# A LOT SIZING PROBLEM IN DELIBERATED AND CONTROLLED CO-PRODUCTION SYSTEMS 

by<br>Bahadır Pamuk<br>B.S., Industrial Engineering, Boğaziçi University, 2016

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering
Boğaziçi University

## ACKNOWLEDGEMENTS

I sincerely thank my supervisors Prof. Caner Taşkın and Prof. Semra Ağralı for their endless support and insightful guidance. I cordially thank to Prof. Özgür Özlük, Assoc. Prof. Ali Tamer Ünal, and Assoc. Prof. Mehmet Önal for their participation in my thesis committee and their precious remarks. I am very grateful to Prof. Ümit Bilge for welcoming me as a member of BUFAIM team.

I thank Banu Kabakulak for her invaluable comments and help, especially in developing the pattern fitting heuristic. Finally, I would like to thank to my colleagues Gökalp Erbeyoğlu and Mert Şahinkoç for their valuable remarks.

Last but not the least, I would like to thank to my family for encouragement and support. I am indebted to you, for making me the person who I am.

This thesis is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no 116M555. I also want to thank TÜBİTAK for financially supporting me during my graduate studies under the programme BİDEB2210A.

## ABSTRACT

## A LOT SIZING PROBLEM IN DELIBERATED AND CONTROLLED CO-PRODUCTION SYSTEMS

Deliberated and controlled co-production can be defined as the production of different products simultaneously where production parameters are known and coproduction is deliberate. We study an extension of the lot sizing problem in a deliberated and controlled co-production system, and show that it is NP-Hard. We investigate special cases of the problem for which it is polynomially solvable, and propose solution techniques for those special cases. We propose four mixed integer programming model formulations based on single item uncapacitated lot sizing and simple plant location formulations. We show that solution spaces of the linear relaxations of the proposed formulations are equal. We propose valid inequalities for the problem and show that our proposed valid inequalities added to the model with a separation algorithm improve the linear relaxation lower bound by more than $\% 20$ for all test instances. We propose a pattern fitting heuristic that aims to find initial feasible solutions for a commercial solver. We propose another heuristic based on Wagner-Whitin's algorithm to create integer feasible solutions from fractional solutions. We show that the average optimality gap is reduced by at least $\% 10$ with proposed improvements to MIP formulations. We also show that the quality of integer feasible solutions is increased within a given time limit.

## ÖZET

# İSTEMLİ VE KONTROLLÜ BİRLİKTE ÜRETİM SİSTEMLERİNDE ÖBEK BÜYÜKLÜĞÜ BELİRLEME PROBLEMI 

İstemli ve kontrollü birlikte üretim sistemleri, farklı ürünlerin eş zamanlı olarak birlikte üretildiği, üretim parametrelerinin bilindiği ve birlikte üretimin istemli olarak yapıldığı üretim sistemleri olarak tanımlanabilir. İstemli ve kontrollü bir birlikte üretim sisteminde öbek büyüklüğü belirleme probleminin NP-Zor bir problem olduğu gösterildi. Bu problemin polinom zamanlı çözülebilen versiyonları belirtilip polinom zamanlı çözüm yolları önerildi. Tek ürünlü kapasite kısıtsız öbek büyüklüğü belirleme ile basit tesis yerleşimi modellemelerinden yola çıkılarak 4 adet karma tam sayılı programlama modeli geliştirildi. Bu farklı modellerin doğrusal gevşetmelerinin olurlu bölgelerinin aynı olduğu gösterildi. Bu problem için geçerli eşitsizlikler önerilip, bu eşitsizliklerin doğrusal gevşetme alt sınırını bütün testlerde yüzde 20'den daha fazla arttırdığı ${ }_{1}$ gösterildi. Olurlu tamsayı çözümler bulmak ve dal ve sınır algoritmasına bir ilk çözüm olarak verebilmek için bir şekil benzetme sezgisel yöntemi geliştirildi. Başka bir sezgisel yöntem de tamsayı olmayan çözümleriden tamsayı çözümler elde etmek için Wagner-Whitin' in algoritmasından yola çıkılarak geliştirildi. Önerilen geliştirmeler yapıldıktan sonra, karma tam sayılı programlama modellerine göre, eniyileme farkının yüzde 10 oranında azaldığı belirlenmiştir ve belirlenen zaman limiti içerisinde bulunan olurlu tamsayı çözümlerin kalitesinde de artış olmuştur.

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..... iii
ABSTRACT ..... iv
ÖZET ..... V
LIST OF FIGURES ..... viii
LIST OF TABLES ..... ix
LIST OF SYMBOLS ..... xi
LIST OF ACRONYMS/ABBREVIATIONS ..... xii

1. INTRODUCTION ..... 1
2. LITERATURE REVIEW ..... 5
3. PROBLEM DEFINITION ..... 10
3.1. Computational Complexity ..... 11
3.2. Mathematical Model (IP1) ..... 15
4. POLYNOMIALLY SOLVABLE CASES ..... 16
4.1. No Fixed Cost Requirement ..... 16
4.2. Mutually Exclusive Co-production Units ..... 16
4.3. Two Products per Co-production Unit ..... 18
4.4. Main Product and By-Products ..... 19
5. ALTERNATIVE MIP FORMULATIONS ..... 22
5.1. Inventory Variable Free Formulation (IP2) ..... 22
5.2. Plant Location Formulation 1 (ELS1) ..... 24
5.3. Plant Location Formulation 2 (ELS2) ..... 24
5.4. Equivalence of Alternative Model Formulations ..... 25
6. MODEL IMPROVEMENTS ..... 29
6.1. Valid Inequalities ..... 29
6.1.1. Valid Inequalities for Alternative Model Formulations ..... 32
6.2. Heuristics ..... 33
6.2.1. Pattern Fitting Heuristic ..... 33
6.2.2. Co-Production Wagner Whitin Heuristic (CPWW) ..... 35
7. COMPUTATIONAL EXPERIMENTS AND RESULTS ..... 37
7.1. Data Generation Process ..... 37
7.2. Comparison of Alternative Model Formulations ..... 38
7.3. Comparison of Valid Inequalities in IP1 and ELS1 Formulations ..... 40
7.4. Results of Heuristics ..... 43
8. CONCLUSION ..... 46
REFERENCES ..... 48
APPENDIX A: RESULTS ..... 52
A.1. Experiments on Alternative Model Formulations ..... 52
A.2. Experiments on Valid Inequalities ..... 56
A.3. Experiments on Heuristics ..... 60

## LIST OF FIGURES

Figure 1.1. Robot Arm Picking Cut Glass in Float Glass Manufacturing. ..... 2
Figure 1.2. Possible Cut Locations for Float Glass Resulting in Different Com- positions for a Given Defect Location Marked with x. ..... 2
Figure 1.3. Example of a Two Product Mould. ..... 3
Figure 3.1. Example of Co-production Units. ..... 11
Figure 3.2. Guess Validation Algorithm. ..... 13
Figure 4.1. Algorithm for Mutually Exclusive Co-production Units. ..... 17
Figure 4.2. Algorithm for Special Case: Two Products per Co-production Unit. ..... 18
Figure 4.3. Application of Proposed Algorithm for Two Products per Co-production Unit on an Example. ..... 19
Figure 5.1. Algorithm for mapping $\hat{\Theta}_{j t t^{\prime}}$ from $\hat{x}_{t}^{i}$ using FIFO ..... 28
Figure 6.1. Algorithm for $(l, S, j)$ Separation. ..... 31
Figure 6.2. Algorithm for $(l, S, j)$ Separation using $z_{j}^{q}$ variables. ..... 32
Figure 6.3. Pattern Fitting Heuristic. ..... 34
Figure 6.4. Co-Production Wagner Whitin Heuristic. ..... 36

## LIST OF TABLES

Table 7.1. Product Families and Demand Data Used in Experimentation. ..... 37
Table 7.2. Holding Cost, Fixed Cost, and Variable Cost Used in Experimen- tation. ..... 38
Table 7.3. Problem Set Descriptions. ..... 38
Table 7.4. CPLEX Parameter Settings. ..... 39
Table 7.5. Summary of Results for Alternative Model Formulations. ..... 39
Table 7.6. Summary of Results for Valid Inequalities ..... 42
Table 7.7. Summary of Results for IP1 in Different Settings ..... 44
Table A.1. Experiments with Alternative Model Formulations on Problem Set 1. ..... 52
Table A.2. Experiments with Alternative Model Formulations on Problem Set 2 ..... 53
Table A.3. Experiments with Alternative Model Formulations on Problem Set 3. ..... 54
Table A.4. Experiments with Alternative Model Formulations on Problem Set 4. ..... 55
Table A.5. Experiments with Valid Inequalities on Problem Set 1. ..... 56
Table A.6. Experiments with Valid Inequalities on Problem Set 2. ..... 57
Table A.7. Experiments with Valid Inequalities on Problem Set 3. ..... 58
Table A.8. Experiments with Valid Inequalities on Problem Set 4 ..... 59
Table A.9. Experiments with Heuristics on Problem Set 1 ..... 60
Table A.10. Experiments with Heuristics on Problem Set 2 ..... 61
Table A.11. Experiments with Heuristics on Problem Set 3. ..... 62
Table A.12. Experiments with Heuristics on Problem Set 4. ..... 63

## LIST OF SYMBOLS

| $c_{t}^{i}$ | Composite variable cost of CPU $i$ in period $t$, defined as $c_{t}^{i}=$ $p_{t}^{i}+\sum_{j \in J(i)} \sum_{k=t}^{T} h_{k}^{j} \alpha_{i}^{j}$ |
| :---: | :---: |
| $d_{t}^{j}$ | Demand of product $j$ in period $t$ |
| $d_{t k}^{j}$ | Cumulative demand of product $j$ between periods $t$ and $k$, defined as $d_{t k}^{j}=\sum_{t^{\prime}=t}^{k} d_{t^{\prime}}^{j}$ |
| $f_{t}^{i}$ | Fixed cost of producing CPU $i$ in period $t$ |
| $h_{t}^{j}$ | Unit holding cost of product $j$ in period $t$ |
| I | Set of co-production units, indexed by $i$ |
| $I(j)$ | Set of co-production units, that produce product $j, I(j) \subseteq I$ |
| $J$ | Set of products, indexed by $j$ |
| $J(i)$ | Set of products produced by CPU $i, J(i) \subseteq J$ |
| $p_{t}^{i}$ | Variable cost of producing a unit of CPU $i$ in period $t$ |
| $s_{t}^{j}$ | Decision variable, ending inventory of product $j$ in period $t$ |
| T | Set of time periods in the planning horizon, indexed by $t$ |
| $x_{t}^{i}$ | Decision variable, amount CPU of $i$ produced in period $t$ |
| $X^{\text {DCCP }}$ | Set of feasible solutions for DCCP |
| $X^{L S-U}$ | Set of feasible solutions for LS-U |
| $y_{t}^{i}$ | Decision variable, equals 1 if $\mathrm{CPU} i$ is produced in period $t$; 0 otherwise |
| $\alpha_{i}^{j}$ | Amount of product $j$ obtained when 1 unit of CPU $i$ is produced |
| $\Theta_{j t t^{\prime}}$ | Decision variable, amount of product $j$ produced in period $t$ to be consumed in period $t^{\prime}$ |
| $\Theta_{t t^{\prime}}^{i j}$ | Decision variable, amount of product $j$ produced using CPU $i$ in period $t$ to be consumed in period $t^{\prime}$ |

## LIST OF ACRONYMS/ABBREVIATIONS

| B\&B | Branch and Bound |
| :--- | :--- |
| CPU | Co-production Unit |
| CPWW | Co-production Wagner-Whitin Heuristic |
| DCCP | Deliberated and Controlled Co-production |
| DLSP | Dynamic Lot Sizing Problem |
| DP | Dynamic Programming |
| ELS | Economic Lot Sizing |
| ELSP | Economic Lot Scheduling Problem |
| IDP | Interval Division Property |
| FIFO | First In First Out |
| LHS | Left Hand Side |
| LP | Uncaparitated Lot Sizing |
| LS-U | Mixed Integer Programming |
| MIP | Nondeterministic Polynomial Time |
| NP | Right Hand Side |
| RHS | Substitution with Conversion |
| SWC | Substitution without Conversion |
| SWO | Zero Inventory Policy |
| ZIP |  |

## 1. INTRODUCTION

Co-production is defined as producing several different products simultaneously in the same production run. This occurs either due to physical or chemical nature of the production system or in order to effectively use scarce resources. Co-produced units may differ only in quality as in semi-conductor production $[1,2]$, or they may be completely different products, as in float glass production [3, 4]. The key point here is to have sufficient difference in products in the sense that there is a need for the company to differentiate these products.

Co-production can be categorized using two criteria: control and deliberation. Co-production can be controlled or uncontrolled based on the production parameters. If the company has control over the production parameters, such as the number of units co-produced (production rates) for each type of product, then this type of co-production is said to be controlled. On the other hand, co-production can be uncontrolled or too expensive to control due to the structure of the process. For example, in semi-conductor production $[1,2]$ the products will always differ in speed with current production methods due to the randomness of the process which makes the process uncontrolled. On the other hand, producing different products from the same metal sheet in a forming press machine can be classified as controlled since product types and ratios will depend on the die used. If the decision maker has the option to manufacture each product separately or by means of co-production, then co-production is deliberated. For example, co-generating different types of energy (electricity, steam, etc.) in energy industry [5] is deliberated and controlled, whereas semi-conductor production [1,2] is neither deliberated nor controlled. In this thesis we consider deliberated and controlled co-production systems.

Co-production is inherently present in float glass manufacturing. Continuous flow of glass is cut into different sizes, and different size glasses are considered as different products. In Figure 1.1, we see a robot arm that picks a glass product from production
line. In the float glass production system described in [4], glasses are also classified as different quality products based on the number of defects on the glass surface. Figure 1.2 illustrates co-production in float glass manufacturing where existence of random errors on the glass surface necessitates simultaneous production of products having various dimensions and quality levels. There are also production systems in which coproduction is optional. For example, with the mould shown in Figure 1.3, two different products can be simultaneously produced using a single mould.


Figure 1.1. Robot Arm Picking Cut Glass in Float Glass Manufacturing.


Figure 1.2. Possible Cut Locations for Float Glass Resulting in Different Compositions for a Given Defect Location Marked with x.

The decision of what and when to produce has an enormous importance since having excessive inventories or backlogging products can add up to costs, and it may determine the difference between a profitable company and bankruptcy. This phenomenon is studied under "Lot Sizing Problems" in the literature. While lot sizing problems are studied extensively under many scenarios or extensions, the co-production setting is not well studied. This thesis aims to fill in this gap in the literature.


Figure 1.3. Example of a Two Product Mould.

When certain characteristics over some by-products are present, co-production structure can be omitted; and hence, the problem can be solved by traditional lot sizing methods. One such example is given in Section 4.4 where one co-product's demand is significantly lower than other products, and it is automatically satisfied considering the other products. In this case, there is no need to consider co-production explicitly. Another special case is omitting some of the co-products that have relatively low holding cost or low demand. In this case, it might be possible to find optimal or near optimal solutions by traditional lot sizing methods. However, when co-production is internally present in the production system, as in glass or semi conductor production, aforementioned simplifications would not be possible. Therefore, there is a need to specifically study lot sizing in co-production environments.

In this thesis we study a lot sizing problem in a deliberated and controlled coproduction environment, where products are non-substitutable and have dynamic deterministic demand over a finite planning horizon. We refer to this problem as Deliber-
ated and Controlled Co-production Problem (DCCP). DCCP can be modeled similarly to the well known Dynamic Lot Sizing Problem (DLSP) [6]. Dynamic programming (DP) techniques are used extensively to solve lot sizing problems [6]. However DP used for DLSP cannot be simply adapted to our problem, as we show in Chapter 3 DCCP is NP-Hard, and does not possess characteristics of regular lot sizing problems such as zero inventory policy (ZIP). We propose different mixed integer programming (MIP) formulations for DCCP, and develop valid inequalities to be added with a separation algorithm for solving the models in a reasonable amount of time.

The remainder of this thesis is as follows: Literature review is given in Chapter 2. We define our problem in Chapter 3. We provide polynomially solvable cases of DCCP in Chapter 4, and propose alternative model formulations in Chapter 5. We propose improvements to our models in Chapter 6. This thesis concludes with experiments in Chapter 7, followed by conclusions and future research directions in Chapter 8.

## 2. LITERATURE REVIEW

Lot sizing problems are well studied in the literature. Since Wagner and Whitin have published their seminal paper [6], substantial research has been done in the area. Various versions of lot sizing problems have been studied. For an extensive review, we refer the reader to [7] and to its updated version [8].

Discrete models with big time buckets where multiple items of a single product can be produced within a single period, constitute a big portion of lot sizing literature. In these models time is modeled as a finite sequence of discrete time points, and a period is defined as the time interval between consecutive time points. In the simplest case, there is a single product that has time varying demand. The only constraint in that case is having demand satisfied either by production or from the inventory, and backlogging is not allowed. Fixed and variable costs of production and inventory holding costs are also time varying. In this simplest case, so called "dynamic lot sizing problem (DLSP)", there is no capacity constraint. DLSP can be solved in $O\left(T^{2}\right)$ time with Wagner and Whitin's original Dynamic Program (DP) [6], which is improved to $O(T \log (T))$ by [9-11] independently. In the case of no speculative motives for holding inventory, which requires the variable cost of producing and holding an inventory of a product to be greater than or equal to the variable production cost of that product in the following periods, DLSP is solvable in $O(T)$ [8].

The lot sizing problem has several extensions in the literature. These are primarily based on the length of the planning horizon, number of layers, number and type of products, presence of capacity or resource limitations, demand type, allowance of backlogging, etc. In the case of elastic demands, where demand is a function of the product, pricing decisions are also included in the problem [7].

DP is widely used in solving lot sizing problems. In classical lot sizing problems, "zero inventory policy (ZIP)", which can be defined as the amount of production in a
production period must cover exactly the sum of demands until the next production period or last period in the planning horizon, holds. This property allows developing DPs that solve the problem efficiently. There is another property called Interval Division Property (IDP) that holds for some lot sizing problems. IDP is defined in [12] as if there exist $n$ many production periods, then it is possible to divide the planning horizon into $n$ many sets, where each set has consecutive indices, and assign each production period to its corresponding set (first production period to first period set, etc.) exactly satisfying that set's total demand. Inventory deteriorates in time (perishable inventory) and deterioration rates depend on age and the period of production, whereas inventory costs depend on the age of the stock and the period. Backorder is not allowed, and inventory and production costs are non-decreasing concave functions. In this case IDP holds and DP recursion is based on IDP [12].

The convex hull of the classical lot sizing problem DLSP is given by Pochet and Wolsey [13]. They provide facet-defining inequalities and convex hulls of the feasible solutions of DLSP, DLSP with backlogging, DLSP with constant capacity, and DLSP with start-up costs [13].

DLSP with multiple products and one way product substitution, in which substitution of a product is possible with a higher quality product, is studied in [14]. Multiple products can be seen as different quality levels of the same products in this context. Two versions of this problem are studied. In the first one, which is called substitution with conversion (SWC), the higher level product is converted to a lower level before the substitution. In the second one, called substitution without conversion (SWO), the substitution is done without a conversion operation. Both versions are shown to be NP-Hard in the strong sense. Then, the equivalence to a minimum concave-cost network flow problem is shown, and a DP is proposed for both SWC and SWO. Chen and Thizy [15], study multiple item capacitated lot sizing problem with no backorders, and prove that the problem is strongly NP-Hard when capacities are not constant.

Another extension of lot sizing problem is the coordinated lot sizing problems that include product families. In coordinated lot sizing problems a family of products has a shared fixed setup cost, which is to be paid whenever one or more products of a family is produced [16]. A minor setup cost also exists for individual products inside a product family. Variable costs of production is similar to that of DLSP. [17] proposes a Lagrangian heuristic for capacitated version of the same problem. Having product families does not capture the notion of co-production. Despite having a shared fixed cost for production families, products inside the same family is not necessarily produced simultaneously.

Bitran and Gilbert [1] and Bitran and Dasu [2] focus on co-production with random yields in semiconductor production. In their context, it is possible to substitute a lower tier product with a higher tier one. This is called serially nested co-production. The problem is divided into two sub-problems as "morning problem", in which production decisions are given, and "afternoon problem", in which products are allocated to customers after yields are known. In Bitran and Dasu [2], the objective is to maximize the expected profit whereas in Bitran and Gilbert [1] it is the minimization of expected cost comprised of production, inventory holding, and shortage costs. Latter also studies impacts of alternative downgrading policies.

Öner and Bilgiç [3] study an uncontrolled co-production system in float glass manufacturing with constant holding cost rate and fixed sequence independent setup costs where substitution of products is not allowed. They develop a continuous economic lot scheduling model (ELSP) to find a common cycle schedule. Co-products are not only different in the quality aspect but also in the size. Taşkın and Ünal [4] also study a co-production system in float glass manufacturing focusing on tactical level planning. They develop two mathematical models to be solved consecutively for colored and clear glass for a glass manufacturer.

Tomlin and Wang [18] consider pricing decisions together with co-production using stochastic demand model of utility maximizing customers in a single period.

There are two products and two customer classes. Cost functions are linear in demand although findings are applicable when cost is convex in demand. The substitution of lower tier products with higher ones are allowed.

Vidal Carreras et. al. [19] study a deliberated and controlled co-production system with non substitutable demand. Similar to [3], their model is a continuous ELSP with an aim to find a common cycle time. Costs are constant, fixed and sequence independent. Only two products are considered.

Rafiei et. al. [20] consider a co-production system with sequence dependent setup times and demand uncertainty. There are production families, and recipes in the same production family require no changeover cost. It is a case study on demand driven wood re-manufacturing mills. They propose a three step methodology to solve wood re-manufacturing industrial problem.

Co-production is also studied within the context of chemical sciences and sustainability. In [21], waste is treated as a co-product, which is also an input to the system, to achieve zero waste. A case study on co-production of decarbonized synfuels and electricity is studied in [22]. Another example of co-production in chemical sciences is [5], which studies co-production of dimethyl ether and electricity.

Ağralı's study [23] is a starting point of this thesis. In that work there is only a single set of products to be produced simultaneously, which makes the co-production controlled but not deliberated. The decision to be made is to when and how much to produce that specific set of products. It is shown that ZIP holds for at least one of the products of the set, and a DP recursion is given that can be solved in polynomial time. In contrast, in this thesis where deliberated co-production exist, the decision maker has the option of to co-produce or not to co-produce.

To the best of our knowledge, there is no research that considers deliberated and controlled co-production in the dynamic deterministic lot sizing literature. Our con-
tribution to the lot sizing literature can be summarized as follows: (i) our problem includes the decision of co-produce or not if the production system in context allows it; and (ii) we consider a co-production setting in which the decision maker can choose from multiple ways of co-producing a single product. From practicality point of view, our problem is expected to be found at production systems in which discrete products are produced, preferably small parts, where multiple products can be produced simultaneously by fitting multiple products into a single manufacturing resource.

## 3. PROBLEM DEFINITION

We consider a production system in which several products have dynamic deterministic demand over a planning horizon. We call a possible combination of products that can be co-produced together with individual production ratios as a "co-production unit (CPU)". Our system has more than one CPU, and production decisions over the planning horizon are given per CPU rather than per product. The costs incurred are fixed and variable costs of production of CPUs, and the inventory holding costs of products. All cost data, demand information, and production ratios for each CPU are deterministic and known; hence, the system is controlled. It is also possible to produce a product individually by having a single product in a CPU; therefore, our production system is deliberated. Like demand, all costs are also dynamic and time dependent. Initial inventory levels are assumed to be zero. If initial and final inventory levels are given and there are lower bounds for inventory levels, demand data can be modified accordingly in order to get initial and final inventory levels and restrictions on inventory lower bound to zero. The objective is to find a production plan with minimum possible cost, consisting of fixed and variable costs of co-production and inventory holding cost of products, that satisfies all demand in time without backlogging.

Like in DLSP, time is modeled as a finite sequence of discrete time points, which are indexed as $t \in T$. Products are indexed by $j \in J$, which have dynamic deterministic demand, $d_{t}^{j}$, and unit holding cost, $h_{t}^{j}$. There are finitely many CPUs indexed by $i \in I$, and each produce a finite set of predefined products $J(i)$. When one CPU of type $i$ is to be produced, all the products inside set $J(i)$ are co-produced with certain production ratios, $\alpha_{i}^{j}$. Each CPU has a dynamic deterministic fixed cost, $f_{t}^{i}$, and variable cost, $c_{t}^{i}$.

