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ABSTRACT

QUANTIFYING THE RISK OF PORTFOLIOS

CONTAINING STOCKS AND COMMODITIES

In this study, we used copula method in order to model the multivariate return

distributions of stock portfolios and, in this manner, to implement this model for

risk measure evaluations in practice. Copulas are used to describe the dependence

between random variables thus, are enjoyed to model the marginals separately and to

represent the dependence structure between them. We also modeled the multivariate

return distributions of stock portfolios diversified with commodities, precious metals,

crude oil etc. and fitted a set of copulas to the joint return data. With this aim, we

selected 20 stocks from New York Stock Exchange, gold and crude oil and constructed

stock portfolios, stock portfolios with gold, stock portfolios with crude oil and stock

portfolios with gold and crude oil in order to analyze whether the copula method fits the

multivariate return distributions of selected portfolios. In order to check the validity

of the models, we implemented daily and weekly back testing using 20 different α

values. We found that t distribution and generalized hyperbolic distributions are very

nice models for modeling individual financial instruments returns and the t copula is

the best copula to represent the dependence structure between financial instruments

returns. We used this model to calculate the risks of portfolios and observed that

adding gold decreases the risk of portfolios where crude oil behaves like an ordinary

stock.
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ÖZET

HİSSE SENEDİ VE EMTİA İÇEREN PORTFÖYLERİN

RİSK ÖLÇÜMÜ

Bu çalışmada, hisse senedi portföylerinin çok değişkenli dağılımlarını modellemek

ve böylelikle pratikte risk hesaplamaları yapabilmek için kopulaları kullandık. Kopu-

lalar rassal değişkenler arasındaki bağımlılık yapısını tanımlayabilmek için kullanılır,

böylece bileşenlerin ayrı olarak modellenmesinde ve aralarındaki bağımlılık yapısının

temsil edilmesinde yararlanılır. Aynı zamanda emtia, kıymetli metaller, ham petrol vs.

ile çeşitlendirilmiş hisse senedi portföylerinin çok değişkenli dağılımlarını modelledik

ve birleşik getiri verisine bir kopulalar kümesini oturttuk. New York Hisse Senedi Bor-

sası’ndan 20 adet hisse senedi, altın ve ham petrol seçtik ve kopula metodunun seçilmiş

portföylerin çok değişkenli dağılımlarına uygun olup olmadığını analiz etmek için hisse

senedi portföyü, altın ile hisse senedi portföyü, ham petrol ile hisse senedi portföyü

ve altın ve ham petrol ile hisse senedi portföyü oluşturduk. Modellerin uygunluğunu

kontrol etmek için 20 değişik α değeri kullanılarak günlük ve haftalık geriye dönük test

uyguladık. t ve genelleştirilmiş hiperbolik dağılımların tek finansal araç getirilerini

modellemek için çok cazip modeller olduğunu ve t kopulanın finansal araç getirilerinin

aralarındaki bağımlılık yapısın en iyi temsil eden kopula olduğunu gördük. Bu modeli

portföylerin risklerini hesaplamak için kullandık ve ham petrol olağan bir hisse senedi

gibi davranırken, altının portföy riskini azalttığını gözlemledik.
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1. INTRODUCTION

Most references define risk as “the potential that an action or activity (including

the choice of inaction) will lead to a loss (an outcome)”. The risk that originates with

events thousands of miles away that have nothing to do with the domestic market is the

result of increasingly global markets. Information is available instantaneously, which

means that change, and subsequent market reactions, occur very quickly. Therefore,

understanding risk has become an important part of the financial decisions. Especially

in the investment world, risk is considered inseparable from the performance.

A central issue in modern risk management is the selection of the risk measure.

There are different approaches to measure risk; such as Value-at-Risk (VaR) and Con-

ditional Value-at-Risk (CVaR) which is also known as Expected Shortfall. Although

VaR is not a coherent risk measure like CVaR, it is probably the most widely used risk

measure in financial applications. VaR attempts to answer the question,“How much

money might I lose?” based on probabilities and within parameters set by the risk

manager [1].

A portfolio is an investment in several different financial instruments at the same

time. The risk of a portfolio can be calculated by three classical approaches; variance

- covariance method, historical simulation and Monte Carlo simulation. Variance -

covariance method is based on analytical estimation of the volatility of asset returns

and of the correlations between these asset price movements which is the basic para-

metric approach for portfolio risk calculation. Historical simulation in VaR analysis

is a procedure for predicting VaR by simulating or constructing the cumulative distri-

bution function of assets returns over time and is easy to implement and reduces the

risk measure estimation problem to a one dimensional problem. However, it turned

out that these approaches have clear drawbacks and estimate inaccurate risks. The

Monte Carlo method is a rather general name for any approach to risk measurement

that involves the simulation of an explicit parametric model for risk-factor changes [2].
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The usual Monte Carlo method generates random market scenarios assuming that the

risk factors follow a multivariate normal distribution; however the asset returns have

shown that they are far from the normal distribution because of having fat tails and

high kurtosis. To be able to model the dependence between return series adequately,

the use of copulas is considered.

One relevant aspect which is frequently left out from simulation models is the

dependence relationship among the processes under consideration. That omission can

have a serious impact on the results of risk assessment and, consequently, on the

conclusions drawn from them [3]. The idea of copulas was introduced by Sklar [4].

A copula is a multivariate distribution function defined on the n-dimensional unit

hypercube [0, 1]n with uniformly distributed marginals. The main advantage of copula

functions is that they enable us to tackle the problem of specification of marginal

univariate distributions separately from the specification of market comovement and

dependence. Therefore, the idea of copulas has attracted attention for risk calculations

to overcome these problems and to be an alternative to the mentioned approaches. The

most useful copula models for dimensions higher than three are the Gauss and the t

copula. The Gauss copula does not have tail dependence while t copula has both lower

and upper tail dependence. [2]. Thus, it is more appropriate to use the t copula for

model fitting.

The first objective of this study is therefore to model the multivariate return

distributions of stock portfolios by the concept of copula and use this model for risk

measure evaluations in practice utilizing the statistical software R and its useful add-on

packages. The second aim is to observe whether this model fits the multivariate return

distributions of stock portfolios diversified with commodities, precious metals, crude

oil etc. and to analyze whether adding these financial instruments reduces the risk.

The thesis is organized as follows: The basic concepts of risk measuring are

explained with the formal definitions of VaR and CVaR in Chapter 2. The classical

risk calculation methods are also explained shortly. The copula method is introduced in
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Chapter 3 by giving the essential definitions. Simulation from copulas and calculating

risks by Monte Carlo simulation is explained in Chapter 4. Moreover, in Chapter 5,

back testing concept and methods are introduced. We introduce the required data,

selected models and the all steps of the risk quantification in Chapter 5. Finally, in

Chapter 6, we compare the models and present the back testing and risk calculations

results.
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2. BASIC CONCEPTS OF RISK MEASURING

In this section, basic concepts of risk measuring will be explained briefly. First of

all, the concept of financial risk will be given. In the second part, we will talk about risk

measures by giving the explanation of Value-at-Risk and conditional Value-at-Risk. In

the last part, we will give further information about standard methods for portfolio

risk calculation.

2.1. The Concept of Financial Risk

A risk is a potential problem, a situation that, if it materializes, may adversely

affect the project. For financial risks, we might arrive at a definition such as “any event

or action that may adversely affect an organizations ability to achieve its objectives

and execute its strategies” or, alternatively, “the quantifiable likelihood of loss or less-

than-expected returns” [2]. Understanding risk is an important step in determining

how to manage, since eliminating it is not always possible and desirable.

According to A.Horcher [1], financial risk management is a process to deal with

the uncertainties resulting from financial markets. The process of financial risk manage-

ment is an ongoing one. Strategies need to be implemented and refined as the market

and requirements change. In general, the process can be summarized as follows:

• Identify and prioritize key financial risks.

• Determine an appropriate level of risk tolerance.

• Implement risk management strategy in accordance with policy.

• Measure, report, monitor, and refine as needed.

For many years, the riskiness of an asset was assessed based only on the variabil-

ity of its returns. In contrast, modern portfolio theory considers not only an asset’s

riskiness, but also its contribution to the overall riskiness of the portfolio to which it
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is added. Organizations may have an opportunity to reduce risk as a result of risk

diversification [1].

The financial industry considers several types of risks. The most apparent types

of financial risks that an organization faces are the major factor risks such as; foreign

exchange risk, interest rate risk, commodity price risk and equity price risk. Other

important financial risks can be exemplified as credit risk, operational risk, liquidity

risk and systemic risk. The interaction of several risks that are defined above can alter

the potential impact to an organization.

2.2. Risk Measures

The risk of a financial position can be measured with four different approaches;

the notional-amount approach, factor-sensitivity measures, risk measures based on the

loss distribution, risk measures based on scenarios. Most modern measures of the risk

in a portfolio are statistical quantities describing the conditional or unconditional loss

distribution of the portfolio over some predetermined horizon ∆ [2]. Among these

approaches, we will focus on the “risk measures based on the loss distribution” in

which the variance, the Value-at-Risk and the expected shortfall are included.

2.2.1. Value-at-Risk

Value-at-Risk (VaR) has become a key tool for risk management and it has been

a widely accepted risk measure since the 1990s. VaR attempts to answer the question,

“How much money might I lose?” based on probabilities and within parameters set by

the risk manager [1].

Given some confidence level α ∈ (0, 1). The VaR of a portfolio at the confidence

level α is given by the smallest number l such that the probability that the loss L
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exceeds l is no larger than (1− α). Formally,

V aRα = inf {l ∈ R : P (L > l) ≤ 1− α} (2.1)

As it can seen from the definition, V aR is thus simply a quantile of the loss

distribution. Typical values for α are 0.95 or 0.99 regarding various time horizons. It

is also possible to say that V aRα is the loss described by the 1 − α quantile of the

return distribution.

Despite its conceptual simplicity, ease of computation and ready applicability,

VaR has been charged to have several conceptual problems. Among others, Artzner et

al. [5, 6], have mentioned the following shortcomings:

• VaR measures only percentiles of profit-loss distributions and disregards any loss

beyond the VaR level; namely, tail risk.

• VaR is not coherent, since it is not sub-additive.

Sub-additivity is an important property of incremental risk. That is, the sum of

the incremental risks of the positions in a portfolio equals the total risk of the portfolio.

This property has important applications in the allocation of risk to different units,

where the goal is to keep the sum of the risks equal to the total risk [7].

To remedy these shortcomings inherent in VaR that are mentioned above, Artzner

et al. [5] have proposed the use of the expected shortfall.

2.2.2. Conditional Value-at-Risk

Conditional Value at Risk (CVaR), or alternatively Expected shortfall (ES) is a

second risk measure approach which is closely related to VaR. It is preferred by risk

managers because of being sub-additive which assures its coherence as a risk measure
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despite of VaR. Nevertheless, VaR is still popular in the financial world mainly because

of having an intuitive interpretation.

CVaR is the expected amount of loss of a portfolio given that it has exceeded the

VaR in some investment horizon under a given confidence level [8]. Formally;

CV aRα = E (L | L > V aRα) (2.2)

Obviously CV aRα depends only on the distribution of L and obviously ESα ≥

V aRα. For continuous loss distributions an even more intuitive expression can be

derived which shows that expected shortfall can be interpreted as the expected loss

that is incurred in the event that VaR is exceeded [2].

Figure 2.1. An example of a loss distribution with the mean loss and risk measures

V aRα = 0.05, ESα = 0.05.

2.2.3. VaR and ES under normal distribution

According to Yamai and Yoshiba [9], when the profit-loss distribution is normal,

VaR and ES give essentially the same information. Both VaR and ES are scalar

multiples of the standard deviation. Therefore, VaR provides the same information on
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tail loss as does expected shortfall.

On the other hand, VaR may have tail risk if the profit-loss distribution is not

normal. Non-normality of the profit-loss distribution is caused by non-linearity of the

portfolio position or non-normality of the underlying asset prices.

2.3. Standard Methods for Portfolio Risk Calculation

A portfolio is an investment in several stocks at the same time. The idea of

holding a portfolio is reducing the risk according to the well known principle: “Do not

put all eggs into a single basket”. This section includes the problem of estimating risk

measures for the loss distribution of a loss L∆ = S0 − S∆ = S0(1− rl(∆)) where rl(∆)

is the return for time horizon ∆ and S0 is the value of the portfolio at time 0.

The returns of financial assets can be calculated by arithmetic returns, geometric

returns and log returns. In the following sections, we discuss some standard methods

used in the financial industry for measuring the portfolio risk concentrating on log

returns and risk measures VaR and ES.

2.3.1. Variance-Covariance Method (Mean-Variance Method)

This method is also called “Approximate Multi Normal Model” and based on

analytical estimation of the volatility of asset returns and of the correlations between

these asset price movements. It is the basic parametric approach for portfolio risk

calculation. The reason why this method is called “Approximate Multi Normal Model”

is that the portfolio log return is calculated by summing the weighted log returns of the

individual assets although this summing can be done only for the arithmetic returns.

Thus the log returns are approximated as the arithmetic returns since they are very

close to each other around zero [8].

The model is given by Equations 2.3 to 2.6. The random variable for the return
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distribution of asset i is Xi with parameters µi and σi. Its relative amount is wi which

contains the fractions of the total value of the portfolio invested into stock i.

The random variable for the return distribution of the portfolio with d stocks is

Xp and it is the weighted sum of the asset returns. Xp is assumed to have a multi

normal distribution with mean vector µT and covariance matrix Σ. The diagonals

of Σ are the variances of marginal distributions where the non-diagonal elements are

Cov(Xi, Xj) = ρi,jσiσj. Thus, the parameters of the model; means, variances and

correlations, can be easily estimated using historical data.

Xi = N(µi, σ
2
i ), i = 1, . . . , d (2.3)

Xp ≈
d∑
i=1

wiXi = XTw ⇒ Xp ∼ N(µp, σ
2
p),

d∑
i=1

wi = 1 (2.4)

µp =
d∑
i

wiµi = wTµ, σ2
p =

d∑
i=1

d∑
j=1

wiwjρijσiσj = wTΣw (2.5)

Using the definition of the random variate L and the formulas for µp and σp, we can

easily get a simple approximation formula for the VaR [10]:

V aRα ≈ S0(1− eµp∆t+z1−ασp
√

∆t) (2.6)

where z1−α is the 1− α quantile of the standard normal distribution.

The variance-covariance method offers a simple analytical solution to the risk-

measurement problem but this convenience is achieved at the cost of two crude simpli-

fying assumptions. First, linearization may not always offer a good approximation of

the relationship between the true loss distribution and the risk-factor changes, second,

the assumption of normality is unlikely to be realistic for the distribution of the risk-
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factor changes, certainly for daily data and probably also for weekly and even monthly

data.

2.3.2. Historical Simulation

Historical simulation in VaR analysis is a procedure for predicting VaR by simu-

lating or constructing the cumulative distribution function of assets returns over time.

Unlike other VaR methods, historical simulation does not require any assumption about

the distributions of asset returns. This method assumes that the log returns are inde-

pendent and identically distributed (i.i.d.) sequences. For validating this assumption,

it must be checked whether the distribution of the Xi+1 values are influenced by the

Xi values. The log returns of a portfolio can be simulated by randomly selecting the

log returns of one day of the historical data, and then the corresponding risk measure

can be calculated.

This method is easy to implement and reduces the risk measure estimation prob-

lem to a one dimensional problem. No statistical estimation of the multivariate dis-

tribution of X is necessary, and no assumptions about the dependence structure of

risk factor changes are made [2]. Because of having more extremes in the tails, risk

estimates of the historical simulation are expected to be more accurate than the multi

normal model. However, the results of historic simulation are very unstable due to the

small number of data in the tails. This problem gets even more severe when consider-

ing more stocks [10]. The success of this method is dependent on our ability to collect

sufficient quantities of relevant, synchronized data for all risk factors. Whenever there

are gaps in the risk-factor history, or whenever new risk factors are introduced into the

modeling, there may be problems to fill the gaps and complete the historical record.

These problems will tend to reduce the effective value of n and mean that empirical

estimates of VaR and expected shortfall have very poor accuracy [2].
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2.3.3. Monte Carlo Method

The Monte Carlo method is a rather general name for any approach to risk

measurement that involves the simulation of an explicit parametric model for risk factor

changes. As such, the method can be either conditional or unconditional depending on

whether the model adopted is a dynamic time series model for risk factor changes or a

static distributional model [2].

