
FOUR HEURI.STIC SOUffIOI PINJ)CEDURES TI{]

THE TRAVEllING SALESMN PRORLHlI rum
AI APPLICATION TO TIlE HlIJLII-DEPOT

VEHICLE ROUTING PROB~

by

Yasef Tovya
B.S. in I.E., Bogazi<:i University, 1981·

Bogazici University Library

111111111111111111111111111111111111111 ~
39001100314957

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of

the requirements for the degree of

f.1aster

of

Science

Bogazici University·

18'2063
1983

iii

ACKNOWLEDGEMENT

.I am greatly indebted to Doc. Dr. GUndUz ULUSOY, my instructor

and thesis advisor for his invaluable guidance and practical discussions

of the techniques and procedures used. Not only was he tireless in co­

operating throughout all the aspects of the study but he also provided

tangible long-term encouragement.

Yasef TOVYA

iv

ABSTRACT

This study consists of two parts. In the first part, four

heuristic algorithms for solving the Travelling Salesman Problem (TSP)

is developed. Given a graph, the first algorithm forms a subgraph in

which the necessary conditions for the existence of a travelling sales­

man tour are satisfied. In case the subgraph does not contain any

travelling salesman tour, Little's b~anch and bound algorithm is par­

tially applied to the resultant cost matrix. The second algorithm,

starts with the minimum cost assignment and ranks the assignment solu­

tions in ascending costs by introducing subtour breaking constraints.

The third alg6rithm produces some b~t achievable n-paths which start

from a root node and end at some node incident to the root node. These

paths are then completed to travelling salesman tours and the least cost

tour is taken as the best achievable solution. A geometric approach to

solving the TSP is described in the last algorithm. Starting with a

partial tour, the algorithm determines which of the remaining nodes are

to be inserted between which consecutive pair of nodes on the subtour

and in what order. After all, a summary of computational results re­

garding both the efficiency and the computational effort of all the

algorithms is presented.

v

In the second part, it is shown that the TSP can be applied to

the Multi-Depot Vehicle Routing Problem (MDVRP) in which p vehicles

located at m depots deliver products to demand nodes. The routing

decision involves determining what route each vehicle will follow so

that the total distance travelled is minimized subject to the condi­

tion that the demands are satisfied, and the vehicles return to their

original depots. A transformation is applied to the MDVRP in order

to formulate it as a TSP. The transformed graph includes two additio-

nal nodes for each vehicle where one serves as a departure node and

the other serves as an arrival node for the depot at which that par­

ticular vehicle is initially located. By imposing the additional

requirement that each demand node is visited by one and only one

vehicle the solution to the original problem can be obtained by

solving the TSP on the transformed graph. As a result, the algorithms

developed in the first part of the study are applied to solve the MDVRP.

Computational results reveal that, the computational effort needed for

solving the TSP in a transformed graph is less than the computational

effort needed for solving the TSP in a complete travelling salesman

graph of the same size.

,vi

KISA UZET

Bu call~ma iki bolUmden. olu~maktadlr. Birinci bolUmde, Gezgin

Satlcl Probleminin (GSP) cozUmUnde kullanllabilecek dart sezgisel al­

goritma geli~tirilmistir. Birinci algoritma, verilen serime ait maliyet

matrisini indirgemekte ve icinde bir gezgin satlcl turunun varolabilmesi

icin gerek ~artlarln saglandlgl bir alt. serim olusturmaktadlr. Alt se­

rimde herhangi bir gezgin satlcl turu bulunmadlgl takdirde ise Little1in

dal ve dUgUm yontemi indirgenmiS olan maliyet matrisine klsm; olarak uy­

gulanmaktadlr. ikinci algoritma cozUme once maliyet matrisi Uzerinde

bir atama problemi cozerek baslar. Daha sonra, elde edilen alt turlarl

parcalayan klsltlar probleme eklenerek yen; bir atama problem; cozU1Ur.

Probleme klSlt ekleme ve cozme sUreci bir gezgin satlcl turu olu~uncaya

kadar devam eder. , OcUncU algoritma ise bir noktadan baslayarak bu bas­

langlC noktaslna baglanabilen noktalarda biten ve problemin icindeki

her noktaYl sadece bir kere ziyaret eden yollar olusturur. Bu yollar

gezgin satlcl turlarlna tamamlanarak aralarlndan maliyeti en dU~Uk olanl,

bulunabilecek en iyi cozUm olarak secilir. DordUncU algoritmada GSplnin

cozUmUne geometrik olarak yaklaSllmaktadlr. Buna gore, klsm; bir tur

ile baslayan algoritma, klsml tura dahil olmayan noktalarln bu tura

nasll ve hangi Slra ile ekleneceklerini bularak bir gezgin satlcl turu

olu~turur. Algoritmalara ait verimlilik ve hesaplama karma~lkllgl ile

vii

ilgili sonuclar bilgisayar sonuclarl ile birlikte ayrlca ozetlenmek­

tedir.

Call~manln ikinci klsmlnda ise GSP'nin Cok Depolu Ta~lt GU­

zergahl Belirleme Problemine (CDTGBP) uygulanabilece§i gosterilmi~tir.

Bu problemde p depoya da§ltllml~ m adet ta~lt burada depolanml$ olan

UrUnleri istem noktalarlna da§ltmaktadlr. Buna gore her ta~lt oyle

bir gyzergah izlemelidir ki toplam katedilen mesafe enazlanlrken tUm

istemler kar$llanml~ ve ta~ltlar depolarlna donmU$ olmalldlr. Verilen

serime uygulanacak olan bir donU~Um problemin GSP olarak cozUlmesini

saglar. Serimde, depo noktalarl elenirken her ta$lt icin bulunduklarl

depolara kar~l gelen kalkl$ ve Varl$ noktalarl yaratlllr. Boylece

serimdeki her noktanln yalnlz bir defa ziyaret edilece§i gozonUne al1n­

dlglnda CDTGBP'nin cozUmU donUstUrUlmUs serimde GSplnin cozUlmesi ile

elde edilebilir. Sonuc olarak callsmanln ilk bolUmUnde geli~tirilen

algoritmalar CDTGBPlnin cozUlmesinde uygulanmlstlr. Bilgisayarda elde

edilen sonuclar donU~tUrUlmU~ olan bir serimi cozmek icin gerekli olan

cabanln aynl bUyUklUkteki tambagll bir.,serimde GSplni cozmek icin ge­

rekli cabadan daha az oldugunu gostermi$tir.

ACKNOWLEDGHIENT
,A~STRACT . ,"
KISA OZET
LISt OF'FIGURES
LIST OF TABLES

I., INTRODUCTION

TABLE OF CONTENTS

viii

iii
iv
vi

IX i

xift

1

1.1 Description of the Problem and Its Complexity 1
1.2 Interpretation of the TSP as a Vehicle Routing

Problem 2
1.3 Extension to the Multiple TSP 3
1.4 Extension to the Multi-Depot Vehicle Routing Problem 4
1.5 Importance of the Polynomially Bounded Algorithms 6
1.6 Ou~lines of the Algorithms Developed for Solving

the TSP 8
1.7 Contents of the Thesis 11

II. THE TRAVELLING SALESMAN PROBLE!vl (TSP): A LITERATURE
SURVEY

2.1 Statement of the Problem
2.2 Formulation of the TSP
2.3 Solution Procedures for the TSP

2.3.1 Enumeration Methods
2.3.1.1 Latin Multiplication Method
2.3.1.2 Algebraic Methods _
2.3.1.3 Other Enumeration Methods

2.3.2 Exact Solution Methods with Branch and Bound
2.3.2.1 The TSP and the Assignment Proqlems
2.3.2.2 The TSP and Minimal Spanning Tree

Problems

(AP)

13

13
14
16

17

20
21
23
27

·30

39

ix

\

Page

2.3.2.3 The TSP and Matching Problems 44
2.3.2.4 The Shortest n-Paths and the TSP 45
2.3.2.5 Little's Branch and Bound Algorithm 47

2.3.3 Dynamic Programming Solution of the TSP 51
2.3.4 Exact Solution Methods Based on Linear

Programming 52
2.3.5 Approximate Methods for the TSP 55

. 2.3.5.1 Tour Building Techniques 56
2.3.5.2 Successive Improvement Techniques 65
2.3.5.3 Techniques Using Minimal Spanning

Trees 68

III. FOUR HEURISTIC ALGORITHMS FOR SOLVING THE TRAVELLING
SALESMAN PROBLEM 72

3.1 Algorithm I
3.2 Algorithm II
3.3 Algorithm III
3.4 Algorithm IV
3.5 Computational Results

,

,IV. THE MULTI-DEPOT VEHICLE ROUTING PROBLEM AND ITS
FORMULATION AS A TRAVELLING SALESMAN PROBLEM

74
86
97

103
115

124

4.1 ,Introduction 124
4.2 Vehicle Routing Problems. as Extensions of the

Travelling Salesman Problem 127
4.2.1 The Multiple Travelling Salesman Problem (MTSP) 127
4.2.2 The Multi-Depot Vehicle Routing Problem (MDVRP) 128

4.3 Solution Techniques for the Vehicle Routing Problems 132
4.4 Solution Procedures fo~ the Vehicle Routing Problems

Which Build Upon the Travelling Salesman Problem
as the Core Model 134
4.4.1 The Single Depot Case (f1TSP) 134
4.4.2 The Multi-Depot Case 136

4.4.2.1 Transformation of the Node Set 136
4.4.2.2 Transformation of the Arc Set 137
4.4.2.3 Transformation of the Cost Matrix 138
4.4.2.4 An Illustrative Example 138
4.4.2.5 Equivalence of the Two Problems 141

V. APPLICATION OF THE PROPOSED ALGORITHMS TO THE
MULTI-DEPOT VEHICLE ROUTING PROBLEM

5.1 Application of Algorithm I
5.2 Application of Algorithm II
5.3 Application of Algorithm III
5.4 Application of Algorithm IV
5.5 Computational Results

VI. CONCLUSIONS AND EXTENSIONS

APPENDIX A

APPENDIX B

REFERENCES

x

143

146
150
157
165
169

172

177

199

206

xi

LIST OF FIGURES

Figure 2.1 - A difficulty associated with the largest angle
method. 61

Figure 2.2 - A difficulty associated with the most eccentric
ellipse method. 62

Figure 3.1 - Stages in constructing the subgraph GI for
Example 3.1. 80

Figure 3.2 Subgraphs Gk 80

Figure 3.3 - Resultant ~ubgraph GI 82

Figure 3.4 - Subtours and penalties corresponding to the AP
solutions in Example 3.2. 93

Figure 3;5 - The convex hull corresponding to the travelling
salesman graph in Example 3.4. 107

Figure 3.6 - Steps in building the travelling salesman tour. 111

Figure 3.7 ~ Behaviour of the proposed algorithm in the case
where Norback's and Love's largest angle method
fails. 112

Figure 3.8 - Behaviour of the proposed algorithm in the case
wher~ Norback's and Loves I eccentric ellipse
method fails. 113

Figure 3.9 - Comparison of the height criterion with other
criteria. 114

Figure 4.1 - An example of back transformation for an MTSP. 136

Figure 4.2 - The original graph (MDVRP) and the equivalent
travelling salesman graph. 140

Figure 4.3 - Optimum solutions to the travelling salesman
graph and the MDVRP. 141

Figure 5.1 - The graph representing the MDVRP. 144

Figure 5.2 - Stages in constructing the subgraph GI
• 147

Fi gure 5.3 - Subgra ph; Gk .
Figure 5.4 - The ~esultant subgraph G1

•

Figure 5.5 - Subtours and penalties corresponding to the
AP solutions.

Figure 5.6 - Stages of the node insertion process.

Figure 5.7 - Solutions to the MDVRP.

xii

Page

149

152

153

167

169

LIST OF TABLES

Table 1.1 - The maximum size of problems solvable in one hour
with respect to the developments in computer

xiii

technology. 7

Table 3.1 - Reduced matrices obtained during the application of
steps (1) through (4) of algorithm I. 78

Table 3.2 - Reduced matrices obtained during the application
of Little's branch and bound algorithm partially. 84

'Table 3.3 - The cost matrix corresponding to the TSP solved
in Example 3.2. 91

Table 3.4 - AP solution to the Example 3.2. 91

Table 3.5 - List of nodes at the end of the initial branching
in Murty's algorithm. 92

Table 3.6 - L"ist of nodes at the end of the second branching
in Murty,'s al gorithm. 92

Table 3.7 - The third and the fourth partitions in Murty's
algorithm. ' 93

,

Table 3.8 ~ The cost mat~ix corresponding to the, solution (1). 94

Table 3.9 - The cost matrix corresponding to the TSP solved
in Example 3.3. 100

Table 3.10- The cost matrix after subtracting each entry from
a large number L = 50. 100

Table 3.11- The cost matrix in Example 3.4. 108

Table 3.12- The cost matrix after subtracting each element from
a large number L = 400. 108

Table 3.13- List for arcs in T in the first step. 109

Table 3.14- List for. arcs in T in the second step. 110

xiv

Page

Table 3.15 - List for arcs in T in the third step. 110

Table 3.16 - List for arcs in T in the fourth step. 112

Table 3.17 - Computational results regarding algorithm I. 117

Table 3.18 - Results regarding the application of Little's
algorithm partially to the reduced matrix or
to the original matrix. 118

Table 3.19 - Computational results for the proposed algorithms
when applied to problems where 10 ~ n < 70 121

Table 4.1 - Transformation of a cost matrix for the MTSP. 135

Table 4.2- Transformation of a cost matrix for the MDVRP. 139

Table 5.1 - The cost matrix corresponding to the MDVRP. 145

Table 5.2 - The transformed cost matrix. 145

Table 5.3 - The resultant reduced cost matrix. 152

Table 5.4 - The transformed cost matrix after the AP is solved
in the first step of algorithm II. 153

Table 5.5 - The cost matrix that corresponds ta solution (1). 155

Table 5.6 . - The cost matrix after subtracting each element
from a large number L = 250. 158

Table·5.7 - L i'st for arcs in T in the first step. 166

Table 5.8 List for arcs in T in the second step. 166

Table '5.9 - List for arcs in T in the th;'rd step. 168

Table 5.10 - Computational results for the MDVRP. 170

1

I, INTRODUCTION

1.1 DESCRIPTION OF THE PROBLEM AND ITS COMPLEXITY

The Travelling Salesman Problem (TSP) has been a challenge that

has attracted researchers who.have wanted to derive an efficient solu­

tion method for the problem. The problem is formidable in the sense

that the associated solution methods are quite difficult contrary to

the simplicity of its statement. Mainly, it is a classical example

which represents the challenge of the combinatorial optimization prob­

lems.that have found a considerable interest up to now.

Consider a case in which there is a set of n cities which are

to be visited by a salesman. The salesman,starting from a city is

required to visit each of (n-f) other cities before returning to the

start. The proble..m is to design a route which minimizes the total

distance travelled assuming that the distances between all city pairs

are known.

One possible way of approaching to this problem, which is certain

to give the correct answer is to enumerate all the possible tours and

pick the shortest one. However, the complete enumeration of all the

possible tours becomes a computationally impossible task even for prob­

lems with relatively small number of cities. As a matter of fact, even

the fastest algorithms designed for solving this problem exactly require

an inordinate amount of time.

2

Similar to most of the other combinatorial optimization problems
"

the TSP falls into a category which is well known as NP-complete prob-

lems. The letters NP stand for "Nondeterministic Polynomial". The

status of this category is uncer~ain in the sense that only exponential

algorithms are known for the' NP-complete problems. Neither an efficient

algorithm for solving the problems has been developed, nor has it been

proven that such algorithms do not exi$t. However, NP-complete prob­

lems have' a remarkable property. That is, each problem in this category

is efficiently (i.e. in a polinomial time) reducible to another NP-com­

plete problem. Consequently, if anyone of them has an efficient algo­

rithm, then every NP-complete problem can be solved efficiently [1,2].

Not all situations to which the TSP is confined involve cost mini-

mization. Instead of cost other measures of effectiveness may be subs­

tituted according to their applications. The problem is known to have

wide applications in frequently encountered problems arising in prac­

tical situations. Among those problems are scheduling, sequencing, and

vehicle routing problems which can be interpreted as a TSP with side

constraints [3].

1.2 INTERPRETATION OF THE TSP AS A VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) involves the visiting of a set

of required stops in a network by vehicles. In other words, the stops -

or alternatively the destinations with known requirements must be served

with a fleet of vehicles stationed at some depot(s) in such a way as

to minimize some objective. It is also required that all vehicles must

start and finish at the depot(s) where they are initially located.

3

Although the structure of the VRP reveals that it is related to the
~ .

physical delivery of goods, the delivery operation may be replaced

by a collection, collection and/or delivery or some other operation

which may not even be of physical nature. In fact, the VRP appears

frequently in practical situations not directly related to the physi-

cal delivery. For example, service delivery, house call-tours of a

doctor, preventive maintenance tours are all VRPs in which there are

no physical delivery operations.

The TSP can be interpreted as a VRP with one depot and with one

vehicle whose capacity exceeds total demand. That is, a vehicle is

required to visit all the destinations once and only once before re­

turning to the-depot where it is located. However, the structure of

the problem is changed considerably when more vehicles, more depots,

different vehicle capacities and additional route restrictions are

involved. As a matter of fact, the VRP is also an NP-complete problem

for which no polynomially bounded algorithm has been developed [4,5].

1.3 EXTENSION TO THE MULTIPLE TSP

An extension of the TSP which has proven to be more appropriate

for serving as a core problem to the VRP is the Multiple Travelling

Salesman Problem (MTSP). In this problem, m salesmen are required to

design m subtours in such a way that each destination is visited

exactly once by exactly one salesman while the total distance travelled

by all the salesmen is being minimized. As a result, the MTSP can be

interpreted as. the problem of routing a fleet of m vehicles from a­

single depot to many destinations with the condition that each routed

4

vehicle will return to the depot and each destination will be visited

once and only once. The vehicle capacities are assumed to exceed the,

demand in any subtour that may be designed.

Similar to the TSP, the MTSP is an NP-complete problem. However,

it has been shown that the solution to the MTSP is no more difficult

than the solution to the TSP[6,7,S]. In addition, equivalent TSP

formulations of the MTSP have been derived. The eq'uivalence is obtained

by creating m copies of the depot one for each vehicle. Each of these

copies are connected to each destination exactly as the original depot.

That is, the distances associated with each such pair of nodes are the

same. However, there is no connection between any pair of the copies

of the depot. In other words infinities are inserted in the associated

elements of the transformed matrix so that the optimal travelling sales­

man tour in the expanded graph will never contain an arc connecting any

pair of the copies. Once the TSP is solved for the expanded matrix,

the copies are coalesced back into a single depot and consequently the

travelling salesman tour is decomposed into m subtours.

1.4 EXTENSION TO THE MULTI-DEPOT VEHICLE ROUTING PROBLEM

A further extension of the VRP is to allow vehicles to reside at

more than one depot. The problem is known as the,Multi-Depot Vehicle

Routing Problem (MDVRP). A vehicle fleet of m vehicles distributed

to p depots is required to satisfy the demand at each destination. The

routing decision involves the determination of what route each vehicle

will follow so that the total distance travelled is minimized subject

to the constraints (i) that the demands are satisfied, (ii) each

destination is visited once and only once and (iii) the vehicles

return to their oniginal depots.

5

Although the VRP has attracted considerable attention, the

MDVRP has not been studied widely yet and therefore is a promising

area for further research. In the relevant literatur~, it has been

stated that exact methods for solving the single depot VRP can be

extended to the multi-depot case [4J. The principal exact methods

for solving the single depot VRP are branch and bound techn~~uei.[5J.

But only methods based on heuristic programming have appeared to be

computationally feasible for solving large practical problems. As

it has been reported by Golden, et.al [4J problems with about four

depots and hundred destinations can be handled on a computer in less

than 10 seconds.

The property that any NP-complete problem can be reduced to

another NP-complete problem in polynomial time is of particular im­

portance in this case. Once the problem is reduced to another NP­

complete problem for which an efficient heuristic algorithm is deve­

loped, the algorithm can be used to solve the original problem. The

TSP is one such problem which has been studied widely. There are

several heuristic algorithms for solving the TSP efficiently. More­

over, these algorithms require less computation effort in comparison

with the algorithms developed for solving the MDVRP. Fortunately, it

is possible to model the MDVRP as a TSP by transforming the original

graph into one for which the TSP can be solved. The transformed graph

includes two additional nodes for each one of the m vehicles where one

6

,
serves only as a departure node and the other serves as an arrival node

for the depot at which that particular vehicle is initially located.

Each departure node is connected to another arrival node with zero

cost. In addition, the departure nodes are connected to each destina-

tion node and each destination node is connected to the arrival nodes

with exactly the same costs as the corresponding original depots. The

connections between all pairs of destination nodes remain the same.

The cost matrix is updated accordingly. The solution to the ori~inal

problem can be obtained by first solving the TSP on the transformed

graph' and then coalescing all the departure and arrival nodes back

into p depots, so that the trav~ling'salesman tour is decomposed into

m subtours. Note that not all vehicles have to be used as a result of

this transformation.

1 .5 IMPORTANCE OF THE POLYNOMIALL Y BOUNDED ALGORITHr~S

As the size of the graphs being examined increases the time

needed for solving the TSP and the NP-complete problems increases ex­

ponentially. Growth of this kind can be described by a mathematical

f~nction such as an where n is a number related to the problem size.

In fact, n is the number of cities for the TSP. Many other functions

exist which can be regarded as having the same property of exponential

growth. Among them are nn and n!. On the other hand, there exists

some mathematical functions of another kind which are known as poly­

nomials. What distinguishes polynomials from exponential functions

is that n does not appear in an exponent. Linear functions, functions
' ..

such as n2
, n3 and the sum of such functions are all suitable for

7

.describing the polynomially bounded computation times. For small values

of n, a polynomial function may exceed an exponential one but there

always exists a value n beyond which the exponential function is greater. ,
For sufficiently large v~lues of n any exponential function overtakes

and exceeds the polynomial functions [9].

It has been accepted that algorithms whose execution time increases

exponentially as a function of the size of the problem are not of prac­

tical value. Algorithms of this kind are known to be inefficient. For

sufficiently large problems, a polynomially bounded algorithm executed

on even the slowest computer will find the answer sooner than an expo­

nential time algorithm on the fastest computer. This can be best seen

in Table 1.1 [10].

TABLE 1.1 - The Maximum Size of Problems Solvable in one
Hour With Respect to the Developments in
Computer Technology

Function Existing Computers that are Computers that are
Computers - 100 times fast 1000 times fast

n n} . lOOn} 1000n}

n2 n2 10n2 31.6n2

. n3 n3 4.64n3 10n3

nS n4 2.5 n4 3.98n4
2n ns ns + 6.64 ns + 9.97

3n -n6 n6 + 4.19 n6 + 6.29

As a result, we can conclude that algorithms with"exponential growth'

will not benefit from the technological developments made on the com-

puters. That .is, even if the efficiency of the computers improves by

8

a factor 1000 the time required for solving an exponentially bounded

algorithm will decrease by a fixed amount which differs slightly from

the efficiency of the existing algorithms.

1.6 OUTLINES OF THE ALGORITHMS DEVELOPED FOR SOLVING THE TSP

Since the NP-complete problems and therefore the TSP have no

efficient algorithms, a possib~e way of attack is to seek approximate
. .

solutions that are .good even if they are not precisely optimal instead

of expending further effort in seeking optimum solutions. The thesis

focuses first on the development of four algorithms for solving the

TSP efficiently. The study is based on reducing the computational work

while the resulting solutions remain close to the exact optimal solu­

tion. Experimental results reveal that this objective is achieved

efficiently. Finally, the algorithms are applied to the MDVRP.

The first algorithm developed for solving the TSP uses a tour

building approach~ First, the cost matrix is reduced. The minimum

element of each row is found and subtracted from every element in that

row. In the resultant matrix, the minimum element of each column is

subtracted from every element in that column. As a result, the arcs

corresponding to the zero elements in the resultant matrix comprise

a subgraph whose node set is the same as the original graph. Then,

the cost matrix is further reduced in order to ensure that the necessary

conditions for the existence of a travelling salesman tour hold in the

subgraph. In other words, the reduction continues until there exists

a path between each pair of nodes (i.e. strong connectedness). The

reduction process is further invoked so that given a pair of nodes i

9

and j, there exists a path either fro~ i t6 j or from j to i (i.e. uni­

lateral connectedness) when one of the nodes is removed from the sub­

graph. Once the necessary conditions hold, the algorithm searches for

a travelling salesman tour in the subgraph. In case the subgraph does

not possess any travelling salesman tour, Litt1e ' s branch and bound

algorithm [llJ is applied to the resultant matrix until a feasible tour

can be obtained.

The relation between the Assignment Problem (AP) and the TSP forms

the basis of the second algorithm developed. Considering the fact that

the travelling salesman tours correspond to extreme points of the as­

signment polytope, the algorithm starts with the minimum cost assign­

ment and finds new solutions ranked in ascending cost until a travelling

salesman tour is obtained. At each iteration a cutting plane which

forces the assignment solution to form a tour is introduced. The main

difference between this algorithm and the related ones in literature

is that no branch and bound procedure is involved. Rowever, the effi­

ciency is similar ii the sense that it depends on the total number of

extreme points between the optimum travelling salesman solution and
\

tHe minimum cost assignment. In fact, the larger the problem size is,

the larger is the number of extreme points in between.

A dynamic programming type ~pproach is presented in the third

algorithm. First, the elements of the cost matrix Cij are subtracted

from a large number in order to achieve triangle inequality (i.e.

C .. < CO k + Cko Vi,k,j). At each stage, the algorithm adds a new arc
lJ 1 . J

to the sequence so that the total cost of the elementary path formed

by the arc sequence is maximal. Finally, the elementary paths are

completed to travelling salesman tours and the one with the maximum

cost is selected as the best achievable solution.

10

A geometric approach to the TSP is presented in the fourth algo­

rithm. Similar to the related approaches in the literature the algo­

rithm starts with the convex hull or alternatively a partial tour. Then,

the travelling salesman tour is obtained by successive sequencing of

each of the remaining nodes between consecutive pair of nodes on the

partial tour. In order to determine the node to be inserted the heights

of the triangles whose bases are determined by the arcs through conse­

cutive pair of n~des on the partial tour and whose third vertices are

the remaining nodes are calculated. The node corresponding to the lar­

gest of these heights is chosen and inserted into the sequence. The

algorithm terminates when a travelling salesman tour is obtained.

All of the four algorithms proved to work well on several test

problems. For small size proble~s, it was possible to check the dif­

ference between the solutions obtained and the actual optimum solutions

by applying an exact solution procedure. However, for problems with

more than twenty cities the optimality check could not be conducted

considering the inordinate amount of CPU time required for the calcu­

lations. Instead, the solutions obtained by using the new algorithms

are compared.

In order to apply the algorithms to the MDVRP, the associated

cost matrices pass through a transformation so that the TSP solutions

to the resultant matrices are the solutions to the MDVRP as well. An

obvious result which is of practical importance is that the time re­

quired to solve.an MDVRP is less than the time required to solve a

complete TSP of the ~ame size.

11

1.7 CONTENTS OF THE THESIS

Chapter 2 presents a complete description and formulation of

the TSP. A literature survey is made on both the exact and heuristic

solution methods for solving the TSP. Algorithms representing diffe­

rent solution techniques are presented. As a result, comments are

made on the efficiency and computation effort of different solution

procedure,s.

In Chapter 3, four new algorithms representing distinct heuristic

techniques are presented. Each algorithm is described explicitly and

used to solve randomly generated examples. For purposes of defining

the power of each of these methods, computational results regarding

both the efficiency and computation effort are given.

It is well known that the TSP is a subproblem of many other prob­

lems frequently encountered in practice. Among them are the VRPs which

can be considered as extensions of the TSP. In fact, models representing

some of the VRPs are usually built on the TSP as the core model. As a

consequence of this fact, some efficient transformations have made it

possible to reduce some of the VRPs to a TSP. One of such problems is

the M~VRP. " "

.Chapter 4 gives full description and formulation of the MDVRP.

The transformation is made more explicit by the use of an example.

In addition, one to one correspondence between the TSP and the MDVRP

is shown.

Chapter 5 is a treatment of the application of the proposed algo­

rithms to the MDVRP. Each algorithm is used to solve the same example

problem in order to make comparisons on the behaviour of the methods.

The concluding chapter in the thesis, Chapter 6, summarizes

general conclusions and gives an insight to the extensions of the

study which may be subject to further work.

12

13

II. THE TRAVELLING SALESMAN PROBLEM (TSP):

A·LITERATURE SURVEY

2.1 STATEr,tENT OF THE PROBLHt

Consider a graph G = (N,E) where N = {l, ... ,n} is a set of n

nodes/cities which are to be visited by a salesman and E is a set of

arcs/roads joining the nodes. Let Cij be the cost associated with

arc (i,j). The problem of finding a tour that includes each node

in the graph at least once is known as the General Travelling Sales­

man Problem (GTSP). The problem of finding a Hamiltonian circuit, a

circuit that passes through each node exactly once, with the least

cost is the well known TSP.

In this chapter, we review some of the exact and approximate

solution.methods that have been suggested for solving the TSP. The

solution techniques are mainly based on solving the TSP rather than
-

solving the GTSP. Usually, the optimum solution to the TSP is also

the optimum solution·to the GTSP .. However, it follows that if a

graph G does not satisfy the triangle inequality then the optimum

solution to the TSP may not be the optimum solution· to the GTSP. In

that case, the GTSP can be reduced to the TSP by a suitable transfor-

mati on.

14

Consider that a grapn G does not satisfy the triangle inequality

(i.e. C .. > C. k + Ck·; for some k ~ i, k ~ j) and that one needs to
1J 1 J

,

obtain the optimum solution to the GTSP defined in G. A GTSP stated

in this manner can be reduced to a TSP by the technique of changing each

arc cost Cij to the length of the shortest path betvJeen i and j. If

an arc (i,j) whose cost is lessened as specified above is contained

in the optimum solution to the TSP, then the arc is placed by the'

shortest path from i to j in the optimum solution and hence, the op­

timum solution to the GTSP is obtained. As a consequence of the fact

that the GTSP is reducible to the TSP., solution techniques for only

the TSP are needed.

2.2 FORMULATION OF THE TSP

Consider the travelling salesman graph G = (N,E). Let

x .. = 1
1J

if arc (i,j) £ E is in the tour

= 0 otherwise

rhen, the problem is

n n
minimize E E C .. x ..

i=.l "j=1 1J 1J

s.t.
n
E x .. = 1

i=l lJ

n
E x·· = 1

1J j=l

j = 1, ... ,n

i = 1, ... ,n

The solution ~ust form a tour

(2.1)

(2.2)

(2.3)

(2.4)

x·· E {a, l}
lJ

V i ,j E N

15

(2.5)

Constraint set (2.4) can be written in a number of different ways.

Three alternates that have been proposed are

I: I: x.· > 1
. S . '7'C lJ­
lE JE;)

I: I: x.· < lSI - 1
. S . S lJ-
lE JE

where S US = N ,

VScN (2.4a)

(2.4b)

(2.4c)

~k is any Hamiltonian circuit in the induced subgraph G' =
(Sk,Ek)·

Constraint set (2.4a) ensures that there exists at least one

arc between two complementary subsets of nodes of N. Constraint set

(2.4b) expresses the fact that no subtour through any subsets of N

can exist by imposing that arcs belongi.ng to any subset of nodes, S,

cannot be greater than (lSI - 1). Equivalently, constraint set (2.4c)

expresses the same fact by ·restricting the existence of a Hamiltonian

circuit in all the induced subgraphs.

It should be noted that the formulation given above takes care

of both the symmetric TSP, (i.e. Cij = Cji V i,j E N) and the asym­

metric TSP (i.e. Cij ~ Cji for some i,j EN). However,the problem

can be formulated in several different ways when G is undirected and

therefore the associated cost matrix is symmetric. Two of such for--

mulations are

and

minimize

s. t.
e
l: x = n r r:l

l: x > 2 r­r=K

e
minimize l: Crxr r=l

s.t. l: x > 1
rEK r-

l:
rEE.

1

x = 2 r

X E {O,l}
r

V K :: (S.5)
SeN

r = 1, ... ,e

V K ;: (S ,5)
S~N

i = 1, ... ,n

r = 1, ... ,"e

where e is the total 'number of arcs in G

K = (S,5) is an arc cut-set of G which contains arcs (i,j)
with i E Sand j E ~

E. is the set of arcs incident an node i
. 1

Cr is the cost associated with arc r.

16

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13) ,.

Both of the formulations are equivalent since constraints (2.7), (2.8)

imply constraints (2.11), (2.12).

2.3 SOLUTION PROCEDURES FOR THE TSP

Many solution ~echniques are available for the TSP [12,13,14J.

17

All of these techniques fall into one of two categories:

a) Techniques that are certain to find an optimum solution

but at worst require an inordinate number of calculations

(exact solution methods)

b) Techniques that are not always certain to find an optimum

solution but require a small number of calculations and

therefore less computation effort (heuristic methods).

, Exact solution techniques are mainly based on using the advanced

results of integer programming, linear programming and dynamic prog­

ramming as well as enumerating all the existing Hamiltonian circuits

of a graph. On the other hand, heuristic algorithms rely upon tour

constructing node inserting and node and arc exchanging techniques.

In the following sections, we will describe these techniques separately

and present algorithms which utilize these methods. Throughout the

discussion, the themes touched are related upon to papers in litera­

ture. Actually, the aim is not to survey the whole field in the area.
-

Rather, the goal is to give an" insight to the techniques existing in

1 ;'terature.

2.3.1 Enumeration Methods

In principle, the optimal solution to the TSP can always be

obtained by finding all the existing Hamiltonian circuits, calculating"

their lengths and thus determining the one that is optimal. However,

considering complete graphs, the complete enumaration of all the tour~

18

becomes a computationally exhaustive task even for comparatively small

size problems. On the other~hand, including some simple tests in the

computation procedure, the set of all possible tours can be greatly

reduced. Then, partial enumeration can be used to select the best

tour without considering the excluded ones.

A possible case is that a graph may not contain a Hamiltonian

circuit. As a matter of fact, one should first try to establish the

existence of a Hamiltonian circuit,before proceeding to look for the

optimum one. Unfortunately, there exists no easy way for deciding

whether or not a graph contains a Hamiltonian circuit. The existing

'necessary or sufficient conditions are not effective for arbitrary,

graphs· encountered in practical situations.

Necessary conditions for the existence of a Hamiltonian Circuit

A necessary condition for the existence of a Hamiltonian circuit

is that the graph G = (N,E) be strongly connected. In other words,

for any two nodes i,j £ N, there must be a path from i to j. Another

necessary condition, however, is that the subgraph, Gk, obtained by

removing any node k from G, must be unilaterally connected. That·

is, for any two nodes i,j E N - {k} in the subgraph there must be a

path either from i to j or from j to i. Note that both conditions

are necessary but not sufficient for a directed graph to possess a

Hamiltonian circuit.

Sufficient conditions for the existence of a Hamiltonian circuit

If in a strongly connected directed graph G = (N,E), the degre~

of each node is "greater than or equal to n, where the degree of a node

19

is the sum of all arcs entering or emanating from that node, then the

graph possesses a Hamiltonian circuit.

In the case of an undirected graph the degree of a node is

given by the number of arcs incident to that node. In light of this

definition the following result due to Chavatal [16J describes a

sufficient condition for the existence of a Hamiltonian circuit in

an undirected graph:

Let the nodes of an undirected graph G = (N,E) be numbered in

such a way that d(l) .:: d(2) .:::: d(n) where d(.) de.notes the degree

of node (.). For n ~ 3 if d(k) ~ k, V k < n/2 or equivalently if

d(n-k)~ n-k Vk < n/2, then the graph contains a Hamiltonian-circuit.

Note that d(k) .:: k, Vk < n/2 implies that d(n-k) ~ n-k Vk < n/2.

Actually, it is easy to verify the latter condition. The nodes

are first ranked in ascending order of their degrees. Then, the con­

dition is checked for the first (n/2) nodes. Nevertheless, these

criteria are too loose to be of value for graphs frequently encoun­

tered in practice sfnce they imply the existence of nodes with high

degrees. Once these conditions are not satisfied, the only way of

determining whether or not the graph contains a Hamiltonian circuit

is to· make a complete search on the graph. In the following sections

we will describe a few algorithms which can successfully be used to

find all the Hamiltonian circuits of a directed graph. However, one

should keep in mind that even the most efficient algorithm is unable

to handle problems with more than twenty nodes with degrees greater

than four in a reasonable number of calculations [17J.

20

2.3.1.1 Latin Multiplication Method

The Latin multiplication method enumerates simple paths of

lengths 1 through (n-l)' in a directed graph G = (N,E). Once all the

simple paths of length (n-l) are identified the paths can be completed

to Hamiltonian circuits by adding an arc that joins the:irt\'JO end nodes.

Then, the least cost Hamiltonian circuit is the optimal solution to

/the TSP. The algorithm due to Kaufman [18J can be outlined as follows:

1. Define an (nxn) matrix VI using the cost matrix C in the

following way:

a) Let each entry of Vl be denoted by strings

b) If C .. > b i ~ j put v.v. in the (i,j) location in Vl.
lJ 1 J

Otherwise, put 0 for nonexistent arcs.

2. Define an (nxn) matrix LI. Lk is obtained f~om Vk by

deleting the first node in each nonzero string of Vk.

3. Find Vk~ Li = Vk+i where ~ stands fo~ a symbol of Latin

multiplication. Latin multiplication is performed like

ordinary matrix multiplication as follows:

a) Zero multiplied by any string is zero.

b) String multiplications are done by jOining two

strings into one string, i.e.

V1V2V3 x V4VSV7 = V1V2V3V4VSV7

c) String additions are written one below the other, i.e.

V1V2V3 + V4VSV7 = V1V2V3
V4VSV7

21

d) Any string that has a node more than once equals zero.

4. The entries in matrix Vk give the simple paths of length

k. Vn- 1 gives the Hamiltonian paths. For all entries

representing Hamiltonian paths, check if there exists

an arc which connects the terminal nodes of the path.

Out of those paths which can be completed to Hamiltonian

circuits, choose the one with the least total cost.

Considering the time and storage requirements of the method,

even the best computer language cannot provide any advantages on the

exhausting need of memory space for finding all the Hamiltonian cir­

cuits of comparatively small _size problems. However, for problems

of less than 20 nodes and an average node degree of less than 3 the

algorithm provides a successive means of finding the existing Hamil­

tonian circuits. In case the graph does not have a Hamiltonian cir­

cuit or even a Hamiltonian path, the ~lgorithm can be used to deter-
,

mine all the simple paths upto and including the simple path with

the highest cardinality of nodes.

2.3. 1 .2 A.l gebra i c Methods

In addition to the algorithm presented above the method based

on the work of Yau [19J, Danielson [20J, and Dhawan [21J also uses

matri*multiplications to generate all of1the simple paths of a graph.

The steps of such algorithms are mainly as follows:

1. Let A be a modified adjacency matrix where a . = j if there rJ

22

is an arc from r. to j. Let Bk be an (nxn) matrix where

bk . is the sum of the internal node products of all the
rJ

elementary paths of cardinality k between nodes rand j.

The internal node product of a path i l ,i 2, ... ,i k is de­

fined as the sequence of nodes i 2,i 3, ... ,i k_
1

excluding

the two end nodes i l and ike Let B1 be the adjacency

matrix.

2. Using the ordinary algebraic matrix multiplication obtain
k+l k the product B . = A.B where

k+; • k b . = L a .b.
rJ s rs SJ

is the sum of all inner products of all paths from i to j.

3. k+l k+l' Obtain B from B by setting all of its diagonal

elements toO and eliminating all terms containing node
k+l . k+l s from bsj ' The matrlx B is the matrix of all ele-

mentary paths of cardinality (k+l) ..

4. Repeat steps (2) and (3) until the path matrix Bn-1 is

generated. The Hamiltonian circuits can be obtained by

adding those arcs of the graph whith join the terminal

nodes of the paths. Alternatively any diagonal element

of the matrix obtained from the product A.Bn-1also gives

the existing Hamiltonian circuits.

Considering the alternative given in setp (4) we may infer that
n-l only bll will suffice for determining all the Hamiltonian circuits

in the graph. This can be obtained by multiplying only the first

23

column of Bk at each iteration. As a result, this reduces both the

storage and computation effort by considerable factors. However,

even with these modi~ications, the algorithm is still incapable of

handling problems of large sizes.

2.3.f.3 Other Enumeration Methods

The two methods presented in the previous sections attempt to

find all Hamiltonian circuits at once. As a result, all paths that

might take part in forming such circuits have to be stored. Thus,

an undesirable increase in the storage requireme~ts results. Cont­

rary to this approach, other enumerative methods consider one path

at a time. The path is tried to be extended to form a Hamiltonian

circuit. If the path does not lead to a Hamiltonian circuit, then

it is modified in such a way that all the possibilities are exhausted.

Consequently, the Hamiltonian circuits are found one at a time.

The following enumerative method was first exploited by Roberts

and Flores [22J. The steps of the algorithm are,as follows:-

1. Form a (kxn) matrix D where the entry d . represents
. rJ

the end node of the rth arc that emanates from node j .

. Note that the number of rows k of the matrix D corres-

ponds to the largest outdegree of tha.nodes in the graph

G = (N,E). Let i l be the initial node of path S.

2. Add the first feasible node in column i l to S. 'A feasible

node is a node that has not already been added to S. If

no feasible node can be found then go to step (4). Other­

wise, repe'at this step until a path of cardinai ity (n-l)

is formed ..

24

3. At this stage, let S = {i l ,i 2,· .. ,i n} where i l ,i 2, ... ,i n
denotes the sequence by which the nodes appear on path S.

If arc (in?i l) exists in G, then a Hamiltonian circuit is

found. Find the cost of this circuit and store it if the

cost is 'less than the cost of. the circuit that has already

been stored in the memory.

4. Remove the. last entered node from S. If this removal

causes S = {¢} then terminate the algorithm. The Hamilto­

nian circuit stored in the memory is the optimum solution

to the TSP. If no Hamiltonian circuit has been stored,

then the TSP is infeasible. If there is at least one

node in S, then return to step (2).

Improvements to this method are possible by means of applying

a better selection rule for adding the remaining nodes, to S. Suppose

that at some stage of the algorithm we are searching for a feasible

node in column ip of the matrix D. If there exists a node r in

column ip such that r i Sand R-l(r)c:S where R-l(.) is the set of

all nodes reaching node (.), then r is the only node that can be added

to S since the addition of any other node will exclude r from further

consideration and therefore result in a path that cannot lead to a

, Hamiltonian circuit. On the other hand, if there exists a node r in

column i such that r i S, r i R-l(i l) and R(r)c. S U {q} for some . p

other node q in column i k where R(.) is the node set reachible by (.),

then q cannot be added to S since the addition of q to S will cause

the remaining subgraph not to contain a path from r to i l and there­

fore result in a path that cannot lead to a Hamiltonian circuit.

"

25

Computational results reveal that, although the tests for the cases

mentioned· above slow down the procedure for small graphs (less than

20 nodes) they cause a ,considerable improvement in the computational

effort especially for larger graphs.

The method suggested -by Roberts and Flores can further be im­

proved by considering the fact that a path constructed in S implies

the existence of other paths in the graph. These paths may possibly

help to complete a Hamiltonian circuit more quickly or point out that

a path S ~annot lead to a Hamiltonian circuit. The following algorithm

is based on the enumarative scheme proposed by Roberts and Flores and

incorporates the improvements developed by Selby [23] and Christofides

[24]. The algorithm is summarized in six steps.

o. Let d- (j) and d+(j) denote the- indegree and outdegree of

node j respectively. Select the root node i l of S as the

node with the maximum indegree. Ties are broken by choosing

i l wi,th minimum outdegree. Set I = {<P},_k = 1, S = {1 1}

where I is the set of implied arcs and k is the level of

the decision scheme.

1. Search for implied arcs, i.e. arcs (j,r) such that d-(r) = 1

or d+(j) = 1. For any such arc (j,r) form the longest path

by using (j,r) and all the arcs in I.

a) If the cardinality of the path is less than (n-]),

then add (j,r) to I and remove all the arcs emanating

from j and terminating at-r. If this removal causes

any node q to have d-(q) = 0 or d+(q) = 0 then go to

step (5).