There may be several ways to produce one product, i.e., multiple CPUs may produce the same product with non-identical production ratios and production costs. It may also be possible for a CPU to include only one product, which allows flexibility
in the deliberated co-production. As an example, consider a production system given in Figure 3.1 where three products are produced from a metal sheet with six CPUs.

|  | A | Product A | B | Product B | C |  | Product C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C |  | C | C | B | B |  | A | A |
|  |  | C | C |  |  |  |  |  |
| A | A | C | B | B | A | A | A | A |
| $\begin{array}{r} C \\ J(1) \\ \alpha \\ \alpha \end{array}$ | $\begin{aligned} & J 1 \\ & A, C\} \\ & =2 \\ & =2 \end{aligned}$ | $\begin{gathered} C P U 2 \\ J(2)=\{C\} \\ \alpha_{2}^{C}=4 \end{gathered}$ | $\begin{gathered} C P U 3 \\ J(3)=\{B, C\} \\ \alpha_{3}^{B}=1 \\ \alpha_{3}^{C}=2 \end{gathered}$ | $\begin{gathered} C P U 4 \\ J(4)=\{B\} \\ \alpha_{4}^{B}=2 \end{gathered}$ | CPU 5$\begin{gathered} J(5)=\{A, B\} \\ \alpha_{5}^{A}=2 \\ \alpha_{5}^{B}=1 \end{gathered}$ |  | $\begin{gathered} C P U 6 \\ J(6)=\{A\} \\ \alpha_{6}^{A}=4 \end{gathered}$ |  |

Figure 3.1. Example of Co-production Units.

There are three products; A, B, and C in the example problem given in Figure 3.1 with certain demands. The demand of the products should be satisfied by making production decisions on six possible CPUs over the planning horizon. CPU1, CPU3 and CPU5 are composed of more than one product in contrast to CPU2, CPU4 and CPU6. As an example, consider CPU1: it is composed of two units of product A and two units of product C , therefore $\alpha_{1}^{A}=\alpha_{1}^{C}=2$. CPU 1 does not produce product B implying $\alpha_{1}^{B}=0$. When a decision of $x$ amount of production is made for CPU1 in a production period $t, 2 x$ amount of product A and $2 x$ amount of product C is produced in that period.

### 3.1. Computational Complexity

We analyze the computational complexity of the problem that we consider in this section. In its simplest form, without capacities or backlogging, we show that decision version of Deliberated and Controlled Co-production (DCCP) is NP-Complete. This
is due to its close relationship with the set covering problem. Informally it can be explained as follows: We have finite amount of CPUs $i \in I$, and each produce a subset of products $J_{i} \subseteq J$ with respect to production ratios $\alpha_{i}^{j}$. $J_{i}$ can be defined for each $i$ as $\left\{j^{\prime} \in J_{i}, j^{\prime}: \alpha_{i}^{j^{\prime}}>0\right\}$. When we restrict $\alpha_{i}^{j}$ to be either 0 or 1 , each CPU $i$ represent a fixed subset of products $J_{i}$, and all $j \in J_{i}$ needs to be co-produced by one unit each whenever a unit of CPU $i$ is produced, accruing costs $f_{t}^{i}$ and $c_{t}^{i}$. We further restrict our planning horizon to only one period $(|T|=1)$, fixed costs of production to $1\left(f_{1}^{i}=1\right)$, and variable costs to $0\left(c_{1}^{i}=0\right)$, for all $i \in I$. Since $|T|=1$, holding costs $\left(h_{t}^{j}\right)$ are irrelevant. Finally, we further reduce all product demands to $1\left(d_{1}^{j}=1 \forall j \in J\right)$. With aforementioned parameter settings, our problem reduces to simply selecting fewest number of subsets $J_{i} \subseteq J$ that collectively produce each product at least once. This problem reduces to the well known minimum (set) cover problem, which is known to be NP-Complete [24].

Proposition 3.1. Deliberated and Controlled Co-production (DCCP) is NP-Complete.

Proof. DCCP decision problem can be formulated as follows:

## Deliberated and Controlled Co-production

Instance: Finite sets, $J$ of "products", $I$ of "co-production units", and $T$ of "time periods", a positive number $K$. Production ratios: $\alpha_{i}^{j} \in N, \forall j \in J$ and $\forall i \in I$. Fixed costs: $f_{t}^{i} \in N, \forall t \in T$ and $\forall i \in I$. Variable costs: $p_{t}^{i} \in N, \forall t \in T$ and $\forall i \in I$. Demands: $d_{t}^{j} \in N, \quad \forall t \in T$ and $\forall j \in J$. Holding Costs: $h_{t}^{j} \in N, \quad \forall t \in T$ and $\forall j \in J$. Question: Is there a feasible production plan (i.e., all demands are satisfied), having total cost no more than $K$ ? Mathematically, this question is if

$$
\sum_{t \in T}\left(\sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+p_{t}^{i} x_{t}^{i}\right)+\sum_{j \in J} h_{t}^{j} s_{t}^{j}\right) \leq K
$$

where $x_{t}^{i}$ is the amount of production of CPU $i$ in period $t, y_{t}^{i}=1$ if $x_{t}^{i}>0$, and $y_{t}^{i}=0$, otherwise; and $s_{t}^{j}$ is the amount of inventory of product $j$ in period $t$.

As the first part of the proof, we need to show that our problem lies in NP. Given an instance of sets $I, J, T$, data $\alpha_{i}^{j}, f_{t}^{i}, p_{t}^{i}, d_{t}^{j}, h_{t}^{j}$, a positive number $K$, and a "guess" $x_{t}^{i}$; we need to show if we can validate a "yes guess" in polynomial time. There are two things we should be sure of; "the guess" should be feasible, and it does not exceed the cost limit $K$. In order to show that the first part is doable, we propose the algorithm given in Figure 3.2.

```
Set \(y_{t}^{i}=1\) if \(x_{t}^{i}>0\) and \(y_{t}^{i}=0\) otherwise. Doable in \(\mathrm{O}(|T||I|)\).
Set \(s_{t}^{j}=\sum_{k \leq t} \sum_{i \in I}\left(x_{k}^{i} \alpha_{i}^{j}-d_{k}^{j}\right)\) and if all \(s_{t}^{j} \geq 0\) then the "guess" is feasible.
Doable in \(\mathrm{O}(|T||J|)\).
if \(\sum_{t \in T}\left(\sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)+\sum_{j \in J} h_{t}^{j} s_{t}^{j}\right) \leq K\) then
    The "guess" is valid. Doable in \(\mathrm{O}(|T|(|J|+|I|))\).
end if
```

Figure 3.2. Guess Validation Algorithm.

A reasonable encoding scheme, having size bounded polynomially by set sizes of $I, J$, and $T$, can be found for the problem easily. Algorithm in Figure 3.2 can prove if a yes guess is in fact a yes instance in polynomial time. Therefore DCCP is in NP. As the second part of the proof, we will show that DCCP contains a known NP-Complete problem as a special case. Consider Minimum Cover problem as given in [25] for that purpose:

## Minimum (Set) Cover

Instance: Collection $C$ of subsets of a finite set $S$, positive integer $K \leq|C|$.
Question: Does $C$ contain a cover for $S$ of size $K$ or less, i.e, a subset $C^{\prime} \subseteq C$ with $\left|C^{\prime}\right| \leq K$ such that every element of $S$ belongs to at least one member of $C^{\prime}$ ?

In fact we can restrict DCCP to Minimum Cover by allowing instances having $|T|=1, \quad \alpha_{i}^{j} \in\{0,1\}, f_{1}^{i}=1, c_{1}^{i}=0, d_{1}^{j}=1 \quad \forall j \in J$ and $\forall i \in I$. The transformation of any Minimum Cover instance to DCCP is as follows: Consider a Minimum Cover instance. Set $S$ corresponds to set $J$ in DCCP instance. Let every subset in set $C$ be indexed by $i$ such that $C=\left\{C_{i}\right\}$. The creation of set $i \in I$ in DCCP is complete. Let
$|T|=1, f_{1}^{i}=1, c_{1}^{i}=0, d_{1}^{j}=1 \quad \forall j \in J, \forall i \in I$. Now for each $i \in I$ and $j \in J$ define $\alpha_{i}^{j}$ as in equation (3.1), and define subsets $J_{i} \in J$ for each $i \in I$ as $J_{i}=\left\{j \mid j: \alpha_{i}^{j}=1\right\}$.

$$
\alpha_{i}^{j}= \begin{cases}1, & j \in C_{i}  \tag{3.1}\\ 0, & j \notin C_{i}\end{cases}
$$

Selecting a subset $C^{\prime} \subseteq C$ in Minimum Cover will correspond to selecting $I^{\prime} \subseteq I$ CPUs to produce in one period DCCP. We now write the total cost of restricted DCCP. Note that $|T|=1$ :

$$
\begin{equation*}
\sum_{t \in T}\left(\sum_{i \in I}\left(1 y_{t}^{i}+0 x_{t}^{i}\right)+\sum_{j \in J} 0 s_{t}^{j}\right)=\sum_{i \in I} y_{1}^{i} \tag{3.2}
\end{equation*}
$$

Assume that an arbitrary Minimum Cover instance is a yes instance. There exists a subset $C^{\prime} \subseteq C$ such that $\left|C^{\prime}\right| \leq K$ and $\bigcup C^{\prime}=S$. We can write Equation (3.3) since selecting $C^{\prime} \subseteq C$ in Minimum Cover corresponds to selecting $I^{\prime} \subseteq I$ in DCCP:

$$
\begin{equation*}
\sum_{i \in I} y_{t}^{i}=\left|I^{\prime}\right|=\left|C^{\prime}\right| \leq K \tag{3.3}
\end{equation*}
$$

Selecting $\alpha_{i}^{j} \in\{0,1\}$ and corresponding subsets $J_{i}$ as described previously will ensure the following since $\bigcup C^{\prime}=S$;

$$
\begin{equation*}
\bigcup_{i \in I^{\prime}} J_{i}=J \tag{3.4}
\end{equation*}
$$

which means every product $j \in J$ will be produced at least once by selecting $I^{\prime} \subseteq I$ for production. Since $d_{1}^{j}=1$ for all $j \in J$, the production plan feasibility is guaranteed by (3.4). By (3.3), corresponding DCCP instance is valid if and only if Minimum Cover instance is valid, and by (3.4), DCCP instance is feasible if and only if Minimum Cover instance is feasible. With aforementioned transformation, any instance of Minimum

Cover, can be transformed to a specific instance of DCCP. Transformation having polynomial time complexity easily follows.

### 3.2. Mathematical Model (IP1)

A solution of DCCP will provide the amount of CPUs produced in each period. Let the decision variable $x_{t}^{i}$ denote the amount of production of CPU $i$ in period $t$, and let binary variable $y_{t}^{i}$ take value of 1 if a production of CPU $i$ takes place in period $t$. The last set of decision variables $s_{t}^{j}$ denotes the ending inventory level of product $j$ in period $t$. Then, we can give the mixed-integer programming (MIP) formulation for our problem as follows:

$$
\begin{align*}
& \text { IP1: minimize } \quad \sum_{t \in T}\left(\sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+p_{t}^{i} x_{t}^{i}\right)+\sum_{j \in J} h_{t}^{j} s_{t}^{j}\right)  \tag{3.5}\\
& \text { subject to }  \tag{3.6}\\
& s_{t-1}^{j}+\sum_{i \in I} \alpha_{i}^{j} x_{t}^{i}-s_{t}^{j}=d_{t}^{j}, \quad \forall t \in T, j \in J \\
& x_{t}^{i} \leq \max _{j \in J(i)}\left\{\frac{d_{t T}}{\alpha_{i}^{j}}\right\} y_{t}^{i}, \quad \forall t \in T, i \in I  \tag{3.7}\\
& x_{t}^{i} \geq 0, \quad \forall t \in T, i \in I  \tag{3.8}\\
& s_{t}^{j} \geq 0, \quad \forall t \in T, j \in J  \tag{3.9}\\
& y_{t}^{i} \in\{0,1\}, \quad \forall t \in T, i \in I . \tag{3.10}
\end{align*}
$$

The objective function (3.5) consists of fixed and variable costs arising from production of CPUs, and the holding cost of products summed over the planning horizon. Constraint set (3.6) includes inventory flow balance constraints. Constraint set (3.7) forces binary production variables $y_{t}^{j}$ to take the value of 1 whenever $x_{t}^{i} \mathrm{~s}$ take positive values. The term $\max _{j \in J(i)}\left\{\frac{d_{t} T}{\alpha_{i}^{j}}\right\}$ is an upper bound for the $x_{t}^{i}$ variables, and acts like a big-M value. Constraints (3.8) - (3.10) are non-negativity and binary constraints.

## 4. POLYNOMIALLY SOLVABLE CASES

The decision version of DCCP is proven to be NP-Complete (see section 3.1). This means that the time required to solve problems increase exponentially with the problem size, and it is not possible to find optimum solutions for practical size instances in a reasonable amount of time unless $P=N P$. In order to understand characteristics of the problem, we analyze some special cases of the problem, and propose polynomial time solution techniques for those special cases in this section.

### 4.1. No Fixed Cost Requirement

When the fixed cost of a production is negligible or no setup is needed for production, fixed costs of CPUs can be neglected. Without the fixed cost, the MIP of the problem reduces to a linear program since binary variables $y_{t}^{i}$ are no longer needed. LP model when $f_{t}^{i}=0$ is given in (4.1) - (4.4).

$$
\begin{align*}
\operatorname{minimize} & \sum_{t \in T}\left(\sum_{i \in I} c_{t}^{i} x_{t}^{i}+\sum_{j \in J} h_{t}^{j} s_{t}^{j}\right)  \tag{4.1}\\
\text { subject to } \quad s_{t-1}^{j}+\sum_{i \in I} \alpha_{i}^{j} x_{t}^{i}-s_{t}^{j}=d_{t}^{j}, & \forall t \in T, j \in J  \tag{4.2}\\
x_{t}^{i} \geq 0, & \forall t \in T, i \in I \\
s_{t}^{j} \geq 0, & \forall t \in T, j \in J . \tag{4.3}
\end{align*}
$$

Since LPs can be solved in polynomial time using interior point algorithms, this special case is polynomially solvable.

### 4.2. Mutually Exclusive Co-production Units

In some production environments, products may form family structures, and may be possible to have mutually exclusive product families. This results in having mutually
exclusive CPUs (i.e, $J_{k} \cap J_{l}=\emptyset \quad \forall k, l \in I, k \neq l$ ). In this structure, DCCP is separable by CPUs. For this case the polynomial time DP algorithm suggested by [23], in which this problem is given under by-production case, can be applied for each CPU. Let $G(t)$ be the cost of an optimal solution to the instance of dynamic uncapacitated lot sizing problem of co-products within a single CPU with a planning horizon consisting of periods from $t$ to $T ; t=1, \ldots, T$. Recurrence relation of the DP to solve for each CPU $i$ separately can be adapted from [23] as:

$$
G_{i}(t)= \begin{cases}\min _{t<l \leq T+1}\left\{f_{t}^{i}+\left(c_{t}^{i}+\sum_{j \in J(i)} \sum_{s=t}^{T} \alpha^{k} h_{s}^{j}\right) \bar{D}_{t, l-1}+G_{i}(l)\right\} & , \text { if } \max _{k=1, \ldots, K} d_{t}^{k}>0 ;  \tag{4.5}\\ \min \left[G_{i}(t+1), \min _{t<l \leq T+1}\left\{f_{t}^{i}+\left(c_{t}^{i}+\sum_{j \in J(i)} \sum_{s=t}^{T} \alpha^{k} h_{s}^{j}\right) \bar{D}_{t, l-1}+G_{i}(l)\right\}\right] & , \text { if } \max _{k=1, \ldots, K} d_{t}^{k}=0 ;\end{cases}
$$

where

$$
\begin{array}{r}
\bar{D}_{t, l-1}=\max \left[0, \max _{j \in J(i)}\left\{\frac{d_{t, l-1}^{j}}{\alpha_{i}^{j}}-s_{t-1}^{j}\right\}\right], \\
s_{t-1}^{j}=D_{1, t-1} \alpha_{i}^{j}-d_{1, t-1}^{j}, \\
D_{1, t-1}=\max _{j \in J(i)}\left\{\frac{d_{1, t-1}^{j}}{\alpha_{i}^{j}}\right\} . \tag{4.8}
\end{array}
$$

As stated in [9], a straightforward application of this recursion leads to an $O\left(T^{2}\right)$ algorithm; however, it can be further improved to $O(\operatorname{Tlog} T)$ using techniques in [9] as stated by [23]. By solving a polynomial time DP for each CPU $i \in I$, this special case of the problem can be solved in polynomial time using the algorithm given in Figure 4.1.

## for CPU $i \in I$ do

Solve a DP for CPU $i$ using the recursion relation in Equation 4.5. The solution is the optimal production plan for $\mathrm{CPU} i$.
end for
Figure 4.1. Algorithm for Mutually Exclusive Co-production Units.

### 4.3. Two Products per Co-production Unit

When a DCCP has no more than two products per CPU, $\left|J_{i}\right| \leq 2$, a single planning period, $|T|=1$, no variable costs for CPUs, $c_{1}^{i}=0$, identical fixed costs for CPUs, $f_{1}^{i}=f_{1}^{i^{\prime}}$, unit demand for all its products, $d_{1}^{j}=1$, and maximum production ratio of 1 amongst its products, $\alpha_{i}^{j} \leq 1$, then the DCPP is polynomially solvable. Note that DCCP can be restricted to a Minimum Cover problem by allowing instances having $|T|=1, \alpha_{i}^{j} \in\{0,1\}, f_{1}^{i}=1, c_{1}^{i}=0, d_{1}^{j}=1 \quad \forall j \in J$ and $\forall i \in I$. The transformation of any Minimum Cover problem instance to DCCP instance is explained in Section 3.1.

Minimum Cover with $c \in C$ and $|c| \leq 2$ can be solved in polynomial time by matching techniques [25]. Therefore any DCCP having $|T|=1, \alpha_{i}^{j} \in\{0,1\}, d_{1}^{j}=1$, $f_{1}^{i}=1, c_{1}^{i}=0$, and $\left|J_{i}\right| \leq 2$, should also be solved polynomially. Consider an instance with $|J|=4,|I|=4, J_{1}=\{1,2\}, J_{2}=\{2,3\}, J_{3}=\{3\}$, and $J_{4}=\{4\}$. Network representation of the example is given in Figure 4.3, where products are represented with nodes and CPUs are represented with arcs. Algorithm given in Figure 4.2 can be used to solve this special case.
(i) Eliminate all $i^{\prime} \in I,\left|J_{i^{\prime}}\right|=1$ from set $I$ if $J_{i^{\prime}}$ is included in at least one $J_{i^{\prime \prime}}$, $\left|J_{i^{\prime \prime}}\right|=2$.
(ii) Select all $i^{\prime} \in I$ that cannot be deleted by step (i). Note that with first two steps we can reduce any problem with $\left|J_{i}\right| \leq 2$ to a problem with $\left|J_{i}\right|=2$.
(iii) Solve maximum matching problem having set $J$ as vertices and set $I$ as edges.
(iv) If matching from (iii) is a perfect matching, it is the optimal solution to set covering problem. Else, add one edge for covering each uncovered vertex. Since matching algorithm and post operations are all polynomial, the whole operation is polynomial.

Figure 4.2. Algorithm for Special Case: Two Products per Co-production Unit.

The application of the algorithm given in Figure 4.2 for the example instance given in Figure 4.3 is as follows: At step (i), $I_{3}$ is eliminated since $J_{2}=\{1,3\}$. At
step (ii) $I_{4}$ is selected since product 4 does not exist in any other CPU. At step (iii), maximum cardinality matching algorithm is solved. The solution would be one of the two arcs selected. At step (iv), for any uncovered vertex, one edge is selected. This preserves optimality since if selecting an arc would cover two vertices instead of one, maximum matching algorithm would have selected it in the first place.

| $\int_{2}^{1} I_{1}^{1} I_{1} I_{2}$ | $\begin{aligned} & \stackrel{1}{1}_{2}^{2} I_{1} \\ & 2_{3}^{2} I_{2} \end{aligned}$ | $\begin{aligned} & \overbrace{(2)}^{(2)} I_{1} \\ & \overbrace{3} \\ & I_{2} \end{aligned}$ | $\begin{aligned} & \int_{2}^{1} I_{1} \\ & \underbrace{2}_{3} I_{2} \end{aligned}$ | $\begin{aligned} & \int_{3}^{1} I_{1} \\ & \int_{3} \\ & I_{2} \\ & I_{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $I_{4}$ (4) | $I_{4}$ (4) |  |  |  |
| Initial Problem | (i) CPU3 is eliminated | (ii) CPU4 is selected and removed | (iii) Initial <br> Solution of <br> Maximum <br> Matching | (iv) Final Solution |

Figure 4.3. Application of Proposed Algorithm for Two Products per Co-production Unit on an Example.

### 4.4. Main Product and By-Products

Consider a DCCP setting in which a common product is being produced in all CPUs. When demand data satisfies a specific condition (4.9), then it is possible to automatically satisfy the main product's demand by considering only by-products.

$$
\begin{equation*}
\sum_{m=1}^{t} d_{m}^{k} \leq \sum_{b \in J-\{k\}} \sum_{m=1}^{t} d_{m}^{b} \quad \forall t \in T \tag{4.9}
\end{equation*}
$$

In this special case, one DLSP is solved for each by-product, and the corresponding production amounts for by-products are optimal production quantities of corresponding CPUs in DCCP setting.

Let the common product $k \in J$ be called a "main product" satisfying $k \in$ $J(i), \forall i \in I$. In other words, a main product is a product that is produced by all CPUs. Let us further simplify this special case by allowing only $\left|J_{i}\right|=2$, and $\alpha_{i}^{j} \in\{0,1\}$. In this case, let $b \in J-\{k\}$ be by-products. Furthermore, assume that demand data satisfy the inequality (4.9).

Then, the demand for main product $k$ should be automatically satisfied when all by-products' demands are satisfied. Note that $|I|=|J|-1$. Let the last product in set $J$ be the main product $k$. The fixed and variable costs defined for each CPU can also be defined with respect to by-products $b \in J-\{k\}$ :

$$
\begin{array}{ll}
p_{t}^{j}=p_{t}^{i}, & \forall j \in J-\{k\} ; \\
f_{t}^{j}=f_{t}^{i}, & \forall j \in J-\{k\} . \tag{4.11}
\end{array}
$$

Note that ZIP holds for all $j \in J-\{k\}$. We give the objective function of this special case as:

$$
\begin{equation*}
\operatorname{minimize} \quad \sum_{t \in T}\left(\sum_{j \in J-\{k\}}\left(f_{t}^{j} y_{t}^{j}+p_{t}^{j} x_{t}^{j}+h_{t}^{j} s_{t}^{j}\right)+h_{t}^{k} s_{t}^{k}\right) . \tag{4.12}
\end{equation*}
$$

Inventory variables $s_{t}^{j}$ can be written in terms of production variables $x_{t}^{j}$ as:

$$
\begin{align*}
& s_{t}^{j}=\sum_{l=1}^{t}\left(x_{l}^{j}-d_{l}^{j}\right), \quad \forall j \in J-\{k\}, \forall t \in T ;  \tag{4.13}\\
& s_{t}^{k}=\sum_{j \in J-\{k\}}\left(\sum_{l=1}^{t} x_{l}^{j}-\sum_{l=1}^{t} d_{l}^{k}\right), \quad \forall t \in T . \tag{4.14}
\end{align*}
$$

The mathematical model without inventory variables is:

$$
\begin{align*}
& \operatorname{minimize} \quad \sum_{t \in T}\left(\sum_{j \in J-\{k\}}\left(f_{t}^{j} y_{t}^{j}+c_{t}^{j} x_{t}^{j}\right)-\sum_{j \in J} \sum_{l=1}^{t} h_{l}^{j} d_{l}^{j}\right)  \tag{4.15}\\
& \text { subject to }  \tag{4.16}\\
& x_{t}^{j} \leq d_{t T}^{j} y_{t}^{i}, \quad \forall t \in T, j \in J-\{k\} ; \\
& \sum_{t=1}^{T} x_{t}^{j}=d_{1 T}^{j}, \quad \forall j \in J-\{k\} ;  \tag{4.17}\\
& \sum_{l=1}^{t} x_{l}^{j} \geq d_{1 t}^{j}, \quad \forall t \in T, j \in J-\{k\} ;  \tag{4.18}\\
& x_{t}^{j} \geq 0, \quad \forall t \in T, j \in J-\{k\} ;  \tag{4.19}\\
& y_{t}^{j} \in\{0,1\}, \quad \forall t \in T, j \in J-\{k\} ; \tag{4.20}
\end{align*}
$$

where

$$
\begin{equation*}
c_{t}^{j}=p_{t}^{j}+\sum_{l=t}^{T}\left(h_{l}^{j}+h_{l}^{k}\right) \tag{4.21}
\end{equation*}
$$

Note that the constant term $\sum_{t \in T} \sum_{j \in J} \sum_{l=1}^{t} h_{l}^{j} d_{l}^{j}$ can be omitted in the objective function. As it can be seen from the model, this special case is separable by by-products $j \in J-\{k\}$. Then, it is possible to solve this problem by solving a DLSP for each by-product $b$. This problem can be solved by the recursion in Equation (4.5) using $c_{t}^{j}$ in Equation (4.21).

