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ABSTRACT

QUANTITY COMPETITION FOR PERISHABLE

PRODUCTS UNDER DEMAND SUBSTITUTION

This paper provides optimal quantity ordering policies for perishable products

under demand substitution in a competitive setting. An equilibrium point is found

by using competitors’ response functions. We analyse the equilibrium point behaviour

under different scenarios and observe that the equilibrium point increases if competi-

tors’ main priority is not to get shortage of products. Similarly, the equilibrium point

decreases if competitors’ main priority is not to get outdated. We also see that the

equilibrium point and total expected cost of competitors are inversely proportional

with the amount of old products being brought into the new period. Numerical exam-

ples display that the demand substitution is beneficial for both players as it reduces

the total cost of the system.
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ÖZET

TALEP DEĞİŞİMİ ALTINDA BOZULABİLİR

ÜRÜNLERİN ENVANTER REKABETİ

Bu tez talep değişimi altında bozulabilir ürünlerin envanter rekabetini araştırır.

Oyuncuların cevap fonksiyonları kullanılarak bir denge noktası bulunmuştur. Bu denge

noktasının farklı senaryolar altındaki davranışları incelenmiş ve oyuncuların darlık du-

rumundan korktukları zaman denge noktasının yükseldiği gözlemlenmiştir. Ürünlerin

elde kalıp bozulacakları senaryolarda ise denge noktası aşağı düşmüştür. Denge noktası

ve toplam giderlerin mevcut bulunan eski ürünlerle ters orantılı olduğu görülmüştür.

Sayısal örnekler talep değişiminin toplam giderleri düşürerek her iki oyuncuya da yarar

sağladığını ortaya koymuştur.
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1. INTRODUCTION

The Pharmaceutical market has never been studied extensively from a mathe-

matical point of view since the government of Turkey and most of other countries take

away the price-setting option from the pharmacies and decide on fix prices by them-

selves. At first, this situation does not seem to be exciting as there are not many

factors left to change the profitability of pharmacies. However, constant product price

policy of the government actually makes inventory control management much more

appealing for this sector, because pharmacies traditionally make little profit from the

medicine. Wrong inventory management that results in shortage and outdates (since

the medicine is a perishable product) can be devastating as pharmacies are already in

a vulnerable economical position, because they do not decide the price of the product

they sell. However, the pharmaceutical market has a vital advantage, which is the de-

mand substitution. It is common to see multiple pharmacies located near each other.

This case inspired us to develop a model that would yield optimal ordering quantities

for perishable products under demand substitution in a competitive setting.

In this model, we have pharmacies as sellers and customers as buyers. Pharma-

cies sell medicine and customers visit pharmacies to buy medicine. Pharmacies hold

inventory control management to replenish medicine that they sell to the customers.

Medicine is a perishable product because medicine goes bad and cannot be sold after it

surpasses its shelf life. It is assumed that customers have no preference for the medicine

whether the medicine is brand new or it has a certain shelf life left before it reaches its

expiration date. In case customers fail to find the medicine they seek in a pharmacy,

demand substitution occurs and they visit another pharmacy close by with the hopes

of finding the medicine.

After the model is prepared, the convexity of the expected cost functions is dis-

cussed. If both of the cost functions are proved to be convex, we expect to show that

a Nash Equilibrium exists. We anticipate Nash Equilibrium to increase if shortage is

the dominant cost in the market, as competitors hold more inventory. Likewise, we
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expect Nash Equilibrium to decrease if outdate is the dominant cost in the market, as

competitors hold less inventory. We also think that initial inventory level and optimal

ordering quantities are correlated. Competitors should order less if they have large

initial inventory and vice versa.

The thesis is divided into five chapters. In chapter 2, related literature is reviewed.

Chapter 3 introduces the model that calculates optimal ordering quantities. In chapter

4, an experimental setting is implemented to test the model and then we analyse

how equilibrium point behaves under different scenarios including demand functions

from uniform and poisson distribution. Chapter 5 concludes the thesis and provides a

summary of the research.



3

2. LITERATURE REVIEW

The research in this thesis focuses on literature of two different areas: perishable

inventory theory and demand substitution.

The most fundamental research about perishable inventories is proposed by Nah-

mias and Pierskalla [1]. At first, they compute optimal inventory ordering policy of a

perishable product with two-period shelf life by using a generalized Newsvendor model

with expected runout and outdates in a single period problem. Then, Nahmias [2],

[3] extends the study into a dynamic model with finite and eventually infinite horizon,

multi-period problem. An important finding of the study is that the decision of how

much to order depends on the number of old products available. These studies coincide

with this thesis because of the same context that has been used. The demand is inde-

pendent of price and FIFO (first-in-first-out) policy is adapted to deliver the goods (so

customer will be given the product, which is closest to its expiration date.) Pierskalla

and Roach [4] actually show that FIFO issuing policy always gives optimal objective

function value for perishable products when backlogging is allowed.

Nahmias and Pierskalla [5] work together to advance the study into two product

perishable/nonperishable model, which can be applied to blood banks; because blood

practically becomes a nonperishable product once it is frozen. Therefore, their model

finds optimal ordering policies for frozen (nonperishable) and fresh (perishable) blood

system that includes both products. Deuermeter [6] makes one of the later significant

contributions on two product perishable inventory system with demand substitution in

a single period model. In the model that Deuermeter proposes there exist two products,

their respective demand functions and their initial inventory for each product. He

computes optimal ordering policy for each product that minimizes total shortage and

outdate costs of the system. If two products are rather defined as two players, the

result can be interpreted as a centralized solution to the optimal inventory ordering

policy for perishable product with two period shelf life under demand substitution and

competition in a single period problem. This is actually the centralized solution to
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the model this thesis proposes, however there is a significant difference between our

research. Deuermeter uses interdependent demand for products. He later explains

this decision by a term called ”economic substitution”. It means that product A

cannot be directly used to substitute for product B. He defines product demands as an

aggregate function of demand classes. Therefore, even though there are no shortages, a

small percentage of demand is always substituted to the other product. In case of the

two player perishable inventory model (which is actually the same with two product

perishable inventory model), this can be explained in an example. In Deuermeter’s

model, a small percentage of Pharmacy A customers will directly go to Pharmacy B,

even though there are enough products to satisfy the demand in Pharmacy A, because

how Deuermeter forms demand functions. On the contrary, in this thesis customers of

Pharmacy A will never directly go to Pharmacy B if there is no shortage of product in

Pharmacy A. This is the most major difference between our models and we believe the

model in this thesis provides more a realistic context in case of a two player (namely

pharmacy) perishable inventory model, and we analyse equilibrium behaviour.

Parlar [7] also works on optimal ordering policies for perishable and substitutable

products of two period perish time in a single period model. He proves that the

expected profit function for single period model is concave (his finding matches with

Chazan and Gal’s [8], because they also find that expected outdating is a convex

function over the inventory level.) Parlar also provides numerical computations to

show that substitution probability is a significant factor.

Sainathan [9] further extends perishable inventory model by modifying price with

an utility function so that customers would prefer the product (old or new) that gives

more utility. This change allows price to have impact on the demand. His model is

constructed on a perishable product with two period shelf life over an infinite horizon.

