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ABSTRACT

EDGE-EXTREMAL GRAPHS UNDER DEGREE AND
MATCHING NUMBER RESTRICTIONS

A graph with an upper bound on its matching number but without a bound
on its maximum degree, or a graph with an upper bound on its maximum degree but
without a bound on its matching number would have infinitely many edges. In order
to limit the maximum number of edges of a graph to a finite number, bounds on both
maximum degree and matching number are needed. The edge-extremal problem deals
with maximizing the number of edges of a graph under restrictions on its maximum
degree and matching number. This type of problems are generally studied in the field
of Extremal Graph Theory whose main concern is to find extremal graphs that satisfy
a certain property. The answer to the edge-extremal problem is known for arbitrary
graphs [1]. It is interesting to solve the edge-extremal problem when imposed some
structure on the given graphs since the maximum number of edges may change upon
narrowing the graph class. The answer when the graphs belong to some chosen graph
classes is provided by a recent master thesis [2]. The problem has been answered in
that thesis for bipartite graphs, split graphs, disjoint union of split graphs and unit
interval graphs. It is observed that star graphs seem to play a central role in the bound
on edges. Some open questions have been therefore posed concerning how allowing or
disallowing stars affects the bound on the number of edges. In this thesis we provide,
to the best of our knowledge, the first results of the edge-extremal problem in claw-
free graphs. We find an answer to the change in edge-extremal instances for general
graphs when we do not allow claws, which is a special star graph. For this purpose,
we develop several claw-free graph constructions and we find the number of edges of
an edge-extremal claw-free graph, not only by giving the number itself but also by

providing an edge-extremal claw-free graph for each possible case.



OZET

MAKSIMUM DERECESi VE ESLEME SAYISI SINTRLI,
KENAR SAYISI EN COK OLAN CiZGELER

Esleme sayisi tistten sinirh fakat maksimum derecesi sinirli olmayan bir ¢izgenin
ya da maksimum derecesi iistten sinirh fakat esleme sayisi sinirli olmayan bir ¢izgenin
sonsuz saylda kenari olabilir. Bir ¢izgenin maksimum kenar sayisinin sonlu bir say1
olabilmesi i¢cin hem maksimum derecesi hem de esleme sayisinin iistten sinirlanmasi
gerekir. Uc kenar problemi, maksimum derecesi ve esleme sayis1 siirl bir ¢izgenin
kenar sayisini maksimize etmek ile ilgilenir. Bu tip problemler genelde, ana konusu
belli 6zellikleri saglayan ug ¢izgeleri bulmak olan Ug Cizge Teorisi alaninda galigilir.
U¢ kenar probleminin ¢oziimii genel ¢izgeler smifi i¢in bilinmektedir [1]. Ug kenar
problemini, cizgelere belli yapisal ozellikler eklendiginde ¢ozmeye caligmak ilgingtir
¢inkii maksimum kenar sayisi ¢izge sinifi daraltildiginda degigebilir. Cizgeler segilen
bir ¢izge simifina ait iken ug¢ kenar probleminin ¢oziimii yakin zamanda yapilmis bir
yiiksek lisans tezinde sunulmugtur [2]. Orada problem, bipartit ¢izgeler, split ¢izgeler,
split ¢izgelerin ayrik birlesimi ve birim aralik cizgeler siniflari i¢in ¢oziilmiigtiir. Yildiz
¢izgelerin, kenar sayisindaki siirlarda ¢ok onemli bir rol oynadigi goriilmiigtiir. Bu
sebeple, yildiz ¢izgelere izin verip vermemenin kenar sayisini nasil etkileyecegiyle ilgili
bazi acik sorular sorulmustur. Bu tezde, u¢ kenar probleminin pengcesiz ¢izgelerdeki ilk
sonuclarmi sunuyoruz. Ozel bir yildiz ¢izge olan penceye izin verilmediginde u¢ kenar
probleminin genel ¢izgelerdeki sonucunun nasil degistigine bir cevap buluyoruz. Bu
amacgla, birka¢ pencgesiz cizge yapisi gelistiriyoruz ve kenar sayisi en ¢ok olan pencesiz
gizgelerin kenar sayisini buluyoruz. Sadece sayiy1 vermekle kalmiyor, ayni zamanda her

olast durum igin kenar sayisi en ¢ok olan pencesiz ¢izgeler sunuyoruz.
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1. INTRODUCTION

Graph theory is becoming more and more important as it is being effectively used
in fields as varied as computer science, linguistics, genomics, communication networks,
algorithms, computation, and operations research in order to model many types of
relations and processes in physical, biological, social and information systems. Many
practical problems can be represented by graphs and the methods in graph theory
have also been used to prove fundamental results in pure mathematics. In this sense,
the problems defined on graphs may arise from practical situations or may provide
mathematical insight. A class of problems that might fit both of these characterizations
are extremal problems on graphs. These problems seek to determine how large or small
some parameter of a graph can be, while satisfying some set of conditions. In this thesis
we will ask how many edges a graph can have under restrictions on its maximum degree
and matching number. We will call this the edge-extremal problem. The answer to this
problem is known for arbitrary graphs. We will find the corresponding answer when
the graphs belong to some chosen graph class. A graph class is a collection of graphs
sharing some common property. We are interested in the study of how extremal values
change when we impose some structure on the given graphs. If the maximum number of
edges changes upon narrowing the graph class, we might be able to say which structural

features of the class allow the solution.

A claw is the complete bipartite graph K 3, that is, a star graph with three edges,
three leaves, and one central vertex. A claw-free graph is a graph in which no induced
subgraph is a claw. Figure 1.1 shows the claw graph, a claw-free graph, and a graph
with an induced claw. In this thesis, we will try to find an answer to the edge-extremal
problem in the class of claw-free graphs. The motivation in choosing claw-free graphs
as the graph class to analyze is that the result for general graphs suggests that the
edge-extremal graph contains star graphs in most cases. We are wondering how are

the edge-extremal instances for general graphs affected if we do not allow claws, which



Figure 1.1. Claw graph, a claw-free graph, and a graph with an induced claw

is a special star graph.

Another motivation to solve the edge-extremal problem is its relation to the well-
known hard problem of finding Ramsey numbers on graphs. Although this approach
to the edge-extremal problem is not in the scope of this thesis, and therefore will not
be analyzed in detail, we find this relation worthwhile to mention. We briefly comment

on this relation in the thesis.



2. EXTREMAL GRAPH THEORY

2.1. Literature Review

Extremal Graph Theory studies extremal (maximal or minimal) graphs which
satisfy a certain property. Generally speaking, it concerns any problem that tries to find
the relation between graph invariants such as order, size, girth or minimum degree and a
graph property like being Hamiltonian, containing a perfect matching, or containing an
odd cycle. This theory started with the following question: “What is the minimum size
of a graph with a given order to ensure that it contains a triangle as a subgraph?” One
equivalent way to consider this question is: “What is the maximum size of a graph with
a given order such that it does not contain a triangle as a subgraph?” This problem was
solved by Mantel in 1907 [3]. In 1941 [4], the famous Hungarian mathematician Paul
Turan gave a much more general answer to this question by answering the following
problem: What is the maximum number of edges of a graph with a given order n such
that it does not contain the complete graph K, as a subgraph? Some more examples
of questions studied in extremal graph theory would be: Which acyclic graphs on n
vertices have the maximum number of edges? What is the minimum number of edges
of a graph of order n and connectivity k7 The main problem of this thesis is of this
nature. Here we seek to maximize the number of edges, given constraints on maximum

degree and matching number. We will consider this problem for claw-free graphs.

General extremal problem in extremal graph theory is defined as follows: Given
a family £ of forbidden subgraphs, find those graphs G which contain no graph in
L and have the maximum number of edges. In 1941 [4], Turdn proved his theorem
determining those graphs of order n, not containing the complete graph Kj of order
k, and extremal with respect to size, that is, with as many edges as possible. The
Erdos—Stone theorem extends Turan’s theorem by bounding the number of edges in a
graph that does not have a fixed Turan graph as a subgraph. Via this theorem, similar
bounds in extremal graph theory can be proven for any excluded subgraph, depending

on the chromatic number of the subgraph. It is named after Paul Erdés and Arthur



Stone, who proved it in 1946 [5], and it has been described as the “fundamental theorem
of extremal graph theory”. Another crucial year for the extremal graph theory was
1975 when Szemerédi proved his result concerning arithmetic progressions in subsets
of the integers [6]. Anyone wishing to find further literature on general extremal graph

theory is recommended to read, among others, Bollobds’ book [7], or the survey [8].

