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ABSTRACT

SUPPLY DISRUPTION IN MULTISTAGE PRODUCTION

SYSTEMS

This study aims to analyze multistage production systems under supply disrup-

tion. First part of the study examine an N stage serial system under supply disruption

risk. It is assumed that the unreliable supplier is unique and known beforehand. It is

assumed that the disrupted supplier can not place a new order during disruption how-

ever it can continue to deliver its on hand inventory. An approximation approach for an

N stage serial system is also developed. A numerical analysis is presented and the re-

order intervals that are integer multiples of the reorder intervals of their successors are

obtained for the exact model of a two-stage serial system. In the approximate model,

power-of-two policy is applied to determine the reorder intervals. Furthermore, the er-

ror due to applying the approximate model and the error due to using the power-of-two

policy are computed. It is shown that the approximation provides good performance

when the reorder interval of the unreliable supplier is large enough. Second part of

the study deals with the assembly systems that are due to supply disruption. The

examined assembly system is a simple system that consists of the stage that forms the

finished product and its direct predecessors. It is assumed that the unreliable supplier

is unique and can be one of the direct predecessors of the root stage. It is also assumed

that the proportion of the reorder intervals of the direct predecessors of the root stage

to each other and to the root stage must be integer. The model is analyzed by taking

into consideration two cases since the average cost of the system changes according to

the relation between reorder intervals. An approximation approach is developed by ap-

proximating the probability of disruption. A three-stage assembly system is examined

in the numerical analysis part.
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ÖZET

ÇOK AŞAMALI ÜRETİM SISTEMLERİNDE TEDARİK

ENGELİ

Bu çalışma tedarik engeli riski altındaki birden çok aşamalı üretim sistemlerini

analiz etmeyi amaçlamaktadır. Çalışmanın ilk kısmı tedarik engeli riski altındaki N

aşamalı bir seri üretim sistemini incelemektedir. Güvenilir olmayan tedarikçinin tek ve

önceden bilindiği varsayılmıştır. Engellenen tedarikçinin tedarik engeli süresince yeni

bir sipariş veremediği ancak elinde olan ürünleri bir sonraki aşamaya temin etmeye

devam edebildiği varsayılmıştır. Ayrıca N aşamalı seri üretim sistemi için yaklaşıkk

bir model geliştirilmiştir. Sayısal bir analiz sunulmuş ve iki aşamalı üretim sistem-

inin tam modeli için kendilerinden sonra gelen aşamaların sipariş aralıklarının tam

sayı katı olan sipariş aralıkları elde edilmiştir. Tahmini modelde, sipariş aralıklarını

belirlemek için ikinin katı politikası uygulanmıştır. Ayrıca tahmini modeli ve ikinin

katı politikasını kullanmaktan ileri gelen hatalar hesaplanmıştır. Güvenilir olmayan

tedarikçinin sipariş aralığı yeterince büyük olduğunda tahmini modelin iyi bir perfor-

mans sağladığı gösterilmiştir. Çalışmanın ikinci kısmı tedarik engeli riski altında olan

montaj hatlarını ele almaktadır. İncelenen montaj hattı nihai ürünü oluşturan kök

aşama ve bu aşamadan doğrudan önce gelen aşamalardan oluşmaktadır. Güvenilir ol-

mayan tedarikçinin tek ve kök aşamadan önce gelen aşamalardan biri olduğu varsayılmıştır.

Ayrıca aşamaların sipariş aralıklarının birbirine oranının tam sayı olduğu varsayılmıştır.

Sistemin ortalama maliyeti sipariş aralıkları arasındaki ilişkiye göre değiştiğinden model

iki durum göz önüne alınarak analiz edilmiştir. Yaklaşık bir engel olasılığı kullanılarak

tahmini bir model geliştirilmiştir. Çalışmanın sayısal analiz kısmında üç aşamalı bir

montaj hattı incelenmiştir. Elde edilen sonuçlara göre tahmini model ve birbirinin tam

sayı katı olan sipariş aralıkları kullanmanın modelin ortalama maliyeti üzerinde anlamlı

bir etkisinin olmadığı gösterilmiştir.
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1. INTRODUCTION

A few decades ago, manufacturers are used to be concerned mostly about the

uncertainty in demand. They also used to assume that supply will be delivered at exact

quantity at the required time. However, since random conditions have vital effects on

the performance of production systems, we can no longer rely on this assumption.

Sources of supply uncertainties, such as breakdowns, strikes, economic and political

crises, etc., effect optimal inventory management policies. Ignoring the risk of supply

may result in unmet demands, shortage costs and loss of goodwill. One way of dealing

with this problem might be holding additional inventory. However, holding too much

inventory might be costly if disruptions are not frequent and holding cost is high. Other

strategies might be ordering from another supplier if it is cheaper or simply accepting

the risk of supply. Therefore, in order to mitigate the impacts of supply uncertainties,

managers should make significant changes in their inventory plans.

There exists various types of supply uncertainties. For the case of the yield

uncertainty, suppliers can provide only some of the ordered quantity that changes

according to the distribution of the yield rate. The reason of the yield uncertainty may

be the defective items that have random amounts. In some cases, yield uncertainty

depends on the order quantity. On the other hand, supply disruption has a form of all-

or-nothing type. Some disruptions destroy the on hand inventory of the supplier while

others only prevent the supplier from delivering inventory. Sometimes uncertainty

is due to the capacity constraints when demand is greater than the capacity of the

supplier, in that case only a part of the demand can be processed. Machine breakdowns,

maintenance, reworked items are the possible reasons of the uncertain capacity.

This thesis is concerned with supply disruption in multistage production and

inventory systems. A multistage production system needs more than one stage to

produce a finished product. In the first part of the study, we analyze serial systems

under supply disruption with constant demand. In a serial system, each stage has only

one predecessor and one successor, except root stage. The root stage is the only stage
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that does not have a predecessor and we assume that disruptions occur only at the root

stage at a random time and last for a random length of time. The unreliable supplier

can not place any order until the end of disruption. We assume that disruptions do not

destroy the on hand inventory of the unreliable supplier, it only prevents the supplier

from placing new orders during disruption period. The wet period is the length of time

in which supply is available while the dry period is the length of time in which supply

is unavailable. Both of these periods are assumed to be exponentially distributed. We

model the problem in terms of reorder intervals instead of order quantities. A reorder

interval is the time between two consecutive orders. Both nested and stationary policies

are assumed to solve the problem. A stationary policy requires that a reorder interval

is constant, it does not change over time. A nested policy requires that if a stage of

the serial system places an order, then the successor of that stage must place an order

simultaneously. Therefore, the reorder interval of a stage’s predecessor is greater than

or equal to the reorder interval of that stage. We assume that each stage has a fixed

ordering cost as well as a cost for holding inventory. According to our model, if there is

no on hand inventory during disruption, then unmet demands are assumed to be lost

and a shortage cost is paid for each unit of them. Our goal is to determine the reorder

interval of each stage that minimize the expected cost of the serial system.

In the second part of the study, we examine assembly systems with disruption in

supply. An assembly system consists of several stages that assemble a finished product

from a set of parts. Each part can be assembled from another set of parts since each

stage has a unique successor but several predecessors. We consider a simple assembly

system that consists of only the stage in which the semi-finished products take the form

of a finished product and its direct predecessors. The unreliable supplier is unique and

known beforehand. It can be one of the stages of the assembly system that does not

have a predecessor. Other suppliers have the knowledge of the availability status of the

unreliable supplier. As in the problem with serial systems, disruptions only prevent the

unreliable supplier from placing new orders during the dry period. Moreover, although

the unreliable supplier can not place any order during disruption, all of the suppliers

including the disrupted one can continue to deliver their on hand inventories until

they have none which means even if the unreliable supplier is disrupted, if it still has
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on hand inventory, then other suppliers keep on giving orders. On the other hand,

since other suppliers know the amount of inventory the disrupted supplier has, once its

inventory level hits zero, they stop giving orders till the end of the disruption. Another

important assumption is that the proportion of the reorder interval of the disrupted

supplier to the reorder intervals of other suppliers must be integer. We also assume

both nested and stationary policies. Each stage has a fixed ordering cost per order and

a holding cost per unit. Stockouts are assumed to be lost and have a shortage cost per

lost sale. We try to determine the reorder intervals that minimize the expected cost

of the system. Because of the nature of the problem, we examine the problem in two

cases. Case 1 assumes that the reorder interval of the unreliable supplier is greater

than or equal to the reorder intervals of other suppliers whereas in case 2, it is less

than others except the root stage.

We make a number of contributions in this study. We analyze multistage pro-

duction systems and supply disruptions jointly. We develop an approximate model for

the case of the serial system reorder interval problem. We prove that the objective

function of the approximate model is unimodal under mild conditions. For practical

reasons, we assume that the proportion of the reorder interval of a stage to the reorder

interval of its successor must be an integer. Besides, we also show how to determine a

reorder interval which is power-of-two multiple of the base planning period in a serial

system. For the numerical examples, we compute the reorder intervals that are integer

multiples of their successors’ reorder intervals for the exact model and we also compute

the reorder intervals that are power-of-two multiples of the base planning period for the

approximate model. We measure the error due to using the power-of-two policy and

the error due to using the approximate model. For the assembly system, we show both

the exact and the approximate models under supply disruption. For the numerical

analysis part, we examine a simple assembly system that consists of three stages. We

obtain the reorder intervals that are integer multiples of each other for the approximate

and the exact model and measure the errors due to using the integer reorder intervals

and applying the approximate model.

The remainder of this thesis is organized as follows. In Chapter 2, a review of the
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relevant literature is provided. Chapter 3 deals with the problem of serial systems with

supply disruption and results of the experiments are reported. The assembly system

with supply disruption is analyzed and experiments are presented in Chapter 4. The

last chapter is conclusion for the thesis.
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2. LITERATURE REVIEW

In this thesis, we deal with multistage production and inventory problems under

supply disruption. Since multistage production systems and supply disruption are

our main concerns in this study, we focus on the problems of modeling multistage

production and inventory systems as well as the problems of supply uncertainties in

the literature.

There is a vast literature on supply uncertainty which can be classified into three

categories as yield uncertainty, capacity uncertainty and disruption in supply. Mostly,

these problems are examined in either single stage or multistage production systems.

We begin this chapter by analyzing papers of single stage production systems with

supply uncertainty.

2.1. Single Stage Production Systems with Supply Uncertainty

[1] aims to extend the classical economic order quantity to the case in which the

quantity received is a random variable. Two cases are taken into consideration; first one

assumes that the standard deviation of the amount received is independent from the

quantity ordered while the second one assumes that it is proportional to the quantity

ordered. The cost penalties are also showed if EOQ is used instead of the proposed

cost functions for both cases. [1] concludes the study by emphasizing that the order

quantity which minimizes cost function depends on only the standard deviation of the

amount received.

[2] consider a periodic review inventory system with randomness in yield. It is

proved that for a single period, randomness in demand does not affect the order size

regardless of the yield model and the optimal policy does not have an order up to

point. [2] further show that the function values of finite horizon converge to that of

infinite horizon.



6

Unlike the other papers, [3] study a periodic review production system with un-

certain demand by analyzing both random yields and variable capacity jointly for the

finite horizon and infinite horizon problems by generalizing the study of [2]. A stochas-

tically proportional yield model is used. For the single period case, it is showed that

the reorder point and the optimal planned production quantity are independent of the

random capacity but depend on the yield rate. However they are effected by the ran-

dom capacity in the multiperiod problem case and the optimal policy is an order-up-to

type. It is also proven that the solution of the finite horizon problem converges to that

of the infinite-horizon problem.

[4] examine a periodic review inventory model which deals with both random

yield and random environment for a single, multiple and infinite periods. It is assumed

that demand is a random variable and because of the randomness in capacity, yield

is also random and unmet demands are backordered. Contrary to the expectations,

random environment does not make the structure of the ordering policy more difficult

since base stock is stil an optimal policy that depends on the environment. [5] give a

detailed review of lot sizing problem with random yields in the literature and divide the

problem of the randomness in yield into groups such as the model with the creation of

good units is a Bernoulli process, stochastically proportional yield model, model with

the distribution of good units change with batch size, and an approach that assumes

the yield uncertainty as a result of the random capacity.