The most interesting finding is that in case of deterministic demand, selling old product

is never optimal and it should be avoided at all cost. However, when the demand is

stochastic, the retailer can gain more profit by selling both old and new product with

correct pricing and ordering policy.
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Recently, more and more researchers study perishable inventory models with

demand substitution. Liu et al. [10] create model to make performance analysis on

inventory levels of blood types in the blood bank system. This model consists of one

way substitution, because demand of blood type of A can be substituted from inventory

of type 0, however the reverse is not possible (for example satisfying the demand of

blood type 0 with blood type A is not valid.) Yadavalli et al. [11] propose a similar

model based on two substitutable perishable products. Their model also work with

perishable products to review inventory levels on a continuous scale. However, even

though both models are similar, none of them provides optimal inventory ordering

policy as in the model of this thesis.

Demand substitution has been used widely in the literature. Deuermeter [6] and

Parlar [7] are among the first researchers to bring the subject into perishable inventory

theory. However, still new studies continue to hover its effect namely Sainathan [9].

Yet, the demand substitution model that we have been inspired is formed by Parlar

[12]. He adds substitute demand into original demand to find effective demand for two

Newsvendor competitors. Then, he derives the response function to characterize the

Nash Equilibrium. Netessine and Rudi [13] also embrace the same concept of effective

demand in their model. They extend the model into n players and show that a Nash

Equilibrium exists for the decentralized model and they characterize the centralized

solution.

The model that we propose is different than the ones mentioned above because

of the following reasons. First of all, even though inventory ordering quantities are

researched for perishable products by Nahmais [2], [3], and Nahmias and Pierskalla [1],

[5], they never consider competition and therefore demand substitution. Despite Parlar

[7] and Deuermeter [6] work on perishable inventory system with demand substitution,

their studies also lack competition as demand substitution is used to substitute the

product. Rather than substituting demand to a new player, Parlar and Deuermeyer

study substitutable products, which results in a substituted product by the same player.

Netessine and Rudi provide [13] demand substitution formulas that create effective de-

mand, which are similar to this model as they substitute demand to another player.
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However, their model completely ignore perishable products. Briefly, this model em-

braces perishable inventory models from Nahmais [2], [3], Deuermeter [6] and Nahmias

and Pierskalla [1], [5] and then improves them to explain the demand substitution

occurs in pharmaceutical market by using demand substitution and effective demand

concepts found by Parlar [12], and Netessine and Rudi [13].
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3. MODEL

The model consists of two players that are competing over a single perishable

product. Each player has its own initial inventory as well as a decision to make on

the amount of new product to order. Initial inventory levels and the amount of new

product being ordered by the other player are known by both parties. Although the

model is a single period problem, initial inventory and the demand of the previous

period should be considered, because the product has a shelf life of two periods and

backlogging between periods is allowed (This means new products can be used to

satisfy the demand from previous period.) The timeline explaining the context from

the perspective of player 1 can be seen in Figure 3.1. The goal of each player is to

minimize total cost that occurs due to shortage and outdates. The model is inspired

to reflect the pharmaceutical market as players represent two pharmacies that are

close enough to each other to trigger demand substitution. If a customer fails to find

the medicine in the first pharmacy, the customer will simply walk away to the next

pharmacy to seek the medicine; which is the definition of demand substitution in this

thesis. In Turkey and many other countries, the government controls the price of the

medicine, so the price is fixed and pharmacies have no power to change it. Since the

price is fixed in this model, players’ only way to decrease their cost is to change the

amount of new products being ordered. This is because the demand is independent of

the price and the only way to increase demand is to make sure the product is available,

when the customer walks in. This will cause the amount of new product being ordered

to increase, which would also increases the chance of outdating and cost attached to

it. This thesis investigates the interaction between shortage and outdates; and finds

the optimum amount of new product to be ordered in a competitive (duopoly) setting

based on different scenarios.

Following assumption and definitions are used in the model. x1 and x2 represent

the amount of one period old product being brought into the new period by player

1 and player 2, respectively. y1 and y2 represent the amount of new product being

ordered by player 1 and player 2, respectively (decision variable). All orders are placed
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Figure 3.1. Order of Events from the Perspective of Player 1.
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at the start of the period and they are received instantaneously. When orders are

received, all of them are new and they have two periods of shelf life before outdating.

p is the shortage cost per unit, penalty for ordering too little. Θ is the overage cost

per unit, penalty for ordering too much. Shortage cost is applied in case of runouts,

whereas overage cost is applied in case of outdates. D1
1 and D1

2 are independent random

demands that occur in period 1 and period 2 for player 1, respectively. D2
1 and D2

2

are independent random demands that occur in period 1 and period 2 for player 2,

respectively. All demands are independently distributed nonnegative random variables

with their own distribution function F and density function f . F11(x1), F21(y1), F12(x2)

and F22(y1) denote cdf; whereas f11, f21, f12 and f22 denote the pdf of D1
1, D

1
2, D

2
1 and

D2
2, respectively. D̃1

2 and D̃2
2 are effective demands that occur in period 2 for player 1

and 2, respectively. (cf. eq. 3.5) FIFO policy is embraced to deplete inventory, because

it is the most common policy used in perishable inventory theory. Furthermore, it is

realistic as companies want to give away the products that are closer to expiration date

first. Last but not least, it is easier to model.

Expected one period cost function for player 1 is;

L1(x1, x2, y1, y2) = pE[Runouts] + ΘE[Outdates] (3.1)

where

E[Runouts] = E[D1
2 +D1

1 − (x1 + y1)] =

∫ ∞
x1+y1

[t− (x1 + y1)]g(t)dt (3.2)

where g is the joint pdf of D1
1 +D1

2.

When calculating expected runouts, player is not punished for not satisfying

the substitute demand. This assumption has also been used by Parlar [7]; because

otherwise the player would be punished for competitor’s lack of inventory, which is

unfair. Also the system would punish players twice, which may exaggerate total short-

age cost. Player 2 is already punished for not satisfying demand at its cost function
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L2(x1,x2,y1,y2).

Normally, expected outdates is calculated by the following equation;

E[Outdates] = E[x1 −D1
1] =

∫ x1

0

[x1 − t]f11(t)dt (3.3)

However, in this method y1 does not appear in excepted outdates. This indicates

that new products, y1 have no effect on amount of expected outdated products. It

means single period model ignores the effects of outdating, therefore a new method

has been introduced by Nahmias and Pierskalla [1]. This method calculates expected

outdated cost one period into the future. Random variable Z1 gives the total amount

of outdated products, which is dependent on y1 and y2.

Z1 = (y1 − [D̃1
2 + (D1

1 − x1)+])+ (3.4)

The term (D1
1−x1)+, which will be referred as unsatisfied demand from period 1,

represents the amount of demand from period 1 for player 1 that would be satisfied by

new products, y1. FIFO policy forces player 1 to supply demand with older products

at first, which is x1 in this case. Therefore, when D1
1 is realized, player 1 tries to satisfy

it by x1 as much as possible. If x1 ≥ D1
1, it means demand from period 1 for player 1

is fully satisfied and remaining (x1 −D1
1) outdates. However, since we are calculating

expected outdate cost one period into the future, the remaining x1 is not added towards

Z1. If x1 < D1
1, remaining demand from (D1

1−x1) will be satisfied from new products,

y1 as much as possible. Henceforward, unsatisfied demand from period 1 is added to

effective demand, D̃1
2; and if y1 ≥ D̃1

2 + (D1
1 − x1)+, the total demand of period 2 for

player 1 is satisfied by new products, y1. Since, at the end of the period, the world

ends and no more new demand is realized; remaining y1 outdates and forms the random

variable Z1. If y1 < D̃1
2 + (D1

1 − x1)+, it means that player 1 could not satisfy demand

in period 2. Therefore, player 1 runs out of the product, which is already considered

under E[Runouts]. This becomes part of the effective demand of player 2.
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Effective demand considers demand substitution and is therefore a function of x2

and y2 as well. Effective demand of period 2 for player 1 is calculated by the following

formula;

D̃1
2 = D1

2 + α[D2
2 + (D2

1 − x2)+ − y2]+ (3.5)

Where (D2
1 − x2)+ represents the unsatisfied demand from period 1 for player 2.

