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ABSTRACT

OPTIMALLY LOCATING FACILITIES WITH VARIABLE

CHARACTERISTICS

Facility location problems aim at optimally locating facilities like plants, warehouses,

convenience stores, shopping malls etc. They can have different objectives such as maximizing

the profit gained from the customers or minimizing the costs of locating facilities and serving

the customers. In this thesis, we mainly focus on competitive facility location problems which

constitute a special family. In a competitive facility location problem, a firm or franchise is

concerned with installing new facilities to serve customers in a market where existing facilities

with known locations and attractiveness levels compete for increasing their market share and

profit. We can classify these problems into two groups: those with non-reactive competition

and those with reactive competition. Three different types of competitive facility location

models are proposed in order to determine the locations and attractiveness levels of the new

facilities to maximize the profit in this thesis. The first one belongs to the former class, where

the last two models fall into the latter one.

We formulate the first one as a mixed-integer nonlinear programming problem and pro-

pose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method

with Lagrangean relaxation, and a branch-and-bound method with nonlinear programming

relaxation. The computational results obtained on a set of problem instances show that the

branch-and-bound method using nonlinear programming relaxation is the most efficient and

accurate solution method in order to solve the proposed problem. We consider next an exten-

sion of this model by relaxing the assumption that the competitor in the market does not react

to the opening of new facilities. In other words, the competitor can react by adjusting the

attractiveness levels of its existing facilities with the objective of maximizing its own profit. To

this end, a bilevel mixed-integer nonlinear programming model is formulated. We transform

this bilevel model into an equivalent one-level mixed-integer nonlinear program and solve it
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by a global optimization method. For this problem, we also consider a scenario in which the

new entrant firm ignores the reaction of the competitor. The experimental results indicate

that anticipating the competitor’s reaction by including this into his optimization problem

increases the profit of the new entrant firm, whereas the competitor’s profit is decreased. The

last competitive facility location model relaxes the limitation about the competitor’s reac-

tion: now the competitor can also open new facilities, close existing ones and/or adjust their

attractiveness. This also formulates a bilevel mixed-integer nonlinear programming problem

which we try to solve by combining tabu search with global optimization algorithms. We

develop three different tabu search methods and the computational results on a set of problem

instances for comparing the performance of the solution methods show that the third tabu

search method is the most accurate one, while the second tabu search method is the most

efficient solution procedure.

Finally, we consider a different facility location problem which takes the customer pref-

erences into account. The facilities are not necessarily identical and customers visit different

types of facilities according to some given probability distribution and the maximum distance

which they are willing to travel. We formulate a binary linear programming problem and solve

it by three procedures that include a Lagrangean heuristic whose solution is improved further

using a local search method. Based on the experimental results carried out on a set of problem

instances the third solution method is the most efficient one. However, a statistical analysis

on the quality of the solutions states that there is no significant difference between the three

solution procedures.
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ÖZET

DEĞİŞKEN ÖZELLİKLERİ OLAN TESİSLER İÇİN ENİYİ YER

SEÇİMİ

Tesis yer seçimi problemleri fabrika, depo, bakkal, alışveriş merkezi gibi tesisleri eniyi

yerlere yerleştirmeyi amaçlar. Bu problemler, bir yandan eniyi yerleri bulmaya çalışırken

diğer yandan müşterilerden elde edilecek kazancı enbüyüklemeye ya da tesis açmaktan ve

müşterilere hizmet etmekten kaynaklanan giderleri enküçüklemeye çalışır. Bu tezde, bir bölüm

dışında tesis yer seçimi problemlerinin özel bir ailesini oluşturan rekabetçi tesis yer seçimi

problemlerine odaklanıyoruz. Bir rekabetçi tesis yer seçimi probleminde işletmeler, rakiplerin

bulunduğu pazara yeni bir tesis açarak girmeye çalışır. Rakiplere ait tesislerin yerleri ve

çekicilikleri önceden bilinir. Tüm tesislerin amacı müşteriler için rekabet ederek pazar payını ve

kazancı enbüyüklemektir. Rekabetçi tesis yer seçimi problemlerini tepkisel olanlar ve tepkisel

olmayanlar olarak iki kümeye ayırmak olanaklıdır. Bu tezde ele alınan üç rekabetçi tesis yer

seçimi probleminden ilki ikinci kümenin, diğer ikisi ise birinci kümenin içindedirler.

İlk problem için rakibin yeni tesisler açılmasına tepki göstermediği varsayımı altında

karışık tamsayılı doğrusal olmayan bir programlama gösterimi geliştirmekte ve üç çözüm

yöntemi önermekteyiz: bir Lagrange sezgiseli, Lagrange gevşetmesi kullanan bir dal-sınır algo-

ritması ve doğrusal olmayan programlama gevşetmesi kullanan bir dal-sınır algoritması. Örnek

problem verisi üzerinde elde edilen bilgisayısal sonuçlar, bu problemi çözmek için en verimli

ve kesin yöntemin doğrusal olmayan programlama gevşetmesi kullanan dal-sınır algoritması

olduğunu göstermektedir. İkinci problemimizde rakip firma kendi kazancını enbüyüklemek

amacıyla varolan tesislerinin çekiciliklerini değiştirerek tepki göstermektedir. Bu amaçla bir

çiftdüzeyli karışık tamsayılı doğrusal olmayan programlama gösterimi önermekteyiz. Bu çiftdüzeyli

gösterim eşdeğer bir doğrusal olmayan karışık tamsayı programlama gösterimine dönüştürülmekte

ve bir genel eniyileme yaklaşımıyla çözülmektedir. Bu problem için pazara yeni giriş yapan fir-

manın, rakip firmanın tepkisini yoksaydığı bir senaryoyu göz önünde bulundurmaktayız. Elde
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edilen bilgisayısal sonuçlar pazara yeni giriş yapan firmanın rakibin tepkisini öngörmesinin

bu firmanın kazancını arttırdığına ve rakip firmanın kazancını azaltığına işaret etmektedir.

İncelediğimiz son rekabetçi tesis yer seçimi problemi ise rakibin tepkisi üzerindeki önemli bir

sınırlamayı kaldırmaktadır. Rakip işletme, pazara yeni giriş yapan işletmenin yeni tesislerinin

yerleri ve çekicilikleri belli olduktan sonra varolan tesislerinin çekiciliklerini değiştirerek, yeni

tesisler açarak ve/veya varolan tesislerini kapatarak tepki gösterebilmektedir. Geliştirilen

çiftdüzeyli karışık tamsayılı doğrusal olmayan programlama gösterimini çözmek için tabu

arama ve genel eniyileme yöntemlerini kullanan melez sezgiseller önermekteyiz. Üç değişik

melez tabu arama yöntemi geliştirmekteyiz ve bu yöntemlerin başarımlarını karşılaştırmak

için yapılan bilgisayısal deneyler üçüncü tabu arama yönteminin en kesin sonuçları verdiğini

ve ikinci tabu arama yönteminin ise en verimli yöntem olduğunu göstermektedir.

Son olarak tesislerin değişik türlerde kurulabildiği ve müşterilerin tercihlerinin gözetildiği

rekabetçi olmayan bir yer seçimi problemi ele alınmaktadır. Bu problemde müşterilerin

tesislere, türlerine ve aralarında olan uzaklıklarına bağlı olarak gittikleri varsayılmaktadır.

Geliştirilen doğrusal ikili tamsayı programlama gösteriminin çözümü için sonucu bir yerel

arama algoritmasıyla iyileştirilen bir Lagrange sezgiseli içeren üç yöntem önermekteyiz. Örnek

problem verisine dayanan bilgisayısal sonuçlar üçüncü yöntemin en verimli olduğunu göstermektedir.

Ancak elde edilen sonuçların kalitesi üzerinde yapılan istatistiksel bir analiz üç çözüm yöntemi

arasında anlamlı bir fark olmadığına işaret etmektedir.
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1. INTRODUCTION

Facility location problems attempt to find the best location for facilities like warehouses,

plants, and other industrial facilities by optimizing a certain objective function. They can

be categorized first according to the candidate locations as discrete space and continuous

space models. In the discrete space models, there are predetermined candidate facility sites

which show where new facilities can be launched, whereas in the continuous space models new

facilities can be located anywhere in the plane (Love et al., 1988). In this thesis, we only deal

with the discrete space models so that discrete space models are given more emphasis in this

chapter and also in the literature survey.

The general facility location models in discrete space literature can be grouped as the

p-median, set covering, maximal covering, and fixed-charge models (Daskin, 1995). The ob-

jective of a p-median model is to minimize the demand weighted total or average distance

of customers from their closest facility by opening a fixed number of facilities p. In contrast

to a p-median model the aim of a set covering model is to minimize the number of facilities

opened by covering all the demand nodes. A maximal covering location problem, on the

other hand, tries to capture the most of the demand by locating a predetermined number of

facilities. Such a problem assumes that facilities may not cover all the demand nodes and if

all the demand nodes cannot be covered, it tries to cover most of the demand. So far, all

these models are uncapacitated location models and there is no cost regarding to the opening

of new facilities and transportation between the facilities and demand nodes. What makes

a fixed-charge location problem different than the other models are that each facility has a

capacity to serve the customers, that there is a fixed cost of opening a new facility at a site,

and that the transportation costs for serving the demand nodes are calculated as functions of

distances between the demand nodes and new facilities.

In such facility location models all facilities considered to be opened identical. There

is no difference between the facilities which is not a realistic assumption when today’s eco-

nomic conditions are taken into account. For example, if a company considers opening new

warehouses to stockpile its different products, it is likely that not all the warehouses have the
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same size, capacity or design. Thus, truly real facilities have different characteristics which

distinguish them from each other. The aim of the thesis is the optimal location of facilities

with different characteristics.

In this thesis, we first concentrate on facility location problems in competitive envi-

ronment. In a Competitive Facility Location (CFL) problem, a firm or franchise wants to

enter into a market where already competing facilities exist. All the facilities compete for the

customers and market share. Usually the objective is the maximization of the market share

or the profit (Drezner, 1995). In a competitive environment facilities usually have different

attractiveness levels which attract different customer classes. These attractiveness levels can

be determined using the size of the facility, floor area of the facility, number of servers, or the

diversity of the products sold in the facility. Thus, we see that the facilities in a competitive

environment are not identical and can be differentiated from each other using the character-

istics of the facilities. Each facility may have a different attractiveness level which uniquely

identifies that facility. Furthermore, this attractiveness level defines the characteristics of a

facility. For example, when the facility considered is a shopping mall, the number of stores,

the size of the parking place, food court availability, or the proximity to the public transporta-

tion become the characteristics of that shopping mall and determine all together its overall

attractiveness level.

We propose three different CFL models in discrete space, where the demand is assumed to

be aggregated at certain points in the plane and new facilities can be located at predetermined

candidate sites. In each competitive model, the attractiveness levels of new facilities are the

decision variables. Our main goal is to find optimal facility attractiveness levels and facility

locations that are also important characteristics of facilities beyond their attractiveness levels.

So, we reflect the variable characteristics of facilities as its location and attractiveness levels,

which is actually a combination of different facility attributes and features.

In the first proposed model, a new market entrant firm wants to locate new facilities in

discrete space to compete against already existing facilities that may belong to one or more

competitors. The objective of the new entrant firm is to determine the locations of the new

facilities and their attractiveness levels so as to maximize the profit, which is calculated as
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the revenue from customers less the fixed cost of opening facilities and variable cost of setting

their attractiveness levels. We formulate a mixed-integer nonlinear programming model for

this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-

and-bound method with Lagrangean relaxation, and another branch-and-bound method with

nonlinear programming relaxation.

Next we consider an extension on the first CFL model. We deal again with a problem

in which a firm or franchise enters a market by locating new facilities where there are existing

facilities belonging to a competitor. The new entrant firm aims at finding the location and

attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the

other hand, can react by adjusting the attractiveness of its existing facilities with the objective

of maximizing its own profit. To this end, we formulate a bilevel mixed-integer nonlinear

programming model where the firm entering the market is the leader and the competitor is

the follower of a game. In order to find the optimal solution of this model, we convert it into

an equivalent one-level mixed-integer nonlinear program so that it can be solved by global

optimization methods.

As one can see we extend the CFL problem proposed at the beginning with the reaction

of the competitor. However, the competitor can react only by modifying the attractiveness

levels of its existing facilities. Nevertheless, the reaction of a competitor in a market may

not be limited only with redesigning the existing facilities. Therefore, with the next proposed

model we address one more time such a CFL problem within a game-theoretic frame, where the

reaction of the competitor is developed with new assumptions. We assume that the competitor

can react by opening new facilities, closing existing ones, and/or adjusting the attractiveness

levels of its existing facilities again with the aim of maximizing its own profit. A more complex

bilevel mixed-integer nonlinear programming model is formulated where the entering firm is

the leader and the competitor is the follower. We propose heuristics that combine tabu search

with exact solution methods.

In all the proposed CFL problems the gravity-based rule is employed in modeling the

customer behavior where the probability that a customer visits a certain facility is proportional

to the facility attractiveness and inversely proportional to the distance between the facility site
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and demand point. In such models customer preferences are not taken into account. Thus,

we address next a new discrete facility location model where the system planner can establish

different types of facilities and customers have preferences represented by probabilities for

visiting these facilities. In CFL models, this probability increases with the increased facility

attractiveness which is an indication of the quality, type, or design of the facility. In real-life,

it may be the case that each different type of facility has its own customer segment. So, for

a given customer zone the sum of probabilities associated with different types of facilities is

equal to one. It is assumed that customers choose the nearest facility among the same type of

facilities and they visit this facility if its distance to the customer zone is within a threshold

value. This threshold is determined by the customers and it increases as the utility of the

facility type to the customers increases. The aim of the system planner is to find the optimal

location and types of facilities to be opened so as to maximize the profit which is computed

by the annual revenue collected from the visiting customers less the annualized fixed cost of

facility establishments. We formulate a binary linear programming model and solve it by a

Lagrangean heuristic the solution of which is further improved by a local search procedure

implemented using 1-add, 1-drop, and 1-swap moves.

Hence, in the last proposed discrete model customer preferences are taken into con-

sideration by means of the visiting probabilities for different facility types and the threshold

distances. These distances show the maximum distances that a customer is willing to travel to

a certain facility type. Thus, the visiting probabilities and threshold distances play an impor-

tant role in determining the types for new facilities that are important variable characteristics

of the facilities, since the facility types are decision variables to the proposed optimization

model. Most importantly, customer preferences are better reflected in such a scenario consid-

ering favorable treatments for its customers and these preferences become apparent based on

the customer attributes such as annual income.

In the remainder of the thesis we first review the literature related to the competitive

facility location problems and facility location problems with customer preferences in the next

chapter. We present a single-level MINLP formulation and its solution procedures. In the

fourth chapter a new bilevel MINLP problem is introduced together with its properties and

a global optimization method that can be applied when it is converted into an equivalent
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single-level problem. Then in the fifth chapter another bilevel MINLP problem is presented.

Besides the problem, three different tabu search heuristics and an ε-optimal solution method

are suggested. In the sixth chapter a novel discrete facility location problem considering cus-

tomer preferences is formulated as a binary linear programming problem and three solution

methods are proposed in order to solve the problem where the visiting probabilities of cus-

tomers are obtained by two suggested artificial learning techniques. In the seventh chapter, the

computational results on randomly generated instances for all proposed solution procedures

are reported together with the sensitivity analysis. Finally, the eighth chapter concludes the

thesis. In Appendices A and B, the pseudo codes for the global optimization methods αBB

and GMIN-αBB are given, respectively. The steps of the first two tabu search heuristics given

in Chapter 5 are provided in the Appendices C and D.
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2. LITERATURE SURVEY

In this chapter we overview the works about the CFL and facility location models with

customer preferences. We first survey the CFL studies and divide them into two groups:

works considering the non-reactive competition and reactive competition. In CFL models

with reactive competition we further differentiate between the simultaneous and sequential

games. Then we continue with facility location models with customer preferences which also

include the probabilistic location models.

2.1. Competitive Facility Location

In CFL problems, a firm is concerned with installing new facilities to serve customers in

a market where existing facilities with known locations and attractiveness levels compete for

increasing their market share and profit. In some cases, the firm may be a new entrant with no

already existing facilities, while in others the firm may own one or more existing facilities. The

choice of the customers as to which facility to visit can be modeled using different approaches.

For example, models can be formulated in which customers do not choose a facility solely

on the basis of their proximity to its location, but they also take into account some of the

characteristics of the facility. The first paper on CFL was by Hotelling (1929) in which he

developed a model with two equally attractive ice-cream sellers along a beach strip where

customers patronize the closest one. It is further assumed that the buying power or demand

is uniformly distributed. This very first model was extended later for unequally attractive

facilities, which is a more realistic assumption given the current situation in the market.

Most of the CFL models in the literature assume that the competitors who own the

existing facilities do not react after a new entrant firm opens facilities in the market. However,

CFL models with competitor reaction become more popular in recent years. Therefore, we can

classify the reviewed works into two groups: those with non-reactive competition and those

with reactive competition.
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2.1.1. Non-reactive Competition

The CFL models with non-reactive competition assume that the competitor(s) in the

market does not react to the opening of new facilities by another firm or franchise. It is possible

to divide those kind of CFL models into two categories: deterministic utility models and

random utility models. In both categories, the attractiveness level of a facility is determined

by a function of its attributes, and customers’ attraction is modeled by a utility function. The

main difference between the two types of models is that in the deterministic utility models

the customers patronize only the facility with the highest utility for them, whereas in random

utility models customers visit each facility with a certain probability.

2.1.1.1. Deterministic Utility Models. In deterministic utility models the customers choose

a facility based on a utility function. This utility function consists of the facility attributes

and the distance between the customer and the facility. However, as explained above the

all-or-nothing property is still maintained, since all customers at a demand point patronize

the same facility with the highest utility for them. The utility function is in the form of

U = F (x1, x2, ..., xm), where x1, x2, ..., xm are the facility attributes and the distance between

the customer and the facility. In most of the models, F is an additive function such as U =
∑m

p=1 wpfp(xp) where wp represent the weight of the attributes (Drezner, 1995). Deterministic

models with additive utility function usually employ a break even distance. It is defined as the

distance at which utilities of the new and existing facilities are equal to each other. Customers

at a demand point patronize a new facility if and only if this new facility is located within the

break even distance.

The work of Drezner and Drezner (1994) is a perfect example of deterministic utility

models where a new facility is opened in continuous space. It is assumed that all customers

at a demand point visit only one facility with the highest utility for them which is calculated

as an additive utility function. The best location for the new facility is found according to

the break-even distance at which the new and existing facilities have the same utility towards

the customers. However, the planner can decide to open only a single new facility where its

attractiveness is a parameter to the considered optimization problem.
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Another study that deserves attention belongs to Plastria and Carrizosa (2004). In this

study, they try to open a single new facility where the determination of its best location as

well as its best quality is sought. Although more than one consumer group is allowed to reside

at a site, each group has its own deterministic behavior for the choice of the facility where each

group patronizes the same facility to which it is attracted the most. Such models are called

full capture models as well which can be seen as a deficiency when compared to probabilistic

behavior models. It is not a sensible assumption for profit making facilities, since today’s

customers usually patronize more than one facility. These types of models are more suitable

for public-oriented facilities such as post offices or primary schools.

2.1.1.2. Random Utility Models. As can be seen in deterministic utility models the probabil-

ity that a customer patronizes a facility is either 0 or 1. In contrast to deterministic models,

random utility models assume that the utility function varies among customers. It is further

assumed that each customer draws his/her utility from a random distribution of utility func-

tions. This means that the all-or-nothing property of deterministic utility models is soothed

in a sense that each demand point has a probability of patronizing each facility which changes

between 0 and 1.

Random utility models are used for discrete choice methods for short-term travel deci-

sions. The term discrete choice is used when there is a finite number of alternatives for decision

makers. In our case the alternatives are represented by the facilities and the decision makers

by customers who choose which facility to visit. Most of the behavior models of decision

makers are based on the random utility theory. In random utility models, the decision rules

according to which the decision maker chooses an alternative is discrete. However, the utilities

for decision makers are random variables composed of a deterministic and a random part. The

unobserved characteristics of decision makers and unobserved attributes of alternatives evoke

the probabilistic parts which are frequently represented by multinomial logit models (Hall,

1999).

The most widely used random utility in the CFL literature is the gravity-based model

proposed by Reilly (1931) and later used by Huff (1964, 1966). In this model, the probability
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that a customer patronizes a facility is proportional to the attractiveness of the facility and

inversely proportional to a function of the distance between the customer and the facility. A

variety of attributes can be used as a proxy for the attractiveness of the facility. The shopping

mall example given in Chapter 1 can be mentioned here one more time, because the number

of stores, the size of the parking place, food court availability, or the proximity to the public

transportation can be the attributes determining the overall attractiveness. Huff (1964, 1966)

uses the floor area as the attractiveness of the facility.

The idea of Reilly (1931) and Huff (1964, 1966) is extended later by Nakanishi and

Cooper (1974) giving birth to the multiplicative competitive interaction (MCI) model. In this

model, different attributes of the facility were used together by taking their product after

raising each to a power. Achabal et al. (1982) used the MCI model to determine the best

location and design of a number of new stores in discrete space under the presence of a certain

number of existing stores so that the market share is maximized. The design of a store is to be

selected from a set of possible designs, where the parameter estimation is based on consumer

surveys and studies.

All the studies cited in the following apply the gravity-based rule unless mentioned

otherwise. First, we review the papers in which facility attractivenesses are parameters and

the decisions to be made consist of facility locations only. Drezner and Drezner (2006) consider

two models in which they opt for optimally locating p facilities. In the first one, the aim is

to minimize the distance traveled by the customers as is the case in the well-known p-median

problem, whereas in the second one a balance is sought among the facilities so that the variance

of the demand served by the facilities is minimized. The authors also combine the objective

functions of the two models to obtain a new multi-objective model.

The papers by Drezner and Drezner (2004) and Drezner et al. (2002) differ from each

other with respect to the number of facilities that are located in the continuous space. The

former paper examines the case with a single facility, while the second one addresses a multi-

facility case. In both papers the objective is to maximize the market share where some of the

existing facilities belong to the franchise which opens new facilities. The latter paper can be

considered as an extension of the first one. Drezner and Drezner (2008) consider an extension
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of the CFL problem where the probability of customers’ unwillingness to visit a facility, which

ultimately affects the demand seen by the facility, is computed. They use the gravity-based

model, but utilities are computed using an exponential decay function of the facility attrac-

tiveness represented by a parameter and the distance between the facility and customer sites.

The decay parameter increases as the facility attractiveness decreases. The proposed mod-

els further assume that if there is a competing facility at zero distance to a demand point,

it captures all the buying power at that point. Benati and Hansen (2002) employ a utility

function whose deterministic part is a linear function of the facility attractiveness and the

distance, while the random part is assumed to follow the Gumble distribution. Aboolian et

al. (2007a) and Berman and Krass (2002) develop a spatial interaction model with variable

expenditures where demand cannibalization and market expansion are taken into account. In

standard spatial interaction models the demand is assumed to be constant and known a priori;

therefore the demand is said to be inelastic. As the authors point out opening new facilities

results in market expansion meaning that customers who are underserviced are attracted now

to the new facilities. Thus, the demand increases with the opening of new facilities. The

objective is again to optimally locate new facilities in the discrete space.

There are also papers in the literature in which decisions are made not only about the

locations of the facilities but also about their attractiveness levels. The first one is the paper

by Achabal et al. (1982). Aboolian et al. (2007b) formulate a similar model to Aboolian

et al. (2007a), but they also incorporate the design characteristics of the facilities (i.e., the

attractiveness levels) into the model. Although they state that the attractiveness of each

facility is a continuous decision variable, they employ discrete design scenarios in the solution

of the model and one of a finite number of available designs is determined for each open

facility. Fernández et al. (2004, 2007), and Tóth et al. (2009) analyze similar models in

which the aim is to optimally locate new facilities in continuous space. They find out the

attractiveness levels when some of the existing facilities belong to the firm’s own chain. Only

one new facility is opened in Fernández et al. (2004), whereas two new facilities are located

in Tóth et al. (2007). The difference of Fernández et al. (2007) is the development of a

bi-objective model in which maximizing the profit and minimizing the cannibalization are

targeted simultaneously. An interesting study is Drezner and Drezner (2002) in which no

facility location is considered. Instead, the authors make use of the past data on the preference
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of the customers including the sales figures and demographical characteristics of the market

area and determine the attractiveness of existing facilities using the gravity-base rule. As an

indicator of the attractiveness the total sales of facilities and the buying power of customers are

used, where the market area is divided into communities and the buying power of a community

is determined by the cumulative effective income of all customers residing in that community.

2.1.2. Reactive Competition

In the previous section we review the CFL studies with non-reactive competition where

the competitor(s) in the market is assumed not to react to the opening of new facilities. The

categorization of such studies is realized with respect to the customer choice rules for patroniz-

ing facilities as deterministic utility models and random utility models. Such a categorization

is also possible for CFL problems with reactive competition. However, the nature of competi-

tion is the primary factor in determining the class of the CFL problem. The two main classes

are simultaneous-entry CFL problems and sequential-entry CFL problems. The competing

firms simultaneously decide on their facility locations in simultaneous-entry CFL problems,

whereas there exists a priority among the competing firms with regard to the timing of the

actions in sequential-entry CFL problems. Some of this second class of CFL problems can

also be considered as a Stackelberg type of game between two or more competing firms (von

Stackelberg, 1934). Thus, all competitors in a market can be considered as players of a game,

where players act either simultaneously or sequentially to optimize their individual objective

functions. We briefly review the literature for the former class of problems first, and then

focus on the papers that study Stackelberg-type of CFL problems.

2.1.2.1. Simultaneous-Entry Competitive Facility Location Problems. Most of the studies in

this class consider the competition of the firms for a single homogeneous product as a two-stage

game, where in the first stage both firms simultaneously decide where to locate the facilities.

As soon as these decisions are made, they become known to both firms and they continue with

the second stage of the game by simultaneously deciding either on the production quantities to

supply the markets or on their products’ prices. Markets are usually located on the vertices of

a network and firms aim at maximizing their profits. Based on some conditions, the uniqueness
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and existence properties of a Nash equilibrium for quantities or prices are shown. By means of

additional conditions, the equilibrium locations are proved to be the vertices of the network.

Among the papers including this type of analysis, we can mention Labbé and Hakimi (1991),

Lederer and Hurter (1986), Lederer (1986), and Lederer and Thisse (1990). Sarkar et al.

(1997) extend the work of Labbé and Hakimi (1991) for multiple firms and nonlinear price

functions. Wendell and McKelvey (1981) consider only the locational game for two competing

firms on a graph, and seek for a locational equilibrium such that a firm can capture at least

50% of the customers regardless where its competitor is located. By making use of the voting

theory, necessary and sufficient conditions for locational equilibrium are developed. Rhim et

al. (2003) extend the spatial competition on a discrete space to an oligopolistic three-stage

game, where in the first stage facility locations, in the second stage facility capacities, and in

the third stage quantities to be produced are decided. Peréz et al. (2004) investigate only the

second stage of the game, where the competition between multiple firms takes place only in

terms of prices.

2.1.2.2. Sequential-Entry Competitive Facility Location Problems. In sequential-entry CFL

problems the competitor having existing facilities react to the new firm subsequent to its

market entry. This situation leads to the so-called two-level or bilevel optimization problem

in which there are two independent players called leader and follower. These players act in a

sequential manner with the aim of optimizing their own objective functions, which are almost

always in conflict with each other as pointed out by Moore and Bard (1990). In this setting,

the leader first makes a decision (or selects a strategy) to optimize its objective function

with the foresight or anticipation that given this decision the follower will optimize its own

objective function. A bilevel programming (BP) formulation in optimization corresponds to a

Stackelberg game in the context of game theory (Bard, 1998).

When we review the literature by focusing on the game-theoretic formulations within the

context of CFL problems, we come across to the following ten studies. Some of them develop

BP models, while others solve Stackelberg equilibrium problems. The book by Miller et al.

(1996) focuses on the equilibrium facility location modeling. The developed mathematical

models therein consider a firm which has to simultaneously decide on the production and
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distribution of a single, homogeneous product such that there exists an equilibrium in the

market represented as a network. The entering firm, usually called a Stackelberg or leader

firm, anticipates the reaction of the follower firms that have existing facilities in the market.

These followers are assumed to be Cournot firms trying to achieve a Nash equilibrium by

making changes in their production and distribution levels as a reaction to the leader firm.

However, these firms operate under the Cournot assumption that the others do not change their

production and distribution levels. The novelty here is that the Cournot-Nash equilibrium of

the followers is represented as a variational inequality formulation. In order to compute the

Cournot-Nash and Stackelberg-Cournot-Nash equilibria, many heuristic algorithms employing

sensitivity analysis are suggested.

Fischer (2002) considers a discrete CFL with two competitors. Each competitor sells the

same product to customers which are aggregated at discrete points in space called markets.

One of the competitors becomes the leader and the other takes the role of the follower. Both

of the decision makers want to determine both the locations of a fixed number of new facilities

to be established from a set of potential sites and the price of the product at each market. It

is assumed that the product can be sold at different prices at different markets (i.e., discrimi-

natory pricing) where the price at a market depends on the distance from the facility serving

the market. Customers prefer to make the purchase from the competitor offering the lowest

price. Fischer (2002) formulates two bilevel models: a mixed-integer nonlinear bilevel model

in which both players fix their locations and prices once and for all, and a linear bilevel model

with binary variables where price adjustment are possible. A heuristic solution procedure is

developed to solve the linear bilevel model, but no computational results are provided.

Bhadury et al. (2003) suggest a centroid model in the continuous space, where the

follower locates extra facilities as a reaction to the leader’s action. Drezner (1982) introduces

two problems. In the first one, a new facility is located so as to attract most of the buying

power from the demand points when there is already an existing facility in the market, whereas

the second problem involves again the location of a new facility with the same goal, but this

time by taking into account the possibility that the competitor opens a facility in the future.

Plastria and Vanhaverbeke (2008) consider the maximal covering model and incorporate into

this model the information that a competitor will enter the market with a new facility in the
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future. The objective of the leader is to locate facilities under a budget constraint in order to

maximize the market share after the competitor’s entry. The authors formulate three models

corresponding to three strategies: worst-case analysis (maximin strategy), the minimum regret

strategy, and the Stackelberg strategy which corresponds to taking into account the objective

function of the competitor. Serra and ReVelle (1993) develop a model where both the leader

and follower locate an equal number of facilities which are visited by customers only if they

are the closest ones. In this model, the objective of the leader is to minimize the market share

of the follower, and two heuristic algorithms are proposed for its solution.

Pérez and Pelegŕın (2003) are concerned with a Stackelberg equilibrium problem and aim

at finding all Stackelberg equilibria for a problem where both the leader and follower locate

a single facility at any point in the tree, i.e., nodes as well as points on the edges of the tree

are candidate facility sites. Customers visit the facility with the smallest total cost that is

comprised of the product’s price and the transportation cost. In case there is a tie, the closest

facility is visited by the customers. If two facilities are equidistant, then the demand is split

between two facilities according to a fraction. Pérez and Pelegŕın (2003) develop the entire set

of Stackelberg solutions to this competition model. Sáiz et al. (2009) formulate a nonlinear

BP model in continuous space in which both the leader and the follower locate one facility

where their market share is maximized. They make use of the gravity-based model, but the

attractivenesses of facilities are known in advance. For the solution of their problem they

develop a branch-and-bound method that guarantees the global optimum within a specified

accuracy. Drezner and Drezner (1998) develop a similar model to that of Sáiz et al. (2009)

and propose three heuristic methods for its solution.

Serra and ReVelle (1999) suggest a sequential game for a retail firm, which enters into

a spatial market with one competitor that has several outlets and produces a single product.

The new entrant leader firm tries to maximize its profit by finding the outlet locations and

the mill prices and anticipates the reaction of the follower that can change the price of its

product. The model considered here is an extension of the famous maximum capture problem

where the customers buy from the firm for which the price and the transportation cost is the

lowest. The ties are broken in favor of the closest firm. If both firms are the closest, then

all of the demand is captured by the existing facility. For the solution of their problem, the
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authors suggest a tabu search heuristic algorithm.

Steiner (2010) develops a Stackelberg-Nash leader-follower model, where an entrant firm

introduces a new brand in a competitive environment with multiple competitors. The leader

firm tries to find the optimal product design by anticipating the possible reactions of the

competitors. These reactions include price and design changes. However, it is assumed that

the followers have Nash or Cournot reaction functions so that they ignore possible reactions

of their competitors.

2.2. Facility Location with Customer Preferences

Since we first propose three different CFL problems, we review the literature of the com-

petitive facility location until this section. However, the last proposed model differs from the

CFL models in the sense that the customer preferences are taken into account. Therefore, we

also review the literature of facility location problems that incorporate customer preferences.

The first study belongs to Boots and South (1997). They model the retail trade areas using

Voronoi diagrams. These diagrams are geometric procedures which produce theoretic trade ar-

eas using the assumptions about customer behavior and store attributes. In their work, Boots

and South propose two Voronoi models which use the same assumption where the customer

visits from the k (k = 2, 3, ...) nearest most attractive facilities. If the customer is indifferent

between these k facilities, the trade areas are modeled as order k, multiplicatively weighted

Voronoi diagrams. Furthermore, if the customer shows a preference for nearer facilities , then

these models are ordered, order k, multiplicatively weighted Voronoi diagrams. In contrast

to the most Voronoi diagrams, these diagrams generate overlapping trade areas. In general,

multiplicatively weighted Voronoi diagrams consider both locational and non-locational fea-

tures of the facilities and like in the case of MCI and multinomial logit models the utility of

some facility for a customer is found with respect to a functional relationship of the facility

attractiveness and the distance between the customer and the facility. In this paper, on the

contrary of these general multiplicatively weighted Voronoi diagrams the customer can visit

more than one facility according these two proposed models. This paper also shows the cus-

tomer preferences in the sense that it analyses the cases where the customers prefer nearer

facilities or the customers are indifferent between the facilities. However, the goal of the mod-
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els is neither the location of new facilities nor determining its types, qualities or attractiveness

levels. The models try to generate only trade areas. They can only be applied when the type

or attractiveness of the facilities are known. These areas are used then to estimate the sales

volume of the facilities. In order to produce these areas some data are made use of like the

size of the stores or the number of hours during which the stores are open. These are actually

the attributes of a store which make up its attractiveness level or quality.

Serra and Colomé (1999) analyze the influence of the distance and the transportation

costs on the optimal locations of the facilities for the traditional facility location models.

They consider the famous MAXCAP model to define key parameters which show different

ways of the distance usage in the customer behavior theory. In all the models considered in

the paper, a new entrant firm wishes to locate a certain number of new outlets in a market

with existing outlets in the discrete space as to maximize its profit. The considered spatial

market is a connected graph whose vertices represent markets and the potential locations for

outlets are prespecified. Each key parameter represents the proportion captured by an outlet

from a demand node. First, the MAXCAP model is introduced, where the customer visits

the outlet of the nearest chain. Then an MCI model is presented. After that, a special case

of the MCI model is given where the customer choses the nearer outlet instead of the chain.

Finally, a model with partial binary preferences is considered where the proportion of times

that a customer chooses an outlet is inversely proportional to a function of the distance. They

compare the models by analyzing the deviation in demand and optimal locations by using other

models instead of the true models. For the solution of the models, a metaheuristic based on

GRASP and a tabu search heuristic are suggested. All the models considered are associated

with the competitive facility location. As a result, each facility has an attractiveness level

defined by its attributes. However, the only concern in this paper is to analyze the influence

of the distance between the customers and facilities so that all facilities are assumed to be

similar to each other where their attractiveness levels are taken to be equal to one for simplicity.

Thus, the probability that a customer patronizes a facility is dependent on the distance only.

However, in our model there is a distance term called “the maximum distance that a customer

is willing to go to a facility” which is a realistic assumption for today’s market. This distance

depends on both the customer and the type of the facility. When a facility is located outside

of the region of influence, it is not visited by that customer. Furthermore, the probability
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that a customer patronizes a facility is associated with the type of the facility. In competitive

facility location models, this probability increases when the quality of the facility increases

which may not always be the case in reality. These probabilities are actually real probabilities

derived from a long time observation of the visiting frequencies of customers.

Berman and Krass (1998) propose a combined CFL model. The authors categorize

the way of capturing of the demand by the facilities into two groups: dedicated trips and

flow intercepting trips. In CFL literature dedicated trips are considered within the spatial

interaction models whereas the flow intercepting trips withing the flow interception models. In

this paper, both models are combined where competing facilities can capture the demand from

both types of customers. Especially, such a situation is possible for facilities like gas stations

and convenience stores. In order to combine these two models, all customers are considered as

flow-by customers. In general, the customer can deviate from his/her path when the facility

is within a specified distance. For the dedicated trips a dummy path is introduced in order to

define such customers as flow-by customers. As a consequence, a nonlinear integer model is

presented. A heuristic method and a branch-and-bound method are proposed for the solution

of the model. The same criticism about the visiting probabilities concerned in competitive

facility location models is valid for this paper, too. In this paper, again each facility has

an attractiveness level and using Huff’s gravity based-rule, the probability that a customer

patronizes a facility increases with the increased attractiveness level which is not the case

for our proposed model. Furthermore, our probabilities reflect the customer preferences in a

realistic way. Besides, the model is more appropriate for facilities like gas stations, convenience

stores etc. as mentioned above. Other than that, our model is more appropriate for facilities

like shopping malls, super markets, stores for furniture and accessories etc.

In their paper, Korpela and Lehmusvaara (1999) consider a warehouse network evalua-

tion and design in the context of supply chain management. The aim is the evaluation and

selection of the alternative warehouse operators. For this purpose they need a customer driven

and holistic approach. To this end, they combine the analytic hierarchy process (AHP) and

mixed-integer linear programming (MILP). The AHP based procedure is used to determine

customer-specific priorities for each alternative warehouse operator. These priorities are then

used in the MILP as parameters. The objective of the model is to maximize the overall system
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performance under certain constraints and the model is based on both qualitative and quanti-

tative criteria. Like this paper, Korpela et al. (2001) also try to find a framework to find the

service elements of a supply chain and to include the firm’s own strategy by combining the

AHP and MIP. When we analyze the model proposed by Korpela and Lehmusvaara (1999),

we see that it is different than our model in the sense that it is a capacitated facility location

model where the facilities serve the customers by transporting the needed goods to them. In

both papers, there are priorities reflecting the customer specific requirements and preferences

instead of the probabilities. These priorities are determined using the AHP procedure. This

procedure depends on some verbal or numerical views and judgments of persons. Then all

alternatives are compared pairwise based on some weights and scores. This procedure has

therefore some subjective features. However, the method we apply is not based on subjective

features. Instead it relies on the real facts as mentioned above, it makes use of the real visit-

ing frequencies of the customers so that we do not need some interviews or judgments. It is

enough to have the attributes of the customer like the annual income, savings and their visiting

frequencies. Also, the method we propose for determining the visiting probabilities can make

statistical inference without time consuming and expensive data collecting procedure. In the

end, the models proposed by Korpela and Lehmusvaara (1999) and Korpela et al. (2001) are

traditional capacitated facility location problems in which only the priorities are included as

weights to customer demands into the objective functions.

