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ABSTRACT 

This study consists of two parts. In the first part, four 

heuristic algorithms for solving the Travelling Salesman Problem (TSP) 

is developed. Given a graph, the first algorithm forms a subgraph in 

which the necessary conditions for the existence of a travelling sales­

man tour are satisfied. In case the subgraph does not contain any 

travelling salesman tour, Little's b~anch and bound algorithm is par­

tially applied to the resultant cost matrix. The second algorithm, 

starts with the minimum cost assignment and ranks the assignment solu­

tions in ascending costs by introducing subtour breaking constraints. 

The third alg6rithm produces some b~t achievable n-paths which start 

from a root node and end at some node incident to the root node. These 

paths are then completed to travelling salesman tours and the least cost 

tour is taken as the best achievable solution. A geometric approach to 

solving the TSP is described in the last algorithm. Starting with a 

partial tour, the algorithm determines which of the remaining nodes are 

to be inserted between which consecutive pair of nodes on the subtour 

and in what order. After all, a summary of computational results re­

garding both the efficiency and the computational effort of all the 

algorithms is presented. 
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In the second part, it is shown that the TSP can be applied to 

the Multi-Depot Vehicle Routing Problem (MDVRP) in which p vehicles 

located at m depots deliver products to demand nodes. The routing 

decision involves determining what route each vehicle will follow so 

that the total distance travelled is minimized subject to the condi­

tion that the demands are satisfied, and the vehicles return to their 

original depots. A transformation is applied to the MDVRP in order 

to formulate it as a TSP. The transformed graph includes two additio-

nal nodes for each vehicle where one serves as a departure node and 

the other serves as an arrival node for the depot at which that par­

ticular vehicle is initially located. By imposing the additional 

requirement that each demand node is visited by one and only one 

vehicle the solution to the original problem can be obtained by 

solving the TSP on the transformed graph. As a result, the algorithms 

developed in the first part of the study are applied to solve the MDVRP. 

Computational results reveal that, the computational effort needed for 

solving the TSP in a transformed graph is less than the computational 

effort needed for solving the TSP in a complete travelling salesman 

graph of the same size. 
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KISA UZET 

Bu call~ma iki bolUmden. olu~maktadlr. Birinci bolUmde, Gezgin 

Satlcl Probleminin (GSP) cozUmUnde kullanllabilecek dart sezgisel al­

goritma geli~tirilmistir. Birinci algoritma, verilen serime ait maliyet 

matrisini indirgemekte ve icinde bir gezgin satlcl turunun varolabilmesi 

icin gerek ~artlarln saglandlgl bir alt. serim olusturmaktadlr. Alt se­

rimde herhangi bir gezgin satlcl turu bulunmadlgl takdirde ise Little1in 

dal ve dUgUm yontemi indirgenmiS olan maliyet matrisine klsm; olarak uy­

gulanmaktadlr. ikinci algoritma cozUme once maliyet matrisi Uzerinde 

bir atama problemi cozerek baslar. Daha sonra, elde edilen alt turlarl 

parcalayan klsltlar probleme eklenerek yen; bir atama problem; cozU1Ur. 

Probleme klSlt ekleme ve cozme sUreci bir gezgin satlcl turu olu~uncaya 

kadar devam eder. , OcUncU algoritma ise bir noktadan baslayarak bu bas­

langlC noktaslna baglanabilen noktalarda biten ve problemin icindeki 

her noktaYl sadece bir kere ziyaret eden yollar olusturur. Bu yollar 

gezgin satlcl turlarlna tamamlanarak aralarlndan maliyeti en dU~Uk olanl, 

bulunabilecek en iyi cozUm olarak secilir. DordUncU algoritmada GSplnin 

cozUmUne geometrik olarak yaklaSllmaktadlr. Buna gore, klsm; bir tur 

ile baslayan algoritma, klsml tura dahil olmayan noktalarln bu tura 

nasll ve hangi Slra ile ekleneceklerini bularak bir gezgin satlcl turu 

olu~turur. Algoritmalara ait verimlilik ve hesaplama karma~lkllgl ile 
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ilgili sonuclar bilgisayar sonuclarl ile birlikte ayrlca ozetlenmek­

tedir. 

Call~manln ikinci klsmlnda ise GSP'nin Cok Depolu Ta~lt GU­

zergahl Belirleme Problemine (CDTGBP) uygulanabilece§i gosterilmi~tir. 

