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ABSTRACT

A LOT SIZING PROBLEM IN DELIBERATED AND

CONTROLLED CO-PRODUCTION SYSTEMS

Deliberated and controlled co-production can be defined as the production of

different products simultaneously where production parameters are known and co-

production is deliberate. We study an extension of the lot sizing problem in a deliber-

ated and controlled co-production system, and show that it is NP-Hard. We investigate

special cases of the problem for which it is polynomially solvable, and propose solution

techniques for those special cases. We propose four mixed integer programming model

formulations based on single item uncapacitated lot sizing and simple plant location

formulations. We show that solution spaces of the linear relaxations of the proposed

formulations are equal. We propose valid inequalities for the problem and show that

our proposed valid inequalities added to the model with a separation algorithm improve

the linear relaxation lower bound by more than %20 for all test instances. We propose

a pattern fitting heuristic that aims to find initial feasible solutions for a commercial

solver. We propose another heuristic based on Wagner-Whitin’s algorithm to create

integer feasible solutions from fractional solutions. We show that the average optimal-

ity gap is reduced by at least %10 with proposed improvements to MIP formulations.

We also show that the quality of integer feasible solutions is increased within a given

time limit.



v

ÖZET

İSTEMLİ VE KONTROLLÜ BİRLİKTE ÜRETİM

SİSTEMLERİNDE ÖBEK BÜYÜKLÜĞÜ BELİRLEME

PROBLEMİ

İstemli ve kontrollü birlikte üretim sistemleri, farklı ürünlerin eş zamanlı olarak

birlikte üretildiği, üretim parametrelerinin bilindiği ve birlikte üretimin istemli olarak

yapıldığı üretim sistemleri olarak tanımlanabilir. İstemli ve kontrollü bir birlikte

üretim sisteminde öbek büyüklüğü belirleme probleminin NP-Zor bir problem olduğu

gösterildi. Bu problemin polinom zamanlı çözülebilen versiyonları belirtilip polinom

zamanlı çözüm yolları önerildi. Tek ürünlü kapasite kısıtsız öbek büyüklüğü belir-

leme ile basit tesis yerleşimi modellemelerinden yola çıkılarak 4 adet karma tam sayılı

programlama modeli geliştirildi. Bu farklı modellerin doğrusal gevşetmelerinin olurlu

bölgelerinin aynı olduğu gösterildi. Bu problem için geçerli eşitsizlikler önerilip, bu

eşitsizliklerin doğrusal gevşetme alt sınırını bütün testlerde yüzde 20’den daha fazla

arttırdığı gösterildi. Olurlu tamsayı çözümler bulmak ve dal ve sınır algoritmasına bir

ilk çözüm olarak verebilmek için bir şekil benzetme sezgisel yöntemi geliştirildi. Başka

bir sezgisel yöntem de tamsayı olmayan çözümleriden tamsayı çözümler elde etmek için

Wagner-Whitin’ in algoritmasından yola çıkılarak geliştirildi. Önerilen geliştirmeler

yapıldıktan sonra, karma tam sayılı programlama modellerine göre, eniyileme farkının

yüzde 10 oranında azaldığı belirlenmiştir ve belirlenen zaman limiti içerisinde bulunan

olurlu tamsayı çözümlerin kalitesinde de artış olmuştur.
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1. INTRODUCTION

Co-production is defined as producing several different products simultaneously

in the same production run. This occurs either due to physical or chemical nature

of the production system or in order to effectively use scarce resources. Co-produced

units may differ only in quality as in semi-conductor production [1,2], or they may be

completely different products, as in float glass production [3, 4]. The key point here

is to have sufficient difference in products in the sense that there is a need for the

company to differentiate these products.

Co-production can be categorized using two criteria: control and deliberation.

Co-production can be controlled or uncontrolled based on the production parame-

ters. If the company has control over the production parameters, such as the number

of units co-produced (production rates) for each type of product, then this type of

co-production is said to be controlled. On the other hand, co-production can be un-

controlled or too expensive to control due to the structure of the process. For example,

in semi-conductor production [1,2] the products will always differ in speed with current

production methods due to the randomness of the process which makes the process un-

controlled. On the other hand, producing different products from the same metal sheet

in a forming press machine can be classified as controlled since product types and ratios

will depend on the die used. If the decision maker has the option to manufacture each

product separately or by means of co-production, then co-production is deliberated.

For example, co-generating different types of energy (electricity, steam, etc.) in energy

industry [5] is deliberated and controlled, whereas semi-conductor production [1, 2] is

neither deliberated nor controlled. In this thesis we consider deliberated and controlled

co-production systems.

Co-production is inherently present in float glass manufacturing. Continuous flow

of glass is cut into different sizes, and different size glasses are considered as different

products. In Figure 1.1, we see a robot arm that picks a glass product from production
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line. In the float glass production system described in [4], glasses are also classified as

different quality products based on the number of defects on the glass surface. Figure

1.2 illustrates co-production in float glass manufacturing where existence of random

errors on the glass surface necessitates simultaneous production of products having

various dimensions and quality levels. There are also production systems in which co-

production is optional. For example, with the mould shown in Figure 1.3, two different

products can be simultaneously produced using a single mould.

Figure 1.1. Robot Arm Picking Cut Glass in Float Glass Manufacturing.

Figure 1.2. Possible Cut Locations for Float Glass Resulting in Different

Compositions for a Given Defect Location Marked with x.
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The decision of what and when to produce has an enormous importance since

having excessive inventories or backlogging products can add up to costs, and it may

determine the difference between a profitable company and bankruptcy. This phe-

nomenon is studied under “Lot Sizing Problems” in the literature. While lot sizing

problems are studied extensively under many scenarios or extensions, the co-production

setting is not well studied. This thesis aims to fill in this gap in the literature.

Figure 1.3. Example of a Two Product Mould.

When certain characteristics over some by-products are present, co-production

structure can be omitted; and hence, the problem can be solved by traditional lot

sizing methods. One such example is given in Section 4.4 where one co-product’s

demand is significantly lower than other products, and it is automatically satisfied

considering the other products. In this case, there is no need to consider co-production

explicitly. Another special case is omitting some of the co-products that have relatively

low holding cost or low demand. In this case, it might be possible to find optimal or near

optimal solutions by traditional lot sizing methods. However, when co-production is

internally present in the production system, as in glass or semi conductor production,

aforementioned simplifications would not be possible. Therefore, there is a need to

specifically study lot sizing in co-production environments.

In this thesis we study a lot sizing problem in a deliberated and controlled co-

production environment, where products are non-substitutable and have dynamic de-

terministic demand over a finite planning horizon. We refer to this problem as Deliber-
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ated and Controlled Co-production Problem (DCCP). DCCP can be modeled similarly

to the well known Dynamic Lot Sizing Problem (DLSP) [6]. Dynamic programming

(DP) techniques are used extensively to solve lot sizing problems [6]. However DP used

for DLSP cannot be simply adapted to our problem, as we show in Chapter 3 DCCP

is NP-Hard, and does not possess characteristics of regular lot sizing problems such as

zero inventory policy (ZIP). We propose different mixed integer programming (MIP)

formulations for DCCP, and develop valid inequalities to be added with a separation

algorithm for solving the models in a reasonable amount of time.

The remainder of this thesis is as follows: Literature review is given in Chapter 2.

We define our problem in Chapter 3. We provide polynomially solvable cases of DCCP

in Chapter 4, and propose alternative model formulations in Chapter 5. We propose

improvements to our models in Chapter 6. This thesis concludes with experiments in

Chapter 7, followed by conclusions and future research directions in Chapter 8.
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2. LITERATURE REVIEW

Lot sizing problems are well studied in the literature. Since Wagner and Whitin

have published their seminal paper [6], substantial research has been done in the area.

Various versions of lot sizing problems have been studied. For an extensive review, we

refer the reader to [7] and to its updated version [8].

Discrete models with big time buckets where multiple items of a single product

can be produced within a single period, constitute a big portion of lot sizing literature.

In these models time is modeled as a finite sequence of discrete time points, and a

period is defined as the time interval between consecutive time points. In the simplest

case, there is a single product that has time varying demand. The only constraint

in that case is having demand satisfied either by production or from the inventory,

and backlogging is not allowed. Fixed and variable costs of production and inventory

holding costs are also time varying. In this simplest case, so called “dynamic lot sizing

problem (DLSP)”, there is no capacity constraint. DLSP can be solved in O(T 2) time

with Wagner and Whitin’s original Dynamic Program (DP) [6], which is improved to

O(T log(T )) by [9–11] independently. In the case of no speculative motives for holding

inventory, which requires the variable cost of producing and holding an inventory of a

product to be greater than or equal to the variable production cost of that product in

the following periods, DLSP is solvable in O(T ) [8].

The lot sizing problem has several extensions in the literature. These are primar-

ily based on the length of the planning horizon, number of layers, number and type

of products, presence of capacity or resource limitations, demand type, allowance of

backlogging, etc. In the case of elastic demands, where demand is a function of the

product, pricing decisions are also included in the problem [7].

DP is widely used in solving lot sizing problems. In classical lot sizing problems,

“zero inventory policy (ZIP)”, which can be defined as the amount of production in a
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production period must cover exactly the sum of demands until the next production

period or last period in the planning horizon, holds. This property allows developing

DPs that solve the problem efficiently. There is another property called Interval Di-

vision Property (IDP) that holds for some lot sizing problems. IDP is defined in [12]

as if there exist n many production periods, then it is possible to divide the plan-

ning horizon into n many sets, where each set has consecutive indices, and assign each

production period to its corresponding set (first production period to first period set,

etc.) exactly satisfying that set’s total demand. Inventory deteriorates in time (per-

ishable inventory) and deterioration rates depend on age and the period of production,

whereas inventory costs depend on the age of the stock and the period. Backorder is

not allowed, and inventory and production costs are non-decreasing concave functions.

In this case IDP holds and DP recursion is based on IDP [12].

The convex hull of the classical lot sizing problem DLSP is given by Pochet and

Wolsey [13]. They provide facet-defining inequalities and convex hulls of the feasible

solutions of DLSP, DLSP with backlogging, DLSP with constant capacity, and DLSP

with start-up costs [13].

DLSP with multiple products and one way product substitution, in which substi-

tution of a product is possible with a higher quality product, is studied in [14]. Multiple

products can be seen as different quality levels of the same products in this context.

Two versions of this problem are studied. In the first one, which is called substitution

with conversion (SWC), the higher level product is converted to a lower level before

the substitution. In the second one, called substitution without conversion (SWO),

the substitution is done without a conversion operation. Both versions are shown to

be NP-Hard in the strong sense. Then, the equivalence to a minimum concave-cost

network flow problem is shown, and a DP is proposed for both SWC and SWO. Chen

and Thizy [15], study multiple item capacitated lot sizing problem with no backorders,

and prove that the problem is strongly NP-Hard when capacities are not constant.



7

Another extension of lot sizing problem is the coordinated lot sizing problems

that include product families. In coordinated lot sizing problems a family of products

has a shared fixed setup cost, which is to be paid whenever one or more products

of a family is produced [16]. A minor setup cost also exists for individual products

inside a product family. Variable costs of production is similar to that of DLSP. [17]

proposes a Lagrangian heuristic for capacitated version of the same problem. Having

product families does not capture the notion of co-production. Despite having a shared

fixed cost for production families, products inside the same family is not necessarily

produced simultaneously.

Bitran and Gilbert [1] and Bitran and Dasu [2] focus on co-production with ran-

dom yields in semiconductor production. In their context, it is possible to substitute a

lower tier product with a higher tier one. This is called serially nested co-production.

The problem is divided into two sub-problems as “morning problem”, in which pro-

duction decisions are given, and “afternoon problem”, in which products are allocated

to customers after yields are known. In Bitran and Dasu [2], the objective is to max-

imize the expected profit whereas in Bitran and Gilbert [1] it is the minimization of

expected cost comprised of production, inventory holding, and shortage costs. Latter

also studies impacts of alternative downgrading policies.

Öner and Bilgiç [3] study an uncontrolled co-production system in float glass

manufacturing with constant holding cost rate and fixed sequence independent setup

costs where substitution of products is not allowed. They develop a continuous eco-

nomic lot scheduling model (ELSP) to find a common cycle schedule. Co-products

are not only different in the quality aspect but also in the size. Taşkın and Ünal [4]

also study a co-production system in float glass manufacturing focusing on tactical

level planning. They develop two mathematical models to be solved consecutively for

colored and clear glass for a glass manufacturer.

Tomlin and Wang [18] consider pricing decisions together with co-production

using stochastic demand model of utility maximizing customers in a single period.
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There are two products and two customer classes. Cost functions are linear in demand

although findings are applicable when cost is convex in demand. The substitution of

lower tier products with higher ones are allowed.

Vidal Carreras et. al. [19] study a deliberated and controlled co-production system

with non substitutable demand. Similar to [3], their model is a continuous ELSP

with an aim to find a common cycle time. Costs are constant, fixed and sequence

independent. Only two products are considered.

Rafiei et. al. [20] consider a co-production system with sequence dependent setup

times and demand uncertainty. There are production families, and recipes in the same

production family require no changeover cost. It is a case study on demand driven

wood re-manufacturing mills. They propose a three step methodology to solve wood

re-manufacturing industrial problem.

Co-production is also studied within the context of chemical sciences and sustain-

ability. In [21], waste is treated as a co-product, which is also an input to the system,

to achieve zero waste. A case study on co-production of decarbonized synfuels and

electricity is studied in [22]. Another example of co-production in chemical sciences

is [5], which studies co-production of dimethyl ether and electricity.

Ağralı’s study [23] is a starting point of this thesis. In that work there is only a

single set of products to be produced simultaneously, which makes the co-production

controlled but not deliberated. The decision to be made is to when and how much to

produce that specific set of products. It is shown that ZIP holds for at least one of the

products of the set, and a DP recursion is given that can be solved in polynomial time.

In contrast, in this thesis where deliberated co-production exist, the decision maker

has the option of to co-produce or not to co-produce.

To the best of our knowledge, there is no research that considers deliberated and

controlled co-production in the dynamic deterministic lot sizing literature. Our con-
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tribution to the lot sizing literature can be summarized as follows: (i) our problem

includes the decision of co-produce or not if the production system in context allows

it; and (ii) we consider a co-production setting in which the decision maker can choose

from multiple ways of co-producing a single product. From practicality point of view,

our problem is expected to be found at production systems in which discrete prod-

ucts are produced, preferably small parts, where multiple products can be produced

simultaneously by fitting multiple products into a single manufacturing resource.
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3. PROBLEM DEFINITION

We consider a production system in which several products have dynamic deter-

ministic demand over a planning horizon. We call a possible combination of products

that can be co-produced together with individual production ratios as a “co-production

unit (CPU)”. Our system has more than one CPU, and production decisions over the

planning horizon are given per CPU rather than per product. The costs incurred are

fixed and variable costs of production of CPUs, and the inventory holding costs of

products. All cost data, demand information, and production ratios for each CPU are

deterministic and known; hence, the system is controlled. It is also possible to produce

a product individually by having a single product in a CPU; therefore, our production

system is deliberated. Like demand, all costs are also dynamic and time dependent.

Initial inventory levels are assumed to be zero. If initial and final inventory levels are

given and there are lower bounds for inventory levels, demand data can be modified ac-

cordingly in order to get initial and final inventory levels and restrictions on inventory

lower bound to zero. The objective is to find a production plan with minimum possible

cost, consisting of fixed and variable costs of co-production and inventory holding cost

of products, that satisfies all demand in time without backlogging.

Like in DLSP, time is modeled as a finite sequence of discrete time points, which

are indexed as t ∈ T . Products are indexed by j ∈ J , which have dynamic deterministic

demand, djt , and unit holding cost, hjt . There are finitely many CPUs indexed by i ∈ I,

and each produce a finite set of predefined products J(i). When one CPU of type i is to

be produced, all the products inside set J(i) are co-produced with certain production

ratios, αji . Each CPU has a dynamic deterministic fixed cost, f it , and variable cost, cit.