By reason of varying probabilities of customers for visiting different facility types, our

proposed model falls also into the category of Probabilistic Facility Location (PFL) problems.

Therefore, we review the PFL literature as well. All the studies referred in this section are

reviews about the PFL problems. The first study belongs to Melo et al. (2009) where they

review the literature of the facility location problems in the context of the supply chain man-

agement, since the facility location decisions play a crucial role. Especially the integration

of the location decisions with the other decisions of the supply chain is discussed. Besides,

the performance measures and optimization techniques of the supply chain are reviewed and

application examples are given. The literature review in this paper contains only the dis-

crete space models. Since the future customer demands and costs are under uncertainty, the

stochastic elements of the facility location models are discussed.
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Synder (2006) also reviews the stochastic and robust optimization problems. The deci-

sion environment is categorized into three groups: certainty, risk, and uncertainty. In models

under certainty all parameters are deterministic and known a priory. In risk models there are

uncertain parameters like cost, demand, and travel times. However, the probability distribu-

tion they follow is known to the decision maker. The parameters of the uncertain models are

also uncertain like risk models, but this time the probability distributions are not known to the

decision maker. Models under risk are called stochastic programming, whereas the models un-

der uncertainty are called robust optimization. Both models make use of random parameters.

These parameters are defined by continuous or discrete scenarios. If the probability distribu-

tion is not known, continuous parameters are restricted to be in prespecified intervals. The

objective of the stochastic programming models are usually the minimization of the expected

cost or the maximization of the expected profit. The models are usually two stage models,

where in the first stage locational decisions are taken and the second stage is realized when

the uncertainty is resolved. The objective of the robust programming is in general minimax

cost or minimax regret.

Daskin et al. (2003) emphasize also the critical role of the facility location in the supply

chain design. First, the classical fixed charge problem, its extensions and the solution methods

are introduced. Then the integrated location/routing models are considered. These models

are deterministic in nature and combine the facility location, customer allocation, and vehicle

routing. Usually they are MILP problems. Then integrated location/inventory models are

presented, which are usually nonlinear models. Finally, models under uncertainty are consid-

ered where the cost and the demand can vary in time. Furthermore, stochastic programming

and robust optimization are included in the review. Louveaux (1993) reviews the stochastic

location on network which includes stochastic elements of Hakimi’s theorem and stochastic

queuing location models, discrete stochastic location and covering models. The random pa-

rameters in the reviewed literature the random parameters are the location of the customers,

travel time or travel costs, and queuing effects.

An important characteristic of the last proposed facility location problem is that cus-

tomers are willing to travel to a facility of a certain type if it is located within a maximum

(threshold) distance which is determined by the customer. This characteristic is one of the
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ways with which the customers show their preferences. The idea of a maximum distance is

similar to the concept of “coverage radius” which is employed in set covering and maximal

covering facility location problems. In these problems, a demand point is said to be covered

if the closest facility to the customer is established within a distance less than or equal to a

coverage radius r. However, this radius r is fixed once and for all and is determined without

the control of the decision-maker.

There are three studies relaxing the constraint on the coverage radius that deserve at-

tention. The first one belongs to Berman et al. (2009) where the covering radius is controlled

by the decision maker and determined by the size of the facility. Thus, establishing a facility

with a greater coverage radius increases the costs regarding the location of new facilities which

is composed of a fixed cost and a cost function that is non-decreasing in the coverage radius.

Furthermore, the coverage radius is determined by the furthest assigned customer. They for-

mulate a continuous and a discrete version of a facility location problem the aim of which is

to find the optimal minimum number, location, and coverage radius of new facilities to cover

all the demand points. For the continuous version they develop heuristic approaches. Berman

et al. (2003) consider a maximal covering problem where two coverage radii li and ui with

li < ui are fixed for each demand point i. In contrast to full coverage concept of classical set

covering and maximal covering problems where a demand point is fully covered if it is within

the coverage radius, they assume gradual covering. Therefore, a demand point i is fully cov-

ered if its distance to the closest facility less than li and it is partially covered if this distance

between li and ui. If the demand point is located further than ui, it is not covered at all. To

this end, two integer programming problems in discrete space are formulated which make use

of different coverage decay functions and can find the optimal locations of new facilities for

convex coverage decay functions. In order to solve the models, they apply greedy heuristics

and branch-and-bound techniques. The study of Karasakal and Karasakal (2004) is similar to

the study of Berman et al. (2003) where a maximal covering location problem with partial

coverage is considered. They solve the problem with Lagrangean relaxation and compare their

model with the classic maximal covering location problem.
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3. A NON-REACTIVE DISCRETE COMPETITIVE FACILITY

LOCATION PROBLEM WITH VARIABLE ATTRACTIVENESS

In this chapter1 , we address a CFL problem in the discrete space with the objective of

maximizing the profit where attractiveness of new facilities is a continuous decision variable

as opposed to the case of a discrete design scenario. To the best of our knowledge, the

CFL problem with a discrete set of candidate facility sites and continuous attractiveness is

not addressed before. To estimate the market share we employ gravity-based rule according

to which the probability that a customer patronizes a facility is proportional to the facility

attractiveness and inversely proportional to the distance between the facility and customer.

We develop a mixed-integer nonlinear (MINLP) programming formulation, and try to solve

it using three different methods: a Lagrangean heuristic, a branch-and-bound method based

on Lagrangean relaxation, and a branch-and-bound method based on nonlinear programming

relaxation. The last two methods are exact methods and they are capable of finding an optimal

solution of the formulated model when a sufficient amount of time is allotted.

An important aspect of our model is that the reaction of the competitors is omitted.

Namely, the competitors do not open new facilities or close existing ones or change the at-

tractiveness of their facilities as a reaction to the market entering firm. This assumption is

realistic in those situations where there exists a static competition between players. For ex-

ample, consider the competition in a small district of a city which takes place between the

existing convenience stores and a supermarket chain aiming at opening new stores. When

a big supermarket chain (such as Migros, Real, and Carrefour in Turkey) opens a gigantic

store, the existing convenience stores owned by independent entrepreneurs cannot react most

of the time even though they know that a new supermarket in the area will reduce their profit

considerably. The reason for the lack of the competitive reaction lies in the fact that supermar-

kets with large sales volumes have the option of offering low prices to customers for a variety

of goods compared to convenience stores whose sales volumes are much lower. As a result,

customers begin to make their purchases in the supermarkets rather than in the convenience

1The paper Küçükaydın et al. (2010a) based on this chapter is published in the Journal of the Operational
Research Society.
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stores, which ultimately leads to the closure of some of them. Certainly, there are cases where

they succeed in their efforts to survive.

3.1. Model Formulation

The aim of the proposed optimization problem is to determine the market share and

hence the optimal location and attractiveness of the new facilities of a market entrant firm

when there are r existing facilities that belong to a competitor or several competitors. The

objective of the firm is to maximize the profit which is computed as the revenue from the

customers less the fixed costs of opening new facilities plus the variable costs of setting the

attractiveness levels of new facilities.

We assume that customers are aggregated at n (demand) points and the number of

candidate facility sites is m. First, we define the parameters and decision variables. The

points are indexed by j = 1, 2, ..., n, the candidate facility sites by i = 1, 2, ...,m, and the

existing facilities by k = 1, 2, ..., r.

Parameters:

hj : annual buying power at point j,

ci : unit attractiveness cost at site i,

fi : annualized fixed cost of opening and operating a facility at site i,

dij : Euclidean distance between site i and point j,

oj : total utility of existing facilities depending on their attractiveness and distance

from point j

ui : maximum attractiveness level of a facility to be opened at site i

Ak : attractiveness of existing facility k

Decision variables:
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Qi : attractiveness of the facility opened at site i,

Xi : binary variable which is equal to one if a facility is opened at

site i, and zero otherwise.

When a facility is opened at site i with attractiveness Qi, the utility of this facility for

customers at point j is given by Qi/d
2
ij using the gravity-based rule. The total utility of

existing facilities for customers at point j is given by parameter oj =
∑r

k=1Ak/d
2
kj, where dkj

is the Euclidean distance between demand point j and existing facility k. As a result, the

probability Pij that customers at point j patronize a new facility at site i is expressed as

Pij =
Qi/d

2
ij

m∑
i=1

(
Qi/d2

ij

)
+ oj

. (3.1)

Thus, the market share Mj that all new facilities capture from customers at point j can be

calculated as

Mj =

m∑
i=1

Qi/d
2
ij

m∑
i=1

(
Qi/d2

ij

)
+ oj

. (3.2)

Note that
n∑
j=1

Pij can be considered as the market share corresponding to facility at site i and

its revenue can be computed by the summation
n∑
j=1

hjPij. Hence, the total revenue captured

by the new facilities is given as

m∑

i=1

n∑

j=1

hjPij =
n∑

j=1

hj

m∑

i=1

Pij =
n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+oj

. (3.3)

Now we can formulate our model as the following mixed-integer nonlinear programming

problem:
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P: max z =
n∑

j=1

hj

m∑
i=1

Qi
d2
ij

m∑
i=1

Qi
d2
ij

+ oj

−
m∑

i=1

ciQi −
m∑

i=1

fiXi (3.4)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (3.5)

Xi ∈ {0, 1} i = 1, . . . ,m (3.6)

Qi ≥ 0 i = 1, . . . ,m (3.7)

The objective function (3.4) consists of three terms. The revenue collected by the new

facilities is represented by the first term, while the cost associated with opening and operating

them is expressed by the last two terms. The first cost component is the annualized fixed

cost of opening and operating the facilities, and the second one is the annualized variable

cost of opening a facility at a certain attractiveness level Qi. Constraints (3.5) along with

constraints (3.7) ensure that if no facility is opened at site i, then the attractiveness Qi of the

facility is zero. On the other hand, when a facility is opened at site i, then its attractiveness

cannot exceed an upper bound ui. Constraints (3.6) and (3.7) are, respectively, the binary

and nonnegativity restrictions on the location variables Xi and the attractiveness variables Qi.

We note that the number of facilities to be located is not fixed; its value is to be determined

by the solution of the model.

Making the attractiveness a decision variable liberates the decision maker from a great

computational burden, especially if there are plenty of potential facility sites. Otherwise, the

decision maker has to determine the attractiveness for each potential facility site one by one

in order to make the new facilities more desirable against the competing ones. This situation

is unavoidable, if we consider retail facilities, grocery stores, or restaurants etc. Another good

feature of our model is that Qi’s are continuous decision variable. If they are discrete, then

we have to pre-determine possible design scenarios as in the study of Aboolian et al. (2007b).

Before proceeding to the next section where solution methods are introduced, we show



25

an important property of the objective function (3.4) of the proposed model. Namely, the

objective function (3.4) is concave in the attractiveness Qi for Qi ≥ 0.

Proposition 3.1.
n∑
j=1

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

is concave in Q = (Q1, Q2, ..., Qm)T for Q ≥ 0.

Proof. Since the sum of concave functions is a concave function, it suffices to show that

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

is concave for Q ≥ 0 for every j = 1, 2, ..., n. Let us define gj(Q) = hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

.

We now show that gj(Q) is concave for Q ≥ 0. The first and second order derivatives of gj(Q)

are given as follows:

∂gj(Q)

∂Qk

= hj

(
1/d2

kj

)
oj[

m∑
i=1

(
Qi/d2

ij

)
+ oj

]2

and

∂gj(Q)

∂Ql∂Qk

= −2hj

(
1/d2

kj

) (
1/d2

lj

)
oj[

m∑
i=1

(
Qi/d2

ij

)
+ oj

]3 .

Then the Hessian matrix of gj(Q), denoted by Hj(Q), becomes

Hj(Q) = −rj




1
d4

1j

1
d2

1jd
2
2j

... 1
d2

1jd
2
mj

1
d2

1jd
2
2j

1
d4

2j
... 1

d2
2jd

2
mj

... ... ... ...

1
d2

1jd
2
mj

1
d2

2jd
2
mj

... 1
d4
mj




(3.8)
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where rj = 2hj
oj[

m∑
i=1

(Qi/d2
ij)+oj

]3 . We remark that rj ≥ 0 for Q ≥ 0 since hj ≥ 0 and oj ≥ 0.

Also note that gj(Q) is concave if and only if Hj(Q) is negative semidefinite for Q ≥ 0. To

show the latter, we consider VTHj(Q)V for V ∈ Rm which is expressed as

VTHj(Q)V = − (V1, V2, . . . , Vm) rj




1
d4

1j

1
d2

1jd
2
2j

... 1
d2

1jd
2
mj

1
d2

1jd
2
2j

1
d4

2j
... 1

d2
2jd

2
mj

... ... ... ...

1
d2

1jd
2
mj

1
d2

2jd
2
mj

... 1
d4
mj







V1

V2

...

Vm




(3.9)

= − (V1, V2, . . . , Vm) rj

(
V1

d2
1j

+
V2

d2
2j

+ ...+
Vm
d2
mj

)




1/d2
1j

1/d2
2j

...

1/d2
mj




(3.10)

= −rj
(
V1

d2
1j

+
V2

d2
2j

+ ...+
Vm
d2
mj

)2

. (3.11)

rj ≥ 0 and
(
V1

d2
1j

+ V2

d2
2j

+ ...+ Vm
d2
mj

)2

≥ 0 imply that VTHj(Q)V ≤ 0 for Q ≥ 0. This

means that Hj(Q) is negative semidefinite, which proves the concavity of gj(Q) for every

j = 1, 2, ..., n. Hence
n∑
j=1

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

is concave in Q for Q ≥ 0.

Proposition 3.2.
n∑
j=1

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

−
m∑
i=1

fiXi −
m∑
i=1

ciQi is concave in Q for Q ≥ 0.

Proof. The first term is concave in Q as a consequence of Proposition 1, the second term is

a constant, and the last term is a linear function of Q. The result follows since the sum of

concave functions is also concave.

Regardless of the solution method that is employed, an important issue to be taken into

consideration in our modeling framework is reverse fitting. This is related to determining
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for each facility the best values of the underlying attributes that collectively form the attrac-

tiveness of the facility. Using the function that gives the relationship between the attribute

values and the resulting attractiveness level (e.g., the MCI model of Nakanishi and Cooper

(1974) where the product of the attributes raised by a power), one may generate the values of

the attributes starting with the best attractiveness level obtained for the facility. The main

difficulty in this process is the degrees of freedom associated with the individual attribute

values, i.e., different combinations of attribute values may result in the same attractiveness

level. Since there is one equation and as many unknown values as the number of attributes,

all attribute values but one can be fixed as desired and the remaining one can be determined

from the equation. If the number of attributes is relatively low such as two or three, then even

a trial-and-error procedure may help in finding suitable values for the attributes to approxi-

mately yield the optimal attractiveness. In some situations, however, it might be the case that

the recommended attractiveness level for a facility cannot be achieved due to its unreasonably

high value. In this case, a possible remedy would be to adjust the maximum attractiveness

level for that facility, and resolve the model.

3.2. Solution Procedures

We propose three methods for the solution of the mixed-integer nonlinear model P. The

first one is a Lagrangean heuristic; the second and third ones are branch-and-bound (BB)

methods. The difference between the two BB methods is that at each node of the BB tree a

Lagrangean relaxation (LR) of the original problem P is solved in the former, while a nonlinear

programming relaxation is solved in the latter. All the proposed methods exploit the concavity

property of the objective function (3.4) that is given in the previous section by Proposition 2.

3.2.1. A Lagrangean Heuristic

The determination of good lower and upper bounds on the optimal objective function

value of a mixed-integer programming problem is a crucial step to reach good solutions. An ef-

ficient solution procedure to obtain good upper (lower) bounds in maximization (minimization)

problems is Lagrangean heuristic (LH) as shown by Guta (2003) and Beasley (1993b). Fur-

thermore, LHs have successfully been applied to various facility location problems (Beasley,



28

1993a). The LH first relaxes some complicating constraints of an integer or mixed-integer

problem into the objective function by introducing Lagrangean multipliers. Then it tries to

find lower and upper bounds on the objective function value by solving the resulting relaxed

problem. In this thesis, we also devise a LH to solve the first proposed CFL problem.

The proposed CFL model P is not separable because of the complicating constraints

Qi ≤ uiXi for i = 1, 2, ...,m that include both binary and continuous decision variables. To this

end, we relax these constraints and put them into the objective function (3.4) after multiplying

with nonnegative Lagrange multipliers λi, i = 1, . . . ,m. The Lagrangean subproblem then

becomes:

P (λ) : z (λ) = max
n∑

j=1

hj

m∑
i=1

Qi
d2
ij

m∑
i=1

Qi
d2
ij

+ oj

−
m∑

i=1

(ci + λi)Qi −
m∑

i=1

(fi − λiui)Xi (3.12)

s.t.

Xi ∈ {0, 1} i = 1, . . . ,m (3.13)

Qi ≥ 0 i = 1, . . . ,m (3.14)

z (λ) provides an upper bound on the optimal objective value z∗ of the original model P

for any value of multiplier vector λ ≥ 0. P(λ) can be solved easily since it can be decomposed

into two subproblems P1 (λ) and P2 (λ) with optimal objective values z1 (λ) and z2 (λ) as

follows:
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P1 (λ) : z1 (λ) = max
n∑

j=1

hj

m∑
i=1

Qi
d2
ij

m∑
i=1

Qi
d2
ij

+ oj

−
m∑

i=1

(ci + λi)Qi (3.15)

s.t.

Qi ≥ 0 i = 1, . . . ,m (3.16)

and

P2 (λ) : z2 (λ) = max −
m∑

i=1

(fi − λiui)Xi (3.17)

s.t.

Xi ∈ {0, 1} i = 1, . . . ,m (3.18)

The sum of z1 (λ) and z2 (λ) provides an upper bound on the objective function value

z∗ of the original problem P. Problems P1 (λ) and P2 (λ) can be solved, when the Lagrangean

multipliers λi’s are known. Thus, in order to find the best (smallest) upper bound on z∗ the

so-called Lagrangean dual problem

D: min
λ≥0

[z1 (λ) + z2 (λ)] , (3.19)

is formulated and solved using the iterative “subgradient optimization” procedure (Guta 2003,

Beasley 1993b). At each iteration t of this procedure, a step size θ(t) is computed and the

Lagrangean multipliers are updated using the subgradients according to the formula

λ
(t+1)
i = max

{
0, λ

(t)
i + θ(t)(uiXi −Qi)

}
(3.20)

The computation of θ(t) requires a lower bound on the optimal objective value z∗ of

P, which is provided by a feasible solution to P. It can be derived from the solution of the
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Lagrangean subproblem P(λ) as will be explained subsequently. We use the step size for-

mula that is commonly used in the literature (Held et al., 1974), i.e., θ(t) = π(UB(t) −
LBbest)/

∑m
i=1 ‖uiXi −Qi‖2 where π is the step size parameter, UB(t) is the upper bound

at iteration t, and LBbest is the best lower bound obtained until iteration t. The initial-

ization of Lagrangean multipliers are not important in subgradient optimization. We can

stop the algorithm when we find a feasible solution such that
m∑
i=1

λi (uiXi −Qi) = 0. The

reason for that is obvious: if the solution is feasible, then Qi ≤ uiXi is satisfied for every

j = 1, 2, ..., n. Then the value of the objective function for the original problem P is calculated

as z =
n∑
j=1

hj

m∑
i=1

Qi
d2
ij

m∑
i=1

Qi
d2
ij

+oj

−
m∑
i=1

ciQi −
m∑
i=1

fiXi. Furthermore, the objective function value of the

Lagrangean dual problem is z1 (λ)+z2 (λ) =
n∑
j=1

hj

m∑
i=1

Qi
d2
ij

m∑
i=1

Qi
d2
ij

+oj

−
m∑
i=1

(ci + λi)Qi−
m∑
i=1

(fi − λiui)Xi.

So, if
m∑
i=1

λi (uiXi −Qi) = 0, both objective function values are equal to each other and the

lower bound is equal to the upper bound. However, there is usually a duality gap so that the

lower bound and the upper bound are rarely equal to each other. Therefore, as suggested by

Beasley (1993b), the initial value of π is set to two and halved every 20 iterations without an

improvement in the best upper bound. When π becomes less than 0.005, the algorithm is ter-

minated, and the best (largest) lower bound generated throughout the iterations constitutes

the solution of the LH.

Now we explain the solution procedure of subproblems P1 (λ) and P2 (λ). The solution

of P2 (λ) can easily be obtained by inspection. Namely, Xi = 1 if (fi − λiui) < 0, Xi = 0

otherwise. To solve P1 (λ) we make use of the concavity of its objective function π(Q) =

n∑
j=1

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+oj

−
m∑
i=1

(ci + λi)Qi in terms of the attractiveness variables Q, which is a direct

consequence of Proposition 2. We add redundant constraints of the form Qi ≤ ui, i = 1, 2, ...,m

to increase the quality of the upper bound. To find the solution of this concave maximization

problem, we use the following optimality conditions: Q∗ is a global optimal solution of P1 (λ)

if and only if

i) ∂π(Q∗)
∂Qi

≤ 0 when Q∗i = 0,

ii) ∂π(Q∗)
∂Qi

≥ 0 when Q∗i = ui,
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iii) ∂π(Q∗)
∂Qi

= 0 when 0 < Q∗i < ui.

These optimality conditions are given in Bertsekas (1995) for the optimality of a min-

imization problem in convex programming. They give rise to a gradient ascent procedure

to determine a global maximum of π(Q). First, a small positive value is assigned to pa-

rameter ε that is used for the termination of the procedure. Then, initial values Q(0) are

assigned to variables Q. After setting the iteration counter t to zero, a direction d(t) and

a step size α(t) = arg maxα π(Q(t) + αd(t)) is determined, and variables Q are updated as

Q(t+1) = Q(t) + α(t)d(t). The iteration counter is increased by one, and the procedure is

repeated until the norm of the direction vector
∥∥d(t)

∥∥ is smaller than ε. In finding the opti-

mal step size, we apply the golden section search (Press et al., 1986) with the initial interval

[0, αmax], where αmax is the maximum possible value for the step size α to maintain the fea-

sibility of Q with respect to its lower and upper bounds. The gradient ascent algorithm we

apply can be summarized as follows: 1

1. choose Q(0), ε, t← 0

2. determine the direction d(t) to move

3. determine the step size α(t) = argmaxα π(Q
(t) + αd(t))

4. Q(t+1) = Q(t) + α(t)d(t)

5. t← t+ 1

6. until
∥∥∥d(t)

∥∥∥ < ε

Figure 3.1. Gradient Ascent Algorithm

Since the decision variables Q have lower and upper bounds, the direction e(t) is deter-

mined as follows:

i) e
(t)
i = ∂Π(Q(t))

∂Qi
when 0 < Q

(t)
i < ui for i = 1, 2, ...,m

ii) e
(t)
i = 0 when Q

(t)
i = 0 and ∂Π(Q(t))

∂Qi
< 0 for i = 1, 2, ...,m

iii) e
(t)
i = ∂Π(Q(t))

∂Qi
when Q

(t)
i = 0 and ∂Π(Q(t))

∂Qi
> 0 for i = 1, 2, ...,m

iv) e
(t)
i = 0 when Q

(t)
i = ui and ∂Π(Q(t))

∂Qi
> 0 for i = 1, 2, ...,m

v) e
(t)
i = ∂Π(Q(t))

∂Qi
when Q

(t)
i = ui and ∂Π(Q(t))

∂Qi
< 0 for i = 1, 2, ...,m.
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To generate a feasible solution for P we utilize the solution to the Lagrangean subproblem

P2 (λ). Since this solution gives us the set of facilities to be opened (and closed), i.e., Xi = 0

and Xi = 1 for i = 1, 2, ...,m, we can fix them in the original problem P and solve the

remaining problem in terms of Q. Note that if X∗i = 0, then Q∗i = 0, and all the terms with

a zero value for Qi can be dropped from the problem. The latter can be expressed as

max z =
n∑

j=1

hj

∑
i∈S

(
Qi/d

2
ij

)

∑
i∈S

(
Qi/d2

ij

)
+oj
−
∑

i∈S
ciQi (3.21)

s.t.

Qi ≤ ui i ∈ S (3.22)

where S = {i : Xi = 1}. Since we already know that the original problem P is concave in Q

when the binary variables X are fixed, it can be solved optimally by the application of the

same gradient ascent procedure that was used for the solution of P1 (λ).

The subgradient optimization procedure we apply can be summarized as follows:1

1. Let π be a user-defined parameter such that 0 ≤ π ≤ 2. Initially, we choose

π = 2. Determine the initial Lagrange multipliers λi ≥ 0, i = 1, 2, ...m.

2. Solve the Lagrangean dual problem with the current set of multipliers to obtain

an upper bound zUB. Apply a Lagrangean heuristic to get a feasible solution and

a lower bound zLB on the optimal objective function value. If the solution of the

Lagrangean dual problem is feasible and satisfies
m∑
i=1

λi (uiXi −Qi) = 0, then this

solution is optimal for the original problem P and STOP. Otherwise go to step 3.

3. Define the subgradient for each relaxed constraint as uiXi −Qi, i = 1, 2, ...,m.

4. Calculate the step size θ(t) = π(UB(t) − LBbest)/
∑m

i=1 ‖uiXi −Qi‖2.
5. Update the Lagrange multipliers using λ

(t+1)
i = max

{
0, λ

(t)
i + θ(t)(uiXi −Qi)

}

for all i = 1, 2, ...m.

6. Update π if there is no improvement in zUB for 20 iterations. If π < 0.005, then

STOP. Otherwise, go to step 2.

Figure 3.2. Subgradient Optimization Procedure
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3.2.2. A Branch-and-Bound Algorithm using Lagrangean Relaxation

As a second solution procedure we develop a BB method using Lagrangean relaxation in

order to find lower and upper bounds on z∗. We refer to this method as BB-LR in the sequel.

In other words, at each node of the BB tree, subproblems are solved by LH to obtain upper

bounds as well as lower bounds on the optimal objective value z∗ of the original problem P.

In a BB algorithm edges impose constraints to the problem as shown by Nemhauser and

Wolsey (1998). Thus, we branch each time on a binary variable xi so that each branch imposes

a constraint that fixes a certain binary variable. At any node k of the tree, some of the binary

location variables Xi are fixed. Let F+
k = {i = 1, . . . ,m : Xi = 1} be the set of the sites with

a facility and F−k = {i = 1, . . . ,m : Xi = 0} be the set of the sites without a facility. Also

let Gk = {1, 2, ...,m} \
(
F+
k ∪ F−k

)
be the set of the sites without a decision with regard to

opening a facility. Note that when Xi = 0 for site i, then its corresponding Qi must be equal

to zero as well. Therefore, all location and attractiveness variables corresponding to the sites

in F−k can be discarded from the model at node k. Furthermore, upper bound constraints for

Qi reduce to Qi ≤ ui for facility sites in F+
k . As a result, the subproblem to be solved at node

k of the BB tree can be formulated as follows:

Pk : max
n∑

j=1

hj

∑
i∈Gk∪F+

k

Qi
d2
ij

∑
i∈Gk∪F+

k

Qi
d2
ij

+ oj
−

∑

i∈Gk∪F+
k

ciQi −
∑

i∈Gk
fiXi −

∑

i∈F+
k

fi (3.23)

s.t.

Qi ≤ uiXi i ∈ Gk (3.24)

Qi ≤ ui i ∈ Gk ∪ F+
k (3.25)

Qi ≥ 0 i ∈ Gk ∪ F+
k (3.26)

Xi ∈ {0, 1} i ∈ Gk (3.27)

Note that constraint (3.25) for i ∈ Gk are in fact redundant for the formulation, but
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they will help to obtain a better upper bound for Pk. Constraint (3.24) for i ∈ Gk can be

dualized with nonnegative Lagrange multipliers λi, i ∈ Gk. Then the Lagrangean subproblem

at node k becomes

Pk (λ) : max
n∑

j=1

hj

∑
i∈Gk∪F+

k

Qi
d2
ij

∑
i∈Gk∪F+

k

Qi
d2
ij

+ oj
−
∑

i∈Gk
(ci + λi)Qi −

∑

i∈F+
k

ciQi

−
∑

i∈Gk
(fi − λiui)Xi −

∑

i∈F+
k

fi (3.28)

s.t.

0 ≤ Qi ≤ ui i ∈ F+
k (3.29)

Xi ∈ {0, 1} i ∈ Gk (3.30)

As was done in the previous subsection, it is possible to decompose Pk (λ) into two

problems as follows:

Pk1 (λ) : max
n∑

j=1

hj

∑
i∈Gk∪F+

k

Qi
d2
ij

∑
i∈Gk∪F+

k

Qi
d2
ij

+ oj
−
∑

i∈Gk
(ci + λi)Qi −

∑

i∈F+
k

ciQi (3.31)

s.t.

0 ≤ Qi ≤ ui i ∈ Gk ∪ F+
k (3.32)

Pk2 (λ) : max −
∑

i∈Gk
(fi − λiui)Xi −

∑

i∈F+
k

fi (3.33)

s.t.

Xi ∈ {0, 1} i ∈ Gk (3.34)
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The sum of the optimal objective values to Pk1 (λ) and Pk2 (λ) provides an upper bound

on Pk, which is the subproblem to be solved at node k. The Lagrangean multipliers are updated

using the subgradient optimization, at each iteration of which Pk2 (λ) is solved by inspection

to find the optimal values of the location variables Xi for i ∈ Gk and Pk1 (λ) is solved by

the described gradient ascent procedure to obtain the optimal values of Qi for i ∈ Gk ∪ F+
k

of this concave maximization problem. The lower bound, which is employed in updating the

Lagrange multipliers, is found by generating a feasible solution to Pk. This is accomplished by

making use of the solutions to the Lagrangean subproblems Pk1 (λ) and Pk2 (λ). We simply

set Qi = 0 corresponding to Xi = 0, and keep the values of Qi corresponding to Xi = 1. Then,

we evaluate the objective function of Pk given in (3.23). After generating a lower bound and an

upper bound at each subgradient optimization iteration, the best upper bound UBk as well as

the best lower bound LBk obtained throughout the iterations are stored for node k of the BB

tree. It must be emphasized that at the leaf nodes of the tree we do not employ the subgradient

optimization procedure since all binary variables X are fixed, i.e.,
(
F+
k ∪ F−k

)
= {1, 2, ...,m}

and Gk = ∅. At these nodes we simply apply the gradient ascent procedure to find lower

bounds corresponding to the feasible solutions of Pk.

Now we want to explain two important issues regarding the implementation of the BB

method: branching and pruning. Branching at node k is performed by considering the (fea-

sible) solution providing the best lower bound at that node and selecting variable Xi, i ∈ Gk

for which λi (uiXi −Qi) is the largest. Two branches emanating from node k are obtained

by setting the selected variable equal to one (left branch) and to zero (right branch), which

implies that a binary search tree is generated. The rationale behind the above-mentioned

selection can be explained by noting that a solution to Pk (λ) is optimal for Pk if the relaxed

constraint set Qi ≤ uiXi and the complementary slackness condition λi (uiXi −Qi) = 0 are

satisfied by this solution. Here we apply a heuristic rule and choose to branch on the Xi

variable that corresponds to the largest violation in the complementary slackness conditions.

In other words, we choose to branch on the Xi variable for which |λi (uiXi −Qi)| is the largest

at the iteration at which the best upper bound is obtained. Pruning of the nodes in the BB

tree is accomplished by comparing the upper bound UBk at a node k with the current best

lower bound LBbest obtained in the tree (the objective value of the best feasible solution).

That is, node k is pruned when UBk ≤ LBbest.
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The BB algorithm using LR relaxation can be given as 1

1. Step 1 (Initialization): At active node 0, G0 = {1, 2, ...,m}, LBBest = −∞.

Begin by applying the explained LR procedure with noXi branched. Let LBBest =

max {LBBest, LB0}. Go to step 2.

2. Step 2 (Branching): If no active node exists, go to step 5. Otherwise select an

active node according to the branching rule. Go to step 3.

3. Step 3 (Finding bounds): Apply the LR procedure with the imposed con-

straints coming from branching. Obtain LBk and UBk. Let

LBBest = max {LBBest, LBk}. Go to step 4.

4. Step 4 (Pruning): If UBk ≤ LBBest, prune node k and backtrack. Go to step

2.

5. Step 5 (Termination): The feasible solution which yielded LBBest is optimal.

Figure 3.3. BB-LR Method

It is also important to emphasize that we use a depth-first search strategy in the binary

BB tree. Whenever a node is pruned, we backtrack and consider an unsolved node. Applying

Lagrangean relaxation within a BB method is a computationally intensive approach as it

involves subgradient optimization at every node. To reduce the computational burden, we

apply the approach suggested in Beasley (1993b). Namely, a large number of subgradient

iterations are performed at the root node of the tree. This number is reduced to 30 whenever

we branch on a new location variable in the tree, and it is doubled when we backtrack.

3.2.3. A Branch-and-Bound Algorithm using Nonlinear Programming Relaxation

The last solution method we propose is also based on the principle of BB; but rather

than using LR to solve Pk at node k of the BB tree we relax the binary restrictions of the

location variables Xi, i ∈ Gk in Pk. That is, Xi ∈ {0, 1} , i ∈ Gk are replaced by 0 ≤ Xi ≤ 1

and a continuous nonlinear program P′k is obtained at node k.
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P′k : max
n∑

j=1

hj

∑
i∈Gk∪F+

k

Qi
d2
ij

∑
i∈Gk∪F+

k

Qi
d2
ij

+ oj
−

∑

i∈Gk∪F+
k

ciQi −
∑

i∈Gk
fiXi −

∑

i∈F+
k

fi (3.35)

s.t.

Qi ≤ uiXi i ∈ Gk (3.36)

Qi ≤ ui i ∈ Gk ∪ F+
k (3.37)

Qi ≥ 0 i ∈ Gk ∪ F+
k (3.38)

0 ≤ Xi ≤ 1 i ∈ Gk (3.39)

We call this method BB-NLP. It is clear that solving P′k provides an upper bound for

Pk. When in the relaxed solution to P′k all Xi variables turn out to be zero or one, then

we obtain a feasible solution of the original problem P, which provides a lower bound on the

optimal objective value of P. We employ MINOS solver (Murtagh et al., 2004) that is available

within GAMS suite (Rosenthal, 2010) to solve the nonlinear programs. Branching at node

k is performed by considering the solution at that node and selecting the Xi variable whose

value is the closest to 0.5. In other words, the most fractional variable is chosen as the variable

to branch on. Pruning of the nodes is based on two conditions: node k is pruned if either a

feasible solution to P is obtained with all Xi variables having binary values or the upper bound

UBk at that node is less than or equal to the best lower bound in the tree, i.e., UBk ≤ LBbest.

A similar algorithm to the BB-LR can be given for BB-NLP as well:
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1

1. Step 1 (Initialization): At active node 0 G0 = {1, 2, ..., n}, LBBest = −∞. All

Xi are relaxed between 0 and 1. Solve the relaxed model P′′
k using NLP relaxation.

Go to step 2.

2. Step 2 (Branching): If no active node exists, go to step 5. Otherwise select an

active node according to the branching rule. Go to step 3.

3. Step 3 (Finding bounds): Apply the NLP relaxation procedure. Obtain UBk

of the active node from the solution of P′′
k. Go to step 4.

4. Step 4 (Pruning): If a feasible solution is obtained, let LBk = UBk. Update

LBBest by LBBest = max {LBBest, LBk}, prune that node and backtrack. Go to

step 2.

5. Step 5 (Termination): The feasible solution which yielded LBBest is optimal.

Figure 3.4. BB-NLP Method
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4. A BILEVEL COMPETITIVE FACILITY LOCATION

PROBLEM WITH PARTIAL REACTION OF THE

COMPETITOR

In this chapter2 , we address a bilevel CFL problem in the discrete space with the

objective of maximizing the profit of the new market entrant. This firm is the leader of

a sequential game in which it determines the optimal location and attractivenesses for the

new facilities. Given the new facilities of the leader, the competitor firm that becomes the

follower in the game, reacts to the action of the leader by adjusting the attractiveness levels

of its existing facilities to optimize its own profit. The new CFL model can be regarded

as an extension of the first CFL model given in the previous chapter where the competitor

can react now to the new entrant firm by redesigning its existing facilities. To the best of

our knowledge, the bilevel CFL problem with a discrete set of candidate facility sites and

continuous attractiveness of the leader is not addressed before. The gravity-based rule is

employed again in order to model customer behavior. The developed model is based on a

mixed-integer nonlinear BP formulation, and we try to solve it using the GMIN-αBB algorithm

(Adjiman et al., 1997; Adjiman et al., 2000). Although this algorithm can provide an exact

solution to our bilevel CFL problem, it requires a considerable amount of computation time

even for relatively small problems. Therefore, we adopt a modified version of GMIN-αBB

where the nodes of the BB tree are explored until the improvement in two non-successive

iterations is less than a user-specified threshold value.

4.1. Model Formulation

The aim of the model is to determine the optimal location and attractiveness of the new

facilities to be opened by a firm to maximize its profit when there are r existing facilities that

belong to a competitor. As the new entrant tries to open new facilities in the market, it is

possible that the competitor reacts to this new situation. Thus the new entrant firm (referred

to as the firm) is considered as the leader of the game and the competing firm (referred to

2The paper Küçükaydın et al. (2011a) based on this chapter is published in the European Journal of
Operational Research.
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as the competitor) already in the market as the follower of the game. The follower also tries

to maximize its own profit which conflicts with the objective of the new entrant. We assume

that the possible reaction of the follower is to adjust the attractiveness level of all or some of

its existing facilities. The adjustment can be realized in such a way that the attractiveness is

either increased provided that it does not exceed an upper limit or decreased to a value between

zero and the current level. Decreasing the attractiveness to zero means that the facility is shut

down. We further assume that customers are aggregated at n (demand) points, the number

of candidate facility sites is m, and the number of existing facilities of the follower is r. First,

we define the parameters and decision variables by indexing the points by j = 1, 2, ..., n, the

candidate facility sites by i = 1, 2, ...,m, and the existing facilities by k = 1, 2, ..., r.

Parameters:

hj : annual buying power at point j,

ci : unit attractiveness cost at site i,

fi : annualized fixed cost of opening a facility at site i,

ui : maximum attractiveness level for a facility to be opened at site i,

dij : Euclidean distance between candidate site i and point j,

d̃kj : Euclidean distance between existing facility site k and point j,

Ak : current attractiveness level of competitor’s facility at site k,

Ak : maximum attractiveness level of competitor’s facility at site k,

c̃k : unit attractiveness cost or revenue of competitor’s facility at site k.

