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ABSTRACT

QUANTITATIVE MODELS FOR DECISION MAKING IN

REVERSE LOGISTICS NETWORK DESIGN

In this thesis, we focus on a problem in reverse logistics network design where the

aim is locating distribution centers, inspection centers and remanufacturing facilities,

determining the acquisition price as well as the amount of returned goods to be collected

depending on the unit cost savings and competitor’s acquisition price. The coordination

of the forward and reverse flows in the network is also taken into account in order to

minimize the transportation costs, fixed costs and used product acquisition costs.

A mixed-integer nonlinear programming problem has been formulated and exact

algorithms have been suggested to solve it. When the acquisition price is set to a given

value, the remaining problem becomes a mixed-integer programming problem which

can be solved by Lagrangean relaxation, Benders Decomposition and Cross Decom-

position algorithms. The best value of the acquisition price that minimizes the total

cost is determined by the Golden Section search and computational results have been

reported. Moreover, the effect of fixed cost, capacity as well as unit cost savings on

the solution time have been analyzed.
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ÖZET

TERSİNE LOJİSTİK AĞ TASARIMI KARARLARINDA

SAYISAL MODELLER

Bu tezde, amacı dağıtım merkezleri, muayene veya kontrol merkezleri ve yeniden

üretim tesisleri yer seçimi ile kullanılmış ürünlerin geri toplama fiyatının belirlen-

mesi olan bir tersine lojistik ağ tasarımı problemi uzerinde çalışılmıştır. İncelenen

model aynı zamanda nakliye maliyetleri, sabit maliyetler ve geri toplama maliyetlerini

enküçüklemek için ağdaki ileri ve geri akışları da koordine eder. Geri toplama fiyatı ve

miktarı, geri toplamadan elde edilen fayda ve rakibin geri toplama fiyatına bağlıdır.

Bir karma tamsayılı doğrusal olmayan tersine lojistik ağ tasarım probleminin

gösterimi verilmiş ve çözümü için kesin sonuç sağlayan algoritmalar önerilmiştir. Geri

toplama fiyatı herhangi bir pozitif değere sabitlendiğinde geriye kalan problem bir tam-

sayı programlama problemidir. Bu problem Lagrange Gevşetmesi, Benders Ayrıştırması

ve Çapraz Ayrıştırma algoritmaları ile çözülebilir. Toplam maliyeti enküçükleyen en

iyi geri toplama fiyatı ise Altın Bölüm Arama tekniğiyle bulunmuş ve sayısal sonuçlar

raporlanmıştır. Ayrıca, sabit maliyet, kapasite ve geri toplamadan elde edilen faydanın

problemin çözüm zamanına olan etkisi analiz edilmiştir.
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1. INTRODUCTION

The importance of reverse logistics (RL) has increased in the past decade. The

reuse opportunities lead to a flow of goods from the customers back to the manufactur-

ers. The management of this reverse goods flow opposite to the conventional forward

flow is the main concern of RL [1]. There are no worldwide estimates of the economic

scope of reuse activities, but the number of firms engaged in this sector is growing

rapidly in response to the opportunities for creating additional wealth and the growth

in extended producer responsibility legislation in several countries. Take-back obliga-

tions, customer pressure, and economic motivation stimulate a number of companies

to explore options for take-back and recovery of their products [2, 3]. Unfortunately,

even with this significant development for the RL market in recent years, not enough

analytical models exist which assist in RL strategic decisions.

European Union (EU) has two directives in effect to deal with the fast increasing

waste stream of electrical and electronic equipment and complements: The first one is

recycling of electrical and electronical home devices (2002/96/EC WEEE)1 . The sec-

ond one is about the limitation of the use of some hazardous materials (2002/95/EC

RoHS). The WEEE directive covers a wide range of products such as large household

appliances, small household appliances, IT and telecommunications equipment, con-

sumer equipment, lighting equipment, electric tools, toys, sport and leisure equipment,

medical devices, monitoring and control devices, and automated devices.

It is clear that as a candidate country targeting a full membership of EU, similar

environmental directives prepared by The Ministry of Environment and Forests will

also be effective in Turkey. The limitation of the use of some hazardous materials is

ensured by the RoHS directive that has been prepared by The Ministry of Environment

and Forests, and published in the Official Gazette on 30.05.2008 by number 26891. It

will be effective as of 30 May 2009. Besides, the legislation about the control and man-

agement of used electrical and electronical home devices has been prepared as a draft

1WEEE, http://ec.europa.eu/environment/waste/weee/index en.htm
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version based on the WEEE of the EU. That directive includes the principle of the “Re-

sponsibility of the Manufacturer”. This responsibility includes the remanufacturing of

a predetermined percent of used products. At the same time, producers and importers

have to carry out remanufacturing activities, compare with the marketed amount and

verify this information. That directive is valid for all products and producers regardless

of sales channels such as direct, remote, internet etc.

New planned legal regulations in Turkey for EU will enforce Turkish producers to

recover and recycle at least a predetermined fraction of sold products. These activities

involve collection of used products, inspection/separation to determine the condition

of the return (i.e., whether it is recoverable or not), reprocessing the return (which may

include reuse, recycling, remanufacturing or repair), disposal of returns which are found

to be unrecoverable due to economic and/or technological reasons, and redistribution

of recovered products [4].

The objective of this research is to determine the used product collection strategy

in a reverse logistics framework. We focus on a problem which Turkish companies

will face in near future and suggest a strategy for both used product acquisition and

collection network design issues. We develop a mathematical programming model to

answer questions such as “What should the pricing strategy of a firm be considering

the reverse logistics issues?” and “How should a collection network be designed and

applied?”. Then, we suggest different solution techniques, and compare them on the

basis of accuracy and efficiency.

The thesis is organized as follows. The second chapter summarizes the main

characteristics of the reverse logistics networks and includes a review of the relevant

literature. The proposed model is formulated in Chapter 3. The solution methodologies

including Lagrangean relaxation, Benders Decomposition, and Cross Decomposition

developed to solve the problem are explained in Chapter 4 along with the related

literature on these techniques. Computational results obtained on randomly generated

problem instances are presented in Chapter 5. Finally, Chapter 6 offers a conclusion

and suggestions for future research.
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2. REVERSE LOGISTICS NETWORK DESIGN

2.1. The Main Characteristics of Reverse Logistics Networks

There exist a variety of RL definitions in the literature. The first known definition

of RL was published by The Council of Logistics Management [1] as “the term often

used to refer to the role of logistics in recycling, waste disposal, and management of

hazardous materials; a broader perspective includes all relating to logistics activities

carried out in source reduction, recycling, substitution, reuse of materials and disposal”.

The European Working Group on Reverse Logistics [5] defines RL as follows: “The

process of planning, implementing and controlling flows of raw materials, in process

inventory, and finished goods from a manufacturing, distribution or use point to a point

of recovery or point of proper disposal”. According to Carter and Ellram [6], RL is the

reverse distribution that includes resource reduction. Reverse distribution is the return,

upstream movement of a good or material resulting from reuse, recycling, or disposal,

and resource reduction is the minimization of waste which results in more efficient

forward and reverse distribution processes. RL is different from Waste Management

and Green Logistics, and it can be seen as part of sustainable development [7].

Fleischmann et al. [4] list the activities found in product recovery as follows:

• Collection of used products (returns) from product holders,

• Determining the condition of the returns by inspection and/or separation,

• Reprocessing the returns to capture their remaining value,

• Disposal of the returns which are found to be unrecoverable due to economic

and/or technological reasons, and

• Redistribution of the recovered products.

The authors mention that supply uncertainty results in a more complex network struc-

ture. Güngör and Gupta [8] go over the driving forces behind companies and institu-

tions to become active in RL and categorize the driving forces under three headings
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as

• Economics (direct and indirect),

• Legislation and take-back obligations, and

• Extended responsibility and customer expectations.

Brito and Dekker [7] analyze the topic from three main viewpoints: why, what and

how.

• Why are things returned: They list the return reasons according to the usual

supply chain hierarchy: manufacturing, distribution and customer returns. Man-

ufacturing returns include:

– Raw material surplus,

– Quality-control returns,

– Production leftovers.

Distribution returns include:

– Product recalls,

– Commercial returns (e.g. unsold products, wrong/damaged deliveries),

– Stock adjustments,

– Functional returns.

Customer returns include:

– Reimbursement guarantees,

– Warranty returns,

– Service returns (repairs and spare-parts),

– End-of-use,

– End-of-life.

• What is returned: They describe the product characteristics (composition, use

pattern and deterioration) which makes recovery attractive or compulsory and

give examples based on real cases. Product composition is important from the

point of view of ease of disassembly, homogeneity of constituting elements, pres-

ence of hazardous materials, and ease of transportation. The product use pattern

shows the location of use and intensity, and duration of use.
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• How RL works in practice: They list the actors and processes involved (how is

value recovered from the products). Actors are the returners, the receivers and the

collectors. Types of recovery are product recovery, component recovery, material

recovery and energy recovery. There are four main reverse logistic processes:

collection, the combined inspection / selection /sorting process, re-processing or

direct recovery, and finally redistribution.

Figure 2.1 gives the reverse flows at various stages of the supply chain (Adapted

from Thierry et al. [9]). Lund [10] and Jacobsson [11] describe three different types

of companies that perform remanufacturing: Original Equipment Remanufacturers

(OEM) which remanufacture their own products, Contracted Remanufacturers that are

contracted to remanufacture products on behalf of other companies, and Independent

Remanufacturers who remanufacture products with little contact with the OEM, and

who need to buy or collect the used products (cores). Sometimes, these companies are

paid by the last owner or distributor to pick up the discarded products [11].