Bu problemde p depoya da§ltllml~ m adet ta~lt burada depolanml$ olan 

UrUnleri istem noktalarlna da§ltmaktadlr. Buna gore her ta~lt oyle 

bir gyzergah izlemelidir ki toplam katedilen mesafe enazlanlrken tUm 

istemler kar$llanml~ ve ta~ltlar depolarlna donmU$ olmalldlr. Verilen 

serime uygulanacak olan bir donU~Um problemin GSP olarak cozUlmesini 

saglar. Serimde, depo noktalarl elenirken her ta$lt icin bulunduklarl 

depolara kar~l gelen kalkl$ ve Varl$ noktalarl yaratlllr. Boylece 

serimdeki her noktanln yalnlz bir defa ziyaret edilece§i gozonUne al1n­

dlglnda CDTGBP'nin cozUmU donUstUrUlmUs serimde GSplnin cozUlmesi ile 

elde edilebilir. Sonuc olarak callsmanln ilk bolUmUnde geli~tirilen 

algoritmalar CDTGBPlnin cozUlmesinde uygulanmlstlr. Bilgisayarda elde 

edilen sonuclar donU~tUrUlmU~ olan bir serimi cozmek icin gerekli olan 

cabanln aynl bUyUklUkteki tambagll bir.,serimde GSplni cozmek icin ge­

rekli cabadan daha az oldugunu gostermi$tir. 



ACKNOWLEDGHIENT 
,A~STRACT . ," 
KISA OZET 
LISt OF'FIGURES 
LIST OF TABLES 

I., INTRODUCTION 

TABLE OF CONTENTS 

viii 

iii 
iv 
vi 

IX i 

xift 

1 

1.1 Description of the Problem and Its Complexity 1 
1.2 Interpretation of the TSP as a Vehicle Routing 

Problem 2 
1.3 Extension to the Multiple TSP 3 
1.4 Extension to the Multi-Depot Vehicle Routing Problem 4 
1.5 Importance of the Polynomially Bounded Algorithms 6 
1.6 Ou~lines of the Algorithms Developed for Solving 

the TSP 8 
1.7 Contents of the Thesis 11 

II. THE TRAVELLING SALESMAN PROBLE!vl (TSP): A LITERATURE 
SURVEY 

2.1 Statement of the Problem 
2.2 Formulation of the TSP 
2.3 Solution Procedures for the TSP 

2.3.1 Enumeration Methods 
2.3.1.1 Latin Multiplication Method 
2.3.1.2 Algebraic Methods _ 
2.3.1.3 Other Enumeration Methods 

2.3.2 Exact Solution Methods with Branch and Bound 
2.3.2.1 The TSP and the Assignment Proqlems 
2.3.2.2 The TSP and Minimal Spanning Tree 

Problems 

(AP) 

13 

13 
14 
16 

17 

20 
21 
23 
27 

·30 

39 



ix 

\ 

Page 

2.3.2.3 The TSP and Matching Problems 44 
2.3.2.4 The Shortest n-Paths and the TSP 45 
2.3.2.5 Little's Branch and Bound Algorithm 47 

2.3.3 Dynamic Programming Solution of the TSP 51 
2.3.4 Exact Solution Methods Based on Linear 

Programming 52 
2.3.5 Approximate Methods for the TSP 55 

. 2.3.5.1 Tour Building Techniques 56 
2.3.5.2 Successive Improvement Techniques 65 
2.3.5.3 Techniques Using Minimal Spanning 

Trees 68 

III. FOUR HEURISTIC ALGORITHMS FOR SOLVING THE TRAVELLING 
SALESMAN PROBLEM 72 

3.1 Algorithm I 
3.2 Algorithm II 
3.3 Algorithm III 
3.4 Algorithm IV 
3.5 Computational Results 

, 

,IV. THE MULTI-DEPOT VEHICLE ROUTING PROBLEM AND ITS 
FORMULATION AS A TRAVELLING SALESMAN PROBLEM 

74 
86 
97 

103 
115 

124 

4.1 ,Introduction 124 
4.2 Vehicle Routing Problems. as Extensions of the 

Travelling Salesman Problem 127 
4.2.1 The Multiple Travelling Salesman Problem (MTSP) 127 
4.2.2 The Multi-Depot Vehicle Routing Problem (MDVRP) 128 

4.3 Solution Techniques for the Vehicle Routing Problems 132 
4.4 Solution Procedures fo~ the Vehicle Routing Problems 

Which Build Upon the Travelling Salesman Problem 
as the Core Model 134 
4.4.1 The Single Depot Case (f1TSP) 134 
4.4.2 The Multi-Depot Case 136 