Decision variables:

Qi : attractiveness of the facility opened at site i,

Xi : binary variable which is equal to one if a facility is opened at site i,

and zero otherwise,

Ak : new attractiveness level of competitor’s facility at site k.

As given in Section 3.1., when a facility is opened by the firm at site i with attractiveness

Qi, the utility of this facility for customers at point j is given byQi/d
2
ij using gravity-based rule.
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The total utility of competitor’s facilities at point j is given by
∑r

k=1Ak/d̃
2
kj. Consequently,

the proportion Pij of customers at point j who visit a new facility at site i is expressed as

Pij =

(
Qi/d

2
ij

)
m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(Ak/d̃2
kj)

. (4.1)

The revenue of this facility can be computed by the expression
∑n

j=1hjPij and the total revenue

captured by the new facilities can be given as

m∑

i=1

n∑

j=1

hjPij =
n∑

j=1

hj

m∑

i=1

Pij =
n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(Ak/d̃2
kj)

. (4.2)

In a similar fashion, one can calculate the total revenue captured by the existing facilities of

the competitor as

n∑

j=1

hj

r∑
k=1

(Ak/d̃
2
kj)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(Ak/d̃2
kj)

. (4.3)
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Now, we can formulate the following bilevel MINLP model BP1:

BP1 : max
Q,X

n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(Ak/d̃2
kj)
−

m∑

i=1

fiXi−
m∑

i=1

ciQi (4.4)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (4.5)

Xi ∈ {0, 1} i = 1, . . . ,m (4.6)

Qi ≥ 0 i = 1, . . . ,m (4.7)

max
A

n∑

j=1

hj

r∑
k=1

(Ak/d̃
2
kj)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(Ak/d̃2
kj)
−

r∑

k=1

c̃k
(
Ak − Ak

)
(4.8)

s.t.

Ak ≤ Ak k = 1, ..., r (4.9)

Ak ≥ 0 k = 1, ..., r (4.10)

The objective function (4.4) of the firm consists of three summation terms. The first

one represents the revenue collected by the new facilities that are opened, while the second

and third components represent the fixed cost and attractiveness cost associated with opening

the new facilities, respectively. Constraints (4.5) along with the binary restrictions (4.7) on

the location variables Xi and nonnegativity restrictions (4.6) on attractiveness variables Qi

ensure that if no facility is opened at site i, then the corresponding attractiveness Qi of the

facility is zero and if a facility is opened at site i, then its attractiveness Qi cannot exceed the

maximum level ui. We note that the number of facilities to be located is not fixed, its value

is to be determined by the solution of the model. The objective function of the competitor

(4.8) has two components: the revenue collected by the competitor’s facilities and the cost or

revenue associated with adjusting the attractiveness levels. Note that when the attractiveness

is reduced from its current level Ak to a smaller value Ak, which makes (Ak − Ak) negative,

the follower gains a revenue of c̃k(Ak − Ak). On the other hand, if Ak < Ak ≤ Ak, a cost

of magnitude c̃k(Ak − Ak) incurs to the follower. Thus, increasing the attractiveness level
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of an existing facility incurs a cost to the competitor, whereas decreasing the attractiveness

level results in a revenue. This situation can be better explained by an example. Increasing

the attractiveness level of a facility can be the consequence of expanding the floor area of

the facility, increasing the diversity of the products sold in the facility and/or increasing the

number of servers, which altogether determine the new attractiveness level of the facility. In

such a situation, a natural cost is incurred to the owner(s) of the facility. On the other hand,

shrinking the floor area of the facility, reducing the diversity of the products in the facility

and/or decreasing the number of servers are indication of reducing the attractiveness level and

can result in a saving for the owner(s) of the facility which can be interpreted as a revenue.

Constraints (4.9) and (4.10) ensure that the new attractiveness Ak of an existing facility at

site k is between zero and an upper limit Ak. If at an optimal solution of the model BP1, Ak

is equal to zero, then it means that the existing facility at site k is closed by the follower.

Before we move on with the proposed solution method for P in the next section, we show

a property of the objective function of the lower level problem, i.e., the competitor’s profit

function.

Proposition 4.1.
n∑
j=1

hj

r∑
k=1

(Ak/d̃2
kj)

m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)

is concave in A = (A1, A2, ..., Ar)
T for A ≥ 0.

Proof. Since the sum of concave functions is a concave function, it suffices to show that each

of the terms gj(A) = hj

r∑
k=1

(Ak/d̃2
kj)

m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)

is concave for A ≥ 0 for j = 1, 2, ..., n. The

concavity of gj(A) for A ≥ 0 is obtained if its Hessian matrix Hj(A) is negative semidefinite

for A ≥ 0. The show the latter, we use the fact that Hj(A) for A ≥ 0 is negative semidefinite

if and only if VTHj(A)V ≤ 0 for any V. To this end, we compute the first and second order

derivatives of gj(A) as follows:

∂gj(A)

∂Ak
= hj

(
1/d̃2

kj

) m∑
i=1

(
Qi/d

2
ij

)

[
m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

)]2
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and

∂gj(A)

∂Al∂Ak
= −2hj

(
1/d̃2

kj

)(
1/d̃2

lj

) m∑
i=1

(
Qi/d

2
ij

)

[
m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

)]3 .

The Hessian matrix Hj(A) of gj(A) is then

Hj(A) = −pj




1
d̃4

1j

1
d̃2

1j d̃
2
2j

... 1
d̃2

1j d̃
2
rj

1
d̃2

1j d̃
2
2j

1
d̃4

2j

... 1
d̃2

2j d̃
2
rj

... ... ... ...

1
d̃2

1j d̃
2
rj

1
d̃2

2j d̃
2
rj

... 1
d̃4
rj




(4.11)

where pj = 2hj

m∑
i=1

(Qi/d2
ij)

[
m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)
]3 . We remark that pj ≥ 0 holds for A ≥ 0 since hj ≥ 0

and
m∑
i=1

(
Qi/d

2
ij

)
≥ 0. Now, VTHj(A)V can be expressed as
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VTHj(A)V = − (V1, V2, . . . , Vr) pj




1
d̃4

1j

1
d̃2

1jd
2
2j

... 1
d̃2

1j d̃
2
rj

1
d̃2

1j d̃
2
2j

1
d̃4

2j

... 1
d̃2

2j d̃
2
rj

... ... ... ...

1
d̃2

1j d̃
2
rj

1
d̃2

2j d̃
2
rj

... 1
d̃4
rj







V1

V2

...

Vr




(4.12)

= − (V1, V2, . . . , Vr) pj

(
V1

d̃2
1j

+
V2

d̃2
2j

+ ...+
Vr

d̃2
rj

)




1/d̃2
1j

1/d̃2
2j

...

1/d̃2
rj




(4.13)

= −pj
(
V1

d̃2
1j

+
V2

d̃2
2j

+ ...+
Vr

d̃2
rj

)2

. (4.14)

pj ≥ 0 for A ≥ 0 and

(
V1

d̃2
1j

+ V2

d̃2
2j

+ ...+ Vr
d̃2
rj

)2

≥ 0 together imply that VTHj(A)V ≤ 0 for

any V, and hence Hj(A) is negative semidefinite. This means that gj(A) for j = 1, 2, ..., n is

concave for A ≥ 0, which completes the proof.

Proposition 4.2.
n∑
j=1

hj

r∑
k=1

Ak/d̃
2
kj

m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)
−

r∑
k=1

c̃k(Ak − Ak) is concave for A ≥ 0.

Proof. The first term is concave for A ≥ 0 as a consequence of Proposition 1 and the second

term is a linear function of A ≥ 0. The result follows since the sum of concave functions is

also concave.

When we consider the objective function

n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

) −
m∑

i=1

fiXi−
m∑

i=1

ciQi (4.15)

of the leader, we can observe that it is a function of Q and X variables. When Xi values are

fixed, it can be shown that this function is concave in Q = (Q1, Q2, ..., Qm)T for Q ≥ 0 using



46

Proposition 3.2. In other words, the leader’s objective function without the facility location

cost terms is concave.

4.2. Solution Procedure

Different methods are suggested in the literature for the solution of the BP problems.

These are mostly heuristics and do not guarantee a global optimal solution. There are also

exact solution methods such as branch-and-bound and cutting plane algorithms which can

only be applied for certain types of BP problems. One of the earliest methods is due to Wen

and Yang (1990) who suggest both an exact and a heuristic BB algorithm for solving linear BP

models, whose upper level problem contains binary decision variables and the lower level (i.e.,

follower’s) problem is continuous. The BB algorithm proposed by Edmunds and Bard (1992)

can solve BP formulations to global optimality provided that the upper level problem is mixed-

integer and nonlinear, and the lower level problem consists of continuous decision variables and

the functions involved are convex and quadratic. Jan and Chern (1994) propose two exact

algorithms that make use of parametric analysis for solving nonlinear integer BP models,

whose functions are required to be separable and monotone in the leader’s and follower’s

decision variables. Gümüş and Floudas (2005) suggest a global optimization algorithm based

on a reformulation/linearization technique for general mixed-integer nonlinear BP problems

in which the lower-level problem is linear in terms of the continuous decision variables of the

follower. As pointed out in the survey papers of Dempe (2003) and Colson et al. (2007),

existing BB methods require linear or convex quadratic nonlinear functions in the lower-

level problem of the BP models. Unfortunately, this is not the case for our bilevel model

where the objective function of the follower’s problem is nonlinear and not quadratic. As a

consequence, we opt for a solution method where the mixed-integer nonlinear BP formulation is

first converted into a one-level mixed-integer nonlinear programming (MINLP) problem using

the fact that the follower’s problem is a continuous concave maximization problem, which

makes the Karush-Kuhn-Tucker optimality conditions necessary and sufficient. Although the

NLP relaxation of resulting equivalent one-level MINLP problem is not a concave programming

problem (i.e., maximization of a concave function over a compact convex set), we transform it

by introducing new variables so that it can be solved optimally by applying the GMIN-αBB

algorithm.
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4.2.1. Transformation of the Bilevel Model Into An Equivalent One-Level Model

As is shown in Proposition 4.2, the competitor’s problem, which is the lower level prob-

lem in BP1, is a concave maximization problem in terms of the attractiveness variables Ak ≥ 0.

Hence, we can write the Karush-Kuhn-Tucker (KKT) optimality conditions for this problem

and use them for converting the original bilevel model BP1 into an equivalent one-level opti-

mization model. A necessary and sufficient condition for A to be an optimal solution to the

competitor’s problem is that there exist Lagrangean multiplier vectors λ1 = (λ11, ..., λ1r) and

λ2 = (λ21, ..., λ2r) which satisfy the following system

n∑
j=1

hj
(1/d̃2

kj)
m∑
i=1

(Qi/d2
ij)

[
m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)
]2 − c̃k + λ1k − λ2k = 0 k = 1, 2, ..., r

Ak − Ak + s1k = 0 k = 1, 2, ..., r

−Ak + s2k = 0 k = 1, 2, ..., r

λ1ks1k = 0 k = 1, 2, ..., r

λ2ks2k = 0 k = 1, 2, ..., r

λ1k, λ2k, s1k, s2k ≥ 0 k = 1, 2, ..., r.

Here s1 = (s11, s12, ..., s1r) and s2 = (s21, s22, ..., s2r) are slack variables corresponding

to constraint sets (4.9) and (4.10) of the competitor’s problem, respectively. Three of the

Karush-Kuhn-Tucker optimality conditions, i.e.,

n∑
j=1

hj
(1/d̃2

kj)
m∑
i=1

(Qi/d2
ij)

[
m∑
i=1

(Qi/d2
ij)+

r∑
k=1

(Ak/d̃2
kj)
]2 − c̃k + λ1k − λ2k = 0, λ1ks1k = 0 and λ2ks2k = 0, are nonlinear in

nature. However, we can at least remove the nonlinearity caused by the last two conditions,

using the active set strategy suggested by Grossmann and Floudas (1987) which can be stated

as

λ1k −MY1k ≤ 0 k = 1, 2, ..., r

s1k −M(1− Y1k) ≤ 0 k = 1, 2, ..., r

λ2k −MY2k ≤ 0 k = 1, 2, ..., r

s2k −M(1− Y2k) ≤ 0 k = 1, 2, ..., r

Y1k, Y2k ∈ {0, 1} k = 1, 2, ..., r
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where M is an upper bound on the slack variables s1k and s2k, k = 1, 2, ..., r, and Y1k and

Y2k, k = 1, 2, ..., r are auxiliary binary variables. If Y1k = 1 or Y2k = 1 for some k, then the

corresponding slack variable s1k = 0 or s2k = 0, which implies that the kth constraint of the

ith constraint set (i = 1, 2) is active. Otherwise, if Yik = 0 for some k, then λik = 0. In both

cases the complementary slackness conditions are satisfied.

In order to solve the original bilevel model we transform it into an equivalent one-level

model. To this end, we replace the follower’s problem with its equivalent Karush-Kuhn-Tucker

conditions and make use of the active set strategy. Consequently, the one-level formulation,

which is equivalent to the original problem BP1, is expressed as
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BP1′ : max
n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

) −
m∑

i=1

fiXi−
m∑

i=1

ciQi (4.16)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (4.17)

Xi ∈ {0, 1} i = 1, . . . ,m (4.18)

Qi ≥ 0 i = 1, . . . ,m (4.19)

n∑

j=1

hj

(1/d̃2
kj)

m∑
i=1

(
Qi/d

2
ij

)

[
m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

)]2 − c̃k + λ1k − λ2k = 0 k = 1, . . . , r

(4.20)

Ak − Ak + s1k = 0 k = 1, . . . , r (4.21)

− Ak + s2k = 0 k = 1, . . . , r (4.22)

λ1k −MY1k ≤ 0 k = 1, . . . , r (4.23)

s1k −M(1− Y1k) ≤ 0 k = 1, . . . , r (4.24)

λ2k −MY2k ≤ 0 k = 1, . . . , r (4.25)

s2k −M(1− Y2k) ≤ 0 k = 1, . . . , r (4.26)

λ1k, λ2k, s1k, s2k ≥ 0, Y1k, Y2k ∈ {0, 1} k = 1, . . . , r (4.27)

The resulting one-level formulation BP1′ is a MINLP model. For its solution we employ

the GMIN-αBB algorithm that is derived from the αBB algorithm, as will be explained in

detail in the next subsection. Both of these algorithms perform a preprocessing step where

all the terms existing in the objective function as well as in the constraints are grouped into

different classes such as linear, fractional, concave, bilinear, univariate convex, and general

nonconcave. Then, a concave overestimator is generated for each term in all classes with

the exception of the linear and concave ones. However, the concavification procedure of the

terms in the general nonconcave class is different from those in the other classes in the sense
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that it requires a more difficult and computationally intensive method referred to as the α

calculations. In order to avoid the α calculations, we need to get rid of the nonconcave terms

in the objective function (4.16) and constraints (4.20). To do so, we define two new variables

w1j and w2j for j = 1, . . . , n as follows.

w1j =

m∑
i=1

(
Qi/d

2
ij

)

w2j

(4.28)

and

w2j =
m∑

i=1

(
Qi/d

2
ij

)
+

r∑

k=1

(
Ak/d̃

2
kj

)
, (4.29)

where w1j gives the proportion of the utility (i.e., the market share) that the leader captures

from point j and w2j is the total utility of the facilities belonging to both the leader and the

follower to the customers located at point j. Using the new variables, we can write

w1jw2j =
m∑

i=1

(
Qi/d

2
ij

)
(4.30)

and

w1j

w2j

=

m∑
i=1

(
Qi/d

2
ij

)

[
m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ak/d̃2

kj

)]2 (4.31)
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for j = 1, . . . , n. As a result, using the new variables w1j and w2j BP1′ can be written in

such a form where general nonconcave terms are eliminated at the expense of introducing

new bilinear and fractional terms into the formulation. As mentioned above, this helps in

avoiding the computationally intensive α calculations used in the concavification procedure of

the terms. Hence, the one-level model BP1′ can be formulated as

BP1′ : max
n∑

j=1

hjw1j −
m∑

i=1

fiXi−
m∑

i=1

ciQi (4.32)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (4.33)

Xi ∈ {0, 1} i = 1, . . . ,m (4.34)

Qi ≥ 0 i = 1, . . . ,m (4.35)

n∑

j=1

hj
1

d̃2
kj

w1j

w2j

− c̃k + λ1k − λ2k = 0 k = 1, 2, ..., r (4.36)

Ak − Ak + s1k = 0 k = 1, . . . , r (4.37)

− Ak + s2k = 0 k = 1, . . . , r (4.38)

λ1k −MY1k ≤ 0 k = 1, . . . , r (4.39)

s1k −M(1− Y1k) ≤ 0 k = 1, . . . , r (4.40)

λ2k −MY2k ≤ 0 k = 1, . . . , r (4.41)

s2k −M(1− Y2k) ≤ 0 k = 1, . . . , r (4.42)

m∑

i=1

(
Qi/d

2
ij

)
− w1jw2j = 0 j = 1, . . . , n (4.43)

m∑

i=1

(
Qi/d

2
ij

)
+

r∑

k=1

(
Ak/d̃

2
kj

)
− w2j = 0 j = 1, . . . , n (4.44)

λ1k, λ2k, s1k, s2k ≥ 0, Y1k, Y2k ∈ {0, 1} k = 1, . . . , r (4.45)

w1j, w2j ≥ 0 j = 1, . . . , n (4.46)
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4.2.2. Solution of the One-Level Model

BP1′ can be solved to ε-optimality by using the GMIN-αBB algorithm, which is a global

optimization method proposed by Adjiman et al. (1997) and later revised by Adjiman et al.

(2000) to solve pure-integer or mixed-integer nonlinear optimization problems. In fact, it is

derived from the αBB algorithm developed by Androulakis et al. (1995) to tackle nonlinear,

nonconvex optimization problems with continuous decision variables having lower and upper

limits. In the following, we first provide a brief description of this algorithm adapted for the

case of a maximization problem, and then give the working mechanism of GMIN-αBB along

with the details of how we apply it to solve our problem BP1′.

As its name suggests, αBB algorithm is a BB method as well. At each node of the BB

tree, a lower bound and an upper bound are generated on the optimal objective function value

of the nonconcave nonlinear continuous maximization problem (NLP) at hand. As a prepro-

cessing step, all the terms in the objective and constraint functions of the NLP are identified

and grouped in the following classes: linear, concave, bilinear, trilinear, fractional, fractional

trilinear, univariate convex, and general nonconcave (Floudas, 2000). Then, a concave over-

estimator for the terms in each class except the linear and concave classes is generated. This

concavification procedure usually requires the addition of new variables and linear inequality

constraints to the problem for bilinear, trilinear, fractional, fractional trilinear, and univariate

convex terms. As stated earlier, general nonconcave terms are handled by a more difficult

method referred to as the α calculations. However, since all such terms are removed from P ′,

we do not resort to α calculations in this work. While the overestimators provide an upper

bound on the optimal objective value of the NLP, a lower bound is generated by finding a

local optimal solution to the problem using for example a general purpose NLP solver such

as MINOS, CONOPT, and KNITRO that can handle a nonlinear programming problem. To

guarantee ε-convergence from the global maximum, i.e., the difference between the lower and

upper bounds is within ε of the optimal objective value, the feasible region of the problem is

divided at each node such that the rectangles defined by the lower and upper limits on the de-

cision variables are partitioned into smaller ones. This partitioning constitutes the branching

mechanism in the BB tree.
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At the beginning of the algorithm the best lower bound, zLB, is set to minus infinity

while the best upper bound zUB is set to plus infinity. Moreover, the values of the convergence

parameter ε and feasibility tolerance parameter εf are selected. The latter determines by how

much the constraints can deviate from feasibility. At the root node of the tree, a local optimal

solution is found for the original NLP, which gives a lower bound. Then, an upper bound

is obtained by solving the concavified problem. If zUB − zLB is less than ε, the algorithm is

terminated. Otherwise, the two child nodes are created by dividing the initial rectangle into

two new subrectangles. The concavified problem is solved in each of these nodes with the cor-

responding subrectangle to obtain new upper bounds. The maximum of these upper bounds

is used to update zUB; a local optimal solution to the original NLP is found at the associated

node. If this solution is εf -feasible, then zLB is updated. Subsequently, this node (subrectan-

gle) is selected for further branching to give rise to two new nodes with new subrectangles.

A node is pruned when the upper bound at this node is less than the best lower bound or

the concavified problem is infeasible. This procedure generates a nondecreasing sequence of

best lower bounds and a nonincreasing sequence of best upper bounds. A sufficient number

of iterations guarantees ε-convergence to the global optimum solution. The interested reader

may refer to Adjiman et al. (1998a), Adjiman et al. (1998b), and Floudas (2000) for more

details of the αBB algorithm. The pseudo-codes for αBB and GMIN-αBB algorithms are

given in the Appendices.

In order to employ the αBB algorithm at each node of the BB tree we relax the binary

variable vectors X = (X1, X2, ..., Xm), Y1 = (Y11, Y12, ..., Y1r), and Y2 = (Y21, Y22, ..., Y2r) of

BP1′ such that they can take values within the interval [0, 1]. To solve the relaxed version

of BP1′ we need to concavify all the terms in it except the linear and concave ones. The

terms for which an overestimator should be constructed are the fractional terms w1j/w2j in

constraints (4.36) and the bilinear terms w1jw2j in constraints (4.43). The overestimation

involves introducing new variables and constraints. Using the procedure given by Floudas

(2000), we let w3j = w1jw2j and w4j = w1j/w2j for j = 1, 2, ..., n. We also let wLij and wUij

denote, respectively, the lower and upper bounds on wij for i = 1, 2 and j = 1, 2, ..., n. These

bounds are easily established as follows: wL1j = wL2j = 0, wU1j = 1, and wU2j =
m∑
i=1

(
ui/d

2
ij

)
+

r∑
k=1

(
Ak/d̃

2
kj

)
. To overestimate the fractional terms w1j/w2j the following linear constraints
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are added to BP1′:

wL1j/w2j + w1j/w
U
2j − wL1j/wU2j − w4j ≤ 0 j = 1, 2, ..., n

wU1j/w2j + w1j/w
L
2j − wU1j/wL2j − w4j ≤ 0 j = 1, 2, ..., n.

The bilinear terms w1jw2j are overestimated using the following linear constraints:

wL1jw2j + wL2jw1j − wL1jwL2j − w3j ≤ 0 j = 1, 2, ..., n

wU1jw2j + wU2jw1j − wU1jwU2j − w3j ≤ 0 j = 1, 2, ..., n

−wU1jw2j − wL2jw1j + wU1jw
L
2j + w3j ≤ 0 j = 1, 2, ..., n

−wL1jw2j − wU2jw1j + wL1jw
U
2j + w3j ≤ 0 j = 1, 2, ..., n.

As a consequence of these new constraints, we obtain the concavified problem BP1UB whose

solution yields an upper bound to the original NLP at a given node of the BB tree when binary

variables are relaxed. BP1UB is given as
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BP1UB : max
n∑

j=1

hjw1j −
m∑

i=1

fiXi−
m∑

i=1

ciQi (4.47)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (4.48)

Qi ≥ 0 i = 1, . . . ,m (4.49)

n∑

j=1

hj
1

d̃2
kj

w4j − c̃k + λ1k − λ2k = 0 k = 1, . . . , r (4.50)

Ak − Ak + s1k = 0 k = 1, . . . , r (4.51)

− Ak + s2k = 0 k = 1, . . . , r (4.52)

λ1k −MY1k ≤ 0 k = 1, . . . , r (4.53)

s1k −M(1− Y1k) ≤ 0 k = 1, . . . , r (4.54)

λ2k −MY2k ≤ 0 k = 1, . . . , r (4.55)

s2k −M(1− Y2k) ≤ 0 k = 1, . . . , r (4.56)

m∑

i=1

(
Qi/d

2
ij

)
− w3j = 0 j = 1, . . . , n (4.57)

m∑

i=1

(
Qi/d

2
ij

)
+

r∑

k=1

(
Ak/d̃

2
kj

)
− w2j = 0 j = 1, . . . , n (4.58)

wL1jw2j + wL2jw1j − wL1jwL2j − w3j ≤ 0 j = 1, . . . , n (4.59)

wU1jw2j + wU2jw1j − wU1jwU2j − w3j ≤ 0 j = 1, . . . , n (4.60)

− wU1jw2j − wL2jw1j + wU1jw
L
2j + w3j ≤ 0 j = 1, . . . , n (4.61)

− wL1jw2j − wU2jw1j + wL1jw
U
2j + w3j ≤ 0 j = 1, . . . , n (4.62)

wL1j/w2j + w1j/w
U
2j − wL1j/wU2j − w4j ≤ 0 j = 1, . . . , n (4.63)

wU1j/w2j + w1j/w
L
2j − wU1j/wL2j − w4j ≤ 0 j = 1, . . . , n (4.64)

λ1k, λ2k, s1k, s2k ≥ 0 k = 1, . . . , r (4.65)

0 ≤ Y1k, Y2k ≤ 1 k = 1, . . . , r (4.66)

0 ≤ w1j ≤ 1 j = 1, . . . , n (4.67)

0 ≤ w2j ≤
m∑

i=1

(
ui/d

2
ij

)
+

r∑

k=1

(
Ak/d̃

2
kj

)
j = 1, . . . , n (4.68)



56

Branching at a node is performed by considering the solution at that node and selecting

the relaxed binary variable whose value is the closest to 0.5. Another important remark

regarding our solution method is that the αBB algorithm requires lower and upper bounds on

decision variables. The lower bound on each decision variable is zero, while the upper bounds

are given in Table 4.1 where M = Ak. The lower and upper bounds on variables w3j and

w4j are slightly more involved and requires the solution of the optimization problems with

objective functions min wij and max wij for i = 3, 4 and constraints of problem PUB. It is

also to be emphasized that in our algorithm branching occurs only on the variables which

participate in nonconcave terms, namely w1j and w2j for j = 1, 2, ..., n.

Table 4.1. Upper bounds on the decision variables in the αBB algorithm.

Variable Qi Xi Ak s1k s2k λ1k λ2k Y1k Y2k

Upper bound ui 1 Ak M M M M 1 1
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5. A BILEVEL COMPETITIVE FACILITY LOCATION

PROBLEM WITH FULL REACTION OF THE COMPETITOR

In Chapter 4, we formulate a BP problem for the situation where a firm, with the aim of

maximizing its profit, enters a market in which a competitor has existing facilities. The firm

entering the market becomes the leader and the competing firm becomes the follower of the

game. After the launch of the new facilities the reaction of the competitor is to adjust (i.e.,

increase or decrease) the attractiveness of its existing facilities as to maximize its own profit.

However, it cannot open new facilities and/or close existing ones, which is a rather restrictive

assumption. In this chapter3 , we relax this assumption and extend the mentioned work by

letting the reaction of the competitor include opening new facilities, closing existing ones in

addition to adjusting the attractiveness levels of the existing facilities. This extension has a

major impact on the structure of the BP model developed in Chapter 4 since the lower level

problem of the competitor, which is a continuous nonlinear programming problem, becomes

a mixed-integer nonlinear programming problem. Given that the upper level problem is also

an MINLP, the formulated BP model turns out to be one of the most difficult types of BP

models. The main contribution of this chapter is threefold. The first one is to develop a

Stackelberg game between two firms with a realistic set of competitor reactions; the second

one is to propose hybrid heuristics based on tabu search (TS); the third one is to devise a

method that guarantees an ε-optimal solution.

5.1. Model Formulation

In our problem setting, the market entrant firm (referred to as the firm) is the leader

and the competing firm (referred to as the competitor) already existing in the market is the

follower. The objective of the firm is to find out the optimal location and attractiveness of the

new facilities in such a way that its profit is maximized when there are r1 existing facilities and

r2 candidate facility sites belonging to the competitor. It is assumed that the competitor reacts

3The paper Küçükaydın et al. (2011b) based on this chapter is accepted for publication in the Turkish
Journal of Industrial Engineering. The papers of Küçükaydın et al. (2010b) and Küçükaydın et al. (2012)
based on this chapter are published in the proceedings of HM2010 and in the Computers and Operations
Research.



58

to the market entry of the firm by opening new facilities, closing existing ones, and adjusting

the attractiveness of its existing facilities with the aim of maximizing its profit. Note that

closing an existing facility at a certain location and opening a new facility at another location

can be recognized as the relocation of an existing facility. Thus, our model takes into account

all possible reactions of the competitor to the market entry of the new firm. Moreover, the

adjustment is assumed to be such that the attractiveness of an existing facility is increased or

decreased by the competitor provided that it remains positive and does not exceed a certain

upper limit.

We further assume that the customers are aggregated at n (demand) points, the number

of candidate facility sites of the leader is m, the number of existing facilities of the competitor

is r1, and the number of candidate facility sites of the competitor is r2. First, we define the

parameters and decision variables by indexing the points by j = 1, 2, ..., n, the firm’s candidate

facility sites by i = 1, 2, ...,m, the competitor’s existing facilities by k = 1, 2, ..., r1, and its

candidate facility sites by ` = 1, 2, ..., r2.

Parameters:

hj : annual buying power at point j,

ci : unit attractiveness cost of the firm’s new facility at site i,

e` : unit attractiveness cost of the competitor’s new facility at site `,

bk : unit cost of increasing and unit revenue of decreasing the attractiveness

of the competitor’s existing facility at site k,

fi : firm’s annualized fixed cost of opening a facility at site i,

f̃` : competitor’s annualized fixed cost of opening a facility at site `,

tk : revenue of closing an existing facility at site k,

ui : maximum attractiveness level of the firm’s new facility at site i,

M ` : maximum attractiveness level of the competitor’s new facility at site `,

Ak : maximum attractiveness level of the competitor’s existing facility at site k,

Ak : current attractiveness level of the competitor’s existing facility at site k,
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dij : Euclidean distance between the firm’s candidate site i and point j,

d̂`j : Euclidean distance between the competitor’s candidate site ` and point j,

d̃kj : Euclidean distance between the competitor’s existing facility at site k and point j.

Decision variables:

Xi : binary variable which is equal to one if a facility is opened at site i,

and zero otherwise,

Qi : attractiveness of the firm’s facility opened at site i,

Zk : binary variable which is equal to one if competitor’s existing facility at site k

is kept open, and zero otherwise,

Ak : new attractiveness level of competitor’s existing facility at site k,

Y` : binary variable which is equal to one if the competitor opens a new facility

at site `, and zero otherwise,

M` : attractiveness level of competitor’s new facility at site `.

By the same reasoning given in Chapter 3 and 4, the probability Pij that customers at

point j visits a new facility of the firm at site i can be written as

Pij =

(
Qi/d

2
ij

)
m∑
i=1

(
Qi/d2

ij

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
l=1

(
Ml/d̂2

lj

) . (5.1)

Hence, the total revenue captured by the new facilities can be given as

m∑

i=1

n∑

j=1

hjPij =
n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
l=1

(
Ml/d̂2

lj

) . (5.2)

Similarly, the total revenue captured by the existing and new facilities of the follower can be

computed as
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n∑

j=1

hj

r1∑
k=1

(
Ak/d̃

2
kj

)
+

r2∑
l=1

(
Ml/d̂

2
lj

)

m∑
i=1

(
Qi/d2

ij

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
l=1

(
Ml/d̂2

lj

) . (5.3)

Now we can formulate the problem as the following bilevel MINLP model:

BP2 : max
Q,X

n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
`=1

(
M`/d̂2

`j

) −
m∑

i=1

ciQi −
m∑

i=1

fiXi (5.4)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (5.5)

Qi ≥ 0 i = 1, . . . ,m (5.6)

Xi ∈ {0, 1} i = 1, . . . ,m (5.7)

max
A,M,Z,Y

n∑

j=1

hj

r1∑
k=1

(
Ak/d̃

2
kj

)
+

r2∑
`=1

(
M`/d̂

2
`j

)

m∑
i=1

(
Qi/d2

ij

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
`=1

(
M`/d̂2

`j

) +

r1∑

k=1

tk(1− Zk)

−
r1∑

k=1

bk(Ak − AkZk)−
r2∑

`=1

e`M` −
r2∑

`=1

f̃`Y` (5.8)

s.t.

Ak ≤ AkZk k = 1, . . . , r1 (5.9)

Ak ≥ 0 k = 1, . . . , r1 (5.10)

M` ≤M `Y` ` = 1, . . . , r2 (5.11)

M` ≥ 0 ` = 1, . . . , r2 (5.12)

Zk ∈ {0, 1} k = 1, . . . , r1 (5.13)

Y` ∈ {0, 1} ` = 1, . . . , r2 (5.14)

The objective function (5.4) of the firm has three components. The first one repre-

sents the revenue collected by the new facilities that are opened, while the second and third

components represent the fixed cost and attractiveness cost associated with opening the new
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facilities, respectively. Constraints (5.5) along with the binary restrictions (5.7) on the lo-

cation variables Xi and nonnegativity restrictions (5.6) on attractiveness variables Qi ensure

that if no facility is opened at site i, then the corresponding attractiveness Qi of the facility is

zero and if a facility is opened at site i, then its attractiveness Qi cannot exceed the maximum

level ui. We note that the number of facilities to be located is not fixed as in the previous

CFL models, its value is to be determined by the solution of the model. The objective func-

tion of the competitor (3.23) is comprised of five terms: the first one represents the revenue

collected by the existing and new facilities; the second one shows the revenue which occurs

when existing facilities are closed; the third one represents the costs or revenue associated

with adjusting attractiveness levels of existing facilities; finally the last two terms indicate the

costs associated with opening new facilities. Constraints (3.24) and (3.25) ensure that the new

attractiveness Ak of an existing facility at site k will be between zero and an upper bound Ak.

If Ak = Ak in an optimal solution, then it means that the attractiveness level of the facility

at site k is not adjusted, but the facility is kept open. In such a case, no attractiveness cost

is incurred since Ak −AkZk = 0. On the other hand, if Ak < Ak ≤ Ak, a cost of bk (Ak − Ak)
is obtained, and if 0 ≤ Ak < Ak, a revenue of bk (Ak − Ak) is gained. If the existing facility at

site k is closed, the values of variables Ak and Zk are equal to zero and no attractiveness cost

incurs. Constraints (5.11) along with constraints (5.12) ensure that if no facility is opened

at site `, then the corresponding attractiveness M` of the facility is zero and if a facility is

opened at site `, then its attractiveness M` cannot exceed the maximum level M `. Finally,

constraints (5.13) and (5.14) are the binary restrictions on competitor’s location variables, and

constraints (5.10) and (5.12) are the nonnegativity restrictions on its attractiveness variables

Ak and M`.

The proposed solution procedures exploit a property of the objective function (5.8) of

the competitor, namely it is concave in the attractiveness variables Ak and M` for Ak ≥ 0

and M` ≥ 0. Besides the objective function (5.4) of the leader is concave in its attractiveness

variables Qi for Qi ≥ 0, which is already proven in Chapter 3. Before proceeding with

the details of the solution procedures in the next section we show these properties with the

following propositions.
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Proposition 5.1.
n∑
j=1

hj

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

is concave in A and M for (A,M) ≥

0, when Q = (Q1, Q2, ..., Qm), Z = (Z1, Z2, ..., Zr1), and Y = (Y1, Y2, ..., Yr2) are fixed.

Proof. Since the sum of concave functions is a concave function, it suffices to show that each

of the terms gj (A,M) = hj

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

is concave for (A,M) ≥ 0 for

every j = 1, 2, ..., n. gj (A,M) is concave for (A,M) ≥ 0, if its Hessian matrix Hj(A,M) is

negative semidefinite for (A,M) ≥ 0. Showing the negative semidefiniteness of Hj(A,M) is

equivalent to showing VTHj(A,M)V ≤ 0 for any V when (A,M) ≥ 0. The first and second

order derivatives of gj(A,M) are given, respectively, as

∂gj (A,M)

∂Ap
= hj

1

d̃2
pj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij) +

r1∑
k=1

(Ak/d̃2
kj) +

r2∑
`=1

(M`/d̂2
`j)

)2 ,

∂gj (A,M)

∂Mq

= hj

1

d̂2
qj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij) +

r1∑
k=1

(Ak/d̃2
kj) +

r2∑
`=1

(M`/d̂2
`j)

)2 ,

∂gj (A,M)

∂Ap∂Aq
= −2hj

1

d̃2
pj d̃

2
qj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij) +

r1∑
k=1

(Ak/d̃2
kj) +

r2∑
`=1

(M`/d̂2
`j)

)3 ,
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∂gj (A,M)

∂Mp∂Mq

= −2hj

1

d̂2
pj d̂

2
qj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij) +

r1∑
k=1

(Ak/d̃2
kj) +

r2∑
`=1

(M`/d̂2
`j)

)3 ,

∂gj (A,M)

∂Mq∂Ap
= −2hj

1

d̂2
qj d̃

2
pj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij) +

r1∑
k=1

(Ak/d̃2
kj) +

r2∑
`=1

(M`/d̂2
`j)

)3 .

Defining ηj = 2hj

m∑
i=1

(Qi/d
2
ij)

(
m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃
2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

)3 , the (p, q)th entry of the Hessian

matrix Hj(A,M) of gj(A,M) becomes

[Hj(A,M)]p,p =





− ηj

d̃4
pj

, if 1 ≤ p ≤ r1

− ηj

d̂4
pj

, if r1 < p ≤ r1 + r2

[Hj(A,M)]p,q =





− ηj

d̃2
pj d̃

2
qj

, for p 6= q and 1 ≤ p, q ≤ r1

− ηj

d̃2
pj d̂

2
qj

, for p 6= q, 1 ≤ p ≤ r1, and r1 + 1 ≤ q ≤ r1 + r2

− ηj

d̂2
pj d̃

2
qj

, for p 6= q, r1 < p ≤ r1 + r2 and 1 ≤ q ≤ r1

− ηj

d̂2
pj d̂

2
qj

, for p 6= q and r1 < p, q ≤ r1 + r2.

We remark that ηj ≥ 0 for (A,M) ≥ 0 since hj ≥ 0 and
m∑
i=1

(
Qi/d

2
ij

)
≥ 0. gj(A,M) is concave

if and only if Hj(A,M) is negative semidefinite for all values of (A,M) ≥ 0. To show the

latter, we consider VTHj(A,M)V which can be expressed as
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VTHj(A,M)V = −ηj
(
V1

d̃2
1j

+
V2

d̃2
2j

+ ...+
Vr1

d̃2
r1j

+
Vr1+1

d̂2
1j

+ ...+
Vr1+r2

d̂2
r2j

)2

. (5.15)

ηj ≥ 0 for (A,M) ≥ 0 and

(
V1

d̃2
1j

+ ...+
Vr1
d̃2
r1j

+ ...+
Vr1+r2

d̂2
r2j

)2

≥ 0 imply together that VTHj(A,M)V

≤ 0 for any V. This means that Hj(A,M) is negative semidefinite, which proves the concavity

of gj(A,M) for every j = 1, 2, ..., n. Hence

n∑
j=1

hj

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

is concave in (A,M) for (A,M) ≥ 0.