[6] model a periodic review inventory problem with uncertain demand and uncer-

tain capacity for single, multiple and infinite periods. The randomness in capacity has

no influence on the optimal policy for the model of single period while in the models

of multiple period and infinite-horizon, it depends on the distribution of the capacity

as in the study of [3]. However in the setting of the infinite horizon, the optimal order

policy is an extended myopic policies.

[7] considers a periodic review inventory system with stochastic demand and

variable capacity. A procedure for optimal base stock levels by constructing an anal-

ogy between the class of base stock production/inventory policies that operate under
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demand /capacity uncertainty, and the G/G/1 queues is proposed.

[8] studies a non-stationary periodic review inventory model with uncertainty in

both demand and capacity and for the case of infinite horizon problem. [8] develops

upper and lower bounds of the optimal order up-to levels that converge as the planning

horizons get longer. The differences between the upper and lower bounds of the optimal

policies decrease as the length of planning horizons becomes longer.

[9] prove that although one thinks that the positive inventory is a buffer against

supply disruption, zero inventory is an optimal policy when probability of paying no

inventory cost is large enough. [9] show that with this condition, it is more advantageous

to maintain zero inventory.

[10] analyze a model which considers supply disruptions in classical inventory

models. An EOQ type inventory model is considered in which supply is only available

during an interval of random length and then unavailable for another interval of random

length. The decision maker knows the availability status of the supplier and a zero-

inventory ordering policy is assumed. The amount of demand which can not be satisfied

during dry period is assumed to be lost. Renewal reward theory is applied to construct

the objective function and to determine the optimal order quantities. Two different

cases are considered and numerical analysis are presented with the interpretation of the

results. Both wet and dry periods are exponentially distributed in the first case while

only the wet period is exponentially distributed and the dry period is deterministic in

the second one. According to the numerical examples, the total cost is lower but the

ordered quantity is higher in the latter case. The main reason is that the shortage cost

is smaller in the case with the deterministic dry period and as the ordered quantity

increases, the shortage cost decreases. Therefore a larger value of ordered quantity is

needed to obtain the minimum value of the objective function. As a result, [10] think

that as the constant value of the dry period approaches to zero, the model of the latter

case will converge to the classical EOQ model. [11] corrected their cost function and

proved that it is unimodal.
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[12] also try to determine order quantities and reorder points of an inventory

model when there exists any uncertainty. [12] analyze the inventory model for single

and multiple suppliers which can be on and off at different times and they apply renewal

reward theorem to construct the cost function. When all suppliers are available, the

objective function of the model reduces to the classical EOQ model. [13] analyze a

stochastic inventory problem with deterministic demand in which the manufacturer

works with two different suppliers who are unreliable. These two suppliers might be

disrupted or not for random durations. The manufacturer can obtain inventory from

either of them when the reorder level drops to r if one of them is available. The aim of

the manufacturer is to determine the order quantity and the reorder point to minimize

its total cost when there is risk of supply disruption. Erlang distribution is used for

on periods while off periods have a general distribution. Renewal reward theorem is

applied to build the long run average cost per time. [13] consider two different cases.

The first one is a E2[E2]/M [M ] model, both suppliers have Erlang distribution and its

numerical solution is presented. The optimal order quantities of their model and EOQ

model are compared and it is found that the optimal order quantity is always greater

than that of the EOQ model. The second case assumes large values for the order

quantity in order to use their limiting probabilities. However for the order quantites

that do not have large numbers, this assumption provides poor results. an alternative

inventory policy is also considered in which the decision variables are depend on the

number of available suppliers.

[14] indicate that in order to minimize the cost function, the manufacturer must

determine the order quantity and the reorder point when there is risk of supply disrup-

tion. Therefore [14] develop closed form approximate solutions for the globally optimal

order quantity/inventory reorder point, the optimal order quantity given an inventory

reorder point and the optimal inventory reorder point given an order quantity. It is

proven that the close form results are upper bounds to the exact cost for nonnegative

reorder point values. Numerical results are also presented to verify the results.

[15] consider a continuous review inventory model with a single retailer and a

single supplier. Their study differs from the others in two aspects; firstly, it deals with
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both supplier and retailer disruption. Secondly, if disruptions occur at the retailer,

then they destroy all the inventory at the retailer. On the other hand a disruption at

the supplier only prevents the supplier from providing inventory. [15] also indicate that

the costs savings of the proposed model outweigh the choice of using EOQ model and

they show that the disruption at the retailer has a greater affect on the cost function

than that of the supplier disruption. A tight approximation is also presented for the

cost function.

[16] analyzes a continuous review inventory system with deterministic demand

under supply disruption. [16] extends the study of [10] by presenting a tight approxi-

mation. The on and off periods are exponentially distributed as in the paper of [10] and

orders are not placed unless there is no inventory on hand. Besides, there is no lead time

for orders and unmet demands are lost. It is assumed that wet periods are longer than

dry periods on average and it is cheaper to satisfy demands instead of paying shortage

costs for every unit of it. [16] approximates the cost function of [11] by assuming that

the system approaches steady state quickly enough that when there is no inventory we

can ignore the transient nature of the system at this moment. The approximation is

reliable when λ and µ have higher values. It is proven that the cost function of the

approximate model is convex and its optimal cost value is greater than the optimal

cost value of the EOQ model. Besides, the optimal order quantity is greater than that

of the EOQ model. It shows that cost of applying EOQ model instead of EOQD, EOQ

with disruption model, can be large when there exists uncertainty. Cost function of

EOQD converges to the cost function of EOQ when λ gets comparatively smaller than

µ. [16] shows that the optimal cost function and order quantity are greater than that

of the exact cost function and presents the percentage error due to using approximate

model instead of the exact model. It is also proven that the power-of-two policy can

be at most 6% worse than the overall policy.

Periodic review inventory systems with supply disruption also take place in the

literature. [17] consider a single item, periodic review inventory system with determin-

istic demand and uncertainty in supply. Supply follows a bernoulli process and on and

off probabilities are assumed to be nonstationary. [17] show that the optimal ordering
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policy is of order-up-to type and develop an algorithm to obtain the optimal order-

up-to levels. [18] model a periodic review, single item, deterministic demand inventory

model with supply uncertainty. Their study extends the paper of [17] by considering

that supply is either fully available, partially available or completely unavailable.

Apart from these studies, the cases in which both supply and demand are ran-

dom are examined as well. [19] examines the (Q,r) inventory system with an unreliable

supplier. Demand is assumed to be poisson and on and off periods are exponentially

distributed. Firstly, the zero lead time problem with allowable number of outstanding

orders is analyzed and found that the reorder point is set to 0 by the approximation.

Secondly, the problem with a constant lead time with at most one number of outstand-

ing orders is analyzed. Q is obtained from the EOQ model and then reorder point

is found. It is found that although the approximation of the zero lead time problem

is good when number of cases are large, the approximation of the constant lead time

problem is not very good.

[20] extends the study of [10] by allowing random demand and random lead time

in a continuous review stochastic inventory problem. It is assumed that on periods are

Ek random variables while off periods have general distribution. The decision variables

are the order quantity and the reorder point when there is risk of supply disruption.

The objective function is constructed using renewal reward theorem and analysis of the

cost function is presented. In the second part of the study, it is assumed that the order

cost is quite large while the holding cost is relatively small. This assumption ensures

large values for the order quantity of the system and simplifies the analysis of the cost

function. It is proven that the cost function is convex if mild conditions are assumed.

[21] model a (s,S) type inventory system with stochastic demand under supply

disruption. Their study differs from others since it deals with partial backorders, some

proportion of the unmet demand is backordered while the remaining ones are assumed

to be lost. [21] examine the impacts of average on/off periods and the proportion of

backordered products on optimal s and S to manage an optimal inventory policy. It

is found that s∗ and S∗ are decreasing in µ and increasing in λ. It is also indicated
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that an increase in the probability that a stockout becomes a backorder, makes the

expected cost per demand arriving during stockout increase, as well.

[22] studies an exact cost minimization model for a (s,Q) inventory system with

stochastically distributed demand and lead time as an extension to the paper of [19].

Unmet demands are assumed to be lost and on and off periods are exponentially dis-

tributed. The retailer can obtain its orders that are placed before disruption regardless

of the availability status of the supplier. The outstanding orders can be at most one.

Numerical illustration is also presented to give more insight. [23] models a similar sys-

tem to [22] by analyzing a continuous review (s,Q) type inventory system in which

lead time is hyperexponentially distributed and poisson demand is assumed, and the

maximum number of outstanding orders at any time is limited to one. Alternating

renewal process is used to model the availability of the supplier. [24] study a contin-

uous review inventory system with random demand, random lead time and supply

disruption. Their study differs from others as it assumes that when supplier is off, it

also stops processing an outstanding order, so it is not same with active processing.

This variability in lead time has important influence on an inventory system, since as

it increases, it makes the average cost and the risk of stockout increase, too.

[25] considers a periodic review inventory system with backorder. A supply chain

model with two suppliers is examined in which one of them is unreliable while other

one is reliable but more expensive and both of them are capacity constrained. [25]

points out that the duration and the frequency of a disruption has a significant impact

on the optimal inventory management. For instance, if the capacity of the reliable

supplier is constrained when it is infinite at the unreliable supplier, the manufacturer

may want to mitigate the effects of the disruption by holding additional inventory.

On the other hand, if the reliable supplier has volume flexibility, then it is found that

sourcing mitigation is optimal when disruptions are rare.

[26] examine a single period inventory system with a firm and two suppliers as

in the study of [25]; first supplier has both recurrent (random yield) and disruption

risks while the other one is perfectly reliable but more expensive. Unlike the study
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of [25], both recurrent and disruption uncertainties are unresolved when an order is

placed with the first supplier. It is assumed that the firm orders from the unreliable

one when there is no supply risk, however when demand can not be met, it reserves

from the reliable one. The aim of the study is to determine the order quantities of the

both suppliers under different conditions. [26] observe that when uncertainty in supply

is the result of the disruption, it is optimal to order more from the reliable supplier and

less from the unreliable one. On the other hand when the increase in risk of supply is

due to the recurrent uncertainty, unreliable supplier should be preferred instead of the

reliable one.

[27] model an inventory problem with supply disruptions, phase type times to on

and off periods, and random demand. [27] analyze both ZIO and non-ZIO policies and

the robustness of a time-dependent ordering policy under these conditions and conclude

that time dependent policies are more advantageous than non-real-time policies.

[28] aim to model a multiperiod supply chain design problem with one supplier

and multiple retailers and facilities. The supplier is reliable whereas the facilities

that transport products to retailers are unreliable. Since each facility differs from the

others, their reliabilities are also different. Therefore they must find the number of

opened facilities and decide which one should be preferred and which inventory policy

must be applied. They develop a solution algorithm for the nonlinear optimization

problem and prove its convergence.

[29] analyze a One Warehouse Multiple Retailer system under supply disruption

with zero lead time and present numerical analysis. They consider two different inven-

tory systems; centralized and decentralized. Inventory is stocked at the warehouse in

the centralized system while it is stocked at the retailers in the decentralized system.

The aim of considering two inventory systems is to analyze the risk pooling and the

risk diversification effect. Disruption occurs only at the warehouse in the centralized

system while it occurs only at the retailers in the decentralized system. They analyze

the cases in which demand is deterministic but supply is disrupted and demand is ran-

dom but supply is deterministic. When demand is deterministic and supply is due to
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the disruption, decentralized system is optimal for a risk averse inventory policy since

decentralized system mitigates the disruption risk. On the other hand when supply is

deterministic and demand is uncertain, it is optimal to follow the centralized system

policy since expected cost of the decentralized system equals to n times expected cost of

the centralized system. When both supply and demand is uncertain, the decentralized

system is optimal for longer disruptions while centralized system is optimal for shorter

and less frequent disruptions. For a risk averse strategy is is more advantageous to

prefer decentralized system.