26

b) If the cardinality of the path is (n-l), then check

whether the arc (in,i l) exists. If (in;i l) exists,

then a' Hamiltonian circuit is found, go to step (4). ,

. Otherwise go to step (5).
"

Iterat~··. step (1) until no further arc can be added io I.

2. Check if an implied arc emanates from node i k say

(ik,r) £ I. If r = i l and k< n, go to step (5). Other­

. wise, set k = k+l, \ = rand S = S + {\}. If k = n,

then check whether arc (in,i l) exists. If so, a Hamilto­

nian circuit is found, go to step (4)~ Otherwise, go to

step (5). Iterate';, step (2) until no further implied

arc can be added to S.

3. Select the next node r to be added to S from the nodes

not included in S so that r is the node whose min{d-(r),

d+(r)} is a minimum among all other nodes. Ties are

broken by choosing q with min{d- (r) +. d+(r)}. If 'no

feasible node exists then go to step (5). Otherwise,

remove all the arcs emanating from i k and the arcs ter­

minating at r as well as the arc (r,i l) from the graph.

Set k = k+l, i k = r. If the removal of the arcs cause

any node q to have d-(q) = 0 or d+(q) = 0, go to step

(5). If not, return to step (1).

4. Chec'k if the prescribed number of Hamiltonian circuits

have been found. If so, terminate the search. Other-

wise continue.

27

5. (a) If k = 1 then stop. 'All possibilities have been exhausted.

Terminate the search. Otherwise, remfrve node i k from S.

(b) If arc (ik-1,i k) s I, then set k = k-l and return to step

(5a). Otherwise, continue.

(c) If ar,c (\-1'''\) was ad~ed to S at step (3), then reinsert

all the arcs removed from the graph at level k, remove

all the arcs inserted in I at level k and set k = k-l.

Return to step (3).

The algorithm was tested on randomly generated graphs with both

the indegree and the outdegree of each node lying in prefixed ranges.

As it has been indicated by Martello [25J for node degrees in range

1-3, the algorithm is very fast since a few or no Hamiltonian circuits

exist. In case the node degrees range between 2 and 3 the computational

effort shows. an increase which is proportional to the number of nodes n.

Finally, it has been observed that the running times tend to be imprac­

tical for node degrees ranging between 2 and 4 and higher.

2.3.2 Exact Solution Methods with Branch and Bound

The branch and bound algorithm comprises a theoretical frame­

work for solving different types of combinatorial optimization prob­

lems. The method examines successively subsets of the set of all

solutions until one of the solutions located in one of the subsets

is proven to be-optimal.

The set of all solutions is partitioned into a finite number

of equivalence classes by using partitioning properties. Then, each

28

class is examined by using a decision tree. The tree consists of nodes

and edges which join the nodes. A path from any-node to the root of

the tree is called a branch and the solutions are given by the unique

branches down the tree.

For each node on the "tree, we first check the feasibility of the

corresponding solution class. If the solution class does not contain

any feasible solution or if the node is terminal, i.e. the solution

class cannot be partitioned again, then that node is fathomed (closed).

Otherwise an upper bound is calculated and a parameter, which 'is a

numerical value of a special function called the branching function,

is defined. This value giyes a measure of the desirability for exploring

further that particular branch of the search tree. The branching stra­

tegies are given different names which vary with the specified branching

function. The commonly known strategies include the breadth first stra­

tegy, the branch search strategy and the branch and bound strategy.

Termination occurs. when either all nodes are fathomed or when

all the upper bounds of the unfathomed nodes are less than or equal to

the lower bound corresponding to the best feasible solution found so

far. If the algorithm does not terminate, then the branching node is

selected to be the node having the highest value of the branching

function. The new solution class to be examined is obtained by applying

a partitioning property given by a special rule called the partitioning

rule. Besides, a priorlty rule is used to determine the subclass to

be examined.

In view of the facts mentioned above, a general branch and bound

algorithm can be summarized as follows [26J:

)

1. Let the whole set of solutions be assigned to the root

node of the decision search tree.

29

2. Check fo~ a feasible solution. If the solution class does

not contain any feasible solution, then fathom the node

and go to step (3). Otherwise,

a) compute an upper bound for the solution class,

b) compute a lower bound, if possible,

c) evaluate the branching function.

3. Terminate the search if either all nodes are fathomed or

all the upper bounds of the unfathomed nodes are less than

or equal to the current lower bound of the problem. Other­

wise, continue.

4. Select the branching node. Use the partitioning rule and

the priority rule to determine the new node to be examined.

Close the branching node after alT the nodes corresponding

to the subclasses have been generated. Go to step (2).

Analysing the general branch and bound algorithm, we see that we

need a mechanism for finding a feasible solution, a mechanism for com­

puting upper bounds, a termination test, a branching function, a defi­

nition of the partit~oning properties, a partitioning rule and a prio­

rity rule to apply the method properly. Generally, all of the bran.ch

and bo~nd algorithms differ depending on the selection of the required

·information for their application. As a result, there are many branch

and bound algorithms which are designed for solving the TSP but which

differ in selecting the required information.

30

Most of the exact solution methods for solving the TSP are of

the branch and bound type. At each node of the decision tree, prob­

lems which are relaxations of the TSP are solved in order to compute

good quality lower bounds. Actually, good quality lower bounds affect

the effectiveness of the al~orithm much more than any ~ffective branch-

ing rules. Therefore, many algorithms found in literature have p~t

emphasis on the problems of calculating lower bounds. The lower bounds

are usually calculated from problems which are relaxations of the TSP

and whose solution methods are known to be efficient. Among these

problems are the assignment problems, the minimal spanning tree prob­

lem, matching and covering problems and shortest path problems. The

following sections are confined to different branch and bound techniques

uSing. these problems for generating lower.bounds.

2.3.2.1 The TSP and the Assignment Problems (AP)

Consider the AP and its dual problem defined as follows:

Prima 1

Dual

n
minimize L

s.t.

i=l

n
L x ..

i=l 1J

n
L x ..

j=l . lJ

x .. > 0
lJ -

n

n
L C .. x ..

j=l 1J 1J

= 1

= 1

n
minimize L u. +

1
L v.

i=l j=l J

(2.14)

j = l, ... ,n (2.15)

i = l, ... ,n (2.16)

(2.17)-

(2.18)

s.t.

=

u.+v.<C ..
1 J - lJ

u.,v. unrestricted
1 J

31

i,j = l, ... ,n (2.19)

(2.20)

= ex) = where C ..
. lJ

cost of arc (i ,j) and C .. i 1 , ... , n
11

x· . = 1 if arc (i ,j) is in the solution set
lJ .v,

= 0 otherwise.

The AP is a relaxation of the TSP where the additional constraint

that the solution must form a tour has been dropped. The AP defined

above may have solutions composed of a number of disjoint circuits.

One may then impose the additional constraints that have been dropped

in order to obtain a single circuit containing all the nodes. The

restrictions are usually imposed within the framework of the branch

and bound algorithms (Eastman [27], Shapiro [28J, Bellmore and Malone

[29]).

Let the solution of the AP defined above be used in the solution

procedure of the TSP. Then, the following branch and bound algorithm

can be used to determine the optimum solution to' the TSP by imposing

the additional constraint that the AP solved on the modified cost matrix

gives a single tour.

1. Begin at the live node o. Solve the AP and let Zo be the

optimal objective function value.

2. Apply the breadth first strategy to select.a live node j

such that Zj = min Zk where K is the set of live nodes.
kEK

If no such j can be found, i.e. all the nodes are fathomed

then stop. The problem is infeasible. Otherwise, continue.

32 -

3. If the solution in node j is a Hamiltonian circuit, then

terminate the algorithm. This is the optimal solution to

the TSP. If the solution to node j is composed of a number

of independent circuits, then let {i l ,i 2, ... ,i r ,i l } be the

circui·t with the minimum number of arcs. Subdivide the prob­

lem into r subproblems. In each problem, set the cost of

one of the arcs to infinity with all the other costs remaining

unchanged. Let each subproblem be represented by the succes­

sor nodes of j. Solve the AP for each successor node using

the corresponding modified matrix. If a feasible solution

to the TSP with an objectiverfunction value of Zq is obtained,

then fathom all the nodes whose Zk < Zq where k E K. Return

to step (2).

Note that the branchingrul e given above removes the :;ci'rauit by excl uding

one of its arcs. However, the subproblems created by using this method

are not disjoint. On the other hand, a branching rule which produces

mutually exclusive subproblems created by using this method are not

disjoint. On the other hand, a branching rule which produces mutually

exclusive subproblems is desirable.

The following branching rule can be used in producing disjoint

subproblems. Let.{i l ,i 2, ... ,i r ,i l } be the cir.cuit which is going to

be removed. Then the cost matrices can be modified as follows:

Problem.l c .. = 00

'1'2
Problem 2 c .. = -M, - c .. = 00

'1'2
.-

'2'3
Problem 3 c .. = -M, c .. = -M, c .. = 00

'1'2 '2'3 '3'4

Problem r

33

-M is a large negative number which ensures that the arc whose cost is

assigned -M will remain in the optimal solution. This can also be

achieved ·by deleting the corresponding row and columns of those parti­

cular arcs and solving the problem on the reduced matrix.
J .

A better branching rule can be applied to the algorithm by con-

sidering the fact that there must be at least one arc leading from the

set of nodes that comprise the circuit to the set of the remaining nodes.

Each subproblem would be created upon insisting on the existence of

such an arc whose initial node is in S = {i l ,i2, ... ,i r ,i l } and the

final node in S = N-S. This can be done by setting Cjr = 00, Vr £ S

and leaving all other distances unchanged for subproblem j. As a result,

the branching rule will lead to the disjoint problems with the following

updates:

Problem 1

Problem 2

Problem 3

Problem r

c. . = c. . =
'2'1 ~ '2'3

C. . = C. . =
'3'1 '3'2

= C .. = 00

'4'r

= c .. = 00 " ,
.2 r

= Ci i = 00

r r-'

This branching rule and the one presented previously takes only one of

the circuits of the solution into consideration. Another branching

rule will be one that considers the remaining nodes based on the same

reasoning described above.

Suppose that at some node q of the decision tree we have the

cost matrix C which represents the graph Gq = (N,Eq). Let S = {il, ... ,i r }

be the node set representing a circuit .in the solution associated with

34

node q and S = N-S. Then the new branching rule requires the following

[29] :

Problem 1 c .. = co Vj e: S, j T- il 1.J 1
Problem 2 c ..

llJ
= co Vj e: S, c ..

12J = co Vj e: S, j t- i2

Problem 3 C .. = C .. = co Vj e:S C .. = co Vj e: S, j ,-:i3 llJ 12J 13J

.
Problem r

As it has been described previously an efficient branching stra­

tegy would be the breadth first strategy as it is used in the given

algorithm. But one could also use the depth first strategy and· tbere­

fore branch to one of the successor nod~s of a node just partitioned.

Note that the termination criteria remain the same in both cases.

No matter which branching strategy is used, the quality of the

lower bounds computed has a significant influence on the number of

branchings in the decision tree and therefore on the computational

efficiency of the branch and bound method. The objective function

value of the AP is a valid lower bound and can be used quite effi­

ciently. However, a tighter bound can be calculated from the optimal

solution to the APat the expense of a little extra effort [17J.

Let the optimal solution to the AP contain nl disjoint'circuits.

Then, each circuit is contracted so that all the drcuits, qi'- are

represented by single nodes. Construct a graph G1 = (Sl,E1) \'ihere

Sl {SIll} d h d 1 t··t 1 a d E1 = 1,s2, ... ,sn
1

an eac no e Sj represen s a ClrCUl qj n

is the arc set taken as

[1 ={(:S~,:s~) le1.1 - 1= min {C1
k}}

1 J Si,Sj re:q~ r
kE:ql~

J

35 -

where [c~~,s~] are the elements of the resultant cost matrix. The AP
1 J

is solved once more on the contracted problem using matrix C1
• How-

ever, the solution to this problem ma·y also contain n2 disjoint cir­

cuits. Note that these circuits have the previous circuits as nodes.

The new circuits, q., are further contracted into nodes to form a new
1

graph, G2 = (52,[2) where 52 = {si,s2' ... 'S~2} is the set of n2 nodes

each representing a circuit q. having the previous circuits as nodes
. 1

and [2 is the edge set taken as

= min {c~k}}
re:q:
ke:q~

J

The AP solved for this doubly contracted problem may still have n3 dis-

joint circuits. Thus, the contraction is continued iteratively until

the problem is reduced to a single node.

An important point that should be taken care of is that the

cost matrix obtained at the end of each iteration must satisfy the

triangle inequality. If the cost matrix produced fails to satisfy

the triangle inequality, it has to be tran·sformed into one that does.

This procedure is called compression and compression is performed by

replacing every element 9sk~ -k for which
1 Sj

.k k 5k C~kk for some sr e: s s.
r J

k k
Cs~,s~ > C~~ ~k +

1 J 1 r

by the value of

.1
i
!

36

As it has been shown by Christofides [17] the sum of the values

of the solutions to the APs obtained during the "solution-contraction­

compression process", is a valid lower bound to the TSP. The computa­

tion effort for the contraction and compression parts of the process
"

is known to vary in order of n and the time required to calculate the

-bound is approximately 14.3% greater than the time required to solve

an AP o~ the same size. This increase in time, however, results in a

considerable amount of saving in the decision tree search.

Another bound which also uses the AP was introduced by Balas and

Christofides [30]. They consider the introduction of some violated

constraints of the TSP into the objective function by the use of Lagrange

multipliers. In addition to the AP formulation, the TSP includes con-

straints that forces the solution to form a tour. Such constraints are
>

given by (2.4a), (2.4b) and (2.4c). Let Ap be the multiplier associated

with the rt~ constraint of the ste (2.4a) which is not satisfied. The

problem, then, becomes

minimize 1: 1: C .. x .. - 1: Ar 1: 1: x .. + 1: A (2.21)
i j lJ lJ r iE:Sr j£"S"r lJ r r

s. t. 1: x .. = 1 j = 1 , ... ,n (2.22)
i lJ

1: x .. = 1 i = 1 , ... ,n (2.23) . lJ
J .

x .. > 0
lJ -

lJi,j £'N (2.24)

An approximate method for finding these multipliers can be given as

follows:

37

1. Form the graph Go = (N,Eo) where Eo = {(i,j):Cij = O} and

[C .. J are the elements of the cost matrix after the AP is
lJ

solved.

2. For each node i, find R(i) the node set reachible from i via

arcs in 'Go' If the number of reachible nodes is (n-l) Vi,

then stop. The multipliers are calculated. Otherwise, gene­

rate cuts for the nodes whose reaching sets are incomplete.

Let k be one of such nodes whose reaching set is given by

R(k). ForR(k) = N-R(k) the corresponding Lagrange multip-

lier Ak is calculated as

Ak = min {C .. }
. iER(k) lJ

jER(k)

and the cost matrix is updated by

C .. = C' .. - Ak lJ . lJ Vi E R(k), j E R(k)

3. Update Go so that arcs for which Lij has become 0 are

included in Go' Return to step (-2).

At this stage it is probable that there exists some unsatisfied

constraints of type (2.4b). Once again, these constraints can be in­

troduced by using a.further Lagrangean relaxation. Let Uq be the

multiplier associated with the qth unsatisfied constraint of the set

(2.4b). The new problem can be stated as

minimize ~ ~ CijXij - I Ar.~ .~ xij ~ ~ Ar
1 J r 1 ESr J E"S'r r

+ ~. ~ ~ x .. - ~ ~qlSql + ~ ~
q q i, j ES q 1 J q q q

(2.25)

38

s. t. L x .. = 1 j = 1 , ... ,n (2.26)
i lJ

L x· . = 1 i = 1 , ... ,n (2.27)
j lJ

x .. > 0
lJ -

. Vi ,j £ N (2.28)

.,'

Then, the procedure continues with the following step.

4. Calculate ~q in a similar way that th~ duals are computed for

the AP. For each ~q determined, calculate new dual variables

u· and v. for the AP and update the costs by C
1
·
J
· = C .. -u.-v ..

1 J lJ 1 J

Note that at the end of this procedure, the initial AP solution

is still optimal and

TCAP + L Ar + L ~q
. r q

with TCAP being the optimal objective function value of the AP,

constitutes a lower bound to the TSP.

Since the number of zero elements of the cost matrix has been

increased after the application of step (1)-(4) mentioned above, it

might be the case that those elements comprise a Hamiltonian circuit

although w~ know that the initial AP solution is still optimal. If

there is not any Hamiltonian circuits then the lower bound can be

, improved by applying the following step.

,5. Consider the final version of Go. Let G~ = (Ns,E~) be the

graph generated from Go.bY removing node s. If G~ is not

unilaterally connected then there must be a pair of cuts

Kl K2 of G~-·for \'1hich ES n Kl = ES n K2 = ''' .. Define s' so· 0 s 0 s ~

TIs :.. min fc".·}
(i,j)e:k~UK~ lJ

and make the transformation

C .. :C .. -TI
lJ lJ S

. s
Perform this procedure for every s e: N so that Go is uni-

laterally connected after the removal of any node s.

As a result, the quantity

~ Ar + ~ ~q + ~ TIs
r q s

is a valid lower bound for the TSP. Note that the procedure can be

applied to both symmetric-and asymmetric problems but produces better

bounds for asymmetric problems [31J.

After all, the use of the AP based bounds have been observed

to perform well in tree search algorithms. Up to date results reveal

that problems with 250 or more nodes can successfully be solved by
I

the use of the AP based bounds with different type.s of branching

schemes [30].

2.3.2.2 The TSP and Minimal Spanning Tree Problems

~ The minimal spanning tre~ problem (MSTP) is the problem of

finding the tree that spans all the nodes of a graph with the minimum

total cost. The TSP is closely related to the MSTP in the sense that

the problem of finding the shortest Hamiltonian path of a graph is

equivalent to the problem of finding the minimal spanning tree of a

graph with the additional constraint that no node should have a degree

40

greater than 2. The minimal spanning tree of a graph may contain arcs

which result in a degree d(i) > 2 for some node i. If such a node i

exists, then at least one of the arcs incident to node i must be e1i-

minated. Thus, there are d(i) problems which must be taken into con­

sideration. In each one of the d(i) problems, one of the arcs incident

to node i is eliminated (Cij = roland the MSTP is solved again in order

to see if the absence of the eliminated arc leads to a Hamiltonian path.

The following branch and bound algorithm can be used to deter­

mine the shortest Hamiltonian path with the aid of the MSTP [17J:

1. Begin at the live vertex O. Solve the MSTP. Let Zo be the

cost of the minimal spanning tree.

2. Find a live nodej on the decision tree such that Z. is
J

minimum. If no live node can De found then stop, the

problem is infeasible. Otherwise, continue ..

3. If the solution to node j is a Hamiltonian path then stop,

the optimum solution is obtained. Otherwise~ select a

node i on the spanning tree such that d(i) > 2. Subdivide

the problem into d(i) subproblems. In each problem, set

the cost of one of the arcs incident to-i to infinity,

while all other costs remain unchanged. Let each subproblem

be represented by the successor nodes of j on the decision

tree. Solve the MSTP for each successor node. If a feasible

solution (i.e. a Hamiltonian path) is found with an objective

function value Zq' then fathom all the live nodes, k, where

Zk < Zq' k E L, and_L. is.the.set of,a1l live nodes. Return

to step (2).

41

Note that this algorithm deals with finding the minimal spanning

tree of a graph rather than finding the shortest Hamiltonian circuit

which is the solution to the original TSP. However, once a solution

method for finding the shortest Hamiltonian path is known, a small

modification will s·uffice fo'r dealing with finding the shortest Hamil-

tonian circuit.

Let the shortest l-tree of a graph, G, be defined as the minimal

spanning tree of the subgraph of G with node 1 removed, plus the two

shortest arcs from node 1 to two other nodes of the tree [14J. Then,

the shortest I-tree with all node degrees of value 2 is the shortest

Hamiltonian circuit of the graph. Thus, the branch and bound method

discussed above can be used to solve this problem as well.

Instead of using the cost of the shortest spanning tree as a

lower bound by itself, one may count the longest branch on the tree

twice and then let the overall cost be a better bound to the optimal

TSP. This follows from the fact that the spanQing tree contains (n-l)

arcs that connect all of the n nodes whereas n arcs are needed to

comprise a Hamiltonian circuit. Consequently, since the longest arc

on the shortest Hamiltonian circuit is at least as long as the longest

arc on the minimal spanning tree the quantity

TCL1ST + m a x C ..
I' (..) T lJ 1,J E

whereTCMST is .the cost of the minimal spanning tree and T is the set

of arcs on the minimal spanning tree, is a lower bound to the shortest

Hamiltonian circuit.

Another \,-Iay of deriving a better bound by using the I~STP is to

42

include the cons~raints d(i) .:: 2, Vi E N to the objective function

by means of Lagrange multipliers. In other words, nodes with degrees

greater than 2 are penalized. There are many penalizing procedures

proposed for solving the TSP with the aid of minimal spanning trees.

Methods of this tyge were first exploited by Held and Karp [14J and

Christofides [24J. Improved methods for deriving the penalties were

later introduced by Hansen and Krarup [32J.

The method due to Volgenant and Jonker [33J, uses arc exchanges

in minimal trees in combination with a branch and bound algorithm based

on the l-tree relaxation. Once a minimal spanning l-tree, T, is obtained

the method distinguishes two types of arcs:

1. Arcs not incident to node 1

For an arc (i,j) in T, the l-tree Tij follows from T by

exchanging (i,j) with a shortest arc (rl,sl) not in T in

its fundamental cut set. Now arc (i,j) must be part of

an optimal solution if

CT- = CT - C.. + C I I > U . . lJ r s
lJ

where CT:. is the cost of the l-tree following from the
. lJ .
original l-tree whose cost is given by CT and u is an

upper bound on the optimal TSP va1ue.

For an arc (k,q) not in T, ,the l-tree T;q follows from T by

exchanging (k,q) with a longest arc (rU,s") on its-funda­

mental path in T. Now arc (k,q) cannot be part of an optimal

solution,· if

CT+ = CT + Ck - C IISII > u
kq q r

where CT+ is the cost of the l-tree following from T.
kq ,

2. Arcs incident to node 1

43

Let (l,i)'and (l,j) be the arcs of the minimall-tree T and

Cli < C,j" Let k be an index with Clk = min{C,qlq £ N, q 1 i,j}.

Then, the l-tree T~i and T~j follow from T by exchanging arcs

(l,i) respectively (l,j) with the arc (l,k) which is not in T.

So, an arc (l,j) must b~ part of an optimal solution if

CT-,. = CT - C j + Clk > u
.J

Similarly, the l-tree T~k' kEN, k r i,j folloVJS from T by

exchanging an arc (l,k) not in T with ar~ (l,j) in T. Thus,

arc (l,k) cannot be part of an optimal solution, if

, .

The TSP algorithm of Volgenant and Jonkers is based on the

l-tree relaxation of Held and Karp [14,15J and modified with the

edge exchanges on one major point: Using a minimall-tree in one

of the live nodes of the decision tree, the branching is governed

by the CT- values of , the arcs incident to an arbitrary node i with

d(i) > 2 on the subtour of the minimall-tree. The set of feasible

sol~tions is split into three subsets. The first set is characterized

by requiring to edges, say el and e2, incident to i; the second set

by forbidding e2 and keeping el . required and the third set by forbidding

el only. As el and e2. the arcs with the largest respectively second

44

largest CT- value are chosen. Throughout the algorithm a heuristic

subalgorithm is used on simply chained l~trees to obtain a better

upper bound for the TSP, so that more variables can be eliminated

and more sensitive CT- values can be calculated.

As it has been reported, computational results has shown that

'the arc exchanges are advantageous for Eucledian problems up to 120

nodes as well as for random table problems upto 200 nodes. Neverthe­

less, up to date results reveal that problems up to 100 nodes can be

solved successfully be embedding the MSTPs as lower bounds into branch

and bound algorithms.

2.3.2.3 The TSP and Matching Problems

This section presents a method for calculating a lower bound

on the length of an optimum Hamiltonian 'circuit by the use of the

matching problem. Given an undirected graph G = (N,E) a subset 0 c:E

is called a b-matching of G, if the node degrees d(i) = b for all i E N.

Then the problem of finding a minimum cost b-matc~ing is the integer

programming problem

minimize L: Ckxk (2.29)
kEE

s.t. L: xk = b i = 1 , ... ,n (2.30)
kEA.
. 1

Xk E {O, l} Vk E E (2.31)

where Ai is the set of arcs incident to node i. Adding the constraint

(2.32)

45

to ~he 2-matching problem we obtain the formulation of the symmetric

TSP. Thus, the 2-matching problem is a relaxation of the TSP and can

therefore be used as a valid lower bound. - On the other hand, the

additional constraints can be included into the objective function by

means of Lagrange multiplie~s. Hence, we obtain a problem which can

be solved by a technique similar to the one used in deriving a lower

bound via the assignment problem.

Occasionally, the lower bound obtained by solving a 2-matching

problem can be embedded into a decision tree search algorithm. Experi­

ments showed that the lower bounds generated by the 2-matching problem

are much better than the lO\'/er bounds generated by the assignment prob­

lem when the graph is symmetric.

2.3.2.4 The Shortest n-Paths and the TS~

Consider a Hamiltonian circuit. Obviously, this is an n-path

from a node j back to j where each node appears once and only once on

the path. On the other hand, excluding the restriction that each node

must appear exactly once on the path, the computation of the shortest

n-path from j back to j becomes a simple problem which can be solved by

dynamic programming. Note that a node can appear an arbitrary number

of times on the shortest n-path. The recursion formulae for the compu­

tation of such a path can be given as

fl (i) = C ..
J1 Vi E N i r j (2.33)

fk (i) = min {fk (q) + C .} i t j , i E N (2.34)
qEN -1 q1.
qr i ,j k = 2, ... ,n-l

46

(2.35)

Even~ually, if the ri-path passes through each node exactly once, then

it is the solution to the TSP. If a node appears on the path more

than once, then fn(j) can be used as a lower bound on the value of

the TSP.

A better bound can be derived by penalizing the nodes which

appear on the path more than once. Let the costs Cij be transformed

byt .. = C .. + A. + A. where A. is a penalty associated with node i.
lJ lJ 1 J 1

Then the cost of any Hamiltonian circuit in the graph is increase9 by

the same constant amount 2E Ai. On the other hand, n-paths that are
i

not Hamiltonian circuits are penalized by first computing fn(j) with

the modified costs C... Let the n-path pass through node i k
1
· times. lJ

Then

W(A) = f (j) + 2 E (k. - l)A. . n . 1 1
1

(2.36)

is a valid bound to the TSP. The problem is therefore to choose that

A* which corresponds to the maximum of the expression

. W(A*) = max{w(A)} (2.37)
A

and use W(A*) as. a~ower bound for the TSP. Subgradient optimization

i$ one possible procedure for solving this problem.

As i.t has been reported by Houck et. a 1 [34] one type· of node

repetition can be prevented by a simple modification on the recursion

formulas. In other words, it is possible to exclude occurrences where

the rth and (r+2)th nodes on the n-path correspond to the same node

47

in the graph for some value of r. The quantity calculated by s9lving

the shortest n-path with the modified recursion formulas plus the /

associated penalties is a better lower bound to the TSP.

An advantage of the lower bounds using the shortest n-paths is

that additional constraints· for problems related to the TSP can easily

be included in the structure of the problem. On the other hand, the

fact that 0(n3) :operations are required to compute the shortest n-path '

as compared with 0(n2) operations for the minimal spanning tree problem

and 0(n2.5) operations for the assignment problem is a disadvantage of

the method.

2.3.2.5 Little's Branch and Bound Algorithm

The basis of Little's algorithm [11] is to first identify a

feasible solution to the TSP and then to decompose the set of all

remaining feasible tours into smaller and smaller subsets. At each

step of the decomposition, the bounds proVide a guide for partitioning

the subsets of a feasible tour. A tour with a 19n9th less than the

length of the current best tour is assigned to be the minimum lower
,

bound of all the tours. The process of bounding tours, eliminating

the suboptimal ·alternatives and branching continues until all of the

bounds on the decision search tree are greater than or equal to the

length of the best available tour.

The algorithm starts with the original cost matrix C and sub-
,

tracts from every entry in each row the minimum element of that row.

and repeats this process for all the rows. Then, the minimum element

of each column is subtracted from every entry in that column in the

resultant cost matrix. The process of subtracting the minimum element

48

from the entries in each row and column is called row reduction and

column reduction respectively. The reduced matrix contains at least

one zero in each row and in each column. Since' all the elements in

the reduced matrix are nonnegative,the sum of the reduced constants,

H, constitutes a low~r bound on the length of any tour under the matrix

before reduction.

The next step is to identify the minimal length tour by assigning

one zero valued cell in each row and column. If such a zero valued tour

can be found, then this is the optimal solution. However, the arcs of

the optimal tour are not identified simultaneously. The tour is formed

by selecting one arc at a time from the cost matrix.

As it has been suggested by Little, a penalty is calculated for

each zero element in the cost matrix. The penalties, P'
J
" give the 1 '

minimum cost that would be incurred if the optimum tour does not contain

the arc (i,j). Thus, that arc whose cost under the reduced matrix is

zero and whose penalty is the largest governs t~e partitioning of the

solutlon set. The total number of tours is divided. into two subsets;

those that include arc (i,j) and those. that do not. Let these subsets

be represented by two subsequent nodes on the decision tree. The bound

on the node Which represents the tours not including arc (i,j) is

(H+p ..). Before we can determine the new bound on the node which rep-
1J

resents the tours that include arc (i,j), certain modifications have

to be performed in the cost matrix. Since arc (i,j) is selected to

appear in the final tour it is impossible to include another arc corres-

. ponding to an entry in row i or column j .. Thus, row i and column j are

deleted from the cost matrix. Finally, costs of arcs which if not taken

49

out of consideration might create subtours are set to infinity. After

these modifications are made the cost matrix is further reduced so

that each row and column contains at least one zero. The bound on the

node is now computed ~s the sum of the riew reducing constants plus the

lower bound of the predecessor node. As a result, a new branching

becomes possible. The subset of ail tours is partitioned into smaller

subsets. The partitioning process continues until the final subset

contains a single tour. Furthermore, the branching process is controlled

by the lower bounds. The subset of tours whose lower bound is larger

than the lower bound of a node representing the best feasible tour are

deleted from further'consideration. That is, nq additional branching

is performed from the corresponding node. The algorithm is summarized

in the. following steps:

1. Begin at the live node O. Let Zo = O.

2. Reduce C .. Set H to the sum of reducing constants. Set

the lower bound of the node to the sum of H plus the lower

bound of the predecessor node. If the lower bound is greater

than the cost of the best tour available, go to step (6).

3. Calculate the penalty for each zero element in C .. Choose

arc (q,r) such that Pqr = max{p .. }. Set the bound of the . . lJ
1 ,J

node which represents the subset of all tours not including

arc (q,r) to the lower bound of the predecessor node plus

the penalty Pqr.

4. Branch to the node which represents the subset of tours

that include arc (q,r). Cross out row q and column r.

50

Insert infinities in C to prevent subtours from being formed.

I~ C is·not a (2x2) matrix, then return to step (2). Other­

wise, continue.

5. Since C is now a (2x2) matrix, a tour has been obtained. If

the cost of this tour is less than the cost of the best

available tour, then record it. Otherwise, continue.

6. Select the next node to branch from, as the node with the

least lower bound. If all the bounds are greater than the

least cost tour, then stop. The tour stored is optimal.

Otherwise continue.

7. Updat~ and set up matrix C so that it corresponds to the node

selected in step (6)~ Return to step (3).

Little's method has many advantages as compared with other

branch and bound techniques. The method can be extended to handle

additional constraints which are not includeo in the TSP, but may

appear in problems which are closely related to ·the TSP. Another

important property is that if for any reason the tree search is

stopped before the search ends with an optimal solution, then a good

and sometimes the optimal solution is obtained. But, similar to all

other branch and bound methods the computational complexity of this

method is exponentially dependent on the number of nodes of the prob­

lem. In other words, the combinatorial structure of the TSP is still

in effect.

51

2.3.3 Dynamic Programming Solution of the TSP

An alternative solution to the TSP by means of dynamic program­

ming has been offered independently by Bellman [35J, Held and Karp [36]

and Gonzales [37J. 'The procedure is more general than the branch and

bound technique and requires less computation effort. However, the

storage requirements for dynamic programming are more limiting as com-

pared with the branch and bound technique.

Consider the n-node TSP with costs specified by the elements

of matrix C. Let node 1 be the origin of the travelling salesman tour.

Considering that i is any node other than node 1, define the following:

Sk = a set of k nodes other than nodes 1 and i

Sk = a set consisting of the remaining (n-k-2) nodes

Suppose that starting at node 1 on the o~timal tour; a path pass~s­

through each of the nodes of Sk in some particular order and ends at

node 1. Note that the nodes in Sk have to be i,ncl uded in the path in

some order before returning to node 1. That is, the portion of the

tour from node i through the nodes of Sk and back t~ node 1 has to be

considered., Obviqusly, this will be the shortest possible path from

node i back to node 1 passing through k nodes of Sk' Let f(i,Sk) be

the shortest possible path from i back to 1 with k nodes of Sk in

between. Then, the recursion formulas can be given as

f (i , ¢) = Cl · k = 0
, 1

f(i,Sk) = ~in {Cij + f(j,Sk - {j}) ,k = l, ... ,n-l
J£Sk

(2.38)

(2.39)

52

Note that f(l,Sn_,) would be the length of the optimal tour of the TSP.

The formulation of the TSP by dynamic programming can be simpli­

fied for the case of symmetric cost matrices. If the total number of .

nodes of such a problem is n, then this number can be expressed as

(2q+l) if it is odd and as 2q if it is even. If n is odd, the recur­

sion formulas given above can be used recursively from k = 0 to k = q

to obtain an optimal path of length (q+l). On the other hand, since

the cost matrix is symmetric, the path including the remaining nodes

would have alreadly been computed and hence the problem is solved.

If n is even, then the procedure remains the same except that the

recursion ranges from k = 0 to k = q-l.

As it can be seen, the storage requirements for· the problem is

extremely large. One must be able to store all the computations at

two consecutive stages since it is not.possible to overwrite any of

the computations made at a given stage until all the computations at

the following stage have been made. As a concluding remark, we can
,

state that the storage requirements for dynamic programming are more

than doubled for each additional node. Unfortunately, even the best

methods developed are not able to overcome this difficulty.·

2.3.4 Exact Solution Methods Based on Linear Programming

The TSP cannot be directly formulated and solved as a linear

p!'ogramming problem in practice. However, a possible proce~ure for

solving the TSp·is to solve its relaxations by means of linear prog-

ramming an~ then to impose the relaxed constraints by either a branch

and bound algorithm ~r a cutting plane procedure. Actually~ there

53

constraints \'lOuld be taken into consideration when they are violated

by the linear programming solution of the relaxed problem.

The basic method described as above has be~n adopted in numerous

different ways. For e~ample, consider the method proposed by Crowder

and Padberg [38]. for the symmetric TSP. The basic idea of applying

the~r method goes ai follows: First the linear program

min{CxlAx = 2, 0 < x < l} - - (2.40)

where C is the vector with (n(n-l)/2) components given by the arc dis­

tances and A is the incidence matrix of the complete graph is started

with a feasible solution. If the next feasible solution is a tour,

a usual pivot is carried out. Otherwise, the next feasible solution

is chopped off by some cutting plane which is satisfied by the current

solution at equality. Consider the constraints

'k k
~ x (S .) < I S I + ~ (I S . I - 1) - r 21 kl
'0 1 - 0 . 1 1= 1=1 .

(2.41)

where I-.l denotes the next highest integer, lSI de~otes the cardina­

lity of set S and the sets S. are proper subsets of N satisfying the
1

following conditions for i = 0,1, ... ,k.

IS nS·1 >1 i = 1 , ... , k (2.42) o 1-

IS. - S I
1 0

> 1 i = 1 , ... , k (2.43) ,

ISif)Sjl = 0 1 <i~j~ k (2.44)

k odd (2.45)

54

k The arc set {Ui=o E(Si)} is called a comb in G and the inequalities

(2.41) are called comb constraints. A comb with k = 1 and /5
0

/ = 1

is a subtour elimination constraint. [39]. A comb is a 2-matching

constraint [40] if the inequalities both (2.42) and (2.43) hold as

equalities. As a result, in order to introduce a cutting plane into
,

the linear program, some suitable subtour elimination, 2-matching and

comb constraints are identified by the use of (2.41). Once a usual

pivot is executed on the enlarged linear program, a tighter relaxation

of the TSP is obtained. Continuing in this manner, a situation where

no suitable constraint can be found is encountered. Then, the next

step is to reduce the problem under consideration in size by fixing

variables at either zero or one utilizing the fact that both a value

for a tour which is obtained by applying a heuristic due to Lin and

Kernighan and a true lower bound on the .optimum tour length (i.e. the

current solution of the LP) have been obtained. Let Cj be the reduced

cost of the corresponding optimal tableau and b denote the difference

between the cost of the best tour obtained so far and the optimum

value of the objective function of the linear program. Then, all non­

basic variables whose~. > b in the optimal tableau are fixed with value
J -

zero and all nonbasic variables whose -c. > b in the optimal tableau
J -

. are fixed with value one. Thus the linear program is reduced in size

and takes the form .

(2.46)

where CR are the costs of the arcs whose corresponding variables could

not be fixed at either zero or one, AR is the corresponding node-arc

55

incidence matrix, b is a vector with components equal toO, 1 or 2,

D is a matrix corresponding to the cutting planes generated and d is

the corresponding right handside adjusted for the variables fixed at

value one.

Once the linear program (2.46) is solved, a branch and bound

procedure is used to find an optimal zero-one solution. If the opti­

mal solution defines a tour, then the optimal solution to the TSP is

found. If the zero-one solution defines a collection of subtours in

the graph then the subtour elimination constraints are appended to

the program. This new linear program is reoptimized starting with

the optimal basis from the previously solved linear program. Then,

the branch and bound technique is used again and the procedure is

iterated. After finitely many steps the procedure finds the minimum

length tour of the graph.

Other algorithms using the same basic idea have been proposed

by Mi1iotis [41], Grotsche1 [42], and Christofides and Whitlock [43].

We will not go into the details of these a1gori~hms but instead •

state a general result. on their performance. Comparing the linear

programming based method with pure branch and bound procedures, we

see that they are competitive with branch and bound methods for

solving symmetric TSPs whereas they are not competitive for asymmetric

.cases [31].

2.3.5 Approximate Methods for the TSP

In this section, we analyse techniques that are not always

certain but find a near optimum and sometimes the optimum solution

56

to the TSP with a reasonable number of calculations. The algorithms

corresponding to these approximation methods have been observed to

run faster than the best known exact solution method? In view of

the computational difficulties that arise from the expon~ntial compu­

tation time dependent on the number of nodes, the approximate algo­

rithms become preferable although they may not produce an optimal

tour. Furthermore, some of these methods have known bounding ratios

of the obtained total cost to the optimal tour cost. The ratios are

dependent on the number of nodes in some cases and constant in qthers.

It is possible to classify the techniques in different cate­

gories according to their algorithmic approaches. These categories are:

i) tour building techniques

ii) successive improvement techniques

iii) techniques using minimal spanning trees.

2.3.5.1 Tour Building Techniques

The basic idea of . the insertion methods is to start with
,

a partial tour and construct subtours progressively each time with

an increase· in the numfier of nodes. That is, each time one node is

inserted into the partial tour. Then, the new partial tour is used

in the same way to obtain another partial tour. The procedure is

continued until all nodes are covered.

57

2.3.5.1.1.1 Nearest Insertion Method

The first insertion method we study is t~e nearest insertion

method. The corresponding aigorithm can be summarized as follows:

Given a graph G = (N,E) and a subtour Tj = {i l ,i 2,···,i j , i l }

with cardinality j"construct another subtour Tj +l by performing the

steps described below.

a) Find a node i k E Tj such that

C., r = min {m i n {Ci }}
'k'. qEN-{Tj}s=l, .. ,j s,r

where C is a symmetric cost matrix satisfying triangular

inequality.

b) Delete arc (i k,\+,) in Tj and add arcs (ik,r) and (r,\+,)

to obtain the new subtour T.+ and let the new sequence of J , .

nodes be {i l ,i 2, ... ,i j ,i j+,}' Note that \+, = i l if k = j.

c) Repeat steps (a) and (b) until Tn is obtained.

It has been proven that the ratio of the tour cost obtained by

the nearest insertion method to the optimal tour cost is less than 2.

[44]. As a result, this method can be programmed to run in polyno­

mially bounded time with an order of n2 where n stands for the total

number of nodes ..

2.3.5.1.1.2 lhe fh!ape~t_I!!.s!rti.9.n_Met.b.od

Similar to the nearest insertion method the cheap-est

insertion method produces a tour no worse than twice the optimal

regardless of the number of nodes .. The algorithm can be outiined

as foll ows:

58

Given a graph G = (N,E) and a partial tour Tj = {il, ... ,ij,i l }

of cardinality j, construct another subtour Tj +1 by performing the

following steps.

a) Find a node q suc~that

TCj+1 = m i n{TC. + c. + C
q, \+1'

- C. . }
qe:N-{T.} J 1 k,q 1 k' 1 k+1
. T J 1 ke: j

where TCj is the cost of tour j and i k+1 = i l ifk = j.

b) Delete arc (\'\+1) in Tj and add, arcs (\,q) and (q'\+1)

to obtain the new subtour Tj +1 = {il,i2, ... ,ij,ij+1,il}

c) Repeat steps (a) and (b) until Tn is obtained.

As it has been stated in Rosenkrantz, Stearns and Lewis [44J

the fastest program devised for this method runs in a time propor­

tional to n2 10g n.

Contrary to the nearest insertion method, the farthest

insertion method inserts nearby nodes late in the approximation.

Intuitively, the reason for such an approach is simple in the sense

that the smallest distant arcs used late in the approximation have'

more chance of not being deleted by the later insertions. Eventually,

it has been observed that this method performs well in comparison

with the previously mentioned insertion methods. The algorithm is

the same as the nearest insertion method except that the farthest

insertion method is associated with maximization whereas the nearest

insertion method is associated with minimization. The algorithm is

as foll ows:

59

Given a subtour Tj = {il' ... ·,ij,i l } with cardinality j construct

another subtour Tj+, as mentioned in the following steps.

a) Find a node i k E T. such that . ' J

c. ~ m a x {m i n {C. r}}
'k,r 'qEN-{T.} s=l, ..• ,j 's'

J

. b) Delete arc (\,\+')in Tj and add arcs (\,r) and r,i k+,)

to obtain the subtour Tj+, = {il,i2, ... ,ij,ij+"il}.

c) Repeat steps (a) and (b) until T is obtained. n .

Needless to say, the running time associated with this method

is proportional to n2 as it is in the nearest insertion method.

2.3.5. 1.1.4 Qe£metri~~pproa£h~s_

All of the presented insertion methods of solving the TSP

use the cost matrix directly to find an optimal or a near optimal

solution to the problem. We will now show that given a travelling

salesman graph, if the nodes can be located as points in a two di­

mensional space, then an optimal or at least satisfactory tour of

all nodes can be obtained without reference to the cost matrix.

However, the general approach remains the same. That is, the algo­

rithm starts with a collection of nodes which comprises a partial

tour and then decides which of the remaining nodes are to be inserted

b~tween which consecutive pair of nodes on this subtour and .in what

order. Knowing that the order of the nodes on the convex hull is

the same as the order of the nodes on the optimal tour, the algo-

rithm starts with a partial tour containing those nodes on the convex

hull or with the convex hull itself.

60

Actually, there are two impor~ant factors which determine the·

efficiency and performance of the algorithms that fall into this cate­

gory. First, the convex hull must be determined in order to obtain

the starting partial/tour. Next a criterio~ for choosing the next

node to be inserted,must be determined. The determination of the

latter have caused researchers to develop different algorithms which

are 'efficient in terms of both computational time and the satisfactory

solutions obtained. The following algorithms are some of the best

known algorithms found in literature.

2.3.4.1.1.4.1 lhe ~aEges! An~l~~e!h~d~

This method due to Norback and Love [45] uses the same

approach mentioned above. However, the criterion for determining the

next node to be inserted between two consecutive nodes on the partial

tour is to measure the angles whose vertices are the nodes to be'

chosen and whose sides are the arcs through consecutive nodes on

the partial tour. Then; the node that corresponds to the largest

of these angles is chosen to be inserted between the associated con­

secutive nodes on the subtour. This process is repeated until a tour

containin~ all the nodes can be found.

