the corresponding facility
. For the other case go to Step 2

and consider the next facility. if there are no more facilities, then go to

Step 7.

5. Adjust the radius with an adjustment factor of
√

Γ, increase cnt2 by one.

if cnt2 does not exceed
⌈

J
I

⌉
, then go to Step 4. else apply the bisection

method between the previous and current circles in order to adjust their

radii.

6. if there are still facilities not yet randomly located, then open them

within the convex hull of customers.

7. Apply the MCALA heuristic initialized with the current facility locations.

Figure 4.3. The MDRR heuristic (dynamic adjustment of circle radii).
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locations or very close to them. This is exploited first by (Hansen et al., 1998) for the MWP,

then by (Aras et al., 2007) for the CMWP to propose very accurate Discrete Approximation

(DA) heuristics. We also exploit this observation and modify location-allocation heuristics

described above in order to obtain their discrete versions, Discrete MCALA (D-MCALA),

Discrete MRR (D-MRR) and Discrete MDRR (D-MDRR) which work over customer loca-

tions instead of their entire convex hull. Actually, the idea to initialize the ALA heuristic

randomly over customer locations and to work on such a discrete location space is first tested

by (Cooper, 1964) in his random destination algorithm for which the author reports more

accurate results than the classical ALA algorithm does. This result has also motivated us

to implement a discrete version of our ALA heuristics.

In the discrete enhancements of ALA heuristics, only a countable number of candidate

points are chosen within the convex hull. We locate I facilities on the minimum cost customer

locations instead of running Weiszfeld’s algorithm. Therefore, for each facility i we first sort

the costs of customer locations and then we assign the location of each facility i to the

minimum cost customer location. In other words, the location phase of the ALA heuristics

replaces the WP given by Equation 4.1 with the following 1 -median problem

arg min
j′=1,...,J

{
J∑

j=1

c′j′jd(aj′ , aj)

}
(4.4)

Here c′j′j =
K∑

k=1

cijkwijkd(aj′ , aj) for i = 1, . . . , I with given allocation quantities wijk. Besides,

once a facility is opened on a candidate point, the rest of the facilities are randomly located

one by one on the customer locations that are not covered by the circles centered at the

previously located facilities, during the initialization of the RR heuristics MRR and MDRR.

As a remark, the discretization need not be limited to the customer locations. The candidate

point set can be selected in a different way but we prefer to use customer locations as

explained. We should also point out that both continuous and discrete versions of the

MCALA heuristic are employed within the LR schemes implemented for the DA heuristics

which are explained in the next chapter.
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5. DISCRETE APPROXIMATION HEURISTICS

(Hansen et al., 1980) generalize the dominance properties obtained for the rectilinear

distance WP by (Wendell and Hurter, 1973) to show that optimal solutions of the two-

dimensional location problems with the rectilinear distance function (i.e., the multiplication

of the rectilinear norm of the difference of customer and facility location vectors by a non-

negative coefficient) always occur within the convex hull of the customer locations and at

the intersection of the vertical and horizontal lines drawn through them. In the same work

(Hansen et al., 1980) also show that optimal location of the two-dimensional location prob-

lems remain within the convex hull of customer locations for all distance functions that

are `r-norms. (Aras et al., 2008) take advantage of these properties and reformulated the

RCMWP equivalently as a MILP problem, by restricting optimal facility locations to belong

to a candidate location set. This set is constructed by intersecting horizontal and vertical

lines drawn through the customer locations and considering the intersection points remain-

ing within their convex hull. They also suggest to use these properties to approximate the

CMWP with a norm distance function by a MILP problem formulated over a set of candidate

points selected within the convex hull of the customer locations (Aras et al., 2007). Thus, it

becomes also possible to formulate approximating MILP problems over the points selected

from the convex hull of customer locations for the MCMWP when more general norms are

used as distance functions.

This chapter2 is devoted to multi-commodity extensions of the Discrete Approximation

(DA) heuristics and our improvements on them to produce both lower and upper bounds.

We first present two approximating MILP formulations for the MCMWP. The first formu-

lation is the discrete version of the original MCMWP formulation given by Equation 2.2

– 2.6. The second MILP formulation is the discrete counterpart of the second MCMWP

formulation given by Equation 2.7 – 2.12. Then, we propose LR schemes for both of these

MILP formulations. Afterwards, we put forward two discretization strategies together with

the selection of candidate points. For that purpose, we first introduce the block norms which

have the potential to produce both lower and upper bounding candidate point sets for the

MILPs. The second discretization strategy takes into account only the customer locations

2The article by (Akyüz et al., 2012), the technical report by (Akyüz et al., 2010a) and the conference
proceeding by (Akyüz et al., 2009a) are partially based on this chapter.
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as the candidate points set. Last part is dedicated to the formal description of the Multi-

commodity Discrete Approximation (MDA) heuristics which are capable to produce both

tight lower and upper bounds for the MCMWP. Our approach can also be extended for both

MWP and CMWP cases.

5.1. Approximating Mixed Integer Linear Programming Formulations

Let g = 1, . . . , G label the given set of candidate facility locations (approximating

points) remaining within the convex hull of customer locations and define the variables

yijkg as the amount of commodity k shipped from facility i located at candidate point g to

customer j. Binary variables vig are set to 1 if facility i is located at point g and 0 otherwise.

cijkg is the cost of transporting one unit of commodity k from facility i located at candidate

point g with known coordinates âg = (âg1 âg2)
T to customer j. It is obtained by multiplying

the unit shipment cost of commodity k per unit distance from facility i to customer j,

namely cijk, with the distance d (âg, aj) between point g and customer j. In other words

cijkg = cijkd (âg, aj) where d (âg, aj) = [|âg1 − aj1|r + |âg2 − aj2|r]1/r
with 1 ≤ r < ∞. Then,

the first formulation of the Multi-commodity Discrete Approximation Problem (MDAP) can

be given as

MDAP1:

min ZMDAP1 =
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

cijkgyijkg (5.1)

s.t.
J∑

j=1

yijkg = sikvig i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G, (5.2)

I∑
i=1

G∑
g=1

yijkg = qjk j = 1, . . . , J ; k = 1, . . . , K, (5.3)

G∑
g=1

vig = 1 i = 1, . . . , I, (5.4)

K∑

k=1

G∑
g=1

yijkg ≤ uij i = 1, . . . , I; j = 1, . . . , J, (5.5)

yijkg ≥ 0 i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G, (5.6)

vig ∈ {0, 1} i = 1, . . . , I; g = 1, . . . , G. (5.7)
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Here, constraints given by Equation 5.2 – 5.5 and 5.6 are the discrete equivalent of the

multi-commodity transportation constraints given by Equation 2.3 – 2.6. Constraints given

by Equation 5.2 ensure that the total amount of commodity k shipped from facility i located

at point g is equal to its capacity. Binary variables vig guarantee that whenever a facility

i is opened at a candidate point g∗ then yijkg are set to 0 for j = 1, . . . , J ; k = 1, . . . , K

and g ∈ {g′ : g′ = 1, . . . , G and g′ 6= g∗}. Clearly, when there is no open facility at point g

then no shipment can originate from there. Constraints given by Equation 5.3 state that

the demand of each customer j for each commodity type k is satisfied. Constraints given

by Equation 5.4 enforce that each facility i is located at exactly one of the candidate points

g = 1, . . . , G.

Indeed, constraints given by Equation 5.4 become redundant when MDAP1 is balanced.

To see this, aggregate constraints given by Equation 5.2 and 5.3 which result in

I∑
i=1

J∑
j=1

K∑

k=1

G∑
g=1

yijkg =
I∑

i=1

K∑

k=1

sik

G∑
g=1

vig (5.8)

and
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

yijkg =
J∑

j=1

K∑

k=1

qjk, (5.9)

respectively. Since the left-hand sides of both equalities in Equation 5.8 and 5.9 are the

same, it follows that
∑I

i=1

∑K
k=1 sik

∑G
g=1 vig =

∑K
k=1

∑J
j=1 qjk =

∑K
k=1

∑I
i=1 sik because

MDAP1 is balanced. The last equality is clearly satisfied if and only if
∑G

g=1 vig = 1 holds

for i = 1, ..., I. Without loss of generality MDAP1 can be transformed into a balanced

form by using dummy facilities or customers with zero transportation cost. On the other

hand, constraints given by Equation 5.4 are valid equalities for MDAP1 and according to

our observations their existence considerably improves the LP relaxation bounds. Therefore,

we keep constraints given by Equation 5.4 which makes the MDAP1 formulation stronger.

It is also possible to model a discrete approximation as a bilinear programming problem

by using the approach proposed for the RCMWP by (Sherali et al., 1994). This will require

an additional linearization effort resulting in an increase in the number of variables and

constraints. Although MDAP1 can be optimally solved by a general-purpose MILP solver,

the required CPU time exponentially increases with the increasing instance size. When we
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consider a problem with I facilities, J customers, K commodities and G candidate points,

this results in a MILP formulation with I × G binary variables vig and I × J × K × G

continuous variables yijkg.

The formulation of MDAP1 allows locating more than one facility at a candidate point

g. Moreover, the unit shipment cost does not only depend on the location of a facility, but

also on the facility itself. This means that transporting the same amount of commodity k

to customer j from two different facilities located at point g may incur different costs. The

formulation becomes more compact when these facilities are uniform and the unit shipment

cost depends on both location and commodity. In this case, we redefine flow variables yjkg as

the amount of commodity k shipped to customer j from point g, and cost coefficients cjkg as

the unit shipment cost of commodity k from point g to customer j. The latter is obtained by

multiplying the unit shipment cost per unit distance of commodity k, that is independent of

facility i, with the distance between point g and customer j. In fact, the second formulation

can be directly obtained from MDAP1 by setting cijkg = cjkg for all i = 1, . . . , I and using

the aggregated flow variables yjkg =
I∑

i=1

yijkg in the objective function as well as constraints

given by Equation 5.2 and 5.3.

In the second MDAP formulation, namely in MDAP2, we split location variable vig

over the commodities using K binary variables (one for each commodity to represent a

production center of facility i producing commodity k) v̂ikg. In other words, vig is split to

v̂ikg which is set to 1 when production center k of facility i is located at candidate point g,

and 0 otherwise. We define new constraints to force production centers behave unanimously.

When v̂ikg = 1 (v̂ikg = 0) holds for one of the production centers of facility i, say center k∗,

then v̂ikg = 1 (v̂ikg = 0) also holds for all production centers, for k 6= k∗ and k = 1, . . . , K,

of facility i. This is an “all or none” type behavior.

MDAP2:

min ZMDAP2 =
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

cijkgyijkg (5.10)

s.t.
J∑

j=1

yijkg = sikv̂ikg i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G, (5.11)

G∑

l=1

v̂ikg = 1 i = 1, . . . , I; k = 1, . . . , K, (5.12)
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I∑
i=1

G∑
g=1

yijkg = qjk j = 1, . . . , J ; k = 1, . . . , K, (5.13)

K∑

k=1

G∑
g=1

yijkp ≤ uij i = 1, . . . , I; j = 1, . . . , J, (5.14)

v̂ikg ≤ vig i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G, (5.15)

K∑

k=1

v̂ikg ≥ Kvig i = 1, . . . , I; g = 1, . . . , G, (5.16)

G∑
g=1

vig = 1 i = 1, . . . , I, (5.17)

vig ∈ {0, 1} i = 1, . . . , I; g = 1, . . . , G, (5.18)

v̂ikg ∈ {0, 1} i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G, (5.19)

yijkg ≥ 0 i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G. (5.20)

In this formulation, constraints given by Equation 5.15 ensure that none of the K

production centers of facility i can be opened at candidate point g unless the original facility

i is located there. Furthermore, when facility i is not located on candidate point g then no

production center of that facility is allowed to be opened on candidate point g. Constraints

given by Equation 5.16 together with Equation 5.15 enforce that whenever facility i is opened

at candidate point g then all production centers of facility i must also be located on candidate

point g. Additionally, constraints given by Equation 5.17 guarantee that a facility must be

located at exactly one candidate point.

Also, it is possible to replace constraints given by Equation 5.15 and 5.16 with the

equalities

K∑

k=1

v̂ikg = Kvig i = 1, . . . , I; g = 1, . . . , G (5.21)

to obtain a more compact formulation. Unfortunately, it is weaker and produces a loser

LP relaxation lower bound, which makes MDAP2’s exact solution computationally more

challenging.
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5.2. Lagrangean Relaxation and Discrete Approximations

For some instances, the sizes of the MDAP1 and MDAP2 formulations can be quite

huge and their exact solution can be computationally intractable. Hence, it may sound

wiser to solve them approximately. Since both MDAP1 and MDAP2 belong to the family of

discrete location problems, LR approach can successfully be applied for their solution. We

devise a LR scheme and Subgradient Optimization (SO) to compute lower bounds and good

feasible solutions for both MDAP1 and MDAP2.

5.2.1. Lagrangean Relaxation for the First Approximation

We can relax demand constraints given by Equation 5.3 and bundle constraints given

by Equation 5.5 with Lagrangean multipliers β1
jk and µ1

ij respectively and we obtain the

Lagrangean subproblem

RMDAP1(β1, µ1):

min ZLR1(β
1, µ1) =

I∑
i=1

J∑
j=1

K∑

k=1

G∑
g=1

(cijkg − β1
jk + µ1

ij)yijkg +
J∑

j=1

K∑

k=1

β1
jkqjk

−
I∑

i=1

J∑
j=1

µ1
ijuij (5.22)

s.t. Equation 5.2, 5.4, 5.6 and 5.7, (5.23)

yijkg ≤ ûijk i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G. (5.24)

Notice that simple upper bounds given by Equation 5.24 are added to the formula-

tion, where ûijk = min{sik, qjk, uij}. Although they are redundant for the original problem

MDAP1, they improve optimal value Z∗
LR1(β

1,µ1) of the relaxed problem. The last two

terms in the objective function given by Equation 5.22 are constants and RMDAP1(β1, µ1)

decomposes over the facilities. Although it seems possible to decompose also with respect

to the commodities at the first look, this is not possible because of constraints given by

Equation 5.4. The solution of RMDAP1(β1, µ1) becomes equivalent to the solution of the

following I subproblems
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RMDAP1i(β
1, µ1):

min ZLR1i(β1, µ1) =
J∑

j=1

K∑

k=1

G∑
g=1

cijkgyijkg (5.25)

s.t.
J∑

j=1

yijkg = sikvig k = 1, . . . , K; g = 1, . . . , G, (5.26)

G∑
g=1

vig = 1 i = 1, . . . , I, (5.27)

yijkg ≤ ûijk j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G, (5.28)

yijkg ≥ 0 j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G, (5.29)

vig ∈ {0, 1} g = 1, . . . , G. (5.30)

Here cijkg = (cijkg − β1
jk + µ1

ij) is the new unit cost obtained for the given multiplier

vectors β1 and µ1. The solution of subproblem RMDAP1i(β
1, µ1) is not difficult. We can use

a “greedy” inspection procedure where, for each point g, we determine those customers that

are supplied from facility i when located at point g so that the shipment cost ZLR1ig(β1, µ1) =
∑J

j=1

∑K
k=1 cijkgyijkg is minimized subject to

∑J
j=1 yijkg = sikvig, k = 1, . . . , K with vig = 1

and 0 ≤ yijkg ≤ uijk, j = 1, . . . , J ; k = 1, . . . , K. Observe that this LP problem decomposes

further over the commodities resulting in K bounded Continuous Knapsack Problem (CKP)

each of which can be solved in O(J) times in the worst case (Martello and Toth, 1990). The

solution approach we adopt in this work is conceptually simpler, but computationally less

efficient. It can be found in any standard textbook on the LP (Bazaraa et al. 2010). A

sorting effort is required at the beginning, which results in O(J log J) time complexity.

When we repeat this procedure K times for each candidate point g = 1, . . . , G a good

optimal location for facility i can be determined; this is the point where ZLR1i(β1,µ1) is min-

imized. As a result, the optimal value Z∗
LR1i(β

1,µ1) is determined by setting Z∗
LR1i(β

1, µ1) =

ming

{
Z∗

LR1ig(β
1,µ1)

}
and vig = 1 for only one of the candidate points, and vig = 0

for the others satisfying constraints given by Equation 5.27. Clearly, Z∗
LR1ig(β

1,µ1) =
∑K

k=1 Z∗
LR1ikg(β

1,µ1) holds where Z∗
LR1ikg(β

1,µ1) denotes the optimal value of the bounded

CKP which is separately solved for each commodity k.

As soon as we solve all subproblems RMDAP1i(β
1, µ1), we can calculate the optimal

value of the RMDAP1(β1, µ1) as Z∗
LR1(β

1,µ1) =
∑I

i=1 Z∗
LR1i(β

1, µ1) +
∑J

j=1

∑K
k=1 β1

jkqjk −



37

∑I
i=1

∑J
j=1 µ1

ijuij for given multiplier vectors β1 and µ1. Z∗
LR1(β

1,µ1) is a lower bound on

the optimal value of MDAP1 for any Lagrange multiplier vectors β1 and µ1. To find the

best lower bound, we have to solve the Lagrangean dual problem, i.e., maxβ1,µ1 Z∗
LR1(β

1,µ1),

which can be achieved by performing the SO algorithm (Held et al., 1974).

5.2.2. Lagrangean Relaxation for the Second Approximation

It is also possible to apply Lagrangean relaxation on MDAP2. For this purpose we

relax constraints given by Equation 5.13, 5.14, 5.15 and 5.16 with multipliers β2
jk, µ2

ij, δikg

and δ̂ig to obtain the subproblem

RMDAP2(β2,µ2,δ,δ̂):

min ZLR2(β
2, µ2, δ, δ̂) =

I∑
i=1

J∑
j=1

K∑

k=1

G∑
g=1

(cijkg − β2
jk + µ2

ij)yijkg +
I∑

i=1

K∑

k=1

G∑
g=1

(δikg − δ̂ig)v̂ikg

+
I∑

i=1

K∑

k=1

G∑
g=1

(δ̂ig − δikg)vig +
J∑

j=1

K∑

k=1

βjkqjk −
I∑

i=1

J∑
j=1

µ2
ijuij (5.31)

s.t. Equation 5.11, 5.12, 5.17 – 5.20 and 5.24. (5.32)

The last two terms of the relaxed objective function given by Equation 5.31 are con-

stant and can be disregarded during the solution. Again, we add simple redundant upper

bounds given by Equation 5.24 to strengthen the Lagrangean lower bound. Observe that

RMDAP2(β2,µ2,δ,δ̂) can be separated into two subproblems one with both variables yijkg

and v̂ikg, and the other with variables vig variables. In addition, the former problem decom-

poses further over the customers and facilities. In other words RMDAP2(β2,µ2 ,δ,δ̂) can be

solved by solving the following I ×K + 1 subproblems

RMDAP2ik(β
2,µ2,δ,δ̂):

min ZLR2ik(β2,µ2, δ, δ̂) =
J∑

j=1

G∑
g=1

[
(cijkg − β2

jk + µ2
ij)yijkg + (δikg − δ̂ig)v̂ikg

]
(5.33)

s.t.
J∑

j=1

yijkg = sikv̂ikg g = 1, . . . , G (5.34)
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G∑
g=1

v̂ikg = 1 i = 1, . . . , I; k = 1, . . . , K, (5.35)

yijkg ≤ ûijk j = 1, . . . , J ; g = 1, . . . , G, (5.36)

yijkg ≥ 0 j = 1, . . . , J ; g = 1, . . . , G, (5.37)

v̂ikg ∈ {0, 1} i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G. (5.38)

and

RMDAP2v(δ,δ̂):

min ZLR2v(δ, δ̂) =
I∑

i=1

K∑

k=1

G∑
g=1

(δ̂ig − δikg)vig (5.39)

s.t. Equation 5.17 and 5.18.

Notice that for v̂ikg = 1, RMDAP2ik(β
2,µ2,δ,δ̂) can be solved using the optimal solu-

tions of G CKPs in yijkg. Each of them takes O(J log J) times if the ordering procedure

mentioned in Section 5.2.1 is used. This gives the optimal value of Z∗
LR2ik(β

2,µ, δ, δ̂) =

ming

{
Z∗

LR2ikg(β
2,µ2, δ, δ̂)

}
where Z∗

LR2ikg(β
2,µ, δ, δ̂) is the optimal value of the CKPs.

Then, the optimal value of the Lagrangean subproblem RMDAP2(β2,µ2,δ,δ̂) can be calcu-

lated as Z∗
LR2(β

2,µ2, δ, δ̂) =
I∑

i=1

K∑
k=1

Z∗
LR2ik(β

2,µ2, δ, δ̂)+Z∗
LR2v(δ, δ̂)+

J∑
j=1

K∑
k=1

β2
jkqjk−

I∑
i=1

J∑
j=1

µ2
ijuij.

Here, Z∗
LR2v(δ, δ̂) is the optimal value of RMDAP2v(δ ,δ̂), which can be easily obtained, since

the subproblem decomposes over all facilities into I subproblems each of which can be solved

by inspection. In order to find the best lower bound, we solve the Lagrangean dual problem

maxδ,µ,δ,δ̂ Z∗
LR2(β

2,µ2, δ, δ̂) by employing the SO algorithm (Held et al., 1974).

5.3. The Determination of Candidate Locations

The solutions of the approximating MILP formulations MDAP1 and MDAP2 do not

guarantee an optimal solution for the MCMWP unless the set of candidate points includes

the set of optimal locations as a subset. Actually, we try to solve a continuous nonconvex

problem approximately by restricting optimal locations to be within a set of points rather
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than within the entire convex hull of customer locations. As the number of candidate points

increases, we expect that the objective value of MDAP becomes closer to the optimal value of

the original MCMWP. Hence, we experience a trade-off between the quality of the solutions

provided by MDAP1 and MDAP2 and the required computational effort. Even a small MILP

problem may yield high-quality or optimal solutions by selecting a small but promising set

of points as candidate facility locations. Now, we give two discretization strategies for the

selection of candidate facility locations. The first strategy uses the block norms and the

second one chooses customer locations for that purpose.

5.3.1. Discrete Approximation Using Block Norms

Theorem 15.2 of (Rockafellar, 1970) states that there is a one-to-one correspondence

between the set of norms and the set of closed, bounded and convex sets which are symmetric

and their interior contains the origin. Let B be such a set and then its corresponding norm

‖.‖B is defined as ‖x‖B = inf {$ : x ∈ $B, $ ≥ 0} with $B ≡ {$̂x̂ : ∀x̂ ∈ B,∀$̂ ≤ $}. B is

called the unit ball when B = {x : ‖x‖B ≤ 1}. (Witzgall, 1964) defines a family of norms with

polyhedral contours, called polyhedral norms, that generalize `1-norm (rectilinear norm), and

recognizes their potential capability to model a wide variety of road travel distances. (Ward

and Wendell, 1980) follow this research avenue and investigate a family of norms, called

one-infinity norms, generalizing again the `1-norm and yielding distance approximations

comparable to `r-norm. A one-infinity norm (`1∞-norm) is obtained by taking a nonnegative

weighted sum of the `1 and `∞ (Tchebycheff) norms. In their succeeding work (Ward and

Wendell, 1985) discuss the class of block norms and emphasize their generalization of the

properties of the `1-norm. They define a block norm as a norm whose unit ball B is a

polytope. In fact, any block norm can be represented by a symmetric polyhedral cone pointed

at the origin whose extreme directions are the so-called fundamental directions of the block

norm ‖.‖B. Alternatively, the block norm can be viewed as a union of cones generated by

the facets of B and the origin (Durier and Michelot, 1994). This interpretation includes the

use of polar set B0 of B which is defined by B0 =
{
x0 : ∀x ∈ B,xTx0 ≤ 1

}
. For more details

on polar sets and their norms we refer to (Rockafellar, 1970), (Ward and Wendell, 1985) and

(Durier and Michelot, 1994). `1 and `∞-norms are two well known examples of the block

norms. They include the `1∞-norm and provide distance approximations almost as good as

the round norms, which have round and smooth contours like the `r-norm for 1 < r < ∞.
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(Ward and Wendell, 1985) give a characterization of the block norms as the minimum

distance to a point along the prescribed fundamental directions and it is possible to observe

that this is equivalent to the characterization of the polyhedral norms by (Witzgall, 1964).

Mathematically, the block norms can be characterized as

‖x‖B = min





G∑
g=1

$g : x =

G∑
g=1

$g bg , $g ≥ 0



 (5.40)

where bg are the fundamental directions of ‖.‖B. The extreme points of the block norms also

define a unit travel length in that direction.

Furthermore, (Ward and Wendell, 1985) also claim that block norms are dense in the

set of all norms that every norm is either a block norm or a sequence of block norms can

be found where their limit converges to that norm. It is shown by (Thisse et al., 1984) that

the block norms are linear over the cones generated by each facet of B and the origin. Any

block norm can be represented by a symmetric polyhedral cone pointed at the origin whose

extreme directions and their negatives are the so-called fundamental directions of the block

norm. For example, the contours of the `1-norm are 45o rotated squares centered at the origin

and the four fundamental directions are the unit vectors and their negatives. The extreme

rays can be represented by horizontal and vertical lines (i.e., x and y-axis) intersecting at the

origin. The `∞-norm has also four fundamental directions but they are 45o rotated because

the contours are regular squares centered at the origin and the two extreme rays overlaps

with the diagonals of the squares. As a consequence the fundamental directions are the

vectors

(
1

1

)
,

(−1

1

)
,

(
1

−1

)
and

(−1

−1

)
; the 45o rotated unit vectors and their negatives. As

for the contours of the `1∞-norm, they are octagons centered at the origin. There are four

extreme rays which can be represented by four lines making respectively 0o, 45o, 90o and 135o

angles with the x-axis and intersecting at the origin. They can be obtained by superposing

the ones of the `1 and `∞-norms. Hence, there are eight fundamental directions, each defined

by one of the extreme points of the polyhedral contours. Unit contours of `1, `∞, `1∞ and

`r-norms including the Euclidean norm (i.e., `2-norm) are illustrated with Figure 5.1.

Theorem 6 of (Thisse et al., 1984) implies that for a block norm ‖.‖B an optimal solution

to the planar WP
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Figure 5.1. Unit balls of several norms.

min
J∑

j=1

Cj

(‖x− aj‖B
)

(5.41)

occurs at one of the intersection points of the extreme rays of the block norm ‖·‖B passing

through the customer locations and remaining within the convex hull of these locations.

Here the functions Cj (·) are nondecreasing and concave. Stronger results on the local op-

tima of Equation 5.41 are also derived in the more recent work of (Idrissi et al., 1988).

They are all generalizations of (Wendell and Hurter, 1973)’s early dominance results on the

planar WP with `1-norm. According to this result, the set of points that include an op-

timal solution consists of the intersection points of the vertical and horizontal lines drawn

through the customer locations and remaining within their convex hull. For the `∞-norm
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these are the intersection points of the lines making 45o and 135o angles with the x-axis

and passing through the customer locations where the extreme directions are (
√

2/2,
√

2/2),

(
√

2/2,−√2/2) and their negatives. Similar results can be obtained by rotating the unit ball

corresponding to the `1-norm around the origin by an angle ϑ ≤ 45o (for ϑ > 45o one starts

to obtain the same balls as in the case ϑ ≤ 45o). The corresponding block norm distance

equals `1/(cos ϑ + sin ϑ) on the ϑ rotated axis. The candidate location sets for the weighted

`1 and `∞-norms are illustrated with Figure 5.2. The lines originating from customer loca-

tions (i.e., bold points with square frames) are the extreme rays of the `1 and `∞-norms.

One can obtain the candidate location set for the `1∞-norm by simply superposing these

two figures. As a verdict, it is possible to say that the higher is the number of fundamental

vectors (which means a higher number of extreme points of the polyhedral contours and a

higher number of extreme rays and directions), the larger is the set of candidate locations.

Figure 5.2. The candidate location sets for the WP with `1 and `∞-norms.

Observe that given a feasible set of allocations the MCMWP decomposes into I WPs

with Cj (‖x− aj‖) where, given allocation quantities wijk for facility i, Cj =
∑K

k=1 cijkwijk

is a nonnegative constant. In particular, this observation enables the application of (Thisse

et al., 1984)’s results also for the MCMWP. In short, when the distance function is obtained

by multiplying a block norm with a nonnegative weight, solving the approximations MDAP1

and MDAP2 over the intersection of the extreme rays passing through the customer locations

and remaining within their convex hull, becomes equivalent to solving the MCMWP with

that weighted block norm exactly. What is more, by the solution of MDAP1 and MDAP2,

it is also possible to obtain approximate solutions of the MCMWP when the distances are

measured with a weighted `r-norm, since it can be approximated by a block norm. Notice
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that better approximations of the `r-norm require the use of block norms with more extreme

rays, which increase the number of intersection points in the candidate set, and thus the

size of MDAP1 and MDAP2. It should be pointed out that the approximating problems

MDAP1 and MDAP2 enable also the computation of weaker lower bounds using their LP

and Lagrangean relaxations.

As an additional property of the `1, `∞ and `1∞-norms we can list the inequalities

`∞ ≤ `r, (5.42)

2
1−r

r `1 ≤ `r, (5.43)

1

2
r−1

r $1 + $2

√
2
`1∞ ≤ `r, (5.44)

for 1 ≤ r < ∞, and `1∞ = $1`1 +
√

2$2`∞ with nonnegative constants $1 and $2. The

first one of them follows directly from the definition of `r and `∞-norms. The second one is

a consequence of the well known mathematical inequality

(
N∑

n=1

σn

)r

≤ N r−1

(
N∑

n=1

σr
n

)
(5.45)

where σn is a positive constant and r ≥ 1, which particularly implies

(|x1|+ |x2|)r ≤ 2r−1 (|x1|r + |x2|r) (5.46)

for N = 2 and r ≥ 1 (Korovkin, 1986). Finally, the last inequality can be directly obtained

using the first two inequalities (i.e., Equation 5.42 and 5.43) and the definition of the `1∞-

norm.

5.3.2. Discrete Approximation Using Customer Locations

(Hansen et al., 1998) take into account the observation that optimal facility locations

are usually either on customer locations or very close to them in developing their accurate

p-median heuristic for the MWP. Benefiting from this observation, namely by choosing the

set of candidate facility locations as the set of customer locations, (Aras et al., 2007) have

designed a very accurate heuristic for the CMWP. Consequently, we are encouraged to use
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the discrete approximations MDAP1 and MDAP2 over the customer locations in order to

compute good upper bounds on the optimal value of the MCMWP.

5.4. Heuristics Using Discrete Approximations

Optimal values of an approximating MILP problem is clearly an upper bound on the

optimal value of the MCMWP since it is a restriction of the original problem. The MDA

heuristic is developed based on the desire of improving further this upper bound using an

improvement heuristic. In short, MDA consists of the exact solution of an approximating

MILP problem (i.e., MDAP1 and MDAP2) and a run of an improvement heuristic initialized

at one of the optimal or good feasible solutions obtained with the approximating MILP

problem. As the improvement heuristic, we prefer to use MCALA starting at the facility

locations obtained with the optimal solution of MDAP1 or MDAP2.

The implication of the inequalities given by Equation 5.42 – 5.44 on the optimal value

of the MCMWP can be summarized by the inequalities

Z∗
∞ ≤ Z∗

r , (5.47)

2
1−r

r Z∗
1 ≤ Z∗

r , (5.48)

1

2
r−1

r $1 + $2

√
2
Z∗

1∞ ≤ Z∗
r , (5.49)

where Z∗
r is the optimal value of the `r-norm MCMWP for 1 ≤ r < ∞, Z∗

1 , Z∗
∞ and Z∗

1∞

stand for the optimal value of the `1, `∞ and `1∞-norm MCMWPs, respectively. Since

MDAP1 and MDAP2 are equivalent to MCMWP when distance d(xi, aj) is modeled by the

`1, `∞ and `1∞-norms, and the candidate locations are the set of the intersection points

determined as explained in Section 5.3.1, the optimal value can be obtained by solving

MDAP1 or MDAP2 formulations. Hence, for these three particular norms, the optimal

values of MDAP1 and MDAP2 can also be used to obtain lower bounds on Z∗
r for 1 ≤ r < ∞

using inequalities given by Equation 5.47 – 5.49. These lower bounds become weaker if LP

and Lagrangean relaxations of MDAP1 or MDAP2 are solved and the relaxed optimal value

is used to determine the lower bounds. However, we can not repeat the same property

for the situation where the customer locations are used as the candidate locations. The

lower bounds computed by a relaxation strategy on the optimal value of MDAP1 or MDAP2
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can not be used to determine a lower bound on Z∗
r , since there is no Equation 5.47 – 5.49

type obvious relations between the optimal values of MDAP1, MDAP2, and Z∗
r , when the

customer locations are selected as the candidate facility sites.

The way we use MCALA in the relaxed version of the MDA heuristic is different than

the one of its use in MDA. At every step of the SO algorithm, prior to the multiplier updates,

C-MCALA is run as a feasibility heuristic to obtain a good feasible solution of the MCMWP

(not the approximating MILP problem), in order to update the upper bound on the optimal

value of MCMWP: the upper bound is set to the minimum of the new and existing ones.

The upper bound used in the SO algorithm for updating the Lagrange multipliers (i.e., the

upper bound on the optimal value of the approximating MILP problem) is computed by

means of the D-MCALA: the single facility location problems are simply 1-median problems

solved over the candidate points.

We should remind that the Lagrangean lower bound SO algorithm computes, is a lower

bound on the optimal value of the approximating MILP problem, but not necessarily a lower

bound on the optimal value of the MCMWP. This is only true for the approximating MILP

formulations which are equivalent to the MCMWP. Therefore, discrete approximation heuris-

tics using MDAP1 and MDAP2 based on `1, `∞ and `1∞-norms (`1-MDA1, `∞-MDA1, `1∞-

MDA1, `1-MDA2, `∞-MDA2 and `1∞-MDA2), and their relaxed versions obtained through

the Lagrangean relaxations of MDAP1 and MDAP2 (`1-RMDA1, `∞-RMDA1, `1∞-RMDA1,

`1-RMDA2, `∞-RMDA2 and `1∞-RMDA2) can be used to compute both lower and upper

bounds on Z∗
r for 1 ≤ r < ∞. However, this is not true for the DA heuristics based on

customer locations (CL-MDA1, CL-MDA2) and their relaxed versions (CL-RMDA1, CL-

RMDA2). They can only be used to compute upper bounds.

Finally, we should point out that the MILP formulations used in a MDA heuristic

affects only its efficiency. In other words, two versions of the approximating heuristics using

the exact solutions of MDAP1 and MDAP2 have the same accuracy since both of them are

equivalent formulations. However, this is not necessarily true for the relaxed versions of the

DA heuristics since MDAP1 and MDAP2 have different Lagrangean subproblems resulting

in different Lagrangean lower bounds and different initial facility locations for the MCALA

heuristic.
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6. USING LAGRANGEAN RELAXATION AND A MODIFIED

SUBGRADIENT ALGORITHM

In this chapter3 a Lagrangean Relaxation (LR) scheme is proposed for the MCMWP

together with novel acceleration strategies which can also be applied to many other opti-

mization problems with intractable Lagrangean subproblems. For that purpose, we relax

both constraints given by Equation 2.3 and 2.5 which results in a variant of the MWP with

multiple commodities. In the MWP, each customer is served only from the least weighted

cost facility. Thus, the set of customers can be separated into I distinct nonempty subsets

each of which is assigned to a single facility. Indeed, it is possible to find the optimal solution

by generating all such partitions of the customer set. As discussed in Chapter 3, (Rosing,

1992) considers the MWP with unit transportation costs and developed a modified Set Cov-

ering (SC) problem formulation to solve it. The method suggested by (Rosing, 1992) consists

of generating all customer subsets with non-intersecting convex hulls and then each convex

hull, which is interpreted as a column, is added to the SC problem formulation. Although

Rosing’s method halts quickly, (Krau, 1997) uses this SC formulation and develops a CG

procedure combined with a Branch-and-Price (BP) algorithm to solve the MWP exactly.

The method by (Krau, 1997) generates customer subsets instead of their convex hulls as the

method by (Rosing, 1992) does. (Krau, 1997) solves a Concave Minimization (CM) problem

for the Pricing Subproblem (PS). Later, (Righini and Zaniboni, 2007) replace the solution

method of the PS by a polynomial time algorithm developed in the study by (Drezner et al.,

1991) for the solution of WP with limited distances (WPLD). Both approaches by (Krau,

1997) and (Righini and Zaniboni, 2007) are efficient methods for the exact solution of the

MWP. In short, existing exact methods for the MWP can be adapted for the MWP variant

which arises when constraints given by Equation 2.3 and 2.5 of the MCMWP are relaxed.

We should note that it may seem interesting to relax only constraints given by Equation

2.5 from the MCMWP with the purpose to obtain K CMWP variants for each commod-

ity. However, the facility location variables xi in d(xi, aj), are common for all commodities.

Therefore, relaxing only constraints given by Equation 2.5 does not yield a decomposition

over the commodities and the resulting LR subproblem is not easier to solve than the origi-

nal MCMWP. Let ϕik and µ3
ij be the Lagrangean multipliers associated with constraint sets

3The article by (Akyüz et al., 2011) and the conference proceeding by (Akyüz et al., 2010b) are partially
based on this chapter.
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given by Equation 2.3 and 2.5, respectively. Then we obtain the following LR subproblem:

LR3(ϕ,µ3):

min ZLR3(ϕ, µ3) =
I∑

i=1

J∑
j=1

K∑

k=1

wijk

(
cijkd(xi, aj) + ϕik + µ3

ij

)− ξ (6.1)

s.t. Equation 2.4 and 2.6 (6.2)

where ξ =
I∑

i=1

K∑
k=1

ϕiksik +
I∑

i=1

J∑
j=1

µ3
ijuij is a constant term which can be ignored from the LR

subproblem and added to the optimal value afterwards. Let the binary variable w′
ijk be equal

to 1 if and only if the demand of customer j for commodity k is met by facility i. When

we substitute wijk with w′
ijkqjk and define dk(xi, aj) = (cijkd(xi, aj) + ϕik +µ3

ij

)
, the LR

subproblem given by Equation 6.1 – 6.2 reduces to

LR3(ϕ,µ3):

min ZLR3(ϕ, µ3) =
I∑

i=1

J∑
j=1

K∑

k=1

w′
ijkqjkdk(xi, aj)− ξ (6.3)

s.t.
I∑

i=1

w′
ijk = 1 j = 1, . . . , J ; k = 1, . . . , K, (6.4)

w′
ijk ∈ {0, 1} i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K. (6.5)

Notice that LR3(ϕ,µ3) given by Equation 6.3 – 6.5 is a variant of the MWP where the

distance between facility i and customer j is calculated with a particular distance function

dk(xi, aj) for each commodity type k. Best lower bounds can be found by solving LR3(ϕ,µ3)

multiple times with different Lagrange multiplier values which are adjusted within a SO al-

gorithm (Held et al., 1974). In fact, we suggest a Modified Subgradient (MS) algorithm

which differs from the classical SO algorithm in the computation of lower bounds and mul-

tiplier updates. We discuss the MS algorithm in detail in the following sections including its

convergence properties. Now, we give a brief summary for it. Its formal outline is presented

at the end of this chapter. In the initialization step of the MS algorithm the Lagrangean

multipliers ϕik and µ3
ij are set to 0. At the beginning, the best lower bound value Zbest

LB is set

to −∞ and the best upper bound value Zbest
UB is set to ∞. Then a lower bound ZLB is found
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on the optimum value Z∗, by solving the LR subproblem with current Lagrange multipliers

ϕik and µ3
ij. In case ZLB > Zbest

LB holds we set Zbest
LB = ZLB. Next, an upper bound ZUB

on Z∗ is found. When ZUB < Zbest
UB holds we set Zbest

UB = ZUB. Given the current lower

and upper bound values we update Lagrange multipliers ϕik and µ3
ij. The MS algorithm

stops when a predetermined number of iterations is performed or the step size parameter π

becomes sufficiently small. Finally, the MS algorithm outputs Zbest
LB and Zbest

UB . We should

also point out that a similar MS algorithm is previously suggested by (Boyacı, 2009) for the

CMWP. The upper bounds are determined by the MCALA heuristic. In order to produce

upper bounds on the optimal value of MCMWP, we first modify the initialization of the

MCALA. That is to say, we solve I WPs to obtain initial facility location values xi by using

the optimal assignment obtained from the solution of the subproblem LR3(ϕ,µ3). Each

initial xi is computed with respect to customer set assigned to facility i obtained from the

optimal assignment LR3(ϕ, µ3) determines. Then, the MCALA heuristic solves alternately

the allocation (i.e., the MTP) and location (i.e., I WPs) problems until no improvement is

possible. It is clear that the final locations and allocations form a feasible solution for the

MCMWP and thus their value is an upper bound on the optimal value of the MCMWP.

Recall that the lower bound value ZLB computed during the run of the MS algorithm

can be either the optimal value of the LR subproblem Z∗
LR3(ϕ,µ3) or a lower bound satisfy-

ing ZLB ≤ Z∗
LR3(ϕ,µ3) for any choice of multiplier vectors ϕ and µ3. In order to solve the

Lagrangean subproblem given by Equation 6.3 – 6.5, we first give its equivalent SC problem

formulation which is obtained by partitioning the customer set into subsets for each facility.

Then, the LP relaxation of the SC formulation (namely, SCLP) is solved by a CG procedure

for this SC problem formulation. We also sketch a BP approach that can be used to solve

the SC formulation exactly. Note that the solution of the SCLP yields a lower bound on

Z∗
LR3(ϕ,µ3) and we suggest two different solution procedures for solving the PSs to generate

the columns. We also devise an approximating MILP formulation for the LR subproblem

and use two more lower bounds which employ block norm based approximations. These are

`1 and `∞-norms to determine lower bounds as discussed in Chapter 5 for the DA heuristics.

The only difference is the solution of an approximating MILP formulation for the MWP

variant which substitutes the solution of the MDAP. In short, there are basically four lower

bounding approaches for the Lagrangean subproblem. All of them require excessive CPU

times and they are executed only once at the end or when necessary. This is accomplished

by using heuristic solutions, which are treated as if they are lower bounds on the LR sub-
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problem within the MS algorithm in order to increase the efficiency of the overall algorithm.

Actually, heuristic solution of the LR subproblem is only an upper bound on it. As a result,

our algorithm turns into a modified subgradient heuristic search procedure in the dual space

of the Lagrangean multipliers. When the MS algorithm converges, the best Lagrange mul-

tipliers are used to compute a lower bound on the MCMWP. Furthermore, the efficiency of

the MS algorithm increases by accelerating the solution procedures of the PS.

6.1. Equivalent Set Covering Formulation for the Lagrangean Subproblem

In an optimal solution of the MWP variant given by Equation 6.3 – 6.5, each cus-

tomer of a commodity is served by exactly one facility which has the minimum weighted

cost. Note that as there are no capacity restrictions left on the facilities, each commodity

k of a customer j can be treated as one of the K distinct customers each having identical

locations. We call them as customer-commodity pairs (j, k) to indicate customer j of com-

modity k. Hence, it is required to divide the customer-commodity pair set into I subsets

such that each subset is covered by exactly one facility. Keeping this in mind, we define the

following binary decision variables. Let op be equal to 1 if and only if subset p is selected.

Let bp =
{
bp
11, b

p
12, . . . , b

p
1K , bp

21, b
p
22, . . . , b

p
2K , . . . bp

J1, b
p
J2, . . . , b

p
JK , bp

JK+1, b
p
JK+2, . . . , bp

JK+I

}T

denote column p where each entry takes 0 or 1 values. The first J ×K entries of bp denote

the customer-commodity pairs and the last I entries stand for the corresponding facility of

column p. If a customer j of commodity k is served from a subset denoted by Jp then the

corresponding element bp
jk is set to 1, otherwise it is set to 0. Similarly, when Jp is a subset

of facility i∗, then bp
JK+i∗ = 1 and bp

JK+i = 0 hold for i = 1, . . . , I with i 6= i∗. An equivalent

SC problem formulation of the MWP variant given by Equation 6.3 – 6.5 is as follows.