Like player 1’s case, which is explained above, player 2 first tries to satisfy D2
1 with

older products, x2. If x2 ≥ D2
1, unsatisfied demand from period 1 is zero and the

remaining x2 outdates. However, if the demand is larger than the inventory (x2 < D2
1),

the difference (D2
1 − x2) will be unsatisfied demand from period 1. Now, player 2

tries to satisfy demand of period 2 for player 2 and unsatisfied demand from period 1

[D2
2 + (D2

1−x2)+] with new products, y2 as much as possible. If y2 ≥ D2
2 + (D2

1−x2)+,

player 2 satisfies all of its own demand and no substitution would take place. However,

if y2 < D2
2 + (D2

1 − x2)+, player 2 will satisfy the demand as much as it can with y2

and remaining demand [D2
2 + (D2

1 − x2)
+ − y2], which is referred as the substituted

demand, is substituted to player 1 with an α (α ∈ [0, 1]) multiplier.

This allows us to write Z1 by substituting D̃1
2, under 8 different scenarios that

cause y1 to outdate. Figure 3.2 explains each scenario for player 1.

Z1 = (y1 − [D1
2 + α[D2

2 + (D2
1 − x2)+ − y2]+ + (D1

1 − x1)+])+ (3.6)



Figure 3.2. Explanation of 8 Different Scenarios that Cause y1 to Outdate.
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Following equations show how outdate probability is calculated for Z1;

Pr[Z1] = Pr((y1 − [D̃1
2 + (D1

1 − x1)+])+ ≤ t)

= Pr(y1 − [D̃1
2 + (D1

1 − x1)+] ≤ t) for t ≥ 0 and t < y1

= Pr(y1 − [D̃1
2 + (D1

1 − x1)+] ≤ t and D1
1 ≤ x1)

+ Pr(y1 − [D̃1
2 + (D1

1 − x1)+] ≤ t and D1
1 > x1) for t ≥ 0 and t < y1

= Pr(y1 − (D1
2 + α[D2

2 + (D2
1 − x2)+ − y2]+) ≤ t and D1

1 ≤ x1)

+ Pr(y1 − (D1
2 + α[D2

2 + (D2
1 − x2)+ − y2]+ +D1

1 − x1) ≤ t and D1
1 > x1)

for t ≥ 0 and t < y1 (3.7)

To compute (3.7), there are 8 probability functions inside Pr[Z1] that correspond

to the leaves of the tree in Figure 3.3, which illustrates the probabilities with associated

functions for player 1. Since each probability function is independent of the other, they

are calculated separately as Gi where i = 1, 2, ..., 8. For clarification the equations

leading to the first scenario/probability function, G1; where outdate probability, when

x1 ≥ D1
1, y2 ≥ D2

2 and x2 ≥ D2
1, as a function of y1 is shown below;

G1 = Pr(y1 − [D̃1
2 + (D1

1 − x1)+] ≤ t) for t ≥ 0 and t < y1

= Pr(y1 − D̃1
2 ≤ t and D1

1 ≤ x1) for t ≥ 0 and t < y1

= Pr(y1 − (D1
2 + α[D2

2 + (D2
1 − x2)+ − y2]+) ≤ t and D1

1 ≤ x1) for t ≥ 0 & t < y1

= Pr(y1 −D1
2 ≤ t and D1

1 ≤ x1, D
2
1 ≤ x2, D

2
2 ≤ y2) for t ≥ 0 and t < y1

= Pr(y1 −D1
2 ≤ t).P r(D1

1 ≤ x1).P r(D
2
1 ≤ x2).P r(D

2
2 ≤ y2) for t ≥ 0 and t < y1

= FD1
1
(x1)FD2

1
(x2)FD2

2
(y2)

∫ ∞
y1−t

f21(v)dv (3.8)

We start the process from the equation 3.6. Since D1
1 ≤ x1, (D1

1 − x1)
+ = 0.

Similarly, (D2
1 − x2)+ = 0 and (D2

2 − y2)+ = 0, because D2
1 ≤ x2 and D2

2 ≤ y2. This

only leaves probability of (y1 − D1
2 ≤ t) alongside with three cumulative probability

functions. Note that f21(v) refers to density function of D1
2.



Figure 3.3. Probability Functions of 8 Different Scenarios that Cause y1 to Outdate.
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Remaining probability functions, G2 to G8 are defined analogously;

G2 = FD1
1
(x1)FD2

1
(x2)[1− FD2

2
(y2)]

∫ ∞
0

∫ ∞
y1−t−αw+αy2

f22(w)f21(v)dvdw

G3 = FD1
1
(x1)[1− FD2

1
(x2)]FD2

1+D
2
2
(x2 + y2)

∫ ∞
y1−t

f21(v)dv

G4 = FD1
1
(x1)[1− FD2

1
(x2)][1− FD2

1+D
2
2
(x2 + y2)]

∫ ∞
0

∫ ∞
0

∫ ∞
L(1)

f(y)dy

G5 = [1− FD1
1
(x1)]FD2

1
(x2)FD2

2
(y2)

∫ ∞
0

∫ ∞
y1−t−u+x1

f11(u)f21(v)dvdu

G6 = [1− FD1
1
(x1)]FD2

1
(x2)[1− FD2

2
(y2)]

∫ ∞
0

∫ ∞
0

∫ ∞
L(2)

f11(u)f22(w)f21(v)dvdwdu

G7 = [1− FD1
1
(x1)][1− FD2

1
(x2)]FD2

1+D
2
2
(x2 + y2)

∫ ∞
0

∫ ∞
y1−t−u+x1

f11(u)f21(v)dvdu

G8 = [1− FD1
1
(x1)][1− FD2

1
(x2)][1− FD2

1+D
2
2
(x2 + y2)]

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
L(3)

f(x)dx

where L(1) = y1 − t − αw − αz + αx2 + αy2, L(2) = y1 − t − αw + αy2 − u + x1,

L(3) = y1−t−αw−αz+αx2+αy2−u+x1, f(x)dx = f11(u)f12(z)f22(w)f21(v)dvdwdzdu

and f(y)dy = f12(z)f22(w)f21(v)dvdwdz.