Proposition 5.2.
n∑
j=1

hj

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

+
r1∑
k=1

tk(1− Zk)

−
r1∑
k=1

bk(Ak − AkZk) −
r2∑
`=1

e`M` −
r2∑
`=1

f̃`Y` is concave in A and M for (A,M) ≥ 0, when

Q = (Q1, Q2, ..., Qm), Z = (Z1, Z2, ..., Zr1), and Y = (Y1, Y2, ..., Yr2) are fixed.

Proof. The first term is concave for (A,M) ≥ 0 as a consequence of Proposition 5.1. and

the rest of the terms are linear functions of (A,M) ≥ 0. The result follows since the sum of

concave functions is also concave.

Proposition 5.3. states that the firm’s objective function given in (5.4) is also concave.

Proposition 5.3.
n∑
j=1

hj

m∑
i=1

(Qi/d2
ij)

m∑
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(Qi/d2
ij)+

r1∑
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(Ak/d̃2
kj)+

r2∑
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(M`/d̂
2
`j)
−

m∑
i=1

ciQi −
m∑
i=1

fiXi is concave for

Q ≥ 0, when A = (A1, A2, ..., Ar1), M = (M1,M2, ...,Mr2), and X = (X1, X2, ..., Xm) are

fixed.

Proof. We can show the (p, q)th entry of the Hessian matrix Hj(Q) of the function

hj

m∑
i=1

(Qi/d2
ij)

m∑
i=1

(Qi/d2
ij)+

r1∑
k=1
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kj)+

r2∑
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is
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[Hj(Q)]p,q =




− ψj
d4
pj
, for p = q

− ψj
d2
pjd

2
qj
, for p 6= q

for 1 ≤ p, q ≤ m where ψj = 2hj

r1∑
k=1

(Ak/d̃
2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

(
m∑
i=1

(Qi/d2
ij)+

r1∑
k=1

(Ak/d̃
2
kj)+

r2∑
`=1

(M`/d̂
2
`j)

)3 . The rest of the proof

follows the same steps as the proofs of Proposition 5.2. and Proposition 5.3.

5.2. Solution Procedures

To find good feasible solutions to our bilevel problem BP2, we develop three tabu search

(TS) heuristics, which perform a search in the upper level problem (ULP) over the location

variables X. TS is a metaheuristic algorithm that guides the local search to prevent it being

trapped in premature local optima or in cycling (Glover and Laguna, 2007). In our implemen-

tation, this is managed by forbidding the locations of the firm’s opened facilities in previous

solutions so that they are not selected in later iterations. To evaluate the quality of the so-

lutions obtained by the TS heuristics, we also devise an exact (ε-optimal) solution procedure

which combines complete enumeration in terms of competitor’s location variables Y and Z

with the global optimization algorithm GMIN-αBB. It is computationally prohibitive and can

only solve small problem instances in a reasonable CPU time.

5.2.1. First Tabu Search Heuristic

The first TS heuristic called TS-1 starts with an initial solution, and at each iteration

the neighbors of the current solution are generated by executing three types of moves. After

all possible neighboring solutions have been created, we check whether they are in the tabu

list which consists of the location variables X and the attractiveness variables Q of the firm’s

facilities in the ULP. The best neighboring solution, namely the solution which provides the

highest objective function value of the firm is selected as the next current solution if it is not

in the tabu list. Both the incumbent and the tabu list are updated subsequently.
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To find an initial solution, we calculate the average distance of each candidate facility

site of the firm from the set of demand points and find their minimum. The candidate facility

site i
′

with the minimum average distance is chosen as the location of a facility. Thus, the

initial solution consists of only a single facility located at site i
′
, i.e., Xi′ = 1 and Xi = 0

for all i 6= i
′
. We set the attractiveness Qi′ arbitrarily to the maximum attractiveness level

ui′ . By fixing the attractiveness levels of the firm’s facilities (Qi′ = ui′ and Qi = 0, i 6= i
′
),

we can solve the competitor’s lower level problem (LLP) to global optimality using a branch-

and-bound algorithm with NLP relaxation as a consequence of Proposition 5.2. At each node

of the BB tree, we relax the binary restrictions of the location variables Yk and Zl, and solve

a continuous NLP problem, which provides an upper bound for the LLP. If all Yk and Zl

variables turn out to be binary in the relaxed solution, then we obtain a feasible solution for

the LLP that constitutes a lower bound on the optimal objective value of the competitor. The

relaxed LLP at the initial solution is as follows:

max
A,M,Z,Y

n∑

j=1

hj

r1∑
k=1

(
Ak/d̃

2
kj

)
+

r2∑
`=1

(
M`/d̂

2
`j

)

(
ui′/d

2
i′j

)
+

r1∑
k=1

(
Ak/d̃2

kj

)
+

r2∑
`=1

(
M`/d̂2

`j

) +

r1∑

k=1

tk(1− Zk)

−
r1∑

k=1

bk(Ak − AkZk)−
r2∑

`=1

e`M` −
r2∑

`=1

f̃`Y` (5.16)

s.t.

Ak ≤ AkZk k = 1, . . . , r1 (5.17)

Ak ≥ 0 k = 1, . . . , r1 (5.18)

M` ≤M `Y` ` = 1, . . . , r2 (5.19)

M` ≥ 0 ` = 1, . . . , r2 (5.20)

0 ≤ Zk ≤ 1 k = 1, . . . , r1 (5.21)

0 ≤ Y` ≤ 1 ` = 1, . . . , r2 (5.22)

We employ KNITRO 6.0 (Waltz and Plantenga, 2009) to solve the NLPs. Branching at a

node is carried out by considering the solution at that node and choosing one of the Yk and Zl
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variables whose value is the closest to 0.5, i.e., the most fractional variable is selected as the

branching variable. The pruning of the nodes is based on two rules: a node is pruned if either

a feasible solution is obtained or the upper bound at that node is less than or equal to the best

lower bound in the tree. The BB algorithm is utilized not only for the initial solution of TS-1,

but also for any solution generated throughout the iterations. When the LLP is solved via

the BB method, the locations of the competitor’s facilities Y
′
, Z

′
as well as the attractiveness

levels M
′
, A

′
of these facilities are found. As a result, the firm’s objective value corresponding

to the initial solution can be computed as
n∑
j=1

hj
Q
i
′ /d2

i
′
j(

Q
i
′ /d2

i
′
j

)
+
r1∑
k=1

(
A
k
′ /d̃2

k
′
j

)
+
r2∑
`=1

(
M
`
′ /d̂2

`
′
j

)−ciQi′−fi′ ,

where Qi′ = ui′ and fi′ is the corresponding fixed cost. This BB method with NLP relaxation

follows the same steps of the BB method which we propose in Subsection 3.2.3.

Neighboring solutions are generated from the current solution by executing 1-Add, 1-

Drop, and 1-Swap moves. A 1-Add move opens a new facility at one of the candidate sites

where no facility exists. A 1-Drop move closes an open facility and 1-Swap move closes an

open facility and opens a new one at another candidate site without a facility. In order

to calculate the firm’s profit of a neighboring solution with known locations X, we need

to find attractiveness values Q of the firm and then determine the optimal reaction of the

competitor using the BB algorithm with NLP relaxation. To this end, we randomly generate

Q
′′

corresponding to the open facilities in the neighboring solution such that
∑m

i=1

∣∣Q′′i −Q
′
i

∣∣ <
ε, where ε is a parameter. However, we also need to have rules for a facility added or removed

in the neighboring solution. It is obvious that the attractiveness of a closed facility will be

zero. The attractiveness of a new facility, on the other hand, is assigned a random value in

the interval [0, ui].

To prevent cycling in TS-1 heuristic, we utilize a tabu list containing location variables

X and the randomly generated attractiveness levels Q of the firm’s facilities. In fact, there is

no need to store the location variables X because an attractiveness level at value zero for a

facility implies that there is no facility opened at that location and a positive attractiveness

value implies that the corresponding location variable is one. If the values X of a newly

generated neighboring solution coincide with those of a solution in the tabu list and the

attractiveness values Q of the firm’s facilities are within a hypercube of side length ρ whose
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center is the point defined by the Q values of the same solution in the tabu list, then this

neighboring solution is declared as tabu.

At each iteration the best neighboring solution becomes the current solution for the next

iteration. Moreover, if the firm’s profit corresponding the best neighboring solution is higher

than of the incumbent, the incumbent is updated as well. We use two termination criteria: the

maximum number of iterations performed (max iter) and the maximum number of iterations

without an improvement in the incumbent (max nonimp iter).

5.2.2. Second Tabu Search Heuristic

Here, we only explain the differences of the second TS heuristic (TS-2) from TS-1. When

a neighboring solution is created from the current solution by executing one of the 1-Add, 1-

Drop, and 1-Swap moves, the attractiveness levels Q of the firm’s facilities in the neighboring

solution are not generated randomly, but obtained by the gradient ascent algorithm. Note that

when the firm’s location variables X in the neighboring solution and the attractiveness levels

A and M of the competitor’s facilities in the current solution are fixed, the firm’s objective

function in (5.4) is concave in terms of Q ≥ 0 as a result of Proposition 5.3. To find the

solution of this concave maximization problem subject to the constraints 0 ≤ Qi ≤ ui we use

the following necessary and sufficient conditions, which can be immediately deduced from the

Karush-Kuhn-Tucker conditions (Bertsekas, 1995). Q∗ is a global optimal solution of profit

function Π if and only if

i) ∂Π(Q)
∂Qi

∣∣∣
Q∗
≤ 0 when Q∗i = 0,

ii) ∂Π(Q)
∂Qi

∣∣∣
Q∗
≥ 0 when Q∗i = ui,

iii) ∂Π(Q)
∂Qi

∣∣∣
Q∗

= 0 when 0 < Q∗i < ui.

These conditions allow us to device a gradient ascent procedure that can find a global

maximum of Π(Q). Note that this procedure is the same gradient ascent algorithm given in

Subsection 3.2.1. Starting from randomly chosen initial values Q(0), a direction e(t) and a

step size µ(t) = arg maxµ Π(Q(t) + µe(t)) are determined at each iteration of the procedure,
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which are used to update the value of Q at the next iteration, i.e., Q(t+1) = Q(t) + µ(t)e(t).

The iterations are repeated until the norm of the direction vector
∥∥e(t)

∥∥ is smaller than a

user-specified value. The important issue here is the determination of the direction e(t) and

the step size µ(t) at each iteration t. Since the decision variables Q have lower and upper

bounds, the direction e(t) is determined as follows:

i) e
(t)
i = ∂Π(Q(t))

∂Qi
when 0 < Q

(t)
i < ui for i = 1, 2, ...,m

ii) e
(t)
i = 0 when Q

(t)
i = 0 and ∂Π(Q(t))

∂Qi
< 0 for i = 1, 2, ...,m

iii) e
(t)
i = ∂Π(Q(t))

∂Qi
when Q

(t)
i = 0 and ∂Π(Q(t))

∂Qi
> 0 for i = 1, 2, ...,m

iv) e
(t)
i = 0 when Q

(t)
i = ui and ∂Π(Q(t))

∂Qi
> 0 for i = 1, 2, ...,m

v) e
(t)
i = ∂Π(Q(t))

∂Qi
when Q

(t)
i = ui and ∂Π(Q(t))

∂Qi
< 0 for i = 1, 2, ...,m.

The step size calculation is carried out by applying golden section search (Press et al., 1986)

with the initial interval [0, µmax], where µmax is the maximum possible value for the step size

µ to maintain the feasibility of vector Q with respect to its lower and upper bounds.

As a consequence of setting the values of the attractiveness levels Q of the firm’s fa-

cilities, the tabu list in TS-2 should be constructed differently. Hence, we utilize a tabu list

containing the locations X of the firm and the attractiveness levels A and M of the competitor

encountered at the previous iterations. There is no need to store the location variables Yk and

Zl of the competitor because an attractiveness level at value zero for a facility implies that

there is no facility opened at that location and a positive attractiveness value implies that the

corresponding location variable is one. After executing each move and generating the location

vector X of the neighboring solution, the tabu list is checked to see whether X is already in

the list. If it is not, then the neighboring solution is not tabu active. Otherwise, another check

should be performed for the attractiveness levels A and M of the competitor. The solution is

declared to be tabu active if the values of A and M are within a hypercube of side length ρ

whose center is the point defined by the A and M values of the solution in the tabu list. The

reason for keeping track of the values for A and M is that we obtain similar attractiveness

levels Q of the firm’s facilities for similar values of A and M, which deteriorates the diversi-

fication in the search. As is the case in TS-1, TS-2 makes use of the BB method with NLP

relaxation to compute the objective value of the LLP, i.e., the competitor’s profit, given the
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location variables X and attractiveness variables Q of the firm’s facilities. The pseudo codes

for both TS heuristics (TS-1, TS-2) are given in the Appendices C and D.

5.2.3. Third Tabu Search Heuristic

TS-3 is the third TS heuristic we propose. It is simply TS-1 initiated at the solution

generated by TS-2. This means that the solution TS-3 computes is at least as good as that of

TS-2 heuristic.

5.2.4. An ε-Optimal Solution Method

It is necessary to fix the binary variables Z and Y in the LLP of the competitor to be

able to use the GMIN-αBB algorithm for the solution of BP2. The combinations of the values

that binary variables Zk and Y` can take indicate all possible reactions of the competitor, i.e.,

keeping or closing existing facilities and opening new ones. Since the number of Zk variables

is r1 and that of Y` variables is r2, the competitor has a total of 2r1+r2 possible reactions to

the leader firm in terms of locating facilities (excluding the decision about the attractiveness

levels of these facilities). For example, one can think of a scenario in which the competitor has

r1 = 2 existing facilities and r2 = 2 candidate facility sites. In such a case, the combination

Z1 = 1, Z2 = 0, Y1 = 0, Y2 = 1 represents the situation in which the competitor keeps the

first existing facility open, closes its second existing facility, and opens a new facility at the

second candidate site only.

When the values of the binary variables Z and Y are fixed in the LLP, the attractiveness

variables Ak and M` have zero values if the corresponding Zk and Y` are zero. Thus they can be

discarded from the LLP. Suppose that in an arbitrary reaction of the competitor, the number

of Zk (Y`) variables whose value is equal to one is o1 (o2) where 0 ≤ o1 ≤ r1 (0 ≤ o2 ≤ r2). As

a result, problem BP2 becomes a bilevel MINLP problem called BP2′ whose LLP is an NLP

which contains only continuous attractiveness variables A and M. BP2
′

can be formulated as
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BP2′ : max
Q,X

n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

o1∑
k=1

(
Ak/d̃2

kj

)
+

o2∑
`=1

(
M`/d̂2

`j

) −
m∑

i=1

ciQi −
m∑

i=1

fiXi (5.23)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (5.24)

Qi ≥ 0 i = 1, . . . ,m (5.25)

Xi ∈ {0, 1} i = 1, . . . ,m (5.26)

max
A,M

n∑

j=1

hj

o1∑
k=1

(
Ak/d̃

2
kj

)
+

o2∑
`=1

(
M`/d̂

2
`j

)

m∑
i=1

(
Qi/d2

ij

)
+

o1∑
k=1

(
Ak/d̃2

kj

)
+

o2∑
`=1

(
M`/d̂2

`j

) −
o1∑

k=1

bk(Ak − Ak)

−
o2∑

`=1

e`M` (5.27)

s.t.

Ak ≤ Ak k = 1, . . . , o1 (5.28)

Ak ≥ 0 k = 1, . . . , o1 (5.29)

M` ≤M ` ` = 1, . . . , o2 (5.30)

M` ≥ 0 ` = 1, . . . , o2 (5.31)

Note that the second summation term
∑r1

k=1 tk(1−Zk) representing the revenue obtained

by closing the existing facilities and the last term
∑r2

`=1 f̃`Y` corresponding to the fixed cost of

new facilities in the competitor’s objective function (5.8) of BP1 do not exist in (5.27) because

they become constants after setting Z and Y. Then it becomes possible to obtain the optimal

solution to BP2 by solving BP2′ using the GMIN-αBB method explained below for each of

the 2r1+r2 combinations.

It is important to emphasize that the solutions of BP2′ will not be bilevel feasible to the

original problem BP2 for some of the combinations. This means that when we fix the location

variables X and attractiveness variables Q obtained by solving BP2′ in the ULP of BP2, and
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solve the competitor’s LLP using the BB algorithm with NLP relaxation (as described in

Subsection 5.2.1), the optimal values of Z and Y may not coincide with the values of these

variables that are fixed in solving BP2′. Moreover, even if the optimal values of Z and Y in

the solution of the LLP of BP2 coincide with the values fixed in the combination, the optimal

values of the attractiveness variables A and M may not be the same. In these cases, the

solutions generated for BP2′ with the given combination will be bilevel infeasible.

Now, we can give the details of the GMIN-αBB method used to solve BP2′. The appli-

cation of GMIN-αBB requires that the BP2 model of BP2′ be transformed into an equivalent

one-level model.

5.2.4.1. Transformation of the Bilevel Model Into An Equivalent One-Level Model. As Propo-

sition 5.2. states, the competitor’s problem in BP2′ is a concave maximization problem in terms

of the continuous attractiveness variables (A,M) ≥ 0. Thus, a necessary and sufficient condi-

tion for (A,M) to be an optimal solution is that there exist nonnegative Lagrange multiplier

vectors λ1 = (λ11, ..., λ1o1), λ2 = (λ21, ..., λ2o1), λ3 = (λ31, ..., λ3o2), and λ4= (λ41, ..., λ4o2)

which satisfy the following KKT optimality conditions:

n∑
j=1

hj
(1/d̃2

kj)
m∑
i=1

(Qi/d2
ij)

[
m∑
i=1

(Qi/d2
ij)+

o1∑
k=1

(Ak/d̃2
kj)+

o2∑
`=1

(M`/d̂
2
`j)
]2 − bk + λ1k − λ2k = 0 k = 1, . . . , o1

n∑
j=1

hj
(1/d̂2

`j)
m∑
i=1

(Qi/d2
ij)

[
m∑
i=1

(Qi/d2
ij)+

o1∑
k=1

(Ak/d̃2
kj)+

o2∑
`=1

(M`/d̂
2
`j)
]2 − e` + λ3` − λ4` = 0 k = 1, . . . , o2

Ak − Ak + S1k = 0 k = 1, ..., o1

−Ak + S2k = 0 k = 1, . . . , o1

M` −M ` + S3` = 0 ` = 1, . . . , o2

−M` + S4` = 0 ` = 1, . . . , o2

λ1kS1k = 0 k = 1, . . . , o1

λ2kS2k = 0 k = 1, . . . , o1

λ3lS3` = 0 ` = 1, . . . , o2

λ4lS4` = 0 ` = 1, . . . , o2

λ1k, λ2k, λ3`, λ4`, S1k, S2k, S3`, S4` ≥ 0 k = 1, . . . , o1,

` = 1, . . . , o2.
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Here, S1 = (S11, S12, . . . , S1o1), S2 = (S21, S22, . . . , S2o1), S3 = (S31, S32, . . . , S3o2), and S4 =

(S41, S42, . . . , S4o2) are nonnegative slack variables introduced for the constraint sets (5.28),

(5.29), (5.30), and (5.31), respectively. Six of the KKT optimality conditions, namely the first

two and the last four, are nonlinear in nature. However, it is possible to linearize the last

four conditions using the active set strategy again by introducing auxiliary binary variables

{V1k, V2k : k = 1, . . . , o1}, {V3`, V4` : ` = 1, . . . , o2} and an upper bound θ (its determination is

explained in the next section) on the slack variables S as follows:

λ1k − θV1k ≤ 0 k = 1, . . . , o1

S1k − θ(1− V1k) ≤ 0 k = 1, . . . , o1

λ2k − θV2k ≤ 0 k = 1, . . . , o1

S2k − θ(1− V2k) ≤ 0 k = 1, . . . , o1

λ3` − θV3` ≤ 0 ` = 1, . . . , o2

S3` − θ(1− V3`) ≤ 0 ` = 1, . . . , o2

λ4` − θV4` ≤ 0 ` = 1, . . . , o2

S4` − θ(1− V4`) ≤ 0 ` = 1, . . . , o2

V1k, V2k, V3`, V4` ∈ {0, 1}

If any one of the (V1k, V2k, V3`, V4`) variables is equal to one, then the corresponding slack

variable S is zero. Otherwise, the corresponding Lagrange multiplier is zero. The resulting

formulation of BP2′, where the LLP of the competitor is replaced by the KKT optimality

conditions augmented with the active set strategy, is a (one-level) MINLP problem with the

nonlinearities occurring in the objective function and the first two KKT optimality conditions.

We can solve this problem by the GMIN-αBB algorithm that is explained in Subsection 4.2.1.

Furthermore, note that this transformation of the bilevel model BP2′ into an equivalent one-

level model follows the same track that of the bilevel model BP1′ given in Subsection 4.2.1.

In order to get rid of general non-concave terms like we did in Subsection 4.2.1 and avoid
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applying the α calculations, we define variables

w1j =

m∑
i=1

(
Qi/d

2
ij

)

w2j

and

w2j =
m∑

i=1

(
Qi/d

2
ij

)
+

o1∑

k=1

(
Ak/d̃

2
kj

)
+

o2∑

`=1

(
M`/d̂

2
`j

)

for j = 1, . . . , n. The new variables help to convert the general non-concave terms in the

objective function as well as in the first two KKT optimality conditions into the following

bilinear and fractional terms.

m∑

i=1

(
Qi/d

2
ij

)
= w1jw2j,

and

m∑
i=1

(
Qi/d

2
ij

)

[
m∑
i=1

(
Qi/d2

ij

)
+

o1∑
k=1

(
Ak/d̃2

kj

)
+

o2∑
`=1

(
M`/d̂2

`j

)]2 =
w1j

w2j

for j = 1, . . . , n. Then we obtain the following formulation BP2
′′
.
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BP2
′′

: max
n∑

j=1

hjw1j −
m∑

i=1

fiXi−
m∑

i=1

ciQi (5.32)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (5.33)

Xi ∈ {0, 1} i = 1, . . . ,m (5.34)

Qi ≥ 0 i = 1, . . . ,m (5.35)

n∑

j=1

hj
1

d̃2
kj

w1j

w2j

− bk + λ1k − λ2k = 0 k = 1, . . . , o1 (5.36)

n∑

j=1

hj
1

d̂2
`j

w1j

w2j

− e` + λ3` − λ4` = 0 ` = 1, . . . , o2 (5.37)

Ak − Ak + S1k = 0 k = 1, . . . , o1 (5.38)

− Ak + S2k = 0 k = 1, . . . , o1 (5.39)

M` −M ` + S3` = 0 ` = 1, . . . , o2 (5.40)

−M` + S4` = 0 ` = 1, . . . , o2 (5.41)

λ1k − θV1k ≤ 0 k = 1, . . . , o1 (5.42)

S1k − θ(1− V1k) ≤ 0 k = 1, . . . , o1 (5.43)

λ2k − θV2k ≤ 0 k = 1, . . . , o1 (5.44)

S2k − θ(1− V2k) ≤ 0 k = 1, . . . , o1 (5.45)

λ3` − θV3` ≤ 0 ` = 1, . . . , o2 (5.46)

S3` − θ(1− V3`) ≤ 0 ` = 1, . . . , o2 (5.47)

λ4` − θV4` ≤ 0 ` = 1, . . . , o2 (5.48)

S3` − θ(1− V4`) ≤ 0 ` = 1, . . . , o2 (5.49)

m∑

i=1

(Qi/d
2
ij)− w1jw2j = 0 j = 1, . . . , n (5.50)

m∑

i=1

(Qi/d
2
ij) +

o1∑

k=1

(Ak/d̃
2
kj) +

o2∑

`=1

(M`/d̂
2
`j)− w2j = 0 j = 1, . . . , n (5.51)
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λ1k, λ2k, S1k, S2k ≥ 0, V1k, V2k ∈ {0, 1} k = 1, . . . , o1 (5.52)

λ3`, λ4`, S3`, S4` ≥ 0, V3l, V4l ∈ {0, 1} ` = 1, . . . , o2 (5.53)

w1j, w2j ≥ 0 j = 1, . . . , n (5.54)

5.2.4.2. Solution of the One-Level Model. Given that BP2
′′

is in a form that is suitable for

the GMIN-αBB, we can relax all binary variables X = (X1, . . . , Xm), V1 = (V11, . . . , V1o1),

V2 = (V21, . . . , V2o1), V3 = (V31, . . . , V3o2), and V4 = (V41, . . . , V4o2) in the interval [0, 1]

and the αBB algorithm is then employed for solving the resulting relaxed (continuous) NLP

problem BP2
′′
. The rules for pruning a node and branching at a node are the same as the ones

of the αBB algorithm given in Subsection 4.2.2. Branching occurs again only on the variables

which participate in non-concave terms, namely w1j and w2j for j = 1, 2, ..., n.

We define w3j = w1jw2j and w4j = w1j/w2j for j = 1, 2, ..., n. The overestimation of

bilinear terms is accomplished by including the following constraints in BP2
′′

wL1jw2j + wL2jw1j − wL1jwL2j − w3j ≤ 0 j = 1, 2, ..., n

wU1jw2j + wU2jw1j − wU1jwU2j − w3j ≤ 0 j = 1, 2, ..., n

− wU1jw2j − wL2jw1j + wU1jw
L
2j + w3j ≤ 0 j = 1, 2, ..., n

− wL1jw2j − wU2jw1j + wL1jw
U
2j + w3j ≤ 0 j = 1, 2, ..., n,

while the two constraints below help to overestimate the fractional terms.

wL1j/w2j + w1j/w
U
2j − wL1j/wU2j − w4j ≤ 0 j = 1, 2, ..., n

wU1j/w2j + w1j/w
L
2j − wU1j/wL2j − w4j ≤ 0 j = 1, 2, ..., n.

After defining the new variables w3j, w4j and adding the above constraints the concavified

problem BP2
′′′

is obtained.
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BP2
′′′

: max
n∑

j=1

hjw1j −
m∑

i=1

fiXi−
m∑

i=1

ciQi (5.55)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (5.56)

Qi ≥ 0, 0 ≤ Xi ≤ 1 i = 1, . . . ,m (5.57)

n∑

j=1

hj
1

d̃2
kj

w4j − bk + λ1k − λ2k = 0 k = 1, . . . , o1 (5.58)

n∑

j=1

hj
1

d̃2
`j

w4j − e` + λ3` − λ4` = 0 ` = 1, . . . , o2 (5.59)

Ak − Ak + S1k = 0 k = 1, . . . , o1 (5.60)

− Ak + S2k = 0 k = 1, . . . , o1 (5.61)

M` −M ` + S3` = 0 ` = 1, . . . , o2 (5.62)

−M` + S4` = 0 ` = 1, . . . , o2 (5.63)

λ1k − θV1k ≤ 0 k = 1, . . . , o1 (5.64)

S1k − θ(1− V1k) ≤ 0 k = 1, . . . , o1 (5.65)

λ2k − θV2k ≤ 0 k = 1, . . . , o1 (5.66)

S2k − θ(1− V2k) ≤ 0 k = 1, . . . , o1 (5.67)

λ3` − θV3` ≤ 0 ` = 1, . . . , o2 (5.68)

S3` − θ(1− V3`) ≤ 0 ` = 1, . . . , o2 (5.69)

λ4` − θV4` ≤ 0 ` = 1, . . . , o2 (5.70)

S4` − θ(1− V4`) ≤ 0 ` = 1, . . . , o2 (5.71)

m∑

i=1

(Qi/d
2
ij)− w3j = 0 j = 1, . . . , n (5.72)

m∑

i=1

(Qi/d
2
ij) +

o1∑

k=1

(Ak/d̃
2
kj) +

o2∑

`=1

(M`/d̂
2
`j)− w2j = 0 j = 1, . . . , n (5.73)
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wL1jw2j + wL2jw1j − wL1jwL2j − w3j ≤ 0 j = 1, . . . , n (5.74)

wU1jw2j + wU2jw1j − wU1jwU2j − w3j ≤ 0 j = 1, . . . , n (5.75)

− wU1jw2j − wL2jw1j + wU1jw
L
2j + w3j ≤ 0 j = 1, . . . , n (5.76)

− wL1jw2j − wU2jw1j + wL1jw
U
2j + w3j ≤ 0 j = 1, . . . , n (5.77)

wL1j/w2j + w1j/w
U
2j − wL1j/wU2j − w4j ≤ 0 j = 1, . . . , n (5.78)

wU1j/w2j + w1j/w
L
2j − wU1j/wL2j − w4j ≤ 0 j = 1, . . . , n (5.79)

λ1k, λ2k, s1k, s2k ≥ 0 k = 1, . . . , o1 (5.80)

λ3`, λ4`, s3`, s4` ≥ 0 ` = 1, . . . , o2 (5.81)

0 ≤ V1k, V2k ≤ 1 k = 1, . . . , o1 (5.82)

0 ≤ V3`, V4` ≤ 1 ` = 1, . . . , o2 (5.83)

0 ≤ w1j ≤ 1 j = 1, . . . , n (5.84)

0 ≤ w2j ≤
m∑

i=1

(
ui/d

2
ij

)
+

o1∑

k=1

(Ak/d̃
2
kj) +

o2∑

`=1

(M `/d̂
2
`j) j = 1, . . . , n (5.85)

The lower bounds of the decision variables excluding wij are zero. Their upper bounds

(UB) are given in Table 5.1, where θ is an upper bound on the slack variables. Hence,

θ is chosen to be the maximum of Ak and M `. The lower and upper bounds of w1j and

w2j can be set as wL1j = wL2j = 0, wU1j = 1, and wU2j =
∑m

i=1

(
ui/d

2
ij

)
+
∑o1

k=1

(
Ak/d̃

2
kj

)
+

∑o2

`=1

(
M `/d̂

2
`j

)
. The bounds on w3j and w4j requires the solution of the optimization problems

with objective functions {minwij} and {maxwij} for i = 3, 4 and constraints of problem BP2
′′
.

The concavified problem BP2
′′′

is then solved using the GMIN-αBB algorithm which is given

in detail in Subsection 4.2.2 and Appendix B.

Table 5.1. Upper bounds on the decision variables in the αBB algorithm.

Variable Qi Xi Ak Ml S1k S2k S3` S4` λ1k λ2k λ3` λ4` V1k V2k V3` V4`

UB ui 1 Ak M ` Ak Ak M ` M ` θ θ θ θ 1 1 1 1
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6. A DISCRETE FACILITY LOCATION PROBLEM WITH

CUSTOMER PREFERENCES

So far we have only considered CFL problems that employ the gravity-based rule to

model customer behavior. In contrast to these CFL models where customer preferences are not

taken into account, the model proposed in this chapter incorporates the customer preferences

by means of visiting probabilities. While in CFL problems the visiting probability is assumed

to increase with the facility attractiveness, in real-life it may be the case that each different

type of facility has its own customer segment. As an example, we can consider Migros Ticaret

Inc., one of the major supermarket chains in Turkey. There exist different types of Migros

supermarket stores available in Turkey: M, MM, MMM, and 5M sorted in an increasing order

of attractiveness. While MMM and 5M Migros stores provide the most extensive shopping

experience with a wide variety of items and parking place among others, some customers with

especially low income may still prefer M or MM Migros stores to MMM or 5M Migros stores

due to the fact that some of the items are cheaper in the former stores everyday. As a result,

the probability that a customer with low income patronizes an M Migros store can be higher

than that of visiting an MM, MMM or 5M Migros store. Hence, it is more realistic to make the

visiting probabilities depend on the customers’ attributes such as financial income. Another

important aspect of the proposed model is that for each type of facility there is a maximum

(threshold) distance customers are willing to travel to visit that facility. When the distance

to a facility is beyond this maximum distance, customers will not visit that facility. The

proposed model is a binary integer linear program. We solve it using a Lagrangean heuristic

the solution of which is further improved by a local search procedure.

6.1. Model Formulation

In the proposed model, there are m potential facility sites indexed by i = 1, . . . ,m, n

customer zones indexed by j = 1, . . . , n, and r facility types indexed by k = 1, . . . , r. We

assume that the larger is the index of a facility type, the higher is the product or the service

diversity offered by the facility (e.g., an M Migros store is of type 1, whereas an MMM Migros
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store is of type 3). We assume that the probability pjk that customers at zone j visit a type-k

facility is known. Furthermore, there is a maximum distance Sjk that customers at zone j are

willing to travel to a type-k facility. We assume that Sjk is increasing in the facility type for

all customer zones, because people are willing to travel more for higher-level facilities in order

to find a large diversity of products or services. Using the concept of maximum distance, we

can define a “region of influence”, Nik for each pair of potential facility site i and facility type

k as follows: Nik = {j : dij ≤ Sjk}, where dij is the distance between customer zone j and

potential facility site i. This implies that Nik includes the zones whose customers would like

to go to type-k facility at potential site i. This also means that if a facility is opened at a site

with a certain type, it can only serve those customers within the region of influence.

There is a fixed cost fk associated with opening a type-k facility. It is clear that facilities

with a higher k value have a larger fixed cost. The total income or buying power of customers

at zone j is denoted by hj. Note that in our problem setting, when the system planner decides

to open a new facility at potential site i, the type of the facility should also be determined.

This issue is related to the average visiting probabilities for each facility type of the customers

who are within region of influence of potential site i. This can be best explained by an example.

Suppose that there is one potential facility site (i = 1) and two possible facility types (k = 1, 2)

to be opened at this site. Customers at zone j have a known visiting probability for each facility

type, i.e., pj1 and pj2. For this potential site there are two regions of influence, N11 and N12.

Each region includes the customer zones that are willing to go to this site for the first and

second facility types. Now, we have to find out the average probability ψ1k with which the

customers in the region of influence visit each facility type. These probabilities are given as

ψ11 = (
∑

j∈N11
pj1)/|N11| for the first facility type and ψ12 = (

∑
j∈N12

pj2)/|N12| for the second

facility type. If ψ11 > ψ12 (ψ11 < ψ12), then a type-1 (type-2) facility should be established

at this potential site. In the case of equality, the system planner would be indifferent between

the two facility types. Obviously, the total revenue collected from the customers must exceed

the fixed cost of opening the facility to be economically feasible. Otherwise, the best decision

would be not to open any facility at the corresponding site.

Before we present our binary integer programming model BIP, we list all the parameters

and decision variables used in the model for the sake of clarity.



81

dij : Euclidean distance between potential site i and customer zone j

Sjk : maximum distance that customers at zone j are willing to visit a type-k facility

Nik : the set of customers within the region of influence of type-k facility at potential

site i

pjk : the probability that customers at zone j visit a type-k facility

hj : annual income or buying power of customers at zone j

fk : fixed cost of opening a type-k facility

ψik : average probability for type-k facility at potential site i computed as

(
∑

j∈Nik pjk)/|Nik|
M : a large positive number

xik : binary variable indicating whether a type-k facility is opened at potential site i

yijk : binary variable indicating whether customers at zone j visit a type-k facility at

potential site i

wikl : auxiliary variable used to keep track of the relative difference of average probability

pairs for facility types k and l at potential site i

BIP : max z =
m∑

i=1

r∑

k=1

∑

j∈Nik
hjpjkyijk −

m∑

i=1

r∑

k=1

ckxik (6.1)

s.t.

ψik ≤ ψil +Mwikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r (6.2)

ψil ≤ ψik +M(1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r (6.3)

xik ≤ wikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r (6.4)

xil ≤ (1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r (6.5)

yijk ≤ xik i = 1, . . . ,m, j ∈ Nik, k = 1, . . . , r (6.6)
∑

i:j∈Nik
yijk ≤ 1 j = 1, . . . , n, k = 1, . . . , r (6.7)

∑

h:dhj>dij

yhjk ≤ 1− xik i = 1, . . . ,m, j ∈ Nik, k = 1, . . . , r (6.8)

xik, yijk, wikl ∈ {0, 1} i = 1, . . . ,m, j ∈ Nik, k = 1, . . . , r (6.9)
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The first term in the objective function (6.1) represents the revenue that the facilities

collect, while the second term is the annualized fixed cost of opening facilities. In order to

compute the revenue of a facility, the income or the buying power of customers who are in

the region of influence are taken into account. However, an opened facility of type-k cannot

capture all the buying power at a customer zone in its region of influence. Since each customer

has a probability of visiting a facility type, the facilities can capture only a portion of this

income, which is obtained by multiplying the income with this probability. For example if the

buying power of customers at a zone which is in the region of influence of a type-2 facility is

100 dollars and furthermore if those customers visit a type-2 facility with probability 0.7, then

that facility can capture only 70 dollars. As mentioned before, ψik computes the average of

the probabilities pjk at potential site i with the region of influence of a type-k facility. Thus,

constraints (6.2) and (6.3) are either-or constraints used to compare the average probability

corresponding to each facility type-k to be opened at each potential facility site i. If ψik is

greater than ψil with l > k, then constraint (6.2) is redundant and wikl = 1. This means that

a type-k facility is more appropriate than a type-l facility at site i since customers who are

in the region of influence of a type-k facility are more likely to visit such a facility at this

site. If ψil is greater than ψik, then constraint (6.3) is redundant and wikl = 0 meaning that

type-l is more appropriate than type-k at site i. Constraints (6.4) and (6.5) link the location

variables x with the z variables. For example, if wikl = 1 (type-k is more appropriate than

type-l), then xil = 0 because of constraint (6.5) so that no type-l facility is opened at site i.

Moreover, xik ≤ 1 due to constraint (6.4), which means that a type-k facility can be opened

at site i depending on the trade-off between the revenue it can generate and its fixed cost.

Thus, constraints (6.2), (6.3), (6.4), and (6.5) determine together the best facility type at

every potential site. As one can see, the best type is determined by the region of influence,

whose average probability ψik is the largest. The reason for that is to serve the customers

within the region of influence in the best way. As an example, assume that for a potential

site i there are two possible facility types and ψi1 = 0.8 and ψi2 = 0.2. If a type-2 facility is

opened at site i, customers within the region of influence will visit the facility with probability

0.2 on the average. This probability 0.2 can be the consequence of transportation costs of

customers to the facility, or type-2 is a higher-level facility offering more expensive products

so that customers do not prefer to go to that facility because of their income. In other words,

if a type-2 facility is opened at site i, these customers will be underserviced and cannot meet
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their needs. Therefore, we determine the best type for each potential facility site in order to

prevent customers being underserviced. With constraints (6.6) it is ensured that customers

are not serviced by a facility type at a site if no facility of that type is opened at that site.

Constraints (6.7) guarantee that customers at a zone visit at most one facility of each type.

Constraints (6.8) make sure that if a type-k facility is opened at site i, i.e., xik = 1, then

customers at zone j will not visit other type-k facilities that are further away to them than

site i. Consequently, constraints (6.7) and (6.8) ensure together that if more than one facility

of the same type are opened at different sites, then customers at some zone j visit only the

nearest one of these facilities. Finally, constraints (6.9) are the binary restriction on locations,

assignment, and auxiliary variables.

