OBJECT ORIENTED DESIGN AND IMPLEMENTATION OF A WEB BASED
DISTRIBUTED SIMULATION AND CONTROL SYSTEM

by
Mahmut Kursun '
BS. in M.E., Bogazi¢i University, 1997

BOgaZICl UnlverS|t Libra

"" “UJM“JJ!!!J!‘MJ"""'

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of
The requirements for the degree of
Master of Science
in

Industrial Engineering

Bogazi¢i University
2001

ACKNOWLEDGMENTS

I would like to express my gratitude to Ali Tamer Unal, for his continuous support

and his indispensable advice throughout my study.

I would also like to give special thanks to Orhan Kayalar and Park Holding for their
support.

I am thankful to my family, and especially to my mother, for their continuous support
throughout my entire study life.

My last but not the least thanks are to Yasemin Savci, who was always with me for

all those years.

iv
ABSTRACT

OBJECT ORIENTED DESIGN AND IMPLEMENTATION OF A
WEB-BASED DISTRIBUTED SIMULATION AND CONTROL
SYSTEM

In this study we have presented an object oriented design and implementation of a
web based distributed simulation and control for real time systems. We have developed a
system, which enables both controlling and simulating of any given manufacturing
environment at any scale, from anywhere in the world via internet in an asynchronous
manner. All the manufacturing components in a factory, or the manufacturing environment
as a whole, can be represented with the help of the system’s virtual manufacturing
component objects in a highly customizable form. The proposed architecture has the ability
to minimize the execution load of a complex simulation by distributing the simulation to
many physical computers, and can simulate third-party simulator objects designed
according to the system standard when looked at the system simulation perspective. And
when looked from the control perspective, one will see that the proposed system enables
~ the control of any manufacturing machine of a factory from any source, which can either

be the web based clients, or a third-party enterprise-wide software running anywhere.

In the proposed system, the developed Real Life Machine Server objects represent
the counterparts of real manufacturing components. With the help of the developed
DCOM/Proxy Application Server software, a seamless communication between the web
based clients or any other third party software, and the virtual manufacturing components
is established. Finally the WebFrontEnd application software represents the proof of

concept for the integration of web based clients to the system.

OZET

NESNE YONELIMLI WEB TABANLI DAGITIK BENZETIM VE
KONTROL SISTEMININ DiZAYN EDILMESI VE
GERCEKLESTIRILMESI

Bu calsmada ger¢ek zamanh sistemlerin benzetimi ve kontroliinii saglayabilecek
nesne yonelimli web tabanh dagitik bir altyapimn dizaymm ve gerceklestirilmesini sunduk.
Gelistirdigimiz sistem sayesinde herhangi bir biiyiikliikteki herhangi bir liretim ortaminmn
diinyanin herhangi bir yerinden internet vasitasiyla ve asenkron bigimde benzetimi veya
kontrolii miimkiin hale gelmistir. Bir fabrikanin tiim iiretim komponentleri, veya liretim
ortaminin kendisi, sistemin yiiksek derecede Ozellestirilmeye miisait sanal iiretim
komponenti objeleri ile temsil edilebilir. Benzetim perspektifinden bakildiginda, ortaya
konan mimari kompleks bir benzetimin ¢ahgtirilma yiikiinii, o benzetimi bir ¢ok fiziksel
bilgisayara dagitarak hafifletebilme yetenegindedir, ve iigiincii kisilerin sistemin
standartlarma uygun yarattiii objeleri de benzetimde kullanabilir. Ve kontrol
perspektifinden bakildifinda ise, ortaya konan sistem bir fabrikanin herhangi bir {iretim
makinasimn her hangi bir kaynak, ki bu web tabanh kontrolorler veya iigiincii kisiler
tarafindan isletme-geneli igin gelistirilmis herhangibir yerde ¢alisan bir yazihm olabilir,
tarafindan kontrol edilebilmesini saglamaktadir. '

Ortaya Konulan sistem dahilinde gelistirilen Gergek Hayat Makine Sunucu objeleri
gercek iiretim bilesenlerini temsil etmektedir. DCOM/Proxy Uygulama Sunucu yazilim
sayesinde web tabanh kontrolorleri veya iigiincii kisi uygulamalar: ile, sanal iiretim bileseni
objelerinin kesintisiz iletisimi saglanmaktadir. Son olarak da WebOnYiizii yazilim web
tabanli kontrolorlerin sistem ile entegrasyonu fikrinin kamtsal uygulamasim
olusturmaktadir.

TABLE OF CONTENTS
ACKNOWLEDGMENTSooootirtiecteceesesstssstessassnesssessasssssssssssasseatsssessssisssssssssssnasensasss iii
ABSTRACT e eeeeeeeeectresressseessesssessassssssessssessesssssonsessetsssesssesssanssassssssasenstsssnsossesssnsosannnss iv
O ZET eeeeeeeeeeeeeeereeeeeessnesssesssesssassassseasessssesasessesostesssesstssssesssessssastasstesssnssssssstsssetsssanessresses v
LIST OF FIGURES.teeieetectreeresanssssssesestsssessssesssssssssssrsssesssssssssssessassscsssnssssessssssassnsss ix
LIST OF ABBREVIATIONS.oiiieeenecerintenssissenenriseessessssessassssassessssssscssssssssssssasssns Xi
1. INTRODUCTIONccoveemreereesrensssersssesscssesnerossessssssssssssssssnsssssssarsassssssnsessassosssssossacs 1
2. LITERATURE REVIEWuoiiitiereeecriencneisutiossesssseesssnesssessssassssnsssssassassssassssssessssesss 3
2.1. Distributed Simulation ArChiteCtUIES........ccoeivrmrrriiersienrsreessressntneseessnieesaenessacea 3
2.2. Object Oriented Control of Manufacturing SyStemsccceeveeveinvcescnscinsccnsiinennnes 6
2.3. Composition Approach and Reusabilityceoeeiiiiniiiiiiiniiiiiiiinennns 8
2.3.1. COMPONENLScuevrurerrenserssrissersrneasanssanessasssnsns ereeeenteeeseeesetessstessasesssassanne 8
2.3.2. REUSE ceveieceeeeteeccnnrerecteecsntesessattessssnsessssnssssssessssanesssssasesassssesssssassssssannes 9
2.4. Web-based SIMUIAtIONcccevereecceereccetisriseicsisireinrnrecssssiesesaressssssasesssssaesasssnassns 10
3. PROBLEM DEFINITIONcccieiiieeieeeeeresenestesstsessessassssesssssssssssnssssesssssssessansssasases 11
4. PROPOSED SYSTEMooccommmrsrresssssmesssesassnsssssssssssssessssssessssssssnnscessssssssssssnssassssns 14
4.1. Technology OVEIVIEWcccvuririrreiesniisinsiirenicssisssisssessssesssesssessnsssnsessssessssssassaseas 14
4.2. User Based Overview of the System.....ccccccceirveiiicrcrrennneccnieriinnnneinnneecensnneees 16
4.3. The Internal Structure of the System 26
4.3.1. Real Life Machine Server Objectscoiiviniceniniininencinecniccencncacne 37
4.3.1.1. Simulation Casecccceeecerercerneerseressunessseesrsressieessssssssssnesssns 37
4.3.1.2. CONLTOL CASE ...ueeernereneeeererriescsreseissttesiseesssesessssessssasessanssssanes 38
4.3.2. The Messaging SYStEIM......cccceeeiruiinruersiiersnnnerinreeisssiinsssnsstesssssessssesses 40
4.3.3. The MesSsage SIIUCIUIEccovterriererserisnisneneisecessisssecsssessssessnssssessssonas 43
4.3.4. Classes 0f DCOM/PIOXY APPSEIVET....ccccccctrerrerecrrnrrresrnncrcsssecssesassesossns 47
5. SOFTWARE DOCUMENTATION......corieeirirereceersteecracnesssneeesseesesnesssnsesnsseens 49
5.1. Real Life Maching SEIVET.......ccccccieereceriiiiiririciirerceneccateeesceeesscesnescsasesessnsenssses 49
5.1.1. MEthOAS «.ceuveneirereremencseesesssesssessessssesssssssssssssnsassssssesssssonas cervereeessrenes 49
5.1.2. Properties eeeeeseteeessateessntteesatesassaatessasesesessessatttesntiesssaststesasnant 49
5130 EVEDLS ettt et ne st s sn e sesne s 50

5.1.4. Constants.....ccceeervreerrereeeeenenenes Geeesesensesotesnssssnssesssassssssssstossarsnessresnssssnsnses 51

vii

5.2. DCOMPIOXY / APDSEIVET ..cvviurrrareiessssessssssesrassnstssansasatssssismsssssisnsasesssacaseacesees 51

5.2.1. FrmDCOMProxy Formcccceeeeceeeeeee eetesnessseessatasentesassessstassansssaarasssets 51

5.2.2. DCOMProxy Main Modulecccveeeriimininenmininiisesisnininsncnesaninecnnes 52

5.2.3. SimContModule MOAUIEccceccererrurierenriinininieriiniiiinnecesseesssnnnaeceens 53

5.2.4. VirtualController Class......coeeeceesrserrsrnessnessarsssesssnressnnsasssssrusassstossssssnns 54

5.2.5. MachBag Class.......cccceerureueeences eeeuesessesssstssssesateseseresssesraressresssnrasnrasasnose 56

5.2.6. BIOWSET ClASS ceecovrrmreeeerrrnreeaccsssesrsssssnsensssrsnssssssssarsossssssnsessssssnasssssesssses 57

5.3. WebFIONtENG PIOJEC.cvceceuceverersirruesnrresseanseensssstsiinnsannsestonssessensassssssnsansansnnsane 58
5.3.1. GlODALASA .uveeereeierereerrrreersseessaseassserresssrassssssssssasssssassesssasesssaranassessassssses 58

5.3.2. Indexasp58

5.3.3. LeftMENULASP ecveeeermcvenciunrerresnenessssssenstsssnssinsssstnssassnasessessssstssssnsnens 59

5.3.4. CONMIOLET.ASP c..uveveruerernssssmsccusasrcssastsinasssnssss st tcacusissasasasnsnnesesasass 60

5.3.5. SENACIA.ASP .eecceurerrrensirrrssesrrrsssssseesessessestssissssnsssnerassestsassnsstostontasassnsanse 60

5.3.6. SHOWSHALUS.ASP.c.veeercrscerissisussiessnseesnaseseastessessssssssnmssessassssnsstastestastssesases 61

5.3.7. LOZILASP..urerueeerercrseucssisssemnsressenesasssssssssssssesessostassssssnassassassssssasasascassses 61

5.3.8. LOGOULASP. cceueuemcueisrirermrensssassssaeasacresessatmsssnssessassssnsasamsssatsssasusnsssnsans 61

5.3.9. DIiSCONNECL.ASD veuverereerersersessessesamssessessasassassesesscostonissmssssssessasasnssnsasssssnses 62

5.3.10. Progressbar.inC.aspcceceeeuseeressenescscscetisisesssnmsnnsssstssssssssasacssssacssians 62

5.4. WebFrontEnd GenLibociiirerueienmnnsoenieteccnrsnniitensssssnsss s ssssensacens 62
5.4.1. GUIDGEN CIASS ...ccrvvrerrreenerineesseneesessssersssnessmesssnssssssssseesssssssesssssnessansaass 62

6. DISCUSSIONS AND CONCLUSIONScccciitinerrtreriantaesssssesscsssssssiisssesesssasassnsns 63
APPENDIX A: COMPLETE MESSAGE REFERENCE......ciiiieiiiiniiiiiiinieeinnenees 69
A.1. Init Message Sample eeeee oo e s ees s e eee st e s s 69

A.2. Load Command Message Samplecccceeermeereeesrecseiicccessniensnnenans 69

A.3. Start Command Message Samplecocceevmerirreniennieessenssnesssinnne 69

A.4. Pause Command Message Samplecc.coomieiiimenmnnneeniiceesiniscninans 69

A.5. Stop Command Message Sampleccoecereerecueueceiscisiisnscnnnnns eeen 10

A.6. Logout Command Message Sample 70

A.7. Disconnect Command Message Samplecccovmmenmenninneencccencnce 70

A.8. Status Message SAMPIE...c.uieuvierirniieeneenireerineessteeeneuessteissnanenns 70

APPENDIX B: SETTING UP THE SYSTEM.....iinviiniiirrrenreetnnnescnsicssninnnssensanses 72
APPENDIX C: DATABASE STRUCTUREooieeentenenneetencenisaeiteineassnans 75

C.1. SQL Code to Generate the Database............ceueererrssseresessscssacaens 75

APPENDIX D: LOW LEVEL OBJECT HANDLING WITH VB6.......cccooeveecciinncnncee. 78

‘ D.1. ObjPtr FUNCHONciivveeeeeencrneinnteinnecsirecsneeeee e saaeessaeananaes 79
APPENDIX VE: DISTRIBUTED OBJECT TECHNOLOGYcooovreriiiiiinrnniiescssrsnnannens 80
APPENDIX F: FORMAT OF CD CONTAINING COMPUTER SOFTWARE.............. 82
REFERENCES.............cvvvevveeemmmmmssssssesesssssmsssssssssssssssssssssssssssssssssssssssessssmssasesessssssnsencs 83

REFERENCES NOT CITED.........ccovoiniiiiiiiintinniisreneestieeesressnnnnsesesssesssssssssasossscsenns 86

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15

LIST OF FIGURES
Online control and simulation SYStEML........cccccceercrveerrirveneesrrenreesennenssineeeanan. 17
Access CONtrol SYSLEM USE CASE ...ccccecerrerrcrersieressrseniersnseesssureesssasenesssnsaesanses 17
Login GUI of the SyStem.....ccccccevveiiruimnueniieiiniiniientincnenneessseessasseanenns 18
Initial state of the main controller SCTeen..........ccvevvvrerivvuiiininreenrnreeeinnnee 19
Select accessible ODJECES USE CASE....eeeruvreercaerrrererrrscsntenssneecssnnerssssesesssssnneees 20
Send control COMMANA USE CASEcceceeeerererrueeernressetscsoressnrensessssessssassesssans 21
The Main CONLIOl SCIEEMciecuereveerreerirterrsieneretersatessersetsesssersssseesssssesanes 23
The get status USE CASE -.....uevirriiiicciiiniietiiciiatieennttssssssaseesessssasassssseseses 24
An instance of the ruNNING SYStEM.........cceerrererccrrrerectrcsserisnrnerecssneecesssareenes 25
Sarpe instance different frame SIZeocvvucuvmvemnemincniie e 26
Access control system sequence dia@ramcccceeeeveeererrveeessverersrsaeesassnnne 27
Select accessible objects sequence diagram.......c.cceeeeeeereeeeerrreeeererarrecsssessanans 28
Send control command sequence diagram........ccceeeveeerervereersrereessneeeeersnsenenes 28
Init type of message flow SEQUENCEcovuevuiirirrinreeseeitcnnccneessereeesaennane 29
An instance from DCOM/Ptoxy APPSEIVET c...cceveeeeeereeacernnraereesssnsvarananeenes 31

Figure 4.16.

Figure 4.17.

Figure 4.18.

Figure 4.19.

Figure 4.20.

Figure 4.21.

Figure 4.22.

Figure 4.23.

Figure C.1.

Figure C.2.

Figure D.1.

The Command type message flow sequence diagram.........ccoceceeuemenevcruennes 34
A controller interface instant for the user named test.......ccceeeeereecenicccnnanns 35
A snapshot from DCOM/ProXy APPSEIVETccceermeeveerersercscesucsscssaessacnsessnes 36
An instance of a running Real Life Machine Server objectccveeeneeenenece. 38
DCOM Real Life Machine Server classcooeeeeemnereenieneecnccccceiicneens 39
MSMQ message queue repreSentation.........covevrreerirereeseesseteseessneesarssssnssne 40
MSMQ transaction meChanmiSmcccceeveeeiiiiiiieeniiensreeeeersseesenecnee e 42
DCOM/Proxy AppServer CIassesooceerrerrrreeeirrrneenesectessennsseesaessnenenss 47
A sample setup overview of the SyStemc.coueeeeeveeienenieneneenereceecnene 72
Interaction between the remote client and DCOM objects............cceeuueeeneen. 73
The database MOdel.......ccceeeerercriieinuinneiniiiniieeiieneneeereessreesneesesnssaasees 75

ASP
CMB
CORBA
DCOM
ERP
GUI

HTML
HTTP
IIOP

MMS

MSMQ
OMG
ORB

- OSI

RPC
ROT
TCP/IP
VMD

LIST OF ABBREVIATIONS

Asynchronous Simulation Protocol or Active Server Pages
Chandy, Misra, and Bryant a parallel simulation protocol
Common Object Request Broker Architecture
Distributed Component Object Model

Enterprise Resource Planning

Graphical User Interface

High Level Architecture

Hypertext Markup Language

Hypertext Transfer Protocol

Internet Inter-ORB Protocol

Manufacturing Automation Protocol

Manufacturing Message Specification

Message Passing Interface

Microsoft Message Queue Server

Object Management Group

Object Request Broker

Open System Interconnection

Rapid Application Development

.Remote Procedure Calls

Running Object Table
Transmission Control Protocol/Internet Protocol
Virtual Manufacturing Device

Extensible Markup Language

1. INTRODUCTION

There is a growing recognition that current manufacturing enterprises must be agile;
that is, capable of operating profitably in a competitive environment of continuously

changing customer demands.