Geyer and Jackson [12] examine the following constraints for the recycling and

reuse of the products:

• Limited access to end-of-life products leaving the use phase,

• Limited feasibility of end-of-life product reprocessing, and

• Limited market demand for the secondary output from reprocessing.

Blackburn et al. [13] show that the time value of returned products varies widely

across industries and product categories. Fisher [14] classifies the reverse supply chain

strategies as efficient and responsive. Efficient strategy is chosen when delivering prod-

ucts at low cost is more important as in the case of functional products and responsive

strategy is chosen when speed of the response is more important which occurs espe-

cially for innovative products. The positioning of the evaluation activity in the supply

chain makes the main difference between the two strategies. Testing and evaluation

are decentralized in order to determine the condition of the returned innovative prod-

uct. When the cost efficiency is the objective, then a centralized evaluation activity
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Figure 2.1. Reverse Flows in the Supply Chain
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is needed. Achieving decentralization in evaluation is strongly related with technical

capability of the resellers/retailers to evaluate and incentive alignments such as shared

savings contracts to persuade them to the cooperation.

Sundin [15] explore how product and process design can contribute to successful

remanufacturing by answering the following questions:

• Is product remanufacturing environmentally preferable in comparison to new

product manufacturing and/or material recycling?

• What steps are to be included in a generic remanufacturing process?

• Which product properties are preferable for the remanufacturing steps?

• How can remanufacturing facilities become more efficient?

• How can design for remanufacturing aspects be integrated into manufacturing

companies environmental management systems?

Brito and Dekker [7] develop a decision framework for reverse logistics including

three levels: Strategic, tactical and operational. Recovery strategy, product design,

network capacity and design, and strategic tools are included in the strategic level. At

the tactical level integrating product returns with the overall organization is aimed.

Then procurement, reverse distribution, coordination, production planning, inventory

management, marketing, and information and technology issues are considered. Op-

erational decision level consists of production scheduling and control, and information

management.

Fleischmann et al. [16] divide the reverse logistics arena into three main areas,

namely distribution planning, inventory control, and production planning. Distribution

planning involves the physical transportation of used products from the end user to

the manufacturer, and inventory control includes the transformation of the returned

products into usable products again. Production planning consists of the scheduling of

production activities related with product and material reuse taking into consideration

disassembly level and high uncertainty with respect to timing, quantity and quality of

the returns. They summarize the main characteristics of the RL networks as follows:
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• Supply uncertainty,

• Complex network structure which includes quality inspection and combined trans-

portation (collection and distribution),

• Large number of sources and low flow volumes.

The length of the product life cycle and the variability in the number of returns over

time are very important while characterizing the RL network for outsourcing decisions

according to Serrato et al. [17]. The amount of returns is affected by

• Where is a product located in its life cycle and whether it has a long or short life

cycle

• Variability around expected value during each stage in the cycle

• Product’s decreasing price in time

• Amount of money invested

• Cost of managing a return

• Financial incentives offered for the used products

• Amount of products managed by the firm

• Sales volume, life cycle etc. characteristics of the products

• Carry out effort for remanufacturing activity

• Inbound RL costs

• Required customer service

• Risk and control

• Importance of information reliability

2.2. LITERATURE SURVEY

Many researchers showed interest in retail collection network design from dif-

ferent points of view but there is lack of a complete understanding and obtaining

framework of the matter. Fleischmann et al. [4] make a review of product recovery

network design. Most of them include only the reverse flows and they categorize these

case-based studies into three groups as bulk recycling networks, assembly product re-

manufacturing networks and reusable item networks. In the first group, Barros et
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al. [18] study a multi-level capacitated facility location problem as a mixed-integer

linear program (MILP) when the volume and the locations of the demand are not pre-

viously known. They determine the optimal number, capacities and locations of the

depots and cleaning facilities for recycling sand from construction waste. Louwers et

al. [19] determine appropriate locations and capacities for the regional recovery centers

by using investment, processing and transportation costs for carpet waste. They use

volume dependent costs and develop a continuous nonlinear model and solve it by using

standard software. Ammons et al. [20] use a multi-level capacitated facility location

model again for carpet recycling and decide on the number and location of collection

sites and processing plants and amount of carpet collected when delivery sites for re-

covered materials are known. Realff et al. [21] show that the volume is very important

for the network design by using this model. Spengler et al. [22] propose a multi-level

warehouse location model with piecewise linear cost functions for steel recycling. They

decide on which recycling processes to install at which locations at what capacity level.

In the second group, Thierry [9] develops a capacitated linear programming model

when the facility locations are fixed by combining forward and backward flows networks

to determine the optimal flows for copy machines recovery. Berger and Debaillie [23]

determine the location of disassembly centers for re-use to extend an existing distri-

bution network. They propose multi-level capacitated MILPs for different versions of

the problem to determine the location of disassembly centers and separated inspec-

tion and repair/disassembly centers. Jayaraman et al. [24] present a multi-product

capacitated warehouse location model where the optimal number and locations of the

remanufacturing facilities and the number of cores collected are determined considering

investment, transportation, processing and storage costs for an electronic equipment

remanufacturing company in USA. Krikke et al. [25] apply an MILP model in a copier

manufacturer in The Netherlands for multi-echelon RL network design. Locations and

goods flows for the recovery processes have been optimized and a choice has been made

between two locations.

The third group includes the paper by Kroon and Vrijens [26] who focus on a

deposit based system for rentable plastic containers. They model the uncapacitated
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warehouse location model as an MILP.

The design of RL networks requires consideration of many different issues in a

multi-dimensional perspective. Ammons et al. [27] characterize forward production and

distribution of the parts, the products, and reverse flows for reuse, recycling, and dis-

posal of the used products and packaging for Electronic Assembly Reverse Production

Systems. They develop an MILP model to support decision making for effective design

and operation of the reverse production system and answered the following questions:

• Should sorting of used electronic products be centralized or decentralized ?

• Should they establish a single or multiple recycling centers ?

• What technology should be employed for carrying out the recycling tasks ?

• What should their expansion plan be to grow the network ?

• What are the most favorable end products and how do the locations of their

recycling centers affect the profitability of the network ?

• What volumes of material are needed to justify capital intensive recycling tasks

?

• Should material be stored for future processing if existing capacity is exceeded ?

Krikke et al. [28] develop quantitative models to support decision-making con-

cerning both the design structure of a product, i.e. modularity, repairability and recy-

clability, and the design structure of the logistic network. Environmental impacts are

measured by linear-energy and waste functions. Economic costs are modeled as linear

functions of volumes with a fixed set-up component for facilities. Then, they applied

this model to a closed-loop supply chain design problem for refrigerators using real life

research and development data of a Japanese consumer electronics company concerning

its European operations. The model is run for different scenarios using different pa-

rameter settings such as centralized versus decentralized processing, alternative product

designs, varying return quality and quantity, and potential environmental legislation

based on producer responsibility.

Another issue which is taken into consideration while designing RL networks is
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the time value of commercial product returns [29]. Time (season), product category

and global markets affect the return rates. Centralized structure (cost-efficient) vs.

decentralized structure (responsive) decision also depends on the cost of the time delays

and its effects on the asset recovery. Then the optimal level of the return handling

capacity at the retailer and the inspection center, choice of the transportation modes

with different levels of the responsiveness and the choice of the end-of-life or the return

collection strategies should be decided. Souza et al. [29] study a simple queuing network

model that includes the marginal value of time to identify the drivers of reverse supply

chain design and examined how industry clockspeed generally affects the choice between

an efficient and a responsive returns network.

Two main network design strategies in RL are drop-off and pick-up. Wojanowski

et al. [30] focus on the use of a deposit-refund requirement by the government when

the collection rate voluntarily achieved by the firms is deemed insufficient. They use

a continuous modeling framework to design a drop-off facility network and to deter-

mine the sales price to maximize the firm’s profit under a given deposit-refund. A

discrete choice model with stochastic utilities is used and a parametric analysis is car-

ried out to determine the net value that can be recovered from a returned product for

the firm to voluntarily engage in collection. The authors conclude that the minimum

deposit refund requirement did not achieve high collection rates for products with low

return value and pointed out two complimentary policy tools that can be used by the

government. They point out that the collection effectiveness depends on consumer’s

willingness to return a used product at the time of disposal and accessibility of collec-

tion facilities. Of course, rebate at the time of the return (incentives) will increase the

willingness and pick up policies are (routing of collection vehicles) also very important.

Government can use alternative policies such as taxes on the use of virgin materials,

recycling subsidies, disposal fees, deposit refund requirements. Wojanowski et al. [31]

also study incentive based collection strategies for product recovery by using a contin-

uous model and stochastic utility choice model. They compare drop off and pick-up

policies with respect to the acquisition of used products. They also examine the ef-

fects of variable collection cost parameters and amount of used products in collection

strategy choice.
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Listeş and Dekker [32] present a stochastic programming based approach by which

a deterministic location model for product recovery network design may be extended to

explicitly account for the uncertainties. They use GAMS as the modeling environment

and CPLEX as the solver.

Listeş [33] studies a generic stochastic model for the design of systems in RL. He

uses a decomposition method based on the branch-and-cut procedure known as the

integer L-shaped method to solve the problem and concludes that volume is a powerful

driver in integrated networks with remanufacturing options.