In a more general sense, a graph is extremal with respect to some parameter if
it has the maximum (or minimum) value for this parameter as a function of other
fixed parameters in the graph. Extremal graphs from this point of view, instead of
forbidden subgraphs, are also widely studied in the literature. One example, which is
closely related to this thesis, would be to maximize the number of edges of a graph while
putting some upper bounds on its maximum degree and its maximum matching. This
problem dates back to 1970’s. The exact bound for the general graphs, with arbitrary
upper bounds on the maximum degree and matching number, was first obtained in [9].
In [1], the authors give a different proof of the same result. Their proof is more
structural in approach as opposed to the methods in [9]. Therefore, the answer to this
problem is known for arbitrary graphs. The corresponding answer when the graphs
belong to some chosen graph classes is also provided by a recent master thesis [2]. The
thesis have looked at edge-extremal graphs with bounded degree and matching number
on specific graph classes. They have answered this question for bipartite graphs, split
graphs, disjoint union of split graphs and unit interval graphs. They observed that
i-stars seems to play a central role in the bound on edges. They have therefore posed
some open questions asking whether allowing or disallowing stars would make any
change on the number of edges of an edge-extremal graph. This is exactly where we

take over the responsibility.

In this thesis we will provide, to the best of our knowledge, the first results of
edge-extremal problem in claw-free graphs. We will find an answer to the change in
edge-extremal instances for general graphs when we do not allow claws, which is a
special star graph. This is new to the literature and will contribute, in particular to

the edge-extremal problem, in a complementary manner.



2.2. Overview of the Thesis

In Chapter 3, some preliminary work is presented. It starts with basic graph
theoretical definitions which will be used in the thesis. Then, we continue with claw-
free graphs and related results that concern our subject. In the same chapter, we
introduce the edge-extremal problem on general graphs and we present the relation of
this problem with Ramsey numbers. In Chapter 4, after defining some graph classes
that will be frequently used onwards, we analyze the result of edge-extremal problem on
general graphs in a more structural way using previously defined graph classes. Next,
we start to solve the edge-extremal problem on claw-free graphs, first on a special case
and then on some elementary cases. Before presenting the main result of this thesis,
we give claw-free constructions of two important graphs. Then, we give and prove our
main result on the edge-extremal problem in claw-free graphs. We close the chapter
with some examples illustrating different possible cases. Finally, Chapter 5 concludes

the thesis with some final remarks and open questions about the topic.



3. PRELIMINARIES

In this chapter we give most of the definitions and notation required throughout
the thesis. Additional notation and definitions are presented when they are needed.
We start with the basic definitions of graph theory and then we give some results on
claw-free graphs. We make an observation and prove an important lemma about claw-
free graphs. Later, we discuss the edge-extremal problem on general graphs. In the
last section of this chapter, we present the relation between the edge-extremal problem

and Ramsey numbers on graphs.

3.1. Graph Theoretical Definitions

A graph G is a finite nonempty set of vertices V' and edges . We may emphasize
that V or E is the set of vertices or edges in G by writing V(G) or E(G), respectively.
In Figure 3.1, each vertex is represented by a circle and each edge is represented by a
line segment. Edges are named by their start and end points. For instance, an edge
between vertices u and v is named wv. We say u is adjacent to v if there is an edge

(uv) between vertices u and v.

Figure 3.1. An example of a graph representation

In a given graph G = (V(G), E(G)), the number of vertices in V(G) is called the
order of G and the number of edges in F(G) is called the size of G. The neighborhood
of a vertex v is the set of all adjacent vertices to v and denoted by N(v). The number

of edges incident with a vertex v is called the degree of v and is denoted by deg v. The



maximum and minimum degrees in G are denoted respectively by A(G) and §(G). A

vertex adjacent to all other vertices of G except itself is universal in G.

A reqular graph is a graph where each vertex has the same number of neighbors,
that is, every vertex has the same degree. A regular graph with vertices of degree r
is called a r-regular graph. A graph G is called r-almost-reqular if A(G) —0(G) < r.
Thus, regular graphs are 1-almost-regular. In this thesis, we will call a graph G almost

regular if A(G) —§(G) = 1.

G' is a subgraph of G, if vertices and edges of G’ form subsets of the vertices and
edges of G. H is an induced subgraph of G if it has exactly the edges that appear in G
over the same vertex set. The complement of G, denoted by G, is the graph on V(G)

where two vertices are adjacent if and only if they are not adjacent in G.

For every graph G, the line graph of G, denoted L(G), is the graph with vertex
set E(G), where there is an edge between two vertices e, ¢’ € E(G) if and only if the
edges e and € are incident in G. In other words, the line graph of a graph G is obtained
by associating a vertex with each edge of the graph G' and connecting two vertices with
an edge if and only if the corresponding edges of G have a vertex in common. A graph

is a line graph if it is the line graph of some graph.

In Figure 3.2, graph G contains six edges, which means that L(G) contains six
vertices. The vertices [a, b] and [a, ¢] are linked by an edge in L(G) because the corre-
sponding edges in G have the vertex a in common. However, there is no edge linking
the vertices [a,c] and [b,e] in L(G) because those two edges in G have no ends in

common.

An isomorphism of graphs G and H is a bijection between the vertex sets of G
and H, f: V(G) — V(H), such that any two vertices v and v of G are adjacent in G
if and only if f(u) and f(v) are adjacent in H. If an isomorphism exists between two

graphs, then the graphs are called isomorphic and denoted as G ~ H.



a b la,b] b, €]
e la, c| | |
c d e, d] d, €]
(a) Graph G (b) Tts line graph L(G)

Figure 3.2. An example of a line graph

A stable set or an independent set is a set of vertices in a graph, no two of which
are adjacent. That is, it is a set .S of vertices such that for every two vertices in S, there
is no edge connecting the two. A maximal independent set is an independent set that is
not a subset of any other independent set. In other words, adding any other vertex to a
maximal independent set forces the set to contain an edge. The stability number (also
called independence number) of graph G, denoted «(G), is the size of the largest stable
set of G. In Figure 3.3, the set {v4,vg} is an independent set but not maximal since
we can also add the vertex v; to this set without violating the independence property.
The set {vqe,v6} is a maximal independent set and the set {vy, vy, v6} is a maximum

independent set and therefore a(G) = 3.

o & Ug

Figure 3.3. Independent set, maximal independent set, independence number

A complete graph is a graph in which every pair of distinct vertices is connected
by an edge. The complete graph on n vertices is denoted by K,,. The complete graph
K, has n(n — 1)/2 edges and the degree of each vertex in K, is n — 1.



A clique in an undirected graph G = (V, E') is a subset of the vertex set C' C V,
such that every two distinct vertices in C' are adjacent. This is equivalent to saying
that the subgraph induced by C'is complete. A maximal clique is a clique that cannot
be extended by adding one more vertex, that is, a clique which is not included in the
vertex set of a larger clique. The clique number of graph G, denoted w(G), is the size

of the largest clique in G.

Two edges are said to be adjacent if they share a common endpoint. Edges that
are not adjacent are independent. A matching of a graph G is a subset M C E(G) of
pairwise independent edges. We denote by V(M) the set of endpoints of M. A vertex
v of G is saturated by M if v € V(M) and exposed by M otherwise. A matching M
is maximal in G if no other matching of G contains M. A matching is a maximum
matching of G if it is a matching of maximum cardinality. The size of a largest matching
in G is called its matching number, denoted by v(G). A matching is a perfect matching
of G if V(M) = V(G), that is, a perfect matching is a matching which matches all
vertices of the graph. If G\ u has a perfect matching for all u € V(G), G is factor-

critical.

A sequence of distinct vertices vy, v, vs, ..., v;—1,v; With v,_v; € E, for 2 < j <4
is a path in G. A path on n vertices is denoted by P,. The length of a path is the
number of edges it contains. If the first and last vertices in a path are the same, it
is a cycle. A cycle on n vertices is denoted by C),. An edge between non-consecutive

vertices of a cycle is a chord. A cycle with no chord is an induced cycle.

In an undirected graph G, two vertices u and v are called connected if G' contains
a path from u to v. Otherwise, they are called disconnected. A graph is said to be
connected if every pair of vertices in the graph is connected. A graph that is not

connected is disconnected.

A connected component of an undirected graph is a subgraph in which any two
vertices are connected to each other by paths, and which is connected to no additional

vertices in the supergraph. A vertex with no incident edges is itself a connected compo-
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nent. A graph that is itself connected has exactly one connected component, consisting

of the whole graph.

A vertex in an undirected connected graph is a cut vertex if removing it (and
edges through it) disconnects the graph. Specifically, a cut vertex is any vertex whose

removal increases the number of connected components.

A graph is bipartite if its vertices can be partitioned into two sets U and W such
that every edge is between a vertex in U and a vertex in W. Equivalently, one may say
that its vertices can be colored black or white such that each edge is between vertices
of different colors. A bipartite graph with partition (U, W) where every vertex of U is
adjacent to every vertex of W, is called a complete bipartite graph, denoted by Ky, jw|.
In Figure 3.4, the graph on the left is a bipartite graph while the graph on the right
is the complete bipartite graph /K4 3. The complete bipartite graph K ;_; is called an
i-star and the graph K3 is called a claw, that is, a claw is a star graph with three
edges, three leaves, and one central vertex. A claw-free graph is a graph in which no

induced subgraph is a claw.