There may be several ways to produce one product, i.e., multiple CPUs may pro-

duce the same product with non-identical production ratios and production costs. It

may also be possible for a CPU to include only one product, which allows flexibility
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in the deliberated co-production. As an example, consider a production system given

in Figure 3.1 where three products are produced from a metal sheet with six CPUs.
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Figure 3.1. Example of Co-production Units.

There are three products; A, B, and C in the example problem given in Figure

3.1 with certain demands. The demand of the products should be satisfied by making

production decisions on six possible CPUs over the planning horizon. CPU1, CPU3

and CPU5 are composed of more than one product in contrast to CPU2, CPU4 and

CPU6. As an example, consider CPU1: it is composed of two units of product A and

two units of product C, therefore αA1 = αC1 = 2. CPU1 does not produce product B

implying αB1 = 0. When a decision of x amount of production is made for CPU1 in a

production period t, 2x amount of product A and 2x amount of product C is produced

in that period.

3.1. Computational Complexity

We analyze the computational complexity of the problem that we consider in this

section. In its simplest form, without capacities or backlogging, we show that decision

version of Deliberated and Controlled Co-production (DCCP) is NP-Complete. This
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is due to its close relationship with the set covering problem. Informally it can be

explained as follows: We have finite amount of CPUs i ∈ I, and each produce a subset

of products Ji ⊆ J with respect to production ratios αji . Ji can be defined for each i as

{j′ ∈ Ji , j′ : αj
′

i > 0}. When we restrict αji to be either 0 or 1, each CPU i represent

a fixed subset of products Ji, and all j ∈ Ji needs to be co-produced by one unit each

whenever a unit of CPU i is produced, accruing costs f it and cit. We further restrict our

planning horizon to only one period (|T | = 1), fixed costs of production to 1 (f i1 = 1),

and variable costs to 0 (ci1 = 0), for all i ∈ I. Since |T | = 1, holding costs (hjt) are

irrelevant. Finally, we further reduce all product demands to 1 (dj1 = 1 ∀j ∈ J). With

aforementioned parameter settings, our problem reduces to simply selecting fewest

number of subsets Ji ⊆ J that collectively produce each product at least once. This

problem reduces to the well known minimum (set) cover problem, which is known to

be NP-Complete [24].

Proposition 3.1. Deliberated and Controlled Co-production (DCCP) is NP-Complete.

Proof. DCCP decision problem can be formulated as follows:

Deliberated and Controlled Co-production

Instance: Finite sets, J of “products”, I of “co-production units”, and T of “time pe-

riods”, a positive number K. Production ratios: αji ∈ N , ∀j ∈ J and ∀i ∈ I. Fixed

costs: f it ∈ N , ∀t ∈ T and ∀i ∈ I. Variable costs: pit ∈ N , ∀t ∈ T and ∀i ∈ I.

Demands: djt ∈ N , ∀t ∈ T and ∀j ∈ J . Holding Costs: hjt ∈ N , ∀t ∈ T and ∀j ∈ J .

Question: Is there a feasible production plan (i.e., all demands are satisfied), having

total cost no more than K? Mathematically, this question is if

∑
t∈T

(∑
i∈I

(f ity
i
t + pitx

i
t) +

∑
j∈J

hjts
j
t

)
≤ K,

where xit is the amount of production of CPU i in period t, yit = 1 if xit > 0, and yit = 0,

otherwise; and sjt is the amount of inventory of product j in period t.
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As the first part of the proof, we need to show that our problem lies in NP. Given

an instance of sets I, J , T , data αji , f
i
t , p

i
t, d

j
t , h

j
t , a positive number K, and a “guess”

xit; we need to show if we can validate a “yes guess” in polynomial time. There are two

things we should be sure of; “the guess” should be feasible, and it does not exceed the

cost limit K. In order to show that the first part is doable, we propose the algorithm

given in Figure 3.2.

Set yit = 1 if xit > 0 and yit = 0 otherwise. Doable in O(|T ||I|).

Set sjt =
∑

k≤t
∑

i∈I(x
i
kα

j
i − djk) and if all sjt ≥ 0 then the “guess” is feasible.

Doable in O(|T ||J |).

if
∑

t∈T

(∑
i∈I(f

i
ty
i
t + citx

i
t) +

∑
j∈J h

j
ts
j
t

)
≤ K then

The “guess” is valid. Doable in O(|T |(|J |+ |I|)).

end if

Figure 3.2. Guess Validation Algorithm.

A reasonable encoding scheme, having size bounded polynomially by set sizes of

I, J , and T , can be found for the problem easily. Algorithm in Figure 3.2 can prove if

a yes guess is in fact a yes instance in polynomial time. Therefore DCCP is in NP. As

the second part of the proof, we will show that DCCP contains a known NP-Complete

problem as a special case. Consider Minimum Cover problem as given in [25] for that

purpose:

Minimum (Set) Cover

Instance: Collection C of subsets of a finite set S, positive integer K ≤ |C|.

Question: Does C contain a cover for S of size K or less, i.e, a subset C ′ ⊆ C with

|C ′| ≤ K such that every element of S belongs to at least one member of C ′?

In fact we can restrict DCCP to Minimum Cover by allowing instances having

|T | = 1, αji ∈ {0, 1}, f i1 = 1, ci1 = 0, dj1 = 1 ∀j ∈ J and ∀i ∈ I. The transformation

of any Minimum Cover instance to DCCP is as follows: Consider a Minimum Cover

instance. Set S corresponds to set J in DCCP instance. Let every subset in set C be

indexed by i such that C = {Ci}. The creation of set i ∈ I in DCCP is complete. Let
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|T | = 1, f i1 = 1, ci1 = 0, dj1 = 1 ∀j ∈ J , ∀i ∈ I. Now for each i ∈ I and j ∈ J define

αji as in equation (3.1), and define subsets Ji ∈ J for each i ∈ I as Ji = {j|j : αji = 1}.

αji =

 1 , j ∈ Ci;

0 , j /∈ Ci.
(3.1)

Selecting a subset C ′ ⊆ C in Minimum Cover will correspond to selecting I ′ ⊆ I

CPUs to produce in one period DCCP. We now write the total cost of restricted DCCP.

Note that |T | = 1:

∑
t∈T

(
∑
i∈I

(1yit + 0xit) +
∑
j∈J

0sjt) =
∑
i∈I

yi1 (3.2)

Assume that an arbitrary Minimum Cover instance is a yes instance. There exists

a subset C ′ ⊆ C such that |C ′| ≤ K and
⋃
C ′ = S. We can write Equation (3.3) since

selecting C ′ ⊆ C in Minimum Cover corresponds to selecting I ′ ⊆ I in DCCP:

∑
i∈I

yit = |I ′| = |C ′| ≤ K. (3.3)

Selecting αji ∈ {0, 1} and corresponding subsets Ji as described previously will

ensure the following since
⋃
C ′ = S;

⋃
i∈I′

Ji = J (3.4)

which means every product j ∈ J will be produced at least once by selecting I ′ ⊆ I for

production. Since dj1 = 1 for all j ∈ J , the production plan feasibility is guaranteed by

(3.4). By (3.3), corresponding DCCP instance is valid if and only if Minimum Cover

instance is valid, and by (3.4), DCCP instance is feasible if and only if Minimum Cover

instance is feasible. With aforementioned transformation, any instance of Minimum
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Cover, can be transformed to a specific instance of DCCP. Transformation having

polynomial time complexity easily follows.

3.2. Mathematical Model (IP1)

A solution of DCCP will provide the amount of CPUs produced in each period.

Let the decision variable xit denote the amount of production of CPU i in period t, and

let binary variable yit take value of 1 if a production of CPU i takes place in period

t. The last set of decision variables sjt denotes the ending inventory level of product j

in period t. Then, we can give the mixed-integer programming (MIP) formulation for

our problem as follows:

IP1: minimize
∑
t∈T

(∑
i∈I

(
f ity

i
t + pitx

i
t

)
+
∑
j∈J

hjts
j
t

)
(3.5)

subject to sjt−1 +
∑
i∈I

αjix
i
t − s

j
t = djt , ∀t ∈ T, j ∈ J (3.6)

xit ≤ max
j∈J(i)

{
dtT

αji

}
yit, ∀t ∈ T, i ∈ I (3.7)

xit ≥ 0, ∀t ∈ T, i ∈ I (3.8)

sjt ≥ 0, ∀t ∈ T, j ∈ J (3.9)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (3.10)

The objective function (3.5) consists of fixed and variable costs arising from pro-

duction of CPUs, and the holding cost of products summed over the planning horizon.

Constraint set (3.6) includes inventory flow balance constraints. Constraint set (3.7)

forces binary production variables yjt to take the value of 1 whenever xits take positive

values. The term maxj∈J(i){dtTαj
i

} is an upper bound for the xit variables, and acts like

a big-M value. Constraints (3.8) – (3.10) are non-negativity and binary constraints.
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4. POLYNOMIALLY SOLVABLE CASES

The decision version of DCCP is proven to be NP-Complete (see section 3.1).

This means that the time required to solve problems increase exponentially with the

problem size, and it is not possible to find optimum solutions for practical size instances

in a reasonable amount of time unless P = NP . In order to understand characteristics

of the problem, we analyze some special cases of the problem, and propose polynomial

time solution techniques for those special cases in this section.

4.1. No Fixed Cost Requirement

When the fixed cost of a production is negligible or no setup is needed for pro-

duction, fixed costs of CPUs can be neglected. Without the fixed cost, the MIP of the

problem reduces to a linear program since binary variables yit are no longer needed. LP

model when f it = 0 is given in (4.1) – (4.4).

minimize
∑
t∈T

(∑
i∈I

citx
i
t +
∑
j∈J

hjts
j
t

)
(4.1)

subject to sjt−1 +
∑
i∈I

αjix
i
t − s

j
t = djt , ∀t ∈ T, j ∈ J (4.2)

xit ≥ 0, ∀t ∈ T, i ∈ I (4.3)

sjt ≥ 0, ∀t ∈ T, j ∈ J. (4.4)

Since LPs can be solved in polynomial time using interior point algorithms, this

special case is polynomially solvable.

4.2. Mutually Exclusive Co-production Units

In some production environments, products may form family structures, and may

be possible to have mutually exclusive product families. This results in having mutually
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exclusive CPUs (i.e, Jk∩Jl = ∅ ∀k, l ∈ I, k 6= l). In this structure, DCCP is separable

by CPUs. For this case the polynomial time DP algorithm suggested by [23], in which

this problem is given under by-production case, can be applied for each CPU. Let

G(t) be the cost of an optimal solution to the instance of dynamic uncapacitated lot

sizing problem of co-products within a single CPU with a planning horizon consisting

of periods from t to T ; t = 1, ..., T . Recurrence relation of the DP to solve for each

CPU i separately can be adapted from [23] as:

Gi(t) =


min

t<l≤T+1

{
f i
t +

(
cit +

∑
j∈J(i)

∑T
s=t α

khj
s

)
D̄t,l−1 +Gi(l)

}
, if max

k=1,...,K
dkt > 0;

min

[
Gi(t+ 1), min

t<l≤T+1

{
f i
t +

(
cit +

∑
j∈J(i)

∑T
s=t α

khj
s

)
D̄t,l−1 +Gi(l)

}]
, if max

k=1,...,K
dkt = 0;

(4.5)

where

D̄t,l−1 = max

[
0, max

j∈J(i)

{
djt,l−1

αji
− sjt−1

}]
, (4.6)

sjt−1 = D1,t−1α
j
i − d

j
1,t−1, (4.7)

D1,t−1 = max
j∈J(i)

{
dj1,t−1

αji

}
. (4.8)

As stated in [9], a straightforward application of this recursion leads to an O(T 2)

algorithm; however, it can be further improved to O(T logT ) using techniques in [9] as

stated by [23]. By solving a polynomial time DP for each CPU i ∈ I, this special case

of the problem can be solved in polynomial time using the algorithm given in Figure

4.1.

for CPU i ∈ I do

Solve a DP for CPU i using the recursion relation in Equation 4.5. The solution

is the optimal production plan for CPU i.

end for

Figure 4.1. Algorithm for Mutually Exclusive Co-production Units.
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4.3. Two Products per Co-production Unit

When a DCCP has no more than two products per CPU, |Ji| ≤ 2, a single

planning period, |T | = 1, no variable costs for CPUs, ci1 = 0, identical fixed costs for

CPUs, f i1 = f i
′

1 , unit demand for all its products, dj1 = 1, and maximum production

ratio of 1 amongst its products, αji ≤ 1, then the DCPP is polynomially solvable. Note

that DCCP can be restricted to a Minimum Cover problem by allowing instances

having |T | = 1, αji ∈ {0, 1}, f i1 = 1, ci1 = 0, dj1 = 1 ∀j ∈ J and ∀i ∈ I. The

transformation of any Minimum Cover problem instance to DCCP instance is explained

in Section 3.1.

Minimum Cover with c ∈ C and |c| ≤ 2 can be solved in polynomial time by

matching techniques [25]. Therefore any DCCP having |T | = 1, αji ∈ {0, 1}, d
j
1 = 1,

f i1 = 1, ci1 = 0, and |Ji| ≤ 2, should also be solved polynomially. Consider an instance

with |J | = 4, |I| = 4, J1 = {1, 2}, J2 = {2, 3}, J3 = {3}, and J4 = {4}. Network

representation of the example is given in Figure 4.3, where products are represented

with nodes and CPUs are represented with arcs. Algorithm given in Figure 4.2 can be

used to solve this special case.

(i) Eliminate all i′ ∈ I , |Ji′ | = 1 from set I if Ji′ is included in at least one Ji′′ ,

|Ji′′ | = 2.

(ii) Select all i′ ∈ I that cannot be deleted by step (i). Note that with first two

steps we can reduce any problem with |Ji| ≤ 2 to a problem with |Ji| = 2.

(iii) Solve maximum matching problem having set J as vertices and set I as edges.

(iv) If matching from (iii) is a perfect matching, it is the optimal solution to set

covering problem. Else, add one edge for covering each uncovered vertex. Since

matching algorithm and post operations are all polynomial, the whole operation

is polynomial.

Figure 4.2. Algorithm for Special Case: Two Products per Co-production Unit.

The application of the algorithm given in Figure 4.2 for the example instance

given in Figure 4.3 is as follows: At step (i), I3 is eliminated since J2 = {1, 3}. At
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step (ii) I4 is selected since product 4 does not exist in any other CPU. At step (iii),

maximum cardinality matching algorithm is solved. The solution would be one of the

two arcs selected. At step (iv), for any uncovered vertex, one edge is selected. This

preserves optimality since if selecting an arc would cover two vertices instead of one,

maximum matching algorithm would have selected it in the first place.
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Initial Problem (i) CPU3 is 
eliminated

(ii) CPU4 is 
selected and 

removed

(iii) Initial 
Solution of 
Maximum 
Matching

(iv) Final 
Solution

Figure 4.3. Application of Proposed Algorithm for Two Products per Co-production

Unit on an Example.

4.4. Main Product and By-Products

Consider a DCCP setting in which a common product is being produced in all

CPUs. When demand data satisfies a specific condition (4.9), then it is possible to

automatically satisfy the main product’s demand by considering only by-products.

t∑
m=1

dkm ≤
∑

b∈J−{k}

t∑
m=1

dbm ∀t ∈ T . (4.9)
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In this special case, one DLSP is solved for each by-product, and the corre-

sponding production amounts for by-products are optimal production quantities of

corresponding CPUs in DCCP setting.

Let the common product k ∈ J be called a “main product” satisfying k ∈

J(i),∀i ∈ I. In other words, a main product is a product that is produced by all CPUs.

Let us further simplify this special case by allowing only |Ji| = 2, and αji ∈ {0, 1}. In

this case, let b ∈ J − {k} be by-products. Furthermore, assume that demand data

satisfy the inequality (4.9).