It has been shown by Norback and Love that the. tour generated

by this method may not be optimal. For instance consider the case

shown in Fig. 2.1. Starting with the convex hull {1,2,5,1} the tour

obtained by the largest angle method is given as {l ,2,3,5,4,.1}. although

the optimum to~r is {1,5,3,4,2,1}.

1 1 1

2A---~--·5 2

(a)
2

(b) (c)

Figure 2.1 -A difficulty associated with the largest
angle method

Despite of this problem the largest angle method has the

special advantage of ease of application. The method has been

examined to work well and fast even for large scale problems up to

2000 nodes.

2.3.5.1.1.4.2 The Most_E~c~n!ric_Ellipse_M~t~od

In this method, the general approach still remains

61

5

the same while the node to be inserted is being chosen by considering

each consecutive pair of nodes on the convex hull as foci of an ellipse

and the_ node to be chosen as being on the ellipse. Then, the least

circular ellipse determines the node to be ins~rted in the subtour.

An important feature of this method is that the triangle inequality

is required to hold. However, considering that the nodes ar.e:points

in two dimensional space, the distances between all pairs of nodes

do satisfy this condition.

Nevertheless, this method may not generate an optimal tour

either. The choice mechanism may fail as it does in the particular

case shown in Fig. 2.2. Note that the starting hull is given as

{1,2,4,3,1} and the most eccentric ellipse method inserts node 5

between nodes 2 and 4 whereas a less costly tour can be obtained

1 1 1 62

3 2 3 2 4 3
(b) (c)

Fig. 2.2 - A difficuity associated with the most eccentric
ellipse method

by inserting node 5 between nodes 4 and 3.

2.3.5.1.1.4.3 Qther fo~vex_H~ll Al~o~i!hms_

Analysing the geometric approaches mentioned aoove,

we see that in parti cul ar the/nodes of the travel 1 ing sal esman

graphs are required to be modelled as pOints in a two dimensional

space and-that the existence of the triangle inequality is amust~

On the other hand, once the convex hull is "known the cost matrix

can be used to determine the next node to be inserted in the subtour.

Again, the criteria used in determining the successive nodes to be

sequenced are important and affect the efficiency anq the perfor-·

mance of the algorithm. As it has been proposed by Or [46] using

the cost matrix, three different measures can provide a means of

finding out the next node to be inserted between any two consecutive

nodes on the particular tour.

Let i and j be any two consecutive nodes on the convex hull,

and let k be one of the remaining nodes to be inserted. Then, the

measures can be defined as follows:

i) DIST = min{Co k + Cko - C .. }
. 1 J lJ

ii) RATIO = min{(C··k - Ck·)/C .. }
1 J lJ

iii) MULT = DIST x RATIO

63

Experimental results showed that the best solutions were obtained when

the third criterion was applied in the algorithm. Although the reason

for such a result has not been determined, the fact that the third

criterion is a good way of breaking ties that may occur when the

first two measures are/applied has been accepted to affect the solu­

tion. That is, ties that may occur in the first two measures are

probable not to occur in the third one.

After all, neither of the above criteria guarantees that the

optimal solution will be found. But, observations reveal that the

algorithms work efficiently and obtain satisfactory results. An

advantage of applying these measures is that the cost matrix need not

satisfy the triangle inequality. However, since the structure of the

algorithm is dependent on the topographic structure of the problem,

it may generate tours which are far from being optimal for cost

matrices containing arbitrary numbers. Eventually, the algorithm

can also be applied to situations where the nodes ,are modelled as

points in two dimensional space. Once the coordinates of the nodes

are known, it is possible to obtain the associated costs by using

the distance formula.

2.3.5.1.2 ~~2r~§~_~~r9iD9_~~~bQ9

This method is different from the previous methods in the

sense that it first constructs a set of ~ubtours covering all the

nodes and then merges two subtours at each iteration until a tour

-including all the nodes is constructed. In summary, the algorithm

is as follows:

64 .

1. Let S, be a set of n tours each containing a single node

Set i = 1.

2. Find an arc (q,r) such that

3.

C = min{Ck · for k and j in different ~ubtours in S.} qr , . J ,

Obtain S.+ from S. by merging two subtours containing q , , ,
and r. Let those subtours be Tl and T2 respectively. Then,

the merging process is performed as follows:

a) If Tl consists of a single node, q, then insert q into

T2, else if T2 consists of a single node, r, then insert

r into Tl .

b) If Tl and T2 each contain at least two nodes then let s

and t be nodes such that s is in Tl and t is in T2 and

Cqr + Cst - Cqs - Crt is minimized. Delete arcs (q's)

an~ (r,t) and add arcs (q,r) and (s,t) so that Tl and

T2 are merged. Set i = i+l.

4. Repeat steps (2) and (3) until Sn contains one tour including

all nodes.

This·algorithm is also bounded with a ratio similar to other

insertion algorithms. That is, the ratio of the approximated tour

'cost to the optimal tour cost is less than 2.

This algorithm starts with. an arbitrary node and builds up a

path sequentially. Finally, the path is completed to a circuit by

65

adding an arc joining its end points. The algorithm uses the following

steps:

1. Start with'an arbitrary node.

2~ Find the node not yet on the path and which is the closest ,

to the node last added. Add the arc connecting these two

nodes to the path (Ties are broken arbitrarily).

3. When all nodes have been added to the path add the arc

connecting the two end nodes so that the path is completed

to a circuit.

As it has been stated by Rosenkrantz, Stearns and Lewis [45]

this algorithm can be programmed to operate in a time proportional

to n2
• A possible improvement of the ~ethod is to repeat the algo­

rithm for each possibl~ starting node. As a result, the runnini time

will be proportional to n3
• Furthermore the ratio of the approximate

to~ cost to the optimal tour cost is less than ((1/2)ln(n) + (1/2)).

Note that the bounds found for all these algorithms are for their worst

case behaviour. However, experiments suggest that the performance of

the methods are far from being tied to their worst case behaviour.

2.3.5-.2 Successive Improvement Techniques

Another approach to finding a satisfactory solution to

the TSP is to start with a, travelling salesman tour and perturb it to

see if a better tour can be obtained. If a better tour is obtained,

then the initial tour is discarded and the new tour is further mani~

pulated. The procedure is repeated until no more improvement can be

mad~ and hence, the tour at hand is the b~st ac~ievable solution.

66

The first method that we will analyse was first exploited by

Croes [47]. The algorithm makes use of the important result that if

the cost matrix of a travelling salesman graph represents,Euc1idean

distances than the optimal tour does not intersect itself. Once an

arbitrary tour is selected 'initially, the algorithm tries to produce ,

an intersection1ess tour by replacing two arcs in the tour by two

other arcs that are not in the tour.

The method Qf local optimization was further carried by Reiter

and Sherman [48]. Their algorithm starts with an arbitrary tour and

tries to find the best location of each node separately. In other

words, once a node is removed from the tour, the algorithm tries to

find its best location in the remaining sequence. The procedure is

continued until no improvement in the tour is possible: Then, the

a1gorithm'tries to find the best 10cati0n of an arc joining two nodes

in the sequence. For example, the location of the arc (i 1,i 2) is

tried to be found in the remaining sequence {i 3,i 4, ... ,i n}. This

procedure is also continued-until no improvement is'possib1e .. Finally,

the algorithm checks chains of three nodes in alternative locations.

A similar approach was introduced by Lin [49] who generalized'

the local .optimizati6n methods. Lin defines a tour to be r-optima1

if the deletion 6f r arcs and their replacement ~ other r arcs produces

, no better tour. Starting with an arbitrary tour, if r arcs are removed

from the tour then'r disconnected paths are produced. These paths can

be connected in.one are more different ways to produce anotner tour with

a better total cost. As far as r-optima1ity is concerned, the method

exploited by Croes would be called 2-optima1 since it tries to obtain

an improvement by interchanging any two arcs by another set of two arcs.

67

It is shown by Rosenkrantz, Stearns and Lewis [44] that for

n > 8 there exists a graph having a tour which is r-optimal -for all

r ~ n/4 and for which the cost of that tour satisfies

TC(r-opt) =' 2(1 _ +)
TCTSP

where TC(r-opt) is the cost of an r-optimal tour and TCTSP is the

cost of the optimal solution to the TSP.

An important feature of this method is that the number of calcu-

lations required to obtain an r-optimal tour is polynomial in n while

it is exponential in r.Therefore, only small values of r can be used

in the algorithm. Note that the TSP is n-optimal and the number of

operations required to obtain the n-optimal tour is (n-l)! for asymmetric'

problems and (n-l)!/2 for symmetric problems. In fact, this is the

quantity required for the complete enumeration of all the possiple tours.

The method was further improved by Lin and Kernighan [50] in a more

powerful way.

Anoth~r successive improvement technique for finding an approximat

tour is accomplished by first starting with any tour and then trying to

switch the position of the nodes. Let {i l ,i 2, ... ,i n} denote the order

of the nodes in the initial tour. Then, the algorithm tries to find a

shorter tour by switching each possible pair of nodes in the tour.

Switching nodes i j and i k means replacing arcs (i j _
1

,i j), (ij ,i j +
1
),

(\-1'\)' (\'\+1) by arcs (i j _1,\), (\,i j +1), (i k_1 ,i j), (i j ,i k+1)·

The switching procedure continues until no improvement is possible [51].

68

As in all improvement techniques the final tour depends on the

initial tour. Moreover, the cost of the initial tour should not be

considered as a good indicator of the cost of the final tour. In general

one cannot be certain' about the optimality of the final tour produced by

these'methods. But they are known to perform well in most of the cases. ,

2.3.5.3 Techniques Using Minimal Spanning Trees

Most of the methods which are proven to have constant bounds

use comparisons with minimal spanning trees in their proofs. Then, a

question that may come into mind is "why shouldn't minimal spanning

trees be used in finding approximate solutions to the TSP?" Eve~tually,

there are widely known methods which determine approximate solutions

by first finding the minimal spanning trees. We will analyse some of

these methods and outline their algorithms to give an insight to the

use of the minimal spanning trees in finding approximate solutions

rather than using them as lower bounds to the,TSP as has been explained

previously.

The first method we will analyse is the penalty method introduced

by Christofides [24J. The spirit of this algorithm is to transform the

cost matrix in such a way that the minimal spanning tree of the trans­

formed matrix is~orced to form a Hamiltonian path. The algorithm pro-

ceeds as ·fo 11 ows :

1. Find. the minimal spanning tree of G = (N,E) using the cost

matrix C.

2. If the minimal spanning tree is a Hamiltonian path then the

problem is solved. If not, then calculate a penalty, Pi'

for each node i and transform ·the cost matrix such that

69

C .. =C .. +p.+p.
lJ lJ 1 J Vi ,j e: N

3. Repeat steps (1) and (2) until a Hamiltonian (shortest) path

is found.

4. Add the arc joining the two ends of the Hamiltonian path to
,

produce a travelling salesman tour.

There are many strategies for computing the associated penalties

at each step. Held and Karp [14] who developed a similar algorithm gave

two methods of finding the penalties which minimize the difference bet­

ween the cost of the shortest Hamiltonian path and the cost of the mini­

mal spanning tree under the modified cost matrices. A pitfall of this

algorithm, however, is that it is not necessarily convergent. But it

can be considered as a valuable method since it converges in the great

majority of the cases .. Moreover, it may be used as a valid lower bound

in cases when the algorithm does not converge.

Another widely known but unpublished method using minimal spanning

trees is as follows [44J:

1. Find the minimal spanning tree of the graph.

2. Double the arcs of the minimal spanning tree so that an

Eulerian circuit containing each node at least once is

obtained.

3. Construct a travelling salesman tour by traversing the arcs

of the Eulerian circuit (i.e. a circuit traversing each of

the arcs at least once). If a node already included in the

travelling salesman tour appears in the sequence of. the

Eulerian tour, skip that node and continue traversing until

all the nodes are included in· the travelling salesman tour.

70

This method also has a ratio of the obtained tour cost to'the optimal

tour cost which is less than 2.

Christofides [52] developed a similar algorithm which give a

better bound for the worst case behaviour. A worst case analysis of

his heuristic showed that the bounding ratio is strictly less than (3/2) , .

This brought a 50% reduction over the previously best known ratios for

other polynomially bounded algorithms. The algorithm can be stated as

follows:

1. Find the minimal spanning tree of the graph G = (N,E).

2. Relative to the minimal spanning tree, let Ni be the set

of nodes having odd degree. Solve the l-matching problem

for the graph G1 = (N1,El).

3. Let only those arcs in the minimal spanning tree and those

arcs in the matching and the set of nodes N comprise the

graph G2 = (N,E 2). This graph has all nodes of even degree
,

and consequently possesses an Eulerian circuit.

4. Transform the Eulerian circuit into a travelling salesman"

tour by removing extra occurrences of each node.

Several good algorithms exist for finding the minimal spanning

tree of a graph. Usually, these algorithms have a computational time

w~ich is of or~er 0(n2). However, the best known algorithms for findi

the minimum matching have a computational growth rate O(n3).. Therefore

the overall computational time is proportional to n3. Note that, the

last step of converting the Eulerian circuit to a Hamiltonian circuit

71

can be done in linear time. After all, the best known bound has been

improved by 50% in the expense of increasing the computational effort

with regard to methods which have worse bounds but have computational.

effort which is proportional to n2
•

A final remark that· should be made for the methods that fall

into this category is that techniques using minimal spanning trees

are applicable only to symmetric TSPs. This is a consequence of the

fact that minimal spanning trees tan only be computed for undirected

graphs.

III. FOUR HEURISTIC ALGORITHMS FOR SOLVING

THE TRAVELLING SALESMAN PROBLEM

72

In this chapter we introduce four heuristic algorithms using

four distinct approaches for solving the TSP. Similar to all of the

heuristic methods that:have,be"en put'foO'lard recently the algorithms are

designed so that they do not suffer from inefficiency. Actually, the

algorithms are easily programmable on a computer and produce tours

which are close to the optimal solutions.

The first algorithm u?es the necessary conditions for the

existence of a Hamiltonian circuit as a tool for constructing a·sub-
" .
graph of the original graph in which the optimum or a near optimum

solution to the TSP is contained. The arc set of the subgraph is

extended by including arcs corresponding to the zero cost elements

in the updated cost matrix as a result of reducing it iteratively.

The reduction is made in such a way that the necessary conditions

for the existence of· a Hamiltonian circuit tend to hold as the sub-

gr~ph is developed. In case, the subgraph does not contain any

Hamiltonian circuit, the algorithm applies Little's branch a~d bound

algorithm to the resultant matrix partially so that a feasible tour

is obtained.

73

The fact that the travelling salesman tours are extreme points

of the assignment polytope constitutes the main idea used in the second

algorithm. The TSP is solved by the aid of the embedded assignment

problems. The subtou'rs produced by the assignment sol utions are broken

is such a way as to make the algorithm work as fast as possible.

The third algorithm uses a dynamic programming type approach

which is very similar to Ford's [53] shortest path algorithm. First,

all the elements of the cost matrix are subtracted from a large number

so that the triangle inequality is satisfied. Then, given a specified

root n6de, the algorithm tries to find all the longest Hamil~onian

paths in which all the nodes appear once and only once. The longest

paths are then completed to Hamiltonian circuits and the one with the

least cost (i.e. calculated by using the original cost matrix) is

selected as the best achievable solution.

The last algorithm is a geometric approach which uses the well

known tour building technique. Similar to other relevant algorithms,
,

tHe method worki well for problems defined in the Euclidean space.

Given the convex hull, the algorithm calculates the heights of the

triangles whose bases are ihe arcs through consecutive node pairs in

the convex hull and whose third vertices are the interior nodes that

are not in the convex hull. As a result, the heights are considered

as a measure of inserting the interior nodes and therefore building

the, final tour.

·.,Repeated runs on randomly generated graphs resul1ed:in finding

solutions which are near optimal. The heuristics showed different

growth rates in the computation effort all of which are as substan­

tially well as other e'xi,sting algorithms which use the same approaches.

74

3.1 ALGORITHM I

Given an undirected (directed) graph G = (N,E), the algorithm

con~tructs a subgraph G1 = (N,E') of G which is (strongly) connected.

Then, the arc set of G1 is extended in such a way that each subgraph

Gk constructed by removing a node from G1 i,s un.ilaterally connected.

The algorithm starts with reducing the associated cost matrix

C. That is, the minimum element of each row is subtracted from all

the elements of that row and the minimum element of each column is

subtracted from all the elements of that column. As a result, all

the arcs (i,j) with Gij = 0 comprise the arc set E' of G1
• Then

the (strong), connectedness of G1 is checked. If the ~raph is not

(strongly) connected the cost matrix is further reduced in a sequen­

tial manner so that other arcs with Cu =.0 can be included in EI ~nd

therefore (strong) connectedness can be achieved. Note that (strong)

connectedness is necessary for the existence of a Hamiltonian circuit,

i.e. a solution to the TSP, but is not sufficient.

Consider that there exists a Hamiltonian circuit in G1
• If a

node k is removed from G1
, the resulting s~bgraph Gk contains a

Hamiltonian path through the remaining (n-l) nodes and is, therefore,

a unilaterally connected subgraph. In other words, for any two nodes

i and j of Gk, there ~xists a path either from i to j or from j to i~

Hence, unilateral connectedness in Gk is also a necessary cond.ition

for .the existence of a Hamiltonian circuit. As a consequence.of

this fact, for every excluded node ks N, the algorithm checks if the

resultant subgraph Gk is unilaterally connected. If not, the cost

matrix is reduced iteratively until the condition holds.

75

As a matter of fact, since both of the conditions checked are

not sufficient conditions the resultant subgraph G1 may still not

contain any Hamiltonian circuit. Experiments show that this is true

especially when n, i.e.', the number of nodes gets larger. In that

case, a procedure which incorporates the first part of Litt1e 1 s branch

and bound algorithm is applied to the resultant matrix. However, the

branch and bound procedure is never used completely. The procedure

stops as soon as a feasible solution is found. The solution is assumed

to be the best one that can be obtained. More formally, the algorithm

can be expressed as follows:

1. Reduce the rows and columns of the cost matrix, C, such that

each row and column has at least one zero. Let all the arcs

(i,j) with c .. = 0 comprise the arc set of G1 = (N,E 1
).

lJ

2. Check for (strong) connectedness. If G1 is not (strong1y)-"

connected then apply the following steps to achieve (strong)

connectedness:

a) Choose a node kEN

b) Find the node set R(k) which can be reached from node

k by means of path in G1
• Let node k be included in R(k).

c) If R(k) r N, then find

TIk = min {C .. }
iER(k) lJ
j EN-R(k)

and update the cost matrix by

Vi E R(k), j E N-R(k)

76

include new arcs having C .. = 0 into EI return to step (b).
lJ

Otherwise, continue.

d) If R(k) = N, then choose another node kEN among the ones

which have not been checked yet. If all the nodes have

been chec~ed, then continue with step (3). Otherwise

return to step (b).

3. For each node kEN, perform the following steps:

a) Let Gk = (N-{k},Ek) be the subgraph obtained by removing

node k and the arcs entering and emanating from node k

in G1
•

.....
b) Find the set of nodes R(i) which can be reached from node

i via arcs in Gk for every i E N-{k}. Check if Gk is uni­

laterally connected by going through the following:

i) Choose a node q E N-{k}.

ii) If R(q) ~ N-{k}, then for all nodes r E N-{k}-R(q) check

if q E R(r). In other words, check if there exists a

path from r to q for all q which are not reachible from

r. If such a node q is found, let

~ = min{ min
qr kR(q)

·{C .. }, min {C .. }}
lJ iER(r) lJ

jEN-{k}-R(q) jEN-{k}-R(r)

Update the cost matrix by

C .• = C .• - ~
'1J' lJ qr Vi E R(q) , j E N-{k}-R(q)

Vi E R(r) , j E N-{k}-R(r)

Include new arcs (i,j) with Cij = 0 in EI and Ek.

77

Define the reachible sets R(i) again and repeat this step.

If either R(q): N-{k} or no node r such that r ¢ R(q) and

q ¢ R(r) can be found, then choose another node q among

the ones which have not been tried yet. Repeat this step

until a.ll nodes are considered.

4. As a result of performing steps (1) through (3), the necessary

conditions for the existence of a Hamiltonian circuit in G1

are satisfied. Therefore, check if G1 contains a Hamiltonian

circuit. If so, evaluate all the Hamiltonian circuits in G1

and select the one with the least cost as the best achievable

solution to the TSP. Otherwise continue.

5. Apply Little1s branch and pound algorithm partially to the

resultant matrix until a feasible solution can be obtained.

The steps of Little1s branch and bound algorithm are not repeated

here since the whole algorithm is given in Chapter 2. However, it should

be noded that,.no branching procedure is performed if the cost matrix

corresponds to a complete graph. Moreover, it is highli probable that

the branching procedure would not be performed for graphs that are not

complete either.

Example 3.1 ,

Consider a complete directed graph whose cost .matrix is given

in Table 3.1a andsuppose that we want to solve the TSP by the use of

the algorithm d~scribed above. Applying the,first step of the algo­

rithm, the reduced matrix and the corresponding subgraph G1 are shown

78

in Table 3.1b and Fig. 3.1a respectively. As it can be seen G1 is dis­

connected and therefore we proceed by applying step (2).

2 3 ~ 567 B .

00 76 43 38 51· 42 ,19 80

2 42 00 49 26 78 52 39 87
0'

3 49 28 00 36 53 44 68 61

~ 72 31 29 00 42 49 50 38

5 30 52 38 47 00 64 75 82

6 66 51 83 51 22 00 37 71

7 77 62 93 54 69 38 00 26

8 42 58 66 76 41 52 83. 00

(a)

,t. 7
12 3 ~ 5 6 7 B

00 49 16 11 32 12 0 61

2 11 00 23 0 47 10 8 56

3 15 0 00 8 20 0 35 28

~ 38 2 0 00 8 4 1 6 4

5 0 14 0 9 00 23 45 52

6 44 21 53 21 0 00 15 49

7 51 28 59 20 43 1 00 o
8 1 817 27 o o 42 00

(c)

1 2 3 ~ 5 6 7 B

1 00 57 24 19 ·32 12 0 61

2 16 00 23 0 52 15 13 61

3 20 o 00 8 25 5 40 33

~ 43 2 0 00 13 9 21 9

5 o 14 0 9 00 23 45 52

6 44 21 53 21 0 00 15 49

7 51 28 59 20 43 1 00 o

B 1 8 17 27 0 0 42 00

(b)

1 2 3 ~ 567 B).-----------------------,
00 49 16 11 32 12 0 61

2 11 00 23 0 47 10 8 56

3 15 0, 00 8 20 0 35 28

~

5

38 2 O· 00 8 4·16 4

o 14 0 9 00 23 45 52

6 44 21 53 21 0 00 15 49

7 51 28 59 20 43 1 00 o

B 1 8 17 27 o o 42

(d)

Table 3;1 - Reduced matrices obtained during the application of steps
(1) through (4) of algorithm I

79

Table 3.1 continued.
2 3 " 5 6 7 8 1 2 3 " 5 6 7 8

00 45 16 7 32 12 0 61 1 00 44 15 6 32 12 0 61

2 7 00 23 0 43 6 4 52 2 6 00 23 0 43 6 3 52

3 15 0 00 8 20 0 35 '28 3 14 0 00 8 20 0 34 28

" 34 2 0 00 4 0 12 0 " 33 2 0 00 4 0 11 0

5 0 10 0 5 00 23 45 52 5 0 10 0 5 00 23 45 52

6 44 17 53 17 0 00 15 49 6 43 16 52 16 0 00 14 49

7 51 24 59 16 43 1 00 0 7 51 23 58 15 43 1 00 0

8 1 4 17 23 0 0 42 00 8 0 3 16 22 0 0 41 00

{e) (f)

Choose node 1. R(1) = {1,5,6,7,8} ~ N

1Tl = min {C .. } = C53 : 8
iER(l) lJ
jEN-R(l)

The updated cost matrix is given in Table 3.1c. Including arc (5,3)

in G', (Fig. 3.1b) ,we see that R(l) = N.

Choose node 2. R(2) = {2,3,4} ~ N

1T2 = min {Cij } = C36 = 5
iER(2)
jEN,.-R(2)

Once arc (3,6') is included in G', we obtain R(2) = N. The resultant

matrix is given in Table 3.1d. and G' is shown in Fig. 3.1 c.

Choose node 3. R(3) = N

Choose node 4. R(4) = N

Choose node 5. R(5) = N

thoose node 6. R{6) = N

Choose node 7. R(7) = N

Choose node 8. R(8) = N

Since all the nodes have been tried and R(i) = N, Vi E N, (strong)

(a) (b)

(c)

Figure 3.1 ~ Stages in constructing the subgraph G1 for
Example 3.1.

80

Figure 3.2a - Subgraph G, Figure 3.2b - Subgraph G2

Figure 3.2c - Subgraph G3 Figure 3.2d - Subgraph G3
connectedness is achieved. We proceed with step 3 to see if G1 is

unilaterally connected after removing any node k

81

Remove node 1. G~ is unilaterally connected (Fig. 3.2a).

Remove node 2. G2 is unilaterally connected (Fig. 3.2q).

Remove node 3. G3 is not unilaterally connected (Fig. 3.2c).

There is not a path either from node 1 to 2 or from 2 to 1.

R(l) =' {l,S,6,7,8}

N-{3}-R(1) = {2,4}

~R(2) = {2,4}

N-{3}-R(2) = {1,S,6,7,8}

1112= mini min {C .. }, min . {CiJ·}} = C46 = C48 =
iER(l) .. 1J iER(2)
jEN-{3}-R(1) jEN-{3}-R(2)

The resultant cost matrix is given in Table 3.1c and and the updated

G3 is shown in Fig. 3.2d. Note that G3 becomes unitalerally connected.

Remove node 4.

Remove·node S.

G1 is unilaterally connected (Fig. 3.2e).
4

G~ is not unilaterally connected (Fig. 3.2f).

There is not a path either from node 1 to 2 or from 2 to 1.

R(l) = {l,6,7,8}

N-{S}-R(l) = {2,3,4}

R(2) = {2,3,4,6,8}

N-{S}-R(2) = {1,7}

82

Figure 3.2e'-Subgraph G~ Figure 3.2f - Subgraph G~

Figure 3.2g - Subgraph G~ Figure 3.2h - Subgraph G~

Figure 3.2i - Subgraph Gy Figure 3.2j - Subgraph GS

Figure 3.3 - Resultant subgraph G'

83

~12 = min{ min {C .. }
iER{l) lJ

min {C .. }} = C8l = 1
iER(2) lJ

jEN-{5}-R(1) jEN-{5}-R(2)

The c~st matrix is updated as shown in Table 3.lf. As a result, GS
becomes unilaterally connected (Fig. 3.2g).

Re~ove nOde'6. G1

6 is unilaterally connected (Fig. 3.2h).

Remove node 7. G1

7 is unilaterally connected (Fig. 3.2i).

Remove node 8. G1

8 is unilaterally connected (Fig. 3.2j).

The resultant subgraph G1 is shown in Fig. 3.3. Note that G1 does not

possess any Hamiltonian circuit. Consequently we proceed with step (5).

The steps of Little's branch and bound algorithm can be followed in

Table 3.2.

Starting with the resultant matrix we calculate the associated

penalties Pij which correspond to entries with Cij = o. The maximum

of the penalties (Table 3.2a) is P65 = 14. We delete row 6 and column
\

5 and insert infinity to C56 . " The new matrix and the associated penal-
r

ties are given in Table 3.2b. At this stage, P17 = 9 is the maximum

penalty. Therefore, we delete row 1 and column 5, insert infinity

into C7l and obtain the matrix in Table 3.2c. Calculating the penalties

/ in the new matrix we choose P24 = 11 as being the maximum one. We

delete row 2 and column 4 and insert infinity to C42 . The induced

matrix and the corresponding penalties are given in Table" 3.2d. As a

result, we choose the penalty P32 = 3 and delete row 3 and column 2.

Note that we have to insert infinity into C43 in order to prevent the

subloop (3-2-4-3). Once we obtain the new matrix and calculate the

associated penalties (Table 3.2e) the maximum penalty corresponds to

84
Table 3.2a

1 2 3 4 5 6 7 B

<Xl 44 15 6 32 12 0 61 P17 = 9 P46 = 0 P78 = 1

2 6 <Xl 23 0 43 6 3 52 P24 = 8 P48 = 0 P81 = 0
3 .14 0 <Xl 8 ,20 0 34 28 P32 = 2 P51 = 0 P85 = 0
4 33 2 0 <Xl 4 0 11 0 P36 = 0 P53 = 0 P86 = 0

5 0 10 0 5 <Xl 23 45 52 P43 = 0 P65 = 14

6 43 16 52 16 0 <Xl 14 49

7 51 23 58 15 43 1 <Xl 0

B 0 3 16 22 0 0 41 <Xl

Table 3.2b

1 2 3 4 6 7 B

<Xl 44 15 6 12 0 61 P17 = 9 P43 = 0 P53 = 0

2 6- <Xl 23 0 6 3 52 P24 = 8 P46 = 0 P78.= 1
3 14 0 <Xl 8 0 34 28 P32 = 2 P48 = 0 P8l = 0

11 0 P36 = 0
-

= 0 P86 = 0 4 33 2 0 <Xl 0 P51
5 0 10 0 5 <Xl 45 52

7 51 23 58 15 1 <Xl 0

B 0 3 16 22 0 41 <Xl

Table 3.2c

1 2 3 4 6 B

·2 6 <Xl 23 0 6 52 P24 = 11 P46 = 0 . P78 = 1

3 14 0 <Xl 8 0 28 P32 = 2 P48 = 0 P81 = 0

P36 = 0
- = 0 P36 = 0 4 33 2 0 <Xl 0 0 P51

5 0 10 0 5 <Xl 52 P43 = 0 P53 : 0

7 <Xl 23 58 15 . 1 0

B 0 3 16 22 0 <Xl

85

Table 3.2d
1 2 3 6 8

3 14 0 00 0 28 P32 = 3 P48 = 0 P81 = 0

P36 = 0
- = 0 P86 = 0 4 33 00 0 0 0 P51

5 0 10 0 00 52 P43 = 0 P53 = 0

7 00 23 58 1 0 P46 = 0 P78 = 1

8 0 3 16 0 00

.Table 3.2e

1 3 6 8

4 33 00 0 0 P46 = 0 P53 = 16 P86 = 0

5 0 0 00 52 P48 = 0 P78 = 1

7 00 58 1 0 -
P51 = 0 P8l = 0

8 0 16 0 00

Table 3.2f
1 6 8

4 33 00 0 P48 = 33 P8l =. 33

7 00 1 0 P78 = 1 P86 = 1

8 0 0 00

Table 3.29

1 6 1 6

7001 7000

80 00 8 0 00

the zero entry in C53 with P53 = 16. =We delete row 5 and. column 3

and insert infinity into C46 so that the subloop (6-5-3-2-4-6) is

prohibited (Table 3.2f). The next maximum penalty is P48 = 33.

86

After deleting row 4 and column 8 we insert infinity to C86 in order

not to allow the s,ubloop (6-5-3-2:4-8-6) to appear in the final solu­

tion. Note that we have a (2x2) matrix at hand now. On the other

hand we have to reduce the matrix in order to have at least one zero

in each row and in each column (Table 3.2g). As a resul~, we have

one choice. That is, we include arcs (7,6) and (8,1) into the solu­

tion set. Therefore, the solution obtained is (1-7-6-5-3-2-4-8-1)

with a total cost of 251 which happens to be the actual optimum solu­

tion to the problem.

3.2 ALGORITHM II

Methods using the assignment problem (AP) have been a feasible

line of attack for solving the TSP since the AP ;s a valid relaxation

of the TSP and has a polynomially bounded solution method~ It is

obvious that the optimum solution to the TSP is a feasible solution

to the AP since any travelling salesman tour is an assignment. Unfor-

tunately, the reverse is not true. That is, an assignment solution is

not necessarily a travelling salesman tour. However, we know that the

t~avelling salesman tours correspond t6 extreme pOints of the assign­

ment polytope. Therefore, ranking methods can be used to find the

. optimum to the TSP by solving the AP successfully.

Consider the AP with an (nxn) cost matrix C whose diagonal

elements are all set ·to infinity. We want to rank all the assignments

87

in increasing order of cost until a TSP solution is obtained. This

can be achieved by using a branch and bound scheme. An important

operation performed on the ntides of the decision tree is that of par-
,

titioning them using the minimum cost assignment solution. Let M be

the node representing the set of all solutions and
"

,

denote an optimum solution in M where the first set of u arcs are those

which are required to appear in the optimum solution and the second set

of v arcs are those which are not wanted to appear in the optimum solu­

tion. The last set of arcs are the optjmal combination of the remaining

assignments. Then, the partitioning scheme can be'performed as follows:

Ml = {(al,bl), .. ·,(au,bu),(ql,rl),···,(qv,rv),(il,jl)J

M2 = {(al,bl),~···,(au,bu),·(ql,rl),···,(qv,rv),(il,jl),(i2,j2)}

Mn- 1 = {(al ,bl), ... ,(au,bu),(ql ,rl); ... ,(qv':v),(i l ,jl), ... ,

(i n-2,jn-2),(i n- l ,jn-l)}

The partitioning of Musing SM generates the subnodes Ml, ... ,Mn-
1

and the partition itself is

Not~ that the subnodes r~1, ... ,~1n-l are all nonempty and mutua1ly dis­

joint. At each stage, the algorithm maintains a list which is a set

of nodes. Each node in the list is stored together with the minimum

cost assignment and it$ objective function value. This algorithm was

88

first developed by Murty [54] and used to solve problems in which the

minimal cost assignment satisfying additional constraints is required.

One such problem is the TSP. For that case, the algorithm is initiated

by finding a mi'nimum cost assignment using the Hungarian method. Then,

the set of all solutions is partitioned as mentioned above. For each ,

subnode the corresponding minimum assignment is found. As a result,

the algorithm branches to the node with the minimum cost. The proce­

dure is continued until the assignment corresponding to the branched

node is a travelling salesman tour. However, the storage requirements

for the list of nodes and the associated AP solutions are considerably

high. Furthermore, the number of branches in the decision tree is

highly dependent on the nature of the cost matrix of the TSP. In other

words, the size of the decision tree depends on the difference between

the optimum solution to the TSP and the 'optimum solution to the AP,

and therefore, on the number of extreme pOints in between.

The proposed algorithm provides a means of getting rid of the

need of information keeping required in the algor~thm presented above.

Moreover, at each iteration the algorithm introduces a new cut that

forces the AP solution to form a tour. Thus, exclusion of some ex-

treme points from consideration becomes possible. The only book

keeping involves the storage of the cost matrix belonging to the

(previous iteration. 'The algorithm is as follows:

1. Solve the AP. Let Zo be its objective function value.

2. If the assignment is a tour then stop. It is the optimum

solution to the TSP. Otherwise continue.

89

3. For each arc (ik,jk) corresponding to the assignment,

calculate a minimum penalty p. . which would be incurred
. 1 k ,J k

if that arc is not to appear in the next solution. The

penalties are calculated as follows:

a) Let Tt be the set of nodes corresponding to the subtour

in which arc (ik,jk) is included. Calculate

b)

p. .
1 k ,J k

= min {C. }+ min{C .}
re:T lk,r q~\ q,Jk

t qe:N

If p. . < 0, then find a combination of nodes, say r
lkJ k

and q such that

s e: N, s r \

is a minimum positive quantity.

c) Repeat steps (a) and (b) for every assignment (ik,Jk)'

4. Starting with the minimum penal ty perform" the foll oWing:

a) Insert infinities to all Ci such that r e: To' k,r N
Set

b) Solve the AP on the updated matrix by using the Hungarian

algorithm. Be careful ·not to perform reductions which

will cause the corresponding objective function value

Zl to. become less than zero. Furthermore, store the

reductions made in the entries into which infinities were

inserted. At the end of the Hungarian algorithm add the

90

stored quantities to the corresponding entries. Note

that, after these entries are ~pdated the resultant

values may be less than zero. The infinities are then

replaced by the updated quantities so that the arcs

corresponding to these entries may enter the basis later.

* * If Zl <. Zl' then set Zl = Zl·

c) Repeat steps (a) and (b) by considering the penalties

in ascending order. The procedure is continued until

Z~ is less than or equal to the next minimum penalty

that will be considered. Then set Zo = Zo + Z~ and

return to step (2).

Recalling the formulation·of the TSP, the unsatisfied constraints

after the AP is solved are of the constraint type (2.4a). These con­

straints are considered while the penalties are calculated. In other.

words, let T~ ~ = l, ... ,q be the subsets of nodes corresponding to q

subtours in. the AP solution. Then, the unsatisfied constraints. are

~ = l, ... ,q (3. 1) l: l: x.· > 1
. T . l' lJ-
le:~Je:~

where T~ U i~. ~ N. Eventually, for all Pi j such that \,jk e: T~,
k k .

~ = l, ... ,q, the quantity

min {C. r}
riT 1 k'

~

determines the corresponding zero-one variable x. that wilT probably
1 k' r

enter the basis and therefore satisfy the associated constraints. As

a result, the penalties provide a means of introducing cuts that force

the AP solution to form a tour.

91

Example 3.2

Consider the travelling salesman graph whose cost matrix is

given in Table 3.3. We will solve the TSP by using first the branch

and bound scheme developed by Murty and then the proposed algorithm.

Table 3.3 - The cost matrix corresponding to the TSP
solved in Example 3.2

1 2 3 4·, 5 6

1 00 4 10 18 5 10

2 4 00 12 8 2 6

3 10 12 00 4 18 16

4 18 8 4 00 14 6

5 5 2 18 14 00 16

6 10 6. 16 6 16 00

The minimum cost assignment solution to this problem and the resultant

matrix is given in Table 3.4.

Table 3.4 - AP solution to the Example 3.2

2 3 4 , 5 6

1 00 0 3 14 0 1 cost = 30

2 0 00 8 7 0 0 AP solution:

3 3 8 00 0 13 7 {(l,5),(2,6),(3,4),(4,3),

4 14 7 0 00 12 0 (5,1),(6,2)}

5 0 0 13 12 00 9

6 1 0 7 0 9 00

92

Once the AP solution is partitioned, the list at the end of the initial'

stage consists of five nodes as given in Table 3.S. Branching to

Table 3.S ,- List'of nodes at the end of the initial
. branching in Murty's algorithm

Nodes: AP solutions:

5, =,{(l,S)} {(1,6),(2,S),(3,4),(4,3),(S,1),(6,2)}= 31

52 = {(l,S),(~)} {(1,S),(2,1),(3,6),(4,3),(S,2),(6,4)}= 37

53 = {(1,S),(2,6),(T,4)} {(1,S),(2,6),(3,1),(4,3),(S,2-),(6,4)}= 33

54 = {(1,S),(2,6),(3,4),(P)} {(1,S),(2,6),(3,4),'4,2),(S,1),(6,3)}= 44

5S = {(1,S),(2,6),(3,4),(4,3), {(1,S),(2,6),(3,4),(4,3),(S,2),(6,1)}= 31

(b,T)}

5" the least cost node, we obtain the pa~tition listed in Table 3.6.

We next branch to 5S since; it possesses the least cost AP solutitin .

Table 3.6 - List of nodes at the end of the second
branching in ~1urty's algorithm

Nodes:

5'1 = {(', S) , (1 ,6)}

5'2 = {(1,S),(1,6),(2,S)}

AP solutions:

{(1,3),(2,S),(3,4),(4,6),(S,1),{6,2)} = 33

{(1,6),(2,1),(3,4),(4,3),(S,2),(6,S)} = 40

5'3 = {(1,S),(1,6),(2,S),(3,4)} {(1,6),(2,S),(3,1),(4,3),(S,2),(6,4)} = 34

5'4 = {(1,S),(1,6),(2,S),{3,4), {(1,6),(2,S),(3,4),(4,2),(S,1),(6,3)} = 4S
(4,3)}

SlS = {(l,S),(1,6),(2,S),(ldJ, {(1,6),(2,S),(3,4),(4,3),(S,2),(6,1)} = 32
. (4,3),(S,1)} ..

in rank. The corresponding partition consists of only one node in

which the AP is infeasible. Choosing the'next node to branch we see

93

that M15 has the least cost. However, this partition also consists of

only one node with an infeasible AP solution (Table 3.7). As a result

we, can either branch to S3 or to Sll since both nodes have the same

Table 3.7 - The third and the fourth partitions in
Mur.ty's algorithm

Nodes: AP solution:

S51 = {(1,5},(2,6)(3,4),(4,3),{~),(5,2)} infeasible

5151 = {{1:5),(1,6),(2,5),(3,4),(4,3),(~),(~}} infeasible

cost. Note that, the assignments corresponding to these nodes form

two travelling salesman tours. Moreover, these tours are the same

in the sense that they represent the same solution for the undirected

graph. Thus, the optimum solution to the TSP is given by one of the

AP solutions with a cost of 33. The number of nodes in the corresponding

decision tree is 13 which means that the solution is obtained by solving

13 APs.

Now,.let us apply the proposed algorithm ~o the problem. The

solution to the AP and the corresponding cost matrlx is obtained as

given in Table 3.4. The associated subtours and the penalties are

shown in Figure 3.4a. We start from the minimum penalty and solve

T
1CJ ~

P15 = 0 P43 = 3

P26 = 0 P5l = 0
-

P34 = 3 P62 = 0

T3 0 Z = 30
0

Figure 3.4a - Subtours and penalties corresponding to the AP
solution

94

the corresponding AP. Then, the AP corresponding to the next minimum

penalty is solved. The procedure is continued until the best solution

found so far is less than the next penalty to be considered. The fol-

lowing solutions are obtained in each case:

"
Updates: AP solution:

(1) Clj = 00 Vj E: Tl {(1,6),(2,5),(3,4),(4,3),(5,1),(6,2)} Zl = 1 ,

(2) C2j =00 Vj e: T2 {(1,6),(2,5),(3,4),(4,3),(5,1),(6,2)} Zl .= 1 ,

* z· 1
* Zl

* (3) C5j =00 Vj e: Tl { (1 ,5) , (2,6) , (3,4) , 14,3) , (5,2) , (6,1)} Zl - l~. Zl

(4) C6j = 00 Vj e: T2 {(l,5),(2,6),(3,4),(4,3),(5,2),(6,1)} Zl =

At this stage, since the best solution at hand is less than the next

penalty to be considered and this solution does not form a tour, we

set Zo = 31 and continue with the c6st matrix correspondjng to the

solution (1) (Table 3.8). The associated subtours and penalties are

shown in Figure 3.4b.

Table 3.8 - Cost matrix corresponding'to the solution. (1)

1 2 3 .. 5 6

00 o 2 14 -1 o

2000 8 8 0 0

3 2· 8 00 0 12 6

.. 14 8 0 00 12 0

5 0 1 13 13 00 9

6 006 0800

* 1 , Zl

=

=

=

=

Tl

P16 = 2 P43 =

P2S = 7 PSl =

TO P34 = 2 P62 = 2, 4

Figure 3.40 - Subtours and penalties corresponding to
the AP solution at the end of the first
stage.

9S

2

13

0

The solutions corresponding to the successively solved APs are as follows:

Updates: AP solution:

* (1) C6j = 00 Vj E Tl {(1,6),(2,S),(3,1),(4,3),(S,2),(6,4)} Zl = 3, Zl

(2) Clj = 00 Vj E Tl {(1,6),(2,S),(3,4),(4,6),(S,1),(6,4)} Zl = 2, Z*
1

.At this point, we do not need to continue with solving other AP's since

* . Zl = 2 is equal to the next penalty that would be considered. On the

other hand, solution (2) is a tour and therefore, the best achievable

solution to the TSP.

As can be seen, the number of APs that have been solved is 6

which constitutes a SO% reduction as compared with the previous ~lgo-

rithm. Another advantage of the algorithm is that each of the prob­

lems can be solved by storing the cost matrix of the previous prob­

lem from' which it was derived. Thus, the storage requirements cause

no problems even for large problems. After all, the efficiency of

the algorithm is highly dependent on the structure of the cost matrix

although the cut introduction procedure reduces the number of APs to

be solved. However, since we always set one of the assignments to

infinity the other (n-l) assignments are still valid. Therefore, the

so 1 ut i on of a mod i fi ed .prob 1 em can be deri ved by reenteri rig the Hunga-

rian algorithm at the last step in order to increase the number of

assignments from (n-l) to.n and consequently, to produce the optimal

=
=

3

2

solution to the new AP with the least possible computation effort.