6.2. Determining the Visiting Probabilities

An important aspect of the proposed model that makes it novel in the facility location

literature are the visiting probabilities of customers for different facility types. As mentioned

above, these probabilities do not necessarily increase with the increased attractiveness level

of the facilities; they rather depend on the customer attributes. However, the visiting prob-

abilities of customers are parameters to the optimization problem BIP given in the previous

section and their values should be determined before solving the model. For this purpose, we

use two different procedures one of which is based on the fuzzy C-means clustering (Bezdek,

1981) and the other one is a parametric Bayesian classification.

Before proceeding with the details of the two methods, we first give a brief introduction

about the techniques in machine learning. Machine learning can be seen as a tool which can

obtain useful information from an available set of data (Alpaydın, 2004). In machine learning,

there are two main learning paradigms: “supervised” and “unsupervised” learning. Supervised

learning methods, like classification and regression, use a priori information about the labels

of data instances, i.e. the discrete class labels of each instance and the number of classes are

known. If the method is regression, then we also know the continuous labels of instances.

In contrast to supervised learning, unsupervised learning can be applied when any label

information is not available. Thus, one cannot have a priori information about the labels
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of instances and the number of classes. In such a case, we try to divide the available data

instances into meaningful groups or clusters.

In recent years, semi- supervised learning (SSL) techniques started to become more

popular in machine learning. The reason for that is obvious: SSL is between the supervised

and unsupervised learning where there are a small labeled and a large unlabeled data set and

the task is to make statistical inference from the partially labeled data (Chapelle et al., 2006).

SSL has some advantages when compared with the two traditional groups of machine learning.

In supervised learning, all instances should be labeled in order to make statistical inference.

However, labeling all the available data is an expensive and time consuming task, since we

usually need a large data set in order to make, for example, predictions by reducing the

classification or regression errors. Nevertheless, labeling only a small portion of the available

data is much easier and helps us by giving some supervision. In contrast to supervised learning,

we do not have to label any data instance for unsupervised learning. Thus, SSL provides some

information about the data set to be used as supervision with the help of the few labeled

instances so that we can know, for example, the number of different classes or which instances

should be in the same or different clusters.

6.2.1. A Fuzzy C-Means Algorithm

In order to infer the visiting probabilities of customers for different facility types, we

assume that each customer is an input or a feature vector and each facility type forms a cluster

to which an input, i.e. a customer, can belong. Each customer has attributes that influence the

pertaining of the customer to a certain cluster. In this thesis, we assume that these attributes

of the customers are the annual income and the threshold distances for each facility type,

which altogether determine the dimensions of an input vector. Thus, for example, if there

are three possible facility types, then each input vector (customer) has four dimensions, three

dimensions for three threshold distances and one dimension for customer’s annual income.

Since fuzzy C-means algorithm is an unsupervised technique, we do not have to label

any of the input vectors. All we have to do is to divide the customers into C meaningful

clusters each of which represents a facility type. Hard clustering techniques also divide the
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data instances into clusters. However, in hard clustering an instance either belongs to a

cluster or not. We can alternatively explain this situation such that an instance belongs to a

cluster either with probability one or with probability zero. This is similar to the all-or-nothing

property of deterministic utility models in the CFL literature. We assume that the probability

that a customer belongs to a cluster embodies the probability of that customer for visiting the

facility type that is represented by that cluster. Furthermore, in practice the probability that

a customer visits a facility type is not always either zero or one, on the contrary it should lie

in the closed interval [0, 1] and the sum of the probabilities for all facility types of a customer

should sum up to one. As a consequence, we choose to apply a fuzzy clustering technique

which allows an instance to belong to two or more clusters. In order to apply fuzzy C-means

clustering, we further assume that each customer has an ideal facility type and customers with

similar attributes visit the same facility type with a higher probability.

Fuzzy C-means clustering is introduced by Bezdek (1981) and later revised by Bezdek

and Pal (1995). In this algorithm, for each input xi, i = 1, 2, ..., n, there is a degree of

membership uij in the cluster j, which represents the visiting probabilities. The membership

degree uij takes values from the interval [0, 1] and for each input vector xi,
C∑
j=1

uij = 1. Each

cluster j is represented by a d-dimensional cluster center cj. The similarity between any input

vector xi and cluster center cj is expressed by a norm function that represents the distance

between the input and the cluster. The goal of the algorithm is to represent all the input data

by cluster centers. Therefore, it tries to find the best C cluster centers by minimizing the sum

of the weighted squared errors between the clusters. The algorithm starts with arbitrarily

assigned membership degrees uij. At each iteration first the cluster centers are calculated,

then the memberships are updated. The algorithm stops when the difference between the

membership degrees of the current iteration and the previous iteration is less than a user-

specified threshold value ε. In fact, the algorithm aims at finding optimal cluster centers by

applying a local gradient descent algorithm (Bezdek and Pal, 1995). The most ambiguous

issue in this algorithm is the choice of an exponential weight µ (1 < µ < ∞) that is used in

the updates of both the cluster centers and the values of membership degrees. The selection

of µ will be discussed in Section 7.4. The fuzzy C-means algorithm can be summarized as

follows.
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1

1. Initialize the membership degree U = [uij] randomly.

2. At the tth step, calculate the cluster centers c
(t)
j =

n∑
i=1

(
u
(t)
ij

)µ
xi

n∑
i=1

u
(t)
ij

for j = 1, ..., C.

3. Update u
(t)
ij = 1

C∑
k=1

(‖xi−c(t)j ‖
‖xi−c(t)k ‖

) 2
µ−1

for i = 1, ..., n, j = 1, ..., C.

4. Until
∥∥U (t+1) − U (t)

∥∥ < ε.

Figure 6.1. Fuzzy C-Means Clustering Algorithm

6.2.2. A Parametric Bayesian Classification Algorithm

We also develop a procedure following the multivariate classification in order to predict

the probabilities of customers for visiting the facility types. The multivariate classification is a

parametric technique which assumes that the input vectors are drawn from a known probability

distribution like Gaussian (Alpaydın, 2004). In order to make the inference from a labeled data

set of instances {xi, ai}, we assume that the conditional probabilities P (x|Cj) are normally

distributed, where x is an (n×d) data matrix whose rows represent the n customers and whose

columns represent the d attributes of the customers, Cj is the jth class, and ai shows the class

label of a given instance xi. In other words, aij is equal to one if the customer xi belongs

to the jth class and zero otherwise, and we assume that P (x|Cj) ∼ Nd(Mj,Σj) such that

P (x|Cj) = 1

(2π)d/2|Σj |1/2
exp[−1

2
(x−Mj)

TΣ−1
j (x−Mj)], where each component Mj represents

the mean of the jth class and Σ is the d × d covariance matrix with Σj representing the

covariance matrix of the jth class. The conditional probability P (xi|Cj) that is interpreted as

the probability of an input belonging to the jth class has the observed values xi for i = 1, ..., d

is called the “class likelihood”. Furthermore, the probabilities P (C) and P (x) are called the

“prior probability” and the “evidence”, respectively (Alpaydın, 2004).

Since we observe that the attributes of the input vectors (customers) x, we need the

conditional probabilities P (Cj|xi) which tells us the probability that the customer xi belongs

to the jth class. For our problem, we assume that these conditional probabilities which are

called the “posterior probabilities” represent the probabilities of customers to visit the different

facility types, since each facility type can be represented by a class and each class has an ideal

customer profile exemplified by the customer attributes. The posterior probability P (Cj|x)
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can be calculated as P (Cj|x) =
P (x|Cj)P (Cj)

p(x)
=

P (x|Cj)P (Cj)
k∑
j=1

P (x|Cj)P (Cj)

using the Bayes’ rule when there

are k > 1 classes. In order to find the posterior probabilities, we need to find the estimates

of P (Cj), Mj, and Σj for all classes j = 1, ..., k. The estimates of prior probabilities, mean

vectors, and covariance matrices for each class can be given as follows:

P̂ (Cj) =

n∑
i=1

aij

n
for j = 1, ..., k, (6.10)

M̂j =

n∑
i=1

aijxi

n∑
i=1

aij

for j = 1, ..., k, (6.11)

Σ̂j =

n∑
i=1

aij(xi − M̂j)(xi − M̂j)
T

n∑
i=1

aij

for j = 1, ..., k. (6.12)

In a Bayes’ classifier, the sum of the posterior probabilities of all the classes is equal to

one for each input vector:
k∑
j=1

P (Cj|x) = 1. One has to predict the class labels of all input

vectors, i.e. one has to find out which input vector belongs to which class. In the classification

method, this is done simply by choosing the class the posterior probability of which is the

greatest among all the classes for each input vector x. In other words, we choose the class j

for x if P (Cj|x) = maxh=1,...,k P (Ch|x) = maxh=1,...,k
P (x|Ch)P (Ch)

p(x)
= maxh=1,...,k

P (x|Ch)P (Ch)
k∑
j=1

P (x|Cj)P (Cj)

.

Since the expression p(x) =
k∑
j=1

P (x|Cj)P (Cj) is common to all classes, we can discard it from

the equation. Then, we simply select the class j for x if P (Cj|x) = maxh=1,...,k P (x|Ch)P (Ch).

The expression P (x|Cj)P (Cj) for a class j actually defines a function fj(x) of x that is called a

“discriminant function” (Alpaydın, 2004). Therefore, we select for x the class j, if P (Cj|x) =
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maxh=1,...,k fh(x). However, since P (x|Cj) is assumed to be equal to 1

(2π)d/2|Σ̂j|1/2 exp[−1
2
(x −

M̂j)
T Σ̂−1

j (x− M̂j)] for j = 1, ..., k, we take the logarithm of discriminant functions fj for all

j = 1, ..., k. Thus, the set of discriminant functions become as follows, when the constant term

−d
2

log(2π) is removed.

fj = −1

2
log
∣∣∣Σ̂j

∣∣∣− 1

2
(x− M̂j)

T Σ̂−1
j (x− M̂j) + log P̂ (Cj) (6.13)

The multivariate classification technique explained above can be applied to our problem

when the class labels of all customers are known to the system planner. This also means that

it can be implemented when we know the visiting probabilities of all customers. However,

determining the probabilities of all customers is a time consuming task. On the other hand,

it is possible to identify the visiting probabilities of few customers by measuring their visit

frequencies and making some interviews with them. Therefore, we assume that we can obtain

a partially labeled data set of customers whose probabilities are known in advance. When we

know the visiting probabilities of the few customers, then we can assign each of them to a

class representing a facility type by determining the maximum visiting probability among all

facility types.

As a consequence, we decide to apply the given classification technique in the framework

of a semi-supervised approach. As explained before, in semi-supervised learning there are

a small labeled and a large unlabeled data set. First, we apply the Bayes’ classifier on the

small labeled data set with α customers (α < n) and estimate the statistics we need, i.e. the

estimates of prior probabilities, mean vectors, and covariance matrices of all classes. Then,

employing these estimates we predict the labels of the unlabeled customers by calculating

their posterior probabilities for all classes. As a result, we obtain the class labels and posterior

probabilities for all customers. We next select β customers from the newly labeled set that

the Bayes’ classifier labels most confidently and add them to the initial small labeled data

set. In other words, we choose β customers from the initial unlabeled set whose posterior

probabilities are the largest, where β is a user-specified integer number. The Bayes’ classifier
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is now implemented on a larger labeled data set with α + β customers and the estimates are

calculated on this new larger set. This procedure is repeated until all n − α customers who

were unlabeled at the beginning are added to the initial labeled set. At the end, the posterior

probabilities and the class labels of all customers are obtained and the posterior probabilities

can be used as the probabilities of customers for visiting the facility types. The idea of stepwise

labeling the customers is based on an SSL method called “Co-Training” introduced by Blum

and Mitchell (1998) and later enhanced by Balcan et al. (2004). The implemented parametric

Bayesian classification approach within the framework of the semi-supervised learning can be

abstracted as follows. 1

1. Implement the Bayes’ classifier on the labeled data set with α+ β customers. At

the initial step, β = 0.

2. Obtain the estimates P̂ (Cj), M̂j, and Σ̂j for all classes j = 1, ..., k

3. Calculate the posterior probabilities P (Cj|x) and predict the class labels of re-

maining n− (α + β) customers.

4. Select β customers whose posterior probabilities showing the chosen class are the

largest and add them to the labeled set.

5. Repeat the procedure until all unlabeled instances at the beginning are added to

the initial labeled set.

Figure 6.2. Parametric Bayesian Classification Algorithm

6.3. Solution Procedure

We propose a hybrid solution method combining a Lagrangean heuristic (LH) and a local

search for the solution of the model BIP. The solution method starts with the LH and continues

with a local search (LS), which takes the best feasible solution (lower bound) provided by the

LH as the initial solution. The LH we apply is based on the relaxation of two constraint

sets, namely constraints (6.6) and (6.8). To this end, Lagrangean multipliers λijk ≥ 0 and

µijk ≥ 0 with i = 1, 2, ...,m, k = 1, 2, ..., r, and j ∈ Nik are defined. Thus, we add the terms
∑m

i=1

∑r
k=1

∑
j∈Nik λijk(xik − yijk) and

∑m
i=1

∑r
k=1

∑
j∈Nik µijk(1− xik −

∑
h=1,...,m:dhj>dij

yhjk)

into the objective function. The Lagrangean subproblem becomes then
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BIP (λ, µ) : max z (λ, µ) =
m∑

i=1

r∑

k=1

∑

j∈Nik
(hjpjk − λijk)yijk −

m∑

i=1

r∑

k=1

∑

j∈Nik
µijk(

∑

h:dhj>dij

yhjk)

+
m∑

i=1

r∑

k=1

∑

j∈Nik
(λijk − µijk − ck)xik +

m∑

i=1

r∑

k=1

∑

j∈Nik
µijk

s.t.

ψik ≤ ψil +Mwikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

ψil ≤ ψik +M(1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

xik ≤ wikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

xil ≤ (1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r
∑

i:j∈Nik
yijk ≤ 1 j = 1, . . . , n, k = 1, . . . , r

xik, yijk, wikl ∈ {0, 1} i = 1, . . . ,m, j ∈ Nik, k = 1, . . . , r

We can decompose the Lagrangean subprolem BIP(λ, µ) into two separate subproblems

BIP1 (λ, µ) and BIP2 (λ, µ) with optimal objective values z1 (λ, µ) and z2 (λ, µ) as follows:

BIP1 (λ, µ) : max z1 (λ, µ) =
m∑

i=1

r∑

k=1

∑

j∈Nik
(hjpjk − λijk)yijk −

m∑

i=1

r∑

k=1

∑

j∈Nik
µijk(

∑

h:dhj>dij

yhjk)

s.t.
∑

i:j∈Nik
yijk ≤ 1 j = 1, . . . , n, k = 1, . . . , r

yijk ∈ {0, 1} i = 1, . . . ,m, j ∈ Nik, k = 1, . . . , r
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BIP2 (λ, µ) : max z2 (λ, µ) =
m∑

i=1

r∑

k=1

∑

j∈Nik
(λijk − µijk − ck)xik

s.t.

ψik ≤ ψil +Mwikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

ψil ≤ ψik +M(1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

xik ≤ wikl i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

xil ≤ (1− wikl) i = 1, . . . ,m, k = 1, . . . , r − 1, l = k + 1, . . . , r

xik, wikl ∈ {0, 1} i = 1, . . . ,m, k = 1, . . . , r

Note that
m∑
i=1

r∑
k=1

∑
j∈Nik

µijk is a constant term and discarded from both subproblems. After

both subproblems are solved, the value of the term with optimal multipliers µ∗ should be added

to the sum of z1 (λ, µ) and z2 (λ, µ) to determine z∗ (λ, µ). Notice that BIP1 (λ, µ) contains

only the decision variables yijk, whereas BIP2 (λ, µ) consists of xik and wikl. z
∗ (λ, µ) provides

an upper bound on z∗, the optimal value of the original problem BIP. In order to find the best

(smallest) upper bound, we need to solve the Lagrangean dual problem using the subgradient

optimization procedure. The steps of the subgradient optimization procedure is given in Sub-

section 3.2.1 as well. At each iteration t of the subgradient optimization procedure, a step size

T is computed for the Lagrangean multipliers λijk and µijk. Using the update formulas λ
(t+1)
ijk =

max
(

0, λ
(t)
ijk − T (t)(xik − yijk)

)
and µ

(t+1)
ijk = max

(
0, µ

(t)
ijk − T (t)(1− xik −

∑
h:dhj>dij

yhjk)

)
, the

Lagrangean multipliers are updated by making use of the subgradients. A step size formula

T =
π
(
UB(t) − LBbest

)
(

m∑
i=1

r∑
k=1

∑
j∈Nik

‖xik − yijk‖2+
m∑
i=1

r∑
k=1

∑
j∈Nik

‖(1− xik −
∑

h:dhj>dij

yhjk)‖2

)

is employed, where UB(t) is the upper bound at iteration t, LBbest is the best lower bound

obtained until iteration t, and π is the step size parameter. As given in Subsection 3.2.1, π is

halved every 20 iterations when there is no improvement in the best bound. The algorithm is

terminated as soon as π is less than a threshold value (e.g., 0.005) or the best upper bound

and best lower bound are equal to each other with zero duality gap. The best (largest) lower



92

bound obtained throughout the iterations becomes the output of the LH.

The most important part of the subgradient optimization procedure is how to solve the

subproblems and how to obtain a feasible solution the objective value of which yields a good

lower bound on the objective value of the original problem BIP. Both subproblems BIP1 (λ, µ)

and BIP2 (λ, µ) can be solved by inspection. When the objective function of BIP1 (λ, µ) is

factored out, it can be expressed in the following form:

m∑

i=1

r∑

k=1

∑

j∈Nik


hjpjk − λijk − (

∑

h:dhj<dij ,j∈Nhk
yhjk)


 yijk

After fixing the indices i and k, we can focus on each region of influence Nik and determine

which customer zones are in Nik. Hence, we can set yijk = 1 if


hjpjk − λijk − (

∑

h:dhj<dij ,j∈Nhk
yhjk)


 > 0,

yijk = 0 otherwise. We also have to satisfy the constraints
∑

i:j∈Nik
yijk ≤ 1. Thus, for each j

and k if more than one yijk = 1, we let yi∗jk = 1 for which the term(
hjpjk − λi∗jk − (

∑
h:dhj<di∗j ,j∈Nhk

yhjk)

)
is the largest, and yijk = 0 for i 6= i∗.

The solution of BIP2 (λ, µ) can also be obtained by inspection. With the help of the

probabilities ψik, we can determine the best facility type for each potential site. If the best

type at site i is k′, then all xik = 0 for k 6= k′ and xik′ ≤ 1. Then the problem BIP2 (λ, µ) is

solved by inspection as follows. If (
∑

j∈Nik′ (λijk
′ − µijk′)) − ck′ > 0, then xik′ = 1; otherwise

it is equal to zero.

In order to generate a feasible solution and hence a lower bound on z, we make use of

the solution of BIP2 (λ, µ) which provides the set of opened and closed facilities with their

types. If xik = 1, we know that a type-k facility is opened at site i. Otherwise, there is no

type-k facility at that site. So, we first let yijk = 0 for which xik = 0 and j ∈ Nik. Then the
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remaining yijk are set to one for which xik = 1 and j ∈ Nik. Hence, if xik = 1 and xhk = 1,

where both j ∈ Nik and j ∈ Nhk, which implies that the same facility type is opened at two

different sites, then yijk = 1 and yhjk = 0 if dij < dhj. Accordingly, yijk = 0 and yhjk = 1 if

dij > dhj. Ties can be broken arbitrarily.

The best lower bound obtained by the LH constitutes an initial solution for the local

search (LS) procedure. At each iteration of the LS procedure, neighbors of the current solution

are generated by executing 1-Add, 1-Drop, and 1-Swap moves. A 1-Add move opens a new

facility at one of the potential sites where no facility exists. A 1-Drop move closes an open

facility and a 1-Swap move closes an open facility and opens a new one at another potential

site without a facility. By executing these moves we can obtain only the location of the opened

facilities. As explained before, we can determine the best type for each potential facility site

using the average probabilities ψik. If the best facility type for site i is k′, then xik = 0 for

k 6= k′ and xik′ = 1. Thus, right after executing one possible move we can determine the values

of the location variables xik. In order to calculate the profit we determine also the values of the

assignment variables yijk by the same procedure implemented by the LH. The best neighboring

solution, namely the solution that provides the highest objective value is selected as the next

current solution. The LS procedure is terminated when the current solution does not improve

from one iteration to the next.
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7. EXPERIMENTAL RESULTS

As there is no benchmark problem in the literature on CFL problems and location

problems considering customer preferences, we generate random test instances to obtain com-

putational results. These computational experiments on randomly created data sets are used

to assess both the accuracy and efficiency of the proposed solution procedures. Furthermore,

for some models a sensitivity analysis is carried out on model parameters to investigate the

effect of these parameters on the solution.

All solution procedures have been coded in C# and the computations have been per-

formed on a server with Intel Xeon 3.16 GHz processor with 16 GB of RAM working under

the Windows 2003 Server operating system. For the first CFL problem we employ the MI-

NOS solver (Murtagh et al., 2004), that is available within GAMS suite to solve the nonlinear

programs of the BB method using NLP relaxation. To find the lower bounds at the nodes of

the BB trees in both bilevel CFL problems, we utilize KNITRO 6.0 (Waltz and Plantenga,

2009), which is an efficient commercial solver for NLP solver.

7.1. A Non-Reactive Discrete Competitive Facility Location With Variable

Attractiveness

In order to assess the performance of the three methods proposed in the Section 3.2 to

solve the CFL model P given in Chapter 3, we use nine data sets where the number of demand

points (n) and the number of candidate facility sites (m) are equal to each other, and take on

values from the set {10, 15, 20, 25, 30, 35, 40, 45, 50}. For each data set, the number of existing

facilities belonging to competitors, r, is assigned a value between one and five. As a result,

we obtain 45 instances. The x and y-coordinates of the demand points, the candidate facility

sites, and the existing facility sites are integer numbers generated from a uniform distribution

defined in the interval [0, 100]. The distance dij between site i and demand point j is then

calculated as the Euclidean distance. We pay attention not to overlap the demand points with

either the candidate facility sites or the existing facility sites because of the fact that a facility

coinciding with a demand point captures almost all of the available buying power at that point



95

since the distance is zero. The annualized buying power aj of customers at point j, the unit

attractiveness cost ci at candidate site i and the attractiveness qk of existing facility at site k

are integer-valued parameters generated from uniform distributions as: hj ∼ U(100, 10000), ci

∼ U(1, 10), and qk ∼ U(100, 1000). The fixed costs fi which effectively determine the optimal

number of new facilities to be opened are set to three different values as follows: fi = 100ci,

fi = 1000ci, and fi = 10000ci. In other words, they are chosen as 100, 1000, and 10,000

times as large as the attractiveness costs. Upper bound ui for the attractiveness of a facility

at candidate site i is assigned a value of ui = 100ci.

7.1.1. Comparison of the Solution Procedures

First, we compare the performance of the three methods in terms of accuracy and effi-

ciency on the set of 45 instances. The results are presented in Tables 7.1–7.3. A time limit

of 7200 seconds is allotted for each solution method. BB-NLP is the most efficient among the

three approaches as it is able to obtain an optimal solution for every instance. The accuracy of

the solutions given by LH and BB-LR is therefore measured by computing the percent relative

deviation (PD) of the best lower bound LBbest obtained by these methods from the optimal

objective value z∗ provided by BB-NLP. PD is identified using the formula

100× z∗ − LBbest

z∗
. (7.1)

The average percent deviation and average CPU time requirement computed over all the

instances are given in the last rows of the tables. For all fixed cost values, LH performs better

than BB-LR on the average in terms of accuracy. For example, at the lowest fixed cost level

(fi = 100ci) the average PD is 0.3% for LH and 1.2% for BB-LR, while the CPU times are

2786.9 seconds for LH and 6110.3 seconds for BB-LR. When we consider the results for the

medium level fixed costs presented in Table 7.2, a similar observation can be made where LH

again performs better than BB-LR in terms of accuracy with an average percent deviation of

0.6% against 6.2%. LH beats BB-LR also in terms of efficiency: the CPU time requirement of
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LH is 2641.4 seconds whereas BB-LR spends 6413.3 seconds on the average. It is remarkable

that BB-NLP solves the instances in this table in 464.9 second on the average. We observe

that LH finds an optimal value for 19 instances, whereas BB-LR obtains the optimal solution

for only nine instances. For the highest fixed cost values, the picture is not different.

The numbers in the “NF” columns of the three tables indicate that the number of new

facilities to be opened decreases as the fixed costs increases, which is an expected outcome.

Results generated by BB-NLP for the high fixed cost level (fi = 10000ci) presented in Table

7.2 reveal that it is optimal not to open any new facilities in some instances. This is shown

by “–” in the NF column with a corresponding z∗ value equal to zero. In these instances, the

fixed and variable costs of opening facilities do not justify the opening of new facilities.

We note that although BB-LR is an exact technique, it provides the worst solutions

among the three methods. The reason lies in the fact that the allowed time limit of 7200

seconds is not sufficient for the BB tree to explore all the nodes. This can be seen in the

columns of Tables 7.1–7.3 labeled as “NN”. We observe that at each fixed cost level all the

nodes of the BB tree can only be explored for problem instances with n = 10 customers, and

furthermore for instances (15, 3), (15, 4), and (15, 5) at the lowest fixed cost level. In other

words, BB-LR provides an optimal solution in these cases. However, it is clear from the results

in Table 7.1 that only the root node is solved for problems with n = 45 (NN is equal to 1),

and even the root node cannot be solved for problem instances with n = 50, which is shown

by “NA” in the corresponding cells of the table. Similar situations arise at the medium and

high fixed cost levels too. BB-LR can only solve the root node for instances with n = 50 when

fi = 1000ci (see Table 7.2), and fails to do so for instances with n = 50 when fi = 10000ci (see

Table 7.3). We also would like to mention that there are several cases in Table 7.3 where BB-

LR obtains a feasible solution with zero objective value in which no facilities are opened even

though it is optimal to open some facilities. In these cases, the percent deviations are 100%.

Finally, a PD value above 100 implies that the best feasible solution provided by BB-LR has

a negative profit.

One may consider comparing the number of nodes explored under the two BB methods.

When we do this, we can conclude that BB-NLP is much more efficient than BB-LR in pruning
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Table 7.1. Comparison of the solution methods: fi = 100ci.

Instance BB-NLP BB-LR LH

(n, r) z∗ CPU NN NF PD(%) CPU NN NF PD(%) CPU Gap(%) NF

(10,1) 41653.0 1.2 3 4 0 325.8 757 4 0 6.7 0.26 4

(10,2) 33499.4 1.2 3 5 0 112.1 571 5 0 7200 1.76 5

(10,3) 29260.5 1.2 3 4 0 101.4 577 4 0 7200 2.01 4

(10,4) 22542.1 1.2 3 4 0 97.1 585 4 0 4.7 0.77 4

(10,5) 19500.0 1.3 3 4 0 91.1 575 4 0 6.8 0.75 4

(15,1) 55969.8 7.3 19 5 0 7200 9404 5 0 23.3 0.41 5

(15,2) 52346.4 8.8 23 6 0 7200 11623 6 0 58.1 0.68 6

(15,3) 47213.9 2.9 7 7 0 4467.3 4914 7 0 19.6 0.32 7

(15,4) 46364.9 2.8 7 7 0 4754.5 6256 7 0 21.3 0.18 7

(15,5) 44908.9 2.8 7 7 0 4063.9 5190 7 0 32.4 0.02 7

(20,1) 82155.1 8.1 21 5 0.79 7200 1518 7 0 193.3 0.65 5

(20,2) 67557.8 10.7 27 7 0.06 7200 645 7 0 177.7 0.89 7

(20,3) 55354.3 15.2 39 7 0.01 7200 1461 8 0 155.8 0.5 7

(20,4) 49372.2 12.6 31 8 0.15 7200 1509 8 0 172.6 0.81 8

(20,5) 45441.3 9.6 25 8 0.8 7200 1332 8 0 165.9 0.78 8

(25,1) 118876.3 190.3 491 9 1.02 7200 132 13 0.07 1882.7 1.86 8

(25,2) 105115.5 143.1 373 10 0.82 7200 207 12 0 911 2.6 10

(25,3) 89590.0 103.3 263 12 1.32 7200 252 17 0.44 706.3 4.02 14

(25,4) 86162.3 82.0 211 13 0.49 7200 386 15 1 737.7 4.79 12

(25,5) 83629.0 82.5 213 13 0.77 7200 371 15 3.81 579.8 4.88 14

(30,1) 118770.6 25.3 65 11 0.73 7200 32 14 0 1716.6 1.41 11

(30,2) 106362.7 26.2 67 12 0.15 7200 98 13 0.09 1218.9 1.62 12

(30,3) 93515.8 34.8 89 13 0.08 7200 35 14 0 1483.3 1.93 13

(30,4) 86389.9 23.0 59 13 0.53 7200 60 13 0.09 777.7 1.77 14

(30,5) 82325.4 17.7 45 13 0.96 7200 133 16 0 943.5 1.89 13

(35,1) 131527.7 114.5 313 9 0.47 7200 52 12 0.00 1958.5 0.62 10

(35,2) 121441.5 40.5 111 11 0.48 7200 63 14 0 1982.1 0.53 11

(35,3) 111374.6 24.5 67 12 0.24 7200 65 14 0 1915.9 0.26 12

(35,4) 104418.4 9.7 21 13 0.004 7200 63 13 0 1836.9 0.23 13

(35,5) 99002.7 6.5 15 12 0.27 7200 64 14 0 1746.3 0.19 12

(40,1) 177402.1 67.2 181 10 1.39 7200 5 10 0 6955.1 22.67 10

(40,2) 163006.1 99.3 267 11 0.96 7200 7 14 0 2773.4 31.71 11

(40,3) 146687.2 53.3 143 14 0.55 7200 9 14 0.12 2833.6 31.56 14

(40,4) 142895.3 38.0 101 14 1.49 7200 8 14 0.13 1405.0 37.35 13

(40,5) 140349.3 28.2 75 15 0.66 7200 7 14 0.07 3609.2 25.19 14

(45,1) 209102.6 310.0 811 12 3.82 7200 1 8 0 7200 17.41 12

(45,2) 181111.1 266.0 705 15 7.04 7200 1 13 0.59 7200 28.66 17

(45,3) 170406.8 129.4 341 15 6.22 7200 1 16 0.29 7200 32.97 16

(45,4) 164095.8 96.0 251 15 4.74 7200 1 16 0.43 7200 31.35 18

(45,5) 158001.9 92.6 241 15 8.79 7200 1 17 0.1 7200 40.85 17

(50,1) 209621.6 325.7 817 13 NA NA NA NA 1.18 7200 17.62 17

(50,2) 180258.3 1527.8 3787 16 NA NA NA NA 0.66 7200 41.66 15

(50,3) 168533.4 3056.0 7479 17 NA NA NA NA 0.36 7200 33.99 19

(50,4) 157999.1 2354.5 5771 18 NA NA NA NA 1.08 7200 36.19 22

(50,5) 148419.3 1633.5 4007 19 NA NA NA NA 1.01 7200 41.85 21

Average 246.4 613.4 10.7 1.2 6110.3 1224.3 10.9 0.3 2786.9 11.3 11.2
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Table 7.2. Comparison of the solution methods: fi = 1000ci.

Instance BB-NLP BB-LR LH

(n, r) z∗ CPU NN NF PD(%) CPU NN NF PD(%) CPU Gap(%) NF

(10,1) 34142.7 3.8 9 2 0 188.2 1323 2 0 5.9 5.53 2

(10,2) 24360.4 3.0 7 2 0 132.3 917 2 0 6.4 3.2 2

(10,3) 20524.3 3.0 7 2 0 79.0 921 2 0 8.4 3.28 2

(10,4) 13734.3 3.8 9 2 0 97.0 777 2 0 4.7 5.32 2

(10,5) 10791.6 2.9 7 2 0 103.5 1027 2 0 4.8 8.46 2

(15,1) 45167.0 18.1 43 2 0 7200 9968 2 0 40.4 6.94 2

(15,2) 39642.7 23.8 57 3 0.66 7200 10511 4 0 42.3 7.2 3

(15,3) 33036.4 22.3 53 3 0 7200 10247 3 0 28.8 5.98 3

(15,4) 31989.6 13.9 33 3 0 7200 10762 3 0 33.4 5.47 3

(15,5) 30251.1 11.4 27 3 0 7200 774 3 0 32.2 5.02 3

(20,1) 69794.6 51.9 123 4 0.34 7200 1481 5 0 256.9 4.49 4

(20,2) 51856.7 23.3 55 5 5.34 7200 1119 5 0 209.4 3.58 5

(20,3) 36322.0 14.1 33 5 12.97 7200 1550 7 0 178.9 4.27 5

(20,4) 30847.4 12.2 29 5 2.41 7200 1623 5 0 143.0 4.01 5

(20,5) 27188.2 11.3 27 5 8.6 7200 1613 5 0 126.4 3.82 5

(25,1) 104249.1 380.2 889 6 11.19 7200 113 6 1.23 1282.9 5.91 4

(25,2) 83780.4 295.4 695 7 4.15 7200 170 7 0.86 961.0 9.64 5

(25,3) 62782.3 435.0 1027 6 1.64 7200 225 6 0.26 932.8 14.54 7

(25,4) 56760.9 318.1 753 7 9.39 7200 325 7 0.43 648.9 17.81 6

(25,5) 53735.7 279.5 661 7 17.69 7200 311 7 0.6 692.9 18.46 6

(30,1) 104850.5 169.3 397 7 6.08 7200 29 8 3.58 2821.4 6.83 5

(30,2) 88375.3 152.3 357 8 6.45 7200 89 8 0.18 1287.7 4.54 6

(30,3) 71347.1 279.0 655 8 12.67 7200 33 11 1.08 1073.5 8.01 6

(30,4) 61971.6 155.7 363 8 11.81 7200 61 10 5.01 708.9 12.79 6

(30,5) 56824.7 146.8 345 8 15.48 7200 146 10 0 867.1 8.99 8

(35,1) 116892.7 145.6 319 5 1.34 7200 45 5 1.33 2565.4 4.05 4

(35,2) 101088.8 71.9 167 5 0.95 7200 63 6 0.09 1843.5 3.58 5

(35,3) 87153.4 51.2 119 6 1.09 7200 63 7 0.17 2080.1 3.96 6

(35,4) 79060.7 34.7 81 6 1.71 7200 56 6 0 1510.6 3.54 6

(35,5) 72875.3 28.9 67 6 1.61 7200 63 8 0 1705.1 3.31 6

(40,1) 157685.0 266.7 611 6 0.62 7200 7 6 0.05 4438.9 3.06 5

(40,2) 137842.0 263.6 603 6 4.21 7200 6 6 0.06 7200.0 16.11 7

(40,3) 118149.8 186.1 427 7 0.44 7200 7 7 0.49 3869.3 33.03 6

(40,4) 113466.0 237.3 547 7 6.03 7200 7 7 0.1 5188.2 33.25 7

(40,5) 110328.4 205.0 471 7 3.06 7200 7 8 0 4064.9 38.68 7

(45,1) 188660.0 734.2 1689 6 21.06 7200 2 4 0.17 7200.0 4.57 7

(45,2) 152066.4 1016.3 2349 8 9.9 7200 3 6 1.54 7200.0 20.85 8

(45,3) 137612.3 767.8 1771 8 6.68 7200 3 7 1.01 7200.0 23.94 11

(45,4) 129040.3 1222.4 2823 9 7.1 7200 3 7 0.61 7200.0 39.97 9

(45,5) 121796.2 1383.7 3183 8 13.2 7200 3 7 1.66 7200.0 26.09 10

(50,1) 189038.4 821.2 1327 8 8.1 7200 1 5 1.5 7200.0 7 8

(50,2) 146512.9 5570.1 10175 10 16.85 7200 1 7 0.33 7200.0 32.87 10

(50,3) 131183.1 2536.0 5053 10 17.4 7200 1 11 1.69 7200.0 19.15 11

(50,4) 117765.9 1342.3 2839 11 12.17 7200 1 8 0.91 7200.0 47.94 13

(50,5) 107110.2 1205.7 2555 11 20.66 7200 1 10 1.49 7200.0 51.28 11

Average 464.9 974.2 6.0 6.2 6413.3 1254.6 6.0 0.6 2641.4 13.3 5.9
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Table 7.3. Comparison of the solution methods: fi = 10000ci.