Ferrer and Swaminathan [34] analyze a multi-period model when remanufactured

and new products are indistinguishable and conclude that if remanufacturing is very

profitable, the firm tries to increase the available used products for remanufacturing.

Most of the existing models in the reverse logistics context put emphasis to the

modeling aspect of the problem and use commercial software packages to solve the

resulting MILPs mainly because of the increased complexity of the models. Verter

and Aras [35] present a Lagrangean relaxation based solution method, evaluate its

accuracy and running time-performance. By solving the same problem sequentially,

i.e., optimizing first the forward flow and then the reverse flow, they identify conditions

under which the sequential method provides good solutions in comparison with the

integrated method.

Lu and Bostel [36] also use Lagrangean relaxation to solve a facility location

model with reverse flows with three types of facilities. Although they use a similar

model to ours with manufacturing, remanufacturing and intermediate centers, they do

not consider acquisition prices for collecting used products. Furthermore, they have an

uncapacitated model.

Marin and Pelegrin [37] analyze an MILP facility location model considering

forward and backward flows and develop a heuristic solution by using Lagrangean

decomposition. They assume that the number of returns is proportional to demand
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for each customer and the remanufacturing capacity of a plant is proportional to its

manufacturing capacity.

Aras and Aksen [38] investigate a mixed-integer nonlinear facility location-allocation

multi-type return model under drop-off strategy to determine both the optimal loca-

tions of the collection centers and the optimal incentive values for each return type.

Customer motivation for return is the financial incentive offered by the company for

the returned item and the distance to the nearest collection center. They propose a

nested heuristic method based on a tabu search implementation for collection center

selection and Fibonacci search to find the best incentives.

Aras et al. [39] develop a mixed-integer nonlinear facility location-allocation

model to find both the optimal locations of a predetermined number of collection cen-

ters and the optimal incentive values for different return types under a pick-up strategy.

Vehicles with limited capacities travel from the collection centers to customer zones to

pick up used products. They propose NelderMead simplex search to obtain the best

incentives and tabu search for collection center locations.

Salema et al. [40] propose an MILP formulation for the design of a reverse lo-

gistics network based on a warehouse location-allocation model where both forward

and reverse flows are considered simultaneously. They first define a single product

model with unlimited capacity and subsequently extend it to a multi-product capaci-

tated recovery network model, where capacity limitations and a multi-product system

is considered. They use commercial solver GAMS/Cplex.

In the work developed by Salema et al. [41], a multi-product model is proposed

with capacity constraints, uncertain demand, and return rates. However, they solve

their model with standard branch-and-bound (BB) techniques rather than using a

decomposition method as in our study.

Salema et al. [42] develop a strategic location-allocation model for the simultane-

ous design of forward and reverse supply chains. Forward and reverse networks consist
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of two echelon structures, creating a link between factories and customers through

warehouses or disassembly centers. Strategic decisions such as network design are

accounted for together with tactical decisions, namely, production, storage and distri-

bution planning. The integration between strategic and tactical decisions is achieved

by developing a two-time scale, with a fully interconnected structure. This scale in-

volves a macro time related to the strategic decisions, and a micro time related with

the tactical decisions. An MILP formulation is obtained which is solved to optimality

using standard BB techniques.

Min et al. [43], and Ko and Evans [44] use genetic algorithms for solving the

reverse logistics models which include non-linear elements. Min et al. [43] solve only a

reverse logistics network for product returns. Their model includes discounted trans-

portation costs for large volumes. Returned products must be collected in reverse

consolidation points in order to benefit from discounts. There is trade-off between

inventory carrying costs of the consolidation points and freight rate discounts. Ko and

Evans [44] solve also forward logistics network as in our problem. Their capacity of

facilities may be expanded to different levels gradually, which makes the non-linear

components of the model.

Üster et al. [45] use Benders Decomposition to solve a multi-product, single-

source, closed-loop supply chain network design problem. They generate strong mul-

tiple Benders cuts by using the special decomposable structure of the single-source

problem.

The following studies include a more comprehensive review. Rubio et al. [46]

build up a database with the articles on reverse logistics published in the most relevant

journals within the period 1995−2005. Demirel and Gökçen [47] review and classify

the studies about RL network design problems for product recovery and analyze their

main characteristics.
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3. MODEL DEFINITION

We develop and analyze a mixed-integer nonlinear programming (MINLP) model

which helps to simultaneously determine the number and locations of distribution cen-

ters (DCs), inspection centers (ICs) and remanufacturing facilities (RFs) in produc-

tion/distribution systems so as to minimize the total cost. DCs receive the products

from the plants and ship them to the customer zones, while inspection of the returned

products is performed at ICs. Depending on the condition of the returns, they are

either shipped back to the RFs or disposed of.

We consider a single product. The number and location of plants with limited

capacity are given. Initially, all plants produce new products and we have to determine

which of them should be equipped with remanufacturing capability. This decision

incurs fixed costs. We want to locate DCs and ICs among potential sites. Opening

DCs and ICs incurs also fixed costs. We note that they have unlimited capacity.

The number, locations and demand of customer zones are given. All demand

should be satisfied by production or remanufacturing. At each customer zone, a fraction

of the local demand is returned. The number of returns at customer zone k is a fraction

of demand k. The collected amount is proportional to acquisition price and inversely

proportional to competitor’s acquisition price. There is only one competitor. The

collected amount also depends on the unit cost savings b from a return. It can be

defined as the difference between the manufacturing and remanufacturing cost per

unit. Unit manufacturing and remanufacturing costs do not vary with plant location,

and unit remanufacturing cost is lower than the unit manufacturing cost. Only some

of the returns delivered to an IC are found to be remanufacturable after inspection.

Using the index set i for plants and RFs, j for DCs and ICs and k for customer

zones, we define the parameters and variables given in List of Symbols/Abbreviations.

We use the following binary variables:



16

Yj =







1 if a DC is located at site j

0 otherwise
(3.1)

Tj =







1 if an IC is located at site j

0 otherwise
(3.2)

Hi =







1 if an RF is located at site i

0 otherwise
(3.3)

Flows of goods are shown in Figure 3.1:

Figure 3.1. The Closed-loop Reverse Logistics Network

It is assumed that the total remanufacturing capacity of the plants is large enough

to remanufacture the returns which are found to be remanufacturable after inspection

and sent to RFs. Hence, the inequality
∑

i

Vji ≤
∑

i

ai holds.

There are two opposite flows of goods in this formulation. The first one is the

forward flow of finished products from the plants via DCs to customer zones, the other

is the reverse flow of returned products from the customers via ICs back to the plants
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where facilities exist for remanufacturing.

When only the forward flow is considered, the problem is to find the number of

DCs to open, to locate them at predetermined sites and assigning customers to the open

DCs. This problem is called the forward problem. The reverse problem is concerned

with the determination of the number and locations of ICs and RFs, and the amount

of the acquisition price to be paid to collect returns. There is no capacity limitation

for DCs and ICs whereas the plants are subject to capacity constraints with respect to

both manufacturing and remanufacturing operations.

The unit manufacturing and remanufacturing costs are not explicitly considered

in the model, because we assume that unit costs are the same at all plants. Besides

this, we require that all the returns received by an RF have to be remanufactured

and included in the shipment to the DCs. Therefore, total costs of manufacturing and

remanufacturing are constant for any feasible solution to the problem and they are

excluded in the model.

The product recovery network design problem can be formulated as the following

MINLP.

P: z = min
∑

j

fjYj +
∑

j

gjTj +
∑

i

∑

j

cijUij +
∑

j

∑

k

ejkXjk +
∑

j

∑

i

cpjiVji

+
∑

k

∑

j

epkjWkj +
∑

i

hiHi +
∑

k

(L− b)Rk

s.t.

∑

j

Xjk = dk for ∀k (3.4)

∑

j

Wkj = Rk for ∀k (3.5)
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∑

k

Xjk =
∑

i

Uij for ∀j (3.6)

α
∑

k

Wkj =
∑

i

Vji for ∀j (3.7)

∑

j

Uij −
∑

j

Vji ≤ si for ∀i (3.8)

∑

j

Vji ≤
∑

j

Uij for ∀i (3.9)

∑

j

Vji ≤ aiHi for ∀i (3.10)

Xjk ≤ dkYj for ∀j, k (3.11)

Wkj ≤ τdkTj for ∀j, k (3.12)

Rk = τdk

L

L+ l
for ∀k (3.13)

Xjk,Wkj, Uij , Vji, L, Rk ≥ 0 for ∀i, j, k (3.14)

Yj, Tj , Hi ∈ (0, 1) for ∀i, j (3.15)

The objective function of problem P includes the variable cost of the forward and re-

verse flow as well as the fixed cost of opening DCs, ICs and RFs. Constraints (3.4) show

that the demand of each customer must be satisfied. Since this is not a single source

model, it is possible that products are shipped from different DCs to the same cus-

tomer to meet the demand. Constraints (3.5) ensure that the collected amount should

be shipped to ICs. Constraints (3.6) and (3.7) are the flow conservation equations at

DCs and ICs, respectively. Observe that the amount of returns being shipped from an

IC to the plants is only a fraction of the returns arriving at the IC since some of the

returns are not found to be remanufacturable after inspection. Constraints (3.8) ensure

that the number of manufactured products is limited by the manufacturing capacity.