SC(ϕ,µ3):

min ZSC(ϕ, µ3) =
P∑

p=1

cpop − ξ (6.6)

s.t.
P∑

p=1

bp
jkop ≥ 1 j = 1, ..., J ; k = 1, ..., K, (6.7)

P∑
p=1

bp
JK+iop ≤ 1 i = 1, ..., I, (6.8)

op ∈ {0, 1} p = 1, ..., P, (6.9)
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where P = I × (2J×K − 1) denotes the number of all possible subsets. The cost coefficient

cp = min
xi

J∑
j=

K∑
k=1

bp
jkqjkdk(xi, aj) of each customer subset Jp for a given facility i is computed

by solving a WP via Weiszfeld’s algorithm or its generalizations. We should note that the

applicability of the Weiszfeld’s algorithm for the `r distance WP with 1 ≤ r ≤ 2 is shown

by (Brimberg and Love, 1993). Fortunately, the modified distance function dk(xi, aj) =

(cijkd(xi, aj) + ϕik +µ3
ij

)
does not change the derivative information of the `r distance. As

a result, the constant Lagrange multiplier terms do not effect the formula on which the

Weiszfeld’s algorithm is based.

Constraints given by Equation 6.7 guarantee that each customer j of commodity k is

covered by (served from) at least one subset (facility). Constraints given by Equation 6.8

state that the number of subsets served from a facility i is at most 1. This implies that each

facility can be opened at most once. Hence, the total number of customer-commodity pair

subsets are enforced to be at most the total number of facilities I. Note that an equivalent set

partitioning problem formulation can also be proposed by replacing inequalities in Equation

6.7 and 6.8 with equalities. However, inequalities in Equation 6.7 and 6.8 do not harm the

optimality since each customer-commodity pair should be served by exactly one facility and

exactly I facilities should be opened at optimality when J ≥ I holds which follows as a

generalization of a result by (Drezner, 1984).

6.1.1. Column Generation Procedure

We consider the SCLP, which is obtained by replacing integrality constraints given by

Equation 6.9 with op ≥ 0 for p = 1, . . . , P . The CG procedure employs the dual variable

information to generate necessary columns which solves the PS. At each step of the CG

procedure, an optimal dual solution is employed to solve a PS and to generate additional

columns with negative reduced cost. Initialized with a feasible set of columns, the relaxed

problem is iteratively solved until it is not possible to find a column with negative reduced

cost. Considering the MWP variant given by Equation 6.3 – 6.5, let λjk and ωi be the dual

variables associated with constraints given by Equation 6.7 and 6.8, respectively. Then, the

dual problem DP of the SCLP can be given as the following.
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DP:

max ZDP =
J∑

j=1

K∑

k=1

λjk −
I∑

i=1

ωi (6.10)

s.t.
J∑

j=1

K∑

k=1

bp
jkλjk −

I∑
i=1

bp
JK+iωi ≤ cp, p = 1, . . . , P, (6.11)

λjk ≥ 0, j = 1, . . . , J ; k = 1, . . . , K, (6.12)

ωi ≥ 0, i = 1, . . . , I. (6.13)

We should mention that the initial column set is constructed by generating all columns

where a facility serves only a single customer-commodity pair for each facility. This makes

a total of I × J × K columns which are added to the SCLP and the corresponding dual

variables are calculated. Let ĉ∗p(i) denote the minimum reduced cost which corresponds to

facility i. Then, the PS is as follows.

PS:

ĉ∗p(i) =min
xi,bp

Zi
PS(ϕ, µ3) =

J∑
j=1

K∑

k=1

bp
jk {qjkdk(xi, aj)− λjk}+ ωi (6.14)

s.t. bp
jk ∈ {0, 1} j = 1, ..., J ; k = 1, ..., K. (6.15)

At each step of the CG procedure, we solve the PS for each facility i and select the

columns which yield the negative reduced cost. All columns generated by using the solution

of the PS are added to the column set of SCLP. We now present two alternative approaches

for the solution of the PS.

6.1.1.1. Pricing by D.C. Programming. The reduced cost expression given by Equation 6.14

– 6.15 can be transformed into a D.C. (i.e., difference of two convex functions) form as follows.

ĉ∗p(i) = min
xi,bp

{
J∑

j=1

K∑

k=1

bp
jk {qjkdk(xi, aj)− λjk}+ ωi : bp

jk ∈ {0, 1} , j = 1, ..., J ; k = 1, ..., K

}

= min
xi

{
J∑

j=1

K∑

k=1

min {qjkdk(xi, aj)− λjk, 0}+ ωi

}
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= min
xi

{{
J∑

j=1

K∑

k=1

(qjkdk(xi, aj)− λjk)−
J∑

j=1

K∑

k=1

max {qjkdk(xi, aj)− λjk, 0}
}

+ ωi

}
(6.16)

Then, the problem given by Equation 6.16 can be reduced to a CM problem by using

the additional variable h as

CM:

min
xi,h

Zi
CM(xi, h) =h−

J∑
j=1

K∑

k=1

max {qjkdk(xi, aj)− λjk, 0} −
J∑

j=1

K∑

k=1

λjk + ωi (6.17)

s.t.
J∑

j=1

K∑

k=1

qjkdk(xi, aj) ≤ h. (6.18)

The CM problem given by Equation 6.17 – 6.18 can be solved by an Outer Approxi-

mation (OA) algorithm (Chen et al., 1998), which is run as long as it outputs columns with

negative reduced cost. A similar approach is also proposed by (Krau, 1997) to solve the PS

arising for the MWP case.

6.1.1.2. Pricing by Solving the Weber Problem with Limited Distances. The PS given by

Equation 6.14 – 6.15 can be considered as WPLD. In this variant of the WP, facilities are

located within a threshold distance from the customers. Solving the WPLD is equivalent

to producing all columns explicitly. Column p of facility i is generated by setting bp
jk = 1

when qjkdk(xi, aj) − λjk = qjk

(
cijkd(xi, aj) + ϕik + µ3

ij

) − λjk < 0 holds, otherwise we set

bp
jk = 0 for j = 1, . . . , J ; k = 1, . . . , K. Also, we set bp

JK+i∗ = 1 by which the correspond-

ing facility of column p is determined and bp
JK+i = 0 for i = 1, . . . , I and i 6= i∗. Note

that the PS can be geometrically interpreted as finding the location of facility i, which

lies on the intersection of circles whose centers are customer locations with a radius of

τijk = max
{

(
λjk

qjk
− ϕik − µ3

ij)/cijk, 0
}

for j = 1, ..., J ; k = 1, ..., K. When the location of

facility i is in the intersection of the circles, we can get a solution with negative reduced cost

value for the PS. Therefore, it suffices to consider only the intersection points of the circles

to find a negative reduced cost column which corresponds to an intersecting region.
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(Drezner et al., 1991) show that the number of distinct intersecting regions are bounded

by 2JK(JK−1) for the WPLD and propose a polynomial time algorithm to optimally solve

it. This polynomial time algorithm, which we term as the Feasible Subset Generation (FSG)

algorithm, is employed by (Righini and Zaniboni, 2007) within a CG procedure developed

for the MWP. We also use the FSG algorithm as a subroutine to solve the PS given by

Equation 6.14 – 6.15.

The FSG algorithm is run for each facility i and outputs a feasible subset (column)

list Pi for i = 1, ..., I. It is initialized with parameters λjk, qjk, ϕik, µ
3
ij and cijk. As the first

step, radii τijk drawn on the customer locations are calculated. Then, the FSG algorithm

performs the following steps for all customer pairs j′ and j′′ and commodity pairs k′ and

k′′ for j′ = 1, . . . , J − 1; j′′ = j′ + 1, . . . , J ; k′, k′′ = 1, . . . , K. The FSG algorithm fixes

a point a which lies on the intersection of two circles whose centers are located on the

customers j′ and j′′ for commodities k′ and k′′, respectively. Without loss of generality,

we can denote the centers of these circles as (j′, k′) and (j′′, k′′). All circles covering the

intersection point a other than the circles whose center are located on (j′, k′) and (j′′, k′′)

are used to construct a subset J . In other words, the subset J is constructed of all circles

covering a whose centers are located on the point (j′′′, k′′′) such that (j′′′, k′′′) 6= (j′, k′) and

(j′′′, k′′′) 6= (j′′, k′′) for j′ = 1, . . . , J−1; j′′ = j′+1, . . . , J ; j′′′ = 1, . . . , J ; k′, k′′, k′′′ = 1 . . . K.

Given the feasible subset J , additional subsets J1 = {J ∪ (j′, k′)} , J2 = {J ∪ (j′′, k′′)}
and J3 = {J ∪ (j′, k′) ∪ (j′′, k′′)} are generated as well. Then, subsets J , J1, J2 and J3 are

added to the feasible subset list Pi. Finally, the FSG algorithm outputs Pi and stops. For

each facility i, the FSG algorithm generates all possible subsets with negative reduced cost.

Consequently, we run the FSG algorithm I times and select subsets with negative reduced

costs among the elements of P =
I∪

i=1
Pi and we add them to the column set of SCLP. The

formal outline of the FSG algorithm is given in Figure 6.1.

6.1.2. Branch-and-Price Procedure

The optimum solution of the SCLP can be an integer or a fractional solution. In the

former case, we can deduce that the solution is also optimal for the SC problem. Otherwise,

a fractional solution to the SCLP implies that an optimal solution of the SC problem has not

been reached yet. One can resort to a BP algorithm to obtain the exact solution of the SC
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1. Set τijk := max
{(

λjk

qjk
− ϕik − µ3

ij

)

/cijk, 0
}

, j = 1, ..., J ; k = 1, ..., K and

Pi ← ∅.

2. For each pair (j′, k′), j′ = 1, . . . , J − 1; k′ = 1, . . . , K; and (j′′, k′′),

j′′ = j′ + 1, . . . , J ;k′′ = 1, . . . , K, set J ← ∅,

if d(aj′ , aj′′) < τij′k′ + τij′′k′′ , then construct a set F of intersection points

a, i.e., F = {a1, a2} by using aj′ , τij′k′ , aj′′ and τij′′k′′ .

For each point a ∈ F and each pair (j′′′, k′′′), j′′′ = 1, . . . , J ;

k′′′ = 1, . . . , K,

if (j′, k′) 6= (j′′, k′′) 6= (j′′′, k′′′) and d(a, aj′′′) < τij′′′k′′′ , then set

J ← J ∪ (j′′′, k′′′).

Set Pi ← Pi ∪ J ∪ {J ∪ (j′, k′)} ∪ {J ∪ (j′′, k′′)}.

3. Report feasible subset (column) list Pi for facility i.

Figure 6.1. The FSG algorithm.

problem by using a fractional solution of the SCLP. For that purpose, a branching scheme

developed by (Ryan and Foster, 1981) for the crew scheduling problem can be applied within

the BP algorithm for the MWP variant.

Let j′ and j′′ be two customers and k′ and k′′ be two commodities. The branching

scheme devised by (Ryan and Foster, 1981) is based on partitioning the customer subsets

into two branches which are denoted by B0 and B1. In B0, two customer-commodity pairs

{(j′, k′), (j′′, k′′)} are either included in a subset or none of them are included in this subset,

i.e., the customer-commodity pairs which satisfy bp
j′k′ = bp

j′′k′′ ∈ {0, 1}. In B1, only one

or none of the customer-commodity pair {(j′, k′), (j′′, k′′)} is included in a subset, i.e., the

customer-commodity pairs which satisfy bp
j′k′ + bp

j′′k′′ ≤ 1. The fractional columns can have

several customer-commodity pairs either in common or not. The customer-commodity pairs

which are not covered by all fractional columns are subject to branching.

In order to select the branching customer-commodity pair, the set of fractional columns

is divided into two subsets. In one subset, each column covers both or none of the customer-

commodity pairs. In the other subset, each column covers exactly one of the customer-

commodity pairs. The branching customer-commodity pair can then be selected by con-

sidering the smallest difference between the sum of these two subsets of fractional solution
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values for all pairs as mentioned in (Righini and Zaniboni, 2007).

During the run of the BP algorithm we have to solve a modified PS considering the

customer-commodity pairs within the subsets. The FSG algorithm can be easily adapted

for the BP. However, the reduction of the PS into a CM problem requires additional efforts.

In practice, one should also penalize the columns which do not satisfy current branchings

of the customer-commodity pairs. The BP algorithm that we have sketched out requires

excessive CPU times. Even for the CMWP, namely for the single commodity case, the

BP algorithm by (Boyacı, 2009) is unable to solve large instances. We skip the details of its

implementation here. In order to produce a lower bound on the MCMWP, the exact solution

of the LR subproblem is not absolutely required. Indeed, any lower bound ZLB which satisfies

ZLB ≤ Z∗
LR3(ϕ,µ3) can also be employed within the SO algorithm. Therefore, we prefer to

solve the SCLP since the lower bound obtained with its solution, say Z∗
SCLP (ϕ,µ3), satisfies

Z∗
SCLP (ϕ,µ) ≤ Z∗

SC(ϕ,µ) = Z∗
LR3(ϕ,µ3) ≤ Z∗.

6.2. Using Discrete Approximations for the Lagrangean Subproblem

The LR subproblem given by Equation 6.3 – 6.5 can also be approximated by a MILP

formulation, namely the UDAP (i.e., the Uncapacitated DAP) which can be solved to opti-

mality with the purpose of producing lower bounds on the objective value of the LR subprob-

lem. This can be achieved when a lower bounding norm function is used instead of d(âg, aj)

where âg is the two dimensional location vector of a given candidate point g. The idea is the

same as discussed in Chapter 5 where DA lower bounds are given on the MCMWP. Here,

the MDAP is replaced with UDAP; it is the approximation of the LR subproblem that is

a MWP variant. These lower bounds are also lower bounds on the optimal value of the

MCMWP. Let the binary variable ỹijkg be equal to 1 if and only if the demand of customer j

for commodity type k is met by facility i located at candidate location g and let the binary

variable ṽig be equal to 1 if and only if a facility i is opened at candidate location g. Then,

the UDAP formulation which can be used to produce lower bound on the LR subproblem

can be stated as follows.
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UDAP:

min ZUDAP (ϕ, µ3) =
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

qjkc̃ijkgỹijkg − ξ (6.19)

s.t.
I∑

i=1

G∑
g=1

ỹijkg = 1 j = 1, ..., J ; k = 1, ..., K, (6.20)

G∑
g=1

ṽig = 1 i = 1, ..., I, (6.21)

ỹijkg ≤ ṽig i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K; g = 1, ..., G, (6.22)

ỹijkg ∈ {0, 1} i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K; g = 1, ..., G, (6.23)

ṽig ∈ {0, 1} i = 1, ..., I; g = 1, ..., G, (6.24)

where c̃ijkg = cijkd(âg, aj) + ϕik + µ3
ij. Besides, constraints given by Equation 6.21 ensure

that a facility i is opened only on one candidate point g and constraints given by Equation

6.22 enforce that facility i located on a candidate point g could serve a customer only if it

is opened on the corresponding candidate point.

Notice that the rectilinear distance MWP can be solved to optimality by UDAP when

the candidate facility locations are selected as the intersection points of vertical and hori-

zontal lines drawn on customer locations. Other block norms can also be employed within

the objective function of the UDAP in order to obtain an approximating solution of the

MWP with the `r distance function for 1 ≤ r < ∞. However, a block norm ‖.‖B can only

guarantee a lower bound on the MWP when ‖x‖B ≤ ‖x‖r is satisfied for any vector x with

1 ≤ r < ∞ for some r. Given multiplier vectors ϕ and µ3, let Z∗
UDAPB(ϕ,µ3) be the opti-

mal value of the UDAP when a block norm B is used and let Z∗
LR3(ϕ, µ3) be the optimum

value of the MWP with `r-norm for 1 ≤ r < ∞. When ‖.‖B ≤ ‖.‖r is satisfied for some

r with 1 ≤ r < ∞, then Z∗
UDAPB(ϕ, µ3) ≤ Z∗

LR3(ϕ,µ3) also holds. Consequently, we can

use the `∞-norm and `1-norm within the objective function of the UDAP formulation. The

inequalities given by Equation 5.42 and 5.43 also hold for the UDAP formulation. Then,

Z∗
UDAP∞

(ϕ,µ3) ≤ Z∗
LR3(ϕ,µ3) and 2

1−r
r Z∗

UDAP1
(ϕ,µ3) ≤ Z∗

LR3(ϕ, µ3) are also satisfied. In

addition to the CG based lower bounds, we use the `1 and `∞-norms to produce two other

lower bounds on the LR subproblem within the MS algorithm.
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6.3. Increasing the Efficiency of the Lagrangean Relaxation Scheme

We present two acceleration strategies which increase the efficiency of the LR scheme.

The first strategy is the use of heuristic bounds within the MS algorithm. The second one

addresses the acceleration of the CG procedure which requires the solution of the PS. For that

purpose, we show two different schemes one of which can be used with the DC optimization

approach and the other one can be employed with the FSG algorithm when we generate the

columns.

6.3.1. Using Heuristic Upper Bounds within the Modified Subgradient Algo-

rithm

At each step of the MS algorithm, for fixed ϕ and µ3, we solve the LR subproblem

and obtain the allocation quantities. These allocation values constitute the input of the

MCALA heuristic which gives valid ZUB values. In case ZUB value is better than Zbest
UB the

MS algorithm updates Zbest
UB = ZUB. Notice that during the run of the MS algorithm it

is guaranteed that the relation Z∗ ≤ Zbest
UB holds. On the other hand, the MS algorithm

also computes ZLB values and updates Zbest
LB , until the stopping condition is satisfied. The

relation Zbest
LB ≤ Z∗ ≤ Zbest

UB also holds at each iteration of the MS algorithm.

The most painstaking part of the MS algorithm is the excessive CPU time requirement

for the solution of the lower bounding problem (i.e., LR subproblem). One approach to

produce lower bounds is to solve the equivalent SC problem given by Equation 6.6 – 6.9 via

a BP algorithm and obtain the Z∗
SC(ϕ,µ3) values as the ZLB values. Note that Z∗

SC(ϕ, µ3) =

Z∗
LR3(ϕ,µ3) holds. However, solving neither the Lagrangean subproblem given by Equation

6.3 – 6.5 nor its equivalent SC problem given by Equation 6.6 – 6.9 by running a BP algorithm

is tractable at each step of MS algorithm due to the excessive CPU time requirement. To

alleviate this drawback, one strategy may be to resort solving the SCLP via CG procedure

and to produce Z∗
SCLP (ϕ, µ3) values which can be used as ZLB in MS algorithm rather than

solving the SC problem given by Equation 6.6 – 6.9 to optimality. Note that Z∗
SCLP (ϕ,µ3) ≤

Z∗
LR3(ϕ,µ3) ≤ Z∗ holds during the run of MS algorithm. However, to obtain Z∗

SCLP (ϕ,µ3),

at each step of the CG procedure, either a DC algorithm or the FSG algorithm is run as a

subprocedure, which may also require drastic CPU times especially for large instances.
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As the above discussion attests, in practice we can make use of neither the BP algorithm

nor the CG procedure within the MS algorithm. Therefore, we suggest running a heuristic

algorithm to efficiently solve the LR subproblem, with the purpose to update faster the

Lagrangean multiplier vectors ϕ and µ3. Although heuristic solution values ZH(ϕ, µ3), need

not satisfy the relation ZH(ϕ,µ3) ≤ Z∗ ≤ Zbest
UB , we can actually use ZH(ϕ,µ3) as ZLB within

the MS algorithm as long as ZH(ϕ,µ3) ≤ Zbest
UB is satisfied. When ZH(ϕ,µ3) > Zbest

UB holds at

some step of the MS algorithm, we re-adjust the latest Lagrangean multiplier vectors ϕ and

µ3. For that purpose, we solve the SCLP via CG procedure and re-update the Lagrangean

multiplier vectors ϕ and µ3 such that the relation ZLB = ZSCLP (ϕ, µ3) ≤ Z∗ ≤ zbest
UB is

maintained. Then, we continue to run the heuristic algorithm as long as ZH(ϕ, µ3) ≤ Zbest
UB

holds (otherwise we obtain Z∗
SCLP (ϕ,µ3) to adjust ϕ and µ3). When the MS algorithm

converges or the stopping condition is satisfied, we solve either the SCLP via CG procedure

or block norm based lower bounding MILP as the final step in order to make sure that

Zbest
LB ≤ Z∗ is satisfied. Notice that as a result of the foregoing discussion, the use of a

heuristic solution as ZLB, does not contradict with the theorems given by (Polyak, 1967,

1969) on the convergence of the MS algorithm. The convergence of the classical SO algorithm

is guaranteed as long as the sequence of step sizes and their summation converge to 0

and ∞, respectively (Polyak, 1967, 1969). Indeed, the MS algorithm also has a step size

sequence satisfying these properties. Moreover, an upper bound Zbest
UB satisfying Zbest

UB ≥ Z∗

and current lower bound ZLB satisfying ZLB ≤ Zbest
UB are used within the update step of

the MS algorithm. Here, ZLB always satisfy ZLB ≤ Zbest
UB (i.e., when ZH(ϕ,µ3) ≥ Zbest

UB

holds, then ZLB is calculated by employing a valid lower bounding procedure such that

ZLB ≤ ZLR3(ϕ, µ3) ≤ Zbest
UB is satisfied). Note that this procedure still uses the negative of

the current subgradient to determine a descent direction and the norm of the subgradient.

Hence, lower and upper bounds on the objective value are used to calculate a step length

while updating the multiplier vector at every step. Clearly, the choice of an efficient heuristic

algorithm, which will be used within the MS algorithm to compute the ZH(ϕ, µ3) value, is

a matter of utmost importance. For that purpose, we employ the Uncapacitated Discrete

Approximation Heuristic (UDAH) which is a variant of the MDAH. The UDAH also consists

of two phases. In the first phase, the UDAP which is the approximation of the MWP variant

given by Equation 6.3 – 6.5 is solved. In the second phase, given the optimal locations

obtained from the solution of UDAP, an ALA heuristic is run to obtain an improved solution.

In summary, to accelerate the MS algorithm the UDAH is run to solve the Lagrangean
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subproblem at each step as long as ZUDAH(ϕ, µ3) ≤ Zbest
UB holds. In case ZUDAH(ϕ,µ3)

exceeds Zbest
UB at some step of the MS algorithm, a lower bounding subproblem (SCLP via

CG procedure or block norm based lower bounding approach) is solved in order to re-update

the Lagrangean multipliers ϕ and µ3. At the final step of the MS algorithm the solution of

the SCLP or the approximating MILP is used to ensure that we have a valid lower bound on

the MWP variant, i.e., Zbest
LB = Z∗

SCLP (ϕ,µ3) ≤ Z∗ is satisfied. The use of Z∗
UDAP∞(ϕ,µ3)

or 2
1−r

r Z∗
UDAP1

(ϕ, µ3) which are calculated by solving the lower bounding block norm based

approximations may also substitute Z∗
SCLP (ϕ,µ3). The strategy of using heuristic solutions

of the LR subproblem in order to accelerate the MS algorithm can also be adapted to other

optimization problems with intractable subproblems that can be solved by efficient heuristics.

Improving the Efficiency of Heuristic Upper Bounds: The efficiency of the UDAH can be

further improved by a suitable LR scheme. Although such a LR scheme can increase the

speed of obtaining heuristic upper bounds, it can also deteriorate the accuracy that will

be obtained from the UDAH. In case these upper bounds ZH(ϕ,µ3) exceed the best upper

bound Zbest
UB , then the MS algorithm reduces to the classical SO algorithm resulting in a

very inefficient solution approach for the MCMWP. We suggest relaxing constraints given

by Equation 6.20 of the UDAP formulation associating Lagrangean multipliers β4 to obtain

the following LR subproblem

RUDAP:

min ZLR4(β
4) =

I∑
i=1

J∑
j=1

K∑

k=1

L∑

l=1

(qjkc̃ijkl − β4
jk)ỹijkl +

J∑
j=1

K∑

k=1

β4
jk − ξ (6.25)

s.t. Equation 6.21− 6.24. (6.26)

Notice that the Lagrangean subproblem given by Equation 6.25 and 6.26 can be de-

composed into I subproblems which can be solved similar to the LR schemes described for

MDAP1. Unfortunately, we should state that the accuracy of the RUDAP is not quite sat-

isfactory. Actually, we try to avoid from a time-consuming SO algorithm and the RUDAP

becomes the classical SO algorithm when we use it to obtain heuristic upper bounds. In

short, we prefer to solve the UDAP exactly to find heuristic upper bounds by UDAH instead

of its relaxed version RUDAP.
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6.3.2. Improving the Efficiency of Column Generation Procedure within the

Modified Subgradient Algorithm

Two different acceleration strategies are used within the CG procedure. The first

acceleration strategy is an heuristic algorithm which is devised to generate additional columns

with negative reduced cost with D.C. programming approach. (Krau, 1997) examines this

algorithm for the MWP. Once the CM problem is solved, its outcome is the corresponding

facility location say xi. Then a column p, which consists of zero-one entries for each customer-

commodity pair, is constructed by using xi. Namely, given xi, the following formula is used

in order to set the values of column elements:

bp
jk =





1, if qjkdk(xi, aj)− λjk < 0

0, otherwise
j = 1, . . . , J ; k = 1, . . . , K. (6.27)

Notice that for the remaining I entries of column p, we set bp
JK+i = 1 and bp

JK+i = 0

for i∗ = 1, . . . , I with i∗ 6= i. The column p is added to the current SCLP formulation

and facility i is relocated according to the assignments of column p. Afterwards, a new

column p′ is constructed with the latest facility location xi according to Equation 6.27. p′

is added to the current SCLP and we set p = p′. All these steps start from scratch until the

current p′ becomes stable and no changes occur on its elements. Each column p′ added to the

SCLP has a negative reduced cost less than the ones of the previously added columns. With

this heuristic algorithm, the number of negative reduced cost columns to be added after

solving a PS increases and the convergence of the CG procedure with D.C. programming is

accelerated. Let Jp be the set of customer-commodity pairs that belong to column p. We

provide a formal outline of the heuristic algorithm associated with D.C. programming in

Figure 6.2.

The other acceleration strategy, which increases the efficiency of the LR scheme, focuses

on the prevention of all possible columns within the CG procedure. Recall that the FSG

algorithm generates all possible subsets of customer-commodity pairs which have negative
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1. Construct column p using Equation 6.27 and set Pi ← Pi ∪ p.

2. Find current facility location xi using p such that

min
xi

{
J∑

j=1

K∑

k=1

b
p

jkqjkdk(xi, aj)

}

.

3. Set ν = 0. For each pair (j, k), j = 1, . . . , J ;k = 1, . . . , K,

if qjkdk(xi, aj) − λjk ≥ 0 and (j, k) ∈ Jp, then set Jp ← Jp \ (j, k) and

ν = ν + 1,

else if qjkdk(xi, aj) − λjk < 0, then set Jp ← Jp ∪ (j, k) and ν = ν + 1.

4. if ν > 0, then construct p′ by Equation 6.27, set Pi ← Pi ∪ p′ and

p = p′, go toStep 2. else go to Step 5.

5. Add all columns p ∈ Pi to the current SCLP.

Figure 6.2. Heuristic algorithm for the CG with D.C. programming.

reduced costs in polynomial time. All columns corresponding to these subsets are candidates

to be added to the SCLP. Nevertheless, the number of columns which enter into the LP

model can be restricted by using some lower bounding schemes on a given subset. Let

Jp be a customer-commodity pair subset of facility i for column p, the reduced cost can

be restated as cp(i) =
∑

(j,k)∈Jp

qjkdk(xi, aj) −
(

∑
(j,k)∈Jp

λjk − ωi

)
. When we substitute the

first term of the reduced cost by a lower bound, we obtain a lower bound on the reduced

cost value cp(i). In case this lower bound on the reduced cost is negative, we can add the

corresponding column to the current SCLP. Otherwise, we neglect this column. (Righini and

Zaniboni, 2007) propose two such lower bounding schemes for the MWP case. We adapt

them within our CG procedure in order to eliminate some of the subsets generated with the

FSG algorithm before considering their addition to the SCLP. These two lower bounding

schemes are presented below.

The first one of the lower bounding scheme is originally devised by (Drezner, 1984) for

the WP. Let a0 be the center of gravity of a given subset Jp for a facility i. The following

constitutes a valid lower bound on cp(i).
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LB1p(i) = min
xi1





∑

(j,k)∈Jp

qjkcijk
|a01 − aj1| |xi1 − aj1|

d(a0, aj)





+ min
xi2





∑

(j,k)∈Jp

qjkcijk
|a02 − aj2| |xi2 − aj2|

d(a0, aj)





+
∑

(j,k)∈Jp

qjk (ϕik + µij)−

 ∑

(j,k)∈Jp

λjk − ωi


 ≤ cp(i) (6.28)

In LB1p(i) a sorting algorithm is run as a subroutine in order to solve one dimensional

WP with the rectilinear distance function and hence to optimally locate each facility i. The

other lower bounding scheme is used by (Righini and Zaniboni, 2007) for the MWP case and

we adapt it to our case as follows:

LB2p(i) =
1

J ·K − 1





∑
(j,k),(j′,k′)∈Jp

min
{
qjk

(
cijkd(aj, aj′) + ϕik + µ3

ij

)
,

qj′k′ (cij′k′d(aj, aj′) + ϕik′ + µij′)}





−

 ∑

(j,k)∈Jp

λjk − ωi


 ≤ cp(i) (6.29)

6.4. The Modified Subgradient Algorithm

We present a formal outline of the MS algorithm in Figure 6.3 and explain some

technical details on the computation of the feasible solutions for the MCMWP. The upper

bounds are determined by the MCALA heuristic which is initialized with the allocation

values wijk = w′
ijkqjk obtained from the solution of the LR subproblem. The CG procedure

ends up with a solution in which some columns are assigned a positive weight. These are

denoted by op which can take values between 0 and 1, i.e., 0 ≤ op ≤ 1, since we consider only

the SCLP. For each op > 0, the corresponding column p is evaluated. It is already known

that column p belongs to facility i. This is denoted by the last I entries of each column and

facility i has value 1 in its ith entry and 0 for the rest. Furthermore, the first J×K elements

of the column indicate whether customer j of commodity k is served by this column and

consequently by the corresponding facility i. Clearly, if customer j of commodity k is served
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or covered, a value of 1 appears on the corresponding entry of the column and 0 otherwise.

Now, we can set the allocation values of the current solution by using these columns and

their op values. We set w′
ijk = opb

p
jkb

p
JK+i and thus the corresponding allocation values can

be determined by wijk = w′
ijkqjk. Note that in case the bp

jk values are fractional, then wijk

values lie in the interval 0 < wijk < qjk instead of taking either 0 or qjk values, as in the case

of the MWP. The corresponding allocation values need not be feasible for the MCMWP; it

is very likely that they violate both of the constraints given by Equation 2.3 and 2.5, which

have already been relaxed. The constraints that are not satisfied by this solution vector

(allocation vector) constitute the subgradients, which are used to update the multipliers ϕ

and µ3. Then the facility locations can be calculated by the Weiszfeld’s algorithm with

distance values multiplied by wijk’s. Running MCALA initialized at these facility locations

gives an upper bound on the MCMWP, which is used to update the best upper bound Zbest
UB

within the MS algorithm. In addition, the initial Zbest
UB values need not be selected as ∞.

Actually, these are the reasons why we have employed the CL-RMDA1 in our calculations.

1. (Initialization) Set ϕik = 0,µ3

ij = 0 for all i, j and k, π = 2, Zbest
LB = −∞,

Zbest
UB = ∞.

2. Repeat Step 3 to Step 6 until the algorithm converges.

3. Find heuristic bound ZH(ϕ,µ3) with Lagrange multipliers ϕik and µ3

ij.

if ZH(ϕ,µ3) > Zbest
UB , then find a valid lower bound ZLB with ϕik and µ3

ij

on the optimum Z∗ and update Zbest
LB if necessary (i.e., Zbest

LB = max{ZLB,

Zbest
LB }). Otherwise, set ZLB = ZH(ϕ,µ3).

4. Find an upper bound ZUB on Z∗
if ZUB < Zbest

UB , then set Zbest
UB = ZUB,

5. Update multipliers by setting ϕik = ϕik + T1(
J∑

j=1

w′
ijkqjk − sik) and

µ3

ij = max{0, µ3

ij + T2(
K∑

k=1

w′
ijkqjk − uij)} where

T1 = π(Zbest
UB − ZLB)/

I∑

i=1

K∑

k=1

(
J∑

j=1

w′
ijkqjk − sik)

2 and

T2 = π(Zbest
UB − ZLB)/

I∑

i=1

J∑

j=1

(
K∑

k=1

w′
ijkqjk − uij)

2.

6. if ZLB did not improve within the last 30 iterations, then set π = π/2.

7. Find a final valid lower bound ZLB with the best ϕik and µ3

ij on Z∗,

update Zbest
LB as necessary and output Zbest

LB and Zbest
UB .

Figure 6.3. The Modified Subgradient (MS) algorithm.
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7. ESTIMATING STATISTICAL BOUNDS ON THE

OPTIMAL OBJECTIVE VALUE

Heuristics are systematic procedures which look for feasible solutions of optimization

problems at reasonable computational times. Hence, it becomes possible to generate a ran-

dom sample of objective values by running a randomly initialized heuristic. Presumably,

objective values are independent of each others and distributed according to the same prob-

ability distribution. Then, an immediate question is how to take advantage of this random

sample of objective values to estimate the optimal value Z∗ of the problem. (Brandeau and

Chiu, 1993) experimentally study the worst case behavior of the Cooper’s ALA heuristic and

employ it to create a random sample which is then used to statistically estimate Confidence

Intervals (CIs) for the optimal value of MWP. In this chapter4 we follow this line of research

and present statistical procedures to estimate the optimal value of the MCMWP as well as

other Combinatorial Optimization Problems (COPs). We use heuristic solution procedures

presented in Chapter 4 and Chapter 5 which can be randomized through their initial con-

ditions for the MCMWP. These are C-MCALA, C-MDRR and MDA1 heuristics which are

randomly initialized within the convex hull of the customer locations.

7.1. Point and Interval Estimators

One possibility is to use the Extreme Value Theory (EVT) and benefit from Fisher

and Tippett’s theorem (Fisher and Tippett, 1928). EVT deals with the asymptotic behav-

ior of extreme values (i.e., the minimum or maximum values) in samples and tries to fit

probability distributions to extreme values. The well-known Fisher and Tippett’s theorem

is as follows. Consider M independent samples, each of size M , obtained from the same

continuous distribution bounded from below (above) by A. Let Zm denote the minimum

(maximum) value of sample m, then for M large enough, Zm for m = 1, . . . ,M are Weibull

distributed with location parameter A. Recall that the probability density and probability

4The article by (Akyüz et al., 2010c), the technical report by (Akyüz et al., 2008) and the conference
proceeding by (Akyüz et al., 2009b) are partially based on this chapter.



65

distribution functions of the Weibull distribution are respectively

f(Z) =

(
D

BD

)
(Z − A)D−1 e

[
−(Z−A

B )
D

]

, Z ≥ A > 0, B > 0, D > 0 (7.1)

and

F (Z) = 1− e

[
−(Z−A

B )
D

]

, (7.2)

where A, B and D denote the location, scale and shape parameters, respectively.

Note that the location parameter of the Weibull distribution gives the minimum value

of the distribution. The Fisher and Tippett’s theorem is valid for any continuous distribution

from which the sampling is performed. As a result, it is possible to treat an objective value

obtained by a randomly initialized run of the heuristic as the minimum of a large random

sample and claim that the distribution of the objective values calculated by the heuristic is

approximately Weibull. Then, any point estimate of the location parameter of the Weibull

distribution estimated using these heuristic objective values yields a point estimate on the

minimum objective value. Moreover, the bounds of any interval estimate of the location

parameter give a lower bound and an upper bound for the optimal value of the problem with

certain confidence level.

Several researchers have employed this result to provide point and interval estimators

of Z∗ for various difficult COPs. The early study of (McRoberts, 1971) on the facility layout

problem is the first attempt to propose a graphical search method for the estimation of the

Weibull location parameter A, namely Z∗. (Dannenbring, 1977) employs both graphical

search and (Gumbel, 1958)’s method to derive an analytical point estimator of the optimal

value of the flow-shop sequencing problem. The first systematic procedure of the point

estimation using EVT is for the famous Traveling Salesman Problem (TSP) (Golden, 1977,

1978). This procedure is later improved by (Golden and Alt, 1979) to compute CIs for the

optimal value of large COPs. The author has defined ZUB = min{Zm : 1 ≤ m ≤ M}, where

Zm is the minimum objective value in sample m, and have shown that

Pr{ZUB −B ≤ A ≤ ZUB} = 1− e−M , (7.3)
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which in fact means that [ZUB −B, ZUB] is a 100(1− e−M)% CI for the location parameter

A, namely Z∗. Notice that the confidence level is almost 1 even for small values of M .

(Golden and Stewart, 1985) apply this approach on the TSP and report successful results.

(Los and Lardinois, 1982) suggest to use a subset of size M
′ ≤ M local optima with distinct

values Z1, Z2, . . . , ZM
′ to fit a Weibull distribution. The reason for this suggestion is that the

Fisher and Tippett’s theorem assumes the independence of M samples; nevertheless having

identical local optima in the set of M samples is equivalent to repeating the same sample

several times. They have also indicated that although the sampling is done by using M
′

distinct local optima, they are gathered by the same heuristic and each solution attempts to

reach the same point, resulting in a violation of the independence assumption. It should be

noted that (Golden and Alt, 1979) consider a local optimal solution to be the extreme values

of a sample when they apply a randomly initialized heuristic and treat the intermediate

heuristic step solutions to constitute the corresponding sample. According to (Los and

Lardinois, 1982) those samples can have different sizes because the number of intermediate

heuristic steps can be different until the convergence of the heuristic. Even if they were equal

the independence of samples is again violated since each intermediate step reaches the same

local optimum. Therefore, the authors offer to take M
′
samples each having M distinct local

optima. They apply Fisher and Tippett’s theorem to these M
′
observations each of which

being the minimum of a sample with m distinct values and developed the formula

Pr(ZUB − B

Φ
≤ A ≤ ZUB) = 1− exp(−M

′

ΦD
), (7.4)

where Φ is any real number. The main advantage of Equation 7.4 over Equation 7.3 is its

explicit dependence on the confidence level. In other words, 100(1− ζ)% confidence interval
[
ZUB − B

Φ
, ZUB

]
for the location parameter A can be achieved by letting

Φ = (−M
′

ln ζ
)

1
D . (7.5)

Notice that the confidence level is fixed to 100(1 − ζ)% in Equation 7.3, which is not

the case for Equation 7.4. However, there is a specific problem with the Los and Lardinois’

Equation 7.4: it involves the shape parameter D, which can make the CIs wider or narrower

than it should be due to the direct dependence on D. As a remedy, one can consider to take

samples of equal size and apply Golden and Alt’s procedure in order to avoid from direct

dependence of the CI on the Weibull shape parameter.
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A critic for the Los and Lardinois’ approach is made by (Wilson et al., 2004) who state

that two heuristic solutions having the same objective value need not necessarily indicate

that they are repetitions of the same sample. That is to say, they may stand for two

different feasible solutions. They have also noted that considering only distinct local optima

can prevent us from revealing the actual sampling distribution.

In any case, the Fisher and Tippett’s theorem requires that the parent distribution is

continuous and the samples of equal size drawn from the same population are independent.

The independence assumption of the Fisher and Tippett’s theorem is verified by the inde-

pendence tests. The assumption that the parent distribution is continuous does not hold for

the discrete optimization problems since the validity of the Fisher and Tippett’s theorem has

not been shown for the discrete distributions. However, the discrete optimization problems

have a huge number of solutions and thus the approximation of a discrete distribution by a

continuous distribution does not harm this assumption in practice as claimed by (Los and

Lardinois, 1982). On the other hand, we should point out that the MCMWP is a continu-

ous optimization problem which yields a continuous parent distribution. Very encouraging

results based on the Fisher and Tippett’s theorem have been reported. These results are

indicated with EVT on the third column of Table 7.1 where we present applications of

statistical bound estimation procedures on several COPs.

7.2. The Limiting Probability Distribution Approach

The Limiting Probability Distribution Approach (LPDA) tries to estimate upper (lower)

bounds for independent random observations belonging to the same probability distribution

with a confidence level of 100(1 − ζ)% after assuming that the density function is twice

differentiable. This method employs limiting probability distributions which are often in the

form

P (ZLB ≤ Z∗) = 1− ζ, (7.6)

where ZLB is a lower bound on the optimal value Z∗. Given that the observations are in

increasing order, namely Z1 is the smallest, and Zm is the mth smallest value in the sample,

it is possible to set
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ZLB = Z1 −zζ(Zm − Z1). (7.7)

Here, Zm is frequently selected as the second smallest value, namely Z2. There are

several ways of choosing the constant zζ . In their early work on the point estimation and

confidence limits for the lower bound of a random variable, (Robson and Whitlock, 1964)

suggest

z1
ζ = (1− ζ)/ζ. (7.8)

The authors have used z1
ζ in the determination of an approximate 100(1− ζ)% lower

confidence limit of a truncation point Z or a lower bound using a sample of size M , from

the distribution F (Z) such that Z ≤ Z and 0 < F (Z) < 1.

This choice of constant zζ is later modified for the distributions having two truncation

points at both ends as

z2
ζ =

{
(1− ζ)−ρ − 1

}−1
(7.9)

by (Cooke, 1979). Here, ρ is a positive number and the author recommends to select its

value between 1/5 and 1. Note that for ρ = 1, z2
ζ equals to z1

ζ . For ρ < 1, the constant z2
ζ

yields looser lower bounds on Z∗ than the ones obtained by using z1
ζ . (Boender et al., 1982)

employ z2
ζ for ρ = 2, later on. Another suggestion is realized by (Van Der Watt, 1980):

z3
ζ =

{
(1− ζ1/(m−1))−ρ − 1

}−1
. (7.10)

Again m is a positive integer less than or equal to the sample size standing for the

mth smallest observation within the sample. Note that for m = 2, z3
ζ is equivalent to

z2
ζ . (Van Der Watt, 1980) has pointed out that z3

ζ is asymptotically more efficient than

the ones proposed by (Robson and Whitlock, 1964) and (Cooke, 1979). Furthermore, the

expected length of the CI proposed by (Van Der Watt, 1980) is considerably smaller than

the expected length of the one proposed by (Cooke, 1979). According to the experimental

results reported by (Monroe, 1982), z3
ζ performs better than both z1

ζ and z2
ζ . There are

only very few applications of the LPDA in the literature as presented in Table 7.1.
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7.3. The Goodness-of-fit Approach

The Goodness-of-fit Approach (GFA) is based on fitting an empirical distribution func-

tion to the population distribution. Using the empirical distribution function a lower bound

for the population can be obtained with a given confidence level. For that purpose, poly-

nomial functions (e.g., second or higher order) may be employed as approximations to the

population distribution. This idea can also be extended to optimization problems when

their objective values are considered as our population and it is required to fit a probability

distribution to the objective values. However, this task is not trivial since the distribution

of the objective values is not known a priori.

For a minimization problem, the GFA starts with an initial valid lower bound ZLB and

iteratively progresses by increasing the value of ZLB as long as a predefined goodness-of-fit

measure (e.g., χ2) improves. The value of ZLB corresponding to the best goodness-of-fit

value yields an estimate for the lower bound of the optimal value.