The Monte Carlo method is used to calculate the expected value or in other words

the mean of a certain random variate. The result of the single run of a simulation is

one realization x of the output random variate X. To estimate the mean value of that

output random variate; the average of all generated variates Xi for i = 1, . . . , n can be

simply used. For that sample average;

X̄ =
1

n

n∑
i

Xi (2.7)

The sample mean can be used as estimator for µ

µ̂ = X̄ (2.8)

X̄ is the best unbiased estimate for µX . E(X̄) = µX and V ar(X̄) = σ2/n guarantee

that the simulation leads close to a correct result. The main problem is the size of the

error. By the central limit theorem (CLT) for random samples from a population with

mean µX and finite variance σ2
X , the sample mean distribution converges to the normal

distribution. Thus the following result can be used:

P (|µX − X̄| > F−1
N (1− α

2
) · s√

n
) = α (2.9)

where F−1
N (.) denotes the inverse cumulative distribution function (CDF) of the stan-

dard normal distribution. It is obvious that this error bound based on the convergence

result of the CLT need not be close to correct for small sample sizes [10]. This method
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will be introduced in more detail in the next chapters.
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3. COPULA

In the previous chapter, we have seen some classical approaches for risk esti-

mation. We have also realized that they have clear drawbacks. The idea of copulas

attracted more attention by being an alternative to the mentioned approaches.

To be able to model the interdependence between return series in an adequate way

one might consider the use of copulas [11]. Copulas have become an important tool in

finance with various applications, e.g., risk management, derivative pricing, portfolio

management, etc. A copula is a multivariate distribution with uniform marginals.

The idea is that a copula just describes the relation between random variates without

including its marginal distribution [12].

A great advantage of the copula model is the separate modeling of the dependence

and the marginal behavior of the univariate series. Another great advantage is that the

marginal distributions do not have to be similar to each other so that each marginal

distribution can be modeled separately [11]. These advantages of copulas are useful

in risk management, where we very often have a much better idea about the marginal

behavior of individual risk factors than we have about their dependence structure.

The copula approach allows us to combine our more developed marginal models with

a variety of possible dependence models and to investigate the sensitivity of risk to the

dependence specification. Since the copulas, we present are easily simulated, they lend

themselves in particular to Monte Carlo studies of risk [2].

3.1. Basic Definitions

An d dimensional copula is a distribution function on [0, 1]d with standard uniform

marginal distributions. A function C : [0, 1]d → [0, 1] is an d-copula (d-dimensional

copula) if it enjoys the following properties:
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• C(u1, . . . , ud) is increasing in each component ui

• C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1]

• For all (ai, . . . , ad), (bi, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

. . .

2∑
id=1

(−1)i1+...+idC(u1i1 , . . . , udid) ≥ 0, (3.1)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.

The first property is required for any multivariate density functions while the

second property is required for uniform marginal distributions. The third property,

called the rectangle property, ensures that if the random vector (U1, . . . , Ud) has CDF

C then, P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd) is non-negative. If a function fulfills these

properties, then it is a copula.

A multivariate distribution function is constructed by choosing a copula and

some marginals, then structuring it in the right way. The importance of copulas in the

study of multivariate distribution function (dfs) is summarized by the following elegant

theorem.

Theorem 3.1 (Sklar’s Theorem, 1959). Let F be a joint distribution function with

margins F1, . . . , Fn. Then there exists a copula C : [0, 1]n → [0, 1] such that, for all

x1, . . . , xd in R = [−∞,∞],

F (x1, . . . , xd) = C(F1(x1), . . . , Fn(xd)) (3.2)

If the margins are continuous, then C is unique; otherwise C is uniquely determined

on Ran F1× Ran F2 × . . .× Ran Fd, where Ran Fi = Fi(R̄) denotes the range of Fi.

Conversely, if C is a copula and F1,. . .,Fd are univariate distribution functions, then

the function F defined above is a joint distribution function with margins F1,. . .,Fd.
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3.1.1. Copula of F (Frey, McNeil, Nyfeler, 2001)

We extract a unique copula C from a multivariate dfs F with continuous margins

Fd, . . . , Fd by calculating

C(u1, . . . , un) = F (F−1(u1), . . . , F−n(ud)) (3.3)

where F−1
1 , . . . , F−1

d are (generalized) inverses of F1, . . . , Fd. We call C the copula of

F , or of any random vector with distribution function F .

3.1.2. Fréchet-Hoeffding Bounds for Joint Distribution Functions

According to Nelsen (2006) [13], Fréchet-Hoeffding Bounds are universal bounds

for copulas, i.e., for any copula C and for all u, v ∈ [0, 1],

W (u, v) = max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v) (3.4)

As a consequence of Sklar’s theorem, if X and Y are random variables with a joint

distribution function H and margins F and G, respectively, then for all x, y in R,

max(F (x) +G(y)− 1, 0) ≤ H(x, y) ≤ min(F (x), G(y)) (3.5)

Because M and W are copulas, the above bounds are joint distribution functions and

are called the Fréchet-Hoeffding bounds for joint distribution functions H with margins

F and G.

3.1.3. Examples of Copulas

There is a number of examples provided in this section including fundamental

copulas, implicit copulas, explicit copulas and survival copulas. Before going further,

giving the properties of some multivariate distributions will be informative to better
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understand the examples of copulas.

Multivariate Normal Distribution

The d-dimensional random vector X = (X1, ..., Xd) is said to have a (non-

singular) multivariate Normal distribution with mean vector µ and positive definite

matrix Σ, denoted X ∼ Nd(µ,Σ), if its density is given by;

f(x) =
1

(2Π)N/2|Σ|1/2
· exp

(
−(x− µ)′Σ−1(x− µ)

2

)
(3.6)

Multivariate Student’s t Distribution

Particularly in finance and risk management, Student’s t distribution has been

used instead of the normal distribution, because of its fat tail behavior, which can be

applied to capture financial extreme events [14].

A d-dimensional random vector X = (X1, ..., Xd) is said to have a (non-singular)

multivariate Student’s t distribution with mean vector µ, positive definite matrix Σ

and with v degrees of freedom, denoted X ∼ td(µ,Σ, v), if its density is given by;

f(x) =
Γ(v+d

2
)

Γ(v
2
)(πv)d/2|Σ|1/2

· exp
(

1 +
(x− µ)′Σ(x− µ)

v

)− v+d
2

(3.7)

The multivariate Student’s t distribution belongs to the class of multivariate normal

variance mixtures and has the representation

Xd = µ+
√
WZ (3.8)

where Z ∼ Nd(0,Σ) and W is independent of Z and satisfies v/W ∼ χ2
v, equivalently

W has an inverse gamma distribution W ∼ IG(v/2, v/2) [11].
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Multivariate Generalized Hyperbolic distributions

The random vector X is said to have a multivariate generalized hyperbolic dis-

tribution (GHD) if

X = µ+Wγ +
√
WAZ (3.9)

where

(i) Z ∼ Nk(0, Ik)

(ii) A ∈ Rd×k

(iii) µ, γ ∈ Rd

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and has a

Generalized Inverse Gaussian distribution, written GIG(λ, χ, ϕ).

The parameters of a GHD distribution given by the above definition admit the

following interpretation:

• λ, χ, ϕ determine the shape of the distribution. That is, how much weight is

assigned to the tails and to the center. In general, the larger those parameters

the closer the distribution is to the normal distribution.

• µ is the location parameter.

• Σ = AA′ is the dispersion parameter.

• γ is the skewness parameter. If γ = 0 then the distribution is symmetric around

µ.

From the definition of GHD, we can observe that the conditional distribution of X|W =

w is normal;

X|W = w ∼ Nd(µ+ wγ,wΣ) (3.10)
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where Σ = AA′. Because of this, it is also called normal mean-variance mixture

distribution.

The expected value and the variance are given by

E[X] = µ+ E[W ]γ (3.11)

V ar(X) = E[W ]Σ + V ar(W )γγ′ (3.12)

when the mixture variable W has finite variance V ar(W ) [15].

Since the conditional distribution of X given W is Gaussian with mean µ+Wγ

and variance WΣ the GH density can be found by mixing X|W with respect to W .

f(x) = c ·
Kλ−d/2

(√
(χ+ (x− µ)′Σ−1(x− µ))(ϕ+ γ′Σ−1γ)

)
e((x−µ)′Σ−1γ)(√

(χ+ (x− µ)′Σ−1(x− µ))(ϕ+ γ′Σ−1γ)
)d/2−λ (3.13)

where the normalizing constant c is given by,

c =
(
√
χϕ)−λϕλ(ϕ+ γ′Σ−1γ)d/2−λ

(2π)d/2|Σ|1/2Kλ(
√
χϕ)

(3.14)

The GHD contains several special cases known under special names.

• If λ = d+1
2

the name generalized is dropped and we have a multivariate hyperbolic

(hyp) distribution. The univariate margins are still GH distributed. Inversely,

when λ = 1 we get a multivariate GHD with hyperbolic margins.

• If λ = −1
2

the distribution is called Normal Inverse Gaussian (NIG).

• If χ = 0 and λ > 0 one gets a limiting case which is known amongst others as

Variance Gamma (VG) distribution.
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• If ϕ = 0 and λ < 0 the generalized hyperbolic Student’s t distribution is obtained

(called simply Student’s t).

There are several alternative parameterizations for the GH distribution. One

of the mostly used representation is the (λ, χ, ϕ, µ,Σ, γ) parametrization which is ob-

tained as the normal mean-variance mixture distribution when W ∼ GIG(λ, χ, ϕ).

However, this parametrization has an identification problem. Indeed, the distributions

GHDd(λ, χ, ϕ, µ,Σ, γ) and GHDd(λ, χ/k, kϕ, µ, kΣ, kγ) are identical for any k > 0.

Therefore, an identifying problem occurs when we start to fit the parameters of a GH

distribution to data. This problem may be solved by introducing a suitable constraint.

When the GHD was introduced in Barndorff-Nielsen (1977), the (λ, α, µ,∆, δ, β)

parametrization for the multivariate case was used:

fx(x) =
(α2 − β′∆β)λ/2

(2π)(d/2)
√
|∆|αλ−d/2δλKλ(δ

√
α2 − β′δβ)

×
Kλ−d/2(α

√
δ2 + (x− µ)′∆−1(x− µ))eβ

′(x−µ)

(
√
δ2 + (x− µ)′∆−1(x− µ))d/2−λ

(3.15)

Similar to the (λ, χ, ϕ, µ,Σ, γ) parametrization, there is an identification problem

which can be solved by constraining the determinant of ∆ to 1 [15]. The univariate

case of the above expression is the most widely used parametrization of the GHD in

literature.

The GHD is closed under linear transformations which seems a useful property

for portfolio management. If X ∼ GHDd(λ, χ, ϕ, µ,Σ, γ) and Y = BX + b where

B ∈ Rk×d and b ∈ Rk, then Y ∼ GHDk(λ, χ, ϕ,Bµ + b, BΣB′, Bγ) which means

that the linear transformations of GHD still remain in the GHD class. Thus, if we set

B = wT = (w1, w2, . . . , wd) and b = 0, then the portfolio y = wTX is a one-dimensional
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GHD:

y ∼ GHD1(λ, χ, ϕ, wTµ,wTΣw,wTγ) (3.16)

3.1.3.1. Fundamental copulas. These copulas represent a number of important special

dependence structures. The independence copula is

Π(u1, . . . , ud) =
d∏
i=1

ui (3.17)

Random variables with continuous distributions are independent if and only if their

dependence structure is given by (3.6).

The comonotonicity copula is the Fréchet upper bound copula which represents

perfect dependence

M(u1, . . . , ud) = min{u1, . . . , ud} (3.18)

Observe that this special copula is the joint df of the random vector (U, . . . , U), where

U ∼ U(0, 1).

The countermonotonicity copula is the two-dimensional Fréchet lower bound cop-

ula

W (u1, u2) = max(u1 + u2 − 1, 0) (3.19)

This copula is the joint df of the random vector (U, 1− U), where U ∼ U(0, 1).

3.1.3.2. Implicit copulas. If X ∼ Nd(µ,Σ) is a Gaussian random vector, then its

copula is a so-called Gauss copula, or alternatively Normal copula. The Gauss copula

is perhaps the most popular elliptical copula in applications. For a given correlation
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Figure 3.1. Distribution function plots of three fundamental copulas: (a),(d)

countermonotonicity, (b),(e) independence and (c),(f) comonotonicity.

matrix Σ ∈ Rdxd, the Gauss copula with parameter matrix Σ can be written as,

CGauss
Σ (u) = ΦΣ(Φ−1(u1), . . . ,Φ−1(ud)) (3.20)

where Φ−1 is the inverse cumulative distribution function of a standard normal and

ΦΣ is the joint cumulative distribution function of a multivariate normal distribution

with mean vector zero and covariance matrix equal to the correlation matrix Σ. The

density can be written as;

CGauss
Σ (u) =

1√
detΣ

exp


−1

2



Φ−1(u1)

.

.

.

Φ−1(ud)



T

· (Σ−1 − I) ·



Φ−1(u1)

.

.

.

Φ−1(ud)




(3.21)

where I is the identity matrix [16].

Note that both the independence and comonotonicity copulas are special cases of
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the Gauss copula. If Σ = Id, we obtain the independence copula; if Σ = Jd, the d× d

matrix consisting entirely of ones, then we obtain comonotonicity. Also, for d = 2 and

Σ = −1 the Gauss copula is equal to the countermonotonicity copula.

The t− copula is another popular model which is derived in a similar way as the

Gauss copula. It is an elliptical copula derived from the multivariate t-distribution.

According to Sklar’s Theorem, the t − copula of the random vector u ∈ [0, 1]d can be

expressed as;

Ct
v,ρ(u) = tdv,ρ(t

−1
v (u1), . . . , t−1

v (un))

where ρi,j = Σi,j/
√

Σi,iΣi,j with i, j ∈ 1, . . . , n. tnv,ρ(.) denotes the distribution function

F , t−1
v represents the inverse of the marginal t-distribution function F−1

i and v corre-

sponds to the degree of freedom [12]. For estimation purposes it is useful to note that

the density of the t− copula has the form;

ctv,ρ(u1, . . . , ud) =
1√
|ρ|

Γ(v+d
2

)[Γ(v
2
)]d−1

[Γ(v+1
2

)]d

∏d
k=1(1 +

y2k
v

)
v+1
2

(1 + y′ρ−1y
v

)
v+d
2

(3.22)

As in the case of the Gauss copula, if ρ = Jd then we obtain comonotonicity. However,

in contrast to the Gauss copula, if ρ = Id we do not obtain the independence copula

(assuming v <∞) since uncorrelated multivariate t-distributed random variables (rvs)

are not independent.

Since the t-distribution tends to normal distribution when v goes to infinity, the

t-copula also tends to the normal copula as v → +∞ [17].

v → +∞⇒ supu∈[0,1]n|Ct
v,ρ(u)− CGauss

Σ (u)| → 0 (3.23)

3.1.3.3. Explicit copulas. While the Gauss and t-copulas are implied by well-known

multivariate dfs and do not have a simple closed forms, we can write down a number
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of copulas which do have simple closed forms. An example is the bivariate Gumbel

copula:

CGu
θ (u1, u2) = e−((−lnu1))θ+(−lnu2))θ)

1
θ , 1 ≤ θ ≤ ∞ (3.24)

A further example is the bivariate Clayton copula:

CCI
θ (u1, u2) = (uθ1 + uθ1 − 1)

−1
θ , 0 ≤ θ ≤ ∞ (3.25)

3.1.3.4. Survival copulas. Let X be a random vector with multivariate survival func-

tion F̄ , marginal dfs F1, . . . , Fd and marginal survival functions F̄1, . . . , F̄d i.e. F̄i =

1− F̄i. We have the identity

F̄ (x1, . . . , xd) = Ĉ(F1(x1), . . . , Fd(xd)) (3.26)

for a copula Ĉ, which is known as a survival copula. In general, the term survival

copula of a copula C will be used to denote the df of 1− U when U has df C.

3.2. Dependence Measures

There exist different methods to measure the dependence between random vari-

ables. In the following section, three kinds of dependence will be explained; the usual

Pearson linear correlation and copula based dependence measures; rank correlation and

the coefficients of tail dependence. All these dependences measures yield a scalar mea-

surement for a pair of random variables (X1, X2) although the nature and properties

of the measure are different in each case [2].
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3.2.1. Linear Correlation

Correlation can refer to any departure of two or more random variables from

independence, but technically it refers to any of several more specialized types of rela-

tionship between mean values. There are several correlation coefficients, often denoted

ρ or r, measuring the degree of correlation. The most common of these is the Pear-

son correlation coefficient, which is sensitive only to a linear relationship between two

variables (which may exist even if one is a nonlinear function of the other) [18].