Then, the demand for main product k should be automatically satisfied when all

by-products’ demands are satisfied. Note that |I| = |J | − 1. Let the last product in

set J be the main product k. The fixed and variable costs defined for each CPU can

also be defined with respect to by-products b ∈ J − {k}:

pjt = pit, ∀j ∈ J − {k}; (4.10)

f jt = f it , ∀j ∈ J − {k}. (4.11)

Note that ZIP holds for all j ∈ J − {k}. We give the objective function of this

special case as:

minimize
∑
t∈T

( ∑
j∈J−{k}

(
f jt y

j
t + pjtx

j
t + hjts

j
t

)
+ hkt s

k
t

)
. (4.12)

Inventory variables sjt can be written in terms of production variables xjt as:

sjt =
t∑
l=1

(xjl − d
j
l ), ∀j ∈ J − {k},∀t ∈ T ; (4.13)

skt =
∑

j∈J−{k}

( t∑
l=1

xjl −
t∑
l=1

dkl

)
, ∀t ∈ T . (4.14)
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The mathematical model without inventory variables is:

minimize
∑
t∈T

( ∑
j∈J−{k}

(
f jt y

j
t + cjtx

j
t

)
−
∑
j∈J

t∑
l=1

hjl d
j
l

)
(4.15)

subject to xjt ≤ djtTy
i
t, ∀t ∈ T, j ∈ J − {k}; (4.16)

T∑
t=1

xjt = dj1T , ∀j ∈ J − {k}; (4.17)

t∑
l=1

xjl ≥ dj1t, ∀t ∈ T, j ∈ J − {k}; (4.18)

xjt ≥ 0, ∀t ∈ T, j ∈ J − {k}; (4.19)

yjt ∈ {0, 1}, ∀t ∈ T, j ∈ J − {k}; (4.20)

where

cjt = pjt +
T∑
l=t

(hjl + hkl ). (4.21)

Note that the constant term
∑

t∈T
∑

j∈J
∑t

l=1 h
j
l d
j
l can be omitted in the objective

function. As it can be seen from the model, this special case is separable by by-products

j ∈ J − {k}. Then, it is possible to solve this problem by solving a DLSP for each

by-product b. This problem can be solved by the recursion in Equation (4.5) using cjt

in Equation (4.21).
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5. ALTERNATIVE MIP FORMULATIONS

In this chapter we develop alternative mixed integer programming formulations

for DCCP. First, we reduce the number of variables of IP1 by representing inventory

variables, sjt , in terms of production variables, xti, and demand, dtj. We call the resulting

formulation as IP2. Then, we propose more formulations, ELS1 and ELS2, based on

simple plant location formulation of single item uncapacitated lot sizing (LS-U). We

give the details of all formulations and show that they are equivalent in the sense that

the feasible regions of their linear relaxations are equal.

5.1. Inventory Variable Free Formulation (IP2)

Inventory variables, sjt , can be written in terms of production variables and de-

mand in Equation (5.1), where I(j) is the set of co-production units that produce

product j.

sjt =
t∑

k=1

( ∑
i∈I(j)

xikα
j
i − d

j
k

)
(5.1)

Then, the objective function can be given as:

∑
t∈T

(∑
i∈I

(
f ity

i
t + pitx

i
t

)
+
∑
j∈J

hjt

t∑
k=1

( ∑
i∈I(j)

xikα
j
i − d

j
k

))
. (5.2)

Sets I and I(j) in Equation (5.2) can be merged since αji = 0 for i 6∈ I(j), and the

constant term can be separated as shown in Equation (5.3):

∑
t∈T

∑
i∈I

(
f ity

i
t + pitx

i
t +
∑
j∈J

t∑
k=1

hjtx
i
kα

j
i

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k. (5.3)
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Let us replace J with J(i) since αji = 0 for j 6∈ J(i):

∑
t∈T

∑
i∈I

(
f ity

i
t + pitx

i
t +

∑
j∈J(i)

t∑
k=1

hjtx
i
kα

j
i

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k (5.4)

which then reduces to Equation (5.5), when xit and xik terms are merged together:

∑
t∈T

∑
i∈I

(
f ity

i
t + citx

i
t

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k (5.5)

where,

cit = pit +
∑
j∈J(i)

T∑
k=t

hjkα
j
i . (5.6)

Finally, resulting formulation IP2 is given in Equations (5.7) – (5.11) where djtk is the

cumulative demand of product j between periods t and k.

IP2: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + citx

i
t

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k (5.7)

subject to
t∑

k=1

∑
i∈I(j)

αjix
i
k ≥ dj1t, ∀t ∈ T, j ∈ J (5.8)

xit ≤ max
j∈J(i)

{
dtT

αji

}
yit, ∀t ∈ T, i ∈ I (5.9)

xit ≥ 0, ∀t ∈ T, i ∈ I (5.10)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (5.11)

We note that IP2 formulation may improve solution times since it has fewer

number of variables compared to IP1 formulation. However, the constraint matrix is

denser than IP1, which may create computational difficulties.
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5.2. Plant Location Formulation 1 (ELS1)

The simple plant location formulation of LS-U is given in [9], and it is shown by

[26] that this formulation gives the convex hull of LS-U. We develop ELS1 formulation

based on the simple plant location formulation of LS-U, in which production variables

are disaggregated in terms of periods where produced items are consumed by demand.

Let Θjtt′ continuous variables represent the production amount of product j ∈ J , that is

produced in period t ∈ T to be consumed in period t′ ∈ T, t′ ≥ t. However, getting rid

of xit variables does not appear to be possible, due to having production costs depend

on the amount of CPUs produced, not products. Therefore, constraints (5.14) are

needed to relate Θjtt′ variables to xit variables, and the demand satisfaction constraint

is revised as in Equation (5.13). Other constraints and the objective function remain

the same as that of IP2:

ELS1: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + citx

i
t

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k (5.12)

subject to
∑
t≤t′

Θjtt′ = djt′ , ∀t
′ ∈ T, j ∈ J (5.13)

∑
t′≥t

Θjtt′ ≤
∑
i∈I(j)

αjix
i
t, ∀t ∈ T, j ∈ J (5.14)

xit ≤ max
j∈J(i)

{
dtT

αji

}
yit, ∀t ∈ T, i ∈ I (5.15)

xit ≥ 0, ∀t ∈ T, i ∈ I (5.16)

Θjtt′ ≥ 0, ∀t, t′ ∈ T, j ∈ J (5.17)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (5.18)

5.3. Plant Location Formulation 2 (ELS2)

We propose another formulation that is based on the simple plant location for-

mulation of LS-U, called ELS2. In ELS2 formulation, production variables are not

only disaggregated in terms of periods in which produced items are consumed by de-
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mand, but also in terms of the CPU they are produced by. Θjtt′ variables of ELS1

are replaced by Θij
tt′ , which gives the amount of product j produced using CPU i in

period t to be consumed in period t′, and necessary changes are applied to constraints

(5.20)–(5.22). Note that ELS2 formulation has higher number of constraints and vari-

ables than ELS1 formulation due to Equation (5.21), and the disaggregation of Θjtt′

into Θij
tt′ , respectively. Then, the formulation can be given as:

ELS2: minimize
∑
t∈T

∑
i∈I

(
f ity

i
t + citx

i
t

)
−
∑
t∈T

∑
j∈J

t∑
k=1

hjtd
j
k (5.19)

subject to
∑
i∈I(j)

∑
t≤t′

Θij
tt′ = djt′ , ∀t′ ∈ T, j ∈ J (5.20)

∑
t′≥t

Θij
tt′ ≤ αjix

i
t, ∀i ∈ I, t ∈ T, j ∈ J(i) (5.21)

xit ≤ max
j∈J(i)

{
dtT

αji

}
yit, ∀t ∈ T, i ∈ I (5.22)

xit ≥ 0, ∀t ∈ T, i ∈ I (5.23)

Θij
tt′ ≥ 0, ∀t, t′ ∈ T, j ∈ J, i ∈ I (5.24)

yit ∈ {0, 1}, ∀t ∈ T, i ∈ I. (5.25)

5.4. Equivalence of Alternative Model Formulations

In order to show the equivalence of two linear mathematical models one can show

any feasible solution of one model corresponds to some, also feasible, solution of the

other model having the same objective value. This way one can be sure that feasible

region of the first model is included in the feasible region of the second model. If the

reverse also holds, then the models are said to be equivalent [27]. In this section, the

equivalence will be shown explicitly between the linear relaxations of IP1 and IP2, IP2

and ELS1, ELS1 and ELS2.

The difference between IP1 and IP2 in constraints is the form of demand sat-

isfaction constraints (3.6) and (5.8) respectively. Consider a feasible solution (x̂, ŷ, ŝ)
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of linear relaxation of IP1. Since initial inventories are zero, sj0 = 0 ∀j, x̂ satisfies

Constraint (5.8) for t = 1. For t > 1, Constraints (5.8) can be obtained by summing

up Constraints (3.6) from 1 to t. Therefore x̂ satisfies (5.8), and (x̂, ŷ) is a feasible

solution to linear relaxation of IP2. Consider a feasible solution (x̄, ȳ) of linear relax-

ation of IP2. Since (5.8) are summed up version of (3.6) from 1 to t, (x̄, ȳ, s̄) is feasible

with respect to linear relaxation of IP1 where s̄ is calculated with (x̄, ȳ) using Equation

(5.1). In Section 5.1, we show that both formulations have the same objective function.

Therefore linear relaxations of the formulations IP1 and IP2 are equal.

Let us show the equivalence between linear relaxations of IP2 and ELS1. Con-

sider constraints of the form (5.9) and (5.15). For a given feasible solution (x, y) of

any of the models, the other model is also feasible with respect to (5.9) and (5.15).

Let (x̂it, ŷ
i
t, Θ̂jtt′) be a feasible solution of relaxed ELS1 formulation. Then, constraints

(5.13) should hold for Θ̂jtt′ . Constraints (5.26) are summed up versions of constraints

(5.13) from 1 to t. We get Equation (5.27) when indices of two summations are

switched:

t∑
z=1

z∑
k=1

Θ̂jkz =
t∑

z=1

djz, ∀t ∈ T, j ∈ J ; (5.26)

t∑
k=1

t∑
z=k

Θ̂jkz = dj1t, ∀t ∈ T, j ∈ J . (5.27)

Constraints (5.14) should also hold for any feasible solution. Equation (5.28) is

found when Constraints (5.14) are summed up from 1 to t. Equation (5.29) is the

combination of Equations (5.27) and (5.28). Using Equation (5.29) we can conclude

that x̂ satisfy constraints (5.8); and hence, (x̂it, ŷ
i
t) is feasible with respect to relaxed

IP2 formulation. Their objective values are the same since both formulations share the

same objective function.
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t∑
k=1

T∑
z=k

Θ̂jkz ≤
t∑

k=1

∑
i∈I(j)

αji x̂
i
k, ∀t ∈ T, j ∈ J ; (5.28)

dj1t =
t∑

k=1

t∑
z=k

Θ̂jkz ≤
t∑

k=1

T∑
z=k

Θ̂jkz ≤
t∑

k=1

∑
i∈I(j)

αji x̂
i
k, ∀t ∈ T, j ∈ J . (5.29)

Now, let (x̂it, ŷ
i
t) be a solution of relaxed IP2 formulation. Unfortunately, reverse

mapping of xit variables of IP2 formulation into Θjtt′ variables of ELS1 formulation is

not unique. This is due to the fact that some production is done not to satisfy demand

but they are produced mandatorily due to co-production nature of the production

environment. Since Θjtt′ variables only represent consumed production and there may

be excess production, it is possible to shift production-consumption assignment in

terms of Θjtt′ variables around. Therefore, using a simple first-in-first-out (FIFO) rule,

it is possible to map any (x̂it, ŷ
i
t) solution of relaxed IP2 formulation to a (x̂it, ŷ

i
t, Θ̂jtt′)

solution of relaxed ELS1 formulation. The proposed algorithm is shown in Figure 5.1.

Equivalence between linear relaxations of ELS1 and ELS2 follows from the rela-

tion between Θjtt′ and Θij
tt′ variables. Θij

tt′ variables are CPU disaggregated version of

Θjtt′ variables. Let (x̂it, ŷ
i
t, Θ̂

ij
tt′) be a solution to ELS2 formulation. Then by setting

Θ̂jtt′ =
∑

i∈I Θ̂ij
tt′ , (x̂it, ŷ

i
t, Θ̂jtt′) will be a solution to ELS1 formulation. Let (x̄it, ȳ

i
t, Θ̄jtt′)

be a solution to ELS1 formulation. We need to map Θ̄ij
tt′ arbitrarily from Θ̄jtt′ variables,

and this mapping is not unique. This mapping can be done with an algorithm similar

to the one given in Figure 5.1.

We have shown that the feasible regions of relaxed IP1 and IP2 formulations, IP2

and ELS1 formulations, and ELS1 and ELS2 formulations are equal. Therefore, the

feasible regions of all proposed models’ linear relaxations are equal.
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for Each product j ∈ J do

Make copy of demand vector djt into Dt for all t ∈ T

Make copy of production vector
∑

i∈I(j) x
i
tα

j
i into Pt for all t ∈ T

for Each period t ∈ T do

for p ∈ {1, ..., T} do

if Pp > Dt then

Θjpt = Dt

Pp = Pp −Dt

break

else

Θjpt = Pp

Dt = Dt − Pp
end if

end for

end for

end for

Figure 5.1. Algorithm for mapping Θ̂jtt′ from x̂it using FIFO.
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6. MODEL IMPROVEMENTS

In this chapter we first give valid inequalities that improve the lower bound ob-

tained from linear relaxation of the model. Then, we provide two heuristics in order

to improve the solution times.

6.1. Valid Inequalities

Valid inequalities, in general, improve the solution time required to solve integer

programing formulations by narrowing the solution space. Although valid inequalities

are not necessary to define the problem, they are satisfied for any feasible solution.

Therefore, they could be violated by some fractional solutions of a branch and bound

tree but they never eliminate any integer feasible solution. However, in some cases

there exists exponential number of valid inequalities with respect to the problem size.

This makes it inefficient to include all valid inequalities in the formulation. Hence,

it is computationally more efficient to add valid inequalities that are violated by the

fractional solution of the node relaxation during the branch and bound search in order

to improve the lower bound.

Pochet and Wolsey [28] give Proposition 6.1 and Theorem 6.2 for the classical

uncapacitated lot sizing problem LS-U.

Proposition 6.1. Let l ∈ T , L = {1, ..., l} and S ⊆ L, then the (l, S) inequality

∑
q∈S

xq ≤
∑
q∈S

dqlyq + sl (6.1)

is valid for XLS−U .

Theorem 6.2. Inequalities of the form (6.1), which are exponentially many, give com-

plete description of conv(XLS−U). Proof is in [28].
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By using inequalities (6.1), we develop valid inequalities given by Equation (6.2)

for our problem. We prove that these inequalities are valid for DCCP in Proposition

6.3.

Proposition 6.3. Let l ∈ T , L = {1, ..., l}, S ⊆ L,and j ∈ J then the (l, S, j)

inequality

∑
i∈I(j)

∑
q∈S

xiqα
j
i ≤

∑
q∈S

djql

∑
i∈I(j)

yiq

+ sjl (6.2)

is valid for XDCCP .

Proof. Consider a point (s, y) ∈ XDCCP . If
∑

q∈S
∑

i∈I(j) y
i
q = 0, then as∑

i∈I(j)
∑

q∈S x
i
q = 0, sjl ≥ 0, the equality is satisfied. Otherwise let t = min{q ∈

S :
∑

i∈I(j) y
i
q > 0}. Then consider the following:

∑
i∈I(j)

∑
q∈S

xiqα
j
i ≤

∑
i∈I(j)

l∑
q=t

xiqα
j
i ≤ djtl + sjl ≤

∑
q∈S

djql

∑
i∈I(j)

yiq

+ sjl (6.3)

First part of the inequality (6.3) follows from non-negativity of xiqα
j
i terms and the

definition of subset S and time index t. The second part follows from flow conservation

equations. Finally, the last part holds using
∑

i∈I(j) y
i
t ≥ 1 and the non-negativity of

yit.