The methods adopting the GFA differ primarily in the goodness-of-fit measure, the

form of the fitted distribution function, the parameter estimation procedure for the corre-

sponding empirical distribution function and the number of observations used to execute

the calculations (Monroe, 1982). For further details on the GFA, we refer to the works by

(Hartley and Pfaffenberger, 1969) and (Liau et al., 1973).

7.4. Procedures to Estimate Weibull Parameters

The estimation of the Weibull parameters is a critical issue in the application of the

EVT. Basically, three type of estimators are used: Least Square Estimators (LSEs), Simple

Point Estimators (SPEs) and Maximum Likelihood Estimators (MLEs).

7.4.1. The Least Squares Error Estimators

(Golden, 1977) adapts the Clarke-Wright saving heuristic (Clarke and Wright, 1964)

for the solution of the TSP and employ this heuristic to estimate the global optimal solution

of the TSP. In addition, (Golden, 1977) pursues (McRoberts, 1971)’s method and proposes a

LSE for the location parameter A. By taking logarithms of the Weibull distribution function
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given by Equation 7.2 twice (Golden, 1977) obtains

D ln(Z − A)−D ln B = ln [− ln(1− F (Z))] . (7.11)

Observe that when the location parameter A of the Weibull distribution is fixed

then Equation 7.11 can be considered as the equation of a regression line of the form

D1ZA + D2 = f(ZA) with independent variable ZA = ln(Z − A), dependent variable

f(ZA) = ln [− ln(1− F (Z))] , slope D1 = D and intercept D2 = −D ln B. Their values

can be estimated using the least square analysis. Given a fixed value of the location param-

eter A, it is possible to find D and D ln B, and hence to obtain the scale parameter B and

the shape parameter D. By setting different values for the location parameter A, different

values of the scale parameter B and the shape parameter D can be obtained. Therefore, this

procedure is repeated for different values of location parameter A until the largest correlation

coefficient is obtained. (Golden, 1977) notes that when the absolute value of the correlation

coefficient is close to 1 then this implies that there is a strong linear relationship between

the dependent and independent variables. For the other case, namely when the absolute

value of the correlation coefficient is not close to 1, then the null hypothesis, “the heuristic

solutions are Weibull distributed”, can be rejected.

(McRoberts, 1971) refers to the linear regression version of the LSE, which is imple-

mented in several studies (Brandeau and Chiu, 1993; Dannenbring, 1977; Golden, 1977;

Sastry and Pi, 1991), as the graphical search. A nonlinear regression version of the LSE is

proposed by (Wilson et al., 2004) where the authors employ the Nelder-Mead simplex search

(Nelder and Mead, 1965) in order to find the minimum of the corresponding nonlinear least

squares error function in terms of Weibull parameters.

7.4.2. Simple Point Estimators

The SPEs or analytical estimators of the Weibull distribution are proposed by several

authors. There are mainly four estimators for the location parameter. Let Z1 ≤ Z2 ≤ . . . ≤
ZM be an ordered sample from a Weibull distribution with unknown location parameter A.

The first estimator
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Â1 = 2Z1 − Z2 (7.12)

is originally proposed by (Robson and Whitlock, 1964) and used by (Golden and Alt, 1979)

and (Dannenbring, 1977). Another estimator is devised by (Dubey, 1967):

Â2 =
Z1ZM − Z2

2

Z1 + ZM − 2Z2

. (7.13)

It is also employed by (Zanakis, 1979) and (Zanakis and Mann, 1982). Note that as Z2

tends to Z1, both Â1 and Â2 approach to Z1, which makes them biased. We can expect that

Â2 would be a more accurate estimator than Â1, since Â2 makes use of 3 observations rather

than 2 as Â1 does. However, (Muralidhar and Zanakis, 1992) show through Monte Carlo

simulation experiments that Â1 provides a much closer estimate of the location parameter

than Â2 in particular when the shape parameter is close to 1. By using the fact that an

estimator can be considered to be more effective if it has lower bias and inspired by the

second estimator Â2, (Muralidhar and Zanakis, 1992) develop a generalization of Â2, which

is known as the Minimum-Bias Percentile (MBP) estimator:

Â3 =
Z1ZM − Z2

m1

Z1 + ZM − 2Zm1

. (7.14)

Here, Zm1 is selected among M observations such that Â3 provides the minimum bias es-

timator of the location parameter A. The authors suggest that the best estimation can be

done with the choice m1 = d0.8829M0.6563e. (Muralidhar and Zanakis, 1992) note that in

most cases MBP estimator is better than both Â1 and Â2 since it has smaller mean bias

than both Â1 and Â2. Another estimator for the location parameter is proposed by (Wyckoff

et al., 1980) as

Â4 =
Z1 − Z

M1/Φ1

1− 1
M1/Φ1

, (7.15)

where Z is the average of observations and Φ1 = −2.989

ln

[
Zd0.97366Me−Z1

Zd0.16731Me−Z1

] . (Wyckoff et al., 1980)

argue that Â4 has also good performance in estimating the location parameter.
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The scale parameter B is set to

B̂1 = Zd0.63Me − Â (7.16)

in almost all studies in the literature where Â is an estimate of the location parameter.

(Wyckoff et al., 1980) develop

B̂2 = exp

[
0.5772

(
D̂4

)−1

+
1

M

M∑
m=1

ln(Zm − Â4)

]
(7.17)

as another estimator of the scale parameter where D̂4 is the shape parameter which will be

presented later in this section.

The shape parameter D, is the most important parameter which also affects the estima-

tion of other parameters and in case it is miscalculated the CIs produced can be inefficient.

(Golden and Alt, 1979) propose to estimate the shape parameter with

D̂1 =
ln [− ln(0.5)]

ln(Zm̂ − Â1)− ln B̂1

(7.18)

where Zm̂ stands for the median of the selected sample. Another analytic estimator for the

shape parameter is devised by (Zanakis, 1979):

D̂2 =
ln [ln(1− ςm̂2)/ ln(1− ςm2)]

ln
[
(Zm̂2 − Â2)/(Zm2 − Â2)

] ' 2.989

ln
[
(Zm̂2 − Â2)/(Zm2 − Â2)

] (7.19)

where ςm2 = 0.16731 and ςm̂2 = 0.97366 are quantiles minimizing the asymptotic variance

of the shape parameter when Â2 is known. Here Zm2 and Zm̂2 are the observations with

m2 = d0.16731Me and m̂2 = d0.97366Me, respectively.

Also the estimator

D̂3 =
0.5 ln

[
ln(1−ςm̂3

)

ln(1−ςm3)

]

ln
[

Zm̂3
−Zm̃3

Zm̃3
−Zm3

] ' 3.643

ln
[

Zm̂3
−Zm̃3

Zm̃3
−Zm3

] , (7.20)

where ςm3 = 0.0033, ςm̂3 = 0.9920 and ςm̃3 = 0.1187 with m3 = d0.0033Me, m̂3 = d0.9920Me
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and m̃3 = d0.1187Me, is due to (Zanakis and Mann, 1982).

Finally, (Wyckoff et al., 1980) propose the following analytic estimator

D̂4 =
MΦ2

−
b0.84Mc∑

m=1

ln(Zm − Â4) + b0.84Mc
M−b0.84Mc

M∑
m=d0.84Me

ln(Zm − Â4)

(7.21)

for the shape parameter where Φ2 is a constant given by (Engelhardt and Bain, 1977).

(Wyckoff et al., 1980) indicate that the parameters Â4, Â2 and D̂4 appear to be the best

overall analytic estimators in the literature. As the number of order statistic used for an

estimator increases the bias and mean square error of the estimators decrease. Thus, D̂4

produces better estimates than the others. However, (Zanakis and Mann, 1982) note that

for small true shape parameter values, D̂2 and D̂3 are also as efficient as D̂4.

All these analytic estimators are frequently used in the initialization of a MLE proce-

dure. However, (Zanakis, 1979) observes that analytic estimators are good approximations

of the true Weibull parameters and it may be preferable to use only SPEs when the sample

size is small.

7.4.3. The Maximum Likelihood Estimators

Let Z1 ≤ Z2 ≤ . . . ≤ ZM be M independent observations obtained from a Weibull

distribution. The MLE method aims to estimate the best values of the location parameter

A, the scale parameter B and the shape parameter D. In other words, given the Weibull

likelihood function

L(Ω) =
M∏

m=1

f(Zm) =
M∏

m=1

D

BD
(Zm − A)D−1 exp

(
−(

Zm − A

B
)D

)
(7.22)

where Ω = (Z1, Z2, ..., ZM , A, B, D) is a vector consisting of observations and parameters,

the MLE method estimates A, B and D, by minimizing L(Ω) such that A ≤ Z1, B ≥ 0 and

D ≥ 0. Since the minimization of L(Ω) is equivalent to the minimization of the log-likelihood

ln(L(Ω)), an approach is the solution of the equality system obtained by setting the partial

derivative ln(L(Ω)) with respect to A, B and D, to zero as done by (Golden, 1977). In

fact these three equalities in A, B and D are the first order necessary optimality conditions.
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(Golden, 1977) states that from this system one can derive the value of the scale parameter

B as

B =

(
M∑

m=1

(Zm − A)D/M

)1/D

, (7.23)

and then approximately solve the remaining two nonlinear equations using numerical meth-

ods.

As for example, there are several other approaches for the maximization of the Weibull

log-likelihood function. (Golden and Alt, 1979), (Gonsalvez et al., 1987), (Hall et al., 1988)

and (Los and Lardinois, 1982) employ (Harter and Moore, 1965)’s gradient search technique.

(Derigs, 1985) combines gradient search technique with a Newton method. (Marin and

Salmerón, 1996) employ an interval search method to solve MLE equations. (Zanakis, 1977)

states that in general parameter estimation by MLE method generate better sample fits than

analytic estimators particularly when the shape parameter becomes larger. (Wilson et al.,

2004) remark that Harter and Moore’s method causes convergence problems in some of their

test instances, which is also noted by (Zanakis, 1977) and (Derigs, 1985).

In the literature, analytic estimators are often used as an initialization step of the

MLE procedure. Then these estimates are improved by MLE procedure which requires to

find the maximum of a non-convex function. Although the MLE procedure is not trivial, the

computational results are encouraging since the additional computational effort required is

relatively low for the MLE procedure when compared with the computational effort required

using only the SPE procedures.

7.5. Independence and Weibull-Fit Tests

The test for independence of the generated local optima is of great importance since

the basic assumption of the Fisher and Tippett’s theorem requires identically distributed and

independent samples. Therefore, before applying the parameter estimation procedure, it is

strongly recommended to test the independence of the random observations. The longest run

and runs test are used by many authors for this purpose (Beyer, 1974). The longest run test

is considered by (Golden and Alt, 1979) and (Hall et al., 1988) to verify the independence of
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the heuristic solutions. The runs test is more popular than the longest run test. The runs

test is employed to check the independence of sample objective values by many researchers

(Gonsalvez et al., 1987; Kudva et al., 1994; Ovacık et al., 2000; Wilson et al., 2004).

Besides the independence tests, it is also important to test that the objective values

computed by means of a heuristic are from a Weibull distribution. For this purpose, two

well-known goodness-of-fit tests are used: the Kolmogorov-Smirnov (K-S) test (Law and

Kelton, 1991) and the Anderson-Darling (A-D) test (Anderson and Darling, 1952). The K-S

test is the most popular and extensively applied in almost all studies (Wilson et al., 2004;

Ovacık et al., 2000, Marin and Salmerón, 1996). The A-D test is known to be more strict

than the K-S test and (Wilson et al., 2004) suggest the use of the A-D coupled with the K-S

because the A-D test is more effective in detecting the discrepancies between the fitted and

empirical distributions in the tail regions.
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8. ALLOCATION SPACE BASED BRANCH-AND-BOUND

METHODS

In this chapter5 allocation space based BB (ABB) algorithms are suggested for both the

CMWP and MCMWP. ABB algorithms partition the allocation variable space into smaller

subspaces and aim to find the optimal solution by implicitly enumerating the extreme points

of the constraint sets which are defined by the allocation variables. In the first section, we

address the ABB algorithm which is originally proposed by (Sherali and Tunçbilek, 1992)

for the CMWP and we refer to it as the Single-commodity ABB (SABB) algorithm. In the

second section, we develop an ABB algorithm for the MCMWP which we call it as the MABB

algorithm. For both ABB and MABB algorithms, we test the performance of block norm

based lower bounding procedures, which are previously implemented for the DA heuristics in

Chapter 5. Additionally, we consider two other lower bounding procedures: Reformulation-

Linearization Technique (RLT) based lower bounding procedure and a straightforward lower

bound which uses the solution of WPs. The upper bounds are computed with ALA (CALA

or MCALA) heuristics. We follow different search and partitioning strategies for the SABB

and MABB algorithms and offer several branching variable selection strategies.

8.1. Solution of the Capacitated Multi-facility Weber Problem

An optimum solution of the CMWP always occur at an extreme point of the Trans-

portation Problem (TP) polyhedron given by Equation 3.7 – 3.9, independent of the distance

function d(xi, aj). Once we are given such an extreme point, namely feasible allocation val-

ues, the remaining I WPs can be solved to find the corresponding optimum facility locations.

In his earlier work, (Cooper, 1972) tries to enumerate all extreme points of the CMWP. This

enumeration method finds the corresponding facility locations and then picks up the mini-

mum cost solution to find the optimum. Although this enumeration method halts quickly,

the idea of using allocation space and hence the structure of the TP polyhedron is employed

in BB algorithms developed by (Sherali and Tunçbilek, 1992) and (Sherali et al., 2002) for

the SECMWP and the LCMWP, respectively.

Each basis of the TP polyhedron corresponds to a spanning tree on a bipartite graph.

5The conference proceeding (Akyüz et al., 2011) is partly based on this chapter.
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Therefore, there could be at most I +J−1 positive allocations at an extreme point for which

the bipartite graph is constructed with positive flow arcs. This implies that the remaining

flows other than the positive flows are exactly zero. These properties enable to partition

the allocation space into two distinct sets for each allocation variable wij. Notice that the

commodity index k vanishes for the CMWP i.e., wijk = wij when K = 1. Clearly, each wij

variable is either set to zero or enforced to be strictly positive at an extreme point. This

binary partitioning approach is first introduced by (Sherali and Tunçbilek, 1992) for the

SECMWP and then employed by (Sherali et al., 2002) for the LCMWP.

Actually, the idea of using a binary partitioning of the allocation space corresponds to

dealing with an extreme point on the leaf nodes of a BB tree. After setting all allocation

variables wij to either a positive value or zero, an extreme point can be obtained. For that

purpose, lower and upper bounds l̂ij and ûij on wij variables are defined. Initially, these

bounds can be taken as l̂ij = 0 and ûij = min {si, qj} for i = 1, . . . , I; j = 1, . . . , J . For

allocation variables with positive values we have 1 ≤ l̂ij ≤ wij and for allocation variables

with zero values we have l̂ij = ûij = wij = 0. According to the values assigned to wij

variables three sets are constructed: W+, W0 and WF , called as positive variables set, zero

variables set and free variables set, respectively. Namely, W+ is the set of allocation variables

with positive values, W0 contains the allocation variables with zero values and WF consists

of the allocation variables which are not assigned any value. During the exploration of the

BB tree, these three sets are gradually updated. As the SABB algorithm progresses, a free

variable wij ∈ WF is selected and added to the positive variable set W+. Also, the arc

(i, j) corresponding to variable wij, is added to the graph of the current partial solution.

Given an arc corresponding to a wij variable with positive value, we try to detect other arcs

(i′, j′) with wi′j′ ∈ WF whose existence create a cycle on the graph and the variables wi′j′

corresponding to those arcs are added to set W0. All variables, which are recently added to

W+ or W0, are removed from the free variables set WF . An extreme point is reached when

WF is empty. Note that the bounds l̂ij and ûij are also updated accordingly by considering

whether the allocation variable wij belongs to W+ or W0. At each node of the BB tree a

subproblem is defined by these lower and upper bounds on the allocation variables.

The bounds l̂ij and ûij are improved using the logical test proposed by (Sherali and

Tunçbilek, 1992). A detailed explanation of the logical test is given for the MCMWP later

in this chapter where the MABB algorithm is presented. We limit ourselves with a summary
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of the logical test for the CMWP in order to be concise. The logical test consists of a

sequential update mechanism which uses the maximum slack values of the transportation

constraints with current bounds l̂ij and ûij of the allocation variables. Since any change on

the bounds of an allocation variable affects the corresponding maximum slack values, the

bounds of all neighbor variables will also change. This situation arises because all resources

(i.e., supply and demand quantities) are common for the allocation variables. Hence, when a

lower or upper bound of a variable is changed, the bounds of its neighbor variable should be

updated with the latest bounds accordingly. This procedure continues until all bounds on

the variables become stable. In case one or several maximum slack values become negative,

this implies that the allocation space is infeasible with current variable bounds. When the

logical test enforces the lower bound of a variable to be positive, W+ should be updated, all

the arcs constituting a cycle with this update should be set to zero and, W0 and WF should

be changed appropriately. Consequently, the logical test, should also be integrated with a

cycle detection and prevention mechanism.

The SABB algorithm performs a depth-first search (DFS) strategy along with the

described binary partitioning of the allocation space. The records of the allocation variables

on the BB tree are kept on a partial solution list (PSL) with the framework proposed by

(Geoffrion, 1967). Each PSL element stands for the status of an allocation variable together

with the lower bound value associated with it. A zero variable wij is indicated by (i, j)0 in the

PSL. However, there exist two types of records for positive variables: selected positive variable

and necessarily positive variable which are denoted by (i, j)+S and (i, j)+N , respectively. A

selected positive variable (i, j)+S implies that the allocation variable wij is set to a positive

value via a branching mechanism. A necessarily positive variable (i, j)+N implies that the

allocation variable wij is fixed to a positive value within the logical test for the sake of

feasibility of the TP constraints (i.e., cycles are not allowed). The complementary zero

branch (i.e., the branch where wij = 0) of each wij with selected positive variable (i, j)+S

should also be searched. However, this is not required for a necessarily positive variable,

(i, j)+N , since this can already produce an infeasible solution. The current branch of the BB

tree reaches an extreme point if and only if |PSL| = I × J holds.

At each node of the BB tree a lower and upper bound value which are denoted by

ZLB and ZUB should be determined, respectively. If its lower bound is larger than the best

upper bound value Zbest
UB found so far, that node is fathomed and other non-fathomed nodes
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are explored. Therefore, a fathoming criterion of ZLB ≥ (1 − ε)Zbest
UB can be used to avoid

excessive computational effort at each node. We take ε = 0.001 in our calculations. We give

a generic outline of the SABB algorithm in Figure 8.1.

1. (Initialization): Set PSL ← ∅, W+ ← ∅, W0 ← ∅, WF ← {(i, j) : i = 1, . . . ,

I; j = 1, . . . , J}. Set l̂ij = 0 and ûij = min {si, qj} for i = 1, . . . , I;j = 1, . . . , J

2. (Logical Test and Cycle Prevention): Perform the Logical Test of (Sherali and

Tunçbilek, 1992). if infeasibility is detected, then go to Step 5. else set

W+ ← W+ ∪ (i, j), (i, j) ∈ WF with l̂ij > 0 and PSL ← PSL ∪ (i, j)+N .

Also set W0 ← W0 ∪ (i, j), (i, j) ∈ WF (i.e., for allocation variables with

ûij = 0) and for all arcs (i, j) creating a cycle with (i′, j′) ∈ W+, set PSL ←

PSL ∪ (i, j)0 at any stage of the update mechanism of the Logical Test.

After the Logical Test, if |PSL| < I × J , then proceed to Step 3. else an

extreme point is at hand, find an upper bound ZUB, set Zbest
UB = min{Zbest

UB ,

ZUB} and go to Step 5.

3. (Bounding) Find a lower bound ZLB and an upper bound ZUB with current l̂ij

and ûij values to the SABB subproblem. Set Zbest
UB = min{Zbest

UB , ZUB}.

if ZLB ≥ (1 − ε)Zbest
UB , then go to Step 5.

4. (Branching) Select a branching variable (i, j) ∈ WF using a branching rule, i.e.,

BrS1, BrS2 and BrS3. Set WF ← WF\(i, j), W+ ← W+ ∪ (i, j), PSL ← PSL

∪(i, j)+S and l̂ij = 1. Go to Step 2.

5. (Fathoming) Find a (i, j)+S element in the PSL by backtracking where its

previous node has a lower bound smaller than (1 − ε)Zbest
UB ,

if there is no such an element within the PSL, then STOP: Zbest
UB is within

100ε% of the optimum.

else change the element by (i, j)0 in the PSL, set W+ ← W+\(i, j), W0 ←

W0 ∪ (i, j) and l̂ij = ûij = 0. Remove all elements added after (i, j) from the

PSL, update W+, W0 and WF accordingly. Set l̂ij = 1, (i, j) ∈ W+ and

ûij = min{si, qj} for i = 1, . . . , I; j = 1, . . . , J . Go to Step 2.

Figure 8.1. The SABB algorithm for the CMWP.
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8.1.1. Bounding Procedures

The bounding step includes finding both valid lower and upper bounds for the cur-

rent subproblem. A SABB subproblem is defined by substituting the constraints given by

Equation 3.9 with the following set of inequalities in the CMWP formulation:

l̂ij ≤ wij ≤ ûij i = 1, . . . , I; j = 1, . . . , J. (8.1)

We suggest employing lower bounding block norms in Equation 3.6 which results in

solving a lower bounding MILP for the current subproblem. We have also devised two more

lower bounding procedures which are originally developed by (Sherali et al., 2002) for the

LCMWP. The next part is dedicated to explain lower bounding procedures that are vital

and the most time-consuming step of the SABB algorithm. Additionally, an upper bounding

procedure which is used at the initialization of the SABB algorithm and an upper bounding

algorithm performed at each node of the BB tree, are presented.

8.1.1.1. Block Norm Based Lower Bounding Procedures. The objective function given by

Equation 3.6 includes the distance function which is considered to be the `r-distance with

1 ≤ r < ∞. The SABB subproblem which is stated by Equation 3.6 – 3.8 and 8.1 can

be bounded from below if the distance function is substituted with a lower bounding norm

function in Equation 3.6. In particular, candidate locations for the optimum facility locations

can be reduced from the entire convex hull of customer locations to a finite set of points

within it when a block norm is used in Equation 3.6 as discussed in Chapter 5. This gives

a chance to formulate a MILP formulation which can produce a lower bound on SABB

subproblems. We first present a MILP formulation to compute the lower bounds with the

SABB algorithm and then a Lagrangean Relaxation (LR) scheme is proposed to increase the

efficiency of the block norm based lower bounding procedures.

Define the variables yijg as the amount shipped to customer j from facility i located

at candidate point g. Binary variables vig are set to 1 if facility i is located at point

g and 0 otherwise. cijg is the cost of transporting one unit from facility i located at

candidate point g with known coordinates âg = (âg1 âg2)
T to customer j where it is de-

fined as cijg = cijd (âg, aj). Recall that here d (âg, aj) is a block norm distance satisfying
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d (âg, aj) ≤ [|âg1 − aj1|r + |âg2 − aj2|r]1/r
with 1 ≤ r < ∞. Then, the lower bounding MILP

formulation i.e., Discrete Approximation Problem (DAP) of the SABB subproblem can be

given as

DAP:

min ZDAP =
I∑

i=1

J∑
j=1

G∑
g=1

cijg(yijg + l̂ijvig) (8.2)

s.t.
J∑

j=1

yijg = sivig i = 1, . . . , I; g = 1, . . . , G, (8.3)

I∑
i=1

G∑
g=1

yijg = qj j = 1, . . . , J, (8.4)

G∑
g=1

vig = 1 i = 1, . . . , I, (8.5)

0 ≤ yijg ≤ u′ij i = 1, . . . , I; j = 1, . . . , J ; g = 1, . . . , G, (8.6)

vig ∈ {0, 1} i = 1, . . . , I; g = 1, . . . , G, (8.7)

where the parameters si, qj and u′ij are updated with the latest bounds on the variables:

si = si −
∑J

j=1

∑G
g=1 l̂ijvig = si −

∑J
j=1 l̂ij, qj = qj −

∑I
i=1

∑G
g=1 l̂ijvig = qj −

∑I
i=1 l̂ij which

follows from the equality
∑G

g=1 vig = 1 for i = 1, . . . , I by constraints given by Equation 8.5

and u′ij = (ûij − l̂ij). Constraints given by Equation 8.3, 8.4, and 8.6 play similar role as

the bounded TP constraints given by Equation 3.7, 3.8 and 8.1, respectively. Constraints

given by Equation 8.5 enforce each facility to be opened at exactly on one of the candidate

locations. Note that the DAP reduces to the original formulation proposed by (Aras et al.,

2007, 2008) to produce approximate upper bounding solutions for the LCMWP where no

bounds on the allocation variables are imposed (when l̂ij = 0 and ûij = min{si, qj} for all

wij). Lower and upper bounds l̂ij and ûij on variables require additional binary variable

terms which vanish from the formulation when lower bounds are zero.

As we reach the leaf nodes of the BB tree, the DAP can be solved easier than the ones

solved for the nodes generated at the beginning of the SABB algorithm. Recall that during

the run of the SABB algorithm, the variables are gradually fixed. At some step of the SABB

algorithm, positive fixed variables enforce some free variables to take a zero value. The
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existence of these positive variables on the current bipartite graph constructed by positive

flow arcs creates cycles. Certainly, they are dropped from the subproblem formulation and

the remaining problem becomes easier to solve. However, solving the DAP at each node of

the BB tree, particularly for nodes explored at the beginning of the SABB algorithm, is not

a viable choice as the instance size increases. Therefore, we resort to a LR scheme for the

DAP formulation.

Any lower bound on the optimum value of the DAP formulation, which uses a lower

bounding norm function as the distance measure, is also valid for the SABB subproblem. We

use LR and Subgradient Optimization (SO) algorithm to compute lower bounds for the DAP.

When demand constraints given by Equation 8.4 are relaxed with Lagrangean multipliers

β5
j , we obtain the Lagrangean subproblem

RDAP(β5):

min ZLR5(β
5) =

I∑
i=1

J∑
j=1

G∑
g=1

(cijg − β5
j )yijg +

I∑
i=1

J∑
j=1

G∑
g=1

cijg l̂ijvig +
J∑

j=1

β5
j qj (8.8)

s.t. Equation 8.3, 8.5, 8.6 and 8.7. (8.9)

The last term in the objective function given by Equation 8.8 is constant and RDAP(β5)

decomposes over the facilities. As a result, the solution of RDAP(β5) becomes equivalent to

the solution of the following I subproblems

RDAPi(β
5):

min ZLR5i(β5) =
J∑

j=1

G∑
g=1

(cijgyijg + cijg l̂ijvig) (8.10)

s.t.
J∑

j=1

yijg = sivig g = 1, . . . , G, (8.11)

G∑
g=1

vig = 1 (8.12)

0 ≤ yijg ≤ u′ij j = 1, . . . , J ; g = 1, . . . , G, (8.13)

vig ∈ {0, 1} g = 1, . . . , G, (8.14)
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where cijg = (cijg − β5
j ) is the new unit cost obtained with given multiplier vectors β5.

The solution of subproblem RDAPi (β5) is not difficult. We can use a “greedy” inspection

procedure where, for each point g, we determine those customers that are supplied from

facility i when located at point g so that the shipment cost ZLRig(β5) =
∑J

j=1 cijgyijg +cijg l̂ij

is minimized subject to
∑J

j=1 yijg = sivig, with vig = 1 and 0 ≤ yijg ≤ u′ij, j = 1, . . . , J .

Note that this yields bounded CKPs whose solutions are very similar to the ones presented

for DA heuristics in Chapter 5. Recall that the solution of the CKP requires a sorting effort

and assignment of facility i to customer j is done starting from the least cost customer until

si is totally allocated. Here, we should additionally check whether u′ij ≤ si holds or not for

an assignment of facility i to customer j. In case, u′ij ≤ si holds, the shipment quantity

between facility i and customer j is u′ij and we continue to search for the next minimum cost

customer to ship the remaining capacity of facility i. Otherwise, the shipment between the

minimum cost customer j and facility i equals to si and the procedure continues until all

capacity of facility i is exhausted. Once the optimal solution Z∗
LRig(β

5) for each candidate

point g is calculated, Z∗
LRi(β

5) is obtained by setting Z∗
LRi(β

5) = ming=1,...,G{Z∗
LRig(β

5)}.
As soon as we solve all subproblems RDAPi(β

5), we can calculate the optimal value of the

RDAP(β5) as Z∗
LR5(β

5) =
∑I

i=1 Z∗
LR5i(β

5) +
∑J

j=1 β5
j qj for given multiplier vectors β5. The

rest of the calculations are the same with the ones presented in Chapter 5. Z∗
LR5(β

5) is a

lower bound on the optimal value of the DAP for any Lagrange multiplier vectors β5.

8.1.1.2. Reformulation-Linearization Technique Based Lower Bounding Procedure. (Sherali

et al., 2002) devise two lower bounding procedures for the LCMWP. One of them is the RLT

based lower bounding formulation of the CMWP. RLT first defines new variables to denote

distance measures between the facilities and customers and carry its nonlinearity into the

constraint set of the CMWP. Then, the lower bounding supports for these nonlinear terms in

the constraints are added and the bilinear terms are reformulated to linearize them. Clearly,

the resulting formulation is linear and constitutes a lower bound on the optimal solution of

the CMWP. We have also employed the RLT formulation given with the so-called constraints

“(15a) – (15j)” and “(16b)” in the study by (Sherali et al., 2002) as the second lower bound-

ing procedure for the SABB algorithm. A similar RLT formulation is also developed for the

MCMWP in the next section and we omit the original RLT formulation for the CMWP to

avoid repetitions.
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The other lower bounding procedure is first proposed by (Sherali et al., 2002). We

term it as SAS, which is given as follows.

SAS:

ZSAS = min
x

I∑
i=1

J∑
j=1

lijcijd(xi, aj), (8.15)

which reduces to solving I WP’s. Both block norm and RLT based lower bounding proce-

dures are strengthened by the SAS lower bound.

8.1.1.3. Upper Bounding Procedures. The computed lower bounds are used to check the

current BB node for fathoming. The objective value of the best feasible solution is employed

to make a decision. Actually, upper bounding feasible solutions are necessary both at the

root node (initialization) and at the subsequent nodes of the BB tree. We summarize the

initial upper bounding procedure, which is proposed in the work by (Sherali et al., 2002),

that we have also employed in this work.

Initial upper bounding procedure: At the root node, two Capacitated ALA (CALA) heuristics,

which are explained in the following, are run and the one with the smallest objective value

is used as the initial value of Zbest
UB . For that purpose, the customer locations are enclosed

within the tightest rectangle and it is sliced along the x-axis into I equal parts. Then, the

demand quantities in each slice are aggregated and sorted in increasing order. Facilities

are also sorted in increasing order of their capacities. Lastly, each aggregate demand is

assigned to a facility according to their increasing order and the demands of customers are

split among facilities starting from left to right, i.e., unsatisfied demand of customers in a

slice is merged to the next slice and thus the next facility. Once a valid transportation plan

is obtained, the corresponding optimum facility locations are found and the CALA heuristic

is run. This process is also repeated for the y-axis and the best of two feasible solutions is

used as the initial upper bound value for the SABB algorithm. More details can be found in

(Sherali et al., 2002) for the initial upper bounding procedure. Other initial upper bounding

procedures can also be implemented for the SABB algorithm but, we prefer to use this

procedure to perform a fair comparison between existing methods of (Sherali et al., 2002)

and our BB algorithms.
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Intermediate upper bounding procedure: We take the advantage of the CALA heuristic to

find upper bounds at intermediate SABB nodes. The lower bounding procedure (including

the block norm based, the RLT based or the SAS lower bounding) solutions return the

optimal facility locations of the SABB subproblem which are then used to initialize the

CALA heuristic to obtain a feasible solution on the CMWP in order to update the incumbent

solution value Zbest
UB when necessary. At the leaf nodes of the BB tree an extreme point is

reached and Weiszfeld’s procedure is run to find an upper bound. We continue to run the

CALA heuristic to obtain an improved feasible solution and to update the value of Zbest
UB .

8.1.2. Branching Variable Selection Strategies

Another feature of the proposed SABB algorithm is the branching step. In this step, we

select the allocation variable which will be added to the positive arc set, W+. The sequence

of variables on which we have selected to branch greatly affects the performance of the SABB

algorithm. Therefore, this choice should be done with utmost care. For that purpose, we

have implemented three different branching variable selection strategies. Two of them are

originally introduced by (Sherali et al., 2002) and the third one is a new branching variable

selection rule. In the following we present these three branching variable selection strategies

(BrSs).

BrS1 : Let w be the current allocation vector satisfying the bounding restrictions imposed.

Then, the branching variable wij is selected with the following rule:

BrS1:

(i, j) = arg lex max
(i′,j′)∈WF

{
wi′j′ , ci′j′(ûi′j′ − l̂i′j′)

}
, (8.16)

where ties are broken arbitrarily. Note that in Equation 8.16 two vectors are considered and

thus, the selection of the branching variable is done by taking lexicographically maximum

element of the vectors.

BrS2 : The second rule is very similar to the first one.
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BrS2:

(i, j) = arg max
(i′,j′)∈WF

{
(ûi′j′ − l̂i′j′) min

{
(ûi′j′ − wi′j′), (wi′j′ − l̂i′j′)

}}
. (8.17)

BrS3 : The constraints given by Equation 3.7 and 3.8 can be rewritten in the form of two

inequalities as

J∑
j=1

wij ≥ si and
J∑

j=1

wij ≤ si i = 1, . . . , I, (8.18)

I∑
i=1

wij ≥ qj and
I∑

i=1

wij ≤ qj j = 1, . . . , J. (8.19)

Then, the maximum slack values of these constraints can be expressed by

SLi = si −
J∑

j=1

l̂ij and SUi =
J∑

j=1

ûij − si i = 1, . . . , I, (8.20)

and

QLj = qj −
I∑

i=1

l̂ij and QUj =
I∑

i=1

ûij − qj j = 1, . . . , J. (8.21)

Hence we propose the following new branching variable selection strategy.

BrS3:

(i, j) = arg max
(i′,j′)∈WF



ci′j′(ui′j′ − li′j′) max





min {SLi′ , SUi′} ,

min {DLj′ , DUj′}







 . (8.22)

There are several other strategies used in the study of (Sherali et al., 2002) other than

Equation 8.16 and 8.17. However, Equation 8.16 and 8.17 are the most promising ones and

thus we have taken them into account for assessing the performance of Equation 8.22.

8.2. Solution of the Multi-commodity Capacitated Multi-facility Weber

Problem

(Sherali and Tunçbilek, 1992) employ a binary partitioning strategy and tried to im-

plicitly enumerate all extreme points for the SECMWP. The authors also devise a cycle
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prevention mechanism using the tree property of bases: the flows which constitute a cycle

with the arcs defined by the positive variables are set to zero. This setting accelerates the

enumeration of extreme points. Furthermore, they also propose a logical test which may

tighten lower and upper bounds on allocation variables. Consequently, the logical test also

helps reaching an extreme point more quickly. (Sherali et al., 2002) adapt these logical tests

and cycle prevention mechanism and propose a new BB aproach which performs a contin-

uous partitioning of the allocation space of the LCMWP. Continuous partitioning, which is

different than the dichotomization of allocation variables, divides the allocation space into

two subspaces.

The cycle prevention mechanism which is originally devised for the CMWP can not

be directly adapted for the MCMWP. The reason for this is that a cycle may occur at

an extreme point of the MCMWP polyhedron, which is defined on the bipartite graph

constructed by positive flows of each commodity. This is caused by the upper bounds uij

imposed on the total quantity of flows between each facility and customer pair. However,

for some particular extreme point each commodity may satisfy the tree structure. It is

not easy to design a cycle prevention mechanism which works for all extreme points of the

MCMWP polyhedron. Positive allocation variables at an extreme point of the CMWP is

at most I + J − 1. Additionally, there is not a straightforward formula which states the

number of nonnegative variables in a basic feasible solution of the MCMWP. In short, a

binary partitioning scheme for the MCMWP, similar to the one suggested by (Sherali and

Tunçbilek, 1992) for the CMWP, is not applicable. On the other hand, the continuous

partitioning strategy developed by (Sherali et al., 2002) for the CMWP can be used for

the MCMWP as well. For that purpose, we impose the following bounds on the allocation

variables wijk

lijk ≤ wijk ≤ uijk i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K. (8.23)

Initially, these bounds can be set as lijk = 0 and uijk = min {sik, qjk, uij} for i =

1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, respectively. At each step of the MABB algorithm, an

active node (a node which is not yet pruned) denoted by t is selected for further exploration.

Let WF = {(i, j, k) : l
(t)
ijk < u

(t)
ijk} and WE = {(i, j, k) : l

(t)
ijk = u

(t)
ijk} denote free variable set

and equality allocation variable set associated with node t, respectively. Then, an allocation
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variable wijk ∈ WF is selected and the corresponding interval is divided into two intervals

such that [l
(t)
ijk, w̃

1
ijk] and [w̃2

ijk, u
(t)
ijk] with lijk ≤ w̃1

ijk ≤ w̃2
ijk ≤ u

(t)
ijk, where w̃1

ijk and w̃2
ijk are not

necessarily equal. All the remaining allocation variables are inherited from the parent node,

namely node t, as they are. These two allocation subsets result in two MABB subproblems

which are given by Equation 2.2 – 2.5 and 8.23. A lower and an upper bound on these two

subproblems are calculated and added to the BB tree T whenever they are eligible. The

selection of node t is done by the “best-first search” (BFS) strategy such that node t has the

lowest lower bound among all nodes of the BB tree T . The algorithm proceeds until either

BB tree T is empty or the lower bounds are within a predetermined limit from the best

upper bound Zbest
UB found namely, the incumbent solution value. In the following discussion,

we present three lower bounding procedures and an upper bounding procedure. Next, we

propose several branching variable selection strategies (BrSs) together with the partitioning

and search strategy. Finally, a formal outline of the MABB algorithm is given.

8.2.1. Bounding Procedures

8.2.1.1. Block Norm Based Lower Bounding Procedure. A MABB subproblem is stated by

Equation 2.2 – 2.5 and 8.23. Consider two distance functions d(x,0) and d(x,0) such that

d(x,0) ≤ d(x,0) holds for every x ∈ R2. Clearly, the optimum solutions Z∗ and Z∗ of the

corresponding MABB subproblems which use d(x,0) and d(x,0) in Equation 2.2 also satisfy

Z∗ ≤ Z∗. Therefore, it is possible to use lower bounding distance functions, namely d(x,0),

on the original MABB subproblem given by Equation 2.2 – 2.5 and 8.23. In particular, we

offer to use block norms as lower bounding distance functions. In the MDAP3 formulation,

which is the approximating MILP formulation of the MABB given by Equation 2.2 – 2.5

and 8.23, the allocation variables yijkg depend on the candidate facility locations g which

is not the case for the wijk in the MCMWP. We can not directly set lijk ≤ yijkg ≤ uijk

for all allocations. Taking the summation over candidate locations g implies that Glijk ≤
∑G

g=1yijkg = wijk ≤ Guijk, which is not feasible for the original MCMWP. Thus, we replace

Equation 8.23 by the constraints

lijkvig ≤ yijkg ≤ uijkvig i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K; g = 1, ..., G (8.24)

in order to adapt the lower bounding approach for the BB algorithm. Hence, we substitute

yijkg = yijkg + lijkvig for i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K and g = 1, ..., G. Then, the
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MDAP3 formulation of the lower bounding MABB subproblem associated with node t can

be given as

MDAP3(t):

min ZMDAP3 =
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

cijkgyijkg +
I∑

i=1

J∑
j=1

K∑

k=1

G∑
g=1

cijkgl
(t)
ijkvig (8.25)

s.t.
J∑

j=1

yijkg = sikvig i = 1, . . . , I; k = 1, . . . , K; g = 1, . . . , G, (8.26)

I∑
i=1

G∑
g=1

yijkg = qjk j = 1, . . . , J ; k = 1, . . . , K, (8.27)

G∑
g=1

vig = 1 i = 1, . . . , I, (8.28)

K∑

k=1

G∑
g=1

yijkg ≤ uij i = 1, . . . , I; j = 1, . . . , J, (8.29)

0 ≤ yijkg ≤ u
(t)
ijk i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K; g = 1, . . . , G, (8.30)

vig ∈ {0, 1} i = 1, . . . , I; g = 1, . . . , G, (8.31)

where the parameters sik, qjk and u
(t)
ijk are updated with the latest bounds on the variables

at node t: sik = sik −
∑I

i=1

∑G
g=1l

(t)
ijkvig = sik −

∑I
i=1 l

(t)
ijk, qjk = qjk −

∑J
j=1

∑G
g=1l

(t)
ijkvig =

qik −
∑J

j=1 l
(t)
ijk and uij = uij −

∑K
k=1

∑G
g=1l

(t)
ijkvig = uij −

∑K
k=1 l

(t)
ijk follows by

∑G
g=1vig = 1

for i = 1, . . . , I. Lastly, u
(t)
ijk = u

(t)
ijk − l

(t)
ijk denotes current upper bounds on the allocation

variables. Constraints given by Equation 8.26, 8.27, and 8.29 play similar role as the bounded

Multi-commodity Transportation Problem (MTP) constraints given by Equation 2.3, 2.4 and

2.5, respectively. Constraints given by Equation 8.28 enforce each facility to be opened at

exactly on one of the candidate locations. Constraints given by Equation 8.30 are valid

upper bounds which substitute 0 ≤ yijkg ≤ (u
(t)
ijk − l

(t)
ijk)vig. Fortunately, this does not affect

the optimum solution of the MABB subproblem. Given a facility i with vig∗ = 1 for some

candidate location g∗, then yijkg = 0 is satisfied by Equation 8.26 and 0 ≤ yijkg ≤ (u
(t)
ijk− l

(t)
ijk)

is redundant for all j = 1, ..., J ;k = 1, ..., K;g = 1, ..., G and g 6= g∗. On the other hand,

constraints given by Equation 8.30 imply valid bounds on allocations quantities. Note that

the MDAP3 reduces to the MDAP1 formulation to produce approximate solutions for the

MCMWP where no bounds on the allocation variables are imposed, namely at the root node

of the BB tree. Lower and upper bounds on variables require additional binary variable

terms which vanish from the formulation when lower bounds take zero values.
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When we relax constraints given by Equation 8.27 and 8.29 with respectively La-

grangean multipliers β6
jk and µ6

ij we obtain the following Lagrangean subproblem:

RMDAP3(t)(β6, µ6):

min ZLR6(β
6, µ6) =

I∑
i=1

J∑
j=1

K∑

k=1

G∑
g=1

[
(cijkg − β6

jk + µ6
ij)yijkg + cijkgl

(t)
ijkvig

]
(8.32)

+
J∑

j=1

K∑

k=1

β6
jkqjk −

I∑
i=1

J∑
j=1

µ6
ijuij

s.t. Equation 8.26, 8.28, 8.30 and 8.31. (8.33)

We skip the details of solving the RMDAP3 and using the SO algorithm for the sake

of conciseness since the LR scheme is very similar to the LR schemes RMDAP1 in Chapter

5 and RDAP for the CMWP as explained.