Given two rvs X1 and X2, the linear correlation coefficient is defined as:

ρ(X1, X2) =
Cov(X1, X2)√
V ar(X1)V ar(X2)

(3.27)

where Cov denotes covariance and V ar denotes the variance. The Pearson correlation

is defined only if both variances are nonzero. If X1 and X2 are independent, then

ρ(X1, X2) = 0, but it should be well known to all users of correlation that the converse is

false: the uncorrelatedness of X1 and X2 does not in general imply their independence.

The correlation coefficient takes values between -1 and 1, namely, ρ ∈ [−1, 1].

If |ρ(X1, X2)| = 1, then X1 and X2 are perfectly linearly dependent, meaning that

X2 = α+ βX1 almost surely for some α ∈ R and β 6= 0, with β > 0 for positive linear

dependence and β < 0 for negative linear dependence.

Another important remark is that correlation is only defined when the variances

of X1 and X2 are finite. This restriction to finite variance models is not ideal for a

dependence measure and can cause problems when we work with heavy-tailed distri-

butions [2]. Since the financial asset returns are not normal and have heavy tails, using

the linear correlation coefficient can cause problems. Thus, it is necessary to search for

other dependence measures.
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3.2.2. Rank Correlation

The main problem in financial management is comparing the probability that the

prices of two or more assets rise (or fall) together with the probability that one of the

assets rises (falls) while the other one falls (rises). If they move in the same direction

without regarding up or down, this is called concordance. Mathematically, two points

in R2 denoted by (x1, x2) and (x̃1, x̃2), are said concordant if (x1, x̃1)(x2, x̃2) > 0 and to

be discordant if (x1, x̃1)(x2, x̃2) < 0. The rank correlation measures; Kendall’s tau and

Spearman’s rho deal with measuring the concordance of rvs. The reason for looking at

rank correlations in this thesis is that they can be used to calibrate copulas to empirical

data.

3.2.2.1. Kendall’s tau. Let (X1, X2) and (X̃1, X̃2) be two independent pairs of random

variables from F , then Kendall’s rank correlation is given by [19];

ρτ (X1, X2) = P ((X1 − X̃1)(X2 − X̃2) > 0]− P [(X1 − X̃1)(X2 − X̃2) < 0) (3.28)

If X2 tends to increase with X1, then we expect the probability of concordance to be

high relative to the probability of discordance; if X2 tends to decrease with increasing

X1, then we expect the opposite.

For continuous random variables, Kendall’s tau can be rewritten as:

ρτ (X1, X2) = 2P ((X1 − X̃1)(X2 − X̃2) > 0)− 1 (3.29)

From this equation, it can be seen that Kendall’s tau varies between -1 and 1.

3.2.2.2. Spearman’s rho. It is simply the linear correlation of the probability trans-

formed rvs, which for continuous rvs is the linear correlation of their unique copula. Let

X1 and X2 be rvs with marginal distribution functions F1 and F2 and joint distribution
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function F . Spearman’s rank correlation is defined by

ρS(X1, X2) = ρ(F1(X1), F2(X2)), (3.30)

where ρ is the usual linear correlation [19].

Spearman’s rho matrix for the general multivariate random vector X is given by

ρS(X) = ρ(F1(X1), . . . , F2(Xd)) and must again be positive semidefinite.

Considering two random variables X1 and X2 with marginal distributions F1 and

F2, Spearman’s rho equals:

ρS = ρ(F1(X1), F2(X2)) =
Cov(F1(X1), F2(X2))√
V ar(F1(X1))V ar(F2(X2))

(3.31)

Kendall’s tau and Spearman’s rho have the followings properties in common:

• They are both symmetric dependence measures taking values in the interval [-1,1]

• They give the value zero for independent rvs, although a rank correlation of 0

does not necessarily imply independence.

• It can be shown that they take the value 1 when X1 and X2 are comonotonic and

the value -1 when they are countermonotonic.

3.2.3. Coefficient of Tail Dependence

If we are particularly concerned with extreme values an asymptotic measure of

tail dependence can be defined for pairs of random variables X1 and X2. If the marginal

distributions of these random variables are continuous then this dependence measure

is also a function of their copula, and is thus invariant under strictly increasing trans-

formations.

Let X1 and X2 be random variables with distribution functions F1 and F2. By
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definition, the coefficient of (upper) tail dependence of X1 and X2 is

λU = lim
α→1−

P (X2 > F−1
2 (α)|X1 > F−1

1 α) (3.32)

provided a limit λ ∈ [0, 1] exists. λU can also be interpreted in terms of VaR with the

probability level α. If λ ∈ (0, 1], X1 and X2 are said to be asymptotically dependent

(in the upper tail) and if λ = 0 they are asymptotically independent [19].

Analogously, the coefficient of lower tail dependence is

λL = lim
α→0+

P (X2 < F−1
2 (α)|X1 < F−1

1 α). (3.33)

If F1 and F2 are continuous dfs, then we get simple expressions for λL and λU in

terms of the unique copula C of the bivariate distribution. Using elementary conditional

probability, we have the lower tail dependence;

λL = lim
α→0+

P [X2 < F−1
2 (α), X1 < F−1

1 α]

P (X1 < F−1
1 α)

= lim
α→0+

C(α, α)

α
(3.34)

For upper tail dependence we obtain;

λU = lim
α→1−

Ĉ(1− α, 1− α)

1− α)
= lim

α→0+

Ĉ(α, α)

α
(3.35)

where Ĉ is the survival copula of C. For radially symmetric copulas we must have

λL = λU , since C = Ĉ for such copulas [2].

The Gauss copula is asymptotically independent in both tails. To evaluate the

tail-dependence coefficient for the Gauss copula CGauss
Σ , let (X1, X2) := (φ−1(U1), φ−1(U2)),

so that (X1, X2) has a bivariate normal distribution with standard margins and corre-
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lation ρ.

λ = 2 lim
α→0+

P (φ−1(U2) < φ−1(α)|φ−1(U1) < φ−1(α)) = 2 lim
α→0+

P (X2 < x|X1 = x)

(3.36)

Using the fact that X2|X1 = x ∼ N(ρx, 1− ρ2), it can be calculated that

λ = 2 lim
α→−∞

Φ(x
√

1− ρ/
√

1 + ρ) = 0 (3.37)

provided ρ < 1. Regardless of how high a correlation we choose, if we go far enough

into the tail, extreme events appear to occur independently in each margin.

To evaluate the tail dependence coefficient for the t-copula Ct
υ,ρ, let (X1, X2) :=

(t−1
υ (U1), t−1

υ (U2)) where tυ denotes the df of a univariate t distribution with υ degrees

of freedom. Thus (X1, X2) ∼ t2(υ, 0, P ), where P is a correlation matrix with off-

diagonal element ρ. By calculating the conditional density from the joint and marginal

densities of a bivariate t distribution, it may be verified that, conditional on X1 = x,

(
υ + 1

υ + x2

)1/2
X2 − ρx√

1− ρ2
∼ tυ+1 (3.38)

Using an argument similar in the Gauss copula, we find that

λ = 2tυ+1

(
−

√
(υ + 1)(1− ρ)

1 + ρ

)
(3.39)

Provided that ρ > −1, the copula of the bivariate t-distribution is asymptotically

dependent in both the upper and the lower tail [2].

3.3. Fitting Copulas to Data

Copulas represent a powerful tool for tackling the problem of how to describe a

joint distribution by letting the researcher deal separately with the needs of marginal

and joint distribution modeling. Thus, one can choose for each data series the marginal
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distribution that best fits the sample, and afterward put everything together using a

copula function with some desirable properties [20].

We assume that we have data vectors X1, . . . , Xn with identical distribution func-

tion F , describing financial risk factor returns; we write Xt = (Xt,1, . . . , Xt,d)
′ for an

individual data vector and X = (X1, . . . , Xd)
′ for a generic random vector with df

F . We assume further that this df F has continuous margins F1, . . . , Fd and thus, by

Sklar’s Theorem, a unique representation F (x) = C(F1(x1), . . . , Fd(xd)) [2].

Finding a good multivariate model that describes both marginal behavior and

dependence structure effectively is a difficult issue especially in higher dimensions.

Since the copula approach to multivariate models facilitates this approach and allows

us to consider the issue of whether tail dependence appears to be present in our data.

From a statistical point of view, a copula function is basically a very simple ex-

pression of a multivariate model and, as for most multivariate statistical models, much

of the classical statistical inference theory is not applicable. There are various methods

for estimating the parameters θ of a parametric copula Cθ. For instance, method-of-

moments procedure using sample rank correlation estimates is a simple method which

has the advantage that marginal distributions do not need to be estimated, and con-

sequently inference about the copula is in a sense “margin-free”. However, the main

method that can be applied is maximum likelihood estimation (MLE).

3.3.1. Maximum Likelihood Method

While estimating margins and copula in one single optimization, splitting the

modeling into two steps can yield more insight and allow a more detailed analysis of

the different model components. In the first step, general approaches of estimating

margins and constructing a pseudo-sample of observations from the copula will be

described briefly.
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Let F̂1, . . . , F̂d denote estimates of the marginal dfs. The pseudo-sample from the

copula consists of the vectors Û1, . . . , Ûn where

Ût = (Ut,1, . . . , Ut,d) = (F̂1(Xt,1), . . . , F̂d(Xt,d))
′ (3.40)

Observe that, even if the original data vectors X1, . . . , Xn are iid, the pseudo-sample

data are generally dependent, because the marginal estimates F̂i will in most cases

be constructed from all of the original data vectors through the univariate samples

X1,i, . . . , Xn,i. Possible methods for obtaining the marginal estimate F̂i include the

following.

(i) Parametric estimation: We choose an appropriate parametric model for the data

in question and fit it by ML: for financial risk factor return data we might consider

the generalized hyperbolic distribution, or one of its special cases such as Student

t or normal inverse Gaussian. In our study, we have made the experiments using

generalized hyperbolic and Student t distribution.

(ii) Non-parametric estimation with variant of empirical df: We could estimate Fj

using

F ∗i,n(x) =
1

n+ 1

n∑
t=1

I{Xt,i≤x} (3.41)

Let Cθ denote a parametric copula, where θ is the vector of parameters to be

estimated. The MLE is obtained by maximizing,

lnL(θ; Û1, . . . , Ûn) =
n∑
t=1

lncθ(Ût) (3.42)

with respect to θ, where cθ denotes the copula density and Ût denotes a pseudo-

observation from the copula.

Obviously the statistical quality of the estimates of the copula parameters de-

pends very much on the quality of the estimates of the marginal distributions used in
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the formation of the pseudo-sample from the copula.

When margins are estimated parametrically, inference about the copula using

(3.42) amounts to what has been termed the inference-functions for margins (IFM).

When margins are estimated non-parametrically, the estimates of the copula parame-

ters may be regarded as semi parametric and the approach has been labeled pseudo-

maximum likelihood [2].

The MLE is generally found by numerical maximization of the resulting log-

likelihood with respect to the parameters. The ML method could be very computa-

tionally intensive, especially in the case of a high dimension, because it is necessary

to estimate jointly the parameters of the marginal distributions and the parameters of

the dependence structure represented by the copula.

3.3.2. Inference Functions for Margins (IFM)

The log-likelihood function that is estimated is composed into two positive terms:

one term involving the copula density and its parameters, and one term involving the

margins and all parameters of the copula density. For that reason, Joe and Xu (1996)

proposed that these set of parameters should be estimated in two steps:

(i) As a first step, they estimate the margins’ parameters θ1 by performing the

estimation of the univariate marginal distributions:

θ̂1 = ArgMaxθ1

T∑
t=1

n∑
j=1

lnfj(xjt; θ1) (3.43)

(ii) As a second step, given θ1, they perform the estimation of the copula parameter

θ2.

θ̂2 = ArgMaxθ2

T∑
t=1

lnC(F1(x1t), . . . , Fn(xnt); θ1, θ̂1) (3.44)



32

This method is called inference for the margins or IFM. The IFM estimator is defined

as the vector:

θ̂IFM = (θ̂1, θ̂2)′ (3.45)

We call l the entire log-likelihood function, lj the log-likelihood of the jth marginal,

and lc the log-likelihood for the copula itself. Hence, the IFM estimator is the solution

of:

(
∂l1
∂θ11

,
∂l2
∂θ12

, . . . ,
∂ln
∂θ1n

,
∂lc
∂θ2

) = 0′ (3.46)

while the MLE comes from solving

(
∂l

∂θ11

,
∂l

∂θ12

, . . . ,
∂l

∂θ1n

,
∂l

∂θ2

) = 0′ (3.47)

so, the equivalence of the two estimators, in general, does not hold. It is simple to see

that the IFM estimator provides a good starting point for obtaining an exact MLE [20].

For estimating the normal and t copula, we can use the corresponding densities

that we have explained before. In the case of the Gauss copula, the log-likelihood

becomes;

lnL(Σ; Û1, . . . , Ûn) =
n∑
t=1

lnfΣ(Φ−1(Ût,1), . . . ,Φ−1(Ût,d))−
n∑
t=1

d∑
j=1

lnφ(Φ−1(Ût,j)),

(3.48)

where fΣ is used to denote the joint density of a random vector with Nd(0,Σ) distribu-

tion. It is clear that the second term is not relevant in the maximization with respect

to P , and the MLE is given by

P̂ = ArgMaxΣ∈ρ

n∑
t=1

lnfΣ(Yt) (3.49)
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where Yt,j = Φ−1(Ût,j) for j = 1, . . . , d and ρ denotes the set of all possible linear corre-

lation matrices. To perform this maximization in practice, we can search over the set of

unrestricted lower-triangular matrices with ones on the diagonal. This search is feasible

in low dimensions but very slow in high dimensions, since the number of parameters is

O(d2). Instead of maximizing over ρ, we maximize over the set of all covariance matri-

ces. This maximization problem has the analytical solution Σ̂ = (1/n)Σn
t=1YtY

′
t , which

is the MLE of the covariance matrix Σ for iid normal data with Nd(0,Σ) distribution.

In practice, Σ̂ is likely to be close to a correlation matrix. As an approximate solution

to the original problem we could take the correlation matrix [2].

In the case of the t copula, the log-likelihood becomes;

lnL(v, P ; Û1, . . . , Ûn) =
n∑
t=1

lngv,P (t−1
v (Ût,1), . . . , t−1

v (Ût,d))−
n∑
t=1

d∑
j=1

lngv(t
−1
v (Ût,j)),

(3.50)

where gv,P denotes the joint density of a random vector with td(v, 0, P ) distribution,

P is a linear correlation matrix, gv is the density of a univariate t1(v, 0, 1) distribution,

and t−1
v is the corresponding quantile function.

In relatively low dimensions, we could search over the set of correlation matrices

P and degrees of freedom parameter v for a global maximum. For higher dimensional

cases it would be easier to estimate P using Kendall’s tau estimates and to estimate

the single parameter v by maximum likelihood.
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4. MONTE CARLO SIMULATION IN FINANCE

Monte Carlo methods are used in finance to value and analyze instruments, port-

folios and investments by simulating the various sources of uncertainty affecting their

value, and then determining their average value over the range of resultant outcomes

by the help of stochastic asset models [21]. This method helps us seeing all the possible

outcomes of our decisions and assess the impact of risk, allowing for better decision

making under uncertainty.

Monte Carlo methods are based on the analogy between probability and volume.

The mathematics of measure formalizes the intuitive notion of probability, associating

an event with a set of outcomes and defining the probability of the event to be its

volume or measure relative to that of a universe of possible outcomes. Monte Carlo

uses this identity in reverse, calculating the volume of a set by interpreting the volume

as probability. In the simplest case, this means sampling randomly from a universe

of possible outcomes and taking the fraction of random draws that fall in a given set

as an estimate converges to the correct value as the number of draws increases. The

central limit theorem provides information about the likely magnitude of the error in

the estimate after a finite number of draws.

A small step takes us from volumes to integrals. Consider the problem of es-

timating the integral of a function f over the unit interval. We may represent the

integral;

α =

∫ 1

0

f(x)dx (4.1)

as an expectation E[f(U)] with U uniformly distributed between 0 and 1. Suppose we

have U1, U2, . . . independently and uniformly from [0,1]. Evaluating the function f at
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n of these random points and averaging the results produces the Monte Carlo estimate

α̂n =
1

n

n∑
i=1

f(Ui) (4.2)

If f is integrable over [0,1] then, by the strong law of large numbers, α̂n → α with prob-

ability 1 as n→∞ then the error α̂n−α in the Monte Carlo estimate is approximately

normally distributed with mean 0 and standard deviation σf/
√
n, the quality of this

approximation is improving with increasing n. The parameter σf would typically be

unknown in a setting in which α is unknown, but it can be estimated using the sample

standard deviation

sf =

√√√√ 1

n− 1

n∑
i=1

(f(Ui)− α̂n)2 (4.3)

Hence, in this estimate, we obtain also a measure of the error from the functions

f(U1), . . . , f(Un) [22].