U 1% U W

Figure 3.4. Bipartite graph and complete bipartite graph
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3.2. Claw-free Graphs

As previously defined, a claw-free graph is a graph that does not have a claw as
an induced subgraph. To put it another way, a claw-free graph is a graph in which the
neighborhood of any vertex is the complement of a triangle-free graph. In order for a
vertex to be claw-center, its neighborhood should contain an independent set of size 3,
which means a triangle in the complement of its neighborhood. As a result, a graph
G is claw-free if and only if the complement of the neighborhood of any vertex in G is

triangle-free.

One should note that the property of being claw-free is hereditary. In other words,
claw-freeness is a property that is closed under induced subgraphs. If G is claw-free,
then so must every induced subgraph of G. In particular, when we remove one vertex
(with all the edges incident to it) from a claw-free graph, the resulting graph is also

claw-free.

Claw-free graphs have been a subject of interest of many authors in the recent
years. They were initially studied as a generalization of line graphs, and gained further
motivation through three key findings about them: the fact that all claw-free connected
graphs of even order have perfect matchings [10], the discovery of polynomial time
algorithms for finding maximum independent sets in claw-free graphs [11], and the
characterization of claw-free perfect graphs [12]. Now, they are the subject of hundreds

of mathematical research papers and several surveys.

In terms of the recognition of claw-free graphs, it is obvious that claw-freeness
in a given graph can be tested in polynomial time with complexity at most O(n?),
since it is sufficient to test each 4-tuple of vertices to determine whether they induce
a claw. More efficiently but less easily, one can also test whether a graph is claw-free
by checking, for each vertex of the graph, that the complement graph of its neighbors

does not contain a triangle.
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In terms of the structure of claw-free graphs, Chudnovsky and Seymour [13] give
a series of papers in which they prove a structure theory for claw-free graphs. In this
series of papers, they give a structural description of all claw-free graphs. They prove
that every claw-free graph either belongs to one of a few basic classes, or admits a

decomposition in a useful way [14].

The Observation 3.2 is a simple but important one since we will make use of it in
our proofs many times. In order to easily prove this observation, we use the following

well-known (attributed to a 1916 paper by Dénes Kénig) theorem.

Theorem 3.1. A bipartite graph contains no odd cycles.

Proof. Suppose that G(V = AU B, F) is bipartite. Assume for contradiction that
there exists a cycle vy, v, ...., v, v1 in G with k£ odd. Without loss of generality we can
assume that v; € A. Using the fact that G is bipartite, a simple induction argument
suffices to show that v; € A for 7 odd and v; € B for ¢ even. But then v,v; € F
is an edge with both endpoints in A, which contradicts the fact that G is bipartite.
Therefore a bipartite graph G has no odd cycles. O

In fact, any graph that contains no odd cycles is necessarily bipartite, as well.

This we will not prove, but is one way of characterization for bipartite graphs.

Observation 3.2. If the neighborhood of a vertex v can be partitioned into two cliques,

then v is not a claw-center.

Proof. 1f the neighborhood of a vertex v can be partitioned into two cliques, the com-
plement of the neighborhood of v is a bipartite graph. Since, by Theorem 3.1, bipartite

graphs do not contain triangles, v is not a claw-center. O

The following two theorems from the literature help us to prove Lemma 3.5 which

will later be used in the proof of the main result of this thesis.
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Theorem 3.3. (Theorem 2.1 in [15]) Every nontrivial connected graph contains at

least two vertices that are not cut vertices.

Theorem 3.4. ( [10]) Every claw-free connected graph with an even number of vertices

has a perfect matching.

Lemma 3.5. Let G be a connected claw-free graph with matching number v(G) = v

and let n denote the number of vertices of G. Then, n < 2v + 1.

Proof. Let G be a connected claw-free graph with matching number v(G) = v. Assume

for a contradiction that n > 2v + 1.

If n is even, then by Theorem 3.4, G has a perfect matching and in that case
v(G) =% >wv+3 >wv. This is a contradiction to v(G) = v.

If n is odd, then remove a non-cut vertex v from G. By Theorem 3.3, there exists
such a non-cut vertex in G. Since v is not a cut vertex, the graph G — {v} is connected.
As claw-freeness is a hereditary property, the graph G — {v} is claw-free. Also the
graph G — {v} is of even order n— 1. Therefore, by Theorem 3.4, G — {v} has a perfect

n—1

matching of size "5+ > v. This is a contradiction to v(G) = v. O

3.3. Edge-extremal Problem on General Graphs

In this section we summarize the main problem studied in this thesis, the edge-
extremal problem. This is a problem where we ask how many edges a graph can have
at most under restrictions on its maximum degree and matching number. All graphs
considered in this problem are finite, simple, and undirected. Of course if the number
of vertices of the graph is bounded, then the maximum number of edges it can have is
given immediately. Here we are interested in the number of edges without restricting or
knowing the number of vertices. The solution of the edge-extremal problem on general
graphs is already known from [1], and we give a brief description of this result here.

For a more detailed version, we direct the reader to this paper.
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Consider a graph G with an upper bound 7 > 1 on its matching number, but
without a bound on its maximum degree or number of vertices. Whatever j is, the
maximum number of edges that G' can have would be infinite since the star graph K ;

has matching number 1 and ¢ edges without a bound on ¢. This is shown in Figure 3.5.

Figure 3.5. A graph with no bound on its maximum degree

Now consider a graph GG with an upper bound ¢ > 1 on its maximum degree, but
without a bound on its matching number or number of vertices. Whatever ¢ is, the
maximum number of edges that G can have would be infinite since the disjoint union
of 7 copies of Ky graphs has maximum degree 1 and matching number j without a

bound on j. This is shown in Figure 3.6.

Figure 3.6. A graph with no bound on its matching number

Therefore, in order to limit the size of a graph to a finite number, bounds on both

maximum degree and matching number are needed.
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Let F denote a graph class. Mx(i,j) denotes all graphs G (with no isolated
vertex) from F satisfying A(G) < i and v(G) < j, where A(G) and v(G) denote
the maximum degree and the matching number of G, respectively. The edge-extremal
problem is the following: Given ¢, 7 and F, what is the maximum number of edges of
a graph in Mz(i,7) can have? A graph achieving the maximum number of edges is
called edge-extremal in Mx(i,j). Let CF denote the class of claw-free graphs. In this
thesis, we attempt to determine the maximum number of edges of a graph in Mcx(i, j)

for a given 1, j.

Let GEN denote the class of general graphs. Recall that a graph G is factor-
critical if G\ u has a perfect matching for all v € V(G) and that an i-star is the
complete bipartite graph K, ;. From [1], it follows that edge-extremal graphs G in
Mgen (i, 7) have two types of connected components: factor-critical components and
i-stars. Further calculations in [1] gives an upper bound for the maximum number of
edges of a graph G € Mggn(i,7). Without going into the details of the calculation,

the number of edges in an edge-extremal graph G is given by

o=+ 1

The solution obtained depends on ¢ being odd or even. For odd ¢, G is a disjoint
union of K; and i-stars, where the number of K; is as large as possible. In this case,

the number of edges in edge-extremal G is given by

2

2

BG) = (- DG - 1)+ (= f;lj

To give an example, an edge-extremal instance in Mggnr(5, 6) has 24 edges and consists

of two K5 and one 5-star. This graph is shown in Figure 3.7.

In the case where 7 is even, the factor-critical components are created by the

following process: Remove a maximum matching from K;, introduce a new vertex v
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Figure 3.7. An edge-extremal instance in Mggp(5, 6)

and add an edge from v to any of the ¢ — 1 vertices in the modified graph. We refer to
this modified K; as R}, ; since it has i + 1 vertices where every vertex is of degree
t — 1, except one which has degree ¢ — 2. This notation will be more clear in the
following chapter. An edge-extremal instance for even 7 is a disjoint union of copies of
R}, ; and i-stars, where the number of copies of R, ; is as large as possible. In

this case, the number of edges in edge-extremal G is given by

|E(G)|=(i—1)(j_1)+(%_1) V?J

To give an example, an edge-extremal instance in Mggpr(4, 6) has 17 edges and consists

of two copies of Ry 3 and one 4-star. This graph is shown in Figure 3.8.

<

Figure 3.8. An edge-extremal instance in Mggpr(4,6)

This was a brief summary of the results obtained for general graphs by Bal-
achandran and Khare [1]. Consequently, edge-extremal graphs contain star graphs as
induced subgraphs in most cases. This gives rise to the question: how would edge-

extremal graphs look if star graphs were not allowed as induced subgraphs? This is
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exactly the question we are seeking the answer of in this thesis. As claws are the
smallest star graphs, studying edge-extremal claw-free graphs will give us the answer

to this question.

Consider the following example: What is the maximum number of edges of a
graph in Mggen(5,2)? The result for general graphs implies that the answer is 4 and
this graph is a 5-star. The answer to the same question for M¢z(5,2) cannot be more
than 4 since every claw-free graph is also in the class of general graphs. Can it be 4,
i.e. is there a graph in M¢x(5,2) which has 4 edges? The answer is no. The edge-
extremal graph in M¢z(5,2) has 3 edges and it is a K3. The edge-extremal graphs in
Magen(5,2) and in Mcx(5,2) are shown in Figure 3.9.