Since each probability is independent, we can sum them up to find Gx1,x2,y1,y2(t),

which represents the distribution function of the random variable Z1;

Gx1,x2,y1,y2(t) = G1 + ...+G8 (3.9)

Expectation of distribution function Gx1,x2,y1,y2(t) will give E[Z1]. Since Z1 is a

nonnegative random variable;

E[Z1] =

∫ ∞
0

(1−Gx1,x2,y1,y2(t))dt (3.10)
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Since E[Z1] is also E[Outdates] and E[Outdates] cannot be higher y1 we have;

E[Outdates] =

∫ y1

0

(1−Gx1,x2,y1,y2(t))dt (3.11)

This leads to the expected one-period cost function for player 1;

L1(x1, x2, y1, y2) = p

∫ ∞
x1+y1

[t− (x1 + y1)]g(t)dt+ Θ

∫ y1

0

(1−Gx1,x2,y1,y2(t))dt (3.12)

where p is the shortage cost and Θ is the outdate cost. It is also easy to show by

numerical examples that L1(x1, x2, y1, y2) as well as L2(x1, x2, y1, y2) the expected one-

period cost function for player 2 are convex. This was already proved by Parlar [7] as he

showed that the expected profit function for single period model is concave. Following

numerical values has been used to observe the convexity of L1(x1, x2, y1, y2) where

x1 = 75, x2 = 150, y2 = 200, α = 1 and the demands are assumed to be distributed

with continuous uniform distribution with the following values; D1
1 ∼ U(50, 100), D1

2 ∼

U(75, 125), D2
1 ∼ U(125, 175), D2

2 ∼ U(175, 225) as an illustration in Figure 3.4.

The response of player 1 is as follows:

R1(x1;x2, y2) = arg min
y1

L1(x1, x2, y1, y2) (3.13)

For player 2:

R2(x2;x1, y1) = arg min
y2

L2(x1, x2, y1, y2) (3.14)

Note that the responses are also functions of x1 and x2, one-year old inventory as well

as the action of the competitor.

When both L1 and L2 are convex, if we can impose an arbitrary high bound y1

and y2 then using Debreu’s theorem [14] we can argue that a Nash Equilibrium exists.
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Figure 3.4. L1(x1, x2, y1, y2), Expected One-period Cost Function for Player 1 where

x1 = 75, x2 = 150 and y2 = 200.
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4. COMPUTATIONAL RESULTS

In this chapter, we conduct a computational study to gain more insight into the

problem. The computational study also strengthens the credibility of model by showing

how the model works under different scenarios. The chapter consists of two sections

to show the model can give reliable results with the demand functions that follows

uniform and poisson distribution.

4.1. Uniform Distribution

First, in order to decrease the complexity of the problem and complete the calcula-

tions faster, the demands are assumed to be distributed with continuous uniform distri-

bution with the following values; D1
1 ∼ U(50, 100), D1

2 ∼ U(75, 125), D2
1 ∼ U(125, 175),

D2
2 ∼ U(175, 225). Uniform distribution is popular choice among newly introduced

products since not enough data is available to work with. Uniform distribution is used

in the literature to define these type of situation. In this case the product can be new

medicine introduced to the pharmaceutical market. Furthermore, demand substitution

multiplier α is assumed to be 1 to see effect of full demand substitution.

Table 4.1. The Experimental Setting for Uniform Distribution.

x1 x2 p Θ

Low 0 0 Standard 1 1

Medium µ11 µ12 Second 10 1

High 1.5µ11 1.5µ12 Third 1 10

There are four sets of parameters that has an impact on the equilibrium result

of the model. These are one period old products being brought into the new period,

x1 and x2, as well as p, the shortage cost per unit and Θ, the overage cost per unit.

An experimental setting is developed to test their influence over the equilibrium point.
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x1 and x2 are given a value based on three settings; low, medium and high. Low

level setting represents the case when both players are out of one period old products.

(x1 = 0 and x2 = 0) Medium level setting represents the standard case when both

players have one period old products with the mean value of their respective demand

function. (x1 = µ11 and x2 = µ12) Lastly, high level setting represents when both

players have excess amount of one period old products, which was expressed by one

and half multiplier of the mean value of their respective demand function. (x1 = 1.5µ11

and x2 = 1.5µ12) Similarly, three settings are determined for the shortage and outdate

costs. In the standard case, the shortage and outdate cost have the same weight. (p = 1

and Θ = 1) In the second case, shortage is punished more with a 10 to 1 ratio between

the shortage and outdate cost. (p = 10 and Θ = 1) Finally, in the third case outdating

is punished 10 times more than the shortage. (p = 1 and Θ = 10) Table 4.1 illustrates

the experimental setting.

Since there are 3 settings for both parameters x1 and x2; p and Θ, the experimen-

tal setting creates 9 unique scenarios using the combination of the parameters. Table

4.2 shows each unique scenario.

Table 4.2. 9 Unique Scenarios Based on the Experimental Setting for Uniform

Distribution.

x1 x2 p Θ

Scenario 1.1 µ11 µ12 1 1

Scenario 1.2 µ11 µ12 10 1

Scenario 1.3 µ11 µ12 1 10

Scenario 2.1 0 0 1 1

Scenario 2.2 0 0 10 1

Scenario 2.3 0 0 1 10

Scenario 3.1 1.5µ11 1.5µ12 1 1

Scenario 3.2 1.5µ11 1.5µ12 10 1

Scenario 3.3 1.5µ11 1.5µ12 1 10
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Starting from y2 = 0, the response function of player 1 (cf. eq. 3.13) is calculated

with an ”increment of 5” on y2 until the response function of player 1 stabilizes and

do not respond significantly to the increase in y2. Same procedure is applied to the

response function of player 2. (cf. eq. 3.14) Following the response functions over

y1-y2 plane reveals the equilibrium point of the system when the response functions

intersect. Equilibrium point shows the amount of new products should be ordered by

each player that minimizes total cost of the system. Figures 4.1 to 4.9 display the

response functions and equilibrium points of Scenarios from 1.1 to 3.3. All calculations

are performed by using Matlab R2018a.

Figure 4.1. Response Functions of Scenario 1.1 (x1 = 75, x2 = 150, p = 1, Θ = 1).

The equilibrium order levels are (y1, y2) = (100, 200).

Figure 4.1 shows the standard case that occurs in Scenario 1.1. In the standard

case initial inventory levels of players are in the ’Medium’ setting, which means the

amount of one period old products being brought to the new period is equal to the

mean value of their respective demand function. (x1 = µ11 = 75 and x2 = µ12 = 150)

Moreover, the shortage cost is same with the outdate cost. (p = Θ = 1) In Scenario 1.2,

the shortage cost is now 10 times higher than the outdate cost. Therefore, both players

react to this change by increasing the amount of new products they order. As it can

clearly be seen from Figure 4.2, the equilibrium point shifts from (y1, y2) = (100, 200)
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to (y1, y2) = (128, 228); because players do not want to get short of products. Players

are willing to take the risk of outdating by ordering more new products despite the

number of old products available, x1 and x2 are constant in both Scenario 1.1 and

1.2. This behaviour arises because shortage is very costly. Table 4.3 also justifies the

behaviour with numerical data as E1[Outdates] and E2[Outdates] increase from 8.68

to 29.70.

Figure 4.2. Response Functions of Scenario 1.2 (x1 = 75, x2 = 150, p = 10, Θ = 1).

The equilibrium order levels are (y1, y2) = (128, 228).

In Scenario 1.3, the roles are now reversed and the outdate cost is 10 times

higher than the shortage cost. Since outdating is very costly, both players decrease the

amount of products they order. This way, players decrease the chance of outdating.

Even though they will almost certain be short of products, it is a much better option

than getting outdated. The equilibrium point reflects this behaviour as it shifts down

to (y1, y2) = (81.2, 181). This equilibrium point is lower than Scenario 1.1 and 1.2,

because outdating is punished much more harshly in Scenario 1.3 than the first two.