The advances of information and factory automation technology in manufacturing
systems have been remarkable in recent years. Manufacturing systems are being created on
larger and more complicated scales than ever before. Therefore, it has become necessary to
accurately predict and control the flow of material and information during the planning and
design phase of such a manufacturing system. It is also important to evaluate many
alternative plans in a short time due to rapid changes in manufacturing cycles and to keep
costs at a minimum. For these reasons, manufacturing system simulators are often used as

a support tool to design an actual manufacturing system [1].

Such simulation systems are often specialized stand-alone and/or single purpose
systems [2]. To avoid numerous systems, each specialized for a specific task, that have to
be maintained and for which the operators have to be trained, a common, unifying
approach of interoperability, re-usability is needed. And, as simulators depend on software
with particular uses, the software often limits designers to changes determined by the
software rather ‘than their purposes or needs. [1]. Also for a large scale manufacturing
system whose subsystems are often found at different locations, it will be necessary to
facilitate a new technique in developing a simulation system capable of representing such a

large system [3].

More or less similar concerns are in the control area. Many researchers [4,5,6,7,8]
have proposed various formal models to facilitate the development of control software [5].
While the approaches of these models are usually generic enough to be applied to any kind
of flexible manufacturing system configurations, the complexity in modeling and
computation and interoperability problems with existing enterprise-wide software has been
recognized as the main barrier for their successful implementations in the large-scale, real

world flexible manufacturing systems.

Motivated by the need of a highly customizable, reusable, distributed and readily
irnplementable simulation and control systems for industrial, small to large scale
manufacturing systemé, we choose a different approach in this study and combine
simulation and control systems in a message driven web based system. We use tiny virtual
manufacturing component objects, which have the primitive methods, those can be found
in every type of machine. These objects may act as counterpart of a real-life manufacturing
components, or may act as a real-time execution interface of the real-life machines. On top
of these, we add a message driven asynchronous communication and management layer
between these objects and any other third party enterprise-wide software or our web based

control front end for remote location independent clients.

The layout of the study is as follows: In chapter two, the literature is reviewed. The
problems are defined in chapter three, and the system is proposed in chapter four. In
chapter five the software is documented. And conclusions and discussions are stated in

chapter six.

2. LITERATURE REVIEW

In reviewing the literature we focused generally on the simulation systems and
control systems and intensely tried to identify some keywords like distributed, reusable,
interoperable, asynchronous, web-based, and component-based in them. Our first starting
point for this study was the simulation need for the performance measurement of an object
oriented distributed scheduling system from a previous M.S. thesis by Ogilz [9]. By
reviewing the simulation area especially first we confronted with many different
simulation systems, which included both monolithic and distributed systems. The
monolithic systems tried to enhance their execution times by parallel simulation
technology and by executing fhem on shared memory multiprocessor systems (CMB-SMP)
[10]. Most of the simulation systems also heavily invested on the modeling capability of
the systems by some nice graphical user interfaces (GUI). When looked to distributed
simulation systems we see several syStems, which include RTI (Run-time Infrastructure) of
the HLA (High Level Architecture)[2,11], MPI-ASP (Message Passing Interface —
Asynchronous Simulation Protocol) [12], DVF (Distributed Virtual Factory) concept that
consists of distributed precise simulation models connected by several Time Bucket
algorithms [3], and others. After analyzing the object oriented distributed simulation
systems, we concentrated on the control systems, which founded on set of distributed
resource controllers, and a central system supervisor controlling them. And tried to find
and analyie systems that can handle both simulation and control. In the mean time, we
heavily invested in the software technology, which can be used to implement these

concepts.
2.1. Distributed Simulation Architectures

As manufacturing systems become automated, so-called automation islands have
appeared in factories. Nowadays, most manufacturing systems consist of several
automation islands, such as direct numerical control systems (DNC), flexible
manufacturing systems (FMS), automated cell systems, automated guided vehicle systems
(AGV) and so on. In the course of development, many simulation studies have been

performed to obtain an effective design of the automated systems. Some simulation

systems developed for those studies were extended for use in operational decision making
at the shop floor. This resulted in the advent of simulation islands, each corresponding to

the real automation island in the factory.

Besides dealing with material and information flow, the Distributed Virtual Factory
(DVF) concept that consists of distributed precise simulation models connected by several
synchronization mechanisms named Time Bucket algorithms [3] mainly focuses on the
cost analysis of products by implementing ABC (Activity Based Costing). This system is
a distributed simulation system, mostly satisfies the structural features of a factory and the
requirements for a factory-wide simulation system when it is developed on a distributed
computer system installed as the infrastructure of DVF. Each subsystem in the DVF
structure at the area level can be modelled on one processor and a transportation system, T-
Process, which connects areas, is modelled on one processor transferring works. The
functions for information exchange amongst areas are also necessary to model the
collection and the dispatch of information occurring time to time. One processor can be
allocated to model a global decision making system collecting the ordinary status reports
of areas for decision making.

In MPI-ASP [12] the parallel simulation engine CMB-SMP [10], which we handled
as monolithic simulation system, is extended as for distributed simulation. It is based on an
extended asynchronous simulation protocol [10]. The algorithm was modified by
incorporating the MPI library for message passing. MPI-ASP lacks several important
features hke interoperability and reusability. In the comparison between HLA [12], its
speed of executlon beats HLA, but as said before HLA beats MPI-ASP in terms of
reusability and interoperability.

Currently the only software architecture for heterogeneous simulation-based
distributed systems with interoperable and reusable components is the High Level
Architecture for Modeling and Simulation (HLA) [2].

The High Level Architecture (HLA) is a general purpose architecture for simulation
reuse and interoperability. The HLA was developed under the leadership of the Defense
Modeling and Simulation Office (DMSO) to support reuse and interoperability across the

large numbers of different types of simulations developed and maintained by the DoD. The
HLA Baseline Definition was completed on August 21, 1996. It was approved by the
Under Secretary of Defense for Acquisition and Technology (USD(A&T)) as the standard
technical architecture for all DoD simulations on September 10, 1996. The HLA was
adopted as the Facility for Distributed Simulation Systems 1.0 by the Object Management
Group (OMG) in November 1998. The HLA was approved as an open standard through
the Institute of Electrical and Electronic Engineers (IEEE) - IEEE Standard 1516 - in
September 2000. The HLA MOA was signed and approved in Nov. 2000 [11].

The HLA is defined by [2]:

i. Rules which govern the behavior of the overall distributed simulation (Federation)
and their members (Federates).

ii. An interface specification, which prescribes the interface between each federate and
the runtime infrastructure (RTI), which provides communication and coordination
services to the federates.

iii. An object model template (OMT) which defines the way in which federations and
federates have to be documented using the Federation Object Model (FOM) and the
Simulation Object Model (SOM), respectively, federations can be viewed .as a
contract between federates about how a common federation execution is intended to

be run.

The time management services (one of six service groups provided by the HLA
interface) allows the iransparent execution of federates under different time regimes (e.g.
real time, time stepped, event driven, continuous). Even a mixed combination of
conservative and optimistic synchronization policies is supported which allows the

exploitation of the optimistic approach among "optimistic' federates [2].

Federates have to comply with the HLA specifications: as far as the RTI is
concerned, they are treated as black boxes, hiding their true functionality: simulations, live
players (man-in-the-loop and hardware-in-the-loop) as well as management tools, passive

viewers, sensor platforms and informaticn systems can participate [2].

The RTI software package consists of libraries linked to the federates, a central
RTIExecutive process (RTIExec) which provides a naming service and acts as a first point
of contact for federates as a well-known service, and an FederationExecution process

(FedEx) which is created for each federation execution [2].

Although HLA is now a stable standard and the number of military applications

based on HLA is growing rapidly, civil applications remain the exception.
2.2. Object Oriented Control of Manufacturing Systems

The possible operation model of a manufacturing system is designed during the
simulation phase by means of evaluating the simulation / scheduling results. These are the
results that assist in getting the ‘best’ manufacturing system model, too. If the ‘best’ or an
appropriate model was chosen for implementation and the implementation is done the next

task is the operation (control) of the system [13].

Recent discrete manufacturing and / or assembly systems (FMS / FMA) are more and
more often using MAP / MMS (Manufacturing Automation Protocol / Manufacturing
Message Specification) [14], because this technology is widely available from many
vendors and really gives a safe and open solution according to the demands of OSI (Open
System Interconnection). Many users do not exactly know that they have such

interconnections, they just enjoy the useful features of MAP [13].

Our proposed systems functionality is very similar to the SSS (Simulation and
Scheduling System) [13] In this study SSS were designed and developed in a way that later
the simulation might be changed to a real FMS environment, and the expert system (ES)
would be the real-time controller. The prototype applications of SSS were developed with
the real data layout, capacities, process plans, machine parameters, etc. of some academic
and industrial FMS. The application specific and independent parts were separated in the

expert systems [13].

The practical problems of the communication of expert systems in CIM applications

can be divided into two parts. One is the hardware—software connection (physical) and the

other is the logical one between the controller(s) and controlled devices [13]. If this
decomposition is not so sharp many problems may occur during the development and

specially in maintenance of the software later on [13].

Most controller and controlled device vendors offer good (proprietafy) solutions to
communicate and also vendor independent standards are available. In the CIM area there
~are more accepted models or modeling tools to describe the objects of an FMS. In the
communication point of view the most promising one is the object oriented view of the so-
called MMS (Manufacturing Message Specification), which is originally an application
layer protocol in the MAP OSI networks. MMS gives a so-called VMD (Virtual
Manufacturing Device) view about each resource of the FMS. It was realized that this
specification is good on the higher level of the FMS to give a communication oriented

view about the network elements and their resources [13].

The object-oriented view of MMS allows to design the VMD model of a certain
device, and it is immediately possible to use this model as a specification of the
communication where the services (what one can do with a given object of the VMD) are
defined and they are working in the MAP networks [13].

A generic event control framework for a class of modular flexible manufacturing
systems is analyzed in [S]. In this study the reconfigurability of control system for various
FMS implementations and control policies is achieved, through a control framework,
which is defined as a set of distributed resource controllers and a central system supervisor
coordinating them. The resource controllers are further classified into workstation,
transporter, and stocker controllers. As the controllers exchange a series of events
according to pre-defined protocols, they are modeled as event handlers in which control
actions are made based on the event occurrences. Specifically, for each controller, an
event-based control structure specified in terms of generic logical and performance control

functions, is presented.

2.3. Composition Approach and Reusability

The composition ‘épproach tries to identify functional, geographical or otherwise
specified compbnents which could be implemented as separate software (and hardware, if
necessary). Often components of one system will be similar to those of existing systems, so
that reusability of components will be beneficial. If the functionality of an overall system is
split into components, then the communication and coordination between components
must be addressed. In order to minimize bandwidth and latency requirements, the

separation into components requires careful consideration of this issue [2].

Furthermore, the composition approach exploits the black-box character of
components by using sets of components based on different implementations where
appropriate. This results in one function (e.g. real-time environmental monitoring) to be
performed by a monitoring component which is available as a ‘real' component (connected
to the real-world monitoring system), as a simulated component, and as a play-back

component (both "off-line' components based on different sources) [2].

While the real component is restricted to real-time environments, the other
implementations can also be used in an “as-fast-as-possible' environment (e.g. for
forecasting and analysis). This implies that the time management of the component (for the
monitoring component: real time) often has to be extended to other time management

schemes (such as discrete event, time stepped, or hybrid methods) [2].

2.3.1. Components

Components are software modules which are self-contained, are usable by
themselves (stand alone), and are completely defined by their interface to the outside world
[2]. The interface describes the information needed to operate the component as well as the
information the component is able to provide; at the same time, the name space (what

names are used for objects, properties, etc.) is defined (and should be compatible with the

rest of the system) [2].

This “black-box' property creates the opportunity to define a set of components which
are identical in interface but different in ‘nature’, such as one component being
implemented as a connection to a real-world information-generating process, another one

being based on simulation, etc.
2.3.2. Reuse

Softiware developers often meet the problem of creating new components of an
application that someone probably previously has already produced. Without having
effective reuse tools, usually it is more natural to create new components from scratch than

to seek for useful elements in other programs and / or systems [13].

In the field of simulation and control of flexible manufacturing systems this issue
often occurs, when different systems with some similar features have to be managed. The
basic components of different FMS and FMC (Flexible Manufacturing Cell) are the same
type of machine tools, robots, transfer equipment, etc. In the relevant aspects they usually
differ from each other only in their quantity and working parameters. This fact itself breeds
the idea of reuse of FMS and FMC elements [13].

There are several elements defined during the analysis, design and implementation of
a simulation model, as ideas, concepts, object classes, and lines of source code created,
etc., that should be reused in new applications. Application of reuse methodology and
bractice will reduce the gffbrt in developing new simulation models to assist the design of
new systems. According to the European Software Institute the additional cost of
producing reusable software is about 20 per cent, while the cost reduction by reuse is about
40 per cent in average. The same study states that 2-5 uses reuses result in a payback of

the investment [13].

Our virtual manufacturing component objects represent the previously mentioned
FMS’ basic components, and thanks to the DCOM architecture our model can be reused

even in the binary level, besides source code level.

10

2.4. Web-based Simulaﬁion

Web-based simulation is an emerging theme in simulation research and practice.
Driven largely by the phenomenal growth in the world wide web (WWW) and its attendant
technologies, it is tempting to view web-based simulation as nothing more than a
technology push. To a certain extent, it is just that. A significant portion of the literature
surrounding web-based simulation involves a re-dressing of the same old emperor in new
technological garb. However, a few researchers in the field have described the possibility
for the web to fundamentally alter the practice of simulation modeling [6].

The term web-based simulation emerged in the mid-1990s, although the exact .
pedigree of its coinage is unknown. Within the modeling methodology track of the 1996
Winter Simulation Conference, the topic of web-based simulation is formally introduced to
the simulation community at large. Several potential impacts of web technologies on
_ simulation, giving particular attention to education and training, publications, and
simulation programs areas are described in this conference. The proliferation of web
content is described as a “kind of twenty-first century gold rush” and simulation
researchers and practitioners admonished to be proactive in defining the relationship of the

web and simulation [6].

11

3. PROBLEM DEFINITION

For large scale manufacturing systems as multinational giants whose plants are often
geographically distributed worldwide, it will be necessary to facilitate a new technique in

developing a simulation and control system capable of representing such a large system.

In designing complex and large-scale systems, cost and time usually prohibit physical
prototyping and experimentation with such systems. Accordingly, it is essential that
simulation techniques be developed, which allows people to study the behavior of these
systems before they are actually built and to evaluate design alternatives.

Existing software development environments for discrete-event simulation have
adopted either a language-based approach or a library-based approach. In either case,
programmers are provided with a set of model definition primitives together with a set of
distributed programming primitives for object definition and inter-object communication
and synchronization. These primitives are provided either as language extensions or as
functions implemented as library routines. These approaches have advantages such as type
checking and optimized code generation provided by the former and familiar programming

environments facilitated by the latter.
However they suffer from the following three major limitations:

e Lack of portability. Simulation models developed using one simulation language or
library might not be easily ported to another environment. The programmers will be
' required to learn new language constructs and perhaps an entirely new set of program
development tools. |
e Lack of interoperability. Components of a simulation model are required to be
programmed in the same host language dictated by the simulation language or library
routines used.
e Lack of capability to execute over the Internet and the Web. Simulation models

either perform sequential execution on a single workstation or run on parallel

12

computers or LAN-connected workstations, which cannot scale over the Internet and

the Web infrastructures.

The former two limitations may lock simulation application development into a
particular environment and result in inflexible models and higher model development cost,
while the latter may jeopardize the capability of deploying large-scale simulation
applications over the Internet and the Web infrastructures.

Another important issue is the management of such a large system. It has to be also
possible to control every single manufacturing machine regardless of where it operates.
The system has to be able to identify this manufacturing machines for controlling purposes
also as it has to identify it for simulation purposes.

Let’s identify this problem in an example, and say we are a multinational company
called MultiNat Inc. MultiNat Inc. has various manufacturing plants worldwide. Let’s say
it has its head quarter in Atlanta, U.S., and plants in Rome, Italy and Istanbul, Turkey. This
system has to be able to manage and control such a distributed environment. Let’s have an
exaggerated example, and say that the manager in the Headquarter in Atlanta want to
control and monitor a specific CNC machine located in Istanbul, Turkey. In the meantime
the member of the board of MultiNat is on vocation in France, but reported that there is a
problem in the Rome plant in Italy. But unfortunately he cannot find a computer even a
laptop to access internet, but thanks God, he has his WAP enabled phone. He quickly login
to the system via the WAP interface, and monitor the current situation in the Rome plant.
Or take a case, where \our multinational company MultiNat Inc. want to replace its current
scheduling software in its headquarter, but before the implementation the managers want to
be sure that the new system will fit their system perfectly. So what to do now, they have to
~ simulate the current infrastructure to see whether the newly proposed system will fit well
in to the system, so they run the softiware on the virtually designed environment. And to be
able to colloborate any software system the current infrastructure has to use well-known

standards.