4.1. Calculating VaR by Monte Carlo Simulation

Estimating loss probabilities and VaR by simulation is conceptually simple and

can be illustrated by the following algorithm:

• For each of n independent replications

(i) generate a vector of ∆S

(ii) revalue portfolio and compute loss V (S, t)− V (S + ∆S, t+ ∆t)

• Estimate P (L > x) using

1

n

n∑
i=1

1{Li > x} (4.4)

where Li is the loss on the ith replication.
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The simulation algorithm above estimates the loss probabilities P (L > x) rather than

VaR [22].

Let F̂L,n denote the empirical distribution of portfolio losses based on n simulated

replications,

F̂L,n(x) =
1

n

n∑
i=1

1{Li ≤ x}. (4.5)

A simple estimate of the VaR at probability p (e.g., p = 0.01) is the empirical quantile

x̂p = F̂−1
L,n(1− p) (4.6)

with the inverse of constant function F̂L,n. Applying piecewise linear interpolation to

F̂L,n before taking the inverse generally produces more accurate quantile estimates.

Under minimal conditions, the empirical quantile x̂p converges to the true quantile

xp with probability 1 as n→∞ [22].

4.2. Simulation from Copulas

Simulation of random variables with particular marginals and various dependence

structures is an important practical application of copulas. If we can generate a vector

X with the df F , we can transform each component with its own marginal df to obtain

a vector U = (U1, . . . , Ud)
′ = (F1(X1), . . . , Fd(Xd))

′ with df C, the copula of F [2]. We

will focus on Gauss and t copula because they are the most widely known and applied

copulas. The formulas of these copulas are not simple, but the generation is very easy.

Simulation Methods for Gauss Copula

(i) Simulate n independent standard normal random variables z = (z1, . . . , zn),

(ii) Find the Cholesky decomposition L of ρ such that, ρ = LLT , where ρ is the
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correlation matrix and L is a lower triangular matrix,

(iii) Set y = Lz

(iv) Set ui = Φ(yi) with i = 1, . . . , n and where Φ denotes the univariate standard

normal distribution function,

(v) (u1, . . . , un)′ = (F1(x1), . . . , Fn(xn))′ where Fi denotes the ith margin.

Simulation Methods for t Copula

(i) Simulate n independent standard normal random variables z = (z1, . . . , zn),

(ii) Find the Cholesky decomposition L of ρ such that, ρ = LLT , where ρ is the

correlation matrix and L is a lower triangular matrix,

(iii) Set y = Lz

(iv) Simulate a random variate s, which is independent of z, from χ2 with v degrees

of freedom,

(v) Set t =
√
v√
s
y

(vi) Set ui = Tv(ti) with i = 1, . . . , n and where Tv denotes the univariate t distribu-

tion function with v degrees of freedom,

(vii) (u1, . . . , un)′ = (F1(x1), . . . , Fn(xn))′ where Fi denotes the ith margin.
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5. BACK TESTING VALUE-AT-RISK

Up to now, we have considered various methods for simulating risk measures

at a time t for the distribution of losses in the next period. When this procedure is

continually implemented over time we have the opportunity to monitor the performance

of methods and compare their relative performance. This process of monitoring is

known as backtesting.

Financial risk model evaluation or back testing is a key part of the internal

model’s approach to market risk management as laid out by the Basel Committee on

Banking Supervision (1996). VaR models are useful only if they predict future risks

accurately. In order to evaluate the quality of the estimates, the models should always

be back tested with appropriate methods. Facts about back testing VaR is presented

here following Nieppola, 2009.

Back testing is a statistical procedure where actual profits and losses are system-

atically compared to corresponding VaR estimates. For example, if the confidence level

used for calculating daily VaR is 99%, we expect an exception to occur once in every

100 days on average.

In the back testing process we could statistically examine whether the frequency of

exceptions over some specified time interval is in line with the selected confidence level.

These types of tests are known as tests of unconditional coverage. However, a good VaR

model not only produces the “correct” amount of exceptions but also exceptions that

are evenly spread over time i.e. are independent of each other. Clustering of exceptions

indicates that the model does not accurately capture the changes in market volatility

and correlations. Tests of conditional coverage therefore examine also conditioning, or

time variation, in the data. In this section, we will explain different methods for back

testing a VaR model.
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5.1. Unconditional Coverage

The most common test of a VaR model is to count the number of VaR exceptions,

when portfolio losses exceed VaR estimates. If the number of exceptions is less than

the selected confidence level would indicate, the system overestimates risk. On the

contrary, too many exceptions signal underestimation of risk. Denoting the number of

exceptions as x and the total number of observations as T , we may define the failure

rate as x/T . If a confidence level of α is used, we have a null hypothesis that the

frequency of tail losses is equal to p = 1−α. Assuming that the model is accurate, the

observed failure rate x/T should act as an unbiased measure of p [23].

Each trading outcome either produces a VaR violation or not. The number of

exceptions x follows a binomial probability distribution. As the number of observations

increase, the binomial distribution can be approximated by a normal distribution. By

utilizing this binomial distribution we can examine the accuracy of the VaR model.

However, when making a statistical back test that either accepts or rejects a null

hypothesis (of the model being “correct”), there is a trade off between two types of

errors. Type 1 error refers to the possibility of rejecting a correct model and type 2

error to the possibility of not rejecting an incorrect model. A statistically powerful test

would efficiently keep low both probabilities.

Figure 5.1 describes an accurate model, where p = 1%. The probability of com-

mitting a type 1 error (rejecting a correct model), is 10.8%. On contrary, Figure

5.1 presents an inaccurate model, where p = 3%. The probability for accepting an

inaccurate model, i.e. committing a type 2 error is 12.8%.

5.1.1. Kupiec Tests

5.1.1.1. POF test. Kupiec’s test, also known as the POF-test (proportion of failures),

is the most widely known test based of failure rates has been suggested by Kupiec

(1995). This test measures whether the number of exceptions is consistent with the
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Figure 5.1. Type 1 Error.

Figure 5.2. Type 2 Error.
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confidence level.

Under null hypothesis that the model is “correct”, the number of exceptions

follows the binomial distribution. The only information required to implement a POF-

test is the number of observations (T ), number of exceptions (x) and the confidence

level (c). The null hypothesis for the POF-test is

H0 = p = p̂ =
x

T
(5.1)

The idea is to find out whether the observed failure rate p̂ is significantly different

from p, the failure rate suggested by the confidence level. According to Kupiec (1995),

the POF-test is best conducted as a likelihood-ratio (LR) test. The test statistic takes

the form,

LRPOF = −2ln(
(1− p)T−xpx

[1− ( x
T

)]T−x( x
T

)x
). (5.2)

Under the null hypothesis that the model is correct, LRPOF is asymptotically

χ2 distributed with one degree of freedom. If the value of the LRPOF exceeds the

critical value of the χ2 (see Appendix 1 for the critical values), the null hypothesis

will be rejected and the model is deemed as inaccurate. The confidence level for any

test should be selected to balance between type 1 and type 2 errors. A level of this

magnitude implies that the model will be rejected only if the evidence against it is

fairly strong.

Kupiec’s POF-test is hampered by two shortcomings. First, the test is statisti-

cally weak with sample sizes consistent with current regulatory framework. Secondly,

POF-test considers only the frequency of losses and not the time when they occur. As

a result, it may fail to reject a model that produces clustered exceptions.
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5.1.1.2. TUFF test. Kupiec (1995) has also suggested another type of back test,

namely the TUFF-test (time until first failure). This test measures the time t it takes

for the first exception to occur and it is based on similar assumptions as the POF-test.

The test statistic is the likelihood-ratio statistic;

LRTUFF = −2ln(
p(1− p)t−1

(1
t
)(1− 1

t
)t−1

) (5.3)

LRTUFF is also distributed as a χ2 with one degree of freedom. If the test statistic

falls below the critical value the model is accepted, and if not, the model is rejected.

The problem with the TUFF-test is that the test has low power in identifying bad VaR

models.

Due to the severe lack of power, there is hardly any reason to use TUFF-test

in model back testing especially when there are more powerful methods available.

The TUFF-test is best used only before the POF-test when there is no larger set of

data available. The test also provides a useful framework for testing independence of

exceptions in the mixed Kupiec’s test by Haas (2001).

5.2. Conditional Coverage

The Basel framework and unconditional coverage tests focus only on the number

of exceptions. In theory, however, we would expect these exceptions to be evenly

spread over time. Good VaR models are capable of reacting to changing volatility and

correlations in a way that exceptions occur independently of each other, whereas bad

models tend to produce a sequence of consecutive exceptions [24]. Tests of conditional

coverage try to not only examine the frequency of VaR violations but also the time

when they occur.
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5.2.1. Christoffersen’s Interval Forecast Test

The most widely known test of conditional coverage has been proposed by Christof-

fersen (1998). He uses the same log-likelihood testing framework as Kupiec, but extends

the test to include also a separate statistic for independence of exceptions. In addi-

tion to the correct rate of coverage, his test examines whether the probability of an

exception on any day depends on the outcome of the previous day.

The test is carried out by first defining an indicator variable that gets a value

of 1 if VaR is exceeded and value of 0 if VaR is not exceeded. Then define nij as the

number of days when condition j occurred assuming that condition i occurred on the

previous day. In addition, let πi represent the probability of observing an exception

conditional on state i on the previous day:

π0 =
n01

n00 + n01

, π1 =
n11

n10 + n11

, π =
n01 + n11

n00 + n01 + n10 + n11

(5.4)

If the model is accurate, then an exception today should not depend on whether

or not an exception occurred on the previous day. In other words, under the null

hypothesis the probabilities π0 and π1 should be the equal. The relevant test statistic

for independence of exceptions is a likelihood-ratio:

LRind = −2ln(
(1− π)n00+n10πn01+n11

(1− π0)n00π
n01
0 (1− π1)n10π

n
1 11

) (5.5)

By combining this independence statistic with Kupiec’s POF-test we obtain a

joint test that examines both properties of a good VaR model, the correct failure rate

and independence of exceptions, i.e. conditional coverage:

LRcc = LRPOF + LRind (5.6)
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LRcc is also χ2 distributed, but in this case with two degrees of freedom since there are

two separate LR-statistics in the test. If the value of the LRcc -statistic is lower than

the critical value of the χ2 distribution, the model passes the test. Higher values lead

to rejection of the model.

5.2.2. Mixed Kupiec-Test

Christoffersen’s interval forecast test is a useful back test in studying indepen-

dence of VaR violations but unfortunately it is unable to capture dependence in all

forms because it considers only the dependence of observations between two successive

days. It is possible that the likelihood of VaR violation today does not depend on the

violation yesterday but on a violation occurred, for instance, a week ago [25].

Haas (2001) argues that the interval forecast test by Christoffersen is too weak

to produce feasible results and proposes a mixed Kupiec test which measures the time

between exceptions instead of observing only whether an exception today depends on

the outcome of the previous day. Thus, the test is potentially able to capture more

general forms of dependence. The test statistic for each exception takes the form,

LRi = −2ln(
p(1− p)ti − 1

( 1
ti

)(1− 1
ti

)ti−1
) (5.7)

where ti is the time between exceptions i and i − 1. For the first exception the test

statistic is computed as a normal TUFF-test. Having calculated the LR-statistics for

each exception, we receive a test for independence where the null hypothesis is that

the exceptions are independent from each other. With n exceptions, the test statistic

for independence is

LRind =
n∑
i=2

[−2ln(
p(1− p)ti − 1

( 1
ti

)(1− 1
ti

)ti−1
)]− 2ln(

p(1− p)t−1

(1
t
)(1− 1

t
)t−1

) (5.8)

which is a χ2 distributed with n degrees of freedom. Similar to the Christoffersen’s

framework, the independence test can be combined with the POF-test to obtain a
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mixed test for independence and coverage, namely the mixed Kupiec test:

LRmix = LRPOF + LRind (5.9)

The LRmix -statistic is χ2 distributed with n+1 degrees of freedom. Just like with other

likelihood-ratio tests, the statistic is compared to the critical values of χ2 distribution.

If the test statistic is lower, the model is accepted, and if not, the model is rejected.
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6. RISK QUANTIFICATION PROBLEM

In our study, different copulas with various marginal distributions were fitted

to a dataset of stock prices together with the commodity prices. Our main issue

is to compare the fit of the models and monitor the performance of our model by

implementing back testing to the stock portfolios especially when gold and crude oil

are added.

A model is developed in order to estimate the VaR and CVaR which are the

selected risk measures we selected for this study on various portfolios. The parameter

estimation of this model was performed utilizing the two step estimation procedure.

The estimated parameters were used for the portfolio risk calculation with Monte Carlo

simulation. In the end, back testing was performed for checking the validity of this

model. In the following sections, all these steps will be clarified.

6.1. Required Data

Regarding the financial world, gold and crude oil are considered as being the

most attractive commodities. We therefore used them together with the stocks for

constructing portfolios.

We used daily gold prices which are obtained from http://www.gold.org/, “World

Gold Council”, with the currency of US dollars and daily crude oil prices traded in

West Texas Intermediate (WTI) are derived from “U.S. Energy Information Admin-

istration (EIA)”, http://www.eia.gov/, with the currency of US dollars per barrel.

The stock prices are traded in New York Stock Exchange (NYSE) obtained from

http://finance.yahoo.com/ and the dataset includes the adjusted closing prices of 20

different stocks. All data were observed between 01/01/2000− 31/12/2011, therefore,

each stock and commodity consist of 3019 data points.
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The stocks were selected from different industries in order to minimize the corre-

lation between them and to construct a diversified portfolio. The selected stocks, their

corresponding sectors and industries are given in Table 6.1.

Table 6.1. Stocks from NYSE.

Symbol Company Name Sector Industry

AAPL Apple Inc. Technology Personal Computers

ABT Abbott Laboratories Health Care Drug Manufacturers - Major

BA The Boeing Company Industrial Goods Aerospace - Defense Products

BBY Best Buy Co. Inc. Services Electronics Stores

BP BP plc Basic Materials Major Integrated Oil & Gas

C Citigroup, Inc. Financial Money Center Banks

CMS CMS Energy Corp. Utilities Electric Utilities

DIS Walt Disney Co. Services Entertainment - Diversified

F Ford Motor Co. Consumer Goods Auto Manufacturers - Major

GE General Electric Company Industrial Goods Diversified Machinery

HD The Home Depot, Inc. Services Home Improvement Stores

K Kellogg Company Consumer Goods Processed & Packaged Goods

KO The Coca-Cola Company Consumer Goods Beverages - Soft Drinks

MCD McDonald’s Corp. Services Restaurants

MMM 3M Co. Conglomerates Conglomerates

MO Altria Group Inc. Consumer Goods Cigarettes

PG Procter & Gamble Co. Consumer Goods Personal Products

TOL Toll Brothers Inc. Industrial Goods Residential Construction

UNP Union Pacific Corporation Services Railroads

WMT Wal-Mart Stores Inc. Services Discount, Variety Stores

To be able to do a stochastic simulation, the daily log-returns are calculated using

the daily adjusted closing prices. After transformation, we have 3018 daily log returns

which are assumed to be independent identically distributed (iid) and follow a normal

distribution with mean expectation µd and variance σd;

Ri = log(Si)− log(Si − 1), i = 1, . . . , 3018. (6.1)
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Simulated log returns can simply be summed to find the future price of a financial

instrument.