Table 4.3 demonstrates how much players fear of getting outdated as E1[Outdates] and

E2[Outdates] decrease from 8.68 to 0.73 compared to standard case, Scenario 1.1. It

corresponds to over 92% decrease in E1[Outdates] and E2[Outdates].
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Figure 4.3. Response Functions of Scenario 1.3 (x1 = 75, x2 = 150, p = 1, Θ = 10).

The equilibrium order levels are (y1, y2) = (81.2, 181).

In the second series of scenarios, the setting for one period old products is changed

from ’Medium’ to ’Low’ and now we analyse the behaviour of players when they do

not have any initial inventory to start with. (x1 = x2 = 0) In Scenario 2.1 players

respond to this change by significantly increasing their ordering quantities compared

to Scenario 1.1. As a result, the equilibrium point increases to (y1, y2) = (175, 350),

which can be observed in Figure 4.4. The reason for this change is that both players

do not have any old products to cover their first period demand. Therefore, they

increase the number of new products they order to match with the unsatisfied demand

from period 1. Despite increasing the total amount of new products ordered by 75%,

E1[Outdates] and E2[Outdates] are only increased by 13.2% and total expected cost

by 7.7%.

In Scenario 2.2, shortage to outdate cost ratio is set to 10 whereas players still

do not have any initial inventory. (p = 10, Θ = 1) As it can be expected from the

previous case, the equilibrium point significantly increases from (y1, y2) = (128, 228)

to (y1, y2) = (204, 379) compared to Scenario 1.2, which shares the same setting for

the shortage and outdate costs. The equilibrium point also increases compared to
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Figure 4.4. Response Functions of Scenario 2.1 (x1 = 0, x2 = 0, p = 1, Θ = 1). The

equilibrium order levels are (y1, y2) = (175, 350).
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Figure 4.5. Response Functions of Scenario 2.2 (x1 = 0, x2 = 0, p = 10, Θ = 1). The

equilibrium order levels are (y1, y2) = (204, 379).



25

Scenario 2.1 as players do not want to runout of products. Therefore, they order more

inventory to be safe from high shortage costs. Figure 4.5 shows the response functions

and equilibrium point for Scenario 2.2.

Scenario 2.3, which is displayed in Figure 4.6, shows expected behaviour from

players. Just like any second series of scenarios, equilibrium point shifts up significantly

compared to Scenario 1.3; where both scenarios have 10 times higher outdate cost than

the shortage one. Compared to Scenarios 2.1 and 2.2, equilibrium decreases though,

since players do not want to have outdated products at the end of the period because

of high outdate cost.

Figure 4.6. Response Functions of Scenario 2.3 (x1 = 0, x2 = 0, p = 1, Θ = 10). The

equilibrium order levels are (y1, y2) = (153, 328).

One particular aspect about Scenario 2’s that stand outs is how response functions

are smoother than Scenario 1’s. This is because initial inventory of both players is zero

in Scenario 2’s. That means they have unsatisfied demand from period 1 every single
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case. On the other hand, in Scenario 1’s the initial inventory is equal to the mean of

demand functions. This means that sometimes players have unsatisfied demand and

sometimes not, if the demand is actually smaller than expected. Having an initial

inventory creates extra complexity to the problem and add variance on the decision

making even though x1 and x2 are only parameters, not decision variables. However,

the picture is clearer in Scenario 2’s because players know that unsatisfied demand from

period 1 is coming without any uncertainty. At first glance, having initial inventory is

perceived as a bonus, because it decreases the number of new products to order and

therefore also reduces the cost which was also shown in Table 4.3 under L1 and L2.

(Excepted cost functions are always higher in Scenario 2’s compared to Scenario 1’s.)

However, it also makes the decision making harder for the player.

Figure 4.7. Response Functions of Scenario 3.1 (x1 = 112.5, x2 = 225, p = 1, Θ = 1).

The equilibrium order levels are (y1, y2) = (100, 165).

In Scenario 3.1, the amount of old products that are brought into the new period is

increased. (x1 = 112.5, x2 = 225) Compared to Scenario 1.1 and 2.1, equilibrium shifts

down to (y1 = 100, y2 = 165) as players start with more initial inventory, therefore

they afford to order less for the new period. Response functions and the equilibrium

point is displayed in Figure 4.7.
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Figure 4.8. Response Functions of Scenario 3.2 (x1 = 112.5, x2 = 225, p = 10, Θ = 1).

The equilibrium order levels are (y1, y2) = (109, 164).
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Figure 4.9. Response Functions of Scenario 3.3 (x1 = 112.5, x2 = 225, p = 1, Θ = 10).

The equilibrium order levels are (y1, y2) = (93.7, 162).
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Scenario 3.2 has an equilibrium point at (y1 = 109, y2 = 164). It is displayed in

Figure 4.8. Equilibrium point is higher than Scenario 3.1 but lower than Scenario 2.2.

Scenario 3.3 repeats the previous findings as the equilibrium point is the lowest among

Scenario 3.1 and 3.2 since outdating is ten times costlier than shortage, so players order

less. The equilibrium point of Scenario 3.3 is at (y1, y2) = (93.7, 162), which can be

observed from Figure 4.9.

Table 4.3 also exhibits that the expected cost is significantly lower if the shortage

and outdate costs are the same at a level of one. When one cost becomes dominant

and ten times more than the other, the expected costs increase as players balance their

expenses by increasing either E[Outdates] or E[Runouts] depending on the scenario.

One interesting comparison can be made between expected cost of Scenarios 1.2/2.2

and Scenarios 1.3/2.3. Excepted cost is higher in the equilibrium point when shortage

cost is the dominant factor in the market. L1 of Scenario 1.2 is 36.80 compared to 28.17

L1 of Scenario 1.3. Demand substitution provides an explanation for this numerical

difference. When the shortage cost is dominant, players buy more products not to

end up in runout. Since they have more products than the expected demand, an

environment for demand substitution does not develop and simply excess products

outdate. However, when the outdate cost is dominant, players now buy less products.

Because of it, some customers fail to find their products in the first store. Demand

substitution occurs and they visit the next store. This way, second store now gains a

second chance to sell its products, which would otherwise outdate. Therefore, we can

argue that a market under demand substitution have a lower expected cost compared

to the one with no demand substitution.

Figure 4.10 demonstrates summary of this chapter and shows how equilibrium

points behave in different scenarios. Initial inventory level is inversely proportionate

with the equilibrium. Scenario 2’s gather around on the right top of the graph, because

they have zero initial inventory. On the other hand, Scenario 3’s assemble on the

bottom of the graph as they have high level of initial inventory. Therefore, players’

order quantities in the equilibrium decrease. Actually it was expected from Scenario

3’s to gather around on the low bottom of the graph, however it does not happen,
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Table 4.3. Equilibrium Points, Expected Outdates and Expected Costs of All 9

Scenarios for Uniform Distribution.

y1 y2 E1[Outdates] E2[Outdates] L1 L2

Scenario 1.1 100 200 8.68 8.68 17.02 17.02

Scenario 1.2 128 228 29.70 29.70 36.80 36.80

Scenario 1.3 81.2 181 0.73 0.73 28.17 28.30

Scenario 2.1 175 350 10 10 18.33 18.33

Scenario 2.2 204 379 32.14 32.14 38.31 38.31

Scenario 2.3 153 328 0.85 0.85 31.95 31.95

Scenario 3.1 100 165 0.22 0.11 0.35 0.18

Scenario 3.2 109 164 0.81 0.25 0.84 1.15

Scenario 3.3 93.7 162 0.01 0.01 0.57 0.22

Figure 4.10. The Equilibrium Order Levels of All 9 Scenarios for Uniform

Distribution.
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because after a point the initial inventory level does not impact y1 and y2. It does not

change if the initial inventory levels are very high, since after satisfying first period

demand, they outdates and cannot be used to satisfy second period demand. Lastly,

Scenario 1’s stay in the middle as their initial inventory levels are between values of

Scenario 2’s and 3’s.