Instance BB-NLP BB-LR LH

(n, r) z∗ CPU NN NF PD(%) CPU NN NF PD(%) CPU Gap(%) NF

(10,1) 10930.0 3.9 11 1 0 314.2 1985 1 61.22 11.8 78.05 2

(10,2) 0 3.2 9 – 0 193.0 2047 – 0 3.0 100 –

(10,3) 0 2.5 7 – 0 183.9 2047 – 0 2.4 100 –

(10,4) 0 1.1 3 – 0 170.0 2047 – 0 2.1 100 –

(10,5) 0 1.1 3 – 0 152.8 2047 – 0 0.6 100 –

(15,1) 10217.5 14.6 41 1 NA 7200 8467 – 2.23 61.7 62.84 1

(15,2) 1586.2 9.5 27 1 NA 7200 11808 – 38.06 44.1 94.41 1

(15,3) 0 7.5 21 – 0 7200 10468 – 0 35.9 100 –

(15,4) 0 6.0 17 – 0 7200 10656 – 0 25.4 100 –

(15,5) 0 5.3 15 – 0 7200 10344 – 0 23.0 100 –

(20,1) 29258.0 41.3 119 1 31.61 7200 1184 1 31.61 370.7 52.13 1

(20,2) 4413.6 27.9 71 1 0 7200 938 1 0 181.1 75.2 1

(20,3) 0 7.5 21 – 0 7200 1382 – 0 136.2 100 –

(20,4) 0 5.3 15 – 0 7200 1364 – 0 49.6 100 –

(20,5) 0 5.5 15 – 0 7200 1471 – 0 44.8 100 –

(25,1) 55642.7 109.1 303 2 23.12 7200 81 2 3.93 855.1 28.85 2

(25,2) 25159.5 101.4 291 2 47.36 7200 125 1 5.81 545.0 51.01 2

(25,3) 4567.0 59.1 163 2 40.52 7200 213 1 0 359.4 83.26 2

(25,4) 2586.4 40.1 115 1 2206.52 7200 230 1 0 384.3 87.09 1

(25,5) 1756.0 30.5 87 1 480.92 7200 305 1 0 347.4 89.13 1

(30,1) 52656.7 108.9 309 2 55.79 7200 37 1 0 1630.9 29.59 2

(30,2) 28399.7 49.7 141 2 100 7200 71 – 49.78 1177.4 71.16 1

(30,3) 13389.5 39.0 111 2 100 7200 40 – 0 687.9 60.27 2

(30,4) 5371.7 23.0 65 1 100 7200 71 – 0 770.6 78.03 1

(30,5) 1703.4 19.4 55 1 100 7200 156 – 0 663.2 91.93 1

(35,1) 57028.6 127.3 361 1 0 7200 33 1 0 3668.3 30.08 1

(35,2) 30528.8 86.5 245 1 55.06 7200 48 1 1.65 2612.2 43.62 1

(35,3) 17875.8 38.9 109 1 187.57 7200 42 1 0 2280.1 48.14 1

(35,4) 12014.2 18.8 53 1 170.24 7200 41 2 0 1946.2 53.66 1

(35,5) 8681.5 11.9 33 1 197.2 7200 57 2 0 1412.7 60.09 1

(40,1) 72559.4 189.6 527 3 87.31 7200 3 3 4.38 3164.0 35.68 2

(40,2) 39978.0 226.0 623 3 8.22 7200 5 3 0 2311.9 49.28 3

(40,3) 20182.3 138.7 387 3 28.16 7200 6 1 14.66 2452.4 70.26 2

(40,4) 16228.6 120.6 337 2 33.64 7200 4 1 1.27 1778.9 70.04 2

(40,5) 13519.7 108.5 303 2 41.53 7200 6 1 25.02 1756.0 79.73 2

(45,1) 116801.8 401.5 1097 3 24.73 7200 2 1 16.87 2883.0 35.89 3

(45,2) 57344.7 521.2 1397 4 28.45 7200 3 3 11.43 3522.8 44.73 4

(45,3) 38496.8 409.4 1089 4 67.4 7200 3 2 0 2592.7 46.19 4

(45,4) 32622.3 311.8 831 3 104.9 7200 4 3 7.14 2049.3 51.66 4

(45,5) 28992.0 160.5 443 3 78.07 7200 4 1 7.61 2526.3 52.52 3

(50,1) 114507.8 364.3 889 3 NA NA NA NA 10.37 4919.0 27.2 2

(50,2) 47511.9 383.7 951 3 NA NA NA NA 34.6 4077.1 58.25 3

(50,3) 30740.2 156.4 387 2 NA NA NA NA 51.32 4674.3 72.97 3

(50,4) 16413.4 94.8 259 2 100 7200 2 – 90.4 4825.3 95.94 3

(50,5) 10938.1 65.4 179 1 360.96 7200 2 1 96.26 3082.5 98.78 1

Average 103.5 278.6 1.5 115.0 6325.4 1746.1 0.9 12.6 1487.7 70.2 1.5
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the nodes of the tree due to the fact that it can generate good feasible solutions so that many

nodes can be pruned early in the algorithm. This can be observed in Tables 7.1–7.3 for problem

instances up to n = 25. For larger instances, one may wonder why the number of nodes solved

under BB-NLP is more than that under BB-LR. It is due to the efficiency of BB-NLP in

solving the problems at each node. To summarize, the overall effectiveness of the BB-NLP

method can be attributed to both the speed at which the concave nonlinear problems can be

solved at each node of the BB tree and the generation of good feasible solutions which helps

to prune many nodes early in the method.

We also report the percent relative deviation between the best lower and upper bounds

for the Lagrangean heuristic LH, which is computed as

100× (UBbest − LBbest)

UBbest

. (7.2)

The average deviations are 11.3%, 13.3%, and 70.2 for low, medium, and high fixed cost levels,

respectively. The large deviations associated with the high fixed cost level can be attributed to

the relatively small number of iterations that can be performed in the subgradient optimization

when fi = 10000ci. It is equal to 260.6, whereas the average number of iterations is 349.2

when fi = 1000ci, and 351.1 when fi = 100ci. Therefore, for all instances of the high fixed

cost level, the step size parameter π is halved every five iterations instead of the suggested

value of 30 (Beasley, 1993b).

7.1.2. Assessing the Accuracy and Performance

To see the effectiveness of the recommended solution approach, i.e., BB-NLP, we employ

two commercial solvers for MINLP problems that are available within GAMS Suite. The first

solver, DICOPT (Grossmann et al., 2004) is based on the outer approximation method in

which a sequence of mixed-integer programs and nonlinear programs are solved. It is expected

to perform better on models that have a significant and difficult combinatorial part. The
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second solver, OQNLP, is a multi-start heuristic algorithm designed to find global optima of

constrained nonlinear programs that are smooth. By “multi-start” it is meant that the algo-

rithm calls a nonlinear programming solver from multiple starting points which are determined

by a scatter search implementation called OptQuest (Laguna and Mart́ı, 2003). We choose

the instances at the medium fixed cost level and solve them using these two solvers. The

results are reported in Table 7.4 in terms of the percent deviation from the optimal objective

value produced by BB-NLP. It is clear that DICOPT outperforms OQNLP with respect to

both accuracy and efficiency. In fact, with the exception of two instances OQNLP provides

only trivial solutions in which there is no open facility and the corresponding profit is zero.

Therefore, the resulting percent deviations are 100%. DICOPT, on the other hand, yields

solutions that are 16.58% worse than BB-NLP on the average.

7.1.3. Sensitivity Analysis

To investigate the effect of the model parameters on the captured market share and the

realized profit by the new facilities, we carry out further experiments by selecting instance

(40, 3). We use BB-NLP as it is the most effective solution method and also can yield the

optimal solution and the optimal objective value needed for the sensitivity analysis within a

reasonable amount of computation time.

The parameters we consider are the number of existing facilities (r), the unit attrac-

tiveness cost (ci), the fixed cost of new facilities (fi), and the upper bound for attractiveness

(ui). First, we vary r in the range 1–10, and analyze the resulting market share; the change

in the market share and profit displayed in Figure 7.1. We observe that they both decrease as

r increases, as expected.

To see the effect of the fixed costs, we change the multiplier that relates the fixed cost

to the unit attractiveness cost. Recall that fi = 1000ci in the base case scenario. After

assigning the values {500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500} to the multiplier, we

obtain the market share and profit as illustrated in Figure 7.2. As can be observed, the

profit is monotonically decreasing function of the fixed cost represented by the multiplier.

The market share, on the other hand, either decreases or remains the same with an increase
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Table 7.4. Comparative results with DICOPT and OQNLP solvers on the instances for

fi = 1000ci.

Instance DICOPT OQNLP

(n, r) PD(%) CPU PD(%) CPU

(10,1) 0 0.07 98 0.08

(10,2) 0 0.12 100 0.06

(10,3) 19.68 0.07 100 0.06

(10,4) 0 0.08 100 0.06

(10,5) 100 0.06 100 0.06

(15,1) 0.36 0.11 100 0.13

(15,2) 21.86 0.09 100 0.14

(15,3) 27.2 0.06 100 0.14

(15,4) 13.02 0.04 100 0.11

(15,5) 26.48 0.04 100 0.13

(20,1) 5.84 0.10 100 0.22

(20,2) 25.07 0.03 100 0.20

(20,3) 29.39 0.05 27.82 0.16

(20,4) 17.48 0.04 100 0.17

(20,5) 33.99 0.05 100 0.17

(25,1) 7.61 0.05 100 0.34

(25,2) 12.67 0.06 100 0.36

(25,3) 3.79 0.12 100 0.33

(25,4) 21.16 0.13 100 0.34

(30,5) 18.4 0.12 100 0.39

(30,1) 17.23 0.12 100 0.58

(30,2) 27.31 0.09 100 0.59

(30,3) 52.28 0.09 100 0.52

(30,4) 26.86 0.11 100 0.52

(30,5) 22.95 0.11 100 0.55

(35,1) 2.85 0.13 100 0.88

(35,2) 9.93 0.14 100 0.88

(35,3) 13.73 0.12 100 0.84

(35,4) 5.46 0.11 100 0.84

(35,5) 8.31 0.09 100 0.84

(40,1) 16.65 0.14 100 1.08

(40,2) 2.93 0.12 100 1.14

(40,3) 10.57 0.18 100 1.19

(40,4) 16.02 0.11 100 1.08

(40,5) 15.95 0.15 100 1.14

(45,1) 6.63 0.21 100 1.56

(45,2) 17.31 0.16 100 1.42

(45,3) 9.84 0.12 100 1.45

(45,4) 9.81 0.12 100 1.53

(45,5) 13.82 0.14 100 1.50

(50,1) 8.11 0.29 100 0.88

(50,2) 11.1 0.26 100 0.75

(50,3) 12.5 0.20 100 0.84

(50,4) 11.49 0.20 100 0.77

(50,5) 12.42 0.23 100 0.77

Avg. 16.58 0.12 98.35 0.62
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Figure 7.1. Effect of r on the market share and profit

in the fixed cost. We explain this pattern on the basis of an observation we make from the

optimal solutions. Namely, as the fixed costs increase, the number of opened facilities is either

reduced or remains the same. Furthermore, the opened facilities have always the same optimal

attractiveness levels and the same locations. When the number of facilities remains the same

with an increase in the fixed costs, the market share is not affected since the attractiveness of

neither the competitors nor the new facilities change. However, the resulting profit is reduced

since a higher fixed cost is incurred. When the number of open facilities decreases, the market

share is also affected in a negative way since the competitors can capture the customers’

buying power more. This results in diminishing revenue from the customers. The decrease in

the profit can be attributed to the outcome that the reduction in the revenue outweighs the

decrease in the fixed costs.

Figure 7.2. Effect of fi on the market share and profit

In the base scenario, the unit attractiveness cost ci was randomly generated from the

interval [1, 10]. The sensitivity of our model to ci is measured by changing this interval as

follows: [11, 20], [21, 30], [31, 40], [41, 50], [51, 60], [61, 70], [71, 80], [81, 90], and [91, 100]. The
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plots in Figure 7.3 where the labels in the x-axis denote the upper limits of the intervals (i.e.

10, 20,..., 100) show that the market share as well as the profit decline with an increase in

the unit attractiveness costs. This is an expected result because as ci increases, either some

of the facilities are not opened or the attractiveness levels of some open facilities are reduced

resulting a loss in the market share and profit.

Figure 7.3. Effect of ci on the market share and profit

Now, we turn our focus on the sensitivity with respect to the parameter ui. In the base

case scenarios, ui values were set equal to a multiplier times ci where the multiplier is 100.

When we conduct new experiments by varying this multiplier between 100 and 25000, and plot

the market share and profit values corresponding to the optimal solutions, we obtain Figure

7.4. The first part of the figure shows that the market share exhibits a slowly increasing trend

with some drops and stabilizes after ui reach very large values. When we examine the solutions,

we observe that as the maximum attractiveness levels increase, the optimal attractiveness of

some facilities are increased and that of some others are reduced. The facilities with increased

attractiveness steal from the market share of the facilities with a reduced attractiveness, which

implies that the market share of different facilities may increase or decrease. As a consequence,

the overall market share exhibits a fluctuating pattern. It turns out that the resulting profit

always shows an increasing trend that asymptotically converges to a limiting value.

To shed further light on the sensitivity analysis with respect to the parameter ui and find

out whether there persist unacceptably low optimal attractiveness levels for some facilities,

we carry out the following experiment. Using the same (40, 3) instance with fi = 1000ci,

we only change the maximum attractiveness levels of two facilities (facilities at sites 10 and

37) among seven opened ones. We assign the same values to the multipliers of u10 and
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Figure 7.4. Effect of ui on the market share and profit

u37 from the set {1000, 2000, 3000, 4000,..., 30000} and examine the optimal attractiveness

levels of the two facilities. As is illustrated in Figure 7.5, the optimal attractiveness Q∗10 of

the facility at site 10 decreases and the optimal attractiveness Q∗37 of the facility at site 37

increases monotonically as the multiplier and hence the maximum attractiveness levels of the

two facilities increase. Q∗10 is initially equal to 2303.1 when u10 = 1000c10, and decreases

down to 725.5 when u10 = 15000c10. For larger values of the multiplier, no facility is opened

at site 10. This means that unacceptably low optimal levels of the attractiveness are not

likely to be seen. The reason is that the cost savings resulting from facility closures is not

compensated by the additional revenue that the firm can earn by keeping the facility open

at a low attractiveness level. On the other hand, the facility at site 37 has a nondecreasing

optimal attractiveness level Q∗37 as a result of increasing multiplier values. When the multiplier

hits 23000, Q∗37 becomes 22940.1 and this value remains constant for further increases in the

multiplier value. The maximum attractiveness level is a parameter which is determined by the

firm, and in order to prevent situations in which the optimal attractiveness level is regarded

as unacceptably high the firm should set reasonable upper bounds that can be achieved. Our

experiments with other problem instances have shown that there might persist unacceptably

high optimal attractiveness levels, but unacceptably low optimal levels do not occur.

7.2. A Bilevel Competitive Facility Location Problem with Partial Reaction of

the Competitor

We use eighteen data sets where the number of demand points n ∈ {10, 20, 30}, the

number of candidate facility sites m ∈ {2, 3, 5}, and the number of existing facilities of the
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Figure 7.5. A closer look at Q∗ values with varying ui values

competitor r ∈ {1, 2} for the evaluation of the performance of the proposed procedure to solve

the CFL problem BP2 given in Section 4.2. For each data set, ten different data instances

are created. As a result, we obtain 180 problem instances. The x and y-coordinates of the

demand points, the candidate facility sites, and the existing facility sites are integer numbers

generated from a uniform distribution defined in the interval [0, 100]. The annualized buying

power hj of customers at point j, the unit attractiveness cost ci at candidate site i for the

leader, c̃k for the follower, and the current attractiveness Ãk of an existing facility at site k are

real-valued quantities generated from uniform and normal probability distributions as given in

Table 7.5. Note that the means of the parameter values are equal to each other, and that the

standard deviation of the normal distribution is equal to one sixth of the range of the uniform

distribution.

Table 7.5. The values of parameters hj, ci, c̃k, and Ãk .

U(a, b) N(µ, σ2)

hj a = 100, b = 100000 µ = 50050, σ2 = 166502

ci a = 1, b = 10 µ = 5.5, σ2 = 1.52

c̃k a = 1, b = 10 µ = 5.5, σ2 = 1.52

Ãk a = 100, b = 1000 µ = 550, σ2 = 1502

The first five data instances of each data set are generated from uniform distributions,

whereas the remaining five instances are from normal distributions. The fixed costs fi are

set 1000 times as large as the attractiveness costs, i.e., fi = 1000ci. Upper bound ui for the

attractiveness of a new facility at candidate site i is taken as ui = 10000ci and upper bound

Ak for the attractiveness of an existing facility is assigned a value of Ak = 10000c̃k.
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7.2.1. The Performance of the Solution Methods

As can be seen from the discussion about the solution procedure for the one-level MINLP

model in Subsection 4.2.2, GMIN-αBB is a branch-and-bound method at each node of which

another branch-and-bound method, αBB algorithm, is employed. Hence, GMIN-αBB is com-

putationally expensive especially for very small values of the convergence parameter ε. To

improve the running time efficiency of GMIN-αBB, we adopt the approximation strategy

suggested by Floudas (2000). Namely, instead of terminating the αBB algorithm when the

difference zUB − zLB is less than ε%, we stop the iterations as soon as the improvement in

the gap zUB − zLB between two non-successive iterations becomes less than a user-specified

threshold value δ. In other words, the BB tree is explored until

(
z

(t−k)
UB − z(t−k)

LB

)
−
(
z

(t)
UB − z

(t)
LB

)

z
(t−k)
UB − z(t−k)

LB

≤ δ (7.3)

where z
(t)
UB and z

(t−k)
UB are the upper bounds at iterations t and t − k, respectively, while z

(t)
LB

and z
(t−k)
LB are the best lower bounds at iterations t and t−k, respectively. k is a user-specified

parameter that represents the number of iterations during which the improvement in the gap

between zUB and zLB is measured. We choose k = 3 and δ = 0.1. We present the results

on the test instances in Table 7.6. Here, zbest
L indicates the best lower bound of the leader

obtained by the GMIN-αBB algorithm run with the above-mentioned approximation strategy,

and zbest
F stands for the profit realized by the follower as a reaction to the leader.

To check that a solution (Q,X,A) is bilevel feasible for problem BP1, i.e., the values of

the decision variables A of the competitor are really those that would be obtained when the

competitor’s problem were solved given the values of the decision variables Q and X of the

leader firm, we utilize another procedure which makes use of the result given in Proposition

4.2. Namely, when the values of the leader’s variables Q and X are fixed, the competitor’s

(follower’s) objective function given in (4.8) is concave in terms of the variables A for A ≥ 0.

To find the solution of this concave maximization problem subject to the constraints 0 ≤ Ak ≤
Ak, we use the same optimality conditions for the CFL problem P (see Subsection 3.2.1) and

for the solution of ULP (see Subsection 5.2.2) of the CFL problem BP2 when the leader’s and
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Table 7.6. Results obtained by GMIN-αBB on 180 instances

Instance CPU Instance CPU

(m,n, r) zbest
L zbest

F (sec.) (m,n, r) zbest
L zbest

F (sec.)

267,010.87 69,255.14 860.9 915,719.32 476,825.06 4692.8

335,943.92 115,773.54 420.7 753,691.76 526,968.34 6388.5

186,763.23 60,835.24 336.7 578,965.07 345,570.87 3646.2

49,935.34 438,952.89 1097.1 58,0488.02 634,724.53 19,161.8

(2,10,1) 203,957.01 125,862.05 561.1 (2,30,2) 697,307.10 341,943.95 43,987.2

220,743.30 47,021.85 1389.3 493,958.06 407,153.34 2423.4

247,848.93 87,371.04 860.1 322,204.89 791,142.08 12,318.1

240,484.48 134,679.55 498.6 639,371.29 464,802.55 34,732.7

116,794.54 238,660.83 210.5 379,143.38 824,629.68 13,127.6

176,552.51 98,471.63 354.1 761,507.49 350,377.39 7594.2

161,544.78 133,136.44 310.5 228,259.02 53,819.60 7042.8

192,229.36 263,558.59 528.1 165,671.35 265,561.93 574.7

77,668.09 384,928.51 894.7 257,171.17 155,351.36 1593.8

7,435.78 510,544.92 983.3 162,328.08 158,149.31 633.8

(2,10,2) 223,314.89 202,936.07 2358.9 (3,10,1) 154,451.37 141,923.08 1463.0

78,067.33 347,779.22 2362.1 58,807.89 332,796.99 1283.6

197,665.72 61,130.02 9144.0 155,270.41 96,878.62 2108.0

258,342.85 70,869.07 751.4 166,037.18 170,484.38 1141.6

298,722.27 139,039.79 1690.8 125,168.06 127,938.20 364.2

181,988.23 138,569.61 2983.6 371,037.55 7,288.60 1576.6

398,665.25 436,325.37 1010.8 131,228.67 66,039.21 8505.1

452,296.42 56,539.21 2093.5 280,765.55 58,358.53 2735.9

630,081.90 141,755.83 6437.6 344,335.67 67,861.20 1623.5

516,210.54 388,477.60 378.6 178,411.07 180,203.29 1363.6

(2,20,1) 402,880.83 287,034.92 3789.5 (3,10,2) 188,883.49 189,441.25 917.5

247,627.96 325,239.64 2260.6 186,226.52 34,613.38 2084.4

435,920.82 195,990.83 1510.1 187,386.08 66,437.19 5251.0

289,196.11 287,155.39 4315.6 120,097.36 117,653.56 1778.0

494,575.32 79,084.76 3316.5 205,558.36 126,925.35 3704.4

457,788.39 181,500.86 1162.2 157,548.61 127,425.67 3402.4

574,507.41 310,152.91 3523.0 629,034.57 110,134.81 6084.6

302,725.24 540,465.66 5135.8 315,860.37 248,255.75 5320.0

400,646.47 242,346.84 7706.1 535,827.39 264,489.08 10,430.4

330,271.66 463,269.57 2556.3 436,059.00 186,186.00 2240.4

(2,20,2) 355,334.63 356,293.55 8854.5 (3,20,1) 407,525.98 361,528.97 6108.6

283,881.25 257,491.62 5958.5 526,156.63 90,306.13 2193.1

264,351.96 443,117.13 9031.4 385435.90 242,084.78 9257.2

330,858.54 475,695.24 3212.7 438,195.24 318,325.22 13,949.5

288,297.94 229,851.74 4456.9 344,948.95 274,320.99 19,262.9

487,186.91 193,933.33 4698.2 323,607.40 347,194.48 3595.0

752,572.57 314632.18 30,184.2 260,735.93 518,138.83 6403.5

875,376.07 295150.25 10,017.6 404,062.27 182,917.33 18,610.7

717,126.55 383153.80 6746.2 351,595.92 338,560.73 12,368.7

442,038.26 543878.04 5383.4 378,316.63 436,454.96 4885.3

(2,30,1) 1,007,622.14 310346.99 22,828.1 (3,20,2) 545,011.58 282,956.24 3,919.3

940,080.32 389662.24 7,001.3 319,545.82 409,766.56 8920.1

567,539.34 194918.84 9100.7 548,713.58 203,732.87 10,585.2

569,393.48 503432.62 3210.4 372,727.00 424,587.75 5288.2

339,309.67 574505.19 3982.0 266,330.65 334,488.65 2753.7

638,993.97 580656.08 5336.5 413,352.17 231,286.92 12,962.3

follower’s binary variables are fixed: A∗ is a global optimal solution if and only if
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Table 7.6. Results obtained by GMIN-αBB on 180 instances (cont)

Instance CPU Instance CPU

(m,n, r) zbest
L zbest

F (sec.) (m,n, r) zbest
L zbest

F (sec.)

835,061.12 488,990.58 15,315.8 672,365.11 3,611.49 27,703.8

811,046.60 337,442.95 8043.2 473,540.18 208,328.44 8367.6

517,004.92 593,696.84 35,891.1 359,701.47 252,409.50 12,028.4

505,948.64 530,607.27 4633.6 548,478.05 73,988.35 19,071.0

(3,30,1) 604,591.14 502,021.78 6885.0 (5,20,1) 682,476.91 32,099.26 33,603.7

644,524.52 464,323.82 21,568.7 372,465.90 190,345.78 32,108.3

651,910.16 634,321.65 7459.8 663,044.90 27,409.80 92,467.3

788,674.95 137,931.81 23,095.6 552,790.06 82,537.72 11,608.2

413,185.92 667,182.24 14,911.6 390,237.57 277,364.19 20,864.7

431,963.82 598,780.72 90,056.4 758,732.72 45,151.92 10,103.4

846,062.44 228,603.39 21,069.7 290,974.18 476,051.38 35,161.6

635,799.05 623,162.76 11,109.6 621,817.65 190,232.53 7770.7

521,425.24 464,823.72 9644.3 441,071.33 330,489.54 33,356.7

543,487.70 420,650.40 13,365.8 404,722.95 276,869.25 41,345.9

(3,30,2) 288,169.71 979,509.89 25,989.1 (5,20,2) 305,967.62 399,617.09 12,377.4

446,110.07 469,603.84 8549.5 439,461.19 254,353.54 89,688.8

557,318.55 327,500.94 32,579.1 451,996.77 143,802.41 3888.1

587,954.85 528,840.45 21,342.6 319,399.81 148,668.99 141,674.7

405,880.55 427,124.72 54,878.6 469,049.52 239,900.76 6504.9

480,123.91 497,784.71 8132.5 520,882.15 110,916.44 74,425.8

197,119.20 102,639.02 2991.8 790,312.43 164,010.99 32,522.0

462,601.91 77,836.15 5728.9 470,979.20 292,450.46 50,706.3

326,614.77 86,940.81 5795.9 986,899.79 148,858.56 33,176.7

281,523.31 50,297.76 1428.6 1,447,961.03 53,358.87 86,994.5

(5,10,1) 115,792.55 172,422.45 1826.5 (5,30,1) 756,829.04 246,190.09 233,923.7

187,148.00 107,756.67 1091.4 790,851.79 347,410.43 81,344.6

308,421.16 68,012.42 9810.4 613,196.46 432,247.56 57,985.3

320,974.56 46,353.79 5427.3 719,137.88 507,555.03 96,536.5

163,679.11 135,353.72 1177.1 800,173.37 229,847.26 52,636.3

227,629.14 108,384.69 8941.1 611,546.67 414,744.14 73,755.4

211,745.70 181,780.36 508.5 743,523.39 401,218.65 318,935.0

454,426.20 25,073.60 3312.5 892,473.09 41,755.66 1241.1

191,304.36 66,146.83 5907.8 575,502.75 376,892.55 19,185.1

313,304.80 22,450.45 2941.4 536,837.14 242,787.66 55,833.4

(5,10,2) 312,192.06 68,398.25 573.0 (5,30,2) 572,308.48 264,832.44 31,938.1

219,090.94 63,487.06 5397.8 687,330.16 242,709.53 15,2682.5

233,710.04 113,805.26 5011.5 470,213.53 658,745.14 144,363.4

207,027.94 86,380.87 12,454.2 736,612.93 248,211.10 243,978.3

293,448.80 9,481.84 9890.4 676,171.58 347,924.61 333,029.7

184,962.45 164,563.85 4375.4 642,127.55 106,636.43 85,295.3

i) ∂Π(A)
∂Ak

∣∣∣
A∗
≤ 0 when A∗k = 0,

ii) ∂Π(A)
∂Ak

∣∣∣
A∗
≥ 0 when A∗k = Ak,

iii) ∂Π(A)
∂Ak

∣∣∣
A∗

= 0 when 0 < A∗k < Ak.

These conditions give again rise to the same gradient ascent algorithm we develop in

Subsection 3.2.1. The application of this procedure shows that all the solutions found by the

GMIN-αBB algorithm are bilevel feasible.
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7.2.2. Benefit of Anticipating the Competitor’s Reaction

In this subsection our aim is to quantify the benefit (gain) of the leader and the disbenefit

(loss) of the competitor when the leader takes into consideration the reaction of the competitor.

To this end, we utilize a two-stage method. In the first stage, we solve a version of BP1 where

the attractiveness of the existing facilities belonging to the competitor are assumed to be

unchanged, i.e., the competitor does not or cannot react to the leader firm. This one-level

nonlinear mixed-integer concave maximization model analyzed in Chapter 3 and can be given

as follows.

P1 : max
n∑

j=1

hj

m∑
i=1

(
Qi/d

2
ij

)

m∑
i=1

(
Qi/d2

ij

)
+

r∑
k=1

(
Ãk/d̃2

kj

) −
m∑

i=1

fiXi−
m∑

i=1

ciQi (7.4)

s.t.

Qi ≤ uiXi i = 1, . . . ,m (7.5)

Xi ∈ {0, 1} i = 1, . . . ,m (7.6)

Qi ≥ 0 i = 1, . . . ,m (7.7)

where Ãk is the current attractiveness level for the existing facility at site k. Note that in this

model the attractiveness levels of competitor’s facilities remain at their current values Ãk after

the market entrant firm opens its new facilities. Since the best performing algorithm for P1

is a branch-and-bound method with NLP relaxation (BB-NLP) among the three algorithms

proposed for the solution of CFL problem P, we employ it in solving all the instances of the

previous subsection. The solution of P1 yields the optimal locations X′ of the new facilities

and their attractiveness levels Q′, which completes the first stage. By fixing the values of

these variables, in the second stage of our method, we determine the optimal reaction of the

competitor by solving the following model.
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P2 : max
n∑

j=1

hj

r∑
k=1

(
Ak/d̃

2
kj

)

m∑
i=1

(
Q′i/d

2
ij

)
+

r∑
k=1

(
Ak/d̃2

kj

)−
r∑

k=1

c̃k(Ak − Ãk) (7.8)

s.t.

0 ≤ Ak ≤ Ak k = 1, ..., r (7.9)

Note that this model is the same as the one which was used earlier for checking the

bilevel feasibility of the solution generated by GMIN-αBB. Hence, it can be solved to global

optimality by the gradient ascent procedure explained in previously. As soon as we obtain

the optimal reaction A′ of the competitor from P2, it is possible to calculate the profit z′L

realized by the market entrant firm as well as the profit z′F by the competitor using the values

of (X′,Q′,A′) as follows:

z′L =
n∑

j=1

hj

m∑
i=1

(
Q′i/d

2
ij

)

m∑
i=1

(
Q′i/d

2
ij

)
+

r∑
k=1

(
A′k/d̃

2
kj

) −
m∑

i=1

fiX
′
i−

m∑

i=1

ciQ
′
i (7.10)

z′F =
n∑

j=1

hj

r∑
k=1

(
A′k/d̃

2
kj

)

m∑
i=1

(
Q′i/d

2
ij

)
+

r∑
k=1

(
A′k/d̃

2
kj

) −
r∑

k=1

c̃k

(
A′k − Ãk

)
(7.11)

Thus,
(
zbest
L − z′L

)
describes the gain of the market entrant firm associated with foreseeing

the reaction of the competitor. To put it differently, it is the reduction in the profit of the

leader due to the carelessness of the capability of the competitor for redesigning its facilities.

Similarly,
(
zbest
F − z′F

)
is the loss of the competitor due to the anticipation of its reaction by
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the leader. The results given in Table 7.7 are obtained for the same 180 instances considered

before. For each instance, the gain (loss) of the leader (competitor) is computed as the

percentage relative deviation 100×
(
zbest
L − z′L

)
/z′L (100×

(
zbest
F − z′F

)
/z′F ).

The average gain of the leader computed over all the instances is 58.33%, which indicates

that there is a substantial gain for this firm when it incorporates the reaction of the competitor

into his profit maximization model. Similarly, the average loss of the competitor is 45.31%,

which proves that the competitor is better off if its reaction is not taken into account by

the leader. It is worth mentioning that there are some instances in Table 7.2.1 (e.g. the

5th instance with (m,n, r) = (2, 10, 1)) where the gain of the leader turns out to be zero, or

equivalently zbest
L and z′L have the same value. A closer examination of these cases reveals that

the leader firm opens the same facility at the maximum attractiveness level with or without

anticipating the competitor’s reaction, and hence the reaction of the competitor becomes the

same in both cases. We think that the occurrence of these cases are due to the small size of

the instances where the number of alternative decisions is very limited from the perspective

of the leader, i.e., there are only two or three candidate sites for opening facilities, and only

one facility is opened. Indeed, the gain is not zero for any of the relatively larger instances in

Table 7.7.

An interesting observation we make from the results is that not only the leader but also

the competitor sometimes takes advantage of the leader’s effort to take competitor’s reaction

into account. For example, consider the fourth instance when (m,n, r) = (2, 10, 1). The profit

of the leader increases from 43,310.35 to 49,935.34 (15.30%) as the result of anticipation of the

competitor’s reaction. This also helps the competitor in increasing its profit from 379,836.31 to

438,952.89 (15.56%). A positive value in the loss columns in Table 7.7 indicates the existence

of this rare but interesting situation.

7.2.3. An Instance Based On Real-World Data

In this subsection, we use the data set of a real-world example provided by Drezner and

Drezner (2002) for the solution of BP1. The data include the locations of 28 communities in

Orange County, California, United States, and their effective buying income, the locations of
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Table 7.7. The gain of the leader and the loss of the competitor

Instance Gain Loss Instance Gain Loss

(m,n, r) z′L z′F (%) (%) (m,n, r) z′L z′F (%) (%)

202,468.4 177,588.5 31.88 -61.00 893,840.5 588,580.6 2.45 -18.99

334,653.7 125,754.5 0.39 -7.94 719,718.9 612,667.2 4.72 -13.99

142,141.2 148,635.5 31.39 -59.07 511,025.3 485,390.2 13.29 -28.81

43,310.4 379,836.3 15.30 15.56 527,892.4 862,852.4 9.96 -26.44

(2,10,1) 203,957.0 125,862.1 0.00 0.00 (2,30,2) 520,950.8 726,412.5 33.85 -52.93

155,789.8 198,145.4 41.69 -76.27 320,230.4 790,428.1 54.25 -48.49

140,107.2 295,768.9 76.90 -70.46 301,628.5 837,833.6 6.82 -5.57

143,715.9 265,355.8 67.33 -49.25 561,511.2 644,774.7 13.87 -27.91

787,42.3 273,113.9 48.32 -12.61 365,620.6 873,853.8 3.70 -5.63

126,106.7 241,478.6 40.00 -59.22 505,003.3 709,197.6 50.79 -50.60

108,896.8 249,594.0 48.35 -46.66 154,276.6 223,351.3 47.95 -75.90

175,062.0 271,110.1 9.81 -2.79 165,671.4 265,561.9 0.00 0.00

70,624.2 430,108.4 9.97 -10.50 213,394.8 262,136.8 20.51 -40.74

203.0 425,831.5 3563.31 19.89 89,621.8 317,989.4 81.13 -50.27

(2,10,2) 209,889.5 267,169.8 6.40 -24.04 (3,10,1) 64,974.1 324,124.2 137.71 -56.21

37,120.9 333,331.2 110.31 4.33 41,090.3 356,673.4 43.12 -6.69

187,395.3 166,102.7 5.48 -63.20 105,681.1 245,017.5 46.92 -60.46

221,654.6 143,789.3 16.55 -50.71 141,533.5 225,487.9 17.31 -24.39

218,243.9 209,704.3 36.88 -33.70 71,999.5 244,842.2 73.85 -47.75

165,951.9 247,001.0 9.66 -43.90 246,246.8 112,799.0 50.68 -93.54

256,496.7 734,908.5 55.43 -40.63 131,134.3 85,517.2 0.07 -22.78

234,016.3 497,314.8 93.28 -88.63 237,200.0 178,892.7 18.37 -67.38

527,681.3 249,830.4 19.41 -43.26 278,015.9 129,659.4 23.85 -47.66

462,047.0 547,046.5 11.72 -28.99 163,197.1 181,560.3 9.32 -0.75

(2,20,1) 331,338.2 482,863.5 21.59 -40.56 (3,10,2) 149,895.1 232,789.5 26.01 -18.62

223,754.9 441,818.8 10.67 -26.39 129,571.7 150,235.3 43.72 -76.96

243,262.9 500,256.9 79.20 -60.82 127,238.8 200,680.7 47.27 -66.89

159,216.8 579,699.3 81.64 -50.46 99,014.4 198,795.7 21.29 -40.82

282,392.9 383,848.0 75.14 -79.40 110,969.9 271,048.0 85.24 -53.17

271,397.3 514,130.6 68.68 -64.70 150,392.8 155,662.4 4.76 -18.14

462,682.7 548,574.2 24.17 -43.46 452,086.0 438,131.0 39.14 -74.86

302,725.2 540,465.7 0.00 0.00 256,230.6 392,925.3 23.27 -36.82

367,728.4 459,997.7 8.95 -47.32 404,327.3 541,022.8 32.52 -51.11

188,253.8 806,459.8 75.44 -42.56 366,233.6 343,609.1 19.07 -45.81

(2,20,2) 244,588.7 680,229.3 45.28 -47.62 (3,20,1) 269,286.2 616,682.3 51.34 -41.38

225,992.1 491,382.7 25.62 -47.60 305,942.9 410,199.2 71.98 -77.98

248,894.7 439,203.0 6.21 0.89 300,216.7 511,344.7 28.39 -52.66

288,731.8 550,308.6 14.59 -13.56 279,141.0 631,972.6 56.98 -49.63

248,038.0 405,867.3 16.23 -43.37 236,638.5 526123.4 45.77 -47.86

352,303.3 435,238.2 38.29 -55.44 290,778.1 516,788.3 11.29 -32.82

665,117.5 466,695.6 13.15 -32.58 176,952.6 545,066.3 47.35 -4.94

692,450.9 604,187.2 26.42 -51.15 307,241.4 472,582.8 31.51 -61.29

583,168.5 677,519.4 22.97 -43.45 292,480.0 572,893.1 20.21 -40.90

368,764.1 779,630.8 19.87 -30.24 310,838.1 609,895.2 21.71 -28.44

(2,30,1) 852,215.5 482,172.0 18.24 -35.64 (3,20,2) 480,233.0 414,692.4 13.49 -31.77

631,237.2 851,375.5 48.93 -54.23 212,067.6 599,876.4 50.68 -31.69

280,596.9 861936.7 102.26 -77.39 328,196.1 544,770.1 67.19 -62.60

461,875.0 738,125.0 23.28 -31.80 332,306.3 561,927.7 12.16 -24.44

248,281.7 857,877.1 36.66 -33.03 206,937.2 565,712.9 28.70 -40.87

468,017.1 934,989.3 36.53 -37.90 285,351.7 477,666.3 44.86 -51.58
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Table 7.7 The gain of the leader and the loss of the competitor (cont)

Instance Gain Loss Instance Gain Loss

(m,n, r) z′L z′F (%) (%) (m,n, r) z′L z′F (%) (%)

708,852.6 704,964.0 17.80 -30.64 343,070.3 379,001.4 95.98 -99.05

564,020.4 832,798.6 43.80 -59.48 411,193.6 334,127.4 15.16 -37.65

464,970.8 822,731.1 11.19 -27.84 191,845.4 540,676.5 87.50 -53.32

395,822.7 792,958.0 27.82 -33.09 314,899.6 392,828.4 74.18 -81.17

(3,30,1) 500,084.4 751,846.7 20.90 -33.23 (5,20,1) 375,830.4 364,714.7 81.59 -91.20

372,558.4 900,031.5 73.00 -48.41 248,560.3 471,773.1 49.85 -59.65

618,994.3 756,969.0 5.32 -16.20 393,575.0 389,380.7 68.47 -92.96

527,612.9 564,615.5 49.48 -75.57 298,452.5 507,313.6 85.22 -83.73

308,615.7 866,520.7 33.88 -23.00 231,307.0 467,592.5 68.71 -40.68

398,768.6 687,308.4 8.32 -12.88 581,865.8 230,477.4 30.40 -80.41

562,512.5 734,778.9 50.41 -68.89 250,947.7 447,996.3 15.95 6.26

497,548.0 865,110.5 27.79 -27.97 514,161.9 347,493.6 20.94 -45.26

364,240.4 746,203.1 43.15 -37.71 352,817.9 454,030.1 25.01 -27.21

481,581.6 662,125.9 12.85 -36.47 243,929.4 567,656.5 65.92 -51.23

(3,30,2) 280,660.6 1,051,812.0 2.68 -6.87 (5,20,2) 247,026.1 510,245.2 23.86 -21.68

350,359.3 670,350.7 27.33 -29.95 368,766.5 483,874.6 19.17 -47.43

379,473.4 759,000.5 46.87 -56.85 244,443.9 461,552.1 84.91 -68.84

406,924.8 757,076.5 44.49 -30.15 213,975.4 370,305.4 49.27 -59.85

363,254.1 737,528.3 11.73 -42.09 353,327.6 427,663.6 32.75 -43.90

366,055.3 771,376.3 31.16 -35.47 343,706.7 459,675.9 51.55 -75.87

153,131.7 194,126.2 28.73 -47.13 539,053.4 443,182.2 46.61 -62.99

301,308.6 204,990.4 53.53 -62.03 213,279.5 744,092.0 120.83 -60.70

231,668.4 239,574.2 40.98 -63.71 777,654.1 371,083.1 26.91 -59.89

171,490.6 161,474.3 64.16 -68.85 1,293,990.8 175,540.7 11.90 -69.60

(5,10,1) 62,965.3 257,666.8 83.90 -33.08 (5,30,1) 520,283.8 650,635.7 45.46 -62.16

149,693.6 220,154.3 25.02 -51.05 481,680.7 824,040.7 64.19 -57.84

229,160.6 175,594.7 34.59 -61.27 469,933.4 715,358.7 30.49 -39.58

227,649.6 177,708.0 41.00 -73.92 474,788.9 981,497.1 51.46 -48.29

97,264.1 293,585.9 68.28 -53.90 386,712.3 784,124.6 106.92 -70.69

154,747.7 244,826.2 47.10 -55.73 394,333.8 835,329.5 55.08 -50.35

98,560.6 401,199.6 114.84 -54.69 671,861.2 538,055.8 10.67 -25.43

321,126.5 160,438.6 41.51 -84.37 661,892.2 690,837.6 34.84 -93.96

131,690.3 166,152.2 45.27 -60.19 489,740.5 654,684.7 17.51 -42.43

244,715.4 109,253.3 28.03 -79.45 375,678.9 538,468.7 42.90 -54.91

(5,10,2) 237,161.1 179,912.3 31.64 -61.98 (5,30,2) 396,781.3 573,022.5 44.24 -53.78

154,032.5 170,137.8 42.24 -62.68 462,313.8 644,535.6 48.67 -62.34

169,307.9 221,011.2 38.04 -48.51 338,422.2 814,529.6 38.94 -19.13

179,555.9 146,705.5 15.30 -41.12 399,593.5 719,141.1 84.34 -65.49

185,010.6 168,677.9 58.61 -94.38 561,874.5 570,644.3 20.34 -39.03

179,040.6 229,764.8 3.31 -28.38 414,306.1 641,367.9 54.99 -83.37
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10 shopping malls, their inferred attractiveness levels, and the Euclidean distances between

the communities and the shopping malls corrected using the areas of the communities. We

take the communities as the demand points, and randomly choose the locations of two malls

as the existing facility sites of the competitor (South Cost Plaza and Main Place). The

locations of the remaining eight malls constitute the candidate facility site for the leader.