2.2. Multistage Production Systems with Supply Uncertainty

[30] examine an N-stage serial production system with stochastic yield rates in

each stage which are independent of the input size. The output of a stage equals to

the product of its yield rate and the input value. The manufacturer has the overage

cost for the overage quantity, the shortage cost for the unsatisfied demands and the

production cost. Therefore decision variables of the model are the input sizes for all

the stages of the serial system. It is assumed that the input can not exceed the output

and two conditions are proposed for the solution of the model. First one indicates that

it must be less expensive to dispose an item at stage i than to process it and dispose it

at the next stage. Second one indicates that manufacturing the product is profitable

rather than losing them. [30] present an optimal policy which defines a relationship

between the output of a stage and a critical number of that stage. [30] also consider

the case of positive inventory and provide numerical analysis.

[31] consider a multistage production system with yield uncertainty and present

numerical examples to provide more insight. They analyze the problem in two cases:

single production run and multi-production runs. They assume that at the beginning of

each stage, they have an amount of input and after processing the semi-finished items,

the amount of input can be greater than the output, it can be less than the output

or it can be equal to the output. Therefore the model has three choices to make.

Before beginning the next production stage, it must process all the non-defective units

of the previous stage if the output is equal to the required input value; it must reduce



14

the output value by disposal of some units if the amount of output is greater than the

required input and finally it must purchase additional semi-finished units if the amount

of output is less than the required input. According to the model, the manufacturer

has two critical numbers defining the structure of the optimal policy. If the amount of

output is less than or equal to the lower limit, then the amount of input equals to the

lower limit; if it is between the upper and the lower limit, then it equals to the amount

of input; if it is greater than or equal to the upper limit, then the amount of input

equals to the upper limit. The model indicates that if there is available and free supply

of raw material, then the procurement cost is zero and if the procured semi-finished

units are limited, then the input value of the next stage is the minimum of the limited

procured semi-finished units and the difference of the lower limit and the output (if

the lower limit is greater than the output). For the case of multi-production run, the

optimal policy is not simple so an approximate approach is developed to find good

control rules.

[32] extends the study of [31] by analyzing multiple production runs in a serial

system with binomial yields at each stage. It is assumed that the number of production

runs is limited. Two cases are examined separately; first one assumes that there is no

set-up costs for additional production runs and the second one assumes that there

exists set-up costs for additional production runs. At each stage, there exists non-

defective items distributed binomially. The manufacturer has to pay a shortage cost

and an overage cost for the unsatisfied demands and the redundant finished products.

Therefore the optimal amounts of available semi-finished products for all of the stages

are crucial to determine. [32] indicates that if the amount of finished products are not

sufficient for the customer demand, then the manufacturer has to process an optimal

batch to meet the unsatisfied demand. Because of the complexity of the model, a

decomposition approach is developed to solve the model and numerical illustration is

also presented.

[33] consider an assembly system with random demand and supply uncertainty.

It is assumed that a finished product is assembled using two components that are

delivered from two different and unreliable suppliers. The demand for the finished
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product is random. It is also assumed that there exists initial inventory levels for

the finished product and its components before beginning processing and the initial

inventory of component 1 is greater than or equal to the initial inventory of component

2. The decision variables are the amount of the finished product and its components to

satisfy the customer demand. [33] consider a release level constraint that ensures with a

given probability there will be sufficient amount of components to assemble the finished

product. They develop an approximate cost function since the exact cost function is

not easy to solve. In order to measure the error due to applying the approximate cost

function, a sensitivity analysis is conducted and it is seen that the error is not very

large even for the large values of the release factor levels. [33] analyze the joint supplier

case which offers that two different components can be obtained from a joint supplier

as a set. If delivering the components is more costly than the individual suppliers, then

manufacturer stops ordering from the joint supplier. If the cost of joint suppliers is

higher than the joint supplier is used. [33] consider the multi-period case and conclude

that it might be optimal to order extra components for the next periods.

2.3. Multistage Production Systems with Deterministic Supply

[34] analyze multistage production systems by incorporating power-of-two policy

into the model. They examine serial, assembly, distribution and other general systems

with constant demand and propose algorithms. They determine optimal reorder inter-

vals instead of order quantity for each stage by showing the reasons that it is easier to

analyze multistage production systems in terms of reorder intervals to get rid of various

constraints and there is no need to adjust the reorder intervals when demand patterns

change. Both nested and stationary policies are assumed although they are not optimal

for all production systems so nonnested policies are examined also. Echelon inventory

method is implemented instead of a conventional inventory approach for computing an-

nual holding cost of the system. Although they have the same computational result, it

is easier to use the echelon inventory approach in multistage production systems. The

main problem is to find the optimal order partition that ensures nestedness condition.

A new bill of material network is created that consists of subgraphs. A node set in a
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subgraph is defined as a cluster and all stages in a cluster has the same reorder interval.

After determining the optimal partition, it is easier to find the reorder intervals of each

stage. Because of the practical issues, a power-of-two policy is applied for finding them.

It assumes that there exists a base planning period, a minimum reorder interval, and

all reorder intervals are powers of two multiples of it. It is proven that the average cost

of this type of solution can not be more than 6% higher than the average cost of any

other optimal policy. They further examine models of a general system structure and

observe the effect of constraints on available time for setup and production.

This study can be considered as an extension to the studies of [34], [10] and [16].

These papers provide a foundation for our work. However we provide new insights

since we consider multistage production systems and risk of supply disruption jointly.

We also provide an approximation model for serial systems under supply disruption.
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3. SERIAL SYSTEMS UNDER SUPPLY DISRUPTION

A serial system is composed of consecutive stages that convert a raw material

into finished consumer goods. A depiction of a serial system with n stages is presented

in Figure 3.1. As can be seen in Figure 3.1, each stage has a successor except for

stage 1. Stage 1 is the final stage in which a semi-finished good is transformed into

a finished product. A serial system consists of a node set and an arc set denoted as

N(G) and A(G), respectively, where G indicates the directed graph that represents the

serial production system. Nodes in the node set imply the production stages while arcs

show the order of the production stages.

Figure 3.1. Example of A Serial System.

3.1. Problem Definition

This study considers a serial production system with an unreliable supplier who

may be disrupted randomly. There can be only one unreliable supplier and it is stage

N.

We assume that when stage N is disrupted, it stops placing new orders during

disruption. We also assume that disruption does not destroy the on hand inventory of

the disrupted supplier. Therefore, if the unreliable supplier has inventory when it is

disrupted, it can still deliver its on hand inventory regardless of the disruption until it

has none. However, when it consumes all the inventory on hand, since it can not give a

new order, the serial system can not complete the production process and consequently

it can not satisfy the demand of the customer until the end of the disruption.
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Figure 3.2 shows an example of the disruption process that we consider in this

study. We see that the first disruption begins at time A and ends at time B. The

performance of the production system is not affected by the disruption since the un-

reliable supplier has still inventory when disruption ends at time B. We should notice

that there is a possibility that a disruption may last so short that the unreliable sup-

plier has still on hand inventory at the end of the dry period. Therefore, it manages to

deliver inventory regardless of the disruption and gets rid of paying shortage cost as in

this example. On the other hand, if we examine the second disruption that begins at

time C, we see that disruption has a crucial impact on the performance of the system.

We see that stage N has still inventory on hand when it is disrupted. Therefore it can

satisfy the demand of stage N-1 until it has no inventory. However, when it consumes

all of it, it can not satisfy the demand of stage N-1 since it can not place orders during

disruption. Therefore, as we can see in Figure 3.2, when stage N is out of stock at the

second disruption, stage N-1 has to wait until the end of the disruption to place a new

order. As a result, the production system has to pay shortage cost for each unit of

the unmet demand that occurs during the disruption period. Furthermore, we assume

Figure 3.2. Disruption in a Serial System.

both a nested and a stationary policy while analyzing serial systems. A nested policy
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demands that whenever stage i places an order, stages from 1 to i−1, the successors of

stage i, must place an order, too. A nested policy makes work-in-process inventory as

small as possible thus it decreases the holding cost of the system. A stationary policy

demands that the reorder interval of stage i can not change over time.

We use echelon stock method to compute the holding cost of the system per

cycle. According to this approach, the holding cost of stage i equals to the product

of its echelon holding cost and echelon stock. An echelon holding cost takes into

consideration only the cost of the inventory at stage i by subtracting the conventional

holding cost of its predecessor from its conventional holding cost (hi = h′i−h′i+1 where

h′i is the conventional holding cost of stage i). On the other hand, an echelon stock for

stage i equals to the sum of the inventories from stage 1 through stage i. At the end,

both methods have the same result however it is easier to implement the echelon stock

method in multistage systems.

We also assume that demand is constant and denoted as D units per year. The

amount of demand can be different for each stage since stage i can need several semi-

finished items produced at stage i+ 1. However, we assume that the amount of demand

is the same for all the stages. The fixed ordering cost is Ki per order and the echelon

holding cost is hi per unit per year for stage i. Supply is only available during an

interval of random length called the wet period and then unavailable for another interval

of random length called the dry period. Both wet and dry periods are exponentially

distributed with rates λ and µ, respectively. Unmet demands are assumed to be lost

with a shortage cost of cs per lost sale. Orders are placed when inventory level hits

zero and there is no lead time for orders. We assume that parameters of the model are

nonnegative.

As in the study of [34], we model our problem in terms of reorder intervals rather

than order quantities because by doing so, we get rid of complex constraints that make

our model more difficult to solve. Ti is the reorder interval of stage i. However, since

a reorder interval can take any value, it is difficult to use it in practice. Therefore, we

assume that the proportion of the reorder interval of stage i to the reorder interval of
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its successor must be integer.

3.2. The Exact Model for A Two-Stage Serial System under Supply

Disruption

We analyze a two-stage serial system which is due to supply disruption. We

assume that disruption occurs only at stage 2. T1 and T2 are the target reorder intervals

of stages 1 and 2.

Proposition 3.1. The probability of disruption in an order cycle of stage 2 is called

as β:

β(T2) =
λ

λ+ µ
(1− e−(λ+µ)T2).

Proof. We show the proof as it was explained in [35] .

Let X(t) be the state of our system at time t. X(t) is a Markov chain with state

space S. S = {WS,DS} with WS corresponding to the wet state and DS corresponding

to the dry state of the system. Qi,j is the probability of making a transition into state

j given that the process is in state i. Suppose that Q = {Qi,j} where i, j ∈ S.

Then Q is a transition matrix with zero diagonal entries. A is the rate matrix which

is obtained by writing the holding parameters of the states on the main diagonal

with a minus sign. Row sum of A matrix equals to zero. The holding parameters

of our system are λ and µ for wet and dry states, respectively. We want to obtain

PWS,DS(T2) = P{X(T2) = DS|X(0) = WS}, the probability of being in the dry state

at time T2 given that the process is in the wet state at time 0.

First, we need to form the transition matrix and the rate matrix of the system.
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The transition matrix is:

Q =


WS DS

WS 0 1

DS 1 0


. The rate matrix is:

A =


WS DS

WS −λ λ

DS µ −µ


. The backward equation for a Markov process is:

P ′(t) = A P (t).

By using the backward equation, we obtain:

P ′WS,WS(T2) = λ(PDS,WS(T2)− PWS,WS(T2))

P ′DS,WS(T2) = µ(PWS,WS(T2)− PDS,WS(T2)).

If we multiply P ′WS,WS(T2) and P ′DS,WS(T2) with µ and λ, respectively, and then take

the sum of them, we get:

µP ′WS,WS(T2) + λP ′DS,WS(T2) = 0

by integration, we obtain:

µPWS,WS(T2) + λPDS,WS(T2) = c
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for some constant c. We know that

P (0) = I =

 1 0

0 1

 ,
we set T2 = 0 to obtain:

µPWS,WS(0) + λPDS,WS(0) = µ ∗ 1 + λ ∗ 0

c = µ

µPWS,WS(0) + λPDS,WS(0) = µ,

if we solve it for PWS,DS(T2) and plug it into P ′WS,WS(T2), we get:

P ′WS,WS(T2) = µ− (λ+ µ)PWS,WS(T2).