6.2. Most Relevant Models

As we have mentioned, different models were fitted to the stock portfolios di-

versified with gold and crude oil. Computations of risk measures requires a realistic

modeling of such distributions. The main classical and adequate model for risk cal-

culation is the multinormal model especially for the lower level risks. However, it is

not a good model because of its thin tails for more extreme levels. Copulas, which are

presented in detail in Chapter 3, are better models for risk estimation because of their

ability to model the dependence structure of multivariate variables in finance. Hence,

we have a wide range of distributions for the marginals and very different structures for

the dependence between them. From recent studies, we know that the most suitable

fitting seems to be the Gaussian and t copula with t and GHD marginals. Thus, in

this study, we will analyze the following models in detail:

• Multinormal Model

• Normal copula with t marginals

• t copula with t marginals

• t copula with GHD marginals

6.3. “Two Step” Estimation Procedure

For estimating the parameters, “IFM Method”, introduced in Chapter 3.3, is im-

plemented. The log-likelihood function is composed of copula density’s parameters and

margins’ parameters . These parameters are estimated in two steps. As a first step, the

margins parameters must be fitted by performing the estimation of univariate marginal

distributions using MLE. In financial world, three kind of marginal distributions, nor-

mal, t and GHD, are used mostly. However, it is also known that financial data are

far from normal distribution because of being fat tailed and having high kurtosis. In
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our study, we elaborated on these mentioned marginals for our dataset; especially gold

and crude oil are examined because of the lack of statistical analysis in the literature.

Before going further, we considered the issue of testing whether the daily log

returns of gold and crude oil are from a normal, t or generalized hyperbolic distribution.

This can be assessed graphically with a quantile-quantile plot (Q-Q) against a chosen

distribution which shows the relationship between empirical quantiles of the data and

theoretical quantiles of a reference distribution. The Q-Q plots of the gold and crude

oil’s returns against normal, t and GHD are given in Appendix B.

From the Q-Q plots, we can observe that the inverted “S shaped curve of gold

and crude oil points suggests that the empirical quantiles of the data tend to be larger

than the corresponding quantiles of a normal distribution, indicating that the normal

distribution is a poor model for these returns. On the other side, Q-Q plots indicate

that the fitted t and GHD models are capable to explain the extreme returns in the

tails. It is obvious that GHD can capture the high kurtosis and fat tails of gold and

crude oil adequately.

The best fitting marginal distributions for stocks and commodities were deter-

mined by looking at the corresponding AIC values, which is a measure of the relative

goodness of fit of a statistical model. As it can be noticed from the Table 6.2, the

lowest AIC values were found for the t-distribution or the GHD for all stocks and

commodities, namely they model the marginals much better than the normal distribu-

tion. In most cases both distributions can be used for fitting the marginals, since the

t-distribution values are very close to GHD values.

Though normal distribution is not an adequate model for the selected stocks and

commodities, the marginal parameters are estimated regarding the normal, t and GH

distributions since the multinormal model is very popular and therefore also part of our

study. The parameters of the normal and the t distributions were estimated by the help

of the fit all function [26] implementing the maximum likelihood estimation and given
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Table 6.2. AIC values for normal, t and GHD.

Stock Normal(npar = 2) t(npar = 3) GHD(npar = 5)

AAPL -12310.06 -13206.71 -13196.01

ABT -16272.66 -16819.70 -16816.36

BA -14699.82 -15064.78 -15064.22

BBY -12225.75 -13278.03 -13274.31

BP -15212.37 -15905.18 -15905.16

C -11370.65 -13616.52 -13629.31

CMS -14207.04 -15597.09 -15598.95

DIS -14468.46 -15075.67 -15075.83

F -12367.61 -13189.06 -13187.71

GE -14515.65 -15352.23 -15368.83

HD -14202.47 -14870.06 -14876.10

K -16782.45 -17625.19 -17633.57

KO -16846.61 -17589.16 -17598.36

MCD -16132.50 -16608.25 -16607.44

MMM -16267.61 -16800.95 -16807.09

MO -15877.20 -16884.42 -16884.73

PG -16583.80 -17981.05 -17977.89

TOL -12868.49 -13049.59 -13054.43

UNP -15124.39 -15514.36 -15524.04

WMT -16095.67 -16689.54 -16692.74

GOLD -18226.42 -18794.06 -18907.18

OIL -13446.81 -13848.38 -13847.55
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in Table 6.3 and Table 6.4 respectively. Regarding the “alpha/delta” parametrization,

the parameters of the fitted GHD to the daily log returns are estimated using the ghyp

package of the statistical software R and given in Table 6.5. All these parameters were

estimated using the full 12 years data.

Considering the most appropriate marginal distribution, the data were trans-

formed into uniform variates using the CDF transformation of the corresponding marginal

distribution. Thus the first step of the IFM method is finished.

As second step, the parameters of the copula were estimated using the parameters

that were found in the first step. The copulas are fitted to the transformed data by

the help of copula package of the statistical software R and its built-in functions.

The correlation matrix, ρ, was estimated as a parameter of the normal copula for

a given correlation matrix. In practice, the covariance matrix Σ is likely to be close to

being a correlation matrix. As starting value for the correlation matrix, the “Pearson”

correlation matrix is used since it is an approximate solution to the original problem.

As t copula parameters, correlation matrix and degrees of freedom were estimated.

In relatively low dimensions, we search over the set of correlation matrices ρ and degrees

of freedom parameter v for a global maximum. For higher dimensional work, it would

be easier to estimate ρ using Kendall’s tau or Spearman’s rho estimates. In our study,

Spearman’s rho was used as rank correlation.

The copula parameters for the mixed portfolios and their log likelihood results

will be discussed in the next chapter.

6.4. Quantifying VaR and CVaR

In this section, generating tail-loss probabilities and calculating portfolio risk by

Monte Carlo Simulation will be described. Before going further, we have to point
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Table 6.3. Fitted normal distributions to the stocks returns.

Stock µ σ

AAPL 0.000885 0.031460

ABT 0.000281 0.016317

BA 0.000278 0.021174

BBY 0.000004 0.031902

BP 0.000046 0.019451

C -0.000783 0.036758

CMS 0.000022 0.022976

DIS 0.000119 0.022002

F -0.000242 0.031161

GE -0.000223 0.021830

HD -0.000073 0.022993

K 0.000290 0.014996

KO 0.000166 0.014837

MCD 0.000393 0.016701

MMM 0.000276 0.016331

MO 0.000782 0.017422

PG 0.000166 0.015497

TOL 0.000495 0.028680

UNP 0.000595 0.019736

WMT 0.000018 0.016803

GOLD 0.000551 0.011805

OIL 0.000447 0.026060
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Table 6.4. Fitted t distributions to the stocks returns.

Stock µ σ df

AAPL 0.001060 0.020691 3.90

ABT 0.000258 0.011141 3.63

BA 0.000528 0.015447 4.13

BBY 0.000237 0.018879 3.04

BP 0.000529 0.012816 3.50

C -0.000258 0.013769 1.78

CMS 0.000794 0.012166 2.64

DIS -0.000057 0.014405 3.28

F -0.000837 0.019616 3.25

GE -0.000069 0.012455 2.54

HD -0.000231 0.014702 3.16

K 0.000288 0.008619 2.59

KO 0.000238 0.008943 2.79

MCD 0.000512 0.011534 3.63

MMM 0.000276 0.010724 3.20

MO 0.001041 0.009882 2.67

PG 0.000314 0.008254 2.68

TOL -0.000011 0.022971 5.43

UNP 0.000649 0.013712 3.53

WMT -0.000104 0.010812 3.10

GOLD 0.000703 0.007575 3.04

OIL 0.001019 0.019012 4.22
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Table 6.5. Fitted GHD to the stocks returns.

Stocks λ α δ β µ

AAPL -1.633161 11.14573 0.037181 -1.703187 0.001611

ABT -1.606070 17.08683 0.019971 0.277913 0.000207

BA -1.425549 27.04979 0.026923 -2.027053 0.001193

BBY -1.499823 2.38044 0.032694 -0.529363 0.000508

BP -1.651586 12.28029 0.023363 -3.398277 0.001509

C -0.602828 8.52771 0.014492 -0.533197 -0.000091

CMS -1.331923 2.72759 0.019891 -2.573416 0.001388

DIS -1.086661 22.39618 0.021585 0.943293 -0.000323

F -1.602705 3.26482 0.035139 1.456542 -0.001662

GE -0.409664 29.99757 0.012550 -0.433088 -0.000018

HD -0.486645 33.32347 0.016772 0.878580 -0.000518

K -0.748361 32.44286 0.010743 0.078281 0.000272

KO -0.599642 42.01769 0.010457 -0.755636 0.000337

MCD -1.358695 27.46028 0.019261 -1.564898 0.000781

MMM -0.582691 44.63036 0.013046 0.005270 0.000275

MO -1.131092 15.13351 0.014771 -1.722396 0.001304

PG -1.263029 9.21894 0.013051 -1.159886 0.000430

TOL 1.007387 58.94036 0.019060 4.067157 -0.002884

UNP -0.325920 46.91598 0.015683 0.230980 0.000504

WMT -0.955118 31.14005 0.015362 0.896576 -0.000238

GOLD 0.488401 76.21868 0.000000 -5.290373 0.000000

OIL -1.652227 17.79451 0.035426 -2.190063 0.002192
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out that we consider portfolios with d equally weighted financial instruments where d

ranges from 2 to 12.

6.4.1. Generating Portfolio Return Using Naive Simulation

For one model, we assume that the log returns of d financial instruments over a

time horizon T follow a normal copula with a correlation matrix ρ ∈ Rd×d where L

denotes the (lower triangular) Cholesky decomposition of ρ satisfying LL′ = ρ.

To generate a random return vector from the normal copula, it is well known that

we start with a vector Z of d iid. standard normal variates which is then transformed

into correlated normal vector by Y = LZ. The log return vector S = (S1, S2, . . . , Sd)

is the result of the component-wise transform

Sj = F−1
j (Φ(Yj)) (6.2)

where Φ(.) denotes the CDF of standard normal distribution and Fj(.) the CDF of the

marginal distribution of the return of the jth financial instrument.

The portfolio return is a function of the random input vector Z and random

variate Y which depends on the fixed parameter ρ and on the CDFs of the marginal

distributions. Then the return function is given by;

R(Z, Y ) =
d∑
j=1

wje
F−1
j (Φ(Yj)). (6.3)

As another model, we assume that the log returns of d financial instruments

over a time horizon T follow a t copula with v degrees of freedom and its dependence

structure is described by the positive definite matrix ρ where L denotes the (lower

triangular) Cholesky decomposition of ρ satisfying LL′ = ρ.
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For generating the random return vector from the t copula we again start with

a vector Z of d iid. standard normal variates which is then transformed into the

correlated normal vector by Y = LZ as we have discussed while simulating log return

vector using normal copula. We generate a random variate K from χ2 with v degrees of

freedom which is independent of Z. Thus we obtain, the vector T from the multivariate

t distribution calculating T = Y/
√
K/v. The log-return vector S = (S1, S2, . . . , Sd) is

then the result of the component-wise transform

Sj = F−1
j (Gv(Tj)) (6.4)

where Gv(.) denotes the CDF of the t distribution with v degrees of freedom and Fj(.)

the CDF of the marginal distribution of the return of the jth financial instrument.

The portfolio return is a function of the random input vector Z and random

variate T which depends on the fixed parameter ρ and v and on the CDFs of the

marginal distributions. Then the return function is given as in Equation 6.5;

R(Z, T ) =
d∑
j=1

wje
F−1
j (Gv(Tj)). (6.5)

At this point, we have to mention that the evaluation of the inverse CDFs F−1(.)

of the marginals is a difficult numerical task. In order to simplify this task, the

“Runuran” package (Leydold and Hörmann, 2008) [27] of the statistical software R

is used. It is about 40 times faster than the built-in R function qt() and 10,000 times

faster compared to the quantile function of the ghyp package.
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6.4.2. Calculating VaR and CVaR

After generating portfolio return, the portfolio is revalued and its loss is com-

puted;

L = V (S, t)− V (S + ∆S, t+ ∆t). (6.6)

In this manner, we can easily use L for estimating the VaR by calculating the

“1-α” quantile of loss distribution. Thus we have the property;

P (L > V aR(1− α)) = α. (6.7)

Likewise, we have computed the CVaR as,

CV aR(1− α) = E(L|L > V aR(1− α)). (6.8)

To sum up; by implementing selected models, we calculated VaR and CVaR of the

stock portfolios diversified with gold and crude oil using different α values for daily and

weekly time horizons. This model is implemented with n = 1000 inner repetitions for

generating d-dimensional log returns and with m = 100 outer repetitions for estimating

the standard error of the estimated risk measures.

6.5. Back Testing

As we have mentioned before, back testing is one of the most important part of

our study because it gives us the chance to monitor the correctness of our estimated

risk measures. By the help of back testing, we can statistically examine whether the

frequency of exceptions over a time horizon is in line with the selected confidence level.
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In our study, we utilized the proportion of failures (POF) test which is the one

of the unconditional coverage method of back testing. This method requires the total

number of observations n, number of exceptions x and confidence level 1−α. We used

various portfolios constructed of eleven years dataset for determining the number of

exceptions by counting the portfolio losses that exceeded the VaR estimates. The daily

and weekly VaRs were estimated and the comparison with the portfolio loss was done

iteratively.

The null hypothesis for the POF test is

H0 = p = p̂ =
x

n
. (6.9)

The test statistic which is conducted as a likelihood ratio (LR) test takes the

form;

LRPOF = −2ln
(1− p)n−xpx

[1− (x
n
)]n−x(x

n
)x
. (6.10)

Under the null hypothesis that the model is correct, LRPOF is asymptotically χ2

distributed with one degree of freedom. If the value of the LRPOF exceeds the critical

value of the χ2, the null hypothesis will be rejected and the model is considered to be

“inaccurate”.

6.6. R Code Outputs of the Selected Models

The R code for the selected models consists of three main parts. In the first part

of the code, the parameters of copula model with marginal parameters are estimated

by the help of MLE using the function ParameterEst().

The ParameterEst() function includes four different parts which estimate the
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parameters of the normal copula with normal marginals, the normal copula with t

marginals, the t copula with t marginals and the t copula with GHD marginals. After

estimating the marginal parameters, the copula parameters are obtained as explained

in Chapter 6.3.. In Appendix C, R code for fitting t-copula with t-distributed marginals

are given as an example of the parameter estimation part of the copula model.

In the second part of the code, we calculate the VaR and CVaR of the given

equally weighted portfolio using the selected copula model for different α values and

time horizons with risk() command. For calculating the risk of the portfolio, we

generate log returns using the estimated parameters in the first part of the model. An

R example of calculating risk measures is given in Appendix C.

As the last part of our code, daily back testing is implemented using the command

Backtesting(). The daily back testing code is given in Appendix C.

6.6.1. Use of the R Codes

Before talking about the outputs of the model, we will present the inputs of the

ParameterEst(data, copula, marginals) function. data is assumed to be log returns

of the portfolio, copula is the copula type and marginals is the marginal type of the

selected model. Here, it is important to choose the copula and marginals type regarding

the desired models.

The outputs of the function depends on the chosen model. For t marginals, we

estimate location, scale and degrees of freedom parameters, while for ghyp marginals,

we estimate lambda, alpha, delta, beta and mu parameters. The estimated parameter

of the normal copula is correlation matrix where as for the t copula parameters, we

also estimate the degrees of freedom of the copula together with correlation matrix.

As an example, we import the 12 years stock data of “Apple Inc.” and “Abbott

Laboratories” and call the ParameterEst() for “t copula - t marginals” model. The
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results are as in Table 6.6:

Table 6.6. Parameter Estimations of 2 Stocks Portfolio.

Marginal Parameters

aapl abt

location 0.00106 0.00026

scale 0.02069 0.01114

degrees of freedom 3.89522 3.63113

Copula Parameters

correlation matrix aapl abt

1.00000 0.20552

0.20552 1.00000

degrees of freedom 4.306492

For calculating the portfolio risk; we use n as the inner repetitions, m as the outer

repetitions, w as the fractions of the total value of the portfolio invested into financial

instruments, alpha as the quantile values and T as the time horizon. It is important

to use the time horizon correctly. For estimating the daily risk, we use T = 1/258.

As outputs, we obtain VaR and CVaR for various α values. If we want to estimate

the standard errors of the corresponding risk measures, we call the function using

risk(data, n, m, w, alpha, T, copula, marginals, error = TRUE). The default command

for “error” is FALSE.

The results for risk(data, n, m, w, alpha, T, copula, marginals, error = TRUE) is

given in Table 6.7.

The BackTesting(data, n, m, w, alpha, T, copula, marginals) function is used for

implementing the back testing with the inputs that were mentioned before. We can

see whether the selected model is accurate or inaccurate as in Table 6.8.
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Table 6.7. VaR and CVaR Results of 2 Stocks Portfolio.

0.999 0.990 0.950 0.900

VaR 0.07808 0.04627 0.02614 0.01879

ES 0.10090 0.06287 0.03943 0.03076

0.999 0.990 0.950 0.900

VaR Error 0.00266 0.00076 0.00024 0.00016

ES Error 0.00596 0.00146 0.00049 0.00030

Table 6.8. Daily Back Testing Results of 2 Stocks Portfolio.