A disadvantage of the algorithm arises from the restriction

imposed in calculating the penalties at the third step. That is, , ,

we are restricted to cal~ulating positive penalties. In addition,

96

the AP solved must end up with a positive objective function value.

This value gives a magnitude of the improvement made from the present

solution towards the optimum solution to the TSP. An AP solution with

a negative value means that the overall solution is getting worse.

This may lead to an infinite loop going back and forth in the solution

space. Therefore, all the calculations have to be made in the posi­

tive domain. As a consequence of this fact, each time only one vari­

able which has been removed from the basis previously, may enter the

basis once again. It is not possible, that two or more variables

which have become nonbasic enter the basis simultaneously.-Ih·that

case, the optimal solution may not be caught.

Another case, which may end up with mis~ing the optimal solution

occurs when there exists an AP solution which has the same objective

function.value as the TSP solution. The algorithm may arrive at this

solution but ignore it since it does not form a tour. As a result, a

nonoptimal TSP solution may be obtained. After all, considering these

drawbacks the algorithm may seem to be inefficient when compared with

the other proposed methods. However, it represents an efficient ex­

treme point ranking approach.

97

3.3 ALGORITHM III

For a given graph G = (N,E) with arc costs given by the matrix

C the longest path pr9blem is to find a simple path between two speci­

fied nodes such that the sum of the arc length is maximum provided that

such a path exists ~nd no positive cost circuit exists in G. If such

a circuit exists, traversing t~e circuit an arbitrary la.rge number of

times will result in a path with an arbitrary large (+ 00) cost so that

the best path is not uniquely defined. If on the other hand, such

circuits exist but are excluded from consideration somehow, then

finding the longest path between two specified nodes becomes equivalent

to the problem of finding the longest Hamiltonian path of the graph

with the specified end nodes. As a matter of fact, if each entry Cij
of the cost matrix C is subtracted from a large number, L, to produce

a new cost matrix C' in which the triangle inequality is satisfied,

then the longest path between any specified two nodes excluding posi­

tive circuits must pass through all other nod~s. As a result, the

following theorem due to Hardgrave and Nemhauser [55] allows one to

solve the TSP as a longest path problem defined as above.

Theorem 3.1. Given the nodes {l, ... ,n}, arcs (i,j) and cost matrix C

construct a new graph containing the nodes and arcs from the original

graph plus one additional node denoted by 0'. and an additional arc

(j,O'.) for each j such that (j~l) is an arc in the original g~aph.

The costs in the new graph are

c .. = 0 Vi
lJ

Cj1 = -00 V' .J r 1

,<.

c.
Ja. = L

c .. L
= lJ

- Cjl
- C ..

lJ

Vj f. a.

otherwise

98

where L is any finite number greater than the sum of n largest Cij .

Then, a longest path from 1 .to a. in the new graph contains every

intermediate node {·2, ... ,n} and if {l,i l ,i 2, ..• ,i n_l ,a.} is such a

longest path, {l,il, ... ,in_l,l} is an optimal tour.

Unfortunately, the theorem has not been useful since no effi­

cient algorithms for the longest path problems defined as above have

been discovered. However, the proposed algorithm provides a heuristic

means of finding the longest path of a graph in which all of the nodes

appear once and only once by the use of a dynamic programming type

approach which is very similar to Ford's shortest path algorithm.

The proposed algorithm starts with subtracting each entry Cij

of the co~t matrix C from a large number L in order that the triangle

. inequality holds in the resultant matrix C', i.e. Cij ~~ Cik + Ckj ·

Eventually, the method is iteratively based on node labelling where

at th~ end of the kth iteration the labels represent values on the

longest path (from an arbitrarily chosen root node, s, to all other

nodes) which contains (k+l) arcs. Once the lengths of the longest

paths from s to all other nodes are obtained, the paths are identified

immediately since another label representing predecessor nodes on the

path is stored for each node during the computations. The algorithm

can be summarized as follows:

Let R(.)·= the union of the reachible sets of nodes in (.)

R-1(.) = the union of the reaching sets of nodes in (.)

tk+1(i) = label on node i at the end of the kth iteration.

99

ek+1{i) = label showing the predecessor node of i in the

longest path during the kth iteration.

pk+1{i) = the node set in the longest path from s to i

'at the end of the kth iteration.

O. Let C!. =" L - C.. Vi ,j E N where L is a very 1 arge number
1J 1J

1. Set S = R{s), k = 1, Ll(S) = 0, Ll(i) = C~i for all i E R(s)

. and L (i) = 00 for all other i, e1 (i) = s for all i E R(s),

and pl(i) = {s,i} for all i E R(s).

2. For every node i E R(S), i F s, update its label according

to the expression

~k+1{i) = m a x {~k(j) + C~.} = ~k(r) + C'.
. J1 rl JET.
i¢pk~j)

where Ti = (R- 1 (i}n S). Set"pk+1(i) = pk(r) U {r}, >

ek+1(i) = r. For those nodes i ¢ R(S), set ~k+1(i) = ~k(i),
k+1 (.) k(.) d ek+1 (.) . P 1 = plan 1 = 1 •

. 3. If k = n-2, then stop. Fihd the longest paths from s to

all other nodes i by tracing in the reverse· order as

2 (3{ en-1 (. ») en-2 (en-1 (. ». en-1 (.) . s,e e... , , ... , 1,' ,1

Complete the longest paths for which arcs (i,s) exist to

Hamiltonian circuits and choose the one with the maximum

cost as the best achievable solution. Otherwise continue.

4. Update the set S as

" S = {i I ~ k+1 (i) F L k (i)}

5. Set k = k+1 and return to setp (2).

100

Example 3.3

Consider the undirected graph G whose cost matrix is given in

Table 3.9. It. is required to solve the TSP on this matrix. The

algorithm proceeds as follows: Let L = 50. The matrix obtained

Table 3.9 - The cost matrix corresponding to the TSP
solved in Example 3.3 .

1 2 3 It 5 6

1 00 9 8 7 6 10

2 9 00 10 9 15 20

3 8 10 00 5 15 25

It 7 9 5 00 20 5

5 6 15 15 ·20 00 20

6 10 20 25 5 20 00

after subtracting each entry Cij from L is given in Table 3.] o.

Table 3.10- The cost matrix after subtracting each
entry from a large number ~ = 50

1 2 3 It 5 6

1 00 41 42 43 44 40

2 41 00 40 41 35 30

3 42 40 00 45 35 25

It 43 41 45 00 30 45

5 44 35 35 30 00 30

6' 40 30 25 45 30 00

Step (1) s = 1, S = {2,3,4,5,6}~ k = 1

Q.1 (2) = 41 e1(2) = 1

Q.l (3) = 42 e1 (3) = 1

Q.l (4) = 43 el (4) = 1

Q.l(5) = 44 " el (5) = 1

Q.l(6) = 40 e1(6) = 1

Step (2) R(S) = {1,2,3,4,5,6}

Q.2(2) = 84 e2(2) = 3

Q.2(3) = 88 e2(3) = 4

Q.2(4) = 87 e2 (4) = 3

Q.2(5) = 77 e2(5) = 3

Q.2(6) = 88 e2(6) = 4

step (3) k < 4 , continue

step (4) S = {2,3,4,5,6}

step (5) k = 2

step (2) R(S) = {1,2,3,4,5,6}

Q. 3 (2) = 128 e3(2) = 3

Q.3(3) = 113 . e3(3) = 6

Q. 3 (4) = 125 e3(4) = 2

Q.3(5) = 123 e3(5) = 3

Q. 3 (6) = 132 e3(6) = 4

pI (2) = {l,2}

pI (3) = {l,3}

pl(4) = {l,4}

pl(5) = {l,5}

pl(6) = {l,6}

p2 (2) = {l,2,3}

p2(3) = {l,3,4}

p2(4) = {l,3,4}

p2 (5) = {l, 3,5}

p2 (6) = {l, 4,6}

p3(2) = {l,2,3,4}

p3(3) = {1,3,4,6}

p3(4) = {1,2,3,4}

p3(5) = {l ,3,4,5} ,

p3(6) = {1,3,4,6}

101

step (3) k < 4, continue

step (4) S ={2,3,4,5,6}

step (5) k = 3

step (2) R(S) = {1,2~3,4,5,6}

J/, 4 (2) = 162 "

J/,4(3) = 113

J/, 4 (4) = 125

J/,4(5) = 163

J/,4(6) = 170

step (3) k < 4, continue

step (4) S = {2,5,6}

step (5) k = 4

84(2) = 6

84(3) = 3

84(4) = 4

84(5) = 2

84(6) = 4

step (2) R(S) = {1,2,3,4,5,6}

J/,5(2) =162 85 (2) = 2

J/,5(3) = 113 85(3) = 3

J/, 5 (4) = 125 85(4) = 4

J/,5(5) = 200 85(5) = 6

J/,5(6) = 200 85(6) = 5

step (3) k = 4, stop.

Longest paths:

path 1: {1,4,3,2,S,6}

path 2: n,,3,2,4,6,S}

cost1 = 200

cost2 = 200

p4(2) = {1,2,3,4,6}

p4(3) = {1 ,3,4,6}.

p4(4) = {1,2,3,4}

p4(5) = {1,2,3,4,5}

p4(6) = {1,2,3,4,6}

p5(2) - {1,2,3,4,C}

p5(3) = {1,3,4,6} ~

p5(4) = {1,2,3,4}

p5(5) = {1,2,3,4,5,6}

p5(6) = {1,2,3,4,5,6}

102

103

Since costl + C~l = 240:< cost2 + C~l = 244, the best achievable

solution to the TSP is selected as (1-3-2-4-6-5-1) with an original
/

cost of 56. 'However, the' optimum solution to this problem is

(1-5-2-3-4-6-1) with a cost of 51. As can be seen, the algorithm

may not be able to find the 'optimum solution since it has a memory-
~ ,

less property in the sense that stage k is only dependent on stage

(k-l) and previous stages have no effect. On the other hand, the

algorithm is efficient considering that-it requires on the 'order of

n3 operations for the case of a completely connected graph of n nodes.

3.4 ALGORITHM IV

The TSPs defined in Euclidean two space often have computational

advantages. Once the nodes of a TSP are points in a two-dimensional

space, the triangle inequality is satisfied. It is then possible to

generate reasonable and sometimes optimal solutions to the problem by

appealing to the geometric properties of the space. Examples ofgeo­

metric approaches are described by Norback and Love [45] and Or [46].

Almost all algorithms falling into this category take advantage

of the exploitable properties of the problem structure. The following

theorems reveal the i mpl i cat i on of such pr'opert i es.

Theorem 3.2. If the cost matrix C represents Euclidean distances then

the optimal tour does not intersect itself [56J.

The theorem is obvious since any two intersecting arcs in the Euclidean

space can be replaced by two nonintersecting arcs of a less total cost.

104

Theorem 3. 3. IfH is the convex hull of the pOints representing the

TSP in a two-dimensional Euclidean space, then the order in which the

nodes appear on H is the same as the order in which they appear in the

optimal tour [57].

This theorem is a girect consequence of Theorem 3.2. As a result if

k nodes lie on a convex hull, theri The~rem 3.3 reduces the total

number of tours which are to be investigated from (1/2)(n-~)! to

(n-l)!/(m-l)! (for undirected problems) where n is the total number

of nodes associated with the problem.

Once the nodes on the convex hull are speci fi ed, the problem is

to decide how to sequence the remaining interior nodes between differ­

ent consecutive pair of nodes on the partial tour. The decision is

made by conSidering the heights of the triangles whose bases are the

arcs through consecutive pair of nodes ;n the partial tour and whose

third vertices are theremaini,ng interior nodes which have not been

considered yet. Each time,-a new partial tour having an additional

node is constructed. The process of calculating ~he heights of tri­

angles and choosing the appropriate one can then be repeated by using

the new partial tour and the remaining interior nodes.

Assuming that the nodes are located tn a two dimensional space

we are sure that the triangle inequality is always satisfied. However,

this may not be the case, when the cost matrix of a TSP contains arbit­

rarily chosen numbers. In order to achieve triangle inequality, all

the elements C.- of the cost matrix are subtracted from a large number lJ .

L. This may also be done when the cost matrix satisfies the triangle

inequality since any matrix transformed in this manner does satisfy the

105

triangle inequality after the subtraction process. Obviously, the

problem becomes to find a Hamiltonian circuit with the maximum length.

Therefqre, triangles with maximum heights are considered first in
. '

building the travelling salesman tour.

In order to ,pegin the process of calculating the heights and

choosing the largest one, the convex hull must be determined. In fact,

if the nodes are located in a two-dimensional space and can be mapped

on a paper, then the convex hull can be determined easily by taking a

look at the whole layout. However, for problems which involve a very

large number of nodes the procedure may not be that easy. Besides, it

is not possible to determine a convex hull for problems which are not

defined in Euclidean space." The following procedure due to Norback and

Love [45J is applicable to problems in which the nodes have known coor-

dinates:

1. Choose the node with the x coordinate of least value. This

node is on the convex hull and can Qe labelled hl - the first

hull node.

2. Using this node as vertex, form all possible angles whose

sides are rays containing this node and another node of the

problem. Choose the largest of these angles.

3. Choose one of the nodes that determine this angle other than

the vertex and label it h2' the second hull node. ,

4. USing-h2 as a vertex and the ray containing hl and h2 as a

side determine all angles whose remaining side contains h2

and another node of the problem. Choose the largest of these

angles and l~bel the corresponding node h3.·

106

5. Repeat step (4) as many times as necessary, with the most

recent hull node generated h., as vertex and the one given
, 1

side of the angle ray containing h. and h. .
. 1 1-1

6. The convex hull will be determined when the next candidate

for a node on the hull is hl .

Once the convex hull is given as an input, the proposed algorithm

initiates a list keeping procedure. The list contains the necessary

information about the existing arcs on the convex hull. All the book­

keeping and manipulations are made on th~slist. The algorithm can be

summarized as follows:

1. Find the convex hull H associated with the problem .. Let T

be the initial partial tour (T :: H if H can be fo:un~. Set

C!. = L - C .. for all i ,j e: N. lJ lJ

2. If T covers n nodes, then stop; T is the best achievable

solution to the TSP. Otherwise continue.

3. For each arc in T, form a 1 ist by performing the following

steps:

a) Specify the end nodes of the arc (i,j) e: T.

b) For each node k ¢ T calculate the height of the triangle

determined by nodes, i, k, and j as

'h = 2/u(u - C1!k){u - Ck'J·){u - C!.)/C~. lJ lJ

where u = (C!k + Ck' · '+ C!.)/2. 1 J lJ

107

. c) Select the node corresponding to the largest height and

record it as a candidate for being inserted between i

and j in T.

4. Choose the arc (i,j) which has a candidate, k, corresponding

to the ma·ximum height in the list .. Delete arc (i,j) from the

list. Instead, include arcs (i,k) and (k,j) as the new arcs

in the new partial tour T. Return back to step (2).

Example 3.4

Consider a complete undirected graph whose nodes are located in

a two dimensional space as shown in Figure 3.5 and whose cost (distance)

matrix is given in Table 3.11.

I

Figure 3.5 - The convex hull corresponding to the
travelling salesman graph in Example 3.4.

Th~ convex hull of this problem can be identified by taking a look

at the node locations in Figure 3.5. - Eventually, the convex-hull

is (1-2-5-9-10-3-1). Initially, we set T = (1-2-5-9-10-3-1) and

subtract all the elements Cij from a large number L which is chosen

to be 400 in this case. The resultant matrix is given in Table 3.12.

1

2

3

4

5

6

7

8

!

10

1

2

3

4

5

6

7

8

!

10

Table 3.11- The cost matrix of Example 3.4

1 2 3 4 5 6 7 8 ! 10

00 42 72 50 86 89 92 130 151 182

42 00 ,91 36 45 86 61 108 120 162

72 91 00 61 114 45 94 ·103 136 143

50 36 61 00 .54 50 45 81 102 133

86 45 114 54 00 91 36 85 85 136

89 86 45 50 91 00 61 58 92 101

92 61 94 45 36 61 00 50 60 103

130 108 103 81 85 58 50 00 36 54

151 120 136 102 85 92 60 36 00 58

182 162 143 133 ,136 101 103 54 58 00

Table 3.12- The cost matrix after subtracting each
element from a large number L = 400

1 2 3 4 5 6 7 8 ! 10

"
00 358 328 350 314 311 308 270 249 ·218

358 00 309 364 355- 314 339 292 280 238
-

328 309 00 339 286 355 306 297 264 257

350 364 339 00 346 350 355 319 298 267

314 355 286 346 00 309 364 315 315 264

311 314 355 350 309 00 339 342 308 299

308 339 306 355 364 339 00 350 340 297

270 292 297 319 315 342 350 00 364 346

249 280 264 298 315 308 340 364 00 342

218 238 257 2f;,7 264 299 297 346 342 ' 00

108

109

Note that the partial tour T does not cover n nodes and we have four

remaining interior nodes {4,6,7,8}. As a result, the list formed in

the third step of the algorithm is given in Table 3.13. Since the

Table 3.13- List for arcs in T in the first step

Starting Ending Candidate
node node node Height

1 2 4 308.60

2 5 4 -307.04

5 9 7 313.88*

9 10 8 310.67

10 3 6 293.47

3 1 4 302.78

maximum height in the list corresponds-to arc (5,9) we insert node

7 between nodes 5 and 9 and obtain the new tour as T = (1-2-5-7-9-

10-3-1). The tour is shown in Figure 3.6a. Now, T covers seven

nodes and the set of the remaining nodes is {4,6?8}. Therefore,

the list is updated as given in Table 3.14. The maximum height in

this list corresponds to the arc (7,9). This implies the insertion

of node 8 between nodes 7 and 9 and result in the partial' tour shown

in Figure 3.6b. Once again, T does not cover n nodes and the remain­

ing node set {4,6} consists of two nodes. The list is updated as

shown in Table 3.15. In this case the maximum height corresponds to

the arc (1,2) with a ~a1ue of 308.60. After riode 4 is in~e~ted bet­

ween nodes.1 and 2 the resultant tour (1-4-2-5-7-8-9-10-3-1) is as

shown in Figure 3.6c. At this stage node 6 remains to be inserted

110

Table 3.14 - List for arcs in T in the second step

Starting Ending. Candidate
node node node Height

1 2 4 308.60

2 5 4 307.40

5 7 4 299.45

7 9 8 313.66

9 10 8 310.62*

10 3 6 293.47

3 1 4 302.72

Table 3.15-- List for arcs in T in the third step

Starting Ending Candidate
node node node Height

1 2 4 308.60*

2 5 4 307.04

5 7 4 299.45

7 8 6 292.08

8 9 6 268.08

9 10 6 250.65

10 3 6 293.47

3 1 4 302.72

111

(a) (b)

(c) (d)

Figure 3.6 - Steps in building the travelling salesman tour

in order to obtain the final tour. The corresponding list is given

in Table 3.16. The maximum height is this list corresponds to the

arc (10,3). Inserting node 6 between nodes 10 and 3, the best

Table 3.16' - List for arcs in T ln the fourth step

Starting Ending Candidate
node node node Height

1 4 6 278.62

4 2 6 276.31

2 ,. 5 6 255.96

5 7 6 267.14

7 8 6 292.08

8 9 6 268.08

9 10 6 250.65

10 3 6 293.47*

3 1 6 287.20

achievable tour is found to be (1-4-2-5-7-8-9-10-6-3-1) with an

original total cost of 529 (Figure 3.6d).

112

Comparing the proposed measure used to determine the sequence

of nodes with other measures proposed before we see that once the

heights are used the algorithm does not fail in cases where other

measures have been observed to fail. For instance, consider the

example in which the largest angle method proposed by Norback and
r

Love·fails. Using ,the largest angle method, the tour generated is
1

2 2
(a) 5 (b) (c)

Figure 3.7 - Behaviour of the proposed algorithm in the case
where Norbackls and Lovels largest angle method fails.

5 '

113

given in Figure 3.7b whereas applying the heights as a measure yields

the tour given in Figure 3.7c. Note that, in this case the minimum

hei~hts are chosen since the problem is defined in the Euclidean space

and the triangle inequality is satlsfied without need of subtracting

the elements of the cost matrix from a large number.

Similarly the eccentric ellipse method fails in the example

shown in Figure 3.8. The choice mechanism in the eccentric ellipse

method will sequence node 5 between nodes 2 and 4 as shown in Figure

3.8b. However, when heights of the triangles are applied a less

costly tour can be obtained as shown in Figure 3.8c.

2

I
\

1

\
_----~ ... (b) ...

"

..

2

Figure 3.8 - Behaviour of the proposed algorithm in the
case where Norback's and Love's eccentric
ellipse method fails.

1

As it has been reported by Or [46J the measures used in his

algorithm namely (i) DIST = C' k + Cko - Co °
1 J lJ

(ii) RATIO = (Cok-Cko)/Co °
1 J lJ

fail since they do not apply any preference when ties have to be broken.

In addition consider the case shown in Figure 3.9 for the DIST measure.

The minimum DIST is given by C24 + C4l - C2l whereas the minimum height

measure inserts node 4 between nodes 2 and 3 which in case yields a

less costly solution. In addition to these advantages it is less

3

1

Figure 3.9 - Comparison of the height criterion with
other criteria

probable that two or more heights happen to be equal and ties have

to be broken. However, it is difficult to make any comparison with

the third criterion proposed by Or which js ~1ULT = DISTx RATIO.

After.al\ our algorithm seems to be more advantageous in any case.

Note that, MULT requires two operations, i.e., the calculation of

DIST and the calculation of RATIO as compared wi'th out algorithm.

The efficiency of the algorithm is highly dependent on the
~

114

topological conditions of the problem. For problems defined in the

Eucl idean space the sol utions obtciined by starting with a convex hull

are better than the solutions obtained by starting with an arbitrary

partial tour. Note that, although the convex property of the convex

hull is lost immediately after inserting a node into it, all the other

nodes remain interior with respect to the new boundaries .. Thi~ struc­

ture, however, plays an important role in obtaining better solutions

than an arbitrary partial tour would yield.

115

A general advantage of the algorithm is that it is easy to

ap~y. Reasonable solutions to problems where the number of nodes is

small enough can be found quickly without the aid of a computer but

just with the help of a pocket calculator.

3.5 COMPUTATIONAL ·'RESULTS

Since the published computational results of various algorithms

found in literature are given for different problems solved by different

computers comparisons based on these results are difficult. In terms

of computational effort we.had two alternatives to choose. We could

either base the comparisons on the published results which were tested

in different environments or write all the programs in order to test

them in our environment. In the former case, we could have been unfair

to algorithms tested under different cond~tions. The latter case was

infeasible in the sense that it would have been far beyond the scope

of this study. Therefore, neither of the alternatives were chosen. On

the other hand, we were unable to find the data of the problems tested

by other authors since they are unpublished. As a result,the compu­

tational aspects were examined on the relative merits of the proposed

algorithms.

To check the effectiveness of the proposed methods in solving

the TSP 35 complete Euclidean problems were generated with points

randomly sel ected from the unit square ({ (x,y) I 0 ~ x ~ 1, 0 ~ y ~ l}).

The problems contajned nodes ranging between 10 and 70. The optimum

solutions to the problems with at most 20 nodes were found by using

Little's branch and bound approach. The methods were then applied

to the same problems. For the problems which contain more than 20

nodes, only comparisons between the proposed algorithms are made

since an inordinate amount of time is required to solve problems

of that size by using' Little1s branch and bound approach.

116

There are several different interrelated measures to consider

in order to define the power of each heuristic method separately.

For instance consider the reductions applie~ in the first method.

The effect of reduction is felt in several ways. The most obvious

is a considerabl~ decrease in the number of arcs on which the Hamil-

tonian circuit search takes place. Results reveal that after connec­

tedness and unilateral connectedness is achieved, the number of arcs

that comprise ~he subgraph is less than about 10% of the total number

of graphs existing in the original graph (Table 3.17). As a result,

the computation effort is decreased. However, this saving in effort

is not the only effect in introducing reduction. Rather, reduction

introduces a bias into the procedure when no Hamiltonian circuit is
,

formed although the necessary conditions are satisfied. In that case,

Little1s algorithm is applied partially to the resultant matrix. the

solutions obtained by using the resultant matrix are different than

the ones that can be obtained by using the original matrix. Results,

regarding this facti are given in Table 3.18. Another fact that has

been observed is that as the number of nodes increases, the probability

th~t a Hamiltonian circuit will be produced in the subgraph decreases.

Horeover, the solutions obta.ined tend to be only suboptimal s"ol utions.

In other words the applica~ion of Little1s algorithm partially may not

be able to break out of this to actually get the optimum solution. The

results are indicated "in Table 3.16a and Table 3.16b.

117

Table 3.17 - Computational results regarding Algorithm I

\

Total No. No. of arcs Solution Total No. No. of arcs Solution n of arcs in Go in Go
n of arcs in Go in Go

10 90 28 Yes 40 1560 112 No

10 90 32 No 40 1560 114 No

10 90 32 Yes 50 2450 154 No

10 90 25 Yes 50 2450 134 No

10 90 26 No 50 2450 150 No

20 380 52 No 50 2450 134 No

20 380 52 No 50 2450 138 No

20 380 68 Yes 60 3540 178 No

20 380 62 Yes 60 3540 182 No

20 380 50 No 60 3540 174 No

30 870 82 No 60 3540 160 No

30 870 92 No 60 3540 193 No

30 870 84 No 70 4830 206 No

30 870 86 No 70 4830 198 No
~

30 870 82 No 70 4830 198 No

40 1560 115 No 70 4830 192 No .
40 1560 112 No 70 4830 , 212 No

40 1560 106 No

Table 3.18 - Results regarding the application of Little1s
algorithm partially to the reduced matrix or
to the original matrix

Problem Solution found Solution found
size by using the by using the

reduced matrix original matrix

10 362 305

10 279 279

20 381 386

20 462 433

20 488 475

118

Considering the computational complexity of this algorithm it

can be seen that the number of operations made during the execution

is of order n3 where n is the number of nodes in the graph. The

algorithm consists of three parts: (strong) connectedness of the sub­

graph can be achieved in n (n-2) operations. This results from the

fact that, in the worst case, the first reduction may end with 1~/2J

subtours where L·l indicates the integer part of (.). Thus, at most,

(n-2) other reductions are needed to achieve .(strong) connectedness.

On the other hand, since n operations are needed to define the reachible

set of a node, the total number of operations increases to n2 when all

nodes are considered. As a restil~ of repeating the checking procedure

(n-2) times in the worst case the total number of operations is of

order 0(n 3
). Similarly, in the second part of the algorithm, the

number of operations needed for checking unilateral connectedness is

n(n-l)2, since (n~l) operations are needed to find the reachible sets
.

of the (n-l) distinct nodes after a specific node is removed from the

*

n

10

10

10

10

10

20

20

20

20

20

30

30

30

30

30

Table 3.19a - Computational results for the proposed
~lgorithms when applied to problems where

10 < n < 30

119

Optimum Algorithm 1. . Algorithm II Algorithm III Algorithm IV
cost

* Cost, . CPU Cost CPU Cost CPU Cost CPU

280 280 1 .315 305 5.101 291 0.320 363 0.478

299 362 1.790 342 8.199 299 0.317 356 0.278

275 279 1.580 279 4.029 292 0.321 335 0.322

285 285 1.239 295 2.895 285 0.303 297 0.307

279 279 1.443 280 3.091 291 0.311 300 0.338

354 381 8.305 410 72.450 384 1.323 394 1.239

400 462 8.587 437 33.571 492 1.305 463 1.323

377 387 8.732 411 95.632 441 1.377 387 1.479

389 389 9.070 411 51. 369 482 1.386 503 1.254 .
378 488 7.614 387 32.95 432 1.476 560 1.400

- 491 27.594 - - 624 3.708 542 2.647

- 614 29.742 - - 564 3.728 604 3.059

- 528 29.174 - - 490 3.709 661 2.789

- 595 32.328 - - 509 3.428 629 3.008

- 471 31.332 - - 464 3.737 558 3.135

CPU times are in seconds of UNIVAC 1106 computer, Bogazici Un-iversity.

120

subgraph. As a result of repeating the process n times (i.e. each node

in the subgraph is removed one by one) the number of operations needed

for the whole procedure is of order 0(n 3). Finally, since Litt1e ' s al­

gorithm is applied until a feasible solution is found and therefore the

order of this procedure is far from being greater than the orders of
~

the other parts of the algorithm, the overall order of the proposed al­

gorithm is 0(n3). Note that, a careful examination of Table 3.19a and

Table 3.19b reveals that the CPU times can be expressed approximately

as (n3/1000)~

The experiments made on the second method showed that the method

might end up with high computation times asa result of jumping over

the optimal solution. In other words, the algorithm may omit~the opti-

mal solution and then continue with the search in an unknown direction

until a feasible solution is obtained. This may be the consequence of

the fact that there may exist more than one AP solution with the -same

objective function value such that one is the optimum solution to the
,

TSP and the other is not. On the other hand, the optimum solution may

be omitted due to the fact that two previously basic but currently non­

basic variables may not enter the basis at the same time. Hence, the

algorithm may require a considerable amount of computation time in

order to find at least a feasible tour. Experiments' for this method

- were conducted upto 20 nodes. The results can be seen in Table 3. l~a.

It should be noted .that the CPU times are still efficient as ~ompared

with the re1evan~ ranking and subtourbreaking methods in literature.

In addition, problems of the same size showed a considerable variation

in the computation times. This can be explained by the variation in

n

40
,~

40

40

40

40

50

50

50

50

50

60
.
60

,

60

60

60

70

70

70

70

70

Table 3.19b -. Computational results for the proposed
algorithms when applied to problems where

40 < n < 70 - -

Algorithm I Algorithm III Algorithm IV

Cost GPU Cost CPU Cost CPU

569 71.070 645 7.391 664 5.005

617 72.314 742 7.907 807 6.321

557 65.438 597 7.136 609 5.203

617 68.765 714 7.713 626 5.124

599 65.321 672 7.319 722 4.892

691 146.737 714 14.587 605 12.135

702 135.878 733 13.546 721 8.800

838 142.656 706 13.631 758 6.831

761 132. 196 724 13.323 814 8.507

683 113.126 791 14.442 770 8.513
,

695 206.103 848 22.455 , 934 12.255

816 212.328 776 22.934 ·999 11.450

761 192.707 821 24.567 .958 13.131

739 195.737 784 23.757 825 15.855

779 231.319 835 23.160 838 11 . 189

1010 328.886 967 44.765 1035 20.699

745 335.943 889 . 35.342 965 21. 743

809 350.958 877 35.288 812 13.864.

746 313.229 891 33.965 794 21.440

942 363.803 876 33.472 1015 17.355

121

122

the number of extreme points found between the optimum AP solution and

the TSP solution.

Experimental results regarding the computation times of the third

algorithm are.also listed in· Table 3.19a and Table 3.19b. The results

indicate that this is a highly effective procedure for building a tour.

The computation time required to solve problems with 70 nodes .is about

35 seconds. The procedure was also capable of finding the optimal solu­

tions in some of the problems. Of those that are not optimal, the devia­

tion from the optimal value is less than 8%. But, of the 10 runs whose

optimal solutions are known only 2 are optimal.

The computation effort of the algorithm can be expressed as

follows: At the first stage, (n-2) operations are made for each of

the (n-l) nodes other than the root node. At the second stage, the

number of operations is (n-3) since (n-3} nodes remain to be sequenced.

The other stages proceed similarly. Therefore, the total number of

operations can be given by the expression

n-2
(n~l) L i = (n ~ 1)2(n - 2)/2

i=1

which shows that the proposed algorithm is of order 0(n 3).

In terms of the computation effort, the last algorithm using

the geometric approach is the most efficient one although it seems to

find solutions worse than the others. Thjs is because arbitrary

convex hulls with the least possible number of nodes were input to

the algorithm in order to measure its computational efficiency.

Consider that in the worst case the algorithm starts with a

partial tour containing only two nodes and therefore two arcs. As a

123

result, the number of operations in the first step is 2(n-2) since

there are two_arcs and (n-2) remaining nodes to consider. Similarly,

3(n-3) operations are conduct~d for the second step. O~erall,

n-1
L i(11- i)

i=2

operations are needed for the whole procedure. Expanding this expres-

sion we obtain

n-1
n Li­

i=2

which makes (n 3
- 19n + 6)/6 operations at most. Therefore we can

conclude that the algorithm is of order 0(n 3
). Analysing the results

indicated in Table 3.19a and Table 3.l9b we see that, even for the

worst case, the computational effortbf this algorithm is the best

as compared with the others. Nevertheless, results regarding the­

costs are promising considering that the convex hulls which are

necessary as input to the algorithm were not identified.

IV. THE MULTI-DEPORT VEHICLE ROUTING PROBLEM AND

ITS FORMULATION AS A TRAVELLING SALESMAN

PROBLEM

4.1 INTRODUCTION

Vehicle routing and scheduling problems which involve the

periodic collection .and delivery of goods and services are both of

theoretical and practical importance. The ideas lying under this

124

. subject have proven to be interesting for·the researchers who are

specialized in computer science and graph theory as well as opera­

tions research. On the other hand, routing and scheduling proce­

dures contribute to saving a considerable amount of .money by increas­

ing the productivity, improving the operations, aiding in long range

planning, handling the job scheduling and sequencing problems and

controlling vehicle utilization from the financial point of view.

The vehicle routing problem (VRP) invQlves the designation

of a set of routes which are sequences of pickup and/or delivery

points that are to be traversed by vehicles in order, starting and

ending at some depots. The problem is referred to as scheduling

problem (VSP) when arrival and departure times of the vehicles are

specified. As a matter of fact, the problem can be viewed as a

125

combined routing and scheduling problem when both routing and scheduling

functions need to be performed.

A specific vehicle routing and/or scheduling problem can be

described on the'basis 'of a number of characteristics. The following

taxonomy given by Bodin and Golden [58] is useful in identifying the
~

type of the vehicle routing and/or scheduling problem that is being

confined:

A. time to service a' particular node or arc

1. time specified and fixed in advance (pure VSP)

2. time windows (combined VRP and VSP)

3. time unspecified (VRP)

B. number of depots

1. one depot

-2. more than one depot

c. size of fleet available

1. one vehicle

2. more than one vehicle

D. type of fleet available

1. homogeneous case (all vehicles are the same)

2. heterogeneous case (not all vehicles are the same)

E. nature of demands

1. deterministic

2. stochastic

F. location of demands.

1. at nodes (not necessarily all)

2. on arcs (not necessarily all)

3. mixed

G. underlying" graph

1 .. undirected

2. directed

3. mixed

H. vehicle capacity constraints

1. imposed - all the same

2. imposed - not all the same

3. not imposed

I. maximum vehicle route-times

1. imposed - all the same

2. imposed - not all the same

3. not imposed

J. costs

1. variable or routing costs

126

2. fixed operating or vehicle acquisition costs (capital

costs)

K. operations

1. pickups only

2. delivery only

3. mixed

127

L. objective

1. minimize routing costs incurred

2. minimize sum of fixed and variable costs

3. minimize number of vehicles required

M. other (pr9blem-dependent) constraints

Note that, this framework includes a vast variety of combina­

tions which cover all of the well known problems as well as problems

that have not received much research attention.

4.2 VEHICLE ROUTING PRQBLEMS AS EXTENSIONS OF THE

TRAVELLING SALESMAN PROBLEM

4.2.1 The Multiple Travelling Salesman Problem (MTSP)

Most of the VRPs are variants or extens';ons of the TSP. Actu­

ally, the problein of satisfying the demand at each node of a graph with

a single vehicle of unlimited capacity while the total routing cost is

being minimized is the TSP. Building upon the TSP, other problems

progressing from the very simple to the more complex have been extended

and synthesized. One of su~h problems is the MTSP which represents a

large number of ·real world problems.

Given m salesmen and n nodes in a graph, the MTSP is to assign

a subtour to each salesman such that the subtours start and end at a

central depot and the sum of m subtour costs is minimized. The integer

programming formulation of the ~1TSP can be obtained by changing the

formulation of the TSP slightly [4J as

wnere

n n
minimize ~ ~ C .. x ..

i=l j=l 1J 1J

n

= 1
m if j = P

s.t. ~ x .. = b. j = 1 , ... , n
i=l 1J J 1 otherwise

n

= { ~
if i = P

.~ x .. = a. i = 1 , ... , n
j=l 1J ,

otherwise

x· . 1J e: S

x .. e:
1J

{O,l} Vi,j

p is the node representing the central depot

S is the set of constraints prohibiting subtour solutions
and can be represented by one of the constraint sets
(2.4a),(2.4b) and (2.4c).

4.2.2 The Multi-Depot Vehicle Routing Pr.ob1em (MDVRP)

128

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

The MDVRP' is an extension of the MTSP which incorporates multiple

depots. The MDVRP allows vehicles to reside at ~ore than one depot and

seeks for the minimum number of vehicles needed to satisfy all the de­

mands while the total traversing cost is being minimized. The problem

can be classified as being a pure VRP with more than one depot and more

than one vehicle. The type of the fleet is assumed ,to be homogeneous,

i.e. all of the vehicles are the same. The demands are deterministic.

Neither vehicle capacity constraints! nor maximum vehicle route times

are imposed. That is, the vehicles are assumed to have capacities which

exceed the total demand. The underlying graph can be undirected; directed

or mixed. The problem can be related to delivery or pickup operations

, where only routing costs are being considered.

129

The integer programming formulation of the MDVRP can be summarized.

as follows:

Let the nodes of the graph be numbered such that the nodes l, .•. ,p

denote the depots and the nodes p+l, ... ,p+n denote the demand points.

Then, the formulation can be given as

minimize

subject to

p+n p+n m k
L L Leo oX 00

i=l j=l . k=l lJ lJ

p+n m
L L

i =1 k=l

p+n m
L L

j=l k=l

k
X 00 = 1 lJ

k
X 00 = 1 lJ

(4.6)

j = p+ 1 , .•. , p+n (4.7)

i = p+ 1 , ... , p+n (4.8)

p+n k p+n k k = l, ... ,m
L X 0 - L x 0 0 = 0 1 + (4.9)

i=l lr j=l lJ r = , ... ,p n

p p+n
L L'

i=l j=P+l

p p+n
L L

j=l i =p+l

XES

k
Xo 0 < 1 lJ -

k
Xo 0 < 1 lJ -

k
Xo 0 E {O;l}
lJ

k' = l, •.. ,m

k = l, ... ,m

Vi,j,k

where S is redefined as one of the three following alternatives

(4.10)

(4.11)

(4.12)

(4.13)

and

130

S :: {x .. , r r x .. > 1, VQ £;; {l , ... ,pH (4.12a)
,1J ie:Q j¢Q lJ-

S = {x .. 1 r r x. '. < I Q I - 1 VQ c: {p 1, ... , n}} (4. 12b)
lJ ie:Q je:Q lJ-

S = {x .. , y. - y. - nx .. < n-l p 1 _< i # j < n, Yl' 'e: 1lR} (4. 12c) lJ.J J lJ -

n = total number of demand nodes

p = total number of depots

m = total number of vehicles

C .. = cost of traversing arc (i,j) lJ
if arc (i,j) is traversed by vehicle k

otherwise

m k
X = matrix with components x·· = .r x.. specifying the

lJ k=l lJ
number of times arc (i,j) is traversed.

The objective function (4.6) states that the total cost is to

be minimized. Constraints (4.7) and (4.8) ensure that each demand node

i,s visited by one and only one vehicle. Constraints (4.9) represent

the route continuity. They imply that a vehicle entering to a node

must exit from that node. The fact that the vehicle availability is

not exceeded is made certain by constraints (4.10) and (4.11). Using

inequalities, the problem is relaxed in the sense that there is no

restriction to employ all the vehicles available. Some of them may be

fo~nd useless in the optimal solution. Finally, constraints (4.12) can

be any of the subtourbreaking constraints.specified,in (4.12a), (4.l2b)

. and (4. 12c).

In this model, we assume that vehicle capacities exceed the

total demand in the problem and therefore put no restriction on the

subtour lengths.· As a result, when a demand node is visited, its

requirements are satisfied. However, it may be more realistic to

include constraints associated-with vehicle capacities and total

elapsed route time in~the model. In this case, these constraints

can be included iri the model as follows:

131

p+n p+n k
~ ~ d.x .. < Pk J 1J -1=1 j=P+1

k = l, ... ,m (4.14)

Here,

p+n k p+n k p+n p+n k k
~ t. ~ x.· + ~ ~ t .. x .. < Tk k = l, •.. ,m

i=1 1 j=1 1J i=1 j=1 1J 1J -
(4.15)

Pk = capacity of vehicle k

Tk = maximum time allowed for a route of vehicle k

dj = demand at node j

t t. =
1

t~.=
1J

time required for vehicle k to deliver.or collect at node i

travel time for vehicle k from node i to node j(t~. = 00). : 11

Overall, a careful examination of constraints (4.7)-(4.13) reveals that

constraints (4.7) and (4.9) imply constraints (4.8). Similarly, con­

straints (4.9) .and (4.10) imply constraints (4.11). As a consequence

of this fact, constraints (4.8) and (4.11) may be excluded from the

formulation since they are redundant in solving the problem. ~oreover,

it should be noted that initial vehicle locations are not being consi­

dered by the formulation. The fact that the vehicles must start and

132

end at the deports where they are initially located is not under control

either. But the requirement that at most the given number of vehicles

can be used is strongly imposed.

4.3 SOLUTION TECHNIQUES FOR THE VEHICLE ROUTING PROBLEMS

Proposed techniques for solving VRPs fall into seven distinct

classes as specified by Bodin and Golden [58J:

l. Cluster first - route second

2. route first ":' cluster second

3. savings/insertion

4. improvement/exchange

5. mathematical programming based

6. interactive optimization

7. exact procedures.

Cluster first-route second procedures group demand nodes first

and then design economical routes over each cluster .as a second step.

Examples of this idea are given by Gillett and Miller [59J, Gillett

and Johnson [60J and Kgrp [61J for the standard single depot VRP.

Route first and cluster second procedures construct a large

route which includes all the nodes ignoring capacity and range con­

straints first and then, if infeasible, partition this route into a

number of smaller but feasible and economical routes. Examples of

route first-cluster second procedures are given by Newton and Thomas

[62J, Bodin and Berman [63J and Bodin and Kursh[64J.

133

Savings and insertion procedures build a solution in ~uch a way

that at each step a comparison is made between the current solution and

the alternative solution. The alternative solution is one that yields

the largest savings in 'terms of cost or distance travelled or that in­

serts a demand entity not existing in the current solution econgmically.
,"

Various savings/insertion procedures for single depot and multiple depot

routing problems have been des'cribed by Clarke and Wright [65], Golden

et.al [66] and Norback and Love [45].

Improvement or exchange procedures such as the heuristics deve­

loped by Lin [49], Lin and Kernighan [50J always maintain feasibility

and strive towards optimality. At each step, the current feasible solu­

tion is altered to yield another feasible solution with a' reduced objec-

tive function value. The procedure continues until no more improvements

are possible. Examples of these procedur~s can be found in Christofides

and Eilon [67J and Bodin and Sexton [68] .

. Mathematical programming approaches include algorithms that are

directly based on a mathematical programming formulation of the under­

lying model. Examples of this approach can be found in Fisher and

Jaikumar' [69J, Christofides, Mingozzi and Toth [5].

Interactive optimization is a general purpose approach in which

an experienced decision maker who has the capability of setting and

revising parameters and injecting subjective assessments based on know­

ledge and intuition is incorporated into the problem-solving process.

Adaptations of this approach to the VRP are presented by Krolak, Felts

and Marble [70] and Krolak, Felts and Nelson [71J.

134

Exact procedures for solving the VRP include the branch and

bound and cutting plane algorithms. However, these procedures have

been viable only for small problems. Examples of these procedures

which proved to be effective are described by Christofides et.al [5]

and Crowder and Padberg [38J.