Now, let us define g(T2) = PWS,WS(T2)− µ
λ+µ

, then we find that:

g′(T2) = −(λ+ µ)g(T2)

g′(T2)

g(T2)
= −(λ+ µ)

by taking integration of both sides, we obtain:

log g(T2) = −(λ+ µ)T2 + c0

g(T2) = e−(λ+µ)T2k

for some constant k. Thus,

PWS,WS(T2) = e−(λ+µ)T2k +
µ

λ+ µ
.
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For T2 = 0,

PWS,WS(0) = 1 = k +
µ

λ+ µ

k =
λ

λ+ µ

PWS,WS(T2) =
λ

λ+ µ
e−(λ+µ)T2 +

µ

λ+ µ
.

Since the row sum of a transition matrix equals to 1, we finally find that:

PWS,DS(T2) + PWS,WS(T2) = 1

PWS,DS(T2) = 1− PWS,WS(T2)

PWS,DS(T2) =
λ

λ+ µ
(1− e−(λ+µ)T2).

Proposition 3.2. We define the cycle time of the system as the length of time between

two consecutive orders at stage 2 and it is given by

E[CT ] = T2 + E[Duration of a dry period|X(T2) = DS]

= T2 + β(T2)
1

µ
.

Proof. We show the proof as in [36] that explains the memoryless property of the

exponential distribution.

The exponential distribution has an important property which indicates that if

X is an exponentially distributed product that has lasted for t hours then we say that

the remaining life of X is independent of the amount of time it has already exhausted.

This is called as the memoryless property of the exponential distribution. Therefore

by the memoryless property, the rate of the distribution is constant.

Let us say that we have an item that has lasted for t hours, then the probability
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that it does not survive for an additional time s is:

P{X ∈ (t, t+ s)|X > t} =
P{X ∈ (t, t+ s), X > t}

P{X > t}

=
P{X ∈ (t, t+ s)}

P{X > t}

≈ f(t)dt

1− F (t)
= r(t)dt.

If X is distributed exponentially, then by the memoryless property,

r(t) =
f(t)

1− F (t)

=
µe−µt

e−µt

= µ.

Therefore the expected lifetime of X is constant and equals to 1
µ
. This is same for

our model, too. It does not matter whether the supplier is disrupted for two hours

or ten hours, because the remaining duration of the dry period is independent of the

amount of time that the supplier is disrupted. Therefore the expected duration of the

dry period is equal to 1
µ

so the expected cycle time is :

E[CT ] = T2 + β(T2)
1

µ
.

The total fixed and holding cost of stage 2 per cycle is:

CCE(T2) = K2 +
1

2
T 2
2 h2D.

Since we use echelon stock method and assume that demand is deterministic, the

echelon holding cost of stage 2 is 1
2
T 2
2 h2D and the shape of the on hand inventory is

the saw-toothed curve as in Figure 3.2.
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The total fixed and holding cost of stage 1 per cycle is:

CCE(T1) =
T2
T1
K1 +

1

2
T2T1h1D.

We note that since a nested policy is assumed in our model, it is required that if stage

2 gives an order, then stage 1 must give an order, too. Therefore it ensures that T2

must be greater than or equal to T1 and stage 1 orders and holds inventory (T2
T1

) times

per cycle.

The expected cycle cost of the system is:

ECCE[T1, T2] = K2 +
T2
T1
K1 +

1

2
T 2
2 h2D +

1

2
T2T1h1D +Dcsβ(T2)

1

µ
.

Average cost of the system per unit time is determined by dividing the expected cycle

cost of the system to the expected cycle time:

ACE(T1, T2) =
K2 + (T2

T1
)K1 + 1

2
T 2
2Dh2 + 1

2
T2T1Dh1 +Dcsβ(T2)

1
µ

T2 + β(T2)
1
µ

.

Proposition 3.3. E[CT ] is concave in T2.

Proof.

∂2E[CT ]

∂T 2
2

= −λ
µ

(λ+ µ)e−(λ+µ)T2 < 0.

Since it is negative, we conclude that E[CT ] is concave in T2.

Proposition 3.4. ECCE[T1, T2] is concave in T2 for 0 < T2 < T̂2 where,

T̂2 :=
1

λ+ µ
ln
csλ(λ+ µ)

h2µ
.
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Proof.

∂2ECCE[T1, T2]

∂T 2
2

= Dh2 −
Dcsλ(λ+ µ)e−(λ+µ)T2

µ
.

In order to say that ECCE[T1, T2] is concave in T2 for 0 < T2 < T̂2, the second derivative

of ECCE[T1, T2] with respect to T2 must be less than zero.

∂2ECCE[T1, T2]

∂T 2
2

< 0.

Thus,

Dcsλ(λ+ µ)e−(λ+µ)T2

µ
> Dh2

e−(λ+µ)T2 >
h2µ

csλ(λ+ µ)

T2 < −
1

λ+ µ
ln

h2µ

csλ(λ+ µ)

T̂2 :=
1

λ+ µ
ln
csλ(λ+ µ)

h2µ
.

Proposition 3.5. ACE(T1, T2) attains its minimum at T2=T2*, where T2* solves the

following equation:

∂ACE(T1, T2)

∂T2
=

(
K1

T1
+
T1Dh1

2
−Dcs

)(
1

λ+ µ
− 1

λ+ µ
e−(λ+µ)T2 − T2e−(λ+µ)T2

)
(
λ

µ
)

+

(
DT2h2

λ

µ

)(
1

λ+ µ
− 1

λ+ µ
e−(λ+µ)T2 − T2

2
e−(λ+µ)T2

)
− K2

(
1 +

λ

µ
e−(λ+µ)T2

)
.
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The proposed reorder interval model is:

min ACE(T o1 , T
o
2 ) (3.1)

s. t.

T o2 ≥ T o1 ≥ 0 (3.2)

T o2 = nT o1 n ∈ {1, 2, . . .} (3.3)

The aim of the model is to minimize the average cost of the system per unit time.

T o2 is the reorder interval of stage 2 that is integer multiple of T o1 , the reorder interval

of stage 1. In order to understand the model clearly, first let us consider the relaxed

model which does not contain the constraint (3.3). So as to satisfy the constraints

(3.1) and (3.2), the network of the serial system is partitioned into the subgraphs that

contain the sets of stages that have the same reorder interval to obtain the minimum

average cost of the system. After determining the subgraphs and the reorder intervals,

we convert these reorder intervals to the ones that are integer multiples of each other.

The constraint (3.3) satisfies this need.

3.2.1. The Behavior of the Cost Function

In order to understand the behavior of the objective function according to the

change in the parameters of the model, we need to make some numerical analysis.

Therefore, we take a set of values for each parameter and determine the reorder intervals

and the average cost of the system for each value of the selected parameter. This process

is repeated for all the parameters of the model. The following example is only a small

part of the sensitivity analysis, further insight is given in the numerical analysis part

of the study. We use two different values of the fixed cost of stage 2. We want to

know how the fixed cost of stage 2 effects the reorder intervals and the cost function

of the system. The cost parameters of Table 3.1 are K1 = 100, K2 = 25, h1 = 1,

h2 = 0.25, D = 50, cs = 0.5, λ = 1, µ = 1 and the cost parameters of Table 3.2 are

K1 = 100, K2 = 400, h1 = 1, h2 = 0.25, D = 50, cs = 0.5, λ = 1, µ = 1. According

to Table 3.1, (2,2) gives the minimum of the cost function. However, when we increase
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Table 3.1. Example of A Two Stage Serial System with Disruption.

To
2

To
1 1 2 3 4 5 6 7 8 9 10

1 116.6 125.3 133.9 141.6 148.8 155.7 162.5 169.1 175.6 182.1

2 105.2 119.4 132.6 145.5 158.3

3 119.6 140.3 159.8

4 141.6 169.1

5 167 201.1

6 194.2

7 222.5

8 251.4

9 280.9

10 310.7

Table 3.2. Example of A Two Stage Serial System with Disruption.

To
2

To
1 1 2 3 4 5 6 7 8 9 10

1 378.4 275.9 241.1 225 217 213.4 212.5 213.2 215.1 217.8

2 255.8 202.7 190.3 189.7 194

3 226.8 198 199.3

4 225 213.2

5 235.2 236.9

6 251.9

7 272.5

8 295.5

9 320.3

10 346.4
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the fixed cost of stage 2 from 25 to 400, (2,8) becomes the new minimizing point. It

means that when we increase the fixed cost (ordering cost) of stage 2, model chooses

to increase the reorder interval to minimize the cost function. It makes sense because

as the frequency of orders increases, the total fixed ordering cost will be larger which

contributes to the expected cost function as well. Therefore, a greater reorder interval

is more advantageous in this case.

3.3. An Approximate Model for An N Stage Serial System under Supply

Disruption

We consider a supply disruption problem in an N stage serial system with constant

demand. Disruption occurs at stage N. As in the two-stage serial system problem, we

assume both a nested and a stationary policy and we use echelon stock method. The

fixed ordering cost is Ki per order and the holding cost is hi per unit per year for stage

i. Supply is available for a random length called the wet period and unavailable for

a random length called the dry period. Both wet and dry periods are exponentially

distributed with rates λ and µ, respectively. Unmet demands are assumed to be lost

with a shortage cost of cs per lost sale and all model parameters are nonnegative. We

model the problem in terms of reorder intervals as in the study of [34]. Ti is the reorder

interval of stage i.

We approximate the cost function as in the study of [16]. [16] assumes that when

the inventory level is zero, the system reaches steady state quickly enough that we can

ignore the transient nature of the system.

We know that β is:

β(TN) =
λ

λ+ µ
(1− e−(λ+µ)TN ).
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We approximate the objective function by omitting (1− e−(λ+µ)TN ) from β(TN),

β0 =
λ

(λ+ µ)
.

This approximation is expected to work well when TN is sufficiently large.

We define the expected cycle time of the system as the length of time between

two consecutive orders at stage N:

E[CT ] = TN + E[Duration of a dry period|X(TN) = DS]

= TN + β0
1

µ
.

The total fixed and holding cost of stage i per cycle is:

CCA(Ti) =
TN
Ti
Ki +

1

2
TNTihiD, i 6= N.

The total fixed and holding cost of stage N per cycle is:

CCA(TN) = KN +
1

2
T 2
NDhN .

We divide the expected cycle cost to the expected cycle time so as to obtain the average

cost of the system per unit time. The approximate average cost of an N stage serial

system is:

ACA(T1, . . . , TN) =
KN + TN

∑N−1
i=1

Ki
Ti

+ 1
2
T 2
NDhN +DTN

∑N−1
i=1

1
2
Tihi +Dcsβ0

1
µ

TN + β0
1
µ

.

We know that the classical economic reorder interval problem is:

Ci,EOQ(Ti) =
Ki

Ti
+

1

2
DhiTi,
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we define CEOQ as:

CEOQ =
N−1∑
i=1

Ci,EOQ(Ti).

Then the objective function becomes:

ACA(T1, . . . , TN) =
KN + 1

2
T 2
NhND + TNCEOQ +Dcsβ0

1
µ

TN + β0
1
µ

.

In order to have an understanding of the cost function’s shape and check the joint

convexity of the function, we need to take the first and second derivatives of it with

respect to Ti.

∂ACA(T1, . . . , TN)

∂Ti
=

TN
TN + β0

1
µ

C ′i,EOQ(Ti), i 6= N.

∂ACA(T1, . . . , TN)

∂TN
=
T 2
N

1
2
DhN + TNDhNβ0

1
µ
− (KN +Dcsβ0

1
µ
− β0 1

µ
CEOQ)

(TN + β0
1
µ
)2

.

∂2ACA(T1, . . . , TN)

∂Ti∂Tj
= 0, i 6= j 6= N.

∂2ACA(T1, . . . , TN)

∂T 2
i

=
TN

TN + β0
1
µ

C ′′i,EOQ(Ti), i = 1, . . . , N − 1.

∂2ACA(T1, . . . , TN)

∂T 2
N

=
β2
0( 1

µ
)2DhN + 2KN + 2β0

1
µ
(Dcs − CEOQ)

(TN + β0
1
µ
)3

.