α Accuracy

0.999 the model is accurate

0.990 the model is accurate

0.950 the model is accurate

0.900 the model is accurate
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7. RESULTS FOR COPULA FITTING

In this section, the results of our study will be given sequentially. Firstly, we will

talk about the selected portfolios and their dependence structures. In the second part,

we will compare the fits of different models to the stock portfolios with gold and crude

oil. Then, back testing results will be given. In the last part, we will discuss whether

adding gold and crude oil affects the portfolio risk.

7.1. Selected Portfolios and Their Dependence Structure

The correlation matrix of the daily log returns for 12 years is given in Tables 7.1

and 7.2 for analyzing the affects of the dependence between stocks and commodities

to the risk estimation. From the correlation matrix, we can see that correlations

exists between stocks even if they belong to different industries. In this study, we will

elaborate on the data for 2010 - 2011 period, thus the correlation matrix of the daily

log returns for last two years period is also given in Appendix D.

More to the point, we can determine that the minimum correlation exists between

gold and the other stocks. Analyzing the values, we can say that gold is uncorrelated

with stocks and even has a negative correlation with some stocks. The correlation

between crude oil and the stocks is relatively low with respect to the correlations of

the stocks between each other.

We can examine that the minimum correlation is -0.096 between GOLD and

WMT whereas the maximum is 0.583 between C and GE.

For assessing the stability, we compared the correlations of all eleven years and

that of the last two years. The most considerable point is the dependence between

stocks and crude oil. Regarding the last two years data, the minimum correlation

between crude oil and stocks is 0.151 and the maximum is 0.426, while for the eleven
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Table 7.1. Correlation Matrix of the Daily Log-Returns for 12 Years.

AAPL ABT BA BBY BP C CMS DIS F GE HD

AAPL 1.00 0.13 0.25 0.29 0.23 0.28 0.18 0.32 0.25 0.36 0.28

ABT 0.13 1.00 0.31 0.17 0.27 0.27 0.30 0.27 0.21 0.32 0.25

BA 0.25 0.31 1.00 0.31 0.38 0.39 0.30 0.46 0.37 0.49 0.42

BBY 0.29 0.17 0.31 1.00 0.22 0.33 0.20 0.40 0.32 0.39 0.52

BP 0.23 0.27 0.38 0.22 1.00 0.36 0.32 0.38 0.29 0.42 0.31

C 0.28 0.27 0.39 0.33 0.36 1.00 0.29 0.42 0.41 0.58 0.42

CMS 0.18 0.30 0.30 0.20 0.32 0.29 1.00 0.33 0.28 0.32 0.26

DIS 0.32 0.27 0.46 0.40 0.38 0.42 0.33 1.00 0.39 0.53 0.46

F 0.25 0.21 0.37 0.32 0.29 0.41 0.28 0.39 1.00 0.44 0.37

GE 0.36 0.32 0.49 0.39 0.42 0.58 0.32 0.53 0.44 1.00 0.50

HD 0.28 0.25 0.42 0.52 0.31 0.42 0.26 0.46 0.37 0.50 1.00

K 0.12 0.34 0.27 0.20 0.26 0.25 0.26 0.28 0.22 0.32 0.25

KO 0.18 0.33 0.33 0.19 0.31 0.27 0.27 0.32 0.26 0.34 0.32

MCD 0.20 0.25 0.34 0.28 0.28 0.27 0.23 0.35 0.27 0.35 0.37

MMM 0.29 0.34 0.48 0.36 0.42 0.42 0.31 0.47 0.39 0.56 0.46

MO 0.12 0.26 0.25 0.09 0.27 0.20 0.23 0.24 0.20 0.25 0.21

PG 0.13 0.35 0.30 0.19 0.23 0.27 0.23 0.27 0.23 0.34 0.27

TOL 0.28 0.21 0.38 0.37 0.32 0.44 0.26 0.40 0.36 0.46 0.49

UNP 0.28 0.26 0.45 0.34 0.41 0.42 0.28 0.44 0.39 0.48 0.42

WMT 0.24 0.29 0.35 0.39 0.25 0.30 0.21 0.36 0.27 0.41 0.57

GOLD -0.02 -0.03 -0.07 -0.05 0.07 -0.05 -0.01 -0.06 -0.06 -0.04 -0.08

OIL 0.07 -0.01 0.12 0.04 0.28 0.11 0.09 0.12 0.08 0.10 0.01
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Table 7.2. Correlation Matrix of the Daily Log-Returns for 12 Years Data (cont.).

K KO MCD MMM MO PG TOL UNP WMT GOLD OIL

AAPL 0.12 0.18 0.20 0.29 0.12 0.13 0.28 0.28 0.24 -0.02 0.07

ABT 0.34 0.33 0.25 0.34 0.26 0.35 0.21 0.26 0.29 -0.03 -0.01

BA 0.27 0.33 0.34 0.48 0.25 0.30 0.38 0.45 0.35 -0.07 0.12

BBY 0.20 0.19 0.28 0.36 0.09 0.19 0.37 0.34 0.39 -0.05 0.04

BP 0.26 0.31 0.28 0.42 0.27 0.23 0.32 0.41 0.25 0.07 0.28

C 0.25 0.27 0.27 0.42 0.20 0.27 0.44 0.42 0.30 -0.05 0.11

CMS 0.26 0.27 0.23 0.31 0.23 0.23 0.26 0.28 0.21 -0.01 0.09

DIS 0.28 0.32 0.35 0.47 0.24 0.27 0.40 0.44 0.36 -0.06 0.12

F 0.22 0.26 0.27 0.39 0.20 0.23 0.36 0.39 0.27 -0.06 0.08

GE 0.32 0.34 0.35 0.56 0.25 0.34 0.46 0.48 0.41 -0.04 0.10

HD 0.25 0.32 0.37 0.46 0.21 0.27 0.49 0.42 0.57 -0.08 0.01

K 1.00 0.41 0.26 0.35 0.30 0.37 0.19 0.28 0.29 -0.04 0.04

KO 0.41 1.00 0.32 0.40 0.30 0.42 0.23 0.29 0.33 -0.01 0.06

MCD 0.26 0.32 1.00 0.35 0.26 0.32 0.31 0.32 0.35 -0.06 0.04

MMM 0.35 0.40 0.35 1.00 0.31 0.41 0.42 0.49 0.42 -0.07 0.08

MO 0.30 0.30 0.26 0.31 1.00 0.30 0.21 0.23 0.22 -0.03 0.04

PG 0.37 0.42 0.32 0.41 0.30 1.00 0.22 0.29 0.34 -0.05 0.03

TOL 0.19 0.23 0.31 0.42 0.21 0.22 1.00 0.43 0.34 -0.04 0.07

UNP 0.28 0.29 0.32 0.49 0.23 0.29 0.43 1.00 0.34 -0.01 0.12

WMT 0.29 0.33 0.35 0.42 0.22 0.34 0.34 0.34 1.00 -0.10 -0.05

GOLD -0.04 -0.01 -0.06 -0.07 -0.03 -0.05 -0.04 -0.01 -0.10 1.00 0.15

OIL 0.04 0.06 0.04 0.08 0.04 0.03 0.07 0.12 -0.05 0.15 1.00
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years data, the minimum correlation is -0.046 and the maximum is 0.280. This means

that in the last years, crude oil has lost the property of diversifying the portfolio

considering its higher dependence between other stocks.

At this point, we considered whether 2008 economic crisis affects the crude oil

prices and checked the dependence of crude oil between other financial instruments

for two years period before and after the year 2008. We can see from Table 7.3 that

negative correlation exists between crude oil and other stocks before year 2008. After

the crisis dependence has increased considerably. However, the dependence between

gold and crude oil has a different behavior. We can almost say that crude oil and gold

are independent during 2002 - 2003 period where as the dependence increased to 0.210

during the period 2005 - 2006 and reached 0.280 in the period 2009 - 2010. Since the

standard deviations have not changed during these periods, the affect of crude oil to

the portfolio risk depends on the correlation between other stocks and gold. In the

following sections, we will also analyze the risk of portfolios diversified with crude oil

for different periods.

Firstly, the risk calculation was performed for five portfolios consisting of different

stocks. These portfolio are selected considering medium wealth investors. They consist

of a small number of stocks as this reduces the transaction cost. For analyzing the

affects of gold and crude oil, the portfolios are then diversified by adding gold and crude

oil separately and by adding gold and crude oil together to the mentioned portfolios.

(i) AAPL - ABT

(ii) BBY - KO - TOL

(iii) BA - K - PG - UNP

(iv) C - CMS - F - MO - WMT

(v) AAPL - BP - DIS - GE - HD - K - MCD - MMM - PG - TOL
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Table 7.3. Dependence Between Crude Oil and Other Financial Instruments for

Different Periods.

2002 - 2003 2005 - 2006 2009 - 2010

AAPL -0.064 0.009 0.289

ABT -0.092 -0.163 0.202

BA -0.069 -0.064 0.410

BBY 0.030 -0.113 0.254

BP -0.001 0.423 0.309

C -0.069 -0.111 0.206

CMS -0.028 0.048 0.376

DIS -0.038 -0.104 0.383

F -0.024 -0.109 0.254

GE -0.043 -0.205 0.310

HD -0.074 -0.126 0.314

K 0.016 -0.084 0.212

KO 0.011 -0.085 0.229

MCD -0.086 -0.059 0.244

MMM -0.074 -0.022 0.366

MO -0.007 -0.058 0.150

PG -0.065 -0.125 0.258

TOL -0.061 0.053 0.293

UNP -0.096 -0.050 0.403

WMT -0.123 -0.148 0.102

GOLD 0.082 0.210 0.228
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7.2. Comparing the Fits of Different Models

The estimated copula parameters, corresponding log likelihood and AIC values

for 20 portfolios using 2010 - 2011 period data of the mentioned portfolios are given

in Appendix E. The lowest AIC values can be observed for t copula with t marginals

model. Nevertheless, the AIC values of t copula with t marginals and t copula with

GHD marginals are not far from each other, thus it is appropriate to use either of them.

Adding stocks to the portfolio increases the degrees of freedom of the t copula,

namely, the distribution of the portfolios approximates to normal distribution. In this

manner, the AIC values of normal copula approaches the AIC values of the t copula,

but still the t copula with t and GHD marginals fits better.

After adding gold to the stock portfolios, we examined that the estimated degrees

of freedom of t copula decreased in comparison with the estimated degrees of freedom

of the portfolios with 10 stocks. However, crude oil has no decreasing effect on the

degrees of freedom of the mentioned stock portfolios.

7.3. Back Testing Results

We implemented daily back testing for each portfolio and weekly back testing for

two stocks portfolio and two stocks portfolio diversified with gold and crude oil using

20 different α values in order to check the validity of the selected models. The main

point is carrying out the back testing method for stock portfolios diversified with gold

and crude oil since these are not considered in the literature.

The results show us that the models that we have constructed are accurate. We

have also realized that the t copula with t and GHD marginals are the most accurate

models among selected models. From the results of the sum of the exceptions that are

given in Appendix F, we can conclude that the multivariate normal model is not an

accurate model comparing with the copula models.
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7.4. Comments on Portfolio Risks

We estimated the VaR and CVaR for 2012-01-01 using two years data with 20

different α values for daily and weekly time horizons. From the results which are given

in Appendix G, we can observe whether gold and crude oil have any affect on the risk

of stock portfolios.

For all selected portfolios, gold has a decreasing effect on the risk while crude oil

has no notable affect. This means that adding gold to the stock portfolios decreases

the risk. On the other hand, crude oil behaves much like an ordinary stock. However,

diversifying stock portfolios with both gold and crude oil decreases the risk by the help

of gold.

All the risk calculations were done using 2010 - 2011 period. Nevertheless, at this

point, we have also calculated the risk of the portfolios for 2004-01-01 and 2007-01-01

for analyzing the affect of dependence structure between stocks and commodities. For

these periods, we can observe a serious decrease of the risk by adding each gold and

crude oil to the stock portfolios. But the most impressing decrease is provided by

diversifying stock portfolios with gold and crude oil at the same time.
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8. CONCLUSION

In this study, we considered to construct the multivariate return distributions

of stock portfolios using copula model and to evaluate this model in practice for risk

measuring. Moreover, we used the copula model to observe its suitability for the

multivariate return distributions of portfolios constructed of stocks, gold and crude oil

and to analyze whether adding these financial instruments to stock portfolios reduces

the risk.

Since the empirical distributions of asset returns have fatter tails and higher

kurtosis than the normal distribution, the usual Monte Carlo method which generates

asset returns assuming that the risk factors follow a multivariate normal distribution

is not realistic. Besides, the dependence between the asset returns is assumed to be

linear in the multinormal model and it does not take into account tail dependence.

The variance-covariance method is a weak method as assuming the normality and

linearization which may not always offer a good approximation of the relationship

between the true loss distribution and the risk-factor changes. Historical simulation

has the serious absence that there are not enough data in the empirical tails. To

estimate an accurate risk, these clear drawbacks of classical approaches can be solved

considering the copula method.

Copulas are extremely useful concepts which tackle the problem of specification

of marginal univariate distributions separately and represent the dependence structure

between them. Copulas help in the understanding of dependence at a deeper level and

facilitate a bottom-up approach to multivariate model building where we very often

have a much better idea about the marginal behavior of individual risk factors than we

do about their dependence structure. In the first part of our study, we fitted different

copulas to our dataset consisting of daily stock returns from NYSE to model the return

distributions of stock portfolios. Looking at the Q-Q plots, we found that the fitted t

and GHD models are also capable to explain the extreme returns in the tails of gold
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and crude oil. The portfolios of two, three, four, five and ten stocks are constructed

considering medium wealth investors and the portfolios are then diversified by adding

gold and crude oil separately and by adding gold and crude oil together to the portfolios

using the dataset of 2010 - 2011 period. Among different models, the t-copula is found

to be the best fitting copula according to the log-likelihood and AIC values. Thus

it is appropriate to use the t-copula with t and GHD marginals for representing the

portfolio return distributions.

We implemented daily and weekly back testing for each portfolio using 20 different

α values in order to check the validity of the constructed models. From the results we

observed that the models are accurate for stock portfolios and also for stock portfolios

diversified with gold and crude oil. Especially, looking at the results of the sum of the

exceptions, we can say that the multivariate normal model is not an accurate model

comparing with the copula models. As we have concluded before, the t copula model

with t and GHD marginals are the most accurate model.

We simulated price return scenarios for the mentioned portfolios with d equally

weighted financial instruments from the fitted copulas with Monte Carlo method and

calculated the VaR and CVaR at 20 different per cent level ranges from 99.00% to

99.90% for daily and weekly time horizons. For all portfolios, we observed the effects

of gold and crude oil to the risk measure regarding 2010 - 2011 period. Adding gold to

the stock portfolios decreases the risk where crude oil behaves like an ordinary stock.

However, diversifying stock portfolios with both gold and crude oil decreases the risk

by the help of gold.

This study can be enjoyed in several ways. First of all, we learned that the

multivariate return distributions of stock portfolios and stock portfolios diversified with

gold and crude oil can be modeled adequately with t copula approach for risk measure

evaluations in practice. The validity of this model is also checked by back testing

method. On the other hand, we observed that the gold can be used for diversifying

the stock portfolios regarding the reducing effect on the risk measure.
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APPENDIX A: CHI-SQUARE DISTRIBUTION TABLE

Table A.1. Critical Values for the Chi-Squared Distribution.

α

v 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.170

150 109.142 112.668 117.985 122.692 128.275 172.581 179.581 185.800 193.207 198.360

200 152.241 156.432 162.728 168.279 174.835 226.021 233.994 241.058 249.445 255.264
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APPENDIX B: Q-Q PLOTS OF DAILY LOG-RETURNS

WITH THE FITTED T DISTRIBUTION AND GHD

Figure B.1. Q-Q plot against normal distribution for the log-returns of GOLD.

Figure B.2. Q-Q plot against t distribution for the log-returns of GOLD.
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Figure B.3. Q-Q plot against GHD for the log-returns of GOLD.

Figure B.4. Q-Q plot against normal distribution for the log-returns of CRUDE OIL.
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Figure B.5. Q-Q plot against t distribution for the log-returns of CRUDE OIL.