## 5. ALTERNATIVE MIP FORMULATIONS

In this chapter we develop alternative mixed integer programming formulations for DCCP. First, we reduce the number of variables of IP1 by representing inventory variables, $s_{t}^{j}$, in terms of production variables, $x_{i}^{t}$, and demand, $d_{j}^{t}$. We call the resulting formulation as IP2. Then, we propose more formulations, ELS1 and ELS2, based on simple plant location formulation of single item uncapacitated lot sizing (LS-U). We give the details of all formulations and show that they are equivalent in the sense that the feasible regions of their linear relaxations are equal.

### 5.1. Inventory Variable Free Formulation (IP2)

Inventory variables, $s_{t}^{j}$, can be written in terms of production variables and demand in Equation (5.1), where $I(j)$ is the set of co-production units that produce product $j$.

$$
\begin{equation*}
s_{t}^{j}=\sum_{k=1}^{t}\left(\sum_{i \in I(j)} x_{k}^{i} \alpha_{i}^{j}-d_{k}^{j}\right) \tag{5.1}
\end{equation*}
$$

Then, the objective function can be given as:

$$
\begin{equation*}
\sum_{t \in T}\left(\sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+p_{t}^{i} x_{t}^{i}\right)+\sum_{j \in J} h_{t}^{j} \sum_{k=1}^{t}\left(\sum_{i \in I(j)} x_{k}^{i} \alpha_{i}^{j}-d_{k}^{j}\right)\right) . \tag{5.2}
\end{equation*}
$$

Sets $I$ and $I(j)$ in Equation (5.2) can be merged since $\alpha_{i}^{j}=0$ for $i \notin I(j)$, and the constant term can be separated as shown in Equation (5.3):

$$
\begin{equation*}
\sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+p_{t}^{i} x_{t}^{i}+\sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} x_{k}^{i} \alpha_{i}^{j}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j} . \tag{5.3}
\end{equation*}
$$

Let us replace $J$ with $J(i)$ since $\alpha_{i}^{j}=0$ for $j \notin J(i)$ :

$$
\begin{equation*}
\sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+p_{t}^{i} x_{t}^{i}+\sum_{j \in J(i)} \sum_{k=1}^{t} h_{t}^{j} x_{k}^{i} \alpha_{i}^{j}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j} \tag{5.4}
\end{equation*}
$$

which then reduces to Equation (5.5), when $x_{t}^{i}$ and $x_{k}^{i}$ terms are merged together:

$$
\begin{equation*}
\sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j} \tag{5.5}
\end{equation*}
$$

where,

$$
\begin{equation*}
c_{t}^{i}=p_{t}^{i}+\sum_{j \in J(i)} \sum_{k=t}^{T} h_{k}^{j} \alpha_{i}^{j} . \tag{5.6}
\end{equation*}
$$

Finally, resulting formulation IP2 is given in Equations (5.7) - (5.11) where $d_{t k}^{j}$ is the cumulative demand of product $j$ between periods $t$ and $k$.

IP2: minimize $\sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j}$
subject to

$$
\begin{align*}
\sum_{k=1}^{t} \sum_{i \in I(j)} \alpha_{i}^{j} x_{k}^{i} \geq d_{1 t}^{j}, & \forall t \in T, j \in J  \tag{5.8}\\
x_{t}^{i} \leq \max _{j \in J(i)}\left\{\frac{d_{t T}}{\alpha_{i}^{j}}\right\} y_{t}^{i}, & \forall t \in T, i \in I  \tag{5.9}\\
x_{t}^{i} \geq 0, & \forall t \in T, i \in I  \tag{5.10}\\
y_{t}^{i} \in\{0,1\}, & \forall t \in T, i \in I
\end{align*}
$$

We note that IP2 formulation may improve solution times since it has fewer number of variables compared to IP1 formulation. However, the constraint matrix is denser than IP1, which may create computational difficulties.

### 5.2. Plant Location Formulation 1 (ELS1)

The simple plant location formulation of LS-U is given in [9], and it is shown by [26] that this formulation gives the convex hull of LS-U. We develop ELS1 formulation based on the simple plant location formulation of LS-U, in which production variables are disaggregated in terms of periods where produced items are consumed by demand. Let $\Theta_{j t t^{\prime}}$ continuous variables represent the production amount of product $j \in J$, that is produced in period $t \in T$ to be consumed in period $t^{\prime} \in T, t^{\prime} \geq t$. However, getting rid of $x_{t}^{i}$ variables does not appear to be possible, due to having production costs depend on the amount of CPUs produced, not products. Therefore, constraints (5.14) are needed to relate $\Theta_{j t t^{\prime}}$ variables to $x_{t}^{i}$ variables, and the demand satisfaction constraint is revised as in Equation (5.13). Other constraints and the objective function remain the same as that of IP2:

$$
\begin{align*}
& \text { ELS1: minimize } \sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j}  \tag{5.12}\\
& \text { subject to } \\
& \sum_{t \leq t^{\prime}} \Theta_{j t t^{\prime}}=d_{t^{\prime}}^{j}, \quad \forall t^{\prime} \in T, j \in J  \tag{5.13}\\
& \sum_{t^{\prime} \geq t} \Theta_{j t t^{\prime}} \leq \sum_{i \in I(j)} \alpha_{i}^{j} x_{t}^{i}, \quad \forall t \in T, j \in J  \tag{5.14}\\
& x_{t}^{i} \leq \max _{j \in J(i)}\left\{\frac{d_{t T}}{\alpha_{i}^{j}}\right\} y_{t}^{i}, \quad \forall t \in T, i \in I  \tag{5.15}\\
& x_{t}^{i} \geq 0, \quad \forall t \in T, i \in I  \tag{5.16}\\
& \Theta_{j t t^{\prime}} \geq 0, \quad \forall t, t^{\prime} \in T, j \in J  \tag{5.17}\\
& y_{t}^{i} \in\{0,1\}, \quad \forall t \in T, i \in I . \tag{5.18}
\end{align*}
$$

### 5.3. Plant Location Formulation 2 (ELS2)

We propose another formulation that is based on the simple plant location formulation of LS-U, called ELS2. In ELS2 formulation, production variables are not only disaggregated in terms of periods in which produced items are consumed by de-
mand, but also in terms of the CPU they are produced by. $\Theta_{j t t^{\prime}}$ variables of ELS1 are replaced by $\Theta_{t t}^{i j}$, which gives the amount of product $j$ produced using CPU $i$ in period $t$ to be consumed in period $t^{\prime}$, and necessary changes are applied to constraints (5.20)-(5.22). Note that ELS2 formulation has higher number of constraints and variables than ELS1 formulation due to Equation (5.21), and the disaggregation of $\Theta_{j t t^{\prime}}$ into $\Theta_{t t^{\prime}}^{i j}$, respectively. Then, the formulation can be given as:

$$
\begin{align*}
& \text { ELS2: minimize } \sum_{t \in T} \sum_{i \in I}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)-\sum_{t \in T} \sum_{j \in J} \sum_{k=1}^{t} h_{t}^{j} d_{k}^{j}  \tag{5.19}\\
& \text { subject to } \quad \sum_{i \in I(j)} \sum_{t \leq t^{\prime}} \Theta_{t t^{\prime}}^{i j}=d_{t^{\prime}}^{j}, \forall t^{\prime} \in T, j \in J \\
& \sum_{t^{\prime} \geq t} \Theta_{t t^{\prime}}^{i j} \leq \alpha_{i}^{j} x_{t}^{i}, \forall i \in I, t \in T, j \in J(i)  \tag{5.20}\\
& x_{t}^{i} \leq \max _{j \in J(i)}\left\{\frac{d_{t T}}{\alpha_{i}^{j}}\right\} y_{t}^{i}, \forall t \in T, i \in I  \tag{5.21}\\
& x_{t}^{i} \geq 0, \forall t \in T, i \in I  \tag{5.22}\\
& \Theta_{t t^{\prime}}^{i j} \geq 0, \forall t, t^{\prime} \in T, j \in J, i \in I  \tag{5.23}\\
& y_{t}^{i} \in\{0,1\}, \forall t \in T, i \in I . \tag{5.24}
\end{align*}
$$

### 5.4. Equivalence of Alternative Model Formulations

In order to show the equivalence of two linear mathematical models one can show any feasible solution of one model corresponds to some, also feasible, solution of the other model having the same objective value. This way one can be sure that feasible region of the first model is included in the feasible region of the second model. If the reverse also holds, then the models are said to be equivalent [27]. In this section, the equivalence will be shown explicitly between the linear relaxations of IP1 and IP2, IP2 and ELS1, ELS1 and ELS2.

The difference between IP1 and IP2 in constraints is the form of demand satisfaction constraints (3.6) and (5.8) respectively. Consider a feasible solution ( $\hat{x}, \hat{y}, \hat{s}$ )
of linear relaxation of IP1. Since initial inventories are zero, $s_{0}^{j}=0 \quad \forall j, \hat{x}$ satisfies Constraint (5.8) for $t=1$. For $t>1$, Constraints (5.8) can be obtained by summing up Constraints (3.6) from 1 to $t$. Therefore $\hat{x}$ satisfies (5.8), and $(\hat{x}, \hat{y})$ is a feasible solution to linear relaxation of IP2. Consider a feasible solution $(\bar{x}, \bar{y})$ of linear relaxation of IP2. Since (5.8) are summed up version of (3.6) from 1 to $t,(\bar{x}, \bar{y}, \bar{s})$ is feasible with respect to linear relaxation of IP1 where $\bar{s}$ is calculated with $(\bar{x}, \bar{y})$ using Equation (5.1). In Section 5.1, we show that both formulations have the same objective function. Therefore linear relaxations of the formulations IP1 and IP2 are equal.

Let us show the equivalence between linear relaxations of IP2 and ELS1. Consider constraints of the form (5.9) and (5.15). For a given feasible solution $(x, y)$ of any of the models, the other model is also feasible with respect to (5.9) and (5.15). Let $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}, \hat{\Theta}_{j t t^{\prime}}\right)$ be a feasible solution of relaxed ELS1 formulation. Then, constraints (5.13) should hold for $\hat{\Theta}_{j t t^{\prime}}$. Constraints (5.26) are summed up versions of constraints (5.13) from 1 to $t$. We get Equation (5.27) when indices of two summations are switched:

$$
\begin{gather*}
\sum_{z=1}^{t} \sum_{k=1}^{z} \hat{\Theta}_{j k z}=\sum_{z=1}^{t} d_{z}^{j}, \quad \forall t \in T, j \in J  \tag{5.26}\\
\sum_{k=1}^{t} \sum_{z=k}^{t} \hat{\Theta}_{j k z}=d_{1 t}^{j}, \quad \forall t \in T, j \in J \tag{5.27}
\end{gather*}
$$

Constraints (5.14) should also hold for any feasible solution. Equation (5.28) is found when Constraints (5.14) are summed up from 1 to $t$. Equation (5.29) is the combination of Equations (5.27) and (5.28). Using Equation (5.29) we can conclude that $\hat{x}$ satisfy constraints (5.8); and hence, $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}\right)$ is feasible with respect to relaxed IP2 formulation. Their objective values are the same since both formulations share the same objective function.

$$
\begin{align*}
\sum_{k=1}^{t} \sum_{z=k}^{T} \hat{\Theta}_{j k z} \leq \sum_{k=1}^{t} \sum_{i \in I(j)} \alpha_{i}^{j} \hat{x}_{k}^{i}, \quad \forall t \in T, j \in J  \tag{5.28}\\
d_{1 t}^{j}=\sum_{k=1}^{t} \sum_{z=k}^{t} \hat{\Theta}_{j k z} \leq \sum_{k=1}^{t} \sum_{z=k}^{T} \hat{\Theta}_{j k z} \leq \sum_{k=1}^{t} \sum_{i \in I(j)} \alpha_{i}^{j} \hat{x}_{k}^{i}, \quad \forall t \in T, j \in J . \tag{5.29}
\end{align*}
$$

Now, let $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}\right)$ be a solution of relaxed IP2 formulation. Unfortunately, reverse mapping of $x_{t}^{i}$ variables of IP2 formulation into $\Theta_{j t t^{\prime}}$ variables of ELS1 formulation is not unique. This is due to the fact that some production is done not to satisfy demand but they are produced mandatorily due to co-production nature of the production environment. Since $\Theta_{j t t^{\prime}}$ variables only represent consumed production and there may be excess production, it is possible to shift production-consumption assignment in terms of $\Theta_{j t t^{\prime}}$ variables around. Therefore, using a simple first-in-first-out (FIFO) rule, it is possible to map any $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}\right)$ solution of relaxed IP2 formulation to a $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}, \hat{\Theta}_{j t t^{\prime}}\right)$ solution of relaxed ELS1 formulation. The proposed algorithm is shown in Figure 5.1.

Equivalence between linear relaxations of ELS1 and ELS2 follows from the relation between $\Theta_{j t t^{\prime}}$ and $\Theta_{t t^{\prime}}^{i j}$ variables. $\Theta_{t t^{\prime}}^{i j}$ variables are CPU disaggregated version of $\Theta_{j t t^{\prime}}$ variables. Let $\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}, \hat{\Theta}_{t t^{\prime}}^{i j}\right)$ be a solution to ELS2 formulation. Then by setting $\hat{\Theta}_{j t t^{\prime}}=\sum_{i \in I} \hat{\Theta}_{t t^{\prime}}^{i j},\left(\hat{x}_{t}^{i}, \hat{y}_{t}^{i}, \hat{\Theta}_{j t t^{\prime}}\right)$ will be a solution to ELS1 formulation. Let $\left(\bar{x}_{t}^{i}, \bar{y}_{t}^{i}, \bar{\Theta}_{j t t^{\prime}}\right)$ be a solution to ELS1 formulation. We need to map $\bar{\Theta}_{t t^{\prime}}^{i j}$ arbitrarily from $\bar{\Theta}_{j t t^{\prime}}$ variables, and this mapping is not unique. This mapping can be done with an algorithm similar to the one given in Figure 5.1.

We have shown that the feasible regions of relaxed IP1 and IP2 formulations, IP2 and ELS1 formulations, and ELS1 and ELS2 formulations are equal. Therefore, the feasible regions of all proposed models' linear relaxations are equal.

```
for Each product \(j \in J\) do
    Make copy of demand vector \(d_{t}^{j}\) into \(D_{t}\) for all \(t \in T\)
    Make copy of production vector \(\sum_{i \in I(j)} x_{t}^{i} \alpha_{i}^{j}\) into \(P_{t}\) for all \(t \in T\)
    for Each period \(t \in T\) do
        for \(p \in\{1, \ldots, T\}\) do
            if \(P_{p}>D_{t}\) then
                    \(\Theta_{j p t}=D_{t}\)
                    \(P_{p}=P_{p}-D_{t}\)
            break
            else
                    \(\Theta_{j p t}=P_{p}\)
                    \(D_{t}=D_{t}-P_{p}\)
            end if
        end for
    end for
end for
```

Figure 5.1. Algorithm for mapping $\hat{\Theta}_{j t t^{\prime}}$ from $\hat{x}_{t}^{i}$ using FIFO.

## 6. MODEL IMPROVEMENTS

In this chapter we first give valid inequalities that improve the lower bound obtained from linear relaxation of the model. Then, we provide two heuristics in order to improve the solution times.

### 6.1. Valid Inequalities

Valid inequalities, in general, improve the solution time required to solve integer programing formulations by narrowing the solution space. Although valid inequalities are not necessary to define the problem, they are satisfied for any feasible solution. Therefore, they could be violated by some fractional solutions of a branch and bound tree but they never eliminate any integer feasible solution. However, in some cases there exists exponential number of valid inequalities with respect to the problem size. This makes it inefficient to include all valid inequalities in the formulation. Hence, it is computationally more efficient to add valid inequalities that are violated by the fractional solution of the node relaxation during the branch and bound search in order to improve the lower bound.

Pochet and Wolsey [28] give Proposition 6.1 and Theorem 6.2 for the classical uncapacitated lot sizing problem LS-U.

Proposition 6.1. Let $l \in T, L=\{1, \ldots, l\}$ and $S \subseteq L$, then the $(l, S)$ inequality

$$
\begin{equation*}
\sum_{q \in S} x_{q} \leq \sum_{q \in S} d_{q} y_{q}+s_{l} \tag{6.1}
\end{equation*}
$$

is valid for $X^{L S-U}$.

Theorem 6.2. Inequalities of the form (6.1), which are exponentially many, give complete description of $\operatorname{conv}\left(X^{L S-U}\right)$. Proof is in [28].

By using inequalities (6.1), we develop valid inequalities given by Equation (6.2) for our problem. We prove that these inequalities are valid for DCCP in Proposition 6.3.

Proposition 6.3. Let $l \in T, L=\{1, \ldots, l\}, S \subseteq L$, and $j \in J$ then the $(l, S, j)$ inequality

$$
\begin{equation*}
\sum_{i \in I(j)} \sum_{q \in S} x_{q}^{i} \alpha_{i}^{j} \leq \sum_{q \in S} d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i}\right)+s_{l}^{j} \tag{6.2}
\end{equation*}
$$

is valid for $X^{D C C P}$.

Proof. Consider a point $(s, y) \in X^{D C C P}$. If $\sum_{q \in S} \sum_{i \in I(j)} y_{q}^{i}=0$, then as $\sum_{i \in I(j)} \sum_{q \in S} x_{q}^{i}=0, s_{l}^{j} \geq 0$, the equality is satisfied. Otherwise let $t=\min \{q \in$ $\left.S: \sum_{i \in I(j)} y_{q}^{i}>0\right\}$. Then consider the following:

$$
\begin{equation*}
\sum_{i \in I(j)} \sum_{q \in S} x_{q}^{i} \alpha_{i}^{j} \leq \sum_{i \in I(j)} \sum_{q=t}^{l} x_{q}^{i} \alpha_{i}^{j} \leq d_{t l}^{j}+s_{l}^{j} \leq \sum_{q \in S} d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i}\right)+s_{l}^{j} \tag{6.3}
\end{equation*}
$$

First part of the inequality (6.3) follows from non-negativity of $x_{q}^{i} \alpha_{i}^{j}$ terms and the definition of subset $S$ and time index $t$. The second part follows from flow conservation equations. Finally, the last part holds using $\sum_{i \in I(j)} y_{t}^{i} \geq 1$ and the non-negativity of $y_{t}^{i}$.

Remark. Inequalities of the form (6.2), does not give complete description of $\operatorname{conv}\left(X^{D C C P}\right)$.

Equation (6.4) is valid for DCCP because of inventory flow constraints, where $l \in T, L=\{1, \ldots, l\}, S \subseteq L$.

$$
\begin{equation*}
\sum_{i \in I(j)} \sum_{q \in L} x_{q}^{i} \alpha_{i}^{j}=d_{1 l}^{j}+s_{l}^{j} \tag{6.4}
\end{equation*}
$$

By using Equation (6.4) and Inequality (6.2), we obtain Inequality (6.5).

$$
\begin{equation*}
\sum_{i \in I(j)} \sum_{q \in L \backslash S} x_{q}^{i} \alpha_{i}^{j}+\sum_{q \in S} d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i}\right) \geq d_{1 l}^{j} \tag{6.5}
\end{equation*}
$$

Note that valid inequalities of the form (6.5) are exponentially many. However, they can be separated by inspection using the algorithm given in Figure 6.1. A straightforward application of the algorithm leads to $\mathrm{O}\left(n^{2}\right)$ complexity whereas $\mathrm{O}(n \log (n))$ is doable by adapting improvement proposed in [28]. Assume a fractional solution $\left(x_{q}^{i *}, y_{q}^{i *}\right)$ to apply separation algorithm given in Figure 6.1. Note that this separation is perfect, i.e. the algorithm finds all violated valid inequalities for a given solution.

```
for Each product \(j \in J\) do
    for \(l=1, \ldots, T\) do
        Calculate \(D_{l}^{j}=\sum_{q=1}^{l} \min \left\{\sum_{i \in I(j)} x_{q}^{i *} \alpha_{i}^{j}, d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i *}\right)\right\}\)
        if \(D_{l}^{j}<d_{1 l}^{j}\) then
            return \(j, L=\{1, \ldots, l\}, S=\left\{q \in L: \sum_{i \in I(j)} x_{q}^{i *} \alpha_{i}^{j}>d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i *}\right)\right\}\)
        end if
    end for
end for
```

Figure 6.1. Algorithm for $(l, S, j)$ Separation.

Inequalities of the form (6.2) and (6.5) are not very tight when more than one CPU produces an item in a period due to term $\sum_{i \in I(j)} y_{q}^{i}$. Let us define a new binary variable called $z_{j}^{t}$ to facilitate production of product $j$ in period $t$. Additional constraints to be added to the model are (6.6) and (6.7):

$$
\begin{align*}
y_{t}^{i} \leq z_{j}^{t} & \forall j \in J, i \in I(j), t \in T  \tag{6.6}\\
\sum_{i \in I(j)} y_{t}^{i} \geq z_{j}^{t} & \forall j \in J, t \in T \tag{6.7}
\end{align*}
$$

Then, replacing $\sum_{i \in I(j)} y_{q}^{i}$ in (6.2) with $z_{j}^{q}$ results in inequalities (6.8), which can be transformed into (6.9) using (6.4):

$$
\begin{gather*}
\sum_{i \in I(j)} \sum_{q \in S} x_{q}^{i} \alpha_{i}^{j} \leq \sum_{q \in S} d_{q l}^{j} z_{j}^{q}+s_{l}^{j}  \tag{6.8}\\
\sum_{i \in I(j)} \sum_{q \in L \backslash S} x_{q}^{i} \alpha_{i}^{j}+\sum_{q \in S} d_{q l}^{j} z_{j}^{q} \geq d_{1 l}^{j} . \tag{6.9}
\end{gather*}
$$

Then, $z_{j}^{q}$ transformed $(l, S, j)$ separation algorithm is shown in Figure 6.2 for a solution $\left(x_{q}^{i *}, z_{j}^{q *}\right)$.

```
for Each product \(j \in J\) do
    for \(l=1, \ldots, T\) do
            Calculate \(D_{l}^{j}=\sum_{q=1}^{l} \min \left\{\sum_{i \in I(j)} x_{q}^{i *} \alpha_{i}^{j}, d_{q l}^{j} z_{j}^{q *}\right\}\)
            if \(D_{l}^{j}<d_{1 l}^{j}\) then
            return \(j, L=\{1, \ldots, l\}, S=\left\{q \in L: \sum_{i \in I(j)} x_{q}^{i *} \alpha_{i}^{j}>d_{q l}^{j} l_{j}^{q^{*}}\right\}\)
            end if
        end for
end for
```

Figure 6.2. Algorithm for $(l, S, j)$ Separation using $z_{j}^{q}$ variables.