Figure 3.9. Edge-extremal graphs in Mgear(5,2) and in Mcx(5,2)

This is the smallest example where the claw-free condition decreases the maxi-
mum number of edges. We observe that the maximum number of edges changes in case
we narrow the graph class and we want to identify exactly the cases where this change

occurs in claw-free graphs.

3.4. Relation to Ramsey Numbers

Ramsey theory typically investigates the questions of the form: ”how many el-
ements of some structure must there be to guarantee that a particular property will
hold?”. The classical problem in Ramsey theory is the party problem, which asks the
minimum number of guests R(i,7) that must be invited so that at least ¢ will know

each other or at least j will not know each other. Here, R(i,j) is called a Ramsey
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number. In the language of graph theory, Ramsey number is defined as follows:

Definition 3.6. The Ramsey number R(i,j) is the smallest n € N such that in any

edge coloring of K,, by two colors, blue and red, there exists a blue copy of K; or a red

copy of K;.

The following definition is equivalent to the above definition of Ramsey number.

Definition 3.7. The Ramsey number R(i, j) is the smallest n € N such that any graph

on n vertices contains a clique of size i or an independent set of size j.

The question that we first need to ask must be about the existence of Ramsey
numbers and the answer lies in the Ramsey’s theorem which guarantees the existence of
these numbers. It provides an upper bound for all the Ramsey numbers and therefore

it can be deduced that the smallest numbers always exist.

Theorem 3.8. (Ramsey’s theorem). [16] For anyi,j > 1, R(i,j) < (”J“SQ)

The calculation of Ramsey numbers is a difficult problem, and no general method
is known. In fact, there are very few numbers ¢+ and j for which we know the exact
value of R(i,7). For others, we generally have lower and upper bounds for value of
R(i, 7). However, there is a vast gap between the best known lower and upper bounds.

Faced with such difficulty, it is natural to restrict the set of considered graphs.

The reason why we mention Ramsey numbers in this thesis will be more clear

with the following well-known observation.

Observation 3.9. Let G be a graph, let L(G) be the line graph of G, and let i > 4
and j > 1 be two integers. Then G has a vertezx of degree at least i if and only if L(G)
has a clique of size i. Moreover, G has a matching of size j if and only if L(G) has an

independent set of size j.

Proof. Let L(G) be the line graph of G. Edges that meet in a vertex in G are mu-

tually adjacent vertices in L(G) and vice versa. Moreover, independent edges in G, a
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matching, are independent vertices in L(G) and vice versa. O

With the above observation, it is now clear to see that the problem we are trying to
solve in this thesis can actually be formulated in terms of determining Ramsey numbers
on line graphs. Consider the edge-extremal problem on general graphs. We are looking
for the maximum number of edges in graphs G, with A(G) < i and v(G) < j. Let
L(G) be the line graph of G. By limiting how many edges can meet in a single vertex
in G, we are limiting how many vertices can be mutually adjacent in L(G), which is
the same as limiting the size of the largest clique in L(G). Similarly, by limiting the
matching number of GG, we are limiting the size of the largest independent set in L(G).
Also, maximizing edges in G is the same as maximizing vertices in L(G). Therefore,
the edge-extremal graphs G with A(G) < i and v(G) < j correspond to the line graphs
with the largest possible number of vertices that do not contain K; or FJ as an induced

subgraph. This is exactly R(7,j) — 1 for L(G).

In this thesis, by solving the edge-extremal problem for claw-free graphs, we are
actually finding the Ramsey numbers for the line graphs of claw-free graphs. The
number of edges of an edge-extremal graph G € Mcx(i,j) is 1 less than the Ramsey

number of the line graphs of claw-free graphs.
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4. EDGE-EXTREMAL PROBLEM ON CLAW-FREE
GRAPHS

4.1. Some Graph Classes

In this first section of Chapter 4, we present three graph classes that will be
frequently used in edge-extremal claw-free graphs. We briefly define these graph classes,
state the number of edges and give examples of graphs that they contain. While the
first two classes consist of well-known graphs of graph theory, the third one is newly

defined by us.

K, : This is the class of complete graphs on p vertices. This class has only one
element which is the complete graph on p vertices, K,. There is nothing special about
the construction of K, since it is a graph in which every pair of distinct vertices is
connected by an edge. We simply connect each of p vertices to every other p — 1
vertices. K, the unique graph of this class, has @ edges. K¢ € K¢ and Ks € Kg

which have respectively 15 and 28 edges, are shown in Figure 4.1.

Figure 4.1. The complete graphs Kg and Ky

R« This is the class of graphs that are r-regular on p vertices. It is well known
that the necessary and sufficient conditions for an r-regular graph of order p to exist
are that p > r+1 and that the product p-r is even. The graphs from this class have £-
edges. Note that the class R, ,_1 is exactly the class K,. Therefore IC, is a subclass of
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R,p.r. Two non-isomorphic elements of Rg4 which have 16 edges are shown in Figure
4.2. They are not isomorphic because the graph on the left does not contain a claw as

an induced subgraph while the one on the right does.

Figure 4.2. Two non-isomorphic elements of Rg 4

R, : This is the class of graphs that have p vertices where p — 1 of them have
degree r and one of them is of degree r — 1 and where p and r are odd. The graphs from

w edges. The graphs of this class is almost regular since the

this class have
difference of maximum and minimum degrees in these graphs is 1. Moreover, there is
only one vertex of minimum degree. Two non-isomorphic elements of R7 5 which have
10 edges are shown in Figure 4.3. They are not isomorphic because the graph on the

left does not contain a claw as an induced subgraph while the one on the right does.

S

Figure 4.3. Two non-isomorphic elements of R 5

4.2. Structural Analysis of Edge-extremal Graphs in Mggn (4, )

We previously made an introduction to the edge-extremal problem on general

graphs in Section 3.3. In this section, we want to analyze the edge-extremal graphs
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of general graphs in a more structural way, rather than solely concentrating on their
number of edges. In other words, we would like to show how one can obtain an edge-

extremal graph of Mgen (4, j) for a given i and j.

We deduce from [1] that an edge-extremal graph G € Mgenr(i, j) can be obtained

by r copies of i-stars and ¢ copies of

K; if i is odd

, e s
Rl ;1 ifiiseven

where ¢ and r are respectively the quotient and the remainder of the division of j—1 by

[%1 In other words, j—1 = ¢ [%w +7, where ¢ is as large as possible. Consequently,

o= [tz s i) [

e If ¢ is odd, the number of edges of an edge-extremal graph G is

B = 66—+ (5 [

2

1 —1 1 —1
+7) + ( 5

)a
1
—+r(—1)
This can be obtained by 7 copies of i-stars and ¢ copies of K; because this graph

has A=i—1<iand v =q(*5t)+r=j—1 < j (each i-star has v = 1 and each
K; has v = 1),
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e If ¢ is even, the number of edges of an edge-extremal graph G is

BOI = G-u-n+G-1 |

. i i—2
= (2—1)(q§+7")+( 5 )q
_ qi(i—1)2+i—2+r(i_1)

This can be obtained by 7 copies of i-stars and ¢ copies of R;,,; ; because this
graph has A=i—1<iand v =q(%) +r=j—1 < j (each i-star has v = 1 and

4.3. A Special Case

We previously stated that an edge-extremal graph G € Mgenr(i, ) can be ob-
tained by the union of r copies of i-star and ¢ copies of K; if ¢ is odd or ¢ copies of
R}y, ifiis even, where g and r are respectively the quotient and the remainder of the
division of j —1 by [51]. As observed, i-stars play an important role in edge-extremal
graphs in the class of general graphs. This motivated us to study the edge-extremal
problem on graphs that do not contain ¢-stars, which are exactly the claw-free graphs,

for ¢ > 3.

Before going into the detailed analysis of claw-free edge-extremal graphs, we
would like to mention the special case where the edge-extremal graphs in Mgear(i, )
do not contain any i-star, i.e. where r = 0. The importance of this case is clear for
us: the edge-extremal graph G € Mgen (i, 7) consists of g copies of K; if 7 is odd or ¢
copies of R, ,,  if i is even. Accordingly, if both K; and R;,,; , are claw-free graphs,
then from here we can conclude that the edge-extremal graphs in Mggp(i,7) and in

Mez(i,j) coincide when r = 0.
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Note that r is the remainder of the division of j — 1 by [%1 Hence, r = 0
indicates that [5*] divides j — 1.

Lemma 4.1. If (%1 divides j—1, then the unique edge-extremal graph G in Mcx(i, j)

is the disjoint union of

—= copies of K; if i 1s odd

copies of Ri, ;| if iis even

Proof. All we need to show is that the graphs K; and R, ; are claw-free. It is clear
that the complete graph Kj; is claw-free since an induced claw requires an independent

set of vertices of size 3 whereas the independence number of K; is 1.