8.2.1.2. Reformulation-Linearization Technique Based Lower Bounding Procedure.

The MCMWP formulation given by Equation 2.2 – 2.6 can be rewritten as

min z =
I∑

i=1

J∑
j=1

K∑

k=1

wijkcijkαij (8.34)

s.t. αij = (|xi1 − aj1|r + |xi2 − aj2|r)1/r
i = 1, . . . , I; j = 1, . . . , J (8.35)

Equation 2.3− 2.5 and 8.23, (8.36)

where continuous variables αij measure the distance between facility i and customer j. The

RLT approach is applied in order to get a lower bounding LP formulation on the formu-

lation given by Equation 8.34 – 8.36, which has bilinear objective function and nonlinear

constraints. The nonlinear constraint set is approximated by generating some supports on

it as suggested by (Sherali et al., 2002) for the CMWP case. Let P be the number of facets

of the convex hull of the customer locations defined by a set of inequalities of the form

ψ1%xi1 + ψ2%xi2 ≤ ψ0% i = 1, . . . , I; % = 1, . . . , P. (8.37)

Also, we define the following constraint sets

αij ≥ xi1 − aj1, αij ≥ xi2 − aj2,

αij ≥ aj1 − xi1, αij ≥ aj2 − xi2,
i = 1, . . . , I; j = 1, . . . , J, (8.38)
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αij ≥ 2(1−r)/r (xi1 − aj1 + xi2 − aj2) ,

αij ≥ 2(1−r)/r (xi1 − aj1 − xi2 + aj2) ,

αij ≥ 2(1−r)/r (aj1 − xi1 + xi2 − aj2) ,

αij ≥ 2(1−r)/r (aj1 − xi1 − xi2 + aj2)

i = 1, . . . , I; j = 1, . . . , J, (8.39)

I∑
i=1

J∑
j=1

αij ≥ z1 (8.40)

0 ≤ αij ≤ dαij
i = 1, . . . , I; j = 1, . . . , J, (8.41)

where Equation 8.38 implies that αij ≥ max {|xi1 − aj1| , |xi2 − aj2|} and Equation 8.39 im-

poses αij ≥ 2(1−r)/r (|xi1 − aj1|+ |xi2 − aj2|). z1 in Equation 8.40 is calculated by z1 =

min
x

∑I
i=1

∑J
j=1 (|xi1 − aj1|r + |xi2 −aj2|r)1/r

. Lastly, dαij
= max

j=1,...,J

(∣∣aj1 − aj1

∣∣r +
∣∣∣aj2

− aj2

∣∣∣
r)1/r

for i = 1, . . . , I; j = 1, . . . , J in Equation 8.41.

In order to linearize bilinear terms, which occur after the reformulation of constraints,

we define new decision variables

γijk = wijkαij, θijk = wijkxi1 and φijk = wijkxi2, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K.

(8.42)

Reformulation: We multiply each inequality given by Equation 8.41 with each inequality

given by Equation 8.23. Then, all inequalities given by Equation 8.38, 8.39 and 8.37 are

multiplied by each of the inequalities in Equation 8.23. We generate the following equalities

(
J∑

j=1

wijk − sik

)
xi1 = 0 and

(
J∑

j=1

wijk − sik

)
xi2 = 0, i = 1, . . . , I; k = 1, . . . , K. (8.43)

Additionally, the RLT based formulation is strengthened with the following two con-

straints:
I∑

i=1

J∑
j=1

K∑

k=1

cijkwijkαij ≥ z, (8.44)

I∑
i=1

J∑
j=1

K∑

k=1

cijkŵijkαij ≥ ẑ, (8.45)

where wijk and ŵijk are the allocation quantities determined in the parent node upper bound

solution and the best feasible solution found so far, and z and ẑ are their corresponding
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objective values, respectively. To calculate z and ẑ a pure location problem is solved with the

associated allocation quantities, i.e., z = min
x

I∑
i=1

J∑
j=1

K∑
k=1

cijkwijk (|xi1 − aj1|r + |xi2 − aj2|r)1/r
.

The other supporting constraint uses the first order information of the distance function

d. Note that d(x, a) ≥ d(a0, a) +∇d(a0, a)(x− a0) holds where a0 and a are fixed points on

the plane. Here, we employ customer locations as fixed points as recommended by (Sherali

et al., 2002). Therefore, the following supporting constraint is added to the RLT based

formulation:

αij ≥ d(aj, aj) +∇d(aj, aj)(xi − aj) i = 1, . . . , I; j = 1, . . . , J ; j = 1, . . . , J and j 6= j

(8.46)

Observe that aj 6= aj must necessarily hold since the derivative is not defined for those

points. It is also possible to obtain a tighter support by multiplying both sides of Equation

8.46 with the allocation variables wijk. Nevertheless, we have observed that adding these

supports deteriorates the performance of the MABB algorithm employing the RLT. As a

result, we have limited ourselves with Equation 8.46 for the RLT based lower bounding LP

formulation to produce another lower bound for the MABB algorithm. The RLT based lower

bounding formulation for the MCMWP at a BB node t is as follows:

RLT(t):

min ZRLT =
I∑

i=1

J∑
j=1

K∑

k=1

cijkγijk (8.47)

s.t. l
(t)
ijkαij ≤ γijk ≤ u

(t)
ijkαij i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.48)

dαij
wijk + u

(t)
ijk(αij − dαij

) ≤ γijk ≤ dαij
wijk + l

(t)
ijk(αij − dαij

)

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.49)

θijk − wijkaj1 + l
(t)
ijk(αij − xi1 + aj1) ≤ γijk ≤ θijk − wijkaj1

+ u
(t)
ijk(αij − xi1 + aj1) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.50)

wijkaj1 − θijk + l
(t)
ijk(αij + xi1 − aj1) ≤ γijk ≤ wijkaj1 − θijk

+ u
(t)
ijk(αij + xi1 − aj1) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.51)

φijk − wijkaj2 + l
(t)
ijk(αij − xi2 + aj2) ≤ γijk ≤ φijk − wijkaj2

+ u
(t)
ijk(αij − xi2 + aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.52)



95

wijkaj2 − φijk + l
(t)
ijk(αij + xi2 − aj2) ≤ γijk ≤ wijkaj2 − φijk

+ u
(t)
ijk(αij + xi2 − aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.53)

θijk + φijk − wijk(aj1 + aj2) + lijk(2
(r−1)/rαij − xi1 + aj1 − xi2 + aj2)

≤ 2(r−1)/rγijk ≤ θijk + φijk − wijk(aj1 + aj2) + uijk(2
(r−1)/rαij − xi1

+ aj1 − xi2 + aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.54)

θijk − φijk + wijk(aj2 − aj1) + lijk(2
(r−1)/rαij − xi1 + aj1 + xi2 − aj2)

≤ 2(r−1)/rγijk ≤ θijk − φijk + wijk(aj2 − aj1) + uijk(2
(r−1)/rαij − xi1

+ aj1 + xi2 − aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.55)

φijk − θijk + wijk(aj1 − aj2) + lijk(2
(r−1)/rαij + xi1 − aj1 − xi2 + aj2)

≤ 2(r−1)/rγijk ≤ φijk − θijk + wijk(aj1 − aj2) + uijk(2
(r−1)/rαij + xi1

− aj1 − xi2 + aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.56)

− φijk − θijk + wijk(aj1 + aj2) + lijk(2
(r−1)/rαij + xi1 − aj1 + xi2 − aj2)

≤ 2(r−1)/rγijk ≤ −φijk − θijk + wijk(aj1 + aj2) + u
(t)
ijk(2

(r−1)/rαij + xi1

− aj1 + xi2 − aj2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, (8.57)

wijkψ0% − u
(t)
ijk(ψ0% − ψ1%xi1 − ψ2%xi2) ≤ ψ1%θijk + ψ2%φijk ≤ wijkψ0% − l

(t)
ijk(ψ0%

− ψ1%xi1 − ψ2%xi2) i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, % = 1, . . . , P, (8.58)

J∑
j=1

θijk − sikxi1 = 0 and
J∑

j=1

φijk − sikxi2 = 0 i = 1, . . . , I; k = 1, . . . , K, (8.59)

Equation 2.3− 2.6, 8.40, 8.41 and 8.44− 8.46. (8.60)

In addition to MDAP3 (or RMDAP3) and RLT lower bounds, the following pure

location problem also constitutes a lower bound on the MABB subproblem at node t:

ZMSAS = min
x

I∑
i=1

J∑
j=1

K∑

k=1

l
(t)
ijkcijkd(xi, aj). (8.61)

Here Equation 8.61 can be decomposed into I WP’s. Once solved, the sum of the

optimal values of I WP’s give a lower bound. Both block norm based and RLT based lower

bounds are tightened with ZMSAS at each lower bounding step. Notice that MSAS is the

multi-commodity version of the SAS given by Equation 8.15.
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8.2.1.3. Upper Bounding Procedures. The lower bound value computed at a MABB node is

used to check the status of that node for pruning. The incumbent solution value Zbest
UB is used

to make such a pruning decision. In fact, upper bounding feasible solutions are necessary

both at the root node (initialization) and at intermediate nodes of the BB tree.

Initial upper bounding procedure: At the root node, we run MCALA heuristic twice with

different initializations and use the outcome with the smallest objective value as the initial

incumbent solution value Zbest
UB . Two MCALA heuristics are initialized as suggested by

(Sherali et al., 2002) for the CMWP where they select initial allocations by a greedy-like

procedure before performing a CALA heuristic as discussed in Section 8.1.1.3 for the ABB

algorithm. Here, we adapt their method for the MCMWP. The customer locations are

enclosed within the smallest rectangle and it is sliced along x-axis into I equal parts. Then,

the demand for all commodities of each customer which lies within a slice is aggregated.

These total demand quantities of each slice are sorted in increasing order. Note that there are

I slices and hence I aggregated demand values. Similarly, facility capacities are accumulated

for all commodities such that stotal
i =

∑K
k=1 sik holds where stotal

i is the total facility capacity

for i = 1, . . . , I. Total facility capacity values stotal
i are also sorted in increasing order. Lastly,

each aggregate demand is assigned to a facility with the same order. Then, total facility

capacities are split among the customers from left to right. When a customer demand for a

commodity is not totally satisfied, its demand is met by the next facility in the order. Once

a feasible allocation vector is obtained, a MCALA is run starting with those allocations.

The process is also repeated for the y-axis and the minimum of these two solution values is

employed as the initial upper bound value.

Intermediate upper bounding procedure: At the intermediate nodes, the MCALA heuristic is

used to find feasible solutions. The initial locations (or allocations) of the MCALA heuris-

tic affects its performance significantly. Observe that the bounds given by Equation 8.23

imposed at a node of the MABB algorithm on allocation variables may lead to a feasible

allocation vector that is worse than the incumbent solution and, in some cases, to infeasi-

ble solutions. As a result, we prefer to employ the location vectors produced by the lower

bounding procedure at an intermediate MABB node to initialize a MCALA heuristic. When

WF is empty, we obtain an extreme point of the MCMWP. In this case, an upper bound

can be found by optimally solving I WPs. Lastly, the Zbest
UB is updated if an improvement is

achieved by the upper bound obtained with the MCALA heuristic for the original MCMWP.
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8.2.2. Other Features of the Allocation Space Based Branch-and-Bound Algo-

rithm

8.2.2.1. Logical Test. Constraints given by Equation 8.23 impose both lower and upper

bounds on allocation variables. Given lijk and uijk values, it is possible to obtain improved

bounds by a logical test. It consists of a sequential update mechanism which employs the

maximum slack values defined on the bounded MTP constraints given by Equation 2.3 –

2.5 and 8.23 to tighten lijk and uijk values. Logical tests are first developed by (Sherali and

Tunçbilek, 1992) for the CMWP. Here, we implement a similar approach for the MCMWP.

The constraints given by Equation 2.3 – 2.5 can be rewritten as follows:

J∑
j=1

wijk ≥ sik and
J∑

j=1

wijk ≤ sik, i = 1, . . . , I; k = 1, . . . , K, (8.62)

I∑
i=1

wijk ≥ qjk and
I∑

i=1

wijk ≤ qjk, j = 1, . . . , J ; k = 1, . . . , K, (8.63)

K∑

k=1

wijk ≤ uij, i = 1, . . . , I; j = 1, . . . , J. (8.64)

The maximum slack values of these constraints are

SLik = sik −
J∑

j=1

lijk and SUik =
J∑

j=1

uijk − sik i = 1, . . . , I; k = 1, . . . , K, (8.65)

QLjk = qjk −
I∑

i=1

lijk and QUjk =
I∑

i=1

uijk − qjk j = 1, . . . , J ; k = 1, . . . , K, (8.66)

ULij = uij −
K∑

k=1

lijk i = 1, . . . , I; j = 1, . . . , J. (8.67)

In the next proposition we suggest using these maximum slack values to calculate new

lower and upper bounds lnew
ijk and unew

ijk on the allocation variables, respectively. These bounds

are updated when one or more bounds are changed.

Proposition 8.1. The following set of lower and upper bounds are valid implications of

Equation 8.65 – 8.67.

lnew
ijk = max{lijk, uijk − SUik, uijk −QUjk},
unew

ijk = min{uijk, SLik + lijk, QLjk + lijk, ULij + lijk}
i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K. (8.68)
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Moreover, at any stage of a continuous sequential updating process, the order of com-

puting lnew
ijk or unew

ijk for a particular variable wijk does not change the outcome.

Proof. lnew
ijk ≥ lijk holds trivially. Additionally, for commodity k, if all facilities except facility

i send flows to customer j at their upper bounds, then facility i should send an amount

of at least qjk −
∑I

i′=1,i′ 6=iui′jk = uijk −
∑I

i′=1ui′jk + qjk = uijk −
(∑I

i′=1ui′jk − qjk

)
=

uijk−QUjk. Similarly, for commodity k, if a facility i sends flows to all customers other than

customer j at its upper bound, then it should ship all its remaining capacity which is at

least sik−
∑J

j′=1,j′ 6=juij′k = uijk−
∑J

j′=1uij′k + sik = uijk−
(∑J

j′=1uij′k − sik

)
= uijk−SUik.

Now consider the upper bounds, obviously unew
ijk ≤ uijk holds. Given a commodity

k, if all facilities except facility i send flows at their lower bounds to meet the demand

of customer j, then facility i can not ship an amount more than qjk −
∑I

i′=1,i′ 6=ili′jk =(
qjk −

∑I
i′=1li′jk

)
+ lijk = QLjk + lijk to customer j. Furthermore, for a commodity k, if a

facility i sends flows at its lower bounds to all customers other than customer j, then it can

not ship an amount more than sik −
∑J

j′=1,j′ 6=jlij′k =
(
sik −

∑J
j′=1lij′k

)
+ lijk = SLik + lijk

to customer j. In addition, if a facility i sends flows to customer j at its lower bounds for

all commodities other than commodity k, then it can not ship commodity k with an amount

more than uij −
∑K

k′=k′,k′ 6=klijk′ =
(
uij −

∑K
k′=1lijk′

)
+ lijk = ULij + lijk to customer j.

Note that Equation 8.68 can be replaced with the following equations:

lnew
ijk = max{lijk, sik −

∑J
j′=1,j′ 6=juij′k, qjk −

∑I
i′=1,i′ 6=iui′jk},

unew
ijk = min{uijk, sik −

∑J
j′=1,j′ 6=jlij′k, qjk −

∑I
i′=1,i′ 6=ili′jk, uij −

∑K
k′=1,k′ 6=klijk′}

i = 1, ..., I; j = 1, ..., J ; k = 1, ..., K.

(8.69)

The value of uijk does not affect lnew
ijk and the value of lijk does not affect unew

ijk . Hence,

the order of updating either lnew
ijk or unew

ijk first does not change the outcome. ¤

A change in the lijk or uijk values should affect the corresponding maximum slack val-

ues given by Equation 8.65 – 8.67 because all resources (i.e., supply, demand or flow capacity

quantities) are commonly shared by all allocation variables. Therefore, new bounds lnew
ijk and

unew
ijk of all neighboring allocation variables should be updated with the latest bounds accord-
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ing to Equation 8.68. For that purpose, we keep a list of allocation variables whose bounds

or maximum slack values have changed at some previous step. The update mechanism is

repeated until the list is empty and all bounds become stable. During the sequential update

mechanism, when we encounter with a negative maximum slack value for any constraint, this

implies that the current partitioning of the allocation space is infeasible thereafter and thus

the current node of the BB tree is pruned. Finally, the logical test is applied on each sub-

problem within the MABB algorithm either to obtain tighter bounds on allocation variables

or to detect infeasibility.

8.2.2.2. Strategies for Partitioning, Tree Search and Branching Variable Selection. The al-

location space associated with an active node of the MABB tree is partitioned into two

distinct subsets and hence, resulting in two new MABB subproblems. At each partitioning,

an allocation variable wijk ∈ WF is selected and the corresponding bounds are divided into

two subsets while the rest of the bounds remains the same as the current node.

The MABB algorithm performs a BFS strategy: the node with the smallest lower bound

value among all active nodes is selected as the node for partitioning. For each node t, we

keep record of the current objective value, the lower bound value and the feasible allocation

vector w(t), l
(t)
ijk and u

(t)
ijk values such that l

(t)
ijk ≤ w

(t)
ijk ≤ u

(t)
ijk for i = 1, . . . , I; j = 1, . . . , J

and k = 1, . . . , K associated with the MABB subproblem of node t. w(t) is obtained by

solving bounded MTP given by Equation 2.3 – 2.5 and 8.23 after fixing the facility locations

to the lower bounding subproblem location vector. All these records are also used within

multi-commodity branching variable selection strategies (MBrSs), bounding procedures and

pruning of the BB tree nodes.

Once a node is selected for further exploration we need to choose a particular allocation

variable wijk. Clearly, the sequence of variables on which we branch greatly affects the

performance of the MABB algorithm. Therefore, this choice should be done carefully. For

that purpose, we have implemented three different MBrSs associated with a partitioning

scheme. MBrS1 and MBrS2 are suggested by inspiring from BrSs proposed by (Sherali

et al., 2002) used for the CMWP as presented. MBrS3 is a tailor made partitioning scheme

for the MCMWP. In the following we present these MBrSs.
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MBrS1:

(i′, j′, k′) = arg max
(i,j,k)∈WF

{cijk(uijk − lijk)} (8.70)

The bounds for the two new subproblems on the selected branching variable wi′j′k′ is

partitioned as [li′j′k′ , b(li′j′k′ + ui′j′k′)/2c] and [d(li′j′k′ + ui′j′k′)/2e , ui′j′k′ ], respectively.

MBrS2:

(i′, j′, k′) = arg max
(i,j,k)∈WF

{(uijk − lijk) min{wijk − lijk, uijk − wijk}} (8.71)

MBrS3:

(i′, j′, k′) = arg max
(i,j,k)∈WF



cijk(uijk − lijk) max





min{SLik, SUik},
min{DLjk, DUjk}, ULij







 (8.72)

For the MBrS2 and MBrS3 we partition the flow (i′, j′, k′) into two as follows: [li′j′k′ , wi′j′k′ ]

and [wi′j′k′ + 1, ui′j′k′ ]. Note that for wi′j′k′ = ui′j′k′ , the partitioning can not be done as

suggested for feasibility. Moreover, when wi′j′k′ is close to or equal to their boundaries li′j′k′

or ui′j′k′ , it is not of much use to partition the intervals as described. (Sherali et al., 2002)

emphasize this difficulty for the CMWP as well. In the context of the CMWP, they propose

to switch from one BrS to another. In the MCMWP case we follow a similar approach.

They apply a test to check whether such a closeness occurs. In case the test is satisfied, they

switch from using Equation 8.17 to Equation 8.70 for the CMWP when the commodity index

k is dropped from Equation 8.70. Namely, they apply a hybrid approach of backtracking to

partition the interval homogeneously as in the MBrS1. We also use a similar approach and

test whether the inequality

min{wi′j′k′ − li′j′k′ , ui′j′k′ − wi′j′k′} ≥ 0.1(ui′j′k′ − li′j′k′) (8.73)

holds. Here 0.1 is a parameter value recommended by (Sherali et al., 2002). Whenever

Equation 8.73 is satisfied we switch from either MBrS2 or MBrS3 to MBrS1. In order to

guarantee the feasibility we further impose the condition ui′j′k′ − wi′j′k′ ≥ 1. When we

consider strategies MBrS1, MBrS2 and MBrS3, ties are broken arbitrarily. Whenever a
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variable is selected all the remaining bounds lijk and uijk for i = 1, . . . , I; j = 1, . . . , J ; k =

1, . . . , K and (i, j, k) 6= (i′, j′, k′) are inherited from the parent node.

The ABB algorithm assumes that right hand-side values of constraints given by Equa-

tion 2.3 – 2.6, namely supply, demand and flow capacity quantities are all integers. Thus,

the flow quantities are integer for all extreme points of the MTP polyhedron. The MBrSs

(MBrS1, MBrS2 and MBrS3) take advantage of this assumption and partition the allocation

space over integer flows. Otherwise, when the right hand-side values of constraints given

by Equation 2.3 – 2.6 are not necessarily integer, the bounds on allocation variables may

be fractional which may lead to a huge BB tree. As a result, the performance of the ABB

algorithm may significantly reduce without the integrality of flows assumption.

8.2.2.3. Optimality Check. For each MABB subproblem, we compute lower and upper

bound values ZLB and ZUB, respectively. To avoid excessive computational effort, whenever

the fathoming criterion ZLB ≥ (1− ε)Zbest
UB holds for a node t, it is pruned from the BB tree.

We set ε = 0.001 in our calculations.

8.2.3. Summary of the Allocation Space Based Branch-and-Bound Algorithm

At this point we have all ingredients of the MABB algorithm at hand. Its outline can

be formally given as in Figure 8.2.

The MABB algorithm is illustrated with a numerical example in Figure 8.3. We con-

sider an instance named as “mc 2 4 2” which implies that the instance has two facilities to

serve four customer in order to meet their demand on two types of commodities. The data

consisting of the transportation costs, customer coordinates and the right hand sides of the

constraints of “mc 2 4 2” is given as “transportation costs : c111 = 1, c112 = 9, c121 = 3,

c122 = 5, c131 = 2, c132 = 8, c141 = 4, c142 = 6, c211 = 3, c212 = 4, c221 = 0, c222 = 6, c231 = 1,

c232 = 6, c241 = 8, c242 = 3; customer coordinates : a1 = (0, 1)T , a2 = (0, 0)T , a3 = (0, 2)T ,

a4 = (4, 10)T ; facility capacities : s11 = 17, s12 = 22, s21 = 17, s22 = 21; customer demands :

q11 = 5, q12 = 3, q21 = 18, q22 = 12, q31 = 6, q32 = 17, q41 = 5, q42 = 11; bundle restrictions :

u11 = 0, u12 = 39, u13 = 39, u14 = 39, u21 = 38, u22 = 38, u23 = 38, u24 = 38”. Figure

8.3 presents several consecutive steps of the MABB algorithm on the instance “mc 2 4 2”

with Euclidean distance. The nodes of the BB tree are denoted by circles associated with

a node number. On the branches connected to the nodes, the selected allocation variable



102

1. (Initialization): Set WE ← ∅, WF ← {(i, j, k) : i = 1, . . . , I; j = 1, . . . , J ;

k = 1, . . . , K}. Set l
(0)

ijk = 0 and u
(0)

ijk = min{sik, qjk, uij} for i = 1, . . . , I;

j = 1, . . . , J ; k = 1, . . . , K, apply the logical test and bounding procedures.

Construct the root node t0 with lower bound Z
(t0)

LB , upper bound Z
(t0)

UB .

Update T ← T ∪ t0.

2. Select an active node t ∈ T such that t = arg min
t′∈T

{Z
(t)

LB} and Z
(t)

LB < (1− ε)Zbest
UB

is satisfied. if there is no such element in T , then STOP: the incumbent

solution is within 100ε% of the optimum. else select a branching variable

wi′,j′,k′ and partition the allocation space into two subspaces accordingly using

one of MBrSs (i.e., MBrS1, MBrS2 or MBrS3). Set Zbest
LB = Z

(t)

LB.

3. For subsets n′ = 1, 2, perform the logical test as described. Compute a ZLB and

ZUB with bounding procedures. Update the incumbent solution when

necessary, i.e., Zbest
UB = min{Zbest

UB , ZUB}. if ZLB < (1 − ε)Zbest
UB construct active

node tn
′

, then update T ← T ∪ tn
′

. Go to Step 2.

Figure 8.2. The MABB algorithm for the MCMWP.

and its current interval is shown. A node which is underlined indicates that it is fathomed.

Each node is associated with a lower and upper bound shown at their (left or right) bottom

and up sides. For example Z4
UB = 631.9 and Z4

LB = 585 are the upper bound value and

lower bound value associated with node 4, respectively. We employ the branching variable

selection strategy MBrS1 given by Equation 8.70 in this example. As the lower bounding

procedure, RMDAP3 with `∞-norm is used together with ZMSAS given by Equation 8.61.

Upper bounds are calculated by the MCALA heuristic. At the root node an initial upper

bound is obtained as explained in Section 8.2.1.3 and the lower bound is set to zero. The allo-

cation variable w132 has c132(u132− l132) = 136 which is maximum among all other allocation

variables and it is selected for branching with respect to MBrS1. Hence, its solution space

is partitioned into two intervals such that 0 ≤ w132 ≤ 8 and 9 ≤ w132 ≤ 17 resulting in node

1 and node 2, respectively. After the bounding procedures are applied for each sub-node,

the incumbent solution value Zbest
UB is updated as Zbest

UB = 631.9 which is the optimal value

for the instance “mc 2 4 2”. Node 1 is fathomed since its lower bound exceeds Zbest
UB and the

partitioning continues with node 2. Notice that further branching is done on node 4 even if

both node 3 and node 4 are active since node 4 has the smallest lower bound value among

all active nodes. This is also the reason that the MABB algorithm progresses by exploring
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node 8 rather than node 3. The MABB algorithm will also explore node 3 once its lower

bound becomes the smallest one in the rest of the BB tree. Note that we employ a logical

test to update the current bounds on the allocation variables. This may result in different

lower and upper bound values on them. As an example, after the branching at node 5 the

allocation variable w132 is again selected. However, its lower bound, i.e., l132, has increased

from 9 to 12 while going down from node 2 to node 7. This is due to the update mechanism

of the logical test used after the branching steps.
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9. LOCATION SPACE BASED BRANCH-AND-BOUND

METHODS

(Hansen et al., 1981) devise a location space based BB algorithm named as “Big Square

Small Square” (BSSS) for the Obnoxious Facility Problem (OFP). The BSSS technique par-

titions the plane into smaller squares in which a facility is restricted to be placed. For each

square a lower and an upper bound is calculated. Whenever a lower bound value for a square

exceeds the incumbent solution value then, it is discarded from further consideration. Oth-

erwise, it is partitioned into four subsquares and the BB search process continues. Actually,

the BSSS uses the center point of squares to calculate upper bounds and discards a square

if its center is outside the convex hull of customers. (Plastria, 1992) explains that the BSSS

technique may fail to find the optimal (or close to optimal) solution in such a case and an

upper bound should always be calculated for each square. Hence, the author modifies the

BSSS technique to resolve such a case of failure. Unfortunately, the BSSS technique requires

an additional control of a square to lie within the convex hull of customers. (Drezner and

Suzuki, 2004) employ triangles instead of squares and apply a triangulation method as a

preprocessing step. This approach, which is called as “Big Triangle Small Triangle” (BTST)

technique, partitions a triangle into four subtriangles by connecting the midpoints of its

three sides. Since the triangulation phase eliminates all regions outside the convex hull of

customers, the BTST technique does not require an additional check whether a region to be

within the convex hull of customers or not. The OFP and Weber problem with attraction

and repulsion (WAR) is solved by the BTST technique (Drezner and Suzuki, 2004). (Drezner

et al., 2007) present a generic approach to solve many types of location problems with the

BTST technique. Among them, the Gradual Covering Problem (GCP) and Location with

Acceleration-deceleration Distance Problems (LADP) are handled with the BTST technique

in the studies by (Drezner et al., 2004) and (Drezner et al., 2009), respectively.

The basic idea of both BSSS and BTST techniques is to partition the plane into

polytopes (i.e., squares, triangles and other types of polytopes) in which a single facility can

be placed. To the best of our knowledge, neither the BSSS nor the BTST techniques are

used for the Multi-facility LAPs (MLAPs). Several difficulties can be listed in generalizing

the BSSS or BTST techniques for the MLAPs. First of all, both of the BSSS and BTST
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techniques assume that the allocation values are fixed and known a priori which is not the

case for the MLAPs including the CMWP and MCMWP. Furthermore, both techniques

are designed to use concave lower bounding functions whose minimums occur at one of

the extreme points of the bounded polyhedral regions namely polytopes: squares for the

BSSS, triangles for the BTST. These functions may not be concave when in addition to

the facility locations, the allocation quantities are also unknown. Therefore, one needs new

lower bounding methods for MLAPs. Another difficulty of the BSSS technique is that during

the BB tree search some regions can not be directly discarded from consideration for the

MLAPs. For instance, assume that a region R of facility i∗ is divided into two subregions

R1 and R2. This results in two new facility-region combinations. Now, other facilities

i 6= i∗ can also be located in either R1 or R2 since R is divided. Hence, there are several

facility-region combinations such that other facilities can be restricted to these regions. In

some of these facility-region combinations, the lower bound values calculated may or may

not exceed the incumbent solution value. As a result, when region R is directly eliminated

considering only facility i∗, then we can get rid of some feasible part of the search space.

A triangulation method can be used as in the BTST technique developed for single facility

location problems, as well. This generates many initial regions (i.e., triangles) that a facility

can be located. Unfortunately, in this case, one should generate all possible facility-region

(triangle) combinations and calculate lower and upper bounds as part of the LBB algorithm.

It is clear that the number of facility-region (triangle) combinations becomes intractable

even for small numbers of facilities and regions (triangles). Consequently, we have focused

on the location space based BB (LBB) algorithm without such a preprocessing mechanism.

All these difficulties are taken into account to define the LBB algorithm and a contin-

uous binary partitioning of the location space is preferred. For that purpose, we define the

following bounds on location variables xi

ai1 ≤ xi1 ≤ ai1, ai2 ≤ xi2 ≤ ai2 i = 1, . . . , I (9.1)

Initially these bounds can be defined as ain = min
j=1,...,J

{ajn} and ain = max
j=1,...,J

{ajn} for

both axes n = 1, 2 and i = 1, . . . , I. This implies that the location space is initially selected

as the smallest rectangle covering the customer locations for each facility i. Observe that it

is also possible to obtain other types of bounded polyhedral regions than rectangles given

by Equation 9.1 by imposing restrictions of type Equation 8.37. At each step of the LBB
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algorithm an active node t ∈ T is selected for exploration. Let Ct = {(x1, R
t
1), . . . , (xI , R

t
I)}

denote facility-region (facility-rectangle) combinations at node t. Then, a region Rt
i is se-

lected and partitioned into two complementing subregions (sub-rectangles) Rt
i1 and Rt

i2.

Complementing subregions (sub-rectangles) mean that Rt
i1 ∪Rt

i2 = Rt
i holds after partition-

ing Rt
i and the interiors of Rt

i1 and Rt
i2 have no intersection (i.e., int(Rt

i1) ∩ int(Rt
i2) = ∅).

This results in two subproblems where possible location of facility i is further restricted. All

bounds on location variables for the remaining facilities are directly inherited from Ct. A

lower and upper bound is calculated for each subproblem, and the ones with a lower bound

smaller than the incumbent solution value are added to the BB tree T . The incumbent so-

lution value is updated when a better upper bound is obtained and the algorithm continues

until T is empty.

A similar approach is also used by (Sherali et al., 1994) for the RCMWP on a par-

tial location space which consists of the intersection points generated by the fundamental

directions of `1-norm on customer locations. The authors define lower and upper bounds on

location variables in both x and y-axes. However, the partitioning is applied on one axis at a

time considering the customer locations on the selected axis. As the rectilinear distances are

used, there is no need to take into account intermediate points lying between two customers

on one axis. Our approach considers both x and y-axes together and can be extended to

different polytopes other than rectangles. Moreover, the LBB algorithm can also be used to

solve problems having `r-norm with 1 ≤ r < ∞.

In this chapter6 we suggest Single-commodity LBB (SLBB) and Multi-commodity LBB

(MLBB) algorithms for CMWP and MCMWP, respectively. The next section presents lower

bounding procedures for both CMWP and MCMWP. Section 2 gives upper bounding pro-

cedures for them. Other features of the LBB algorithms (i.e., SLBB and MLBB algorithms)

which include partitioning, tree search and branching strategies together with the optimality

check is provided in Section 3. Section 4 establishes a formal outline of the LBB algorithm.

Section 5 explains an alternative LBB algorithm in which a complete enumeration strategy

is followed. In the last section, we have applied a Beam Search (BS) approach using the

LBB algorithm and provide a heuristic procedure that can be successfully used for MLAPs.

6The conference proceeding (Akyüz et al., 2011) is partly based on this chapter.
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9.1. Lower Bounding Procedures

We first describe two specially tailored lower bounding procedures: they are LP based

and block norm based approaches. For each lower bounding procedure, we describe how

they can be used within the SLBB and MLBB algorithms developed for the CMWP and

MCMWP, respectively.

9.1.1. Linear Programming Based Lower Bounding Procedures

The lower bounds are needed to eliminate unnecessary nodes before adding them to T
and to check how close is the incumbent solution value of the LBB algorithm to optimality.

Every time we partition a region R, the LBB subproblems of the form given by Equation

2.2 – 2.6 and 9.1 are constructed. In order to find lower bounds for the LBB subproblems,

we benefit from the distance function properties. Given facility region combinations Ct =

{(x1, R
t
1), . . . , (xI , R

t
I)}, we define distances dt

ij which stand for the shortest distance between

each facility i assigned to a region Rt
i and customer j. Notice that dt

ij = d(at
ij, aj) ≤ d(xi, aj)

holds where at
ij is the closest point of Rt

i to customer j. In the LBB algorithm the regions are

selected as rectangles and dt
ij can also be easily calculated for various types of regions (e.g.,

triangles, squares, pentagons, etc.). Lower bounding distances dt
ij are previously proposed

in the study by (Hansen et al., 1985). For example, when the rectangles are considered in

the LBB algorithm there are three cases that the closest point at
ij can be situated on Rt

i.

These cases are illustrated with Figure 9.1. In the first case, when customer j lies within the

rectangle Rt
i then at

ij = aj holds (see Figure 9.1a). In the second case, at
ij is located on one

of the borders of Rt
i (see Figure 9.1b). In the third case (see Figure 9.1c), when customer

j is beyond the area constructed by drawing vertical and horizontal lines on the extreme

points of the rectangle Rt
i containing it, at

ij is situated at one of the extreme points of Rt
i

(i.e., (ai1, ai2), (ai1, ai2), (ai1, ai2) and (ai1, ai2)). In the first case dt
ij equals to zero. In the

second case, dt
ij is equal to either vertical or horizontal distance from the selected side of Rt

i.

In the third case dt
ij equals to the `r distance between the selected extreme point of Rt

i and

customer j.

Given the lower bounding distances dt
ij, we solve the usual TP (MTP) within the SLBB

(MLBB) algorithm for the CMWP (MCMWP). Observe that dt
ij is constant and does not

depend on the location variable xi and dt
ij ≤ d(xi, aj) holds for i = 1, . . . I; j = 1, . . . , J .
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Figure 9.1. Three possible cases for the closest coint at
ij of a rectangle Rt

i.

Clearly, at
ij ∈ Rt

i implies that Equation 9.1 is already satisfied and thus, the solution of TP

(MTP) constitutes a lower bound for the SLBB and MLBB subproblems given by Equation

3.6 – 3.9 and 9.1, and Equation 2.2 – 2.6 and 9.1, respectively. We provide these lower

bounds as follows:

LPSLBB
(t):

min ZSLBB
LP =

{
I∑

i=1

J∑
j=1

wijcijd
t
ij : Equation 3.7− 3.9

}
(9.2)

for the CMWP and

LPMLBB
(t):

min ZMLBB
LP =

{
I∑

i=1

J∑
j=1

K∑

k=1

wijkcijkd
t
ij : Equation 2.3− 2.6

}
(9.3)

for the MCMWP. ZSLBB
LP and ZMLBB

LP are the LP based lower bounds for SLBB and MLBB

algorithms.

9.1.2. Block Norm Based Lower Bounding Procedures

The block norm based lower bounding idea can be applied to the LBB algorithm as

well. Given a facility-region combination Ct, when the block norms are used candidate

facility locations can be selected from a finite set of intersection points. That is to say,
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Figure 9.2. Candidate point sets within a rectangle R with `1 and `∞-norms.

when a facility is enforced to lie within a rectangle, the set of candidate facility locations are

restricted within that rectangle. When there is no region restrictions on facilities, the optimal

facility locations lie on the intersection points of the lines drawn on customer locations within

their convex hull along the extreme directions of the corresponding block norm. In case we

restrict facilities to lie within the rectangles, the extreme points of the rectangles also plays

a role to determine the intersection points. In this case, using the results by (Thisse et al.,

1984), the candidate locations are the intersection points of the fundamental rays drawn

on both the customer locations and extreme points of regions Rt
i for i = 1, . . . , I which lie

either on their borders or within them. Figure 9.2 illustrates the intersection points to be

considered when `1 and `∞-norms are used. The rectangle restricting a facility location is

denoted by R. Customers are indicated with squares and the intersection points are drawn as

filled circles. The fundamental rays are drawn on both customer locations and the extreme

points of the rectangle R. The resulting candidate points lie either on the intersection of the

borders of the rectangle R and a fundamental ray or on the intersection of two fundamental

rays.

A lower bounding MILP formulation similar to DAP and MDAP1 can be proposed to

find a block norm based lower bound for LBB subproblems. For the sake of conciseness, we

do not explicitly state these MILP formulations. However, we should mention that in DAP

or MDAP1 all candidate points are commonly shared by all facilities. This is because there

are no restrictions on facility locations for them. For the LBB subproblems, each facility i is
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restricted within a rectangle Rt
i and thus each facility i has its own candidate points within

Rt
i. As a consequence, we need an additional index to denote the candidate points of each

facility (i.e., gi = 1, . . . , Gi with Gi being the number of intersection points in Rt
i for facility

i). On large candidate facility location sets, it is possible to use similar LR schemes for

the LBB subproblems to obtain block norm based lower bounds. In the following, we state

modifications over DAP (MDAP1) for the CMWP (MCMWP) to find block norm based

lower bounds.

In the DAP formulation given by Equation 8.2 – 8.7 for the CMWP, we describe several

modifications to adapt it for the SLBB algorithm. As each facility has now its own set of

candidate points denoted by gi, yijg is replaced with yijgi
which stands for the amount of

flow between facility i located at one of its candidate points gi to customer j. Similarly, vig

is replaced with vigi
to denote whether facility i is opened at one of its candidate points gi or

not. l̂ij and ûij values are set as l̂ij = 0 and ûij = min{si, qj} and hence the additional term

l̂ijvig in Equation 8.2 is dropped from the formulation. Lastly, all g and G are replaced with

gi and Gi in the DAP formulation given by Equation 8.2 – 8.7, respectively. Clearly, the

DAP formulation is exactly the same at the root nodes of both SABB and SLBB algorithms.

The rest of the notation is maintained as they are presented in DAP formulation (or RDAP)

to find the block norm based lower bound ZSLBB
DAP for the SLBB algorithm.

In MDAP1 formulation given by Equation 5.1 – 5.7, we also propose several changes to

adapt it for the MLBB algorithm. As each facility has now its own set of candidate points

denoted by gi, yijkg is replaced with yijkgi
to show the amount of flow between facility i

located at one of its candidate points gi to customer j of commodity k. vig is replaced with

vigi
indicate whether facility i is opened at one of its candidate points gi or not. Lastly, all

g and G are replaced with gi and Gi in the MDAP1 formulation given by Equation 5.1 –

5.7. The rest of the notation is maintained as they are given in MDAP1 formulation (or

RMDAP1) to find the block norm based lower bound ZMLBB
MDAP within the MLBB algorithm

for the MCMWP. Similar modifications can also be done with the MDAP2 formulation.

9.2. Upper Bounding Procedures

A node of the LBB tree can be prunned without further branching when the lower

bound of the current node is larger than the best known upper bound value for the problem.
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Therefore, it is important to find a good upper bound, ZUB, which is close to optimum,

in order to reduce the number of branchings made within the LBB algorithm. The upper

bounding procedure is similar to the one described for the SABB and MABB algorithm.

Once a lower bound is found for a LBB subproblem, a feasible allocation vector is at hand

for the CMWP (or MCMWP). Thus, given this allocation vector, solving the resulting WPs

to find the optimum facility locations yields a feasible solution for both the CMWP and

MCMWP. The solution can also be enhanced with a CALA (or MCALA) heuristic. We

also apply a CALA (MCALA) heuristic and update the incumbent objective value, Zbest
UB

throughout the run of the SLBB (MLBB) algorithm when ZUB < Zbest
UB holds.

9.3. Other Features of the Location Space Based Branch-and-Bound

Algorithms

9.3.1. Partitioning, Search and Branching Strategies

The location space associated with an active node of the LBB tree is partitioned into

two complement subsets which results in two new LBB subproblems. Observe that the

interior of both complement subsets is empty and the union of the complement subsets

is the initial location space before the partitioning. At each partitioning step a rectangle

Rt
i corresponding to facility i is selected and Rt

i is divided into two complement rectangles

separated by a line. All other facility-rectangle pairs are inherited for new subproblems. A

rectangle can be partitioned in two ways: vertically and horizontally. For each subproblem,

we prefer to partition a rectangle on its longest sides. This implies that if the horizontal

(vertical) sides are longer than the vertical (horizontal) sides, then the rectangle is partitioned

by connecting the mid-points of two horizontal (vertical) sides. This helps to avoid the width

(length) of the rectangles to be too large (small) on their vertical (horizontal) sides. As a

result, the rectangles are uniformly partitioned on both of their vertical and horizontal sides.

The LBB algorithm performs a BFS strategy. We select an active node t ∈ T with

the smallest lower bound value for partitioning. At every active node, we keep track of

facility-rectangle combinations (i.e., Ct and Rt
i for i = 1, . . . , I), and, lower and upper bound

values calculated. Each rectangle is also coupled with its defining extreme points, total area

and parent rectangle.
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The branching is applied over the rectangles and we try to make a balanced partitioning.

That is to say, we partition the rectangles such that none of the rectangles of node t under

consideration has an area greater than twice of the area of the smallest rectangle. Given t

and its associated facility-region combination Ct, the following strategy is used to select the

branching rectangle Rt
i∗ :

i∗ = arg max
i=1,...,I

{
Area of Rt

i ∈ Ct
}

(9.4)

Notice that the branching strategy given by Equation 9.4 ensures a homogeneous par-

titioning of rectangles. Without branching strategy given by Equation 9.4, it is possible to

divide a rectangle and its sub-rectangles of the same facility many times which may result

in a series of non-improving steps within the LBB algorithm.

9.3.2. Optimality Check

For each LBB subproblem, we calculate lower and upper bound values ZLB and ZUB,

respectively. Notice that we partition the location space continuously and this process may

not end without a suitable stopping condition. Hence we can say that a stopping condition

plays a crucial role on the completion of the LBB algorithm in a finite number of iterations.

For that purpose, we impose the condition ZLB ≥ (1− ε)Zbest
UB to prune the nodes satisfying

it. We set ε = 0.001 in order to avoid excessive computational effort which also ensures

the finiteness of our LBB algorithm within 100ε% of the optimal value. Clearly, there is a

trade-off between the closeness to optimality and the computational time spent by the LBB

algorithms. Furthermore, the number of rectangles is limited to 100000 within the LBB

algorithms. In practice, we observe these settings to be useful for the computational times

of the LBB algorithms.

9.4. Summary of the Location Space Based Branch-and-Bound Algorithm

Both of the SLBB and MLBB algorithms have more or less the same ingredients.