### 6.1.1. Valid Inequalities for Alternative Model Formulations

Valid inequalities described in this chapter can be applied to ELS1 and ELS2 formulations using the same logic as follows:

$$
\begin{align*}
\sum_{q \in L \backslash S} \sum_{t^{\prime} \geq q} \Theta_{j q t^{\prime}}+\sum_{q \in S} d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i}\right) & \geq d_{1 l}^{j},  \tag{6.10}\\
\sum_{q \in L \backslash S} \sum_{t^{\prime} \geq q} \sum_{i \in I(j)} \Theta_{q t^{\prime}}^{i j}+\sum_{q \in S} d_{q l}^{j}\left(\sum_{i \in I(j)} y_{q}^{i}\right) & \geq d_{1 l}^{j} . \tag{6.11}
\end{align*}
$$

The idea used in writing Inequalities (6.6) and (6.7) can also be applied to Equation (6.10) and (6.11), converting them into (6.12) and (6.13) for ELS1 and ELS2, respectively:

$$
\begin{array}{r}
\sum_{q \in L \backslash S} \sum_{t^{\prime} \geq q} \Theta_{j q t^{\prime}}+\sum_{q \in S} d_{q l}^{j} z_{j}^{q} \geq d_{1 l}^{j}, \\
\sum_{q \in L \backslash S} \sum_{t^{\prime} \geq q} \sum_{i \in I(j)} \Theta_{q t^{\prime}}^{i j}+\sum_{q \in S} d_{q l}^{j} z_{j}^{q} \geq d_{1 l}^{j} . \tag{6.13}
\end{array}
$$

Inequalities (6.12) and (6.13) are tighter than the original valid inequalities due to constraints (5.14) and (5.21) for ELS1 and ELS2, respectively.

### 6.2. Heuristics

Branch and bound algorithm ( $B \& B$ ) is a structural way of searching integer feasible solution space by constructing a tree of possible solutions. B\&B is faster than explicit enumeration since it is possible to prune some branches of $B \& B$ tree using the global lower and upper bound information available. So far, we have investigated how to improve lower bounds using valid inequalities in Section 6.1. In this section we discuss two heuristics that we develop for DCCP.

Heuristics can be used to give initial solutions to B\&B or to create feasible solutions from fractional node relaxation solutions of branch and bound tree. First heuristic we discuss is named as Pattern Fitting heuristic. Its sole purpose is to provide an initial solution to $\mathrm{B} \& \mathrm{~B}$. The second heuristic is named as CPWW (Co-Production Wagner Whitin), which can create many feasible solutions from a fractional node relaxation solution. Both of these heuristics will be discussed in detail in their respective sections.

### 6.2.1. Pattern Fitting Heuristic

A pattern fitting heuristic is developed in order to give an initial solution to the commercial solver. Product coverage of a CPU is defined for this heuristic as

```
Initialize \(R_{j}, C_{j}, X_{i t}, Y_{i t}, S_{j t}=0\), minratio \(=\infty\)
for Period \(t \in T\) do
    for Product \(j \in J\) do
        \(R_{j}=R_{j}+d_{t}^{j}\)
    end for
    if \(R_{j} \leq 0\) then
        \(C_{j}=1\)
    else
        \(C_{j}=0\)
    end if
    while \(C_{j}=0 \quad \exists j \in J\) do
        for \(\operatorname{CPU} i \in I\) do
            for Product \(j \in J(i)\) do
                ratio \(=R_{j} / \alpha_{i}^{j}\)
                if ratio \(>X_{i t}\) then
                    \(X_{i t}=\) ratio
            end if
            end for
            for Product \(j \in J(i)\) do
                    \(S_{j t}=X_{i t} * \alpha_{i}^{j}-R_{j}\)
            end for
            Define \(J^{\prime}(i)=\left\{j \quad \mid \quad R_{j}>0, j \in J(i)\right\}\)
            if \(J^{\prime}(i) \neq \emptyset\) then
                    \(C T C R=\left\{f_{i}^{t}+X_{i t} * p_{i}^{t}+\sum_{j \in J(i)} h_{j}^{t} * S_{j t}\right\} /\left|J^{\prime}(i)\right|\)
            end if
            if \(C T C R<\) minratio then
                    minratio \(=C T C R\)
            CPUindex \(=i\)
            end if
        end for
        if CPUindex \(\geq 0\) then
            \(Y_{i t}=1\)
            for Product \(j \in J(i)\) do
                    \(C_{j}=1\)
                    \(R_{j}=R_{j}-X_{\text {CPUindex,t }} * \alpha_{\text {CPUindex }}^{j}\)
            end for
        end if
    end while
end for
return \(X_{i t}, Y_{i t}, S_{j t}\)
```

Figure 6.3. Pattern Fitting Heuristic.
the number of products that CPU can produce, which have uncovered demand in considered period $t$. Our heuristic works as follows: starting from the first period, the algorithm tries to cover all demand. The CPU, which has the lowest cost to product coverage ratio is selected and that CPU is produced at an amount that covers all demand of products that CPU is producing. Those products are marked as covered, and the algorithm selects the next CPU with minimum cost to product coverage ratio until all products are covered for first period. Then, the excess production is reduced from demand for the next period and the algorithm continues for period 2 , and so on to the last period. This algorithm is given in Figure 6.3.

### 6.2.2. Co-Production Wagner Whitin Heuristic (CPWW)

One can continuously improve the upper bound of B\&B search by creating good integer feasible solutions from fractional node relaxation solutions. Co-Production Wagner Whitin Heuristic (CPWW) is developed in order to create feasible solutions from fractional node relaxation solutions of branch and bound tree. CPWW can create many feasible solutions from a fractional node relaxation solution due to randomness of the ordering of the products considered.

This heuristic works as follows: given a fractional solution vector of $y_{i}^{t}$, each product is considered in a random order. For each period, the product considered is assigned to a CPU from its available CPUs. In this assignment, the CPU that has the highest $y_{i}^{t}$ value is selected. The assumption is if any CPU has higher $y_{i}^{t}$ value in a fractional solution, then it has higher likelihood to appear in an optimal solution. Next, Wagner - Whitin algorithm is called for the product considered, considering selected CPU's cost parameters as if it was a single product having demand $d_{j}^{t} / \alpha_{i}^{j}$. Note that different CPUs can be selected for different periods for the same product. Production amounts of other co-produced products are then reflected in the demand matrix, and the algorithm continues until every product is considered. The algorithm is given in Figure 6.4.

```
Given fractional solution \(y_{i}^{t}\)
for Product \(j \in J(i)\) in random order do
    for CPU \(i \in I(j)\) do
        temp \(=0\)
        for Period \(t \in T\) do
            if \(y_{i}^{t}>\) temp then
            temp \(=y_{i}^{t}\)
            SelectedCPUs \((t)=i\)
            end if
        end for
        Apply Wagner - Whitin Algorithm using costs of SelectedCPUs for each
        period and demand matrix.
        Reflect production of other co-produced products in demand matrix
    end for
end for
```

Figure 6.4. Co-Production Wagner Whitin Heuristic.

## 7. COMPUTATIONAL EXPERIMENTS AND RESULTS

Computational experiments are done on 4 problem sets, each having 10 instances. Time limit is set to 20 minutes per instance for all tests. We implement the models and algorithms in C++ programming language and we use IBM CPLEX 12.8 in 64 bit mode for MIP solutions. Benchmark tests are performed on an Intel Core i7-3820 3.6 GHz machine with 32 GB RAM and 10 MB cache, running Windows 10 operating system.

### 7.1. Data Generation Process

There is no available data library that we can directly use in the deliberated co-production in dynamic deterministic lot sizing literature. Therefore, we generate random data sets for experimentation. We use the data generation process used by [29] to generate a production planning problem where applicable. The procedure described in [29] has 20 products across three product families as shown in Table 7.1. Each product has a lower and an upper bound on demand for each period to be determined using uniform distribution. When more than 20 products are present in an instance, mod operation is used to determine the family of a product. For example, product 21 belongs to the first family whereas, product 26 belongs to the second product family. Holding costs and bounds on fixed costs used by [29] are given in Table 7.2. Variable costs given in Table 7.2, however, do not exist in the context of [29]. Values of 10, 15, and 20 are taken as variable costs for product families 1, 2, and 3 respectively.

Table 7.1. Product Families and Demand Data Used in Experimentation.

| Family | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Demand LB | 20 | 40 | 15 | 25 | 80 | 80 | 15 | 40 | 40 | 55 | 20 | 20 | 30 | 30 | 20 | 30 | 30 | 50 | 60 | 40 |
| Demand UB | 40 | 60 | 25 | 65 | 120 | 120 | 25 | 60 | 60 | 85 | 40 | 40 | 50 | 50 | 40 | 70 | 50 | 100 | 90 | 80 |

We create co-production units randomly while ensuring that each product is a part of at least one CPU to ensure feasibility. A parameter named density is used to determine the number of products inside each CPU. Each CPU can produce at least two, and at most density many products.

Table 7.2. Holding Cost, Fixed Cost, and Variable Cost Used in Experimentation.

| Product <br> Family | Holding <br> Cost | Fixed Cost <br> LB | Fixed Cost <br> UB | Variable <br> Cost |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 50 | 150 | 10 |
| 2 | 1.75 | 100 | 200 | 15 |
| 3 | 1.5 | 100 | 200 | 20 |

The fixed cost of a CPU is determined by taking $\% 75$ of the sum of the fixed costs of products that CPU includes. Similarly, the variable cost of a CPU is taken as $\% 90$ of the sum of the variable costs of its products. Problem sets used are summarized in Table 7.3.

Table 7.3. Problem Set Descriptions.

|  | Period | Product | CPU | Density |
| :--- | :---: | :---: | :---: | :---: |
| Problem Set 1 | 24 | 40 | 200 | 3 |
| Problem Set 2 | 24 | 40 | 200 | 6 |
| Problem Set 3 | 36 | 40 | 200 | 3 |
| Problem Set 4 | 36 | 40 | 200 | 6 |

### 7.2. Comparison of Alternative Model Formulations

CPLEX parameter settings used for experimentation are in Table 7.4. At this stage of tests, all four model formulations are tested without any model improvements in all problem sets. Summarized results can be seen in Table 7.5. Columns of the Table 7.5 given from the left to right are as follows: Average time spent in the $B \& B$ algorithm in seconds excluding the time spent in node zero, average optimality gap,
average number of processed nodes of $B \& B$ tree, number of best solutions found per test instance. The reader may refer to Tables A.1-A. 4 for extensive results.

Table 7.4. CPLEX Parameter Settings.

| Timelimit | 1200 |
| :--- | :---: |
| Threads | 8 |
| MIPGap | 0 |

IP1 formulation bests all other formulations in terms of average gap, and provides the best feasible solution at the end of the time limit in 31 of 40 test instances. IP2 performs worse than IP1 in the number of best solutions found and the average gap in all three problem sets. Computational difficulties arising from the denser constraint matrix of IP2 outweighs the possible benefits arising from fewer number of variables compared to IP1.

Table 7.5. Summary of Results for Alternative Model Formulations.

|  | Time Spent in B\&B |  |  |  | \% Gap |  |  |  | Processed Nodes |  |  |  | \# Best Sol. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Set | IP1 | IP2 | ELS1 | ELS2 | IP1 | IP2 | ELS1 | ELS2 | IP1 | IP2 | ELS1 | ELS2 | IP1 | IP2 | ELS1 | ELS2 |
| Problem Set 1 | 749.07 | 63.83 | 71.14 | 369.39 | 9.65 | 13.39 | 11.11 | 19.13 | 604 | 9 | 0 | 2 | 6 | 2 | 2 | 0 |
| Problem Set 2 | 0.04 | 0.06 | 0.05 | 0.06 | 18.21 | 25.55 | 26.93 | 38.11 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 |
| Problem Set 3 | 6.58 | 0.12 | 0.06 | 0.09 | 11.07 | 20.77 | 14.80 | 24.92 | 0 | 0 | 0 | 0 | 7 | 2 | 1 | 0 |
| Problem Set 4 | 0.04 | 0.14 | 0.05 | 0.09 | 22.72 | 37.71 | 32.13 | 47.64 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 |

In 20 minutes time limit, except IP1 formulation in problem set 1 , most of the instances resulted in zero or very small number of branch and bound nodes processed. CPLEX was unable to finish processing node zero in order to start processing other nodes of the branch and bound tree.

It is interesting to note that, although IP2 formulation has a higher number of best solution found than ELS1, the latter has smaller average gap than IP2 except in problem set 2. Note that all formulations have the same linear relaxation objective value (RlxObj column of Tables A.1-A.4) as shown theoretically in Section 5.4.

ELS2 formulation performs the worst, and gives the highest average gap values for all four problem sets. Notice that ELS2 formulation has the highest number of constraints for any given problem instance due to the constraints of the form (5.21). As density parameter increases from 3 to 6, only the number of constraints for ELS2 increases due to constraint (5.21), which in turn greatly increases the problem size for ELS2 formulation resulting in the worst performance.

As a conclusion of this step, IP1 formulation outperforms IP2 and ELS2 has the worst performance. Therefore, results of formulations IP2 and ELS2 will not be shown in upcoming stages of experimentations.

### 7.3. Comparison of Valid Inequalities in IP1 and ELS1 Formulations

In this section effects of adding valid inequalities by using the separation algorithm given in Section 6.1 to IP1 and ELS1 formulations with and without $z_{j}^{t}$ variables, as given in Section 6.1, will be discussed. This experimentation will be based on LP relaxations of these formulations. We repeatedly solve LP relaxation of a model and add violated valid inequalities as needed. Algorithms for separating valid inequalities from a given fractional solution is given in Figure 6.1 and Figure 6.2 for separating without $z_{j}^{t}$ and with $z_{j}^{t}$ variables, respectively. Implementing these algorithms directly caused some problems. For example, if a valid inequality that is violated by only a small amount is added to the formulation, CPLEX may not register it as a violated constraint due to numerical tolerances of CPLEX. This results in an infinite loop in some problem instances. Therefore, we restrict ourself to add valid inequalities that are violated by a specified value, called epsilon, to register as violated valid inequalities. Upon preliminary experimentation it is observed that the value of epsilon does not matter as long as it is not close to zero. Hence the value of epsilon is set to 20 for all runs with valid inequalities.

Another problem that we experienced while adding valid inequalities is there is no mechanism to stop generating valid inequalities when they no longer improve
current lower bound. In order to remedy this problem, we stop searching for valid inequalities when the percentage increase in the lower bound as a result of adding valid inequalities is less than 0.5 . We set the root algorithm parameter of CPLEX to dual simplex for this part of experimentation. We provide a summary of results in Table 7.6. Columns of Table 7.6 include: Average time spent in seconds generating valid inequalities, average increase in the lower bound compared to LP relaxation, average \% gap between new lower bound and the best integer feasible solution obtained in Section 7.2, average number of original constraints, and average number of added valid inequalities. Detailed results are given in Appendix section A.2.

In Section 6.1, where valid inequalities for DCCP are proposed, we note that with an additional variable referred as $z_{j}^{t}$, proposed valid inequalities in fact generate tighter relaxations. We see higher number of valid inequalities added to the models for $z_{j}^{t}$ variations due to higher number of valid inequalities cutting any given fractional solution. However, as we see in the second column of Table 7.6, the average increase in the lower bound of linear relaxation of the problem does not always increase with the addition of $z_{j}^{t}$ variables to the models IP1 and ELS1. On the contrary, adding $z_{j}^{t}$ variables reduces the increase of lower bound of linear relaxation for IP1 despite an increase in the average number of valid inequalities. Additionally, the time required to create valid inequalities also increases with the addition of $z_{j}^{t}$ variables to IP1 formulation. For ELS1 model, $z_{j}^{t}$ variables increase the average percent increase in LP lower bound for problem sets 1 and 2 by 0.03 and 0.01 , respectively, and reduced by 0.05 and 0.09 for problem sets 3 and 4 , respectively.

The average number of constraints in the model increases approximately 4 times with additional $z_{j}^{t}$ variables for both IP1 and ELS1 formulations for all problem sets. This increase in the constraint number is higher in problem sets 2 and 4, where density parameter is higher than that of problem sets 1 and 3 . This will be a major drawback for using additional $z_{j}^{t}$ variables when solving corresponding IP's to optimality due to increased model size.
Table 7.6. Summary of Results for Valid Inequalities.

|  | Avg. Time Spent |  |  |  | Avg. Increase \% in LP LB |  |  |  | Avg. \% Gap with Best Soln. |  |  |  | Avg. Number of Constraints |  |  |  | Avg. Number of Valid Ineq. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Set | IP1 | IP1Z | ELS1 | ELS1Z | IP1 | IP1Z | ELS1 | ELS1Z | IP1 | IP1Z | ELS1 | ELS1Z | IP1 | IP1Z | ELS1 | ELS1Z | IP1 | IP1Z | ELS1 | ELS1Z |
| Problem Set 1 | 49.74 | 75.83 | 50.53 | 41.08 | 24.21 | 23.87 | 24.21 | 24.24 | 21.48 | 21.82 | 21.48 | 21.45 | 5760 | 18708 | 6720 | 19668 | 11925 | 13298 | 26329 | 11952 |
| Problem Set 2 | 118.22 | 209.27 | 99.45 | 96.15 | 22.96 | 21.46 | 22.96 | 22.97 | 37.10 | 38.79 | 37.10 | 37.09 | 5760 | 26028 | 6720 | 26988 | 12426 | 14620 | 27177 | 11955 |
| Problem Set 3 | 240.58 | 423.60 | 272.91 | 461.05 | 23.69 | 22.93 | 23.75 | 23.70 | 24.34 | 25.12 | 24.29 | 24.33 | 8640 | 28062 | 10080 | 29502 | 11924 | 28543 | 26322 | 26325 |
| Problem Set 4 | 563.27 | 568.24 | 485.82 | 693.06 | 20.95 | 15.22 | 20.89 | 20.80 | 46.09 | 53.74 | 46.17 | 46.29 | 8640 | 39042 | 10080 | 40482 | 11917 | 23481 | 26250 | 25508 |

Valid inequalities generated using LP relaxations of formulations IP1 and ELS1 perform similarly in average increase in LP lower bound and average time spent. However, IP1 achieves the same level of lower bound increase with fewer number of valid inequalities compared to ELS1 formulation. Therefore, valid inequalities generated using LP relaxation of IP1 formulation are more efficient compared to that of ELS1 formulation.

In summary, additional $z_{j}^{t}$ variables are not justifiable with a small percentage of lower bound increase in LP relaxation in some of the problem sets, while introducing a very large number of constraints to both formulations. Additionally, IP1 formulation has the same increase in LP lower bound with ELS1 formulation and this increase is achieved with lesser number of valid inequalities. Therefore, only IP1 formulation and valid inequalities without $z_{j}^{t}$ variables will be considered in upcoming stages of experimentations.

### 7.4. Results of Heuristics

In this section, IP1 formulation is tested using four different setting and compared to the original MIP implementation. In the first setting, valid inequalities are implemented in IP1 using callback structure of CPLEX. In the second setting, the pattern fitting heuristic to generate initial solution is added to the IP1. Next, valid inequalities are tested together with pattern fitting heuristic. Lastly, CPWW is also added to IP1 together with valid inequalities and pattern fitting heuristic. Results are provided in Table 7.7. Columns of Table 7.7 from left to right show: Average amount of time spent in seconds in pattern fitting heuristic, average objective function value of the solution generated using pattern fitting heuristic, average amount of time spent in seconds in node 0 of $B \& B$ tree, average amount of time spent in the $B \& B$ algorithm in seconds excluding the time spent in node zero, average \% optimality gap, average number of $\mathrm{B} \& \mathrm{~B}$ nodes considered, number of best solutions found per test instance, average number of valid inequalities generated, average number of times CPLEX callback is called.
Table 7.7. Summary of Results for IP1 in Different Settings.

| Problem Set | Valid Inequalities | PatternFitting | CPWW | InitHeurTime | InitHeurObj | Node0Time | B\&BTime | \% Gap | Nnodes | \# Best Sol. | Ncuts | Ncallback |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem Set 1 | - | - | - | - | - | 450.9 | 749.1 | 9.65 | 604 | 0 | - | - |
|  | + | - | - | - | - | 500.2 | 699.9 | 9.30 | 449 | 0 | 2649 | 851 |
|  | - | + | - | 0.0 | 1270611 | 497.2 | 702.8 | 8.91 | 549 | 4 | - | - |
|  | + | + | - | 0.0 | 1270611 | 533.9 | 666.1 | 8.64 | 422 | 4 | 2669 | 814 |
|  | + | + | + | 0.0 | 1270611 | 603.6 | 597.3 | 8.64 | 243 | 2 | 3062 | 435 |
| Problem Set 2 | - | - | - | - | - | 1205.1 | 0.0 | 18.21 | 0 | 1 | - | - |
|  | + | - | - | - | - | 1204.6 | 0.0 | 18.27 | 0 | 1 | 1834 | 17 |
|  | - | + | - | 0.0 | 1674308 | 1176.0 | 27.6 | 15.15 | 0 | 0 | - | - |
|  | + | + | - | 0.0 | 1674308 | 1203.6 | 0.0 | 15.44 | 0 | 5 | 1845 | 17 |
|  | + | + | + | 0.0 | 1674308 | 1204.0 | 0.0 | 15.44 | 0 | 3 | 2164 | 15 |
| Problem Set 3 | - | - | - | - |  | 1193.9 | 6.6 | 11.07 | 0 | 1 | - | - |
|  | + | - | - | - | - | 1200.4 | 0.0 | 10.82 |  | 1 | 4001 | 13 |
|  | - | + | - | 0.0 | 1931058 | 1199.6 | 0.8 | 9.76 | 0 | 4 | - | - |
|  | + | + | - | 0.0 | 1931058 | 1200.5 | 0.0 | 9.96 | 0 | 3 | 4023 | 14 |
|  | + | + | + | 0.0 | 1931058 | 1200.7 | 0.0 | 10.07 | 0 | 1 | 4565 | 12 |
| Problem Set 4 | - | - | - | - | - | 1202.9 | 0.0 | 22.72 | 0 | 0 | - | - |
|  | + | - | - | - | - | 1203.0 | 0.0 | 24.12 | 0 | 0 | 2967 | 7 |
|  | - | + | - | 0.0 | 2635466 | 1203.0 | 0.0 | 18.62 | 0 | 3 | - | - |
|  | + | + | - | 0.0 | 2635466 | 1204.1 | 0.0 | 19.14 | 0 | 6 | 3058 | 7 |
|  | + | + | + | 0.0 | 2635466 | 1202.9 | 0.1 | 19.50 | 0 | 1 | 3304 | 7 |

We observe that callback implemented valid inequalities alone reduces the average percent gap only in small density problem sets, sets 1 and 3 , compared to base IP1 formulation. In high density problem sets, sets 2 and 4, we observe an increase in the average percent gap. Pattern fitting heuristic improves the solution quality compared to base IP1 formulation with or without valid inequalities. CPWW however, has no effect on average percent gap in problem sets 1 and 2, and results in an increase in problem sets 3 and 4.

Pattern fitting heuristic without valid inequalities results in best average percent gap in problem sets 2 and 4. However, using valid inequalities in addition to the pattern fitting heuristic results in increased number of best integer solutions found. For problem set 2, IP1 with pattern fitting heuristic was unable to provide any best solution in 10 test instances, while resulting in best average percent gap. Using Valid inequalities together with pattern fitting heuristic however, provided 5 best integer solutions out of 10 . Similar pattern is also seen in results for problem set 4 .

We observe that using pattern fitting heuristic together with valid inequalities improves upon IP1 formulation. Adding CPWW heuristic to the mix however, does not increase the number of best solutions found or decrease average percent gap. As a result of computational experimentation, we conclude that solving IP1 formulation with pattern fitting heuristic and valid inequalities without $z_{j}^{t}$ variables yields best results.

## 8. CONCLUSION

In this thesis, we study lot a sizing problem in deliberated and controlled coproduction setting. This problem, to the best of our knowledge, was not addressed in the literature previously.

In the first part of this thesis, we define and structure DCCP. We prove that DCCP is an NP-Hard problem. Hence, we cannot hope to find a polynomial time algorithm to solve it. Therefore, we provide several special cases for which DCPP is polynomially solvable and propose solution techniques for those cases.

We propose four alternative MIP formulations for DCCP. Two of these formulations (IP1 and IP2) are similar to original LS-U formulation. The other two (ELS1 and ELS2) are based on the simple plant location formulation of LS-U. Then, we show that all proposed formulations are equivalent in terms of their linear programming relaxations.

In order to reduce the solution times and increase solution qualities of proposed MIP formulations, we focus on finding valid inequalities. We show that inequalities converted from l-s inequalities of LS-U are valid for DCCP. We show that proposed valid inequalities can increase the LP bound by at least $\% 20$ for our test cases.

We propose two different heuristics to help with the upper bounds. According to our computational experiments, proposed pattern fitting heuristic results in the lowest average percent gap for 3 out of 4 problem sets. Pattern fitting heuristic together with valid inequalities provides the highest number of best solution found in 3 out of 4 problem sets.