Constraints (3.9) force the plants to remanufacture all the incoming returns received

from ICs and to ship the remanufactured products along with the manufactured ones.

Two important points need to be mentioned here. First, if these constraints are not

included, then for any plant it is possible to receive returned products without making

any shipment since satisfying the demand of DCs might be cheaper from another plant

due to the lower unit transportation cost. Second, because remanufacturing is less

costly than manufacturing, the remanufactured products are always included in the

shipments from the plant. Constraints (3.10) ensure that remanufacturing capacity is
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not exceeded. Constraints (3.11) and (3.12) guarantee that forward and reverse flows

are from open DCs to customer zones and from customer zones to the open ICs, respec-

tively. Constraints (3.13) describe the collected amount of return to ICs as a function

of acquisition price and competitor’s acquisition price. Constraints (3.14) and (3.15)

are the nonnegativity and integrality constraints, respectively.

These constraints are sufficient to define the model which includes both forward

and reverse flows. The forward flow can be explained as the flow of finished products

from the plants to the customer zones over DCs whereas the reverse flow is the flow

of returned products from customers to the RFs over ICs. The forward and reverse

problems are coupled in the above formulation by constraints (3.8) and (3.9). It is easy

to observe that these constraints include both the variables Uij of the forward problem

and Vji of the reverse problem.
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4. SOLUTION METHODOLOGY

Now, we develop a solution method for the model P. It is based on the observation

that when the acquisition price is fixed, the remaining problem becomes an MILP that

can be solved by Lagrangean Relaxation, Benders Decomposition, and Cross Decom-

position methods which are alternative solution techniques for the solution of MILPs.

These methods are compared and Cross Decomposition is modified and improved. To

find the best value of the acquisition price, Golden Section search (GS search) is applied

recursively (see Winston[48] for GS search). The algorithm of recursive GS search is

provided in Appendix A. We begin this chapter by discussing a Lagrangean relaxation

of the problem which can be used to provide lower bounds on the optimal objective

value.

4.1. Lagrangean Relaxation

When the acquisition price is fixed at a value L and constraints (3.4), (3.5), (3.6),

(3.7), (3.8) and (3.9) of P are relaxed using Lagrange multipliers λk, βk, γj, θj , µi, ωi,

the following subproblem P’ also called the dual subproblem SDη is obtained, where

λk, βk, γj, θj are unrestricted and µi, ωi are positive variables. Also a redundant

constraint, obtained by adding constraints (3.8) and (3.10), is added to tighten the

lowerbound of the relaxed problem.

∑

j

Uij ≤ si + aiHi for ∀i (4.1)
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P′:

min
∑

j

fjYj +
∑

j

gjTj +
∑

i

∑

j

cijUij +
∑

j

∑

k

ejkXjk +
∑

j

∑

i

cpjiVji

+
∑

k

∑

j

epkjWkj +
∑

i

hiHi +
∑

k

(L− b)Rk +
∑

k

λk

(

∑

j

Xjk − dk

)

+
∑

k

βk

(

∑

j

Wkj − Rk

)

+
∑

j

γj

(

∑

k

Xjk −
∑

i

Uij

)

+
∑

j

θj

(

α
∑

k

Wkj −
∑

i

Vji

)

+
∑

i

µi

(

∑

j

Uij −
∑

j

Vji − si

)

+
∑

i

ωi

(

∑

j

Vji −
∑

j

Uij

)

s.t.

∑

j

Vji ≤ aiHi for ∀i

Xjk ≤ dkYj for ∀j, k

Wkj ≤ τdkTj for ∀j, k

Rk = τdk
L

L+l
for ∀k

Xjk,Wkj, Uij , Vji ≥ 0 for ∀i, j, k

Yj, Tj, Hi ∈ (0, 1) for ∀i, j
∑

j

Uij ≤ si + aiHi for ∀i

P′ can be decomposed into two subproblems P′

1 and P′

2 where

P′

1 : z′1 = min
∑

i

∑

j

cijUij +
∑

j

∑

i

cpjiVji +
∑

i

hiHi −
∑

j

γj

∑

i

Uij −
∑

j

θj

∑

i

Vji +
∑

i

µi

∑

j

Uij −
∑

i

µi

∑

j

Vji +
∑

i

ωi

∑

j

Vji −
∑

i

ωi

∑

j

Uij
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s.t.

∑

j

Vji ≤ aiHi for ∀i

∑

j

Uij ≤ si + aiHi for ∀i

Uij , Vji ≥ 0 for ∀i, j

Hi ∈ (0, 1) for ∀i

and

P′

2 : z′2 = min
∑

j

fjYj+
∑

j

gjTj+
∑

j

∑

k

ejkXjk+
∑

k

∑

j

epkjWkj+
∑

k

λk

∑

j

Xjk+
∑

j

γj

∑

k

Xjk+
∑

j

θjα
∑

k

Wkj +
∑

k

βk

∑

j

Wkj

s.t.

Xjk ≤ dkYj for ∀j, k

Wkj ≤ τdkTj for ∀j, k

Xjk,Wkj ≥ 0 for ∀j, k

Yj, Tj ∈ (0, 1) for ∀i, j

The solution of the following Lagrangean dual gives the best lower bound:

max
λk,βk,γj ,θj ,µi,ωi

z′1 + z′2 +
∑

k

Rk(L− b− βk) −
∑

k

λkdk −
∑

i

µisi

Subproblem P′

1 can be rewritten as

z′1 = min
∑

i

hiHi +
∑

i

∑

j

Uij (cij − γj + µi − ωi) +
∑

j

∑

i

Vji (cpji − θj − µi + ωi)

and solved separately for each RF i. The solution is then given as a summation of the

optimal solutions for all RFs.
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For all i, the solution procedure can be summarized as shown in Figure 4.1:

Figure 4.1. Solution Procedure for Subproblem P′

1

Subproblem P′

2 can be considered as the summation of two independent problems.

To determine the locations of DCs and flows between DCs and customers, the following

algorithm in Figure 4.2 has been applied for each j:

Figure 4.2. Solution Procedure for Subproblem P′

2
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Locations of ICs and flows between ICs and RFs can also be found like above by

using the algorithm explained in Figure 4.3 for each j :

Figure 4.3. Solution Procedure for Subproblem P′

3

Solution of P′ provides a lower bound on the optimal value of P. We use subgradient

optimization to update the Lagrange multipliers. The steps of subgradient optimiza-

tion is given in Appendix B. For each GS iteration, a feasible solution providing an

upperbound is calculated by fixing binary variables to the values found in subproblems

P′

1 and P′

2 and solving the remaining LP.

4.2. Benders Decomposition

Benders Decomposition is successfully applied to a variety of mixed-integer pro-

gramming applications in the literature [49]. This procedure is based on the principle

that every mixed-integer program can be separated into two parts: Benders subproblem

with continuous variables and Benders master problem with the complicating integer

variables and one additional continuous variable. Solving these problems successively

yields an efficient solution procedure for problems having appropriate structures.

4.2.1. Benders Subproblem

Fixing the binary location variables Yj , Tj and Hi to feasible integer values Yj,

Tj and Hi, and L to L produces the following Benders subproblem SPB:
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SPB : min
∑

i

∑

j

cijUij +
∑

j

∑

k

ejkXjk +
∑

j

∑

i

cpjiVji +
∑

k

∑

j

epkjWkj

s.t.

∑

j

Xjk = dk for ∀k (4.2)

∑

j

Wkj = τdk

L

L+ l
for ∀k (4.3)

∑

k

Xjk =
∑

i

Uij for ∀j (4.4)

α
∑

k

Wkj =
∑

i

Vji for ∀j (4.5)

∑

j

Uij −
∑

j

Vji ≤ si, for ∀i (4.6)

∑

j

Vji ≤
∑

j

Uij for ∀i (4.7)

∑

j

Vji ≤ aiHi for ∀i (4.8)

Xjk ≤ dkYj for ∀j, k (4.9)

Wkj ≤ τdk

L

L+ l
Tj for ∀j, k (4.10)

Xjk,Wkj, Uij, Vji ≥ 0 for ∀i, j, k (4.11)

By using dual variables λk, βk, γj, θj , µi, ωi, ǫi, σjk, andψjk corresponding to the con-

straints (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10) respectively, the

dual problem DSPB of SPB can be written as:

DSPB : maxZdsp =
∑

k

dkλk −
∑

i

µisi −
∑

i

ǫiaiHi −
∑

j

∑

k

σjkdkY j

−
∑

j

∑

k

ψjkτdkT j +
∑

k

τβkdk

L

L+ l
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s.t.

−γj − µi + ωi ≤ cij for ∀i, j

λk + γj − σjk ≤ ejk for ∀j, k

−θj + µi − ωi − ǫi ≤ cpji for ∀i, j

βk + αθj − ψjk ≤ epkj for ∀j, k

µi, ωi, ǫi, σjk, ψjk ≥ 0, for ∀i, j, k

λk, βk, γj, θj unrestricted in sign

The solution of DSPB is used to generate Benders’ cuts which is added to the relaxed

master problem as:

minZ0

s.t.

Z0 ≥
∑

j

fjYj +
∑

j

gjTj +
∑

i

hiHi +
∑

k

(L− b)τdk

L

L+ l
+ Zdsp

If the solution of DSPB is unbounded, a ray is added to the relaxed master problem,

which is found by solving the following problem:

max dummy

s.t.