Remark. Inequalities of the form (6.2), does not give complete description of

conv(XDCCP ).

Equation (6.4) is valid for DCCP because of inventory flow constraints, where

l ∈ T , L = {1, ..., l}, S ⊆ L.

∑
i∈I(j)

∑
q∈L

xiqα
j
i = dj1l + sjl (6.4)
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By using Equation (6.4) and Inequality (6.2), we obtain Inequality (6.5).

∑
i∈I(j)

∑
q∈L\S

xiqα
j
i +
∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l (6.5)

Note that valid inequalities of the form (6.5) are exponentially many. However,

they can be separated by inspection using the algorithm given in Figure 6.1. A straight-

forward application of the algorithm leads to O(n2) complexity whereas O(nlog(n))

is doable by adapting improvement proposed in [28]. Assume a fractional solution

(xi∗q , y
i∗
q ) to apply separation algorithm given in Figure 6.1. Note that this separation

is perfect, i.e. the algorithm finds all violated valid inequalities for a given solution.

for Each product j ∈ J do

for l = 1, ..., T do

Calculate Dj
l =

∑l
q=1min

{∑
i∈I(j) x

i∗
q α

j
i , d

j
ql

(∑
i∈I(j) y

i∗
q

)}
if Dj

l < dj1l then

return j, L = {1, ..., l}, S =

{
q ∈ L :

∑
i∈I(j) x

i∗
q α

j
i > djql

(∑
i∈I(j) y

i∗
q

)}
end if

end for

end for

Figure 6.1. Algorithm for (l, S, j) Separation.

Inequalities of the form (6.2) and (6.5) are not very tight when more than one CPU

produces an item in a period due to term
∑

i∈I(j) y
i
q. Let us define a new binary variable

called ztj to facilitate production of product j in period t. Additional constraints to be

added to the model are (6.6) and (6.7):

yit ≤ ztj ∀j ∈ J, i ∈ I(j), t ∈ T ; (6.6)∑
i∈I(j)

yit ≥ ztj ∀j ∈ J, t ∈ T. (6.7)
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Then, replacing
∑

i∈I(j) y
i
q in (6.2) with zqj results in inequalities (6.8), which can be

transformed into (6.9) using (6.4):

∑
i∈I(j)

∑
q∈S

xiqα
j
i ≤

∑
q∈S

djqlz
q
j + sjl ; (6.8)

∑
i∈I(j)

∑
q∈L\S

xiqα
j
i +
∑
q∈S

djqlz
q
j ≥ dj1l. (6.9)

Then, zqj transformed (l, S, j) separation algorithm is shown in Figure 6.2 for a solution

(xi∗q , z
q∗
j ).

for Each product j ∈ J do

for l = 1, ..., T do

Calculate Dj
l =

∑l
q=1min

{∑
i∈I(j) x

i∗
q α

j
i , d

j
qlz

q∗
j

}
if Dj

l < dj1l then

return j, L = {1, ..., l}, S =

{
q ∈ L :

∑
i∈I(j) x

i∗
q α

j
i > djqlz

q∗
j

}
end if

end for

end for

Figure 6.2. Algorithm for (l, S, j) Separation using zqj variables.

6.1.1. Valid Inequalities for Alternative Model Formulations

Valid inequalities described in this chapter can be applied to ELS1 and ELS2

formulations using the same logic as follows:

∑
q∈L\S

∑
t′≥q

Θjqt′ +
∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l, (6.10)

∑
q∈L\S

∑
t′≥q

∑
i∈I(j)

Θij
qt′ +

∑
q∈S

djql

∑
i∈I(j)

yiq

 ≥ dj1l. (6.11)
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The idea used in writing Inequalities (6.6) and (6.7) can also be applied to Equa-

tion (6.10) and (6.11), converting them into (6.12) and (6.13) for ELS1 and ELS2,

respectively:

∑
q∈L\S

∑
t′≥q

Θjqt′ +
∑
q∈S

djqlz
q
j ≥ dj1l, (6.12)

∑
q∈L\S

∑
t′≥q

∑
i∈I(j)

Θij
qt′ +

∑
q∈S

djqlz
q
j ≥ dj1l. (6.13)

Inequalities (6.12) and (6.13) are tighter than the original valid inequalities due to

constraints (5.14) and (5.21) for ELS1 and ELS2, respectively.

6.2. Heuristics

Branch and bound algorithm (B&B) is a structural way of searching integer

feasible solution space by constructing a tree of possible solutions. B&B is faster than

explicit enumeration since it is possible to prune some branches of B&B tree using

the global lower and upper bound information available. So far, we have investigated

how to improve lower bounds using valid inequalities in Section 6.1. In this section we

discuss two heuristics that we develop for DCCP.

Heuristics can be used to give initial solutions to B&B or to create feasible solu-

tions from fractional node relaxation solutions of branch and bound tree. First heuristic

we discuss is named as Pattern Fitting heuristic. Its sole purpose is to provide an initial

solution to B&B. The second heuristic is named as CPWW (Co-Production Wagner

Whitin), which can create many feasible solutions from a fractional node relaxation

solution. Both of these heuristics will be discussed in detail in their respective sections.

6.2.1. Pattern Fitting Heuristic

A pattern fitting heuristic is developed in order to give an initial solution to

the commercial solver. Product coverage of a CPU is defined for this heuristic as
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Initialize Rj, Cj, Xit, Yit, Sjt = 0, minratio =∞

for Period t ∈ T do

for Product j ∈ J do

Rj = Rj + djt

end for

if Rj ≤ 0 then

Cj = 1

else

Cj = 0

end if

while Cj = 0 ∃j ∈ J do

for CPU i ∈ I do

for Product j ∈ J(i) do

ratio = Rj/α
j
i

if ratio > Xit then

Xit = ratio

end if

end for

for Product j ∈ J(i) do

Sjt = Xit ∗ αji −Rj

end for

Define J ′(i) = {j | Rj > 0, j ∈ J(i)}

if J ′(i) 6= ∅ then

CTCR =
{
f ti +Xit ∗ pti +

∑
j∈J(i) h

t
j ∗ Sjt

}
/|J ′(i)|

end if

if CTCR < minratio then

minratio = CTCR

CPUindex = i

end if

end for

if CPUindex ≥ 0 then

Yit = 1

for Product j ∈ J(i) do

Cj = 1

Rj = Rj −XCPUindex,t ∗ αjCPUindex
end for

end if

end while

end for

return Xit, Yit, Sjt

Figure 6.3. Pattern Fitting Heuristic.
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the number of products that CPU can produce, which have uncovered demand in

considered period t. Our heuristic works as follows: starting from the first period, the

algorithm tries to cover all demand. The CPU, which has the lowest cost to product

coverage ratio is selected and that CPU is produced at an amount that covers all

demand of products that CPU is producing. Those products are marked as covered,

and the algorithm selects the next CPU with minimum cost to product coverage ratio

until all products are covered for first period. Then, the excess production is reduced

from demand for the next period and the algorithm continues for period 2, and so on

to the last period. This algorithm is given in Figure 6.3.

6.2.2. Co-Production Wagner Whitin Heuristic (CPWW)

One can continuously improve the upper bound of B&B search by creating good

integer feasible solutions from fractional node relaxation solutions. Co-Production

Wagner Whitin Heuristic (CPWW) is developed in order to create feasible solutions

from fractional node relaxation solutions of branch and bound tree. CPWW can create

many feasible solutions from a fractional node relaxation solution due to randomness

of the ordering of the products considered.

This heuristic works as follows: given a fractional solution vector of yti , each

product is considered in a random order. For each period, the product considered is

assigned to a CPU from its available CPUs. In this assignment, the CPU that has the

highest yti value is selected. The assumption is if any CPU has higher yti value in a

fractional solution, then it has higher likelihood to appear in an optimal solution. Next,

Wagner - Whitin algorithm is called for the product considered, considering selected

CPU’s cost parameters as if it was a single product having demand dtj/α
j
i . Note that

different CPUs can be selected for different periods for the same product. Production

amounts of other co-produced products are then reflected in the demand matrix, and

the algorithm continues until every product is considered. The algorithm is given in

Figure 6.4.
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Given fractional solution yti

for Product j ∈ J(i) in random order do

for CPU i ∈ I(j) do

temp = 0

for Period t ∈ T do

if yti > temp then

temp = yti

SelectedCPUs(t) = i

end if

end for

Apply Wagner - Whitin Algorithm using costs of SelectedCPUs for each

period and demand matrix.

Reflect production of other co-produced products in demand matrix

end for

end for

Figure 6.4. Co-Production Wagner Whitin Heuristic.
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7. COMPUTATIONAL EXPERIMENTS AND RESULTS

Computational experiments are done on 4 problem sets, each having 10 instances.

Time limit is set to 20 minutes per instance for all tests. We implement the models

and algorithms in C++ programming language and we use IBM CPLEX 12.8 in 64

bit mode for MIP solutions. Benchmark tests are performed on an Intel Core i7-3820

3.6 GHz machine with 32GB RAM and 10MB cache, running Windows 10 operating

system.

7.1. Data Generation Process

There is no available data library that we can directly use in the deliberated

co-production in dynamic deterministic lot sizing literature. Therefore, we generate

random data sets for experimentation. We use the data generation process used by [29]

to generate a production planning problem where applicable. The procedure described

in [29] has 20 products across three product families as shown in Table 7.1. Each

product has a lower and an upper bound on demand for each period to be determined

using uniform distribution. When more than 20 products are present in an instance,

mod operation is used to determine the family of a product. For example, product 21

belongs to the first family whereas, product 26 belongs to the second product family.

Holding costs and bounds on fixed costs used by [29] are given in Table 7.2. Variable

costs given in Table 7.2, however, do not exist in the context of [29]. Values of 10, 15,

and 20 are taken as variable costs for product families 1, 2, and 3 respectively.

Table 7.1. Product Families and Demand Data Used in Experimentation.

Family 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Demand LB 20 40 15 25 80 80 15 40 40 55 20 20 30 30 20 30 30 50 60 40

Demand UB 40 60 25 65 120 120 25 60 60 85 40 40 50 50 40 70 50 100 90 80
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We create co-production units randomly while ensuring that each product is a

part of at least one CPU to ensure feasibility. A parameter named density is used to

determine the number of products inside each CPU. Each CPU can produce at least

two, and at most density many products.

Table 7.2. Holding Cost, Fixed Cost, and Variable Cost Used in Experimentation.

Product

Family

Holding

Cost

Fixed Cost

LB

Fixed Cost

UB

Variable

Cost

1 1 50 150 10

2 1.75 100 200 15

3 1.5 100 200 20

The fixed cost of a CPU is determined by taking %75 of the sum of the fixed costs

of products that CPU includes. Similarly, the variable cost of a CPU is taken as %90

of the sum of the variable costs of its products. Problem sets used are summarized in

Table 7.3.

Table 7.3. Problem Set Descriptions.

Period Product CPU Density

Problem Set 1 24 40 200 3

Problem Set 2 24 40 200 6

Problem Set 3 36 40 200 3

Problem Set 4 36 40 200 6

7.2. Comparison of Alternative Model Formulations

CPLEX parameter settings used for experimentation are in Table 7.4. At this

stage of tests, all four model formulations are tested without any model improvements

in all problem sets. Summarized results can be seen in Table 7.5. Columns of the

Table 7.5 given from the left to right are as follows: Average time spent in the B&B

algorithm in seconds excluding the time spent in node zero, average optimality gap,
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average number of processed nodes of B&B tree, number of best solutions found per

test instance. The reader may refer to Tables A.1-A.4 for extensive results.

Table 7.4. CPLEX Parameter Settings.

Timelimit 1200

Threads 8

MIPGap 0

IP1 formulation bests all other formulations in terms of average gap, and provides

the best feasible solution at the end of the time limit in 31 of 40 test instances. IP2

performs worse than IP1 in the number of best solutions found and the average gap

in all three problem sets. Computational difficulties arising from the denser constraint

matrix of IP2 outweighs the possible benefits arising from fewer number of variables

compared to IP1.

Table 7.5. Summary of Results for Alternative Model Formulations.

Problem Set

Time Spent in B&B % Gap Processed Nodes # Best Sol.

IP1 IP2 ELS1 ELS2 IP1 IP2 ELS1 ELS2 IP1 IP2 ELS1 ELS2 IP1 IP2 ELS1 ELS2

Problem Set 1 749.07 63.83 71.14 369.39 9.65 13.39 11.11 19.13 604 9 0 2 6 2 2 0

Problem Set 2 0.04 0.06 0.05 0.06 18.21 25.55 26.93 38.11 0 0 0 0 8 2 0 0

Problem Set 3 6.58 0.12 0.06 0.09 11.07 20.77 14.80 24.92 0 0 0 0 7 2 1 0

Problem Set 4 0.04 0.14 0.05 0.09 22.72 37.71 32.13 47.64 0 0 0 0 10 0 0 0

In 20 minutes time limit, except IP1 formulation in problem set 1, most of the

instances resulted in zero or very small number of branch and bound nodes processed.

CPLEX was unable to finish processing node zero in order to start processing other

nodes of the branch and bound tree.

It is interesting to note that, although IP2 formulation has a higher number of

best solution found than ELS1, the latter has smaller average gap than IP2 except in

problem set 2. Note that all formulations have the same linear relaxation objective

value (RlxObj column of Tables A.1-A.4) as shown theoretically in Section 5.4.
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ELS2 formulation performs the worst, and gives the highest average gap values

for all four problem sets. Notice that ELS2 formulation has the highest number of

constraints for any given problem instance due to the constraints of the form (5.21).

As density parameter increases from 3 to 6, only the number of constraints for ELS2

increases due to constraint (5.21), which in turn greatly increases the problem size for

ELS2 formulation resulting in the worst performance.

As a conclusion of this step, IP1 formulation outperforms IP2 and ELS2 has the

worst performance. Therefore, results of formulations IP2 and ELS2 will not be shown

in upcoming stages of experimentations.

7.3. Comparison of Valid Inequalities in IP1 and ELS1 Formulations

In this section effects of adding valid inequalities by using the separation algo-

rithm given in Section 6.1 to IP1 and ELS1 formulations with and without ztj variables,

as given in Section 6.1, will be discussed. This experimentation will be based on LP

relaxations of these formulations. We repeatedly solve LP relaxation of a model and

add violated valid inequalities as needed. Algorithms for separating valid inequalities

from a given fractional solution is given in Figure 6.1 and Figure 6.2 for separating

without ztj and with ztj variables, respectively. Implementing these algorithms directly

caused some problems. For example, if a valid inequality that is violated by only a

small amount is added to the formulation, CPLEX may not register it as a violated

constraint due to numerical tolerances of CPLEX. This results in an infinite loop in

some problem instances. Therefore, we restrict ourself to add valid inequalities that are

violated by a specified value, called epsilon, to register as violated valid inequalities.

Upon preliminary experimentation it is observed that the value of epsilon does not

matter as long as it is not close to zero. Hence the value of epsilon is set to 20 for all

runs with valid inequalities.

Another problem that we experienced while adding valid inequalities is there

is no mechanism to stop generating valid inequalities when they no longer improve
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current lower bound. In order to remedy this problem, we stop searching for valid

inequalities when the percentage increase in the lower bound as a result of adding valid

inequalities is less than 0.5. We set the root algorithm parameter of CPLEX to dual

simplex for this part of experimentation. We provide a summary of results in Table

7.6. Columns of Table 7.6 include: Average time spent in seconds generating valid

inequalities, average increase in the lower bound compared to LP relaxation, average

% gap between new lower bound and the best integer feasible solution obtained in

Section 7.2, average number of original constraints, and average number of added valid

inequalities. Detailed results are given in Appendix section A.2.