The attractiveness of the existing facilities are set equal to the inferred attractiveness of the

two malls after multiplying by 1000 for scaling purposes. Since the data set does not include

every parameter used in BP2, we need to assign the values of the following parameters. The

attractiveness cost of the existing facilities as well as the new facilities to be opened by the

leader firm is set to five. As in the case of randomly generated instances, the fixed costs of the

new facilities are taken as 1000 times the unit attractiveness cost (i.e., 5000) and the maximum

attractiveness levels of new facilities are equated to 10,000 the unit attractiveness cost (i.e.,

50,000). The problem and the optimal solution are depicted in Figure 7.6 and Figure 7.7.

The leader firm enters the market with three facilities opened at the second, fourth, and sixth

candidate sites at attractiveness levels 3573, 3035, and 7133, respectively. The competitor

reacts by increasing the attractiveness of its facilities from 3629 to 6880, and from 748 to

7340, respectively.

Figure 7.6. A problem with real-world data

7.3. A Bilevel Competitive Facility Location Problem with Full Reaction of the

Competitor

In this section, we first evaluate the performance of the proposed TS heuristics for the

solution of the bilevel CFL model BP2 examined in Chapter 5 in comparison with the ε-
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Figure 7.7. Optimal solution of the problem with real-world data

optimal solution method proposed in the same chapter. We use eight data sets where the

number of demand points (n) is set to 10 and 20, the number of existing facilities of the

competitor (r1) and the number of the candidate facility sites of the competitor (r2) to one

and two, while the number of candidate facility sites of the firm (m) is equal to five. The first

r1 + r2 candidate sites of the firm coincide with the candidate and existing facility sites of

the competitor. This enables us to capture the possibility of the firm to co-locate its facilities

with those of the competitor if it is profitable to do so. Three different instances are generated

for each dataset, which makes a total of 24 problem instances in total. The reason why we

choose relatively small values for m and n is due to the fact that the GMIN-αBB can only

handle instances of this size within reasonable computation times. Furthermore, we have to

also apply the same modified version of the GMIN-αBB algorithm given in Subsection 7.2.1,

where the gap between the lower bound and upper bound on the objective values becomes

less than a user-specified threshold value.

The x and y-coordinates of the demand points, the candidate facility sites of both parties,

and the existing facility sites of the competitor are integer numbers generated from a discrete

uniform distribution defined in the interval [0, 100]. The annual buying power hj of customers

at point j, the unit attractiveness cost ci of the firm’s new facility at site i, unit attractiveness

cost el of competitor’s new facility at site l, unit cost of increasing or unit revenue of decreasing

the attractiveness of competitor’s existing facility at site (bk), and the current attractiveness

Ak of competitor’s existing facility at site k are integer-valued parameters generated from the

uniform distributions as: hj ∼ U(100, 100000), ci ∼ U(1, 10), e` ∼ U(1, 10), bk ∼ U(1, 10), and
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Ak ∼ U(100, 1000). The fixed costs fi and f̃` are set 1000 times as large as the attractiveness

costs, i.e., fi = 1000ci and f̃` = 1000e`. The upper bounds ui, Ak, and M ` on the attractiveness

of a new or existing facility are taken as ui = 10000ci, Ak = 10000bk, and M l = 10000el,

respectively. Finally, the revenue tk that incurs to the competitor by closing an existing facility

at site k is set to 500 times as large as the attractiveness cost bk, i.e. tk = 500bk. The maximum

number of iterations performed (max iter) and the maximum number of iterations without an

improvement in the incumbent (max nonimp iter) are set to 1000 and 100, respectively.

Having compared the TS heuristics with the ε-optimal solution method, we create larger

problem instances and compare their accuracy with each other. To this end, we generate five

instances for each of the 18 data sets, where n ∈ {50, 60, 70, 80, 90, 100}, r1 ∈ {2, 3, 4}, r2 = r1,

and m = 2(r1 + r2). This makes 90 problem instances in total.

7.3.1. Comparing the Tabu Search Heuristics and the ε-Optimal Solution Method

In this subsection, the computational results of the comparison of the TS heuristics with

the ε-optimal solution method are given. For each of the 24 created instances we provide the

corresponding CPU time and the accuracy of each TS heuristic measured as a percent relative

deviation (PD), which is computed as 100×(φ∗ − φ) /φ∗, where φ indicates the objective value

of a feasible solution found by a TS heuristic. Since TS-3 starts with the best feasible solution

given by TS-2, the CPU time for each instance is obtained as the sum of the corresponding

CPU time spent by TS-2 to find the starting solution and the CPU time of running TS-1.

Moreover, as TS-1 and TS-3 generate the attractiveness levels Q of the firm randomly, we

run them five times for each instance, and report the percent relative deviation of the average

objective value (PDavg) and that of the best objective value (PDmax) over five runs. As can

be observed, the average deviation of TS-2 is 1.10%. The averages of PDavg and PDmax are

0.69% and 0.19% for TS-1 and 0.29% and 0.09% for TS-3. This indicates that all TS heuristics

produce solutions of good quality, and in line with our expectations TS-3 outperforms TS-1

and TS-2. This, however, comes at the expense of additional CPU time. The average CPU

times are 64.1 s, 192.5 s, and 213.0 s for TS-2, TS-1, and TS-3, respectively. Nevertheless,

the efficiency of all TS heuristics is considerably better than that of the ε-optimal solution

method which requires 7140.0 s on the average.
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Table 7.8. Efficiency of the TS heuristics: comparison with the ε-optimal solution method

Dataset ε-optimal TS-2 TS-1 TS-3

(m,n, r1, r2) Profit (φ∗) CPU (s) PD (%) CPU (s) PDavg (%) PDmax (%) CPU (s) PDavg (%) PDmax (%) CPU (s)

205,592.2 638.7 0.00 2.0 0.81 0.24 106.4 0.00 0.00 66.5

(5,10,1,1) 133,326.9 874.8 <0.01 1.2 1.13 <0.01 70.5 <0.01 <0.01 43.3

256,934.6 1777.3 3.90 230.4 2.21 0.54 65.3 1.64 0.39 303.4

114,496.0 1718.0 3.74 1.6 0.97 <0.01 164.4 0.27 0.00 126.1

(5,10,1,2) 122,742.9 2157.5 1.34 98.3 0.28 0.04 123.8 0.21 0.02 221.8

170,216.5 2972.7 0.00 2.5 0.32 0.09 195.5 0.00 0.00 111.6

270,919.7 1576.5 3.65 57.7 0.08 0.01 98.8 0.11 0.03 158.9

(5,10,2,1) 209,598.4 2206.5 2.60 50.4 0.11 0.04 131.9 0.14 0.01 208.6

188,913.0 4967.7 1.50 192.5 0.96 0.11 148.1 0.97 0.35 339.7

72,214.6 10,601.5 0.48 2.0 0.05 <0.01 207.9 0.05 0.00 197.7

(5,10,2,2) 155,149.8 6369.5 0.00 3.8 0.61 0.07 291.9 0.00 0.00 175.2

155,957.3 9180.3 0.00 163.6 0.68 0.32 400.2 0.00 0.00 377.6

207,269.6 5391.8 0.00 33.4 0.00 0.00 58.8 0.00 0.00 89.2

(5,20,1,1) 488,628.2 942.4 1.54 1.8 0.71 0.30 88.1 0.75 0.16 102.4

511,244.0 1595.8 0.00 2.2 0.40 0.14 104.9 0.00 0.00 76.7

458,578.0 8053.5 0.00 3.0 <0.01 0.00 204.6 0.00 0.00 136.1

(5,20,1,2) 316,072.2 5667.2 0.72 54.6 0.54 0.36 158.7 0.60 0.42 203.3

276,636.3 3482.4 0.00 1.7 0.00 0.00 137.1 0.00 0.00 139.5

317,272.3 12,466.9 0.00 75.2 1.85 0.61 286.2 0.00 0.00 211.8

(5,20,2,1) 593,588.8 2071.5 0.00 56.0 1.68 0.79 192.9 0.00 0.00 176.8

270,621.5 5106.7 0.01 60.0 0.31 0.13 194.6 0.01 0.01 183.3

492,045.9 32,863.9 2.78 272.2 1.22 0.06 390.3 1.30 0.38 652.3

(5,20,2,2) 503,150.1 24,378.1 0.00 8.7 0.39 0.03 459.7 0.00 0.00 278.9

313,793.8 24,299.1 3.00 164.9 0.64 0.15 340.2 0.72 0.28 532.0

Average 7140.0 1.10 64.1 0.69 0.19 192.5 0.29 0.09 213.0

7.3.2. Comparing the Tabu Search Heuristics on Larger Instances

Being satisfied with the performance of the three TS heuristics we create the larger

problem instances mentioned at the beginning of the section and compare their accuracy with

each other. For the ease of comparison, we highlight the best objective value in boldface for

each problem instance. We observe that out of 90 instances TS-3 provides the best solution

for 70 instances. Among these, TS-2 and TS-3 find the same solution in 38 instances. In

other words, TS-3 cannot improve the solution provided by TS-2. TS-1 is the best performing

heuristic for 20 instances. The comparison of the TS heuristics in terms of efficiency reveals

that TS-2 spends 6177.5 s on the average, and is much faster than TS-1 and TS-3 which

require an average of 41383.8 s and 27174.2 s, respectively.

7.4. A Discrete Facility Location Problem with Customer Preferences

We generate ten data sets where the number of customer zones

n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and the number of facility types is three

for the evaluation of the performance of the proposed solution procedures given in Section

6.3. The potential facility sites coincide with the customer zones so that each new facility

is opened at one of the locations where customers are assumed to be aggregated. For each
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Table 7.9. Efficiency comparison of the TS heuristics for larger instances

Dataset TS-2 TS-1 TS-3

(m,n, r1, r2) φ2 CPU (s) φ1
avg φ1

max CPU (s) φ3
avg φ3

max CPU (s)

708,017.7 29.8 750,366.7 766,382.6 2452.5 760,005.2 766,907.3 1574.2

1,263,561.1 41.7 1,270,250.1 1,290,220.1 2983.0 1,277,559.5 1,288,133.8 1567.3

(8,50,2,2) 1,100,169.1 700.8 1,128,690.3 1,132,967.5 2237.6 1,128,219.0 1,131,741.1 3203.3

1,435,969.4 47.1 1,415,429.4 1,425,493.0 2911.8 1,435,969.4 1,435,969.4 1034.5

974,414.7 35.4 992,894.4 998,766.5 2210.8 991,264.0 996,140.2 1875.7

1,295,452.5 775.9 1,297,641.0 1,300,481.3 3266.1 1,299,308.0 1,301,186.1 2709.0

1,298,793.4 1241.6 1,281,583.3 1,289,867.2 3552.9 1,298,793.4 1,298,793.4 2211.7

(8,60,2,2) 1,765,233.6 17.3 1,805,048.4 1,819,376.9 2862.5 1,816,865.7 1,822,650.2 1723.6

1,082,383.6 21.4 1,075,318.1 1,078,942.6 2320.4 1,082,383.6 1,082,383.6 1020.7

1,032,622.6 772.3 1,117,480.9 1,122,044.4 4074.6 1,097,013.1 1,122,392.2 3088.8

1,531,871.9 66.7 1,550,223.1 1,555,918.1 3364.3 1,547,673.0 1,551,500.9 2978.9

1,315,932.8 5737.1 1,306,634.1 1,315,198.4 3153.0 1,316,403.0 1,317,913.0 7765.6

(8,70,2,2) 1,346,942.7 1004.4 1,323,815.2 1,343,446.7 3574.5 1,346,942.7 1,346,942.7 2859.6

1,732,022.6 1379.1 1,736,160.3 1,739,953.3 3449.7 1,736,766.2 1,738,901.7 3676.8

2,051,814.9 54.3 2,024,865.5 2,033,849.9 1489.8 2,051,814.9 2,051,814.9 755.2

1,988,501.0 55.8 2,011,973.6 2,025,662.7 2471.0 2,007,983.1 2,019,337.1 1980.6

1,712,239.1 945.4 1,693,575.8 1,709,185.3 5014.2 1,712,394.2 1,713,014.4 2755.3

(8,80,2,2) 1,438,617.7 361.0 1,431,195.0 1,435,705.6 2072.7 1,438,617.7 1,438,617.7 1458.5

1,607,937.7 53.1 1,603,809.4 1,606,703.3 2641.5 1,607,937.7 1,607,937.7 1194.4

1,826,378.6 1547.7 1,793,954.2 1,810,550.0 2380.0 1,831,595.1 1,841,547.9 3013.4

1,837,377.8 1030.2 1,788,463.0 1,822,999.3 2704.3 1,838,015.3 1,840,565.3 2960.4

1,542,366.6 142.3 1,546,174.9 1,547,088.2 4468.1 1,544,318.8 1,546,254.5 2847.7

(8,90,2,2) 2,093,375.7 606.0 2,099,596.4 2,102,111.4 2991.2 2,096,825.7 2,102,277.0 2180.4

1,979,438.3 70.5 1,907,056.9 1,934,454.6 1916.6 1,979,438.3 1,979,438.3 1339.7

1,972,675.6 1908.7 1,913,771.5 1,929,643.4 1862.8 1,972,675.6 1,972,675.6 3018.2

2,217,403.3 66.4 2,202,827.6 2,233,622.0 4438.3 2,229,775.2 2,249,225.1 3642.3

2,182,111.6 261.8 2,163,313.4 2,175,738.1 4268.7 2,182,111.6 2,182,111.6 2414.2

(8,100,2,2) 2,650,566.0 923.1 2,598,623.8 2,616,071.2 3446.1 2,650,566.0 2,650,566.0 1934.0

1,740,434.0 2154.4 1,758,666.5 1,771,011.5 7460.8 1,761,096.4 1,778,636.2 7237.0

2,351,607.3 81.7 2,340,927.3 2,346,270.3 5611.3 2,351,607.3 2,351,607.3 2445.8

1,202,746.0 415.7 1,157,165.4 1,163,015.9 15969.0 1,202,746.0 1,202,746.0 7148.2

995,525.1 2928.8 1,009,569.7 1,019,116.3 16,660.3 1,021,895.7 1,023,174.7 15955.7

(12,50,3,3) 922,530.2 5377.4 931,495.8 934,413.7 8701.4 930,332.2 934,377.5 17500.4

1,285,707.0 330.2 1,324,135.4 1,336,619.3 12,466.0 1,297,047.0 1,324,586.5 7787.9

950,105.6 1801.1 1,008,943.3 1,013,564.6 23,117.2 1,000,318.7 1,012,702.5 14,126.6

1,411,604.0 323.0 1,417,183.8 1,421,999.4 17,828.5 1,414,756.4 1,417,655.4 12214.4

968,010.8 357.0 948,126.6 959,606.1 22,704.2 968,010.8 968,010.8 9788.0

(12,60,3,3) 1,015,085.7 2159.4 1,007,736.1 1,010,069.7 14,220.8 1,015,085.7 1,015,085.7 9922.3

1,386,021.3 6298.1 1,387,592.4 1,396,547.8 18,463.0 1,399,161.7 1,410,252.6 22,154.6

1,354,679.3 441.2 1,316,385.2 1,350,391.1 19,350.0 1,354,679.3 1,354,679.3 8898.9

1,348,284.2 4795.9 1,346,114.5 1,371,741.6 39,165.0 1,358,581.8 1,369,849.1 23,283.1

1,226,156.9 7626.5 1,245,489.7 1,249,736.3 18,536.9 1,245,489.7 1,249,736.3 26,163.4

(12,70,3,3) 1,284,975.6 491.1 1,316,810.7 1,320,915.0 33,125.2 1,315,775.1 1,320,157.2 24,751.9

1,733,072.7 6305.8 1,711,289.8 1,729,202.4 30,162.0 1,733,229.9 1,733,857.6 23,930.0

1,517,700.3 2663.1 1,505,453.4 1,510,444.0 25,333.3 1,517,966.9 1,519,033.6 13,964.0

data set, five different instances are created so that 50 problem instances are obtained. The

x and y-coordinates of the customer zones are integer numbers generated from a uniform

distribution defined in the interval [0, 100]. The distance dij between two zones i and j is then

calculated as the Euclidean distance. The annualized buying power hj of customers at zone

j are integer-valued parameters generated from a uniform distribution as hj ∼ U(100, 1000).
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Table 7.9 Efficiency of the TS heuristics for larger instances (cont)

Dataset TS-2 TS-1 TS-3

(m,n, r1, r2) φ2 CPU (s) φ1
avg φ1

max CPU (s) φ3
avg φ3

max CPU (s)

1,807,982.8 451.2 1,799,054.2 1,811,408.3 15,347.8 1,815,419.5 1,819,257.9 9543.3

1,966,959.0 742.3 1,969,586.6 1,971,853.4 22,315.6 1,970,126.8 1,971,893.7 13,289.9

(12,80,3,3) 1,210,034.7 2370.5 1,242,274.0 1,261,668.3 28,247.4 1,263,116.4 1,269,319.2 25,062.2

1,861,643.7 902.2 1,938,686.6 1,951,310.1 50,540.4 1,880,390.9 1,948,330.5 55,491.7

1,691,014.3 1072.8 1,698,982.8 1,725,638.1 41,742.7 1,736,483.6 1,761,950.9 25,091.1

1,631,391.7 487.2 1,591,817.4 1,618,763.9 2,2,985.3 1,631,391.7 1,631,391.7 10,958.4

1,407,237.5 389.4 1,398,962.7 1,410,811.0 30,074.3 1,408,636.0 1,411,299.2 16,548.1

(12,90,3,3) 1,602,355.3 851.7 1,591,084.3 1,606,459.4 28,230.3 1,605,425.4 1,613,503.9 34,748.1

1,692,652.6 4777.7 1,677,305.6 1,687,095.9 39,745.2 1,692,699.4 1,692,886.4 15,868.4

1,973,023.8 5964.6 1,943,298.0 1,955,377.3 33,777.5 1,973,023.8 1,973,023.8 22,000.7

2,113,551.3 9656.6 2,191,193.0 2,196,573.7 37,459.7 2,190,583.0 2,206,240.1 27,571.0

2,416,126.0 2475.7 2,346,621.2 2,388,047.8 17,250.7 2,418,711.8 2,424,838.4 11,498.6

(12,100,3,3) 2,190,723.0 19,139.8 2,181,531.3 2,194,188.4 63,565.4 2,193,710.6 2,196,029.3 55,764.8

1,907,006.4 637.2 1,872,539.8 1,906,978.0 23,487.6 1,907,006.4 1,907,006.4 11,461.3

1,738,030.6 12,127.1 1,726,331.0 1,739,827.6 37,725.1 1,738,030.6 1,738,030.6 24,725.1

831,941.3 10,846.0 818,224.2 828,829.4 30,932.5 831,941.3 831,941.3 24,456.4

1,075,374.0 2216.1 1,050,324.6 1,059,006.0 49,974.4 1,075,374.0 1,075,374.0 28,254.6

(16,50,4,4) 1,228,906.2 1148.7 1,169,779.0 1,219,764.2 72,241.1 1,228,906.2 1,228,906.2 21,030.9

889,945.0 25,614.5 877,563.3 912,234.5 169,656.3 910,301.2 917,429.0 149,206.8

1,388,153.4 3360.4 1,384,622.7 1,387,409.4 36,136.0 1,388,153.4 1,388,153.4 18,348.6

1,188,730.1 1518.3 1,205,472.7 1,236,350.9 78,457.6 1,228,316.7 1,236,710.6 51,553.5

1,350,667.2 1965.4 1,334,471.7 1,344,647.3 59,011.3 1,350,667.2 1,350,667.2 23,065.6

(16,60,4,4) 1,304,864.6 1291.2 1,298,186.4 1,300,657.6 64,362.4 1,304,864.6 1,304,864.6 25926.8

1,125,113.0 3492.0 1,111,024.7 1,119,612.8 26,732.1 1,125,113.0 1,125,113.0 17,314.9

1,484,921.4 17,283.4 1,463,697.7 1,477,639.9 82,369.5 1,484,921.4 1,484,921.4 54,799.2

1,046,319.9 2306.5 1,038,168.2 1,043,405.8 68,579.3 1,046,319.9 1,046,319.9 35,846.5

1,340,241.8 749.7 1,313,879.2 1,331,300.4 25,549.8 1,340,241.8 1,340,241.8 12,276.1

(16,70,4,4) 1,572,186.9 2531.7 1,529,865.9 1,556,600.2 50,645.1 1,572,186.9 1,572,186.9 26,353.6

1,777,202.2 5898.4 1,826,590.9 1,857,900.2 134,719.0 1,840,527.0 1,857,800.9 99,440.9

1,403,871.5 37,158.8 1,399,256.9 1,417,502.4 61,952.2 1,409,779.1 1,422,276.1 79,339.9

1,523,885.7 50,852.5 1,496,961.4 1,511,858.5 171,382.6 1,523,885.7 1,523,885.7 119,179.8

1,852,580.4 2218.8 1,823,922.4 1,843,171.1 133,996.1 1,853,135.6 1,855,356.5 62,840.1

(16,80,4,4) 2,361,338.3 18,685.7 2,299,384.2 2,326,639.6 35,256.4 2,374,530.9 2,380,121.5 34,925.7

1,692,032.3 42,632.0 1,647,057.3 1,672,870.4 62,770.0 1,692,032.3 1,692,032.3 81,357.8

1,533,233.6 15,262.9 1,527,088.1 1,530,445.0 82,762.6 1,533,233.6 1,533,233.6 59,722.3

1,689,441.3 5919.2 1,707,920.0 1,747,068.2 153,454.2 1,719,113.1 1,737,895.8 110,117.1

1,674,399.7 26,362.3 1,704,154.0 1,717,501.1 64,010.5 1,704,060.6 1,715,728.0 80,106.9

(16,90,4,4) 1,715,332.0 28,304.9 1,688,454.9 1,704,803.6 118,251.7 1,715,403.6 1,715,690.1 61,501.3

1,740,497.3 3037.4 1,722,340.3 1,731,245.3 100,225.0 1,740,497.3 1,740,497.3 54,314.2

1,829,994.1 2033.8 1,784,381.1 1,821,404.4 73,333.2 1,829,994.1 1,829,994.1 27,416.9

2,279,358.9 41,045.9 2,212,650.5 2,269,695.9 158,760.9 2,279,358.9 2,279,358.9 98,687.6

1,927,504.9 28,553.8 1,895,525.7 1,902,469.4 147,667.9 1,938,080.9 1,941,143.9 87,935.1

(16,100,4,4) 2,283,729.3 20,213.3 2,299,793.7 2,314,636.8 117,829.6 2,306,047.8 2,312,266.5 97,196.2

2,562,060.3 21,592.5 2,538,983.1 2,590,208.1 157,623.7 2,562,317.1 2,563,344.5 60,443.9

2,195,552.5 5386.0 2,153,934.2 2,169,545.5 229,946.1 2,195,552.5 2,195,552.5 67,037.8

The fixed costs fk which determine the optimal number of new facilities to be opened are

set to three different values for each facility type in the increasing order: 1500, 3000, 6000.

The threshold distances Sjk are integer-valued quantities generated from uniform distributions

based on the annual buying power hj of customers as given in Table 7.10.
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Table 7.10. The values of parameters Sjk

U(a, b) for k = 1 U(a, b) for k = 2 U(a, b) for k = 3

100 ≤ hj ≤ 300 a = 10,b = 25 a = Sj1, b = 45 a = Sj2, b = 60

300 < hj ≤ 700 a = 5,b = 20 a = Sj1, b = 65 a = Sj2, b = 70

700 < hj ≤ 1000 a = 0, b = 15 a = Sj1, b = 50 a = Sj2, b = 80

As pointed out in Section 6.3, the proposed solution method begins with the LH. On

the basis of the observations we made, the LH is terminated after 30 iterations since the

best feasible solution is usually found by the LH within this number of iterations. The best

feasible solution provided by the LH is given as the initial solution to the LS procedure which

generates neighbors from the current solution by 1-Add, 1-Drop, and 1-Swap moves. However,

the number of all neighbors is very large when the number of potential facility sites for our

test instances is taken into account. When s facilities are opened at the current solution, then

there are m − s possible 1-Add moves and s × (m − s) possible 1-Swap moves. To keep the

computation time within reasonable limits, only half of the 1-Add moves is selected at each

LS iteration. This is done deterministically by computing the average of the annual buying

powers of customer zones that are in the region of influence Nik of the facility opened by a

1-Add move. The first half of the moves which have the highest average buying power are

selected to be used in our implementation. Furthermore, only one-third of the possible 1-Swap

moves are selected randomly to generate neighboring solutions and also we develop another

procedure which selects half of the 1-Add moves by following the same selection criterion and

only one-third of the possible 1-Swap moves randomly. So, totally we develop three solution

procedures starting with the LH and then taking half of the 1-Add moves, one-third of the

possible 1-Swap moves, and half of the 1-Add moves plus one-third of the possible 1-Swap

moves.

We assess the performance of the proposed solution methods in comparison with the

commercial solver CPLEX 11.0 (ILOG, 2007). The results are presented in Table 7.11 and

Table 7.14. The accuracy of the two-stage heuristic (LH+LS) is measured by the percent

relative deviation (PD) of the best lower bound zH obtained for each test instance from the

objective value zCplex provided by CPLEX, which is computed by the formula
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100× (zCplex − zH)

zCplex
. (7.12)

7.4.1. Computational Results Using the Fuzzy C-Means Algorithm

As explained in Section 6.2, we develop two procedures to determine the visiting prob-

abilities of customers, namely a fuzzy C-means algorithm and a semi-supervised procedure.

In this subsection, we give the computational results using the probabilities obtained by the

fuzzy C-means algorithm. As pointed out in Subsection 6.2.1, the most problematic issue

in applying the fuzzy C-means algorithm is the selection of an exponential weight µ which

should be greater than one. Based on our observations on the randomly generated instances,

the values of membership degree uij depend dramatically on the choice of µ. As the value

of µ is increased, the values of uij become similar to each other for all clusters given the ith

customer. Thus, as we increase the value of µ, the visiting probabilities pjk of the jth customer

becomes closer to 1/3 for all 3 facility types k = 1, 2, 3. This situation can be interpreted as

if the value of µ increases, customers become indifferent between the facility types and the

model becomes a traditional maximal covering problem. In such a problem only facilities

of the first type will be opened at the solution of the problem, since there is no distinction

between the facilities by capturing the revenue from the customers and the first type facilities

have the lowest fixed costs. However, by formulating such a problem we expect that customers

differentiate between the facility types and customers with similar properties visit the same

type facility with higher probabilities which naturally varies from customer to customer. As

a result, we set the value of µ to 2, 3, and 5 in order to perform the computations and apply

all solution procedures for these three values. The results are given in Table 7.11.

Since we fix the exponential weight µ to three different values, we run all the solution

procedures three times for each of the 50 instances, which makes totally 150 different runs for

every solution procedure. For the ease of comparison of three heuristic methods with Cplex, we

highlight the least percent relative deviation (PD) which indicates the best objective value in

boldface for each problem instance. We observe that out of 150 runs, the second heuristic finds
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the best solution for 67 runs, whereas the first heuristic provides the best solution for 43 runs

and the third heuristic for 62 runs. An important distinction can be realized especially for the

first heuristic. For smaller instances reported in Table 7.14, the first heuristic performs better

than the other two heuristics in terms of accuracy. It can provide the optimal solution for 29

runs out of 75 instances, while the second heuristic finds it for 17 runs and the third heuristic

for only 11 runs. However, when the PDs of the three solution procedures are compared for all

runs, then it turns out that the second heuristic has the least PD with 1.72% on the average.

The average PDs of the first and third heuristics are 2.48% and 2.07%, respectively. When

we compare the three heuristics in terms of efficiency, we see that the third heuristic spends

6226.66 seconds on average and is a little faster than the first and second heuristics where

average CPU times are 6800.46 seconds and 6781.33 seconds, respectively.

Since the average PDs of the three heuristic methods are close to each other, we decide

to make a statistical analysis on the PDs provided by these methods in order to understand

the quality of the solutions. Therefore, a paired T -test and a two-sample pooled T -test with

unknown and unequal variances are realized on the three heuristics with 0.01 level of signifi-

cance. For the paired T -test and the two-sample pooled T -test, we constitute three groups of

hypothesis testing which are given in Table 7.12 and Table 7.13, respectively, where PDi shows

the average PD of the ith heuristic with i = 1, 2, 3 on 50 instances. We arbitrarily choose the

results provided by the three heuristics when the exponential weight µ is chosen to be equal

to 5.

The computed test statistic is given by

Ti =
d̄i

sdi/
√
n

(7.13)

for the paired T -test, where d̄i shows the average of the differences between PDs, sdi the

standard deviation of the differences between PDs, n is the number of instances we have

(i.e. n is equal to 50), and the index i indicates the order of the comparisons. When i is
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Table 7.11. Efficiency of the heuristics using the fuzzy C-means algorithm

Instance CPLEX Heuristic 1 Heuristic 2 Heuristic 3

(n, µ) z∗ CPU (s) PD (%) CPU (s) PD (%) CPU (s) PD (%) CPU (s)

(50,2) 4004.03 0.56 0 0.64 13.06 0.53 13.06 0.28

(50,3) 2425.78 0.48 0 0.42 14.21 0.39 15.12 0.25

(50,5) 1675.65 0.48 0 0.41 18.69 0.39 0 0.25

(50,2) 2562.48 0.69 0 0.61 0 0.52 0 0.42

(50,3) 1160.11 0.55 0 0.30 0 0.27 0 0.25

(50,5) 575.49 0.53 0 0.42 0.73 0.27 0.73 0.23

(50,2) 773.29 0.63 0 0.41 0 0.30 12.17 0.20

(50,3) 780.47 0.56 0 0.44 0 0.30 0 0.30

(50,5) 706.43 0.52 0 0.47 17.29 0.38 78.44 0.23

(50,2) 8552.14 0.56 0 0.77 0 0.92 2.39 0.55

(50,3) 6173.69 0.63 0 0.61 12.38 0.30 0 0.45

(50,5) 4147.28 0.81 0 0.48 13.18 0.31 0 0.36

(50,2) 8283.66 0.80 0 0.77 0 0.48 0 0.30

(50,3) 6571.93 0.59 0 0.64 0 0.45 0 0.44

(50,5) 4593.44 0.56 0 0.52 0 0.45 0 0.28

(100,2) 14685.48 2.61 0 12.91 0 12.70 6.29 7.20

(100,3) 12671.12 1.61 0 12.06 2.02 12.36 1.23 8.78

(100,5) 11036.33 1.56 0 12.86 0 10.08 5.03 7.06

(100,2) 25487.20 1.81 0.80 12.89 1.88 15.55 2.64 10.39

(100,3) 22759.78 1.95 1.61 14.89 2.66 10.53 4.99 8.17

(100,5) 19320.40 1.98 0 13.98 3.01 15.31 3.96 9.63

(100,2) 22479.69 2.06 1.06 9.77 0 8.70 1.26 7.00

(100,3) 11416.22 1.70 0 9.17 0.68 10.41 0 8.88

(100,5) 7649.87 1.61 0 8.86 6.41 13.59 4.63 5.97

(100,2) 11909.46 1.59 0 9.03 4.74 10.59 0.06 5.91

(100,3) 10851.20 1.72 0 12.73 0 13.47 2.29 9.50

(100,5) 9238.28 1.69 0 10.48 5.57 9.17 5.96 6.47

(100,2) 19840.36 1.78 1.35 19.38 0 25.19 4.87 5.75

(100,3) 21221.24 2.03 5.62 16.86 0 12.06 7.00 7.31

(100,5) 17625.24 1.75 0.58 16.75 13.91 9.97 9.76 6.64

(150,2) 26438.46 7.70 0.61 98.77 2.28 91.25 1.43 78.70

(150,3) 25180.96 7.84 1.51 125.91 1.50 96.49 2.96 52.70

(150,5) 23732.95 7.56 0.61 109.80 1.10 126.55 0.45 52.20

(150,2) 31262.84 10.27 2.15 79.53 0.06 84.22 0.13 52.78

(150,3) 27515.39 9.89 1.26 67.89 0.82 68.28 0.82 64.02

(150,5) 23307.80 9.78 0 94.75 1.12 112.97 0.95 64.14

(150,2) 20693.94 8.98 2.24 90.28 1.84 69.60 2.91 36.61

(150,3) 18821.38 8.69 2.71 138.60 1.58 76.22 0.52 62.08

(150,5) 16983.25 7.63 0 98.88 2.33 99.11 0.78 80.77

(150,2) 26722.02 9.34 0.15 53.97 0 67.88 0.41 52.50

(150,3) 17654.97 9.06 6.88 60.83 2.94 89.70 2.14 48.84

(150,5) 16358.16 12.97 7.45 56.00 0 141.94 0.32 83.88

(150,2) 21113.05 8.67 4.72 72.77 0.01 118.99 1.20 36.39

(150,3) 18594.95 8.69 1.08 65.63 2.58 52.74 1.09 51.88

(150,5) 16678.88 8.50 0.50 95.88 9.26 74.45 0.50 61.58

(200,2) 42597.35 18.81 1.27 476.39 0.46 457.34 3.12 188.80

(200,3) 38795.12 17.92 0.02 444.34 0.18 374.70 1.06 400.09

(200,5) 34393.67 17.58 0.85 343.96 0.57 364.04 2.17 210.40

(200,2) 61166.13 16.84 2.52 528.00 0.52 300.71 0.09 263.05

(200,3) 53321.02 20.89 1.23 477.79 0.65 707.44 0.82 316.74

(200,5) 40573.17 18.03 1.45 387.18 0.76 446.90 0.21 461.68

(200,2) 51342.77 20.06 1.64 330.81 0.62 298.59 1.12 222.27

(200,3) 35695.15 17.17 2.87 300.74 0 430.34 0 290.40

(200,5) 25404.17 17.13 2.18 388.62 1.32 343.60 3.52 217.66

(200,2) 26473.66 19.89 4.45 367.90 0.60 352.62 0.04 394.70

(200,3) 31355.72 17.17 1.50 307.45 2.29 335.57 2.10 212.90

(200,5) 26138.87 17.58 2.43 290.16 1.51 246.91 2.20 394.09

(200,2) 50264.72 18.25 1.42 431.96 0.52 275.48 0 239.82

(200,3) 43638.35 16.64 0.92 495.48 1.02 301.04 1.07 264.83

(200,5) 31181.70 17.22 0.47 474.86 2.31 331.96 1.36 173.18

(250,2) 34754.02 37.88 6.65 1136.99 3.62 1083.68 0.60 888.67

(250,3) 34497.72 48.44 7.93 1005.63 5.31 1021.16 2.59 590.46

(250,5) 33728.72 39.61 3.09 1035.18 4.01 715.29 2.59 995.35

(250,2) 84522.53 39.13 5.74 953.07 0.39 712.29 2.37 706.56

(250,3) 75979.72 51.92 0.88 1328.76 0.18 985.27 0.47 908.62

(250,5) 64559.99 40.41 2.48 1115.50 0.51 1369.58 1.90 754.77

(250,2) 41205.07 45.99 8.99 351.85 0.42 929.83 1.31 526.92

(250,3) 38601.88 44.31 8.64 732.53 0.50 1060.65 1.04 833.50

(250,5) 35398.81 66.45 7.56 735.75 1.04 1108.91 0.84 740.92

(250,2) 84825.18 59.67 3.04 1087.47 0.34 1276.09 0.37 654.89

(250,3) 74090.87 46.09 2.37 888.36 0.47 918.21 0.30 695.00

(250,5) 52563.54 59.42 2.01 1227.87 0.04 1178.98 1.34 608.50

(250,2) 52659.02 54.60 1.21 1226.70 0.58 892.52 0.35 654.66

(250,3) 48600.66 60.49 5.70 950.35 0.66 1238.38 0.32 991.85

(250,5) 34488.93 54.08 8.48 1014.63 1.47 1050.55 0.59 1080.88
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equal to 1, then the first heuristic and second heuristic are paired; when it is equal to 2, the

first and the second heuristics are paired. Finally, the second and third heuristics are paired,

when the index i is equal to 3. Critical regions are constructed using the t-distribution with

n− 1 (=49) degrees of freedom. Thus, we reject a hypothesis when Ti < −2.68 or Ti > 2.68.

The computed statistics Ti turns out to be -0.212, -0.430, and -0.401 for the three testings,

respectively. Hence, we do not reject any of the hypotheses. This finding indicate that there

is no significant difference between the three heuristic methods with respect to the quality of

the solutions they provide.