4.4.2.1 Transformation of the Node Set 136 
4.4.2.2 Transformation of the Arc Set 137 
4.4.2.3 Transformation of the Cost Matrix 138 
4.4.2.4 An Illustrative Example 138 
4.4.2.5 Equivalence of the Two Problems 141 



V. APPLICATION OF THE PROPOSED ALGORITHMS TO THE 
MULTI-DEPOT VEHICLE ROUTING PROBLEM 

5.1 Application of Algorithm I 
5.2 Application of Algorithm II 
5.3 Application of Algorithm III 
5.4 Application of Algorithm IV 
5.5 Computational Results 

VI. CONCLUSIONS AND EXTENSIONS 

APPENDIX A 

APPENDIX B 

REFERENCES 

x 

143 

146 
150 
157 
165 
169 

172 

177 

199 

206 



xi 

LIST OF FIGURES 

Figure 2.1 - A difficulty associated with the largest angle 
method. 61 

Figure 2.2 - A difficulty associated with the most eccentric 
ellipse method. 62 

Figure 3.1 - Stages in constructing the subgraph GI for 
Example 3.1. 80 

Figure 3.2 Subgraphs Gk 80 

Figure 3.3 - Resultant ~ubgraph GI 82 

Figure 3.4 - Subtours and penalties corresponding to the AP 
solutions in Example 3.2. 93 

Figure 3;5 - The convex hull corresponding to the travelling 
salesman graph in Example 3.4. 107 

Figure 3.6 - Steps in building the travelling salesman tour. 111 

Figure 3.7 ~ Behaviour of the proposed algorithm in the case 
where Norback's and Love's largest angle method 
fails. 112 

Figure 3.8 - Behaviour of the proposed algorithm in the case 
wher~ Norback's and Loves I eccentric ellipse 
method fails. 113 

Figure 3.9 - Comparison of the height criterion with other 
criteria. 114 

Figure 4.1 - An example of back transformation for an MTSP. 136 

Figure 4.2 - The original graph (MDVRP) and the equivalent 
travelling salesman graph. 140 

Figure 4.3 - Optimum solutions to the travelling salesman 
graph and the MDVRP. 141 

Figure 5.1 - The graph representing the MDVRP. 144 

Figure 5.2 - Stages in constructing the subgraph GI
• 147 



Fi gure 5.3 - Subgra ph; Gk . 
Figure 5.4 - The ~esultant subgraph G1

• 

Figure 5.5 - Subtours and penalties corresponding to the 
AP solutions. 

Figure 5.6 - Stages of the node insertion process. 

Figure 5.7 - Solutions to the MDVRP. 

xii 

Page 

149 

152 

153 

167 

169 



LIST OF TABLES 

Table 1.1 - The maximum size of problems solvable in one hour 
with respect to the developments in computer 

xiii 

technology. 7 

Table 3.1 - Reduced matrices obtained during the application of 
steps (1) through (4) of algorithm I. 78 

Table 3.2 - Reduced matrices obtained during the application 
of Little's branch and bound algorithm partially. 84 

'Table 3.3 - The cost matrix corresponding to the TSP solved 
in Example 3.2. 91 

Table 3.4 - AP solution to the Example 3.2. 91 

Table 3.5 - List of nodes at the end of the initial branching 
in Murty's algorithm. 92 

Table 3.6 - L"ist of nodes at the end of the second branching 
in Murty,'s al gorithm. 92 

Table 3.7 - The third and the fourth partitions in Murty's 
algorithm. ' 93 

, 

Table 3.8 ~ The cost mat~ix corresponding to the, solution (1). 94 

Table 3.9 - The cost matrix corresponding to the TSP solved 
in Example 3.3. 100 

Table 3.10- The cost matrix after subtracting each entry from 
a large number L = 50. 100 

Table 3.11- The cost matrix in Example 3.4. 108 

Table 3.12- The cost matrix after subtracting each element from 
a large number L = 400. 108 

Table 3.13- List for arcs in T in the first step. 109 

Table 3.14- List for. arcs in T in the second step. 110 



xiv 

Page 

Table 3.15 - List for arcs in T in the third step. 110 

Table 3.16 - List for arcs in T in the fourth step. 112 

Table 3.17 - Computational results regarding algorithm I. 117 

Table 3.18 - Results regarding the application of Little's 
algorithm partially to the reduced matrix or 
to the original matrix. 118 

Table 3.19 - Computational results for the proposed algorithms 
when applied to problems where 10 ~ n < 70 121 