We achieve at least \%10 improvement in average percent gap over the IP1 formulation with proposed model improvements, pattern fitting heuristic and valid inequal-
ities. We also show that at the end of the time limit models with our modifications provide better feasible solutions.

Introducing backlogging option and capacity restrictions to DCCP could be a possible future research direction. However, we do believe that, before tackling harder variations of DCCP, we should be able to find efficient solution techniques to the plain version of the problem. Implementing more clever heuristics could be a possible improvement on solution times and quality. CPWW heuristic proposed in this thesis generates solutions in which multiple items are produced well over their demand levels in some cases, and hence it can be improved. A standalone heuristic option, rather than to help B\&B search, is also a possibility to generate feasible solutions to problem instances that are too difficult to solve exactly.

## REFERENCES

1. Bitran, G. R. and S. M. Gilbert, "Co-production processes with random yields in the semiconductor industry", Operations Research, Vol. 42, No. 3, pp. 476-491, 1994.
2. Bitran, G. R. and S. Dasu, "Ordering policies in an environment of stochastic yields and substitutable demands", Operations Research, Vol. 40, No. 5, pp. 999-1017, 1992.
3. Öner, S. and T. Bilgiç, "Economic lot scheduling with uncontrolled co-production", European Journal of Operational Research, Vol. 188, No. 3, pp. 793-810, 2008.
4. Taşkın, Z. C. and A. T. Ünal, "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products", European Journal of Operational Research, Vol. 199, No. 1, pp. 252-261, 2009.
5. Zhou, L., S. Hu, Y. Li and Q. Zhou, "Study on co-feed and co-production system based on coal and natural gas for producing DME and electricity", Chemical Engineering Journal, Vol. 136, No. 1, pp. 31-40, 2008.
6. Wagner, H. M. and T. M. Whitin, "Dynamic version of the economic lot size model", Management Science, Vol. 5, No. 1, pp. 89-96, 1958.
7. Brahimi, N., S. Dauzere-Peres, N. M. Najid and A. Nordli, "Single item lot sizing problems", European Journal of Operational Research, Vol. 168, No. 1, pp. 1-16, 2006.
8. Brahimi, N., N. Absi, S. Dauzere-Peres and A. Nordli, Single-Item Dynamic LotSizing Problems: An Updated Survey, Tech. rep., Working paper, 2016.
9. Wagelmans, A., S. Van Hoesel and A. Kolen, "Economic lot sizing: an O (n $\log$
n) algorithm that runs in linear time in the Wagner-Whitin case", Operations Research, Vol. 40, No. 1-supplement-1, pp. S145-S156, 1992.
10. Aggarwal, A. and J. K. Park, "Improved algorithms for economic lot size problems", Operations Research, Vol. 41, No. 3, pp. 549-571, 1993.
11. Federgruen, A. and M. Tzur, "A simple forward algorithm to solve general dynamic lot sizing models with $n$ periods in $0(\mathrm{n} \log \mathrm{n})$ or $0(\mathrm{n})$ time", Management Science, Vol. 37, No. 8, pp. 909-925, 1991.
12. Hsu, V. N., "Dynamic economic lot size model with perishable inventory", Management Science, Vol. 46, No. 8, pp. 1159-1169, 2000.
13. Pochet, Y. and L. A. Wolsey, "Polyhedra for lot-sizing with Wagner-Whitin costs", Mathematical Programming, Vol. 67, No. 1-3, pp. 297-323, 1994.
14. Hsu, V. N., C.-L. Li and W.-Q. Xiao, "Dynamic lot size problems with one-way product substitution", IIE Transactions, Vol. 37, No. 3, pp. 201-215, 2005.
15. Chen, W.-H. and J.-M. Thizy, "Analysis of relaxations for the multi-item capacitated lot-sizing problem", Annals of Operations Research, Vol. 26, No. 1, pp. 29-72, 1990.
16. Robinson, P., A. Narayanan and F. Sahin, "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms", Omega, Vol. 37, No. 1, pp. 3-15, 2009.
17. Robinson, E. P. and F. B. Lawrence, "Coordinated Capacitated Lot-Sizing Problem with Dynamic Demand: A Lagrangian Heuristic", Decision Sciences, Vol. 35, No. 1, pp. 25-53, 2004.
18. Tomlin, B. and Y. Wang, "Pricing and operational recourse in coproduction systems", Management Science, Vol. 54, No. 3, pp. 522-537, 2008.
19. Vidal-Carreras, P. I., J. P. Garcia-Sabater and J. R. Coronado-Hernandez, "Economic lot scheduling with deliberated and controlled coproduction", European Journal of Operational Research, Vol. 219, No. 2, pp. 396-404, 2012.
20. Rafiei, R., M. Nourelfath, J. Gaudreault, L. A. De Santa-Eulalia and M. Bouchard, "Dynamic safety stock in co-production demand-driven wood remanufacturing mills: A case study", International Journal of Production Economics, Vol. 165, pp. 90-99, 2015.
21. Clark, J. H., T. J. Farmer, L. Herrero-Davila and J. Sherwood, "Circular economy design considerations for research and process development in the chemical sciences", Green Chemistry, Vol. 18, No. 14, pp. 3914-3934, 2016.
22. Larson, E. D., G. Fiorese, G. Liu, R. H. Williams, T. G. Kreutz and S. Consonni, "Co-production of decarbonized synfuels and electricity from coal+ biomass with CO 2 capture and storage: an Illinois case study", Energy © Environmental Science, Vol. 3, No. 1, pp. 28-42, 2010.
23. Ağralı, S., "A dynamic uncapacitated lot-sizing problem with co-production", $O p$ timization Letters, Vol. 6, No. 6, pp. 1051-1061, 2012.
24. Volker Strassen (auth.), J. W. T. J. D. B. e., Raymond E. Miller, Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, The IBM Research Symposia Series, Springer US, 1 edn., 1972.
25. Garey, M. R. and D. S. Johnson, "Computers and intractability: a guide to the theory of NP-completeness. 1979", San Francisco, LA: Freeman, Vol. 58, 1979.
26. Krarup, J. and O. Bilde, "Plant location, set covering and economic lot size: An 0 (mn)-algorithm for structured problems", Numerische Methoden bei Optimierungsaufgaben Band 3, pp. 155-180, Springer, 1977.
27. Taşkın, Z. C. and T. Ekim, "Integer programming formulations for the minimum weighted maximal matching problem", Optimization Letters, Vol. 6, No. 6, pp. 1161-1171, 2012.
28. Pochet, Y. and L. A. Wolsey, Production planning by mixed integer programming, Springer Science \& Business Media, 2006.
29. Graves, S. C., "Using Lagrangean techniques to solve hierarchical production planning problems", Management Science, Vol. 28, No. 3, pp. 260-275, 1982.

## APPENDIX A：RESULTS

## A．1．Experiments on Alternative Model Formulations

Table A．1．Experiments with Alternative Model Formulations on Problem Set 1.

| Model | LPTime | RlxObj | Node0Time | Node0LB | Node0UB | B\＆BTime | ObjVal | \％Gap | Nnodes | Nconstr． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\rightharpoonup}{\mathbf{a}}$ | 0.10 | 681132 | 486 | 929060 | 1056890 | 713.58 | 1055160 | 11.85 | 314 | 5760 |
|  | 0.10 | 720805 | 651 | 982898 | 1077270 | 549.24 | 1075630 | 8.59 | 253 | 5760 |
|  | 0.08 | 720478 | 337 | 980186 | 1109420 | 863.37 | 1105120 | 11.22 | 582 | 5760 |
|  | 0.10 | 684124 | 370 | 921840 | 1018560 | 829.73 | 1014380 | 9.10 | 807 | 5760 |
|  | 0.08 | 703107 | 404 | 997078 | 1120870 | 796.39 | 1117610 | 10.76 | 719 | 5760 |
|  | 0.09 | 714616 | 572 | 935113 | 1030780 | 628.33 | 1028580 | 9.03 | 143 | 5760 |
|  | 0.10 | 745050 | 367 | 1019280 | 1114630 | 833.42 | 1113090 | 8.41 | 1086 | 5760 |
|  | 0.08 | 693586 | 675 | 965924 | 1085140 | 525.22 | 1082400 | 10.70 | 170 | 5760 |
|  | 0.10 | 718966 | 312 | 973868 | 1066660 | 888.30 | 1066190 | 8.61 | 1296 | 5760 |
|  | 0.11 | 727199 | 337 | 1002600 | 1094200 | 863.09 | 1093660 | 8.27 | 670 | 5760 |
| Average： | 0.09 | 710906 | 451 | 970785 | 1077442 | 749.07 | 1075182 | 9.65 | 604 | 5760 |
| $\underset{\mathrm{i}}{\hat{N}}$ | 0.44 | 681132 | 1200 | 897747 | 1046300 | 0.02 | 1046300 | 14.20 | 0 | 5760 |
|  | 0.45 | 720805 | 1103 | 965069 | 1108000 | 96.51 | 1108000 | 12.78 | 0 | 5760 |
|  | 0.29 | 720478 | 1200 | 942971 | 1109220 | 0.09 | 1109220 | 14.99 | 0 | 5760 |
|  | 0.30 | 684124 | 1127 | 894052 | 1022840 | 72.97 | 1022840 | 12.45 | 0 | 5760 |
|  | 0.29 | 703107 | 1200 | 961307 | 1107260 | 0.09 | 1107260 | 13.18 | 0 | 5760 |
|  | 0.33 | 714616 | 1200 | 897175 | 1057240 | 0.09 | 1057240 | 15.14 | 0 | 5760 |
|  | 0.35 | 745050 | 1090 | 999590 | 1125830 | 109.79 | 1125830 | 10.99 | 0 | 5760 |
|  | 0.30 | 693586 | 1200 | 910994 | 1096820 | 0.09 | 1096820 | 16.94 | 0 | 5760 |
|  | 0.32 | 718966 | 841 | 952347 | 1074000 | 358.66 | 1072690 | 11.00 | 91 | 5760 |
|  | 0.46 | 727199 | 1200 | 966365 | 1101070 | 0.02 | 1101070 | 12.23 | 0 | 5760 |
| Average： | 0.35 | 710906 | 1136 | 938762 | 1084858 | 63.83 | 1084727 | 13.39 | 9 | 5760 |
| $\begin{aligned} & \bar{n} \\ & \underset{⿴ 囗 十}{2} \end{aligned}$ | 0.39 | 681132 | 1200 | 924676 | 1076990 | 0.02 | 1076990 | 14.14 | 0 | 6720 |
|  | 0.35 | 720805 | 1200 | 976797 | 1118010 | 0.02 | 1118010 | 12.63 | 0 | 6720 |
|  | 0.25 | 720478 | 1157 | 979582 | 1098030 | 43.22 | 1098030 | 10.79 | 0 | 6720 |
|  | 0.25 | 684124 | 1201 | 920015 | 1030560 | 0.02 | 1030560 | 10.73 | 0 | 6720 |
|  | 0.25 | 703107 | 1044 | 997394 | 1115930 | 155.65 | 1114680 | 10.50 | 0 | 6720 |
|  | 0.25 | 714616 | 1201 | 931363 | 1060200 | 0.02 | 1060200 | 12.15 | 0 | 6720 |
|  | 0.26 | 745050 | 927 | 1016330 | 1117530 | 272.50 | 1112740 | 8.55 | 0 | 6720 |
|  | 0.25 | 693586 | 1201 | 961964 | 1100200 | 0.05 | 1100200 | 12.56 | 0 | 6720 |
|  | 0.24 | 718966 | 1166 | 972889 | 1075540 | 34.41 | 1075540 | 9.54 | 0 | 6720 |
|  | 0.33 | 727199 | 994 | 1001790 | 1110650 | 205.51 | 1107670 | 9.53 | 0 | 6720 |
| Average： | 0.28 | 710906 | 1129 | 968280 | 1090364 | 71.14 | 1089462 | 11.11 | 0 | 6720 |
|  | 3.84 | 681132 | 881 | 932439 | 1214570 | 315.55 | 1214570 | 23.17 | 0 | 18048 |
|  | 4.55 | 720805 | 739 | 980466 | 1189260 | 456.88 | 1169650 | 16.00 | 0 | 17928 |
|  | 2.97 | 720478 | 984 | 980599 | 1214490 | 213.05 | 1214490 | 19.18 | 0 | 17736 |
|  | 3.71 | 684124 | 716 | 923049 | 1143560 | 480.70 | 1121270 | 17.62 | 0 | 17712 |
|  | 3.27 | 703107 | 848 | 993829 | 1434470 | 348.74 | 1232620 | 19.34 | 0 | 17832 |
|  | 3.43 | 714616 | 917 | 934928 | 1201400 | 279.19 | 1201400 | 22.15 | 0 | 17568 |
|  | 3.22 | 745050 | 609 | 1017830 | 1218960 | 587.96 | 1218960 | 16.45 | 18 | 17376 |
|  | 4.15 | 693586 | 681 | 966547 | 1325480 | 514.89 | 1251160 | 22.71 | 0 | 17856 |
|  | 3.02 | 718966 | 931 | 974856 | 1117820 | 266.08 | 1117820 | 12.74 | 0 | 17640 |
|  | 4.12 | 727199 | 965 | 999051 | 1280220 | 230.91 | 1280220 | 21.90 | 0 | 17784 |
| Average： | 3.63 | 710906 | 827 | 970359 | 1234023 | 369.39 | 1202216 | 19.13 | 2 | 17748 |

Table A.2. Experiments with Alternative Model Formulations on Problem Set 2.

| Model | LPTime | RlxObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{I}{a}$ | 0.18 | 678396 | 1200 | 927031 | 1134910 | 0.04 | 1134910 | 18.32 | 0 | 5760 |
|  | 0.21 | 717620 | 1201 | 1000470 | 1265390 | 0.05 | 1265390 | 20.94 | 0 | 5760 |
|  | 0.19 | 715936 | 1200 | 970448 | 1215730 | 0.04 | 1215730 | 20.18 | 0 | 5760 |
|  | 0.20 | 684632 | 1208 | 967404 | 1154000 | 0.04 | 1154000 | 16.17 | 0 | 5760 |
|  | 0.20 | 698281 | 1210 | 924268 | 1106480 | 0.04 | 1106480 | 16.47 | 0 | 5760 |
|  | 0.20 | 713263 | 1207 | 975484 | 1195520 | 0.04 | 1195520 | 18.40 | 0 | 5760 |
|  | 0.20 | 743252 | 1213 | 1047380 | 1264460 | 0.01 | 1264460 | 17.17 | 0 | 5760 |
|  | 0.21 | 694447 | 1201 | 1053140 | 1282460 | 0.03 | 1282460 | 17.88 | 0 | 5760 |
|  | 0.21 | 717974 | 1210 | 987691 | 1200660 | 0.04 | 1200660 | 17.74 | 0 | 5760 |
|  | 0.19 | 722978 | 1200 | 957788 | 1179610 | 0.04 | 1179610 | 18.80 | 0 | 5760 |
| Average: | 0.20 | 708678 | 1205 | 981110 | 1199922 | 0.04 | 1199922 | 18.21 | 0 | 5760 |
| $\stackrel{\AA}{\wedge}$ | 1.03 | 678396 | 1199 | 841574 | 1139830 | 0.10 | 1139830 | 26.17 | 0 | 5760 |
|  | 1.08 | 717620 | 1199 | 922692 | 1300580 | 0.01 | 1300580 | 29.06 | 0 | 5760 |
|  | 1.13 | 715936 | 1199 | 901864 | 1185950 | 0.01 | 1185950 | 23.95 | 0 | 5760 |
|  | 1.01 | 684632 | 1199 | 889979 | 1233300 | 0.10 | 1233300 | 27.84 | 0 | 5760 |
|  | 1.11 | 698281 | 1199 | 861111 | 1119840 | 0.01 | 1119840 | 23.10 | 0 | 5760 |
|  | 1.03 | 713263 | 1199 | 896286 | 1205380 | 0.01 | 1205380 | 25.64 | 0 | 5760 |
|  | 1.08 | 743252 | 1199 | 949876 | 1276160 | 0.01 | 1276160 | 25.57 | 0 | 5760 |
|  | 1.22 | 694447 | 1199 | 970287 | 1324830 | 0.18 | 1324830 | 26.76 | 0 | 5760 |
|  | 1.21 | 717974 | 1199 | 908060 | 1204160 | 0.10 | 1204160 | 24.59 | 0 | 5760 |
|  | 1.00 | 722978 | 1200 | 894061 | 1158460 | 0.10 | 1158460 | 22.82 | 0 | 5760 |
| Average: | 1.09 | 708678 | 1199 | 903579 | 1214849 | 0.06 | 1214849 | 25.55 | 0 | 5760 |
| $\begin{aligned} & \text { n } \\ & \text { 号 } \end{aligned}$ | 0.60 | 678396 | 1208 | 912464 | 1189740 | 0.05 | 1189740 | 23.31 | 0 | 6720 |
|  | 0.64 | 717620 | 1204 | 982812 | 1379840 | 0.05 | 1379840 | 28.77 | 0 | 6720 |
|  | 0.66 | 715936 | 1200 | 945164 | 1280730 | 0.05 | 1280730 | 26.20 | 0 | 6720 |
|  | 0.60 | 684632 | 1204 | 951406 | 1403800 | 0.05 | 1403800 | 32.23 | 0 | 6720 |
|  | 0.68 | 698281 | 1203 | 908355 | 1160360 | 0.05 | 1160360 | 21.72 | 0 | 6720 |
|  | 0.64 | 713263 | 1208 | 952866 | 1342280 | 0.05 | 1342280 | 29.01 | 0 | 6720 |
|  | 0.67 | 743252 | 1206 | 1020940 | 1506850 | 0.05 | 1506850 | 32.25 | 0 | 6720 |
|  | 0.68 | 694447 | 1203 | 1011280 | 1399280 | 0.05 | 1399280 | 27.73 | 0 | 6720 |
|  | 0.63 | 717974 | 1204 | 962156 | 1293740 | 0.05 | 1293740 | 25.63 | 0 | 6720 |
|  | 0.60 | 722978 | 1208 | 937928 | 1209450 | 0.05 | 1209450 | 22.45 | 0 | 6720 |
| Average: | 0.64 | 708678 | 1205 | 958537 | 1316607 | 0.05 | 1316607 | 26.93 | 0 | 6720 |
| $\begin{aligned} & \text { N } \\ & \text { N్エr } \end{aligned}$ | 13.83 | 678396 | 1186 | 907996 | 1494200 | 0.06 | 1494200 | 39.23 | 0 | 25416 |
|  | 12.11 | 717620 | 1188 | 975855 | 1810650 | 0.05 | 1810650 | 46.10 | 0 | 26040 |
|  | 15.12 | 715936 | 1185 | 962741 | 1461490 | 0.06 | 1461490 | 34.13 | 0 | 25728 |
|  | 11.98 | 684632 | 1188 | 958218 | 1681740 | 0.06 | 1681740 | 43.02 | 0 | 24744 |
|  | 12.70 | 698281 | 1187 | 919254 | 1397340 | 0.06 | 1397340 | 34.21 | 0 | 25032 |
|  | 11.19 | 713263 | 1189 | 944941 | 1544470 | 0.06 | 1544470 | 38.82 | 0 | 24912 |
|  | 12.69 | 743252 | 1187 | 1055690 | 1652950 | 0.05 | 1652950 | 36.13 | 0 | 24936 |
|  | 12.65 | 694447 | 1187 | 1043870 | 1786240 | 0.06 | 1786240 | 41.56 | 0 | 24840 |
|  | 13.14 | 717974 | 1187 | 980488 | 1571640 | 0.06 | 1571640 | 37.61 | 0 | 25248 |
|  | 10.19 | 722978 | 1190 | 948824 | 1361760 | 0.05 | 1361760 | 30.32 | 0 | 23784 |
| Average: | 12.56 | 708678 | 1188 | 969788 | 1576248 | 0.06 | 1576248 | 38.11 | 0 | 25068 |

Table A.3. Experiments with Alternative Model Formulations on Problem Set 3.

| Model | LPTime | RlxObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\rightharpoonup}{\mathrm{a}}$ | 0.16 | 1015710 | 1201 | 1384010 | 1572380 | 0.05 | 1572380 | 11.98 | 0 | 8640 |
|  | 0.15 | 1074590 | 1201 | 1466470 | 1637540 | 0.01 | 1637540 | 10.45 | 0 | 8640 |
|  | 0.11 | 1074700 | 1201 | 1468070 | 1666610 | 0.05 | 1666610 | 11.91 | 0 | 8640 |
|  | 0.15 | 1020520 | 1200 | 1382100 | 1532400 | 0.02 | 1532400 | 9.81 | 0 | 8640 |
|  | 0.12 | 1048560 | 1201 | 1494060 | 1696470 | 0.05 | 1696470 | 11.93 | 0 | 8640 |
|  | 0.12 | 1066830 | 1200 | 1392990 | 1587880 | 0.01 | 1587880 | 12.27 | 0 | 8640 |
|  | 0.15 | 1111240 | 1201 | 1527300 | 1696350 | 0.05 | 1696350 | 9.97 | 0 | 8640 |
|  | 0.12 | 1034230 | 1200 | 1435900 | 1673680 | 0.05 | 1673680 | 14.21 | 0 | 8640 |
|  | 0.16 | 1072020 | 1135 | 1457580 | 1595190 | 65.41 | 1595190 | 8.63 | 0 | 8640 |
|  | 0.16 | 1084200 | 1200 | 1501260 | 1660170 | 0.05 | 1660170 | 9.57 | 0 | 8640 |
| Average: | 0.14 | 1060260 | 1194 | 1450974 | 1631867 | 6.58 | 1631867 | 11.07 | 0 | 8640 |
| $\stackrel{\AA}{\AA}$ | 1.32 | 1015710 | 1199 | 1261120 | 1588250 | 0.13 | 1588250 | 20.60 | 0 | 8640 |
|  | 1.21 | 1074590 | 1199 | 1356660 | 1684260 | 0.12 | 1684260 | 19.45 | 0 | 8640 |
|  | 0.96 | 1074700 | 1199 | 1321010 | 1663610 | 0.13 | 1663610 | 20.59 | 0 | 8640 |
|  | 1.11 | 1020520 | 1199 | 1272840 | 1555360 | 0.14 | 1555360 | 18.16 | 0 | 8640 |
|  | 0.99 | 1048560 | 1199 | 1333630 | 1755460 | 0.13 | 1755460 | 24.03 | 0 | 8640 |
|  | 1.30 | 1066830 | 1199 | 1265130 | 1585480 | 0.02 | 1585480 | 20.21 | 0 | 8640 |
|  | 1.04 | 1111240 | 1199 | 1381300 | 1708670 | 0.13 | 1708670 | 19.16 | 0 | 8640 |
|  | 1.09 | 1034230 | 1199 | 1241740 | 1671980 | 0.13 | 1671980 | 25.73 | 0 | 8640 |
|  | 0.95 | 1072020 | 1199 | 1349430 | 1645490 | 0.14 | 1645490 | 17.99 | 0 | 8640 |
|  | 1.35 | 1084200 | 1199 | 1354760 | 1732400 | 0.13 | 1732400 | 21.80 | 0 | 8640 |
| Average: | 1.13 | 1060260 | 1199 | 1313762 | 1659096 | 0.12 | 1659096 | 20.77 | 0 | 8640 |
| $\begin{aligned} & \vec{n} \\ & \text { 畐 } \end{aligned}$ | 0.73 | 1015710 | 1200 | 1356870 | 1611360 | 0.07 | 1611360 | 15.79 | 0 | 10080 |
|  | 0.70 | 1074590 | 1200 | 1447440 | 1699500 | 0.07 | 1699500 | 14.83 | 0 | 10080 |
|  | 0.40 | 1074700 | 1200 | 1444880 | 1656390 | 0.07 | 1656390 | 12.77 | 0 | 10080 |
|  | 0.56 | 1020520 | 1200 | 1363080 | 1630240 | 0.06 | 1630240 | 16.39 | 0 | 10080 |
|  | 0.52 | 1048560 | 1200 | 1477660 | 1754900 | 0.07 | 1754900 | 15.80 | 0 | 10080 |
|  | 0.41 | 1066830 | 1200 | 1378510 | 1667550 | 0.06 | 1667550 | 17.33 | 0 | 10080 |
|  | 0.55 | 1111240 | 1200 | 1503460 | 1722300 | 0.07 | 1722300 | 12.71 | 0 | 10080 |
|  | 0.44 | 1034230 | 1200 | 1416520 | 1690250 | 0.02 | 1690250 | 16.19 | 0 | 10080 |
|  | 0.44 | 1072020 | 1200 | 1438520 | 1647800 | 0.07 | 1647800 | 12.70 | 0 | 10080 |
|  | 0.54 | 1084200 | 1200 | 1482010 | 1713930 | 0.02 | 1713930 | 13.53 | 0 | 10080 |
| Average: | 0.53 | 1060260 | 1200 | 1430895 | 1679422 | 0.06 | 1679422 | 14.80 | 0 | 10080 |
| $\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 坌 } \end{aligned}$ | 11.58 | 1015710 | 1189 | 1370400 | 1868360 | 0.10 | 1868360 | 26.65 | 0 | 27072 |
|  | 14.65 | 1074590 | 1186 | 1435170 | 1922250 | 0.08 | 1922250 | 25.34 | 0 | 26892 |
|  | 7.15 | 1074700 | 1193 | 1429090 | 1937790 | 0.10 | 1937790 | 26.25 | 0 | 26604 |
|  | 10.24 | 1020520 | 1190 | 1365190 | 1852130 | 0.08 | 1852130 | 26.29 | 0 | 26568 |
|  | 9.41 | 1048560 | 1191 | 1462710 | 1990820 | 0.09 | 1990820 | 26.53 | 0 | 26748 |
|  | 8.62 | 1066830 | 1192 | 1381040 | 1785990 | 0.10 | 1785990 | 22.67 | 0 | 26352 |
|  | 9.83 | 1111240 | 1190 | 1513160 | 1928180 | 0.08 | 1928180 | 21.52 | 0 | 26064 |
|  | 12.12 | 1034230 | 1188 | 1436720 | 1949300 | 0.08 | 1949300 | 26.30 | 0 | 26784 |
|  | 8.38 | 1072020 | 1192 | 1438780 | 1867520 | 0.09 | 1867520 | 22.96 | 0 | 26460 |
|  | 13.64 | 1084200 | 1187 | 1451090 | 1926970 | 0.10 | 1926970 | 24.70 | 0 | 26676 |
| Average: | 10.56 | 1060260 | 1190 | 1428335 | 1902931 | 0.09 | 1902931 | 24.92 | 0 | 26622 |