Now, recall that in Section 3.3, we constructed R;,,,; ; as follows: Remove a
maximum matching from K, introduce a new vertex v and add an edge from v to any
of the i — 1 vertices in the modified graph. This simple construction yields a graph
on 7 + 1 vertices where each vertex has degree ¢ — 1, except one vertex which is of
degree i — 2. One can easily check and see that the independence number of R}, ; ,,

constructed as above, is 2. Therefore, it is claw-free.

For the uniqueness of G, we know from [1] that when [*5}] divides j — 1, there
are no i-stars in any edge-extremal graph G € Mgen(i,7). It is also said in [1] that
any edge-extremal graph in this case has % components with v = (%W for each.
Since G has no isolated vertices, it follows that G is the unique edge-extremal graph

in this case. O

A summary of this special case with examples is as follows: When {%1 divides
j—1,i.e. when r = 0, there are no i-stars in any edge-extremal graph G € Mgenr(i, )

[1]. This results in an edge-extremal graph which is also claw-free.
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e 7 is odd
The edge-extremal graph consists of ¢ copies of K;. This graph is claw-free. An
example would be ¢ = 7, 5 = 10. In this case, we have r = 0 and ¢ = 3. The
edge-extremal graph in M¢x(7,10) is the disjoint union of 3 K7 and has 63 edges.

This edge-extremal graph is shown in Figure 4.4.

SO0

Figure 4.4. The graph 3 K7

® ¢ IS even
The edge-extremal graph consists of q copies of R}, ; ;. This graph is claw-free.
An example would be ¢ = 6, j = 13. In this case, we have r = 0 and ¢ = 4. The
edge-extremal graph in Mcx(6,13) is the disjoint union of 4 copies of R7 5 and
has 68 edges. This edge-extremal graph is shown in Figure 4.5.

wiele s

Figure 4.5. The graph 4 R 4

4.4. Some Elementary Cases

On our way to the final result, we find it useful to have a discussion of some
elementary cases of edge-extremal claw-free graphs. This kind of analysis will help us

understand better where we may get stuck, as well as rule out some cases to analyze.
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Elementary cases that we want to consider in this section are the cases where i = 2,

1 =3, and j = 2.

Recall that the authors in [1] give an upper bound for the maximum number of
edges of a graph G € Mgen (i, 7). According to their result, the number of edges in an
edge-extremal graph G is given by

B@I=6-06- 0+ |5 1]

o =2

The result for general graphs when i = 2 suggests that an edge-extremal graph
G € Mgen(i,j) has |[E(G)| = j — 1 edges. This edge-extremal graph can simply be
obtained by j — 1 independent copies of K5, where each K5 has matching number 1
(so in total the matching number is j — 1 < j) and each vertex has degree 1 < i = 2.
Notice that this graph is claw-free. Therefore the edge-extremal graph G € Mcx(2,7)

is the disjoint union of 7 — 1 copies of K.
o1 =3

The result for general graphs when ¢ = 3 suggests that an edge-extremal graph
G € Mgen(i,j) has |[E(G)| = 3(j — 1) edges. This edge-extremal graph can only be
obtained by j — 1 independent copies of K3, where each K3 has matching number 1
(so in total the matching number is j — 1 < j) and each vertex has degree 2 < i = 3.
Notice that this graph is claw-free. Therefore the edge-extremal graph G € Mcx(3,7)

is the disjoint union of j — 1 copies of K.
o j =2

The result for general graphs when 7 = 2 and ¢ > 4 suggests that the edge-
extremal graph G € Mgen(i,7) has |E(G)| = i — 1 edges, for both ¢ odd and ¢ even.
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This edge-extremal graph can uniquely be obtained by an i-star, where the matching
number is 1 and the maximum degree is ¢ — 1. However this graph is not claw-free! An

1-star where ¢ > 4 contains a claw as an induced subgraph.

We want to find an edge-extremal graph in Mcx(i,j) when j = 2 and i > 4.
Without any calculation, we observe that the claw-free graph with matching number
at most 1 and that has the maximum number of edges is K3. Even though the maximum
degree is allowed to be more than 2, we realize that the matching number becomes a
bottleneck and prevents the use of maximum degree at its maximum allowed level.
Therefore, when ¢ > 4, no matter how large i is, the only edge-extremal graph in

Mex(i,2) is K.

4.5. Construction of R,,: A Claw-free Regular Graph

We defined the graph class R,, in Section 4.1 as the class of graphs that are
r-regular on p vertices. In this section, we will first give a construction for a subclass
of Ry, which consists of graphs that are r-regular on p vertices where r is even. For
a given p and r, with r even, there may be several non-isomorphic graphs in R, ,. We
will denote the particular graph obtained by our construction as R,,. Secondly, we
will claim and prove that the construction that we suggest for a given p and r forms a

claw-free graph, i.e. R,, is claw-free.

We construct R, with r = 2k where k € Z* as follows: Put all p vertices around
a circle and connect each vertex by an edge to its k nearest neighbors on both side on

the circle. A more formal description of this construction would be:

Graph: R,, with r = 2k where k € Z*
Vertex set: {v; :i € {1,2,3,....,p}}
Edge set: Every v; is connected t0 v;_j, Vi—ga1, ooy Vim1, Vit 1y veey Vitk—1, Vitr Where in-

dices are of modulo p.
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Let us consider the following example shown in Figure 4.6 in order to understand
the suggested construction better. It shows the graph R;; 4 that has 11 vertices, each
of which is of degree 4. The vertices vy, vy, ...., v1; are ordered in the clockwise direction

and each vertex is connected to its 2 nearest neighbors on both side on the circle.

™"

()

™1

U1p

U= Ui

Figure 4.6. The graph Ri; 4

Lemma 4.2. R,, is claw-free.

Proof. By construction, we observe that the neighborhood of any vertex in R, , can be
partitioned into two cliques. The neighborhood of a vertex on each side, right and left,
on the circle forms a clique of size k. By Observation 3.2, we conclude that no vertex

of R,, is a claw-center and therefore R, , is claw-free. O

4.6. Construction of R, .: A Claw-free Almost Regular Graph

The graphs from the class R, . defined in Section 4.1 have the following features:
They have p vertices; p — 1 of them have degree r and one of them is of degree r — 1
where p and r are odd. We said that the graphs of this class are almost regular since
the difference of maximum and minimum degrees in these graphs is 1. Moreover, there

is only one vertex of minimum degree.

In this section, we will first give a construction for a subclass of R;,, where we

only put the additional condition r + 2 < p < 2r 4+ 1. There may be several non-
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isomorphic graphs belonging to this subclass. We will denote the particular graph that
is obtained by our construction as R ,. Secondly, we will claim and prove that the
construction that we suggest for a given p and r forms a claw-free graph, i.e. R, is

claw-free.

The construction of R, . is more complicated than the construction of R,,,. In

fact, in order to construct R’

s We first construct R, 1 and add some additional edges

in a systematic way in order to reach the desired vertex degrees while keeping the prop-

erty of being claw-free. Let us describe the construction as follows:

Graph: R,
Vertex set: {v; :i € {1,2,3,....,p}}
Edge set: EU E’ where E is the edge set of the graph R,,_; and E’ is the edge set

of size 221 that we specify as follows:

Let the greatest common divisor of p and r+1 be m; we show it as ged(p,r+1) =
m. For each ¢, 1 < ¢ < m, we define the sequence s, = {{¢ + ¢(*£*)} (mod p)} where

0 <t <2 1. That is to say, we generate the following sequences;

si={1, (1+ (%), A+2("F), (1+3(), v S+ (B -1)(5)}
5o =12, 2+ (1), 2+2("F), 2+3(F)), e 24 (2 - D))}
sm={m, (m+ (%)), (m+2(5)), (m+3(5), e, (m+ (2 = 1)(5H))}

where the elements of these sequences are all in modulo p.
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The important properties of these sequences are:

P1: There are in total p elements. Each sequence has £ elements because
0 <t < 2 —1. Since there are m sequences each having 2 elements, there are in total

p elements.

P2: The elements in a sequence are equivalent modulo m. This follows
from the fact that % is a multiple of m. We said that ged(p,r 4+ 1) = m. First of all,
m is odd since p is odd. Say r + 1 = mk for some k, then k& must be even since r + 1

r+1

is even but m is odd. Put & = 2a, then r + 1 = 2ma, and % = ma. Therefore, ~=

is a multiple of m. Since in a sequence in order to get the next element, we only add

%, and since % is a multiple of m, we conclude that the elements in a sequence are

equivalent modulo m.

P3: The sequences are disjoint, i.e. there is no common element of
any two different sequences (s;N's; = 0 for i # j and 4,5 € {1,2,...,m}).
This is a simple observation that follows from P2. Seeing that elements in a sequence
are equivalent modulo m, and also that each sequence s, starts with number ¢ where
1 < ¢ < m, we simply deduce that two elements from two different sequences cannot

be the same because the first elements of the sequences are not equivalent modulo m.

Since each of the elements in the sequences are different and since there are in
total p elements all written in modulo p, we conclude that the elements are exactly the
numbers from 0 to p — 1. If we replace the number 0 with p, we get numbers from 1

to p. In fact, these numbers represent the indices of the vertices of the graph.

Also note that the order of the elements in the sequences is extremely important.