4.4 SOLUTION PROCEDURES FOR THE VEHICLE ROUTING PROBLEMS

WHICH BUILD UPON THE TRAVELLING SALESMAN PROBLEM

AS THE CORE r~ODEL

It is well known that theiTSP is embedded within the most commonly

encountered vehicle routing formulations. Two of such problems which are

extensions of the TSP, namely the MTSP and the MDVRP were discussed in

the previous sections. In this section we will show that although these

problems are extensions of the TSP they can be solved as a TSP.

4.4.1 The Single Depot Case (MTSP)
,

As it has been shown by Sweetska and Huckfeldt [8], Bellmore

and Hong [6J and the others, it is possible to derive equivalent TSP

formulations of the MTSP by the use of a suitable transformation. The

transformation is applicable to both symmetric and asymmetric matrices.

In summary, it consists of

1. creating m copies of the central depot

2. connecting each of the m copies to the other nodes exactly

as the original central depot is connected

135

3. inserting infinities in the elements of the extended cost

matrix which correspond to arcs connecting the copies of

the central depot ..

For example, consider the MTSP on a complete travelling salesman

graph G = (N,E) wher~ N = {1,2,3,4,5}. The associated inter-node cost

matrix is given in Table 4.1a. If we let node 5 represent the central

depot in which two vehicles are located initially, then the transforma­

tion described above yields the cost matrix given in Table 4.1b.

Table 4.1 - Transformation of a cost matrix for the MTSP

1 2 3 4 5 1 2 3 If 5 6

·00 C12 C13 C14 C15
1 I 00 C12 C13 C14 C15 C15

2 C21 00 C23 C24 C25 2 C21 00 C23 C24 C25 C25
3 C31 C32 00 C34 C35 3 C31 . C32 00 C34 C35 C35
4 C41 C42 C43 00 C45 4 C41 C42 C43 00 C45 C45

5 C51 C52 C53 C54 00 5 C51 C52 · C53 C54 00 00

6 C51 C52 C53 C54 00 00

(a) (b)

Any AP solution using the extended cost matrix and producing m subtours

each containing one of the copies created is the optimal MTSP solution.

The optimal solution to the MTSP can also be obtained by solving the

TSP on the extended cost matrix. As a result, the travelling salesman

tour is decomposed into m subtours as required in the MTSP, by. coalescing

the copies back irito a single node. For instance, suppose that the

optimal travelling salesman tour obtained by solving the TSP on the

136

extended matrix is (1-3-5-4-2-6-1). Then, coalescing nodes 5 and 6 back

into a single node, namely node 5 in the original problem, yields the

subtours (5-1-3-5) and (5-4-2-5) which correspond to individual salesman

tours and therefore represent the optimal solution to the MTSP. The back

transformation is shown in Figure 4.1.
,"

(a) (b)

Figure 4.1 - An example of back-transformation for an MTSP.

4.4.2 The Multi-Depot Case (MDVRP)

Similar to the MTSP, the MDVRP can also be converted into an ,
,

equivalent TSP in a way not principa"lly different from the transfor-

mation used for the MTSP. Assuming that we know how the vehicles are

located initially, the proposed transformation can be realized byex­

tending both the node set and the arc set together with the associated

cost matrix.

4.4.2.1 Transformation of the Node Set

It is clear that the node set of the problem consists nf demand

nodes and nodes representing the depots. First, the nodes corresponding

to the depots are deleted from the node set. Instead, duplicates of the

137

depots are generated. For each vehicle in a specific depot, two copies

of the depot are generated. One of the copies serves as the departure

node while the other-serves as the arrival node for that particular

vehicle. For the sake .of simplicity the new nodes are labelled in such

a way that nodes labelled with odd numbers represent the departure nodes

whereas nodes labelled with even numbers represent the arrival nodes.

Considering that there are m vehicles, the number of nodes is increased

from (p+n) to (2m+n).

4.4.2.2 Transformation of the Arc Set

First, the arcs connecting the deleted nodes which correspond

to the depots are deleted from the arc set. Then, the transformation

is executed by .

1. connecting the departure node Of each vehicle to its

arrival node

2. connecting the arrival node of each v,ehicl e to the

dep~rture node of another vehicle which has been

labelled with a larger number with one exception; ,

The arrival node of the last labelled vehicle is con-

nected to the departure node of the first labelled

vehicle

3. connecting each demand node to each arrival node and

each departure node to each demand node exactly as the

.original depots are connected.

138

As a result, the number of arcs in the arc set of a complete graph is

increased by 2m(n+l). After all, there are no arcs entering the de­

parture node except the arc that comes from one of the arrival nodes.

Conversely, there are no arcs leaving the arrival nodes except the one

incident to one of the departure nodes.

4.4.2.3 Transformation of the Cost Matrix

The cost matrix of the MDVRP is transformed in such a way that

the costs of the arcs between the arrival nodes and the demand nodes

and between the nodes and the departure nodes are the same as they are

for the corresponding depots in the origjnal matrix. The arcs that

connect the departure and the arrival nodes are assigned a zero cost.

In addition, the costs of the arcs co~necting the demand nodes to each

other remain the same as they are in the original cost matrix. Finally,

infinities are inserted for costs representing nonexi$tent arcs.

4.4.2.4 An Illustrative Example

Consider an MDVRP defined in a graph G (Figure 4.2a) whose

associated cost matrix C is as shown in Table 4.2a. There are eight

demand nodes 1, ..• ,8 and two depots 9,10. Suppose that one vehicle is

located in each depot. The equivalent travelling salesman graph is

shown.in Figure 2.4b. After nodes 9 and 10 are deleted four nodes are

created. In this case nodes·9 and 11 ~erve as the departure nodes and

nodes 10 and 12 as the arrival nodes. Suppose that the optimal solution

to the TSP in the transformed graph is given by (1-2-4-10-11-6-7-8-5-12-9-3-1)

139

Table 4.2a - The cost matrix
2 3 4 5 6 7 8 !l

, .
10

1 co . co 00 00 co 00 00

2 co 00 co 00 00

3 co co 00 co 00 00

co 00 co co

5 co 00 co 00 co co

.'

6 co co co co 00 00 co

7 00 co 00 co co 00

8 co co 00 co co 00 00

!l 00 co 00 00 00 00 00

10 co co co C105 C1Do
co 00 00

Table 4.2b - The transformed cost matrix _

1 00 co co co 00 co - 00 co 00

2 00 00 co 00 00 00 00

3 00 co co co co 00 00 00

4 co 00 co 00 00 00

5 00 00 00 00 00 co 00 00

6 00 00 co 00 00 00 00 00 00

7 00 00 co 00 00 00 00 00

8 00 00 00 co 00 00 00 00 00

9 00 00 00 00 00 00 o 00 00

10 00 00 00 00 00 00 co 00 00 00 o 00

11 co 00 00 co 00 co 00 o
12 00 00 00 co 00 00 00 o 00 00 00

140

Figure 4.2a - The original graph

Figure 4.2b -The equivalent travelling salesman graph

Then, . coa 1 esc i ng nodes 9,. 10 and 11, .12 back into two nodes the

travelling salesman-tour is decomposed into two subtours corresponding

to nodes representing depots 9 and 100f the original problem. As a

result the subtours are: (9-3-1-2~4-9) and (10-6-7-8-5-10) (Figure

4.3a and Figure 4.3b).

141

Figure 4.3a - Optimum tour for the travelling salesman graph

Figure 4.3b - Optimum solution to the MDVRP

4.4.2.5 Equivalence of the Problems

In this section, we will try to prove th·at the TSP and the

MDVRP become two e.quivalent problems when the transformation described

in the previous section is applied. We will show that there is a one

to one correspondence between the solutions of both problems. In

142

addition, the one to one correspondence in ranking the solutions cost-

wise will be illustrated.

Since the TSP solution has to coverall the nodes in a graph

once and only once, all of the demand nodes will be visited once any

only once in the original MDVRP and therefore the demands will be

satisfied. Considering the integer programming formulation of the

MDVRP) the number of vehicles to be used is bounded from above, but

there is no restriction on the number of vehicles that have to be

utilized. Actually, the total number of vehicles. is an upper bound

for the number of subtours.in the MDVRP. If,' in the TSP solution, the

nodes are sequenced in such a way that an arrival node appears immedi­

ately after a departure node, then the vehicle corresponding to these

. nodes is not used in the associated solution of the MDVRP. Hence a

one to one correspondence is achieved.

Note that the arcs connecting the arrival nodes to the depar­

ture nodes and the arcs connecting the departure nodes to- the arrival
,

nodes are assigned zero costs. Besides, the costs corresponding to

the arcs~hich connect the departure nodes to the demand nodes and the

demand nodes to the' arrival nodes are the same as they are given in

the rows and columns of the corresponding depots in the original matrix.

As a result, the cost of a travelling s~lesman tour is exactly the same

as the cost of the corresponding solution of MDVRP. Thus, the optimal

solution to the TSP in the transformed graph is equivalent to the opti­

mal solution of the MDVRP in the original graph.

V. APPLICATION OF THE PROPOSED ALGORITHMS

TO THE MULTI-DEPOT VEHICLE ROUTING

PROBLEM

143

This section of the thesis is completely devoted to the appli­

cation of the proposed algorithms to the MDVRP. All of the algorithms

are applied to the same problem in order .to compare them in equivalent

conditions. Actually, the algorithms are expected to perform better

for the transformed cost matrix than they do for complete graphs for

which examples and computation times are already given in the thfrd
.

chapter. This expectation is due to the special structure of the

transformed matrix. In fact, it is certain that all TSP tours will

traverse arcs defined between the arrival and departure nodes. There­

fore, these arcs need not carried along the search process continuously.

This is especially true for the reduction algorithm. But still the

other algorithms are also affected by the structure of the transformed

matrix.

Consider the MDVRP defined in Figure 5.1. The associated cost

matrix, C, is given in Table 5.'1. Assume that nodes 8 and 9 represent

the depots in which two vehicles are located initially. It .is desired

to investigate the optimal tours each vehicle should traverse so that

144

all of the other nodes are visited once only once. We first need to

transform the cost matrix in order to apply the proposed algorithms.

Accordingly, nodes 8 and 9 are deleted from the problem. Instead two

arrival nodes and two departure nodes are created. Each arrival node

is connected to a departure "node. Similarly, each departure node is

connected to an arrival node. Besides all of the demand nodes {l, •.. ,7}

are connected to each arrival node and each departure node is connected

to the demand nodes exactly as nodes 8 and 9 were connected. The re­

sultant cost matrix C' is given in Table 5.2. Note that nodes 8 and 9

represent the departure and the arrival nodes for the vehicle located

in depot 8 in the original problem respectively. Similarly, nodes 10

and 11 represent the departure and the arrival nodes for the vehicle

located in depot 9-respectively .. Now we are ready for applying the

. proposed algorithms in order to solve the TSP by using the transformed

matrix.

Figure 5.1 - The graph repre~enting the MD~RP

145

Table 5.1 - The cost matrix corresponding to the MDVRP

1 2 3 1+ 5 6 7 B !

00 45 00 95 70 00 00 00 48

2 '45 00 40 00 00 00 00 00 00

3 00 40 00 00 65 '70 125 00 40

1+ 95 00 00 0(; 43 48 00 33 00

5 70 00 65 43 00 25 00 00 28

6 00 00 70 48 25 00 60 47 00

7 00 00 125 00 00 60 00 25 00

B 00 00 00 33 00 47 25 00 00

! -48 00 -40 00 28 00 00 00 00

Table 5.2 '7 The transformed cost matrix

1 2 3 1+ 5 6 7 B- ! 10 11

1 00 45 00 95 70 00 00 00 00 cO 48

2 45 00 40 00 00 00 00 00 00 00 . 00

3 00 40 00 00 65 70 125 00 00 ~CX) 40

1+ 95 00 00 00 43 48 00 00 33 00 00

5 70 00 65 -43 00 25 00 00 00 .00 28

6 00 00 70 48 25 00 60 00 47 00 00

7 00 00 125 00 00 60 00 00 25 CXl CXl

B 00 00 00 33 00 47 25 00 ' 0 CXl CXl

! 00 CXl 00 CXl 00 CXl 00 00 CXl 0 CXl

10 48 CXl 40- CXl 28 CXl CXl 00 CXl CXl 0

11 00 00 00 00 00 00 CXl 0 00 00 00

146

5.1 APPLICATION OF ALGORITHM I

As a result of reducing the cost matrix C' the corresponding

subgraph G' is shown in Figure 5.2a. Note that G'· is not connected .

. The algorithm proceeds as follows:

... '
Choose node 1. R{l) = {1,2,3,7,8,9,10,11} t N

TIl = min {C!.} = CS4 = 15
ie:R(l) lJ
je:N-R(l)

Including arc (8,4) in G' (Figur.e 5.2b) we see that G' is still

disconnected.

R(l) = {1,2,3,4,7,8,9,10,11} ~ N

TIl = min {C!.} = Cis = C~5 = C~5 = 10
, ie:R(l). lJ

je:N-R(l)

Once arcs (1,5), (3,5), (4,5) are included in G' we obtain

R(l) = N. The resultant subgraph is shown in Figure 5.2c.

Choose node 2. R(2) = N

Choose node 3. R(3) = N

Choose node 4. R(4) = {4,5,6,7,8,9,10,11} ~ N

(a) (b)

(c) (d)

Figure 5.2 - Stages in constructing the subgraph* G1

After lnc1udlng arcs (5,1), (5,3) (10,3) in G1
, the set of

nodes reachib1e from node 4 becomes equivalent to N, i.e. R(4) = N~

The resultant subgraph G1 is shown in Fi9ure 5.2d.

* Lines without arrows denote arcs in two directions.

147

148

Choose node 5. R(5) = N.

Choose node 6. R(6) = N.

Choose node 7. R(7) = N.

Choose node 8. R(8) = N.

Choose node 9. R(9) = N.
,~ ..

Choose node 10. R(lO) = N.

Choose node 11. R(ll) = N.

·Since all nodes have been tried and strong connectedness is achieved

we proceed by checking the unilateral connectedness in any subgraph

Gk obtained by removing a node k and the associated arcs from G1.

Remove node 1. G1
1 is unilaterally connected (Fig. 5. 3a).

Remove node 2. G1
2 is unilaterally connected lFig. 5. 3b).

Remove node 3. G1
3 is unilaterally.connected (Fig. 5.3c).

Remove node 4. G1
4 is unilaterally connected (Fig. 5. 3d).

Remove node 5. G1
S is not unilaterally connected (Fig. S.3e).

There is no path either from node 1 to node 6 or from node 6 to node 1.

R(l) = {l,2,3,4,7,8,9,10,1l} R(6) = {6}

N-{5}-R(1) = {6} N-{5}-R(6) = {1,2,3,4,7,8,9,10,11}

~16 = min{m i n {C! .}, min {C! .}}: C316:C416=C613=C614=
isR(l) lJ isR(6) lJ
jsN-{5}-R(1) jsN-{S}-R(6)

The updated G~ is shown in Fig. S.3f.· Note that G~ becomes uni­

laterally connected.

Figure 5.3a - Subgraph GJ

. . 1

Figure 5.3c - Subgraph G1

3

Figure 5.3e - Subgraph GS

.~ '.<;;. '::~~~"~;)5f£~'~ : '~''"
.. .. "{9·.~(:':~?~:.

149

Figure ~.3b - Subgr~ph G~

,

Figure 5.3d-.Subgraph G~.

Figure 5.3f - Subgraph G~

150

Remove node 6. G1

6 is unilaterally connected (Fig. 5.3g).

Remove node 7. G1

7 is unilaterally connected (Fig. 5. 3h).

Remove node 8. G1

8 is unilaterally connected (Fig. 5.3i).

Remove node 9. ,Gg is unilaterally connected (Fig. 5. 3j).

Remove node 10. G10 is unilaterally connected (Fig. 5.3k).

Remove node 1i. G11 is uniJatera11y connected (Fig. 5.3).

Unfortunately at this stage G1 does not possess any Hamiltonian

circuit (Figure 5.4); therefore we proceed with applying Litt1e ' s algo­

rithm partially to the resultant matrix which is given in Table 5.3.

We will not go over the steps of the algorithm but instead give the

solution found which is (1-4-6-5-11-8-7-9-10-3-2-1) with a total cost

of 371. Coalescing nodes 8 and 9 and nodes 10 and 11 back lnto depots

8 and 9 in the original problem respectively, we obtain two subtours

with the same total cost. The tours are .

Tour 1 = (8-7-8)

Tour 2 = (9-3-2-1~4-6-5-9)
Total cost = 371

The tours are shown in Figure 5.7a.

5.2 APPLICATION OFALGQRITHM II

Starting with the transformed matrix we apply the second

algorithm as follows: According to the first step of the algorithm

we solve the AP. The resultant matrix is given in Table 5.4. The

associated subtours and the corresponding penalties are shown in

Figure 5.5a. Starting from the minimum of the penalties that would

Figure 5.3g - Subgraph G1

6

Figure 5.3i - Subgraph GS

Figure 5.3k - Subgraph G10

151

Figure 5.3h - Subgraph G7

Figure 5.3j - Subgraph Gg

Figure 5.31 - Subgraph G'l

152

Figure 5.4 -The resultant subgraph G"

Table 5.3 - The resultant reduced transformed matrix

1 2' 3 Ii 5 "6 7 8 !I 1 0 11

1 00 0 00 17 0 00 00 00 00 00 3

2 0 00 0 00 00 00 00 00 00 00 00

3 00 0 00 00 0 0 60 00 00 00 0

Ii 17 00 00 00 0 0 00 00 0 00 00

5 0 00 0 0 00 0 00 00 00 00 3

6 00 00 0 0 0 00 5 00 17 00 00

7 00 00 60 00 00 5 00 00 0 00 00

8 00 00 00 0 00 17 0 00 0 00 00

!l 00 00 00 00 00 00 00 00 00 0 00

10 3 00 0 00 3 00 00 OCJ 00 00 0

11 00 00 00 00 00 00 06 0 00 00 00

1

2

3

If

5

6

7

B

!I

10

11

Tl

Table 5.4 - The transformed cost matrix after the AP is
solved in the first step of algorithm II

1 2 3 4 5 6 7 B !I 10 11
,'.

co 0 co 2· 0 co co co co co 3

0 co 0 ~ co co co co co co co

,~. ,

co 0 co co 0 0 25 co co co 0

32 co co co 0 0 co co 0 co co

30 co 30 0 co 0 co co co co 33

co co 30 0 0 ' co 0 co 32 co co

co co 75 co co 20 co co 0 co co

co co co 20 co -, 52 0 co 20 co co

co co co co co co co co co 0 co

3 co 0 co 3 co co co co co 0

co co co co co co co 0 co co co

r:J P12 = 0 P7~ = 20

P21 = 3 P87 - 20
2 T2

-

P311 = 0 PglO = co

P45 - 0 P103 = 3 -

P56 = 30 P1l8 = co

P64 = 0

Zo - 336 -

Figure 5.5a - Subtours and penalties corresponding to the
AP solution

153

154

be incurred if the assignments are not to be made, we solve the corres­

ponding APs until the best solution found Z~ is less than the next

penalty to be considered. The following solutions are obtained in

each case:

1 C I 00
. lj = VJ E Tl

{(l,11),(2,1),(3;2),(4,5),(5,6),(6,4),(7,9),(8,7),(9,10),

(lO,3),(ll,8n

* Zl = 3 Zl = 3

{(l,2),(2,3),(3,6),(4,5),(5,1),(6,4),(7,9),(8,7),(9,10),

'(lO,11),(11,8)}

* Zl = 30 Zl = 3

3 C I 00
• 4j- Vj E T3

{(1,2),(2,1),(3,11),(4,9),(5,4),(6,5),(7,6),(8,7),(9,10),

(10,3),(11 ,8)}

* Zl = 20 Zl = 3

{(1,2),(2,1),(3,11),{4,5),(5,6),(6,7),(7,9),(8,4),(9,10),

(10,3),(11 ,8)}

Zl = 20 * Zl = 3

155

Since Ii equals to P31 = 3 which is the next penalty to be considered,

we do not need to solve any other AP at this point. Instead,':: we up­

date the cost matrix, i.e. take, the one which corresponds to Il = 3

and calculate the new penalties. The-associated cost matrix is given

in Table 5:5. Defining the subtours, the corresponding penalties are
,j"'

as shown in Figure 5.5b. Note that Io = 339 becomes the new objective

function value of the original problem. The following AP solutions are

obtained by solving an AP for each penalty in rank:

Table 5.5 - The cost matrix that corresponds to solution (1)

1 2 3 5 6 7 8 10 11

1 00 -3 00 2 o 00 00 00 00 00 o
2 0 00 .0 00 00 00 00 00 00 00 00

3 00 0 00 00 3 3 28 00 00 00 o
1+ 29 00 00 00 o 0 00 00 0 00 00

5 27 00 27 0 00 0 00 00 00 00 33

6 00 00 27 0 o 00 0 00 32 00 00

7 00 00 75 00 00 20 00 00 0 00 00

8 00 00 00 23 00 35 0 00 23 00 00

!l 00 00 00 00 00 00 00 00 00 o 00

10 3 00 0 00 6 00 00 00 00 00 o
11 00 00 00, 00 00 00 00 0 00 00 00

,

-
Plll = 0 P79 = 20
-

P87 = 23 P21 = 00

- = 0 P32 P910 = 00

- = 0 Pl03 = 6 P45
- = 27

-
P56 P1l8 = 00

- = 0 P64
Zo = 339

Figure 5.5b - Subtours and penalties corresponding to
the AP solution (1) .

1 C' -. lj - 00 Vj E: Tl

156

{ (1 ,5) , (2, 1) , (3,2) , (4,6) , (5,4) , (6,3) , (7 ,9) , (8,7) ~ (9 ~ 1 0) , (10, 11) , (11 ,8)}

* Zl = 27 Zl = 27

2 C' . . 3j = 00 Vj E: T 1

{ (1 ,2) , (2, 1), (3,6) , (4,5) , (5,4) , (6,3) , (7,9)" (8,7) , (9,10) , (10,11) , (11 ,8)}

* Zl = 27 Zl = 27

{ (1,,11) , (2,1) , (3,2) , (4,9) , (5,4) , (6,5) , (7,6) , (8,7) , (9,10) , (10,3) , (11 ,8)}

* Zl = 20 Zl = 20

{(1,11),(2,1),(3,2)~(4,5),(5,6),(6,7),(7,9),(8,4),(9,10),(10,3),(11,8

* Zl = 20 Zl = 20·

157

5 C• - 00 . . 10j- Vj s Tl

{(1,11),(2,1),(3,2),(4,6),(5,3),(6,4),(7,9),(8,7),(9,10),(10,5),(11,8»

Zl = 33

At this point, we do not need'to proceed with solving any other AP since

* Z, equals to the next pena l..:!:y to be cons i dered. On the other hand, sol u-

tions .(3) and (4), both of which have the objective function value Zl =
* Z, = 20, are travelling salesman tours. Therefore, the best achievable

solution is obtained with Zo = 359. It should be noted that the fact

that there are two solutions with the same objective function value in

this case is a consequence of the. symmetric nature of the original cost

matrix. In other words, both of the solutions correspond to' the same

subtours in the original problem. Choosing solution (3) the best achiev­

able tour is expressed as (1-11-8-7-6-5-4-9-10-3-2-1). Coalescing the

vehicle departure and arrival nodes back into single depots the following

tours are obtained (Figure 5.7b).

Tour 1 - (8-7-6-5-4-8)

Tour 2 = (9-3-2-1-9)

Total cost = 359

5.3 APPLICATION OF ALGORITHM III

As required by the third algorithm, all of the elements C!. are
lJ

subtracted· from a large number L which is chosen to be 250 in this case.

The resultant matrix is Biven in Table 5.6.

158

Table 5.6 - The cost matrix after subtracting each
element from a large number L = 250

2'. 3 1+ 5· 6 7", B !. 10 11

1 00 205 00 155 180 00 00 00 00 00 202

2 ":205 00 210 00 00 00 00 00 00 00 00

3 00 210 00 00 185 ,~ .. 180 125 00 00 00 210

1+ 155 00 00 00 207 202 00 00 217 00 00

5 180 00 185 207 00 225 00 00 00 00 222

6 00 00 180 202 225 00 190 00 203 00 00

7 00 00 125 00 00 190 00 00 225 00 00

B 00 00 00 217 00 203 225 00 250 00 00

! 00 00 00 00 00 00 00 00 00 250 00

10 202' 00 210 00 222 00 00 00 00 00 250

11 00 00 00 00 00 00 00 250 00 00 00

As a result, the algorithm proceeds as follows:

,
Step (1) s = 1, S = {2,4,5,11}~ k = 1

.Q,1(2) = 205 81 (2) = 1 pI (2) = {l,2}

.Q,1(3) = 0 81 (3) = 1 pl(3) = <I>

.Q, 1 (4) = 155 81 (4)= 1 pl(4) = {1,4}

.Q, 1 (5) = 180 81 (5) = 1 pl(5) = {1,5}

.Q,1(6) = 0 81 (6) = 1 pl(6) = <I>

.Q, 1 (7) = 0 81 (7) = 1 pl(7) = <I>

.Q,1(8) = 0 81 (8) = 1 pl(8) = <I>

.Q,1(9) : 0 81 (9) = pl(9) = <I>

.Q,1(10): 0 81 (10): 1 pl(10): <I>

.Q,1(11)= 202 81 (11): 1 pI (11)= {1, 11 }

Step 2 R(S) = {1,3,4,5,6,8,9,11}

R,2(2) = 205 82 (2) = 1

R,2 (3) = 415 . , 82 (3) = 2

R,2(4) = 387 82 (4) = 5

R,2(5) = 362
,;"

82 (5)=4

R,2(6) = 405 82 (6) = 5

R,2(7) = 0 82 (7) = 1

R, 2 (8) = 452 82 (8) = 11

R,2(9) = 372 82 (9) = 4

R,2(10)= 0 82 (10)= 1

R,2(11)= 402 82 (11)= 5

Step (3) k< 9, continue

Step (4) S = {3,4,5,6,8,9,11}

Step (5) k = 2

p2 (2) = {1 ,2}

p2 (3) = {1, 2, 3}

' p2(4) = {1,4,5}

p2(5) = {1,4,5}

p2 (6) = {1, 5, 6}

p2 (7) = cf>

p2 (8) = {1, 8, 1}}

p2 (9) = {1,4, 9}

p2(10)= cf>

p2 (11) = {l, 5 , 11 }

Step (2) R(S) = {1,2,3,4,5,6,7,8,9,10,11}

R,3(2) = 205 , 8"3 (2) = 2 p3 (2) =' {l ,2}

R, 3 (3) = 585 83(3) = 6 p3(3) = {1,3,5,6}

R, 3 (4) = 669 8 3(4) = 8 p3(4) = {1,4,8,11}

R, 3 (5) = 600 8 3(5) = 3 p3(5) = {1,2,3,5}

R, 3 (6) = 655 8 3(6) = 8 p3(6) = {1,6,8,11}

R,3(7) = 677 83(7) = 8 p3(7) = {1,7,8,11}

R,3(8) = 652 83(8) = 11 p3(8) = {1,5,8,1l}.

R, 3 (9) = 702 83(9) = 8 p3(9) = {1,8,9,11}

R,3(10)= 622 83(10)= 9 p3(10)= {1 ,4,9, 10}

R,3(11)= 625 ,8 3(11)=3 p3(1l)= {1,2,3,1l}

159

Step (3) k < 9, continue

Step (4) S = {3,4,5,6,7,8,9,10,11}

Step (5) k = 3

160

Step (2) R{S) = ,{-.1,2,3,4,-5,6,7,8,9,10,1l}

R,1f(2) = 795
,:"' elf (2) = 3

/ R, If (3) = 835 elf (3) = 6

R,1f(4) = 869 elf (4) = 8

R,1f(5) = 880 elf (5) = 6

R,1f(6) = 871 elf (6) = 4

R,1f(7) = 877 elf (7) = 8

R,1f(8) = 875 elf (8) = 11

R,1f(9) = 902 elf (9) = 7
~

R,1f(10)= 952 elf(lO)= 9

R,1f'{1l)= 872 elf(ll)= 10

Step (3) k < 9, continue

Step (4) S = {2,3,4,5,6,7,8,9,10,11}

Step (5) k = 4
, -

plf(2) • {1,2,3,5,6}

plf(3) = {1,3,6,8,11}

plf(4) = {1,4,5,8,11}

plf(5) = {1,5,6,8,11}

plf(6) = {1,4,6,8,11}

plf (7) = {1, 5,7 ,8,11 }

plf(8) = {1,2,3,8,11}

plf (9) = {1,7 ,8,9,11}

plf(lO)= {1,8,9,10,1}}

plf(ll)= {1,4,9,10,11}

Step (2) R(S) = {1,2,3:4,5,6,7,8,9,10,11}

R, 5 (2) = 1045 85(2) = 3

R,5(3) = 1162 85(3) = 10

R, 5 (4) = 1 092 85(4) = 8

R,5(5) = 1174 65(5) = 10

R, 5 (6) = 1078 85(6) = 8

R, 5 (7) = 11 00
.,".

85(7) = 8

R,5(8) = 1122 85(8) = 11

R, 5 (9) = 1125 85(9) = 8

R,5(10)= 1152 65(10)= 9

R,5(11)= 872 85(11)= 11

Step (3) k < 9, continue

Step (4) S = {2,3,4,5,6,7,8,9,10}

Step (5) k = 5

161

p5(2) = {1,2,3,6,8,11}

p5(3) = {1,3,8,9,10,11}

pS(4) = {1,2,3;4,8,11}

p5(5) = {1,5,8,9,10,11}

p5(6) = {1,2,3,6,8,11}

p5(7) = {1,2,3,7,8,11}

p5(8) = {1,4,8,9,10,11}

p5(9) = {1,2,3,8,9,11}

p5(10)= {1,7,8,9,10,11}

p5(11)= {1,4,9,10,11}

Step (2) R(S) = {1,2,3,4,5,6,7,9,lD,11}

R, 6 (2) = 1372 86(2) = 3 p6(2) = {1,2,3,8,9,10,11}

R,6(3) = 1362 86(3) = 10 p6(3) = {1,3,7,8,9,10,11}

R, 6 (4) = 1381 86(4) = 5 p6(4) ; {1,4,5,8,9,10,11}

R,6(5) = 1374 86 (,5) = 10 p6(5) = {1,5,7,8,9,10,11}

R,6(6) = 1399 86(6) = 5 p6(6) = {1,5,6,8,9,10,11}

R, 6 (7) = 1 347 86(7) = 8 p6(7) = {1,4,7,8,9,10,11}

R, 6 (8) = 1122 86(8) = 8 p6(8) = {1,4,8,9,10,11}

R, 6 (9) = 1325 66(9) = 7 p6(9) = {1,2,3,7,8,9,11}

R,6(10)= 1375 86(10)= 9 p6(10)= {1,2~3,8,~,10,11}

R,6(11)= 872 86(11)= 11- p6(11)= {1,4,9,10,11}

Step (3) k < 9, continue

Step (4) S = {2,3,4,5,6,7,9,10}

Step (5) k = 6

162

Step (2) R(S) =, {1 ,2,3,4,5,6,7,9,10, 1l}

~7(2) = 1572 87(2} = 3
,~ ..

R,7(3) = 1579 87(3) = 6
\

R, 7 (4) = 1601 e7(4) = 6

R, 7 (5) = 1 547 e7(5) : 3

R, 7 (6) = 1599 e7(6) = 5

R,7(7) = 1589 . e 7 (7) = 6

R, 7 (8) = 11 22 87(8) = 8

R,7(9) = 1336 87(9} = 9

R,7(10): 1575 87(10)= 9

R,7(11)= 872 87(11)= 11

Step (3) k < 9, continue

Step (4) S = {2,3,4,5,6,7,10}

Step (5) k = 7

Step (2) R(S) = {l,2,3,4,5,6,7,9,1l}

p7(2) = {1,2,3,7,8,9,10,11}

p7(3} = {1,3,5,6,8,9,10,11}

p7(4) = {1,4,5,6,8,9,10,11}

p7(5} = {1,3,5,7,8,9,10,11}

p7(6) = {1,5,6,7,8,9,10,11}

p7(7) = {1,5,6,7,8,9,10,11}

P 7 (8):: {1, 4,8,9, 1 0, 11 }

. p7(9) = {1,2,3,7,8;9,11}

p7(10)= {1,2,3,7,8,9,10,11}

p7(11)= {1,4,9,10,11}

iB(2) = 1789 ~B(2) = 3

iB(3) = 1796 6B(3) = 10

i B (4) = 1801 6B(.4) = 6

i B (5) = 1797 6B (5) = 1O

i B (6) = 1772 6B(6) = 5
,j'''

i B (7) = 1704 6B(7) = 3

iB(8) = 1122 6B(8) = 8

i B (9) = 1336 6B(9) = 9

i B (10)= 1586 6B(10)= 10

i B(ll)= 872 6B(11)= 11

Step (3) k < 9, continue

Step (4) S = {2,3,4,5,6,7}

Step (5) k = 8

Step (2) R(S) = {1,2,3,4,5,6,7,9,11}

i!(2) = 2006 69(2) = 3

i! (3) = 1796 6!(3) = 3

i 9(4) = 2224 6!(4) = 6

i! (5) = 1981 69(5) = 3

i 9(6) = 2022 69(6) = 5

i!(7) = 1710 6!(7) = 7

i! (8) = 1122 6!(8) = 8

i 9(9) = 1336 6!(9) = 9

i 9 (10)= 1586 69(10)= 10

i 9(11)= 872 69(11)= 11,

163

pB(2) = {1,2,3,5,6,8,9,10,11}

pB (3) = {1 ,3,4,6,7,8,9,10, 11}

pB(4) = {1,4,5,6,7,8,9,10,11}

pB(5) = {1,2,3,5,7,8,9,10,11}

pB(6) = {1,3,5,6,7,8,9,10,11}

pB(7) = {1,3,5,6,7,8,9,10,11}

pB(8) - {1,4,8,9,10,11}

pB(9) = {1,4,6,7,8,9,11}

pB(10)= {1,2,3,7,8,9,10,11}

pB(11)= {1,4,9,10,11}

p!(2) = {1,2,3,4,6,7,8,9,10,11}

p9(3Y = {1,3,4,6,7,8,9,10,11}

p9(4) = {1,3,4,5,6,7,8,9,10,11}

p!(5) = {1,3,4,5,6,7,8,9,10,11}

p!(6) = {l,2,3,5,6,7,8,9,10,1l}

p9(7) = {1,3,5,6,7,8,9,10,11}

p!(8) = {1,4,8,9,10,11}

p9(9) = {1,4,6,7,8,9,11}

p9(10)= {1,4,6,7,8,9,10,11}

p9(11)= {1,4,9,10,11}

164

Step (3) k < 9, continue

Step (4) S = {2,4,5,6}

Step (5) k = 9

Step (2) R(S) =, {1 ,3,4,5,6,7,9, 11}

R,
1 ° (2) = 2006 ,'" a1°(2) = 2 pl°(2) = {1,2,3,4,6,7,B,9,10,1l}

R,10(3) = 1796 alO(3) = 3 pI ° (3) = {1,3,4,6,7,8,9,10,1l}

R, 1 ° (4) = 2224 a1°(4) = 6 pl°(4) = {1,2,3,4,5,6,7,8,9,10,11}

R, 1 ° (5) = 1981 a1°(5) = 5 pl0(5) = {1,3,4,5,6,7,8,9,10~11}

R,1°(6) = 2022 a1,0(6)= 6 pl°(6) = {1,2,3,5,6,7,8,9,10,11}

R, 1 ° (7) = 171 0 alO(7) = 7 pI ° (7) = {1,3,5,6,7,8,9,10,1l}

9, 1 ° (8) = 1122 a1°(8) = 8 pl°(8) = {1,4,8,9,10,1l}

R, 1 0 (9) = 11 36 a1°(9) = 9 pl°(9) = {1,4,6,7,8,9,1l}

R, 1 ° (10) = 1586 a1°(10)= 10 pl°(lO)= {1,4,6,7,8,9,10,11}

R,1°(11)= 872 a1°(11)= 11 ·plO(ll)= {1,4,9,10,11}

Step (3) k = 9, stop.

The best achievable tour is obtained as (1-2~3-11-8-7-9-10-5-6-4-1)

with the cost 371. Note that, this solution is the same as the one found

by the first algorithm. The tours produced for the MDVRP are, therefore,

(Figure 5.7a)

Tour 1 = (8-7-8)

Tour 2 = (9-5-6-4-1-2-3-9)

Total cost = 371.

-1.::.. ,.:'.

165

- 5.4 APPLICATION OF ALGORITHM IV

The first step of the fourth algorithm is to determine the con­

vex hull or a partial tour for the problem in order to start the node

insertion process. For problems that are not defined in two-dimensional

space, however, the problem of determining the convex hull is very diffi­

cult or even impossible. Although the original problem (i.e. the MDVRP)

is defined in the Euclidean space, the structure of the problem is changed

by the transformation. In other words, the transformed matrix does not

represent a problem in the Euclidean space anymore. Neither is the tri­

angle inequality satisfied. Consequently, it is not possible to deter­

mine the convex hull of the problem since it does not exist. On the

other hand, we have do determine a partial tour to start with. A reason-

able subtour is T = (8-7-9-10-1-2-3-11-8) and will be used as the startfing

point (Figure 5.6a).

We will use the cost matrix given in Table 5.6. That is, the

cost matrix with all elements C!. subtracted from a large number L = 250
lJ -

. .
will be used rather than using the original transformed matrix. The

algorithm proceeds as follows:

First, a list for the arcs in T is prepared. The list is given

in Table 5.7 .. Note that, T does not cover all the nodes and the set of

candidate nodes to be inserted is {4,5,6}. Since the maximum height in

the ljst correspondi to arc (3,11) with a value of 171.59, nodeS is

inserted between nodes 3 and 11. The resultant tour (8-7-9-10-1-2-3-5-

11-8) is shown in Figure S.6b. At this stage, T covers nine nodes and

the set of remaining nodes is .{4,6}. The list is updated as shown in

166

Table 5.8. Note that there are three arcs whose end nodes allow the

insertion of another node in between. Since, the maximum.height

Table 5.7 - List ,for the arcs in T in the first step

Starting
node

8

7

9

10

1

2

3

11

Table 5.8 -

Starting
node

8

7

9

10

1

2

3

5

11

Ending
node

7

9

10

1

2

3

11

8

Candidate
node

6

6

5

5

Height

160.83

160.83

169.98

171. 59 *

List for the arcs in T in the s~cond step

Ending Candidate
node node Height

7 6 160.83

9 6 160.83

10

1

2

3

5 6 174.72*
I

11

·8

167

(a) (b)

(c) (d)

Figure 5.6 - Stages of the node insertion process

corresponds to arc (5,1) with a value of 174.72 we chobse arc (5,1)

so that node 6 is inserted between nodes 5 and 11. The new tour is

T = (8-7-9-10-1-2":3-6"-5-11-8) (Figure 6.5c). The number of nodes

in T isstillless than 11 and only one node, namely node 4, remains

to be sequenced. At this point, the list for the arcs in T is as

168

·Table 5.9 - List for the arcs in T in the third step

Starting Ending Candidate
node node node Height·

8 7

7 ,',. 9

9 10

10 1 -.

1 2

2 3

3 6

6 5 4 170.73

5 11

11 8

given in Table 5.9. The list indicates that we do not have much choice.

Consequently, being the only location in the sequence node 4 is inserted

between nodes 5 and 6. The final tour is obtained as (8-7-9-10-1-2-3-

6-4-5-11-8), (Figure 5.6d). The cost of the tour is 372. Using the

back transformation' once again this tour is subdivided into two tours

as follows (Figure 5.7c):

Tour 1 = (8-7-8)

Tour 2 = (9-1-2-3-6-4-5-9)

Total cost = 372 /

Note that, the best tour among the ones shown in Figure 5.7 is

obtained by applying algorithm II and that other tours have the same

objective function value~ The. solution obtained by using algorithm II

is the optimal solution to the problem at the same time.

cost = 372 :

(a)

cost = 372
(c)

Figure 5.7 Solutions to the MDVRP

5.5 COMPUTATIONAL RESULTS

cost =

(b)

169

Considering the difficulties associated with the second. and the

fourth algorithms, experiments were conducted on the first and the third
. .

algorithms. Six comp1ete Euclidean problems were generated on the unit

square and the algorithms were applied to them. Actually, the aim in
-

conducting these experiments was to show that solving the TSP on transformed

170

matrices requires less computation time than it is required for solving

the TSP on matrices representing complete graphs of the same size. This

is obvious since the rows and columns corresponding to arcs connecting

the generated arrival and departure nodes to each other are full of

infinities. As a resu~t,there is no need to search on these rows and

columns since those' arcs have to appear in any feasible solution. The

results are indicated in Table.5.l0. A careful analysis of Table 5.10

Table 5.10 - Computational results for the MDVRP

No. of No. of Tota 1 No.· Algorithm I Algorithm II~
n vehicles depots of nodes -

Cost CPU Cost CPU

10 . 2 2 12 313 2.522 284 0.913

20 4 2 26 407 18.727 411 4.223
,

30 4 3 35 534 50.;66b 587 7.993

40 4 4 44 565 90.660 587 12.444

50 4 4 54 605 140.540 679 21.045

60 7 6 70 749 298.361 779 39.231

reveals that for problems of small size, i.e. 10-30 nodes, the computa­

tion time for solving an MDVRP seems to be greater than the time re­

quired for solving a TSP on a complete graph of the same size as compared

with the results given in Chapter 3. However, it- should be noted that

these figures include the time needed for transforming the MDVRP to an

equivalent TSP first, and then making a back transformation after the

TSP is solved. Actually,. the time needed to perform this procedure

171

grows linearly with m (i.e. the number of vehicles) and looses its

effect as the problem size, n, increases in comparison with m since

the algorithms themselves require computation times of orderO(n 3).

Note that, here n is the number of demand nodes plus two times the

number of vehicles. This fact becomes more explicit when the compu­

tation times of problems with more than 50 nodes are compared.

172

VI •. £ONCLUSIONS AND EXTENSIONS

Several algorithms developed for solving the TSP are presented

in this thesis. First, a literature survey is made on the existing al­

gorithms for solving the TSP in order to ~ive an insight to the various

techniques which have proven to be of value up to date. A computational

study has been conducted on the new algorithms. We have shown that the

algorithms are at least as well as the existing algorithms belonging to

the same general class of heu~istic procedu~es available in literature.

The methods used here in solving -the TSP were based upon heuris­

tic principles believed to be of general applicability. In dealing with

np-complete problems such as the TSP for which an efficient algorithm

is unavailable, the general approach is to develop a technique by which

near optimum solutions canbe obtained very fast. In general, to work

on refinement techniques to obtain the best solution has been accepted

to be,if not entirely hopeless, time consuming. Instead, much effort

is spent on finding the best of a set of good locally optimal solutions

which will be close enough to the global optimal solution so as to offer

a satisfactory answer in most cases.

In the first algorithm, a tour"construction technique is used

by the aid of reducing the cost matrix. The effect of reduction is felt

in several ways. The most obvious is a considerable decrease in running

173

time as a result of making the Hamiltonian circuit search on a very small

number of arcs.- The reduction is based on the existence of a Hamiltonian

circuit. Thus, the domain of the search is restricted substantially.

This is done eve~ with the possibility that the optimal solution may be

lost in the process.
:,"

As mentioned earlier, (strong) connectedness and after removing

a node from the graph, unilateral connectedness are necessary for the

existence of a Hamiltonian circuit but not sufficient. In fact, a

feasible solution may not be obtained even though the necessary condi­

tions are satisfied. Then, Little's branch and bound algorithm is

applied partially to the resultant cost.matrix until a feasible solution

is obtained. In other words, the subgraph that has been constructed in

the first part of the algorithm is not~onsidered anymore. As an ~xten­

sion of this work, however, a means of further reducing the resultant

cost matrix may be investigated. It has been observed that certain arcs

appear in all the paths that have been found in the searching process.

Therefore, since much of the time spent by the proced.ure thereafter is

essentially a repetition of the previous work, this information may be

used to guide further search and reduction and therefore result in saving

computational effort. As a result, a decomposition of the cost matrix

may be possible. Such a decomposition would not only decrease the size

of the matrix being manipulated but also direct the search to find a

feas.ib·le solution as fast as possible.

For symmetric cost matrices, the reduction procedure may further

be improved. That is, a significant reduction in computation effort can

be achieved by taking advantage of the fact that the graph is undirected.

174

Eventually, the effort required for searching the whole matrix can be

halved since half of the symmetric matrix contains sufficient informa­

tion for the whole problem.