In Section 6.1, where valid inequalities for DCCP are proposed, we note that

with an additional variable referred as ztj, proposed valid inequalities in fact generate

tighter relaxations. We see higher number of valid inequalities added to the models

for ztj variations due to higher number of valid inequalities cutting any given fractional

solution. However, as we see in the second column of Table 7.6, the average increase

in the lower bound of linear relaxation of the problem does not always increase with

the addition of ztj variables to the models IP1 and ELS1. On the contrary, adding ztj

variables reduces the increase of lower bound of linear relaxation for IP1 despite an

increase in the average number of valid inequalities. Additionally, the time required to

create valid inequalities also increases with the addition of ztj variables to IP1 formu-

lation. For ELS1 model, ztj variables increase the average percent increase in LP lower

bound for problem sets 1 and 2 by 0.03 and 0.01, respectively, and reduced by 0.05 and

0.09 for problem sets 3 and 4, respectively.

The average number of constraints in the model increases approximately 4 times

with additional ztj variables for both IP1 and ELS1 formulations for all problem sets.

This increase in the constraint number is higher in problem sets 2 and 4, where density

parameter is higher than that of problem sets 1 and 3. This will be a major drawback

for using additional ztj variables when solving corresponding IP’s to optimality due to

increased model size.
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Valid inequalities generated using LP relaxations of formulations IP1 and ELS1

perform similarly in average increase in LP lower bound and average time spent. How-

ever, IP1 achieves the same level of lower bound increase with fewer number of valid

inequalities compared to ELS1 formulation. Therefore, valid inequalities generated

using LP relaxation of IP1 formulation are more efficient compared to that of ELS1

formulation.

In summary, additional ztj variables are not justifiable with a small percentage of

lower bound increase in LP relaxation in some of the problem sets, while introducing a

very large number of constraints to both formulations. Additionally, IP1 formulation

has the same increase in LP lower bound with ELS1 formulation and this increase

is achieved with lesser number of valid inequalities. Therefore, only IP1 formulation

and valid inequalities without ztj variables will be considered in upcoming stages of

experimentations.

7.4. Results of Heuristics

In this section, IP1 formulation is tested using four different setting and com-

pared to the original MIP implementation. In the first setting, valid inequalities are

implemented in IP1 using callback structure of CPLEX. In the second setting, the

pattern fitting heuristic to generate initial solution is added to the IP1. Next, valid

inequalities are tested together with pattern fitting heuristic. Lastly, CPWW is also

added to IP1 together with valid inequalities and pattern fitting heuristic. Results are

provided in Table 7.7. Columns of Table 7.7 from left to right show: Average amount

of time spent in seconds in pattern fitting heuristic, average objective function value

of the solution generated using pattern fitting heuristic, average amount of time spent

in seconds in node 0 of B&B tree, average amount of time spent in the B&B algorithm

in seconds excluding the time spent in node zero, average % optimality gap, average

number of B&B nodes considered, number of best solutions found per test instance, av-

erage number of valid inequalities generated, average number of times CPLEX callback

is called.
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We observe that callback implemented valid inequalities alone reduces the average

percent gap only in small density problem sets, sets 1 and 3, compared to base IP1

formulation. In high density problem sets, sets 2 and 4, we observe an increase in the

average percent gap. Pattern fitting heuristic improves the solution quality compared

to base IP1 formulation with or without valid inequalities. CPWW however, has no

effect on average percent gap in problem sets 1 and 2, and results in an increase in

problem sets 3 and 4.

Pattern fitting heuristic without valid inequalities results in best average percent

gap in problem sets 2 and 4. However, using valid inequalities in addition to the

pattern fitting heuristic results in increased number of best integer solutions found.

For problem set 2, IP1 with pattern fitting heuristic was unable to provide any best

solution in 10 test instances, while resulting in best average percent gap. Using Valid

inequalities together with pattern fitting heuristic however, provided 5 best integer

solutions out of 10. Similar pattern is also seen in results for problem set 4.

We observe that using pattern fitting heuristic together with valid inequalities

improves upon IP1 formulation. Adding CPWW heuristic to the mix however, does

not increase the number of best solutions found or decrease average percent gap. As

a result of computational experimentation, we conclude that solving IP1 formulation

with pattern fitting heuristic and valid inequalities without ztj variables yields best

results.
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8. CONCLUSION

In this thesis, we study lot a sizing problem in deliberated and controlled co-

production setting. This problem, to the best of our knowledge, was not addressed in

the literature previously.

In the first part of this thesis, we define and structure DCCP. We prove that

DCCP is an NP-Hard problem. Hence, we cannot hope to find a polynomial time

algorithm to solve it. Therefore, we provide several special cases for which DCPP is

polynomially solvable and propose solution techniques for those cases.

We propose four alternative MIP formulations for DCCP. Two of these formu-

lations (IP1 and IP2) are similar to original LS-U formulation. The other two (ELS1

and ELS2) are based on the simple plant location formulation of LS-U. Then, we show

that all proposed formulations are equivalent in terms of their linear programming

relaxations.

In order to reduce the solution times and increase solution qualities of proposed

MIP formulations, we focus on finding valid inequalities. We show that inequalities

converted from l-s inequalities of LS-U are valid for DCCP. We show that proposed

valid inequalities can increase the LP bound by at least %20 for our test cases.

We propose two different heuristics to help with the upper bounds. According to

our computational experiments, proposed pattern fitting heuristic results in the lowest

average percent gap for 3 out of 4 problem sets. Pattern fitting heuristic together

with valid inequalities provides the highest number of best solution found in 3 out of

4 problem sets.

We achieve at least %10 improvement in average percent gap over the IP1 formu-

lation with proposed model improvements, pattern fitting heuristic and valid inequal-
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ities. We also show that at the end of the time limit models with our modifications

provide better feasible solutions.

Introducing backlogging option and capacity restrictions to DCCP could be a

possible future research direction. However, we do believe that, before tackling harder

variations of DCCP, we should be able to find efficient solution techniques to the

plain version of the problem. Implementing more clever heuristics could be a possible

improvement on solution times and quality. CPWW heuristic proposed in this thesis

generates solutions in which multiple items are produced well over their demand levels

in some cases, and hence it can be improved. A standalone heuristic option, rather

than to help B&B search, is also a possibility to generate feasible solutions to problem

instances that are too difficult to solve exactly.
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APPENDIX A: RESULTS

A.1. Experiments on Alternative Model Formulations

Table A.1. Experiments with Alternative Model Formulations on Problem Set 1.

Model LPTime RlxObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr.

IP
1

0.10 681132 486 929060 1056890 713.58 1055160 11.85 314 5760

0.10 720805 651 982898 1077270 549.24 1075630 8.59 253 5760

0.08 720478 337 980186 1109420 863.37 1105120 11.22 582 5760

0.10 684124 370 921840 1018560 829.73 1014380 9.10 807 5760

0.08 703107 404 997078 1120870 796.39 1117610 10.76 719 5760

0.09 714616 572 935113 1030780 628.33 1028580 9.03 143 5760

0.10 745050 367 1019280 1114630 833.42 1113090 8.41 1086 5760

0.08 693586 675 965924 1085140 525.22 1082400 10.70 170 5760

0.10 718966 312 973868 1066660 888.30 1066190 8.61 1296 5760

0.11 727199 337 1002600 1094200 863.09 1093660 8.27 670 5760

Average: 0.09 710906 451 970785 1077442 749.07 1075182 9.65 604 5760

IP
2

0.44 681132 1200 897747 1046300 0.02 1046300 14.20 0 5760

0.45 720805 1103 965069 1108000 96.51 1108000 12.78 0 5760

0.29 720478 1200 942971 1109220 0.09 1109220 14.99 0 5760

0.30 684124 1127 894052 1022840 72.97 1022840 12.45 0 5760

0.29 703107 1200 961307 1107260 0.09 1107260 13.18 0 5760

0.33 714616 1200 897175 1057240 0.09 1057240 15.14 0 5760

0.35 745050 1090 999590 1125830 109.79 1125830 10.99 0 5760

0.30 693586 1200 910994 1096820 0.09 1096820 16.94 0 5760

0.32 718966 841 952347 1074000 358.66 1072690 11.00 91 5760

0.46 727199 1200 966365 1101070 0.02 1101070 12.23 0 5760

Average: 0.35 710906 1136 938762 1084858 63.83 1084727 13.39 9 5760

E
L

S
1

0.39 681132 1200 924676 1076990 0.02 1076990 14.14 0 6720

0.35 720805 1200 976797 1118010 0.02 1118010 12.63 0 6720

0.25 720478 1157 979582 1098030 43.22 1098030 10.79 0 6720

0.25 684124 1201 920015 1030560 0.02 1030560 10.73 0 6720

0.25 703107 1044 997394 1115930 155.65 1114680 10.50 0 6720

0.25 714616 1201 931363 1060200 0.02 1060200 12.15 0 6720

0.26 745050 927 1016330 1117530 272.50 1112740 8.55 0 6720

0.25 693586 1201 961964 1100200 0.05 1100200 12.56 0 6720

0.24 718966 1166 972889 1075540 34.41 1075540 9.54 0 6720

0.33 727199 994 1001790 1110650 205.51 1107670 9.53 0 6720

Average: 0.28 710906 1129 968280 1090364 71.14 1089462 11.11 0 6720

E
L

S
2

3.84 681132 881 932439 1214570 315.55 1214570 23.17 0 18048

4.55 720805 739 980466 1189260 456.88 1169650 16.00 0 17928

2.97 720478 984 980599 1214490 213.05 1214490 19.18 0 17736

3.71 684124 716 923049 1143560 480.70 1121270 17.62 0 17712

3.27 703107 848 993829 1434470 348.74 1232620 19.34 0 17832

3.43 714616 917 934928 1201400 279.19 1201400 22.15 0 17568

3.22 745050 609 1017830 1218960 587.96 1218960 16.45 18 17376

4.15 693586 681 966547 1325480 514.89 1251160 22.71 0 17856

3.02 718966 931 974856 1117820 266.08 1117820 12.74 0 17640

4.12 727199 965 999051 1280220 230.91 1280220 21.90 0 17784

Average: 3.63 710906 827 970359 1234023 369.39 1202216 19.13 2 17748
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Table A.2. Experiments with Alternative Model Formulations on Problem Set 2.

Model LPTime RlxObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr.

IP
1

0.18 678396 1200 927031 1134910 0.04 1134910 18.32 0 5760

0.21 717620 1201 1000470 1265390 0.05 1265390 20.94 0 5760

0.19 715936 1200 970448 1215730 0.04 1215730 20.18 0 5760

0.20 684632 1208 967404 1154000 0.04 1154000 16.17 0 5760

0.20 698281 1210 924268 1106480 0.04 1106480 16.47 0 5760

0.20 713263 1207 975484 1195520 0.04 1195520 18.40 0 5760

0.20 743252 1213 1047380 1264460 0.01 1264460 17.17 0 5760

0.21 694447 1201 1053140 1282460 0.03 1282460 17.88 0 5760

0.21 717974 1210 987691 1200660 0.04 1200660 17.74 0 5760

0.19 722978 1200 957788 1179610 0.04 1179610 18.80 0 5760

Average: 0.20 708678 1205 981110 1199922 0.04 1199922 18.21 0 5760

IP
2

1.03 678396 1199 841574 1139830 0.10 1139830 26.17 0 5760

1.08 717620 1199 922692 1300580 0.01 1300580 29.06 0 5760

1.13 715936 1199 901864 1185950 0.01 1185950 23.95 0 5760

1.01 684632 1199 889979 1233300 0.10 1233300 27.84 0 5760

1.11 698281 1199 861111 1119840 0.01 1119840 23.10 0 5760

1.03 713263 1199 896286 1205380 0.01 1205380 25.64 0 5760

1.08 743252 1199 949876 1276160 0.01 1276160 25.57 0 5760

1.22 694447 1199 970287 1324830 0.18 1324830 26.76 0 5760

1.21 717974 1199 908060 1204160 0.10 1204160 24.59 0 5760

1.00 722978 1200 894061 1158460 0.10 1158460 22.82 0 5760

Average: 1.09 708678 1199 903579 1214849 0.06 1214849 25.55 0 5760

E
L

S
1

0.60 678396 1208 912464 1189740 0.05 1189740 23.31 0 6720

0.64 717620 1204 982812 1379840 0.05 1379840 28.77 0 6720

0.66 715936 1200 945164 1280730 0.05 1280730 26.20 0 6720

0.60 684632 1204 951406 1403800 0.05 1403800 32.23 0 6720

0.68 698281 1203 908355 1160360 0.05 1160360 21.72 0 6720

0.64 713263 1208 952866 1342280 0.05 1342280 29.01 0 6720

0.67 743252 1206 1020940 1506850 0.05 1506850 32.25 0 6720

0.68 694447 1203 1011280 1399280 0.05 1399280 27.73 0 6720

0.63 717974 1204 962156 1293740 0.05 1293740 25.63 0 6720

0.60 722978 1208 937928 1209450 0.05 1209450 22.45 0 6720

Average: 0.64 708678 1205 958537 1316607 0.05 1316607 26.93 0 6720

E
L

S
2

13.83 678396 1186 907996 1494200 0.06 1494200 39.23 0 25416

12.11 717620 1188 975855 1810650 0.05 1810650 46.10 0 26040

15.12 715936 1185 962741 1461490 0.06 1461490 34.13 0 25728

11.98 684632 1188 958218 1681740 0.06 1681740 43.02 0 24744

12.70 698281 1187 919254 1397340 0.06 1397340 34.21 0 25032

11.19 713263 1189 944941 1544470 0.06 1544470 38.82 0 24912

12.69 743252 1187 1055690 1652950 0.05 1652950 36.13 0 24936

12.65 694447 1187 1043870 1786240 0.06 1786240 41.56 0 24840

13.14 717974 1187 980488 1571640 0.06 1571640 37.61 0 25248

10.19 722978 1190 948824 1361760 0.05 1361760 30.32 0 23784

Average: 12.56 708678 1188 969788 1576248 0.06 1576248 38.11 0 25068
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Table A.3. Experiments with Alternative Model Formulations on Problem Set 3.

Model LPTime RlxObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr.