∂2ACA(T1, . . . , TN)

∂Ti∂TN
= C ′i,EOQ(Ti)

β0
1
µ

(TN + β0
1
µ
)2

i 6= N.
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We know that a function is convex if and only if its hessian matrix is positive (semi)

definite. Therefore, we need to check its hessian matrix;

H =



TN
TN+β0

1
µ

C ′′1,EOQ(T1) · · · 0 · · · C ′1,EOQ(T1)
β0

1
µ

(TN+β0
1
µ
)2

...
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . .
...

C ′1,EOQ(T1)(
β0

1
µ

(TN+β0
1
µ
)2

) · · · 0 · · · (β0
1
µ
)2DhN+2KN+2β0

1
µ
(Dcs−CEOQ)

(TN+β0
1
µ
)3


.

As we can see,
[ (β0 1

µ
)2DhN+2KN+2β0

1
µ
(Dcs−CEOQ)

(TN+β0
1
µ
)3

]
might be negative since Dcs might be

less than CEOQ so it violates the positive (semi) definiteness condition.

Therefore we assume that,

Dcs >
N−1∑
i=1

√
2KiDhi.

Proof. We know that,

CEOQ =
N−1∑
i=1

Ci,EOQ(Ti)

and

Ci,EOQ(Ti) =
Ki

Ti
+

1

2
DhiTi.

When we solve the derivative of Ci,EOQ(Ti) with respect to Ti, we find that:

T ∗i =

√
2Ki

Dhi
,
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if we plug T ∗i into Ci,EOQ(Ti), we obtain,

Ci,EOQ(T ∗i ) = Ki

√
Dhi
Ki

+
1

2
Dhi

√
Ki

Dhi

=

√
1

2
KiDhi +

1

2

√
2KiDhi

=
√

2KiDhi.

Therefore,

C∗EOQ =
N−1∑
i=1

√
2KiDhi

and

Dcs >
N−1∑
i=1

√
2KiDhi.

This assumption ensures that the retailer will not be able to choose to lose de-

mands instead of serving them since the total shortage cost is more costly.

We solve the first derivative of the average cost per unit time with respect to Ti

in order to obtain T ∗i :

∂ACA(T1, . . . , TN)

∂Ti
=

TN
TN + β0

1
µ

C ′i,EOQ(Ti), i 6= N

T ∗i =

√
2Ki

Dhi
, i = 1, . . . , N − 1.

So as to determine T ∗N , we need to use T ∗i at the first derivative of the average cost
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with respect to TN .

∂ACA(T1, ..., TN)

∂TN
=
T 2
N

1
2
DhN + TNDhNβ0

1
µ
− (KN +Dcsβ0

1
µ
− β0 1

µ
C∗EOQ)

(TN + β0
1
µ
)2

(3.4)

where

C∗EOQ =
N−1∑
i=1

Ci,EOQ(T ∗i ).

When we make the numerator of equation (3.4) equal to zero, it takes the form of

aT 2
N+bTN−c∗ = 0 in which a = 1

2
DhN , b = DhNβ0

1
µ

and c∗ = KN+Dcsβ0
1
µ
−β0 1

µ
C∗EOQ.

Thus it has two roots:

TN =
−b+

√
b2 + 4ac∗

2a

TN =
−b−

√
b2 + 4ac∗

2a
.

As we can see, the first one is positive while the second one is negative. We use the

positive one in our model since we assume that all reorder intervals must be greater

than or equal to zero.

T ∗N =
−b+

√
b2 + 4ac∗

2a
, c∗ > 0, a > 0 (if c∗ < 0, then T ∗N = 0).

Now, we can form the hessian matrix. When we use the unique values of the reorder

intervals in the hessian matrix, we see that its diagonal entries are positive while the

non-diagonal entries are zero. Therefore, we conclude that the hessian matrix is positive

definite. We know that if the hessian is positive definite at a certain point, then the

function attains a local minimum at this point. Therefore (T ∗1 , . . . , T
∗
N) is the unique

minimizor of the average cost function of the approximate model which also leads us

to the conclusion of the unimodality of it.

Thus the optimal solution for the reorder intervals that are integer multiples of
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the reorder intervals of their successors is:

ACA((ni + 1)T oi−1)− ACA(niT
o
i−1) ≥ 0, ∀i = 2, . . . , N

in which niT
o
i−1 = T oi .

Thus it enables us to minimize the average cost per unit time by finding the

smallest nonnegative integer ni for each stage.

ni ≥
√
D2(T oi−1)

2h2i + 8KiDhi −DT oi−1hi
2DhiT oi−1

, i = 2, ..., N − 1

which reduces to

ni ≥
T ∗i

√
4 +

(T oi−1)
2

(T ∗i )
2 − T oi−1

2T oi−1
, i = 2, ..., N − 1

and for the last stage

nN ≥
√
b2 + 4ac+ a2(T oN−1)

2 − b− aT oN−1
2aT oN−1

which reduces to

nN ≥
√

2aT ∗N + b+ a2(T oN−1)
2 − b− aT oN−1

2aT oN−1
.

The proposed reorder interval model is:

min ACA(T o1 , . . . , T
o
N) (3.5)

s. t.

T oi = niT
o
i−1 ni ∈ {1, 2, . . .} (3.6)

T oi ≥ T oi−1 ≥ 0 (3.7)

Another way of determining a reorder interval is to make it equal to a power-of-two
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multiple of TL, the minimum reorder interval:

T pi = 2liTL.

The optimal powers of two solution is:

ACA(2li+1TL)− ACA(2liTL) ≥ 0, ∀i = 1, . . . , N.

It enables us to minimize the expected cost per cycle by finding the smallest nonnegative

integer li.

2li ≥
√

Ki

Dhi

1

TL
, i = 1, ..., N − 1

which reduces to

2li ≥ T ∗i√
2TL

, i = 1, ..., N − 1

and for the last stage

2lN ≥
2
√

(9b
2

4
+ 8ac∗)− 3b

8aTL

which reduces to

2lN ≥
2
√

9b2

4
+ 8(T ∗N)2a2 + 8(T ∗N)ab− 3b

8aTL
.
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If we apply the power-of-two policy, the proposed reorder interval model becomes:

min ACA(T p1 , . . . , T
p
N) (3.8)

s. t.

T pi = 2liTL li ∈ {0, 1, . . .} (3.9)

T pi ≥ T pi−1 ≥ 0 (3.10)

3.3.1. An Algorithm for Finding the Optimal Reorder Intervals of An N

Stage Serial System

We use the algorithm in [34] to find the optimal clusters and the reorder intervals

of an N stage serial system. We apply the power-of-two policy to obtain the reorder

intervals in the numerical illustration. Therefore, the algorithm for finding the reorder

intervals involves only the power-of-two policy.

Now, let us define C as a node set.

Ci ← {i}, i = 1, . . . , N.

We redefine the total fixed and the holding cost of each stage per cycle as follows:

CCA(T (Ci)) =
K(Ci)

T (Ci)
+
DT (Ci)h(Ci)

2
, i = 1, . . . , N − 1.

CCA(T (CN)) = K(CN) +
DT (CN)2h(CN)

2
.

The average cost per unit time is:

ACA(T (C1), . . . , T (CN)) =
T (CN)

∑N
i=1CCA(T (Ci)) +Dcsβ0

1
µ

T (CN) + β0
1
µ

.
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The reorder interval model for an N stage serial system becomes:

min ACA(T p(C1), . . . , T p(CN)) (3.11)

s. t.

T p(Ci) = 2liTL li ∈ {0, 1, . . .} (3.12)

T p(Ci) ≥ T p(Ci−1) ≥ 0 (3.13)

The algorithm has three steps to follow. First, let us consider the relaxed problem that

does not contain the constraint (3.12). We determine the optimal clusters by parti-

tioning the network of the serial system into connected subgraphs in the first step. In

the second step, we solved the relaxed model and find the reorder intervals that satisfy

the constraints (3.12) and (3.11). In the final step, we satisfy the constraint (3.13) by

converting these reorder intervals into the ones that are powers of two multiples of TL.

Algorithm

• Step 1: Find the clusters.

(i) Set Ci ← {i} and σ(i) ← i − 1 for all 1 ≤ i ≤ N and SQ ← {1, 2, . . . , N}.

Set j ← 2. σ(i) is the node that precedes i in the sequence SQ.

(ii) If T ∗(Cj) ≥ T ∗(C [σ(j)]), go to step 1.d, otherwise collapse C [σ(j)] into Cj,

Cj ← C [σ(j)]∪Cj, σ(j)← σ(σ(j)) and SQ← SQ\{σ(j)}, thus the expected

cost per cycle and the average cost per unit time becomes:

˜CCA(T (i)) =

∑
j∈Ci Kj

T (i)
+
DT (i)

∑
j∈Ci hj

2
, i = 1, . . . , N.

ACA(T (1), . . . , T (N)) =
T (N) ˜CCA(T (N))

T (N) + β0
1
µ

+
T (N)

∑
i∈SQ,i 6=N

˜CCA(T (i)) +Dcsβ0
1
µ

T (N) + β0
1
µ

.

We note that T (N) = T (CN) when there is no collapse in the Nth node.
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(iii) If σ(j) > 0, go to (ii).

(iv) Set j ← j + 1, if j ≤ N , go to step (ii).

(v) Re-index the clusters {Ci : i ∈ SQ} so that SQ = {1, .., N} and if j ∈ Ci,

k ∈ C l and j < k then i < l. Comment: {Ck : k ∈ SQ} are the clusters, the

optimal partition is {Gk : k ∈ SQ} where Gk is the subgraph of G.

• Step 2: Find the solution of the relaxation model. For each cluster Ck, k ∈ SQ,

set,

T ∗(k) = T ∗(Ck) =

√
2
∑

i∈Ck Ki

D
∑

i∈Ck hi
, k 6= N

and for the last node:

T ∗(N) = T ∗(CN) =
−b̃+

√
b̃2 + 4ãc̃∗

2ã

where ã = 1
2
D
∑

i∈CN hi, b̃ = Dβ0
1
µ

∑
i∈CN hi and c̃∗ =

∑
i∈CN Ki + Dcsβ0

1
µ
−

β0
1
µ
C∗EOQ. ( C∗EOQ =

∑N−1
k=1

∑
i∈Ck Ki

T ∗(k)
+

D
∑
i∈Ck hiT

∗(k)

2
). For each i ∈ Ck set

T ∗i = T ∗(k)

• Step 2: Find the solution of reorder interval model. For each i ∈ Ck set T pi = 2liTL

where

2li ≥ T ∗i√
2TL
≥ 2li−1, k 6= N.

For the Nth node:

2lN ≥
2
√

(9b
2

4
+ 8((T ∗N)2a2 + 8(T ∗N)ab)− 3b

8a
≥ 2lN−1.

3.4. Numerical Analysis

In this part of the study, we try to give more insight by applying numerical

analysis. We aim to observe the change at the reorder intervals of the production

stages as well as the change at the cost function according to the parameters of the
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model. We also measure the error due to using the approximate model and the power-

of-two policy.

3.4.1. Sensitivity Analysis of the Exact Model for A Two-Stage Serial Sys-

tem

Our goal is to understand the behavior of the average cost of the exact model

for a two-stage serial system according to the change at the parameters of the model.

Although the total number of experiments that are conducted is 400, we present only

one experiment for each parameter. Table 3.3 shows the test values of each parameter.

We begin our numerical analysis by examining the impact of the fixed cost of stage

Table 3.3. Parameter Set.

Parameter Symbol Tested Values

Fixed Cost of the Last Stage K2 25, 50, 100, 200, 400

Holding Cost of the Last Stage h2 0.25, 0.5, 1, 1.5, 2

Demand D 50, 200

Shortage Cost cs 0.5,10

Wet period Rate λ 0.1, 1

Dry Period Rate µ 1, 4

2. We know that it has a direct effect on the reorder interval of stage 2. We use five

different values of the fixed cost of stage 2 to show the change more clearly. K2 takes

the values of 25, 50, 100, 200, 400 while other parameters are set as; D=50, h1=1,

h2=0.25, cs=10, K1=100, λ=1, µ=1. According to the given results, the change in

K2 does not affect the reorder interval of stage 2 until it is set to 200. When it takes

the values of 200 and 400, the reorder intervals become (2,8) and (2,10). It means

that when the fixed cost per order for an item gets large enough, the model chooses

to order less frequently by increasing the reorder interval of the item. Besides, the

relation between the average cost per unit time and K2 is linear. As K2 gets larger,

the average cost of the system gets larger also.
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Table 3.4. Behavior of the Model with Respect to K2.