The test statistics for the two-sample pooled T -test are given by

T1 =
PD1 − PD2√

S2
1

n
+

S2
2

n

(7.14)

T2 =
PD1 − PD3√

S2
1

n
+

S2
3

n

(7.15)

T3 =
PD2 − PD3√

S2
2

n
+

S2
3

n

(7.16)

where Si is the standard deviation of the samples obtained by the ith heuristic with

i = 1, 2, 3. These statistics have an approximate degrees of freedom

((s21/50)+(s22/50))2

[((s21/50)2/49)+((s22/50)2/49)]
, which is approximately equal to 98 for the three comparisons. Hence,

the tests are not rejected when −t0.005,98 < Ti < t0.005,98 for all i = 1, 2, 3, where the critical

value t0.005,98 is equal to 2.627. The statistics Ti are computed as -0.239, -0.443, and -0.322

resulting in not rejecting any of the hypotheses. Hence, the two-sample pooled T -test points

out the same conclusion with the paired T -test so that there is no significant difference between



126

the heuristics with respect to the quality of the solutions.

Another important observation based on the optimal objective function values z∗ pro-

vided by Cplex is that the profit of the firm usually decreases as the value of the exponential

weight µ increases. As explained before, as the value of µ increases the membership degree

uij, which represents the visiting probabilities, decreases for a customer who certainly belongs

to a specific cluster. This situation can be better explained with an example. A customer

whose annual buying power is 100 is more likely to visit a first type facility such that its

visiting probability for that facility type turns out be close to 1 when µ is chosen to be 2.

However, if µ is set to 5, then that probability can decrease down to for example 0.65 which

ultimately results in a decrease in the profit when a first type facility is constructed whose

region of influence covers that customer. On the other hand, in rare occasions this could result

in constructing another facility type such as the second or third since the visiting probabilities

increase for them as the probability for the first type is decreased. As a consequence, the profit

can increase because it is possible that a higher type facility captures more revenue from the

customers.

7.4.2. Computational Results Using the Parametric Bayesian Classification Algo-

rithm

The parametric classification algorithm we develop can be applied only when we have

a partially labeled data set. Therefore, we label one-fifth of customers for each problem

instance with the exception of instances with 50 customer zones. As given in Subsection 6.2.2,

the algorithm begins with α labeled customers and applies the initial weak Bayes’ classifier

on this small data set. When α is a small number, it is possible that the number of labeled

instances for each class is tiny so that the covariance matrices are singular and the inverses do

not exist. This situation can occur when the labeled data set is small as given by Alpaydın

(2004). In order to prevent this situation, we label 20 customers of the first five problem

instances with 50 customer zones so that the initial weak classifier can be applied for these

problem instances.

The computational results obtained by using the parametric Bayesian classification al-
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gorithm are summarized in Table 7.14. As in the case of the fuzzy C-means algorithm, we

compare the three heuristic methods with Cplex and highlight the least PD in boldface for

all problem instances. We notice that the second heuristic provides the best solution for 25

instances, while the first heuristic finds the best solution for 16 instances and the last heuris-

tic for 18 instances. When we only compare the number of best solutions obtained by each

heuristic, the second heuristic turns out to be the most accurate one. However, when the

percent deviations (PDs) from zCplex provided by all the heuristics for all problem instances

are examined, the third heuristic method provides the least PD with 2.11% on average. The

average PDs for the first and second heuristic methods are 3.67% and 2.69%, respectively. A

similar analysis on the computational results using the fuzzy C-means algorithm indicates that

the first heuristic outperforms the other two methods for smaller instances, where for example

it can find the optimal solution for all instances with 100 customer zones. Another important

observation can be made with respect to the average CPU times, where the three heuristics

spend 3017.40 seconds, 3232.55 seconds, and 2375.29 seconds on average, respectively. These

comparisons based on the average CPU time and average PD indicate that the third heuristic

is the best solution procedure in terms of the efficiency.

The same statistical analysis is carried out on the PDs provided by the three heuristic

methods as we do Subsection 7.4.1. Again the paired T -test and the two-sample pooled T -test

are realized on 50 instances with the same level of significance and the critical regions. For

the paired T -test, the statistics are computed as 0.821, 1.693, and 1.081 for the three heuristic

methods, respectively. Besides, the statistics are found as 0.828, 1.806, and 0.491 when the

two-sample pooled T -test is applied. Both hypothesis testing procedures indicate that there is

no significant difference between the three heuristic methods with respect to the quality of the

solutions, which is a consistent result with the solutions when the fuzzy C-means algorithm is

used in order to determine the visiting probabilities.

A comparison can also be carried out based on the visiting probabilities determined by

the fuzzy C-means and the parametric Bayesian classification algorithms. The fuzzy C-means

algorithm provides more realistic probabilities than the parametric classification algorithm

using the Bayesian classifier. This situation relies on the fact that the former algorithm is

fuzzy in the sense that it obtains smoother probabilities. In contrast to this algorithm, the
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Bayes’ classifier groups the customers into classes and the posterior probability is usually

one or close to one for the selected class, while the rest of the posterior probabilities for the

remaining not chosen classes are zero or close to zero. However, this situation affects both the

best and optimal objective function values and the CPU times for each randomly generated

problem instance. An important distinction between the algorithms is that the average CPU

times for problem instances with probabilities determined by the fuzzy C-means algorithm

are considerably larger than the average CPU times for the same instances with probabilities

obtained by the parametric Bayesian classification algorithm. Another difference between two

algorithms can be detected in the objective function values. The computational results for the

same problem instances can indicate different objective function values, i.e. profits. However,

it is not possible to conclude which algorithm results in higher objective function values. For

one problem instance the first algorithm causes a higher objective function value, whereas the

second algorithm causes for another problem instance a higher profit. This situation can be

explained with an example as follows. A customer with annual buying power 900 is more

likely to visit a third type facility. The visiting probability of that customer for the third type

facility turns out to be 1 when the parametric Bayesian classification algorithm is applied and

is 0.85 when the fuzzy C-means algorithm with µ = 3 is applied. If a facility of the third type

is constructed the region of influence of which contains the customer, the revenue captured

by the parametric Bayesian classification algorithm is higher than the revenue captured by

the fuzzy C-means algorithm. On the other hand, the same customer is also in the region of

influence of another facility of the second type which is also to be opened. Then the revenue

captured by the parametric Bayesian classification algorithm is zero, although the customer

is also likely to visit that facility of the second type. However, the fuzzy C-means algorithm

can result in a revenue which is equal to for example 0.12 times 900. Therefore, there is a

large trade-off between the two algorithms so that the profits differ from each other and it is

difficult to conclude which algorithm results in higher profits.



129

Table 7.11. Efficiency of the heuristics using the fuzzy C-means algorithm (cont)

Instance CPLEX Heuristic 1 Heuristic 2 Heuristic 3

(n, µ) z∗ CPU (s) PD (%) CPU (s) PD (%) CPU (s) PD (%) CPU (s)

(300,2) 44577.86 67.22 1.48 1940.59 0.78 2226.37 2.41 2021.17

(300,3) 78003.97 69.50 0.22 2524.46 1.24 1885.35 2.65 1169.50

(300,5) 42754.40 64.88 2.66 2297.93 2.06 3761.14 3.27 1833.83

(300,2) 50403.93 78.83 7.80 1156.79 0.35 1633.27 0.79 1429.95

(300,3) 47889.41 82.74 6.11 1660.36 0.29 1991.25 0.87 1067.09

(300,5) 45350.27 80.55 12.57 1468.62 0.32 3145.78 1.59 1498.43

(300,2) 76556.08 60.77 1.66 1961.05 1.28 2120.43 0.22 3301.22

(300,3) 71574.17 60.63 1.08 2882.70 0.37 2406.34 2.29 3016.85

(300,5) 66416.67 61.61 1.20 2990.95 0.48 2902.73 0.15 2470.50

(300,2) 48065.73 78.36 9.06 1176.63 2.68 944.50 0.27 2093.45

(300,3) 45379.93 77.36 4.43 1316.92 1.36 43371.73 1.23 44763.28

(300,5) 42766.62 77.99 4.14 1393.67 2.51 1609.19 4.39 910.80

(300,2) 45998.54 89.50 6.13 1772.72 1.23 1273.03 0.97 1381.71

(300,3) 45131.03 104.11 5.80 2332.64 0.61 2314.45 0.29 1753.06

(300,5) 43511.01 97.64 4.90 1930.99 3.17 1754.50 0.58 2093.99

(350,2) 101289.14 144.66 0.74 7661.13 0.89 4155.94 0.68 4006.98

(350,3) 100084.88 214.58 0.49 9542.48 0.70 6441.56 0.89 4576.37

(350,5) 93576.22 122.94 1.02 6341.07 0.22 6280.90 0.72 4209.48

(350,2) 68125.05 99.92 2.23 6427.03 1.26 5490.78 0.11 6180.32

(350,3) 92448.33 156.36 0.20 8054.53 0.23 5564.31 3.03 2150.46

(350,5) 88256.88 161.46 1.73 6173.29 0 9792.38 0.39 6530.03

(350,2) 62904.67 221.14 2.84 4713.55 0.02 6249.66 0.15 4578.95

(350,3) 59032.36 187.00 5.17 3736.06 1.55 3891.95 0 3030.12

(350,5) 55723.45 150.91 7.69 2898.12 0.48 4664.14 1.71 3547.38

(350,2) 65538.87 119.71 5.13 3954.90 0.57 3476.52 1.39 3708.26

(350,3) 64673.43 124.81 5.71 5747.97 0.80 4849.06 0.14 4351.80

(350,5) 61814.33 124.66 3.91 3816.20 0.96 7322.36 0.69 5041.24

(350,2) 101249.41 102.17 0.49 6188.34 0.33 6409.64 4.69 3353.89

(350,3) 99116.99 106.66 0.02 8083.73 0.68 5655.84 0.25 5229.85

(350,5) 94468.91 159.02 0.46 6586.24 0.43 7705.25 0.20 6353.40

(400,2) 130355.98 161.92 0.27 11061.35 0.23 7995.56 0.25 9685.51

(400,3) 122977.16 213.36 1.48 8070.76 0.20 8247.41 0.43 6590.50

(400,5) 66838.90 248.05 2.87 10045.97 0.56 9342.37 2.20 9140.03

(400,2) 63708.88 234.60 4.12 4348.57 1.12 8378.15 1.54 5683.37

(400,3) 64277.01 307.38 4.63 6844.68 0.78 10793.05 0.93 6461.53

(400,5) 64044.41 209.97 3.81 9248.04 1.19 7425.53 0.40 8645.01

(400,2) 71701.16 164.13 5.39 9609.81 0.24 7729.55 1.02 7183.97

(400,3) 70109.74 196.60 1.60 10417.18 1.52 8996.26 1.25 10517.26

(400,5) 68147.22 175.86 2.37 9527.17 0.49 9225.08 0.40 8661.76

(400,2) 67669.69 155.77 2.14 6934.98 0.54 14243.01 0.24 8554.96

(400,3) 67406.80 174.33 0.77 11937.32 0.74 9933.33 1.54 8638.48

(400,5) 66402.61 211.10 1.69 11815.32 1.65 8454.38 1.55 9334.73

(400,2) 71721.02 161.28 1.77 19384.23 1.02 16503.50 1.10 13115.16

(400,3) 67637.10 208.68 1.32 11552.10 2.78 6784.79 0.09 10354.75

(400,5) 68053.42 229.52 1.58 10934.68 0.81 14085.58 0.61 11387.12

(450,2) 139885.13 400.62 4.83 11270.90 0.61 13839.94 0.48 18670.19

(450,3) 80608.73 398.38 3.81 18395.06 1.72 13121.48 0.31 13422.62

(450,5) 78870.67 406.95 6.28 12846.28 1.33 13191.07 1.26 11812.23

(450,2) 172457.78 371.26 2.31 25771.30 0.60 14916.70 0.83 10177.78

(450,3) 154480.51 319.91 1.22 22882.08 0.19 20980.61 0.14 18910.24

(450,5) 110885.05 398.07 2.14 22701.72 0.18 26703.80 0 16056.21

(450,2) 80090.60 322.12 4.37 14557.42 1.03 12877.43 0.67 13079.03

(450,3) 79777.85 273.94 4.52 15724.83 3.48 16330.28 1.39 13839.69

(450,5) 80486.14 260.18 2.61 14335.51 1.56 14362.62 0.53 21321.58

(450,2) 72691.61 250.38 2.48 32084.79 1.01 19993.05 1.68 21242.18

(450,3) 77257.46 284.90 0.67 20762.08 0.59 18703.13 0.95 22740.92

(450,5) 82004.19 357.69 0.81 25967.13 1.30 13093.90 1.73 16323.73

(450,2) 80812.38 321.15 1.35 15081.85 0.73 13708.23 0.36 18221.10

(450,3) 109019.45 374.35 0.08 25694.41 0.27 13628.40 0.35 14292.26

(450,5) 82111.08 363.05 0.95 26169.54 0.84 15232.51 1.55 14045.32

(500,2) 90407.56 431.06 4.68 30535.95 0.27 34110.13 0.66 32167.25

(500,3) 90756.95 444.66 1.53 42918.62 0.29 32595.97 0.84 18747.28

(500,5) 91616.39 422.76 3.58 23100.01 0.90 26000.74 0.88 35999.00

(500,2) 193531.97 549.15 0.53 37395.37 0.67 29177.73 0.70 17514.71

(500,3) 183937.18 445.04 0.33 32603.75 0.23 31697.43 0.27 25241.82

(500,5) 134850.40 366.24 0.40 48400.03 0.61 31751.99 0.20 34178.64

(500,2) 91049.87 630.04 5.11 22037.58 0.55 26693.90 0.03 22355.17

(500,3) 88625.57 504.48 2.54 43028.49 1.64 33899.92 0 33043.64

(500,5) 87282.56 480.27 1.34 33811.95 0.77 44636.58 1.64 32067.92

(500,2) 89060.21 587.11 3.73 14709.61 0.33 16715.05 1.34 20839.29

(500,3) 90159.27 624.45 1.94 17026.59 0.39 25308.31 0.89 25010.53

(500,5) 93124.01 427.73 3.64 34353.51 2.01 42427.34 0.15 43083.03

(500,2) 88653.86 445.76 6.06 13203.20 0.19 25081.27 0.25 18044.15

(500,3) 89064.38 556.09 3.82 14846.35 0.88 20141.12 1.40 28275.67

(500,5) 87444.64 478.49 8.83 15042.65 1.09 24176.04 4.01 14787.72
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Table 7.12. Hypothesis Testing for the paired T -test

H1 & H2 H1 & H3 H2 & H3

H0: PDd1 = PD1 − PD2 = 0 PDd2 = PD1 − PD3 = 0 PDd3 = PD2 − PD3 = 0

H1: PDd1 = PD1 − PD2 6= 0 PDd2 = PD1 − PD3 6= 0 PDd3 = PD2 − PD3 6= 0

Table 7.13. Hypothesis Testing for the two-sample pooled T -test

H1 & H2 H1 & H3 H2 & H3

H0: PD1 − PD2 = 0 PD1 − PD3 = 0 PD2 − PD3 = 0

H1: PD1 − PD2 6= 0 PD1 − PD3 6= 0 PD2 − PD3 6= 0
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Table 7.14. Efficiency of the heuristics using the parametric Bayesian classification algorithm

Instance CPLEX Heuristic 1 Heuristic 2 Heuristic 3

n z∗ CPU (s) PD (%) CPU (s) PD (%) CPU (s) PD (%) CPU (s)

50 6557.35 0.50 0 0.59 49.06 0.30 29.16 0.53

50 3547.85 0.69 20.49 0.28 0 0.44 0 0.36

50 5554.55 0.80 0 0.27 0 0.23 0 0.22

50 7099.03 0.61 14.52 0.47 14.52 0.41 0 0.50

50 9404.28 0.59 0 0.53 1.28 0.36 0 0.39

100 11717.56 3.61 0 11.86 0 11.63 1.78 5.97

100 35384.09 3.11 0 14.98 4.29 8.50 2.26 7.27

100 20658.26 2.78 0 8.41 0.58 7.06 0.58 5.88

100 20656.75 4.03 0 9.06 5.99 10.20 5.70 6.36

100 23406.97 2.73 0 12.45 0 9.50 2.88 10.11

150 22445.37 10.73 12.98 71.86 0.40 133.58 0.42 63.52

150 44172.32 11.16 5.12 40.80 3.14 70.72 3.42 43.49

150 30820.36 12.08 2.35 48.92 1.55 79.41 3.78 68.02

150 17646.51 10.11 2.39 78.42 5.92 65.92 1.11 63.74

150 20802.89 11.45 9.69 40.74 5.53 77.74 2.23 51.03

200 60455.18 26.20 1.32 499.46 1.59 318.07 1.21 200.88

200 67076.88 31.14 0.99 243.24 1.63 140.30 4.18 46.91

200 64208.23 24.19 1.49 323.83 0.46 235.49 2.96 289.76

200 25816.63 25.45 0.46 352.76 3.53 146.82 3.12 124.83

200 25763.24 25.23 9.45 266.79 0.54 287.66 0.07 175.44

250 39888.35 44.53 12.88 645.12 0.44 577.01 2.13 500.85

250 63363.95 47.74 0.35 474.74 0.35 438.56 2.82 360.35

250 54617.04 49.05 0.04 626.67 0.04 469.48 0.10 459.15

250 86141.89 45.88 5.61 1380.90 1.14 982.60 1.14 898.69

250 41121.77 45.36 4.08 833.71 0.04 858.80 1.09 540.46

300 49077.97 87.92 8.38 1100.30 2.50 1292.82 3.94 1154.43

300 48265.59 97.08 3.08 1381.60 0.13 1257.51 0.89 1192.49

300 46623.17 105.52 0.94 2533.92 2.86 1511.34 2.49 823.38

300 46313.72 102.52 5.31 1643.80 2.43 974.75 2.57 810.73

300 51939.58 92.05 0.56 1203.21 0.94 1169.61 0.75 887.35

350 55174.81 173.14 2.66 1499.37 0 2223.04 0.31 1255.66

350 99046.59 160.52 0.80 1520.54 0.83 1129.15 0.80 1821.19

350 57125.45 160.52 2.59 2360.58 1.22 2048.62 2.05 1734.49

350 65824.44 155.03 4.05 3655.37 2.94 2286.20 0.35 2128.63

350 60871.15 161.74 4.59 1895.96 1.16 1420.92 0.46 2008.74

400 68095.28 376.15 2.67 3609.98 1.23 4306.39 0.06 6039.79

400 64921.70 247.90 1.48 4966.95 1.88 2272.45 0.82 2628.05

400 68142.48 198.97 2.02 3937.34 1.32 4421.54 0.31 4207.60

400 67750.53 228.07 6.86 4337.99 0.92 5705.11 0.36 5098.18

400 68295.69 225.74 0.16 5417.12 0.37 6025.68 0 2552.92

450 70666.77 458.10 5.04 4587.78 0.13 8316.35 0.63 5965.90

450 87379.04 508.84 8.49 7275.44 6.52 31180.37 7.73 4591.18

450 82939.90 381.05 2.94 10279.49 0.07 8312.28 0.25 7289.91

450 76058.82 465.09 5.02 6064.55 0.53 4568.31 0.29 9091.74

450 77420.64 268.93 2.26 7462.46 1.09 6605.36 1.90 4514.09

500 93872.28 676.67 2.57 10005.11 0.89 10261.71 3.06 11846.93

500 91767.09 639.65 1.83 10135.07 0.10 8465.82 0.93 6334.59

500 90339.91 931.05 0 21917.00 1.96 8404.55 0.79 6906.96

500 85217.42 578.68 3.91 12095.41 0 15312.16 0.19 13174.54

500 89719.85 511.59 0.95 13996.55 0.21 17224.77 1.39 10780.18
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8. CONCLUSIONS

In this thesis we first focused on three different types of CFL problems that build a

subgroup of facility location problems. Initially, we considered a non-reactive variant of the

discrete CFL problem in which both the locations as well as the attractiveness levels of new

facilities have to be determined simultaneously to maximize the profit of the new entrant

firm. To solve the problem, we formulate a mixed-integer nonlinear programming model and

propose three solution methods. One of them is a heuristic based on the Lagrangean relaxation

of the model (LH), while the others are exact procedures based on the branch-and-bound

(BB) technique. The difference between BB-based methods is that one relaxes the integrality

restrictions on the binary variables and solves the nonlinear programming relaxation at each

node of the BB tree (BB-NLP), whereas the other solves the Lagrangean relaxation (BB-LR).

All of the three solution procedures make use of the concavity of the objective function in

terms of the attractiveness variables when the binary location variables are fixed or relaxed.

The computational results obtained on a set of problem instances indicate that BB-NLP

is the most efficient method and provides the optimal solution for all instances within the

allowed time limit of 7200 seconds. LH is also quite accurate in the sense that the average

percent deviation of the solutions generated by LH is 0.3% and 0.6% away from the optimal

objective values when the fixed cost levels are low and medium, respectively. We also make

sensitivity analysis by changing the four main parameters of the model. An interesting finding

of our experiments is that unacceptly low optimal attractiveness levels do not occur; the firm is

better off when it does not open a facility instead of opening a facility with low attractiveness.

Unacceptably high attractiveness levels, however, can occur especially when the maximum

attractiveness levels are set to high values. But, since it is a parameter that is determined

by the firm, it would never result in a situation where the firm has to open a facility with an

unrealistic attractiveness level.

Next we consider a discrete bilevel CFL problem where again the new entrant firm

determines both the locations and attractiveness levels of its new facilities so as to maximize

its profit. It is assumed that there is a competitor in the market and it can react to the
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opening of the new facilities by adjusting the attractiveness levels of its existing facilities with

the objective of maximizing its own profit. We formulated a bilevel mixed-integer nonlinear

programming model (MINLP) and solve it using a global optimization method called GMIN-

αBB after converting the bilevel model into an equivalent one level MINLP model. This

conversion is possible since competitor’s subproblem, which is the follower’s subproblem of

the corresponding leader-follower game, is a concave programming problem in terms of the

attractiveness variables when the locations and attractiveness levels of the leader are fixed.

The solution method is implemented on a set of problem instances of varying sizes. We

also investigated a scenario in which the new entrant firm ignores the competitor’s reaction

while solving its profit maximizing optimization problem. The results indicate that anticipat-

ing the competitor’s reaction and incorporating this into his decision making frame enables

the leader firm to increase its profit by 58.33% on the average. This affects the profit of the

competitor in a negative way, an average loss of 45.31% is incurred to the competitor.

We then address another discrete CFL problem by taking into account the sequential

game between the market entrant firm and its competitor. As usual, the market entrant firm

wants to determine the location and attractiveness levels of its new facilities considering the

reaction of its competitor in the market in order to maximize its profit. For once, we assumed

that the competitor can react to the opening of the new facilities by opening new facilities,

adjusting the attractiveness levels of its existing facilities and/or closing them completely. We

formulate a bilevel MINLP, where both the upper level as well as the lower level problems con-

tain continuous and binary decision variables. In order to find feasible solutions we developed

three tabu search (TS) heuristics.

First, we assessed the performance of these heuristics by comparing them with an ε-

optimal solution method on a small set of problem instances. Since their performance are

quite satisfactory, we applied them on larger problem instances. The results indicate that TS-

3 performs better than TS-1 and TS-2 in terms of accuracy. TS-2 is also completely satisfying

in the sense that for more than 50% of the instances, for which TS-3 gives the best solution,

TS-2 can also find it.



134

Finally, we propose a discrete facility location problem, where customer preferences are

explicitly taken into consideration. Customers at demand points called zones determine the

probability for visiting different facility types. In contrast to the traditional assumption in

which the visiting probability increases as the facility attractiveness increases, we assume that

these probabilities can differ with respect to customer zones based on the customer attributes

such as financial income. Furthermore, customers set a maximum distance to travel to a

certain facility type. A binary integer linear programming model is formulated and solved

using a solution methods that combines a Lagrangean heuristic and a local search.

In order to determine the visiting probabilities of customers, which constitute important

parameters to our model and make the proposed model different from the facility location

problems in the literature we developed an unsupervised fuzzy C-means algorithm and a

parametric classification algorithm making use of a Bayes’ classifier for multivariate input

vectors. In order to apply these two algorithms, we set the customer attributes that influence

the visiting probabilities as the annualized buying power and the maximum distances for

different facility types of customers. The computational results obtained on the randomly

generated instances using the visiting probabilities provided by the two developed algorithms

show that the third solution method is the most efficient one. In order to understand the

quality of the solutions provided by the three solution methods, we carry out a statistical

analysis based on the percent deviations from the optimum. A paired T -test and a two-

sample pooled T -test are applied on the percent deviations which indicate that there is no

significant difference between the solution methods in terms of the accuracy. Besides the

accuracy and efficiency of the solution methods, we also had the opportunity to compare the

probabilities determined by the two algorithms. It turns out that the visiting probabilities

obtained by the fuzzy C-means algorithm are more realistic than the probabilities determined

by the parametric Bayesian classification algorithm.

As a future research direction one can consider employing different distance functions

and different utility models for CFL models. All the facility location problems considered in

this thesis are discrete models. The formulations can be easily adapted for the continuous

space, but of course one has to develop different solution methods for the continuous version

of the problems. Another important extension to CFL models is that the customers perceive
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the facilities different so that the probabilities for patronizing facilities vary from customer to

customer. For the last proposed discrete facility location model it is also possible to consider

other distributions than Gaussian for class likelihoods when determining the visiting proba-

bilities with the parametric Bayesian classification. In addition to these proposed extensions,

a substantial progress is needed for developing an efficient exact solution method for the CFL

model with full reaction of the competitor and a more efficient solution procedure in order to

obtain good results for the last considered facility location problem.

An important future research direction is to investigate the use of hybrid metaheuristics

for the solution of a bilevel mixed-integer linear or nonlinear programming model, whose

lower-level includes integer decision variables and is a concave maximization problem when

the integer variables are fixed. Developing such solution procedures will be an important

contribution to the literature of mathematical programming.
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APPENDIX A: αBB ALGORITHM

i. Initialization: Set zLB = −∞, zUB =∞. Select a convergence tolerance ε and a feasibil-

ity tolerance εf for constraints.

ii. Solve the single-level problem PLB using a nonlinear solver to obtain a local solution. If

the solution at hand is εf -feasible, update zLB.

iii. Solve the concavified problem PUB. If it is infeasible, then STOP. Otherwise update

zUB, select the branching variable and obtain two new subrectangles.

While zUB − zLB > ε repeat the following steps:

iv. Find the subrectangle which gives the maximum of upper bounds and update zUB. This

subrectangle is used as the current rectangle and the solution which gives the maximum

of upper bounds is the current point.

v. Solve the problem PLB to get a local solution using the current point as the starting

point. If the local solution is εf -feasible, zLB is updated.

vi. The current rectangle is partitioned into two new subrectangles by selecting a branching

variable. The concavified problem PUB is solved in each subrectangle. If the solution

in a subrectangle turns out to be infeasible or the objective function value of PUB is

less than zLB, then that subrectangle is removed from further consideration. Report the

solution with the objective value zLB as the ε-optimal solution.
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APPENDIX B: GMIN-αBB ALGORITHM

i. Set zLB = −∞. Obtain the relaxed problem P ′ by relaxing all integer variables.

While there are active nodes in the tree, repeat the following steps:

ii. Select an active node according to some branching rule.

iii. Apply the αBB algorithm and obtain an upper bound UB at the active node from the

solution of P ′.

iv. If a feasible solution is obtained, let UB = LB, where LB indicates a lower bound to

the problem. Update zLB by zLB = max {zLB, LB}, prune that node and backtrack.

Otherwise, if an infeasible solution is obtained or UB ≤ zLB, prune that node and

backtrack. Report the solution with the objective value zLB as the optimal solution.
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APPENDIX C: STEPS OF THE FIRST TABU SEARCH

HEURISTIC

Notation:

num iter: number of iterations performed

max iter: maximum number of iterations

num nonimp iter: number of iterations through which the incumbent does not improve

max nonimp iter: maximum number of iterations through which the incumbent does not

improve

num neigh: number of neighbors generated in the current iteration

size neighi: number of neighbors generated in the current iteration using the ith move

Obj: objective value of a newly generated neighboring solution for the firm

Obj Best Neigh: objective value of the best neighboring solution for the firm

Obj∗ : objective value of the incumbent for the firm

Q, X: value of the decision variables for the firm for the newly generated neighboring solution

Qbest, Xbest: value of the decision variables for the firm for the best neighboring solution

Q∗, X∗: value of the decision variables for the firm for the incumbent

ε: radius of the ε-ball

Initialization:

Find an initial solution. Set it as the incumbent as well as the current solution.

This way, Obj∗, Q∗, and X∗ are initialized.

Set num iter :=0 and num nonimp iter :=0.

Search:

While ( num iter< max iter) AND ( num nonimp iter< max nonimp iter)

Set Obj Best Neigh:=0.

For each move type i = 1-Swap, 1-Add, 1-Drop do

Calculate size neighi and set num neigh:=0

While (num neigh < size neighi) do

Generate a new neighboring X by executing move i on the current
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solution.

Fix X in the upper level problem and generate Q randomly in the ε ball

centered at the Q values of the current solution.

If the new solution is not tabu active

Fix the firm’s variables in the competitor’s problem and solve it

using the BB algorithm with NLP relaxation.

Get the values for A and M.

Return to the firm’s objective function, fix Q, X, A, and M and

calculate the objective function value Obj of the firm.

If Obj> Obj Best Neigh then do

Set Obj Best Neigh:= Obj and Qbest:=Q, Xbest:=X.

If Obj>Obj∗ then do

Set this neighbor as the incumbent, and update Obj∗:=Obj

and Q∗:=Q, X∗:=X.

Set num nonimp iter :=0.

End If

End If

Put the newly generated solution into the tabu list, but only

the location values X and the attractiveness levels Q of the firm.

End If

num neigh:=num neigh+1.

End While

End For

Set the best neighboring solution as the current solution and use

the attractiveness levels Q of the firm in the next iteration

for all moves.

num nonimp iter :=num nonimp iter+1.

num iter :=num iter+1.

End While
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APPENDIX D: STEPS OF THE SECOND TABU SEARCH

HEURISTIC

Initialization:

Find an initial solution. Set it as the incumbent as well as the current solution.

This way, Obj∗, Q∗, and X∗ are initialized.

Record A, M values and use them in the next iteration for the current

solution.

Set num iter :=0 and num nonimp iter :=0.

Search:

While ( num iter< max iter) AND ( num nonimp iter< max nonimp iter)

Set Obj Best Neigh:=0.

For each move type i = 1-Swap, 1-Add, 1-Drop do

Calculate size neighi and set num neigh:=0

While (num neigh < size neighi) do

Generate a new neighboring X by executing move i on the current

solution.

Fix A, M to the values recorded in the current solution and X in

the upper level problem.

If the new solution is not tabu active

By applying the gradient ascent algorithm obtain Q variables.

Fix the firm’s variables in the competitor’s problem and solve it

using the BB algorithm with NLP relaxation.

Get the values for A and M.

Return to the firm’s objective function, fix Q, X, A, and M and

calculate the objective function value Obj of the firm.

If Obj> Obj Best Neigh then do

Set Obj Best Neigh:= Obj and Qbest:=Q, Xbest:=X.

If Obj>Obj∗ then do
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Set this neighbor as the incumbent, and update Obj∗:=Obj

and Q∗:=Q, X∗:=X.

Set num nonimp iter :=0.

End If

End If

Put the newly generated solution into the tabu list, but only

the location values X of the firm and the attractiveness levels

A, and M of the competitor.

End If

num neigh:=num neigh+1.

End While

End For

Set the best neighboring solution as the current solution and use

the attractiveness levels A and M of the competitor in the next iteration

for all moves.

num nonimp iter :=num nonimp iter+1.

num iter :=num iter+1.

End While

Return the incumbent as a favorable solution to the given instance.



142

REFERENCES

Aboolian, R., O. Berman, and D. Krass, 2007a, “Competitive Facility Location and Design

Problem”, European Journal of Operational Research, No.182, pp. 40–62.

Aboolian, R., O. Berman, and D. Krass, 2007b, “Competitive Facility Location Model with

Concave Demand”, European Journal of Operational Research, No.181, pp. 598–619.

Achabal, D. D., W. L. Gorr, and W. L. Mahajan, 1982, “MULTILOC: A multiple store location

decision model”, Journal of Retailing, No.2, pp. 5–25.

Adjiman, C. S., I.P. Androulakis, and C.A. Floudas, 1997, “Global optimization of MINLP

problems in process synthesis and design”, Computers and Chemical Engineering, Vol. 21, pp.

445–450.

Adjiman, C. S., S. Dallwig, C.A. Floudas, A. Neumaier, 1998a, “A global optimization method,

αBB, for general twice-differentiable constrained NLPs-I. Theoretical advances”, Computers

and Chemical Engineering, Vol. 22, No.9, pp. 1137–1158.

Adjiman, C. S., I.P. Androulakis, and C.A. Floudas, 1998b, “A global optimization method,

αBB, for general twice-differentiable constrained NLPs-II. Implementation and computational

results”, Computers and Chemical Engineering, Vol. 22, No.9, pp. 1159–1179.

Adjiman, C. S., I.P. Androulakis, and C.A. Floudas, 2000, “Global optimization of mixed-

integer nonlinear problems”, AIChE, Vol. 46, pp. 176–248.

Alpaydın, E., 2004, Introduction to Machine Learning, The MIT Press, Cambridge, Mas-

sachusetts.

Androulakis, I. P., C. D. Maranas, and C. A. Floudas, 1995, “αBB: A global optimization

method for general constrained nonconvex problems”, Journal of Global Optimization, Vol. 7,

pp. 337–363.



143

Balcan, M.-F., A. Blum, and K. Yang, 2004, “Co-Training and Expansion: Towards Bridging

Theory and Practice”, Proceedings of Neural Information Processing System (NIPS 2004).

Bard, J. F., 1998, Practical Bilevel Optimization Algorithms and Applications, Kluwer Aca-

demic Publishers, Dordrecht.

Beasley, J. E., 1993a, “Lagrangean heuristics for location problems”, European Journal of

Operational Research, Vol. 65, pp. 383–399.

Beasley, J. E., 1993b, Lagrangean relaxation. In: Reeves CR (Ed). Modern Heuristic Tech-

niques for Combinatorial Problems, Halsted Press, New York.

Benati, S. and P. Hansen, 2002, “The maximum capture problem with random utilities: Prob-

lem formulation and algorithms”, European Journal of Operational Research, No.143, pp.

518–530.

Berman, O. and D. Krass, 1998, “Flow intercepting spatial interaction model: a new approach

to optimal location of competitive facilities”, Location Science, Vol.6, pp. 41–65.

Berman, O. and D. Krass, 2002, “Locating multiple competitive facilities: spatial interaction

models with variable expenditures”, Annals of Operational Research, No.111, pp. 197–225.

Berman, O., D. Krass, and Z. Drezner, 2003, “The gradual covering decay location problem

on a network”, European Journal of Operational Research, No.151, pp. 474–480.

Berman, O., Z. Drezner, D. Krass, G. O. Wesolowsky, 2009, “The variable radius covering

problem”, European Journal of Operational Research, Vol.196, pp. 516–525.

Bertsekas, D. P., 1995, Nonlinear Programming, Athena Scientific, Boston.

Bezdek, J. C., 1981, Pattern recognition with fuzzy objective function algorithms, Kluwer Aca-

demic Publishers, New York, Plenum.



144

Bezdek, J. C. and N. R. Pal, 1995, “Two Soft Relatives of Learning Vector Quantization”,

Neural Networks, Vol. 8, No.5, pp. 729–743.

Bhadury, J., H. A. Eiselt, and J. H. Jaramillo, 2003, “An alternating heuristic for medianoid

and centroid problems in the plane”, Computers and Operations Research, Vol. 30, pp. 553–

565.

Blum, A. and T. Mitchell, 1998, “Combining Labeled and Unlabeled Data with Co-Training”,

Proceedings of the 1998 Conference on Computational Learning Theory.

Boots, B. and R. South, 1997, “Modeling retail trade areas using higher-order, multiplicatively

weighted Voronoi diagrams”, Journal of Retailing, Vol. 73, pp. 519–536.

Chapelle, E., B. Schölkopf and A. Zien, 2006, Semi-Supervised Learning, The MIT Press,

Cambridge, Massachusetts.

Colson, B., P. Marcotte, and G. Savard, 2007, “An overview of bilevel optimization”, Annals

of Operations Research, Vol. 153, pp. 235–256.

Daskin, M. S., 1995, Network and Discrete Location Models, Algorithms, and Applications,

Willey, New York.

Daskin, M. S., L. V. Synder, and R. T. Berger, 2003, “Facility Location in Supply Chain

Design” Working Paper, No. 03-010.

Dempe, S., 2003, “Annotated bibliography on bilevel programming and mathematical pro-

grams with equilibrium constraints”, Optimization, Vol. 52, No.3, pp. 333–359.

Drezner, Z., 1982, “Competitive location strategies for two facilities”, Regional Science and

Urban Economics, Vol. 12, pp. 485–493.



145

Drezner, T. and Z. Drezner, 1994, “Locating a single new facility among existing, unequally

attractive facilities”, Journal of Regional Science, No.2, pp. 237–252.

Drezner, Z.(Ed.), 1995, Facility Location: A Survey of Applications and Methods, Springer,

New York.

Drezner, T. and Z. Drezner, 1998, “Facility location in anticipation of future competition”,

Location Science, Vol. 6, pp. 155–173.

Drezner, T. and Z. Drezner, 2002, “Validating the gravity-based competitive location model

using inferred attractiveness”, Annals of Operations Research, No.111, pp. 227–237.

Drezner, T., Z. Drezner, and S. Salhi, 2002, “Solving the multiple competitive facility location

problem”, European Journal of Operational Research, No.142, pp. 138–151.

Drezner, T. and Z. Drezner, 2004, “Finding the optimal solution to the Huff based competitive

location model”, Computational Management Science, No.2, pp. 193–208.

Drezner, T. and Z. Drezner, 2006, “Multiple Facilities Location in the Plane using the Gravity

Model”, Geographical Analysis, No.38, pp. 391–406.

Drezner, T. and Z. Drezner, 2008, “Lost demand in a competitive environment”, Journal of

the Operational Research Society, No.3, pp. 362–371.

Edmunds, T. A. and J.F. Bard, 1992, “ An algorithm for the mixed-integer nonlinear bilevel

programming problem”, Annals of Operations Research, Vol. 34, pp. 149–162.
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Küçükaydın, H., N. Aras, and İ.K. Altınel, 2010a, “A discrete competitive facility loca-

tion problem with variable attractiveness”, Journal of the Operational Research Society, doi:

10.1057/jors.2010.136.
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Küçükaydın, H., N. Aras, and İ.K. Altınel, 2011a, “Competitive facility location problem with

attractiveness adjustment of the follower: A bilevel programming model and its solution”,

European Journal of Operational Research, Vol. 208, No.3, pp. 206–220.
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