13

Now let’s define the problems stated in the previous example:

e The system has to be able to work securely and reliably over the world wide web.

e The system has to be composed of components each acting as real life components,

e as one may also define even a small manufacturing machine.

e The system has to communicate securely and reliably with each of its components,
also with each of the shbsystems.

e The system has to use a technology that is built upon the set of common standards.-

e The system has to provide interfaces to all possible devices, as any kind of computer,
Palm or WAP enabled cellular phones.

e The system has to provide interfaces to all possible type of computers with all
possible operating systems. Sun Sparc with FreeBSD, Unix as the operating system,
Macintoshes with MacOS as the operating system or a Desktop PC or Laptop with
Microsoft or Unix as operating system has to be the possible candidates who can use
the system.

e The system has to be robust to every possible downtime arising from connection

problems, or other internal problems.

14

4. PROPOSED SYSTEM

4.1. Technology Overview

With these problems in our mind, we propose a state of the art system that has an
object oriented and distributed infrastructure, and uses set of standards that are widely

accepted as common standards.

The system is composed of three layers, client’s web browser or the GUI layer,
DCOM-Proxy/Application Server layer, and DCOM objects layer.

We propose a system composed of objects, which will represent their real life
manufacturing component counterparts. With real life manufacturing components we mean
machines, jobs, whatever related with manufacturing, and give these objects ‘black-box’
property [11], which creates the opportunity to'deﬁné a set of components which are
identical in interface but different in ‘nature’, such as one component being implemented
as a connection to a real-world information generating process, another one being based on

simulation, etc.

These objects have to be distributed over a TCP/IP network, and have to talk with the
controlling appﬁcation on a standard language. There are two competing distributed object
technologies named CORBA (Common Object Request Broker Architecture) and DCOM
(Distributed Component Object Model). A brief explanation of these technologies are
presented in Appendix E. We choose DCOM as the object communication technology in

our system.

A user will able to interact with the system by using Internet. To provide Graphical
User Interface (GUI) the web browser is used, regardless of operating system, platform or
browser vendor. The only constraints of the web browser are that it has to be able to
interpret Javascripts and be able to understand frame structure. This leads us to use

browsers 1E4.0+ and Netscape 3.0+ for Microsoft Windows Platform, and Netscape 3.0+

for other platforms.

15

The interaction of web browsers with the system’s internal DCOM objects is
provided with a middle layer called DCOM-Proxy/Application Server. In order to ensure
robustness to communication faults, an asynchronous messaging system is implemented as
the messaging infrastructure between the web browser clients and the main system. To not
re-invent the wheel, a custom made messaging system is not implemented, on the contrary
a well-known messaging infrastructure is used. We choose Microsoft Message Queuing
(MSMQ) mechanism as the Amessaging infrastructure. With its transactional architecture
~ MSMQ will provide queue mechanism for both clients, and the server application.

The objects and users data will be stored in a database. Again to force the usage of
common standards, we select the ODBC (Open Database Connectivity) structure as the
database communication protocol. With the help of ODBC standard we will use any
RDBMS (Relational Database Management System) compliant database. Some of possible
choices include Oracle Server, Sybase Adaptive Server, Microsoft SQL Server,... etc., and
thanks to the ODBC standard replacing a RDBMS will not require any code change in the
developed system programs. Any other software will communicate with our storage system

in case of necessity with an ODBC connection.

ASP (Active Server Pages) scripting language is used in the Web-Front-End
Software, and IIS (Internet Information Server) is used as the web server. The web based
application called “WebFrontEnd” is developed with Microsoft Visual Interdev. The
DCOM-Proxy/Application server is developed with Microsoft Visual Basic 6.0, a rapid
application development (RAD) tool.

The security issues are solved by placing a secure web server on the DMZ (De-

militarized Zone), behind the firewall.

To satisfy programming language and system independence for the sake of
~ completeness some remarks have to be made. There is no constraint for the further
development of this system with any other language since the DCOM, and MSMQ
architectures providle COM (Component Object Model) interfaces, which could be called
through any Win32 application. Also, the ASP scripting language may be replaced with an

opeh source alternative PHP (Hypertext Preprocessor) scripting language easily, since the

16

new PHP4 version fqr Win32 platforms has a built-in COM API. The web server may be
replaced‘with an open source alternative Apache Web Server for Win32 platforms, but at
the time of writing this document the Apache software was at the beta version for Win32
platforms. The MSMQ mechanism is not dependent just for the Microsoft platform, it can
be used also on the IBM AS 400 platforms, and support for Unix based systems are
currently in the development. And for the last word, the DCOM objects are not dependent
on the Microsoft platform, since current developments to port DCOM objects to Unix and

other operating systems succeeded. ‘

As it can be seen the proposed systems technological view represents a platform

independent, object oriented and distributed, reliable, scalable and robust system.
4.2. User Based Overview of the System

In this section the architectural overview of the system will be presented. The
graphics mostly obeys to standard UML (Uniﬁed Modeling Language) Use Case Diagram
rules. The system is presented in Figure 4.1. The system can be composed of four main
functional use cases, which are Access Control System, Send Control Command, Get
Status, and Select Accessible object. The actors are Manager/Controller, Objects DB,
System Administrator and Messaging System. The manager/controller points his/her
browser to the internet address of the system. By loading the web page, the system
identifies that the current user is not authenticated, and redirects him/her to the login page.
The Access Control System use case is presented in Figure 4.2. The manager/controller’s

web browser is displaying the login page as shown in Figure 4.3.

System asks for the user name and password. And Manager/Controller inputs his/her
- user name and password on to the system. The system checks the username and password
that is delivered to the system via the user database. If the system authorizes current user,

the system redirects him/her to the main control page, otherwise the system redirects

him/her to the same login page.

17

Online Control System
Access Control
System

/ Objects DB

N ‘Send Control \
Manager / Command I
Controller

System Administrator
<<include>>
Get Status T~
Messaging
System
Figure 4.1. Online control and simulation system use case
Verify User Data
Get User Data x
/ Authorize /
<<include>> Reject User
<<include>> /
<<inciude>>
Access Control
Manager/ K
Controller \

<<extend> User DB

>

Request any
Control Page

Figure 4.2. Access control system use case

18

/3 http://mklap2000/WebFrontEnd/login.asp - Microsoft Internet e S = B.J
| Fle Edt View Favortes Toos Help | = |
J 4=Back ~ =p v@ ﬁ[@Searrh (3¢ Favorites ai-ﬁsbory I%-é.@i-@@
| Address [@] http:midiap2000jWebFrontEndlogin.asp ~| @6 Qbustye ~ |JLnks &ic”
J Google ~ : :_l search @searchsite | P2eRuk Eypane Info ~ »
l
Welcome to
Web Controller 1.00
LOGIN
User Name |
Password |
hd
{_ﬁ_’l Done I— I__ Localintranet y

Figure 4.3. Login GUI of the system

Manager/Controller is authenticated through the login page, and redirected to the
main control screen. All of the frames in the current screen are on their initial states; i.e.
showing only welcome information. The main menu of accessible objects list is in its

initial state; i.e. showing only types of available objects (machines, jobs,...) as shown in

Figure 4.4.

The label 1 on Figure 4.4 shows the title of the web browser, which is the GUID!
number. All clients requesting the control page are assigned a GUID number to be

! GUID stands for Globally Unique Identifier, a 128-bit (16-byte) number generated by an algorithm
designed to ensure its uniqueness. This algorithm is part of the Open Software Foundation (OSF) Distributed
Computing Environment (DCE). A GUID is a 128-bit value consisting of one group of eight hexadecimal
digits, followed by three groups of four hexadecimal digits each, followed by one group of twelve

hexadecimal digits. [17]

19

uniquely identified. By requesting this control page, a communication channel in the
messaging system will be created, and allocated for the incoming client. The details of this
mechanism will be explained in the messaging infrastructure section. The frame with the
menu of objects is labeled with A. The virtual manufacturing components are displayed
according to their types in a tree-view in this menu. For our system we used two types of
objects named Jobs, and Machines. But for the ease of understanding we will mainly use
the machines type in this study. The virtual machines are listed under the type of machines
with their physical name followed by their physical location on the current network. As an
example the first machines physical name is “Torna” and its physical location is on the
physical computer called “mklap2000”, and therefore it is listed as “Torna-mklap2000”.

2} (84A5DBD6-ABC3-47F6-B286-BAAAE2TBBDF2) - ERplorer g
| Fle Edt Vew Fvorkec_Tooks Hep |
[em -~ Q0 4|3 oo G [55 -E 9

| Address [&] hetp:fimidap2000/WebFrontEndjindex.asp
i Gocgle~| |t searcti— @ seartisie=]

k.
Lo
q}

g
£
&
%‘
5
¥

I
@
&
:
@
N
|
|
¥

Italc and boid
font indicates
running object
Y labs

1. Not defined .T'?Welcomé to the Web Based Controller!
Yet:)- L

mklap2000

YMachines
1. Torna- .

mklap2000
2. Freze-

mklap2000

The Status will be The Results of each D
displayed here! C act|on wnll be dlsplayed
here l

@ - l_l_!ismcamm" —

Figure 4.4. Initial state of the main controller screen

20

The frame B will represent the whole control related functions. The status info will
be displayed on frame C, and the results of each function call will be displayed on frame
D. If the function calls succeed, a log of the last action will be displayed on frame D,

otherwise it will present the detailed error code.

User DB
Objects DB

Get List of
Objects

List Accessible
Objects

Get User Access

Rights

N <<include>> <<include>>
<<include>>

Select Accessible
Objects

\
\

Mana ger / <<exténd> <<extend>
> >
Controller / \\

Send Control

Command

Figure 4.5. Select accessible objects use case

The “Select Accessible Objects” use case is presented on Figure 4.5. It is both used
on the “Send Control Command” and “Get Status” transactions. In the proposed system an
“access right value is assigned to every object. The users of the system also have their
access right values. In this transaction the system retrieves the list of objects from the
objects database. It also retrieves the object access rights of the current user from user
database. The system will list only the objects with access right value less than or equal to
the current usérs access rights value. If the current users access right is not enough to list

any object, than the current Manager/Controller will not be able to control any of the

system objects.

21

Get Objects

Objects DB Control GUI

Select
Accessible
Objects

|
|
|
(

i
<<include>>
t
]
1
I
|
I

Set Parameters

-

.
<<include>>

Send Control
Command

% Messaging
System
Manager /
Controller /
<<include>>
/

Submit
Command

Display Sent Log

Figure 4.6. Send control command use case

The “Send Control Command” use case is presented on Figure 4.6. Manager/
Controller selects from list of accessible objects an object. The selected objects control
table is displayed by selecting an accessible object with the current state information
retrieved through the objects database. The current controllable state is displayed on the
Objects Control GUI as shown in ﬁigure 4.7. If the object has been loaded / initialized
before, the Manager/Controller may not set any new parameters. If the selected object has
not been loaded / initialized before, Manager/Controller sets appropriate parameters of the
selected object through objects control GUIL. Manager/Controller pushes the submit button,
"and submits his/her command through the Objects Control GUI’s submit buttons.(load,
start, pause, stop). By pushing the appropriaté button, the relevant information is sent to the
messaging system. After sending the command, the last operations log is displayed on the

log window as shown in frame D of Figure 4.4.

22

In the following case represented on Figure 4.7, manager/controller selects “Torna on
mklap2000” for controlling. The system identifies that no other manager/controller
controls this object currently, and therefore not initialized before. So the system presents
the available set of parameters for the initialization of this object on the Objects Control
GUI, represented on frame B in Figure 4.7. There are default values for these parameters,
which are stored on the objects database, and these values will be displayed to the
manager/controller for the sake of simplicity. If the manager/controller now pushes any of
the four buttons, namely “Load, Start, Pause, Stop button, the Send Control Command
transaction will begin. There is one thing to note here. Although in the whole of the system
even the states of the buttons are ordered according to objects real state, this is not

performed for the first initial state.

If the Manager/Controller do not pushes any of the Objects Control GUI’s submit
buttons, the current page will be displayed indefinitely, but after 15 minutes the session

timeout will occur, and the connection of the current browser will die.

The “Get Status” use case is represented in Figure 4.8. The Manager/Controller
selects again from list of accessible objects an object. The selected objects control table is
displayed by selecting an accessible object with the current state information retrieved
through the objects database. The Manager/Controller pushes the Objects Control GUI’s
status button, and submits his/her status command. By submitting the status button the
status window, the frame C on Figure 4.4, begins to request status information from the
messaging syétem at every predefined interval. So The status is displayed on the status

window.

One thing has to be clearly identified in the “Get Status” transaction. The system
does not send any status request to the system, ie. to the DCOM-Proxy/Application
Server. It just loads the frame C shown in Figure 4.4 with an ASP page capable of
requesting itself at the specified intervals. The requested ASP page will get the relevant
information from the messaging system, and will display the current status of the selected
object. That means physical communication will be established only at this specified

intervals, or at the send command transaction intervals.

.23

| {2062C46F-DCF3-44AC-8B47-75DC841DI46C} - Microsoft Internet Explorer s oo =101
| Fie Edt Wew Favorkes Took Hebp ;“
| ¢Back~ = - Q[0 AN| Qoowrch Ggravortes Fhistory |BD- B - F QP

Address [€] hitp://mkap2000/WebFrontEndjindex.asp =] @60 ||unks &)customize inks »

|
J Goagle-] j M search @Search site l PageRak %020 Info ~ B - MHighioh:

Ttabc and bold T Control Panel of Torna-mklap2000 -
font indicates : -)

Globs copacty N
©iiadhines corecy O T
Type

1. Jorna-

mklap2000 reakDown oy NN

2. -
mideb2000 - oo ey TR
UGN e—
Load
Duration
‘ - Work
' .) Duration
The Status for Torna- || The Results of each action -
mklap2000 will be will be displayed here | -
displayed here ! R
'f@ _ [T BB ocalintranet

Figure 4.7. The main control screen

We want to show instances of the system to clarify the execution of the system.
- Therefore a sample process is initiated. “Torna-mklap2000” is selected as the virtual
manufacturing machine. The machine is loaded first with its default variables. Then a start
command is sent to the object. After a while a snapshot of the user interface is taken when
a stop command was sent to the object and displayed on Figure 4.9. It can be seen that the
left menu has updated itself and displayed in frame A in Figure 4.9. The selected machine,
~ or the machines those are operating at that instant are listed in bold and italic font.

The frame B updates itself according to the current state of the virtual manufacturing
machine, and displays only the start button. The control interface is a living interface,
which updatés itself as the objects state changes. At this instance no other command than
“Start” can be sent to the object. This ’builds up the initial first layer. of the sanity check

24

reutines, and implemented at the User Interface level to minimize the interaction cost of
sending and receiving meaningless control commands to the system. But it may also be
possible that another browser located somewhere in the world is monitoring the status of
the object, but it has selected that object prior to the previously mentioned browser, and
neither requested the status of the object nor sent a control command. At this instance that
browser will not be aware of the current status, and may send a meaningless command to
that object. But this should not bother the proposed system, since it has an object level
secondary sanity check, which will prevent the object to misbehave.

Get Objects
Control GUI

Objects DB

|
Select ‘l
Accessible

Objects

Submit Status

i
<<include>> Command

~ \ ~.
~ -
<<include>> <<include>>

~
~ -

\
: N Messaging

<<include>>
Manager / N System

Controller N

Display Status

Figure 4.8. The get status use case

The status of the selected object is displayed as stated previously on the frame C in
Figure 4.9. It displays the current status of the object with a horizontal bar. Tricky coding
techniques implemented especially in “Status.asp” the file that displays this status

information.

In the creation of this graphic neither an applet, nor an ActiveX object is used for the
sake of cross-platform operability. This graphic is just the composition of two images’
orientation in a proper manner in an html table. The details of the status page cannot be

25

seen on this graphic, therefore the frames are adjusted, and another snapshot is taken and

presented in Figure 4.10.

'a {6C7F94FB-CFBI-4AGD-856C-

B4AE53954E34} - Microsoft Internet Explor

| Fe Edt Vew Favorkes Took Hep
| wbock - - @ [43| Qearch GiFevortes Fistoy |B- S FH-E
| Address [@] hetp:imklap2000/WebFrontendrdex.asp ~] @60 ||unks &)customize Liks *
j Goog]evr _:l &Ssarch QSearch site { PageRank O page Info ~ Up v Prighlight
takic and bokd forrd miSesVar=010011---6-010011
indicates running object »
Control Panel of Torna-mklap2000
&obs
@ Machines
11 To‘z!é"
mkiap2000
2. Freze-
2
[Back IBackl
The Status Follows:
39.88% of the operation seems to be | (7 Label: Client: { 6CTFO4FB-CFBO-4A6D-856C-
completed. Current State=010011 B4AES3954E34)
Operation details for /1*m/ Torna on . .
mklap2000 are as the following: 8MsgType: CommandeMsgContent: Stop
39.88% 4--Action=48ST=mBSM=Toma- D -
= mklap2000&SID=18RndNo=365
HERFEERE IR

[&] Done

[[BELocalintranet

N KA

Figure 4.9. An instance of the running system

As it can be seen on the status frame of Figure 4.10, the virtual machines operation

log is also displayed below the status graph. The operation log contains the timing and the

actors of the operation.

It also contains the behavioral events of the virtual machine.

The User Based View of the system is completed with these last snapshots of the

system.