K2 Reorder Intervals Expected Cost

25 (2,6) 169.230

50 (2,6) 173.076

100 (2,6) 180.769

200 (2,8) 194.117

400 (2,10) 216.666

Table 3.5 illustrates the impact of the holding cost of stage 2 on the average cost

per unit time of the serial system. Again we know that it has a direct effect on the

reorder interval of stage 2, as well. According to Table 3.5 h2 takes the values of 0.25,

0.5, 1, 1.5, 2 while D=50, h1=1, cs=10, K1=100, K2=25, λ=1, µ=1. As expected,

there is a linear relation between the average cost per unit time and the holding cost of

stage 2. Therefore, when h2 > 1, model chooses to order more frequently to decrease

the duration of holding inventory in a cycle in order to reduce the total holding cost of

the system. It makes sense because the model knows that it should decrease the order

quantity to decrease the total holding cost of the system per cycle. The situation is

pretty same with the case of the holding cost of stage 1, as well. As h1 takes larger

values, the reorder interval of stage 1 decreases since the model chooses to decrease the

order quantity of stage 1 to decrease the total holding cost of the serial system. Table

Table 3.5. Behavior of the Model with Respect to h2.

h2 Reorder Intervals Expected Cost

0.25 (2,6) 169.230

0.5 (2,4) 194.43

1 (2,2) 229.007

1.5 (2,2) 249.080

2 (2,2) 269.154
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3.6 demonstrates the impact of demand on the reorder intervals when h2=0.25, h1=1,

cs=10, K1=100, K2=25, λ=1, µ=1. We see that when demand is greater than 50, it

Table 3.6. Behavior of the Model with Respect to D.

D Reorder Intervals Expected Cost

50 (2,6) 169.230

200 (1,6) 480.765

is cheaper to order more frequently for stage 1.

Table 3.7 shows the relation between λ and the reorder intervals when h2=0.25,

h1=1, cs=10, K1=100, K2=25, D=50, µ=1. As λ increases, the expected duration of

Table 3.7. Behavior of the Model with Respect to λ.

λ Reorder Intervals Expected Cost

0.1 (2,4) 139.346

1 (2,6) 169.230

the wet period decreases. Let us consider the case in which λ is comparatively higher

than µ, as λ→∞, β → 1, the probability of disruption gets higher resulting in a higher

expected shortage cost and a higher average cost per unit time. Therefore, in order to

mitigate the affect of disruption, the model chooses to hold more inventory in a cycle

by increasing the reorder interval of the unreliable supplier. We should not forget that

increasing the reorder interval of stage 2 means increasing the order quantity of stage

2 as well. By stocking more order quantity the model tries to get rid of paying extra

shortage cost due to the risk of supply disruption.

Table 4.3 illustrates the relationship between µ and the reorder intervals when

h2=0.25, h1=1, cs=10, K1=100, K2=100, D=50, λ=1. As µ gets higher, the expected

duration of the dry period decreases as well as the probability of disruption. Since

disruption risk is smaller, the model does not have to order more so it can decrease the

reorder interval of stage 2 as we can see in the results. Moreover, since disruption risk
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gets smaller, the average cost per unit time decreases as well, as µ takes larger values.

Table 3.9 illustrates the effect of the shortage cost on the average cost per unit time

Table 3.8. Behavior of the Model with Respect to µ.

µ Reorder Intervals Expected Cost

1 (2,6) 180.769

4 (2,4) 154.32

and the reorder intervals when h2=0.25, h1=1, K1=100, K2=25, D=50, λ=1, µ=1. We

see that as cs gets higher, the effect of disruption will be more destructive since the

expected shortage cost will be higher. Consequently, by increasing T2, model aims to

hold more inventory in a cycle to mitigate this effect.

Table 3.9. Behavior of the Model with Respect to cs.

cs Reorder Intervals Expected Cost

0.5 (2,2) 105.29

10 (2,6) 169.23

3.4.2. Approximation Error

We examine two models so as to analyze the percentage error due to the approxi-

mation of β. The first one is the exact model for a two-stage serial system under supply

disruption and the second one is an approximate model for a two-stage serial system

under supply disruption.

EC0 is the average cost of the exact model per unit time when we use the reorder

intervals of the approximate model that are power-of-two multiples of TL.

EC0 = ACE(T p1 , T
p
2 ).

We must notice that T p1 , T p2 are the reorder intervals that are found at the approximate
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model as the power-of-two multiples of TL. We compute EC0 by plugging these values

into the exact model for the two-stage serial system. On the other hand, EC2 is the

average cost of the approximate model per unit time when we use the reorder intervals

that are powers of two. These reorder intervals satisfy the constraints (3.8)- (3.10).

EC2 = ACA(T p1 , T
p
2 ).

We determine the percentage error by

PAE =
EC0 − EC2

EC0

.

Table 3.10 shows the average and the maximum values of the percentage approximation

error. We use the same data set as we have used in the sensitivity analysis for a two-

stage serial system. At the first row of Table 3.10, K2, λ and µ are equal to 25, 1

and 1, respectively, while h2, cs and D take different values at the data set of Table

3.3. Therefore, the first row shows the average and maximum values of the percentage

approximation error of this data set when K2, λ and µ are equal to 25, 1 and 1,

respectively. The same process is repeated for the different values of K2, λ and µ. The

overall average percentage error is 0.080479. According to the results, the gap between

the two approaches gets closer when λ and µ get larger and it gets farther when they

get smaller. Besides, we know that the increase in K2 causes T2 to take a higher value.

As a result it also contributes to decreasing the gap between the two approaches as

it makes T2 greater. Therefore, we conclude that the approximation provides good

performance when T2, λ and µ are sufficiently large.

3.4.3. Error Due to the Power-of-Two Policy

In this part of the study, we want to measure the percentage error due to applying

the power-of-two policy. EC1 is the average cost of the exact model per unit time when
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we use the reorder intervals that are not powers of two.

EC1 = ACA(T1, T2).

Thus, its reorder interval model is

min ACA(T1, T2) (3.14)

s. t.

T2 ≥ T1 ≥ 0 (3.15)

It is the relaxed model that we consider for the approximate model in Section 3.3.1.

The formulation that we use to measure the error is:

PEPO2 =
EC0 − EC1

EC1

.

The average percentage error is 0.001 which is so small.
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Table 3.10. The Percentage Approximation Error.

K2 λ µ Average Error % Max Error %

25 1 1 0.023 0.037

25 1 4 0 0

25 0.1 1 0.015 0.024

25 0.1 4 0 0

50 1 1 0.025 0.038

50 1 4 0 0

50 0.1 1 0.013 0.024

50 0.1 4 0 0

100 1 1 0.02 0.039

100 1 4 0 0

100 0.1 1 0.005 0.019

100 0.1 4 0 0

200 1 1 0.013 0.038

200 1 4 0 0

200 0.1 1 0.002 0.004

200 0.1 4 0 0

400 1 1 0,007 0.037

400 1 4 0 0

400 0.1 1 0 0.004

400 0.1 4 0 0
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4. ASSEMBLY SYSTEMS UNDER SUPPLY DISRUPTION

As in the serial systems, assembly systems have several stages that aim to create

a finished product. An assembly system consists of a node set and an arc set denoted

as N(G) and A(G), respectively, in which G implies the directed graph that represents

the production system. Nodes in the node set imply the assembly stages while arcs

show the order of the assembly stages. In fact, a serial system is a special type of an

assembly system, difference is that in an assembly system, several semi-finished items

are used to assemble a finished product and many other semi-finished items can be

used to assemble those semi-finished items. All stages have only one successor whereas

the predecessor of a stage might be more than one. The only stage that does not have

a successor is the root stage which satisfies the external demand.

4.1. Problem Definition

We consider a supply disruption problem in an assembly system with an unreliable

supplier. The unreliable supplier is unique and known beforehand. It can be one of

the stages of the assembly system that does not have a predecessor.

We assume both a nested and a stationary policy which is also optimal for as-

sembly systems. Demand is constant and denoted as D units per year. We assume

that the finished product is assembled using one unit of the each semi-finished items

which also means if j ∈ Pi, Pi is the set of all the predecessors of part i including

itself, then one unit of j is consumed for each unit of i ordered. For stage i, the fixed

ordering cost is Ki per order and the echelon holding cost is hi per unit per year. The

echelon holding cost of part i is the difference of the conventional holding cost of part

i, h′i, and the sum of the holding costs of its direct predecessors. The echelon inventory

of part i is the sum of the inventories of its all successors and its inventory as well.

As before, both wet and dry periods are exponentially distributed with rates λ and µ,

respectively. Stockouts are assumed to be lost with a shortage cost of cs per lost sale.

Orders are placed when inventory level hits zero and there is no lead time for orders.
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As in the serial systems, we model our problem in terms of reorder intervals. Ti is

the reorder interval of stage i. We assume that all the parameters of the model are

nonnegative. We try to determine the reorder intervals for each stage that minimize

the average cost of the assembly system per unit time.

Figure 4.1 shows the structure of the assembly system that we examine in our

study: As it can be seen, it consists of the root stage that satisfies the external demand

Figure 4.1. The Assembly System That is Examined in This Study.

and all the stages that are direct predecessors of the root stage. Although it seems a

comparatively simple structure, we analyze it in two cases since our objective function

changes according to the relation between reorder intervals. Without loss of generality,

we assume that N is the unreliable supplier which may have disruption in supply.

4.2. Case 1: TN ≥ Tj, j 6= N

The relationship between TN , the reorder interval of the unreliable supplier, and

other reorder intervals has a significant effect in the model. Let us assume the case

in which TN ≥ Tj for some j. As before, other suppliers know whether the unreliable
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supplier is in the wet period or not and they are also informed about the amount

of inventory it holds in the dry period. Therefore, since disruption does not destroy

the inventory of the unreliable supplier, if it has inventory when disruption begins, it

can continue to deliver its on hand inventory until it has none. Consequently, other

suppliers can carry on placing orders as well. On the other hand, if the unreliable

supplier is in the dry period and it has no inventory on hand, then other suppliers

stop giving orders until the end of the dry period. Because, if they continue to place

orders, there will be a mismatch in the number of the semi-finished items and the

final product will not be produced. We also assume that the proportion of TN to

Tj, ∀j = 0, . . . , N − 1, must be integer.

In order to make the model more understandable, we explain it through the

following figures. Let us assume that Figure 4.2 shows the assembly system that we

consider. As we can see, the finished product is assembled using part 1 and part

2. Suppose, in Figure 4.3, disruption occurs at stage 2 and T0, T1 and T2 are such

Figure 4.2. Example of an Assembly System

that T2 > T1 and T1 = T0. Also stage 0 and stage 1 place an order of size Q every

time inventory level hits zero while stage 2 places an order of size 2Q. When a supply

disruption occurs in the system, the disruption process of the assembly system will be

like as in Figure 4.3. According to Figure 4.3, the first disruption occurs at time A,
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however it does not effect the assembly process of the system since it ends before the

unreliable supplier consumes its on hand inventory. On the other hand, the second

disruption that occurs at time C lasts longer than the first one and ends after the

unreliable supplier consumes its on hand inventory. As we can see, when stage 2

consumes all the inventory it has in the dry period, stage 1 stops giving new orders

and wait for the end of the disruption. Because even if it places a new order, stage 0

will not be able to complete the assembly process since there will be a mismatch in

the number of the semi-finished items. Therefore, although stage 1 orders and delivers

its inventory, stage 0 has to stock it with a higher holding cost than stage 1 since

h′0 > h′1. So that the second disruption affects the performance of the assembly system

and results in lost sales. Now, we can describe the model for case 1. Disruption occurs

Figure 4.3. Disruption in An Assembly System According to Case 1.

at stage N and C1 is the set of stages for which the reorder interval of a stage is less

than or equal to TN .