Table 4.1 - Transformation of a cost matrix for the MTSP. 135 

Table 4.2- Transformation of a cost matrix for the MDVRP. 139 

Table 5.1 - The cost matrix corresponding to the MDVRP. 145 

Table 5.2 - The transformed cost matrix. 145 

Table 5.3 - The resultant reduced cost matrix. 152 

Table 5.4 - The transformed cost matrix after the AP is solved 
in the first step of algorithm II. 153 

Table 5.5 - The cost matrix that corresponds ta solution (1). 155 

Table 5.6 . - The cost matrix after subtracting each element 
from a large number L = 250. 158 

Table·5.7 - L i'st for arcs in T in the first step. 166 

Table 5.8 List for arcs in T in the second step. 166 

Table '5.9 - List for arcs in T in the th;'rd step. 168 

Table 5.10 - Computational results for the MDVRP. 170 



1 

I, INTRODUCTION 

1.1 DESCRIPTION OF THE PROBLEM AND ITS COMPLEXITY 

The Travelling Salesman Problem (TSP) has been a challenge that 

has attracted researchers who.have wanted to derive an efficient solu­

tion method for the problem. The problem is formidable in the sense 

that the associated solution methods are quite difficult contrary to 

the simplicity of its statement. Mainly, it is a classical example 

which represents the challenge of the combinatorial optimization prob­

lems.that have found a considerable interest up to now. 

Consider a case in which there is a set of n cities which are 

to be visited by a salesman. The salesman,starting from a city is 

required to visit each of (n-f) other cities before returning to the 

start. The proble..m is to design a route which minimizes the total 

distance travelled assuming that the distances between all city pairs 

are known. 

One possible way of approaching to this problem, which is certain 

to give the correct answer is to enumerate all the possible tours and 

pick the shortest one. However, the complete enumeration of all the 

possible tours becomes a computationally impossible task even for prob­

lems with relatively small number of cities. As a matter of fact, even 

the fastest algorithms designed for solving this problem exactly require 

an inordinate amount of time. 
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Similar to most of the other combinatorial optimization problems 
" 

the TSP falls into a category which is well known as NP-complete prob-

lems. The letters NP stand for "Nondeterministic Polynomial". The 

status of this category is uncer~ain in the sense that only exponential 

algorithms are known for the' NP-complete problems. Neither an efficient 

algorithm for solving the problems has been developed, nor has it been 

proven that such algorithms do not exi$t. However, NP-complete prob­

lems have' a remarkable property. That is, each problem in this category 

is efficiently (i.e. in a polinomial time) reducible to another NP-com­

plete problem. Consequently, if anyone of them has an efficient algo­

rithm, then every NP-complete problem can be solved efficiently [1,2]. 

Not all situations to which the TSP is confined involve cost mini-

mization. Instead of cost other measures of effectiveness may be subs­

tituted according to their applications. The problem is known to have 

wide applications in frequently encountered problems arising in prac­

tical situations. Among those problems are scheduling, sequencing, and 

vehicle routing problems which can be interpreted as a TSP with side 

constraints [3]. 

1.2 INTERPRETATION OF THE TSP AS A VEHICLE ROUTING PROBLEM 

The Vehicle Routing Problem (VRP) involves the visiting of a set 

of required stops in a network by vehicles. In other words, the stops -

or alternatively the destinations with known requirements must be served 

with a fleet of vehicles stationed at some depot(s) in such a way as 

to minimize some objective. It is also required that all vehicles must 

start and finish at the depot(s) where they are initially located. 
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Although the structure of the VRP reveals that it is related to the 
~ . 

physical delivery of goods, the delivery operation may be replaced 

by a collection, collection and/or delivery or some other operation 

which may not even be of physical nature. In fact, the VRP appears 

frequently in practical situations not directly related to the physi-

cal delivery. For example, service delivery, house call-tours of a 

doctor, preventive maintenance tours are all VRPs in which there are 

no physical delivery operations. 

The TSP can be interpreted as a VRP with one depot and with one 

vehicle whose capacity exceeds total demand. That is, a vehicle is 

required to visit all the destinations once and only once before re­

turning to the-depot where it is located. However, the structure of 

the problem is changed considerably when more vehicles, more depots, 

different vehicle capacities and additional route restrictions are 

involved. As a matter of fact, the VRP is also an NP-complete problem 

for which no polynomially bounded algorithm has been developed [4,5]. 