Table A.4. Experiments with Alternative Model Formulations on Problem Set 4.

| Model | LPTime | RlxObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\rightharpoonup}{\mathrm{a}}$ | 0.23 | 1013030 | 1200 | 1362200 | 1755740 | 0.05 | 1755740 | 22.41 | 0 | 8640 |
|  | 0.24 | 1071350 | 1200 | 1456570 | 2036840 | 0.04 | 2036840 | 28.49 | 0 | 8640 |
|  | 0.24 | 1070080 | 1200 | 1429260 | 1846890 | 0.05 | 1846890 | 22.61 | 0 | 8640 |
|  | 0.22 | 1021380 | 1202 | 1425320 | 1866690 | 0.05 | 1866690 | 23.64 | 0 | 8640 |
|  | 0.24 | 1043030 | 1205 | 1357700 | 1678810 | 0.04 | 1678810 | 19.13 | 0 | 8640 |
|  | 0.24 | 1065530 | 1202 | 1433450 | 1937950 | 0.04 | 1937950 | 26.03 | 0 | 8640 |
|  | 0.25 | 1109840 | 1207 | 1548340 | 1956390 | 0.04 | 1956390 | 20.86 | 0 | 8640 |
|  | 0.25 | 1035490 | 1200 | 1552980 | 2025670 | 0.03 | 2025670 | 23.33 | 0 | 8640 |
|  | 0.24 | 1071520 | 1207 | 1451690 | 1872780 | 0.05 | 1872780 | 22.48 | 0 | 8640 |
|  | 0.22 | 1079610 | 1205 | 1408240 | 1721350 | 0.01 | 1721350 | 18.19 | 0 | 8640 |
| Average: | 0.24 | 1058086 | 1203 | 1442575 | 1869911 | 0.04 | 1869911 | 22.72 | 0 | 8640 |
| $\stackrel{\AA}{\AA}$ | 2.85 | 1013030 | 1197 | 1177380 | 1878480 | 0.15 | 1878480 | 37.32 | 0 | 8640 |
|  | 2.42 | 1071350 | 1198 | 1251070 | 2052380 | 0.15 | 2052380 | 39.04 | 0 | 8640 |
|  | 2.37 | 1070080 | 1198 | 1258550 | 1955890 | 0.16 | 1955890 | 35.65 | 0 | 8640 |
|  | 2.98 | 1021380 | 1197 | 1209130 | 1965870 | 0.01 | 1965870 | 38.49 | 0 | 8640 |
|  | 3.24 | 1043030 | 1197 | 1196380 | 1774580 | 0.15 | 1774580 | 32.58 | 0 | 8640 |
|  | 2.11 | 1065530 | 1198 | 1232250 | 2049440 | 0.15 | 2049440 | 39.87 | 0 | 8640 |
|  | 3.06 | 1109840 | 1197 | 1298210 | 2093190 | 0.14 | 2093190 | 37.98 | 0 | 8640 |
|  | 3.34 | 1035490 | 1197 | 1305250 | 2166510 | 0.15 | 2166510 | 39.75 | 0 | 8640 |
|  | 3.32 | 1071520 | 1197 | 1271550 | 2159570 | 0.15 | 2159570 | 41.12 | 0 | 8640 |
|  | 2.69 | 1079610 | 1198 | 1258470 | 1943160 | 0.16 | 1943160 | 35.24 | 0 | 8640 |
| Average: | 2.84 | 1058086 | 1197 | 1245824 | 2003907 | 0.14 | 2003907 | 37.71 | 0 | 8640 |
| $\begin{aligned} & \text { ت/ } \\ & \text { 分 } \end{aligned}$ | 1.75 | 1013030 | 1202 | 1338600 | 1926900 | 0.02 | 1926900 | 30.53 | 0 | 10080 |
|  | 1.75 | 1071350 | 1201 | 1440220 | 2111300 | 0.07 | 2111300 | 31.79 | 0 | 10080 |
|  | 1.75 | 1070080 | 1199 | 1386030 | 2052460 | 0.01 | 2052460 | 32.47 | 0 | 10080 |
|  | 1.66 | 1021380 | 1201 | 1389700 | 2154000 | 0.02 | 2154000 | 35.48 | 0 | 10080 |
|  | 1.80 | 1043030 | 1201 | 1330000 | 1863970 | 0.06 | 1863970 | 28.65 | 0 | 10080 |
|  | 1.79 | 1065530 | 1202 | 1389920 | 2164150 | 0.07 | 2164150 | 35.78 | 0 | 10080 |
|  | 1.91 | 1109840 | 1200 | 1482350 | 2286250 | 0.06 | 2286250 | 35.16 | 0 | 10080 |
|  | 1.79 | 1035490 | 1200 | 1464860 | 2224290 | 0.07 | 2224290 | 34.14 | 0 | 10080 |
|  | 1.76 | 1071520 | 1201 | 1402220 | 2046480 | 0.07 | 2046480 | 31.48 | 0 | 10080 |
|  | 1.72 | 1079610 | 1201 | 1385200 | 1866300 | 0.07 | 1866300 | 25.78 | 0 | 10080 |
| Average: | 1.77 | 1058086 | 1201 | 1400910 | 2069610 | 0.05 | 2069610 | 32.13 | 0 | 10080 |
| $\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { 坌 } \end{aligned}$ | 40.67 | 1013030 | 1160 | 1185090 | 2329430 | 0.09 | 2329430 | 49.13 | 0 | 38124 |
|  | 39.21 | 1071350 | 1161 | 1303270 | 2766600 | 0.09 | 2766600 | 52.89 | 0 | 39060 |
|  | 42.88 | 1070080 | 1157 | 1261190 | 2390750 | 0.09 | 2390750 | 47.25 | 0 | 38592 |
|  | 35.92 | 1021380 | 1164 | 1243290 | 2624370 | 0.09 | 2624370 | 52.63 | 0 | 37116 |
|  | 36.09 | 1043030 | 1164 | 1247690 | 2197900 | 0.09 | 2197900 | 43.23 | 0 | 37548 |
|  | 39.52 | 1065530 | 1161 | 1288230 | 2394400 | 0.10 | 2394400 | 46.20 | 0 | 37368 |
|  | 37.78 | 1109840 | 1163 | 1434530 | 2582040 | 0.09 | 2582040 | 44.44 | 0 | 37404 |
|  | 38.94 | 1035490 | 1161 | 1360130 | 2936010 | 0.09 | 2936010 | 53.67 | 0 | 37260 |
|  | 50.35 | 1071520 | 1150 | 1292270 | 2533000 | 0.09 | 2533000 | 48.98 | 0 | 37872 |
|  | 30.60 | 1079610 | 1170 | 1318520 | 2127170 | 0.11 | 2127170 | 38.02 | 0 | 35676 |
| Average: | 39.20 | 1058086 | 1161 | 1293421 | 2488167 | 0.09 | 2488167 | 47.64 | 0 | 37602 |

## A.2. Experiments on Valid Inequalities

Table A.5. Experiments with Valid Inequalities on Problem Set 1.

| Model | LPTime | RlxObj | InitialRlxObj | Increase \% | BestFeas | Gap\% | NConstr. | Ncuts | Ncallback | CutTime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| च000000 | 45.01 | 838098 | 681132 | 23.04 | 1046300 | 24.84 | 5760 | 11914.00 | 24 | 0.18 |
|  | 17.30 | 888942 | 720805 | 23.33 | 1075630 | 21.00 | 5760 | 11898.00 | 24 | 0.19 |
|  | 122.40 | 903520 | 720478 | 25.41 | 1098030 | 21.53 | 5760 | 11882.00 | 24 | 0.18 |
|  | 21.04 | 834357 | 684124 | 21.96 | 1014380 | 21.58 | 5760 | 11890.00 | 24 | 0.18 |
|  | 57.86 | 908306 | 703107 | 29.18 | 1107260 | 21.90 | 5760 | 12012.00 | 25 | 0.19 |
|  | 96.99 | 869050 | 714616 | 21.61 | 1028580 | 18.36 | 5760 | 11913.00 | 24 | 0.20 |
|  | 27.22 | 920539 | 745050 | 23.55 | 1112740 | 20.88 | 5760 | 11909.00 | 24 | 0.18 |
|  | 55.72 | 876403 | 693586 | 26.36 | 1082400 | 23.50 | 5760 | 11971.00 | 24 | 0.19 |
|  | 35.61 | 891207 | 718966 | 23.96 | 1066190 | 19.63 | 5760 | 11904.00 | 24 | 0.18 |
|  | 18.26 | 899563 | 727199 | 23.70 | 1093660 | 21.58 | 5760 | 11952.00 | 24 | 0.18 |
| Average: | 49.74 | 882999 | 710906 | 24 | 1072517 | 21.48 | 5760 | 11924.50 | 24 | 0.19 |
|  | 107.68 | 836290 | 681132 | 22.78 | 1046300 | 25.11 | 19008 | 12129.00 | 24 | 0.16 |
|  | 30.90 | 888916 | 720805 | 23.32 | 1075630 | 21.00 | 18888 | 12018.00 | 24 | 0.17 |
|  | 149.94 | 903106 | 720478 | 25.35 | 1098030 | 21.58 | 18696 | 12700.00 | 25 | 0.17 |
|  | 41.46 | 834357 | 684124 | 21.96 | 1014380 | 21.58 | 18672 | 11977.00 | 24 | 0.16 |
|  | 80.59 | 907456 | 703107 | 29.06 | 1107260 | 22.02 | 18792 | 12821.00 | 25 | 0.17 |
|  | 189.43 | 868635 | 714616 | 21.55 | 1028580 | 18.41 | 18528 | 12846.00 | 24 | 0.16 |
|  | 55.05 | 919970 | 745050 | 23.48 | 1112740 | 20.95 | 18336 | 12512.00 | 24 | 0.16 |
|  | 84.27 | 876148 | 693586 | 26.32 | 1082400 | 23.54 | 18816 | 12461.00 | 24 | 0.17 |
|  | 66.78 | 890403 | 718966 | 23.84 | 1066190 | 19.74 | 18600 | 12306.00 | 24 | 0.16 |
|  | 41.23 | 899280 | 727199 | 23.66 | 1093660 | 21.62 | 18744 | 12494.00 | 24 | 0.17 |
| Average: | 84.73 | 882456 | 710906 | 24 | 1072517 | 21.56 | 18708 | 12426.40 | 24 | 0.16 |
| $\begin{aligned} & \sqrt{n} \\ & 9 \end{aligned}$ | 63.22 | 837863 | 681132 | 23.01 | 1046300 | 24.88 | 6720 | 11942.00 | 24 | 0.19 |
|  | 14.55 | 888970 | 720805 | 23.33 | 1075630 | 21.00 | 6720 | 11886.00 | 24 | 0.21 |
|  | 107.32 | 903599 | 720478 | 25.42 | 1098030 | 21.52 | 6720 | 11878.00 | 24 | 0.20 |
|  | 24.26 | 834357 | 684124 | 21.96 | 1014380 | 21.58 | 6720 | 11890.00 | 24 | 0.20 |
|  | 49.27 | 908344 | 703107 | 29.19 | 1107260 | 21.90 | 6720 | 12017.00 | 25 | 0.22 |
|  | 109.02 | 869004 | 714616 | 21.60 | 1028580 | 18.36 | 6720 | 11914.00 | 24 | 0.20 |
|  | 29.55 | 920539 | 745050 | 23.55 | 1112740 | 20.88 | 6720 | 11909.00 | 24 | 0.21 |
|  | 57.23 | 876537 | 693586 | 26.38 | 1082400 | 23.49 | 6720 | 11945.00 | 24 | 0.21 |
|  | 34.36 | 891204 | 718966 | 23.96 | 1066190 | 19.63 | 6720 | 11910.00 | 24 | 0.20 |
|  | 16.53 | 899574 | 727199 | 23.70 | 1093660 | 21.58 | 6720 | 11953.00 | 24 | 0.20 |
| Average: | 50.53 | 882999 | 710906 | 24 | 1072517 | 21.48 | 6720 | 11924.40 | 24 | 0.20 |
|  | 60.24 | 838291 | 681132 | 23.07 | 1046300 | 24.81 | 19968 | 11926.00 | 24 | 0.12 |
|  | 15.61 | 888970 | 720805 | 23.33 | 1075630 | 21.00 | 19848 | 11885.00 | 24 | 0.12 |
|  | 168.57 | 903835 | 720478 | 25.45 | 1098030 | 21.49 | 19656 | 11921.00 | 24 | 0.11 |
|  | 20.54 | 834484 | 684124 | 21.98 | 1014380 | 21.56 | 19632 | 11915.00 | 24 | 0.12 |
|  | 59.07 | 908363 | 703107 | 29.19 | 1107260 | 21.90 | 19752 | 12009.00 | 25 | 0.12 |
|  | 147.75 | 868880 | 714616 | 21.59 | 1028580 | 18.38 | 19488 | 11772.00 | 24 | 0.11 |
|  | 40.20 | 920477 | 745050 | 23.55 | 1112740 | 20.89 | 19296 | 11925.00 | 24 | 0.11 |
|  | 45.59 | 876529 | 693586 | 26.38 | 1082400 | 23.49 | 19776 | 11946.00 | 24 | 0.13 |
|  | 40.51 | 891174 | 718966 | 23.95 | 1066190 | 19.64 | 19560 | 11922.00 | 24 | 0.12 |
|  | 21.07 | 899622 | 727199 | 23.71 | 1093660 | 21.57 | 19704 | 11947.00 | 24 | 0.12 |
| Average: | 61.91 | 883063 | 710906 | 24 | 1072517 | 21.47 | 19668 | 11916.80 | 24 | 0.12 |

Table A.6. Experiments with Valid Inequalities on Problem Set 2.

| Model | LPTime | RlxObj | InitialRlxObj | Increase \% | BestFeas | Gap\% | NConstr. | Ncuts | Ncallback | CutTime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\vec{a}$ | 66.33 | 838199 | 678396 | 23.56 | 1134910 | 35.40 | 5760 | 11972 | 25 | 0.29 |
|  | 102.07 | 888130 | 717620 | 23.76 | 1265390 | 42.48 | 5760 | 11960 | 25 | 0.31 |
|  | 152.59 | 862404 | 715936 | 20.46 | 1185950 | 37.52 | 5760 | 11921 | 24 | 0.30 |
|  | 176.80 | 872606 | 684632 | 27.46 | 1154000 | 32.25 | 5760 | 11985 | 25 | 0.28 |
|  | 69.51 | 836861 | 698281 | 19.85 | 1106480 | 32.22 | 5760 | 11966 | 24 | 0.28 |
|  | 116.35 | 877321 | 713263 | 23.00 | 1195520 | 36.27 | 5760 | 11935 | 24 | 0.27 |
|  | 111.87 | 915738 | 743252 | 23.21 | 1264460 | 38.08 | 5760 | 11967 | 24 | 0.28 |
|  | 103.72 | 895111 | 694447 | 28.90 | 1282460 | 43.27 | 5760 | 11913 | 25 | 0.28 |
|  | 228.65 | 862356 | 717974 | 20.11 | 1200660 | 39.23 | 5760 | 11961 | 24 | 0.28 |
|  | 54.37 | 862690 | 722978 | 19.32 | 1158460 | 34.28 | 5760 | 11960 | 24 | 0.25 |
| Average: | 118.22 | 871142 | 708678 | 22.96 | 1194829 | 37.10 | 5760 | 11954 | 24.4 | 0.28 |
|  | 136.56 | 814688 | 678396 | 20.09 | 1134910 | 39.31 | 26376 | 14984 | 22 | 0.24 |
|  | 235.36 | 879219 | 717620 | 22.52 | 1265390 | 43.92 | 27000 | 13964 | 24 | 0.24 |
|  | 240.86 | 850418 | 715936 | 18.78 | 1185950 | 39.45 | 26688 | 14790 | 23 | 0.24 |
|  | 243.10 | 862261 | 684632 | 25.95 | 1154000 | 33.83 | 25704 | 14768 | 24 | 0.24 |
|  | 176.01 | 826372 | 698281 | 18.34 | 1106480 | 33.90 | 25992 | 14869 | 24 | 0.24 |
|  | 175.77 | 868267 | 713263 | 21.73 | 1195520 | 37.69 | 25872 | 15288 | 24 | 0.24 |
|  | 173.04 | 905524 | 743252 | 21.83 | 1264460 | 39.64 | 25896 | 15069 | 24 | 0.24 |
|  | 159.94 | 884774 | 694447 | 27.41 | 1282460 | 44.95 | 25800 | 14329 | 25 | 0.24 |
|  | 428.75 | 856282 | 717974 | 19.26 | 1200660 | 40.22 | 26208 | 14869 | 24 | 0.24 |
|  | 123.26 | 858181 | 722978 | 18.70 | 1158460 | 34.99 | 24744 | 13274 | 24 | 0.22 |
| Average: | 209.27 | 860599 | 708678 | 21.46 | 1194829 | 38.79 | 26028 | 14620 | 23.8 | 0.24 |
| $\begin{aligned} & \sqrt{n} \\ & \text { 霛 } \end{aligned}$ | 49.23 | 838289 | 678396 | 23.57 | 1134910 | 35.38 | 6720 | 11971 | 25 | 0.26 |
|  | 88.70 | 888130 | 717620 | 23.76 | 1265390 | 42.48 | 6720 | 11960 | 25 | 0.25 |
|  | 114.64 | 862412 | 715936 | 20.46 | 1185950 | 37.52 | 6720 | 11923 | 24 | 0.27 |
|  | 165.26 | 872606 | 684632 | 27.46 | 1154000 | 32.25 | 6720 | 11985 | 25 | 0.27 |
|  | 58.77 | 836868 | 698281 | 19.85 | 1106480 | 32.22 | 6720 | 11966 | 24 | 0.27 |
|  | 95.77 | 877321 | 713263 | 23.00 | 1195520 | 36.27 | 6720 | 11935 | 24 | 0.25 |
|  | 101.50 | 915793 | 743252 | 23.21 | 1264460 | 38.07 | 6720 | 11965 | 24 | 0.26 |
|  | 92.22 | 895111 | 694447 | 28.90 | 1282460 | 43.27 | 6720 | 11913 | 25 | 0.25 |
|  | 176.29 | 862223 | 717974 | 20.09 | 1200660 | 39.25 | 6720 | 11982 | 24 | 0.25 |
|  | 52.13 | 862690 | 722978 | 19.32 | 1158460 | 34.28 | 6720 | 11960 | 24 | 0.24 |
| Average: | 99.45 | 871144 | 708678 | 22.96 | 1194829 | 37.10 | 6720 | 11956 | 24.4 | 0.26 |
|  | 50.81 | 838481 | 678396 | 23.60 | 1134910 | 35.35 | 27336 | 11977 | 25 | 0.10 |
|  | 76.84 | 888129 | 717620 | 23.76 | 1265390 | 42.48 | 27960 | 11963 | 25 | 0.10 |
|  | 114.13 | 862436 | 715936 | 20.46 | 1185950 | 37.51 | 27648 | 11922 | 24 | 0.10 |
|  | 205.70 | 872631 | 684632 | 27.46 | 1154000 | 32.24 | 26664 | 11986 | 25 | 0.10 |
|  | 47.29 | 837162 | 698281 | 19.89 | 1106480 | 32.17 | 26952 | 11970 | 24 | 0.10 |
|  | 92.76 | 877327 | 713263 | 23.00 | 1195520 | 36.27 | 26832 | 11936 | 24 | 0.10 |
|  | 128.84 | 915816 | 743252 | 23.22 | 1264460 | 38.07 | 26856 | 11957 | 24 | 0.10 |
|  | 72.56 | 895111 | 694447 | 28.90 | 1282460 | 43.27 | 26760 | 11913 | 25 | 0.10 |
|  | 129.52 | 862258 | 717974 | 20.10 | 1200660 | 39.25 | 27168 | 11960 | 24 | 0.10 |
|  | 43.06 | 862946 | 722978 | 19.36 | 1158460 | 34.24 | 25704 | 11963 | 24 | 0.10 |
| Average: | 96.15 | 871230 | 708678 | 22.97 | 1194829 | 37.09 | 26988 | 11955 | 24.4 | 0.10 |

Table A.7. Experiments with Valid Inequalities on Problem Set 3.