26

3 {6C7FO4FB-CFBI-4AGD-B56C-B4AESIIS4EI4} - Micrasoft Internet Explorer oo =iolx|
| Fle Edt View Favortes Tods Hebp Jn
| Bk » = - @ D) | Dsearch FaFavores WAtistory | D- I~ H D
| address [] betp: /imidap2000jwebFrontEndfindex. asp] P60 ||urks &E)customize Links »
| Gocgle ~| | Msearch @searchsie | PRI @pageinfo - Eyup ~ AHighizht
@J bs mlSesYar=010011---6-010011
©Machines '
1. Jorpa- -
kdam 2000 Control Panel of Torna-mkiap2000
2. Freze-

I»

I Backl | BQCK l
The Status Follows:

39.88% of the operation seems to be completed. Current -
State=010011 Label: Client: {6C7F94FB-

CFB9-4A6D-856C-

*
?Og?lenn;atr:gn details for /1*m/ Torna on mklap2008 are as the B4AE53054E34}
&MsgType: CommandéMsgCon
39.88%
|EEHEERRE pe
Action=48ST=m8&SM=Torna

New dient {6C7F94FB-CFBI-4A6D-B56C-BAAES3954E34} mklap2000&S1D=18RndNo=36!

initialized at 07/01/2001 8:00:01 PM to use Torna on mklap2000
Machine is loaded at 07/01/2001 8:00:02 PM by {6C7FS4FB-
CFB9-4A6D-856C-B4AE53954E34}

Machine is started at 077012001 8:00:25 PM by {6C7F94FB-
CFB9-4A6D-856C-B4AES3954E34}

Slowdown of a factor of 1.02 occured at 07/01/2001 8:00:42 PM
Slowdown of a factor of 1.04 occured at 07/01/2001 8:00:51 PM
Slowdown of a factor of 1.02 occured at 07/01/2001 8:00:53 PM

~Il4 | iy
[&] Done , [[Bftocalintranet 4
Figure 4.10. Same instance different frame size

4.3. The Internal Structure of the System

In this section we will study the internal structure of the system with the aid of UML
sequence diagrams, and will try to clarify the messaging sequence between the systems
internal objects. First a brief description about UML sequence diagrams will be given, and
then the functioning of the system will be presented.

A sequence diagram has two dimensions; the vertical dimension represents time and
the horizontal dimension repfesents different objects. Normally time proceeds down the
page. Usually only time sequences are important. There is no significance to the horizontal
ordering of the objects. Objects can be grouped into “swimlanes” on a diagram [15]. Ina
sequence diagram, vertical lines represent objects with the identification boxes above

< Botazici Universitest Kataphanes S

b

27

them. On these boxes the first name is the object name, and the second one is the class
-name which the object belongs. The horizontal directed lines are messages. Each message

line starts at the originator object and ends at_the target object. Each of them carries its
identification on it [9].

Again we will start from the very beginning as it is done in the previous section, but
this time we will go into rdetails of the object, database, and messaging system

communication.

The Access Control System transaction is revisited with the sequence diagram
represented in Figure 4.11. There is nothing special in this transaction with respect to the
forthcoming transactions. The “WebFrontEnd” application enables the user authentication
and login to the system. Here and in the whole of the system database communication is
made through ODBC protocol. One thing that has to mentioned is that ODBC connection
- pooling approach is used especially for the “WebFrontEnd” application, to enable memory

efficient database connection handling.

Manager / Web Based
DTN S
Controller Login System User DBMS
Input user name and passwor\d Check User name and passwqrd
Validate User
v Authorize/Reject User) User Access Rights
{1 N) —

Figure 4.11 . Access control system sequence diagram

The “Select Accessible Objects” transaction is not very much different from the
«“Access Control System” transaction in terms of the internal structure. A thing to note is
the listing of the objects in a tree-view menu style. A javascript driven menu system
implemented for the cross-browser implementation. The code of this menu system is

borrowed from Dan Steinman’s [16] GPL (General Public Licence) Dynal.ayer library.

28

Manager/ WebFrontEnd . _
Controller Application User DB Objects DB

Request Control Page Get User Access Rights

Get Objects Properties

List the Objects

I S

Figure 4.12._Se1ect accessible objects sequence diagram

In Figure 4.13 the “Send Control Command” sequence diagram is represented. The
messaging between the transaction entities are explained already in detail, but there is one
thing that is not explained in detail for one purpose is the messaging system, and the
internal message flow beyond this point until to the invocation of the virtual machine

object and the execution of the control command.

Manager/ Web Based . Messaging
Controller Control System Objects DB System
Select Object/
| Request Control State . Get Properties/Control

___ State of the Object -,

List of Parameters and
Set Parameters < Control State _
if necessary

Submit]
Command ———= Send Control Instructions

L] - L

Figure 4.13. Send control command sequence diagram

The “Send Control Command” transaction generates its output as a message that is
sent to the system to be interpreted and executed. The message structure and messaging
system that is used in the communication between the “WebFrontEnd” application and the
DCOM-Proxy/Appserver application of the proposed system is explained in great detail at

the end of this section.

29

e Study 1: Now let’s assume a case, where a manager/controller wants to control a
* specific virtual machine object with the aid of this system. The manager/controller
first points its browser to the internet address of the system, he will log on the system
as the predeﬁned user named kursun. After the system verifies the
‘manager/controller, and authorizes him/her to logon the system, the
- manager/controllers connecting browser sends an initialization message to the
system. The explanation of the message is done at the Message Structure Section of
this study, and the message follows;
o Message Label: Client={ A4C8E880-41A9-4A04-BAC4-
F3694E05B4A9} &MsgType=INIT&IP=194.1.1.100&UserAgent=Mozilla/
4.0 (compatible; MSIE 5.01; Windows NT 5.0)&User=kursun
o Message Body: Empty

When this message or any other message falls into the Controller queue, an event will
be raised in the DCOM/Proxy Appserver application, and the incoming message is passed
immediately for the interpretation to the “InterpretTheMessage” function.

Messaging Message Handlin General Object m_Browser : Application GUI
System Engine Handler WebBrowsers Handler
INIT message
INIT message [Browserinstance not
running] >

new(m_Browser)

return code

. retum code
= Update GUI

L \ L L - L
Figure 4.14. Init type of message flow sequence

“InterpretTheMessage()” function will first parse the message label, and message
body. It will identify from the message label, whether the incoming message is an Init type,
or Command type message. In ouf case it is an Init type of message, and the sequence of
message flow between objects will occur as it is showed in Figure 4.14.
“Interpret TheMessage()” function has been identified as the Message Handling Engine on
this figure. The message label will be passed to “Browserlnit()” function, which can be
seen as the General Object Handler. This handler will first check whether the browser

30

instance is running or not. It will set a new m_Browser object which stems from Browser
.class, will initialize' the properties of this object,. and it will also initialize a
m_Browser.Controllers collection which will store the VirtualController classes. Then the
newly created m_Browser object will be added to the WebBrowsers collection. It is now
the time to updéte the GUI of DCOM/Proxy AppServer to reflect the newly connected
browser. The manager/controller sees on his browser the same snapshot as in Figure 4.4,
but at the same instance the DCOM/Proxy AppServer has updated its GUL. The snapshot

covering this instance is shown in Figure 4.15.

There are four information boxes on the DCOM/Proxy AppServer’s graphical user
interface. The information box labeled A lists' the processed messages.' The information
box B lists the connected browsers and their controller interfaces in a tree view. The
information box C lists the current pool of running virtual manufacturing components, the .
real life machine objects. And the last information box labeled D represents the list of
DCOM specific logs, i.e. the commands that are sent to the DCOM objects.

e Study 2: Now the manager/controller logged on to the system. He/She selects the
virtual machine object as “Torna-mklap2000” with the aid of the menu of the web
browser. Now he/she is confronted with the control menu of that object. He/she has
to load first this machine, so he pushes the Load control button on the objects control
interface. By sending the Load command the system sends the following message to
the DCOM/Proxy AppServer; ,

o Me&sage Label: Client={A4C8E880-41A9-4A'04-BAC4-
F3694E05B4A9}&Mngype=Command&MsgContent=Load&SM =Torna-
mklap2000&ST=m&SID=1

o Message Body: Action=1 &Cap=50&CapType=21 &BProb=4&BDT=2&
RepTD=12&LoadD=4 &WorkD= 75&ST=m&SM=Torna-
mklap2000&SID=1 &RndNo=318

When this message falls into the Controller queue, an event will be raised in the
DCOM/Proxy Appserver application, and the incoming message is passed immediately for

the interpretatibn to the “InterpretTheMessage” function as it happens in every received

message case.

31

w. DCOMProxy - Application Server ¥1.00

| MSMQ Bridge LOG »

Processed: Client={AD231676-E71E-4107-B161-04CS

| Currently Connected Machines

C

DCOM Specific LOG

Figure 4.15. An instance from DCOM/Proxy Appserver

“InterpretTheMessage()” function will determine that the incoming message is a
Command type message, and the sequence of message flow between objects will occur as
it is showed in Figure 4.16. “InterpretTheMessage()” function has been identified as the
Message Handling Engine on this figure. The message label and body will be passed to

“ProcessCommands()” function, which can be seen as the General Object Handler.

General Object Handler will first check whether the browser instance is running or
not, although the browser instance has to run. After determining that the browser instance
m_Browser is running, it will further check, if there is a controller interface VC for the
selected machine in the m Browser.Controllers collection. If the controller instance is
running, then there is nothing to worry, so the requested command will be passed to the
DCOM Handier, to be executed on the oServer object, which stems from Real Life Objects

class.

32

If there is not a controller interface for the selected machine in the
m_Browser.Controllers collection, then a new interface has to be created. Therefore the
object handler, in this case “ProcessCommands()” function creates a new VrtualController
object denoted by VC, adds it to the current browsers controllers collection, and to

initialize this newly created control interface, it calls the “Init()” method of the newly
created VC object.

The VC.init method has to bind the VC object with the selected machine object. It
first loops through the DcomObjects collection to check whether an instance of the
selected machine is currently invoked and running. If it finds a running objects
corresponding MachBag object in the DcomObjects collection, than it will get the
reference from that MachBag object, binds the VC object with the running instance of the
selected machine, and increases the corresponding MachBag objects “GUICount property”
by one. And with this binding the requested command will be passed to the DCOM
Handler, to be executed on the oServer object, which stems from Real Life Objects class.
One thing is worth to note here. Low level object reference handling is not allowed

normally, so we had to use advance coding techniques described in Appendix D.

If there is not a representing MachBag object for the selected machine in the
DcomObjects collection, then the VC object has to create both a new MachBag object, And
a oServer Real Life Machine object. It first creates the new MachBag object, sets its
properties, and then creates a new Virtual Manufacturing Component object instance on
the previously spéciﬁed physical location, i.e. on the computer specified in the objects
databasé. The newly created MachBag object will be added to the DcomObjects collection,
" and a initial zero status message will be sent to the connecting browsers receiving queue. It
is now the time to update the GUI of DCOM/Proxy AppServer to reflect the newly created
controller interface as the subcomponent of the browser. Finally the requested command

will be passed to the DCOM Handler, to be executed on the oServer object, which stems
from Real Life Objects class.

e Study 3: Now let’s assume the user kursun first starts the machine that he has loaded
before, ahd then selects another machine called “Freze on mklap2000” to load. He

then sends start command this machine. At the same instance another

33

~ manager/controller logs on to the system as the predefined user named test. This new
user has an access right value of five, which is less than the minimum level of access
right value of “Freze on mklap2000”, therefore he can only access to the machine
called “Torna on mklap2000”. The previously described Init type message flow will
occur agajh for the newly connected browser. Now he selects the only accessible
virtual machine object for him, which is “Torna-mkiap2000”. He gets the control
interface for the machine, and immediately he sees the current state of this machine,
and for some reason he wants to stop the operation of this machine, so he pushes the
stop control button on the objects control interface. By sending the stop command the
system sends the following message to the DCOM/Proxy AppServer, and his browser
reflects the snapshot shown in Figure 4.17.
o Message Label: Client={EE33B531—0894-4DAF-9BA5-
6EECO5F8EF54 }&Mngype=Command&MsgContent=Stop&SM=Torna-
mklap2000&ST=m&SID=1
o Message Body: Action=4&ST=m&SM=Torna-mklap2000&SID=1&
RndNo=207

When this message falls into the Controller queue, the incoming message is passed

again immediately for the interpretation to the “InterpretTheMessage” function.

“InterpretTheMessage()” function will determine that the incoming message is a
Command type message. The message label and body will be passed to

“ProcessCommands()” function, which can be seen as.the General Object Handler.

General Object Handler will first check whether the browser instance is running or
nbt, although the browser instance has to run. After determining that the browser instance
m_Browser is running, it will further check, if there is a controller interface VC for the
selected machine in the m_Browser.Controllers collection. In our case, there is already a
controller interface and therefore the requested command will be passed to the DCOM

Handler, to be executed on the oServer object, which stems from Real Life Objects class.

weigerp sousnbas mofj a3essowr adAy puennuo) syl 91y omSig

I I
' _ _ | i |
_ < puBwIWOD | | _ , lj I | _ _
! ssed r T puewiwod | _
jue _ B
_ ! ! ! S | | 8p0o WINal |; ! ﬂ
| _ _ | i _ _ _
_

| | | 1no aepdn | | = i | snjeis o |

! | _ _ _) | o182 |

| i | | _ ' 2pod uInal i __m_u_c_ puss |

f }
| _ _ L fu (Begyse w)mau | 7 _ I |
| [| [Bujuuni jou | _
_ | sougjsujeuyoei] |
puBULL0D \ I e —
_ ssed | | | [Bupuri ' apoo wmas - | | | |
© L mowsmsmscomv& | F <« (— |
| _ | | | aAIMBU / | |
_

! ! ! | i | [Buiuuni jou | _

[_ _ [_ 80UEISUNBJIONUOD] | | |

| T puewwod—| | | | ! | _I_._ AN | |

ssed [Buyuuni t _ s g
| T ! muﬁwsm:tngcoo& | | _ __wmmmmmc_ puewwiod | | |spess
| ! | m _
SPalao oNTieay || 1ePUeH | | TIPUBHIND ad SPIAONO000 | | SelonuoY Jesmolg W 8|pueH 3Ubug BUjpueH ETS
FELVEL Woaa tcnRedddy BTeEIIVe) begyoeiy W DA 199[G0 [efeURD sbessapy BuibessaN

3l puBWIWIOD

35

3 {EE33B531-0894-4DAF-9BAS-6EECOSFBEF54} - Microsoft Internet Explorer et =10l l‘.]~
| He EM Yew Favorkes Joos Hep u
[k - > - @ B | Doowtr iirommts Gy [B> BB - T D
| Agdress [@] hetp:/fmiden2000/webFrontEnd/index.asp =] @ |junks =i
| GOOSIE'I . :I Wsezrch @searchsite | P2BAk Gypage Info - Bjup - Srighloht
Trabc and bokt milSesvar=010011---6-01 001 i
font indicates :
running object Control Panel of Torna-mklap2000
gJobs
Machines
1. Torna- A | stat |
kiap2000
Back Back
The Status Follows:
13.58% of the operation seems to Label:Client:{EE33B531-0894-4DAF-

be completed. Current State=010011 9BA5-6EECOSFSEFS4}

Operation details for /1*m/ Torna . .
on mklap2000 are as the following: 8MsgType:Command&MsgContent:Stop

13.58% 4--Action=4&ST=m&SM=Toma-
mk!ap20008SID=18&RndNo=334

HEH

New client {EE33B531-0894-4DAF-9BAS-
6EECODSFBEF54) initialized at 10/01/2001
12:02:25 AM to use Torna on mklap2000
Machine is loaded at 10/01/2001 12:02:26

AM by <{EE33B531-0894-4DAF-9BA5- =~/

‘&) Done I_— f_ E Local intranet 4
Figure 4.17. A controller interface instant for the user named test

The representation of all the message flow realized by the user kursun and test is
shown in Figure 4.18 at the DCOM/Proxy AppServer viewpoint. From the Figure 4.18 one
can easily see all previously discussed things in action. All of the messages sent from the
WebFrontEnd to the DCOM/Proxy AppServer are listed on the “MSMQ Bridge Log”
section of Figure 4.18. The connected browsers, their users, and the machines they control
can be easily identified from the “Browsers and Control Interfaces™ section. The pool of
objects, ie. currently running, or connected machines are listed on the “Currently
Connected Machines” section. And the commands passed from DCOM/Proxy AppServer
to the Real Life Machine Server objects are presented on the “DCOM Specific Log”

section of Figure 4.18.

36

N . DCDMProky - application Server ¥1.00 ;IQI.’_‘J

I , MSMQ Bridge LOG Browsers and Control Interfaces

| E ------------- CI kursun®A4C8EBS0...

Processed: Client={EE338531-0894-4DAF-OBA5-6E ~{ Torna-mklap2000
Action=1&Cap=0&CapType=0&BProb=0BDT=08Re

tee - Freze-mklap2000
_ g1 test@EE33B531...