The only difference lies in the bounding procedures. The CMWP requires the solution

of a TP for LP based lower bounding, the solution of a DAP (or RDAP) for the block

norm based lower bounding and the solution of CALA for upper bounding. On the other
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hand, MCMWP requires the solution of MTP and MDAP1 with the suggested modifications

for lower bounding procedures and MCALA heuristic for upper bounding procedure. The

remaining features are common for both SLBB and MLBB algorithms. The formal outline

of the LBB algorithm is given in Figure 9.3. Note that it is generic and it can be used for

the implementation of both the SLBB and MLBB algorithms by paying attention to the

differences as mentioned.

We should point out that for the LBB algorithm we do not assume the integrality

of the right-hand sides of the CMWP and MCMWP constraints. Different than the ABB

algorithms, LBB algorithms can be directly used to solve the CMWP (or MCMWP) with

fractional variables. As a reminder, SABB and MABB algorithms should be slightly modified

when the right-hand sides of the constraint sets are not integral as discussed.

1. (Initialization): Initialize the regions R0

i ← {xi : ai1 ≤ xi1 ≤ ai1, ai2 ≤ xi2

≤ ai2} for i = 1, . . . , I. Construct facility-region combinations

C0 ← {(x1, R
0

1
), . . . , (xI , R

0

I)}, compute Z0

LB and Z0

UB values associated

with C0. Create node t
0

and set T ← T ∪ t
0
. Update Zbest

LB and Zbest
UB

values accordingly.

2. (Partitioning): Select an active node t ∈ T such that t = arg min
t∗∈T

{Zt∗

LB}

and Zt
LB < (1 − ε)Zbest

UB . if there is no such a node, then STOP: Zbest
UB is

within 100ε% of the optimum value. else select i∗ as in Equation 9.4 and

divide Rt
i∗ into two subsets as described. Set Zbest

LB = Zt
LB and T ← T \ t.

3. (Bounding): For each subset n′ = 1, 2 compute a lower bound Zn′

LB and an

upper bound Zn′

UB by bounding procedures. Update Zbest
UB if necessary, i.e.,

Zbest
UB = min{Zbest

UB , Zn′

UB}. When Zn′

LB < (1 − ε)Zbest
UB then, construct an

active node t
n′

and set T ← T ∪ t
n′

. Go to Step 2.

Figure 9.3. The LBB algorithm.

The LBB algorithm is illustrated with a numerical example in Figure 9.4. We again

consider the instance “mc 2 4 2” and Figure 9.4 presents several consecutive steps of the
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LBB algorithm on it. Each node of the BB tree, which is represented by a circle, is associated

with a number. On the branches connected to the nodes, the selected location variable and

the rectangle in which it is restricted, is shown. A line is drawn under a node in order to

indicate that it is fathomed. Each node is associated with a lower and upper bound shown

at their (left or right) bottom and up sides. For example, Z3
UB = 631.9 and Z3

LB = 585 are

the upper and lower bound values associated with node 3, respectively. At each branching

the largest rectangle associated with a facility is selected according to Equation 9.4 and then

this rectangle is partitioned. Here, both the RMDAP1 with `∞-norm and the LP based lower

bounding procedures are used together as the lower bounding procedure. Upper bounds are

calculated by running the MCALA heuristic. At the root node an initial upper bound is

obtained as explained in Section 8.2.1.3 and the lower bound is set to zero. Initial rectangle

R0 is defined as R0 = {(x1, x2)
T : 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 10} and both facilities are restricted

in R0. R0 is partitioned into two complementary sub-rectangles R1 and R2 for the first

facility. This partitioning can also be done for the second facility but we arbitrarily select the

first facility. R1 and R2 are defined respectively as R1 = {(x1, x2)
T : 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 5}

and R2 = {(x1, x2)
T : 0 ≤ x1 ≤ 4, 5 ≤ x2 ≤ 10}. Notice that the partitioning of R0 is done

on its longer sides where the line combining their midpoints is drawn. This partitioning

results in more uniform rectangles than rectangles which are too narrow or too wide on one

of their sides. On the left branch, the first facility is restricted in R1 such that x1 ∈ R1 and

we reach node 1. On the right branch, we set x1 ∈ R2. For both node 1 and node 2, x2 still

belongs to R0. After applying the bounding procedures for each sub-node, the incumbent

solution value Zbest
UB is updated as Zbest

UB = 631.9. Then, node 2 is fathomed and branching

continues with node 1. In node 1, the largest rectangle associated with a facility is selected.

This time, rectangle R0 of the second facility is selected since the area of R0 is greater than

the area of R1. Now, the second facility is restricted within both R1 and R2, similar to the

previous branchings. For node 3, both the first and second facilities are in R1. Node 4 is

fathomed since its lower bound exceeds Zbest
UB . At node 3, R1 is further divided into two

complementary rectangles R3 and R4 such that R3 = {(x1, x2)
T : 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2.5}

and R4 = {(x1, x2)
T : 0 ≤ x1 ≤ 4, 2.5 ≤ x2 ≤ 5}. The rest of the steps are the same as

in MABB algorithm and the LBB algorithm continues branching on node 7 since it has the

smallest lower bound among all active nodes in the BB tree.
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9.5. Location Space Based Branch-and-Bound Algorithm with Complete

Enumeration

The LBB algorithm selects an active node from the BB tree and partitions the rectangle

corresponding to this active node into two complementing rectangles for a facility. This

results in two new subproblems to be considered which will probably be added to the BB

tree. The partitioning of the selected rectangle is limited to a particular active node t.

On the other hand, the partitioning of a rectangle R into two sub-rectangles R1 and

R2 can be executed such that R is replaced with R1 and R2 in all active nodes. For that

purpose, all active nodes having a facility located within rectangle R is branched further.

This branching strategy may generate at most 2I subproblems for a given active node t. For

example, consider two facilities which is to be located in the plane and we are given an active

node t associated with a combination Ct = {(x1, R), (x2, R)}. Here, both of the locations of

facilities x1 and x2 are restricted within rectangle R which will be partitioned into two com-

plementing sub-rectangles R1 and R2. Then, by partitioning R, all possible combinations

associated with t are generated as Ct1
new = {(x1, R

1), (x2, R
1)}, Ct2

new = {(x1, R
1), (x2, R

2)},
Ct3

new = {(x1, R
2), (x2, R

1)} and Ct4
new = {(x1, R

2), (x2, R
2)}. The LBB subproblems corre-

sponding to new combinations Ct1
new, Ct2

new, Ct3
new and Ct4

new are evaluated and added to the

BB tree when they are eligible. Moreover, all remaining active nodes with a combination

for which a facility is restricted in R should also be explored similarly by replacing R with

R1 and R2. Thus, R can be eliminated from the rectangle list since there does not exist

an active node containing R anymore in the BB tree. The number of new facility-region

combinations doubles for each additional facility which is also assigned to region R for a

given combination of Ct of an active node t ∈ T . In short, 2It many new facility-region

combinations should be constructed with It =
∣∣∣
{

i : R(Ct
i ) = R, i = 1, . . . , I

}∣∣∣ where It and

R(Ct
i ) denote the number of facilities in the facility-region combination Ct whose region is R

and the region of the combination Ct assigned to facility i, respectively. The enumeration

procedure can produce 2It subproblems for an active node t and all remaining active nodes

are subject to this procedure. We call this approach as the LBB with complete enumeration

(LBBCE) algorithm which is named as SLBBCE algorithm for the CMWP and MLBBCE

algorithm for the MCMWP, respectively. In addition to the LBB algorithm, the perfor-

mance of the LBBCE algorithm is also tested. We impose an additional stopping condition

for LBBCE which limits the size of the BB tree. For that purpose, we allow up to 500000
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active nodes in the BB tree considering the number of subproblems which will be produced

by active nodes.

9.6. A Beam Search Heuristic

BS is a BB based heuristic search method which dates back to the study by (Lowerre,

1976) on the speech recognition. BS performs a “breadth-first search” (BrFS) strategy on a

truncated BB tree. In a complete BB tree search, branching is done such that all possible

subproblems are produced and evaluated. This requires a bounding step to calculate lower

and upper bounds for each resulting subproblem. On the other hand, BS considers only

the most promising W of them which is also called as “beam width” and branches on them.

Actually, the beam consists of the active nodes which will be considered for further branching

in BS. An active node, which is one of the W nodes in the beam, is further partitioned such

that all possible subproblems are generated and the most promising subproblem replaces the

active node before the branching. This procedure is repeated for each of the W active nodes

which are in the beam. To short, BS applies a BrFS strategy in parallel for all W active nodes

in the beam. However, the number of subproblems may be too large to perform a bounding

procedure for each of them when the branching width is large, that is, when the number of

possible subproblems after a branching step is large. (Ow and Morton, 1988, 1989) modify

the BS by adding a filtering step where a cheap and fast evaluation procedure reduces the

number of subproblems for which the expensive bounding procedure, is performed. This

algorithm is called as Filtered BS (FBS). Clearly, neither BS or FBS does not guarantee an

optimal solution for a problem. Indeed, it is probable that one misses the optimal solution

at an early pruning step of the BB tree with either BS or FBS. Once a node is pruned, there

is no way to backtrack on it for further exploration. (Croce et al., 2004) introduce a recovery

step and the Recovering BS (RBS) to overcome this difficulty. The recovery step in RBS

looks for an improved feasible solution by interchanging current assignments of variables

(i.e., exchanging current values of two zero-one variables) at a given subproblem. Since only

the most promising subproblem is selected to replace an active node in the beam, this gives

a chance to recover the wrong decision of pruning the branch which leads to an optimal

solution.

RBS, which is used for the p-median problem in (Croce et al., 2004), is a heuristic

example for a DLAP. For all we know, a BS approach considering a continuous MLAP does
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not exist. We develop a BS heuristic with our LBB algorithm which performs a continuous

partitioning on the location space. The BS is originally designed for the discrete problems

such as scheduling, p-median and many other COPs as well. The LBB algorithm performs a

continuous partitioning where the depth of the BB tree is not known a priori. Actually, the

finiteness of the LBB algorithm is only guaranteed with the imposed stopping conditions.

The LBB algorithm performs a BFS strategy and here we adapt it to produce heuristic

solutions using the BS heuristic. At each step of the LBB algorithm an active node having

the least lower bound value is selected for further branching and the bounding procedure is

performed on the resulting subproblems. The viable nodes are added to the BB search tree.

In our BS approach, only W nodes are allowed to be active in the BB tree. (Croce

et al., 2004) state that there is no cheap and fast evaluation procedure (filtering) for the

p-median procedure. Hence, we do not expect to find an efficient evaluation procedure for

both CMWP and MCMWP. As a result, no filtering is applied to perform a preprocessing

step in the BS heuristic. Promising nodes for further branching are selected according to

an evaluation function. This is a cost based function of the subproblem associated with the

selected active node t. For that purpose, we employ the evaluation function suggested by

(Croce et al., 2004) which uses a convex combination of the lower and upper bound values,

namely Zt
LB and Zt

UB associated with t, respectively. The evaluation function is defined

as Ẑt = (1 − Ψ)Zt
LB + ΨZt

UB with 0 ≤ Ψ ≤ 1. The performance of the BS heuristic is

significantly affected by the evaluation function used (i.e., Ẑt). At first glance, one may

think that the smallest lower bounding (when Ψ = 0) solutions are the ones that lead us to

an optimal solution. In practice, the least lower bounding nodes may not always produce

the best feasible solutions.

We use a BFS strategy and the most promising node is selected for further branching.

Namely the node with the smallest of Ẑt such that t ∈ T where |T | = W is chosen. Instead

of branching over all W active nodes in the beam at each step as in a BrFS strategy, we

perform a single branching over the node having the smallest Ẑt value in the beam. After

this single branching step, the most promising (the ones having W least Ẑt values) W nodes

of the beam are kept for further exploration. It is also possible to pursue a complete BrFS

strategy and branch over W nodes in the beam as in the classical BS. However, we have

observed that a BFS strategy yields better outcomes than the BrFS strategy does. Indeed,

both BFS and BrFS strategies are the same when W = 1. To sum up, instead of branching
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over all W active nodes at each step, we perform a single branching and keep the most

promising W (W nodes having least Ẑt values) nodes for further exploration in the BB tree.

This setting helps us to avoid from expensive bounding procedures, in particular the lower

bounding procedures.
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10. COMPUTATIONAL RESULTS

The performance of the suggested methods are tested on a set of randomly gener-

ated test instances. We first describe our test environment on which our experiments are

performed. Then, we summarize the results obtained with the proposed solution procedures.

10.1. Test Environment

Our test bed contains two groups of test instances: instances for the CMWP and in-

stances for the MCMWP. The test library for the CMWP, consists of both existing instances

for some of which optimal solutions are known and randomly generated new instances. Our

test library for the MCMWP contains of only randomly generated instances since there is

no available test problems in the literature.

We report the percent relative deviations of the objective value (ZM) computed by one

of our methods developed and we give a reference value (ZR) in order to expose the accuracy

of the methods. They are calculated according to the formula

100× |ZM − ZR|
ZR

. (10.1)

In the ideal situation ZR is selected as the exact optimum value Z∗ while this is not

always possible since the exact solution of every test problem is not feasible. Hence, we pursue

a pessimistic approach and replace ZR with a benchmark lower bound when assessing the

accuracy of an upper bound and with a benchmark upper bound when assessing the accuracy

of a lower bound. In fact, the calculated relative deviations are upper bounds on the true

ones, which are definitely smaller. When we report gaps between the final lower bound

Zfinal
LB and the final upper bound Zfinal

UB produced by one of our suggested methods we use

the formula

100× (Zfinal
UB − Zfinal

LB )

ZR

, (10.2)
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where ZR is the reference value used to make a fair comparison among the solution ap-

proaches. In case the optimal value is not known, we replace ZR with a benchmark value.

We should make it clear that in our computational experiments the Euclidean distance func-

tion (i.e., r = 2) is used for calculations. Otherwise, we specify which distance function is

used with the CMWP or MCMWP (i.e., RMCMWP stands for Rectilinear MCMWP). We

present the details of the generation of the CMWP and MCMWP test beds used for our

computational experiments in the following two subsections.

10.1.1. Test Bed for the Capacitated Multi-facility Weber Problem

We performed computational experiments on two classes of test instances for the

CMWP. The first class consists of 18 test instances from the literature with their given

best known values (Al-Loughani, 1997; Sherali et al., 2002). The second class includes 94

randomly generated test instances with unknown optimal values (Boyacı, 2009).

The instances in the first class are numbered from 1 to 12 and from 15 to 20 as in the

original paper (Sherali et al., 2002). We append a prefix “P” in front of their original instance

number. For these instances, the number of facilities range from 2 to 10 and the number of

customers range from 2 to 30. We consider the total number of allocation variables, namely

I × J , as the main criterion for the classification of instances. In other words, the instances

satisfying inequalities I × J ≤ 50, 50 < I × J ≤ 80 and I × J > 80 are classified as “small”,

“medium” and “large” instances for the CMWP, respectively.

The instances in the second class are further grouped into two subgroups as homoge-

neous (having unit transportation costs i.e., cij = 1) and non-unit (having non-unit trans-

portation costs cij) instances. Randomly generated test instances have a similar structure

as the existing ones (i.e., the test instances from the literature). The number of facilities are

selected in the range from 4 to 50 and the number of customers are selected in the range from

8 to 500. The prefixes “hg” and “ht” are used to represent homogeneous and non-unit test

instances, respectively. The instance names are followed by the number of facilities and the

number of customers for each instance. For example, “hg 4 24” implies that the instance is a

unit transportation cost test instance which has 4 facilities and 24 customers. The randomly

generated instances in the second class are mostly larger than the ones in the first class.

In 90 out of 94 instances of the second class, there are more than 80 allocation variables.
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This implies that most of them are large. On the other hand, for the first class of instances,

only 5 out of 18 are large. The instances in the second class are generated in a similar way

to the generation of instances in the first class. For the instances in the second class, the

customer locations (aj1 aj2), j = 1, . . . , J are uniformly selected (for both x and y-axis) from

the interval [0, 25] for instances with I = 4. These values are selected from the interval

[0, 100] for instances with I > 4. Unit transportation costs are also uniformly selected from

the interval [0, 25] (as in the existing instances) for the non-unit instances while they are set

cij = 1 for the homogenous ones. All data entries, other than the cost coefficients cij, are

the same for these two subgroups of instances which have identical sizes. Customer demands

are uniformly selected within the interval [1, 50] and facility capacities are split accordingly

without harming the balanced structure of the transportation constraints.

Note that the instances in the first class are limited in number. Furthermore, we

can say these instances are not large and they are all non-unit instances with non-unit

transportation costs cij. Therefore, the instances in the second class are generated keeping

in mind these facts. Indeed, new instances are larger than the existing ones and the second

class includes also homogenous instances with unit costs. We limit our experiments to BB

methods (ABB and LBB algorithms including the BS heuristic) for the CMWP instances.

As a final remark, the reference values ZR are taken as the best known solutions by (Sherali

et al., 2002) for the first class of CMWP instances. Similarly, we employ benchmark upper

bounds as reference values for the second class of CMWP instances to be consistent with the

first class CMWP instance results. The calculation of these benchmark upper bounds are

selected as the best solutions among several solution approaches. These solution approaches

are the single-commodity variants of CL-MDA and CL-RMDA heuristics, SABB, SLBB and

SLBBCE algorithms and BS heuristic results.

10.1.2. Test Bed for the Multi-commodity Capacitated Multi-facility Weber

Problem

While generating MCMWP test instances we try to use the available data from the

CMWP test instances (Al-Loughani, 1997; Sherali et al., 2002) as much as we can, in order to

replicate existing experimental structure. Hence, we have adapted customer coordinates, unit

transportation costs, customer demands and facility capacities from the available CMWP

instances. Upper bounds on the total amount of multi-commodities shipped from facilities to



124

customers are randomly generated by GNETGEN 7 which is a modification of the well-known

NETGEN generator by (Klingman et al., 1974). GNETGEN is a test instance generator

originally designed for the Generalized Multi-commodity Network Flow Problem (GMNFP).

Notice that the MCMWP can be considered as a special case of the GMNFP when the

number of source nodes is set to the number of facilities I, the number of sink nodes is set to

the number of customers J and the number of transhipment nodes is set to 0 when facility

locations are known.

We first run GNETGEN K times to generate K single commodity Transportation

Problem (TP) instances. Then, we sum up upper bounds on the flow quantities shipped

from facilities to customers to obtain bundle restrictions uij for i = 1, . . . , I and j = 1, . . . , J .

Namely, we set uij =
K∑

k=1

u′ijk for i = 1, . . . , I, j = 1, . . . , J where u′ijk is the upper bound on

the flow quantity shipped from facility i to customer j in each of the K TP instances. Note

that this setting of uij does not harm the feasibility of the MCMWP instance since each one

of the K single commodity TP instance is guaranteed to be feasible by GNETGEN.

We generated 60 MCMWP test problems of various sizes according to the described

procedure. The number of facilities I is selected between 2 and 10 and the number of

customers J is selected between 2 and 30 by taking into account the sizes of the available

CMWP test instances. The number of commodities K is chosen to be between 2 and 5. The

numbers in an instance name stand for the size of the instance where the number of facilities

I, the number of customers J and the number of commodities K are added after the prefix

“mc”, which stands for “multi-commodity”. A similar approach is followed to classify the

size of the MCMWP instances. Instances with I×J×K ≤ 120, 120 < I×J×K ≤ 250 and

I×J×K ≥ 250 are qualified as “small”, “medium” and “large” instances for the MCMWP,

respectively. We call these 60 small to large instances as the first class of the test instances

for the MCMWP.

In addition, we generate 18 very large instances which have 10 to 45 facilities and 100

to 150 customers. Clearly, any exact method will fail to solve these instances, in reasonable

CPU times and thus, we only performed our heuristic approaches on these instances. These

18 very large instances are called as the second class of the test instances for the MCMWP.

Benchmark lower and upper bounds for the MCMWP instances used as reference values ZR

7downloadable from http://netlib.sandia.gov/lp/ generators/index.html
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in this work are given in Appendix A together with a summary of outcomes of each one of

the proposed methods.

10.1.3. Hardware and Software Environment

The experiments are performed on a Dell Server PE2900 with two 3.16 GHz Quad Core

Processors and 32 GB RAM operating within Microsoft Windows Server 2003 environment

in C++ . Cplex 11.0 with default options is used as a subroutine to solve the resulting LPs

and MILPs which are part of suggested procedures implemented so far (CPLEX, 2007).

10.2. Computational Experiments

Computational experiments are performed on ALA heuristics, DA heuristics, MS al-

gorithm, CI approach and BB methods (ABB and LBB algorithms and the BS heuristic).

We separately present our results for each of the methods with the given order.

10.2.1. Alternate Location-Allocation Heuristics

Alternating location and allocation phases of the MCALA heuristic are executed until

the difference between the objective values of two consecutive iterations are less than 0.0001.

Recall that the allocation phase requires the solution of the MTP which is easy to solve by

a commercial solver (such as Cplex). For the location phase, the Weiszfeld’s algorithm is

used. Weiszfeld’s algorithm is an iterative method which consists of the following steps for

the MCMWP.

xnew
in =

J∑
j=1

K∑
k=1

ajncijkwijk/d(xprev
i , aj)

J∑
j=1

K∑
k=1

cijkwijk/d(xprev
i , aj)

, i = 1, ..., I; n = 1, 2 (10.3)

where the previous location of facility i denoted by xprev
i is replaced with the new location

of facility i indicated with xnew
i . The procedure ends when the distance between xprev

i and

xnew
i becomes smaller than a tolerance value which is selected as 10−6 in our calculations.

The distance term in the denominator may be zero when xprev
i coincides with a customer

location aj. As a consequence, we use a similar approach with (Frenk et al., 1994) and add a
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sufficiently small value which is selected as 10−6 to the distance measured by d(xprev
i , aj) at

each iteration. Moreover, the convergence of the algorithm is slow when the facility location

lies in the close vicinity of a customer even if they do not coincide. Therefore, we limit the

number of iterations to be less than 3000 to overcome these particular cases.

The computational results on the performance of the ALA heuristics (C-MCALA, C-

MRR, C-MDRR) and their discrete variants (D-MCALA, D-MRR, D-MDRR) are reported

in Table 10.1 for the first class of the test instances and Table 10.2 and Table 10.3 for

the second class of the test instances. Table 10.1 and Table 10.2 include relative percent

deviations of the upper bounds calculated according to Equation 10.1 after replacing ZM

with the best (smallest) values the heuristics compute in κ randomly initialized runs. Here

κ =





max{100, 5× I} if J ≤ 50

max{100, I × J1/3} otherwise
(10.4)

as proposed by (Luis et al., 2009). κ is calculated for every instance and given in the second

columns of Table 10.1–3 dedicated to location-allocation heuristics. The reference value

ZR to calculate relative percent deviation of the upper bounds “UB (%)” is taken as the

benchmark lower bound values presented in Table A.1 and Table A.2. The values under the

columns “CPU” in Table 10.1 and Table 10.3 are the total CPU times in seconds of these κ

runs. In all these tables the first column indicates the test instance and the last row includes

the column averages.

For the first class of MCMCWP instances the discrete variants of the ALA heuristics

(D-MCALA, D-MRR, D-MDRR) yield better solutions than their continuous counterparts

except for the MRR (with percent deviation less than 1%). However, we can say that the

inverse holds true for the second class of the test instances. C-MCALA, C-MRR and C-

MDRR perform better than their discrete counterparts. We observe that for the first class

of the test instances the most accurate ALA heuristic is D-MCALA and for the second class

of instances the most accurate solutions are obtained with C-MRR. At sum, C-MRR and

D-MCALA are the most accurate ALA heuristics with 25.59% and 28.75% overall percent

deviations in average, respectively. Furthermore, among all heuristics considered in this

work, D-MCALA is the fastest one with 124.15 seconds of average total CPU time. The

third best accuracy belongs to C-MCALA with 29.67% average percent deviation. Note that
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the overall average accuracy of C-MCALA is slightly worse than that of D-MCALA. In

particular, continuous ALA heuristics perform much better than their discrete variants for

the second class of instances (namely, very large instances). Hence, we can say that among

all ALA heuristics C-MRR and C-MCALA are the most viable ones. In addition, ALA

heuristics play an important role in our work. In particular, C-MCALA and D-MCALA

heuristics are incorporated in the proposed DA heuristics, MS algorithm and BB algorithms

to calculate efficient upper bounds on the MCMWP.

10.2.2. Discrete Approximation Heuristics

10.2.2.1. Rectilinear Distance. Table 10.4 shows the strength of MDAP1 and MDAP2 for-

mulations on the first class of the RMCMWP. The first column stands for the instance

names. The second column presents the optimal values for these instances. As a reminder,

the solution of the MDAP1 (or MDAP2) with the candidate facility locations constructed

by the intersection points of vertically and horizontally drawn lines on the customers is

optimum for the RMCMWP. In columns three to eight we give the LP relaxation (LPR)

performance of MDAP1 and MDAP2. In particular, columns five and six stand for the LPR

performance of MDAP2 where constraints given by Equation 5.15 and 5.16 are replaced with

Equation 5.21. The duality gaps are measured according to Equation 10.2 and given under

the columns named “GAP(%)”. Zfinal
LB and Zfinal

UB are the final outcomes of the LPRs and

ZR is taken as the optimal value of the RMCMWP.

Table 10.5 shows the performance of the MDA heuristic on the first class of RMCMWP

instances. We state only the CPU times of MDAP1 and MDAP2 formulations as their

optimum solution is the same as in Table 10.4. The “LB(%)” and “UB(%)” stand for the

relative percent deviations from the optimal value, respectively. They are calculated using

Equation 10.1 by replacing the reference value ZR with the optimal value of the RCMWP

which is given under the second column of Table 10.4. ZM is the lower bound and upper

bound values of the instances for “LB(%)” and “UB(%)”, respectively. The computational

times in seconds are reported under “CPU”. RMDAP1 and RMDAP2 indicate the results

obtained with the LR of the MDAP1 and MDAP2, respectively.

Clearly, MDAP1 is more efficient than the MDAP2 with respect to their CPU times.

Some particular instances are very difficult to solve and require drastic CPU times. Although
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Table 10.4. The strength of the MDAP formulations on the first group of the RMCMWP
instances.

MDAP1 MDAP2 with MDAP2
Instance Optimum Equation 5.21
Name Value Duality CPU Duality CPU Duality CPU

Gap(%) Gap(%) Gap(%)
mc 2 2 2 64 100.00 0.00 100.00 0.00 100.00 0.02
mc 2 2 3 464 100.00 0.02 100.00 0.02 100.00 0.00
mc 2 2 5 100 65.17 0.02 100.00 0.00 65.17 0.02
mc 2 4 2 797 99.03 0.02 100.00 0.02 99.03 0.00
mc 2 4 3 585 92.46 0.00 100.00 0.00 92.46 0.00
mc 2 4 5 2209 92.55 0.00 100.00 0.00 92.55 0.02
mc 3 5 2 1438 84.76 0.02 100.00 0.02 84.76 0.00
mc 3 5 3 572 99.97 0.02 100.00 0.02 99.97 0.02
mc 3 5 5 4701 61.71 0.03 100.00 0.02 61.71 0.05
mc 3 9 2 1817 100.00 0.03 100.00 0.05 100.00 0.05
mc 3 9 3 5997 89.35 0.06 100.00 0.06 89.35 0.08
mc 3 9 5 62706 96.79 0.09 100.00 0.09 96.79 0.16
mc 4 8 2 1566 97.93 0.02 100.00 0.02 97.93 0.02
mc 4 8 3 9923 85.72 0.05 100.00 0.05 85.72 0.08
mc 4 8 5 9420 72.94 0.06 100.00 0.06 72.94 0.13
mc 4 10 2 6437 89.62 0.03 100.00 0.05 89.62 0.06
mc 4 10 3 11507 92.16 0.08 100.00 0.08 92.16 0.14
mc 4 10 5 28142 79.20 0.16 100.00 0.17 79.20 0.31
mc 4 15 2 12424 97.39 0.33 100.00 0.34 97.39 0.41
mc 4 15 3 35807 92.37 0.61 100.00 0.56 92.37 0.97
mc 4 15 5 41685 92.67 1.67 100.00 1.42 92.67 3.34
mc 5 8 2 6250 93.68 0.03 100.00 0.03 93.68 0.06
mc 5 8 3 5551 100.00 0.06 100.00 0.08 100.00 0.09
mc 5 8 5 31353 76.84 0.16 100.00 0.16 76.84 0.31
mc 5 10 2 3928 86.69 0.06 100.00 0.06 86.69 0.06
mc 5 10 3 10064 71.85 0.09 100.00 0.11 71.85 0.14
mc 5 10 5 56300 79.51 0.22 100.00 0.17 79.51 0.38
mc 5 12 2 4316 99.11 0.22 100.00 0.19 99.11 0.24
mc 5 12 3 13947 94.53 0.39 100.00 0.36 94.53 0.56
mc 5 12 5 45687 74.10 1.00 100.00 0.80 74.10 1.66
mc 5 15 2 7784 99.78 0.34 100.00 0.33 99.78 0.45
mc 5 15 3 32833 91.87 1.67 100.00 1.41 91.87 2.31
mc 5 15 5 24186 89.19 1.75 100.00 1.49 89.19 3.42
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Table 10.4. The strength of the MDAP formulations on the first group of the RMCMWP
instances cont.

MDAP1 MDAP2 with MDAP2
Instance Optimum Equation 5.21
Name Value Duality CPU Duality CPU Duality CPU

Gap(%) Gap(%) Gap(%)
mc 5 20 2 9813 99.82 1.30 100.00 1.11 99.82 1.69
mc 5 20 3 20461 98.41 1.72 100.00 1.50 98.41 2.44
mc 5 20 5 58846 87.77 22.61 100.00 18.80 87.77 55.62
mc 5 30 2 56665 98.93 8.84 100.00 7.53 98.93 8.44
mc 5 30 3 78443 87.60 20.20 100.00 21.42 87.60 29.73
mc 5 30 5 224750 86.17 61.47 100.00 165.48 86.17 255.24
mc 6 10 2 3082 98.29 0.08 100.00 0.06 98.29 0.08
mc 6 10 3 6427 71.45 0.13 100.00 0.11 71.45 0.17
mc 6 10 5 11459 61.50 0.33 100.00 0.23 61.50 0.45
mc 8 10 2 7004 87.83 0.11 100.00 0.11 87.83 0.13
mc 8 10 3 10420 93.03 0.20 100.00 0.17 93.03 0.30
mc 8 10 5 21288 67.34 0.42 100.00 0.36 67.34 0.86
mc 10 10 2 3601 79.70 0.14 100.00 0.13 79.70 0.22
mc 10 10 3 13564 87.79 0.28 100.00 0.27 87.79 0.41
mc 10 10 5 5390 89.59 0.64 100.00 0.55 89.59 1.75
mc 10 15 2 2878 91.38 1.08 100.00 1.03 91.38 1.45
mc 10 15 3 6980 87.82 3.58 100.00 3.17 87.82 4.80
mc 10 15 5 13233 76.10 20.84 100.00 13.28 76.10 32.45
mc 10 20 2 10367 99.28 5.03 100.00 5.11 99.28 6.33
mc 10 20 3 5496 82.61 7.27 100.00 5.55 82.61 17.13
mc 10 20 5 18080 99.98 42.78 100.00 31.05 82.57 367.32
mc 10 24 2 4182 66.77 280.96 100.00 168.75 99.91 69.56
mc 10 24 3 11103 99.55 75.97 100.00 66.06 87.48 178.23
mc 10 24 5 25276 85.91 440.60 100.00 303.65 74.33 1037.46
mc 10 30 2 21333 85.23 394.55 100.00 99.31 99.77 40.27
mc 10 30 3 51096 87.30 1121.09 100.00 790.61 93.03 263.68
mc 10 30 5 82881 82.64 929.59 100.00 1208.63 82.64 1944.65
Average 21077.97 87.98 57.52 100.00 48.70 88.18 72.27
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Table 10.5. The performance of the MDA heuristics on the first class of the RMCMWP
instances.

Instance MDAP1 MDAP2 RMDAP1 RMDAP2
Name CPU CPU LB UB CPU LB UB CPU

(%) (%) (%) (%)
mc 2 2 2 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
mc 2 2 3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03
mc 2 2 5 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.53
mc 2 4 2 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.05
mc 2 4 3 0.00 0.00 0.00 0.00 138.00 0.00 0.00 420.55
mc 2 4 5 0.00 0.02 0.00 0.00 0.33 0.00 0.00 0.16
mc 3 5 2 0.02 0.03 0.00 0.00 0.20 0.00 0.00 3.02
mc 3 5 3 0.03 0.03 8.93 0.00 0.88 9.02 0.00 2.91
mc 3 5 5 0.14 0.14 8.59 0.57 0.34 8.67 0.57 2.08
mc 3 9 2 0.44 0.44 0.75 0.00 0.39 0.76 0.00 2.20
mc 3 9 3 0.83 0.89 6.12 0.00 0.63 6.30 0.00 3.80
mc 3 9 5 1.06 1.02 0.00 0.00 1.61 0.01 0.00 4.86
mc 4 8 2 0.27 0.16 4.33 0.00 0.39 4.34 0.00 2.75
mc 4 8 3 1.13 0.86 11.52 4.00 0.59 11.64 4.00 2.42
mc 4 8 5 0.27 0.30 0.57 0.00 0.78 0.99 0.00 4.52
mc 4 10 2 0.70 0.84 11.71 0.87 0.64 8.86 1.60 3.09
mc 4 10 3 0.49 0.59 0.84 0.00 0.95 0.98 0.00 5.45
mc 4 10 5 5.47 5.92 11.82 0.01 0.94 13.08 0.00 6.22
mc 4 15 2 8.34 8.55 4.03 0.00 2.25 4.38 0.00 9.38
mc 4 15 3 20.78 20.95 4.09 0.71 2.83 4.19 0.71 10.58
mc 4 15 5 38.64 49.64 3.84 1.94 3.42 4.83 1.94 9.25
mc 5 8 2 0.16 0.16 0.00 0.00 0.05 0.00 0.00 0.56
mc 5 8 3 1.69 1.86 16.45 7.89 0.64 17.93 7.89 4.56
mc 5 8 5 4.78 4.67 13.73 4.84 1.24 15.25 4.84 4.06
mc 5 10 2 0.63 0.70 13.21 8.40 0.66 13.27 1.17 2.50
mc 5 10 3 0.95 0.95 3.57 0.00 0.88 3.94 0.00 4.67
mc 5 10 5 5.25 6.59 8.07 6.61 1.34 8.07 1.56 5.22
mc 5 12 2 3.97 4.61 11.53 0.00 1.67 11.90 0.00 4.17
mc 5 12 3 16.78 18.70 15.78 0.44 1.77 15.90 0.44 6.92
mc 5 12 5 30.31 37.03 9.49 0.98 4.47 11.36 0.00 7.25
mc 5 15 2 2.67 3.09 1.71 0.00 2.22 1.85 0.00 5.70
mc 5 15 3 21.38 18.63 1.96 0.00 3.75 3.53 0.00 29.58
mc 5 15 5 32.58 36.19 7.31 0.00 4.16 8.12 0.00 9.00
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Table 10.5. The performance of the MDA heuristics on the first class of the RMCMWP
instances cont.

Instance MDAP1 MDAP2 RMDAP1 RMDAP2
Name CPU CPU LB UB CPU LB UB CPU

(%) (%) (%) (%)
mc 5 20 2 12.48 16.41 3.07 0.00 3.56 3.21 0.00 9.16
mc 5 20 3 54.28 60.50 4.03 8.37 4.91 4.34 5.77 14.03
mc 5 20 5 6832.14 10434.50 9.58 4.19 11.03 14.69 6.78 32.08
mc 5 30 2 256.95 233.41 2.39 1.13 9.19 3.39 0.89 25.91
mc 5 30 3 2271.83 2059.56 4.08 2.67 18.34 6.21 0.00 29.25
mc 5 30 5 7291.67 7604.22 2.03 0.30 25.74 2.59 0.24 71.14
mc 6 10 2 1.89 2.50 19.41 4.22 0.70 20.23 4.22 4.13
mc 6 10 3 1.49 1.50 16.42 5.09 0.78 17.31 5.09 3.63
mc 6 10 5 4.11 4.14 15.55 0.00 1.23 15.93 0.00 4.52
mc 8 10 2 2.02 1.72 34.14 20.52 1.00 34.35 10.95 4.28
mc 8 10 3 19.19 7.47 57.94 67.72 0.97 60.05 30.89 6.69
mc 8 10 5 31.53 35.59 22.86 22.01 1.59 21.45 8.20 6.66
mc 10 10 2 3.91 9.67 31.56 37.68 0.78 31.84 17.55 4.28
mc 10 10 3 111.38 109.06 36.94 6.78 1.70 41.76 13.28 4.81
mc 10 10 5 26.44 22.22 34.08 41.06 2.58 35.97 28.31 5.47
mc 10 15 2 124.22 90.67 35.76 61.22 3.38 36.43 40.17 8.20
mc 10 15 3 123.45 126.52 15.39 16.88 4.97 16.02 12.92 13.94
mc 10 15 5 3088.95 2690.47 23.21 12.48 10.05 23.84 7.90 25.91
mc 10 20 2 221.25 212.88 12.60 28.98 7.17 13.00 25.69 14.34
mc 10 20 3 1393.53 1413.77 21.79 21.96 7.13 22.81 19.10 14.48
mc 10 20 5 135920.00 106411.00 15.67 16.88 22.73 18.82 9.15 64.77
mc 10 24 2 5267.80 5476.11 13.05 15.21 15.25 14.04 9.28 46.17
mc 10 24 3 26998.60 33298.50 14.48 21.38 21.92 14.98 13.54 62.33
mc 10 24 5 43662.60 52343.10 9.41 8.54 32.61 13.89 8.54 111.88
mc 10 30 2 5385.80 5172.08 18.06 0.00 22.34 18.19 0.00 53.97
mc 10 30 3 53900.10 55699.50 14.24 10.30 29.77 15.50 7.56 63.39
mc 10 30 5 238939.00 287311.00 12.08 5.56 50.73 13.68 6.74 101.70
Average 8869.11 9517.86 11.33 7.97 8.17 12.06 5.29 23.09
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MDAP2 is less efficient than the MDAP1, their LR results indicate that the converse holds

for the accuracy of the upper bounds. In fact, the upper bounds of RMDAP2 are better than

that of RMDAP1 with an increase in computational expenses. RMDAP1 produces slightly

better lower bounds than the RMDAP2. This is expected from the LPR results which

indicate that MDAP1 is tighter than the MDAP2 formulation. MDAP2 with Equation 5.21

produces a trivial lower bound of zero which is absolutely worse than the ones produced by

MDAP2. Fortunately, better upper bounding performance of the MDAP2 over MDAP1 has

motivated us to use both formulations for the MDA heuristics on the MCMWP instances

with Euclidean distances.

10.2.2.2. Euclidean Distance. The results obtained with the DA heuristics (`1-MDA1, `1-

MDA2, `∞-MDA1, `∞-MDA2, CL-MDA1, CL-MDA2) and with their relaxed versions (`1-

RMDA1, `1-RMDA2, `∞-RMDA1, `∞-RMDA2, CL-RMDA1, CL-RMDA2) are summarized

in Table 10.6, Table 10.7 and Table 10.8 for first class of MCMWP test instances. The

first column indicates the instance name and the last rows provide column averages. We

use the formula given by Equation 10.1 to calculate percent deviations from the reference

value ZR. For the “UB(%)” columns ZM is replaced by the value of the feasible solutions

computed by the heuristics (i.e., an upper bound on the optimal value Z∗), which is changed

to the lower bound computed by using the approximation. There are two points which

should be emphasized. First of all we do not report any results with the `1∞-norm based

approximation methods `1∞-MDA1, `1∞-MDA2, `1∞-RMDA1 and `1∞-RMDA2 since they

are very inefficient due to the extremely large number of intersection points. Second, we

should remind that the customer based discrete approximations CL-MDA1, CL-MDA2, CL-

RMDA1 and CL-RMDA2 provide only upper bounds on Z∗. The reference values ZR are

taken as the benchmark lower (upper) bounds given in Table A.1 and Table A.2 to calculate

percent deviations UB (%) (LB (%)). Moreover, the results obtained with the second class

of MCMWP instances are given in Table 10.9 and Table 10.10.

As it can be noticed, CL-MDA1 and CL-MDA2 are the most accurate discrete ap-

proximation heuristics. However, CL-MDA2 performs slightly better than CL-MDA1 at the

expense of higher CPU times. One major weakness of both CL-MDA1 and CL-MDA2 is their

extreme inefficiency. Notice that in Table 10.6, although we report the percent deviations

obtained with the CL-MDA2, the solutions obtained with the CL-MDA1 and the CL-MDA2
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are the same for the first class of the test instances. However, this is not the case for the

second class of instances. That is to say we could not obtain upper bounds within CPU time

limits using CL-MDA1 and CL-MDA2. Even four-hour CPU time limit is not sufficient to

obtain a feasible solution with the CL-MDA1 and CL-MDA2 for some of the second (very

large) class of instances. These cases are indicated with “N/A” in the tables. Furthermore,

note also that no result with `1-MDA1, `1-MDA2, `∞-MDA1 and `∞-MDA2 is reported for

the second class instances because of the same reason.

Recall that to alleviate the excessive CPU times required for the solution of MDAP1

and MDAP2, we propose LR schemes. They become especially useful for large instances. The

use of LR considerably increases the efficiency of `1-RMDA1, `1-RMDA2, `∞-RMDA1, `∞-

RMDA2, CL-RMDA1, and CL-RMDA2. Namely, they compute good solutions in reasonable

CPU times on large instances. Finally, that among all relaxed MDA heuristics the most

accurate one is CL-RMDA2 with an overall average percent deviation of 6.05%.

At first look, we can say that even the least accurate MDA heuristic `1-RMDA2 yields

lower percent relative deviations than the most accurate location-allocation heuristic C-

MRR: 17.29% versus 25.59%. In addition, the overall average total CPU times for them

are 365.78 and 355.78 seconds, respectively. This implies a superiority of the DA heuristics

over the ALA heuristics. The tightest of the lower bounds is computed by `∞-MDA1 and

`∞-MDA2 with an overall average percent deviation of 10.26% and 10.25%, respectively;

however, they have the highest CPU times. Notice that the difference between these two

equivalent formulations stems from the four hour of CPU time limit. A “N/A” indicates

that the validity of the lower bound values calculated by block norm based MDA heuristics

is not guaranteed when four hours of time limit is exceeded. On the other hand, the upper

bounds are clearly valid as long as a feasible solution is produced within the CPU time

limit. What is more, for the second class of the test instances, the `∞-RMDA1 produces

the tightest lower bound values. Generally speaking, considering the `1 and `∞-norm based

approximations we observe that the `1-norms based approximation yields more efficient but

less accurate results than the `∞-norm based approximation does, except the `1-RMDA1

heuristic.

In summary, these experiments have encouraged us to use the lower bounds produced

by `∞-MDA1 and `∞-RMDA1 heuristics within the BB methods developed. In particular, we

favor the more efficient `∞-RMDA1 to be used within a BB algorithm since the computational

expense of `∞-MDA1 becomes excessive with increasing instance sizes.
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Table 10.6. The performance of the CL-MDA heuristics on the first class of the MCMWP
instances.