Considering the >second algorithm, further work may be based on

finding all the multip~~ locally optimal solutioffiat the end of each

iteration so that an optimum or a near optimum solution is not ignored.

As mentioned before, the omission of a feasible solution in rank tends

to increase the computation effort disproportionally and is not prefer­

able. Another means of extending the study is to "find a way of making

more than one nonbasic variable which has been removed from the basis

previously enter into the basis simultaneously. One possible way of

achieving this objective, however, is to consider negative penalties

and costs during the calculations with the condition that the final

objective function value is positive. This.is necessary since a nega­

tiv~ objective function value means a decline in the process. On the

other hand, attention should be directed to the trade off between the"
,

increase in the computation effort and the maximum improvement obtained

at each step.

An extension to the third algorithm would be the determination

of the root node with which the algorithm starts. It is observed that

" starting from different nodes yields different solutions. One way of

dealing with this fact is, of course, to repeat the algorithm for each

possible starting node and take the least cost solution as the best

achievable one. However, one should note that the number of comparisons

and calculatioffiwill be multiplied by n. A second and easily applicable

extension is first to generate a tour with regard to this algorithm and
\

then to test each node on' the tour between each consecutive pair on the

175

tour to see if such a change in the sequence will lower the cost.

This is the simplest case of the processes which are referred to as

"tours optimal relative to insertion and inversion". [49J. The process

continues until no improvement is possible relative to insertion and

. inversion. Needless to~say, an extra computation effort would be re­

quired in this case. However, one should be careful in directing his

attention to finding improvements with a minimum amount of computation

rather than to making the maximum improvement possible.

The·insertion and inversion process can also be applied to the

tours generated by the fourth algorithm. To achieve a tour optimal

relative to the one produced by the algorithm, the testing process must

be started from the beginning each time the tour is improved. In addi­

tion to improving the tours produced, extended work may be based on

defining the convex hull since the identification of the convex hull

plays an important role in forming.the final sequence. Overall, the

extensions should be evaluated by cons1dering the trade-offs between

effectiveness and computation effort. The question "How much can the

computation effort be decreased by sacrificing some effectiveness"

should always be kept in mind.

The second part of the thesis is focused on the application of

the algorithms to a special routing problem, namely the multi-depot

vehicle routing problem. The relevance between the TSP and the VRPs

is emphasized by first considering the TSP as the simplest VRP'and then

progressing from the simplest to the more complex. As.a result, the

MTSP is considered first and the MDVRP next. In each problem, we des­

cribe the constraints which are added to the previous problem in order

to present the steps which lead t6 the more complex.

I:

176

The fact that the MTSP can be transformed to an equivalent TSP

has been studied extensively. However, the MDVRP which is an extension

of the MTSP has not received that much attention. On the other hand,

we have shown that the MDVRP can also be transformed to an equivalent

TSP. Heuristic method~ presented in the relevant literature do not

consider this possibility. Moreover, no efficient algorithm has been

developed for solving even small size MDVRPs efficiently. However, exact

algorithms developed for solving the TSP have shown a considerable prog­

ress in comparison with methods developed for other np-complete problems.

Therefore, exact solution methods for solving the TSP can be used as a

tool for solving MDVRPs of reasonable sizes. MDVRPs of large size, how­

ever, can be solved by using efficient heuristics developed for the TSP.

The application of the heuristic algorithms presented in the

thesis to the MDVRP showed that, in general, the algorithms require less

computation time than it is required for solving the TSP on a complete

graph of the same size. This is an important result, since it implies

that heuristics developed for the TSP can be applied.to the MDVRp· more

efficiently.

An important extension which is a promising area for further

work is the application of the fourth algorithm presented in the thesis

to the MDVRP directly in a modified version. With the additional res­

triction that all of the vehicles in the depot will be used, the algo­

rithm'may be used to produce independent partial tours separately. A

problem arises in determining the starting partial tours. One way of

dealing with this difficulty is to form subtours containing the two

arcs which join the nearest nodes to the depots. However, some other

means of dealing with thi~ problem can be found.

,'.~

APPENDIX A-

178

KOGHAM'lHFSJ'-,(rI'JI-'IIT,OUll-'lll);

****************~********.**~+***+******+****+t*****************,
THTS PHOGRI\M It:; I-'~EI-'EI\KE.'"' !H Yl\sn:JOVYI\. JUlY, 1 0 R3 *,
INS1ITl!TE FOR ~RAlllJATE ~T\J[Jlf:S T~I SCIENr:F ANIl I::NGH'I::I::PJl'~(; *,
ROGAZTCT lJNIVEqSITy, ISTf\NRUL· *, . . * ,
THIS PkOGR.I\M Ie- lHE COUE OF u nIFFERtNT Ht.UI-nSlIr I\LGOHT lHMS *,
~OR S0LVTNG TH~ lRj\VELIN~ S/\I.I:.SMIIN-I-'KORI ~I"I (19..1,. TN I'IJnI1JON *)
GIVEN f\ DISTI\NrE MI\H~TX i\SSOCIl\TFD 1I,IJ1H 1\ MULTIPLE - rEPOT - *,
"EHIlL!-. ROlll tN~ PRO~LEtJ! rMDVHI-') , THI:. P"'O"t<I\~ CREI\Tt:.S A *,
TRI\N~FURMEn MI\.,;RIX So lH~l !HI:. SoLtJlION TV lHr Mn\fPI-' r.A~l HI:. *,
OHTI\INt:.1) BY ~(),_\lHJG THI:. TSP ON THE lKAN~FVt<wl-n ~I\TPIX.. ••• *,

*>
***************.*********.******************* •• *****************,
UNST NO = 70; Nnl = 71; NnN·= 2000;

YPE ~ATKTX = I\R~AY(.l •• NUrl •• NU.' OF INT~Gt.t<:
I\HRY = I\HHl\v(.' •• I\Jn.) OF TNTEGER;

'f\H FtC: MATRIX.
\j~'N()OEtHC'Vt~,IJ ~ ARHY;
nEMANn,DFYOTs : SET OF 1 •• NU;
Nl, INF, TSI-', \/nP' Nnt-.M, N[Jrp ,lDU, J, HJV Tf'11 r_(;~ II;
I , K , I'J, L, M, rv,~ r L 1 , L2, VlJ, VM : I NTFGER ;

~OCEUURt:. PRINT(\lAP C : M~TRIX;
\fl\l~ N : I"'TEbEH);

r***************~*********~***.**************.~.*****************)
, THTS pHOCEnlJRI:. OUTPUTS A"IY N X I\J SQUARE ~/A I Hl Y *,
.***********+*********************************~.*****************,

fAR T'~'~l'J? : TNTEGEH~

it,:G Hl \"iR 1 TF:UH
~OH 1:=1 TO N ~O
n I:. GIN I.! R T T F L N; 'J 1 ~ = u; J 2 • = 0 ;

RE.PF:" T \'JR T TE, fIn I·!H J H_ (, HOI"i" 1 : 3" , H
~1:= • .J2+1; 'j?:=J2+?O;
IF J~) N ~HI::N J?:=N;
~OH J:=Jl TO ~2 DO WDITE(C(.T,J.I:~'

tJNTIL ~2 = N·
END

:Nr1:

Jf-<OCEl)ur~t. YTSI-' (III\K C : MATHI x;
I/I\H r-~HC : I\RRY;
\}I\H !'1'TNt- ~ TNTI:.GF.P);

t***~~****************) * THrS PHOCEfJIJHF.: FTNDS .A Hr=-lJRISTIC SOLllTI')"! 10 THE TC;P FlY. *)
t CHEATING A SIJH~Rf\PHG(1 \,illTCH IS COMI-'HIseD HY M~CC; t·.II1J-l 7~.RO *) * COSTS AS A HES,jLT 01- RtU,-,CTNG THF COST ~1'\lKp' •. THE ~Erur.l ION *) * lS' CU!'JI I!'lLlF:1J U",TIL A HI\!V'TLTor-.,'II\N CTRCUIT t.)q(-.TS 11'·\ (:;0, *)

4o***.~*********.******)
TYPE AHRl = AHHAy(.l •• NUN.,Ot- INTFGF:R;

I\HR2 = AHHl\y(.l •• NOJ., ot- INT~GEK;
AKR3 = i\H~A~(.t •• ND.' OF TNTEGER;
NODI::S = St:.T-OI- 1 •• NI);
AHR4 = i\HHA v (.'1. •• NLJ.' O~ NODES;

VAH FI\R,HA~ : AHpl;
PH,Pt- ! I\KH2.
on,ltJ,Hc,CAR;PA :IWH3:
R,Sl,S? : NOnF.S;
o : IVI\TRTX;
RH,F : AHKq. . _
T , J , '" I'l , M , N I , ;. () N , L , K , "q ~, , tI'- 1\)(M , N S , f\JR , H N , 1\ L L , I ,- , C () S T ,
~~AXrMC()STrTt;T?'COS1A"'COSTA : Il'JTt:.GEI?;

PKOCEIJURt I-iI\MTL(\lAI~ t-I\H,I:\"H : ARRU
VAR I-'F,I-'H : ARK?:
\11\!~ on,JIJ : I\RH:S:
'fI\HN,MtI~'''I\LL'FF : JI'lTEGFK} :

********~**********+.*****+*******.*******+** •• ~****** •• *********, * THT~ PKOCEnUKE Flf\JnS ONI:. OH ~ORE Hl'~'lLT/,)N1AN (THrIJT1S 1'" 1\ *,
* UIPl:Cn':-D GRAPH RYf\N t:.NlJ"EH 1\ T I \IF METHon *,

179
ty*************+.*y+.**********+*******+***************+**********)
!\ I~ ELl n I] , ? 0 f") , 3 f) n ,4 f) n , 511U , {., 0 n :
!\~~ KLI,CY,P,TOH,HC : f\RR/\v(.l •• NIJ.) 01- J"'Tt.l:1ER:

T , NP 1 , tvlp 1 , K.1 , K , ,J , J 1 "J2. L , JL , PEl-? , J 1 , 12 ,.,JJ , L L , JS ,
L 1 , L 2 , n [) , S , 1: r , KKK , H J

, J 'I , K ~ , I F r , It, I< J , ~.' "! ' 1 L , I I 1. , T T 2 : TNT E <; t.,~ J

-{OCF:OUm- I-'ATH("I\R T'J,l-'tn,TJrl2 ~ INTI:::GJ:"PH

***********+*************~**+.***********************************)
THIS PKOCE8URE FINns THE LI\RG[ST PA1H THnl CAN R~ FOR~En BY *)
THE I~~""LIEr)."I{,.s 1I."m THAT CO"qI\HIS PRe (T'J). THE Sll\rHTNG *)
NOnl:. "1'10 THI:.. t:,',f)lI'!G "lOUt:. OF THI:. IJI\TH ARF A~SO SPFCTFTFO... *)

**)
AR L,KK,Ll,JA : TNTEGFR:

~GIN PER:=O: L:-1: 11:=1:
"I H T L E C T (• ! 1 •) .-<) 0 DO
HtGIN 11:=Cl('T1.): L:=L+l
ENO:
12:=J: L:=L+l:
WHTLt:. ~LT(.12.) <~ U OU
BI:.GIN 12:=-KLI(.1?)+(KLT(.1?) nY\I NPll*1'J1-'1; L:=L+1
ENr);
IF L = N THEN
AI:.GIN KK:=-K*N~': L:=P!-(.l?); L,:=U:

REPEI\T L:=L+ 1 :
IF FAR(.L. " = T1 THbl Ll :=, Ft..SI::
I F (F A R (• L) < U) AN r"\ (K K - rAP. (• L.) - 11) THE"! L 1 : = 1

llNTTL (l1 = il OR (L = PF(.I?+1.»;
T f- U. <) 1 T i~ F: N PI:. R : = - ~ E L S E
HEGIM PER:=li Cl(.J.):=I;

CI(.TI.)::::T?: HC(.N.,::::Cl(.R"".l; L:="'-1:
WHILE'- <)'K 1)0
~EbTN Jn~=HC(.L+l.); HC(.L.)!=CI(.J~.'~ L:=L-l
["!Il ;
CI(.Tl.)::::n; CT(.J.I·=O

ENIJ -
FNn

:Nl) ;

J~OCF.1J.URt.. T I jPI) (IJ lI.R T A rI H" , K 1 : PITEGI"I-U
\I!\R "1,1\? .. f\~R1;
III\R r>],P(> ; I\RR2:
1.lI\H Ill, IJ(> ~ f\~R3):

**************************+***+*******+**************************) * THIS PH()CEOIJRE HI:."'(WF:S IXI L IHEAPCS t:ITHFK EI'lf\NI\TH.J{-; FR()I'I OR *l * TER"'INATTNG AT TH. *)
****+.***********+*****************+******************************l
V~H M,lll.H,J : INTEGFR:

HI:.G HJ r-': =P 1 (• T H •) ;
HEPEAT M:=M+l: TAR==Al(.".);

I~ II\R) n T"EN
REGTN
. I~ 02(.IAH) <) 1 lHrN

~EGTN J:=P;(.TI\K.):
REPF."T J~':::J+1
UNTIL (1\6(.,J.) ::: 11'1) OR (J = P2(.TI\K+I.»

E"!U ELSE .
IF JAR = Tf\ 1Ht:.N J:=L ~L~E Tf\:=O:
1FT 1\ <) r)' THF-:".!
HE(';TI\J {I. 2 (.,J. I ~=K1-1\2/.J.);

t)2(.TAR.) !=I)? (.I/\H.)-1;
A I (• M.) : -K 1-TAR;
U 1.(.1 H.) ;=1) U • J H •)-1

E.."tI) •
ENG

IINTIL ql\ = I) OR (M = P1{.It-H1.ll.
eNI);

"'~OC~[JURt.. FLJIJIJ("I\R 1I.1,A2 .lI.~Hl;
\f1\R P1,P2 • ARH2:
'1[\\-{ n1,D? • I\HH!>:
Vl\~ T,K1 : INtEGER);

C****+******.********+*+***+*******+***+***+*********************)
(* THIS f>HOCEOI'JHF.: P~YFORtJ;~ THF I-OHWI\RIl tJpnl\T1NG PHI\SF.:... . *)

1**************************+*************************************)

AK J'I~'L : .TN1FG~~:

iI:.GIf\J ..
FOR J:=Pl(.I.'+l TO PI(.Ttl.) no
II-A! (. J.) > f) THFI'!
HEGIN JI\!=I\U •. ,.); L:=1-'2'.TI\.):

REI-'F.1\T L:=L+;
tlNTTL (1\?(.L) = 1) UK (L:= P2r.TA+l.');
D2 (• 11\.) ! =n~ 1 • I 1\.) -1 ;
./\ 2 (• L •) : =K l-I\? (• L •); A, (• J.) : =1< 1 - J A

END:
01(.1.):=0

:NO;

'I-<OCEDlJRI:. RUPIH \/,1\1-< 1\1,11.2 • AH~l:
"AH PI,1-'2 • I\K~2:
"I\H Ol,lJ2 • I\H~3;
01\H I,Kl,K0 ~ TNTEGE~);

180

,***+***********+***)
, THTS PI-<OCEOUI-<E PtHFOR~~ THE HACK~ARO uPnnlING PH~SF.... *)
,***,
IAR L'lI\'J :. INTr-Gl:.R;

it:.G I !\I
FOR L ~ =p 1 (• 1 •) + 1. lOP 1 (• ,. + 1 .) [10
11- <!\l(.L.) <= Kl) ANO ('\1(.L.) ~= K?) THt.N
REGIN !1\:=KI-I'I,(.L.); A1'.L.):=II\;

D 1 (• 1 •) : =01 (- I •) + 1: J: :7 P? (• If\.. , :
REJJEAT J:=J+';
lJNTTL (Kl-!\~LJ.) = I) OK (J = P~(.II\+'.»;
1\2 (• J • , : =!: I")? (• T 1\.) : =n2 (• T A.) + 1 '

END
: 1\]1) ;

~**) " THTS PI-<OCEDlJl-<t:: THIES TU nl:.MUIIE I\PC (IA,TR) FHOM THF GRI\.PH. *)
~ THF.ARC MAY NOT HE HFfVOVrO !Jill:. Tn THt. FI\r:t lHAT EITHEr T' *)
~ TS NOT TN THE r;RAPH OH ITS K~MOVI\L I-'~EVF'Nts THE FXTSTENCf: *>
~ OF. I\. HAW:TLTONT"N CTf-<CUll. ••• '*)

,,***.**1
JAHIe : INTfGEH:

~I:.GIN JJ:=PF(.I/\): TC:=U;
REf'lEI\T J.J:=J,J+;;

TF (FI\R(.JJ) '> 0) ANn P-I\I'Ue-JJ.)= TRJ T~F:I'J
nEG!'" Ll:=IJRr.JH.);

HEfJEI\T LL:"'::'LL+1 '
UN" TL (H1\I'Q'.LL.) = J ~) OR (LL = fJH(. T!j+l.»;
IF HI\.R(.LL) = IA lHrN lC:=1

FNO •
UNTIL IIC = 1> Of-< (JJ = "'1- (. TA+1.»:
IF IC = 0 THEN .JJ~=O ELS~
TI- (OO(.T~.) = U OK (JlJ'.n~.) = 1) lHEt>' uJ:=-] FL<;l:.
Hl:.GIN I-AR(.JJ.):=K\-TH;

00 (• I A.) : =o[) (• I 1\.) -1 :
RAH (• LL.) : =K 1-1.1\;

, TO(.IR.):=lDr. I H.)-l
END

t:Nn:

****************.**+*) * STEP ~ INITIALTZ~ *)
*********************)
HI:.GIN rF:=O;

FOR 1:=1 TO N ~O
REGIN CT(.I.):=O; KLJ(.I.>:=O: P(.I.):=,: 10H(.I.):=0
ENI");

·NPl :=1'-1+1; MPI:-M+l;
Kl~=-~fJi; K:=li H(.l.):~HN:

************~*******.*~*******.***' * STEP 1 SEI\.~CH ~OH T~PLIE~ I\ReS *'
****************.*****************l

HEPt..I\T IF f)fl(. J.) = , "HrN .11 :=1
F:LSF: TF TI)(•. f.) = 1 "HrN .1?:=,
F:LSE J: =J+1 .

IINTIL (J > N) f)H eJl = I) Ol~ (J2 = 1);
IE J) N THEN GOTf) 2nO:
IF J1 = 1 TH~N .
8EGIN L:=PF(.J);

RI:YEAT L:=L+;
tJNTIL (FAI·n .1:.) > 0) On (L - PF(.J+1.) l;
JL : =t- f\R (• L.) •
P ~ T H (J , JL "..JE.";, I , , I?) ;
Tt- Pt-:H = n THEN
BEGIN KLJ(.J) :=KI-Jl.; CT (.JL. 1 :=J;

I I)PO (J, JL ,!" ' K 1. , H 1\ H , t- ~ H ~ PH, PF , In, 00) :
IFJ = 0 THEN GOTO 4"10 I:LSE
HE b I "1 R 1\ H C (! 2 , T 1 , K 1, ,J, L L) :

IF JJ = ~1 THEN bOTO 40U
ELSE GOTI')]no

ENIJ
ENU fLSE
rt- PER = -1 TH!:"J bOTO 'iOn FLSE
F~EG TN K: =K+ 1.: Gen 0 5"U
ENLJ

EN!);
IF J2 =] THEN
REGIN L:=PR(.J);

HI:I..JEAT L:=L+;
IJNITL (RAR(.,.) > 0> On (L - PR(.J+l.1);
,JL: =H I\R (• L.) i
p~rH(JL'J,f-JER,Il,I?);
IF. P!:R = I) T~F.:N
BEGIN KLT (.J, .) ~=K1-J: CT (.J. > !=JL:

IUP!)(J,JL'f,Kl,t-f\R'H~R,Pt-'PR,On,JO) :
IF J = 0 TI1EN GOTO L~"OI:'-SE
H FbI "l R 1\ H C (T 2 , T 1 , K 1, I J , L L) :

IF JJ= _ 1. THt:.:t-J bO";O 4 n U
t.LSE GOT!) InO

ENU
ENU t_LSE
It:. pr.R = -1 THt-_N GaTO liar) F:LSE
REGJN I:=HC(K~): K:=K~l: GOTO 50U
FNU • .

ENn:

(**************************~********)
(* STFP? Aon IWpLIED .I\HCS TO He *>
(**************************.********)

'lIO :

(****************.**)
(* STFI..J ~ RHANCH· *,
(*******************,

illO : L1:=I..JF(.T.)+P(T.): L~:="F(.T+l.);
TF L1) L2 THE~ 60TO 4UO EL~I:
Ht::GIN ()o:=f\!*SQn(N): J1:="); J?:=O:

FOR ,J:=L1 TO L? 00
nEGTN JL!=t-AD(.J.);

IF JL) I) THEN
l3E{'TN KKK:=t: .

I F on (• J, .) > n 1 Hc:-N
HEGTN ':)::::f)U(.JL.>*·'+TIH.JL.>;

T F otH JL.))1 U, • JL.) .T!-IEN
S : = I U (• JL • 1 * ",j+OIJ , • JL •)

I:NO ELSE·
IF (KLI(JL.) <> 0, I\"m (JI. <> RN) tHE!\!-
HEG 1"'! IE: ~J1. ; .

HEP!:AT' TE ~=-Kl.l (. IF.' + (KI. J (. TE. 1 Ul V NP1) *"'P1
I JNT T L vL I (• IE.) - 0;
I F I IJ (. JL • 1 < (1) (• T t .) TI-lE"J
S:=I!)(·JL.l*N-fO!Jr.TI--.) F..LSF
g : =01) (: Tt •) *f\.'+ I IJ , • JL.)

181

~Nn FLSE KKK:=O;
IF K'<t<, = , THEf'.'
HEG I"1 .

TF'IlU '> S THEN
~EGIN nn:=s: lP:-~-
EN!): .-
TF ~1 - {) THEN ~, :=~ E:L5F

L TF ~2 - 0 THEN ~~:=~
r_NI)

END
ENU:
T~ Jl = 0 THrN GOIO 4U~ ELSt
REGIN JL:=~A~(.IP.);

1-1'11-« .IP.) :::FI\R(.~l.): FAR(.J,.) :=~L:
IF J2 = 0 THEN ~?:=P~(.I+l.l+1;
P(.I.):=~2_P~(.I.); ~:=K+l;
HC(.K.) :=~L: K, :=-t<,*~'1-'1;
J:IJI-'f)(FI\R'~I\R'I-'F'PH,O'""IUd,K') ;
HJI-'D(RI\R'FI\R.I-'F~'PF' l"',OUf~L,K]):
TOR (• K.) : =n ;
HAHC(JL,RN~Kl ,~J~,LL):
IF ~~ = -1 THEt--1 G010 qnu tLSf:'
IF J~ <> 0 THEN TOH(K.)~=J~~MP1+LL:
GOiO 100 •

FNU
Etm;

c**********************)
(* STEP IJ RACKTRl\CK *)
(**********************)

QUO : TF K) 1 THEN
HEPEAT JA:=HC(K.);

jP<.JA.l:=l; jA:=HC(.K-1.);
rF KLT (.JI\.)' <> 0 THfN K:=K-l

IJNTlL lKLI(.~1\ 1 = U) OK (K = 1):
IF K'> 1 THEN • .
HEGIN K1:=-K*Nnl; K2:=Kl_NP1:

I :=HC< .K-1.); IFF:=O:
FOH ~: = 11 0 ~J DO
rF (KLJ(.~.) <= 1'1:1) ANr'I (KLl(•. J.) >= K?J THEN
REGTN JA:=Kl_KLl(.J.);

~LI(.J.):=n: 1F~:=1;
. CI(.JI\.)·=n
END; -
IF TI-F = 1. THEN
FqH ~:=1 10 ~I Of)
Rt:'_GTN L1:=I-'F(.~.)+1; L":=t-'!-=(.~+1.);

~OH L:=L1 TO L2 DO
BEGTN JL:=¢I\R(.L.);
, IF (JL <= K1) I\NI) r~L '>= K?) THEN

HEGIN JL.=K1-JL;
. FAR (• L .) : =.JL; OU (• J.) : =on (• ~.) +' ;

LL : =I-'H 1. JI. •) :
REPFAT LL!=LL+l
IJNTTL ,KI-BAR(.LI.) ':: J) OR (LL = tJR('JL+'.»;
RI\R(.Lt .)!=~; lUr.JL.):=rn(.~L.)+l

END -
E.ND

ENU tLSE
REG I I'l T T ~ =H C (• K •) :
. ~IJ!Jn-(FI\Hd~I\R,PF'PH,O"'IUrl,K1 ,K2);

HIJP[)(RI\R,FI\R,I-'R,Pf,In,OU,II,Kl.K2):
I F TOR (• K ., < ') IJ THb!
HEGIN Jl!=~OH(.K.) UTV ~Pl;

~2:=TOH(K.)-J1*MP1; I-I\H(.,n.):=RI\.I:
~A:=HC(.~.): On(.~!\.':=OD(.JA.)+l:
HAR (.J2.)·~=HC (.K.) l IU(.RN.) :=10 (.RN.)+1

END
ENU:
K:=K-l; G010 ~O"

ENn EL~E
WRI1ELNJ WRITE, N: .
~NRT1ELN(, NO lll\tJiTLTONIA-, Cl~CIJIT C/'IN RF t-UUND,):
GUTO 6ll n;

<***J
(* STE!J S fI HAM.It.TONTI\N cr"ClJIT IS FOUNU _ *'
(***)

500 : WRTTEL~; WRITE,N;
\'1lHiI::LN (, ~1\~i.TL TONI AN CTKCUtT:,);

182

,Il 0

KJ:=O: MN:=O: r0~T:=0;
HEPEAT KJ:=K.J+': 1I.'t'1:=~N+",O; h!HTTFLN(, , J;

If- rv'1'J ") N 1 Hr"J ""I'J: =1'1:
FO~ lI:=KJ T0 MN UO
R~GTN TI1:=HC(.lT.I:

IF Tt (> N THEN IJ~:~HC(.II+,.1 f:LSF l.I2:=HC(.,.):
C0~T:=COST+O(.Tll'II~.I; WUTTE(HC(.TT.):4) FNU .

UNTIL MN = N;
'''HTTt::.LI'J: \AJRllE, I\j(, COS ... =, ,COST:9);
It COS1 (MCOS": 1HFN
~EGIN MCOST:=CnST:

FOK 11:=1 TO N nn MHe(IT.):=HC(.II.)
ENO: •
Fr:=l:
If ALL = 1 THEt\
~EC;IN K:=K-U r;OTf) 400
END I::..L~E GOTO ~OO:
WRTTI::..LN; WR1TFlN;
\o,JKITELN(, EN,") OF Hl\f-JIL"'-ON!I\N CTRClJI1 SfAHCH,)

END;

I-'HOCEDURI:. F ORAI)J (. V IIR NN, M : 1 "'1 E"GFR I;

183

(****+*******~****~********~***+********************************)
(* THTS PKOCEnUKE CKEATES 11.1E "'()K\tJA~O ADJArFNCY ARRAY OF THE *)
(* SURGKI\I-'H GO AN'") SPECf~IE~ THF NUMHER O~-hKCS M TN GO.... *)
(**************************~************************************)

VAH I'J : INTEGER;

~I:.GIN M:=O; Pr(.,.):=U;
FOR 1:=1 TO N nO TO(.I.).=o:
FQR 1:=1 TO N r,O
HI:.GIN

FOK J: =1 TO ~.I UO
TF C(.I,J.) (= N~ TH~N
REGIN ~:=M+li rAR(,v')'=J; IO(.J.):=In(.J.)+l
END; •
Pf (• 1+1 • , : =w" 011 (.1 •) : ~rJ:-fJF (• J •)

ENO
END:

I-'~OCEOURI:. RACKI\!),):

c********************+**l.
(* THTS PKOCFJ1UKE FO~fI.~S THE B.IILKWI\Rn I\I)JAC~Nl,Y ARRAY OF GO... *)

(**************T.*T.*******~*+**+********+*******~****************)

,
H~GIN PR(.1.):=O; ,

FOR 1:=1' TO N nO '
REG I N I-'R (• T + 1.) : =I-'R (• I •) + In t • I •); TO (• T. l : =0
ENO:
FOP 1:=1. TO N nO
FOR J:=PFC.l.)+l TO prt.T+l.) 00
REGIN L:=FI\K(.,).):

TO(.L.):=II)(t...)+1:
JA: =I-'B (• L.) + Tn (• L.) ;
P A K (' • J 1\ • , : = 1

ENO
EN!);

I-'HOCEUURI:. ROOTNOnE(VAR KN : INTEGER)1

(**************************+************************************)
(* THTS pKOCEntJHE FINnS THt:. KOOT NonE WITH 'NHICH THE *)-
(* HAMILTONTAN ClpClJl:T SEA~rH WILL ·STlHn... *)

(****************~*********.************************************.)
VAK MAX,~TN'T : INTEGt:.R:

~~GTN MAX:=YO(.l): MIN:=O~(.l.)~ RN:=t:
FOR 1:=2 TO N Ao .
If ~AX < IO(.t) THtN
HEGIN MAX:=I!)(·r.); ~IN:~Of){.I.); RI'l:=I
END ELSE •
TF ~AX = TO(.l) THEN
IF ~IN > 00(.1°, THEN
HE.GIN ~IN:=Oll(·l.); K"::=T
END . •

EN!): 184

I-'KOCELJURt: REnUCI:;

(*****~***)
(* lHI~ PKOCE£1IJHE RF.OUCES lue. COST MI\TRIX •• ~ *)
(***,
VA~ I'J,MIN : INTEG~R;

Ht:G HI (* REOt ICE *,
FOR 1:=1 TO N nO T£1(.I.,.=n:
FOR 1:=1 TO N rio
HEGIN MIN:=INF.

FOH J:=l 10 t, DO
l~ C(.I,J.> < MtN THt:N ~IN!=C(.I,J.);
FOK J:=l TO tl no Tt (.I,J.) ~ MtN THtN
HEGIN IF ('T,J.) <> 1",F'lHEN C(.J'J.l:=C(.Y,J.)-MH'
ENO I:.LSE .
TF C(.I,J.) - MIN THEN
BEG I N In (• J'-) : = In (• ...J. l +,; C (• T , J.) : = n
ENLJ • .

EN£1:
FOR J:=1. TO N n()
If 1LJ(.J.) = n TH~N
HEGIN MIN:=INF:

FQK 1:=1 TO t--, DO
If CI.T,J.) ~ MTN THEN MIN~=C(.I,J.):
FOK J: =1 10 ,,', DO
IF C(.T,J.) <> IN~ THEN CI.I,J.>:=C(.T,0.)-MIN

ENn
t:NLJ:

I-'KOCELJURt: REnCH(VAR Nl : TNTt:Gt:R l;

(***)
(* THrS PKOCEDUKI:. FINDS THE NOllE SET REACH T8 Lt. FROM NoDE NT ••• *)
(**********************~**)

INTEGER;

I:1t:G H!
FOR NP:=l TO N no
IF NP <> NT THr."l
REGIN KR(.")P.) :=(• "JI-'.);

FOK 1:=1. TO ~I DO 1-'1\(.1.):=0:
PAC .1.) :=NI-';L:=1; 1<.:=1;
REPEAT J:=Pl\c.L.H J:="!-"(.J.H

KEI-'EAT 1:=T+1:
IF FnK(.T.' <> N1 ~HEN
IF Nf)T(F~H(.T.)· IN l-nn.NP.» THEN
HEGI~ KRC.NI-'.):=KKr.NI-'.)+(.FI\HC.J.).); K:=K+l; PQ(.K.>:=FAR(.TI
I:Nn

UNT I L (I = PF (• J+ 1. •), OR (K = N-1);
IF (K < N-1' THt:N L:~L+l

IINTIL (PA(.L·) = 0) UK (K :: N-1);
CAKC.NP.):=K·

ENO
t:.NO;

I-'KOCFLJURI:.. LIT(V!\R !) : ~!l\l""'IX:
V!,\R HC : I\I-{....,Y;
Vi\R N,IN~ : INtEGER);

(***,
(* THIS PKOCEOUHE A~PLIES L~TTLE,S !\LGOKIT~M ~ARTI!\LLY... *)
(**************************~************************************,

VAR TN~T : I\RKI\Yr.1 •• NO,1. 3.) o~ TNTEGER:
TKE : ~RRI\ y (1 •• NLJ, 1 •• .;.) O~ INTEGER:
LUP , KlJP, CUP : AI~ru\Y (• 1 •• fI.!IJ.) 01= I N1 EGt::p ;
ROW\~' COLL : sET 01- 1 .. OlD; .
E : MATRTX:
LEVEL,C1,C2'Q'(N,MING,M,L,MI\X,K : INTE~FK;
T'J,IIIIT,MI\XT'Kl,K2'TE'1 n ,II,IJ ~ yNTEGt::R;

I-'HOCELJUR~ REnKOW(V~R C1 : IN1EGER);

<***)
(* THIS .PHOCEnUKE Pt:.RFORtJ~ THE ROt." REIHICTT0N... *)

(**************************.~************************************,

VAR T,~,MIN : INT[G[R;

tH".GHJ Ct :=0 i
FOR I:=t TO N nO
Rt:.GIN MIN:=O;

It NOT(t INpOWW) THt:.N
pEGIN MtN:=hjF;

FOt< J:=l To N no
IF NOT(~ t~ COLL) TH~N
IF E(.I'~.·i < MIN lH~N ~rN:=F(.I'~.l;
IF MIN <> 0 THEN
Fat< J:=l TO N no E{.T'J.):=EC.I,J.)_ulN:
Cl:=Cl+MIN

ENO
EN!)

tNO;

~HOCEOURt ~EDCOL(vnR C2 INTEGER);

185

(**************************.***************************.********)
(* THTS Pt<OCEIlIJRE PEHFORM~ THE COLUMN HfUUr:TIUN... *)

(***)

WHTLE HIJn(.lq.) <> 0 no Kl~='''Wt-'(.L(1.):
\'!HTLE CUn(.!':.?) <> 0 UO K2:=CIlt-'(."'').)J
t-_ (• K 1 , K. 2): = J NF

EN!); •
TRI:.. (, LEVEL, 1.) : ='''-IN+''A'I(:
HEI)ROloJ{ ell; REnCOL (c~ n
MTN:=MTN+C1+C?,:
lRI:..(.LFVI:..L;?l:=~TN;
LEVEL: =LE\/r:-I.+ 1.

UNTIL (LF.VEL'"> 1\1) OR ("IN '>= MTNGl:
IF MIN < MIN~ THEN
REGIN T:=O; v:=1:

REPEnT 1:=T'+l; HC(.I ':=K; K:=RUP(.",.,
UNlIL T = N •

FNLJ I:..LSE
BEGTN T:=O: TE:=O:

HEt-'EAT 1:=T+1; .
IF TRE(,rEVEL-Ill., < PJIN THEN IE~=l

UN"'IL (IE:: 1) OR (1 = LEVEL-1);
IF IF = 1 THEN
eE6IN LEVEL!=LEVEL-I:

~OWW:=(.); CULL:=, ••);
~O'~ Y:=',,'TO N (10
HEGIN THr(.T,l.>:=,,: lR£(.T,2.):='H

FOR J:-l TO N UU E(.T'J.>:=U{.I,J.);
TF LUP"(.I.) = LE\lEL THFN
REGIN '1~=T: L:=R"P(.I.)
END;' .
ClJP(,!):=0; RUl-'f.T.':=O: LtW(.T.J:=O:

ENn; •
IP:=o;
I-OR t:=l TO 1\1 00
IF INI-T(T",> > L~VEL lHE~
HEG T I\J •

TF II-' = U THE":
HEGTN TP:=,; .

TN~T(.I '1. > :=LrVEL; TNFT(.1 ,2.) :=~;
I NF T (, I , 3. > : =L: E (• M, L. , : = I NF

FNn ELSE INI-T{.I,l.':=INF
I:..NI1 ELSf~
HEcH"j lI.=INF1(.I,.,.);

T J : = T Nr- T (• T , 3 • , ;
F. (,IT, T J.) : = T I'll-

t:I'JD '
ENI)

ENLJ
IINTIL (MIN < !'JTNb' OR (Iro - 0)

END;

HI:..GHI MCOST:=II\JF;
FOR 1':=1 TO "I nO
FOR J:=l TO N ~o nC.T,J.,:=C(.I,J.';
REnuCF::; '''IN: =1): .
FORAOJ(NN,M);

(************************l
(* OnTAIN CONNECTr:-ONF:SS *l
(*******~********~**.****)

FO~ NT:=l TO N no
REGIN .

FOK 1:=1 TO tl DO Pl\c.J.>:=O;
Rt:I-'FAT PI\ (.,): =~J1: Co-! :=U :

L:"=1: R:=<'NI.)J K:=1;
KFI-'EI\T J:=r':l/U.L.': 1~=PI-C.J.);

KEPEI\T 1.=1+,;
TF NOTfFA~c.J.) TN ~l THFN
AEGIN D:=R+{.~ARr.I.).): K:=K+l~ ~A(.K.):=FAH(.T.,
ENn ' .

UNT I L (1. = PF (• J+ 1 •)) '. OR (K = N,:
IF K = N THEN CON:~l tL~E L:=L+l

U~JTTL (PA{ L.l = 0) f'lR (K = N);
I F CON = f). THt-_N
HEbIN MTN:=TNI-:

t-OR T:=l TO N no
IF I IN rJ lHEN
I-OH J:=l TO N DO
IF N01(J TN R) lHI:..~!
IF C(.l, J.) < MIN THFN MJN~=C(.I,J.H
rOR T:=1' TO N no
J F 1 IN n 1 HEN
H)I~ ,J:=l'TO N no

186

JF NOT(J TN R) THf:. ' IF C(.T'.I.) <> If\I~' THr,N C(.I"J.)::::C\.I'J.)-MTN:
r OR.AnJ (Ntl,r~) ;
t-OR 1:=1 TO N DO f-I1I(.I.)·=O

UllJ" . •
UNTIL CO"! = 1

END: -

(***********************************,
(* OBTAIN UNILATEpl\L CONNt-.CTEDNt-::~S *)

(***********************************)
FOR NY:=l TO N no
REGIN KEACH(NI):

FOK NS:=l TO N 00
It- NS <> NJ THE"l
It- (CAR (.NS.) < N-1 I TIJE:.N
FOK Nr~:=1 TO "J no "
Tt- (NR <> NI, ANn (NH ,> NS) THEN
It- (CAI·{(.NH.) (I\J-ll THr:-N
REf-IEAT CON:=l:

IF ("lOT(NS TN RR(.NR)1)' AND (N01(ND iN RP(."'S.») THI::.N
HEGIN MIN::::INF: CON:;O; ,

(**************************+********)
(* THEHE I S NO f-I ATH 1:-. Tl HEH r:-R(W NS *)
(* TO NK OR VI CE-\/EKS/\ t"'~r_N NOUE *)
(* IS UEL~TED t-HOM GO... *)
(***********************************>

~1~=(.1. N.)-KR(,Nc:;.); S2:=(.1,.f'.J.I-kH(.NR.>;
~1:=Sl-(·NI.>; S2:=S?-(.NI.';
rOR T:=1'TU N no '
1 F I I N D R (• I'J S.) 1 u E N
t-OR J:=\ TO N nu
JF J TN c:;1 THEN
IF C(.I'J.) < ~TN THFN MIN!=C(.I,J.J;
t-OR T:=1 TO N 00
IF I IN nR(.NK.) TqEN
fOR J:=lTO "J no
IF J IN <::;2 THEN
IF c(.I'J.) < ~TN THFN MTN!=CI.I,J.J;
fOR I:=t TO N 00 r"(.I.):=(••);
t-OR I :=\ TO '" 00
IF T IN pR (."I~".) ,IJtN
rOR J:=! TO ,,! 00
IF J TN <::;1 THEN
IF C(.I,j.) <> INt- THEN
HE6IN C(Y,J,):=C(.I,J.)-MTN; t-R(.T'):=FR(.I.>+(.J.)
tN(); •

, t-OR T :=1 TO ", no
I F I" IN' nR (• I'jR.) TuE'"
t-OR ~J:=lTO 1" no
TF J IN c-2 lHf:.N
IF NOT(J'II'J FK(.I.,) lHtN
IF C(.I'J') <> INt- THrN C(.I,J.):=Cl.I'J.)-MIN;
t-ORf\nJ(N~l'~); REACL!(t-"l);
II,'H T TELN; \~f-n TI:.L N;
\'mrTE(, THE CO..,l tv'l\lRIX 'TS RFDUn:: U 1\(7l\lN,);
I'.!RTTF:(, ,NIJt-.~t!ER Ur I\KC~ 1"1 GO =,,~:~)

E"!U
UNTIL COI\I = 1.

F.Nn;

(*******************+~*****+*+*+*******+*********)
(* THE ~tJHGR,APH CnMPRI~F:1) Hv T1-<I-: 7EPO COST I\KLS *,
(* IN-THF COST MI\~RIY IS LIT~R~LLY CONN~CTFO ••• *)
(**)

1'{QOTNOIJE(HI\J); n,I\CKf\UJ; AI L:=t; _
~AMIL(t-~R,8AR,nF,Pn'OD'I~,N'~'RN,ALL,FFI:
1r t-f = 0 THEN

(*******************~******'
(* CALL pkOCEnURE LIT ••• *,
(**************************'

BEGIN LIT(C'Mrc,N~INF); "COS1:=O:
FOK I :=1 TO " 1)0
nEGTN Tl:=MHrC.T.I;

I I=' .1 < '> NTH t "J I ? = = f'/I -' C (• T +] .) E L.., E T?: = tJ H C (• 1 • I ;
MCUST: =MCOc::;T+I)(• T 1,1'"1.)

187

ENIJ
F.ND; .
IAJHTTI:.LN: \'H~I TE, N:
\\IJ.q T I:. (, f)PT r. ~~I W SUlln 1 ~N :,):
\'!HT1ELN: ~"'QllEI N: 11:=1.1; J?_:-=O:
HEPt:.AT 1.oJ'.?IT~_LN(, ,):

T1:=12+1: I?'=I~+20:
T~ T~) N TH~N t?:=N:
FOR 1:=r1 T012 no WHITI:.(~HC(.T.):4)

UNTIL I? = N:
~HITI:.LN: WRITE, N:

. \'J H Ill:. C , COS l' -= " ~·1 COS T : ")
I:.NI): .

~HOCrOuRt YMC vno C : ~Alk~X:
\fl'!.,n He :l\kkY:
VAn N,TNF : TNTtGI:.H):

188

C**************************~***********~************~***********) C* THTS PHOCt:DUHE FlI'mS AN ",PTI M UM Of{ A NEI\R. UPTTMtlM c:;OU!TTON *)
C* TO THE TSP HY [7I'1NKJNG lH.- f:X,TtHMF POINTS UN THE I\S<;JGt!MEI'H *)
C* f>OL,(TOfJE A"II) r"jTHOnUcTNb SOrvF CUTS SO.THI\I Tt-'t: HtlNKING *)
(* PHOCI:.S~ CAN HI:. PI:.HFORMt.O IN n MOPE H+rrTt:NT "flN",FI:?.. *)

C*******************+***)
1 Y~E ASSl G!'IMFNT - kl:.COHIJ

.- COLlINlI\I, TlIH, HO\'I~qN, COL~!T I'll, PEf'!I\L TY
I:.Nn: .

NO[)tS = SET nr- l •• f\HJi
ARH = ARHAYr.1..ND.) nF IN1EGER:

VAH ASS: I\RRAY(1 •• ND.) Or I\SSIGNMENT:
n,t:: : M.ATRIX:
Tu,nU,nSG,MA~G'RLHL,CLnL,SOHT ~ I\RH:
TOUR : ARRAY{.1 •• 2~.) ~F NODFS:
ROW,COL : "JOnES:
K , RED C , I , 6.. A , L ' F L 1 , F L 2 , r"' OS I , I C , " , M , Z 1 , c::; T UfJ , N N , K r.