C1 = {j ∈ {1, 2, ..., N} : Tj ≤ TN}.

The probability that there will be a disruption at stage N whenever its inventory level
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hits zero is:

β(TN) =
λ

λ+ µ
(1− e−(λ+µ)TN ).

The proportion of TN to Tj is:

sj =
TN
Tj
, j ∈ C1.

As we have emphasized before sj must be integer.

We define the cycle time of the system as the length of time between two consec-

utive orders at stage N:

E[CT ] = TN + β(TN)
1

µ
.

The fixed cost of stage j per cycle is:

FCj = sjKj, j ∈ C1.

The holding cost of stage j per cycle is:

HCj =
1

2
DhjT

2
j sj, j ∈ C1.

Stage j orders and holds inventory sj times per cycle since TN ≥ Tj. Therefore, sj

must be multiplied with the fixed cost and the holding cost of stage j while computing

the cycle cost of it.

The average exact cost of stage j per unit time is:

ACEj(Tj, TN) =
Kjsj + 1

2
DhjT

2
j sj

TN + β(TN) 1
µ

, j ∈ C1.
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We know that the average cost of the classical economic reorder interval problem is:

Cj,EOQ(Tj) =
Kj

Tj
+

1

2
DhjTj.

Then the average per unit time exact cost of stage j becomes:

ACE,j(Tj, TN) =
TNCj,EOQ(Tj)

TN + β(TN) 1
µ

, j ∈ C1.

The average per unit time exact cost of stage 0 is:

ACE,0(T0, TN) =
TNC0,EOQ(T0) +Dcsβ(TN) 1

µ

TN + β(TN) 1
µ

.

4.3. Case 2: TN < Tj for some j 6= N

Case 2 is a little more complicated than Case 1. Before explaining the reason, let

us first describe the model. As before, disruption occurs at stage N and other suppliers

know whether it is in the wet period or not. If it is in the dry period and it has no

inventory on hand, then other suppliers stop giving orders until the end of the dry

period.

We know that stage N may or may not consume its inventory during the dry

period. Because there is a possibility that the disruption period may last so short that

the assembly process is not even effected if stage N has still inventory on hand during

disruption. However if disruption lasts longer enough to make stage N consume all the

inventory it has, then stage j will still have inventory on hand since Tj > TN .

Let us explain Case 2 in detail through Figure 4.2 and Figure 4.4. As in Case 1,

assume that Figure 4.2 shows the assembly system of Case 2 and Figure 4.4 shows the

disruption process of the system according to Case 2. Stage 2 represents the unreliable

supplier. When disruption occurs, we see that stage 1 has still inventory on hand
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although stage 2 has none. However, contrary to Case 1, stage 1 does not deliver its

semi-finished items to stage 0 since there will be a mismatch in the number of the

semi-finished items of stage 2 and stage 1. If it does, stage 0 can not complete its

assembly process and holds the inventory until the end of the dry period in a higher

holding cost than stage 1. (h′0 > h′1). Therefore, stage 1 prefers to hold them instead

of stage 0 to reduce the total holding cost of the system. When the disruption ends,

it will deliver its on hand inventory to stage 0 and place a new order. Now, we can

Figure 4.4. Disruption in An Assembly System According to Case 2.

describe the model for an N stage assembly system. Disruption occurs at stage N.

Then C2 is the set of stages for which the reorder interval of a stage is greater than

TN .

C2 = {j ∈ {1, 2, ..., N} : Tj > TN}.
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The proportion of the reorder interval of stage j to the reorder interval of stage N is:

mj =
Tj
TN

, j ∈ C2.

A cycle consists of mj subcycles. In subcycle i (i = 1, 2, . . . ,mj), the inventory level

starts at (DTj − (i− 1)DTN) and decreases to (DTj − iDTN) at rate D. A disruption

occurs in subcycle i with probability β(TN), and it lasts for an average duration of 1
µ
.

The inventory remaining in subcycle i, (DTj− iDTN), is carried through this duration.

Therefore, the inventory holding cost of subcycle i is given by

hj
1

2
TN

(
(DTj − (i− 1)DTN) + (DTj − iDTN)

)
+ β(TN)(DTj − iDTN)

1

µ
.

As there are mj such subcycles, the total inventory holding cost is:

E[HCj] = hj

mj∑
i=1

1

2
TN

(
(DTj− (i−1)DTN)+(DTj− iDTN)

)
+β(TN)(DTj− iDTN)

1

µ
.

We reduce the expected holding cost of stage j per cycle to a simple form:

E[HCj] = hj

mj∑
i=1

1

2
TN

(
(DTj − (i− 1)DTN) + (DTj − iDTN)

)
+ β(TN)(DTj − iDTN)

1

µ

= hj

mj∑
i=1

(
TN

2(DTj − iDTN) +DTN
2

+ β(TN)(DTj − iDTN)
1

µ

)
,

let’s extract Dhj from the bracket,

E[HCj] = Dhj

mj∑
i=1

(
TN(Tj − iTN) +

T 2
N

2
+ β(TN)

1

µ
(Tj − iTN)

)

= Dhj

mj∑
i=1

(
(Tj − iTN)(TN + β(TN)

1

µ
) +

T 2
N

2

)

= DhjTN(TN + β(TN)
1

µ
)

mj∑
i=1

(
(mj − i) +Dhjmj

T 2
N

2

)
.
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Since

mj−1∑
k=0

=
mj(mj − 1)

2
,

E[HCj] =
mj(mj − 1)

2
DhjTN(TN + β(TN)

1

µ
) +Dhjmj

T 2
N

2

=
Dhj

2

(
T 2
Nm

2
j + β(TN)

1

µ
TN(m2

j −mj)

)
=

Dhj
2
T 2
j +

Dhj
2
β(TN)

1

µ
Tj(

Tj
TN
− 1).

The expected cycle time is the length of time until node j has no inventory on hand

and the unreliable supplier must be in the wet period, as well.

E[CT ] =

mj∑
i=1

TN + E[Disruption Duration in a replenishment cycle] (4.1)

= mjTN +

mj∑
i=1

E[Disruption Duration in ith subcycle]

= mjTN +

mj∑
i=1

β(TN)
1

µ

= Tj +
Tj
TN

β(TN)
1

µ
.

Note that β(TN) is the probability that a disruption occurs in the ith subcycle, i =

1, 2, . . . ,mj, and 1
µ

is the expected disruption length when such a disruption occurs.

We should notice that in an assembly system, some reorder intervals may belong

to the set of Case 1 while some of them may belong to the set of Case 2. Therefore,

their holding and fixed costs must be computed according to the rules of the set they

belong to and the total average cost of the assembly system must be computed by

taking sum of the average costs of each stage.
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Thus the average exact cost of the assembly system per unit time is:

ACE(T0, . . . , TN) =
TN
∑

j∈C1∪{0}Cj,EOQ(Tj) +Dcsβ(TN) 1
µ

TN + β(TN) 1
µ

+
∑
j∈C2

Kj + 1
2
Dhj

(
T 2
j + β(TN) 1

µ
1
TN
Tj(Tj − TN)

)
+Dcsβ(TN) 1

µ

Tj
TN

(TN + β(TN) 1
µ
)

which reduces to

ACE(T0, . . . . , TN) =
TN
∑N

j=0Cj,EOQ(Tj) +Dβ(TN) 1
µ
(cs +

∑
j∈C2

1
2
hj(Tj − TN))

TN + β(TN) 1
µ

.

The proposed reorder interval model of the assembly system is:

min ACE(T I0 , . . . , T
I
N) (4.2)

s. t.

T Ij ≥ T I0 ∀j ∈ {1, . . . , N} (4.3)

T Ij ≤ T IN ∀j ∈ C1 (4.4)

T Ij > T IN ∀j ∈ C2 (4.5)

T IN = sjT
I
j ∀j ∈ C1, nj ∈ {1, 2, . . . } (4.6)

T Ij = mjT
I
N ∀j ∈ C2, mj ∈ {2, 3, . . . } (4.7)

T Ij = kjT
I
0 ∀j ∈ {1, . . . , N}, kj ∈ {1, 2, 3, . . . } (4.8)

The objective of the model is to minimize the average cost of the assembly system

per unit time. T Ij is the decision variable of the model that is integer multiple of its

successor. The constraint (4.3) ensures that all reorder intervals must be greater than

or equal to T I0 . The constraint (4.4) ensures that if j belongs to C1, then T Ij must be

less than or equal to T IN . The constraint (4.5) assures that if j belongs to C2, then T Ij

must be greater than T IN . The constraint (4.6) provides that if j belongs to C1, then

T IN equals to the product of T Ij and sj, which must be an integer. The constraint (4.7)

assures that if j belongs to C2, then T Ij equals to the product of the T IN and mj. mj

must be an integer as well and it must be greater than 1 since T Ij > T IN according to
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Case 2. The constraint (4.8) ensures that the proportion of T Ij to T I0 must be integer.

4.3.1. The Approximate Model for A Two Level Assembly System

We consider a simple assembly system which is the same with the one in Figure

4.2. The final product is assembled at stage 0 by using the parts of stage 1 and stage

2. We assume that disruption occurs at stage 2. We build a new objective function by

approximating β. β0 is the new probability of disruption in the approximate model.

β0 =
λ

(λ+ µ)
.

The approximate average cost per unit time is:

ACA(T0, T1, T2) =


T2

∑N
j=0 Cj,EOQ(Tj)+Dβ0

1
µ
cs

T2+β0
1
µ

for T1 ≤ T2

T2
∑N
j=0 Cj,EOQ(Tj)+Dβ0

1
µ
(cs+

h1
2
(T1−T2))

T2+β0
1
µ

for T1 > T2

And the proposed reorder interval model is:

min ACA(T I0 , T
I
1 , T

I
2 ) (4.9)

s. t.

T Ij ≥ T I0 ∀j ∈ {1, 2} (4.10)

T I1 ≤ T I2 1 ∈ C1 (4.11)

T I1 > T I2 1 ∈ C2 (4.12)

T I2 = s1T
I
1 1 ∈ C1, n1 ∈ {1, 2, . . . } (4.13)

T I1 = m1T
I
2 1 ∈ C2, m1 ∈ {2, 3, . . . } (4.14)

T Ij = kjT
I
0 ∀j ∈ {1, 2}, kj ∈ {1, 2, 3, . . . } (4.15)

T Ij ∈ N ∀j (4.16)
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Now, we need to determine the reorder intervals that enable us to obtain the minimum

objective function value. The average cost of the assembly system per unit time is

determined according to the relation between T1 and T2. If T1 ≤ T2, then we conclude

that T1 and T2 belong to C1. On the other hand, if T1 > T2, then they belong to C2.

Therefore the average cost per unit time is computed according to the case T1 and T2

belong to. In order to determine optimal reorder intervals,we use the fmincon function

of the MATLAB. Fmincon is useful function of MATLAB that finds the local minimum

T0, T1 and T2 values of the model that satisfies the nestedness property of the model.

Therefore we do not need to check whether they satisfy the constraint (4.3) or not.

After obtaining the optimal clusters, the final task to be done is to convert them

into the reorder intervals that are integer multiples of each other in order to satisfy the

constraints (4.6), (4.7) and (4.8).

An Approximate Method for Integer Reorder Intervals

Now, firstly let us assume that T2 is the biggest one among the others.

We observe that,

• if T2
T0

> 1.5, then T2 and T0 will not be taking the same integer value. Then we

need to check the relation between T1 and other reorder intervals.

(i) If T2
T1
≤ 1.5 and T1

T0
≤ 1.5, then the reorder intervals whose proportion is the

smallest will be taking the same integer value.

(ii) If T2
T1
> 1.5 and T1

T0
≤ 1.5, then T1 and T0 will be taking the same integer

value.

(iii) If T2
T1
≤ 1.5 and T1

T0
> 1.5, then this time, T1 and T2 will be taking the same

integer value.

Secondly, we assume that T1 is the biggest one among the others under the same

assumptions of the first case.
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• if T1
T0

> 1.5, then reorder intervals of stages 0 and 1 will not be taking the same

integer value. Therefore, we need to check the relation between T2 and other

reorder intervals.