∑

k

dkλk −
∑

i

µisi −
∑

i

ǫiaiHi −
∑

j

∑

k

σjkdkY j

−
∑

j

∑

k

ψjkτdkT j +
∑

k

τβkdk
L

L+l
= 1

−γj − µi + ωi ≤ 0 for ∀i, j

λk + γj − σjk ≤ 0 for ∀j, k

−θj + µi − ωi − ǫi ≤ 0 for ∀i, j

βk + αθj − ψjk ≤ 0 for ∀j, k
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If we summarize the procedure, Benders Decomposition algorithm [49] can be

stated as in Figure 4.4:

Figure 4.4. Benders Decomposition Algorithm

4.3. Cross Decomposition

Benders Decomposition is generally used for solving capacitated facility location

problems [50] and certain classes of difficult problems such as stochastic programming

problems and MINLP problems [49]. It has been used to reduce the computational

difficulty of the moderate size problems by exploiting the special structure of the prob-

lem. Our problem is a large scale MINLP and it is computationally demanding to

use conventional methodologies including Benders Decomposition. We use GS search

to deal with the nonlinear part for each acquisition price value L set by a GS search
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iteration. Then, we solve the remaining MILP problem.

Benders Decomposition method exploits only the primal structure of the problem.

However, our problem can be solved by using both primal and dual decomposition al-

gorithms, so we use Cross Decomposition to solve the MILP part. It is one of the most

powerful tools to solve large scale facility location problems [50]. Cross Decomposition

was designed to exploit the primal and dual structure simultaneously which can be ob-

tained by price directive decomposition (Lagrangean or Dantzig-Wolfe Decomposition)

and resource directive decomposition (Benders Decomposition) respectively. It can be

used to reduce the computational complexity by incorporating Benders Decomposition

and Lagrangean relaxation techniques into a single framework of a standard decompo-

sition scheme. When both techniques are put into one scheme, both primal and dual

subproblems are easy to solve since the difficult constraints are in the master problems.

Furthermore, Van Roy [51] show that primal and dual subproblems are relaxed master

problems for each other.

In our problem, the primal subproblem SPB can be obtained by fixing the pri-

mal variables Yj, Tj and Hi to binary values in P. The dual subproblem SDη can be

obtained by fixing the dual variables λk, βk, γj, θj , µi, and ωi corresponding to the

constraints (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9) in P. The dual subproblem is also

called Lagrangean subproblem or Lagrangean relaxation of P relative to the constraints

(3.4), (3.5), (3.6), (3.7), (3.8) and (3.9).

Initializing the primal variables and ping-ponging between the following two steps

produce upper and lower bounds on the optimal value of P in an iterative manner:

i) Set Yj, Tj and Hi to one to provide an initial feasible solution.

ii) Solve the dual problem DSPB of the primal subproblem SPB to find dual variables

λk, βk, γj, θj , µi, ωi.

iii) Set dual variables λk, βk, γj, θj, µi, ωi to current values and solve the dual

subproblem SDη for Yj, Tj and Hi. Set Yj, Tj and Hi to current values and go to

step (ii).
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These successive steps may produce tight bounds and if there is no duality gap,

then equal values for lower and upper bound can be obtained, which shows the optimal

objective value [52]. However convergence or monotonic improvement of bounds is not

guaranteed. Van Roy incorporates these ping-ponging steps into a standard decompo-

sition scheme to ensure progress toward an optimum as follows. Solutions of SPB and

SDη have been used to generate new cuts for master problems of Benders Decomposi-

tion (MP) and Lagrangean relaxation (MD). We used subgradient optimization.

4.3.1. Primal (Benders) Decomposition

To get a primal subproblem, the binary variables Yj, Tj and Hi should be fixed

to zero or one in P . Then, for given feasible Yj, Tj and Hi, the primal subproblem is:

SPB : min
∑

i

∑

j

cijUij +
∑

j

∑

k

ejkXjk +
∑

j

∑

i

cpjiVji +
∑

k

∑

j

epkjWkj

s.t.

∑

j

Xjk = dk for ∀k

∑

j

Wkj = τdk
L

L+l
for ∀k

∑

k

Xjk =
∑

i

Uij for ∀j

α
∑

k

Wkj =
∑

i

Vji for ∀j

∑

j

Uij −
∑

j

Vji ≤ si for ∀i

∑

j

Vji ≤
∑

j

Uij for ∀i

∑

j

Vji ≤ aiHi for ∀i

Xjk ≤ dkYj for ∀j, k

Wkj ≤ τdkTj for ∀j, k

Xjk,Wkj, Uij, Vji ≥ 0 for ∀i, j, k

The dual solution of SPB provides an upper bound for the optimal value of P and

Lagrangean (dual) multipliers corresponding to the related constraints. Lagrangean
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multipliers are used to generate Benders’ cuts and Lagrangean (dual) subproblem.

4.3.2. Dual Decomposition (Lagrangean Relaxation)

Subproblem SDη has been formulated and solved as explained in section La-

grangean Relaxation 4.1. Solution of SDη provides a lower bound on the optimal value

of P. Primal variables are used to generate Benders (primal) subproblem and subgra-

dient optimization when needed.

4.3.3. Convergence Tests

Although the subproblems are master problems for each other, P cannot be solved

just by iterating between them. Cycling may occur if a duality gap exists. So, conver-

gence tests are used to prevent the algorithm from cycling between primal and dual

subproblems. Figure 4.5 shows the Cross Decomposition method. A solution Yj , Tj

and Hi to SDη is used for constructing the corresponding SPB, while the dual solution

λk, βk, γj, θj , µi, ωi to DSPB is used for SDη. Both subproblems are solved in an

iterative manner until optimality is reached. If a primal convergence test fails in any

iteration, Benders master problem is solved to obtain a new set of primal variables to

generate the next primal subproblem. If a dual convergence test fails in any iteration,

subgradient optimization is used to obtain a new set of dual variables to generate the

next dual subproblem. For each GS iteration, a Lagrangean upperbound has been cal-

culated by fixing binary variables to the values found in Cross Decomposition algorithm

and solving the remaining LP.

The pseudocode of the Cross Decomposition algorithm has been explained in

Figures 4.6, 4.7:

UB: Best upperbound found by Benders Decomposition.

LB: Best lowerbound found by Benders Decomposition.

UBLR: Best upperbound found by Lagrangean relaxation.

LBLR: Best lowerbound found by Lagrangean relaxation.
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Figure 4.5. Cross Decomposition Flowchart
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Figure 4.6. Cross Decomposition Algorithm
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Figure 4.7. Cross Decomposition Algorithm Continued

4.4. Cross Decomposition Improvement using Benders Decomposition

When the gap between the upper and lower bounds obtained from both subprob-

lems remains persistent after a certain number of iterations, the branch and bound

(B&B) phase is activated to close the gap. Van Roy also suggests to use Benders

Decomposition alternatively in lieu of B&B. So we prefer to use Benders Decomposi-

tion when the gap between best lower bound obtained from Lagrangean subproblem

and best upper bound obtained from Benders Decomposition reaches a predetermined

percentage or half of the computation limit time is spent.
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5. COMPUTATIONAL RESULTS

5.1. Preliminary Experiments

Prior to the main experiments, the following three methods have been compared

to solve the problem:

(i) For each GS search iteration where the acquisition price value L is fixed, the

remaining MILP is solved by Lagrangean relaxation (GS + LR),

(ii) For each GS search iteration where the acquisition price value L is fixed, the

remaining MILP is solved by the commercial Cplex solver (GS + C),

(iii) For each integer L value fixed in the search interval, the remaining MILP is solved

by the commercial Cplex solver (ES + C).

Two different data sets with two different unit cost savings and two fixed cost values are

generated. Table 5.1 summarizes the instances used for the experiments. The search

Table 5.1. Scenarios for Preliminary Experiments

Instance Dataset Unit Cost Savings Fixed Cost

1 1 20 5000-7500-10000

2 1 20 10000-15000-20000

3 1 40 5000-7500-10000

4 1 40 10000-15000-20000

5 2 20 5000-7500-10000

6 2 20 10000-15000-20000

7 2 40 5000-7500-10000

8 2 40 10000-15000-20000

interval has been set as
[

l
2
,max {1.5l, b}

]

for L. In both data sets, the problem size

is (x, y, z)=(5-10-20) where x shows the number of plants and potential RFs, y shows

the number of potential DCs and/or ICs, and z shows the customer zones. We have
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selected the following parameters:

τ = 0.7

α = 0.7

l = 10

The values assigned to the unit cost savings are 20 and 40. By assigning two distinct

values to fj (5000 and 10000), to gj (7500 and 15000) and to hi (10000 and 20000),

we obtain two different fixed cost instances where each instance is shown as a triplet

(fj-gj-hi). These preliminary tests have been run on AMD Athlon (tm) 64X2 Dual

Core Processor 4600+ 2.41 Ghz and 3.93 GB of RAM. All three methods have been

coded within the GAMS v22.2 suite and solved by Cplex solver called from within

GAMS.

In these experiments Lagrangean subproblems are solved by inspection as ex-

plained in Section 4.1. Then, we apply GS search to find the acquisition price L

minimizing the total cost. We present the results in Table 5.2. Depending on the re-

sults, we conclude that the best method in terms of efficiency and accuracy is applying

GS search with Cplex. The reason why GS search with Cplex yields slightly better

solutions than Exhaustive Search is that the latter is limited by unit increments. The

relaxation of six constraints degrade the quality of the lower bound in LR and there is

no advantage of using LR in terms of both accuracy and solution time performance.