| Model | LPTime | RlxObj | InitialRlxObj | Increase \% | BestFeas | Gap\% | NConstr. | Ncuts | Ncallback | CutTime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{\square}$ | 305.11 | 1242880 | 1015710 | 22.37 | 1572380 | 26.51 | 8640 | 26292 | 33 | 0.532597 |
|  | 67.76 | 1322590 | 1074590 | 23.08 | 1637540 | 23.81 | 8640 | 26403 | 34 | 0.507972 |
|  | 556.89 | 1344790 | 1074700 | 25.13 | 1656390 | 23.17 | 8640 | 26416 | 34 | 0.497241 |
|  | 85.39 | 1231080 | 1020520 | 20.63 | 1532400 | 24.48 | 8640 | 26128 | 32 | 0.492788 |
|  | 256.92 | 1361260 | 1048560 | 29.82 | 1696470 | 24.62 | 8640 | 26665 | 36 | 0.514914 |
|  | 470.99 | 1276990 | 1066830 | 19.70 | 1585480 | 24.16 | 8640 | 25975 | 31 | 0.472169 |
|  | 153.34 | 1363790 | 1111240 | 22.73 | 1696350 | 24.38 | 8640 | 26186 | 33 | 0.485766 |
|  | 280.60 | 1311070 | 1034230 | 26.77 | 1671980 | 27.53 | 8640 | 26359 | 35 | 0.510488 |
|  | 142.96 | 1320700 | 1072020 | 23.20 | 1595190 | 20.78 | 8640 | 26393 | 33 | 0.495737 |
|  | 85.80 | 1339020 | 1084200 | 23.50 | 1660170 | 23.98 | 8640 | 26470 | 34 | 0.508449 |
| Average: | 240.58 | 1311417 | 1060260 | 23.69 | 1630435 | 24.34 | 8640 | 26329 | 33.5 | 0.50 |
|  | 462.37 | 1230730 | 1015710 | 21.17 | 1572380 | 27.76 | 28512 | 28015 | 32 | 0.451916 |
|  | 150.75 | 1315690 | 1074590 | 22.44 | 1637540 | 24.46 | 28332 | 26874 | 33 | 0.449759 |
|  | 828.81 | 1334790 | 1074700 | 24.20 | 1656390 | 24.09 | 28044 | 29962 | 33 | 0.473944 |
|  | 175.68 | 1231090 | 1020520 | 20.63 | 1532400 | 24.48 | 28008 | 27137 | 32 | 0.438652 |
|  | 520.62 | 1358030 | 1048560 | 29.51 | 1696470 | 24.92 | 28188 | 30213 | 36 | 0.50139 |
|  | 859.81 | 1265410 | 1066830 | 18.61 | 1585480 | 25.29 | 27792 | 28103 | 29 | 0.419298 |
|  | 278.99 | 1335700 | 1111240 | 20.20 | 1696350 | 27.00 | 27504 | 28013 | 30 | 0.433132 |
|  | 525.80 | 1308130 | 1034230 | 26.48 | 1671980 | 27.81 | 28224 | 29627 | 35 | 0.490183 |
|  | 280.79 | 1326740 | 1072020 | 23.76 | 1595190 | 20.23 | 27900 | 28886 | 34 | 0.467341 |
|  | 152.43 | 1326170 | 1084200 | 22.32 | 1660170 | 25.19 | 28116 | 28602 | 33 | 0.449289 |
| Average: | 423.60 | 1303248 | 1060260 | 22.93 | 1630435 | 25.12 | 28062 | 28543 | 32.7 | 0.46 |
|  | 359.26 | 1242220 | 1015710 | 22.30 | 1572380 | 26.58 | 10080 | 26291 | 33 | 0.770678 |
|  | 79.62 | 1322680 | 1074590 | 23.09 | 1637540 | 23.80 | 10080 | 26396 | 34 | 0.79557 |
|  | 637.97 | 1345120 | 1074700 | 25.16 | 1656390 | 23.14 | 10080 | 26293 | 34 | 0.744016 |
|  | 105.14 | 1231080 | 1020520 | 20.63 | 1532400 | 24.48 | 10080 | 26128 | 32 | 0.651806 |
|  | 269.15 | 1361400 | 1048560 | 29.84 | 1696470 | 24.61 | 10080 | 26691 | 36 | 0.676656 |
|  | 557.07 | 1276950 | 1066830 | 19.70 | 1585480 | 24.16 | 10080 | 25983 | 31 | 0.622346 |
|  | 163.54 | 1364130 | 1111240 | 22.76 | 1696350 | 24.35 | 10080 | 26126 | 33 | 0.65476 |
|  | 266.89 | 1310470 | 1034230 | 26.71 | 1671980 | 27.59 | 10080 | 26352 | 35 | 0.663467 |
|  | 195.69 | 1327070 | 1072020 | 23.79 | 1595190 | 20.20 | 10080 | 26492 | 34 | 0.658291 |
|  | 94.81 | 1339020 | 1084200 | 23.50 | 1660170 | 23.98 | 10080 | 26470 | 34 | 0.666427 |
| Average: | 272.91 | 1312014 | 1060260 | 23.75 | 1630435 | 24.29 | 10080 | 26322 | 33.6 | 0.69 |
|  | 494.63 | 1243120 | 1015710 | 22.39 | 1572380 | 26.49 | 29952 | 26164 | 33 | 0.437462 |
|  | 56.94 | 1322620 | 1074590 | 23.08 | 1637540 | 23.81 | 29772 | 26469 | 34 | 0.433637 |
|  | 1226.06 | 1345200 | 1074700 | 25.17 | 1656390 | 23.13 | 29484 | 26196 | 34 | 0.430822 |
|  | 93.90 | 1231080 | 1020520 | 20.63 | 1532400 | 24.48 | 29448 | 26203 | 32 | 0.416461 |
|  | 453.52 | 1361440 | 1048560 | 29.84 | 1696470 | 24.61 | 29628 | 26740 | 36 | 0.454057 |
|  | 1497.34 | 1277950 | 1066830 | 19.79 | 1585480 | 24.06 | 29232 | 25892 | 31 | 0.407294 |
|  | 137.71 | 1363750 | 1111240 | 22.72 | 1696350 | 24.39 | 28944 | 26224 | 33 | 0.427128 |
|  | 380.01 | 1310540 | 1034230 | 26.72 | 1671980 | 27.58 | 29664 | 26466 | 35 | 0.444504 |
|  | 197.26 | 1320650 | 1072020 | 23.19 | 1595190 | 20.79 | 29340 | 26389 | 33 | 0.423744 |
|  | 73.18 | 1339020 | 1084200 | 23.50 | 1660170 | 23.98 | 29556 | 26503 | 34 | 0.430019 |
| Average: | 461.05 | 1311537 | 1060260 | 23.70 | 1630435 | 24.33 | 29502 | 26325 | 33.5 | 0.43 |

Table A.8. Experiments with Valid Inequalities on Problem Set 4.

| Model | LPTime | RlxObj | InitialRlxObj | Increase \% | BestFeas | Gap\% | NConstr. | Ncuts | Ncallback | CutTime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\square}{2}$ | 287.06 | 1246830 | 1013030 | 23.08 | 1755740 | 40.82 | 8640 | 26486 | 34 | 0.82 |
|  | 645.44 | 1320700 | 1071350 | 23.27 | 2036840 | 54.22 | 8640 | 26491 | 34 | 0.82 |
|  | 691.60 | 1247990 | 1070080 | 16.63 | 1846890 | 47.99 | 8640 | 25129 | 28 | 0.73 |
|  | 1193.72 | 1307870 | 1021380 | 28.05 | 1866690 | 42.73 | 8640 | 26622 | 36 | 0.78 |
|  | 166.19 | 1201380 | 1043030 | 15.18 | 1678810 | 39.74 | 8640 | 24427 | 26 | 0.68 |
|  | 632.84 | 1305220 | 1065530 | 22.49 | 1937950 | 48.48 | 8640 | 26429 | 34 | 0.77 |
|  | 520.90 | 1362070 | 1109840 | 22.73 | 1956390 | 43.63 | 8640 | 26484 | 34 | 0.77 |
|  | 426.68 | 1341250 | 1035490 | 29.53 | 2025670 | 51.03 | 8640 | 26515 | 36 | 0.78 |
|  | 972.43 | 1243660 | 1071520 | 16.07 | 1872780 | 50.59 | 8640 | 24854 | 27 | 0.69 |
|  | 95.81 | 1214620 | 1079610 | 12.51 | 1721350 | 41.72 | 8640 | 22418 | 22 | 0.57 |
| Average: | 563.27 | 1279159 | 1058086 | 20.95 | 1869911 | 46.09 | 8640 | 25586 | 31.1 | 0.74 |
|  | 351.77 | 1159410 | 1013030 | 14.45 | 1755740 | 51.43 | 39564 | 26813 | 23 | 0.63 |
|  | 821.78 | 1288390 | 1071350 | 20.26 | 2036840 | 58.09 | 40500 | 29442 | 31 | 0.74 |
|  | 15.13 | 1094930 | 1070080 | 2.32 | 1846890 | 68.68 | 40032 | 5615 | 4 | 0.11 |
|  | 1137.27 | 1290650 | 1021380 | 26.36 | 1866690 | 44.63 | 38556 | 32765 | 35 | 0.76 |
|  | 7.94 | 1060630 | 1043030 | 1.69 | 1678810 | 58.28 | 38988 | 4246 | 3 | 0.08 |
|  | 773.13 | 1276200 | 1065530 | 19.77 | 1937950 | 51.85 | 38808 | 31941 | 31 | 0.75 |
|  | 800.81 | 1336390 | 1109840 | 20.41 | 1956390 | 46.39 | 38844 | 32627 | 32 | 0.74 |
|  | 1105.86 | 1327370 | 1035490 | 28.19 | 2025670 | 52.61 | 38700 | 31990 | 36 | 0.76 |
|  | 605.20 | 1201160 | 1071520 | 12.10 | 1872780 | 55.91 | 39312 | 24364 | 21 | 0.55 |
|  | 63.50 | 1151510 | 1079610 | 6.66 | 1721350 | 49.49 | 37116 | 15009 | 12 | 0.30 |
| Average: | 568.24 | 1218664 | 1058086 | 15.22 | 1869911 | 53.74 | 39042 | 23481 | 22.8 | 0.54 |
|  | 363.76 | 1246830 | 1013030 | 23.08 | 1755740 | 40.82 | 10080 | 26486 | 34 | 0.81 |
|  | 420.14 | 1320720 | 1071350 | 23.28 | 2036840 | 54.22 | 10080 | 26489 | 34 | 0.83 |
|  | 498.64 | 1247870 | 1070080 | 16.61 | 1846890 | 48.00 | 10080 | 25135 | 28 | 0.74 |
|  | 1344.07 | 1307870 | 1021380 | 28.05 | 1866690 | 42.73 | 10080 | 26622 | 36 | 0.82 |
|  | 129.18 | 1195430 | 1043030 | 14.61 | 1678810 | 40.44 | 10080 | 23989 | 25 | 0.68 |
|  | 496.20 | 1305220 | 1065530 | 22.49 | 1937950 | 48.48 | 10080 | 26429 | 34 | 0.81 |
|  | 578.06 | 1362070 | 1109840 | 22.73 | 1956390 | 43.63 | 10080 | 26483 | 34 | 0.80 |
|  | 357.25 | 1341250 | 1035490 | 29.53 | 2025670 | 51.03 | 10080 | 26515 | 36 | 0.80 |
|  | 586.04 | 1243490 | 1071520 | 16.05 | 1872780 | 50.61 | 10080 | 24849 | 27 | 0.73 |
|  | 84.90 | 1214620 | 1079610 | 12.51 | 1721350 | 41.72 | 10080 | 22418 | 22 | 0.60 |
| Average: | 485.82 | 1278537 | 1058086 | 20.89 | 1869911 | 46.17 | 10080 | 25542 | 31.0 | 0.76 |
|  | 405.16 | 1246920 | 1013030 | 23.09 | 1755740 | 40.81 | 41004 | 26488 | 34 | 0.43 |
|  | 519.96 | 1320720 | 1071350 | 23.28 | 2036840 | 54.22 | 41940 | 26489 | 34 | 0.43 |
|  | 737.44 | 1241830 | 1070080 | 16.05 | 1846890 | 48.72 | 41472 | 24769 | 27 | 0.37 |
|  | 2019.43 | 1303460 | 1021380 | 27.62 | 1866690 | 43.21 | 39996 | 26591 | 35 | 0.43 |
|  | 165.25 | 1201400 | 1043030 | 15.18 | 1678810 | 39.74 | 40428 | 24435 | 26 | 0.36 |
|  | 717.45 | 1305220 | 1065530 | 22.49 | 1937950 | 48.48 | 40248 | 26429 | 34 | 0.44 |
|  | 810.68 | 1362010 | 1109840 | 22.72 | 1956390 | 43.64 | 40284 | 26502 | 34 | 0.43 |
|  | 774.92 | 1341360 | 1035490 | 29.54 | 2025670 | 51.02 | 40140 | 26516 | 36 | 0.44 |
|  | 702.08 | 1237500 | 1071520 | 15.49 | 1872780 | 51.34 | 40752 | 24447 | 26 | 0.36 |
|  | 78.24 | 1214620 | 1079610 | 12.51 | 1721350 | 41.72 | 38556 | 22418 | 22 | 0.30 |
| Average: | 693.06 | 1277504 | 1058086 | 20.80 | 1869911 | 46.29 | 40482 | 25508 | 30.8 | 0.40 |

## A.3. Experiments on Heuristics

Table A.9. Experiments with Heuristics on Problem Set 1.

| Model | LPTime | RlxObj | InitHeurTime | InitHeurObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. | Ncuts | Ncallback | NHeurSoln | BestHeur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{n}{E} \\ & 0 \\ & + \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$ | 0.16 | 678396 | - | - | 1215 | 922721.00 | 1105040 | 0.01 | 1105040 | 16.50 | 0 | 5760 | 1786 | 13 | - | - |
|  | 0.19 | 717620 | - | - | 1200 | 1002670.00 | 1274290 | 0.03 | 1274290 | 21.32 | 0 | 5760 | 1663 | 17 | - | - |
|  | 0.18 | 715936 | - | - | 1200 | 971112.00 | 1211550 | 0.01 | 1211550 | 19.85 | 0 | 5760 | 1794 | 19 | - | - |
|  | 0.17 | 684632 | - | - | 1206 | 965750.00 | 1187890 | 0.04 | 1187890 | 18.70 | 0 | 5760 | 2043 | 12 | - | - |
|  | 0.19 | 698281 | - | - | 1200 | 923827.00 | 1116440 | 0.01 | 1116440 | 17.25 | 0 | 5760 | 1865 | 13 | - | - |
|  | 0.19 | 713263 | - | - | 1200 | 976702.00 | 1223010 | 0.04 | 1223010 | 20.14 | 0 | 5760 | 1788 | 15 | - | - |
|  | 0.19 | 743252 | - | - | 1213 | 1052560.00 | 1259590 | 0.04 | 1259590 | 16.44 | 0 | 5760 | 1940 | 15 | - | - |
|  | 0.19 | 694447 | - | - | 1202 | 1054060.00 | 1283320 | 0.04 | 1283320 | 17.87 | 0 | 5760 | 1737 | 25 | - | - |
|  | 0.19 | 717974 | - | - | 1210 | 988402.00 | 1183780 | 0.01 | 1183780 | 16.50 | 0 | 5760 | 2077 | 27 | - | - |
|  | 0.18 | 722978 | - | - | 1200 | 954396.00 | 1165430 | 0.03 | 1165430 | 18.11 | 0 | 5760 | 1648 | 18 | - | - |
| Average: | 0.18 | 708678 | - | - | 1204.58 | 981220 | 1201034 | 0.03 | 1201034 | 18.27 | 0.00 | 5760 | 1834.10 | 17 | - | - |
| $\begin{aligned} & \overrightarrow{\#} \\ & \stackrel{y}{4} \\ & \stackrel{H}{G} \\ & + \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$ | 0.16 | 678396 | 0.005 | 1366170 | 1200 | 920913.00 | 1063640 | 0.03 | 1063640 | 13.42 | 0 | 5760 | - | - | - | - |
|  | 0.19 | 717620 | 0.004 | 1626040 | 1204 | 997423.00 | 1208980 | 0.04 | 1208980 | 17.50 | 0 | 5760 | - | - | - | - |
|  | 0.19 | 715936 | 0.005 | 1651370 | 1200 | 972643.00 | 1181090 | 0.03 | 1181090 | 17.65 | 0 | 5760 | - | - | - | - |
|  | 0.18 | 684632 | 0.006 | 1493070 | 1206 | 970876.00 | 1151330 | 0.04 | 1151330 | 15.67 | 0 | 5760 | - | - | - | - |
|  | 0.20 | 698281 | 0.005 | 1512950 | 1211 | 924952.00 | 1082780 | 0.04 | 1082780 | 14.58 | 0 | 5760 | - | - | - | - |
|  | 0.19 | 713263 | 0.005 | 1880150 | 1200 | 973848.00 | 1160530 | 0.03 | 1160530 | 16.09 | 0 | 5760 | - | - | - | - |
|  | 0.19 | 743252 | 0.005 | 1648120 | 1214 | 1053450.00 | 1230730 | 0.03 | 1230730 | 14.40 | 0 | 5760 | - | - | - | - |
|  | 0.21 | 694447 | 0.004 | 2312640 | 1113 | 1054080.00 | 1273430 | 86.75 | 1273120 | 17.19 | 0 | 5760 | - | - | - | - |
|  | 0.19 | 717974 | 0.004 | 1925160 | 1011 | 988485.00 | 1161910 | 188.84 | 1159100 | 14.68 | 0 | 5760 | - | - | - | - |
|  | 0.18 | 722978 | 0.005 | 1327410 | 1200 | 955826.00 | 1065690 | 0.01 | 1065690 | 10.31 | 0 | 5760 | - | - | - | - |
| Average: | 0.19 | 708678 | 0.005 | 1674308 | 1176.05 | 981250 | 1158011 | 27.58 | 1157699 | 15.15 | 0.00 | 5760 | - | - | - | - |
|  | 0.16 | 678396 | 0.005 | 1366170 | 1200 | 925664.00 | 1060020 | 0.01 | 1060020 | 12.68 |  | 5760 | 1606 | 15 | - | - |
|  | 0.19 | 717620 | 0.004 | 1626040 | 1204 | 997008.00 | 1205370 | 0.04 | 1205370 | 17.29 | - | 5760 | 1706 | 15 | - | - |
|  | 0.18 | 715936 | 0.004 | 1651370 | 1200 | 969558.00 | 1171120 | 0.04 | 1171120 | 17.21 | 0 | 5760 | 1820 | 17 | - | - |
|  | 0.18 | 684632 | 0.006 | 1493070 | 1207 | 963281.00 | 1145520 | 0.03 | 1145520 | 15.91 | 0 | 5760 | 1963 | 12 | - | - |
|  | 0.19 | 698281 | 0.005 | 1512950 | 1200 | 925502.00 | 1085660 | 0.04 | 1085660 | 14.75 | 0 | 5760 | 2014 | 16 | - | - |
|  | 0.19 | 713263 | 0.005 | 1880150 | 1200 | 975211.00 | 1164680 | 0.03 | 1164680 | 16.27 | 0 | 5760 | 1927 | 14 | - | - |
|  | 0.19 | 743252 | 0.005 | 1648120 | 1214 | 1047340.00 | 1267350 | 0.01 | 1267350 | 17.36 | 0 | 5760 | 2094 | 14 | - | - |
|  | 0.20 | 694447 | 0.004 | 2312640 | 1200 | 1052900.00 | 1262970 | 0.04 | 1262970 | 16.63 | 0 | 5760 | 1809 | 21 | - | - |
|  | 0.19 | 717974 | 0.004 | 1925160 | 1210 | 987511.00 | 1172870 | 0.04 | 1172870 | 15.80 | 0 | 5760 | 1951 | 21 | - | - |
|  | 0.18 | 722978 | 0.005 | 1327410 | 1200 | 956806.00 | 1069360 | 0.03 | 1069360 | 10.53 | 0 | 5760 | 1558 | 21 | - | - |
| Average: | 0.18 | 708678 | 0.005 | 1674308 | 1203.64 | 980078 | 1160492 | 0.03 | 1160492 | 15.44 | 0.00 | 5760 | 1844.80 | 17 | - | - |
|  | 0.17 | 678396 | 0.006 | 1366170 | 1200 | 921240.00 | 1062990 | 0.04 | 1062990 | 13.34 | 0 | 5760 | 1903 | 13 | 520 | 17800979 |
|  | 0.20 | 717620 | 0.004 | 1626040 | 1206 | 994618.00 | 1216820 | 0.04 | 1216820 | 18.26 | 0 | 5760 | 1947 | 14 | 560 | 10772245 |
|  | 0.19 | 715936 | 0.005 | 1651370 | 1209 | 967616.00 | 1153180 | 0.04 | 1153180 | 16.09 | 0 | 5760 | 2179 | 15 | 600 | 15190746 |
|  | 0.19 | 684632 | 0.005 | 1493070 | 1201 | 964499.00 | 1149660 | 0.04 | 1149660 | 16.11 | 0 | 5760 | 2279 | 12 | 480 | 14159661 |
|  | 0.19 | 698281 | 0.004 | 1512950 | 1200 | 924822.00 | 1089150 | 0.04 | 1089150 | 15.09 | 0 | 5760 | 2247 | 13 | 520 | 15878926 |
|  | 0.19 | 713263 | 0.005 | 1880150 | 1200 | 973771.00 | 1156840 | 0.04 | 1156840 | 15.82 | 0 | 5760 | 2105 | 12 | 480 | 14234884 |
|  | 0.20 | 743252 | 0.005 | 1648120 | 1215 | 1045600.00 | 1257890 | 0.04 | 1257890 | 16.88 | 0 | 5760 | 2558 | 13 | 520 | 18789992 |
|  | 0.21 | 694447 | 0.004 | 2312640 | 1200 | 1051540.00 | 1264360 | 0.04 | 1264360 | 16.83 | 0 | 5760 | 2129 | 18 | 720 | 12987575 |
|  | 0.20 | 717974 | 0.004 | 1925160 | 1210 | 988240.00 | 1159490 | 0.05 | 1159490 | 14.77 | 0 | 5760 | 2442 | 22 | 880 | 17988366 |
|  | 0.18 | 722978 | 0.005 | 1327410 | 1200 | 955476.00 | 1075590 | 0.01 | 1075590 | 11.17 | 0 | 5760 | 1852 | 20 | 800 | 6729107 |
| Average: | 0.19 | 708678 | 0.005 | 1674308 | 1204.02 | 978742 | 1158597 | 0.04 | 1158597 | 15.44 | 0.00 | 5760 | 2164.10 | 15 | 608 | 14453248 |

Table A.10. Experiments with Heuristics on Problem Set 2.