Processed: Client={A4CBES80-41A9-4A04-BAC4-F3 ES— ¢ Torna-mklap2000
Action=2&ST=m8&SM=Torna-mklap2000&SID=1&Rnc

Pro_cessed: Client={EE33B531-0894-4DAF-9BAS-6E
Action=48ST=m&SM=Torna-mklap2000&S1D=1&Rnc

Processed: Client={A4C8ES80-41A9-4A04-BAC4-F3
Action=18Cap=38CapType=48BProb=5&BDT=1&Re

- Currently Connected Machines
Processed: Client={A4C8E880-41A9-4A04-BAC4-F3

Action=28ST=m&SM=Freze-mklap2000&SID=2&Rnc |{L8mMa on mklap2000 ;
Freze on mklap2000

Processed: Client={A4C8ES80-41A9-4A04-BAC4-F3
Action=3RST=m8&SM=Freze-mklap2000&SID=2&Rnc

Processed: Client={A4CBEB80-41A3-4A04-BAC4-F
Action=48ST=m&SM=Freze-mklap2000&SID=2&Rnc_~

DCOM Specific LOG

test@EE33B531... sent Load command to the Torna on mklap2000
kursun@A4CBE880 . sent Start command to the Torna on mklap2000
test@EE33B531... sent Stop command to the Torna on mklap2000
kursun@A4C8EElEIU . sent Load command to the Freze on mklap2000
kursunt@a4CBERS0,,, sent Start command fo the Freze on mklap2000
kursun@A4C8ES80... sent Pause command to the Freze on mkiap2000
kursun@A4CBEBBU... sent Stop command to the Freze on mklap2000

Figure 4.18. A snapshot from DCOM/Proxy AppServer

Until now, we first examined the User Based of the system, and discussed the
interactions between the user and WebFrontEnd application. Then we went one step
further and examined the detailed interaction between the WebFrontEnd application and
the DCOM/Proxy Application Server. In the following paragraphs we will examine how
the DCOM/Proxy Application Server communicates with the DCOM objects of Real Life

Machine Server class.

The DCOM/Proxy AppServer has a function called “PassCmdDCOM” which is
denoted as DCOM Handler in Figure 4.16. All requests to control a virtual manufacturing
component, ie. a DCOM object, will be passed to the DCOM Handler, ie. to the
“PassCmdDCOM” function, after the setting up the controller interfaces for the execution.
The DCOM Handler just invokes the method relevant to the requested command on the
VirtController, the VirtualController class of the connected browser, and since the

37

VirtController has the reference of the indicated object, it simply passes this call to the
relevant method of oServer, which is a Real Life Machine Server class.

In the third study discussed previously, the situation was as the following. User
“kursun” is monitoring two machines named, “Torna on mklap2000” and “Freze on
mklap2000” respectively. At the same instance user “fes” is monitoring just the “Torna on
mklap2000” machine. The running objects graphical user interface representing “Torna on
mklap2000” is shown in Figure 4.19. The title of the window is “2684 — Torna @
mklap2000” as indicated with label A. The number 2684 is the thread ID of the current
object, and Torna @ mklap2000 is the name of the running object. The machine has
completed 13.6 per cent of its operation, and this information is indicated with label B in
~ Figure 4.19. The users “kursun”, and “fest” both connected to this machine, and so there
are two clients connected currehtly, which is indicated with label C. And the operation log
of this machine is listed in the textbox labeled with D.

4.3.1. Real Life Machine Server Objects

These objects form the heart of the system. All of the previously studied applications
are there, just to enable the communication of a remote client with one of these objects.
These objects represent the components in the manufacturing process. They have the
primitive methods, which can be found in every type of machine. A machine may require a
loading process before it can start to its operation. It will have start and stop functionality,
and it may also have a pause functionality. We give our objects these four primitive
functionality. The class representation of the Real Life Machine Server object is shown in
Figure 4.20. There are basic events which a real life machine will represent, in case of a
breakdown, slowdown or process finish. The object has several properties, by which the
object can be modeled to a desired real life machine. The system requires that an object has
to have the following properties mandatory, which are pControlState, pCurrentStatus,
pLoadDuration, pState and pWorkDuration. All the other properties especially related to

the loading process, or working process may change according to the desired object type.

4.3.1.1. Simulation Case. If we want to use this proposed system as a simulating

environment for a real factory, then these objects will represent the counterparts of the

38

manufacturing components. These objects may represent the CNC machines, or any fype
of manufacturing machine, or they may represent for example jobs, since the jobs can be

identified as a component, which takes part in the manufacturing process.

13.58001 % Clients-2 | A
\ S

s

Form Load:~1 B S~
Class Init~1 C
2684 - -Machine is Loading...

FormActivate:--1

2684 - -Machine is Loaded/ D

Lisl&df --Machine is Stasted.. hd
4 > |

Figure 4.19. An instance of a running Real Life Machine Server object

Back again to our initial MultiNat example, revisit the case, where the multinational
company MultiNat Inc. wants to replace its current scheduling software in its headquarter,
but before the implementation the managers want to be sure that the new system will fit
their system perfectly. To test whether the new system will fit or not, they have to run the
software on the virtually designed environment. With our proposed infrastructure and
object model, it is possible to handle such a situation. There will be two types of objects,
which can be identified as jobs, and machines. These objects have to have the previously
discussed mandatory properties, and all the events, and methods described in Figure 4.20.

The flexible and object oriented structure of the system, a third-party’s software, the
scheduling software in the mentioned case, can easily run these components for simulation
purposes. The only requirement is, that this third-party software can connect to MSMQ
servers and ODBC enabled database. By connecting to the MSMQ server(s) this third-
party software will be able to send commands to and receive status information from these

objects. A complete message reference is given in Appendix A.

4.3.1.2. Control Case. If we want to use our proposed system as a control environment for

a real factory, then these objects will represent the counterparts of CNC Machines, or any
other machine that is involved in the manufacturmg process. On the contrary to the

simulation case, these objects will stand as an interface to the real manufacturing

39

machines, i.e. invoking the start method of the object will cause to start the related CNC
machine physically. Byvthe design nature of these DCOM objects one can define, where
the object will run, i.e. on which physical computer the machine will run. This feature is

one of the enablers of physical control of the indicated real life manufacturing machine.

eBreakDown

eError

eFinish

eSendMessage
eSendStatus
eSlowDown

mLoad

mStartO DCOM Real Life

Machine Server
mPause o— pBreakDownProb
pBreakDownType
pCapacity
pCapacityType
pControlState
pCurrentStatus
pGUICount
pLoadDuration
pMsgln
pMsgQut
pMyName
pRepairTimeDist
pState
pWorkDuration

mStop

Figure 4.20. DCOM Real Life Machine Server class

If there is an appropriate digital connection port to the indicated CNC machine,
executing the requested operation on such a machine may be realized without the need of
an extra software. But if the real machine has no direct digital connection port, then a
connector software may be easily programmed, and by the help of Analog to Digital
Convertors (ADC) and Digital to Analog Convertors (DAC) this software can act as a

. connector between our DCOM Object and the indicated manufacturing machine.

40

4.3.2. The Messaging System

The messaging system is built upon the Microsoft Message Queue infrastructure. In
the following paragraphs we will briefly explain what MSMQ is, and why we choose
MSMQ.

With the trend toward -distributed computing in enterprise environments, it is
important to have flexible and reliable communication among applications. Businesses
often require independent applications that are running on different systems to
communicate with each other and exchange messages even though the applications may

not be running at the same time [17].

Microsofit® Message Queue Server (MSMQ) technology enables applications
running at different times to communicate across heterogeneous networks and systems that
may be temporarily offline. Within an MSMQ enterprise, applications send messages to
queues and read messages from queues. Figure 4.14 shows how queues hold the messages

used by both the sending and receiving applications [17].

MSMQ ensures that all messages eventually reach their destination, whether a
message is sent to a queue or a message is read from a queue. MSMQ provides guaranteed

message delivery, efficient routing, security, and priority-based messaging [17].

/_.-0—‘——\
M——]

Receiving
Application

Sending

! Message
Application

Fpplication Queue Fpplication
Messages Messages

~——
Figure 4.21. MSMQ message queue representation

MSMQ is different from remote procedure calls (RPC), Windows Sockets, and
messaging API (MAPI). Because MSMQ is a connectionless message service where
applications do not need to maintain a session, it is different from RPC where applications

are required to maintain sessions. And ‘although Windows Sockets provides low-level

41

functions for writing applications, Windows Sockets does not allow applications to run at
different times in the way that MSMQ does. MSMQ is also different from MAPI (an e-

mail oriented service) in that it uses a more general-purpose message queuing model than
MAPI [17).

In the proposed system two types of MSMQ queues will be used. The one and the
most important queue is the queue, which is used as the receiving queue by the DCOM-
Proxy/Appserver. We will name this queue as the Controller queue from now on in this
study. It is a transactional queue, and this guarantees for the sender that the message is sent
one and only one time, and that the message is sent really. Otherwise the transaction will

be rolled backed, and an error will be raised. The same is true for the receiving application.

The following illustration shows how transactions are used by the sending and
receiving applications. In this model, MSMQ uses two transactions: one to send messages

to the queue and the other to retrieve messages from the queue [17].

In this model, the sending transaction can commit to sending the messages to the
queue, and the receiving application can commit to retrieving the messages; MSMQ
provides its own confirmation process to notify the sending application that either the
messages were retrieved from the queue or why the receiving application failed to retrieve

them [17].

MSMQ provides several ways to send and receive messages through transactions.
Transactions can be called either explicitly by providing pointers to a transaction object, or
implicitly, directing MSMQ to find the appropriate transaction object. Transactions that
can be explicitly called include MSMQ internal transactions and the Microsoft®
Distributed Transaction Coordinator (MS DTC) external transactions [17].

The Controller queue or Controller queues, if scalability issues arise, will receive all
the control requests from the connecting clients, i.e. web browsers. On the other side the
system has also to send some data to the connecting browsers. Therefore new queues will
be assigned to all connecting browsers. The only need of a client is the information of the

current status of the virtual machine(s) that the client want to control. This data is also an

42

important data, but any duplication of this data, or any corruption of the data in a pass is
not important, since the status of the machine change in‘time, and the client will get info in
a the next time interval. And if one thinks about the physical manufacturing process where
the operations éte in magnitude of hours, and seldom in multiples of ten minutes, the
criticality of this repeated data is not so impoftant, as the control command messages

criticality. Therefore, the clients receiving queues do not need to be transactional.

. ————— o - A - - - - - " = -

Sending
Transaction

= ——— - = . - o =

{ Receiving

! Transaction
i
[}

- —

Sending Receiving
Application Application
Message

~ Queue

- = i o - - - oy
- o - —— - - - o

MSMQ
Confirmation Process

Figure 4.22. MSMQ transaction mechanism

Another problem is the uniqueness of queue names. The queue name of each
connecting client has to be unique. To provide uniqueness we first assigned IP (Internet
Protocol) numbers to each connecting client, since it is clear that every machine that is
directly connected to the internet has to have a uniqué number called IP number to
represent itself in the universe. Unfortunately this is true for most of the cases, actually true
for the computers that are connected to the internet via dial-up connection, or to the
computers that have a C-class IP. But what will happen, if the client is coming from a
corporate proxy, or simply if the client is behind the proxy. In this case, all clients coming
from that proxy will have the same IP as of their proxy servers. It is obvious that this
naming convention will not work 100 per cent. Therefore a 128 bit GUID (Globally
Unique Identifier) will be generated for each client, and this GUID will be assigned as their

queue names.

43

4.3.3. The Message Structure

We want to briefly mention about our systems message structure. The messages will
be transferred from sender to receiver as MSMQ message objects. A MSMQ message
object is capable to transfer messages that are at most four MB capacity. The message
object provides label and body properties for a message. The messages are indexed
according to their labels in a MSMQ queue.

We had various possibilities in determining the right and ‘optimized message
structure. First of all it has to be stated that the body of the message may be set to any type
of object. This make it possible to send recordsets, Microsoft Word Documents as objects
in the message body. There is no limitation, and one may send whatever he/she wants to
send to the other party with only the four MB size constraint. We thought about seve;al
alternatives, which are XML (Extended Markup Language) type messages, Property Bag
type messages, or a simple system wide defined string messages. We choose to adopt a
custom messaging structure, which will be just a line of string containing key and values
separated by a seperation character from the other key-value pairs in the string. There is
only one reason to do this, the size of the messages are really too small compared to the
other alternatives, and the message size may matter in case of heavy load. The reduction in
the size of the message reduces the bandwidth requirements, and speeds the transfer time

of the messages between the sender and receiver applications.

We are aware what XML is, and that XML will be the industry standard in the data
exchange structures, we left it out of the box for our system, since there are really small set
of parameters to be defined and passed to the receiving application in the case of our
system. But a very clear code is implemented for the interpretation of the messages, and
the parsing of the messages is coded as a function called “ParseString()” in the DCOM-
Proxy/Appserver program. That means, if we decide to use XML for the composition of
messages in a complex implementation, the system will easily adopt to the new XML
structure by just changing the “ParseString” function in to a XML parser function. At the
time of writing of this study, Microsoft’s XML Parser was still in Beta edition, which

worried us about a semi-stable system if implemented.

44

There are two types of message used in the system, Command type and Init type of
messages respectively. We will briefly identify this two fypes of messages in this section,

but the reader will see the detailed discussion about these messages in the following pages.

When the manager/controller first connects to the system after the login process in the
«Access Control Transaction”, the connecting browser will send an “Init” type of message
to the system. This can be seen as the handshaking of the two parties, with this initial

| message the browser introduces itself to the system. The initialization message contains

only a label, the body of this message is empty. The sample message follows;

Message Label: Client={98CA1AA9-6FF 6-4C92-AFD3-
EEG94E05B4A9)&MsgType=INIT&IP=194.1.1.1 00&UserAgent—Molela/4 0
(compatible; MSIE 5.01; Windows NT 5. 0)&User=kursun

Message Body: Empty

The message label contains Key, Value pairs which are separated by the seperation
character “&”. The message interpretation algorithm parses this message in to the
corresponding key, value pairs. In this type of messages the message body contains
nothing since this messages are used for triggering the DCOM—Proxy/Appserver for the

newly connecting browser.
The keys and their description follows:

e Client. It identiﬁes\the name of the connecting browser, the GUID number.

o MsgType. It identifies the type of message, possible values are INIT, or Command.

e IP. It indicates the IP number of the connecting browser.

e UserAgent. It identifies the type of browser and the platform of the connecting

computer.

e User. It identifies the registered user, who is using the connecting browser.

Another examples to identify the “Command” type messages two of them are

presented. The first one is a sample Load command sent by controller/manager to the

system.

45

Message Label: Client={98CA1AA9-6FF6-4C92-4AFD3-

EEG694E05B4A49} &MsgType=Command&MsgContent=Load&SM=Torna-
mklap2000&ST=m&SID=1

Message Body: Action=1&Cap=50&CapType=21&BProb=4&BDT=2&
RepTD=12&LoadD=4 &WorkD=75&ST=m&SM=Torna-
mklap2000&SID=1&RndNo=318

The keys and their description for the message label follows:

e Client. It identifies the name of the connecting browser, it is the generated GUID
nu1ﬁber.

o MsgType. It identifies the type of message, possible values are INIT, or Command.

e MsgContent. It identifies the content of the message, possible values are Load, Start,
Pause, Stop, Exit and Disconnect.

e SM. It stands for selected machine, and it identifies the name of the selected
machine. All string values are possible, in this case it is equal to “Torna-mklap2000”

e ST. It stands for selected type of the object. All one character values are possible, in
this case it is equal to “m”

e SID. It stands for selected ID of the object. All number values are possible, in this

case it is equal to “1”.

The Load cc;mmand may contain different number of parameters for different kind of
objects. For the case where the object represents virtual manufacturing machine, we

defined seven parameters for the loading process of this kind of object.
The parameters are:

e Cap. It represents the Capacity of the machine.

e CapType. It represents the Capacity type of the machine; i.e. in our system it is
used to identify the unit of the capacity stated with Cap parameter with predefined
numbefs each representing a metric unit.

e BProp. It represents the breakdown probability model to be obeyed, with

predefined numbers each representing a probability model.

46

o BDT. It represents the breakdown type, i.e. whether the resulting breakdown is
repairable, replaceble, or etc., with predefined numbers each representing a
’breakdown type.

e RepTD. It represents the repair time distribution, with predefined numbers each
represenﬁng a distribution.

e LoadD. It represent the load duration in seconds.

o WorkD. It represents the work duration in seconds.

All the parameters that need to be send in the predefined order, in this examples case the
parameters, are described in the previous paragraphs. The message body for a Command

will contain the following keys:

e Action. It identifies the type of action, and must be consistent with the message
labels MsgContent key. Possible values are, 1-4, indicating Load, Start, Pause, Stop
commands.

e SM. It stands for selected machine, and it identifies the name of the selected

| machine. All string values are possible, in this case it is equal to “Torna-mklap2000”

e ST. It stands for selected type of the object. All one character values are possible, in
this ‘case it is equal to “m”

e SID. It stands for selected ID of the object. All number values are possible, in this
case it is equal to “1”. _

e RndNo. It is the dummy variable introduced by the web based application. Since the
parsing operation at the server side scripting level is costly, the variable introduced as

is, but neglected by the DCOM-Proxy/Appserver.