Figure B.6. Q-Q plot against GHD for the log-returns of CRUDE OIL.
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APPENDIX C: R CODES

Fitting t-distributed marginals:

for(i in 1:dim){

# estimates the parameters of marginals using MLEt function

# assigns the estimated parameters as "tpar"

# obtains the uniform marginals by taking the CDF of t distributed marginals

tpar[i,1] <- MLEt(data[,i],npar=3)[2]

tpar[i,2] <- MLEt(data[,i],npar=3)[3]

tpar[i,3] <- MLEt(data[,i],npar=3)[4]

# density of t distribution with location and scale parameters

cdf[,i] <- pt3(data[,i],tpar[i,1],tpar[i,2],tpar[i,3])

}

Fitting t copula:

findMLEtcopula <- function (cdf){

# estimates the parameters of t-copula

# starting value of the correlation matrix is estimated by "Spearman" method

# cdf ... the cumulative distribution function of the marginals

dim <- length(cdf[1,])

R <- cor(cdf,method="spearman")

# assigning the row-wise elements of correlation matrix

# as parameter to be used in copula function

par <- cormatrix2vector(R,dim)

# constructs a t copula object

# and fits the copula parameters using maximum likelihood estimation

t.cop <- tCopula(par,dim=dim,dispstr="un",df=4)

fit.ml <- fitCopula(t.cop, cdf, method="ml", start=c(rep(0,length(par)),dim))

estimates <- fit.ml@estimate

}
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Simulating d dimensional log-returns using t copula with t marginals:

rtcopulat <- function(n, parameters) {

# generates t copula with t marginals using correlation matrix and dof of

# t copula and dof, location and scale parameters of the marginals

# returns a d*n matrix holding the random vectors where d is the portfolio size

# and n is the sample size

# calculates the quantile function of the uniform distribution using Runuran

# package in order to have a fast inversion algorithm

# n... sample size

# data ... daily log-returns of assets

# generating t-distributed vector

# see http://en.wikipedia.org/wiki/Student’s_t-distribution

L <- t(chol(parameters$R))

z <- matrix(rnorm(n*parameters$dim),ncol=n,nrow=parameters$dim)

Z <- L%*%z

chi <- rchisq(n,parameters$dof)

tdistvec <- t(Z)/sqrt(chi/parameters$dof)

cdf <- pt(tdistvec,df=parameters$dof)

res <- matrix(nrow=n,ncol=parameters$dim)

for(i in 1:parameters$dim){

obj <- udt(df=parameters$df[i])

gen <- pinvd.new(obj)

res[,i] <- uq(gen,cdf[,i])*parameters$scale[i] + parameters$location[i]

}

res

}

Calculating the VaR and CVaR of the given portfolio:

risk <- function(data, n=10^3, m=100, w, alpha, T, copula=c("normal","t"),

marginals=c("normal","t","ghyp"),error=FALSE){

# estimates the VaR and ES of the given data using chosen copula and marginals

# data ... daily log-returns of financial instruments

# n ... inner repetitions
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# m ... outer repetitions

# w ... weights of financial instruments

# alpha ... confidence level

# T ... time horizon

# copula ... copula type

# marginals ... marginals type

VaR <- matrix(nrow=m,ncol=length(alpha))

ES <- matrix(nrow=m,ncol=length(alpha))

TH <- round(258*T)

parameters <- ParameterEst(data,copula,marginals)

for(i in 1:m){

logreturnmatrix <- 0

if (copula=="normal" && marginals=="normal" )

for(j in 1:TH) logreturnmatrix<-logreturnmatrix+rnormalcopulanormal(n,parameters)

if (copula=="normal" && marginals=="t" )

4for(j in 1:TH) logreturnmatrix<-logreturnmatrix+rnormalcopulat(n,parameters)

if (copula=="t" && marginals=="t" )

4 for(j in 1:TH) logreturnmatrix<-logreturnmatrix+rtcopulat(n,parameters)

if (copula=="t" && marginals=="ghyp" )

for(j in 1:TH) logreturnmatrix<-logreturnmatrix+tcopulaGhyp(n,parameters)

loss <- 1-exp(logreturnmatrix)%*%w

for(k in 1:length(alpha)){

VaR[i,k] <- quantile(loss,1-alpha[k])

ES[i,k] <- mean(loss[loss>VaR[i,k]])

}

}

res <- matrix(ncol=length(alpha),nrow=2,

dimnames=list(c("VaR","ES"),c((1-alpha))))

er <- matrix(ncol=length(alpha),nrow=2,

dimnames=list(c("VaR Error","ES Error"),c((1-alpha))))

for(j in 1:length(alpha)){
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res[1,j] <- mean(VaR[,j])

res[2,j] <- mean(ES[,j])

er[1,j] <- qnorm(0.95)*sd(VaR[,j])/sqrt(m)

er[2,j] <- qnorm(0.95)*sd(ES[,j])/sqrt(m)

}

print(res)

if(error==TRUE) print(er)

}

Daily back testing:

Backtesting <- function(data, n=10^3, m=2, w,alpha ,T,copula=c("normal","t"),

marginals=c("normal","t","ghyp")){

# daily backtesting for being sure of the accuracy of our VaR model

# data ... daily log-returns of assets

# n... inner repetitions

# m ... outer repetitions for error calculations

# w ... weight vector

# alpha ... confidence level

data <- as.matrix(data)

d <- round((length(data[,1])-500))

# number of days that will be checked

sum <- matrix(0,ncol=length(alpha))

LR <- matrix(0,ncol=length(alpha))

# likelihood ratio for checking the validity of the method

p <- matrix(0,ncol=length(alpha))

chisq <- matrix(0,ncol=length(alpha))

for(j in 1:length(alpha)){

chisq[,j] <- qchisq(1-alpha[j],df=1)

}

LossData <- 1 - exp(data)%*%w

for(i in 1:d){
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dt <- data.frame(data[i:(500+(i-1)),])

VaR <- riskBT(dt,n,m,w,alpha,T,copula,marginals)[1,]

for(j in 1:length(alpha)){

if (LossData[500+i] > VaR[j]) sum[,j] <- sum[,j] + 1

}

}

#print(sum)

for(i in 1:length(alpha)){

p[,i] <- sum[,i]/d

LR[,i] <- -2*log((((1-p[,i])^(d-sum[,i]))*(p[,i]^sum[,i]))

/(((1-sum[,i]/d)^(d-sum[,i]))*((sum[,i]/d)^sum[,i])))

if(LR[,i] > chisq[i])

print("the model is inaccurate") else

print("the model is accurate")

}

}
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APPENDIX D: CORRELATION MATRIX OF 2010 - 2011

PERIOD

Table D.1. Correlation Matrix of the Daily Log-Returns for 2 Years.

AAPL ABT BA BBY BP C CMS DIS F GE HD

AAPL 1.00 0.39 0.55 0.38 0.36 0.48 0.50 0.52 0.55 0.54 0.49

ABT 0.39 1.00 0.55 0.32 0.45 0.51 0.58 0.57 0.47 0.59 0.51

BA 0.55 0.55 1.00 0.43 0.43 0.63 0.59 0.71 0.63 0.70 0.61

BBY 0.38 0.32 0.43 1.00 0.29 0.46 0.39 0.43 0.45 0.41 0.49

BP 0.36 0.45 0.43 0.29 1.00 0.42 0.44 0.45 0.44 0.50 0.37

C 0.48 0.51 0.63 0.46 0.42 1.00 0.58 0.67 0.63 0.70 0.56

CMS 0.50 0.58 0.59 0.39 0.44 0.58 1.00 0.61 0.53 0.63 0.55

DIS 0.52 0.57 0.71 0.43 0.45 0.67 0.61 1.00 0.63 0.72 0.61

F 0.55 0.47 0.63 0.45 0.44 0.63 0.53 0.63 1.00 0.65 0.59

GE 0.54 0.59 0.70 0.41 0.50 0.70 0.63 0.72 0.65 1.00 0.62

HD 0.49 0.51 0.61 0.49 0.37 0.56 0.55 0.61 0.59 0.62 1.00

K 0.30 0.42 0.44 0.27 0.20 0.35 0.40 0.44 0.33 0.44 0.37

KO 0.44 0.60 0.58 0.39 0.44 0.50 0.60 0.58 0.45 0.61 0.53

MCD 0.46 0.51 0.56 0.35 0.38 0.47 0.53 0.54 0.49 0.54 0.56

MMM 0.56 0.59 0.69 0.44 0.50 0.64 0.62 0.72 0.63 0.73 0.60

MO 0.43 0.60 0.59 0.35 0.42 0.48 0.59 0.55 0.46 0.60 0.49

PG 0.41 0.56 0.55 0.31 0.37 0.48 0.57 0.56 0.45 0.59 0.52

TOL 0.47 0.43 0.59 0.45 0.41 0.58 0.49 0.60 0.56 0.62 0.62

UNP 0.55 0.54 0.70 0.43 0.46 0.64 0.58 0.70 0.65 0.72 0.62

WMT 0.35 0.49 0.46 0.35 0.33 0.44 0.50 0.51 0.46 0.51 0.56

GOLD 0.08 0.03 0.07 -0.03 0.03 0.00 0.08 0.04 0.02 0.01 -0.02

OIL 0.33 0.33 0.40 0.24 0.30 0.39 0.38 0.38 0.33 0.41 0.31
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Table D.2. Correlation Matrix of the Daily Log-Returns for 2 Years (cont.).

K KO MCD MMM MO PG TOL UNP WMT GOLD OIL

AAPL 0.30 0.44 0.46 0.56 0.43 0.41 0.47 0.55 0.35 0.08 0.33

ABT 0.42 0.60 0.51 0.59 0.60 0.56 0.43 0.54 0.49 0.03 0.33

BA 0.44 0.58 0.56 0.69 0.59 0.55 0.59 0.70 0.46 0.07 0.40

BBY 0.27 0.39 0.35 0.44 0.35 0.31 0.45 0.43 0.35 -0.03 0.24

BP 0.20 0.44 0.38 0.50 0.42 0.37 0.41 0.46 0.33 0.03 0.30

C 0.35 0.50 0.47 0.64 0.48 0.48 0.58 0.64 0.44 0.00 0.39

CMS 0.40 0.60 0.53 0.62 0.59 0.57 0.49 0.58 0.50 0.08 0.38

DIS 0.44 0.58 0.54 0.72 0.55 0.56 0.60 0.70 0.51 0.04 0.38

F 0.33 0.45 0.49 0.63 0.46 0.45 0.56 0.65 0.46 0.02 0.33

GE 0.44 0.61 0.54 0.73 0.60 0.59 0.62 0.72 0.51 0.01 0.41

HD 0.37 0.53 0.56 0.60 0.49 0.52 0.62 0.62 0.56 -0.02 0.31

K 1.00 0.46 0.40 0.41 0.45 0.47 0.32 0.40 0.40 0.00 0.22

KO 0.46 1.00 0.59 0.61 0.60 0.63 0.44 0.53 0.53 0.06 0.37

MCD 0.40 0.59 1.00 0.58 0.54 0.53 0.49 0.57 0.52 0.06 0.28

MMM 0.41 0.61 0.58 1.00 0.59 0.58 0.60 0.71 0.53 0.06 0.43

MO 0.45 0.60 0.54 0.59 1.00 0.60 0.45 0.55 0.50 0.08 0.32

PG 0.47 0.63 0.53 0.58 0.60 1.00 0.46 0.53 0.54 0.04 0.28

TOL 0.32 0.44 0.49 0.60 0.45 0.46 1.00 0.57 0.43 -0.02 0.36

UNP 0.40 0.53 0.57 0.71 0.55 0.53 0.57 1.00 0.47 0.05 0.43

WMT 0.40 0.53 0.52 0.53 0.50 0.54 0.43 0.47 1.00 0.01 0.15

GOLD 0.00 0.06 0.06 0.06 0.08 0.04 -0.02 0.05 0.01 1.00 0.21

OIL 0.22 0.37 0.28 0.43 0.32 0.28 0.36 0.43 0.15 0.21 1.00
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APPENDIX E: COPULA FITTING RESULTS FOR

PORTFOLIOS WITH GOLD AND CRUDE OIL

Llh: Log-likelihood Value

E.1. Copula Fitting Results for Stock Portfolios

Table E.1. Results of Copula Fitting for Portfolio 1.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.365 35.985 -69.970

t t 0.309 / v=2.723 56.049 -108.099

t GHD 0.310 / v=2.866 53.382 -102.765

Table E.2. Results of Copula Fitting for Portfolio 2.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 131.550 -261.099

t t ρt−t / v=6.950 142.365 -280.730

t GHD ρt−GHD / v=8.050 139.435 -274.869

Table E.3. ρnorm, ρt−t and ρt−GHD for Portfolio 2.

ρ12 ρ13 ρ23

ρnorm−t 0.378 0.487 0.430

ρt−t 0.375 0.494 0.412

ρt−GHD 0.376 0.495 0.416
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Table E.4. Results of Copula Fitting for Portfolio 3.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 364.455 -726.910

t t ρt−t / v=7.797 387.747 -771.493

t GHD ρt−GHD / v=8.301 382.575 -761.150

Table E.5. ρnorm, ρt−t and ρt−GHD for Portfolio 3.

ρ12 ρ13 ρ14 ρ23 ρ24 ρ34

ρnorm−t 0.482 0.541 0.681 0.530 0.431 0.521

ρt−t 0.498 0.545 0.682 0.542 0.448 0.525

ρt−GHD 0.497 0.546 0.680 0.541 0.447 0.525

Table E.6. Results of Copula Fitting for Portfolio 4.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 438.446 -874.893

t t ρt−t / v=7.525 464.321 -924.642

t GHD ρt−GHD / v=8.195 459.151 -914.302

Table E.7. ρnorm, ρt−t and ρt−GHD for Portfolio 4.

ρ12 ρ13 ρ14 ρ15 ρ23 ρ24 ρ25 ρ34 ρ35 ρ45

ρnorm−t 0.548 0.627 0.430 0.392 0.512 0.557 0.479 0.440 0.438 0.467

ρt−t 0.551 0.636 0.421 0.398 0.496 0.540 0.477 0.428 0.447 0.444

ρt−GHD 0.554 0.632 0.419 0.400 0.495 0.540 0.479 0.426 0.445 0.443
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Table E.8. Results of Copula Fitting for Portfolio 5.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 1,366.422 -2,730.844

t t ρt−t / v=11.310 1,430.153 -2,856.306

t GHD ρt−GHD / v=12.230 1,413.468 -2,822.936

ρnorm−t = (0.405, 0.507, 0.525, 0.470, 0.299 ,0.428, 0.553, 0.392, 0.473,0.500,

0.565, 0.416, 0.273 , 0.411 ,0.571, 0.401,0.449,0.714,0.608,0.474, 0.533, 0.722, 0.543

,0.593, 0.615, 0.475 ,0.529 ,0.736 ,0.581, 0.604,0.401 ,0.550 ,0.598, 0.514, 0.615,0.419

,0.459, 0.530, 0.358, 0.572 ,0.522, 0.482,0.569, 0.593,0.443)

ρt−t = (0.429, 0.504, 0.534, 0.458, 0.291, 0.421, 0.547, 0.389, 0.464, 0.530, 0.594,

0.451,0.310, 0.432, 0.603, 0.410, 0.468, 0.722, 0.609, 0.486, 0.544, 0.730, 0.553, 0.585,

0.622, 0.483, 0.541, 0.750, 0.598, 0.602, 0.412, 0.552, 0.603, 0.524, 0.601, 0.420, 0.483,

0.532, 0.360, 0.579, 0.527, 0.473, 0.578, 0.591, 0.434)

ρt−GHD = (0.425, 0.502, 0.530 ,0.459, 0.289 ,0.419, 0.546, 0.388, 0.463, 0.524,

0.588 , 0.449, 0.305 ,0.429 ,0.596, 0.405 ,0.466 ,0.718, 0.611, 0.485, 0.542, 0.727 ,0.553,

0.586, 0.623, 0.480 ,0.537, 0.744 ,0.595, 0.601, 0.415, 0.553 ,0.602, 0.526, 0.603, 0.420,

0.477, 0.530, 0.361,0.577 ,0.527, 0.472,0.575, 0.589, 0.434)

E.2. Copula Fitting Results for Stock Portfolios with Gold

Table E.9. Results of Copula Fitting for Portfolio 1 with Gold.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 37.695 -73.390

t t ρt−t / v=6.101 52.344 -100.688

t GHD ρt−GHD / v=6.599 49.814 -95.628
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Table E.10. ρnorm, ρt−t and ρt−GHD for Portfolio 1 with Gold.