Similar interpretation can be made from shortage and outdate cost scenarios.

Scenarios with higher shortage cost setting are displayed on top right side of other

scenarios that they share the initial inventory levels. In the higher outdate cost setting,

equilibrium points stay on the left bottom side compared to other scenarios that have

the same initial inventory level. When the shortage and outdate costs are the same and

equal to one, equilibrium points stand between the dominant shortage and dominant

outdate cost scenarios.

One question that arises after reviewing the results of scenarios is how can most

of E1[Outdates] and L1 be equal to E2[Outdates] and L2. These results shows that

even though the second player has more demand, it gets same expected outdates as

well as same objective function value. In order to test this case, demand function of

player 2 for period 2 is slightly adjusted. Rather than following D2
2 ∼ U(175, 225), now

it is changed to D2
2 ∼ U(150, 250), which gives wider minimum-maximum range and

higher variance since the demand is larger. The results are listed under Scenario 4.1

in Table 4.4.

Table 4.4. Comparison of Standard Case and High Variation Scenario.

D2
2 y1 y2 E1[Outdates] E2[Outdates] L1 L2

Scenario 1.1 175-225 100 200 8.68 8.68 17.02 17.02

Scenario 4.1 150-250 100 199.4 10.83 24.54 19.17 37.04

E1[Outdates] and L1 slightly increased in Scenario 4.1 since the variation of sec-

ond player’s demand is larger. It has negative impact on player 1; because of the

demand substitution and now player 1 gets more unexpected demand from player
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2, which eventually increases its cost. However, the real difference can be observed

in player 2’s indicators. Since player 2’s demand has larger minimum and maximum

range, E2[Outdates] and L2 increases more than 100% in Scenario 4.1 compared to Sce-

nario 1.1. More importantly, E1[Outdates] and L1 no longer match with E2[Outdates]

and L2. These two terms were same in the first case because actually pdf of player 1

and 2’s second period demands are both 1/50, which makes function practically the

same.

pdfofD2
1 and D2

2 =
1

b− a
=

1

125− 75
=

1

225− 175
=

1

50

pdfofnewD2
2 =

1

b− a
=

1

250− 150
=

1

100

Now pdf of player 2’s second player demand has changed and it becomes 1/100.

For this reason, E1[Outdates] and L1 are not equal to E2[Outdates] and L2; but smaller

as expected.

4.2. Poisson Distribution

Poisson distribution is another way to define the demand functions, which can be

implemented for very highly priced medicine like cancer drugs. Since these medicine

are very expensive, pharmacies buy in small quantities just to satisfy the demand of

their own customers. Calculations from uniform distribution have shown that running

time for the model for a single product can extend up to 2-3 days. This means that

the model cannot be used every single product yet, however it can be justified to

run the model for very highly priced medicine because of their astronomic price and

cost attached to it. Also, the running time for the model with poisson distribution
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decreases to roughly 1 hour, which makes viable to use the model. The demands are

assumed to be distributed with poisson distribution with the respective λ values; D1
1 ∼

Poisson(λ11 = 3), D1
2 ∼ Poisson(λ12 = 4), D2

1 ∼ Poisson(λ21 = 6), D2
2 ∼ P (λ22 = 8).

Table 4.5. The Experimental Setting for Poisson Distribution.

x1 x2 p Θ

Low 0 0 Standard 1 1

Medium µ11 µ12 Second 10 1

High 2µ11 2µ12 Third 1 10

Since poisson distribution is a discrete probability distribution, experimental set-

ting is slightly adjusted. In the high level setting initial inventory levels are represented

with two multiplier of the λ values instead of one and a half multiplier value. (x1 = 2λ11

and x2 = 2λ21) Remaining experimental setting stays the same and it can be reviewed

from Table 4.5. Furthermore, demand substitution multiplier α is assumed to be 1.

Similarly to the uniform distribution case, since they are 3 settings for both

paraments, the experimental setting creates 9 unique scenarios, which can be seen

from Table 4.6.

Starting from y1 = 0 and y2 = 0, the objective function of player 1 (cf. eq. 3.12)

is calculated with an ”increment of 1” on y1. Because of the convexity of L1, optimal

y1 that minimizes the objective function for the given y2 can be found by comparing

the objective function values for adjacent y1 values. (y1− 1 and y1 + 1 for this case) If

the objective function value of given y1 and y2 is better than objective function value

of adjacent/neighbour points, then we can conclude that y1 is the optimal ordering

quantity for given y2. Same procedure is applied again after y2 is increased by 1 and

continued until y2 is a large number. The method is different than the method that

we have used in uniform distribution since poisson distribution is discrete, therefore

y1 and y2 should also be integers. This method is also applied for player 2 under its

own objective function L2 to find player 2’s response function. We have now created
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Table 4.6. 9 Unique Scenarios Based on the Experimental Setting for Poisson

Distribution.

x1 x2 p Θ

Scenario 1 µ11 µ12 1 1

Scenario 2 µ11 µ12 10 1

Scenario 3 µ11 µ12 1 10

Scenario 4 0 0 1 1

Scenario 5 0 0 10 1

Scenario 6 0 0 1 10

Scenario 7 2µ11 2µ12 1 1

Scenario 8 2µ11 2µ12 10 1

Scenario 9 2µ11 2µ12 1 10

two response functions and following the response functions over y1-y2 plane reveals the

equilibrium point of the system when the response functions intersect. Just like uniform

distribution, equilibrium point shows the amount of new products should be ordered by

each player that minimizes total cost of the system. However, for this case equilibrium

points are always integer values. All calculations for the poisson distribution are also

performed by using Matlab R2018a. Figures from 4.11 to 4.19 show scenarios from 1

to 9.

Just like Scenario 1.3 from Figure 4.3, similar response function behaviour can

be observed in Scenario 3, which is demonstrated in Figure 4.13. After the equilibrium

point, optimal y1 goes even deeper and reduces to 1. However after y2 increases, optimal

y1 stabilized at 2 by creating like a spoon movement.

One special case is observed in Figure 4.19, where response functions inter-

sect in a line and therefore creating two equilibrium points at (y1, y2) = (2, 4) and

(y1, y2) = (1, 5). Further analysis exposes that player 1 prefers the equilibrium point
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Figure 4.11. Response Functions of Scenario 1 (x1 = 3, x2 = 6, p = 1, Θ = 1). The

equilibrium order levels are (y1, y2) = (5, 10).
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Figure 4.12. Response Functions of Scenario 2 (x1 = 3, x2 = 6, p = 10, Θ = 1). The

equilibrium order levels are (y1, y2) = (8, 14).
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Figure 4.13. Response Functions of Scenario 3 (x1 = 3, x2 = 6, p = 1, Θ = 10). The

equilibrium order levels are (y1, y2) = (2, 6).
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Figure 4.14. Response Functions of Scenario 4 (x1 = 0, x2 = 0, p = 1, Θ = 1). The

equilibrium order levels are (y1, y2) = (8, 16).
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Figure 4.15. Response Functions of Scenario 5 (x1 = 0, x2 = 0, p = 10, Θ = 1). The

equilibrium order levels are (y1, y2) = (11, 20).
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Figure 4.16. Response Functions of Scenario 6 (x1 = 0, x2 = 0, p = 1, Θ = 10). The

equilibrium order levels are (y1, y2) = (5, 12).
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Figure 4.17. Response Functions of Scenario 7 (x1 = 6, x2 = 12, p = 1, Θ = 1). The

equilibrium order levels are (y1, y2) = (3, 6).
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Figure 4.18. Response Functions of Scenario 8 (x1 = 6, x2 = 12, p = 10, Θ = 1). The

equilibrium order levels are (y1, y2) = (5, 9).
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(2, 4) compared to player 2 that prefers the equilibrium point (1, 5) because of lower

total expected cost, L2.