IP
1

0.16 1015710 1201 1384010 1572380 0.05 1572380 11.98 0 8640

0.15 1074590 1201 1466470 1637540 0.01 1637540 10.45 0 8640

0.11 1074700 1201 1468070 1666610 0.05 1666610 11.91 0 8640

0.15 1020520 1200 1382100 1532400 0.02 1532400 9.81 0 8640

0.12 1048560 1201 1494060 1696470 0.05 1696470 11.93 0 8640

0.12 1066830 1200 1392990 1587880 0.01 1587880 12.27 0 8640

0.15 1111240 1201 1527300 1696350 0.05 1696350 9.97 0 8640

0.12 1034230 1200 1435900 1673680 0.05 1673680 14.21 0 8640

0.16 1072020 1135 1457580 1595190 65.41 1595190 8.63 0 8640

0.16 1084200 1200 1501260 1660170 0.05 1660170 9.57 0 8640

Average: 0.14 1060260 1194 1450974 1631867 6.58 1631867 11.07 0 8640

IP
2

1.32 1015710 1199 1261120 1588250 0.13 1588250 20.60 0 8640

1.21 1074590 1199 1356660 1684260 0.12 1684260 19.45 0 8640

0.96 1074700 1199 1321010 1663610 0.13 1663610 20.59 0 8640

1.11 1020520 1199 1272840 1555360 0.14 1555360 18.16 0 8640

0.99 1048560 1199 1333630 1755460 0.13 1755460 24.03 0 8640

1.30 1066830 1199 1265130 1585480 0.02 1585480 20.21 0 8640

1.04 1111240 1199 1381300 1708670 0.13 1708670 19.16 0 8640

1.09 1034230 1199 1241740 1671980 0.13 1671980 25.73 0 8640

0.95 1072020 1199 1349430 1645490 0.14 1645490 17.99 0 8640

1.35 1084200 1199 1354760 1732400 0.13 1732400 21.80 0 8640

Average: 1.13 1060260 1199 1313762 1659096 0.12 1659096 20.77 0 8640

E
L

S
1

0.73 1015710 1200 1356870 1611360 0.07 1611360 15.79 0 10080

0.70 1074590 1200 1447440 1699500 0.07 1699500 14.83 0 10080

0.40 1074700 1200 1444880 1656390 0.07 1656390 12.77 0 10080

0.56 1020520 1200 1363080 1630240 0.06 1630240 16.39 0 10080

0.52 1048560 1200 1477660 1754900 0.07 1754900 15.80 0 10080

0.41 1066830 1200 1378510 1667550 0.06 1667550 17.33 0 10080

0.55 1111240 1200 1503460 1722300 0.07 1722300 12.71 0 10080

0.44 1034230 1200 1416520 1690250 0.02 1690250 16.19 0 10080

0.44 1072020 1200 1438520 1647800 0.07 1647800 12.70 0 10080

0.54 1084200 1200 1482010 1713930 0.02 1713930 13.53 0 10080

Average: 0.53 1060260 1200 1430895 1679422 0.06 1679422 14.80 0 10080

E
L

S
2

11.58 1015710 1189 1370400 1868360 0.10 1868360 26.65 0 27072

14.65 1074590 1186 1435170 1922250 0.08 1922250 25.34 0 26892

7.15 1074700 1193 1429090 1937790 0.10 1937790 26.25 0 26604

10.24 1020520 1190 1365190 1852130 0.08 1852130 26.29 0 26568

9.41 1048560 1191 1462710 1990820 0.09 1990820 26.53 0 26748

8.62 1066830 1192 1381040 1785990 0.10 1785990 22.67 0 26352

9.83 1111240 1190 1513160 1928180 0.08 1928180 21.52 0 26064

12.12 1034230 1188 1436720 1949300 0.08 1949300 26.30 0 26784

8.38 1072020 1192 1438780 1867520 0.09 1867520 22.96 0 26460

13.64 1084200 1187 1451090 1926970 0.10 1926970 24.70 0 26676

Average: 10.56 1060260 1190 1428335 1902931 0.09 1902931 24.92 0 26622
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Table A.4. Experiments with Alternative Model Formulations on Problem Set 4.

Model LPTime RlxObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr.

IP
1

0.23 1013030 1200 1362200 1755740 0.05 1755740 22.41 0 8640

0.24 1071350 1200 1456570 2036840 0.04 2036840 28.49 0 8640

0.24 1070080 1200 1429260 1846890 0.05 1846890 22.61 0 8640

0.22 1021380 1202 1425320 1866690 0.05 1866690 23.64 0 8640

0.24 1043030 1205 1357700 1678810 0.04 1678810 19.13 0 8640

0.24 1065530 1202 1433450 1937950 0.04 1937950 26.03 0 8640

0.25 1109840 1207 1548340 1956390 0.04 1956390 20.86 0 8640

0.25 1035490 1200 1552980 2025670 0.03 2025670 23.33 0 8640

0.24 1071520 1207 1451690 1872780 0.05 1872780 22.48 0 8640

0.22 1079610 1205 1408240 1721350 0.01 1721350 18.19 0 8640

Average: 0.24 1058086 1203 1442575 1869911 0.04 1869911 22.72 0 8640

IP
2

2.85 1013030 1197 1177380 1878480 0.15 1878480 37.32 0 8640

2.42 1071350 1198 1251070 2052380 0.15 2052380 39.04 0 8640

2.37 1070080 1198 1258550 1955890 0.16 1955890 35.65 0 8640

2.98 1021380 1197 1209130 1965870 0.01 1965870 38.49 0 8640

3.24 1043030 1197 1196380 1774580 0.15 1774580 32.58 0 8640

2.11 1065530 1198 1232250 2049440 0.15 2049440 39.87 0 8640

3.06 1109840 1197 1298210 2093190 0.14 2093190 37.98 0 8640

3.34 1035490 1197 1305250 2166510 0.15 2166510 39.75 0 8640

3.32 1071520 1197 1271550 2159570 0.15 2159570 41.12 0 8640

2.69 1079610 1198 1258470 1943160 0.16 1943160 35.24 0 8640

Average: 2.84 1058086 1197 1245824 2003907 0.14 2003907 37.71 0 8640

E
L

S
1

1.75 1013030 1202 1338600 1926900 0.02 1926900 30.53 0 10080

1.75 1071350 1201 1440220 2111300 0.07 2111300 31.79 0 10080

1.75 1070080 1199 1386030 2052460 0.01 2052460 32.47 0 10080

1.66 1021380 1201 1389700 2154000 0.02 2154000 35.48 0 10080

1.80 1043030 1201 1330000 1863970 0.06 1863970 28.65 0 10080

1.79 1065530 1202 1389920 2164150 0.07 2164150 35.78 0 10080

1.91 1109840 1200 1482350 2286250 0.06 2286250 35.16 0 10080

1.79 1035490 1200 1464860 2224290 0.07 2224290 34.14 0 10080

1.76 1071520 1201 1402220 2046480 0.07 2046480 31.48 0 10080

1.72 1079610 1201 1385200 1866300 0.07 1866300 25.78 0 10080

Average: 1.77 1058086 1201 1400910 2069610 0.05 2069610 32.13 0 10080

E
L

S
2

40.67 1013030 1160 1185090 2329430 0.09 2329430 49.13 0 38124

39.21 1071350 1161 1303270 2766600 0.09 2766600 52.89 0 39060

42.88 1070080 1157 1261190 2390750 0.09 2390750 47.25 0 38592

35.92 1021380 1164 1243290 2624370 0.09 2624370 52.63 0 37116

36.09 1043030 1164 1247690 2197900 0.09 2197900 43.23 0 37548

39.52 1065530 1161 1288230 2394400 0.10 2394400 46.20 0 37368

37.78 1109840 1163 1434530 2582040 0.09 2582040 44.44 0 37404

38.94 1035490 1161 1360130 2936010 0.09 2936010 53.67 0 37260

50.35 1071520 1150 1292270 2533000 0.09 2533000 48.98 0 37872

30.60 1079610 1170 1318520 2127170 0.11 2127170 38.02 0 35676

Average: 39.20 1058086 1161 1293421 2488167 0.09 2488167 47.64 0 37602
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A.2. Experiments on Valid Inequalities

Table A.5. Experiments with Valid Inequalities on Problem Set 1.

Model LPTime RlxObj InitialRlxObj Increase % BestFeas Gap% NConstr. Ncuts Ncallback CutTime

B
a
si

c
M

o
d
e
l

45.01 838098 681132 23.04 1046300 24.84 5760 11914.00 24 0.18

17.30 888942 720805 23.33 1075630 21.00 5760 11898.00 24 0.19

122.40 903520 720478 25.41 1098030 21.53 5760 11882.00 24 0.18

21.04 834357 684124 21.96 1014380 21.58 5760 11890.00 24 0.18

57.86 908306 703107 29.18 1107260 21.90 5760 12012.00 25 0.19

96.99 869050 714616 21.61 1028580 18.36 5760 11913.00 24 0.20

27.22 920539 745050 23.55 1112740 20.88 5760 11909.00 24 0.18

55.72 876403 693586 26.36 1082400 23.50 5760 11971.00 24 0.19

35.61 891207 718966 23.96 1066190 19.63 5760 11904.00 24 0.18

18.26 899563 727199 23.70 1093660 21.58 5760 11952.00 24 0.18

Average: 49.74 882999 710906 24 1072517 21.48 5760 11924.50 24 0.19

B
a
si

c
M

o
d
e
l

w
it

h
z

V
a
ri

a
b

le
s

107.68 836290 681132 22.78 1046300 25.11 19008 12129.00 24 0.16

30.90 888916 720805 23.32 1075630 21.00 18888 12018.00 24 0.17

149.94 903106 720478 25.35 1098030 21.58 18696 12700.00 25 0.17

41.46 834357 684124 21.96 1014380 21.58 18672 11977.00 24 0.16

80.59 907456 703107 29.06 1107260 22.02 18792 12821.00 25 0.17

189.43 868635 714616 21.55 1028580 18.41 18528 12846.00 24 0.16

55.05 919970 745050 23.48 1112740 20.95 18336 12512.00 24 0.16

84.27 876148 693586 26.32 1082400 23.54 18816 12461.00 24 0.17

66.78 890403 718966 23.84 1066190 19.74 18600 12306.00 24 0.16

41.23 899280 727199 23.66 1093660 21.62 18744 12494.00 24 0.17

Average: 84.73 882456 710906 24 1072517 21.56 18708 12426.40 24 0.16

E
L

S
1

63.22 837863 681132 23.01 1046300 24.88 6720 11942.00 24 0.19

14.55 888970 720805 23.33 1075630 21.00 6720 11886.00 24 0.21

107.32 903599 720478 25.42 1098030 21.52 6720 11878.00 24 0.20

24.26 834357 684124 21.96 1014380 21.58 6720 11890.00 24 0.20

49.27 908344 703107 29.19 1107260 21.90 6720 12017.00 25 0.22

109.02 869004 714616 21.60 1028580 18.36 6720 11914.00 24 0.20

29.55 920539 745050 23.55 1112740 20.88 6720 11909.00 24 0.21

57.23 876537 693586 26.38 1082400 23.49 6720 11945.00 24 0.21

34.36 891204 718966 23.96 1066190 19.63 6720 11910.00 24 0.20

16.53 899574 727199 23.70 1093660 21.58 6720 11953.00 24 0.20

Average: 50.53 882999 710906 24 1072517 21.48 6720 11924.40 24 0.20

E
L

S
1

w
it

h
z

V
a
ri

a
b
le

s

60.24 838291 681132 23.07 1046300 24.81 19968 11926.00 24 0.12

15.61 888970 720805 23.33 1075630 21.00 19848 11885.00 24 0.12

168.57 903835 720478 25.45 1098030 21.49 19656 11921.00 24 0.11

20.54 834484 684124 21.98 1014380 21.56 19632 11915.00 24 0.12

59.07 908363 703107 29.19 1107260 21.90 19752 12009.00 25 0.12

147.75 868880 714616 21.59 1028580 18.38 19488 11772.00 24 0.11

40.20 920477 745050 23.55 1112740 20.89 19296 11925.00 24 0.11

45.59 876529 693586 26.38 1082400 23.49 19776 11946.00 24 0.13

40.51 891174 718966 23.95 1066190 19.64 19560 11922.00 24 0.12

21.07 899622 727199 23.71 1093660 21.57 19704 11947.00 24 0.12

Average: 61.91 883063 710906 24 1072517 21.47 19668 11916.80 24 0.12
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Table A.6. Experiments with Valid Inequalities on Problem Set 2.

Model LPTime RlxObj InitialRlxObj Increase % BestFeas Gap% NConstr. Ncuts Ncallback CutTime

IP
1

66.33 838199 678396 23.56 1134910 35.40 5760 11972 25 0.29

102.07 888130 717620 23.76 1265390 42.48 5760 11960 25 0.31

152.59 862404 715936 20.46 1185950 37.52 5760 11921 24 0.30

176.80 872606 684632 27.46 1154000 32.25 5760 11985 25 0.28

69.51 836861 698281 19.85 1106480 32.22 5760 11966 24 0.28

116.35 877321 713263 23.00 1195520 36.27 5760 11935 24 0.27

111.87 915738 743252 23.21 1264460 38.08 5760 11967 24 0.28

103.72 895111 694447 28.90 1282460 43.27 5760 11913 25 0.28

228.65 862356 717974 20.11 1200660 39.23 5760 11961 24 0.28

54.37 862690 722978 19.32 1158460 34.28 5760 11960 24 0.25

Average: 118.22 871142 708678 22.96 1194829 37.10 5760 11954 24.4 0.28

IP
1

w
it

h
z

V
a
ri

a
b

le
s

136.56 814688 678396 20.09 1134910 39.31 26376 14984 22 0.24

235.36 879219 717620 22.52 1265390 43.92 27000 13964 24 0.24

240.86 850418 715936 18.78 1185950 39.45 26688 14790 23 0.24

243.10 862261 684632 25.95 1154000 33.83 25704 14768 24 0.24

176.01 826372 698281 18.34 1106480 33.90 25992 14869 24 0.24

175.77 868267 713263 21.73 1195520 37.69 25872 15288 24 0.24

173.04 905524 743252 21.83 1264460 39.64 25896 15069 24 0.24

159.94 884774 694447 27.41 1282460 44.95 25800 14329 25 0.24

428.75 856282 717974 19.26 1200660 40.22 26208 14869 24 0.24

123.26 858181 722978 18.70 1158460 34.99 24744 13274 24 0.22

Average: 209.27 860599 708678 21.46 1194829 38.79 26028 14620 23.8 0.24

E
L

S
1

49.23 838289 678396 23.57 1134910 35.38 6720 11971 25 0.26

88.70 888130 717620 23.76 1265390 42.48 6720 11960 25 0.25

114.64 862412 715936 20.46 1185950 37.52 6720 11923 24 0.27

165.26 872606 684632 27.46 1154000 32.25 6720 11985 25 0.27

58.77 836868 698281 19.85 1106480 32.22 6720 11966 24 0.27

95.77 877321 713263 23.00 1195520 36.27 6720 11935 24 0.25

101.50 915793 743252 23.21 1264460 38.07 6720 11965 24 0.26

92.22 895111 694447 28.90 1282460 43.27 6720 11913 25 0.25

176.29 862223 717974 20.09 1200660 39.25 6720 11982 24 0.25

52.13 862690 722978 19.32 1158460 34.28 6720 11960 24 0.24

Average: 99.45 871144 708678 22.96 1194829 37.10 6720 11956 24.4 0.26

E
L

S
1

w
it

h
z

V
a
ri

a
b

le
s

50.81 838481 678396 23.60 1134910 35.35 27336 11977 25 0.10

76.84 888129 717620 23.76 1265390 42.48 27960 11963 25 0.10

114.13 862436 715936 20.46 1185950 37.51 27648 11922 24 0.10

205.70 872631 684632 27.46 1154000 32.24 26664 11986 25 0.10

47.29 837162 698281 19.89 1106480 32.17 26952 11970 24 0.10

92.76 877327 713263 23.00 1195520 36.27 26832 11936 24 0.10

128.84 915816 743252 23.22 1264460 38.07 26856 11957 24 0.10

72.56 895111 694447 28.90 1282460 43.27 26760 11913 25 0.10

129.52 862258 717974 20.10 1200660 39.25 27168 11960 24 0.10

43.06 862946 722978 19.36 1158460 34.24 25704 11963 24 0.10

Average: 96.15 871230 708678 22.97 1194829 37.09 26988 11955 24.4 0.10
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Table A.7. Experiments with Valid Inequalities on Problem Set 3.