So, we choose to apply GS search to find L and solve the remaining MILP with different

algorithms.

Before assessing the performance of the different methods for larger problem

instances, we perform additional tests using Exhaustive Search in the problem size

(5-10-20) by enlarging the search interval of L to (0, 100) and trying unit cost savings

values in the interval [0, 150] by increments of 10 to explore the nature of the total cost

function. To ensure that a good solution is found, GS search is applied in an iterative

manner. Our model is a highly nonconvex MINLP, and commercial solvers have a great
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Table 5.2. Results for 5-10-20 Problem Instances

Total Cost L Time (sec)

Instances GS + C ES + C GS + LR GS + C ES + C GS + LR GS + C ES + C GS + LR

1 28,610 28,610 28,688 7.07 7 6.95 4 45 1,000

2 61,110 61,110 61,188 7.07 7 6.95 5 44 977

3 19,068 19,070 19,218 12.18 12 12.74 4 47 839

4 51,568 51,570 51,718 12.18 12 12.74 4 45 1,395

5 28,532 28,533 19,163 6.99 7 4.25 6 55 1,986

6 61,032 61,033 62,119 6.99 7 4.18 6 57 2,996

7 18,589 18,589 39,086 12.09 12 13.09 6 55 2,551

8 51,089 51,089 91,543 12.09 12 12.09 6 52 2,706

Averages 39,950 39,950 46,590 10 10 9 5 50 1,806
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deal of difficulty in handling such models. We have also tried other commercial solvers

such as SBB, OQNLP, and DICOPT and the results were not satisfactory.

When the fixed cost triple is (5000-7500-10000), it is not cost effective to collect

used products if their unit cost savings is below 80. When the fixed cost are twice as

large, it is profitable to collect used products only if their unit cost savings is above

140. The full list of all graphs obtained are given in Appendix C.

We used the following capacity formula:

ai =









ατ
∑

k

dk1.5

n









si =









1.8
∑

k

dk − ain

n









5.2. Main Results

As pointed out before, when the acquisition price is set to a value, the remaining

problem becomes an MILP that can be solved by LR, Benders Decomposition (BD),

and Cross Decomposition improvement using Benders Decomposition (CDB) methods.

We decide not to use LR depending on the results in the previous section. In this

section, we compare the performances of BD and CDB with that of Cplex solver in

terms of the accuracy and efficiency. The methods are tested with randomly generated

data sets of the following sizes: 10-50-100 and 10-50-200. In these experiments Benders’

subproblem and master problem are solved by Cplex employed with the dual simplex

method for LP, and Lagrangean subproblem in CD is solved by inspection. All tests

were run on Intel(R) Xeon(R) CPU X5460@ 3.16 GHz, 27.9 GB of RAM. GS search

has been applied iteratively to find the best acquisition price minimizing the total cost.
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5.2.1. Selection of the Parameters

We try two different types of capacity: tight and normal. Tight capacity is the

case where total demand cannot be satisfied without using remanufacturing facilities.

They have been set according to the following formula:

Normal Capacity

ai =









ατ
∑

k

dk

n









si =









∑

k

dk

n









Tight Capacity

ai = 5









∑

k

dk − 0.8
∑

k

dk

n









si = 0.8









∑

k

dk

n









For tight capacity, lower bound of the search interval for L has been modified as

l

(

∑

k

dk−sin

)

ατ
∑

k

dk



1−
sum(k,d(k))−sin

ατ
∑

k

dk





to ensure feasibility.

By assigning two distinct values to fixed cost values (fj , gj, hi) =(5000-7500-

10000) and (fj , gj, hi) = (10000-15000-20000), three distinct values to b (20, 80, 140)



39

and two distinct values to capacity (normal, tight), we obtain 2× 3× 2 = 12 instances

for each problem size. The cost and demand parameters are generated as follows:

First, all (x, y) coordinates are randomly generated in (0,1) with 5 digit accuracy for

plants/potential sites of RFs, potential sites for DCs/ICs and customer zones. Then the

cost parameters have been determined by calculating the Euclidean distances between

these points. Demand parameters are randomly, uniformly generated in (0,100). Table

5.3 summarizes the instances used for the experiments.

Table 5.3. Problem Instances

Instance Fixed Cost Capacity b

1 5000-7500-10000 Normal 20

2 5000-7500-10000 Normal 80

3 5000-7500-10000 Normal 140

4 5000-7500-10000 Tight 20

5 5000-7500-10000 Tight 80

6 5000-7500-10000 Tight 140

7 10000-15000-20000 Normal 20

8 10000-15000-20000 Normal 80

9 10000-15000-20000 Normal 140

10 10000-15000-20000 Tight 20

11 10000-15000-20000 Tight 80

12 10000-15000-20000 Tight 140

5.2.2. Results for 10-50-100 Problem Instances

We set a time limit of one hour for each GS search iteration and make comparisons

between Cplex and proposed algorithms. The results are presented in Table 5.4. When

b is 20 and regular production capacity is sufficient to satisfy the total demand (normal

capacity case), used products are not collected. Cplex detects this situation by fixing

the acquisition price value L to zero. BD and CDB algorithms cannot find this solution

in one hour, when L is equal to zero. When b is 20 and regular production capacity is

not sufficient to satisfy the total demand (tight capacity case), the minimum required

amount is collected according to all three methods. When b increases, the proposed
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algorithms show better performance in terms of accuracy. If capacity is tight, we

observe a slight improvement in performance. When b is 140, fixed cost is low, and

capacity is normal BD and CDB have a per cent deviation of 0.2 from the result of

Cplex. CDB finds the same results as BD, because CDB algorithm has been processed

as pure BD after some conditions are satisfied as explained in Section 4.4. On the basis

of these results we conclude that the objective values obtained by BD and CDB are

close to the ones provided by Cplex, when the unit cost savings is high.

5.2.3. Results for 10-50-200 Problem Instances

We repeat the same experiments performed in the previous subsection for a 10-

50-200 problem. The results are presented in Table 5.5. The proposed algorithms show

a good performance in terms of accuracy, when the fixed costs and unit cost savings

are high, and the capacity is tight. When b is 80, fixed cost is high, and the capacity

is tight, BD shows the best performance by detecting an L value which minimizes the

total cost by 6.87 per cent less than the best feasible solution found by Cplex. When

fixed costs are high, the proposed algorithms either outperform Cplex or within one

per cent interval of Cplex results, with a sole exception. (The only exception is when

b value is set to 20.) CDB finds the same results as BD except one case, because CDB

algorithm is implemented as pure BD after a certain time elapses. When b value is 20,

the proposed algorithms cannot find satisfactory results compared to Cplex. On the

basis of these results we conclude that the objective values obtained by BD and CDB

are as good as the ones provided by Cplex, when the unit cost savings is high.

5.2.4. Results for Larger Problems

Since the time performance of the proposed algorithms is worse compared to

Cplex’s performance, we decide to enlarge the investigated problem sizes. The different

algorithms to solve MILP for each GS search iteration are tested with 4 data sets of

the following sizes (20-100-100, 20-200-200, 30-400-400, 30-800-800) by fixing L to a

given value. We use the following capacity formula and parameters:
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Table 5.4. Results for 10-50-100 Problem Instances

CPLEX BD CDB

Instance L Total Cost Time L Total Cost Time % L Total Cost Time %

1 0.00 9,393 12,157 1.11 19,538 439,908 108.00 1.11 19,538 439,932 108.00

2 15.11 -90,908 26,145 19.54 -89,879 212,693 1.13 15.06 -89,879 212,702 1.13

3 23.39 -266,141 17,819 23.51 -265,607 219,952 0.20 23.51 -265,607 219,977 0.20

4 6.90 15,265 2,011 6.90 16,014 50,462 4.91 6.90 16,014 50,540 4.91

5 15.92 -122,343 4,539 15.92 -121,324 209,101 0.83 15.92 -121,324 209,160 0.83

6 28.58 -299,999 7,598 28.58 -299,284 140,594 0.24 28.58 -299,284 140,563 0.24

7 0.00 14,393 14,350 1.11 42,038 440,080 192.07 1.11 42,038 439,948 192.07

8 10.04 -21,460 36,094 10.04 -20,851 432,700 2.84 10.04 -20,851 432,580 2.84

9 23.51 -183,810 30,547 23.51 -183,107 295,912 0.38 23.51 -183,107 295,707 0.38

10 6.90 41,297 4,458 6.90 48,514 50,474 17.48 6.90 48,514 50,503 17.48

11 15.92 -79,843 9,118 15.92 -78,824 209,052 1.28 15.92 -78,824 209,180 1.28

12 28.58 -247,499 695 28.58 -246,784 140,619 0.29 28.58 -246,784 140,672 0.29

Averages -102,638 13,794 -98,296 236,796 27.47 -98,296 236,789 27.47
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Table 5.5. Results for 10-50-200 Problem Instances

CPLEX BD CDB

Instance L Total Cost Time L Total Cost Time % L Total Cost Time %

1 0.00 12,960 62,647 2.49 14,669 428,891 13.19 2.49 14,669 429,220 13.19

2 19.78 -216,410 68,040 19.69 -215,306 144,245 0.51 19.69 -215,306 144,272 0.51

3 23.36 -541,002 33,201 23.36 -539,732 209,049 0.23 23.36 -539,732 209,340 0.23

4 6.85 1,860 10,078 6.85 2,442 50,466 31.26 6.85 2,442 50,490 31.26

5 15.76 -251,743 11,108 15.76 -249,970 194,755 0.70 15.76 -249,970 194,735 0.70

6 28.60 -557,928 50,035 28.54 -576,694 140,688 -3.36 28.54 -576,694 140,717 -3.36