(i) If T1
T2
≤ 1.5 and T2

T0
≤ 1.5, then the reorder intervals whose proportion is the

smallest will be taking the same integer value.

(ii) If T1
T2
> 1.5 and T2

T0
≤ 1.5, then T2 and T0 will be taking the same integer

value.

(iii) If T1
T2
≤ 1.5 and T2

T0
> 1.5, then this time, T1 and T2 will be taking the same

integer value.

• If T1
T2

, T1
T0

and T2
T0

are greater than 1.5, then all reorder intervals will be taking

different integer values.

• If T1
T2

, T1
T0

and T2
T0

are less than or equal to 1.5, then all of them will have the same

integer value.

Let us assume that we have two optimal clusters. In order to find out whether their

reorder intervals will be taking the same integer value or not, we should examine their

proportion. If it is less than or equal to 1.5, then we conclude that they will be having

the same integer value; if not, they will have different integer values.

Now, let us assume that we have only one optimal cluster, then we need to

examine the integer values that are close to the optimal reorder value and pick up the

one that gives the smallest average cost. The same approach is valid for the others as

well, after deciding which ones have the same integer value, we need to analyze the

integer values that are close to the optimal reorder values and choose the ones that

provide the minimum average cost.
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4.3.2. Numerical Analysis

In this part of the study, we provide numerical examples to examine the model

in detail so that we can fully understand the behavior of the model. We analyze a

three-stage assembly system as in Figure 4.2. Stage 0 creates the finished product by

supplying the semi-finished items from stage 1 and stage 2. We assume that stage 2 is

due to the risk of supply disruption.

Table 4.1 shows the parameters of the model. Each parameter has a wide range

Table 4.1. Parameter Set.

Parameter Symbol Tested Values

Fixed Cost of Stage 0 K0 100

Fixed Cost of Stage 1 K1 50, 200, 400

Fixed Cost of Stage 2 K2 50, 100, 400

Holding Cost of Stage 0 h0 0.2

Holding Cost of Stage 1 h1 0.2

Holding Cost of Stage 2 h2 0.2

Demand D 10, 100

Shortage Cost cs 5, 10

Wet period Rate λ 1

Dry Period Rate µ 0.2, 0.5, 1

of values that enable us to analyze the model clearly. First, let us examine the re-

order intervals that are computed according to the classical economic reorder interval

problem. We know that the solution of the problem is

Ti =

√
2Ki

Dhi
.
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For the given parameter values, their proportions to each other equal to

T1
T0
∈ {0.7, 1.41, 2}.

T2
T0
∈ {0.7, 1, 2}.

They show us the range of values k1 and k2 may take in the model. As we can see, the

gap between T0, T1 and T2 is quite large. This variety among the reorder intervals is a

considerable contribution to the numerical analysis.

We should also notice that the values of the fixed costs of the stages have an

important role in determining k1 and k2 since they are completely related with T0, T1

and T2. In order to justify our claim, let us first analyze Table 4.2 that shows the

relation between K1 and the reorder intervals. The parameters of the model are set as

K2 = 50, D = 10, cs = 5, h0 = h1 = h2 = 0.2, λ = 1 and µ = 0.2. As we can see,

when K1 equal to 50, T1 takes the value of 8 however when we increase the value of K1

to 400, T1 increases as well and take the value of 16. The model prefers to order less

frequently by decreasing the order quantity of the fixed cost of stage 1 since the fixed

cost is larger now. Besides there is a linear relation between the average cost of the

system and K1. The situation is pretty same with the cases of K0 and K2, therefore

we do not provide the numerical examples of these cases. Now, let us also examine

Table 4.2. Behavior of the Model with Respect to K1.

K1 T0, T1, T2 Expected Cost

50 8, 8, 8 49.34

400 8, 16, 8 69.67

β(T2) and β0.

β(T2) ∈ {0.49, . . . , 0.83}.
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β0 ∈ {0.5, . . . , 0.83}.

As it can be seen, the minimum value for β(T2) is 0.49 while it is 0.5 for β0 for the given

parameter values. Both values are high enough to examine the effect of disruption in

the assembly system. If they took smaller values, since the risk of disruption would

be smaller, it would be very difficult to fully understand the impact of disruption.

Consequently, it is essential for us to prefer higher β(T2) and β0 values in the model.

We should notice that since the rates of the wet and the dry periods form β and

β0, they have an important role in the model. Therefore, let us analyze Table 4.3 so as

to show the impact of µ on β0 and the reorder interval of the unreliable supplier. The

model parameters are set as K2 = 50, K1 = 50, D = 100, h0 = h1 = h2 = 0.2, λ = 1

and cs = 5. We increase the value of µ from 0.2 to 1 in order to decrease β0. This

sudden increase makes T2 take on a smaller value since the probability of disruption is

smaller now. Therefore, from these results we can conclude that when the disruption

probability is smaller, model prefers to hold less inventory by decreasing the reorder

interval of the unreliable supplier. Finally, we examine the range of values that the

Table 4.3. Behavior of the Model with Respect to µ.

µ T0, T1, T2 Expected Cost

0.2 3, 3, 9 298.73

1 3, 3, 6 203.07

total shortage cost take in the numerical analysis.

Dcsβ(T2)
1

µ
∈ {25, . . . , 4165}.

Dcsβ0
1

µ
∈ {25, . . . , 4167}.

It is obvious that the range of values the total shortage cost take is quite wide. It takes
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larger values as µ gets smaller and cs and D get larger. It makes sense because as µ

decreases, the duration of the dry period increases. Therefore, it is more difficult to

mitigate the cost of disruption when µ takes smaller values and cs and D take larger

values. Consequently, the model prefers a higher reorder interval especially for stage 2

in order to decrease the total shortage cost.

Let us explain it more clearly by giving a small example. We want the effect

of disruption to be more destructive. According to our claim, the increase of the

shortage cost per lost sale should result in a higher T2. Table 4.4 shows how the

change of cs effects the model. We set the parameters as K2 = 50, K1 = 50, D = 10,

h0 = h1 = h2 = 0.2, λ = 1 and µ = 0.2. As it is expected, the increase of cs cause T2

to take on a higher value and it also makes the average cost per unit time increase as

well. Now, by using these parameter values, we obtain the reorder interval of the each

Table 4.4. Behavior of the Model with Respect to cs.

cs T0, T1, T2 Expected Cost

5 8, 8, 8 49.34

10 8, 8, 16 63.40

stage and check whether they satisfy the nestedness policy. If they do not, then we

determine the optimal clusters of the assembly system by using the minimum violators

algorithm. Afterwards, in order to find the integer reorder intervals that are multiples of

each other, we examine each possible combination of integer reorder intervals and select

the ones that give the minimum objective function. We should recall that this selection

process is also a guideline for us to propose the round off method. Therefore, apart

from this selection process, we also obtain the reorder intervals that are determined

according to the round off method. Finally, we measure the errors due to applying the

round off method and using the approximate beta so as to measure accuracy of the

approximation method and the round off method.
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4.3.3. Approximation Error

In order to find out the measure of the error due to approximating the average

cost of the assembly system, we aim to compute the percentage error by using AC0 and

AC2. AC0 is the average cost of the exact model per unit time with integer reorder

intervals.

AC0 = ACE(T I∗0 , T I∗1 , T I∗2 ).

AC1 is the average cost of the exact model when we we use the integer reorder intervals

of the approximate cost.

AC1 = ACE(T I0 , T
I
1 , T

I
2 ).

We determine the percentage error by

PAE =
AC1 − AC0

AC0

.

According to the results, the average percentage error turns out to be 0 which means

approximation provides same integer reorder intervals with the exact cost function.

Therefore, we conclude that approximation provides good results when T2, λ and µ are

reasonably high and it does not have a significant impact on the average cost of the

assembly system.

4.3.4. Error Due to Using Reorder Intervals of Round off Method

In this section, we want to measure the error due to applying the method that we

propose to obtain the integer reorder intervals that are multiples of each other. AC2 is

the average cost of the exact model with the reorder intervals of the round off method.

AC2 = ACE(T I0 , T
I
1 , T

I
2 ).
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We determine the percentage error by

PER =
AC2 − AC1

AC1

.

The overall average percentage error is 0 which indicates that the round off method

is good at estimating the integer reorder intervals that are multiples of each other.

Therefore we can conclude that on average it provides accurate results for the model.

We should notice that PER provides the error between the cost of the exact model

when we use the reorder intervals of the approximate model and the cost of exact

model when we apply the round off method. Furthermore, we can also measure the

error between the cost of applying the round off method and the cost of exact model

with the optimal integer reorder intervals so that we can measure the total error.

PTE =
AC2 − AC0

AC0

.

Since there is no difference between the integer reorder intervals that we obtain from

the exact and approximate models, the average percentage error is still 0.
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5. CONCLUSIONS

In the first part of the study, a model for serial systems is proposed to cope

with the risk of supply disruption. Firstly, a two-stage serial system is analyzed,

the proposed approach is to set up a model to mitigate the cost of disruption by

determining reorder intervals that give the minimum objective function. For practical

reasons, only integer reorder intervals that are integer multiples of each other are

taken into consideration. Therefore, in the numerical analysis, after examining all

the integer reorder intervals, the ones that minimize the objective function are picked

up. Moreover, so as to figure out the effects of the parameters on the behavior of

the model, a sensitivity analysis is conducted. According to the results, fixed costs

of the serial system stages cause reorder intervals to take on higher values since the

model needs to prefer ordering less frequently to get rid of higher ordering costs. On

the other hand, holding costs have an inverse impact on the reorder intervals since

greater reorder intervals mean greater total holding costs in a cycle. Moreover, the dry

period rate and the wet period rate have direct relation with the reorder interval of

the disrupted supplier. The increase of the dry period rate makes the probability of

disruption smaller, consequently since the model thinks that risk is smaller now, it can

order less frequently by holding less inventory. The situation is pretty same with the

wet period rate. As the wet period rate gets comparatively higher than the dry period

rate, the probability of disruption increases. As a result, model prefers to hold more

inventory to mitigate the effect of disruption. Besides, as expected, the increase of the

shortage cost per lost sale cause the model to provide a larger reorder interval of the

unreliable supplier in case of the disruption.

Secondly, an approximation approach is developed for an N stage serial system

by approximating the probability of disruption. It is shown that the objective function

is unimodal under mild conditions. Therefore it provides unique minimum reorder

intervals. The algorithm in the study of [34] is used to obtain the optimal clusters and

the reorder intervals that satisfy the condition of the nestedness policy. A power-of-two

policy is also applied to obtain the reorder intervals that are powers-of-two multiples
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of the base planning period. A numerical analysis is conducted to measure the error

due to the approximation approach and the power-of-two policy. It is shown that as

long as the reorder interval of the unreliable supplier is high enough, the approximation

provides good results. In fact, the overall average percentage error turns out to be only

0.08. It is also shown that the average percentage error of the power-of-two policy is

not significant as well.

In the second part of the study, assembly systems due to the risk of disruption are

examined. The essential property of the model is to assume that the reorder intervals

are integer multiples of each other. It is shown that the model changes according to the

relation among the reorder intervals that are predecessors of the root stage therefore it

is needed to be examined by taking into two different cases. Moreover, the minimum

violators algorithm is applied to obtain the optimal clusters and the reorder intervals

that satisfy the condition of the nestedness policy. An approximation approach is also

developed by approximating the probability of disruption. For the part of numerical

analysis, a three-stage assembly system is examined and a method called round off

is developed to convert the reorder intervals that are integer multiples of each other.

Besides, the errors due to conducting the approximate model and using the reorder

intervals that are integer multiples of each other are measured as well. It is shown that

for the given parameter values the gap between the exact and the approximate model

equals to zero which proves that approximation works well when the reorder interval of

the unreliable supplier is high enough. Moreover, the percentage error due to applying

the round off method also turns out to be zero, it means that the proposed method is

accurate enough to apply in the model.

For further studies, this study can be extended by analyzing supply disruption

in a distribution system which is also a multistage production systems. Besides, it can

be assumed that the number of unreliable supplier is more than one and they can be

disrupted independently.
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