And as a last example to further clarify the messaging structure, a stop command

sample follows:

Message Label: Client={98CA14A49-6FF6-4C92-AFD3-
EEG694E05B449)&MsgType=Command&MsgContent=Stop&SM=Torna-

milap2000&ST=m&SID=1 |
Message Body: Action=4&ST=m&SM=Torna-mklap2000&SID=1&RndNo=72

47

4.3.4. Classes of DCOM/Proxy AppServer

DCOM/Proxy AppServer is the vital part of the system. It contains several classes
which enables program to act as a bridge between the outer world, i.e. manager/controller,
and the in-house machines or virtual machines. There are three types main classes,
Browser, VirtualController and MachBag respectively, and two types of collections,
DcomObjects and WebBrowsers respectively.

Browser B Attt MachBag bjCurrentStat
YOWseY. es obj e
S Iass
Clas BrowserGUID ¢ _ objGUICount
Cormandlog objID
ConnectionIP objInformBrowsers
ConnectionTime : objName
Controllers objRef’
DisconnectionTime it objServerName
UserName o objType
button_load
O—_——
button_stato———— ! Virtual Controller '—1
Class
button_pase Qo] GUIMsg
LogMsg
MachID
machName
machServer
button_stop :sach:'l'ype
button_exit Stats

Figure 4.23. DCOM/Proxy AppServer Classes

Each new connecting browser, which is controlled by the controller/manager, will be
represented by the Browser class shown in Figure 4.23, and all these classes will be strored
in the WebBrowsers collection. A Browser may control many virtual manufacturing
components. To control these components the browser needs a controller interface. The
controller intefface is represented by the VirtualController class shown in Figure 4.23. The
controller interface will facilitate the control process by communicating with the desired

virtual manufacturing component. Since many manager/controllers (browsers) may want to

48

monitor or control the same virtual manufacturing component (Real Life Machine object)
at the same time, there has to be a pooling mechanism to enable this situation. Therefore
the virtual manufacturing components properties and object reference will be represented
by the MachBag class shown in Figure 4.23. And to enable a pool with all running virtual
manufacturing components (objects), the MachBag classes will be stored in DcomObjects
collection. To sum up every browser may have many controllers, but a Virtual Controller
can control only one and only one RealLife Machine object with the help of MachBag
object. To further clarify this situation let’s examine our famous MultiNat example.

Both Manager A and Manager B want to control the turret lathe in Istanbul plant.
Manager A connects to the system interface of Istanbul plant, logins to the system, and
selects the turret lathe from the menu, to be able to control or monitor this machine. Now a
virtual manufacturing component, namely the Real Life Machine object is created to
represent the turret lathe. In the mean time the Manager B logins to the system and selects
the turret lathe also. But since another manager/controller Manager A requested this
current lathe before, there is a running object which represents this turret lathe. The
Manager B’s Browser class will now create a virtual controller class, which will hold
exactly the same reference of the object that is representing the current lathe, and will add
it to the Browser.Controllers collection. So with this infrastructure both Manager A and B

and many other will easily control or monitor every virtual manufacturing component.

49

5. SOFTWARE DOCUMENTATION

5.1. Real Life Machine Server

5.1.1. Methods
Real Life Machine Server object has the following methods:

e Miload. To be able to operate any kind of machine, there is an initialization process.
This function is named as loading since some real life machines also require loading
before beginning any operation. To sum up, this function includes initialization and
loading together.

e MStart. This function aims to start the operation of the machine.

e MStop. This function aims to stop the operation of the machine.

e MPause. This function aims fo pause the operation of the machine.

o CheckError. This function will represent the probability function. Here a probability
algorithm will be performed to determine whether an error occured or not in the
simulation of the machine.

e ProcessTimer. This subroutine is the heart of the simulation. There is a private class
variable called TimerType. TimerType is used as an indicator of loading process or
other machinery processes. When the machine has started or loaded, the
process(timer) is enabled, and process_timer subroutine will be invoked every
"CheckInterval" seconds. And so the behavior of a real life machine is simulated.

e Class_Initialize. This subroutine is the initialization module of the server object.

e Class_Terminate. This subroutine is the termination module of the server object.

5.1.2. Properties
Real Life Machine Server object has the following properties:

e PCurrentStatus. It indicates the difference between current time and starting time.

50

o PControlState. It represents the current state of the machine. It shows the
functions that can be executed in the current state. Since there may be many
controllers, which want to control this machine, it is essential to make the sanity
check in »this level. It is a 6 digit binary number.The digits 0 and 1 represent
whether the function can be executed or not. From left to right the digits
correspond, mLoad, mStart, mPause, mStop functions. And the last 2 digit is
reserved for Logout and Status functions for the web interface. It is a sanity check
parameter, and used for dynamically generating the web based controller interface
for this machine.

e PState. It represents the log information of all the commands sent to this machine
from various GUT's. Since it is used for the status information on the web interface,
HTML tags are allowed in this string.

e PMyName. It represents the thread and name of the current machine.

e PLoadDuration. It represents the total time required to load the machine in
seconds.

e PWorkDuration. It represents the total time required to finish the process in
seconds for the machine in normal conditions.

e PBreakDownType. It represents the type of Breakdown.

« PRepairTimeDist. It represents the probability distribution of RepairTime.

o PBreakDownProb. It represents the probability distribution of breakdown.

e PCapacity. It represents the capacity of the machine.

e PCapacityType. It represents the type of capacity of the machine.

5.1.3. Events
Real Life Machine Server object has the following events:

o ESendMessage. This event will be raised, when the server object needs to send a

message.
e ESendStatus. This event will be raised to send the status of the object.
e EBreakDown. This event will be raised when the machine breaks down.

e ESlowDown. This event will be raised when the machine slows down.

51

e EFinish. This event will be raised when the machine finishes its operation.

e EError. This event will be raised when the machine encounters an error.

5.1.4. Constants

The Checklnterval constant represents the process_timer interval in miliseconds.
5.2. DCOMProxy / AppServer

5.2.1. FrmDCOMProxy Form

Form frmDCOMProxy is the user interface of this project, and it is named as
DCOMProxy Monitor.

This form has the following methods:

e Form_Load. MSMQ event receiving system is initialized and enabled.
WebBrowsers and DcomObjects collections are initialized, and the ‘Available
Machines' sub section on the DCOMProxy Monitor is initialized.

e FillBrowserGUID. This function fills the "Available Machines' sub section on the
DCOMProxy Monitor with all connected browsers and the machines that are
controlled by that browser. '

e QRecEvents_Arrived. If a message arrives to the receiving queue (qRequestPath),
then qRecEvents_Arrived event is fired. This function first interprets the message by
calling InterpretTheMessage function. Then it logs the message to MSMQ Bridge
LOG on the DCOMProxy Monitor.

FrmDCOMProxy form has the following variables:

e QRecEvents. This variable is one of the most important object defined in this

project. It is declared as “Private WithEvents', and this declaration enables that every

received message raises an event.

52

e QRequestPath. It is the main path, where all the requests from browsers are sent.

The current application server will use this queue as the receiving queue.
5.2.2. DCOMProxy_Main Module

This module has the following methods:

e DCOMOK. This function checks whether the machine is capable of making DCOM
connections.

o InterpretTheMessage. If qRecEvents_Arrived event is fired, the received message
is passed to this function to be interpreted. The body and label of the received .
message is first parsed by calling ParseString function, and then the message is
processed according to the Message Type. If message is a 'Command’ then it is
passed to ProcessCommands function to be processed. But if it is a 'INIT" command
it is passed to the BrowserInit function.

o SendMessage. This function takes queue name, message body and message label as
arguments, and sends the indicated messge to the indicated queue.

e InformAll If virtual controllers machine timer is enabled, this timer generates a tick
event at every StatSendInterval. This function checks for all browser and their
respecrtive controllers, if a browsers controller of the currend DcomObject (machine)
is present, than a status messages should be send to that browser. In this manner
every browser that is connected to the specified DCOM Object (machine, ..) receives
the status message. 7

e Main. This subroutine is the main subroutine. The database connection is initialized

in this subroutine, and the user interface is loaded.

This module has the following variables:

¢ DcomObjects. It represents the collection of MachBag objects. It contains all
currently available and initialized DCOM objects. Each new DCOM object is

represented in a MachBag class as a collection item.

53

e WebBrowsers. It represents the collection of Browser objects. It contains all
currently available. and initialized Browser objects. Each new Browser object is

represented in a Browser class as a collection item with a unique BrowserGUID.

5.2.3. SimContModule Module

This module has the following methods:

e Browserlnit. This function initializes a new Browser object and register it to the
WebBrowsers collection. |

e ParseString. This function parses an input string into a collection of keys and values.
strDelimiter indicates the character which is used to seperate key, value pairs from
other key, value pairs. And strKeyValSeperator indicates the character which is used
to seperate key and its value.

e ProcessCommands. This function first checks whether the current Browser is
registered to the WebBrowsers collection, and whether it has the controller that is
responsible for controlling the specified object. If there is a controller responsible for
the specified object, it passes the coming command to the DCOM Object by calling
the PassCmdDCOM function. If there is no controller responsible for the specified
object registered to this Browser.Controllers collection, it first initializes a new
Virtual Controller, and register it to current Browser.Controllers collection. After this
initialization process, the DCOMProxy Monitor's *Available Machines® sub section is
updated, and the received command is passed to the DCOM Object by calling the
PassCmdDCOM function.

e PassCmdDCOM. With the help of this function the received messages are sent to
their corresponding Virtual Controllers according to the Message Content. Load,
Start, Stop, Pause, Exit and Disconnect request are sent to the appropriate DCOM
Objects (machines, jobs...) with the help of a virtual controller interface. And after
every processed request, the request is logged to DCOM Specific LOG on the

DCOMProxy Monitor.
e DisconnectBrowser. This function is used to disconnect the browser from the

application server.

54

StatSendInterval constant indicates the status sending interval time in miliseconds.

5.2.4. VirtualController Class

This class is used to represent controller interfice of a browser to a

DcomObject(machine, job ...). A browser may control many machines, and therefore may
have many virtual controllers. A virtual controller will connect to the specfied DCOM
Object if it is previously initialized, if not it will first initialize the specified DCOM Object

and then connect to it.

VirtualController class has the following methods:

CopyMemory. This function enables to pass the reference of an object to another
object. Although it is not possible to pass objects by reference in Visual Basic, this
API call enables it.

Init. This function is one of the core functions of the DCOMProxy/AppServer. It is
executed in every initialization of a virtual controller. If a new browser connects to
the system, and if it wants to control an object, a new virtual controller has to be
initialized to control the specified object. This function checks whether the specified
object (machine) is currently working. If it finds a working object (machine), then it
gets the running objects properties from DcomObjects collections MachBag object. It
creates a new instance of the object through the objects reference. With the help of
this mechanism, any object can be controlled through many controllers. If the
specified object is not running, then it initializes a new object, and registers it into the
DcomObjects collection as a MachBag object and uses it.

Button_load. It sends a load command to the controlled object. It emulates a desktop
applications load button. With the help of this function the load request of the GUI
(Web Browser, Controlling Client) is passed to the object with all the parameters.
Button_start. It sends a start command to the controlled object. It emulates a desktop
applications start button. With the help of this function the start request of the GUI
(Web Browser, Controlling Client) is passed to the object.

55

 Button_pause. It sends a pause command to the controlled object. It emulates a
desktop applications pause button. With the help of this function the pause request of
the GUI (Web Browser, Controlling Client) is passed to the object.

e Button_stop. It sends a stop command to the controlled object. It emulates a desktop
applications stop button. With the help of this function the stop request of the GUI
(Web Browser, Controlling Client) is passed to the object.

o Button_exit. It sends an exit command to the controlled object. It emulates a desktop
applications exit button. With the help of this function the exit request of the GUI
(Web Browser, Controlling Client) is passed to the object. |

e MachineTimer_Tick. This subroutine is very similar to the DCOM objects process
subroutine. If the machineTimer object is enabled, then at every specified
StatSendlnterval, this subroutine is called. It checks whether the objInformBrowsers
flag is set to true, and if it is set to true, it sends its status information to all connected
machines through the InformAll function.

. OServer_éBreakDown. If the object breaks down it sends a BreakDown event. In
such a case this function will be invoked.

e OServer_eFinish. If the object completes its job it sends a Finish event. In such a
case this function will be invoked.

e OServer_eSendStatus. If the object raises SendStatus event, this function will be
invoked. And the current status of the object is acquired.

e OServer_eSlowDown. If the object slows down it sends a SlowDown event. In such

a case this function will be invoked.
VirtualController class has the following properties:

e MsgQueue. It represents the name of the corresponding MSMQ Queue, which is
used for the communication of the DCOM object. Actually it is a GUID, and is equal

to the BrowserGUID.

e MachServer. It represents the server name on which the DCOM object resides.
e MachType. It represents the type of the object. Currently there are two types of

objects, which are jobs and machines.

e MachName. It represents the real life name of the object.

56

e MachID. It represents the ID of current object. It is used as an index for objects.
. Status. Status indicates the completion percentage: of object's current job.

e LogMsg. It holds the last status message that is generated by the controller.

5.2.5. MachBag Class

This class is used to represent the connected DcomObjects (Machines, Jobs ...). Each
newly connected object (machine, job) will be represented by this class in “DcomObjects’

collection.
MachBag class has the following properties:

e ObjInformBrowsers. It is a flag, which determines, whether the object informs the
controllers that are connected to this object, or not. If this flag is set to true, the
events and status of this object will be sent to every virtual controller that are
connected to this object.

e ObjCurrentState. It represents the current state of the machine. It shows the
functions that can be executed in the current state. Since there may be many
controllers, which want to control this machine, it is essential to make the sanity
check in this level. It is a 6 digit binary number. The digits 0 and 1 represent whether
the function can be executed or not. From left to right the digits correspond, mLoad,
mStart, mPause, mStop functions. And the last 2 digit is reserved for Logout and
Status functions for the web interface. It is a sanity check parameter, and used for
dynamically genefating the web based controller interface for this machine.

e ObjServerName. It represents the server name on which the DCOM object runs.

e ObjType. It represents the type of the object. Currently there are two types of
objects, which are jobs and machines.

e ObjName. It represents the real life name of the object.

e ObjID. It represents the ID of current object. It is used as an index for objects.

e ObjGUICount. It represents the number of DcomObjects that are currently

connected to this object.

57

e ObjRef. It is string variable which holds the reference to the object. With the aid of

this reference any virtual controller, which need to control this object will get the
reference of this object.

5.2.6. Browser Class

This class is used to represent the connecting clients (Browsers, other GUIs). Each
newly connected browser (GUI) will be represented by this class in “WebBrowsers’
collection, with a unique BrowserGUID.

Browser class has the following properties:

e UserName. It represents the name of the user, who is currently logged in to control
the system.

¢ BrowserAttributes. It is used for logging purposes. It represents the attributes of the
current browser that is logged in. It can be used to determine, the web browser
(Netscape, IE, ...) in use, the platform in use etc.

e Controllers. Controllers property represents the collection of VirtualController class.
A browser may control many machines, and therefore may have many virtual
controllers.

e ConnectionTime. It represents the connection time of the browser for logging
purposes. ‘ |

¢ ConnectionIP. It represents, as the name implies, the IP of the connected browser. If
the browser is connected through a firewall or proxy, the determined IP will be the

proxy servers IP.

e DisconnectionTime. It represents the disconnection time of the browser from the
system.

e CommandLog. It is used for logging purposes. All commands sent through this
browser will be stored in this variable.

e BrowserGUID. It is used to uniquely identify each browser. It is a Globally Unique
Identifier (GUID). It is used instead of IP, since IP numbers may not be unique in
case of a proxy connection. GUID” stands for Globally Unique IDentifier, a 128-bit
(16-byte) number generated by an algorithm designed to ensure it.s uniqueness. This

58

algorithm is part of the Open Software Foundation (OSF) Distributed Computing
Environment (DCE), a set of standards for distributed computing.

5.3. WebFrontEnd Project

53.3.1. Global.asa

Global.asa file is a special file residing in the WebFrontEnd project directory, where
one can define session and application specific functions. It runs in every request to the
index file of this directory, and also enables the session object. In this file application wide
database settings are initialized through Application(“VarName”) variables, and MSMQ

settings through session(“VarName”) variables.
Global.asa has the following subroutines:

e Session_OnStart. When a new session starts, this subroutine will be invoked
automatically. The Appserver’s receiving queue name, current user’s authentication
status variables are initialized. The "WebFrontEnd_GenLib.GUIDGen" ActiveX
DLL is called and a new GUID is generated and assigned as current browsers
receiving queue name.

e Session_OnEnd. When the current session ends, this subroutine will be invoked
automatically. The browsers receiving queue will be deleted from the MSMQ Server.

e Application_OnStart. When the application starts, this subroutine will be invoked
automatically. The database related connection parameters are initialized in this

subroutine.

5.3.2. Index.asp

Index.asp is the startup file of the directory containing the WebFrontEnd project.
This file is a transaction enabled asp file. It first checks whether the current user is
authenticated or not, and if it is not authenticated, this asp file redirects itself to login.asp.
Otherwise it creates first its receiving queue, and then acts as a simple html file to arrange

the frames that will be displayed to the user as shown in the Figure 4.4.

59

The indicated frames will be displayed by the following html, asp files:

e o P

e

LeftiMenu frame with LeftMenu.asp
Controller frame with welcome.htm, controller.asp
StatusWin frame with Statuswin.asp, ShowStatus.asp

ResultSet frame with Resultset.asp

Index.asp has the following subroutines:

InitializeMSMQ. This subroutine first checks whether a queue with its receiving
queue name exists, and if not, it creates its receiving queue on the MSMQ Server
defined in Session(“mname™) variable. After the creation of the queue this function
sends “INIT” message to AppServer’s receiving queue, to announce itself as a new
browser.