7 0.00 17,960 44,088 1.11 39,870 429,096 122.00 1.11 39,870 429,232 122.00

8 10.00 -136,510 95,746 14.94 -144,982 281,402 -6.21 14.94 -144,982 281,587 -6.21

9 28.57 -444,820 25,973 23.24 -456,924 220,000 -2.72 23.24 -456,924 220,262 -2.72

10 6.85 34,360 9,639 6.85 35,710 104,601 3.93 6.85 35,710 104,644 3.93

11 19.85 -194,298 18,913 15.83 -207,651 209,211 -6.87 19.80 -193,177 209,215 0.58

12 28.60 -525,428 21,912 28.54 -524,194 140,674 0.23 28.54 -524,194 140,835 0.23

Averages -233,417 37,615 -235,230 212,756 12.74 -234,024 212,879 13.36
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ai =

⌊

ατ 1.5
n

∑

k

dk

⌋

si =

⌊

1.8
P
k

dk−ain

n

⌋

τ = 0.5, α = 0.5, l = 10, b = 20, fj = 5000, gj = 7500, and hi = 10000.

We design the experiments as follows. We fix the decision variable L to 14, which

simplifies our problem from MINLP to MILP. We generated four different data sets for

each problem size and we made the experiments with four different methods (Cplex,

BD, CD, CDB). We observed that decomposition algorithms performed well compared

to Cplex.

While solving MILP problem, different time limits have been set for each problem

size, as can be seen in Table 5.6. Solution time limit for Cplex has been set different

from that of the proposed algorithms in the larger problems because Cplex can not

find any feasible solution in 7200 seconds. MILP problem’s results for L = 14 have

Table 5.6. Solution Time Limits for each GS Iteration

Problem Size Time Limit(sec)

Cplex Proposed Algorithms

20-100-100 3600 3600

20-200-200 3600 3600

30-400-400 28800 7200

30-800-800 43200 7200

been presented in Appendix D. Average accuracy of the experiments for each problem

size has been calculated and reported in Table 5.7.

In our experiments, we observed that when the fixed cost decreases, CDB shows

better performance than BD in terms of accuracy and solution time. When the problem

size increases, BD’s accuracy closes to that of Cplex and outperforms for the largest

problem in average as it can be examined in Table 5.7.
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Table 5.7. Average Accuracy for Mixed-integer Problem

Method

Average Accuracy (%) BD CD CDB

20-100-100 0.94 1.68 1.31

20-200-200 0.22 2.33 0.22

30-400-400 0.02 2.53 2.53

30-800-800 -1.63 0.60 0.60

Averages -0.11 1.79 1.17

We also controlled the effect of fixed cost on the solution time performance. For

fixed cost values (fj, gj, hi) =(50-75-100), we compared solution quality of CD with

Cplex in terms of accuracy for (30-400-400) problem. Except the last dataset, when

the fixed cost is lower, solution quality decreases compared to the results in Table D.3

when fixed cost values are (fj , gj, hi) =(5000-7500-10000). Because Cplex performance

for low fixed cost is better than the performance for high fix cost. Results are available

in Table 5.8.

Table 5.8. Results for 30-400-400 MILP with 50-75-100 Fixed Cost

Dataset1 z/iter L-LB L-UB B-LB B-UB %

Cplex 92232.17

CD 92 83292 92540 91717 92540 0.33

Dataset2 z/iter L-LB L-UB B-LB B-UB %

Cplex 91483.69

CD 87 83028 95783 90441 95613 4.51

Dataset3 z/iter L-LB L-UB B-LB B-UB %

Cplex 92687.09

CD 100 84023 96873 91777 96141 3.73

Dataset4 z/iter L-LB L-UB B-LB B-UB %

Cplex 97431.73

CD 80 88414 101435 96233 100209 2.85
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6. CONCLUSIONS

In this thesis, we dealt with a mixed-integer nonlinear reverse logistics network

design problem. New products and remanufactured products are sent from new prod-

uct plants and remanufacturing facilities with limited capacity via distribution centers

to the customer zones. Used products are collected at customer zones and brought to

the inspection centers. We assumed that the financial incentives offered by the com-

pany and company’s competitor determines the willingness of customers to return their

used products. The aim of this study is to investigate and develop solution methods

for a nonlinear reverse logistics model. The solution method is based on the obser-

vation that when the acquisition price is set to a given value, the remaining problem

becomes an MILP. Lagrangean Relaxation, Benders Decomposition and Cross Decom-

position methods are used as solution methods to solve the MILP. The acquisition

price minimizing the total cost is found by using Golden Section search in an iterative

manner.

The solution methods proposed have been tested with the randomly generated

data sets of the following sizes (10-50-100 and 10-50-200) by assigning two distinct

values to fixed cost values, three distinct values to b and two distinct values to capacity.

Then the performances of the proposed algorithms have been compared to that of the

Cplex.

We also conducted experiments for larger size problems (20-100-100, 20-200-200,

30-400-400, and 30-800-800). We dealt with the MILP part of the problem only by

fixing acquisition price in order to compare the performances of the algorithms for larger

problem instances. According to the experimental results, for all the instances our

algorithms showed a good performance both in terms of solution quality and running

time.

As an extension for future research, the multi-product, multi-period versions

could be investigated. More than one competitor could be taken into consideration
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and the demand for remanufactured items in the market could be separated from the

demand for new products.
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APPENDIX A: GOLDEN SECTION SEARCH

1. lastL=infinite

2. CostofBestL=infinite

3. push the initial lowerbound and the initial upperbound of L at the end of bound-

list

4. add the initial lowerbound and the initial upperbound to the list of local extreme

points

5. while stack is not empty

(a) pull a lowerbound and an upperbound from the end of boundlist

(b) apply Golden section search with current bounds to find localL

(c) if |localL-extremeL| > ǫ ∀ extremeL in the list of local extreme points

add localL to the list of local extreme points

if f(localL)<=CostOfBestL then

bestL = lastL

CostofBestL = f(lastL)

end if

(d) push current lowerbound and lastL as upperbound at the end of boundlist

(e) push lastL as lowerbound and current upperbound at the end of boundlist.
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APPENDIX B: SUBGRADIENT OPTIMIZATION

1. Let π be a user defined parameter satisfying 0 ≤ π ≤ 2. Initialize upperbound

ZUB (from some heuristic). Decide upon an initial set (λi) of multipliers

2. Solve Lagrangean lowerbound with the current set of multipliers, to get a solution

(Xj) of lowerbound ZLB

3. Define subgradients Gi for the relaxed constraints such as: Gk =
∑

j

Xjk − dk

4. Define a step size T by T = π(ZUB − ZLB)/
∑

i

G′

i2

5. Update λi by λi = max(0, λi + TGi)

6. Go to step 2 until termination criteria (parameter π reaches 0.01 where π is halved

if ZUB has not improved in the last 30 subgradient iterations with the current

value of π) is reached.
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APPENDIX C: UNIT COST SAVINGS

As can be seen in Figures C.1, C.2 C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10, C.11,

C.12, C.13, C.14, C.15, C.16, C.17, C.18, C.19, C.20, C.21, C.22, C.23, C.24, C.25,

C.26, C.27, C.28, C.29, C.30, C.31, C.32, when the fixed cost triple is (5000 − 7500 −

10000) it is not cost effective to collect used products if their unit cost savings is below

80. If the fixed cost is twice, it is profitable to collect used products whereas their unit

cost savings is above 140.
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Figure C.1. Acquisition Price vs. Total Cost (b=0, (5000-7500-10000))
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Figure C.2. Acquisition Price vs. Total Cost (b=10, (5000-7500-10000))
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Figure C.3. Acquisition Price vs. Total Cost (b=20, (5000-7500-10000))
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Figure C.4. Acquisition Price vs. Total Cost (b=30, (5000-7500-10000))
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Figure C.5. Acquisition Price vs. Total Cost (b=40, (5000-7500-10000))
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Figure C.6. Acquisition Price vs. Total Cost (b=50, (5000-7500-10000))
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Figure C.7. Acquisition Price vs. Total Cost (b=60, (5000-7500-10000))
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Figure C.8. Acquisition Price vs. Total Cost (b=70, (5000-7500-10000))
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Figure C.9. Acquisition Price vs. Total Cost (b=80, (5000-7500-10000))
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Figure C.10. Acquisition Price vs. Total Cost (b=90, (5000-7500-10000))
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Figure C.11. Acquisition Price vs. Total Cost (b=100, (5000-7500-10000))