Instance CL-MDA1 CL-MDA2 CL-RMDA1 CL-MDA2
Name UB(%) CPU UB(%) CPU UB(%) CPU UB(%) CPU
mc 2 2 2 0.00 0.06 0.00 0.02 0.00 0.03 0.00 0.08
mc 2 2 3 0.00 0.13 0.00 0.00 0.00 0.03 0.00 0.09
mc 2 2 5 0.00 0.06 0.00 0.00 0.00 0.08 0.00 0.13
mc 2 4 2 0.10 0.08 0.10 0.02 0.10 0.14 0.10 0.17
mc 2 4 3 0.10 0.08 0.10 0.00 0.10 0.38 0.10 19.88
mc 2 4 5 0.10 0.17 0.10 0.02 0.10 1.34 0.10 1.17
mc 3 5 2 0.10 0.17 0.10 0.00 0.10 0.44 0.10 0.58
mc 3 5 3 0.10 0.11 0.10 0.05 0.10 0.61 0.10 12.31
mc 3 5 5 0.10 0.28 0.10 0.06 0.10 1.39 0.10 13.50
mc 3 9 2 0.10 0.16 0.10 0.08 0.10 4.48 1.71 16.34
mc 3 9 3 0.10 0.36 0.10 0.13 0.10 1.61 0.10 27.06
mc 3 9 5 0.90 0.23 0.90 0.14 0.90 11.27 0.90 65.14
mc 4 8 2 0.04 0.27 0.04 0.05 0.03 0.34 0.03 17.72
mc 4 8 3 0.10 0.42 0.10 0.13 1.57 1.94 0.10 25.45
mc 4 8 5 0.05 0.48 0.05 0.08 0.05 4.02 0.05 45.20
mc 4 10 2 0.10 0.38 0.10 0.11 0.87 3.31 2.47 28.20
mc 4 10 3 0.44 0.52 0.44 0.20 0.44 2.55 0.44 47.23
mc 4 10 5 0.03 1.11 0.03 0.75 2.19 4.27 2.19 68.97
mc 4 15 2 0.10 0.80 0.10 0.44 0.10 2.09 0.10 81.47
mc 4 15 3 0.62 1.16 0.62 1.06 0.65 5.70 0.65 65.72
mc 4 15 5 0.01 2.14 0.01 1.61 0.01 10.38 0.01 69.03
mc 5 8 2 0.10 0.31 0.10 0.05 0.10 0.70 0.10 1.05
mc 5 8 3 0.10 0.52 0.10 0.22 10.17 1.28 10.17 10.59
mc 5 8 5 6.82 0.88 6.82 0.41 10.55 5.52 8.87 17.13
mc 5 10 2 0.10 0.42 0.10 0.14 0.10 6.97 0.10 12.47
mc 5 10 3 0.10 0.64 0.10 0.24 0.10 4.69 0.10 12.92
mc 5 10 5 0.29 1.27 0.29 0.73 0.29 4.81 0.29 21.81
mc 5 12 2 3.40 0.72 3.40 0.28 3.40 1.56 3.40 8.36
mc 5 12 3 0.34 1.25 0.34 0.78 0.34 2.13 0.34 9.59
mc 5 12 5 11.28 1.44 11.28 1.22 11.29 5.70 11.28 24.48
mc 5 15 2 0.01 0.52 0.01 0.34 0.01 7.03 0.01 10.08
mc 5 15 3 0.04 1.03 0.04 0.50 0.04 10.31 0.04 17.50
mc 5 15 5 4.79 2.25 4.79 1.30 4.79 5.91 4.79 26.83
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Table 10.6. The performance of the CL-MDA heuristics on the first class of the MCMWP
instances cont.

Instance CL-MDA1 CL-MDA2 CL-RMDA1 CL-MDA2
Name UB(%) CPU UB(%) CPU UB(%) CPU UB(%) CPU
mc 5 20 2 1.35 0.94 1.35 0.67 1.35 9.27 1.35 21.94
mc 5 20 3 2.05 4.09 2.05 4.94 4.42 8.42 2.38 24.63
mc 5 20 5 0.02 11.91 0.02 11.36 0.02 16.88 0.15 46.03
mc 5 30 2 0.00 5.22 0.00 4.31 0.85 13.27 0.00 36.70
mc 5 30 3 0.00 24.88 0.00 23.58 0.00 11.34 0.00 52.81
mc 5 30 5 0.01 28.48 0.01 28.97 0.01 46.98 0.01 86.94
mc 6 10 2 0.11 0.56 0.11 0.39 5.18 1.03 0.11 11.06
mc 6 10 3 0.09 0.70 0.09 0.27 0.09 4.86 0.09 19.77
mc 6 10 5 0.11 1.30 0.11 0.72 0.11 2.64 0.11 17.52
mc 8 10 2 0.05 0.84 0.05 0.39 15.86 3.19 15.28 10.58
mc 8 10 3 0.37 1.97 0.37 1.88 37.88 3.78 13.18 25.81
mc 8 10 5 0.00 4.05 0.00 4.50 11.94 7.95 4.86 28.56
mc 10 10 2 0.00 4.86 0.00 4.34 27.86 1.53 16.59 11.11
mc 10 10 3 0.00 11.97 0.00 14.36 0.87 6.30 1.85 22.78
mc 10 10 5 0.01 9.64 0.01 8.36 30.41 9.83 11.40 31.31
mc 10 15 2 0.14 16.75 0.14 16.67 14.96 5.42 48.07 19.23
mc 10 15 3 0.01 8.09 0.01 8.41 4.85 7.77 2.84 33.95
mc 10 15 5 0.20 49.69 0.20 22.25 12.24 11.08 6.16 54.08
mc 10 20 2 0.23 5.64 0.23 5.09 20.55 8.77 0.23 34.34
mc 10 20 3 0.01 75.80 0.01 70.75 34.14 6.59 11.82 39.88
mc 10 20 5 0.14 226.47 0.14 314.38 14.39 26.38 4.24 87.08
mc 10 24 2 0.47 43.70 0.47 51.42 2.59 10.42 8.23 31.11
mc 10 24 3 0.01 113.75 0.01 145.75 22.42 18.44 13.99 58.59
mc 10 24 5 0.01 65.52 0.01 70.80 12.19 23.94 3.05 119.89
mc 10 30 2 0.16 89.14 0.16 77.39 0.16 9.58 0.16 56.83
mc 10 30 3 0.16 803.56 0.16 1130.72 15.25 24.72 11.55 86.00
mc 10 30 5 0.06 634.89 0.06 944.30 3.55 55.98 3.55 160.06
Average 0.61 37.75 0.61 49.63 5.72 7.82 3.84 33.45
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10.2.3. Modified Subgradient Algorithm

According to the recovery procedures employed at the final step of the MS algorithm

we have totally proposed four approaches: solving the SCLP with CG procedure via D.C.

programming (CG with D.C.), solving the SCLP with CG via WPLD (CG with WPLD),

solving the UDAP with `1-norm (`1-UDAP) and solving the UDAP with `∞-norm (`∞-

UDAP). The computer code developed by (Boyacı, 2009) is used to solve the PS by D.C.

programming. The resulting CM problem is solved by the OA algorithm (Chen et al., 1998)

which is coded in “C#” by (Boyacı, 2009). We call the code from a C++ environment and

adapt it to work for the MCMWP. In all these approaches we have run the UDAH employing

the customer locations as the candidate point set at each step of the MS algorithm as long

as ZUDAH(ϕ,µ3) ≤ Zbest
UB holds. Whenever ZUDAH(ϕ,µ3) exceeds Zbest

UB at some step of the

MS algorithm we resort to one of the four recovery procedures to update the Lagrangean

multiplier vectors ϕ and µ3. Fortunately, in none of the test instances, ZUDAH(ϕ,µ3)

exceeded Zbest
UB values during the MS algorithm. Therefore, we did not perform a recovery

procedure and we did not update the Lagrangean multipliers until the last step of the MS

algorithm.

In Table 10.11, we give a summary of our results obtained with these four recovery

procedures employed at the final step of the MS algorithm. The first class (small to large) of

the test instances are computationally tested. However, the second class of the test instances

are not considered due to their large sizes and computational requirements. The initial upper

bound values used for the updates in the MS algorithm are obtained by CL-RMDA1 heuristic.

The first column shows the instance names. In the next four blocks of triple columns,

we report the results obtained with each approach (i.e., CG with D.C. programming, CG

with WPLD, `1-UDAP and `∞-UDAP, respectively). These are relative percent deviation

of lower and upper values obtained with the corresponding recovery approach and CPU

times in seconds, respectively. “LB (%)” is calculated using Equation 10.1 where ZR is the

benchmark upper bound value given in Table A.1 and ZM is the corresponding lower bound

value produced by the method. Similarly, “UB (%)” shows the percent deviation of an upper

bound from benchmark lower bound value given in Table A.1. This time heuristic upper

bounds replace ZM and ZR is the benchmark lower bound value. The computational times

in seconds are given under the columns “CPU”. The numbers in the last row are simply the

column averages.
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The acceleration strategies considerably improve the computational requirements of

the LR scheme. Most of the MCMWP test instances could not be solved in reasonable CPU

times without using heuristic acceleration strategy (namely using UDAH). Furthermore, we

observe that when we apply the first acceleration strategy, that is, using ZUDAH(ϕ,µ3)

values which are computed with the UDAH, have never exceeded Zbest
UB value during the MS

algorithm. In other words, we only apply a recovery approach in the final step of the MS

algorithm to ensure that Zbest
LB ≤ Z∗ is satisfied. Moreover, we also observe that UDAH

totally requires 72.93% of the overall CPU time of the MS algorithm spent for all test

instances. This implies that almost 30% of the CPU time spent by the recovery procedures

should be repeated hundreds of times if we use them at each step of the MS algorithm. In

other words, comparing these ratios approves the advantage of using heuristic bounds (i.e.,

ZUDAH(ϕ,µ3)) within the MS algorithm.

In addition, we observe considerable improvements in the efficiency of the LR scheme

when we apply the acceleration strategy with the FSG algorithm. Recall that in the second

acceleration strategy we employ two lower bounding schemes which restrict the number of

columns generated by the FSG algorithm into the SCLP. We can eliminate up to 86.6%

(with an overall average of 28.99%) of the columns before considering their addition to the

SCLP, for all test instances by applying the second acceleration strategy. Observe that

handling the pricing subproblem by solving the D.C. programming problem is the winner

among all approaches and it produces best lower bounds in 48 out of 60 instances. The

recovery approaches `1-UDAP and `∞-UDAP perform better in terms of upper bounds.

We observe that the percent deviation of the lower bound value of the proposed ap-

proaches, namely the CG with D.C., CG with WPLD, `1-UDAP and `∞-UDAP, from the

benchmark upper bound values are 44.06%, 44.24%, 53.49% and 50.13%, respectively. Fur-

thermore, the best performing ALA heuristic (C-MRR heuristic) upper bounds are worse

than the upper bounds produced by our methods with percentages 9.93%, 10.01%, 10.3%

and 10.3% from CG with D.C. programming, CG with WPLD, `1-UDAP and `∞-UDAP

results, respectively. As a final observation, notice that the upper bound values obtained

with the LR approaches are closer to the optimal value than the lower bound values they

provide. Hence, we can say the proposed approaches can be considered as accurate LR

heuristics. Unfortunately, the DA heuristics outperform the MS algorithm in terms of both

accuracy and efficiency. On the other hand, MS algorithm can be very well adapted to
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many other optimization problems as long as an efficient heuristic solutions can be obtained

for the resulting Lagrangean subproblems. Indeed, the convergence of the MS algorithm is

guaranteed and a lower bound can be achieved as well as an upper bound.

10.2.4. Confidence Intervals

The confidence intervals (CIs) are calculated as explained in Chapter 7 and listed in

Appendix B with Table B.1–8. We provide CIs computed using C-MCALA, randomized

MDA using MDAP1 (MDA1 heuristic) and C-MDRR heuristics, respectively. That is to

say, for each of the MCALA, MDA1 and MDRR heuristics, the initial facility locations are

randomly selected within the convex hull of the customer locations. The C-MCALA and

C-MDRR heuristics are initialized with I random facility locations and the MDA1 heuris-

tic started with I random candidate facility locations. We employ commonly used SPEs

given by Equation 7.13, 7.16 and 7.19 to calculate Weibull location, scale and shape param-

eters, respectively. We analyze two sampling schemes: the McRoberts’ Approach (MRA)

(McRoberts, 1971) and the Los and Lardinois’ Approach (LLA) (Los and Lardinois, 1982).

In the MRA, intermediate solutions obtained during the run of our randomly initialized

heuristics constitute the samples. However, (Los and Lardinois, 1982) claim that the sample

generation method of MRA may harm the independence of the samples and they suggest

the use of M × M distinct observations. Actually, the requirement that all observations

should be distinct is not necessary as discussed in Chapter 7. In the LLA sampling scheme

the samples can be constructed of M observations which are not necessarily distinct (Wilson

et al., 2004).

Using both MRA and LLA sampling approaches, we generate samples from three parent

populations which include randomly initialized solutions obtained with the MCALA, MDA1

and MDRR heuristics. In our MRA implementation, we consider samples of size M = 20,

M = 30 and M = 40 each consisting of the intermediate feasible solutions of a randomly

initialized heuristic (i.e., MCALA, MDA1 or MDRR). In our LLA implementation, again

samples of size M = 20, M = 30 and M = 40 are taken, where each of them consists

of M = 10 randomly initialized heuristic solution outputs obtained with one the MCALA,

MDA1 or MDRR heuristics.

In order to test the independence of the samples we employ the runs test over the
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sample minimums with 95% confidence level. On the instances which pass the independence

test, the Kolmogorov-Smirnov (K-S) test with a 95% confidence level is applied to check the

hypothesis that the sample minimums fit the Weibull distribution (Beyer, 1974). In case,

the sample minimums pass both of these tests, a CI can be determined based on the Fisher-

Tippett theorem. Otherwise, in case the sample minimums fail at least one of the tests, we

do not report a confidence interval. We should state that the A-D test is also performed for

our calculations. However, we were not able to produce a CI for the most of the instances.

Therefore, we confine ourselves with only the K-S test to check the fitness of the samples to

the Weibull distribution.

In order to validate the CI estimation using EVT, we focus on the MCMWP where

three heuristics are employed on the test instances. Once we produce the CIs, their validity

can be confirmed by comparing the lower and upper end points of the intervals with the

optimal value of a test instance. For that purpose we consider the results obtained on the

RMCMWP test instances. Note that the optimum solutions for the RMCMWP instances

can be calculated by solving the MDAP1 formulation as discussed. After the validation

of our CI estimation using EVT, we employ it in estimating CIs of the objective values

of MCMWP (with Euclidean distances) test instances for which we generally do not know

optimum values.

The validation of our CI estimation approach using EVT, is first applied on a subset

(consisting of 30 instances) of the first class of RMCMWP test instances for which we

can obtain optimal solution values. According to our experiments we can say that the CI

estimation approach using EVT performs well for the RMCMWP. First, all samples pass

the independence test. Second, in only 6 out of 30 × 3 × 6 = 540 samples, a CI is not

found due to the failure of the K-S test. Only 3 intervals produce lower bounds larger

than the optimum value. The EVT approach employing the Golden-Alt procedure yields

covering intervals in 98.33% of the samples (531 out of 540) generated by three heuristics,

in total. The results are summarized in Table 10.12 for the RMCMWP. The heuristics used

are shown in the first column. The second column stands for the sampling approaches (i.e.,

MRA and LLA samplings). The sizes of extreme value samples are presented in the third

column. The fourth column denotes the mean CI width which is calculated by taking the

average of values calculated according to Equation 10.2 over all intervals produced for the

corresponding heuristic and sampling method pair. Here, Zfinal
LB and Zfinal

UB indicate the
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Table 10.12. Summary of the confidence interval approach on a subset of 30 RMCMWP
instances.

Heuristic Sampling No. Of Interval Absolute No. Of Covering
Method Samples Width (%) Gap (%) Intervals

MCALA MRA 20 38.40 0.08 30
30 37.66 0.63 30
40 39.07 1.46 30

Average 38.37 0.72
MCALA LLA 20 20.18 1.05 30

30 20.83 2.13 30
40 21.00 2.68 30

Average 20.67 1.95
MDA1 MRA 20 23.07 2.59 30

30 24.36 5.22 30
40 24.67 7.06 30

Average 24.03 4.96
MDA1 LLA 20 11.23 2.28 29

30 10.79 3.14 28
40 11.12 3.32 27

Average 11.05 2.91
MDRR MRA 20 40.04 0.09 30

30 37.85 0.55 30
40 39.83 1.43 30

Average 39.24 0.69
MDRR LLA 20 23.32 1.87 29

30 22.76 2.25 29
40 22.38 3.08 29

Average 22.82 2.40

lower and upper limits of the corresponding CIs, respectively. ZR denotes the corresponding

optimum value of the test instance. The fifth column presents the mean absolute gap in

percentages between the lower limit of the CI and the optimum value for the produced CIs.

Similar to the interval width, they are calculated by taking the average using Equation 10.1

over all intervals. The average of interval widths and absolute gaps are also presented for

each heuristic and sampling method pair. The sixth column includes the number of instances

which have passed the K-S test and for which the optimum is covered by the interval.

The results indicate that both the MCALA and MDRR heuristics employing the MRA

sampling, outperform the other cases in terms of both the mean absolute gap between the

optimum value and the interval lower limit, and the number of covering intervals produced.

The MDA1 heuristic yields tighter CIs than other heuristics using each of the sampling

methods. For all heuristics, we observe that the MRA sampling produces both smaller
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mean absolute gaps between interval lower bounds and the optimum and greater number

of covering intervals than the LLA sampling. On the other hand, the LLA sampling yields

tighter intervals than the MRA sampling does. What is more, the performance of the

heuristics are generally higher for the sample size of M = 20, than for the sample size

of M = 30 or M = 40 in terms of all performance measures (i.e., mean interval width,

absolute gap and number of covering intervals). Finally, we should note that the CI approach

using EVT applied to the RMCMWP instances produces lower bounds within 0.09% of the

optimum solution value on average. Hence, we can say that the CI approach using EVT

outputs quite good lower bounds on the objective values of the RMCMWP.

Encouraged from the results on RMCMWP instances presented above, we apply the

CI approach using EVT in order to obtain acceptable limits on the objective values of the

MCMWP (with Euclidean distances) test instances. Although the optimum values of the

MCMWP instances are not initially known, CI approaches, which give successful results

for the RMCMWP test instances, can still be applied in order to obtain interval estimates

for the optimum objective values of the MCMWP. For that purpose, we run each of the

C-MCALA, randomized MDA1 and C-MDRR heuristics 20000 times. For the MCMWP,

the quality of CIs are evaluated with respect to the benchmark upper bounds (ZR) provided

in Table 10.4.

We only present a summary of these results here. Out of 30×3×6 = 540 samples formed

for the MCMWP instances, 12 samples fail to pass the independence test and 53 samples do

not belong to the Weibull distribution due to the failure of the K-S test. Consequently, the

Golden-Alt procedure could not produce CIs 12.03% of the samples (65 out of 540) for the

MCMWP instances. On the remaining 475 CIs produced by the EVT approach, in 8% of the

intervals (38 out of 475), lower limits are larger than the benchmark global minimum value.

Since the solutions are not known for most of the instances, we can not exactly say that the

optimum is covered by the remaining 92% of the intervals (437 out of 475). However, we

believe that the lower bounds are good approximations for the optimum solutions of most of

the test instances as in the RMCMWP cases. All the independence test failures of samples

have occurred using the MDA1 heuristic with the LLA sampling method. We again observe

that the samples fail to pass the independence test for the cases in which the corresponding

heuristic generates a relatively less number of local optima.
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The results are summarized in Table 10.13. All but the fourth and fifth columns

are organized in the same way as in Table 10.12. The fourth column denotes the mean

interval width which is calculated by taking the average of Equation 10.2 over all intervals

produced for the corresponding heuristic and sampling method pair. ZR is selected as the

corresponding benchmark upper bound value of the test instance. The fifth column presents

the mean absolute gaps in percentages between the lower limits of the CIs (ZM) and the

benchmark upper bound values (ZR) for the produced CIs. Similar to the interval width,

they are calculated by taking the average of Equation 10.1 over all intervals. The MDRR

heuristic applied with the MRA sampling produces the closest mean lower bounds to the

benchmark global minimums. On the other hand, MDA1 heuristic generates the tightest

intervals for each sampling method except LLA with M = 20. We observe that the MRA

sampling generates wider intervals than the LLA does. However, the MRA performs better

in terms of the mean absolute gaps between the benchmark upper bounds and the interval

lower bounds. Although there are some exceptional instances, the smaller the sample sizes

are, the tighter the widths of the CIs and the absolute gaps between the lower bounds and

the benchmark minimums are. As a final remark, we should note that the CI approach

applied to the MCMWP instances produces lower bounds within 3.54% on average. Thus,

we can say that the CI approach using EVT outputs quite reasonable lower bounds on the

objective values of the MCMWP.

In the light of our previous computational experiments, we perform some additional

calculations on the remaining first class (the instances from mc 10 15 2 to mc 10 30 5) and

the second class of the MCMWP instances. In particular, we prefer to use the MRA sam-

pling approach with C-MCALA and C-MDRR heuristics because the performance of the

randomized MDA1 is not very well and it requires excessive CPU times. The summary of

additional CIs are presented in Table 10.14. They share the same outline with Table 10.12

and Table 10.13. For these additional experiments, we took 1000 random solutions for each

MCALA and MDRR heuristics as their parent populations. As can be noticed, on larger

instances both MCALA and MDRR heuristics can produce CIs which pass both the inde-

pendence and Weibull fitness tests. Moreover, the number of intervals covering benchmark

upper bound values is very high on these instances (5 out of 180 instances in total). The

interval widths between the lower and upper confidence limits are relatively higher on these

larger test instances. The performance of the CI approach is quite reasonable and they

conform with our earlier calculations.
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Table 10.13. Summary of the confidence interval approach on a subset of 30 MCMWP
instances.

Heuristic Sampling No. Of Interval Absolute No. Of Covering
Method Samples Width (%) Gap (%) Intervals

MCALA MRA 20 26.28 7.11 30
30 27.54 7.59 30
40 28.07 7.30 30

Average 27.30 7.33
MCALA LLA 20 15.39 3.54 22

30 18.01 8.45 18
40 18.32 8.86 19

Average 17.24 6.95
MDA1 MRA 20 25.21 6.84 25

30 29.37 9.36 24
40 29.44 11.66 24

Average 28.01 9.29
MDA1 LLA 20 16.42 6.51 20

30 17.03 7.27 19
40 17.12 7.41 19

Average 16.86 7.06
MDRR MRA 20 30.11 9.85 30

30 29.77 8.77 29
40 28.98 6.63 28

Average 29.62 8.42
MDRR LLA 20 24.72 9.86 22

30 25.08 10.78 22
40 24.03 9.21 20

Average 24.61 9.95

Table 10.14. Summary of the performance of the confidence interval approach on 12
MCMWP instances from mc 10 15 2 to mc 10 30 5.

Heuristic Sampling No. Of Interval Absolute No. Of Covering
Method Samples Width (%) Gap (%) Intervals

MCALA MRA 20 38.52 2.13 12
30 39.60 1.11 12
40 40.46 1.98 12

Average 39.53 1.74
MDRR MRA 20 38.22 1.50 11

30 38.24 2.14 11
40 38.78 1.79 11

Average 38.41 1.81
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Table 10.15. Summary of the performance of the confidence interval approach on the second
group of the MCMWP instances.

Heuristic Sampling No. Of Interval Absolute No. Of Covering
Method Samples Width (%) Gap (%) Intervals

MCALA MRA 20 71.42 1.19 18
30 71.55 1.64 18
40 71.90 0.43 18

Average 71.62 1.09
MDRR MRA 20 54.16 0.88 18

30 54.33 1.56 17
40 54.70 1.45 17

Average 54.40 1.30

It should be underlined that the CI approach we employ does not guarantee a valid

lower bound on the true optimal values. Lower confidence limits are only estimates of the

lower bounds over the optimal value. On the other hand, the upper confidence limits impose

absolutely an upper bound on the optimal value since it is already a minimum value of

samples which consists of at least one feasible solution for the MCMWP. We should also

emphasize that it is possible to obtain different confidence intervals by different samples.

The ones we report here are the tightest ones in the sense that lower and upper confidence

limits are closest.

10.2.5. Branch-and-Bound Methods

In this section we provide BB based methods which include ABB and LBB algorithms

as well as the BS heuristic for both CMWP and MCMWP. To make a complete compari-

son between the performance of ABB and LBB algorithms, the CMWP and MCMWP are

separately addressed.

10.2.5.1. The Capacitated Multi-facility Weber Problem. We make a series of computa-

tional tests with the proposed ABB and LBB algorithms. We reimplement the RLT based

lower bounding formulation of (Sherali et al., 2002) for the sake of a fair comparison with the

proposed BB algorithms. We employ `∞-norm as the lower bounding block norm within the

DAP and in its relaxed version RDAP. We confined ourselves to use the `∞-norm because the

size of the lower bounding MILPs increase rapidly when block norms are employed. Further-

more, the quality of the lower bounds produced by the `1-norm is worse than of the `∞-norm.

This is also experimentally verified by the DA heuristic performances on the MCMWP. For

example, when we employ the weighted `1-norm we observe that its performance is worse
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than the `∞-norm. We impose a CPU time limit of five hours to report the best feasible

solution for the SABB algorithm. On the other hand, the SLBB and SLBBCE algorithms

are run for two hours for the CMWP. This CPU time limit is enough to show the superior

performance of the LBB algorithms over the SABB algorithm. In addition, it is observed

that the improvements obtained on both lower and upper bounds are marginal with the LBB

algorithms beyond some predefined time limit. A similar pattern is also observed with the

SABB algorithm.

In Table 10.16–18 we give a summary of our experimental results obtained with the

SABB algorithm on the CMWP test instances in the first and second classes, respectively.

The first three columns present instance names (the number of facilities and customers

are given in parenthesis for the first class of standard test instances), the initial upper

bound values as described in Chapter 8, and best known upper bound values which are

used as benchmark upper bounds. The best known upper bound values are taken as the

best outcome of the SABB and SLBB algorithms among the ones run with different lower

bounding procedures and branching variable selection strategies. We should emphasize that

the best known solutions to the first class of the test instances (standard instances) reported

by (Sherali et al., 2002) and our results are slightly different after the decimals. We think

that the difference stems from the typographic errors in (Sherali et al., 2002). Another

reason for this difference can be the round off errors in our or their calculations especially for

the solution of the WPs. In any case, these differences are insignificant and does not affect

the accuracy of the percent deviations.

The next three blocks of columns give the results obtained with the lower bounding

procedures (i.e., RLT Based Lower Bounding, `∞-norm Lower Bounding of the DAP and

`∞-norm Lower Bounding of the DAP with LR) which we use together with different branch-

ing variable selection strategies or rules. The top row of these lower bounding procedures

indicates two additional things: whether ZSAS given by Equation 8.15 is used as an addi-

tional lower bounding for tightening the corresponding lower bound or not and the branching

variable selection strategy (i.e., BrS1, BrS2 or BrS3). For example, “+ ZSAS with BrS3”

indicates that both ZSAS and the suggested lower bound (i.e., RLT, `∞-DAP or `∞-RDAP) is

employed within the SABB algorithm where the allocation variables are selected using BrS3

given by Equation 8.22. The duality gaps, given under the columns titled as “GAP (%)”,

are presented in the second columns dedicated to each of three blocks of columns. For each

lower bounding procedure, we keep the record of their initial lower bound value calculated
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at the root node of the BB tree. Note that the SABB algorithm follows a DFS strategy and

only the lower bound computed at the root node gives a valid lower bound on the optimum

of the CMWP. As a consequence, the duality gaps are calculated by using Equation 10.2

where ZR is replaced with the best known upper bound values given in the second column

of the tables, Zfinal
LB is replaced with the initial lower bounds produced and Zfinal

UB is the

final upper bound produced by the SABB algorithm. Moreover, the accuracy of the SABB

algorithm is measured with the percent deviation of the final upper bound value (i.e., ZM)

from the best known solution (i.e., ZR) in Equation 10.1 under the columns “UB (%)”. The

corresponding CPU times in minutes are reported under the columns “CPU”. Note that a

CPU time of less than 300 minutes indicates that ε-optimality of the best feasible solution

found by the algorithm is proven. Clearly, the lower the percent deviation “UB (%)” and

the duality gap “GAP (%)” are, the better the SABB algorithm performance is. The last

rows of instance classes gives the average values of the columns as usual.

RLT based lower bounding always applies the straightforward lower bounding ZSAS to

improve the lower bounds. (Sherali et al., 2002) indicate that the RLT based lower bounding

yields the best performance when the branching variable selection rule BrS2 (Equation 8.17)

is employed. Therefore, we implement this lower bounding scheme in order to make a fair

comparison with the proposed approaches.

We observe that the branching variable selection rule BrS1 beats BrS2 when BrS1 is

used with the `∞-norm based lower bounding procedure. As a result, we only present the

results obtained with the branching variable selection rule BrS1 (Equation 8.16). According

to our computational experiments, SABB algorithm using “+ZSAS+ BrS3” outperforms both

of SABB algorithms using “BrS1” and “+ZSAS+ BrS1” in terms of efficiency. In addition,

the SABB algorithm results obtained with “+ZSAS+ BrS3” are quite promising for the

second class of instances. Notice that the block norm based lower bounding approaches

employed within the SABB algorithm outperforms the RLT based approaches significantly

in terms of both accuracy and efficiency. In particular, the average accuracy of the SABB

algorithm with RLT, `∞-DAP and `∞-RDAP are 9.61%, 0.13% and 0.05% and their average

CPU times are 218.71, 217.60 and 220.09 minutes over all instances, respectively. On the

other hand, RLT based lower bounding procedure solves 13 out of 18 of the first class of

CMWP instances. this number is 12 and 11 for the SABB algorithm with `∞-DAP and

`∞-RDAP lower bounding procedures, respectively. Unfortunately, only 2 out of 30 second

class of CMWP instances can be solved to ε-optimality by the SABB algorithm.
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Our computational results justify that the performance of the exact solution of the

DAP formulation reduces significantly as the instance size increases. It is also possible to

assess the quality of the lower bounding procedures (i.e., RLT, `∞-DAP, `∞-RDAP). This

can be observed from the percent deviation of the gap between the initial lower bound

value and the best known upper bound value. Clearly, RLT produces the weakest lower

bounds and the worst duality gaps. Meanwhile, `∞-DAP performs is the winner. It is

followed by the `∞-RDAP. On the other hand, although the RLT based approach is quite

efficient, its performance deteriorates significantly on the second class of instances (i.e., large

instances). In this case, employing a LR procedure, which produces weaker lower bounds

than its exact solution in reasonable CPU times, within the ABB algorithm can be a better

choice considering the trade-off between the efficiency and accuracy. We see that the use of

ZSAS slightly improves the efficiency of the ABB algorithm. We can say that the performance

of the algorithms on both their accuracy and efficiency indicates that unit cost instances are

generally more difficult to solve than their non-unit cost counterparts.

For the LBB algorithm experiments, we first examine the lower bound ZSLBB
LP given by

Equation 9.2. Then, we test the performance of the ZSLBB
DAP by using a hybrid lower bounding

approach. In this hybrid lower bounding approach, both ZSLBB
LP and ZSLBB

DAP are calculated

and their maximum is taken as the lower bound value for a facility-rectangle combination

until the location space is partitioned into several rectangles. Since the calculation of ZSLBB
DAP

is computationally more expensive, the lower bounding procedure is performed using only

ZSLBB
LP afterwards. On small instances we prefer to use the exact solution of the MILP with

`∞-norm approximation for ZSLBB
DAP . The LR of the MILP is solved on medium and large

instances to determine ZSLBB
DAP . There are two reasons to use the hybrid lower bounding

approach as mentioned. One of them is the observation that block norm based lower bounds

are initially very tight on the LBB algorithm. As a result, the number of subproblems

can be reduced significantly without further exploration at the initial nodes of the BB tree.

The other reason is that once the location space is partitioned into a sufficient number of

rectangles, the ZSLBB
LP lower bounds become tighter than the ZSLBB

DAP . Therefore, we use

both ZSLBB
LP and ZSLBB

DAP until the number of rectangles reaches 3 × J and then we switch

to use only ZSLBB
LP as the hybrid lower bounding approach within the SLBB and SLBBCE

algorithms.

A comparison of the SLBB and SLBBCE algorithms is presented in Table 10.19–
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21 which have almost the same outline as the tables given for the SABB algorithm. To

compare the performance of the SLBB algorithm we impose a two hours of run time limit.

We separate two blocks of columns for both the SLBB and SLBBCE algorithms. When we

compare SLBB and SLBBCE algorithms, it can be observed that the SLBB outperforms

the SLBBCE algorithm in terms of average duality gaps between their final upper and

lower bounds. The average accuracy of both algorithms are almost the same with a slight

superiority of the SLBBCE algorithm. On the other hand, SLBBCE algorithm is more

efficient than the SLBB algorithm on the average.

Notice that the SABB algorithm with `∞-RDAP lower bounding beats the SLBB and

SLBBCE algorithms using only ZSLBB
LP as the lower bounding procedure. In particular, the

duality gaps are quite weak when only ZSLBB
LP is employed for the LBB algorithms (i.e.,

SLBB and SLBBCE algorithms). However, when the hybrid lower bounding approach (i.e.,

ZSLBB
LP +ZSLBB

DAP ) is used, it produces better results in terms of accuracy with a slight decrease

in its efficiency. Both of the SLBB and SLBBCE algorithms can solve 10 out of 18 instances

for the first class of the CMWP instances. On the other hand, only 2 out of 30 instances can

be solved by the LBB algorithms on the second class of CMWP instances. Both of the SLBB

and SLBBCE algorithms using only ZSLBB
LP and ZSLBB

LP +ZSLBB
DAP lower bounding approaches

yield the same number of ε-optimum solutions for the test instances.

The LBB algorithms with hybrid lower bounding approach produces the best duality

gap percentages and accuracy on both the first (standard) and second class of CMWP test

instances while their efficiency is also better than the ones of the SABB algorithm. We should

note that even if the running time of the SLBB algorithm is less than the SABB algorithms,

SLBB algorithm yields at least the same accuracy with the ABB algorithms. Consequently,

we can conclude that SLBB algorithm with the hybrid lower bounding approach is the winner

in terms of both accuracy and efficiency. The results obtained with the LBB algorithms also

confirm that the homogenous subgroup of the test instances are more difficult to solve than

the non-unit subgroup in terms of average duality gap percentages “GAP (%)”, average

accuracy “UB (%)” values and average CPU times (in minutes).

It can be noticed that the second class consists of 30 CMWP test instances. The

remaining 64 instances are large or very large instances. Clearly, neither the ABB algorithms

nor the LBB algorithms are applicable for those instances. As a remedy, we have applied

the BS heuristic on these instances. Another approach may be to resort to DA heuristics for
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accurate solutions. However, the solution of the resulting MILPs is not possible especially

on large instances. In fact, LR approach applied to these MILPs may not always yield quite

accurate solutions. Briefly, we can say that the BS heuristic performs very well in particular

for large instances.

Table 10.22–24 summarize our results with the BS heuristic. As an additional stopping

condition, we impose a restriction for the minimum area limit of regions considered with the

BS heuristic. The area of the rectangles, which is to be partitioned, are limited to be

larger than 0.001 with the purpose to accelerate the BS heuristic and make sure that the

partitioning ends in a finite number of steps. We use the hybrid lower bounding procedure

described for the LBB algorithms. That is to say, we use both LP based and block norm

based lower bounding procedures for the BS heuristic. It is observed that using only the LP

based lower bounds does not have promising performance. The same settings with the LBB

algorithms are preserved for the BS heuristic. The hybrid bounding continues with the LP

and block norm based lower bounding procedures until there are J ×K rectangles for the

LBB algorithm and then we switch to use only LP based lower bounding procedure. The

first columns state the instance names. The second column presents the benchmark upper

bound used as the reference value ZR for the percent deviation of upper bounds. We run DA

heuristics with a discretization over customer locations by solving DAP formulation with

zero lower bounds l̂ij = 0 and ûij = min{si, qj}. Namely, the CL-DA heuristic with exact

solution of DAP formulation over the customer locations. Note that MCALA is replaced

with a CALA as a final step to perform improvements for the CMWP. We impose a four-hour

time limit for the solution of the DAP formulation. However, in some very large instances

either it is not possible to obtain a solution or it takes up to almost nine hours to produce a

feasible solution. We also resort to the LR of DAP with a discretization over customers (CL-

RDA heuristic). Then, we select the best solution produced by these heuristics and the BS

heuristic as the benchmark upper bounds. The rest of the columns are dedicated to various

combinations of beam width W and evaluation function parameter Ψ which are indicated

in the second rows within parenthesis as (Ψ,W ). We report upper bound percent deviations

from the benchmark upper bound and CPU times in minutes. Beam width W is set to 1

and 3, and the evaluation function parameter Ψ is set to 0, 0.25 and 0.5 in the experiments.

In addition, Ψ = 0.75 and Ψ = 1.0 is also tested within the experiments. However, their

outcome is not as satisfactory as the ones which are reported here. Additionally, a beam

width of W > 3 requires excessive CPU times. As a result, we prefer to use this setting
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for (Ψ,W ). The combination of (Ψ,W ) affects the performance of the BS heuristic on the

CMWP. We observe that beam width of W = 3 yields more accurate solutions with Ψ = 0.25

for both the first and second class of the test instances.

For the first class of the CMWP instances, BS heuristic is neither more efficient nor

more accurate than the DA heuristics (i.e., CL-DA and CL-RDA heuristics). On the other

hand, BS yields more accurate solutions on the large CMWP instances (instances in the

second class) than the CL-RDA heuristic does. CL-DA heuristic yields the most accurate

solutions. However, for large instances, BS can find good feasible solutions where CL-DA

can only produce solutions with drastic CPU times. Actually, BS heuristic lies in between

the DA heuristics CL-DA and CL-RDA in terms of both efficiency and accuracy. BS requires

more CPU time than the CL-RDA heuristic does. To sum up, on large instances BS is a

promising alternative when the exact solution of the MILPs are not possible for CL-DA with

the CMWP.

10.2.5.2. The Multi-commodity Capacitated Multi-facility Weber Problem. In Table 10.25

we present the results on the first class of MCMWP instances obtained with the MABB algo-

rithm which employs RLT based lower bounding procedure accompanied with pure location

based lower bounding ZMSAS given by Equation 8.61 and three MBrSs (i.e., MBrS1, MBrS2

and MBrS3 defined by Equation 8.70, 8.71 and 8.72 respectively). The first column stands

for the instance names. The second column provides the initial upper bound values. The

calculation of the initial upper bounds are described in Chapter 8 while the lower bounds

are determined by the RLT based lower bounding procedure for the MCMWP. Note that

initially ZMSAS is equal to zero since lijk = 0 for all allocation variables. The next three

blocks of columns are dedicated to the results obtained with each of the three MBrSs (i.e.,

MBrS1, MBrS2 and MBrS3). Total computational times in minutes are given under the

columns “CPU”. A CPU time limit of four hours is imposed to run the MABB algorithm.

“UB (%)” denotes the percent deviation of the final upper bound Zfinal
UB (ZM) from the

benchmark lower bound value (namely, the reference value ZR) given in Table A.1. They

are calculated by the Equation 10.1. “GAP (%)” stands for the duality gap between the

lower and upper bounds determined by using Equation 10.2 where ZFinal
UB and ZFinal

LB are the

final upper and lower bounds of the corresponding BB algorithm, respectively. ZR is the

benchmark lower bound value given in Table A.1 and Table A.2. Finally, the last rows give

the overall average of the test instances.
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The presentation of Table 10.26 is similar to the one of Table 10.25. Table 10.26

provides the performance of the `∞-norm based lower bounding procedure (namely `∞-

RMDAP1) within the MABB algorithm. Notice that for the MABB algorithm, we prefer a

weaker (looser) but more efficient lower bounding procedure. The motivation behind the use

of LR of MDAP1 with `∞-norm is its approved efficiency on the CMWP instances. The lower

bounds are always tightened with ZMSAS inspired by the results obtained for the CMWP.

For the sake of conciseness, we will denote the MABB algorithm with the RLT based

lower bounding procedure as RLT-MABB and the MABB algorithm with `∞-norm based

lower bounding procedure as `∞-MABB in the sequel. The computational results favor

the `∞-MABB algorithm when compared to RLT-MABB algorithm. Although there are

a few instances for which RLT-MABB algorithm is superior to `∞-MABB, the `∞-MABB

algorithm performs much better than the RLT-MABB algorithm in terms of both accuracy

and duality gaps. On the average, the RLT-MABB and `∞-MABB algorithms yield upper

bound values with percent deviations from ZR by 3.92% and 0.61% and, duality gaps 55.66%

and 9.66%, respectively. Although, the RLT based lower bounds are weak, the RLT-MABB

algorithm can solve 11 out of 60 test instances with 0.1% closeness to optimality. On the

other hand, the `∞-MABB algorithm outputs 8 out of 60 test instances within 0.001 of

the optimal value. The RLT-MABB algorithm requires less CPU time than the `∞-MABB

algorithm does on the average. Meanwhile, the CPU times reach the four-hour limit on most

of the instances when both RLT-MABB and `∞-MABB algorithms are used. It is observed

that the performance of the MABB algorithm deteriorates with the increasing number of

commodities. Furthermore, the total number of allocation variables has also a negative effect

on the MABB algorithm’s performance.

Based on the observations, we can say that MBrS2 does not perform well with neither

RLT nor the `∞-norm based lower bounding procedure. Moreover, MBrS1 seems to be

slightly better than MBrS3. Therefore, we can also claim that the performance of the

MABB algorithm is significantly affected by the sequence of allocation variables selected

for branching. The winner is the `∞-MABB algorithm employing the `∞-norm based lower

bounding procedure with MBrS1.

In addition to the MABB algorithm, LBB algorithms (i.e., MLBB and MLBBCE al-

gorithms) are also tested as part of the experiments on the test instances. Both LP (ZMLBB
LP
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given by Equation 9.3) and `∞-norm (ZMLBB
MDAP ) based lower bounding procedures are initially

used together within the MLBB and MLBBCE algorithms. However, the calculation of `∞-

norm based lower bounding procedure continues until 3 × N ×K rectangles are generated

by both MLBB and MLBBCE algorithms. This setting improves the performance of both

the MLBB and MLBBCE algorithms as it is the case for the CMWP. In summary, the block

norm based lower bounding is expensive and the performance of the algorithm deteriorates

when it is calculated at every bounding step together with the LP based bounding procedure.

Actually, the block norm based lower bounding procedure produces sufficiently tight bounds

in the early stages of the LBB and LBBCE algorithms. However, as the algorithm proceeds

LP based lower bound values exceeds the block norm based lower bound values. Hence, we

continue only with the LP based lower bounding procedure when the number of rectangles

reaches a predefined upper limit.

Table 10.27 gives the results obtained with both the MLBB and MLBBCE algorithms.

Table 10.27 has the same format with Table 10.19 – 10.21. At the root node of the BB tree

ZMDAP3 is equal to ZMLBB
MDAP . Therefore, the initial lower bounds are the same for both ABB

and LBB algorithms using `∞-norm at the root nodes.

Our computational experiments indicate that the MLBB algorithm outperforms the

MLBBCE algorithm on the average in terms of duality gaps. However, there exist four

instances for which MLBBCE algorithm yields better lower bounds than the MLBB algo-

rithm does. The MLBBCE algorithm seems to be more efficient than the MLBB algorithm

on the average but its performance deteriorates significantly for instances with more than

10 facilities. In particular, the number of facility-rectangle combinations increases quickly

during the run of the MLBBCE algorithm. This limits the use of MLBBCE algorithm on

instances with small number of facilities (i.e., I ≤ 10). Once a rectangle is partitioned,

the subproblems produced by the MLBBCE algorithm can be solved by multiple processors

simultaneously as a remedy. We believe the performance of the MLBBCE algorithm may be

improved by a parallel implementation.

The MLBB algorithm yields duality gaps less than 0.15 of the optimum on 90% (54

out of 60) of the test instances. On the other hand, this ratio is 65% (39 out of 60) for

the MLBBCE algorithm and 85% (51 out of 60) for the best performing MABB algorithm

(`∞-MABB using MBrS1). On the average, the MLBB algorithm finds duality gaps within



T
ab

le
10

.2
5.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
R

L
T

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
M

C
M

W
P

in
st

an
ce

s.