This order will determine between which pairs of vertices we will add an edge.

Having said these properties, now it is time to specify the edges that will be
added. We form a long sequence using the sequences s, for 1 < ¢ < m by writing side

by side the elements of these sequences as
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{a,... ,(1+(%—1)(T;1)), ......................... N M, ,(m—l—(ﬁ—l)(r—;l))}

This is indeed a permutation of the numbers from 1 to p. These numbers are the
indices of the vertices. We then add edges between two consecutive elements of this
long sequence, i.e. we add an edge between first and second element, then another edge
between third and fourth element, etc. There are p elements and p is odd. Therefore,
the last edge that will be added is the one between (p — 2)™* and (p — 1) element
and the p element will not be connected to any vertex in this sequence. In total, ’%1
edges will be added and these edges are the elements of E’. Figure 4.7 shows how we

add edges between the vertices with indices in the long sequence.

Figure 4.7. The edges of £’

Since each sequence s, has = elements, which is an odd number, the last element
of s; will be connected to the first element of s,. Similarly, the last element of s3 will
be connected to the first element of s4, etc. Figure 4.8 shows on the sequences sy,

1 < ¢ < m, the way we add edges between the vertices.

So

54

Figure 4.8. How do we add the edges of E'?
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Before going any further, we would like to give an example in order to make the
construction that is described above easier to understand. Suppose that we want to
construct the graph Rj5,,. We first construct the graph Ri5 10 as described in Section
4.5 and we call F the edge set of this graph. Figure 4.9 shows the graph Ry ;¢ where
the vertices are ordered in the clockwise direction around the circle and each vertex is

connected to its 5 nearest neighbors on both side on the circle.

‘ = ’
] ) ‘-‘w"ﬂ,ﬂ-’

! W ‘ s g Ty
RN e e
L
"';_- ..-_g.‘-

'f.-"lg 1 %

Figure 4.9. The graph Rjs5 10

The second step of the construction is to determine the edge set E’. We have
m = (p,r + 1) = (15,12) = 3. We form the sequences s, for 1 < ¢ < 3 as previously

defined, and then the long sequence s.

sp = {1,7,13,4,10}
so = {2,8,14,5,11}
s3 = {3,9,15,6,12}

s ={1,7,13,4,10,2,8,14,5,11, 3,9, 15,6, 12}

We add edges on the graph Rij510 between the vertices {vy,v7}, {vis,va}, {vio,v2},
{vs, v1a}, {vs,v11}, {vs3,v9}, and {vy5,v6}. This is the edge set E’ and Figure 4.10
shows the graph Rj;,, where each vertex has degree 11, except one, vz, which is of

degree 10. The edges of £’ are shown in bold.
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Figure 4.10. The graph Rj;,,

Another example with less edges in order to clearly see the degrees of the vertices
would be the graph R, ;. After properly constructing the graph Ri; 4, we add edges

according to the sequence

s=s; ={1,4,7,10,2,5,8,11,3,6,9}

In this example there is only one sequence since m = (p,r + 1) = (11,6) = 1. The

graph R}, 5 is shown in Figure 4.11, where the bold edges represent the edges of .

Figure 4.11. The graph R} 5
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Claim 4.3. E and E’ are disjoint edge sets.

Proof. E is the edge set of the graph R,,_; where every vertex is connected to its
nearest % neighbors on both side on the circle whereas E’ is comprised of the edges
r+1

that are between the vertices of distance either 2= (if added between two vertices with

indices in the same sequence) or % (if added between two vertices with indices from

two consecutive sequences). O

By the edges in F, the vertices have degree r — 1. When we also add the edges
of E’, each vertex becomes of degree r, except the one that is not connected to any

vertex in the long sequence and it is of degree r — 1.

There may be several other and possibly easier methods of constructing a graph
with p vertices where p — 1 of them have degree r and one of them is of degree r — 1
and where p and r are odd. However, our construction is special in the way that it

generates claw-free graphs.

Lemma 4.4. R, is claw-free.

Proof. While constructing the graph R/

s WE first construct the graph R,,_;. In the

latter one, all vertices around the circle, ordered in the clockwise direction, are similar;
they are all connected to their nearest % neighbors on both side, right and left, on

the circle.

However, the addition of the edge set E’ creates two different types of vertices
since there are two types of edges in E’: one is the edge added between two elements
of the same sequence, and the other is the edge added between two elements of two
consecutive sequences. Accordingly, Type 1 vertices are the ones whose both right
and left neighbors form a clique, and Type 2 vertices are the ones that are connected
to their nearest (“£2)” neighbor instead of (“£1)™. The sets of Type 1 and Type 2

vertices are respectively denoted as U; and U; and we have V(R;yr) = U; UU,. Note
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that U, can possibly be an empty set. Figure 4.12 and Figure 4.13 shows how Type 1
and Type 2 vertices come up with addition of E’ to the graph R, ,_;. The edges of E’

are shown in bold.

Figure 4.12. Type 1 vertex u; in R;’r

Figure 4.13. Type 2 vertex us in R;M

The vertices in U; are not claw-centers because the neighborhood of any vertex
in U; can be partitioned into two cliques. The neighborhood of a vertex on each side,

right and left, on the circle forms cliques of sizes izl or % By Observation 3.2, we

conclude that no vertex of U; is a claw-center.

As a matter of fact, the vertices in Uy are not claw-centers either. In Figure 4.14,
where the indices of the vertices should be considered in modulo p, v, is a vertex of
the set Uy. The vertices v, and v, ot have indices in the same sequence and v; is
connected to v;, rea whose index belongs to the next sequence. Therefore v, rgs s also
a vertex of U,. Furthermore, the vertices v;11, v, ris, and v,_ -1 have all indices in
the same sequence. Now, the important observation is that each sequence has at most
1 vertex connected to a vertex from another sequence. Hence, v, is a vertex of U

since v, = € Us. As an element of Uy, v,4; has 2 options for being connected, v, r4s
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and v,_r—1. Since v, r+3 is connected to v;, completing its degree to r, we conclude
2 2

that v, is connected to v, _r—1.
2

] Vy, r4+1 3
Ut+1 tH- Tt
Py

(*n

Figure 4.14. Type 2 vertices in R, . are not claw-centers

The aim of this brief analysis is to be able to show that the neighborhood of v,

can be partitioned into two cliques. Now, since v;4; is connected to v,_ 1, the right

r+1

neighbors of vy with v;4; form a clique of size 5~ and its other neighbors form a clique

of size % By Observation 3.2, we conclude that no vertex of Us is a claw-center.
There is actually a Type 3 vertex which is connected to no vertices in the long

sequence. There is only one such vertex in each R;W. It is of degree r — 1 and its

neighborhood on each side, right and left, on the circle forms a clique of size % By

Observation 3.2, we conclude that it is not a claw-center.

Since there is no claw-center, the graph R;,T is claw-free. O

Back to our previous examples, for the graph Rj5;; we had s; = {1,7,13,4,10},
sy ={2,8,14,5,11}, and s3 = {3,9,15,6,12}. Therefore

Ul - {01,07,1113,v4,Ug,1214,U5,1111,1}3,1)9,1)15,1}6,1)12}, UQ - {UIOaUQ}
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and for the graph R}, 5, we have

Ul - {UlaU47U77v107U27U57U87U117U37U67U9}7 U2 - @

One can easily check that the neighborhood of every vertex in these graphs can be

partitioned into two cliques in the way shown above.

4.7. The Main Result

In this section, we solve the edge-extremal problem on claw-free graphs. The
edge-extremal problem simply asks for the number of edges of an edge-extremal graph
for a given ¢ and j on the given graph class. How edge-extremal graphs themselves
look like is not a concern of this problem initially. In this thesis we actually describe
the edge-extremal claw-free graphs themselves, in addition to giving their number of

edges.

Before we proceed to the main result, we prove the following lemma since it will
be used in the proof of the main theorem. Although it is a well-known fact, we prove

it here for the sake of completeness.

Lemma 4.5. Ifa; >0 for 1 <i<nandn>2, then Y .  a? < (D" a;)*

=1 "1

Proof. In order to prove this statement, we will use induction on n. The statement is

true for n = 2: (ay + a2)? = a? + 2a1as + a3 > a? + a3 since ay, as > 0.

Now for the inductive step assume that (a4 a3 +.... +a?) < (a; +az+ .... + a,)?
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is true. Then,

ai+as+..+al+al,, =(a]+a;3+...+a)+a,,

<(ay+as+ ... +a,)?* +ai, (using the assumption)
=y’ +al,, (rewriting y = a1 + ag + .... + ay)
2 - 2 2 2
<+ ann) (using o + a3 < (o1 +@)?)
= (a1 +ay+ ...+ ap + apy1)? (plug back for y)

We showed that (a? + a2 + .... + a?) < (a1 + az + ... + a,)? implies
(af+as+...+a’+a ;) <(a+az+ ...+ ay+ apy1)?