Figure 4.19. Response Functions of Scenario 9 (x1 = 6, x2 = 12, p = 1, Θ = 10). The

equilibrium order levels are (y1, y2) = (2, 4) and (y1, y2) = (1, 5).

Table 4.7 summarizes the results of the computational study and illustrates op-

timal ordering quantities y1 and y2 as well as expected cost and outdates for player 1

and 2 (E1[Outdates], E2[Outdates], L1 and L2) for all 9 scenarios concerning poisson

distribution. Compared to the uniform distribution the values are not the same since

they all have different pmf. Last row of the table is used for the second equilibirium

point that belongs to Scenario 9.

Figure 4.20 shows how equilibrium points behave when they are categorized by

initial inventory levels. Scenarios 4-6 hold the highest equilibrium order level with

low initial inventory setting. ((x1, x2) = (0, 0)) Since initial inventory does not ex-
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Table 4.7. Equilibrium Points, Expected Outdates and Expected Costs of All 9

Scenarios for Poisson Distribution.

y1 y2 E1[Outdates] E2[Outdates] L1 L2

Scenario 1 5 10 2.4 3.52 3.48 5.11

Scenario 2 8 14 5.06 7.14 6.45 9.11

Scenario 3 2 6 0.29 0.49 8.13 12.76

Scenario 4 8 16 2.87 3.73 3.95 5.32

Scenario 5 11 20 5.38 7.27 6.77 9.24

Scenario 6 5 12 0.62 0.76 11.38 15.41

Scenario 7 3 6 0.56 0.59 1.14 1.18

Scenario 8 5 9 2.39 2.62 3.79 3.70

Scenario 9 Eq. Pt.1 2 4 0.1 0.1 1.99 2.54

Scenario 9 Eq. Pt.2 1 5 0.05 0.11 2.43 2.08

ist, players order more in quantities to compensate lack of initial inventory, which

ultimately increases equilibrium points. When there is high inventory to start with

((x1, x2) = (2µ11, 2µ12)), optimal strategy becomes to order less in quantities since

they are already enough products to cover first period demand. Medium initial in-

ventory settings ((x1, x2) = (µ11, µ12)) lays between two. Another observation can be

made about the distance between equilibrium points within same initial inventory set-

ting. Both low and medium initial inventory setting create wide range of equilibrium

points across the y1 − y2 plane. However, this range narrows in the high initial inven-

tory level. After a point, having excess level of initial inventory does not bring any

marginal advantage since they cannot be used for second period demand. That is why

equilibrium points for Scenarios 7-9 clutch together at the bottom left corner of Figure

4.20, whereas others lay across the field.

Figure 4.21 again exhibits how equilibrium points behave, but now they are cat-

egorized by costing setting for p and Θ. When the shortage cost is ten times higher
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Figure 4.20. Equilibrium Points Categorized by Initial Inventory Level.



46

than outdate cost, equilibrium points increase as it can be seen from Scenarios 2, 5

and 8 on the right side of the figure. Players do not want to get short of products,

which escalates the order quantities that leads an increase in equilibrium points. If

outdate cost is ten times higher than shortage cost, players force to order less. At the

end of the day, they have less leftover products, which would decrease total outdate

cost. Figure 4.21 shows this behaviour as equilibrium points Scenarios 3, 6 and 9 are

places at the left bottom.

Figure 4.21. Equilibrium Points Categorized by Costing Settings.

Figure 4.22 demonstrates the relationship between expected outdates and initial

inventory levels. Lowest expected outdates are achieved when players start with high

initial inventory. Player do not need to worry about first period demand as high initial

inventory would be sufficient enough to satisfy it. Since players only focus on second

period demand, it decreases the variation of total demand, which ends up with more ac-

curate results and less outdates. Low initial inventory setting creates highest expected
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outdates, however one thing to notice that player 2’s expected outdates does change

little between low and medium initial inventory setting. Scenario 1’s E2[Outdates] is

3.52 compared to Scenario 4’s 3.73. Scenario 2 and 5 also have little difference on

E2[Outdates] with only 7.27-7.14=0.13 increase. These changes can also be spotted

from Figure 4.22 as points 1-4 and 2-5 stay almost on the same horizontal line. Player

2 represents the big rival in this competition between two pharmacies. Since player 2’s

demand is higher, this results show that player 2 order in big quantities compared to

player 1. So whether low or medium initial inventory does not change the outcome.

However, player 1 orders in small quantities and therefore whether if 0 or 2 old products

left from the previous period change expected outdates more drastically. This happens

since they work in small quantities and an increase from ordering 1 product to 2 is

more noticeable compared to an increase from ordering 11 products to 12.

Figure 4.22. Expected Outdates Categorized by Initial Inventory Level.
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The outcome is more clear in Figure 4.23, which refers to the relationship between

expected outdates and costing setting. In case of heavy shortage cost, players order

more; because they do not want to face high shortage cost. Since they order more,

they get more expected outdates. On the hand, if the outdate cost is ten times higher

than shortage cost, players order less to not get outdated products. Since they order

less, expected outdates also decreases as it can be seen from Figure 4.23 in Scenario 3,

6, and 9 at the left bottom corner.

Figure 4.23. Expected Outdates Categorized by Costing Settings.

Figure 4.24 shows the interaction between expected cost of players and initial

inventory levels. The figure is actually reflection of Figure 4.22, which was giving

data about expected outdates. The results are basically same as high initial inventory

decreases the costs. Low and medium initial inventory on the other hand increases

expected costs.
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Figure 4.24. Expected Cost Categorized by Initial Inventory Level.
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Figure 4.25 shows how expected cost occurs with different costing setting. This

figure is by far the most complex on among all others. Standard pricing when outdate

cost is equal to shortage cost gives the least expected cost. When shortage cost is ten

times higher than outdate cost, expected costs increase. The real dilemma arise when

outdate cost is tem times higher than shortage cost. In this setting, expected cost can

be small just like in Scenario 9, but it can also increase significantly like in Scenarios

3 and 6.

Figure 4.25. Expected Cost Categorized by Costing Settings.