~HOCEUUR~ PRT(VnR AS : AHn):

(*******************~**********~***~****************************>
(* THIS PHOCEOUHE OUTPUTS holE ~OLlJTTON TO THt: A~ fW PnINTTt\I(; *>
(* F:ACH A~S'TGNMENT ~F.PARAlt::1 Y... *)

(**********************~***+*******************~****************)
VA~ T'Il'l~ : INTE~~R:'

H~GIN WRITELN: WnTTfLN;
T1:=0: r2:=(1:
REPcAT WRITELN; WHTTE(, ,);

11:=12+1: 12:=I?+1S:
Ir 12) N THrN 1?:=N:
FOH 1:=11 TO t2 no \!JkITE.('("I~2"",,,s(.1.):2,') ,)

IJNTIL 12· = N
t:.ND;

~HOCEUlJR~ REOlJCE:

(****~**************~***********************.********~**********)
(* THTS PHOCEOUHF. RE.fJUCFS TilE. COST MATRIX. THt. "'INTMUM fLEVt.NT *)
c* TN I:.ACH POI'll IS F()IJ~!lJ I\NU SUHTHACTED IT ~RUM EVERY F'Lf~···E"'T *)
(* TN THl\f ROW... *)
C***}

VAH I'J,MIN : INTEGfR;

Ht.(.;IN C* REntJCE *)
FOR 1:=1 TO N nO

. HEGIN MJf'I:=II\IF;
FOK J:=l TO tl DO
If C{.T,J.) ~ MTN THt.N M1N!=C(.I,J.):
~~EUC: =REOCHI TN;
FOH J:=l TO ~l U()
I~ CI.I,J.) ~ M1N THtN
REGIN TF CC.r,J.) <) 1~1~ lHtI'J CC.J,J.l:=C(.I,J.)-N'II\1

'- .

FNU ~LSE ..
T r C (• T , J.) = M I f'1 T HI: N
HEG T N on (• T •) : =OD (• I •) ,1: T lJ (• ,J.) : = I Of • J. l+ 1: C C • I , J.) : = u
ENU

ENn:
~OR J:=1 TO N nO
IF. IUC.d.) = ~ THfN.

HI:.G IN M '{I\I: = 11\!~ •
FOK I: =1 TO ~'1 uC)
n: r. l • r , J.) ~ M H! THI:.N tv'I N ~ =c (• I , J.) ;
REDC: =1~Ef')C+~TN;
FOK I :=1 TO tl 1)0
Tt Cl.I,J.)) MIN THtN
nEGTN IF C(.T'~') <> ItiF 1HEN r:(.T,~.\:=C(.T,~.)-Mlf'-J
F~U tLSE
T~ C(.I,J.I- MTN THtN
R I:. GIN J 0 ("J. ") ~ = 1 n (• ~ .) ... 1; 0 IJ (• T •) : = 0 0 (• 1 •) + 1; r. (• I , J.) : = 0 END ..

ENf')
E:.ND:

~K()CFUURt ALLOCATE:

189

(****+*********************+*************************;****.*****)
J* THTS PKOCEnllHE MAKES TH~_- INITltlL flLLUCI\TTUNS AMOI'IG THr *)
(* I\~MIS5IRLE CI:.LI S TN THt rOS' MATRIX WHEP~ IHF AOMISSTriLE *)
(* CELLS ARE TH(~SF CELLS I'JH"ISE FNlfHES TN THt. KEOI JCEn COST *)
(* MATRIX fiRE 7ER~..... *)
(**************************+************************************)

VAH r'~,IC : TNTrGI:.H:

HtGTN (* ALLOCATE *)
FOH 1:=1 TO I\! nO
BEGIN

T~ NUTCT IN DnW) lHFN
IF OIJ(.I.) =1 THtN
REGTN TC:=O: ~:=O:

KEI-'EAT J:=.I+l;
IF NOT(J-IN COL) luEN
1 F C (• I " J.) = f) 1 HrN
HEGIN K:~K+1: .

_ASG(.1-) :=~.n
R 0 I~ : = I-{ A \'1 + (• J •) ;
COL:=CnL+(.~.); TC:=1

tNf')
UN' T L (T C - -1) OR. l ~ = N)

ENU; -
T~ NUT(I IN rOLl THEN
1FT U (• I .) = 1 1 Htt\1
~ E G 1'1'1 T C : =!J: J: = n; .

KF.~E!\T ~:=.I+l;· .
IF NOT(J-rN pOW) luEN
IF C('~'T.) = 0 lH~N
I~EGIN K :-K+1 ;

ASG(.J-):=Y;
ROI.\}: =1~nlA!+ (• J.) :
COL:=CnL+(;I.); TC:=1

t_t.--H1 .
UNTIL (IC - 1) OR l~ = N)

FNU
ENO;
It- K < N THFN
rap 1:=1 TO N !If)
Tr NOTCI IN Kf)",l THtN
.~E~l~F~ f! 5~ ;Ji: ~o :

IF NOT(J It I COL) TMbl
IF C(.I,J., = 0_ THtN
t3Ft';IN K:=KI-P

f\5G(.1.):=~:
HO'-'J:=HO'''l+C.T.) ;

. COL:=COL+<.J.); lC.=1
I:.N\.J .

UNTIL (IC = 1) nR (J = N)
FND

t.NLH

190
(*1- If- CnUJ~~N.J TS LAHFU:··.., 1\1\1[1 HOhl T JS ".'nl LI\PELFI1 ~O F!\H *l
C*. ANnCFLL~(~,.J) HAS AN AlLnCATTON A1 THIS STAGF .THFN HOW *)
(* 1 TS LAH~LEn AS KlHl(T)=-.J *>
(**************************+************************************l

VAR T'.J • .JC : INTrGeR;

Ht.GHI
HePcAT FL1:=O: FL?!=O:

FOK T :=1 TO " IlO
TF RLRL(.I.) <> n THtN
FOR J:=l TO tl UO'
T~ CLRL1 • .J.l .:: n THEN
T~ C(.T • .J.) - U THEN
BI:.(;tN .JC:::U·-

IF T = M TI.~EN
IF.J IN lO'IR(.l.) lHrN .JC:::O:
IF.JC = 1 THI:.N
HEbHI CLfiL(• .J.>:.::T: r:U:::l; 1\1\:::AI\-1:

IF ~lnT(.J iN COL) TlJfN FL~:::l I:.NU '.
[NU;
I~ FL? = I) THEN
FOR 1 :::1 10 "J IJO
TF RLRL(.I.) :: n lHEN
HI:.(;tN "I:=l\SG(.I. >;

IF CLRL(• .J.> () 0 lHrN
HF(;TN RL~L(.I.):::-.J; FL1~=1: AA:=AA+'
eNU

ENU
. IINTTL (FLl = 0) OH (FL2 - 1)
t.N(J;

(*****~*************+***+**+************************************>
(* THJS PKQCEnlJHE CH!\f\lGES luE !\LLoCIITlor\!s TN OKDEH TO OHTI\TN *)
c* THF OP1TMAL ~OLIJlTQN TO THF ASSIGNMENl PRUHLt:M. . *)
(* LET .J HE THE Cf)LUMf\I \!JHICIJ !JOFS NOT HAVE !'IN ALLOCI\TTONdND *>
C* HAS HEt::N LI\HEL~\1 : . *)
(* 1- LC:T I=CLRL(,p. MAKE 11.JE NEW AI LOCATI,.,!\! IN CELL (l '.J). *>
(* ?- Lt:.T .J=RLHL(T1. T~ .J) 0 IHI:.N STOfJ ALLnLATIO'" ('H(lNGTI\IG. *>
(* I~ J (.0 THtN HFPLACE .J=AHS(.J) l'\"lI) RF'Pt:I\T THESE STFPS *)
(****************~*********~*******************~********~*******)

VAH .J.IT • .J,J.TC : JI'!TEGFIU

HtGIN_.J:=O: TI!=n;
HEPEAT .J ~ =.J+ 1: .

IF NOT(.J IN rnL) lHFN
T~ CLRL(• .J.)·(> n THtN 11:=CLHL(• .J.)

I J~T I L (J T "> IJ) nR (J = N';
TF II > 0 THeN .
HEGIN .J.J!=J: Ir:=O:

REfJFI\T K:=K+i:
"WW:::HOW+ (11.): COL'=CUL+(HJ.J. H
1\ 56 (• I I •) : ~.JJ ;
IF RLBL(.IT.) < 0 I Hr.!"
~EGIN .J.J:=~RS(rLHL(.TI.);

~:=K-l; rOL~=CnL-(.J.J.);
II ~=CL8L{ • .J,J.) •

E~JU ELSE. Tr!=1.
IJNl TL TC = 1.­

ENn
tNfJ;

~H0CEOURt. FRFOUC~(V~K C : MAI~IY;
.- VnR CCC,AA.L.M • INTEGF'R):

(*******************~***1
{* THTS PHOCEOlJHE FJf'!OS THt MJ!\!TMUM NOf\J""~Ef;l\IIVE FNT~Y /H.' a ".1(; *>
(* THE CELLS TN L I\RELEU ROWe:: I\NI) IjNLAHtLE.D rULU""f\lS ()f- 1 HF * >
(* REDUCED M!'ITHIX. 11 IS ~U"'TRACT.EI? r::RO~ THF t.N1RTFS TN THF' *)
(* eEl LS J 1\] L"HeL~n RQ\'iS I\N"" UNI.I\HELEU COLI ,~~I\J~l\tm l\\1nE.\1 T0 * >
(* CtLLS II'] U~,lLAfkLtn ROI,I':> -N!) LAPELED COllJ"'I\j~ OF THE Hf:r"'IJC~O *)
(* COST 'v'''TRP< tA!Hi'LF.I\LL IHr OIHI:.R FNTRIES I\t<t. REJNf; PI:.~ATf'JtO *)
(* UNr.HI\NhEI1 •••• ' . '*)

(******************************+********************************>
V/\H MIN.I.,J,.JC: 1I'11FbFln

~i t. (.; I f'.J tJ, T I\J : = T !'-!t- :
Fan 1:=1 TO N nO
lr RLRL(.I.) <~ 0 THEN
FOR J:=l TO N ,,0
TF CLRL(.J.) = n THEN
HEG~N dC~=p .

TF T = ~ THEtl
If J TI\I TOUH{.L.) THr_N JC:=O:
Tt ... JC = 1 THrN
IF C(.T"J.) 'jMH1THt-N
T F C (• T , ,J.) '> 0 THEN M,.~!: =c (• I , J.)

ENn;
F!.1R 1 :=1 TO N '10
IF RLRL(.I.) <~ 0 THEN
FOH J:=1 TO N nf)
T F CL!~l (• J.) = n ,. HI:. N
If C(.T,J.) <) TNF THEN ~(.I,J.)!=C(.I'J.J-tJTN:
FOR 1:=1 TO N nO
If CLRL(.t.) <~ 0 THEN
fOR J:=l T0 N Iff)
T F RLRL (• J.) = n THE 1\':
r F C (• J, T .) <) T NF THFI'l f" (• .J, 1.) ~ =C (• J, T • J +tJ Tl\q
CCC:=CCC+AI*MI~.1 .

I:.NI1:'

f-IHOCFOURI:.. CHECK ("I\R 1. C : ,. NTt_(';I:..R);

191

(**************************+*~*+***+***+************************)
(* THIS PKOCEnIJKF.: CHFCI<S If- THt_ ASSTGI'IMENT SULlJl ION IS A *,
(* TR/\VI:.LING SALEc;f-IAN TOlJK. IF NOT I\LL OF THt. SlJRTOIIRS APE' *)
(* SPECIFIED... *)
(**************************.+************.**********************)

VAR J,L,M ~ tNrE~EK;
TOUF~~ : ,,'ODES:

HI:..GIN J:=1: L:=O; M!=U TC'=l: lOUr6:=(•• }:
REPEAT TOlm(.t1):=(••);

REf-iEAT ASS(.~.).COLUMN.=~~G(.J.);
1 F NOT (J TN 1 OUK (• M • ,) 1 HI:..f\J .
HEbTl'I TOIJR(.M.) :=TOU..,(."".)+(.J.): TnlJt(~:=T()lJRS+(.J.):
·ASS(.J.).TUI~:=M; L.=L+';
J:=A5(;(•. J.)

END
UN1Tl. J TN Tr)IJK (.tJ,.);
TF L <> N THr"J .
REbTN TC:=U:J:=1:

KEPEAT J:= ,+1 .
UNIIL ",leJT (.J II'J lOtll~S';
M:=M+1 .

FNU .
IJNTIL'L = "I

t:N[);

PKOCEI)UHF~ C A.L CU1~" Tt: (\fI\R 1 • T NTI:..GEP):

(****+***********+**t***)
(* THTS pKOCEnllKt::. CI\I.CULI\Il:.r::; A NOf\I-"JEGAIIVI=' ~t:NI\LTY ASSOCIII.TED *)
(* \oJITH THE AC;SIG~,MF~f\IT TN K"\,i T •• *)

(**+********************)
VAK J,K,L,M,P : T~lFGI:.R;

Ht:GIN
I'll T H 1\ ~ S (• T .) nO
REG J N J: =COLUiV.t.,: COL~ T f\!:":,: T NF ;

FOK M:=l TO '" no
If- C(.~,J.) t' COL'" T f'.! TIJEN
rF M <> T THr"J COL~TN::-:c(.V,J.l;
L : = TlJR; ROW Iv' TN: = r N F ; .
FOK 1VI:=1 10 fl no
Jf- NOT(M IN Tf)UR(.L.) THt:N
TF C(.T'~~,) < K()\fJ~TN luEN HU\·/MTN:=C(.T,IVI.):
PENALTY: =COI..lTl'J+POI'1f'.'l N!
Tr P~NI\LTY < 0 THt:1\i
AI:..GTN PENALTy!=rNF;

rOK K:=l Tn N no
IF K <> T THI:-J"
f-OK M:=l Tn N no .
1 F NOT (fill h.1 1 ()11K (• L • ,) , Ht:N
8 E b T 1\, p: = C ,. • T , v.) + C (• K , J.) ;

IF' P < f-'r-NALTY lHt:·!
JF P >= ri THFN

192

t-JHOCFOURt-_ SOLVE(I/A'~ t ~ rv;"Hnx;
1//\ I-? J : I'! T F: (, F I-<);

C*****~***>
C* lHrS PHQCEnUKE SOLVt-_S lHr. 1\~'iIGNME"'T PI-{(1PLt.tJ ,I'IFTFR A CUT IS *)
C * I NTROQUCFO. • • '")
(***)

Vl\R ,J'M,AI\'L,~Ll,FL?,CRtlJ,."C,...1C : TNTE(';EH:
SUHUJOP : NOn.ES;

HtJ;P·)
WITH A~SC.T.) nO
K t:. GIN ...1: = C Q U J M f I; C RI:.O : = I-' r- I'! 1\ L T Y ;

FOK N!:=1 TO ~I IJ()
IfF: (• T , M .) < ..., HI F T H t , I E (• J , M.) : = t (• T , M.) - R moJ M J N ;
FOI-< l1li:=1 TO t,; Dr)
T ~ F: (• M , ,J .) ~ ..., Hi ~ THE ~ I E (• M , ...1.) : = t. (• ~,' , J.) - COL M T N

END; "
K : =N-l; R 0'''' : = (1. •• f\j •) - (• T •); COL ~ = (• 1 •• f\!. , -(• ...1.) :
FOR M:=l TO N nn
HEGIN HLRL(.M.~~=O: CLHLr.M.):=O: I\S6(.v.J:=ASS(.~.).~OLUMN
El'm;
RLHL(.I.>:=l; nSG(.I.):=n: ~n:=t: L:=ASSC.l.).TUR;
I-JHTLE K < I'J DO '
I;E..GIN LBLCF,I-Ll'fL2"\A,L,I);

TF FL~ = 1 THEN Rt_I\LLOrI\Tt. tLSF
If FLl = 0 THEN FI-<FIJUCr:-(F,CKED,AI\,L,I'

END:
wKITtLN; WRITEI N; ,
I!!H T TE.. (, I NT~RIIIIEO 11\ Tt -::OLtH ION :,);
PKT(AS(,); ~RIT~LN; WRylE, N;
l'iK y TE C , COST = "OH'JJ of~) ;
IF CI-<EIl <= 71 THEN

·YEGTN ...1C!=l;
If (Cf-H'_n <= 0) OR (CRf~ = 71) THEN
nEGTN ...1:=U i :=rJ; SlJHLf'\OfJ::::(•• H l1li:=1:

I-<EI-'E1\T-
IF NOT(...1 TN SUHLUO.-,) IHI:.I'I
HEGTN Su"LonP:=SUHI 001-'+(• ...1.); L:=I+l; J:=ASGC.J.) trm .'

Uf\j1 It J IN SUPLOOfJ:
-IF L < N r'lEN JC:=u

ENO: '
IF ,JC =1 THE,!
Rt~T~ 11:=CRFO; KC:=l:

foOl-< ~~:::1 Tf) N flO
I:H,::Gtl'J MI\5(; (• M.) : =I\S6, • IV.) ;

I-OR J~=l TO", DO Ur.M,J.>:=E(.M,...1.)
ENU

FNIJ
ENfi

ENn:

tJI-<OCEDURt-_ SORTf-J;

C********~**)
(* THrS pI-<OCEn'JI-{E SORTS lHt PFI\jI\LTIFS TN At;CtNDHlG ORnI:.R... *)

(***)-
V/\I-? I,...1,L,M : INTEGf'JU

H~GIN .
~OR 1:=1 TO N n.n 50I-<T(.J.):=T:,
REPcAT L:=rq .

F 0 I-< J: ::' 1 1 () >, -1 [) 0
Rt~TN J:=SORTC.T.); M:~SORT(.I+'.):

IF/.I\SSC • ...1.).PEI'IALTY " "':lS(.f'I.1.).Pf-_NALTY THEN
HFGP! SORTC.I.):=!V; ~Ol-?l(.I+'.):=...1: L:=L+1
I:.f\ju .

ENlJ
IJNTIL L .= 0

tNI1:

H~0IN NN:=N nTv ?+1;
~OR 1:=l TO NNnO lUIJf~(.T):::().
K:~O; KEnC:=U: '" ,
FOq 1:=1 TO N nO
~~AfN If)C.T.):=O; OU(.l.,:=u; I\S~(.I.):=o
COL:=C ••); I"WI,oJ.=C.)i /\I\.=n:

. Rt..nUCE; .'
I\LL OC./\ 1 E:
IF K <': N THEN
f'oOR 1:=1 TO N nO
RI::..G~N ClqL(.I.)!=n; RLHL'.T.l:=O:

TF f\JUT (I TN p()\'J) THI:..N
RI:.GTN RU~L("T.):=I; AI\.=fll\+l
ENU -

ENn:
'''JHILE K ("I 1)0
~Er,IN L:=l: ~:-n;

LHL(C,FL] ,FL;,I\I\,L,,,,.);
TI- FL2 = 1. THEN
R~GtN REI\LLOrAl~:

IF K < N hiE!\!
Hc<:iIN flA:=n;

t-OR T :=1- TO ~.I no
HEGIN HLnl (. T.) :=0: CL~L (. T.) :=0;

T F 1\' U T (T H' fH) IN) 1 H t N
f~ E r; I N ~ U-I '- (• T •) : - I; fI 1\ : = fI A + ·1 ENn '.

t-~ "lfl
ENU

ENU t-LSE
IF FL1. = I) THF:N FREIJIJCr:-«(,~t..()C,AI\,L'M)

EI'-!n;
(OSl::::KEflC:
I'JK T Tt:LN; I!JR 11 F..I N;
I'-IRT 1 E (, SOLjjTIO!'! TO ,IJF: I\P :, I ;
PRT (ASb): \·lRITrLN: \'!Hlltl N:
I') R T 1 E. (, coS T = , ,c 0 S 1 : ~) ;
REPEAT CHECK(lr);

TF TC :: n 1 H~N REG!'" . .'
t-()K T:=l Tn N no CI\Lr-uunf_(I);
~OKTPi
M!=Oi 71:=TNt-: STnp:-o;
RFPEAT rt.:=r~+l; I~=~U';T(.~J.);

I-OR L:=lTO "J no
t-()R ~J:=t TO N DO c.'.L,J.) :::C(.L,J.);
~OLVE(E'T); .
IF M < N' THF'"

, MEG TN I: =smh ~. tv'+ 1.) ;
TF 71 <= ~SS(.I.'.PI:..NALTY THEN STuP:=l

t_ND '.
UN I TL .(SIan = ') OK , t-/. = N);
t-OK T :=1 Tn N no
HEbTN I\SH(I.l:=Wn~G'.T.);

I-OR J:=l·TO ".' no CI.T,J.):=O(.l,J.'
!:.Nt Ii .
crl~T:=r:()ST+?l ;
\AIR 1 TFLt-I; I~p T TFLN:
WR 1 TF (, CUI~Pt:NT S"l..Ilf TON ~,):
I-'f-? I (tv' I\Sh): "iR T Tt-.. L!'!; I_'f.! T I FLN;
wH I Tf .. (, COS" =, "'05 I ~ 8)

FNU
UNTIL Ie = 1:'
WRTT!:.LN; WRIT~I N;
"JI .. qTE(, THE. flJRI-?FNT ~O!UTION IS (WTI~'tJ"'I,);
J:=U He(.].):";;':
FOR I:=? TO N ill')
HEGIN HC(.T.):=~A~G(.J.)! J:=MnS~(.J.)
FNn

r_NIJ;

I-'KOCFUlJRt-_ nYf'JI\~Tr.(I/I\R C : Mf\'~IX;
I/I\R He • "I .. my;
"flH 1\' rl ~,~ : UITFGEH);

193

(*******************~****'**+************************************, (* THIS pKOCEnURE FII'In~ THt Sf)LlllJO", TO TH~ ,~p RY IJSTf\l(~ I\, *)
(* DYf\lI\f'i.TC PRO(;Hf\rl~.lI\IG lYPr~ I\P~I-?OI\CH. I-IRST, ALL OF THE CEI LS *)
C'* TN. THE COST M I\TIH '(AHF ~',HTt-< flCl En FROM 1\ LJ\R(~E N"~RFR' sn '*)
(T THAT THE T~lI\NGIJLl\R TN~.Q"ALITY Hnl.ns. TI-lFI'Jr THE flLGORTTHtJ *)

194
(* TInEs 10 FT"!U THt LHGESl P/UH Of- CflHIJINI\LIIY N r~FT"'tFt! I\NY *)
(* T\~O Nf')I)ES TN I\~I I\CYCLTC ··"""')I-:K. nt'lCF THI:" LARGEST PI\ IH Te:; *)
(* I1t::FINFJJ, JT Ie:; cor"PLEH.ll TO f\ H.t'~~IL1()NII\"J LIHCI/IT. AFTER *1
(* I\LL, THE CTI{CUTT IS TK1I-.'"' TU Hf-. TMPROVE~ HY I\TTE~PTINr, TO *)
(* CHI\NGF THE U)("TIOl\! Of- I:.~CH lI'onF SFYARI\Tr:-LY... *)

(************+*****************+***+****************************)
lYPE AKRl = I'IHHl\y(.l •• NU.) OF TNTFGER:

Nunt-_5 = St T Of- 1 •• !"U:
AKR2 = I\HK1\y(.1 •• ND.) OF ~UDES:

v /\ H () U , T tJ ! 1\ H H 1 •
!lSK : II!Onr.':l:'
FK,RK ! f\H.K2;
C r-I A '< rI , J , C M ~ ~ I rT 1 rI? : ... f\lT E G t R :

I-'KOCFUUPt:. LP(\/I\n I-R,HR : .R~2;
VI\f' HSP : NO,:[5:
VAn CMIN,(MA~,SK : I~TEG~H 1;

(************+******+**~*****+*+********************************> (* lHIS PHOCEnlJHE Flt'mS THI:. L0IW';I:.ST PI\TH 01=' LI\I-·mlNI\I.TTY 1\' TN A *>
(* GKI\PH... *)
(******************************+********************************)

V/\K PAl H,P.lITHl : I\I"m:;>:
e:;,6<;,T : N()lJrS;
P : MI\THIX:
CH,LK,LK1 : "HHl;
K , I , IV' A 'l , L , J ,,~ , J A , COS·, • TNT t G En:

tif.GII'I S:=FJ~(.SH.): K:=t: G~:=(••):
FOR 1:=1 "TO N n()
HE GIN P 1\ T H (• J .) : = (• SR •) :

FOK J: =1 I() t.1 (}O
P(.I'J.>:=n·
CH(.l.>:=1J

FNn:
FOR I :=, TO N rtO
If 1 Tf\! S THf:N
HEGlN LI< (• T.) : =CfVIfl.X-C (.S'" T.) ;

GS: =bS+FI~ (• T);
CK(.!.):=l: •
p (• T , 1 .> : =SH

·tNn ELSE LK(.T >:=ni
Hl:..PEAT •

FOH T :::1 11) ~I Ill)
BtGTI'I LK1(.T):::tK(.l"i

I!= T 11'1 bS· THHl
IF T ('> SR THUI
tWI;Tt'! T:=Hr.!{. T.)*S: ··I\',(:=Ui

I-OH ,j:=l TO 1\1 nO
IF J TN T THEN .
IF N01(T]N I-'ATH(J.)) THEN
HEG!"! IV.:::I.K(.J.)+C"·AX-CLJ,I. >:

TF f\II '> r-tI\X lHeN
nEGTN "".X~=rv; JA'=d
FNn

1-. ND :
IF r-t,r.,X > LK1(.T.) "-HFN
HFGHI LK1 (• T •) : =t--'I\,,;

'p i\ T H 1 (- I •) : =1-11\ I H f • J 1\ •) + (• J A •) ;
CR(.T.)~=K+li
P(. T ,Ktl. 1 :=JA

I:.l'ln
1:."11)

FNU:
K:=K+l :
T I- (K < I\J-ll THE~I
~I:.GTN S:=(••): GS:=(•• ':

I-OH T:=1 Tn I" no
IF LK1(.T.) <~ LK(.l.> T~tI'l
tWbTl'J S:=St-hT..):

bS!=GS+Fr) (. T.);
LK (• T.) :-LI<.' \. T.) :
I-' 1\ T H (• 1 • ") : =P 1\ l~] (• T •)

UJI)
[NU

IINTIL (K = "J-!):
HW l:=1 Tn N I"')()

:-::'iN~' T TI\! RSR THrN
TI- ·(CHl.T.) = ,.,-J) ·'HEN

Y~GIN COST:=(N_l)*CMAX-Lvl(.T,)+r(.J,SR 1 i
,TI- CUST < C~T"l TH~N - -.
~F.GTN r:~TN:=r:O~T; HC(0".) :~1; .):=J;

I-OK L:=N-l n()\'/~JTO 1 nO -
~E(';IN HC(.I .) ~=Pc .J'I .); JO-P(J,L) EN!)" • - , ,

ENU
ENn

~Nf);

Ht-_GHI
rOR 1:=1 T() N f'")O
~~giN t-R(,T.):=(••); PI-n.I,):=(••); OO(.T.):=O: Tn(.T,)~=O
CMAX:=U:
rOR 1:=1 TO N nil
FOR J:=l TO N nn
If: C{, T "J.) (> TNF lHEN _
HEGIN t-RC.T.):=FK(.I.)+(.J.);

RR(.J.l:=HK(J.)+(,I.)!
OIJ (• I •) : =fJU (• J •) -11. ;
ID(.,.!,) :=TU('J.)+1;
IF CMAX < C(OI,J.) THfy CIVl\x·=r(.I,J \

FN[l; • •. '.- •
CMAX:=CMI\X*2;
CMIN:=HJF;
HSR:=nK (.l.); nR(.1.):=< .); 1:=,;
1..1-'(I-R'IW,RSH'r~IN,C~Ax'T);
~'JK I TU.I'J: toJR T TEtON;
IF CMTN }= INF-THEN
WHTT~(, THE TSP HAS N~ SULUTION,) ELS~
H~GIN .

~oJK I TI: (, nl-'T H!:LJN\ ~o, UT I ON :,);
I.I.}KITI:L"!: \~KITELN; n:=,.,; 1?:=O:
REPEAT WRI1E,!\J; WRITE<, ,);

11:=T2+1; i~:=I2+2U;
IF T? } N TH~N I?:=N!
FQH T:=11 TO T? no WnITt(HC(.I.):4)

UNTTL T2 = N:
WRITFLN: ~RITELN;
WHITt(, CnST = "CrvTN:A)

FNf'");
\'mITt::Lf\J; \oJr?lTEt II.);

t::Nn; -

~KOCFOURt YH(V~K n : ~nTHlv:
\f I\I~ HULL ~ 1\1<" y ;
V'~R I'J,H!t-,M : II'IIEGER):

195

{*******~******************+***+*******+************************1
(* THTS PHOCEr'lI)Hf. FINDS TH~ S()LU1IO~1 TO lHJ:" '~I-' RY IISTNG A *)
(* GEOf\f.t::.TKT~ f\p.PRnnCH.- TT Ie: I\SSUMEI1 THAT THt. TRTI\NGULI\R *)
(* INEQUI\LTTy HIJLf'")S. GIVEN ~ CONVEX HULL TI-lF ALGOHITHfvI TJ7JF~ *)
(* TO ~ H·ll) THE HEc;T !'lL 1 ERNI\T I\/t. AMO"'G THE ,,'out.S THATI\KE 1'10T *)
(* ON lHE CON"!::x I-~ULL So tHI\T1HE TIlTl\L COST IS MTNP~IIL I\FTtR *)
(* THI\ T "lonE TS tt!SEKTEn H!:.,.\MEt-.N T'AJO CONSEr:IJ' I VE "!OnEs 01'1 TI"1E ;:)
(* COf'..JVl:.X H"LL.... *)
(****+.**************+~*******+*+***+***+***+********************>

T 'fPE EUGt-_S = Kt.CnRIJ
F.~nNnnt,CANnInnT~ : IN1I-GEP:
Hl='lGI-iT : K~~L

ENO;
\I/\R LIST : AI~KI\V r.1 •• I'ln.) ~I- t-JJGFS;

TUUR : SFT Or 1 •• NO:
~AXH'MTN : RrI\L: .
T'IT,Mf\X,J,K,JJ"'Jl,I",CO<-il ~ INT~_GE!?:

PKOCFIJUqt_ ~Af\XTN!17E(VA~ Ht-_I-::HT ! REII.L;
. V~H T,J,L : INT~GEH);

(****+**************+**+**~~*+*******~*~************************)
(* THT~ pt-?OCEnUKt:: FJI'H)~ THE MI\XTMllM HEIGHT Rt.LONGING TO ONE OF *)
(* TI-<T ANGLES FORMr-f) yy 01'11-:. r-f- 'Ht-_ HFMI\ I NING I\lUDES THI\T I\p~ NOT ,*)
(* Not 0'" THE C::ON"EX HULL A-lU 1l'JU cr)NS~_LUTT"t. NODES Ot-! Tf-1F *).

(* COl'1"EX H"LL... *)
(****************+.*********+***********+***********************+)

V A.H K : I NTEGF.K ;
U,~,HH : HtI\L:

HtGII'1 HFrGHT:=u'0:

HtJ3T~,J T()IJI~:=C ••).
~OR 1:=1 T0 N ~n
I'IITH l.lSTC.T.)"nO
HEGIN r.f\JmJ01Jf::-n; CMmIIJ"TE:=O: HETGHT:=O.U
FNn: -
FqR 1:=1 Tn M nO
f4EGIN Tl:=HIJLL(~T.);

TF T < r·~ IHE~I I?:=HlILLI.T+'.) FLSf: 12~=HLJLL(.1.),:
LIS T (• T 1.) • F> iflN()nf : = I 2 !
TOUI~: =T()"f./+ (T 2.)

ENf) ; •
I·m T TI:.U'H I·J\) IT [I "H
"mTT!::: (, CON\;EX HULL :.):
"'fnT!::I.f\J: "JI~TTF..LN; Tl:=tH 12:=0; J:=HULI.(.1.):
HEPI:.AT WRITf:LN: WHITE!, ,I;

Tl:=12+1: I?'=I?~?n:
tF T2-> u l~~N J2~=~;
FOR 1:=11 TO'T? no
HI:.GTN J:=LlST(.J.) .t::NIJ·'Of)r.: \!!RTTF(J:5l
ENLJ

IJNTIL J2 = 11.';'
~A'X:=n;_
FOR 1:=1 Tn ~ nn
FOR J~=l TO N ~O
TF LJ(.I-,J.) ()TNI- rHl:.l'J
11- 1J(.1 ".1.)) ·~I\X THEN M~x:=n(. T ,J.):
MAY:=~*MAX: CO~T:=N*~AX;
FOR 1:=1 TO N nO
FOR J:=' Tn N nn
T F 0 (• J , J.) ('>' T NI- 1 HEN
f1 (• I , J.) : = k} A X - n (• I , J.) :

·FOR 1:=1 Tn N ~O
. If I I'" TOIJR THE!\!

WITH LIST!.I.) nu
MAXIfviTI'E(f-H=:lf';HT,1 ,FI'!fWUU"',cn"!LJrn"·TF):
"JHTLE:. !VI < ~,l 1)0
Rt::GIN M:=M+U ~'''XI-l:=O.'):

FOH,L:=l TO ~l Dr)
t I- L T"J TOUI-{ THF"!
If- tJ/\XI;-l (LIc,T(.L'.).HI:.TGuI THEil'
Rl:.bTI'! III'/\XH:= I.IST(.L.) f-1F.l(~HT: T:=L
FNU: •
TOUR:=TOIIIH (LIST(. I.) .CfI!'.:f)IDATE.):
T I- V; (= f'l THc-N
(~tGTI'! "

vi "(1 H L T S r ("(.) [) ()
HFbl"! L: =Ff'!!J"JOUE;

r.t'lntJnUE : ~C I\~!I) J D 1\11:.· J: =CM·ln Tn,,, f:.:
fVll\ 'II': P} 1 LE"(f--IE T GHT, I , r:-NnNOUE, CAN!)! UI\ TF J

UJU; ,
viT' H L T S l (J.) II 0
HEb PI EI'!I)Nnllr~ ~ =L ;

fV'A X pq 71: (Ht T GHT , J, !""1\!IWOllF , C ANnI 01\ TF. J
E"]I 1:
F()I--< T:=l TI') N DO
Vi T 'I H L T S T (T.) DO
IF C IIJJIl I U I'd-'F < '> rJ r H--":
IF CfI"JDTJJATE Tt--J T()W{ THt'"
rlJI,}l, pq?F (Hr- T (-j!-!T , T , t N I\!()U .. , C !\t-.IDT f)ATF ,

FNU
fNri;
\';HTlEU'I; I'l ln IF, "n
\'iHTTE(' n!-'I1'~!\L TOUR :,):
\·IRTll:.l N; 1,!PJlF.:, "H T1!=Oi 1;:>:=0; .J:=HllLLr .1.); L:=J:
I~EPr.A;= 1,!PTTtLN f W~TTE (, ,) ;

Jl:=I2+1: I~:=I?t2";
11- T2 , NrH~N T~:=N;
FUH 1 :=11 10 J;:> no
nEGTI'J d:=I_IST(.,J.) .END·,ont.: , . .'''-'<-':>:':''~::;';l'>J~~;.

196

HULL. (• T •) : =J: "IK Tn: (. , : t)) :

FN80~T·=r.(lST_«.L 'J.) i L~=J

UNTIL I? = Ni
\>.}~ Tl t.LN f~IP 11 EI 1\);
WRTlt.(, CUSf ="COS1:~)

ENfli

Ht.GltJ
~Ef\l)LNi I-U::I\IHN1 ,TI\IF'l~~'''Hnl:
11- VKP = 1 lHEn
~EGIN KEI\OLN: ri,F.AJ)(NOF:.MnlllEt-»;

Ot.~I\Nn:=(••); ~~=u;
Ht.PF)\T RF."IILn:

WHILF 1'.,01 F()l!'·j 1)0
I:IF.(';TI\] J:=J4:l:

J F J <= ~!nEM 1 HEN
HEGIN KEl\fl(HII)); l)~r\';l\Nn:=nFMf\NIl+(TUU.)
~Nn •

t.Nt}
tJN1TL .J '>= NnEIVi;
Dt.P()lS:::(•• l: J~=U; IN'':=tH
Rt.PE/H HEf\I)L~I;

VJHILF W)f ~OU'I flO
HEb Tl'J .J: =J .: 1 ;

IF J <= 'IOEI-l H-WI" .
HEGI"J HEI\O(TDIJ,\lN(InD.);

PEPOTS.=UEPOTS+ (·IDU.);
TNV:=Tf!"+\/I'I(.llJ1)·) .

t.Nn •
E.NI)

UNTT. L .j '>= NnF.Y
F.NO;
FOR I: =, TO N ~ nu
!~EG I N J: =0;

RI:.t-JEI\ T HF I\[)L~I :
WHJLF Nor rOLN UO
IjEbIN J:=J+l:

IF J <= t·,l 1Ht.N Kt."ID (I:. (.1 , . .1.)
EI'll)

tiNT TL .j '>= Nl
END;
P AGt.; WR T TFLN; 'ajK T TI:.'- l'H

. "iR Ill:. (, l) 1 ST f\NeE MI\Tfh x :,); "'IH TFLN: wt< T TELN;
I-' KIN T (t , N 1); \"1 D T TEL N ;.. "I K ... 1 F L I\q
IF VKP = 1 THEt.J
11EGIN t·JRITF.(, f\IIJM!1EH ~I- IJFMf\t\Jn POINTe; =, ,NnEf'J~t));

\·JKI TtU·1 i W~ITFL"n \aJ1-11 Tr (, nEtv'I\NI) pnTf\J IS: , l:
WKITt.LN: WHITELNi WKITr(, ,l;
FOK 1:=1 TO t,ll no
Jf T' TN nEM'hjn THEN 1~!K ... 1E(T:3):
wKITtLN; WKITELN:.
wK I TI: (,- I\IIMHtR O~ DrPOl S =" NOE N': c:; q
\.IKITI;Ll\ll WRITFLI'H '·JKITr.:-(, DFPOl 1: or VEHICLES,);
WKITfLN; ~KITELN:
FOR J:::1 10 tIt no
I~ T IN ntt->OTS THtN
REG T N ".IR Tl ELI.I: \'.If) I TE.LN:

WRITE(, "1:2,, "VN(.1.':2)
FNOl .
~KIT~LN: WK~TFLN:
WKIT~(, T01~L.Nu""erK U~ VF~ICLtS ::,'INV:~);
~:=0; N:=TN\I~?+N~tM;
FOK J :=1 TO I'! 1Jr)
FOR J:=l TO ~J Dr) C(·.l' J.):=HIF:
FOH J: =1 PI q1 no n.; TIN nt M I\tlll THI-.N
BEGTN K:=K+l: NOflt(.K..,:=u '-:::0;

~OK J:::l T~ Nl un .
IF J 11'] DE~.~I\N!) .. 1 HFN
eEbHt L:=L+1; C(.K'L.}~=~(.I,J.)
E.NIJ

FNU;
K: ="'1I 1EM:
r-OH 1 :::1 10 t!l 1)0
II- TIl" nt::.f-J()TS THt-_N
PI:-_G TI'l

fOK M:=l Tn \lNf.T.l ~o
HEbTI" L:=n: K~=K+U ··ontf.K.l:=Tl

I-OP ,J:=l TO "'11 DO
IF J TN nEN'I\f'J1l THt·,
HE"(;PJ L:~I.+H C(.K,L.I:=t:(.I,J.)

197

t-_I'Hl :
C(.• K,K+1 .• l:::n: V:='.I+1; NOI1F(.K.):-:T;

EN~F K < N THFN C(.K,K+l.):=n EL~E r(.K,Nnt- v+1 .):=0
FNLJ:
K: =~JIJE~~:
FOI-{ 1:=1 10 '11 flO
T~ TIl'l r')!:.f-J(hS ll-H"_I'!
RI::.GTN

fOH ~:=1 Tn VN(.T.) ~O
1:3F1:; T 1'1 L:=f1; K~=K+?:

H)R J :=1 TO t-H no
TF J IN !iEtI;l\.t-!IJ THE"
Hf.(;I"1 L:='-+1; C(.L,I<.):=F(.JPl.)
t:.NI)

I::.N!)
ENU;

. PAGE: \'II-{nELl'I: \·mITFLN!
WHIT!:.(, TR~NS~ORMt" VATKTX :,):
'~JH I TEUH "llq TFL"J: P'~ I I'J'" (r, 1'-'> ;
l'IKITtL"I; \'JKl;-F(, f\lU'~HEI~ O~ f\IOnr.~ =, ,1\1:5)

F!'1n ELSE
REGIN N:=N1;

FOK 1 :=1-10 t! IlO
. FOR J:=1 TO tl IlO C(.l r.J.l :=1::.(. T r.J.)
ENIJ: .
CASE T~P OF

1 YTSP(C,Hr,N'TNF);
2 : YM(C,HC""I!'lF):
~ i ~r~S~IC(r'H[,N'TN~';

ENn;
If lSP = t~ THE!I
'~EGIN ·J:=o; HF."nLN; HEAUrT"tl/):

Rt:.PF f\ T HE A!lL!'1 :
va II LE NO' FOUl IlO
I:3F<:7IN J:=J+t;

JF J <= Tf\JV THEN Hrl\l1(HC(HJ.l)
I::. f\JlJ

UNTTL ~J >= Ttl\f;
Y H (C , HC , I'! , I Nr- ,1 tN)

ENn;
If VRP = 1 1HEri
HEGIN M:=n; MM·=O;

.. \·JR I T 1-. Lf'I: "JR 1 T ELN ; l.m 1 T rLI'J;
\·jHITI:. (, TO\JRS OF Vt:.lnCL~~S :,);
~HITI::.LNt WHITELN; T:=U:
FOK .J:=1 1tl tit 110 VNIJ{ J.) !=O;
I<t:f-JEI\T 1:=1+,: •

IF T) N THEN 1:=1:
K:=HC(.I.): Ll:=NOUI:.,.K.);
IF L1 TN LJrP01S THt:.N .
HF_bH! T:=1+,.; .

IF 1) N THEN 1:=1:
K : =HC (• 1:); L?: =NO'"'E (• K •) :
IF N01 (L; 1 N IlEPOl t::) 1 ~t:"1
HEGH.I WI'hTt-~L"H \·.!.-n~t.LI\!: I\~:=M+': ~'.I·=Mr-t+::q Kr-t:=:>:

-I"'I~TTI:.(~ TOIIf-<, ,M:~', , ,L1 :~,L~:3);
RFY!::.I\T T:==T+1:

T f I > I'll He "J. .. : = u
K : =Hr (• T •): L2· ="lUI1I::. (• K •); I<,M' ="M+ 1; ~}M: ::MIIt .. 1 ;
T~ K'! <= 4(1 1 Hr:-N ".If-{ 11 E (L?:.3) rt.~t-.
RF(~T.tl "JRjlFLI\!; v,IR1TI:.(r , ,L?:~l; t<r-t:::o
ENIJ

11~1TlL U~ :: L1
!:.f\ln F:L~E
1 F L? = I 1 1 HtN
HEGTN \/NIJ(.L?):=V>.,u(.L2.)+1; NI~:=~;M+?
t_Nn !="L':>E
HE (~I N I: :: T -1 :

TF 1 < ,. THI:.N T:~N
r_ "111

un)
IINTTL ~M >:: t,:
wRIT~LN; WKTTF:LN;
FOK J ::':'110 r:I IJO
T~ T TN ~tf-JOTS THtN
n I::. G T 1" \/11: = \.f N (• T •) -" r·ll j(• T •) ;
- WRITELN; ~pT1fLN;

VIRITE(, "JEHTCLF:S "SEll lI'J nFPOT "T:~" - "vu:-,:)
FNU

EN!)
t:.ND.