Model LPTime RlxObj InitialRlxObj Increase % BestFeas Gap% NConstr. Ncuts Ncallback CutTime

IP
1

305.11 1242880 1015710 22.37 1572380 26.51 8640 26292 33 0.532597

67.76 1322590 1074590 23.08 1637540 23.81 8640 26403 34 0.507972

556.89 1344790 1074700 25.13 1656390 23.17 8640 26416 34 0.497241

85.39 1231080 1020520 20.63 1532400 24.48 8640 26128 32 0.492788

256.92 1361260 1048560 29.82 1696470 24.62 8640 26665 36 0.514914

470.99 1276990 1066830 19.70 1585480 24.16 8640 25975 31 0.472169

153.34 1363790 1111240 22.73 1696350 24.38 8640 26186 33 0.485766

280.60 1311070 1034230 26.77 1671980 27.53 8640 26359 35 0.510488

142.96 1320700 1072020 23.20 1595190 20.78 8640 26393 33 0.495737

85.80 1339020 1084200 23.50 1660170 23.98 8640 26470 34 0.508449

Average: 240.58 1311417 1060260 23.69 1630435 24.34 8640 26329 33.5 0.50

IP
1

w
it

h
z

V
a
ri

a
b

le
s

462.37 1230730 1015710 21.17 1572380 27.76 28512 28015 32 0.451916

150.75 1315690 1074590 22.44 1637540 24.46 28332 26874 33 0.449759

828.81 1334790 1074700 24.20 1656390 24.09 28044 29962 33 0.473944

175.68 1231090 1020520 20.63 1532400 24.48 28008 27137 32 0.438652

520.62 1358030 1048560 29.51 1696470 24.92 28188 30213 36 0.50139

859.81 1265410 1066830 18.61 1585480 25.29 27792 28103 29 0.419298

278.99 1335700 1111240 20.20 1696350 27.00 27504 28013 30 0.433132

525.80 1308130 1034230 26.48 1671980 27.81 28224 29627 35 0.490183

280.79 1326740 1072020 23.76 1595190 20.23 27900 28886 34 0.467341

152.43 1326170 1084200 22.32 1660170 25.19 28116 28602 33 0.449289

Average: 423.60 1303248 1060260 22.93 1630435 25.12 28062 28543 32.7 0.46

E
L

S
1

359.26 1242220 1015710 22.30 1572380 26.58 10080 26291 33 0.770678

79.62 1322680 1074590 23.09 1637540 23.80 10080 26396 34 0.79557

637.97 1345120 1074700 25.16 1656390 23.14 10080 26293 34 0.744016

105.14 1231080 1020520 20.63 1532400 24.48 10080 26128 32 0.651806

269.15 1361400 1048560 29.84 1696470 24.61 10080 26691 36 0.676656

557.07 1276950 1066830 19.70 1585480 24.16 10080 25983 31 0.622346

163.54 1364130 1111240 22.76 1696350 24.35 10080 26126 33 0.65476

266.89 1310470 1034230 26.71 1671980 27.59 10080 26352 35 0.663467

195.69 1327070 1072020 23.79 1595190 20.20 10080 26492 34 0.658291

94.81 1339020 1084200 23.50 1660170 23.98 10080 26470 34 0.666427

Average: 272.91 1312014 1060260 23.75 1630435 24.29 10080 26322 33.6 0.69

E
L

S
1

w
it

h
z

V
a
ri

a
b

le
s

494.63 1243120 1015710 22.39 1572380 26.49 29952 26164 33 0.437462

56.94 1322620 1074590 23.08 1637540 23.81 29772 26469 34 0.433637

1226.06 1345200 1074700 25.17 1656390 23.13 29484 26196 34 0.430822

93.90 1231080 1020520 20.63 1532400 24.48 29448 26203 32 0.416461

453.52 1361440 1048560 29.84 1696470 24.61 29628 26740 36 0.454057

1497.34 1277950 1066830 19.79 1585480 24.06 29232 25892 31 0.407294

137.71 1363750 1111240 22.72 1696350 24.39 28944 26224 33 0.427128

380.01 1310540 1034230 26.72 1671980 27.58 29664 26466 35 0.444504

197.26 1320650 1072020 23.19 1595190 20.79 29340 26389 33 0.423744

73.18 1339020 1084200 23.50 1660170 23.98 29556 26503 34 0.430019

Average: 461.05 1311537 1060260 23.70 1630435 24.33 29502 26325 33.5 0.43
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Table A.8. Experiments with Valid Inequalities on Problem Set 4.

Model LPTime RlxObj InitialRlxObj Increase % BestFeas Gap% NConstr. Ncuts Ncallback CutTime

IP
1

287.06 1246830 1013030 23.08 1755740 40.82 8640 26486 34 0.82

645.44 1320700 1071350 23.27 2036840 54.22 8640 26491 34 0.82

691.60 1247990 1070080 16.63 1846890 47.99 8640 25129 28 0.73

1193.72 1307870 1021380 28.05 1866690 42.73 8640 26622 36 0.78

166.19 1201380 1043030 15.18 1678810 39.74 8640 24427 26 0.68

632.84 1305220 1065530 22.49 1937950 48.48 8640 26429 34 0.77

520.90 1362070 1109840 22.73 1956390 43.63 8640 26484 34 0.77

426.68 1341250 1035490 29.53 2025670 51.03 8640 26515 36 0.78

972.43 1243660 1071520 16.07 1872780 50.59 8640 24854 27 0.69

95.81 1214620 1079610 12.51 1721350 41.72 8640 22418 22 0.57

Average: 563.27 1279159 1058086 20.95 1869911 46.09 8640 25586 31.1 0.74

IP
1

w
it

h
z

V
a
ri

a
b

le
s

351.77 1159410 1013030 14.45 1755740 51.43 39564 26813 23 0.63

821.78 1288390 1071350 20.26 2036840 58.09 40500 29442 31 0.74

15.13 1094930 1070080 2.32 1846890 68.68 40032 5615 4 0.11

1137.27 1290650 1021380 26.36 1866690 44.63 38556 32765 35 0.76

7.94 1060630 1043030 1.69 1678810 58.28 38988 4246 3 0.08

773.13 1276200 1065530 19.77 1937950 51.85 38808 31941 31 0.75

800.81 1336390 1109840 20.41 1956390 46.39 38844 32627 32 0.74

1105.86 1327370 1035490 28.19 2025670 52.61 38700 31990 36 0.76

605.20 1201160 1071520 12.10 1872780 55.91 39312 24364 21 0.55

63.50 1151510 1079610 6.66 1721350 49.49 37116 15009 12 0.30

Average: 568.24 1218664 1058086 15.22 1869911 53.74 39042 23481 22.8 0.54

E
L

S
1

363.76 1246830 1013030 23.08 1755740 40.82 10080 26486 34 0.81

420.14 1320720 1071350 23.28 2036840 54.22 10080 26489 34 0.83

498.64 1247870 1070080 16.61 1846890 48.00 10080 25135 28 0.74

1344.07 1307870 1021380 28.05 1866690 42.73 10080 26622 36 0.82

129.18 1195430 1043030 14.61 1678810 40.44 10080 23989 25 0.68

496.20 1305220 1065530 22.49 1937950 48.48 10080 26429 34 0.81

578.06 1362070 1109840 22.73 1956390 43.63 10080 26483 34 0.80

357.25 1341250 1035490 29.53 2025670 51.03 10080 26515 36 0.80

586.04 1243490 1071520 16.05 1872780 50.61 10080 24849 27 0.73

84.90 1214620 1079610 12.51 1721350 41.72 10080 22418 22 0.60

Average: 485.82 1278537 1058086 20.89 1869911 46.17 10080 25542 31.0 0.76

E
L

S
1

w
it

h
z

V
a
ri

a
b

le
s

405.16 1246920 1013030 23.09 1755740 40.81 41004 26488 34 0.43

519.96 1320720 1071350 23.28 2036840 54.22 41940 26489 34 0.43

737.44 1241830 1070080 16.05 1846890 48.72 41472 24769 27 0.37

2019.43 1303460 1021380 27.62 1866690 43.21 39996 26591 35 0.43

165.25 1201400 1043030 15.18 1678810 39.74 40428 24435 26 0.36

717.45 1305220 1065530 22.49 1937950 48.48 40248 26429 34 0.44

810.68 1362010 1109840 22.72 1956390 43.64 40284 26502 34 0.43

774.92 1341360 1035490 29.54 2025670 51.02 40140 26516 36 0.44

702.08 1237500 1071520 15.49 1872780 51.34 40752 24447 26 0.36

78.24 1214620 1079610 12.51 1721350 41.72 38556 22418 22 0.30

Average: 693.06 1277504 1058086 20.80 1869911 46.29 40482 25508 30.8 0.40
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A.3. Experiments on Heuristics

Table A.9. Experiments with Heuristics on Problem Set 1.
Model LPTime RlxObj InitHeurTime InitHeurObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr. Ncuts Ncallback NHeurSoln BestHeur

IP
1

+
C

u
ts

0.16 678396 - - 1215 922721.00 1105040 0.01 1105040 16.50 0 5760 1786 13 - -

0.19 717620 - - 1200 1002670.00 1274290 0.03 1274290 21.32 0 5760 1663 17 - -

0.18 715936 - - 1200 971112.00 1211550 0.01 1211550 19.85 0 5760 1794 19 - -

0.17 684632 - - 1206 965750.00 1187890 0.04 1187890 18.70 0 5760 2043 12 - -

0.19 698281 - - 1200 923827.00 1116440 0.01 1116440 17.25 0 5760 1865 13 - -

0.19 713263 - - 1200 976702.00 1223010 0.04 1223010 20.14 0 5760 1788 15 - -

0.19 743252 - - 1213 1052560.00 1259590 0.04 1259590 16.44 0 5760 1940 15 - -

0.19 694447 - - 1202 1054060.00 1283320 0.04 1283320 17.87 0 5760 1737 25 - -

0.19 717974 - - 1210 988402.00 1183780 0.01 1183780 16.50 0 5760 2077 27 - -

0.18 722978 - - 1200 954396.00 1165430 0.03 1165430 18.11 0 5760 1648 18 - -

Average: 0.18 708678 - - 1204.58 981220 1201034 0.03 1201034 18.27 0.00 5760 1834.10 17 - -

IP
1

+
In

it
H

e
u

r

0.16 678396 0.005 1366170 1200 920913.00 1063640 0.03 1063640 13.42 0 5760 - - - -

0.19 717620 0.004 1626040 1204 997423.00 1208980 0.04 1208980 17.50 0 5760 - - - -

0.19 715936 0.005 1651370 1200 972643.00 1181090 0.03 1181090 17.65 0 5760 - - - -

0.18 684632 0.006 1493070 1206 970876.00 1151330 0.04 1151330 15.67 0 5760 - - - -

0.20 698281 0.005 1512950 1211 924952.00 1082780 0.04 1082780 14.58 0 5760 - - - -

0.19 713263 0.005 1880150 1200 973848.00 1160530 0.03 1160530 16.09 0 5760 - - - -

0.19 743252 0.005 1648120 1214 1053450.00 1230730 0.03 1230730 14.40 0 5760 - - - -

0.21 694447 0.004 2312640 1113 1054080.00 1273430 86.75 1273120 17.19 0 5760 - - - -

0.19 717974 0.004 1925160 1011 988485.00 1161910 188.84 1159100 14.68 0 5760 - - - -

0.18 722978 0.005 1327410 1200 955826.00 1065690 0.01 1065690 10.31 0 5760 - - - -

Average: 0.19 708678 0.005 1674308 1176.05 981250 1158011 27.58 1157699 15.15 0.00 5760 - - - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r

0.16 678396 0.005 1366170 1200 925664.00 1060020 0.01 1060020 12.68 0 5760 1606 15 - -

0.19 717620 0.004 1626040 1204 997008.00 1205370 0.04 1205370 17.29 0 5760 1706 15 - -

0.18 715936 0.004 1651370 1200 969558.00 1171120 0.04 1171120 17.21 0 5760 1820 17 - -

0.18 684632 0.006 1493070 1207 963281.00 1145520 0.03 1145520 15.91 0 5760 1963 12 - -

0.19 698281 0.005 1512950 1200 925502.00 1085660 0.04 1085660 14.75 0 5760 2014 16 - -

0.19 713263 0.005 1880150 1200 975211.00 1164680 0.03 1164680 16.27 0 5760 1927 14 - -

0.19 743252 0.005 1648120 1214 1047340.00 1267350 0.01 1267350 17.36 0 5760 2094 14 - -

0.20 694447 0.004 2312640 1200 1052900.00 1262970 0.04 1262970 16.63 0 5760 1809 21 - -

0.19 717974 0.004 1925160 1210 987511.00 1172870 0.04 1172870 15.80 0 5760 1951 21 - -

0.18 722978 0.005 1327410 1200 956806.00 1069360 0.03 1069360 10.53 0 5760 1558 21 - -

Average: 0.18 708678 0.005 1674308 1203.64 980078 1160492 0.03 1160492 15.44 0.00 5760 1844.80 17 - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r
+

W
W

C
P 0.17 678396 0.006 1366170 1200 921240.00 1062990 0.04 1062990 13.34 0 5760 1903 13 520 17800979

0.20 717620 0.004 1626040 1206 994618.00 1216820 0.04 1216820 18.26 0 5760 1947 14 560 10772245

0.19 715936 0.005 1651370 1209 967616.00 1153180 0.04 1153180 16.09 0 5760 2179 15 600 15190746

0.19 684632 0.005 1493070 1201 964499.00 1149660 0.04 1149660 16.11 0 5760 2279 12 480 14159661

0.19 698281 0.004 1512950 1200 924822.00 1089150 0.04 1089150 15.09 0 5760 2247 13 520 15878926

0.19 713263 0.005 1880150 1200 973771.00 1156840 0.04 1156840 15.82 0 5760 2105 12 480 14234884

0.20 743252 0.005 1648120 1215 1045600.00 1257890 0.04 1257890 16.88 0 5760 2558 13 520 18789992

0.21 694447 0.004 2312640 1200 1051540.00 1264360 0.04 1264360 16.83 0 5760 2129 18 720 12987575

0.20 717974 0.004 1925160 1210 988240.00 1159490 0.05 1159490 14.77 0 5760 2442 22 880 17988366

0.18 722978 0.005 1327410 1200 955476.00 1075590 0.01 1075590 11.17 0 5760 1852 20 800 6729107

Average: 0.19 708678 0.005 1674308 1204.02 978742 1158597 0.04 1158597 15.44 0.00 5760 2164.10 15 608 14453248
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Table A.10. Experiments with Heuristics on Problem Set 2.