This concludes the induction. O

Our main result in this thesis is the following:

Theorem 4.6. (i) Ifi > 2j, then the edge-extremal graph G in Mcx(i,7) is unique
and G ~ Kyj_y with |[E(G)| = (27 —1)(j — 1).
(11) If i < 2j, then an edge-extremal graph G in Mcx(i,j) can be obtained by

q— 1 copies of K; and one Riior; 1 if 118 odd

q—1 copies of Ri y; , and one Ri o 1, ifiiseven

where q and r are respectively the quotient and the remainder of the division of
j—1by [5t], and in this case |E(G)| = (i —1)(j — 1) + | 5] L]l:jld
2
Proof. (i) i > 2j
We argue that the edge-extremal graph G € Mcr(i, j) is Koj_1. In order to prove

this statement, we have to show two things:
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o Kyj_1 € Mcr(i,j)
The matching number of Ky;_; is j — 1 < j, the maximum degree in Ky;_;
is 2] —2 <14 —2 <14, and Ky;_; is a claw-free graph since it is a complete

graph. Therefore Ky;_1 € Mcx(3,j).

e Ky;_ is the edge-extremal graph in Mcx(i, j)

When i > 2j, if the edge-extremal graph G in M¢x(i, j) is connected, then
by Lemma 3.5, the maximum number of vertices that G' can have is 25 — 1.
Also because 25 < i, we have 27 — 1 < i — 1. Hence each vertex can have
degree 25 — 2, without violating the maximum degree bound. This yields
Ky .

Now assume that, for i > 25, the edge-extremal graph G in Mcx(i,j) is
disconnected having k > 2 connected components G1, G, ....., Gi. Let the
matching number of Gy be j, for 1 < ¢ < k. We know that j, > 1 and
Zif:ljg = j — 1. We also know by Lemma 3.5 that each G, has at most
27, + 1 vertices, i.e. each G, has at most W = (2j¢ + 1), edges. Then
the maximum number of edges of G:

k
(=1

k k
ST@je+Dje = Y Get+2Y iF
/=1 /=1

k k
< ng + Q(ng)2 (due to Lemma 4.5)
=1 1

/=
k
= j—142(—1)? (since Y je=3j—1)
/=1

(27 — D27 —2)
2

= number of edges of Kij_q

This means that the maximum number of edges that the disconnected G can
have is less than the number of edges of Ky;_;. This concludes the proof

that when ¢ > 2j, the unique edge-extremal graph G in Mcz(i,7) is Koj_y
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and |[E(G)] = (2 —1)(j — 1).

(i) 7 < 2j
First of all, if 7 < 25, then (%W < 7 — 1. When we divide 7 — 1 by {%W, the
quotient will be greater than or equal to 1, i.e. ¢ > 1. It is important to note
the fact ¢ > 1 in order to make the term ‘¢ — 1 copies of K;” or ‘¢ — 1 copies of
R}, ,; ;" meaningful.
Now, we again have to show two things:
e The suggested graphs are in Mcx(i, )

Showing that they are in Mcx(7, ) is equivalent to show that they are in

Mgen(i,7) and that they are claw-free graphs.

The suggested graphs are

q— 1 copies of K; and one Riior; 1 ifiis odd

, , , e
q—1 copies of Ri,,; ; and one R 5. ;  ifiiseven

In the case where : is odd, K; is a complete graph on ¢ vertices with
each vertex having degree ¢ — 1 and matching number % Riiopiy is
an (i — 1)-regular graph on i + 2r vertices with each vertex having de-
gree ¢ — 1 and matching number % We have A = i —1 < 7 and
v=_(¢—-1)(5)+ 2L =¢(5') +r =j—1 < j. Therefore the graph
suggested for the case i odd is in Mggp(i, 7). Also, it is claw-free because
it is the union of the copies of a complete graph, which is claw-free, and the

regular graph R; s, ;_1, which is shown to be claw-free in Lemma 4.2. We

conclude that the suggested graph is in Mcx(1, 7).

In the case where i is even, the graph R} ,,; ; has A = i — 1 and

The graph R} 5., has A =i —1 and v = H2r - There-

vV = 2

L
fore ¢ — 1 copies of R},,; ; and one R, , ,; ; has A =i —1 < i and
v=(q—1)+22 =qi+r=j—1<j. Henceitisin Mggn(i, ). Further-

more, it is claw-free because in Lemma 4.4, we showed that the graph R, ,
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is claw-free for p and r odd and where the condition r +2 < p < 2r + 1 is
satisfied, which are true for both R}, | and R; ,.,,,; , since in the second

graph, we have r < % due to the division rule.

The suggested graphs are edge-extremal in Mcx (i, 7)
We will show that the suggested graphs have the same number of edges as
the edge-extremal graphs in Mgen(i,j). Remember that the number of

edges in an edge-extremal G € Mggnr(i, 7) is given by

wor=c-v0-1+ ] 13

In the case where i is odd, the number of edges in an edge-extremal

G e Mg£N<i7j) is

B@I=G-16-1+(GH |12

The graph that we suggest as an edge-extremal graph in Mcx(3, j) for i odd
is ¢ — 1 copies of K; and one R, 9,;—1. The number of edges of this graph is

(i—l—2’2(i—1)+<q_1)i(i;1) B r(z—1)+@+(q—1)@
— r(¢—1)+q@
_ T(i_1)+q(i—1+21)(¢—1)
= i)+l D) ()
= -1 o]+

I
—
-~
|

—_
N—
Y
<
|

—
N—
_l’_
e
o~
o |
—_
N—
—_—
<
-

L
L

—_
—_

where the last equation holds as q(%) +r=j—1andq= V;}J for 7 odd.

2
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In the case where i is even, the number of edges in an edge-extremal

G e MggN(i,j) 1S

. . i -1
BOI= -G -1+ G- |15
The graph that we suggest as an edge-extremal graph in Mcx(i, j) for i even
is ¢ — 1 copies of R} ,,; ; and one R, ,; ;. The number of edges of this

graph is

(t+2r)(i—1)+ (i —2)
2

i(i—1)4 (i —2)
2

i(i;l) L (i+20)(-1) +q(i;2)

+(g—1)

= (¢—1)

= -1 |- Dy 5 e

= - 1)) (22

2 2 )

_ u—nu—lﬂ*é‘”{jgw

where the last equation holds as q(%) +r=j7—1land qg= szlJ for 7 even.

2

We here showed that the graphs that we suggest as edge-extremal graphs
in Mcz(i,7) have the same number of edges as edge-extremal graphs in
Mgenr(i,7). This is equivalent to say that they reach the upper bound.
Therefore the suggested graphs are edge-extremal in Mcx(1, 7).

There is also a corollary to this theorem in order to underline the importance of

claw-free condition.

Corollary 4.7. If i > 2j, the edge difference between the edge-extremal graphs in
Magen(i,7) and in Mcex(i,j) is (j — 1)(1 — 27).
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Proof. If i > 27, then (%1 > j— 1. This givesgq=0and r =5 — 1.

When i > 27, the edge-extremal graph G € Mggn (7, 7) has |[E(G)| = (i—1)(j—1)
edges. This can be obtained by j — 1 copies of i-star. We also showed that the edge-
extremal graph G € Mcx(i,7) is Kaj_1.

Then the edge difference between the edge-extremal graphs in Mggn(4, j) and in
MC?(L ]) is

-1 -1 - EVEZD gy @G- 1= G- )6 - 2)

Observe that if i = 2j, the edge-extremal graphs in Mgear(7, j) and in Mcx(i, j)
have the same number of edges. However, as the difference i — 25 gets larger, the
edge difference between the edge-extremal graphs in Mgear(7, j) and in Mcxz(7, j) gets
larger. This, in a sense, shows how -stars play a central role in edge-extremal graphs

for the class of general graphs.

4.8. Examples

In this section, we give examples of edge-extremal claw-free graphs for each pos-

sible case. There are 3 possible cases based on our main result:

® i >127
Consider an edge-extremal instance G from the graph family M¢x(12,5). Since
1 > 27, G is unique and G ~ Ky. It is shown in Figure 4.15 and

B(G) = (2 —1)(j—1) = (25— 1)(5— 1) = 36
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Figure 4.15. An edge-extremal instance in M¢x(12,5)

e | <27 and 1 is odd
Consider the graph family M¢#(7,9). We have i =7, j =9, ¢ = 2, and r = 2.
Since ¢ < 27 and 7 is odd, an edge-extremal instance G is K7 U R;1 ¢ where the
graph Ry ¢ will be constructed in the way we described in Section 4.5. The graph
G is shown in Figure 4.16 and

SN
o

V'A X7

X
Figure 4.16. An edge-extremal instance in Mcz(7,9)

e | < 2j and ¢ is even
Consider the graph family Mcx(6,11). We have i =6, j =11, ¢ =3, and r = 1.
Since i < 2j and i is even, an edge-extremal instance G is (2 R 5) U Ry 5 where
the graphs R, 5 and Ry 5 will be constructed in the way we described in Section

4.6. The graph G is shown in Figure 4.17 and

B@)| = -6+ 5| |15 | = G-na-ne | 25| | Fag | =



Figure 4.17. An edge-extremal instance in Mcx(6,11)

45
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5. CONCLUSION

In this chapter, we will point out the results of the thesis, give some general
remarks about the work done and state some open questions for which finding answers

would be valuable for future work.