198

APPENDIX B

200

. --_._- -'~ .. ----.-- --. e __________ .__ _ __

~~~:=:~OWj=::~J.::::._~;~J_?~=}f~~~:§::=~~2.~~6-Z72~:?~~~O:c::-::=_-9~lE=~~~~-==-~~,=:~~:-~=-f:/:cf::<,-

~O~ 2 65 999 30 3 20 8 34 45 20 ~2 

"~C\f{~:!~~~:~-~~sf~~~:9i%~--.i~C"C:tDo~;L~~J~·~~~ii·~:~-i-~~~~~~:;-SCC:-... 
=-:--:-:=~~~~~·O~ \J===-~lf-=--:';~-~='::-: -6" 2 ---::-':-::=:'5-~3~:-':~--~-=-8-:3 ~~9-9~~9-:~~~~~69-=--·~ ~4=S~=;~9~~~=-·--:7 0 :';:·~-=-:6~~=-==-==if4 -:~ --- ----~-.~~ - - -_. .. ~ 

_. __ .-. ----._ .. _---._-- --¥-- .. _-----_._--

.;:-;':RQR~~:~~~--~~,,~_2:-~::::'z'03_=J20'-~~6~2~]'.9_9~?~~~1--'~~~f~r~~i~:=$4;~~~_=:==9~~~~~tl? 

_-=::~~-c=.=~H!:i_- ..:=24-,~.:.-~= l? 8~_-'--'_-·_38=c-.--.4 5 .••. -_., 27,.ccc_999 __ - --- _.- - --_ .... -- ------ -~- -- -- ._- .---- ---------"--- . -- - --'-.- ---_._----- --------- --~-- ~--.----- --- - - ---- - - -- -------- ----. --- ._- ._._--.-- --._-- ------" ---- -- - --

~ow 7 94 34 49 59 Sl 35 999 79 54 18 
- -- -_.- _ .. - -

-.-- :ro-W -'--8·c~,-· --~~--3 3·CC-- -- 4 5 ,~:.-c- -53 --'-::'-=-7 (1 cc--'~c_ 3 '+ ::''--'-':'':4 S--:=:-::- 79 -=-='9 9 9==-=--::27·=-=-":;=64-~-'-'::-":--"-·-·: 

_____ :~L~O,~~~~~:<;;~~5~~~'j~'-2._0-~:=~~~2~~~~~:~~~~[~-o.~~~9,~~c~HE~-:c~?.c:~:~:~~~~J='-;-=I9}i~9~~~~:?=,'~~:f~:'i¥~~-:~;~::~::. 

- -----_. -----------_._--- .-------------- ----- -- - --- ---- --_._--------- -- --. - - -- -------~------.----------~--- ---
:=--==-:-:c:=--T~H E=--=c<fs-:r:..:i-l kT R IX:e::r-S=R Ei:)i.J{:-Eb=-:Ar;-AftT::'=~~-=-t.fu-"'-Br-R =0 F":'A'Rt S~-I N· =fj O::::=':·:-·-'-:=- ZS-..·:c::=:--;::; 

~--'-:-:=~=::=~-Ai:iIITONIA N:'-Et1:~CTJ·lt.::If~":~~~:-_-=-~~=;~-=:£~~~~~~~f-,,~~.:.~~~%~~~=~~~~E;:=;2~~~2~=~;:~fL[·~ 

:-:-~--~:q~~I'~~-:;rifl~~N~;~~c~~t tf{~~:~-=-==-=-~~.:=~~~~=-=~i~~-:::~--=;~~~- --:~~~--=~-_~;;~';i'= ~~~~~-=~f.±~~:~~;= 

E~:'=-__ HE~=o-S~I~~=8-~;}t:~~~~~~~~~:'-~1~~::2:~t~!E~-~ttf~ic~~~~~~~:-=-~-=~~=~~:'ff:=:~~2~~E~~E~~~~=~~E~1~~?:~~~ 
---::-- ..:.::-=--:-~-:---:-----=-----=-=--:.::::--= ~=-.-:'= :-:-:--: - ~=:- -.::::..:-::... -=:- :::-:-::---:-:::"::-:':::'-:-':-=::':::--:,-':'=-:':=::::' -::-. --_._- ----.- - ---.----~--- ._ .. _---- -.- --- ---------------":--=-=..:.=-.::...-. .:::.:..-:=.::.-------::--=- ---" 

"----=-----:.-:;.:- -.:..::.::'- ._--- -. - ~ -=--=~ =;:-~---:.- ..:..=::...---- -=--::-..:::=-.:.-:::::- ===-==.:::: .. ---=-===-:-::-=~-....:--===-=--=:...::.==~==:-;===- -----.:..... -_ .. --~ - -

---------------------------_._------------.. 
~~. - -

~----- -- --

.:_: :/t~ ~-tI A~M~1:~To2t{.!~~~ C;~ flt: y:I::!.~ C)~_~~S.f::.~~:frQ~-0 ~ -- ---~:;:;.~--=~~~-~=-:::'_:g._'--= -_---_-=-=~=___=_--_. --o=~::----­

·--};~E'RD~~Hj:ftfE~T~NfKN~Ci_REu:f_1~SEA RCFf:·::-=:=--==::~S=-~==.:.::, ,,:--~ci~· --,=--===--=--c:-,=::c::~c::'=:~~~~~ii::~~~;;c;.: 

~'j;.:~i:--;~.:t~1~!~UM~~1r*I~~=:-=~~:=-=-=;i~===~~~~~~~~¥~~===~~c::.~~~~.::'=_-c-~:~~_;.:~T~'t-:~2;:~-;;: 

~_~ c:~~~Cf=-. ::-,-I~~~ia-~+~cc~~~;·=~~"'-~::=~;~i:~:~~::~~6~~~~-t2¥i~;:cc~~~;3~~1~~~_;:~T=:;=~~:=.::.~:~~~~~-~-~-=-c- -.~-

-------- --.. __ .------... -----_._._- - -----------_ ... _----

_ .. ---_._--". -----._---- ---- ~ 



201 

::~~~':~t::!~F,9~}~ifr~i!~S1;::~_~~/~'~r"~~r:~!f~~_i;-:E"~--~:~'-~5:~~;:-;~:;:~ 
'ff.~J.:~\V~;~ .. ~ .. , ,~;~:, .. ~:, .. ~.7.6 ... ,·~-.: .", .. ,~ .. ~ .... :.,' .... ~c;.,~ .. S .. ;,.',.,~~.:4 ... ~." "9q9.0,,·,:.'\0 .. ' -'(5· .. 96 .... ·9 ... :. 63·· .'. ...'. ..... ......J. 

pow 6 51 63 '55 34': ;~ri:~l"~~9~~:·,c::';9'.;·;~·~·-'::'·~~3~ ~:::\1 >.".:,><'~='~.~' ,:··,',,<,rt:.': 

~;~':~lH/'7 '. :;L· 42 .. ::~7 Ii:·57 ';: '5~ -":'35 .:'- 19909"63: . . . .. 33. 2R 

:~:'Rf)~' : B.':" ,>24 . ." .• 'f5'~~': 25':~:·~: .90' ''::q6.' . 68. . . ~3 999 • 95 4Q 

.:: .. ~OW·:9··,· 75, .,.76 87. 52 .. ,:. 9' 33 
: -..:.. -. :~; . - :::- -

.. :. , .. ·.17!.::.: 2.2 :~::.~:.;~.}~:~·:·.6 3 . .41 
.. -- .. - - ._-.-.-:'-. -; .... :. "--

. ~-:t 1.'10)"( 2', j 1(3, RI'( 4, 7} :-(: 5, '9) 

~.;i:.~.cUS}= " :" '239 

':,~~~:.·l'o 21 ~L,:2,~,.·1l·(·.3' ·8), ',t .4.6) ("5,91. 
"''''::=-CbST '= '.'".' -""244" ' ......... '> .. "0. ~.". : 

'~{~~C'U~KE"~T-: sOLul ION:·:·:'-::-~~I~~' ~~.~'.:, :,:,~; ~., .. 

~3 . 

';8 

.. : 

i fi' 

( . 6' 

95 999 ·60 

40 60 .qqc:! 

4) :( ·7, 6) ( 8. 

"---

4' :1..7 r 10) I 8, 

'~.~:=::.:. -'.": ~:!::. -: =::~-: ~ . -:-.;;. - :::'::~ . .;-- '-:':'.- --; - -~ 

:"~;=:(-i""lb)~"{:2" P'I '3;--/1) r Q'-,6j( 5, in 16.7) ('7, -9) (,"8, 
-7;.-: _ ~".' -' .... :: __ : .-':.' ., _ .. -:_~ .~ -.• '": .• -

::;';,,"'XOSL = ~.=. : :'\'253 .C .• :' ,.·,c';'.::;:;. '...;, . . .. ... ... 
. ·,:::·=,CURKENT SOLlJTJON '! · .. c·:... .... . ::::',-,' .. :.;.':' .. -~-' : - ::----.~-.,. 

,.= .. , .... CoST, .:'.-' __ "0" ,·254 ... :'-' ... , .. ' :. 
;~~~~CORHE~T~:SOL.0TION Y'".~.':'.-.. , .... , .... ' 

.. 

3' I 

31 ( 

3) ( 

" , 

Q, 51 (10, .2: 

; 

.. .. 
q •. 5' .HO,. T .. 

, 
CI' 51 ( 1{)f ? 

.. 
: : 

- ..... '.' -- .': '.: 

·~·~~~·j~r~'~~}i~~~~~~~··· . -
. _ ( l' 8LI 2;10) 'f:3; 1" L4', fq (5' .41 I 6' 7) .. ( 7, ~9) ( H, .3) (.Q'.5) (10'21 
~:f-.~f 'C~'~T '=-~~'::::~:~2(i5 -~. '-~-~-.::: .. -~~~.-=';::'~--~;' .":~'." ; .... -.- : . -

-ji·J..(,:1.L8IC2'.1):'(3"4j'~(·4"··61·:·( ·S,q)·, 6' 7);( 7r10,'·(a, 3)(0, 5)(10,~ 

.i?~~~,(.~i1,;~:~:::~::>:26~.::-: ~,~:::::~> ~~7'~',<~~. ::'::., .. ' .... . . '-' ... ~~ .. 
: . _... - - '.' 

.... . . 
... - - . - . - . ~';:: .. :... ._-- -.;. ':.::-



·202 

I l' A} (. <:>' 7) i 3 ~1 0 i ( 4.: 0) 7, 1) ( 8, 3)( Q, 5) 110, 2) 
-" ".: . -. . - ".. : :;:--";". ~;:--:;~:- '. 

-." - ,'-". :. -... ~ --; '." '- . ./ . 

• o. _ 

CO~T = 2q1 . . . . , 
: '~:oC~~REM~s~LijT~j~rJ·;··;::~~~!~~~fT~~:\f~~§l!-~;':::;:"'¥'.L~,i~.~:~~'~:~~~::-;·,::.: .~:..--.~.-~:. ~~;: ~:~. {:.~ =.'~:~ ~:~ -:: .. ~. ~~. ;'~: -.: 

. . , 

:;:.\ ;,:~:kV;; H'?~)~ ::;:~~/:~6~qj~n~'~f~~il~';'It~~~i~"t~T'.~7:; ~: ~ r(.;·~-/ ~·3'~·~f(:~~~;:~\-'? i f~~:· .~.) , 
"~'.j~~OST.~::~;tl;~~t.2.9··r::(j;7'~·/~~~~I~t~{:;~;~~~~::~Jf:~::~::~·L~~:: __ :~i;f.ir::;~:"~7.'~,:·::}~}~~.~(:,." ~;:;~::;~~£~y:.;:::':::.:~~::~~;:: 

.~~~.~ ~R,~_~ ~l-?~~h~:It~,rtL:~~ Y{£EI-~ij~:; ~':_':~~c ~~~::~:}~ .. ~:~;.':::'; ~~: :.~~'Yi ~~;: .~ :~~::: .~ :~~ f:~ :L:: \:~ ';;:":~"~':':::~.:~ ~f,;'::"'~ .:.\ ,,:~ ~. ,.~: 

/4~{:.ji~ . .flLJ0.:'2.:i ~O?:·t(:~)]~Lq~Ei~i~:i'~fj~]J~$j)~1..;:iffJi!~::~7~r>-.r:=tt,.':;o t~ !~~8 t~'3 ):"J'~~. ~5} .: ~·1.~'·:2}-. 
":':7:l:9~T·.-~.':C.f7'··::~qg.-·: ~ ~:;7"'Ig;~-if:;,'~':=:~~:-=:';"~~_~"'~:~':-0"'::<:':'''' ;, . . 
. "'--CUHKEtn ~s-ciLuTI ON '.: ,.. ..~= ... ::-:::-.~ C.:: .• = ,'.': =.:' ._·...;···cc:: '. . .'" .... :.>., ~':.''.'\\ . : ' .. :. .. . .-: '~.' .. , 
::---;:.;.~~. ~=-" :~-.-·~~'-~.~~i~~~~~:~.~~~i~::':::_::\~~:::::.·.~-~~·~·: _ ~~ .. -: ~ ... ~~~:-; .. : .. ' _ .:: -.. . ... 

,,,,j .1-'. BL.(,_,2"lJ))_.(:3, .7} l!4'.1.b . .t 5' .. 9.1, / 6, .4.) ( 1, .. 6).-6.'._.3). ~ "9' . .5) . (l~, .. 2) 
.-·:l';: COST ='~~:::>::30'i':"·,·:·,,· .c."'·;.'·::'" :-."'.' ........ -

.. -.-- .. -. -".. '" ... . . .. - .' --:~: .. ". . 
." ---:::-:::;:=:'::~~::~.--:~:;'- . - - . ". _ .... - ". --

<~if-~~'1 '·3·)-_c.(·i:~r1'~r·::(~::3;'\:fI-i'·i(:.'\'~ ':1){':1:5,-"9) ,/.", '4} '(7,6) ( 8, 2),( 0'.5':'(10. 71. 

:;ft:O!lT:=\: . .::~Q5.~::::· .. '<::::>:·''''',: ..... . 
:?::~~URKENT . S0L:UT ION. : ... 

• - • "-0 _." 

f~~~( "·.~»);'~'1(l)~(:3',~!/(.;4.~.·91_(.·!;'6} / 6,41 (·7,1) (·.fl' .. 21 (.a'5) -(10' 7) 

:.."_."' .. CO?T = .... · ... :32.1... .. ... ~,-;".,~=.,. "" .. ",'.' "... . _ 
~-·~:::'·~URHENt· ~OLlJT TON : .- :----.. :;~:. -. . .. .-

i~.~~~~ ~.-: >.. . .. -:-0_: .• -:... • • . ~< .". ,- -:';. . .... 
I ,,~) (2,10)( 3,t) (""(pAl l!'i' g), 6,4} (7,·'61 (.B' 21 

f:Z:;[':·C'(\~T ::" .,~:.~ ;::.32'4'" .::- ·>C~-:":.-

: . 
... 

:~;,;( It 3)'(2;\0) ( 3" '2);:( 4' 13, 5'.'.91 16,&4') 7,6) 18'.'11 (a, 5' (10,7) 

.. ~~ CO~T= -: 3?Y _ 
.':: .. - .: .... - "-'~"";'.:..'" : . ..:.. .. ~. 

CllfH<Ef!T SOLUT rON ; . 
'.:.": .•.••• :... •• -0' 

_ .. _._-
o-.;;.=oLl' .8' .. J~2' .1',.·(·3' .2)· .. -'·.4' 9) .,1, ,5'10). ( 6' 4) 
~:-·~~~tO~T·=:"'~-;":·340:·:-~"~:':'<'·::::·:·'·· ,': , . ..' .. ' . 

. . 

~ ~~tU~HENT 50CUTION .:: 

.~~( 1.··,·Ei)=:;{~r~:)-·,-·~,-1~·)':'('4,q)i"5'2) /n~4)··r7"6)·18" 3}-'( 0'5' '110,7)-' 

::~ LO':lT =' :·,~·.34·2 .~,., 

" .. ~-:THt. CURHENTSOLUTION '157:0PTI"'U~ 
.;. •• ~::. •• _.. __ •• _";::' ••• ,.. : 0 :::: _' • __ " : 

.' 



___ OPTIM U~ SOLUT I:>N 
'-'~--- ... - -.~-------- __ .. _::7~==-~=-=:-~-=':=:'--===-:,~~~-='~' ----

-"-- ----._-----. -- -+- -_ • . _. -- --- ------- -- -

- -
=--:-~.~ . .-:::: .. : . .:=..===.::::==-======- -.:.--.:::--.=.-==..::-:..:=::::=:.....=--=.:-...=:===~-: -.--:----=-=-==:.:...::--.~-: -.- --."---

----------~ 

COST 

"- - - --"-------.. - -.---=::--:--"= .. ::::=--:::::::':':::="=':"'--::':"::.~- "--

291 

... -" -----------_ ... - ---- ----- - .-._ .. - -:-..:=-=---- --------- .. 
---~-::.----------:-:.....---.----------.------

---_._. ----
-" :-':".~-=-':':'::-'--:"-: - •. "-::--=.:.=-..:::::...::.:.-.---:-.:..-.-:......- -==..::.--=.=--::.::::....: 

-- -.- -_ .. _-
----~--.------

203 



DISTANCE MATRIX 

===.::-:===-..:~=----:-~::::=:::..=--=~ .:.:=.:::::--==:.-=.:-: ----- -::---. -------- - ...... - - --- --- ------ --.----~ .---- ~--. -- ----- --- .. 

='~ -~~o-W ::~:::=.'2-:-~S-~~·:::-:=:::'34~=:~-~9 99\:::fitl (} -'c :'-==~6c9 ,,~bioc t~::.::-~=if8~:=3=2:9~~jE84 ::-:~-::9:3 =::=-_7b-~'c.:-_.: 

~;~~~~Zo::~~~K~6~81I~~!:Q~x~~?::<Y1:::'~:~~~¥~~~~f~~=~7~3~~~g-=:?.:1::~~~~fJ1~~::~?-,~):}S 

~-=~~~~~~::~:=-~:-.c~2 ~:~:~_ ~~~----:~~_~-:=:=;~-,L4~~:~:~;lE~=~1:f::c~~]~;~~~::=;~t t'2:;tJf~5 ~~~=3~~_:~-== ~.If _ 
::f(f w----s- -------~1 aT -----4·-9------6 3-- ii ~f9--- -56--- --19-- --- 6 r-57. 3 9 

-=-.::- -=:-::::; - -~-=:""::---::---:""--===--:-:--:::--==---=:.-::--==----:-:::: .. -:-:-:~':--'=--===---.:-" -=--::.-. - .. --::-=..-:-....:-.--::-=--:-....:.:..-:=--=.::~.-:.=...::::=.:=.-=-----:-- -.:::---.-:...-;:::::::---: ._-_ ..... ~ -_ .. ------ .... ---=-

c :::·::~o=W-:::---:::6:-=-==~·?=-42=0:-=:lf-8-::=-=::~:-;f:::=--~:'-55:'~~~"-5~':==9 99;-....:~:.=,3:i~~~- 6 b ,:i,;: ~=-i F:;:~- 4 5 

~-~j'~~~1~7/-t=-==i=t~~~K}~=~t~~~C~::tz:~~ -··f~~~rSf~i.9:~if.~~2~IH!f!L'i,.~~~2 ~I::5':::~~~~1~_:=_~ ~,~~_c~~. 

~::~~-~-~~~::J~;';.if==1:==:~~2~~:{~~~~:,~~=~~~~:=.~=~_:!=5=,~;:'~~_ ~~=~~~~_~.".~~S 5 :~:-:::~~!~~;~=,-:N}B~= _~ .... ~.5 
ROW 9 60 93 12 25 

---.--------.------ ---- .- --,-_._-------- -_. -+- - - -------_ ... _--_ .• ----. _.- - ... -- ----- ---.-----.:......--~ -- ------
----~---- -~.---------.- -.- --------------.-------.-~- -. - -" .'. ~. --- .• - -- - .. -- -----.- - - -_._------+ _. _. --- - --- ---.~ -- - -----~c:=~:o=~:§:~:n=~==.=~-C~4-7~:=~i :6~~::='=~8- =--2-4=.:=':::-=:-:::::j(i-:-~-::=~7:45 ~~= :::::4 9=:=0-:::C:2S :,::=~~.::: t7 ,:='::9 99:: -.:-.?-~ '-.-.- --. 

~~-:~~~·Wi~~.Elt~'OE=~'tEt~MA'Nti~:E...Q-I1J TS~';' ='~~~8~:;.~~:::'t;-~~~:==~::~f-== ~~:C:::~~~~~~=:~¥::(:-:~~~~~~~c:,:21.cc:::~~ =-'::: 

~~==~~~~~-'!:?:i?~~~ft=~ __ ~t~=~~-=:=:==~f:;~_;~~¥HfS~~=;~~-':~":-=:~ti::-:;=)~~'f;;~2~c_~c~ 1 2 3-57---8-'9--10--------- ---'--".- -.-.--.--.-.---- ... -
-----~- ---- .. --~-------------.---- ---_. - --- -- _. 

::':::-===-~~tiUM B~£:R~oE~n E1':O T s'-:t~.=-~--:;~ =-s":l=-=::-':::' :=~:~:~-::::=::'E=':=::-~~;5i3"~ __ _=--:~:.. -~ ~ }-=--~~<-1 -'::'==~~~~ -_ 

---.--.--- ---- ---------- --. -------- _._-- - ._-

-- ".=- .. -:---;"- - ------ :-=-=--~..::-::~-=-.:.-::..::-=~~--.::-=-.:-=-::-~--:-::-:-..::-:-:---=---:=:.--:..-:- ~---------.-- -:.::-:-:.::._-=-_--:.-:::-=----- .- - _._ .. --._- ------_. 

-_ ... _. - -- ... -.- .. _-_._._----_. -----

___ .::~~::::_-:::::~-==-'7==_~=~=.=.- ~ __ ~~=_.=::._-. :::-:::=~~~~~=-:.=.- --:-:;:: ~..:------::~_-- ---=~_=--~::.~~~~=~~~~-~~~::~-~~~_::_::___ -- ---.... - __ .. 

.. ----".--"."---- -----. - - --- -~-- ------- --- - " 

_.---- -------------- ._- .. - - - - --_. --_.-.­.- --- --"-"- ---.--._.--- ---:::.:.::=:.-:::.-:"--::-~.---. -- ---_ .. _-_ .... _-- ---- --- --- --- ._. - ._-- --- -_ . 

.. -
.. 



_,-,",c::O: !:QJA~~:~~ ~t1 ~~8._: 0 F VEHICLES: 
205 

2-
--." _.- ---- -._-

____ "'"-~p.!'JjTQP._M E 0 M ~ T R I X 
=-'~::-~'"=~~~:~:~--::~:.~i-=~...:=-~:;'.~.~~~~.: __ _ .~-=::-="--'- - _~-~~ 

=-~.:...... __ =--::===~:::...:.=-~..:~::-=:=-_--:---_: -':" _____ . ___ 4 ___ .__ __ ___ ."_ • ______ • ___ " ___ .__ _ _ _______ ::-.-.-::: __ •• " ____ ._._. __ 

:=:fO-Q--'1;~"'=-=:C':9C99::-:;:-"::-::C":3it=':-:--C~fHt'::':='-:: 8cO:-:=-;::cc:::g-cc:-'-::=~:6~~-=-=-=-:=-gif::=:?;:C-=4:7:=::::::::999:~-::--3S--~::::-9 9--9-:----:..:·4i~-----
--------,-------.~~ -----_ .. - .. --_. ----- .. - .- ----_.-.-

~O W ~t=2'-~::J¥~:~i':::_'f3=q::=:.L9-99 -;=l~Too~= :1 0 {=lt~·.::t~::f:t84~~~~;;==:9:3~~51===t!.1:=:Klt:~i9~~~:::Ti;~-9~.;:-~= i/i 9'::;/c:j.iBc}:: ~i:c 

[ROcW:::~3~~~~_~?:~ ::~~~o Q..:i2~:~:fIT~~~-~J~-i::::}j2_~~'-:;:21.,-::::t~~J?,!C-'~~:?:~~n~~~0~~-~~:~ -~~~~-,:?~~}~t_7{:"}~~:f-:--~ 

~~~J~1:#;~ :~,#:~~~,,:~~~!~~·'~~~~::~-:~:f~~~?:~·! :~~9~~: C~~(~~c:;~~~~:~;:~:j:g:~:l~~~~-~ci~F~t~+,;: .•• :·.~::~:!~~4C-~~_~~K~~~l· 
-- --.".--~- - -- -

=:-~~o-w ;x-:'6~:::-:j:,:::=~-'-5:o~-:=~8_4:~~::c~-~;21::::.=zLc6-ic;cc:-5 S'c': ;-9 99-:;-~~io-}~~~25E-:-.: :999 ~:t~j:i5~~~ :--99 9":~~ .• b 6,:.::

~::{OW_~~i7j'C:=-~i'5r==:-6 0 _ ::;:-::~;:9 3 D>-~-=:12==-~'-'=~~5T- --_71

.28----__ 39- 49 - 2 5-_:::c:_:27 --,- -9 9~---= _99 :9::--_- 2 If-9 9 9 ---------- - - - --- ._. - .--- .. _.- -... _ .. -_._ . .. - - --~-- -"-" ----- - -~-.:-- - -- -- ---:-~-=.:.---.: ----==.:-=:-."- - '-:-"-:'". -::~ . .:::..-=-=--.=-=-... --34----- 63----4T~~-~15 25 24 999~O
-~ -------- ---
.-'-'-~----"-'-- ---< ---- --------- - - ---_ .. __ ._- - - ---_.

=~:QW=~~rt(= -::C::::::-=~999~;:-99'9==-=:'999 ~~. 99~9:=-'-9:g 9:~; -:;:~-9 9 9=:'~:;':9:99:':-~9 99-:=~--=-=.9 9-9--;'~;=9-;i9.:c.::0:"",:::U :"--;'-.9 9 9 =:=-:=~c

~~}j~~-':~-~-=if~~~-;-~O:-:i9~S~::-c:?~r=-3{:==~~~?~~~'i?5~7g~.'6-~=~:~:Ii~~~~~·~t4f2~?-2="="-2I~=~I~~~9_~%~~--::.~~~_otf~~f::

~l:~H~lt~x • .oF:~~OtftsJ;~~~·:J:l·~~/1=;=j~~~::-:j:c~2;;~-:;:,=;:~l~:~:;.~t}~~=-:';:-:~~S~:S.:,c=~::~-::~~::=tt~~~;:-;~;~:~~r --.-~!~?;.-;;.~=-~
--.------------- .. - -.--.. --.--- _.- ------- -- .-~---.-------- - -_ ... - ------_ .. - ----_._- --- --- -_.-.----_._-

.- ... --- -- - - .. --­_ .. -- -- -- ---- ~--- ----. --.--_ .. -. -_._-- ._- -- ".-

'-.- -"­".- ---

........ -----

~-==l==-=~~=-c~:O==~t~J=t4!~~::,;:c1L='f'{=-~6~:~~7~'j:~~3~¥I~~:.;=_:~~:o~~;~~f-:~:f~~~c:.~.;~S::~-~,t~~_=:;{~~i~~i;~¥~l~~==T~

~.&tSJ:::._==::_-==:::..,::=)~8c~=_=_ ::_c_-_---_-=--===--=:_=_:::=-. __ :: .. .c::,,:~-:-_-,-c-::---: __ -~:-;-=,,::-=,.--.==-=--._--.:--"c:;:c:_._-=-= __ ::._:._- __ -_
_ ... "---- --.. ----- ----_._----- ... ~---

----~--------- '-'- - ------•• - - -- --- - ----------"--- -----. ---_ ••• _.- .- • --- ~--- _ ••• - +- "---

----:-:---:~.;~:=::-.::-::-..:..=:---=..:~:::::.:~ -==---=.:::.:::...-::-::=--:---~ -:::-=::...:...:..:~.::==----=-==---:---:= ---=---...:....;: ... -=-=--:.:::....-..- .:.. ::-~~:...-~ -:.:.:.=.-.-:~-:-.::=..--::.:.::=--. ::: -..:....~.-:::-:-:-::::---=-..::-:-

'=~=-vtHfc '--cE-g--ITs"trr-- IN -0 E POT --4---"'-----t--=--~ -~~ -=--- -- -­

~~iVtH1t~t~~S~1f~~f:~ E:~~~{~~~~~~:-==:~~~l}~:::'C~ii~l::=I{~~:J~:;j~~~-.i-

... -------- ----- . ---_ .. - -----_._---­-_._--- ----- -_ .. ---------- -~ -- ~- ~.---.--. ------- - - ---.-.------ ------~--.--.-==:------=-::::..~~ =-- .. --.. --:=-~--:.--=----=-"-==:::=--- --.- --::-.- ---- ._-- .- -----... .:.-::~---::...-=---=-:..::.-:-.:-:::;:-.---
-- - ---_ •• --- -- +- - --- -- _.---

.. _--- --- ._- --_._----_ _.
~-~--------------- --- ----.-----_._-_. -.-~.- -_._. --_._- _._-.. ._ .. _ .

. _---- ._--_ .. ----- --._.- _.- -'-
-- ~- '-.~-.~ - .-

---------_._--- ----_._--- --- _._.- _. - -
---~-

---- -.------- -- ----. __ .- --- --. -----_. ---------.-.-~-----
--=:=-=======-.:::-=-==--=-:::::..:.=-==.:::::.--=-.:.::..:....:.-:=.:-:--.:~--.:.:..-.:.-- -=---_._----- - ---:::::-..:_- ._--- _. - --_. ---- . __ ._-

~ "--- ----- - ---- . - - -_._-----­
- --- ~--- --- .. - ----_._. - -----

, REFERENCES

1. Cook, S.A., liThe Complexity of Theorem Proving Procedures II ,
Proc. AC~1 Symp. Theory of Computing, 3, pp. 151-158, 1971.

206

2. Karp, R.M., liOn the Computational 'Complexity of Combinatorial
Problems"" Networks, 5, pp. 45-68, 1975.

3. Russel, R., "An Effective Heuristic for the m-tour TSP with
some side conditions", ORSA, 25, pp. 517-524, 1977.

4. Golden, B.L~, Magnanti, T.L., and Hguyen,H.Q., "Implementing
Vehicle Routing Algorithms", Networks, 7, pp. 113-148; 1977.

5. Christophides, N., Mingozzi, A., and Toth P., "Exact Algorithms
for the Vehicle Routing Problem Based on Spanning Tree and
Shortest Path Relaxations", Mathematical Programming, Vol.20,
pp. 255-282, 1981i

6 .. Bellmore, M., and Hong, S., "Transformation of Multi Salesman
Problem to the Standard Travelling Salesman Problem", JACM,
Vol~ 21, No.3, pp. 500-504, 1974.

7. Orloff, C., "Routing a Fleet of M Vehicles to/from a Central
Facility", Networks, Vol. 4, No.2, pp. 147-162, 1974.

8. Swetska, J., and Huckfeldt, V., "Computational Experience
with an M Salesman Travelling Salesman Algorithm", Management
Science, Vol. 19, No.7, pp. 790-799, 1973.

9. Lewis, H.R., and Papadimitriou, C.H., liThe Efficiency of Algo­
rithms", Scientific American, 238, No.1, 1978.

10. Garey, M.R., and Johnson, D.S., Computers and Intractibility
A guide to the Theory of np-completeness, W.H. Freeman and Co.,
San Francisco, 1979.

11. Little, J., Murty, K., Sweeney, D., and Karel, C., "An Algorithm
for the Travelling Salesman. Problem", Operations Research, l.:!J6),
pp. 972-989, 1963.

12. Bellmore, M., and Nemhauser, G.l., "The Travelling Salesman
Problem: A Survey"~ ORSA, Vol. 16, pp. 538-558, 1968.

13~ G~rfinkel, R., and Nemhauser, G.l., Integer Programming,
John Wiley, Inc., New York, pp. 354-360, 1972.

14. Held, M., and Karp, R., "The Travelling Salesman Problem and
Minimum Spanning Trees", ORSA, Vol. 18, pp. 1138-1162, 1970.

15. Held, M., and Karp, R., "The Travelling Salesman Problem and
Minimum Spanning Trees, Part 11 11

, Math. Programming, Vol. 1,
No.1, pp. 6-25, 1971.

207

16. Chavata1, V., liOn Hamiltonian Ideals", J. Combinatorial Theory
Series B, Vol. 12, No.2, pp. 163-168, 1972.

17. Christofides, N., Graph Theory, Academic Press Inc., london,
1975.

18. Kauffman, A., Dynamic Programming and Finite Games, Academic
Press, New York, 1967.

19. Yau, S.S.; "Generation of all Hamiltonian Circuits, Paths and
Centres of a Graph and Related Problems ll , IEEE Trans., CT~14,
p. 79, 1967. -

20. Danielson, G.H., liOn finding the Simple paths and circuits in
a graph", IEEE Trans~, CT-15, p. 294, 1968.

21. Dhawan, V., IIHamiltonian Circuits and Related Problems in Graph
Theoryll, M. Sc. Report, Imperi a 1 College, london, 1969.

22. Roberts, S.M., .and Flores, B., IISys tematic Generation of Hamil­
tonian Circuits", Comm. of AC1~, 9, p. 690, 1966.

23. Selby, G.R., The Use of Topological Methods in Computer Aided
Circuit layout, Ph.D. Thesis, london University, 1970.

24. Christofides, N., liThe Shortest Hamiltonian Chain of a Graph",
J1. of SIAM (App1. Math.), 19, p. 689, 1970.

25. Martello, S., "An Enumerative Algorithm for Finding Hamiltonian
Circuits in a Directed Graph", University of Bologna, Italy CR.
Categories: 5.32, 8.3, 1980.

26. Barthes, J.P., "Branching Methods in Combinatorial Optimization II ,

in Topics in Combinatorial Optimization Problems, edited by S.
Rinaldi, New York,1975.

27. Eastman, W.l., linear Programming with Pattern Comstraints, Ph.D.
Dissertation, Harvard, 1958.

208

28. Shapiro, D., Algorithms for the solution of the optimal cost
travelling salesman problem, Sc.D. Thesis, Washington Univer­
sity, St. Louis, 1966.

29. Bellmore, M., and Malone, J.C., IIPathology of travell ing
salesman subtour elimination algorithmsll, Operations Research,
19, p. 278, 1971.

30. Balas and Christofides, N., II A new penalty method for the
travelling salesman problemll , Presented at the 9th Math. Prog.
Symposium, Budapest, 1976.

31. Christofides, N., Mingozzi, A., Toth, P., and Sandi, C.,
Combinatorial Optimization, John Wiley and Sons, New York, London,
1979.

32. Hansen, K.H., and Krarup, J., IIImprovements of the Held and Karp
algorithm the symmetric travelling salesman problemll , Mathematical
Programming, 4, 87, 1974.

33. Volgerant, T., and Jonker, R., liThe symmetric travell ing salesman
problem and edge exchanges in minimal l-trees ll , European Journal

" of Operational Research, 12, p. 394, 1983.

34. Houck, D.,J., Picard, C., Queyranne, M, and Vemuganti, R.R.,
liThe travelling salesman problem and shortest n-paths ll , Univer­
sity of Maryland, 1977.

35. Bellman, R., IIDynamic Programming treatment of the travelling
salesman problemll , J. Assoc. Compo Mech., 9, 61-3, 1962.

36. , Held, r~., and Karp, R.M., IIA dynamic programming approach to
suqenc.ing,rproblems ll , S. I.A.M., Rev., 10, pp. 196-210.

37. Gonzales, R.H., IISol ution to the travelling salesman problem by
dynamic programming on a hypercube ll , Tech. Rep., No. 18, O.R.
Center, M.I.T., 1962.

38. Crowder, H., and Padberg, M.W., IISolving large scale symmetric
travelling salesman problems to optimalityll, Management Science,
26, 5, p. 495, 1980.

39. Dantzig, G.B., Fulkersan, D.R., and Johnson, S.M., IISol ution of
a large scale travelling salesman problemll , Operations Research,
Vol. 2, pp. 393-410, 1954.' '~,

40. Edmonds, J., lIr~aximum matching and a Polyhedral with 0,1 Vertices ll
,

J. Res. National Bureau of Standards, Set. B, Vol. 69, pp. 125-130,
1965.

209

41. Miliotis, P., IIInteger Programming approaches to the travelling
salesman problem ll , Mathematical Programming, 6, p. 367, 1976.

42. Grotschel, M., IIAn optimal tour through 120 cities in Germanyll,
Report 7770, University of Bonn, 1977.

43. Christofides, N., and Whitlock, C., IIAn LP-based TSP Algorithmll,
Imperial College Report OR 78.14, 1978.

44. Rosenkrantz, D.J., Stearns, R.E., and Le\'lis, P.M., IIAn analysis
of several Heuristics for the travelling salesman problemll ,
SIAM J.Comput., Vol. 6, 3, p. 563, 1977.·

45. Norback, J.P. and Love, R.F., IIGeometric approaches to solving
the travelling salesman problemll , Management Science, 23, 11,
p. 1208,1977.

46. Or, i., IIGezgin satlcl problemi icin bulgusal bir algoritma ll ;,
Yoneylem Ara$tlrmasl, Bildiriler 177, istanbul, 1977.

47. Croes, G.A., IIA method for s61ving travelling salesman problems~,
Operations Research, 6, 791-812, 1958.

48. Reiter, S., and Sherman, G., IIDiscrete Optimising", SIAM Rev.,
13, p. 864, 1965.

49. Lin, S., "Computer solution of the travelling salesman problem",
Bell System Tech. J., 44, pp. 2245-2269, 1965.

50. Lin; S., and Kernighan, B.W., IIAn effective heuristic algorithm
for the travelling salesman problem", Operations Res., 21,

, pp. 498-516, 1973.

51. Minieka, E., Optimization Algorithms for Networks and Graphs,
Marcel Dekker Inc., New York and Basel, 1978.

52. Christofides, N., "Worst case analysis of a new heuristic for
the travelling salesman problemll , Management-Sciences Research
Report, No. 388, Carnegie-Mellon University, 1976.

53. Ford, L. R., IINetwork Flow Theory"" Rand Corporation Report,
p. 923,1956. '

t4urty, K.G., IIAn algorithm for ranking all the assignments in
order of increasing cost", Operations Research, 16, pp. 682-687,
1968.

55. Hardgrave, W.W., and Nemhaus,er, G.L., liOn the relation between
the travelling salesman problem and the,longest path problemll ,
Operations Research, 10, pp. 647-657, 1962.

56. Flood, ~1.M., liThe travell ing salesman problem", Operations
Research, 4, pp. 61-75, 1956.

57. Gonzales, R.H., "Solution to the travelling salesman problem
by dynamic programming on the hypercube", Tech. Rep. No. 18,
O.R. Center, M.I.T.

210

58. Bodin, L., and Golden, B.~ "Classification in Vehicle Routing
and Scheduling"" Networks, Vol. 11, pp. 97-108, 1981.

59. Gillett, B., and Miller, L., "A heuristic algorithm for the
vehicle dispatch'problem", Operations Research, 22, pp. 340-349,
1974.

60. Gillet, B., and Johnson, T., "Multi-terminal vehicle dispatch
algorithm", Omega, 4, pp. 711-718, 1976 ..

61. Karp, R., "Probabil istic analysis of partitioning algorithms
for the travelling salesman problem in the plane", Math. Opere
Res., 2, pp. 209-224, 1977.

62. Newton, R., and Thomas, W., "Bus routing in a Multi-school
system", Comput. Opere Res., 1, pp. 213-222,1974.

63. Bodin, L., and Berman, L., "Routing and schedul ing of school
busses by computer", Transp. Sci., 13, pp. 113-129,1979.

64. Bodin, L., and Kursh, S., "A computer assisted system for the
routing and scheduling of street sweepers", Opere Res., 26,
pp. 525-537, 1978.

65.' Clarke, G., and Wright, J., "Schedul jng of vehicles from a
central depot· to a number of delivery points", Opere Res.,
12, pp. 568-581, 1964:

66. Golden, B., Bodin, L., Doyle, T., and Steward, W., "Approximate
travelling salesman algorithms", Opere Res., 28, pp. 694~71l,
1980.

67. Christofides, N., Eilon, S., "An algorithm for the vehicle
dispatching problem", Opere Res .. Q., 20, pp. 309-318,.1969.

68. Bodin, 1., and Sexton, T., "The subscriber Dial-a-Ride problem",
Final Report, U.S. Department of Transportation, Urban Mass
Transportation Administration, Washington, D.C., 1979.

69. Fisher, M. L., and Jaikumar, R., "A general ized assignment

'p> ,

heuristic for vehicle routingll, Networks, Vol. 11, pp. 109-124, 1981.
•

70. Krolak, P., Felts, W., and Marble, G., "A man machine approach
toward solving the travelling salesman problemll , Comm. ACM, 14,
pp. 327-334, 1971.

71. Krolak, P., Felts, W., and Nelson, J., "A man machine approach
'toward solving the generalized truck dispatching problem ll

,

Transp. Sci., 6, pp. 149-169, 1972.

	Tez5803001
	Tez5803002
	Tez5803003
	Tez5803004
	Tez5803005
	Tez5803006
	Tez5803007
	Tez5803008
	Tez5803009
	Tez5803010
	Tez5803011
	Tez5803012
	Tez5803013
	Tez5803014
	Tez5804001
	Tez5804002
	Tez5804003
	Tez5804004
	Tez5804005
	Tez5804006
	Tez5804007
	Tez5804008
	Tez5804009
	Tez5804010
	Tez5804011
	Tez5804012
	Tez5804013
	Tez5804014
	Tez5804015
	Tez5804016
	Tez5804017
	Tez5804018
	Tez5804019
	Tez5804020
	Tez5804021
	Tez5804022
	Tez5804023
	Tez5804024
	Tez5804025
	Tez5804026
	Tez5804027
	Tez5804028
	Tez5804029
	Tez5804030
	Tez5804031
	Tez5804032
	Tez5804033
	Tez5804034
	Tez5804035
	Tez5804036
	Tez5804037
	Tez5804038
	Tez5804039
	Tez5804040
	Tez5804041
	Tez5804042
	Tez5804043
	Tez5804044
	Tez5804045
	Tez5804046
	Tez5804047
	Tez5804048
	Tez5804049
	Tez5804050
	Tez5804051
	Tez5804052
	Tez5804053
	Tez5804054
	Tez5804055
	Tez5804056
	Tez5804057
	Tez5804058
	Tez5804059
	Tez5804060
	Tez5804061
	Tez5804062
	Tez5804063
	Tez5804064
	Tez5804065
	Tez5804066
	Tez5804067
	Tez5804068
	Tez5804069
	Tez5804070
	Tez5804071
	Tez5804072
	Tez5804073
	Tez5804074
	Tez5804075
	Tez5804076
	Tez5804077
	Tez5804078
	Tez5804079
	Tez5804080
	Tez5804081
	Tez5804082
	Tez5804083
	Tez5804084
	Tez5804085
	Tez5804086
	Tez5804087
	Tez5804088
	Tez5804089
	Tez5804090
	Tez5804091
	Tez5804092
	Tez5804093
	Tez5804094
	Tez5804095
	Tez5804096
	Tez5804097
	Tez5804098
	Tez5804099
	Tez5804100
	Tez5804101
	Tez5804102
	Tez5804103
	Tez5804104
	Tez5804105
	Tez5804106
	Tez5804107
	Tez5804108
	Tez5804109
	Tez5804110
	Tez5804111
	Tez5804112
	Tez5804113
	Tez5804114
	Tez5804115
	Tez5804116
	Tez5804117
	Tez5804118
	Tez5804119
	Tez5804120
	Tez5804121
	Tez5804122
	Tez5804123
	Tez5804124
	Tez5804125
	Tez5804126
	Tez5804127
	Tez5804128
	Tez5804129
	Tez5804130
	Tez5804131
	Tez5804132
	Tez5804133
	Tez5804134
	Tez5804135
	Tez5804136
	Tez5804137
	Tez5804138
	Tez5804139
	Tez5804140
	Tez5804141
	Tez5804142
	Tez5804143
	Tez5804144
	Tez5804145
	Tez5804146
	Tez5804147
	Tez5804148
	Tez5804149
	Tez5804150
	Tez5804151
	Tez5804152
	Tez5804153
	Tez5804154
	Tez5804155
	Tez5804156
	Tez5804157
	Tez5804158
	Tez5804159
	Tez5804160
	Tez5804161
	Tez5804162
	Tez5804163
	Tez5804164
	Tez5804165
	Tez5804166
	Tez5804167
	Tez5804168
	Tez5804169
	Tez5804170
	Tez5804171
	Tez5804172
	Tez5804173
	Tez5804174
	Tez5804175
	Tez5804176
	Tez5804177
	Tez5804178
	Tez5804179
	Tez5804180
	Tez5804181
	Tez5804182
	Tez5804183
	Tez5804184
	Tez5804185
	Tez5804186
	Tez5804187
	Tez5804188
	Tez5804189
	Tez5804190
	Tez5804191
	Tez5804192
	Tez5804193
	Tez5804194
	Tez5804195
	Tez5804196
	Tez5804197
	Tez5804198
	Tez5804199
	Tez5804200
	Tez5804201
	Tez5804202
	Tez5804203
	Tez5804204
	Tez5804205
	Tez5804206
	Tez5804207
	Tez5804208
	Tez5804209
	Tez5804210