If we compare Table 4.3 and 4.7, we can observe similar results. Compar-

isons are made against the standard scenarios, Scenario 1.1 for uniform distribu-

tion and Scenario 1 for poisson distribution. When shortage cost becomes ten times

higher than outdate cost, both equilibrium points in uniform and poisson distribu-

tion increase. For example, equilibrium point increases from (y1, y2) = (100, 200) to

(y1, y2) = (128, 228) in Scenario 1.2 for uniform distribution. Also equilibrium point
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increases from (y1, y2) = (5, 10) to (y1, y2) = (8, 14) in Scenario 2 for poisson distribu-

tion. Similarly, when outdate cost becomes ten times higher than shortage cost, both

equilibrium points in uniform and poisson distribution decrease. For example, equi-

librium point decreases from (y1, y2) = (100, 200) to (y1, y2) = (81.2, 181) in Scenario

1.3 for uniform distribution. Also equilibrium point decreases from (y1, y2) = (5, 10)

to (y1, y2) = (2, 6) in Scenario 3 for poisson distribution. Equilibrium points react

same way for initial inventory levels. If initial inventory decreases, both equilib-

rium points in uniform and poisson distribution increase. For example, equilibrium

point increases from (y1, y2) = (100, 200) to (y1, y2) = (175, 350) in Scenario 2.1

for uniform distribution. Also equilibrium point increases from (y1, y2) = (5, 10) to

(y1, y2) = (8, 16) in Scenario 4 for poisson distribution. The behaviour is similar since

if the initial inventory increase, both equilibrium points in uniform and poisson distri-

bution decrease. For example, equilibrium point decreases from (y1, y2) = (100, 200) to

(y1, y2) = (100, 165) in Scenario 3.1 for uniform distribution. Also equilibrium point de-

creases from (y1, y2) = (5, 10) to (y1, y2) = (3, 6) in Scenario 7 for poisson distribution.

Same trends for equilibirum points can be observed for E1[Outdates] and E2[Outdates].

However, one crucial difference can be seen for L1 and L2. Both uniform and

poisson distribution has the lowest cost when shortage and outdate cost equal to 1.

On the other hard, when heavy shortage cost is introduced (p = 10, Θ = 1), uniform

distribution reacts more as L1 increases from 17.02 to 36.80 in Scenario 1.2 compared

to heavy outdate cost setting (p = 1, Θ = 10), where L1 only increases to 28.17 in

Scenario 1.3. The outcome is different in poisson distribution. Poisson distribution

reacts more to heavy outdate cost setting (p = 1, Θ = 10) as L1 increases from

3.48 to 8.13 in Scenario 3 compared to heavy shortage cost setting (p = 10, Θ = 1),

where L1 only increases to 6.45 in Scenario 2. This means poisson distribution is more

vulnerable to outdate cost, whereas uniform distribution is more vulnerable to shortage

cost. We think since uniform distribution deals with bigger product size, shortages are

more crucial. For example, pharmacies are expected to hold on standard medicine like

aspirin all the time. Therefore, when customers do not find it, it has more impact cost

wise. Shortage cost is mainly consists of goodwill cost, so if a customer cannot even find

a standard medicine as simple as aspirin, customers would not likely to come back and



52

the implications are bigger. We use poisson distribution to define expensive medicine

like cancer drugs. The results show that poisson distribution is more vulnerable to

outdate cost. For example, it is common for a customer to visit multiple pharmacies

before finding the expensive cancer drug. Therefore, it is not big deal to get shortage

of expensive cancer drugs as it was also expected from customers. However, since these

drugs are very expensive, the costs determiner in case of outdates since outdate cost

is mostly sum of purchasing price, holding cost and disposal cost. (Pharmaceutical

companies do not give any compensation for outdated medicine and it is pharmacies’

duty to dispose the product.) Pharmacies pay significantly high prices to buy cancer

drugs. If they fail to sell them and they outdate, they simply lost the money that they

use to buy the cancer drugs. This was not big problem in uniform distribution since

the prices are lower for common medicine. Therefore, pharmacies afford to lose some

aspirins for example, after their shelf life ends because of their low purchasing cost.
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5. CONCLUSION

In this research, we create a model that finds the optimal ordering quantities

for perishable products under demand substitution in a competitive (duopoly) setting.

By using a numerical example and prior knowledge from Parlar [7]; and Chazan and

Gal [8], we show that the cost function of the model is convex. Since convexity holds

for both players’ cost functions, by using Debreu’s theorem [14] we argue that a Nash

equilibrium exists. Even though we did not prove it, we believe that Nash equilibrium

is unique since a contrary case is not seen in Chapter 4 among all 19 examples. In the

last example (Scenario 9) even through there exists two equilibrium points, response

functions do only intersect once, making poisson distribution the real contributor for

the second equilibrium point. Then, we create an experimental setting to test the

model and observe the equilibrium point behaviour.

In the first case, demand functions are defined as uniform distribution to repre-

sent the case for newly introduced medicine to the market. Nine different scenarios

are generated for this experimental setting including uniform distribution and an equi-

librium point for each scenario is found. We repeatedly observe that if the shortage

cost is higher than the outdate cost, players order more amount of products that re-

sults in higher equilibrium point. If the outdate cost is higher than the shortage cost,

players order less amount of products that results in lower equilibrium. Expected cost

functions in the equilibrium point show that the shortage costs are more dangerous to

the market and they can sum up with an extra 20% to 30% of total cost compared

to scenarios when the outdate cost is ten times higher than the shortage cost. When

the initial inventory levels are decreased, players order more products to satisfy the

difference between one period products and their respective demand. Even though,

players may force to significantly increase the number of new products they order, the

total cost is not linearly proportionate with the order quantity. In an extreme scenario

when players increase y1 and y2 by 75%, the cost only increased by 7.7%. This actually

shows that the system do not punish previous mistakes harshly and businesses can

go back from bad decision without losing much profit. Indeed, the setting this model
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uses has a product with two-period shelf life, so it is not possible to generalize it for

products with n-period shelf life. Furthermore, an argument about decision making is

developed by comparing smoothness of response functions. We observe that every new

parameter makes it harder to conclude a decision since it increases the variance.

We repeat the experimental setting by defining demand function with poisson

distribution. Poisson distribution is suitable to represent very expensive medicine like

cancer drugs, which has low demand; and therefore pharmacies stock very little. Most

of the findings of poisson distribution match with uniform distribution. If the initial

inventory is low, players order more. If the initial inventory is high, players order less.

If outdate cost is high, players do not want to get outdate and therefore order less. If

shortage cost is high, players do not want to get shortage and therefore order more.

The most important finding about poisson distribution is that how the system protects

the small player. Expected cost of big player, player 2 is roughly 35 to 50% more than

small player 1. This difference between costs allow player 1 to compete with player

2 despite having less inventory. Only when players start with high inventory, cost of

player 2 decreases and becomes similar to player 1. This case can also be justified

because excess inventory occurs when the economy is bad and people cannot purchase

the goods. In case of economic crisis, the small rival is affected more since it does not

have cash flow to support during stagnation. On the other hand, big rival can simply

hold on inventory and stay in the market on the short run. Moreover, the model with

poisson distribution reflects pharmaceutical market as we observe pharmacies hold very

little inventory like 1-2 medicine for very expensive drugs. Table 4.5 also confirms this

action as the model favours small ordering quantities in general. Last but not least, we

observe that poisson distribution is more costly in case outdate cost is higher compared

to shortage cost. Since poisson distribution is used to define cancer drugs and cancer

drugs have high purchasing cost for pharmacies, the implications are bigger in case

of outdates. However, uniform distribution is affected more from heavy shortage cost

scenarios since goodwill cost steps in. Uniform distribution is used to define more

generalized medicine and if customers fail to find them in a pharmacies, they would

likely not to comeback, which is reflected in total cost, L1 and L2.
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