ρ1,Gold ρ2,Gold

ρnorm−t 0.077 0.055

ρt−t 0.082 0.068

ρt−ghd 0.078 0.063

Table E.11. Results of Copula Fitting for Portfolio 2 with Gold.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 133.790 -265.580

t t ρt−t / v=7.2069 152.804 -301.607

t GHD ρt−GHD / v=8.0340 149.275 -294.549

Table E.12. ρnorm, ρt−t and ρt−GHD for Portfolio 2 with Gold.

ρ1,Gold ρ2,Gold ρ3,Gold

ρnorm−t -0.005 0.083 0.004

ρt−t 0.015 0.105 0.024

ρt−GHD 0.013 0.101 0.024

Table E.13. Results of Copula Fitting for Portfolio 3 with Gold.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 442.279 -882.557

t t ρt−t / v=8.663 469.273 -934.545

t GHD ρt−GHD / v=9.440 464.073 -924.146
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Table E.14. ρnorm, ρt−t and ρt−GHD for Portfolio 3 with Gold.

ρ1,Gold ρ2,Gold ρ3,Gold ρ4,Gold

ρnorm−t 0.083 0.011 0.035 0.059

ρt−t 0.073 0.032 0.049 0.052

ρt−GHD 0.067 0.031 0.049 0.049

Table E.15. Results of Copula Fitting for Portfolio 4 with Gold.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 502.314 -1,002.628

t t ρt−t / v=8.112 536.330 -1,068.660

t GHD ρt−GHD / v=9.210 528.440 -1,052.881

Table E.16. ρnorm, ρt−t and ρt−GHD for Portfolio 4 with Gold.

ρ1,Gold ρ2,Gold ρ3,Gold ρ4,Gold ρ5,Gold

ρnorm−t 0.025 0.091 0.007 0.092 0.022

ρt−t 0.061 0.083 0.014 0.095 0.028

ρt−GHD 0.057 0.082 0.009 0.093 0.027

Table E.17. Results of Copula Fitting for Portfolio 5 with Gold.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 442.279 -882.557

t t ρt−t / v=8.663 469.273 -934.545

t GHD ρt−GHD / v=9.440 464.073 -924.146
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Table E.18. ρnorm, ρt−t and ρt−GHD for Portfolio 5 with Gold.

ρ1,Gold ρ2,Gold ρ3,Gold ρ4,Gold ρ5,Gold

ρnorm−t 0.077 0.058 0.047 0.021 -0.020

ρt−t 0.063 0.067 0.038 0.014 -0.023

ρt−GHD 0.059 0.064 0.039 0.012 -0.024

Table E.19. ρnorm, ρt−t and ρt−GHD for Portfolio 5 with Gold (cont.).

ρ6,Gold ρ7,Gold ρ8,Gold ρ9,Gold ρ10,Gold

ρnorm−t 0.011 0.066 0.078 0.035 0.004

ρt−t 0.010 0.050 0.075 0.034 -0.007

ρt−GHD 0.010 0.050 0.072 0.036 -0.006

E.3. Copula Fitting Results for Stock Portfolios with Crude Oil

Table E.20. Results of Copula Fitting for Portfolio 1 with Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 80.707 -159.413

t t ρt−t / v=5.279 101.012 -198.024

t GHD ρt−GHD / v=5.865 96.718 -189.435
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Table E.21. ρnorm, ρt−t and ρt−GHD for Portfolio 1 with Crude Oil.

ρ1,Oil ρ2,Oil

ρnorm−t 0.333 0.333

ρt−t 0.331 0.320

ρt−ghd 0.334 0.323

Table E.22. Results of Copula Fitting for Portfolio 2 with Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 187.064 -372.128

t t ρt−t / v=7.699 208.633 -413.266

t GHD ρt−GHD / v=8.501 204.477 -404.953

Table E.23. ρnorm, ρt−t and ρt−GHD for Portfolio 2 with Crude Oil.

ρ1,Oil ρ2,Oil ρ3,Oil

ρnorm−t 0.276 0.376 0.369

ρt−t 0.292 0.390 0.381

ρt−GHD 0.293 0.390 0.384

Table E.24. Results of Copula Fitting for Portfolio 3 with Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 425.867 -849.733

t t ρt−t / v=7.942 459.892 -915.783

t GHD ρt−GHD / v=8.603 453.025 -902.050
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Table E.25. ρnorm, ρt−t and ρt−GHD for Portfolio 3 with Crude Oil.

ρ1,Oil ρ2,Oil ρ3,Oil ρ4,Oil

ρnorm−t 0.421 0.239 0.282 0.431

ρt−t 0.430 0.263 0.297 0.441

ρt−GHD 0.431 0.263 0.298 0.442

Table E.26. Results of Copula Fitting for Portfolio 4 with Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 502.314 -1,002.628

t t ρt−t / v=8.112 536.330 -1,068.660

t GHD ρt−GHD / v=9.209 528.440 -1,052.881

Table E.27. ρnorm, ρt−t and ρt−GHD for Portfolio 4 with Crude Oil.

ρ1,Oil ρ2,Oil ρ3,Oil ρ4,Oil ρ5,Oil

ρnorm−t 0.412 0.379 0.357 0.309 0.164

ρt−t 0.424 0.374 0.388 0.313 0.197

ρt−GHD 0.424 0.377 0.386 0.314 0.196

Table E.28. Results of Copula Fitting for Portfolio 5 with Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t ρnorm−t 1,437.997 -2,873.994

t t ρt−t / v=11.242 1,513.583 -3,023.166

t GHD ρt−GHD / v=12.197 1,495.148 -2,986.296
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Table E.29. ρnorm, ρt−t and ρt−GHD for Portfolio 5 with Crude Oil.

ρ1,Oil ρ2,Oil ρ3,Oil ρ4,Oil ρ5,Oil ρ6,Oil ρ7,Oil ρ8,Oil ρ9,Oil ρ10,Oil

ρnorm−t 0.333 0.385 0.391 0.420 0.323 0.239 0.303 0.452 0.282 0.369

ρt−t 0.352 0.432 0.405 0.437 0.329 0.263 0.318 0.476 0.306 0.370

ρt−GHD 0.350 0.430 0.402 0.435 0.330 0.261 0.318 0.473 0.304 0.371

E.4. Copula Fitting Results for Stock Portfolios with Gold and Crude Oil

In this section, we will just state the dependence between gold and crude oil as

the correlation parameter since the other correlations between stocks and commodities

are estimated in the previous sections.

Table E.30. Results of Copula Fitting for Portfolio 1 with Gold and Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.215 92.711 -183.421

t t 0.240 / v=6.894 118.208 -232.415

t GHD 0.235 / v=7.651 112.765 -221.529

Table E.31. Results of Copula Fitting for Portfolio 2 with Gold and Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.215 201.452 -400.903

t t 0.235 / v=7.457 234.945 -465.891

t GHD 0.232 / v=8.191 229.210 -454.420
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Table E.32. Results of Copula Fitting for Portfolio 3 with Gold and Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.215 438.561 -875.122

t t 0.217 / v=8.291 477.999 -951.997

t GHD 0.211 / v=9.065 469.439 -934.878

Table E.33. Results of Copula Fitting for Portfolio 4 with Gold and Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.215 517.539 -1033.079

t t 0.236 / v=8.626 557.711 -1111.422

t GHD 0.233 / v=9.748 548.939 -1093.879

Table E.34. Results of Copula Fitting for Portfolio 5 with Gold and Crude Oil.

Copula Marginals Parameter(s) Llh AIC

Normal t 0.215 1454.544 -2907.088

t t 0.214 / v=11.778 1531.305 -3058.610

t GHD 0.209 / v=12.888 1511.607 -3019.214
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APPENDIX F: BACK TESTING EXCEPTION RESULTS

Table F.1. Back Testing Exception Results.

α

Portfolio Model 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

st2 Multivariate Normal 14 19 21 23 25 26 27 29

normal - t 5 9 12 13 18 20 22 23

t - t 5 9 10 13 18 19 20 21

t - ghyp 5 9 10 12 16 19 20 20

st2 + gold Multivariate Normal 15 19 20 21 24 25 28 30

normal - t 4 8 14 16 19 21 23 25

t - t 3 8 12 16 19 20 22 23

t - ghyp 2 8 11 15 18 20 21 24

st2 + oil Multivariate Normal 21 25 27 29 34 34 35 36

normal - t 10 15 22 23 28 29 31 35

t - t 8 14 21 23 26 27 31 33

t - ghyp 8 13 21 22 24 27 30 31

st2 + gold + oil Multivariate Normal 21 26 27 28 31 33 35 35

normal - t 11 14 21 22 28 29 30 34

t - t 8 14 21 23 26 27 31 33

t - ghyp 7 13 21 23 25 28 32 33
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APPENDIX G: VaR AND CVaR RESULTS

Table G.1. Daily V aR0.999 and CV aR0.999 of AAPL-ABT with Gold and Crude Oil.

Method Stock Portfolios

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.03306 0.000541 0.03600 0.000740

Normal Copula with t Marginals 0.04038 0.000943 0.04896 0.002119

t Copula with t Marginals 0.04334 0.001155 0.05409 0.002358

t Copula with GHD Marginals 0.04370 0.001070 0.05052 0.001674

Stock Portfolios with Gold

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02549 0.000496 0.02746 0.000614

Normal Copula with t Marginals 0.03026 0.000654 0.03689 0.001446

t Copula with t Marginals 0.03319 0.000900 0.04218 0.001959

t Copula with GHD Marginals 0.03365 0.000835 0.03958 0.001317

Stock Portfolios with Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.03470 0.000593 0.03765 0.000725

Normal Copula with t Marginals 0.04068 0.000906 0.04855 0.001552

t Copula with t Marginals 0.04453 0.001028 0.05452 0.002226

t Copula with GHD Marginals 0.04602 0.001242 0.05645 0.001940

Stock Portfolios with Gold and Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02845 0.000426 0.03076 0.000607

Normal Copula with t Marginals 0.03392 0.000752 0.04083 0.001886

t Copula with t Marginals 0.03729 0.001074 0.04545 0.002334

t Copula with GHD Marginals 0.03652 0.000758 0.04379 0.001522
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Table G.2. Weekly V aR0.999 and CV aR0.999 of AAPL-ABT with Gold and Crude Oil.
Method Stock Portfolios

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.07097 0.001030 0.07707 0.001543

Normal Copula with t Marginals 0.07275 0.001225 0.08136 0.001804

t Copula with t Marginals 0.07607 0.001306 0.09099 0.002724

t Copula with GHD Marginals 0.07488 0.001562 0.08412 0.002057

Stock Portfolios with Gold

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.05567 0.000850 0.06074 0.001328

Normal Copula with t Marginals 0.05421 0.000820 0.06107 0.001528

t Copula with t Marginals 0.05783 0.001363 0.06704 0.002426

t Copula with GHD Marginals 0.05827 0.000916 0.06658 0.001471

Stock Portfolios with Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.07609 0.001090 0.08348 0.001722

Normal Copula with t Marginals 0.07358 0.001233 0.08327 0.002119

t Copula with t Marginals 0.07960 0.001462 0.09116 0.002750

t Copula with GHD Marginals 0.07818 0.001309 0.08808 0.002058

Stock Portfolios with Gold and Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.06229 0.000838 0.06828 0.001313

Normal Copula with t Marginals 0.06089 0.000931 0.06903 0.001669

t Copula with t Marginals 0.06579 0.001299 0.07620 0.002143

t Copula with GHD Marginals 0.06628 0.001077 0.07631 0.002060
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Table G.3. Weekly V aR0.99 and CV aR0.99 of AAPL-ABT with Gold and Crude Oil.

Method Stock Portfolios

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02577 0.000250 0.02957 0.000297

Normal Copula with t Marginals 0.02673 0.000373 0.03357 0.000565

t Copula with t Marginals 0.02745 0.000380 0.03625 0.000609

t Copula with GHD Marginals 0.02830 0.000363 0.03597 0.000503

Stock Portfolios with Gold

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02001 0.000200 0.02290 0.000249

Normal Copula with t Marginals 0.02030 0.000242 0.02545 0.000379

t Copula with t Marginals 0.02090 0.000275 0.02753 0.000509

t Copula with GHD Marginals 0.02170 0.000220 0.02755 0.000393

Stock Portfolios with Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02713 0.000261 0.03099 0.00029

Normal Copula with t Marginals 0.02808 0.000331 0.03463 0.0005006

t Copula with t Marginals 0.02879 0.000361 0.03708 0.0005497

t Copula with GHD Marginals 0.02959 0.000360 0.03732 0.0005913

Stock Portfolios with Gold and Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.02232 0.000201 0.02561 0.000250

Normal Copula with t Marginals 0.02287 0.000299 0.02828 0.000416

t Copula with t Marginals 0.02352 0.000292 0.03047 0.000577

t Copula with GHD Marginals 0.02475 0.000306 0.03116 0.000497
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Table G.4. Weekly V aR0.99 and CV aR0.99 of AAPL-ABT with Gold and Crude Oil.

Method Stock Portfolios

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.05637 0.0005715 0.06425 0.0006747

Normal Copula with t Marginals 0.05368 0.0005191 0.06370 0.0006704

t Copula with t Marginals 0.05330 0.0005861 0.06528 0.0008093

t Copula with GHD Marginals 0.05473 0.0006032 0.06508 0.0008694

Stock Portfolios with Gold

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.04333 0.0003944 0.04931 0.0005229

Normal Copula with t Marginals 0.03962 0.0003129 0.04717 0.0004387

t Copula with t Marginals 0.04052 0.0004144 0.04960 0.0006889

t Copula with GHD Marginals 0.04295 0.0004532 0.05103 0.0005839

Stock Portfolios with Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.05908 0.0005845 0.06783 0.0007448

Normal Copula with t Marginals 0.05530 0.0005173 0.06516 0.0007655

t Copula with t Marginals 0.05675 0.0005972 0.06852 0.0008429

t Copula with GHD Marginals 0.05854 0.0005357 0.06900 0.0007714

Stock Portfolios with Gold and Crude Oil

VaR CVaR

Result SE Result SE

Exact Multinormal Model 0.04905 0.0004575 0.05623 0.0005856

Normal Copula with t Marginals 0.04513 0.0003923 0.05359 0.0005726

t Copula with t Marginals 0.04629 0.0004674 0.05645 0.0007022

t Copula with GHD Marginals 0.04858 0.0004842 0.05780 0.0006165



Figure G.1. Daily V aR0.999 of the portfolios computed with normal copula t marginals model.



Figure G.2. Daily V aR0.999 of the portfolios computed with t copula t marginals model.



Figure G.3. Daily V aR0.999 of the portfolios computed with t copula ghyp marginals model.



Figure G.4. Daily V aR0.99 of the portfolios computed with normal copula t marginals model.



Figure G.5. Daily V aR0.99 of the portfolios computed with t copula t marginals model.



Figure G.6. Daily V aR0.99 of the portfolios computed with t copula ghyp marginals model.



Figure G.7. Daily CV aR0.999 of the portfolios computed with normal copula t marginals model.



Figure G.8. Daily CV aR0.999 of the portfolios computed with t copula t marginals model.



Figure G.9. Daily CV aR0.999 of the portfolios computed with t copula ghyp marginals model.



Figure G.10. Daily CV aR0.99 of the portfolios computed with normal copula t marginals model.



Figure G.11. Daily CV aR0.99 of the portfolios computed with t copula t marginals model.



Figure G.12. Daily CV aR0.99 of the portfolios computed with t copula ghyp marginals model.



Figure G.13. Weekly V aR0.999 of the portfolios computed with normal copula t marginals model.



Figure G.14. Weekly V aR0.999 of the portfolios computed with t copula t marginals model.



Figure G.15. Weekly V aR0.999 of the portfolios computed with t copula ghyp marginals model.



Figure G.16. Weekly V aR0.99 of the portfolios computed with normal copula t marginals model.



Figure G.17. Weekly V aR0.99 of the portfolios computed with t copula t marginals model.



Figure G.18. Weekly V aR0.99 of the portfolios computed with t copula ghyp marginals model.



Figure G.19. Weekly CV aR0.999 of the portfolios computed with normal copula t marginals model.



Figure G.20. Weekly CV aR0.999 of the portfolios computed with t copula t marginals model.



Figure G.21. Weekly CV aR0.999 of the portfolios computed with t copula ghyp marginals model.



Figure G.22. Weekly CV aR0.99 of the portfolios computed with normal copula t marginals model.



Figure G.23. Weekly CV aR0.99 of the portfolios computed with t copula t marginals model.



Figure G.24. Weekly CV aR0.99 of the portfolios computed with t copula ghyp marginals model.
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27. J., L. and W. Hörmann, Runuran: R interface to the UNU.RAN random variate

generators , 2007, http://statistik.wu-wien.ac.at/unuran/, r package version

0.7.