5.1. Summary

In this thesis, we have looked at edge-extremal graphs with bounded degree and
matching number on the class of claw-free graphs. In particular, we let CF be the
class of claw-free graphs and Mcx(i,j) all graphs G (with no isolated vertex) from
CF satisfying A(G) < ¢ and v(G) < j. We tried to find an answer for: What is the
maximum number of edges a graph in M¢x(i, 7) can achieve, for a given ¢ and j. This
is equivalent to asking for the Ramsey number of line graphs of claw-free graphs. We

managed to solve this problem and achieved our primary purpose.

We explained the solution of the edge-extremal problem on general graphs GEN,
which is due to Balachandran and Khare [1]. This solution has been used in this
thesis as an upper bound for the number of edges of an edge-extremal claw-free graph
because every claw-free graph is also a member of GEN. The edge-extremal graphs
contain claws in most cases; we tried to find claw-free constructions with the same
number of edges as the general case. It was possible for the case ¢+ < 27 while it was

not when ¢ > 2j.

We developed a claw-free construction for r-regular graphs R,, when r is even.
As a by product, we actually created a claw-free construction for odd r too. However,
we did not present it here since it would not serve our purpose: When r is odd, the
number of vertices p must be even in order R, , to exist, but the connected components
of edge-extremal graphs have all odd number of vertices since increasing the number of
vertices by 1 to make it odd does not increase the matching number while increasing

the number of edges.
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We developed a claw-free construction of the graph R, ,,

where p and r odd. This
graph is not, and cannot be, r-regular since p is odd. However, it is the closest graph
to an r-regular graph on p vertices because each vertex has degree r, except one which
is of degree r — 1. We proposed a procedure to construct claw-free R, for each given

p and r, where p and r are odd and where r + 2 < p < 2r + 1 holds.

Using the above constructions, we were able to provide an edge-extremal claw-
free graph for each possible case. For a given ¢ and j, we find the maximum number
of edges a graph in Mcx(i,j) can achieve by constructing an edge-extremal claw-free

graph.

5.2. Final Comments

Graphs are a mathematical way of representing connections or relationships be-
tween objects. They are very useful in modelling and solving real world problems since
they are used in designing, representing and planning the use of networks. Graphs
are also used to represent various problems in coding, telecommunications and parallel

programming.

Study of graph problems on particular graph classes, regardless of their hardness
in the general case, forms an important area of graph theory. In fact, investigating
graph problems on particular graph classes often leads, for instance, to the discovery
of new and very useful structural properties and characterizations of the graph class
in question. These new approaches were then used to produce new and more efficient

algorithms for specific practical problems related to this graph class.

In this thesis, we solved the edge-extremal problem on claw-free graphs even
though its solution on general graphs was already known. We believed that narrowing
the graph class would result in a decrease in the number of edges of an edge-extremal
graph, and we were right. Forbidding the claw graph significantly reduced the number
of edges for most of the cases. On our way to the main result, we have built claw-free

constructions of some graphs.
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During the attempts at proving claims that we made, most of the time, we have
found counter-examples to our conjectures. Each time, we tried to understand the
points that we missed and made new claims. One of our most important assets was
that we had an upper bound for the maximum number of edges for the general case.
Thus, if we could find a claw-free graph whose number of edges reaches that bound, we
could immediately conclude that it is edge-extremal. This point of view led us to search
for graphs in Mcz(7,j) having that number of edges. This also meant proving that
they are claw-free, which required to develop some construction methods. Moreover, it
was not possible for some cases to reach that upper bound. In those cases, we tried to
understand the reason behind this lack of edges, and once found, the proof has come

by itself.

We felt incredibly satisfied while bunching all the subcases together and ulti-
mately finding our main result. We are hoping to have achieved our secondary goal,

which is to draw the reader’s interest and to provide interesting insight on the subject.

5.3. Open Problems

This study on the thesis has revealed some interesting questions and arises several

interesting future research directions:

e In this thesis, we have looked for a solution for the number of edges of an edge-
extremal graph in claw-free graphs family. We have forbidden the edge-extremal
graphs to contain claw-graph as an induced subgraph. The claw-graph, i.e. 4-
star, is the smallest nontrivial star graph (3-star is P and 2-star is P). It would
be interesting to investigate larger star graphs and to find a formula in terms of
the size of the star graph. Can we find an explicit formula in terms of 7, j, and
k, for the maximum number of edges that a graph G can have where A(G) < 1,

v(G) < j and where G does not contain k-star as an induced subgraph?

e We have forbidden the claw-graph because the result for general graphs sug-

gests that an edge-extremal graph contains star graphs in most cases and the
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claw-graph is the smallest nontrivial star graph. The result for general graphs
also suggests that in most cases an edge-extremal graphs contains cliques K; or
nearly-clique components R;,,; ;. The smallest nontrivial clique is K3, which
is the triangle graph. How are the edge-extremal instances for general graphs
affected if we do not allow triangles, instead of claws? Solving the edge-extremal
problem in triangle-free graphs seems to be at least as interesting as in claw-free

graphs. Currently, we are working on this problem.

What if we forbid k-clique? Can we find an explicit formula in terms of 7, j, and
k, for the maximum number of edges that a graph G can have where A(G) < 1,

v(G) < j and where G does not contain k-clique as an induced subgraph, that is
w(G) < k?

Another interesting study would be to solve the edge-extremal problem on chordal
graphs. Finding a solution to this problem was previously attempted in [2]. How-
ever, despite significant efforts put on this problem, the authors state that they

could not solve it within the limited time frame of a master thesis.

The problem is open also for interval graphs, which is a subclass of chordal graphs.
However, we think that solving the edge-extremal problem in interval graphs is
not easier than solving it in chordal graphs. Also, an interval graph is a unit
interval graph if and only if it is claw-free [17] and the edge-extremal problem
has been solved for unit interval graphs in [2]. When we combine their results with
ours, we see that putting the interval condition on claw-free graphs significantly
reduces the number of edges of an edge-extremal graph. For instance, for an
edge-extremal instance G from the graph family M¢#(10,7) the number of edges
is |E(G)| = 58, whereas for an edge-extremal instance G from the graph family

Mynz7(10,7) the number of edges is |E(G)| = 48.



10.

11.

20

REFERENCES

. Balachandran, N. and N. Khare, “Graphs with restricted valency and matching

number”, Discrete Mathematics, Vol. 309, pp. 4176-4180, 2009.

. Maland, E., Maximum number of edges in graph classes under degree and matching

constraints, Master’s Thesis, University of Bergen, Norway, 2015.

. Mantel, W., “Wiskundige Opgaven”, Vol. 10, pp. 60-61, 1906.

. Turan, P., “On an Extremal Problem in Graph Theory”, Mat. Fiz. Lapok, Vol. 48,

pp. 436-452, 1941.

. Erdos, P. and A. H. Stone, “On the Structure of Linear Graphs”, Bull. American

Math. Soc, Vol. 52, pp. 1087-1091, 1946.

Szemerédi, E., “On sets of integers containing no k elements in arithmetic progres-

sion”, Acta Arith., Vol. 27, pp. 199-245, 1975.
Bollobéas, B., Extremal Graph Theory, Dover Publications, New York, 2004.

Simonovits, M., Extremal Graph Theory, Selected Topics in Graph Theory. II,

Academic Press, London, New York, San Francisco, 1983.

Chvatal, V. and D. Hanson, “Degrees and matchings”, J. Combin. Theory Ser.,
Vol. 20, pp. 128-138, 1976.

Sumner, D. P., “Graphs with 1-Factors”, Proc. Amer. Math. Soc., Vol. 42, pp.
8-12, 1974.

Sbihi, N., “Algorithme de Recherche d’un Stable de Cardinalite Maximum dans
un Graphe sans Etoile”, Discrete Mathematics, Vol. 29, pp. 53-76, 1980.



12.

13.

14.

15.

16.

17.

o1

Chvatal, V. and N. Sbihi, “Recognizing claw-free perfect graphs”, J. Combin.
Theory Ser. B, Vol. 44, pp. 154-176, 1988.

Chudnovsky, M. and P. Seymour, “The structure of claw-free graphs”, Surveys in
Combinatorics 2005, London Math. Soc. Lecture Note Ser., Vol. 327, pp. 153-171,
2005.

Chudnovsky, M. and P. Seymour, “Claw-free graphs. IV. Decomposition theorem”,
J. Combinat. Theory Ser. B, Vol. 98, p. 839-938, 2008.

Chartrand, G. and P. Zhang, Chromatic Graph Theory, Chapman & Hall/CRC
Press, Boca Raton, FL, 2009.

Erdos, P. and G. Szekeres, “A combinatorial problem in geometry”, Composito

Math, Vol. 3, pp. 463-470, 1935.

Gardi, F., “The roberts characterization of proper and unit interval graphs”, Dis-

crete Mathematics, Vol. 307, pp. 2906-2908, 2007.