Session_OnEnd. When the current session ends, this subroutine will be invoked

automatically. The browsers receiving queue will be deleted from the MSMQ Server.

5.3.3. LeftMenu.asp

LefiMenu.asp is displayed on the leftmost frame and it presents the available object

tree. To make the application a cross-browser (ie. Compatible with IE and Netscape)

application Dan Steinman’s [16] “DynAPI”, an open source javascript programming

library is used. This asp file retrieves the relevant information from the database, and

displays it in a tree view menu format.

LefiMenu.asp has the following functions:

Init. This function is used to initialize the tree view menu.

RedirectAll. This function will be invoked by on_click event when a link is clicked.
Controller frame will be redirected to ContUrl parameter, and StatusWin frame will
be redirécted to StatUrl parameter. A random variable is attached to each Url

parameter to force the browser not to-cache the contents of the corresponding files.

60

5.3.4. Controller.asp

Controlle:.asp is the heart of the simulation/control process. It first gets all the

parameters passed through the Request.QueryString object, and session(‘VarName’)
variables. It will display the corresponding control buttons according to the state of the
object that is currently simulated or controlled. The DCOM objects pControlState property
determines which control buttons will be displayed. After clicking any of the control

buttons appropriate client side javascript function will be invoked. These functions will do
the rest of the job.

Controller.asp has the following functions:

Load. This function gets the parameters that need to be passed to the DCOM object.
All these variables will be passed as a querystring to sendcmd.asp file. Sendcmd.asp
will be displayed in ResulSet frame. Again to avoid caching of the browser a random
variable is attached to the QueryString as a new parameter. '
SendCommand. This function gets an input variable called “No”. No variable is an
integer variable, and the numbers two to six represent the Start, Pause, Stop, Logout
and Disconnect buttons respectively. Stért, Pause, Stop buttons cause the appropriate
QueryString to be passed to ResultSet frame with sendcmd.asp file. Logout button
will send the appropriate QueryString to the Controller frame with logout.asp file.
And Disconnect button will send the appropriate QueryString to a new page by
deleting all the frames with disconnect.asp file. Again to avoid caching of the
browser a random variable is attached to the QueryString as a new parameter.
ShowStatus. Status button will send the appropriate QueryString to the StatusWin
frame with Showstatus.asp file.

Logout. Logout button will redirect the browser to the logout.asp to terminate the

session, and connection.

5.3.5. Sendcmd.asp

This file is a transaction enabled asp file. It first gets all the parameters passed

through the Request.QueryString object, and session(‘VarName’) variables. It creates

61

appropriate MSMQ objects for sending a transactional message. It sets the label of the
message, according to the message type, and sets all the parameters passed to the
message.body. So the requested commands will be sent to the MSMQ servers, to be
processed by the DCOM/Proxy AppServer. In case of a failure of sending the message, the
OnTransactionAbort function will be called to indicate the failure status in the resultset

frame.
5.3.6. ShowStatus.asp

This file requests itself in every five seconds, if it is active, ie. displayed on the
status frame. This asp file first connects to its receiving queue, and retrieves the messages
that is sent to the current browsers queue about the status of the connected machines. It
loops through the messages of the queue to find the last message containing information
about the current selected machine. By including progressbar.inc.asp, it has included the
graphing function. It passes the currentstatus value to the DrawPrgBar() function, to
graphically represent the status of the selected nachine, then it lists the log messages of the

selected machine below this image.

5.3.7. Login.asp

This file is used for the control of access of the users. A user must login to the system
before it can use the controller. It gets the user name and password variables from the user,
validates it against to the database, and according to the result, either lets the user go in, or

refreshes itself to block fhe user.

5.3.8. Logout.asp

This file is a transaction enabled asp file. It sends “Exit” command to the MSMQ
servers to be processed by the DCOM/Proxy AppServer. After successfully sending the

EXIT command, the statuswin frame is initialized, i.e. refreshed to its initial content.

62

5.3.9. Disconnect.asp

This file is a transaction enabled asp file. It sends “Disconnect” command to the
MSMQ servers to be processed by the DCOM/Proxy AppServer. Then it deletes its

receiving queue from the MSMQ servers, and displays the disconnected message on the

whole browser window.
5.3.10. Progressbar.inc.asp

This file includes the DrawPrgBar() function. It can be called from any page. This
function represents the current status of any object graphically.

5.4. WebFrontEnd_GenLib
5.4.1. GUIDGen Class

This class and project is used to create an ActiveX DLL, which can be called from
the WebFrontEnd Project, to create unique GUIDs in ASP pages.

GetGUIDString function creates a GUID string by making an API call, and returns
this GUIA string.

63

6. DISCUSSIONS AND CONCLUSIONS

In this study we developéd an object oriented web-based distributed simulation and

control system using a technology that is built upon a set of common standards.

The resulting infrastructure introduces virtual manufacturing component objects,
which is tried to be extended from virtual manufacturing devices (VMD) [13] concept, and
which haver the primitive methods, those can be found in their real-life manufacturing
cqmponent counterparts. With the aid of these objects any manufacturing component in a
factory or a manufacturing environment as whole can be represented and modeled. These
objects may act as counterpart of a real-lift manufacturing components in a simulation
environment, or may act as a real-time execution interface of the real-life machines in a
control environment. The virtual components are developed as DCOM objects, and these
" objects can be reused even in the binary level, besides source code level. Since the
specification is at the binary level, it allows integration of binary components possibly

written in different programming languages such as C++, Java and Visual Basic.

The resulting architecture has the ability to minimize the execution load and time of a
complex simulation by distributing the simulation to many physical computers, and can
also simulate third-party simulator ijects designed according to the system standards. The
developed architecture also enables the control of any manufacturing machine of a factory
from any source, which can either be the web based clients, or a third-party enterprise-wide

software _running anywhere.

Although the distributed component object model (DCOM) enables the
communication between objects via Internet, we did rather prefer to use a messaging layer
with a queuing mechanism and a DCOM/Proxy Application Server. The DCOM/Proxy
Application Server enables scamless communication between in-house virtual
manufacturing component objects and web based clients, or third party enterprise-wide
anywhere running software. The developed architecture enables a secure, asynchronous
communication with the virtual manufacturing components without a need of a thin client,

ie. even a simple javascript enabled web-browser can communicate with the components,

64

through the use of Microsoft Message Queue servers. The implemented queue mechanism
aims to .recover any dqwntime of the DCOMProxy Application Server, and when the
application server comes back alive, all queued commands can be processed immediately
according to the order they arrived. In other words the developed system enables 24x7
working through its scalable and reliable architecture.

Any communication need between any of the players in the manufacturing
environment, i.e, the manufacturing components, or the enterprise-wide legacy system, is
satisfied with the proposed architectures messaging system. Any request for object to
object communication is routed to the messaging system, and the messaging system
enables the communication. In this way the objects or the controller of the objects does not
care which low level interface the object provides, and if it is alive, i.e. running, so that a

message can be sent.

It may seem contradictory to our approach not to use a standard like HLA in our
distributed simulation system, but we think it is not. First of all, with our developed
architecture we provide a very simple object programming environment compared HLA’s
complex structure. Anyone who has ever dealt with Microsoft Word’s or Excel’s macro
language (namely Visual Basic scripting language), has knowledge about Visual Basic to
some extend, and can easily implement its custom virtual manufacturing component model
to our Real Life Machine Server object template. Of course in addition to Visual Basic
other languages like C++, Java, and Pascal can also be used to implement these object

templates.

On the other hand, since the HLA is developed mainly for military simulations by the
. US Department of Defense, the applications in the civil fields are rare. Access to HLA
tools requires a complex registration process, which includes the verification of the
registrars address via postal mail, although it was allowed to download the software in the
beginning of our study. The usage statistics of HLA is rather interesting. As of October
1999 the breakdown of the number of RTI (Run Time Infrastructure) and Tools downloads
presents, that the most downloaded country was Germany with 99 downloads, and the least
downloading country was Israel with 7 downloads, and Turkey was in this foreign
countries list with 12 downloads.[11] As we came to September 2000, according to the the

65

HLA update by Phil Zlmmerman, total number of RTI downloads reached to 3863, of
which only 34 per cent i is international downloads.

Besides thg simulation of a system we also wanted to reuse the developed system for
controlling purposes, and this combined with the above concerns leaded us to develop a
custom made system for our purposes. But we inherited several key concepts from HLA

like reusability, interoperability, and component based approach for our developed system.

When we come to the application areas of our developed system, one will see that

there are many options in implementing this system.

The developed architecture may be used as an execution layer for the legacy systems
in a plant with its message driven architecture. This will enable adding execution capability
to any third-party enterprise wide legacy system (ERP, MRP, APS), which means for
" example, operation plans developed by the legacy system can be released to the physical
entity by the help of our developed architecture. The only requirement is that the third-
party software has to be able to communicate with our MSMQ servers to send commands

to the execution interfaces of real life manufacturing components.

With the help of our system’s web based parametric message passing interface,
which is utilized by the WebFrontEnd application, the above mentioned execution layer
capability can even be extended to internet. That means any plant located worldwide can
be controlled from the headquarter by using our developed system integrated to their

enterprise-wide software and to the plant which is desired to be controlied.

Above applications show the usage of our system in the control area. But our
developed system is also capable to simulate real world manufacturing components for
testing purposes. This also includes testing of the performance of a scheduling software.
Consider a situation where a plant is running, and the managers are proposed to replace the
existing scheduling system. Before replacing the system, the managers has to be convinced

about the performance of the proposed system, so they can run our simulation environment

to test the proposed scheduling system.

66

Also our developed system can be used in the education area, especially for
experimentation purposes. With the help of our devéloped system, students can easily
create virtual manufacturing environments for their specific needs. And the need for a

‘costly, hard and time-consuming setup of physical real manufacturing environments can be
eliminated by the developed system.

Up to this point we- stated that the system is capable of representing any
manufacturing environment, and that it can be used for both simulation and control
purposes. Now we will focus how one may define other possible objects as AGV
(Automated Guided Vehicle), a robot, a CNC machine, a job, or a plant, ie. the

manufacturing environment itself.

We first need to define an object template for the real-life manufacturing component,
which we want to describe in terms of our virtual manufacturing component objects. To
- define any of the object model templates, one has first to define the generic methods and
properties to be implemented on the objects. The methods and properties defined in this
manner do not have to be the same methods or properties like in the Real Life Machine
Server objects. After defining these methods and properties, then the message structure has

to be defined and adapted to the system’s message structure.

One can define an object template for AGV’s in the system. One has to define first
the generic methods and properties of AGV’s. For example routing information, collection
and delivery point information may be the general input to the object template representing
the AGV. In our case the Real Life Machine Server objects had primitive methods like
load, start, pause and stop, and several parameters for the loading process. In the case of an
AGV template the loading process may involve all the initialization parameters like the
routing information, and delivery and collection point location information. The start
method may start the AGV to go to the desired locations defined in the initialization
process. The pause and stop methods may pause and stop the AGV in motion respectively.
Two other new methods may be implemented for the “Get Part” and “Release Part”
processes. The process function in this case will represent the traveling of AGV. The
breakdown error may represent a collision of the AGV with another AGV or a real

breakdown. A slowdown event may represent the slowdown of the AGV. The status

67

information may represent the location of the AGYV, and the part carrying status of the
AGV.

One may even represent the overall factory operation as a virtual manufacturing
component in a factory object template, and so one can define many factories located
worldwide as system objects. These objects may be used as the monitoring objects, which
will get information from the factories and represent them in real time, or they may for
example be used in a supply chain simulation to represent the behavior of the factory in a
supply chain. In this case, the objects load function may represent a process, which will set
the preconditions, and start function may represent the beginning of the processes in the
factory. And the status of such a system may represent the total number of end products
that are needed to be delivered to the other party of the supply chain as semi-finished

products.

As it can be seen with the aid of the proposed architecture, there are numerous design
and setup possibilities, which may be used in a simulation or control environment, or in
both of them. With the aid of the proposed architecture virtual environments composed of

real machines, and virtual components can be designed and let to interact each other.

We believe that the implemented technology and the designed architecture is a very

extensible structure, and the mechanism can be implemented to many real life scenarios.

The starting point of this study was the simulation need for the testing of an object
oriented distributed scheduling system from a previous M.S. thesis by Oguz [9].
Throughout the study, the implementation of technologies brought us new perspectives,
and the control facility is arised from the technological capability of the system. From that
point on, we tried to generalize the coding structure especially for the handling of the
virtual manufacturing components. More generalization in the template structure will ease
the use of virtual manufacturing components, stemming from an object template, which

have different number of initialization parameters, or different number of methods.

68

Set of virtual manufacturing object templates may be created to further promote the

reuse of these objects. And an infrastructure to classify and store these templates may be
created.

Currently since we insisted on the use of dummy clients, the status information is
delivered to requestors with the help of both the messaging mechanism, and the database
system, although the command execution do not require database system. This may be

completed with only messaging mechanism.

69

APPENDIX A: COMPLETE MESSAGE REFERENCE

The messages, that will be sent by the WebFrdndEnd application to the
DCOM/Proxy AppServer application, are listed below with appropriate samples.

A.l. Init Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-

EE694E05B4A9} &MsgType=INIT&IP=194.1.1.1 00&UserAgent=Mozilla/4.0
(compatible; MSIE 5.01; Windows NT 5.0)&User=kursun

Message Body: Empty

A.2. Load Command Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-
EE694E05B4A9} &Msg Type=Command&MsgContent=Load&SM=Torna-
mklap2000&ST=m&SID=1

Message Body: Action=1&Cap=50&CapType=21&BProb=4&
BDT=2&RepTD=12&LoadD=4& WorkD=75&ST=m&SM=Torna-
mklap2000&SID=1&RndNo=318

A.3. Start Command Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-
EE694E05B4A9} &MsgType=Command&MsgContent=Start&SM=Torna-

mklap2000&ST=m&SID=1
Message Body: Action=2&ST=m&SM=Torna-mklap2000&SID=1&RndNo=207

A.4. Pause Command Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-EE694E05B4A9}
&MsgType=Command&MsgContent=Pause&SM=Torna-mklap2000&ST=m&SID=1

70

Message Body: Action=3&ST=m&SM=Toma-mklap2000&SID=1&RndNo=138

A.S. Stop Command Message Sample

Message Label: Client={98CA1AA9-6FF 6-4C92-AFD3-

EE694E05B4A9}&Mngype=Command&MsgContent=Stop&SM=T0ma-
mkiap2000&ST=m&SID=1 .

Message Body: Action=4&ST=m&SM=Toma—mklap2000&SID=1&RndNo=72

A.6. Logout Command Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-
EE694E05B4A9}&Mngype=Command&MsgContent=Exit&SM=Torna—
mklap2000&S T=mé&SID=1

Message Body: Empty

A.7. Disconnect Command Message Sample

Message Label: Client={98CA1AA9-6FF6-4C92-AFD3-
EE694E05B4A9} &MsgType=Command&MsgContent=Disconnect&SM=Torna-
mklap2000&ST=m&SID=1 |
Message Body: Empty
A.8. Status Message Sample

Message Label: 38.85% of the operation seems to be completed. Current State=010011
Operation details for /1*m/ Torna on mklap2000 are as the following:

Message Body: New client {A9799601-3387-43E4-BC10-583D674E9C49} initialized at
02/01/2001 8:56:30 PM to use Torna on mklap2000

Machine is loaded at 02/01/2001 8:56:31 PM by {A9799601-3387-43E4-BC10-

583D674E9C49}
Machine is started at 02/01/2001 8:56:37 PM by {A9799601-3387-43E4-BC10-

583D674E9C49} ,
Machine is paused at 02/01/2001 8:56:49 PM by {A9799601-3387-43E4-BC10-

583D674E9C49}

Machine is restarted at 02/01/2001 8:56:52 PM by {A9799601-3387-43E4-BC10.
583D674E9C49}

Slowdown of a factor of 1.06 occured at 02/01/2001 8:56:54 PM

71

72

APPENDIX B: SETTING UP THE SYSTEM

The system is composed of several applications, i.e. a web based application called

“WebFrontEnd” , a desktop application called DCOM/Proxy AppServer, and several
DCOM objects. A sample setup is shown on Figure B.1.

- — al —_—
Desktop Laptop computer A

"
I - 0S: MS/Uni OS: MS/Unix
OS: FreeBSD\Uni
: by conedh onestin
. through TCPAF Hitp connects WAP Enabled
Mac SE/Clas Hitp conmection hrough TCpP ellular Phone
0S: MacOs through TCP/IP :‘:& ;:‘?2?:3
Http connection : L

N

Web Server(s)

=4

1
=
L,
: ﬂﬁﬂ MSMQ
sers) I
\ Application Database
Server(s) ""og, Server(s)

\ q,%'
o

Figure B.1. A sample setup overview of the system

And the interaction between the remote client and the DCOM objects is presented on

Figure B.2.