| Model | LPTime | RlxObj | InitHeurTime | InitHeurObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. | Ncuts | Ncallback | NHeurSoln | BestHeur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{n}{E} \\ & U \\ & + \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$ | 0.10 | 681132 | - | - | 700 | 929285.00 | 1038730 | 499.53 | 1036300 | 10.25 | 113 | 5760 | 2434 | 235 | - | - |
|  | 0.10 | 720805 | - | - | 661 | 983260.00 | 1076580 | 539.05 | 1076010 | 8.58 | 165 | 5760 | 1960 | 332 | - | - |
|  | 0.09 | 720478 | - | - | 371 | 980492.00 | 1107830 | 829.38 | 1105450 | 11.23 | 544 | 5760 | 3026 | 1018 | - | - |
|  | 0.10 | 684124 | - | - | 394 | 921918.00 | 1017510 | 806.41 | 1017510 | 9.37 | 634 | 5760 | 2493 | 1175 | - | - |
|  | 0.08 | 703107 | - | - | 357 | 997636.00 | 1109260 | 843.35 | 1107670 | 9.91 | 640 | 5760 | 2826 | 1179 | - | - |
|  | 0.08 | 714616 | - | - | 601 | 935414.00 | 1032610 | 599.37 | 1030640 | 9.20 | 146 | 5760 | 2439 | 301 | - | - |
|  | 0.09 | 745050 | - | - | 341 | 1019090.00 | 1112920 | 859.44 | 1112220 | 8.32 | 965 | 5760 | 3007 | 1841 | - | - |
|  | 0.08 | 693586 | - | - | 750 | 966742.00 | 1071690 | 450.41 | 1069040 | 9.56 | 90 | 5760 | 2705 | 198 | - | - |
|  | 0.10 | 718966 | - | - | 352 | 974594.00 | 1077720 | 848.08 | 1068440 | 8.71 | 866 | 5760 | 2816 | 1607 | - | - |
|  | 0.11 | 727199 | - | - | 477 | 1003320.00 | 1090220 | 723.52 | 1089640 | 7.89 | 329 | 5760 | 2781 | 628 | - | - |
| Average: | 0.09 | 710906 | - | - | 500.16 | 971175 | 1073507 | 699.85 | 1071292 | 9.30 | 449.20 | 5760 | 2648.70 | 851 | - | - |
|  | 0.10 | 681132 | 0.004 | 1188530 | 583 | 929563.00 | 1021970 | 616.93 | 1020850 | 8.88 | 274 | 5760 | - | - | - | - |
|  | 0.10 | 720805 | 0.004 | 1273700 | 546 | 983047.00 | 1086960 | 653.55 | 1082400 | 9.14 | 279 | 5760 | - | - | - | - |
|  | 0.08 | 720478 | 0.004 | 1217610 | 399 | 980394.00 | 1105140 | 801.08 | 1104320 | 11.17 | 536 | 5760 | - | - | - | - |
|  | 0.10 | 684124 | 0.004 | 1277560 | 397 | 921912.00 | 996398 | 802.96 | 995024 | 7.34 | 809 | 5760 | - | - | - | - |
|  | 0.07 | 703107 | 0.004 | 1471510 | 325 | 996613.00 | 1102790 | 875.40 | 1101700 | 9.48 | 770 | 5760 | - | - | - | - |
|  | 0.09 | 714616 | 0.004 | 1157960 | 815 | 934973.00 | 1031440 | 384.99 | 1029890 | 9.15 | 43 | 5760 | - | - | - | - |
|  | 0.09 | 745050 | 0.004 | 1312870 | 393 | 1019160.00 | 1102040 | 806.82 | 1102040 | 7.47 | 1042 | 5760 | - | - | - | - |
|  | 0.07 | 693586 | 0.003 | 1214330 | 736 | 966150.00 | 1078320 | 464.38 | 1076440 | 10.20 | 98 | 5760 | - | - | - | - |
|  | 0.10 | 718966 | 0.004 | 1281680 | 377 | 974046.00 | 1060520 | 823.18 | 1059340 | 8.02 | 1063 | 5760 | - | - | - | - |
|  | 0.11 | 727199 | 0.004 | 1310360 | 402 | 1002660.00 | 1094510 | 798.35 | 1093990 | 8.28 | 574 | 5760 | - | - | - | - |
| Average: | 0.09 | 710906 | 0.004 | 1270611 | 497.24 | 970852 | 1068009 | 702.76 | 1066599 | 8.91 | 548.80 | 5760 | - | - | - | - |
|  | 0.10 | 681132 | 0.003 | 1188530 | 564 | 929448.00 | 1018080 | 636.18 | 1017590 | 8.60 | 307 | 5760 | 2720 | 617 | - | - |
|  | 0.10 | 720805 | 0.004 | 1273700 | 677 | 982728.00 | 1076980 | 523.43 | 1074870 | 8.47 | 127 | 5760 | 1886 | 266 | - | - |
|  | 0.09 | 720478 | 0.003 | 1217610 | 447 | 980795.00 | 1092220 | 753.44 | 1092220 | 10.17 | 438 | 5760 | 3073 | 836 | - | - |
|  | 0.10 | 684124 | 0.003 | 1277560 | 362 | 921856.00 | 1003090 | 838.44 | 1000030 | 7.79 | 756 | 5760 | 2720 | 1404 | - | - |
|  | 0.07 | 703107 | 0.003 | 1471510 | 418 | 997852.00 | 1098380 | 781.70 | 1096110 | 8.95 | 567 | 5760 | 2616 | 1094 | - | - |
|  | 0.08 | 714616 | 0.004 | 1157960 | 689 | 935401.00 | 1040320 | 510.99 | 1035530 | 9.63 | 120 | 5760 | 2474 | 254 | - | - |
|  | 0.10 | 745050 | 0.004 | 1312870 | 388 | 1019310.00 | 1104880 | 812.05 | 1102250 | 7.49 | 740 | 5760 | 2808 | 1434 | - | - |
|  | 0.07 | 693586 | 0.003 | 1214330 | 832 | 966761.00 | 1066610 | 368.04 | 1064650 | 9.18 | 0 | 5760 | 3061 | 38 | - | - |
|  | 0.10 | 718966 | 0.004 | 1281680 | 416 | 974064.00 | 1061320 | 784.34 | 1058080 | 7.87 | 783 | 5760 | 2968 | 1455 | - | - |
|  | 0.10 | 727199 | 0.004 | 1310360 | 547 | 1003510.00 | 1094740 | 652.85 | 1094440 | 8.26 | 385 | 5760 | 2359 | 742 | - | - |
| Average: | 0.09 | 710906 | 0.004 | 1270611 | 533.85 | 971173 | 1065662 | 666.15 | 1063577 | 8.64 | 422.30 | 5760 | 2668.50 | 814 | - | - |
|  | 0.10 | 681132 | 0.004 | 1188530 | 745 | 929851.00 | 1010630 | 456.95 | 1010560 | 7.93 | 108 | 5760 | 3144 | 201 | 8040 | 9928806 |
|  | 0.10 | 720805 | 0.004 | 1273700 | 624 | ${ }^{983236.00}$ | 1076720 | 576.12 | 1075740 | 8.56 | 147 | 5760 | 2231 | 279 | 11160 | 6237196 |
|  | 0.08 | 720478 | 0.004 | 1217610 | 506 | 980743.00 | 1096450 | 695.12 | 1095340 | 10.41 | 269 | 5760 | 3601 | 451 | 18040 | 4338908 |
|  | 0.11 | 684124 | 0.004 | 1277560 | 461 | 921989.00 | 996070 | 741.00 | 994297 | 7.25 | 298 | 5760 | 2818 | 507 | 20280 | 5535321 |
|  | 0.08 | 703107 | 0.003 | 1471510 | 427 | 997978.00 | 1097510 | 774.58 | 1097510 | 9.05 | 398 | 5760 | 3327 | 698 | 27920 | 3996360 |
|  | 0.09 | 714616 | 0.004 | 1157960 | 960 | 935562.00 | 1032750 | 239.89 | 1032750 | 9.38 | 0 | 5760 | 2749 | 37 | 1480 | 7279785 |
|  | 0.10 | 745050 | 0.003 | 1312870 | 443 | 1019610.00 | 1100210 | 759.17 | 1100010 | 7.27 | 533 | 5760 | 3255 | 978 | 39120 | 8478951 |
|  | 0.08 | 693586 | 0.004 | 1214330 | 914 | ${ }^{966620.00}$ | 1073590 | 286.11 | 1071910 | 9.81 | 0 | 5760 | 3265 | 37 | 1480 | 6744058 |
|  | 0.10 | 718966 | 0.003 | 1281680 | 417 | 973794.00 | 1065170 | 784.57 | 1065170 | 8.45 | 418 | 5760 | 3301 | 704 | 28160 | 8752852 |
|  | 0.11 | 727199 | 0.003 | 1310360 | 540 | 1003420.00 | 1094990 | 659.86 | 1094630 | 8.29 | 254 | 5760 | 2926 | 454 | 18160 | 7061627 |
| Average: | 0.09 | 710906 | 0.004 | 1270611 | 603.63 | 971280 | 1064409 | 597.34 | 1063792 | 8.64 | 242.50 | 5760 | 3061.70 | 435 | 17384 | 6835386 |

Table A.11. Experiments with Heuristics on Problem Set 3.

| Model | LPTime | RlxObj | InitHeurTime | InitHeurObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. | Ncuts | Ncallback | NHeurSoln | BestHeur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{n}{E} \\ & 0 \\ & + \\ & \vec{a} \end{aligned}$ | 0.15 | 1015710 | - | - | 1200 | 1378400.00 | 1571180 | 0.05 | 1571180 | 12.27 | 0 | 8640 | 3950 | 11 | - | - |
|  | 0.14 | 1074590 | - | - | 1200 | 1465370.00 | 1636250 | 0.04 | 1636250 | 10.44 | 0 | 8640 | 2804 | 12 | - | - |
|  | 0.11 | 1074700 | - | - | 1201 | 1465730.00 | 1646190 | 0.05 | 1646190 | 10.96 | 0 | 8640 | 4347 | 11 | - | - |
|  | 0.14 | 1020520 | - | - | 1200 | 1380390.00 | 1527530 | 0.05 | 1527530 | 9.63 | 0 | 8640 | 3940 | 14 | - | - |
|  | 0.11 | 1048560 | - | - | 1200 | 1492760.00 | 1702790 | 0.05 | 1702790 | 12.33 | 0 | 8640 | 4153 | 14 | - | - |
|  | 0.11 | 1066830 | - | - | 1200 | 1390260.00 | 1581970 | 0.05 | 1581970 | 12.12 | 0 | 8640 | 3875 | 11 | - | - |
|  | 0.13 | 1111240 | - | - | 1200 | 1525530.00 | 1681410 | 0.05 | 1681410 | 9.27 | 0 | 8640 | 4234 | 14 | - | - |
|  | 0.12 | 1034230 | - | - | 1200 | 1434090.00 | 1638300 | 0.05 | 1638300 | 12.46 | 0 | 8640 | 4558 | 11 | - | - |
|  | 0.15 | 1072020 | - | - | 1200 | 1458310.00 | 1599940 | 0.05 | 1599940 | 8.85 | 0 | 8640 | 3840 | 18 | - | - |
|  | 0.15 | 1084200 | - | - | 1200 | 1497510.00 | 1660330 | 0.01 | 1660330 | 9.81 | 0 | 8640 | 4311 | 13 | - | - |
| Average: | 0.13 | 1060260 | - | - | 1200.43 | 1448835 | 1624589 | 0.04 | 1624589 | 10.82 | 0.00 | 8640 | 4001.20 | 13 | - | - |
|  | 0.15 | 1015710 | 0.006 | 1813350 | 1200 | 1382910.00 | 1545170 | 0.04 | 1545170 | 10.50 | 0 | 8640 | - | - | - | - |
|  | 0.14 | 1074590 | 0.005 | 1905270 | 1201 | 1467020.00 | 1621860 | 0.04 | 1621860 | 9.55 | 0 | 8640 | - | - | - | - |
|  | 0.11 | 1074700 | 0.005 | 1823570 | 1201 | 1466920.00 | 1653380 | 0.04 | 1653380 | 11.28 | 0 | 8640 | - | - | - | - |
|  | 0.15 | 1020520 | 0.005 | 1988720 | 1200 | 1381730.00 | 1485580 | 0.05 | 1485580 | 6.99 | 0 | 8640 | - | - | - | - |
|  | 0.11 | 1048560 | 0.004 | 2292140 | 1201 | 1493820.00 | 1667200 | 0.04 | 1667200 | 10.40 | 0 | 8640 | - | - | - | - |
|  | 0.12 | 1066830 | 0.006 | 1730110 | 1200 | 1393450.00 | 1569420 | 0.04 | 1569420 | 11.21 | 0 | 8640 | - | - | - | - |
|  | 0.14 | 1111240 | 0.006 | 1984280 | 1200 | 1525600.00 | 1666150 | 0.01 | 1666150 | 8.44 | 0 | 8640 | - | - | - | - |
|  | 0.12 | 1034230 | 0.005 | 1832140 | 1201 | 1437450.00 | 1604310 | 0.04 | 1604310 | 10.40 | 0 | 8640 | - | - | - | - |
|  | 0.15 | 1072020 | 0.005 | 1948320 | 1192 | 1457540.00 | 1608180 | 8.10 | 1608180 | 9.37 | 0 | 8640 | - | - | - | - |
|  | 0.15 | 1084200 | 0.005 | 1992680 | 1200 | 1500870.00 | 1657710 | 0.05 | 1657710 | 9.46 | 0 | 8640 | - | - | - | - |
| Average: | 0.13 | 1060260 | 0.005 | 1931058 | 1199.61 | 1450731 | 1607896 | 0.85 | 1607896 | 9.76 | 0.00 | 8640 | - | - | - | - |
|  | 0.15 | 1015710 | 0.005 | 1813350 | 1200 | 1376550.00 | 1538180 | 0.05 | 1538180 | 10.51 | 0 | 8640 | 4365 | 11 | - | - |
|  | 0.14 | 1074590 | 0.006 | 1905270 | 1201 | 1464510.00 | 1631470 | 0.05 | 1631470 | 10.23 | 0 | 8640 | 3150 | 13 | - | - |
|  | 0.12 | 1074700 | 0.006 | 1823570 | 1200 | 1466030.00 | 1646410 | 0.05 | 1646410 | 10.96 | 0 | 8640 | 4605 | 13 | - | - |
|  | 0.14 | 1020520 | 0.005 | 1988720 | 1200 | 1379990.00 | 1501880 | 0.05 | 1501880 | 8.12 | 0 | 8640 | 3399 | 15 | - | - |
|  | 0.12 | 1048560 | 0.004 | 2292140 | 1201 | 1493760.00 | 1652450 | 0.05 | 1652450 | 9.60 | 0 | 8640 | 4171 | 15 | - | - |
|  | 0.12 | 1066830 | 0.006 | 1730110 | 1201 | 1387690.00 | 1563790 | 0.05 | 1563790 | 11.26 | 0 | 8640 | 3966 | 11 | - | - |
|  | 0.14 | 1111240 | 0.005 | 1984280 | 1200 | 1525320.00 | 1672760 | 0.02 | 1672760 | 8.81 | 0 | 8640 | 4366 | 16 | - | - |
|  | 0.11 | 1034230 | 0.005 | 1832140 | 1201 | 1429350.00 | 1606690 | 0.05 | 1606690 | 11.04 | 0 | 8640 | 4160 | 10 | - | - |
|  | 0.15 | 1072020 | 0.005 | 1948320 | 1201 | 1458790.00 | 1612750 | 0.04 | 1612750 | 9.55 | 0 | 8640 | 3975 | 20 | - | - |
|  | 0.15 | 1084200 | 0.005 | 1992680 | 1200 | 1498720.00 | 1657170 | 0.05 | 1657170 | 9.56 | 0 | 8640 | 4073 | 13 | - | - |
| Average: | 0.13 | 1060260 | 0.005 | 1931058 | 1200.47 | 1448071 | 1608355 | 0.05 | 1608355 | 9.96 | 0.00 | 8640 | 4023.00 | 14 | - | - |
|  | 0.15 | 1015710 | 0.005 | 1813350 | 1200 | 1377310.00 | 1539450 | 0.06 | 1539450 | 10.53 | 0 | 8640 | 4636 | 11 | 440 | 35120231 |
|  | 0.15 | 1074590 | 0.005 | 1905270 | 1200 | 1462840.00 | 1636810 | 0.01 | 1636810 | 10.63 | 0 | 8640 | 3388 | 12 | 480 | 26000665 |
|  | 0.12 | 1074700 | 0.006 | 1823570 | 1201 | 1465110.00 | 1662190 | 0.05 | 1662190 | 11.86 | 0 | 8640 | 5059 | 12 | 480 | 16379134 |
|  | 0.15 | 1020520 | 0.005 | 1988720 | 1203 | 1379800.00 | 1490030 | 0.06 | 1490030 | 7.40 | 0 | 8640 | 3852 | 14 | 560 | 14271942 |
|  | 0.12 | 1048560 | 0.005 | 2292140 | 1200 | 1492090.00 | 1659350 | 0.05 | 1659350 | 10.08 | 0 | 8640 | 4884 | 14 | 560 | 14743228 |
|  | 0.12 | 1066830 | 0.005 | 1730110 | 1200 | 1390430.00 | 1561540 | 0.01 | 1561540 | 10.96 | 0 | 8640 | 5004 | 11 | 440 | 17336680 |
|  | 0.14 | 1111240 | 0.006 | 1984280 | 1200 | 1523850.00 | 1666200 | 0.05 | 1666200 | 8.54 | 0 | 8640 | 4901 | 13 | 520 | 18492435 |
|  | 0.12 | 1034230 | 0.005 | 1832140 | 1200 | 1429970.00 | 1619380 | 0.06 | 1619380 | 11.70 | 0 | 8640 | 4749 | 11 | 440 | 17282380 |
|  | 0.16 | 1072020 | 0.006 | 1948320 | 1200 | 1456810.00 | 1604620 | 0.05 | 1604620 | 9.21 | 0 | 8640 | 4599 | 14 | 560 | 18756523 |
|  | 0.15 | 1084200 | 0.005 | 1992680 | 1200 | 1498210.00 | 1660700 | 0.05 | 1660700 | 9.78 | 0 | 8640 | 4576 | 12 | 480 | 20196762 |
| Average: | 0.14 | 1060260 | 0.005 | 1931058 | 1200.66 | 1447642 | 1610027 | 0.05 | 1610027 | 10.07 | 0.00 | 8640 | 4564.80 | 12 | 496 | 19857998 |

Table A.12. Experiments with Heuristics on Problem Set 4.

| Model | LPTime | RlxObj | InitHeurTime | InitHeurObj | Node0Time | Node0LB | Node0UB | B\&BTime | ObjVal | \% Gap | Nnodes | Nconstr. | Ncuts | Ncallback | NHeurSoln | BestHeur |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{n}{E} \\ & U \\ & + \\ & \stackrel{\rightharpoonup}{二} \end{aligned}$ | 0.23 | 1013030 | - | - | 1200 | 1343210.00 | 1836080 | 0.01 | 1836080 | 26.84 | 0 | 8640 | 3243 | 7 | - | - |
|  | 0.24 | 1071350 | - | - | 1200 | 1455450.00 | 2014390 | 0.05 | 2014390 | 27.75 | 0 | 8640 | 2748 | 8 | - | - |
|  | 0.24 | 1070080 | - | - | 1209 | 1408410.00 | 1830790 | 0.05 | 1830790 | 23.07 | 0 | 8640 | 2987 | 7 | - | - |
|  | 0.22 | 1021380 | - | - | 1204 | 1408030.00 | 1848370 | 0.05 | 1848370 | 23.82 | 0 | 8640 | 3252 | 7 | - | - |
|  | 0.24 | 1043030 | - | - | 1200 | 1350480.00 | 1745350 | 0.04 | 1745350 | 22.62 | 0 | 8640 | 2946 | 6 | - | - |
|  | 0.24 | 1065530 | - | - | 1204 | 1423460.00 | 1821200 | 0.04 | 1821200 | 21.84 | 0 | 8640 | 3013 | 6 | - | - |
|  | 0.24 | 1109840 | - | - | 1200 | 1519460.00 | 2040650 | 0.05 | 2040650 | 25.54 | 0 | 8640 | 2941 | 6 | - | - |
|  | 0.24 | 1035490 | - | - | 1200 | 1536960.00 | 1976630 | 0.05 | 1976630 | 22.24 | 0 | 8640 | 2709 | 7 | - | - |
|  | 0.24 | 1071520 | - | - | 1206 | 1436430.00 | 1938010 | 0.01 | 1938010 | 25.88 | 0 | 8640 | 3213 | 7 | - | - |
|  | 0.22 | 1079610 | - | - | 1207 | 1396030.00 | 1780400 | 0.05 | 1780400 | 21.59 | 0 | 8640 | 2617 | 8 | - | - |
| Average: | 0.23 | 1058086 | - | - | 1202.98 | 1427792 | 1883187 | 0.04 | 1883187 | 24.12 | 0.00 | 8640 | 2966.90 | 7 | - | - |
|  | 0.23 | 1013030 | 0.007 | 2054180 | 1205 | 1360220.00 | 1595060 | 0.04 | 1595060 | 14.72 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1071350 | 0.006 | 2526780 | 1203 | 1464020.00 | 1880400 | 0.04 | 1880400 | 22.14 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1070080 | 0.007 | 2569540 | 1200 | 1421220.00 | 1797690 | 0.04 | 1797690 | 20.94 | 0 | 8640 | - | - | - | - |
|  | 0.23 | 1021380 | 0.008 | 2271620 | 1205 | 1419230.00 | 1747330 | 0.04 | 1747330 | 18.78 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1043030 | 0.007 | 2311850 | 1200 | 1363890.00 | 1626290 | 0.04 | 1626290 | 16.13 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1065530 | 0.007 | 3058240 | 1204 | 1430900.00 | 1781280 | 0.05 | 1781280 | 19.67 | 0 | 8640 | - | - | - | - |
|  | 0.23 | 1109840 | 0.007 | 2658840 | 1200 | 1537150.00 | 1931360 | 0.04 | 1931360 | 20.41 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1035490 | 0.007 | 3777990 | 1207 | 1543920.00 | 1936540 | 0.04 | 1936540 | 20.27 | 0 | 8640 | - | - | - | - |
|  | 0.24 | 1071520 | 0.006 | 3101580 | 1206 | 1450060.00 | 1797890 | 0.04 | 1797890 | 19.35 | 0 | 8640 | - | - | - | - |
|  | 0.22 | 1079610 | 0.008 | 2024040 | 1200 | 1410370.00 | 1635670 | 0.01 | 1635670 | 13.77 | 0 | 8640 | - | - | - | - |
| Average: | 0.24 | 1058086 | 0.007 | 2635466 | 1203.04 | 1440098 | 1772951 | 0.04 | 1772951 | 18.62 | 0.00 | 8640 | - | - | - | - |
|  | 0.23 | 1013030 | 0.008 | 2054180 | 1200 | 1345120.00 | 1598860 | 0.05 | 1598860 | 15.87 | 0 | 8640 | 3025 | 7 | - | - |
|  | 0.24 | 1071350 | 0.007 | 2526780 | 1203 | 1456710.00 | 1869000 | 0.04 | 1869000 | 22.06 | 0 | 8640 | 2633 | 8 | - | - |
|  | 0.23 | 1070080 | 0.006 | 2569540 | 1207 | 1403720.00 | 1781110 | 0.05 | 1781110 | 21.19 | 0 | 8640 | 3066 | 7 | - | - |
|  | 0.22 | 1021380 | 0.008 | 2271620 | 1204 | 1410260.00 | 1731390 | 0.05 | 1731390 | 18.55 | 0 | 8640 | 3140 | 7 | - | - |
|  | 0.23 | 1043030 | 0.006 | 2311850 | 1202 | 1348780.00 | 1673770 | 0.05 | 1673770 | 19.42 | 0 | 8640 | 3220 | 7 | - | - |
|  | 0.25 | 1065530 | 0.007 | 3058240 | 1204 | 1422320.00 | 1756730 | 0.05 | 1756730 | 19.04 | 0 | 8640 | 2864 | 7 | - | - |
|  | 0.24 | 1109840 | 0.006 | 2658840 | 1200 | 1529540.00 | 1925350 | 0.05 | 1925350 | 20.56 | 0 | 8640 | 3439 | 7 | - | - |
|  | 0.24 | 1035490 | 0.007 | 3777990 | 1207 | 1535390.00 | 1922120 | 0.04 | 1922120 | 20.12 | 0 | 8640 | 3169 | 7 | - | - |
|  | 0.24 | 1071520 | 0.006 | 3101580 | 1206 | 1445550.00 | 1839060 | 0.05 | 1839060 | 21.40 | 0 | 8640 | 3278 | 8 | - | - |
|  | 0.21 | 1079610 | 0.007 | 2024040 | 1208 | 1406860.00 | 1620150 | 0.01 | 1620150 | 13.16 | 0 | 8640 | 2747 | 9 | - | - |
| Average: | 0.23 | 1058086 | 0.007 | 2635466 | 1204.05 | 1430425 | 1771754 | 0.04 | 1771754 | 19.14 | 0.00 | 8640 | 3058.10 | 7 | - | - |
|  | 0.23 | 1013030 | 0.008 | 2054180 | 1204 | 1335060.00 | 1595440 | 0.06 | 1595440 | 16.32 | 0 | 8640 | 2875 | 6 | 240 | 48032001 |
|  | 0.25 | 1071350 | 0.007 | 2526780 | 1202 | 1447800.00 | 1878460 | 0.05 | 1878460 | 22.93 | 0 | 8640 | 3025 | 7 | 280 | 34775320 |
|  | 0.24 | 1070080 | 0.007 | 2569540 | 1200 | 1405460.00 | 1800940 | 0.05 | 1800940 | 21.96 | 0 | 8640 | 3456 | 7 | 280 | 38996072 |
|  | 0.24 | 1021380 | 0.007 | 2271620 | 1207 | 1410400.00 | 1735380 | 0.09 | 1735380 | 18.73 | 0 | 8640 | 3445 | 7 | 280 | 35803933 |
|  | 0.25 | 1043030 | 0.007 | 2311850 | 1205 | 1363980.00 | 1645160 | 0.01 | 1645160 | 17.09 | 0 | 8640 | 3435 | 6 | 240 | 34837369 |
|  | 0.25 | 1065530 | 0.006 | 3058240 | 1204 | 1412310.00 | 1766480 | 0.05 | 1766480 | 20.05 | 0 | 8640 | 2974 | 6 | 240 | 36488728 |
|  | 0.25 | 1109840 | 0.007 | 2658840 | 1200 | 1525680.00 | 1906740 | 0.05 | 1906740 | 19.98 | 0 | 8640 | 3612 | 6 | 240 | 37231539 |
|  | 0.26 | 1035490 | 0.006 | 3777990 | 1207 | 1512840.00 | 1935940 | 0.06 | 1935940 | 21.86 | 0 | 8640 | 3411 | 6 | 240 | 33192703 |
|  | 0.25 | 1071520 | 0.006 | 3101580 | 1200 | 1437510.00 | 1838280 | 0.05 | 1838280 | 21.80 | 0 | 8640 | 3626 | 7 | 280 | 40824243 |
|  | 0.22 | 1079610 | 0.008 | 2024040 | 1200 | 1401550.00 | 1634180 | 0.05 | 1634180 | 14.23 | 0 | 8640 | 3176 | 9 | 360 | 26033450 |
| Average: | 0.24 | 1058086 | 0.007 | 2635466 | 1202.87 | 1425259 | 1773700 | 0.05 | 1773700 | 19.50 | 0.00 | 8640 | 3303.50 | 7 | 268 | 36621536 |