55

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

6
x 10

4

Acquisition Price

T
ot

al
 C

os
t

Figure C.12. Acquisition Price vs. Total Cost (b=110, (5000-7500-10000))
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Figure C.13. Acquisition Price vs. Total Cost (b=120, (5000-7500-10000))
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Figure C.14. Acquisition Price vs. Total Cost (b=130, (5000-7500-10000))
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Figure C.15. Acquisition Price vs. Total Cost (b=140, (5000-7500-10000))
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Figure C.16. Acquisition Price vs. Total Cost (b=150, (5000-7500-10000))
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Figure C.17. Acquisition Price vs. Total Cost (b=0, (10000-15000-20000))
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Figure C.18. Acquisition Price vs. Total Cost (b=10, (10000-15000-20000))
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Figure C.19. Acquisition Price vs. Total Cost (b=20, (10000-15000-20000))
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Figure C.20. Acquisition Price vs. Total Cost (b=30, (10000-15000-20000))
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Figure C.21. Acquisition Price vs. Total Cost (b=40, (10000-15000-20000))
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Figure C.22. Acquisition Price vs. Total Cost (b=50, (10000-15000-20000))
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Figure C.23. Acquisition Price vs. Total Cost (b=60, (10000-15000-20000))
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Figure C.24. Acquisition Price vs. Total Cost (b=70, (10000-15000-20000))
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Figure C.25. Acquisition Price vs. Total Cost (b=80, (10000-15000-20000))
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Figure C.26. Acquisition Price vs. Total Cost (b=90, (10000-15000-20000))
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Figure C.27. Acquisition Price vs. Total Cost (b=100, (10000-15000-20000))
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Figure C.28. Acquisition Price vs. Total Cost (b=110, (10000-15000-20000))
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Figure C.29. Acquisition Price vs. Total Cost (b=120, (10000-15000-20000))
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Figure C.30. Acquisition Price vs. Total Cost (b=130, (10000-15000-20000))
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Figure C.31. Acquisition Price vs. Total Cost (b=140, (10000-15000-20000))
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Figure C.32. Acquisition Price vs. Total Cost (b=150, (10000-15000-20000))
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APPENDIX D: LARGER SIZE PROBLEMS

We have used following notation in the results tables of larger size problems:

z = Best integer solution found with Cplex

iter = Number of iterations in proposed algorithms

L-LB = Best lowerbound found in CD by Lagrangean subproblem

L-UB = Best upperbound found in CD by Convergence test

B-LB = Best lowerbound found in CD by Convergence test or best lowerbound found

in BD

B-UB = Best upperbound found in CD by Benders subproblem or best upperbound

found in BD

L = Acquisition price minimizing total cost found by GS search iterations

Percentage = 100
Best integer−Cplex’s best integer

Cplex’s best integer

Percentage− 24hr. = 100
Best integer−Cplex’s best integer

Cplex’s best integer

where each GS iteration is 24 hrs. for Cplex and 1 hr. for other algorithms

DC = Number of open DCs

IC = Number of open ICs

RF = Number of open RFs

Cplex = Cplex solver

RelativeGap = 100
Best integer - Best estimate

Best estimate

Cplex-24 hr. = Each GS iteration is 24 hrs. for Cplex

Tables D.1, D.2, D.3, and D.4 show the results.
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Table D.1. Results for 20-100-100 Mixed Integer Problem

Dataset1 z/iter L-LB L-UB B-LB B-UB %

Cplex 123,420

CD 576 25,419 124,136 0.58

CDB 832 25,419 32,552 124,136 0.58

BD 397 32,552 124,136 0.58

Relative Gap 1.39

Dataset2 z/iter L-LB L-UB B-LB B-UB %

Cplex 125,299

CD 515 26,734 127,513 1.77

CDB 547 26,734 35,602 127,513 1.77

BD 321 35,602 127,513 1.77

Relative Gap Optimal

Dataset3 z/iter L-LB L-UB B-LB B-UB %

Cplex 124,976

CD 295 26,223 35,335 127,345 1.90

CDB 353 26,223 35,335 127,345 1.90

BD 344 35,335 125,681 0.56

Relative Gap 1.70

Dataset4 z/iter L-LB L-UB B-LB B-UB %

Cplex 123,255

CD 486 24,745 126,299 2.47

CDB 515 24,745 34,368 124,494 1.01

BD 314 34,368 124,313 0.86

Relative Gap Optimal
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Table D.2. Results for 20-200-200 Mixed Integer Problem

Dataset1 z/iter L-LB L-UB B-LB B-UB %

Cplex 148,308

CD 121 45,484 149,313 0.68

CDB 189 45,484 61,664 148,494 0.13

BD 98 61,664 148,494 0.13

Relative Gap 2.13

Dataset2 z/iter L-LB L-UB B-LB B-UB %

Cplex 149,976

CD 115 46,766 153,393 2.28

CDB 161 46,766 61,927 150,568 0.39

BD 86 61,927 150,568 0.39

Relative Gap 1.98

Dataset3 z/iter L-LB L-UB B-LB B-UB %

Cplex 150,871

CD 139 46,844 154,967 2.71

CDB 143 46,844 63,345 151,024 0.10

BD 116 63,345 151,024 0.10

Relative Gap 2.56

Dataset4 z/iter L-LB L-UB B-LB B-UB %

Cplex 149,517

CD 139 45,917 154,976 3.65

CDB 150 45,917 63,436 149,889 0.25

BD 103 63,436 149,889 0.25

Relative Gap 2.13
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Table D.3. Results for 30-400-400 Mixed Integer Problem

Dataset1 z/iter L-LB L-UB B-LB B-UB %

Cplex 232,281

CD 126 81,381 106,502 232,835 0.24

CDB 141 81,381 106,604 232,835 0.24

BD 165 107,146 232,835 0.24

Relative Gap 1.06

Dataset2 z/iter L-LB L-UB B-LB B-UB %

Cplex 233,297

CD 207 81,034 243,250 4.27

CDB 97 81,034 96,913 243,250 4.27

BD 126 106,725 233,787 0.21

Relative Gap 3.23

Dataset3 z/iter L-LB L-UB B-LB B-UB %

Cplex 234,255

CD 20 81,912 103,332 235,901 0.70

CDB 14 81,912 104,207 235,901 0.70

BD 116 107,854 235,114 0.37

Relative Gap 2.73

Dataset4 z/iter L-LB L-UB B-LB B-UB %

Cplex 241,492

CD 193 86,118 253,358 4.91

CDB 118 86,118 102,041 253,358 4.91

BD 144 113,475 239,760 -0.72

Relative Gap 3.70



70

Table D.4. Results for 30-800-800 Mixed Integer Problem

Dataset1 z/iter L-LB L-UB B-LB B-UB %

Cplex no sol.

CD 41 163,807 345,487

CDB 96 163,807 -7,897,350 345,487

BD 9 195,819 335,404

Rel. Gap no sol.

Dataset2 z/iter L-LB L-UB B-LB B-UB %

Cplex 344,493

CD 41 168,634 352,255 2.25

CDB 90 168,634 -12,201,800 352,255 2.25

BD 9 200,007 339,626 -1.41

Rel. Gap 6.38

Dataset3 z/iter L-LB L-UB B-LB B-UB %

Cplex no sol.

CD 17 162,558 -16,660,900 350,776

CDB 35 162,558 -16,660,900 350,776

BD 8 194,276 333,671

Rel. Gap no sol.

Dataset4 z/iter L-LB L-UB B-LB B-UB %

Cplex 337,159

CD 45 160,679 333,579 -1.06

CDB 96 160,679 -2,068,460 333,579 -1.06

BD 6 192,647 330,899 -1.86

Rel. Gap 5.34
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It is obvious that performance of CDB and BD in terms of efficiency and accuracy

is satisfactory. When the problem size is increased (30-400-400 and 30-800-800), the

proposed algorithms outperform Cplex. Cplex has not been able to find a feasible

solution in 12 hrs for two data sets in (30-800-800) problem. CD, CDB and BD yield

the same solution in first two datasets of (20-100-100) problem. CDB and BD found

the same solution in (20-200-200) problem for all data sets. In (30-400-400) problem,

CDB and BD found the same solution for only one dataset. In (30-800-800) problem,

CD and CDB have found same solution whereas the best feasible solution of BD is

different in all datasets.
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thesis, Linköpings Universitet, 2004.

16. Fleischmann, M., J. Bloemhof-Ruwaard, R. Dekker, E. van der Laan, J. van Nunen,

and L. V. Wassenhove, “Quantitative Models for Reverse Logistics: A Review”,

European Journal of Operational Research, Vol. 103 (1), pp. 1–17, 1997.

17. Serrato, M., S. Ryan, and J. Gaytan, “Characterization of Reverse Logistics Net-

works for Outsourcing Decisions”, Technical report, Department of Industrial and

Manufacturing Systems Engineering, Iowa State University, 2004.

18. Barros, A., R. Dekker, and V. Scholten, “A Two-level Network for Recycling Sand:

A Case Study”, European Journal of Operational Research, Vol. 110 (2), pp. 199–

214, 1998.

19. Louwers, D., B. Kip, E. Peters, F. Souren, and S. Flapper, “A Facility Location

Allocation Model for Re-using Carpet Materials”, Computers and Industrial Engi-



74

neering , Vol. 36 (4), pp. 1–15, 1999.

20. Ammons, J., M. J. Realff, and D. Newton, “Reverse Production System Design And

Operation for Carpet Recycling”, Working Paper, Georgia Institute of Technology,

1997.

21. Realff, M., J. Ammons, and D. Newton, “Carpet Recycling: Determining the

Reverse Production System Design”, The Journal of Polymer-Plastics Technology

and Engineering , Vol. 38 (3), pp. 547–567, 1999.
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40. Salema, M., A. Póvoa, and A. Novais, “A Warehouse-based Design Model for

Reverse Logistics”, Journal of the Operational Research Society , Vol. 57 (6), pp.

615–629, 2006.
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