73

hltp connacyon

CNC Machines with DCOM
interface
for Control Purposes

DCOM virtual machines
for Simulation Purposes

Figure B.2. Interaction between the remote client and DCOM objects

To provide a secure system, a firewall may setup between the internal network, and
internet connection. A web server, or farm of web servers, preferably MS Internet
Information Server(s) has to set-up to serve the “WebFrontEnd” application on the
Internet. The web server has to be configured, either for a new site setup, or a virtual
directory setup, to serve the web based application. For the messaging system MSMQ
Server(s) has to set-up. To run the provided sofiware a public queue called “Controller”
has to be created as a transactional queue. After creating this queue proper security settings
has to be performed, in order to allow internet visitors be able send messages to this queue.
The database file called “cc.mdb” has to be copied in an arbitrary directory, on the
machine, that will act as a database server. An ODBC DSN (Data Source Name) record
has to be created with the name “ControllerME”, and Microsoft Access Driver has to be
chosen as the engine, and the physical location of the file has to defined. Now the last part
is setting the DCOM Objects. To run the sample system the “MachineServer.exe” file that
can be found on the diskettes provided, has to be registered on every computer, that will

74

serve as virtual machines. In order to register these objects, the machine on which these
objects will run has to be DCOM enabled. The setup program provided will ease the setup
of the objects. To register them manually, simply enter the following command on the

command prompt of the windows machine, that will run these objects:
e “regsvr32 c:\location\to\MachineServer.exe ”

More than one object may be registered on one physical computer. After registering
the components, the components has to defined in the Access database. The machines table
represent the machine names and their running computers name. The current setups values
are already on this table. One may either define new values to this table, or edit the
predefined values, and set the MachineServerName attribute to the name of the machine on
which the DCOM object will run. It is now time to setup up the DCOM/Proxy AppServer
program. The setup program for this application server is also provided with the CD.
Although the previously defined configuration may reside on several computers, it is also
possible to have all in one setup, so that every application will run on the same computer.
Now point your browser to the newly defined virtual directory of the web server, and that’s
all.

75

APPENDIX C: DATABASE STRUCTURE

In the proposed system every ODBC database can be used. In our case we used MS

Access 2000 as the database server. The structure of the database is shown in Figure A.1.

i Users
i - OnlineObjs !
i} <pk> VARCHAR(50 :
PWD m oothul Onfine ObiName <pk> VARCHAR(255) notnull |
Rights SMALLINT null Online_ObjState VARCHAR(10) null
ii] PrimaryKey & PrimaryKey
‘2 uID
i Jobs Machines !
JoblD <pk> INTEGER not null MachinelD <pk> INTEGER notnull
JobName VARCHAR(50) null MachineName VARCHAR(50) nuil
JobServerName VARCHAR(255) null MachineServerName VARCHAR(255) null
RightLimit SMALLINT null RightLimit SMALLINT null
P PrimaryKey 23 PrimaryKey
£ JoblD £5 MachinelD
I 1
i MactineID = MachinelD
"‘Jole=Jole_ l__/
‘ ‘ l
| JParameters MParameters
.{Jole <fk> INTEGER null MachinelD <fk> INTEGER null
| Length INTEGER nult Capacity INTEGER nuli
i JobName VARCHAR(50) null CapacityType INTEGER null
{2 JobsJParameters BreakDownProb INTEGER null
= PrimaryKey BreakDownType INTEGER null
‘= p RepairTimeDist INTEGER null
= LoadDuration INTEGER null
WorkDuration INTEGER null
5 MachinesMParameters
|53 PrimaryKey
'Z5 MachinelD
Figure C.1. The database model
C.1. SQL Code to Generate the Database
create table OnlineObjs
Online ObjName VARCHAR(255) not null,

Online_ObjState VARCHAR(10)
primary key (Online_ObjName)
);

create unique index PrimaryKey on OnlineObjs (Online_ObjName asc);

create table Users

(
UiD VARCHAR(50) not null,
PWD VARCHAR(50) ,
Rights SMALLINT ,
primary key (UID)

);

create unique index PrimaryKey on Users (UID asc);

create unique index UID on Users (UID asc);

create table Jobs

(
JobID INTEGER not null,
JobName VARCHAR(50) ,
JobServerName = VARCHAR(255) ,
RightLimit SMALLINT ,
primary key (JobID)

);

create unique index PrimaryKey on Jobs (JobID asc);

create unique index JobID on Jobs (JobID asc);

create table Machines

(
MachinelD INTEGER not null,

MachineName VARCHAR(50) s
MachineServerName VARCHAR(255) ,
RightLimit SMALLINT ,
primary key (MachineID)

76

77

create unique index PrimaryKey on Machines (MachineID asc);
create unique index MachineID on Machines (MachineID asc);
create table JParameters

(
JobID INTEGER
Length INTEGER
JobName VARCHAR(50)
foreign key (JobID)
references Jobs (JobID)

);

create unique index JobsJParameters on JParameters (JobID asc);

LN

create unique index PrimaryKey on JParameters (JobID asc);

create index ID on JParameters (JobID asc);

create table MParameters

(
MachinelD INTEGER ,
Capacity INTEGER s
CapacityType INTEGER ,
BreakDownProb INTEGER .
BreakDownType INTEGER ,
RepairTimeDist INTEGER ,
LoadDuration INTEGER R
WorkDuration INTEGER ,

foreign key (MachineID)
references Machines (MachinelD)
);
create unique index MachinesMParameters on MParameters (MachinelD asc);
create unique index PrimaryKey on MParameters (MachinelD asc);
create index MachineID on MParameters (MachinelD asc);

78
APPENDIX D: LOW LEVEL OBJECT HANDLING WITH VB6

The DCOM/Proxy AppServer program is written with Visual Basic 6. Since it is
rapid application tool (RAD) everything went smoothly, but at some point we realized that
we cannot pass the objects references, and so can not control an instance of an object with
more than one other controlling object. We made an extensive research o this area, and

found the real problem, running object table (ROT) registration problem.

When an object gets created based on a class from an ActiveX Exe it gets created in
its own memory area (Multiple objects based on the same class cannot share their data). In
C++ that object registers itself with the ROT (Running Object Table) so that anybody who
needs to, can access that instance of the object. For instance Excel. When Excel is running
you can refer to the running instance from VBA/VB, and access any data that's present in
the spread sheet. However VB based objects lack that functionality. Activex EXE created
in VB will NOT get registered in the ROT. That blocks the multiuse of the same thread of

an object.

Thanks to Matthew Curland’s article on Visual Basic Programmer’s Journal on
August 1997 called “Give Your Classes GetObject Support™ [18]. With the aid of this

articles sample code, we were able to handle all kind of object reference passing.

One more thing to note is that a function, ObjPtr(), used in the programming of
DCOM/Proxy AppServer application for the handling of DCOM objects is an
undocumented Visual Basic function. Therefore we will give a brief description about this
function. But unfortunately Microsoft does not support this function and a series of low-
level functions, which are VarPtr, VarPtrArray, VarPtrStringArray, StrPtr, ObjPtr.
Although Microsoft states that it does not guarantee that they will be available in future

releases of Visual Basic, it is available since Visual Basic 1.0.

79

D.1. ObjPtr Function

ObjPtr returns the pointer to the interface referenced by an object variable. ObjPtr
takes an object variable name as a parameter and obtains the address of the interface
referenced by this object variable. One scenario of using this function is when you need to
do a collection of objects. By indexing the object using its address as the key, you can get
faster access to the object than walking the collection and using the Is operator. In many

cases, the address of an object is the only reliable thing to use as a key. [17]

80
APPENDIX E DISTRIBUTED OBJECT TECHNOLOGY

The explosive growth of the Web, the increasing popularity of PCs and the advances
in high-speed network access have brought distributed computing into the main stream. To
simplify network programming and to realize component-based software architecture, two
distributed object models have emerged as standards, namely, DCOM (Distributed

Component Object Model) and CORBA (Common Object Request Broker Architecture)
[19].

DCOM is the distributed extension to COM (Component Object Model) that builds
an object remote procedure call (ORPC) layer on top of DCE RPC to support remote
objects. A COM server can create object instances of multiple object classes. A COM
object can support multiple interfaces, each representing a different view or behavior of the
object. An interface consists of a set of functionally related methods. A COM client
interacts with a COM object by acquiring a pointer to one of the object's interfaces and
invoking methods through that pointer, as if the object resides in the client's address space.
COM specifies that any interface must follow a standard memory layout, which is the same
as the C++ virtual function table. Since the specification is at the binary level, it allows
integration of binary components possibly written in different programrmng languages
such as C++, Java and Visual Basic [19].

CORBA is a distributed object framework proposed by a consortium of 700+
companies called the Object Management Group (OMG). The core of the CORBA
architecture is the Object Request Broker (ORB) that acts as the object bus over which
objects transparently interact with other objects located locally or remotely. A CORBA
object is represented to the outside world by an interface with a set of methods. A
particular instance of an object is identified by an object reference. The client of a CORBA .
object acquires its object reference and uses it as a handle to make method calls, as if the
object is located in the client's address space. The ORB is responsible for all the
mechanisms required to find the object's implementation, prepare it to receive the request,

communicate the request to it, and carry the reply (if any) back to the client. The object

81

implementation interacts with the ORB through either an Object Adapter (OA4) or through
the ORB interface [19].

Currently, ‘the IDL (Interface Definition Language) used by CORBA is quite
different from the one used with DCOM, which causes severe interoperability problems.
DCOM is based on a proprietary format and is more limiting than CORBA, e.g. DCOM
has no naming or trading services, and its objects are not persistent [20]. On the other
hand, if a system mainly uses Win32 platforms, it may be simpler and more practical to
implement DCOM than CORBA. DCOM also has the added advantage of being a standard
part of the Win32 operating systems. The fact is there are no clear winners in the standards
for distributed objects. However, bridges are currently being established between these two
standards. (CORBA 3.0 will support interoperability between the two standards and
Microsoft, working with Iona Technologies and Visual Edge Software, is in the process of
doing the same.) The bottom line is that both CORBA and DCOM are here to stay and, if
necessary, these two sets of standards for distributed obbjects and environments can co-exist

within the extended enterprise [20].

82

APPENDIX F: FORMAT OF CD CONTAINING COMPUTER
| SOFTWARE

The CD contains all the source files and setup programs. There are two main
directories on the CD, which are “sources”, and “setups”. The “sources” directory contains
five other directories, called ActiveXLib, DCOMProxy-AppServer, reallife_machines,
WebFrontEnd, and db, with respective applications source files in them. The “setups”
directory contains the setup programs, and contains two directories, called DcomProxy-

AppServer, and reallife_machines, with respective applications setup programs in them.

83

REFERENCES

Hibino, H., Y. Fukuda, S, Fujii, F. Kojima, K. Mitsuyuki, and Y. Yura, “The
development of an object-oriented simulation system based on the thought process of

the manufacturing system design”, International Journal of Production Economics,
Vol. 60-61, pp. 343-351, 1999

Klein, U., “Simulation-based distributed systems: serving muitiple purposes through
the composition of components”, Safety Science, Vol. 35, pp. 29-39, 2000

Fujiii, S., T. Kaihara, and H. Morita, “ A distributed virtual factory in agile
manufacturing environment”, International Journal of Production Research, Vol. 38,
pp. 4113-4128, 2000

Joshi, S. B., E. G. Mettala and J S. Smith, “Formal models for control of flexible
manufacturing cells: Physical and system model”, IEEE Transactions on Robotics
and Automation, Vol. 11, pp. 558-570, 1995.

Kim, J., J. Park, and J. Park, “A generic event control framework for modular flexible
manufacturing system”, Computers & Industrial Engineering, Vol.38, pp. 107-123,
2000 |

Naylor, A. W. aﬁd R.A. Volz, “Design of integrated manufacturing system control
software”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 17, pp.881-
897, 1987

Smith, J. S., W.C. Hoberecht and S. B. Joshi, “A shop floor control architecture for
computer integrated manufacturing”, IIE Transactions, Vol. 28(10), pp. 783-794,

1996

10.

11.

12.

13.

14,

15.

16.

17.

84

Smith, J. S. and S. B. Joshi, Message-based part state graphs (MPSG): a formal

model for shop Sloor control, Technical report, Department of Industrial Engineering,
Texas A and M University., 1994

OBuz, S., Object Oriented Design of a Distributed Scheduling System, M.S. Thesis,
Bogazigi University, 1998

Gan, B. P. and S. J. Turner, “An asynchronous protocol for virtual factory simulation
on shared memory multiprocessor systems”, Journal of the Operational Research
Society, Vol. 51, pp. 413-422, 2000

DMSO, The Defense Modeling and Simulation Office’s (DMSO) Website, 2000,
http://www.dmso.mil

Gan, BP.,LLS. Jain, S.J., Turner, W. Cai, and W-J. Hsu, “Distributed supply chain
simulation across the Enterprise boundaries”, Journal of the Operational Research

Society, Vol. 52, pp. 484-493, 2000
Kovacs, G.L., S. Kopacsi, J. Nacsa, G. Haidegger, and P. Groumpos, “Application of
software reuse and object-oriented methodologies for the modeling and control of

manufacturing systems”, Computers in Industry, Vol. 39, pp. 177-189, 1999

Gramm, U., and M.Brill, “MMS:MAP application services for the manufacturing
industry”, Computer Networks and ISDN Systems, Vol. 21, pp. 357-380, 1991

UML, OMG Unified Modeling Language Specification V1.3, 1999

Steinman, D., Dyndpi Project — an open source javascript library, 2000, http://

www.dansteinman.com/dynduo

MSDN, Microsoft Developer Network Library, 1998

18.

19.

20.

85

Curland, M., “Give Your Classes GetObject Support”, Visual Basic Programmer’s
Jqumal, Vol:8, pp. 109-112, 1997

Chung, PE. Y. Huang, S. Yajnik, D. Liéng, J. C. Shih, C. Y. Wang and Y. M.
Wang, DCOM and Corba Side by Side, Step by Step, and Layer by Layer, 1998,
http://www.cs.wustl.edu/~schmidt/submit/Paper.html

Reyazat. M., “The Enterprise-Web portal for life-cycle support”, Computer-Aided
Design, Vol.32, pp. 85-96, 2000

86

REFERENCES NOT CITED

Ahn, G-J, “Role-based access control in DCOM?”, Journal of System Architecture, Vol. 46,
pp. 1175-1184, 2000

Alfieri, A. and P. Brandimarte, “Object-oriented modeling and simulation of integrated

production/distribution systems™, Computer Integrated Manufacturing Systems, Vol.
10, pp. 261-266, 1997

Goldfinger, A., D. Silberberg, J. Gersh, J. Hunt, F. Weiskopf, T. Spisz, Z.G. Mou, G.
Rogers and R. Semmel, “A knowledge-based approach to spacecraft distributed
modeling and simulation”, Advances in Engineering Software, Vol.31, pp. 669-677,
2000

Miller, J. A., A. F. Seila and X. Xiang, “The JSIM web-based simulation environment”,
Future Generation Computer Systems, Vol. 17, pp. 119-133, 2000

Page, H. E. and J. M. Opper, “Investigating the application of web-based simulation
principles within the architecture for a next-generation computer generated forces

model”, Future Generation Computer Systems, Vol. 17, pp. 159-169, 2000

Rembold, U., W. Reithofer and B. Janusz, “The role of models in future enterprises”,
Annual Reviews in Control, Vol. 22, pp. 73-83, 1998

Sheremetov, L.B. and A.V. Smimov, “Component integration framework for
manufacturing systems re-engineering: agent and object approach”, Robotics and

Autonomous Systems, Vol. 27, pp. 77-89, 1999

Wong, AK.Y., and Dillon, T.S., “A fault tolerant model to attin reliability and high

performance for distributed computing on the Internet”, Computer Communications,

Vol. 23, pp. 1747-1762, 2000

:,-) & .'.. 6

jo nmsumcmcuw;’ S

.

	Tez35001
	Tez35002
	Tez35003
	Tez35004
	Tez35005
	Tez35006
	Tez35007
	Tez35008
	Tez35009
	Tez35010
	Tez35011
	Tez36001
	Tez36002
	Tez36003
	Tez36004
	Tez36005
	Tez36006
	Tez36007
	Tez36008
	Tez36009
	Tez36010
	Tez36011
	Tez36012
	Tez36013
	Tez36014
	Tez36015
	Tez36016
	Tez36017
	Tez36018
	Tez36019
	Tez36020
	Tez36021
	Tez36022
	Tez36023
	Tez36024
	Tez36025
	Tez36026
	Tez36027
	Tez36028
	Tez36029
	Tez36030
	Tez36031
	Tez36032
	Tez36033
	Tez36034
	Tez36035
	Tez36036
	Tez36037
	Tez36038
	Tez36039
	Tez36040
	Tez36041
	Tez36042
	Tez36043
	Tez36044
	Tez36045
	Tez36046
	Tez36047
	Tez36048
	Tez36049
	Tez36050
	Tez36051
	Tez36052
	Tez36053
	Tez36054
	Tez36055
	Tez36056
	Tez36057
	Tez36058
	Tez36059
	Tez36060
	Tez36061
	Tez36062
	Tez36063
	Tez36064
	Tez36065
	Tez36066
	Tez36067
	Tez36068
	Tez36069
	Tez36070
	Tez36071
	Tez36072
	Tez36073
	Tez36074
	Tez36075
	Tez36076
	Tez36077
	Tez36078
	Tez36079
	Tez36080
	Tez36081
	Tez36082
	Tez36083
	Tez36084
	Tez36085
	Tez36086
	Tez36087