In
st

an
ce

In
it

R
L
T

+
M

B
rS

1
R

L
T

+
M

B
rS

2
R

L
T

+
M

B
rS

3
N

am
e

U
B

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

m
c

2
2

2
84

.0
0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

m
c

2
2

3
52

4.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

m
c

2
2

5
10

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

m
c

2
4

2
93

2.
57

0.
10

0.
29

0.
00

0.
10

0.
29

0.
01

0.
10

0.
29

0.
00

m
c

2
4

3
72

0.
26

0.
10

0.
42

0.
03

0.
10

0.
19

0.
05

0.
10

0.
65

0.
03

m
c

2
4

5
17

37
.9

7
0.

10
0.

12
0.

04
0.

10
0.

10
0.

22
0.

10
0.

12
0.

03
m

c
3

5
2

20
82

.5
4

0.
10

0.
22

0.
01

0.
10

0.
28

0.
01

0.
10

0.
13

0.
01

m
c

3
5

3
79

0.
67

0.
10

0.
10

0.
71

0.
10

0.
10

25
.6

9
0.

10
0.

12
0.

70
m

c
3

5
5

47
86

.9
1

0.
10

0.
10

60
.0

4
0.

10
17

.7
3

24
0.

00
0.

10
0.

10
58

.8
4

m
c

3
9

2
23

22
.9

5
0.

10
5.

32
24

0.
00

0.
10

31
.9

9
24

0.
00

0.
10

5.
92

24
0.

00
m

c
3

9
3

73
35

.4
2

0.
10

11
.9

5
24

0.
00

0.
10

30
.2

3
24

0.
00

0.
10

12
.5

1
24

0.
00

m
c

3
9

5
57

18
2.

27
0.

90
17

.1
2

24
0.

01
0.

90
29

.0
7

24
0.

01
0.

90
17

.8
5

24
0.

00
m

c
4

8
2

15
92

.7
8

0.
03

0.
10

0.
95

0.
03

0.
11

1.
60

0.
03

0.
10

0.
95

m
c

4
8

3
89

19
.7

2
0.

10
11

.1
9

24
0.

00
0.

10
26

.2
0

24
0.

00
0.

10
10

.9
3

24
0.

00
m

c
4

8
5

97
93

.5
9

0.
05

26
.1

8
24

0.
00

0.
05

43
.2

5
24

0.
00

0.
05

25
.9

2
24

0.
01

m
c

4
10

2
84

82
.4

3
0.

10
5.

34
24

0.
00

0.
10

22
.0

9
24

0.
00

0.
10

5.
28

24
0.

00
m

c
4

10
3

13
11

0.
09

0.
44

11
.2

3
24

0.
00

0.
44

43
.9

9
24

0.
00

0.
44

10
.8

8
24

0.
00

m
c

4
10

5
37

02
2.

02
0.

03
41

.1
5

24
0.

00
0.

03
55

.7
7

24
0.

00
0.

03
41

.3
0

24
0.

00
m

c
4

15
2

11
47

6.
23

0.
10

31
.9

3
24

0.
00

0.
10

67
.0

1
24

0.
00

0.
10

32
.9

1
24

0.
00

m
c

4
15

3
46

10
4.

69
0.

62
41

.0
9

24
0.

00
0.

62
61

.9
3

24
0.

00
0.

62
41

.0
2

24
0.

00
m

c
4

15
5

34
12

0.
48

0.
01

88
.5

9
24

0.
01

0.
01

98
.2

0
24

0.
00

0.
01

88
.3

0
24

0.
01



T
ab

le
10

.2
5.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
R

L
T

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
M

C
M

W
P

in
st

an
ce

s
co

n
t.

In
st

an
ce

In
it

R
L
T

+
M

B
rS

1
R

L
T

+
M

B
rS

2
R

L
T

+
M

B
rS

3
N

am
e

U
B

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

m
c

5
8

2
70

35
.3

4
0.

10
0.

10
3.

28
0.

10
2.

36
24

0.
00

0.
10

0.
10

3.
46

m
c

5
8

3
97

16
.6

6
0.

10
39

.5
2

24
0.

00
0.

10
82

.3
1

24
0.

00
0.

10
37

.9
1

24
0.

00
m

c
5

8
5

33
23

8.
26

6.
82

42
.2

0
24

0.
00

6.
82

76
.7

6
24

0.
00

6.
82

43
.9

3
24

0.
00

m
c

5
10

2
48

27
.0

5
0.

10
0.

61
24

0.
00

0.
10

24
.5

9
24

0.
00

0.
10

1.
34

24
0.

00
m

c
5

10
3

19
68

3.
12

0.
10

30
.3

8
24

0.
01

0.
10

46
.7

9
24

0.
01

0.
10

31
.2

7
24

0.
00

m
c

5
10

5
57

73
8.

93
0.

29
33

.2
2

24
0.

01
0.

29
34

.0
4

24
0.

01
0.

29
33

.0
9

24
0.

01
m

c
5

12
2

51
50

.4
4

3.
40

87
.0

9
24

0.
00

3.
40

98
.2

5
24

0.
01

3.
40

87
.1

9
24

0.
00

m
c

5
12

3
14

73
4.

72
0.

34
61

.5
5

24
0.

00
0.

34
73

.9
7

24
0.

00
0.

34
60

.9
2

24
0.

00
m

c
5

12
5

53
64

3.
85

11
.2

8
36

.1
1

24
0.

01
11

.2
8

46
.5

1
24

0.
02

11
.2

8
36

.7
0

24
0.

01
m

c
5

15
2

65
82

.8
2

0.
01

33
.1

1
24

0.
01

0.
01

70
.4

8
24

0.
00

0.
01

33
.7

9
24

0.
01

m
c

5
15

3
47

26
5.

38
0.

04
78

.4
6

24
0.

01
0.

04
91

.1
3

24
0.

01
0.

04
78

.2
1

24
0.

01
m

c
5

15
5

32
27

7.
56

4.
79

73
.2

0
24

0.
01

4.
79

94
.7

4
24

0.
00

4.
79

72
.8

4
24

0.
01

m
c

5
20

2
12

50
6.

04
1.

35
45

.2
9

24
0.

00
1.

35
84

.8
6

24
0.

00
1.

35
44

.8
6

24
0.

00
m

c
5

20
3

24
42

5.
72

2.
05

99
.4

9
24

0.
03

2.
05

10
2.

05
24

0.
01

2.
05

99
.3

6
24

0.
01

m
c

5
20

5
48

24
4.

38
0.

02
61

.3
5

24
0.

03
0.

15
80

.3
2

24
0.

03
0.

02
61

.4
0

24
0.

02
m

c
5

30
2

56
59

3.
66

0.
00

95
.7

6
24

0.
00

0.
00

99
.0

8
24

0.
01

0.
00

95
.6

6
24

0.
01

m
c

5
30

3
95

74
3.

88
0.

00
98

.6
5

24
0.

02
0.

00
98

.8
3

24
0.

03
0.

00
98

.6
2

24
0.

02
m

c
5

30
5

22
67

41
.5

9
0.

01
94

.2
6

24
0.

03
0.

01
95

.9
2

24
0.

05
0.

01
94

.1
1

24
0.

05
m

c
6

10
2

48
04

.0
1

0.
11

35
.9

8
24

0.
00

0.
11

50
.5

9
24

0.
00

0.
11

36
.5

9
24

0.
00

m
c

6
10

3
10

96
5.

43
0.

09
42

.3
5

24
0.

01
0.

09
58

.2
5

24
0.

00
0.

09
42

.5
7

24
0.

00
m

c
6

10
5

14
11

5.
76

0.
11

58
.9

7
24

0.
01

0.
11

68
.3

2
24

0.
00

0.
11

59
.3

9
24

0.
01



T
ab

le
10

.2
5.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
R

L
T

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
M

C
M

W
P

in
st

an
ce

s
co

n
t.

In
st

an
ce

In
it

R
L
T

+
M

B
rS

1
R

L
T

+
M

B
rS

2
R

L
T

+
M

B
rS

3
N

am
e

U
B

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

U
B

(%
)

G
A

P
(%

)
C

P
U

m
c

8
10

2
12

75
2.

86
0.

05
63

.4
1

24
0.

00
0.

05
75

.1
4

24
0.

00
0.

05
63

.4
5

24
0.

00
m

c
8

10
3

21
97

4.
01

1.
43

55
.8

6
24

0.
01

5.
23

79
.3

9
24

0.
00

5.
87

59
.9

0
24

0.
00

m
c

8
10

5
29

00
2.

70
4.

80
85

.1
3

24
0.

00
3.

81
85

.0
8

24
0.

02
4.

80
85

.0
7

24
0.

01
m

c
10

10
2

71
85

.1
3

4.
90

10
2.

50
24

0.
00

7.
59

10
3.

77
24

0.
00

4.
90

10
2.

39
24

0.
00

m
c

10
10

3
15

57
2.

58
4.

67
93

.5
9

24
0.

01
5.

19
95

.4
8

24
0.

01
4.

67
93

.8
8

24
0.

00
m

c
10

10
5

13
21

9.
58

30
.6

5
13

0.
65

24
0.

02
36

.4
0

13
6.

40
24

0.
00

30
.6

5
13

0.
65

24
0.

00
m

c
10

15
2

66
17

.8
9

31
.3

8
13

1.
38

24
0.

00
14

.4
6

11
4.

46
24

0.
00

31
.3

8
13

1.
38

24
0.

01
m

c
10

15
3

93
47

.6
0

4.
33

98
.7

3
24

0.
01

2.
07

97
.2

5
24

0.
03

2.
84

92
.9

6
24

0.
02

m
c

10
15

5
19

70
4.

50
6.

85
10

6.
22

24
0.

03
6.

85
10

6.
69

24
0.

01
6.

93
10

6.
37

24
0.

07
m

c
10

20
2

26
25

3.
55

42
.8

6
14

2.
86

24
0.

01
36

.3
2

13
6.

32
24

0.
01

42
.8

6
14

2.
86

24
0.

00
m

c
10

20
3

13
03

2.
02

17
.3

3
11

7.
33

24
0.

04
6.

54
10

6.
09

24
0.

02
19

.0
3

11
9.

03
24

0.
02

m
c

10
20

5
22

08
9.

73
7.

24
10

7.
24

24
0.

11
7.

59
10

7.
57

24
0.

13
4.

15
10

4.
15

24
0.

12
m

c
10

24
2

58
09

.8
9

21
.4

8
12

1.
48

24
0.

02
10

.4
2

11
0.

42
24

0.
03

21
.4

8
12

1.
48

24
0.

04
m

c
10

24
3

14
74

4.
54

14
.9

7
11

4.
97

24
0.

01
22

.1
1

12
2.

11
24

0.
06

14
.9

7
11

4.
97

24
0.

07
m

c
10

24
5

38
41

0.
05

15
.9

6
11

3.
13

24
0.

07
5.

88
10

3.
31

24
0.

38
19

.3
6

11
6.

43
24

0.
10

m
c

10
30

2
48

78
5.

94
0.

16
10

0.
16

24
0.

00
1.

72
10

1.
72

24
0.

00
0.

16
10

0.
16

24
0.

02
m

c
10

30
3

64
19

6.
14

7.
72

10
7.

72
24

0.
01

12
.3

9
11

2.
39

24
0.

02
7.

72
10

7.
72

24
0.

02
m

c
10

30
5

10
28

20
.8

3
6.

91
10

6.
91

24
0.

10
16

.0
2

11
6.

02
24

0.
10

12
.9

1
11

2.
91

24
0.

21
A

ve
ra

ge
25

11
2.

93
4.

30
55

.6
6

19
7.

10
3.

92
65

.3
1

20
4.

48
4.

48
55

.8
3

19
7.

08



T
ab

le
10

.2
6.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
` ∞

-R
M

D
A

P
1

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
th

e
M

C
M

W
P

in
st

an
ce

s.

In
st

an
ce

In
it

` ∞
-R

M
D

A
P

1
+

M
B

rS
1

` ∞
-R

M
D

A
P

1
+

M
B

rS
2

` ∞
-R

M
D

A
P

1
+

M
B

rS
3

N
am

e
U

B
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
m

c
2

2
2

84
.0

0
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
m

c
2

2
3

52
4.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
m

c
2

2
5

10
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
m

c
2

4
2

93
2.

57
0.

10
0.

14
0.

10
0.

10
0.

12
0.

14
0.

10
0.

28
0.

12
m

c
2

4
3

72
0.

26
0.

10
0.

10
1.

24
0.

10
0.

10
1.

46
0.

10
0.

10
1.

18
m

c
2

4
5

17
37

.9
7

0.
10

0.
10

21
4.

27
0.

10
0.

84
24

0.
00

0.
10

0.
10

22
3.

97
m

c
3

5
2

20
82

.5
4

0.
10

0.
10

0.
36

0.
10

0.
14

0.
48

0.
10

0.
20

0.
41

m
c

3
5

3
79

0.
67

0.
10

0.
10

14
5.

33
0.

10
1.

92
24

0.
00

0.
10

0.
10

15
6.

06
m

c
3

5
5

47
86

.9
1

0.
10

5.
91

24
0.

00
0.

10
7.

49
24

0.
00

0.
10

5.
99

24
0.

01
m

c
3

9
2

23
22

.9
5

0.
10

1.
46

24
0.

00
0.

10
3.

46
24

0.
01

0.
10

1.
54

24
0.

00
m

c
3

9
3

73
35

.4
2

0.
10

6.
76

24
0.

00
0.

10
7.

62
24

0.
01

0.
10

6.
82

24
0.

01
m

c
3

9
5

57
18

2.
27

0.
90

18
.7

6
24

0.
00

0.
90

19
.3

8
24

0.
00

0.
90

18
.7

4
24

0.
01

m
c

4
8

2
15

92
.7

8
0.

03
0.

10
22

8.
37

0.
03

2.
76

24
0.

00
0.

03
0.

13
24

0.
00

m
c

4
8

3
89

19
.7

2
0.

10
5.

20
24

0.
00

0.
10

5.
53

24
0.

00
0.

10
5.

25
24

0.
00

m
c

4
8

5
97

93
.5

9
0.

05
8.

02
24

0.
01

0.
05

8.
12

24
0.

00
0.

05
8.

04
24

0.
00

m
c

4
10

2
84

82
.4

3
0.

10
0.

95
24

0.
00

0.
10

2.
46

24
0.

00
0.

10
1.

05
24

0.
00

m
c

4
10

3
13

11
0.

09
0.

44
4.

01
24

0.
00

0.
44

5.
71

24
0.

00
0.

44
4.

03
24

0.
00

m
c

4
10

5
37

02
2.

02
0.

03
8.

75
24

0.
00

0.
03

9.
08

24
0.

00
0.

03
8.

77
24

0.
00

m
c

4
15

2
11

47
6.

23
0.

10
13

.4
1

24
0.

00
0.

10
14

.0
6

24
0.

01
0.

10
13

.4
9

24
0.

00
m

c
4

15
3

46
10

4.
69

0.
62

10
.7

5
24

0.
01

0.
62

10
.8

4
24

0.
01

0.
62

10
.7

5
24

0.
01

m
c

4
15

5
34

12
0.

48
0.

01
8.

07
24

0.
03

0.
01

8.
08

24
0.

01
0.

01
8.

07
24

0.
01



T
ab

le
10

.2
6.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
` ∞

-R
M

D
A

P
1

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
th

e
M

C
M

W
P

in
st

an
ce

s
co

n
t.

In
st

an
ce

In
it

` ∞
-R

M
D

A
P

1
+

M
B

rS
1

` ∞
-R

M
D

A
P

1
+

M
B

rS
2

` ∞
-R

M
D

A
P

1
+

M
B

rS
3

N
am

e
U

B
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
m

c
5

8
2

70
35

.3
4

0.
10

4.
78

24
0.

00
0.

10
8.

53
24

0.
00

0.
10

4.
95

24
0.

00
m

c
5

8
3

97
16

.6
6

0.
10

13
.2

4
24

0.
00

0.
10

16
.0

6
24

0.
00

0.
10

13
.1

2
24

0.
00

m
c

5
8

5
33

23
8.

26
6.

82
27

.2
5

24
0.

00
6.

82
27

.5
6

24
0.

00
6.

82
27

.2
8

24
0.

00
m

c
5

10
2

48
27

.0
5

0.
10

4.
31

24
0.

00
0.

10
5.

26
24

0.
00

0.
10

4.
37

24
0.

00
m

c
5

10
3

19
68

3.
12

0.
10

12
.1

0
24

0.
01

0.
10

13
.8

3
24

0.
00

0.
10

13
.5

1
24

0.
01

m
c

5
10

5
57

73
8.

93
0.

29
18

.3
7

24
0.

01
0.

29
19

.3
1

24
0.

00
0.

29
18

.3
8

24
0.

00
m

c
5

12
2

51
50

.4
4

3.
40

13
.9

5
24

0.
01

3.
40

14
.4

8
24

0.
00

3.
40

14
.0

0
24

0.
00

m
c

5
12

3
14

73
4.

72
0.

34
11

.5
1

24
0.

01
0.

34
12

.2
9

24
0.

00
0.

34
11

.5
3

24
0.

00
m

c
5

12
5

53
64

3.
85

11
.2

8
21

.9
8

24
0.

01
11

.2
8

20
.2

3
24

0.
01

11
.2

8
21

.9
7

24
0.

02
m

c
5

15
2

65
82

.8
2

0.
01

5.
98

24
0.

01
0.

01
6.

32
24

0.
00

0.
01

5.
99

24
0.

01
m

c
5

15
3

47
26

5.
38

0.
04

10
.9

1
24

0.
01

0.
04

11
.0

1
24

0.
00

0.
04

10
.9

5
24

0.
02

m
c

5
15

5
32

27
7.

56
4.

79
13

.0
3

24
0.

00
4.

79
16

.3
0

24
0.

02
4.

79
13

.0
4

24
0.

03
m

c
5

20
2

12
50

6.
04

1.
35

8.
90

24
0.

00
1.

35
9.

20
24

0.
01

1.
35

8.
92

24
0.

01
m

c
5

20
3

24
42

5.
72

2.
05

12
.2

2
24

0.
01

2.
05

12
.2

1
24

0.
01

2.
05

12
.2

2
24

0.
03

m
c

5
20

5
48

24
4.

38
0.

02
11

.2
1

24
0.

06
0.

02
11

.8
6

24
0.

02
0.

02
11

.2
0

24
0.

04
m

c
5

30
2

56
59

3.
66

0.
00

8.
95

24
0.

01
0.

00
8.

93
24

0.
02

0.
00

8.
95

24
0.

05
m

c
5

30
3

95
74

3.
88

0.
00

9.
09

24
0.

01
0.

00
9.

09
24

0.
03

0.
00

9.
09

24
0.

05
m

c
5

30
5

22
67

41
.5

9
0.

01
10

.6
0

24
0.

06
0.

01
10

.8
1

24
0.

01
0.

01
10

.6
1

24
0.

04
m

c
6

10
2

48
04

.0
1

0.
11

6.
53

24
0.

00
0.

11
7.

21
24

0.
00

0.
11

6.
53

24
0.

00
m

c
6

10
3

10
96

5.
43

0.
09

8.
54

24
0.

00
0.

09
8.

88
24

0.
00

0.
09

8.
64

24
0.

00
m

c
6

10
5

14
11

5.
76

0.
11

14
.5

2
24

0.
01

0.
11

15
.2

2
24

0.
00

0.
11

15
.0

1
24

0.
01



T
ab

le
10

.2
6.

T
h
e

p
er

fo
rm

an
ce

of
th

e
M

A
B

B
al

go
ri

th
m

w
it

h
th

e
` ∞

-R
M

D
A

P
1

b
ou

n
d
s

on
th

e
fi
rs

t
gr

ou
p

of
th

e
M

C
M

W
P

in
st

an
ce

s
co

n
t.

In
st

an
ce

In
it

` ∞
-R

M
D

A
P

1
+

M
B

rS
1

` ∞
-R

M
D

A
P

1
+

M
B

rS
2

` ∞
-R

M
D

A
P

1
+

M
B

rS
3

N
am

e
U

B
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
U

B
(%

)
G

A
P

(%
)

C
P

U
m

c
8

10
2

12
75

2.
86

0.
05

7.
75

24
0.

00
0.

05
11

.2
1

24
0.

04
0.

05
8.

69
24

0.
01

m
c

8
10

3
21

97
4.

01
0.

37
13

.3
4

24
0.

00
0.

37
18

.1
6

24
0.

01
0.

37
13

.5
6

24
0.

01
m

c
8

10
5

29
00

2.
70

0.
00

12
.8

5
24

0.
01

0.
00

17
.6

4
24

0.
00

0.
00

12
.9

8
24

0.
02

m
c

10
10

2
71

85
.1

3
0.

00
7.

23
24

0.
00

0.
00

8.
90

24
0.

00
0.

00
7.

14
24

0.
00

m
c

10
10

3
15

57
2.

58
0.

00
31

.4
5

24
0.

01
0.

00
34

.1
5

24
0.

00
0.

00
31

.6
3

24
0.

01
m

c
10

10
5

13
21

9.
58

0.
01

7.
65

24
0.

00
0.

01
14

.0
1

24
0.

00
0.

01
7.

66
24

0.
00

m
c

10
15

2
66

17
.8

9
0.

14
11

.3
9

24
0.

01
0.

14
22

.8
9

24
0.

01
0.

14
13

.1
4

24
0.

00
m

c
10

15
3

93
47

.6
0

0.
01

9.
27

24
0.

01
0.

01
12

.0
5

24
0.

01
0.

01
9.

48
24

0.
00

m
c

10
15

5
19

70
4.

50
0.

20
17

.5
2

24
0.

01
0.

20
20

.5
9

24
0.

00
0.

20
17

.9
9

24
0.

02
m

c
10

20
2

26
25

3.
55

0.
23

12
.3

9
24

0.
01

0.
23

14
.6

4
24

0.
01

0.
23

12
.3

8
24

0.
02

m
c

10
20

3
13

03
2.

02
0.

01
13

.0
2

24
0.

03
0.

01
18

.4
6

24
0.

01
0.

01
13

.2
7

24
0.

01
m

c
10

20
5

22
08

9.
73

0.
22

15
.0

4
24

0.
04

0.
22

18
.6

3
24

0.
06

0.
22

15
.0

2
24

0.
03

m
c

10
24

2
58

09
.8

9
0.

47
15

.8
2

24
0.

03
0.

47
17

.8
4

24
0.

02
0.

47
15

.8
5

24
0.

01
m

c
10

24
3

14
74

4.
54

0.
01

17
.4

0
24

0.
01

0.
01

19
.2

1
24

0.
05

0.
01

17
.4

0
24

0.
04

m
c

10
24

5
38

41
0.

05
0.

01
13

.1
2

24
0.

05
0.

01
14

.0
0

24
0.

12
0.

01
13

.1
6

24
0.

02
m

c
10

30
2

48
78

5.
94

0.
16

8.
86

24
0.

01
0.

16
16

.0
9

24
0.

05
0.

16
9.

09
24

0.
03

m
c

10
30

3
64

19
6.

14
0.

16
13

.2
1

24
0.

02
0.

16
13

.5
0

24
0.

07
0.

16
13

.1
8

24
0.

08
m

c
10

30
5

10
28

20
.8

3
0.

06
11

.8
9

24
0.

15
0.

06
16

.4
4

24
0.

06
0.

06
11

.9
9

24
0.

05
A

ve
ra

ge
25

11
2.

93
0.

61
9.

66
21

3.
84

0.
61

11
.3

5
21

6.
05

0.
61

9.
79

21
4.

37



189

6.97% while MLBBCE and best performing MABB algorithm yield duality gaps of 11.08%

and 9.66%, respectively. In total, the MLBB and MLBBCE algorithms solve 19 out of 60

and 21 out of 60 instances within 0.001 of optimum, respectively. On the other hand, this

number is 11 out of 60 for the MABB algorithm. As a verdict, the location based algorithms

perform better than the allocation based algorithms in the light of our extensive experiments.

BS heuristic is also applied on the MCMWP test instances with the same settings

defined for the CMWP. Our results are summarized in Table 10.28 for the first class of

MCMWP instances and in Table 10.29 for the second class of the test instances. Table 10.28

and Table 10.29 have the same outline with Table 10.22–24. As the reference values ZR,

benchmark lower bounds in Table A.1 and A.2 are used. BS heuristic performance is more

promising for the MCMWP instances than the CMWP instances. Actually, there is a trade-

off between the performance of the BS heuristic and the beam width W . Clearly, the larger

the beam width is the larger the accuracy and running times are. In general, W = 3 yields

more accurate solutions for the BS heuristic. What is more, we can state that for different

values of Ψ, the BS heuristic may perform differently. Hence the most suitable Ψ value

should be calibrated by some trial and error experiments. According to our computational

experiments, we observe that the combination (Ψ,W ) = (0.25,3) has a superior performance

than the other combinations for the first class of MCMWP instances while (Ψ,W ) = (0.5,3)

is better for the second class of the test instances.

According to our computational experiments, BS finds very close solutions (less than

1%) to the best performing heuristic CL-MDA1 for the first group of MCMWP test instances.

Their accuracies are 0.61% and 0.91% on the average for the CL-MDA1 and BS heuristic,

respectively. On the other hand, CL-MDA1 is more efficient than the BS heuristic in the

average. The BS heuristic is 2.93% more accurate than the best performing LR heuristic

CL-RMDA2 on the average with an expense of additional CPU time requirements.

On the second class of test instances (very large instances), BS heuristic yields 7.45%

percent deviations from the ZR. This deviation is 13.45% for the CL-RMDA2 heuristic which

is more efficient than the BS heuristic. On these instances, the best performing heuristic

CL-MDA2 does not find solutions in 7 out of 18 test instances even with a four-hour time

limit which is stated in Table 10.9. Consequently, BS heuristic yields competitive results

with the DA heuristics which have the best accuracy and efficiency for the MCMWP on

large instances.
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Table 10.27. The performance of the MLBB and MLBBCE algorithms on the first group of
the MCMWP instances.

Instance MLBB (ZMLBB
LP + ZMLBB

MDAP ) MLBBCE (ZMLBB
LP + ZMLBB

MDAP )
Name UB(%) GAP(%) CPU UB(%) GAP(%) CPU
mc 2 2 2 0.00 0.00 0.00 0.00 0.00 0.01
mc 2 2 3 0.00 0.00 0.02 0.00 0.00 0.01
mc 2 2 5 0.00 0.00 0.00 0.00 0.00 0.01
mc 2 4 2 0.10 0.10 0.13 0.10 0.10 0.10
mc 2 4 3 0.10 0.10 0.44 0.10 0.10 0.47
mc 2 4 5 0.10 0.10 1.25 0.10 0.10 0.52
mc 3 5 2 0.10 0.10 1.47 0.10 0.10 1.30
mc 3 5 3 0.10 0.10 8.74 0.10 0.11 4.86
mc 3 5 5 0.10 0.10 6.91 0.10 0.10 6.32
mc 3 9 2 0.10 0.10 80.73 0.10 0.10 97.26
mc 3 9 3 0.10 0.10 5.94 0.10 0.11 4.98
mc 3 9 5 0.90 0.98 240.00 0.90 0.90 240.00
mc 4 8 2 0.03 0.10 16.97 0.03 0.11 11.81
mc 4 8 3 0.10 0.10 34.61 0.10 0.10 37.54
mc 4 8 5 0.05 0.10 21.66 0.05 0.10 7.88
mc 4 10 2 0.10 0.10 133.05 0.10 0.10 79.94
mc 4 10 3 0.44 0.44 240.00 0.44 0.67 240.00
mc 4 10 5 0.03 0.10 240.00 0.03 0.10 155.73
mc 4 15 2 0.10 0.10 233.52 0.10 0.11 240.00
mc 4 15 3 0.62 6.48 240.00 0.62 11.02 240.00
mc 4 15 5 0.01 5.95 240.00 0.01 8.72 240.00
mc 5 8 2 0.10 0.10 38.33 0.10 0.11 13.26
mc 5 8 3 0.10 0.10 26.53 0.10 0.10 20.55
mc 5 8 5 6.82 6.82 240.00 6.82 15.83 240.00
mc 5 10 2 0.10 0.10 33.19 0.10 0.10 38.51
mc 5 10 3 0.10 0.10 57.90 0.10 0.10 68.35
mc 5 10 5 0.29 14.79 240.00 0.29 19.55 240.11
mc 5 12 2 3.40 3.40 240.00 3.40 4.46 240.00
mc 5 12 3 0.34 1.59 240.00 0.34 0.34 240.00
mc 5 12 5 11.28 14.66 240.00 11.28 26.24 240.00
mc 5 15 2 0.01 4.76 240.00 0.01 3.68 240.01
mc 5 15 3 0.04 4.34 240.00 0.04 9.90 240.00
mc 5 15 5 4.79 10.19 240.00 4.79 16.49 240.00
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Table 10.27. The performance of the MLBB and MLBBCE algorithms on the first group of
the MCMWP instances cont.

Instance MLBB (ZMLBB
LP + ZMLBB

MDAP ) MLBBCE (ZMLBB
LP + ZMLBB

MDAP )
Name UB(%) GAP(%) CPU UB(%) GAP(%) CPU
mc 5 20 2 1.35 8.22 240.00 1.35 10.78 240.00
mc 5 20 3 2.05 11.44 240.00 2.05 12.62 240.01
mc 5 20 5 0.02 8.53 240.02 0.02 12.43 240.00
mc 5 30 2 0.00 7.63 240.01 0.00 8.96 240.20
mc 5 30 3 0.00 7.40 240.00 0.00 9.11 240.01
mc 5 30 5 0.01 9.55 240.04 0.01 10.68 240.01
mc 6 10 2 0.11 6.46 240.00 0.11 0.11 164.11
mc 6 10 3 0.09 9.57 240.00 0.09 11.21 240.00
mc 6 10 5 0.11 14.89 240.02 0.11 17.38 240.00
mc 8 10 2 0.05 11.26 240.00 0.05 11.20 240.00
mc 8 10 3 0.37 16.05 240.00 0.37 22.72 240.06
mc 8 10 5 0.00 13.51 240.18 0.00 22.11 240.10
mc 10 10 2 0.00 14.94 240.02 0.00 30.31 241.08
mc 10 10 3 0.00 25.33 240.00 0.00 35.41 240.02
mc 10 10 5 0.01 17.22 240.18 0.01 39.06 243.75
mc 10 15 2 0.14 15.36 240.00 0.14 47.63 240.11
mc 10 15 3 0.01 9.24 240.04 0.01 18.63 240.20
mc 10 15 5 0.20 14.84 240.11 0.20 27.40 242.77
mc 10 20 2 0.23 13.03 240.00 0.23 19.69 240.06
mc 10 20 3 0.01 14.28 240.37 1.62 28.68 241.63
mc 10 20 5 0.14 13.28 240.07 1.09 24.26 240.31
mc 10 24 2 0.47 16.30 240.02 0.47 26.84 240.06
mc 10 24 3 0.01 18.75 240.01 3.00 26.66 240.64
mc 10 24 5 0.01 12.39 240.21 0.01 17.70 240.53
mc 10 30 2 0.16 10.76 240.06 0.16 21.49 240.25
mc 10 30 3 0.16 11.64 240.03 0.16 17.13 240.86
mc 10 30 5 0.06 10.37 240.23 0.06 14.81 241.26
Average 0.61 6.97 171.72 0.70 11.08 168.13
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11. CONCLUSIONS

In this dissertation, we address a multi-commodity and capacitated extension of the

MLAP. In particular, we deal with a variant of the continuous MLAP, namely the MCMWP,

that is new to the literature. We propose heuristics and exact solution methods for the

MCMWP where the distances are measured using `r-norm with 1 ≤ r < ∞.

First, we suggest new location-allocation heuristics for the MCMWP. The location-

allocation heuristics are basically the adaptations and enhancements of Cooper’s alternate

location-allocation and Luis et al.’s region rejection heuristics (Cooper, 1964; Luis et al.,

2009). Among them the C-MRR and the D-MCALA, which are straightforward general-

izations of Cooper’s ALA heuristic, perform the best. All MCALA, MRR and MDRR are

randomly initialized heuristics which are very efficient. They may produce accurate solutions

when they are performed many times. Nevertheless, their performance depends on the initial

selection of the facility locations (or an initial feasible transportation problem). In practice,

there may be a sequence of random locations which gives rise to a superior performance

of one ALA heuristic over the others. That is to say, randomized ALA heuristics have an

oscillating performance that the range between their best and worst case is quite large. Such

a randomness is exploited to produce practical estimates on the objective value within a

confidence interval framework in this work.

Second, Discrete Approximation (DA) heuristics are implemented for the MCMWP.

They are inspired from the studies by (Hansen et al., 1998) for the MWP and (Aras et al.,

2007) for the CMWP. DA heuristics reduce the location space into a finite number of candi-

date facility locations and require the optimum solution of a MILP problem. We incorporate

the theoretical results by (Thisse et al., 1984) on block norms and extended the applicability

of the DA heuristics such that they can now be used to produce lower bounds, as well. Basi-

cally, we suggest two discretization strategies which select the candidate locations using the

block norms and customer locations. In the experiments, we implement block norms based

strategy for the `1 and `∞-norms. We observe that `∞-norm is a better choice than the

`1-norm in computing the lower bounds; but the upper bounds obtained using the customer

locations have been the most accurate ones. In particular, it can be expected that `1-norm

produces better lower bounds than the `∞-norm when 1 < r < 2. In fact, the relation

2(1−r)/r`1 ≤ `r becomes tighter as r approaches towards 1. On the other hand, `∞-norm is a
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better lower bounding approximation for `r-norm when r > 2. Another, choice is to rotate

the customer locations on the plane with an angle between 0o and 45o and test whether

a better lower bounding block norm, which also has four fundamental directions as `1 and

`∞-norms, can be found using the relations given in Chapter 5.

When comparing the ALA and DA heuristics, we can say that the latters generally

perform better than the formers in terms of accuracy. However, their major weakness is the

drastic CPU time requirement, especially for large instances. Therefore, keeping in mind this

inconvenience, we devised specially tailored LR strategies in order to increase the efficiency of

the discrete approximation procedures. According to our computational experiments, we can

say that among all relaxed discrete approximation heuristics, CL-RMDA2 produces the most

accurate upper bounds within reasonable CPU times. Considering the trade-off between the

accuracy and efficiency we can recommend `1-RMDA1 or `∞-RMDA1 as lower bounding

approaches. However, when accurate upper bounds are crucial we definitely recommend the

CL-MDA1 at the expense of its inefficiency.

As the third heuristic approach, we propose a LR scheme and the MS algorithm for

the MCMWP. The proposed LR scheme requires the solution of a variant of the well-known

MWP, as a subproblem of the MCMWP. The LR subproblem was handled with two strate-

gies: the CG procedure and the lower bounding block norm approach. In the first strategy,

we suggest an equivalent SC problem formulation for the LR subproblem. Then the LP

relaxation of the equivalent SC problem, namely SCLP, is solved by CG procedure. We

examine two different approaches, which are successfully applied on the MWP by (Krau,

1997) and (Righini and Zaniboni, 2007), in solving the Pricing Subproblem (PS) of the CG

procedure. In one approach, we solve a D.C. programming problem. In the other approach,

we solve the WPLD to perform the CG procedure. In the second strategy to solve the LR

subproblem, we propose using the block norm approach. For that purpose, we make use of an

approximating MILP of the LR subproblem, namely the UDAP. Then, using the `1-norm and

`∞-norm in the objective function of the UDAP, we propose two lower bounding approaches

for the LR subproblem. In total, four lower bounding approaches are employed within the

MS algorithm for the MCMWP. We can say that among all lower bounding approaches,

handling the PS by solving the D.C. programming problem yields the most accurate lower

bounds at the expense of its inefficiency. Unfortunately, the MS algorithm for the MCMWP,

which employs any of these four approaches at each step, requires excessive CPU times even
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for small MCMWP instance. When we compare the MS algorithm with the ALA and DA

heuristics, the MS is very inefficient. Its accuracy is better than the ALA heuristics but

worse than the DA heuristics. Although, the MS algorithm does not perform well on the

MCMWP instances, it can be applied on other COPs for which the resulting subproblems

can be solved by efficient heuristics.

In another approach we have applied the Fisher and Tippett’s theorem to produce

statistical estimates and confidence intervals on the optimal solution of the MCMWP. Ini-

tialized by random starting solutions, three approximate solution procedures (i.e., MCALA,

MDA1 and MDRR) are devised for that purpose and they are combined with statistical

estimation procedures. We see that both the sampling method and the sample size affect

the efficiency of the confidence interval approach using EVT. Generally, the MRA sampling

produces more reliable confidence intervals, smaller absolute gaps and greater number of

covering intervals than the LLA does on test instances. In addition, a small sample size (i.e.,

M = 20) is often enough to obtain reasonable bounds with the Golden and Alt’s approach on

the optimum (or benchmark minimum) value for the MCMWP. It is also interesting to ob-

serve that an optimal (or good) initial assignment of random candidate locations to facilities

(e.g., the MDA1 or MDRR heuristic) does not always produce better results than a totally

random initialization of the facilities (e.g., MCALA heuristic). Indeed, although the MDA1

heuristic yields narrower confidence intervals than the others do, the MCALA and MDRR

heuristics yield more reliable intervals, smaller absolute gaps and greater number of covering

intervals than the MDA1 heuristic. In the overall, the MCALA can be a better choice for

the MCMWP since it produces the largest number of covering intervals in all cases.

Exact solution methods are implemented for two continuous MLAPs: the CMWP and

MCMWP. We develop two types of BB algorithm: One of them works on the allocation

space and the other one works on the location space. The SABB algorithm is based on

the study by (Sherali et al., 2002) for the CMWP. We replicate (Sherali et al., 2002)’s

RLT based bounding procedure for the CMWP. Additionally, we embed our block norm

based bounding procedures within the SABB algorithm and use several branching variable

selection strategies with a DFS strategy. We can say that our SABB implementation using

block norm based bounding procedures beats (Sherali et al., 2002)’s algorithm using RLT

based bounding procedure for the CMWP. For the MCMWP, the MABB algorithm is the

first attempt to solve it exactly. We devise three lower bounding procedures: block norm and
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RLT based lower bounding procedures which are tightened with pure location based lower

bounds ZMSAS. We follow a BFS strategy and investigate the performance of three different

MBrSs (i.e., MBrS1, MBrS2 and MBrS3) for the MABB algorithm. The block norm based

bounding procedures also produced better results than the ones produced by RLT based

bounding procedures for the MCMWP.

The LBB algorithms partition the location space and, for all we know, it is the first

time that such an algorithm is employed for continuous MLAPs. For both CMWP and

MCMWP, we employ two lower bounding procedures: LP and block norm based lower

bounding procedures. We pursue a BFS strategy and used a specially tailored branching

strategy working on the location space. We also suggest a complete enumeration strategy

(i.e., LBBCE) that can be used within the LBB algorithm. The LBBCE algorithm can be

enhanced further with a parallel implementation to solve new subproblems. In general, the

LBB algorithm shows a superior performance than the ABB algorithm in terms of both the

efficiency and the accuracy.

Lastly, we focus on the BS heuristics employing the LBB algorithm. The generic

BS heuristic is designed to solve discrete optimization problems such as sequencing and

scheduling problems. For the CMWP and MCMWP, we adapt the BS heuristic within a

continuous partitioning scheme (i.e., partitioning of the location space). Its performance is

higher than the DA heuristics using LR schemes. Moreover, the BS heuristic is also suitable

for very large instances on which the most accurate DA heuristic MDA1 fails to produce any

bounds. We believe that the framework we use for the BS heuristic can also be extended to

other optimization problems which requires a continuous partitioning.

As a further research direction, one can consider the MCMWP2 formulation and apply

a MS algorithm by relaxing constraints given by Equation 2.10 and 2.11. The resulting

Lagrange subproblem can be decomposed into a variant of K CMWPs. Then, the MS

algorithm can yield both lower and upper bounds on the MCMWP. However, we should note

that such a LR scheme and using MS algorithm may not be an efficient method regarding the

inherent difficulty of solving the CMWP exactly. In case the constraints given by Equation

2.8 is also relaxed from the MCMWP2, then the LR subproblems are again MWP variants

which can be solved by methods similar to the ones presented in Chapter 6.3.

In this work, we only consider the most primitive BB approach for the LBB algorithm.
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Yet, another research direction may be the generation of valid inequalities which can be

used within the LBB algorithm to improve the performance of the proposed lower bounding

procedures.

To the best of our knowledge, the LBB algorithm is a novel approach for the MLAPs

and its performance is promising. As an open research avenue, one can also develop the LBB

algorithm for various location-allocation problems. As for example, there may be passage

limitations over some regions on the customer’s plane and/or some regions may be forbidden

for locating a facility. In this case, for the LP based bounding procedure, the definition

of the closest distance over a region changes. In other words, one should also consider the

barriers or forbidden regions to calculate the lower bounding distance function. As far as we

know, there does not exist such a single or multi-commodity capacitated continuous MLAP

in the literature. Heuristic or exact solution methods deserve further research for these more

restricted problems.

As another open research avenue, one can consider the situation where customer lo-

cations are randomly distributed. In this case, customer locations may have a bivariate

probability distribution. The problem reduces to solving the MCMWP with the expected

value of distances between customers and facilities. The studies by (Durmaz et al., 2009) and

(Altınel et al., 2009) propose new ALA and DA heuristics for the CMWP with probabilis-

tic customer locations (PCMWP). Similar ALA and DA heuristics can also be developed

for the MCMWP with probabilistic customer locations (PMCMWP). However, an exact

solution method for solving the PCMWP does not exist in the literature. Exact solution

methods suggested in this dissertation can be adapted to the PCMWP and as well as to the

PMCMWP in order to fill this gap in the literature.

Last but not least, it is possible to obtain various variants of location problems by

substituting the allocation space with another set of constraints. In particular, the trans-

portation constraints of the MCMWP can be replaced with the constraint sets of Minimum

Spanning Tree Problem, Minimum Cost Network Flow Problem, Travelling Salesman Prob-

lem and Vehicle Routing Problem which result in Location-Minimum Spanning Tree Prob-

lem, Location-Network Flow Problem, Location-Travelling Salesman Problem and Location-

Routing Problem, respectively. Each of these problems is computationally difficult to solve

and also deserves special research interest.
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APPENDIX A: BENCHMARK BOUNDS

Table A.1 and Table A.2 summarize the outcomes of the solution methods suggested

for the MCMWP. In Table A.1 and Table A.2, the first column shows the instance names.