Model LPTime RlxObj InitHeurTime InitHeurObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr. Ncuts Ncallback NHeurSoln BestHeur

IP
1

+
C

u
ts

0.10 681132 - - 700 929285.00 1038730 499.53 1036300 10.25 113 5760 2434 235 - -

0.10 720805 - - 661 983260.00 1076580 539.05 1076010 8.58 165 5760 1960 332 - -

0.09 720478 - - 371 980492.00 1107830 829.38 1105450 11.23 544 5760 3026 1018 - -

0.10 684124 - - 394 921918.00 1017510 806.41 1017510 9.37 634 5760 2493 1175 - -

0.08 703107 - - 357 997636.00 1109260 843.35 1107670 9.91 640 5760 2826 1179 - -

0.08 714616 - - 601 935414.00 1032610 599.37 1030640 9.20 146 5760 2439 301 - -

0.09 745050 - - 341 1019090.00 1112920 859.44 1112220 8.32 965 5760 3007 1841 - -

0.08 693586 - - 750 966742.00 1071690 450.41 1069040 9.56 90 5760 2705 198 - -

0.10 718966 - - 352 974594.00 1077720 848.08 1068440 8.71 866 5760 2816 1607 - -

0.11 727199 - - 477 1003320.00 1090220 723.52 1089640 7.89 329 5760 2781 628 - -

Average: 0.09 710906 - - 500.16 971175 1073507 699.85 1071292 9.30 449.20 5760 2648.70 851 - -

IP
1

+
In

it
H

e
u

r

0.10 681132 0.004 1188530 583 929563.00 1021970 616.93 1020850 8.88 274 5760 - - - -

0.10 720805 0.004 1273700 546 983047.00 1086960 653.55 1082400 9.14 279 5760 - - - -

0.08 720478 0.004 1217610 399 980394.00 1105140 801.08 1104320 11.17 536 5760 - - - -

0.10 684124 0.004 1277560 397 921912.00 996398 802.96 995024 7.34 809 5760 - - - -

0.07 703107 0.004 1471510 325 996613.00 1102790 875.40 1101700 9.48 770 5760 - - - -

0.09 714616 0.004 1157960 815 934973.00 1031440 384.99 1029890 9.15 43 5760 - - - -

0.09 745050 0.004 1312870 393 1019160.00 1102040 806.82 1102040 7.47 1042 5760 - - - -

0.07 693586 0.003 1214330 736 966150.00 1078320 464.38 1076440 10.20 98 5760 - - - -

0.10 718966 0.004 1281680 377 974046.00 1060520 823.18 1059340 8.02 1063 5760 - - - -

0.11 727199 0.004 1310360 402 1002660.00 1094510 798.35 1093990 8.28 574 5760 - - - -

Average: 0.09 710906 0.004 1270611 497.24 970852 1068009 702.76 1066599 8.91 548.80 5760 - - - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r

0.10 681132 0.003 1188530 564 929448.00 1018080 636.18 1017590 8.60 307 5760 2720 617 - -

0.10 720805 0.004 1273700 677 982728.00 1076980 523.43 1074870 8.47 127 5760 1886 266 - -

0.09 720478 0.003 1217610 447 980795.00 1092220 753.44 1092220 10.17 438 5760 3073 836 - -

0.10 684124 0.003 1277560 362 921856.00 1003090 838.44 1000030 7.79 756 5760 2720 1404 - -

0.07 703107 0.003 1471510 418 997852.00 1098380 781.70 1096110 8.95 567 5760 2616 1094 - -

0.08 714616 0.004 1157960 689 935401.00 1040320 510.99 1035530 9.63 120 5760 2474 254 - -

0.10 745050 0.004 1312870 388 1019310.00 1104880 812.05 1102250 7.49 740 5760 2808 1434 - -

0.07 693586 0.003 1214330 832 966761.00 1066610 368.04 1064650 9.18 0 5760 3061 38 - -

0.10 718966 0.004 1281680 416 974064.00 1061320 784.34 1058080 7.87 783 5760 2968 1455 - -

0.10 727199 0.004 1310360 547 1003510.00 1094740 652.85 1094440 8.26 385 5760 2359 742 - -

Average: 0.09 710906 0.004 1270611 533.85 971173 1065662 666.15 1063577 8.64 422.30 5760 2668.50 814 - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r
+

W
W

C
P 0.10 681132 0.004 1188530 745 929851.00 1010630 456.95 1010560 7.93 108 5760 3144 201 8040 9928806

0.10 720805 0.004 1273700 624 983236.00 1076720 576.12 1075740 8.56 147 5760 2231 279 11160 6237196

0.08 720478 0.004 1217610 506 980743.00 1096450 695.12 1095340 10.41 269 5760 3601 451 18040 4338908

0.11 684124 0.004 1277560 461 921989.00 996070 741.00 994297 7.25 298 5760 2818 507 20280 5535321

0.08 703107 0.003 1471510 427 997978.00 1097510 774.58 1097510 9.05 398 5760 3327 698 27920 3996360

0.09 714616 0.004 1157960 960 935562.00 1032750 239.89 1032750 9.38 0 5760 2749 37 1480 7279785

0.10 745050 0.003 1312870 443 1019610.00 1100210 759.17 1100010 7.27 533 5760 3255 978 39120 8478951

0.08 693586 0.004 1214330 914 966620.00 1073590 286.11 1071910 9.81 0 5760 3265 37 1480 6744058

0.10 718966 0.003 1281680 417 973794.00 1065170 784.57 1065170 8.45 418 5760 3301 704 28160 8752852

0.11 727199 0.003 1310360 540 1003420.00 1094990 659.86 1094630 8.29 254 5760 2926 454 18160 7061627

Average: 0.09 710906 0.004 1270611 603.63 971280 1064409 597.34 1063792 8.64 242.50 5760 3061.70 435 17384 6835386
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Table A.11. Experiments with Heuristics on Problem Set 3.

Model LPTime RlxObj InitHeurTime InitHeurObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr. Ncuts Ncallback NHeurSoln BestHeur

IP
1

+
C

u
ts

0.15 1015710 - - 1200 1378400.00 1571180 0.05 1571180 12.27 0 8640 3950 11 - -

0.14 1074590 - - 1200 1465370.00 1636250 0.04 1636250 10.44 0 8640 2804 12 - -

0.11 1074700 - - 1201 1465730.00 1646190 0.05 1646190 10.96 0 8640 4347 11 - -

0.14 1020520 - - 1200 1380390.00 1527530 0.05 1527530 9.63 0 8640 3940 14 - -

0.11 1048560 - - 1200 1492760.00 1702790 0.05 1702790 12.33 0 8640 4153 14 - -

0.11 1066830 - - 1200 1390260.00 1581970 0.05 1581970 12.12 0 8640 3875 11 - -

0.13 1111240 - - 1200 1525530.00 1681410 0.05 1681410 9.27 0 8640 4234 14 - -

0.12 1034230 - - 1200 1434090.00 1638300 0.05 1638300 12.46 0 8640 4558 11 - -

0.15 1072020 - - 1200 1458310.00 1599940 0.05 1599940 8.85 0 8640 3840 18 - -

0.15 1084200 - - 1200 1497510.00 1660330 0.01 1660330 9.81 0 8640 4311 13 - -

Average: 0.13 1060260 - - 1200.43 1448835 1624589 0.04 1624589 10.82 0.00 8640 4001.20 13 - -

IP
1

+
In

it
H

e
u

r

0.15 1015710 0.006 1813350 1200 1382910.00 1545170 0.04 1545170 10.50 0 8640 - - - -

0.14 1074590 0.005 1905270 1201 1467020.00 1621860 0.04 1621860 9.55 0 8640 - - - -

0.11 1074700 0.005 1823570 1201 1466920.00 1653380 0.04 1653380 11.28 0 8640 - - - -

0.15 1020520 0.005 1988720 1200 1381730.00 1485580 0.05 1485580 6.99 0 8640 - - - -

0.11 1048560 0.004 2292140 1201 1493820.00 1667200 0.04 1667200 10.40 0 8640 - - - -

0.12 1066830 0.006 1730110 1200 1393450.00 1569420 0.04 1569420 11.21 0 8640 - - - -

0.14 1111240 0.006 1984280 1200 1525600.00 1666150 0.01 1666150 8.44 0 8640 - - - -

0.12 1034230 0.005 1832140 1201 1437450.00 1604310 0.04 1604310 10.40 0 8640 - - - -

0.15 1072020 0.005 1948320 1192 1457540.00 1608180 8.10 1608180 9.37 0 8640 - - - -

0.15 1084200 0.005 1992680 1200 1500870.00 1657710 0.05 1657710 9.46 0 8640 - - - -

Average: 0.13 1060260 0.005 1931058 1199.61 1450731 1607896 0.85 1607896 9.76 0.00 8640 - - - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r

0.15 1015710 0.005 1813350 1200 1376550.00 1538180 0.05 1538180 10.51 0 8640 4365 11 - -

0.14 1074590 0.006 1905270 1201 1464510.00 1631470 0.05 1631470 10.23 0 8640 3150 13 - -

0.12 1074700 0.006 1823570 1200 1466030.00 1646410 0.05 1646410 10.96 0 8640 4605 13 - -

0.14 1020520 0.005 1988720 1200 1379990.00 1501880 0.05 1501880 8.12 0 8640 3399 15 - -

0.12 1048560 0.004 2292140 1201 1493760.00 1652450 0.05 1652450 9.60 0 8640 4171 15 - -

0.12 1066830 0.006 1730110 1201 1387690.00 1563790 0.05 1563790 11.26 0 8640 3966 11 - -

0.14 1111240 0.005 1984280 1200 1525320.00 1672760 0.02 1672760 8.81 0 8640 4366 16 - -

0.11 1034230 0.005 1832140 1201 1429350.00 1606690 0.05 1606690 11.04 0 8640 4160 10 - -

0.15 1072020 0.005 1948320 1201 1458790.00 1612750 0.04 1612750 9.55 0 8640 3975 20 - -

0.15 1084200 0.005 1992680 1200 1498720.00 1657170 0.05 1657170 9.56 0 8640 4073 13 - -

Average: 0.13 1060260 0.005 1931058 1200.47 1448071 1608355 0.05 1608355 9.96 0.00 8640 4023.00 14 - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r
+

W
W

C
P 0.15 1015710 0.005 1813350 1200 1377310.00 1539450 0.06 1539450 10.53 0 8640 4636 11 440 35120231

0.15 1074590 0.005 1905270 1200 1462840.00 1636810 0.01 1636810 10.63 0 8640 3388 12 480 26000665

0.12 1074700 0.006 1823570 1201 1465110.00 1662190 0.05 1662190 11.86 0 8640 5059 12 480 16379134

0.15 1020520 0.005 1988720 1203 1379800.00 1490030 0.06 1490030 7.40 0 8640 3852 14 560 14271942

0.12 1048560 0.005 2292140 1200 1492090.00 1659350 0.05 1659350 10.08 0 8640 4884 14 560 14743228

0.12 1066830 0.005 1730110 1200 1390430.00 1561540 0.01 1561540 10.96 0 8640 5004 11 440 17336680

0.14 1111240 0.006 1984280 1200 1523850.00 1666200 0.05 1666200 8.54 0 8640 4901 13 520 18492435

0.12 1034230 0.005 1832140 1200 1429970.00 1619380 0.06 1619380 11.70 0 8640 4749 11 440 17282380

0.16 1072020 0.006 1948320 1200 1456810.00 1604620 0.05 1604620 9.21 0 8640 4599 14 560 18756523

0.15 1084200 0.005 1992680 1200 1498210.00 1660700 0.05 1660700 9.78 0 8640 4576 12 480 20196762

Average: 0.14 1060260 0.005 1931058 1200.66 1447642 1610027 0.05 1610027 10.07 0.00 8640 4564.80 12 496 19857998
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Table A.12. Experiments with Heuristics on Problem Set 4.

Model LPTime RlxObj InitHeurTime InitHeurObj Node0Time Node0LB Node0UB B&BTime ObjVal % Gap Nnodes Nconstr. Ncuts Ncallback NHeurSoln BestHeur

IP
1

+
C

u
ts

0.23 1013030 - - 1200 1343210.00 1836080 0.01 1836080 26.84 0 8640 3243 7 - -

0.24 1071350 - - 1200 1455450.00 2014390 0.05 2014390 27.75 0 8640 2748 8 - -

0.24 1070080 - - 1209 1408410.00 1830790 0.05 1830790 23.07 0 8640 2987 7 - -

0.22 1021380 - - 1204 1408030.00 1848370 0.05 1848370 23.82 0 8640 3252 7 - -

0.24 1043030 - - 1200 1350480.00 1745350 0.04 1745350 22.62 0 8640 2946 6 - -

0.24 1065530 - - 1204 1423460.00 1821200 0.04 1821200 21.84 0 8640 3013 6 - -

0.24 1109840 - - 1200 1519460.00 2040650 0.05 2040650 25.54 0 8640 2941 6 - -

0.24 1035490 - - 1200 1536960.00 1976630 0.05 1976630 22.24 0 8640 2709 7 - -

0.24 1071520 - - 1206 1436430.00 1938010 0.01 1938010 25.88 0 8640 3213 7 - -

0.22 1079610 - - 1207 1396030.00 1780400 0.05 1780400 21.59 0 8640 2617 8 - -

Average: 0.23 1058086 - - 1202.98 1427792 1883187 0.04 1883187 24.12 0.00 8640 2966.90 7 - -

IP
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H

e
u

r

0.23 1013030 0.007 2054180 1205 1360220.00 1595060 0.04 1595060 14.72 0 8640 - - - -

0.24 1071350 0.006 2526780 1203 1464020.00 1880400 0.04 1880400 22.14 0 8640 - - - -

0.24 1070080 0.007 2569540 1200 1421220.00 1797690 0.04 1797690 20.94 0 8640 - - - -

0.23 1021380 0.008 2271620 1205 1419230.00 1747330 0.04 1747330 18.78 0 8640 - - - -

0.24 1043030 0.007 2311850 1200 1363890.00 1626290 0.04 1626290 16.13 0 8640 - - - -

0.24 1065530 0.007 3058240 1204 1430900.00 1781280 0.05 1781280 19.67 0 8640 - - - -

0.23 1109840 0.007 2658840 1200 1537150.00 1931360 0.04 1931360 20.41 0 8640 - - - -

0.24 1035490 0.007 3777990 1207 1543920.00 1936540 0.04 1936540 20.27 0 8640 - - - -

0.24 1071520 0.006 3101580 1206 1450060.00 1797890 0.04 1797890 19.35 0 8640 - - - -

0.22 1079610 0.008 2024040 1200 1410370.00 1635670 0.01 1635670 13.77 0 8640 - - - -

Average: 0.24 1058086 0.007 2635466 1203.04 1440098 1772951 0.04 1772951 18.62 0.00 8640 - - - -

IP
1

+
C

u
ts

+
In

it
H

e
u

r

0.23 1013030 0.008 2054180 1200 1345120.00 1598860 0.05 1598860 15.87 0 8640 3025 7 - -

0.24 1071350 0.007 2526780 1203 1456710.00 1869000 0.04 1869000 22.06 0 8640 2633 8 - -

0.23 1070080 0.006 2569540 1207 1403720.00 1781110 0.05 1781110 21.19 0 8640 3066 7 - -

0.22 1021380 0.008 2271620 1204 1410260.00 1731390 0.05 1731390 18.55 0 8640 3140 7 - -

0.23 1043030 0.006 2311850 1202 1348780.00 1673770 0.05 1673770 19.42 0 8640 3220 7 - -

0.25 1065530 0.007 3058240 1204 1422320.00 1756730 0.05 1756730 19.04 0 8640 2864 7 - -

0.24 1109840 0.006 2658840 1200 1529540.00 1925350 0.05 1925350 20.56 0 8640 3439 7 - -

0.24 1035490 0.007 3777990 1207 1535390.00 1922120 0.04 1922120 20.12 0 8640 3169 7 - -

0.24 1071520 0.006 3101580 1206 1445550.00 1839060 0.05 1839060 21.40 0 8640 3278 8 - -

0.21 1079610 0.007 2024040 1208 1406860.00 1620150 0.01 1620150 13.16 0 8640 2747 9 - -

Average: 0.23 1058086 0.007 2635466 1204.05 1430425 1771754 0.04 1771754 19.14 0.00 8640 3058.10 7 - -
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W
W

C
P 0.23 1013030 0.008 2054180 1204 1335060.00 1595440 0.06 1595440 16.32 0 8640 2875 6 240 48032001

0.25 1071350 0.007 2526780 1202 1447800.00 1878460 0.05 1878460 22.93 0 8640 3025 7 280 34775320

0.24 1070080 0.007 2569540 1200 1405460.00 1800940 0.05 1800940 21.96 0 8640 3456 7 280 38996072

0.24 1021380 0.007 2271620 1207 1410400.00 1735380 0.09 1735380 18.73 0 8640 3445 7 280 35803933

0.25 1043030 0.007 2311850 1205 1363980.00 1645160 0.01 1645160 17.09 0 8640 3435 6 240 34837369

0.25 1065530 0.006 3058240 1204 1412310.00 1766480 0.05 1766480 20.05 0 8640 2974 6 240 36488728

0.25 1109840 0.007 2658840 1200 1525680.00 1906740 0.05 1906740 19.98 0 8640 3612 6 240 37231539

0.26 1035490 0.006 3777990 1207 1512840.00 1935940 0.06 1935940 21.86 0 8640 3411 6 240 33192703

0.25 1071520 0.006 3101580 1200 1437510.00 1838280 0.05 1838280 21.80 0 8640 3626 7 280 40824243

0.22 1079610 0.008 2024040 1200 1401550.00 1634180 0.05 1634180 14.23 0 8640 3176 9 360 26033450

Average: 0.24 1058086 0.007 2635466 1202.87 1425259 1773700 0.05 1773700 19.50 0.00 8640 3303.50 7 268 36621536