Each of the remaining columns correspond to the outcome of a solution (both exact and

approximate) method which are the best outcome produced by each solution method. For

example, “BEST LB” and “BEST UB” under the columns dedicated to “ABB” algorithm

stand for the best lower bound value and the best upper bound value produced by the MABB

algorithm. Note that there are several lower bounding (i.e. RLT based, block norm based

and MSAS) procedures and branching variable selection strategies (i.e., MBrS1, MBrS2 and

MBrS3). The values reported here are selected as the best ones of the lower and upper

bounds produced by the MABB algorithm with different bounding procedure and MBrS

combinations.
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APPENDIX B: CONFIDENCE INTERVALS

Now we present the detailed computational experiments which are summarized in

Chapter 7 with Table 10.12–15. Confidence intervals obtained with the MCALA, MDA1

and MDRR heuristics on the RMCMWP instances and the MCMWP (with Euclidean dis-

tance) instances are presented in Tables B.1–8, respectively. In Table B.1–8, the first columns

include the labels of the test instances. The number of distinct local optima produced by

each heuristic, i.e., MCALA, MDA1 and MDRR, is shown in the second, third and fourth

columns, respectively. The letter F indicates that the sample has failed to pass the indepen-

dence test and the symbol “N/A” is used to indicate samples which do not fit the Weibull

distribution. In Table B.1–8, the extreme value sample sizes, which are selected as M = 20,

M = 30 and M = 40, are presented in the fifth column. Confidence intervals obtained with

the MCALA, MDA1 and MDRR heuristics using the MRA and LLA samplings are given

in the remaining columns. The cells representing large instances which can not be solved

because of excessive CPU time requirements are marked with “N/A”.
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Table B.1. Confidence intervals obtained with random MCALA heuristic on a subset of 30
MCMWP instances with the rectilinear distance.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1565.29,1924.01] [1562.26,1744]
mc 4 8 2 219 30 [1563.67,1963] [1562.26,1744]

40 [1563.53,1963] [1562.26,1744]
20 [9862.98,13428] [9867.69,10306]

mc 4 8 3 342 30 [9529.92,13428] [9867.69,10306]
40 [8981.42,12576] [9867.69,10306]
20 [9411.99,11007] [9237.59,10201]

mc 4 8 5 1188 30 [9411.99,11007] [9384.8,10201]
40 [9257.22,11007] [9229.69,10201]
20 [6433.67,8891] [6429.16,6842]

mc 4 10 2 397 30 [6342.2,8775] [6429.16,6842]
40 [6237.79,8775] [6429.16,6842]
20 [11498.92,15190] [10858.39,12610]

mc 4 10 3 381 30 [11458.65,14349] [11349.39,12610]
40 [11458.65,14349] [11349.39,12610]
20 [28130.25,31909] [28139.67,29333]

mc 4 10 5 945 30 [27264.73,32273] [28139.67,29333]
40 [27122.59,32202] [28048.42,29335]
20 [12400.27,17051] [12399.1,15164]

mc 4 15 2 646 30 [12412.26,16823] [11967.31,14695]
40 [12341.52,16971] [11716.31,14695]
20 [35786.78,43448] [35699.69,39314]

mc 4 15 3 2640 30 [35782.7,42889] [34023.82,37709]
40 [35788.72,43203] [32716.95,37048]
20 [41657.9,50190] [41662.68,45317]

mc 4 15 5 4306 30 [41277.98,52850] [41679.36,44609]
40 [39363.29,48528] [41662.68,45317]
20 [3925.4,5764] [3405.41,4592]

mc 5 10 2 437 30 [3918.31,5288] [2406.03,3974]
40 [3913.29,5739] [2406.03,3974]
20 [10060.58,17054] [9979.54,16306]

mc 5 10 3 1084 30 [10062.11,18984] [9912.56,16205]
40 [10062.86,18429] [9300.92,15894]
20 [56190.36,65581] [56258.84,57337]

mc 5 10 5 1371 30 [52787.9,63101] [56248.62,57385]
40 [49379.44,60557] [55906.16,56991]
20 [7782.34,9353] [7776.22,7784]

mc 5 15 2 552 30 [7758.03,9353] [7776.22,7784]
40 [7781.31,9379] [7776.22,7784]
20 [32831.31,44312] [32829.38,38366]

mc 5 15 3 7064 30 [32769.33,44083] [32823.63,38366]
40 [32794.94,46280] [32723.58,37421]
20 [24177.85,36344] [24183.45,29562]

mc 5 15 5 6257 30 [24153.42,34396] [24184.22,29398]
40 [24185.21,36326] [24181.14,29534]
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Table B.1. Confidence intervals obtained with random MCALA heuristic on a subset of 30
MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [9800.98,14284] [9808,10997]
mc 5 20 2 2280 30 [9770.22,14263] [9768.53,11466]

40 [9775.81,15192] [9590,10997]
20 [20454.21,23193] [20459.62,21714]

mc 5 20 3 1896 30 [20452.9,22103] [20282.43,21714]
40 [20338.28,22634] [20385.15,21714]
20 [58843.13,69522] [58844.78,64354]

mc 5 20 5 6802 30 [58844.78,67501] [58844.28,63658]
40 [58840.98,67898] [58845.12,64342]
20 [56646.66,76477] [56664.16,64098]

mc 5 30 2 7310 30 [56654.47,75867] [56664.55,64118]
40 [56635.39,74826] [56658.83,65021]
20 [78437.99,96930] [78427.73,87451]

mc 5 30 3 11827 30 [78438.41,97088] [78442.32,88324]
40 [78433.4,96977] [78403.6,87451]
20 [224740.64,271616] [224749.37,243052]

mc 5 30 5 12697 30 [224735.98,266003] [224749.26,244214]
40 [224718.52,267429] [224724.5,242228]
20 [3069.65,4194] [3025.3,3485]

mc 6 10 2 367 30 [3062.24,3756] [2937.39,3358]
40 [2960.24,3756] [2945.21,3358]
20 [6417.45,7546] [6426.56,7062]

mc 6 10 3 1295 30 [6423.45,7546] [6426.66,7062]
40 [6370.45,7546] [6426.66,7062]
20 [11455.3,14992] [10777.84,12162]

mc 6 10 5 1443 30 [11449.01,14992] [10777.84,12162]
40 [11454.02,14909] [10726.84,12162]
20 [7003.59,11357] [7003.51,8957]

mc 8 10 2 3090 30 [7001.88,11011] [7000.95,9047]
40 [7001.02,11171] [7003.37,9160]
20 [10418.69,18134] [10418.46,14545]

mc 8 10 3 5353 30 [10410.18,17493] [10408.2,14781]
40 [10415.86,18108] [10393.63,14590]
20 [21287.16,32528] [21287.87,27652]

mc 8 10 5 8970 30 [21287.37,33607] [21287.24,28325]
40 [21287.15,33570] [21287.98,28650]
20 [3600.53,7044] [3600.76,5908]

mc 10 10 2 2587 30 [3599.74,6793] [3600.97,5940]
40 [3599.81,6812] [3600.82,5908]
20 [13563.27,17475] [13563.29,16174]

mc 10 10 3 4026 30 [13563.51,17475] [13563.47,16174]
40 [13563.65,17376] [13563.91,15926]
20 [5387.62,11839] [5387.1,10773]

mc 10 10 5 4020 30 [5387.93,12335] [5387.74,11076]
40 [5389.99,12335] [5380.66,11076]
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Table B.2. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances with the rectilinear distance.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1494.09,1913] [1495.56,1708]
mc 4 8 2 46 30 [1494.09,1913] [1397.34,1656]

40 [1494.09,1913] [1386.43,1566]
20 [9883.68,10320] [9913.08,9923]

mc 4 8 3 38 30 [9102.08,9923] [9913.08,9923]
40 [9102.08,9923] [9913.08,9923]
20 [9145.38,11135] [9410.58,9420]

mc 4 8 5 85 30 [6946.58,9420] [9410.58,9420]
40 [6946.58,9420] [9410.58,9420]
20 [6029.98,7019] [6379.61,6711]

mc 4 10 2 47 30 [5820.07,6914] [6379.61,6711]
40 [5676.16,6842] [6396.29,6711]
20 [9988.49,11507] [11495.49,11507]

mc 4 10 3 41 30 [9988.49,11507] [11495.49,11507]
40 [9988.49,11507] [11495.49,11507]
20 [27169.5,29500] [27765.3,28740]

mc 4 10 5 88 30 [25607.5,29500] [27765.3,28740]
40 [25607.5,29500] [26755.86,28142]
20 [9514.58,12424] [12411.58,12424]

mc 4 15 2 89 30 [7265.58,12424] [12411.58,12424]
40 [7172.58,12424] [12411.58,12424]
20 [33880.09,39909] [35625.88,36060]

mc 4 15 3 98 30 [32850.95,37048] [35632.94,36060]
40 [32490.78,36218] [35632.94,36060]
20 [41662.68,45317] [41643.32,41685]

mc 4 15 5 238 30 [41662.68,45317] [41643.32,41685]
40 [41658.68,45317] [41643.32,41685]
20 [3622.03,3974] N/A

mc 5 10 2 14 30 [3622.03,3974] N/A
40 [3622.03,3974] N/A
20 [9752.92,17076] [7763.79,10215]

mc 5 10 3 180 30 [9179.99,17212] [7967.33,10478]
40 [4886.85,14463] [7763.79,10215]
20 [56205.25,59752] [56225.64,58291]

mc 5 10 5 113 30 [55691.51,59495] [56210.84,58291]
40 [56093.25,59752] [56179.33,58284]
20 [7744.22,7784] [7776.22,7784]

mc 5 15 2 91 30 [7744.22,7784] [7776.22,7784]
40 [7744.22,7784] [7776.22,7784]
20 [32793.33,35668] [29965.17,32833]

mc 5 15 3 284 30 [32793.33,35668] [29965.17,32833]
40 [32793.33,35668] [29965.17,32833]
20 [23536.88,27713] [23627.04,24504]

mc 5 15 5 350 30 [22021.94,25723] [23424.89,24425]
40 [21857.97,25723] [23168.81,24186]
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Table B.2. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [9759.4,13596] [9300.85,10154]
mc 5 20 2 294 30 [9759.4,13596] [9300.85,10154]

40 [9779.33,13570] [9117.92,10154]
20 [20449.9,22103] [20434.88,21463]

mc 5 20 3 310 30 [20449.9,22103] [20434.88,21463]
40 [20449.9,22103] [20434.88,21463]
20 [58840.23,63175] [57508.94,61600]

mc 5 20 5 239 30 [58819.66,63519] [57154.54,61700]
40 [58833.92,63519] N/A
20 [56658.06,62940] [56454.39,59609]

mc 5 30 2 809 30 [56658.06,62940] [55713.15,59609]
40 [56609.23,62637] [56000.39,59609]
20 [78432.62,83348] [78136.17,81504]

mc 5 30 3 1811 30 [77923.16,83348] [77762.88,81317]
40 [77093.39,84615] [78247.96,81504]
20 [219956.04,224965] [224740.04,224965]

mc 5 30 5 433 30 [219956.04,224965] [224740.04,224965]
40 [216217.04,224965] [224740.04,224965]
20 [3079.04,3693] [2729.76,3521]

mc 6 10 2 58 30 [3079.04,3693] [2729.76,3521]
40 [3079.04,3693] [2729.76,3521]
20 [6421.78,7062] [6426.15,6851]

mc 6 10 3 84 30 [6414.84,7070] [6426.15,6851]
40 [6423.22,7269] [6426.15,6851]
20 [11435.81,14414] [11046.8,13585]

mc 6 10 5 68 30 [11018.63,14414] [12277.05,12162]
40 [10950.42,13585] N/A
20 [7002.84,9162] [6997,7004]

mc 8 10 2 531 30 [6981.52,9235] [6020,7004]
40 [6835.24,9162] [6020,7004]
20 [10375.46,14730] [10407.14,11938]

mc 8 10 3 601 30 [10351.51,13210] [10391.87,11809]
40 [10031.42,13581] [10332.87,11809]
20 [21284.95,29756] [21256.67,26026]

mc 8 10 5 1418 30 [21284.67,29481] [21229.97,26026]
40 [21249.19,29481] [21229.97,26026]
20 [3598.68,6293] [3593.98,5913]

mc 10 10 2 953 30 [3600.87,6749] [3600.73,5476]
40 [3599.32,6293] [3600.44,5476]
20 [13563.74,16722] [13546.38,14616]

mc 10 10 3 1248 30 [13563.18,16340] [13546.38,14616]
40 [13556.3,16516] [13535.38,14616]
20 [5389.25,10725] [5383.48,8986]

mc 10 10 5 1439 30 [5388.9,10896] [5387.28,9061]
40 [5389.37,10725] [5389.41,8986]
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Table B.3. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances with the rectilinear distance.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1564.32,1977] [1474.43,1566]
mc 4 8 2 218 30 [1544.09,1913] [1474.43,1566]

40 [1552.46,1976] [1386.43,1566]
20 [9920.47,13748] [8991.69,10306]

mc 4 8 3 362 30 [9917.86,13748] [8991.69,10306]
40 [9915.71,13735] [8245.69,10306]
20 [9417,11002] [9112.94,10065]

mc 4 8 5 1230 30 [9411.99,11007] [8984.94,10065]
40 [9259.99,11007] [8243.58,9420]
20 [6422.79,9097] [6427.32,6842]

mc 4 10 2 364 30 [5973.75,8413] [6411.11,6894]
40 [5593.09,7906] [6411.11,6894]
20 [11481.26,14736] [11349.39,12610]

mc 4 10 3 265 30 [11482.3,14676] [10858.39,12610]
40 [11466.29,14676] [11349.39,12610]
20 [28099.07,31895] [28114.28,30209]

mc 4 10 5 684 30 [28133.09,31909] [27837.38,29335]
40 [27264.73,32273] [27837.67,29335]
20 [12421.92,17030] [12419.37,15112]

mc 4 15 2 827 30 [12410.74,16824] [12420.7,15112]
40 [12410.73,16824] [12306.92,15112]
20 [35799.8,42203] [35367.73,38343]

mc 4 15 3 1996 30 [35754.98,43110] [33443.59,37086]
40 [35427.57,42031] [33461.11,37474]
20 [41660.06,49018] [41674.37,43998]

mc 4 15 5 4326 30 [41231.06,47943] [41664.01,44179]
40 [40977.74,48926] [41670.54,44241]
20 [3922.47,5538] [3469.46,5424]

mc 5 10 2 134 30 [3926.95,5538] [3469.46,5424]
40 [3926.26,5538] [3408.31,4686]
20 [10023.85,19387] [9995.24,16804]

mc 5 10 3 630 30 [10052,18757] [9394.71,16205]
40 [10059.03,19266] [9319.69,16306]
20 [56276.24,64410] [56292.74,58189]

mc 5 10 5 822 30 [54973.33,62681] [56284.12,58352]
40 [52787.9,63101] [56273.43,58117]
20 [7760.33,9376] [7776.22,7784]

mc 5 15 2 346 30 [7720.77,9353] [7776.22,7784]
40 [7693.62,9379] [7776.22,7784]
20 [32824.12,47174] [32830.43,39224]

mc 5 15 3 5218 30 [32832.14,46280] [32822.88,39112]
40 [32827.85,45835] [32731.51,38490]
20 [24160.4,33600] [24180.58,29163]

mc 5 15 5 3614 30 [24164.24,33642] [24178.68,28846]
40 [24108.4,34148] [24184.05,28909]
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Table B.3. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances with the rectilinear distance cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [9812.99,15192] [9811.35,12530]
mc 5 20 2 1796 30 [9812.73,15214] [9810.01,12687]

40 [9810.81,15192] [9809.12,12530]
20 [20455.02,22742] [20448.64,21714]

mc 5 20 3 1175 30 [20449.69,23193] [20448.25,21714]
40 [20441.26,22742] [20453.17,21714]
20 [58843.12,69215] [58839.86,63299]

mc 5 20 5 4862 30 [58844.02,67744] [58842.81,64047]
40 [58844.21,67744] [58844.02,64266]
20 [56661.93,76152] [56664.55,66082]

mc 5 30 2 8564 30 [56588.62,78123] [56662.13,64118]
40 [56656.87,76314] [56621.76,64118]
20 [78429.61,93703] [78441.45,86774]

mc 5 30 3 10158 30 [78442.41,94737] [78439.14,86340]
40 [78437.23,94759] [78395.94,87938]
20 [224737.76,270670] [224746.43,243276]

mc 5 30 5 12161 30 [224748.73,261621] [224749.26,240742]
40 [224380.53,260322] [224728.57,239699]
20 [3073.95,4050] [3057.65,3485]

mc 6 10 2 222 30 [3073.95,4050] [3069.36,3485]
40 [3062.24,3756] [3074.71,3485]
20 [6426.28,8449] [6415.77,7195]

mc 6 10 3 520 30 [6423.45,7546] [6419.6,7062]
40 [6220.82,7435] [6418.37,7062]
20 [11434.92,15373] [11449.97,13799]

mc 6 10 5 551 30 [11364.08,15203] [11401.46,13915]
40 [11426.13,15203] [11400.33,13778]
20 [7002.66,11283] [7001.34,9778]

mc 8 10 2 950 30 [7001.3,11057] [7003.44,9710]
40 [7003.7,11524] [7003.24,9595]
20 [10411.73,16787] [10341.2,13799]

mc 8 10 3 1107 30 [10267.06,16787] [10270.58,13799]
40 [9547.08,19918] [10341.2,13799]
20 [21283.67,34775] [21281.83,28833]

mc 8 10 5 2144 30 [21282.44,34465] [21278.65,29082]
40 [21282.47,33209] [21282.23,29093]
20 [3594.94,7311] [3118.86,5987]

mc 10 10 2 612 30 [3600.22,7125] [3598.15,5987]
40 [3600.81,7083] [3545.72,5987]
20 [13561.55,17352] [14379.97,17475]

mc 10 10 3 799 30 [13562.35,17241] [15228.95,17475]
40 [13559.69,17475] [15681.04,17241]
20 [5386.03,12884] [5341.41,11534]

mc 10 10 5 1652 30 [5389.89,11534] [5367.01,11534]
40 [5383.73,12377] [5328.87,11534]



212

Table B.4. Confidence intervals obtained with the randomized MCALA heuristic on a subset
of 30 MCMWP instances.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1134.02,1364.08] [1176.86,1271.11]
mc 4 8 2 49 30 [1112.31,1364.08] [993.85,1179.55]

40 [1134.02,1364.08] [993.85,1179.55]
20 [6121.65,9198.07] N/A

mc 4 8 3 75 30 [5937.13,9106.36] N/A
40 [5938.32,9106.36] N/A
20 [7700.98,8746.15] N/A

mc 4 8 5 198 30 [7705.85,8746.15] N/A
40 [7705.85,8746.15] N/A
20 [4286.73,5689.31] [5210.65,5689.31]

mc 4 10 2 76 30 [5303.60,6900.90] N/A
40 [5303.60,6900.90] N/A
20 [8714.82,9934.85] N/A

mc 4 10 3 55 30 [8714.82,9934.85] N/A
40 [8714.82,9934.85] N/A
20 [23480.99,25268.60] [23401.87,24475.26]

mc 4 10 5 129 30 [23332.10,25075.31] [23411.38,24475.26]
40 [23480.99,25268.60] [23306.78,24475.26]
20 [4854.59,9528.17] N/A

mc 4 15 2 93 30 [4854.59,9528.17] N/A
40 [4777.79,9528.17] N/A
20 [28173.72,30336.44] [28014.78,28890.78]

mc 4 15 3 150 30 [28173.72,30336.44] [28014.78,28890.78]
40 [28166.56,30332.70] [27751.82,28897.34]
20 [33412.56,35754.25] [32452.58,34120.48]

mc 4 15 5 265 30 [32229.38,35754.25] [30872.23,34120.48]
40 [31961.39,35754.25] [30256.57,34120.48]
20 [2388.56,3800.37] N/A

mc 5 10 2 64 30 [2388.56,3800.37] N/A
40 [2388.56,3800.37] N/A
20 [7476.60,13886.28] [6067.57,9981.92]

mc 5 10 3 220 30 [7031.16,13886.28] [2296.21,8095.30]
40 [7209.22,13753.12] [2296.21,8095.29]
20 [41973.50,44047.83] [43314.11,43702.83]

mc 5 10 5 159 30 [41900.61,44047.83] [42786.39,43438.83]
40 [41654.70,44047.83] [42436.76,43949.43]
20 [5866.65,7319.68] [6582.33,6954.48]

mc 5 15 2 120 30 [5866.64,7319.68] [6512.07,6973.72]
40 [5866.64,7319.68] [6512.07,6973.72]
20 [24071.87,29613.06] [25289.65,26949.93]

mc 5 15 3 680 30 [25532.04,31593.52] [25414.31,26949.93]
40 [23937.67,30793.45] [25098.08,26949.93]
20 [17404.93,23458.29] [18100.47,18966.76]

mc 5 15 5 684 30 [15008.48,22168.32] [18100.47,18966.76]
40 [17119.33,24214.73] [17985.33,18966.76]
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Table B.4. Confidence intervals obtained with the randomized MCALA heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [8063.66,10133.70] [7760.66,8378.72]
mc 5 20 2 268 30 [7557.35,9895.20] [7760.66,8378.72]

40 [7787.39,10332.67] [7760.66,8378.72]
20 [16682.84,17692.99] [17675.31,17692.99]

mc 5 20 3 377 30 [16468.55,17692.99] [17675.31,17692.99]
40 [16247.65,17692.99] [17675.31,17692.99]
20 [46190.16,50550.99] N/A

mc 5 20 5 371 30 [46141.07,50550.99] N/A
40 [46210.19,50550.99] N/A
20 [46443.90,54240.05] [47037.66,51385.11]

mc 5 30 2 980 30 [46964.09,55813.98] [47038.08,51385.11]
40 [44497.82,54009.85] [47004.04,51385.11]
20 [64223.97,69068.36] [63339.02,65454.87]

mc 5 30 3 2085 30 [64234.22,70165.71] [64228.57,66743.50]
40 [63356.48,70165.71] [63685.49,66411.84]
20 [180207.82,192929.95] [177883.44,183649.38]

mc 5 30 5 586 30 [177274.91,191226.71] [175141.10,181700.98]
40 [180957.76,195908.98] [174290.43,181700.98]
20 [2343.33,2887.30] [2290.62,2637.79]

mc 6 10 2 91 30 [2496.47,2982.33] [2290.62,2637.79]
40 [2488.22,3060.64] [2212.31,2637.79]
20 [5103.52,5946.22] [5037.55,5913.87]

mc 6 10 3 254 30 [5057.30,5913.87] [3839.84,5108.09]
40 [5057.30,5913.87] [3839.84,5108.09]
20 [8210.28,11315.34] [8656.69,9614.58]

mc 6 10 5 291 30 [8016.40,11315.34] [8656.84,9614.58]
40 [7834.10,11224.70] [7955.97,9640.47]
20 [5595.51,7745.36] [5721.14,6466.87]

mc 8 10 2 886 30 [5077.75,7225.74] [5721.14,6466.87]
40 [5387.18,7678.92] [5701.53,6466.87]
20 [8774.10,12462.21] [8890.02,11236.10]

mc 8 10 3 2095 30 [8996.27,12853.06] [8787.27,11236.10]
40 [8961.19,12853.06] [8772.59,11259.59]
20 [18228.09,23615.46] [18293.39,21795.95]

mc 8 10 5 4300 30 [18287.73,24122.19] [18295.01,21795.95]
40 [18152.27,24122.19] [18244.59,21795.95]
20 [3214.51,5085.74] [3262.86,4684.84]

mc 10 10 2 1110 30 [3223.75,5085.74] [3260.06,4684.84]
40 [3242.20,5096.34] [3255.44,4684.84]
20 [11079.78,13057.84] [11085.08,12708]

mc 10 10 3 1585 30 [11034.86,13057.84] [11086.49,12708]
40 [11014.52,13057.84] [11086.49,12708]
20 [4850.43,8720.21] [4802.69,8891.50]

mc 10 10 5 3381 30 [4807.20,8720.21] [5607.98,8720.21]
40 [4906.80,8891.50] [5546.58,8891.50]
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Table B.5. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1179.14,1179.55] [1178.37,1179.55]
mc 4 8 2 25 30 [1172.63,1472.32] [1178.37,1179.55]

40 [1150.92,1472.32] [1178.37,1179.55]
20 [7342.11,8228.35] [8220.12,8228.35]

mc 4 8 3 23 30 [7342.11,8228.35] [8220.12,8228.35]
40 [5254.77,8228.35] [8220.12,8228.35]
20 [6112.61,7741.16] [6394.87,7741.16]

mc 4 8 5 34 30 [6112.61,7741.16] N/A
40 [6112.61,7741.16] N/A
20 [5486.66,6988.11] [5683.62,5689.31]

mc 4 10 2 39 30 [5313.62,7086.21] [5683.62,5689.31]
40 [4695.41,6590.59] [5683.62,5689.31]
20 [11133.76,11144.9] F

mc 4 10 3 7 30 N/A F
40 N/A F
20 [24592.24,26085.1] [22842.88,25445.9]

mc 4 10 5 23 30 [24602.04,26085.1] [22842.88,25445.9]
40 [22996.01,25445.9] [22842.88,25445.9]
20 [9518.64,9528.17] N/A

mc 4 15 2 37 30 [4853.91,9528.17] N/A
40 [4261.61,9528.17] N/A
20 [28711.79,30014] N/A

mc 4 15 3 30 30 [28711.79,30014] N/A
40 [28711.79,30014] N/A
20 [34099.44,35754.3] [32452.58,34120.5]

mc 4 15 5 35 30 [34090.19,35754.3] [32452.58,34120.5]
40 [34099.44,35754.3] [32452.58,34120.5]
20 [2472.82,3800.37] F

mc 5 10 2 7 30 [2472.82,3800.37] F
40 [2472.82,3800.37] F
20 [11121.29,17992.7] [15213.78,17992.7]

mc 5 10 3 35 30 [11121.29,17992.7] [14931.48,17992.7]
40 [13043.56,17992.7] [14923.98,17992.7]
20 [41654.65,44047.8] [43254.1,43702.8]

mc 5 10 5 39 30 [41654.65,44047.8] [41973.45,44047.8]
40 [45713.22,46078.1] [41973.45,44047.8]
20 [5872.16,6737.96] [6421.1,6582.82]

mc 5 15 2 9 30 [5872.16,6737.96] [5839.38,6582.82]
40 [5872.16,6737.96] [5839.38,6582.82]
20 [25424.79,31891] [25595.63,30266]

mc 5 15 3 86 30 [25517.59,31918] [25595.63,30266]
40 [25475.97,31891] [25595.63,30266]
20 [13348.63,22168.3] [18020.6,20104.5]

mc 5 15 5 97 30 [13333.43,22160.7] [17980.42,20084.4]
40 [13103.83,22168.3] [17980.42,20084.4]
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Table B.5. Confidence intervals obtained with the randomized MDA1 heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [8196.58,10343.6] [8267,9895.2]
mc 5 20 2 56 30 [8169.8,10343.6] [6283.88,8903.14]

40 [8196.58,10343.6] [6283.88,8903.14]
20 [17477.41,17693] F

mc 5 20 3 43 30 [17477.41,17693] F
40 [17321.01,17693] F
20 [52739.18,52922] F

mc 5 20 5 21 30 [52739.18,52922] F
40 [52869.08,52922] F
20 [47013.32,55829.9] [47025.33,53375.8]

mc 5 30 2 172 30 [47013.32,55829.9] [47038.04,53375.8]
40 [47018.38,55261.9] [47041.89,53375.8]
20 [64228.06,71939.4] [64210.87,68826.5]

mc 5 30 3 385 30 [64247.67,71939.4] [64163.77,69213.2]
40 [64229.6,71939.4] [63633.8,67048.8]
20 [181010.09,195909] [181477.3,181701]

mc 5 30 5 124 30 [180888.09,195909] [181477.3,181701]
40 [177364.09,195909] [181477.3,181701]
20 [2480.95,3060.64] [2825.83,2945.35]

mc 6 10 2 36 30 [2331.87,2982.33] [2878.12,2945.35]
40 [2324.78,2982.33] [2800.48,2945.35]
20 [4793.2,6070.78] [4881.72,6070.78]

mc 6 10 3 42 30 [5172.54,6070.78] [4881.72,6070.78]
40 [5287.41,6070.78] [4881.72,6070.78]
20 [8518.33,11384.7] [9337.35,9640.47]

mc 6 10 5 39 30 [5588.98,9919.2] [9337.35,9640.47]
40 [5588.98,9919.2] [9337.35,9640.47]
20 [5728.04,8126.1] [5721.14,6466.87]

mc 8 10 2 154 30 [5724.97,8126.1] [5721.14,6466.87]
40 [5703.72,7910.56] [5721.14,6466.87]
20 [7945.32,12323.7] [8835.76,11840.2]

mc 8 10 3 166 30 [8589.06,12682.5] [8835.76,11840.2]
40 [8926.15,12682.5] [8835.76,11840.2]
20 [18319.44,24764.6] [18284.99,22209.7]

mc 8 10 5 471 30 [18318.81,24764.6] [18308.63,22209.7]
40 [18303.52,25265.2] [18305.89,22209.7]
20 [3263.54,5801.43] [3172.12,4684.84]

mc 10 10 2 136 30 [3263.29,5801.43] [3163.29,4684.84]
40 [3263.29,5801.43] [3163.29,4684.84]
20 [10923.51,13622.8] N/A

mc 10 10 3 51 30 [10859.22,14528.2] N/A
40 [11082.52,14186.2] N/A
20 [4890.37,9333.41] [4862.75,9333.41]

mc 10 10 5 312 30 [4906.69,9333.41] [4848.14,9544.64]
40 [4906.69,9333.41] [4570.47,9333.41]
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Table B.6. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [1134.01592,1364.08] [885.60045,1179.55]
mc 4 8 2 44 30 [1123.974497,1364.08] [885.60045,1179.55]

40 [1112.30592,1364.08] [885.60045,1179.55]
20 [8105.593086,10226.3] [7528.75165,8228.35]

mc 4 8 3 72 30 [7955.710637,10226.3] [7528.75165,8228.35]
40 [8177.0737,10226.3] [7528.75165,8228.35]
20 [7737.651793,8746.15] [6589.84884,7741.16]

mc 4 8 5 178 30 [7705.85385,8746.15] [6589.84884,7741.16]
40 [7703.049933,8746.15] [6589.84884,7741.16]
20 [4286.72069,5689.31] N/A

mc 4 10 2 72 30 [5315.7191,6900.9] N/A
40 [5309.677634,6900.9] N/A
20 [8714.86515,9934.85] N/A

mc 4 10 3 34 30 [8714.86515,9934.85] N/A
40 [8714.86515,9934.85] N/A
20 [23298.71736,24890.3] [23406.6247,24475.3]

mc 4 10 5 102 30 [23275.87553,24890.3] [23406.6247,24475.3]
40 [23474.35614,25268.6] [23406.6247,24475.3]
20 [4853.91183,9528.17] N/A

mc 4 15 2 109 30 [4777.81183,9528.17] N/A
40 N/A N/A
20 [28599.13303,30014] N/A

mc 4 15 3 79 30 [26479.5027,28897.3] N/A
40 [26479.5027,28897.3] N/A
20 [34117.05237,35754.3] N/A

mc 4 15 5 214 30 [33344.9457,35754.3] N/A
40 [30078.9795,34120.5] N/A
20 [2448.46963,3800.37] [2472.81963,3800.37]

mc 5 10 2 27 30 [2388.55963,3800.37] [2472.81963,3800.37]
40 [2388.55963,3800.37] N/A
20 [1033.237,10663] [2496.537,10663]

mc 5 10 3 151 30 [1033.237,10663] [2496.537,10663]
40 [4776.544597,13886.3] [2496.537,10663]
20 [42798.52355,44685.5] [43248.2145,44685.5]

mc 5 10 5 97 30 [42788.55194,44685.5] [43248.2145,44685.5]
40 [41110.2062,43949.4] [41973.4522,44047.8]
20 [6421.05298,7597.02] [5839.37718,6582.82]

mc 5 15 2 42 30 [6421.05298,7597.02] [5839.37718,6582.82]
40 [6421.05298,7597.02] [5839.37718,6582.82]
20 [23521.13411,28458.6] [25314.6219,27978.1]

mc 5 15 3 413 30 [23560.04858,29750.5] [25314.6219,27978.1]
40 [23560.0495,29750.5] [25314.6219,27978.1]
20 [17440.0859,19814.1] [18100.5332,18966.8]

mc 5 15 5 228 30 [15746.3332,18966.8] [18100.5332,18966.8]
40 [15746.3332,18966.8] [18100.5332,18966.8]
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Table B.6. Confidence intervals obtained with the randomized MDRR heuristic on a subset
of 30 MCMWP instances cont.

Instance Loc. Opt. Samp. Confidence Intervals
Names Num. Num. MRA LLA

20 [7290.193713,10343.6] [7880.409068,10343.6]
mc 5 20 2 158 30 [7801.495764,10343.6] [6385.8116,8988.4]

40 [7289.0564,10343.6] [8245.497873,10343.6]
20 [16247.607,17693] [17675.307,17693]

mc 5 20 3 92 30 [16247.607,17693] [17675.307,17693]
40 [16142.707,17693] [17675.307,17693]
20 [43557.5361,48263.9] N/A

mc 5 20 5 175 30 [43557.5361,48263.9] N/A
40 [43557.5361,48263.9] N/A
20 [47033.16971,55907.1] [46742.55052,51385.1]

mc 5 30 2 676 30 [46016.49484,55475.8] [46811.7149,51385.1]
40 [46757.31296,56238.5] [46722.3221,52477.9]
20 [64146.89011,70099.4] [63685.3882,66411.8]

mc 5 30 3 774 30 [63508.12038,70099.4] [63688.7882,66411.8]
40 [63881.73561,71683.8] [64239.58865,67406.6]
20 [181416.2428,193256] [177744.351,183649]

mc 5 30 5 330 30 [180680.07,192930] [176314.351,183649]
40 [180849.985,193015] [176309.351,183649]
20 [2414.46767,2982.33] [2290.61221,2637.79]

mc 6 10 2 58 30 [2414.46767,2982.33] [2212.30221,2637.79]
40 [2481.31936,3060.64] [2212.30221,2637.79]
20 [5095.794286,5946.22] [4577.228748,5946.22]

mc 6 10 3 106 30 [5094.23742,5946.22] [4577.228748,5946.22]
40 [5102.08784,5946.22] [4577.228748,5946.22]
20 [6879.319076,14264.1] [8084.7323,11167.7]

mc 6 10 5 79 30 [9814.538537,14115.8] [8084.7323,11167.7]
40 [10984.25072,14239.5] [8084.7323,11167.7]
20 [5251.567179,7618.18] [5661.541911,6848.78]

mc 8 10 2 185 30 [5727.211199,8298.13] [5654.05122,6848.78]
40 [5677.032806,8263.74] [5654.05122,6848.78]
20 [8224.5598,11840.2] [8390.2906,10009.4]

mc 8 10 3 304 30 [8685.7035,12396.5] [8390.2906,10009.4]
40 [8685.7035,12396.5] [8438.5877,10112.3]
20 [18281.55069,24786.8] [18248.92179,24230.3]

mc 8 10 5 575 30 [18234.51927,24786.8] [18305.73619,24230.3]
40 [18304.82261,24986.5] [18255.30639,24230.3]
20 [3234.907203,5963.98] [3124.185158,5552.07]

mc 10 10 2 212 30 [3221.059398,5919.75] [3124.185158,5552.07]
40 [3218.989708,5919.75] [3329.831315,5558.06]
20 [11055.98513,14186.2] [13232.2138,14186.2]

mc 10 10 3 133 30 [11055.98513,14186.2] [12998.64538,14020.9]
40 [11042.73932,14020.9] [12864.34538,14020.9]
20 [4802.241468,9133.5] [4811.562205,9333.41]

mc 10 10 5 695 30 [4886.987501,9133.5] [4679.846228,9333.41]
40 [4888.649777,9133.5] [4761.185833,9333.41]
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Table B.7. Confidence intervals obtained on 12 MCMWP instances from mc 10 15 2 to
mc 10 30 5.

Instance Loc. Opt. Num. Samp. CI (with MRA sampling)
Name MCALA MDRR Num. MCALA MDRR

20 [2201.11,4243.64] [2471.548467,4521.72]
mc 10 15 2 134 61 30 [2341.77,4430.20] [2595.10828,4521.72]

40 [2378.32,4330.61] [2595.10828,4521.72]
20 [6130.63,7612.19] [6055.896894,7378.53]

mc 10 15 3 456 337 30 [6120.99,7612.19] [5979.996731,7365.24]
40 [6086.27,7757.54] [5991.678961,7378.53]
20 [10301.20,13909.46] [10274.93385,14275.5]

mc 10 15 5 617 355 30 [10227.56,13975.56] [10109.76066,14331.6]
40 [9942.73,14048.50] [9946.987447,14363.9]
20 [8176.21,13216.85] [7958.889685,13227.3]

mc 10 20 2 590 380 30 [8177.69,13251.39] [8046.202456,13227.3]
40 [8301.80,13216.85] [8145.4727,13227.3]
20 [4263.74,6242.70] [4411.78621,6609.82]

mc 10 20 3 507 335 30 [4295.29,6372.97] [4375.567393,6558.38]
40 [3991.70,6192.17] [4415.304393,6609.82]
20 [13951.04,17028.77] [13816.49277,17306.8]

mc 10 20 5 733 390 30 [14304.37,17583.93] [14245.2456,17889.8]
40 [14354.55,17786.20] [14352.32642,18220.3]
20 [3231.81,4962.32] [3256.264229,4464.4]

mc 10 24 2 648 477 30 [3261.97,5148.39] [3207.184942,4436.01]
40 [3168.74,5082.50] [3208.64399,4436.01]
20 [8551.46,10950.88] [8699.384793,11132.2]

mc 10 24 3 880 699 30 [8693.4811074.45] [8586.190734,11074.5]
40 [8467.05,10905.31] [8575.591244,11157.3]
20 [19265.54,25909.67] [19711.87498,26936.9]

mc 10 24 5 876 706 30 [19899.25,26574.68] [19875.57072,26936.9]
40 [19842.96,26574.68] [19906.6425,27480.6]
20 [17546.44,22587.51] [17655.3125,22587.5]

mc 10 30 2 260 244 30 [17314.06,22587.51] [17655.3125,22587.5]
40 [17679.59,23390.36] [17655.3125,22587.5]
20 [42126.96,50616.18] [41701.289,49911]

mc 10 30 3 763 729 30 [41379.07,50238.58] [41343.889,49911]
40 [41430.19,50877.30] [42485.22269,51175.8]
20 [67173.91,86497.44] [67997.90941,86136.6]

mc 10 30 5 865 820 30 [68116.57,86476.41] [67955.49377,87000.5]
40 [68040.91,87856.67] [67920.78177,86918.1]
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Table B.8. Confidence intervals on the second class of the MCMWP instances.

Instance Loc. Opt. Num. Samp. CI (with MRA sampling)
Name MCALA MDRR Num. MCALA MDRR

20 [224043.34,260168.18] [222068.37,246927]
mc 10 100 2 946 563 30 [224695.33,261102.63] [224331,249732]

40 [224647.70,261102.63] [224236.95,249732]
20 [226995.75,270249.7] [226811.17,264732]

mc 10 100 3 999 887 30 [226064.30,269098.47] [226909.31,264732]
40 [226444.31,272687.21] [226953.13,265733]
20 [357299.4,400184.71] [349779.37,385787]

mc 10 100 5 997 853 30 [352757.96,397675.32] [355161.27,393595]
40 [356920.28,401555.59] [355200.97,393835]
20 [167864.79,221988.53] [167442.27,215734]

mc 10 150 2 998 787 30 [166923.87,221988.53] [167802.18,215734]
40 [168775.91,225404.42] [168373.27,215734]
20 [139777.58,172152.05] [139677.72,172996]

mc 10 150 3 1000 966 30 [139115.06,172152.5] [148171.70,171931]
40 [140021.75,173145.38] [148400.75,171931]
20 [250930.51,294147.39] [251305.26,291110]

mc 10 150 5 1000 986 30 [251617.22,294147.39] [251353.26,291110]
40 [249574.34,294147.39] [250227.01,291110]
20 [36630.63,58771.89] [36554.71,54480.3]

mc 20 100 2 1000 905 30 [36504.43,58459.72] [36624.72,54480.3]
40 [36423.64,58459.72] [36620.11,54480.3]
20 [53284.25,91099.35] [53227.37,84200.7]

mc 20 100 3 1000 889 30 [53420.3,91099.35] [52194.72,84200.7]
40 [53225.38,91099.35] [53440.11,84200.7]
20 [96559.65,130934.92] [96666.78,115660]

mc 20 100 5 1000 986 30 [96846.10,130934.92] [96722.39,115660]
40 [96878.9,131415.87] [96821.65,115660]

Table B.8. Confidence intervals on the second class of the MCMWP instances cont.

Instance Loc. Opt. Num. Samp. CI (with MRA sampling)
Name MCALA MDRR Num. MCALA MDRR

20 [5189.67,16590.99] [5171.22,15584.8]
mc 30 100 2 999 943 30 [5192.13,16590.99] [4958.46,15584.8]

40 [5192.08,16590.99] [4822.78,15673.1]
20 [25714.23,53156.77] [25725.09,45963.8]

mc 30 100 3 1000 996 30 [25749.63,53156.77] [25418.52,45963.8]
40 [25742.12,53156.77] [25731.12,45963.8]
20 [61053.18,94248.97] [61469,81909.5]

mc 30 100 5 1000 992 30 [61414.98,94248.97] [61492.09,81909.5]
40 [61511.87,94248.97] [61506.09,81909.5]
20 [27854.02,54716.48] [26355.38,41084.6]

mc 30 150 2 1000 985 30 [27951.81,54716.48] [26409.02,41084.6]
40 [27893.84,54716.48] [27677.8,42372]
20 [43550.80,68518.02] [45282.42,70417.3]

mc 30 150 3 1000 998 30 [45307.56,71376.43] [44079.66,70507]
40 [45301.03,71376.43] [44343.28,70417.3]
20 [108781.86,153897.60] [108773.95,135681]

mc 30 150 5 999 979 30 [108683.26,153897.60] [108715.86,135681]
40 [108782,153897.60] [108780.78,135681]
20 [3384.07,11912.79] [3380.81,9432.88]

mc 45 150 2 1000 973 30 [2664.92,11062.19] [3381,9414.9]
40 [3334.58,11818.27] [3367.94,9414.9]
20 [10958.04,23024.34] [12170.25,19427.5]

mc 45 150 3 1000 992 30 [12143.38,24814.20] [12168.42,19427.5]
40 [12176.40,24814.20] [12176.29,19427.5]
20 [40494.54,72333.01] [40693.068,65431.3]

mc 45 150 5 999 999 30 [40698.66,72333.01] [40609.76,65431.3]
40 [40766.99,72333.01] [39126.28,66367.8]
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Aras, N., İ. K. Altınel, and M. Orbay, 2007, “New heuristic methods for the capacitated

multi-facility Weber problem”, Naval Research Logistics , Vol. 54, No. 1, pp. 21–32.

Aras, N., M. Orbay, and İ. K. Altınel, 2008, “Efficient heuristics for the rectilinear dis-

tance capacitated multi-facility Weber problem”, Journal of the Operational Research

Society , Vol. 59, No. 1, pp. 64–79.



222
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Drezner, Z., K. Klamroth, A. Schöbel, and G. O. Weselowsky, 2002, “The Weber problem”,

In: Z. Drezner and H. W. Hamacher (Eds.), Facility location: applications and theory, pp.

1-36, Springer, Heidelberg.

Drezner, Z., A. Mehrez, and G. O. Wesolowsky, 1991, “The facility location problem with

limited distances”, Transportation Science, Vol. 25, No. 3, pp. 183–187.

Drezner, Z. and A. Suzuki, 2004, “The big triangle small triangle method for the solution of

nonconvex facility location problems”, Operations Research, Vol. 52, No. 1, pp. 128–135.

Drezner, Z., G. O. Wesolowsky, and T. Drezner, 2004, “The gradual covering problem”,

Naval Research Logistics , Vol. 51, No. 6, pp. 841–855.



225

Drezner, Z., G. O. Wesolowsky, and T. Drezner, 2007, “A general global optimization

approach for solving location problems in the plane”, Journal of Global Optimization, Vol.

37, No. 2, pp. 305–319.

Dubey, S. D., 1967, “Some percentile estimators for Weibull parameters”, Technomet-

rics , Vol. 9, No. 1, pp. 119–129.

Durier, R. and C. Michelot, 1994, “On the set of optimal points to the Weber problem:

further results”, Transportation Science, Vol. 28, No. 2, pp. 141–149.
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