1.3 EXTENSION TO THE MULTIPLE TSP 

An extension of the TSP which has proven to be more appropriate 

for serving as a core problem to the VRP is the Multiple Travelling 

Salesman Problem (MTSP). In this problem, m salesmen are required to 

design m subtours in such a way that each destination is visited 

exactly once by exactly one salesman while the total distance travelled 

by all the salesmen is being minimized. As a result, the MTSP can be 

interpreted as. the problem of routing a fleet of m vehicles from a­

single depot to many destinations with the condition that each routed 



4 

vehicle will return to the depot and each destination will be visited 

once and only once. The vehicle capacities are assumed to exceed the, 

demand in any subtour that may be designed. 

Similar to the TSP, the MTSP is an NP-complete problem. However, 

it has been shown that the solution to the MTSP is no more difficult 

than the solution to the TSP[6,7,S]. In addition, equivalent TSP 

formulations of the MTSP have been derived. The eq'uivalence is obtained 

by creating m copies of the depot one for each vehicle. Each of these 

copies are connected to each destination exactly as the original depot. 

That is, the distances associated with each such pair of nodes are the 

same. However, there is no connection between any pair of the copies 

of the depot. In other words infinities are inserted in the associated 

elements of the transformed matrix so that the optimal travelling sales­

man tour in the expanded graph will never contain an arc connecting any 

pair of the copies. Once the TSP is solved for the expanded matrix, 

the copies are coalesced back into a single depot and consequently the 

travelling salesman tour is decomposed into m subtours. 

1.4 EXTENSION TO THE MULTI-DEPOT VEHICLE ROUTING PROBLEM 

A further extension of the VRP is to allow vehicles to reside at 

more than one depot. The problem is known as the,Multi-Depot Vehicle 

Routing Problem (MDVRP). A vehicle fleet of m vehicles distributed 

to p depots is required to satisfy the demand at each destination. The 

routing decision involves the determination of what route each vehicle 

will follow so that the total distance travelled is minimized subject 



to the constraints (i) that the demands are satisfied, (ii) each 

destination is visited once and only once and (iii) the vehicles 

return to their oniginal depots. 
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Although the VRP has attracted considerable attention, the 

MDVRP has not been studied widely yet and therefore is a promising 

area for further research. In the relevant literatur~, it has been 

stated that exact methods for solving the single depot VRP can be 

extended to the multi-depot case [4J. The principal exact methods 

for solving the single depot VRP are branch and bound techn~~uei.[5J. 

But only methods based on heuristic programming have appeared to be 

computationally feasible for solving large practical problems. As 

it has been reported by Golden, et.al [4J problems with about four 

depots and hundred destinations can be handled on a computer in less 

than 10 seconds. 

The property that any NP-complete problem can be reduced to 

another NP-complete problem in polynomial time is of particular im­

portance in this case. Once the problem is reduced to another NP­

complete problem for which an efficient heuristic algorithm is deve­

loped, the algorithm can be used to solve the original problem. The 

TSP is one such problem which has been studied widely. There are 

several heuristic algorithms for solving the TSP efficiently. More­

over, these algorithms require less computation effort in comparison 

with the algorithms developed for solving the MDVRP. Fortunately, it 

is possible to model the MDVRP as a TSP by transforming the original 

graph into one for which the TSP can be solved. The transformed graph 

includes two additional nodes for each one of the m vehicles where one 
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, 
serves only as a departure node and the other serves as an arrival node 

for the depot at which that particular vehicle is initially located. 

Each departure node is connected to another arrival node with zero 

cost. In addition, the departure nodes are connected to each destina-

tion node and each destination node is connected to the arrival nodes 

with exactly the same costs as the corresponding original depots. The 

connections between all pairs of destination nodes remain the same. 

The cost matrix is updated accordingly. The solution to the ori~inal 

problem can be obtained by first solving the TSP on the transformed 

graph' and then coalescing all the departure and arrival nodes back 

into p depots, so that the trav~ling'salesman tour is decomposed into 

m subtours. Note that not all vehicles have to be used as a result of 

this transformation. 

1 .5 IMPORTANCE OF THE POLYNOMIALL Y BOUNDED ALGORITHr~S 

As the size of the graphs being examined increases the time 

needed for solving the TSP and the NP-complete problems increases ex­

ponentially. Growth of this kind can be described by a mathematical 

f~nction such as an where n is a number related to the problem size. 

In fact, n is the number of cities for the TSP. Many other functions 

exist which can be regarded as having the same property of exponential 

growth. Among them are nn and n!. On the other hand, there exists 

some mathematical functions of another kind which are known as poly­

nomials. What distinguishes polynomials from exponential functions 

is that n does not appear in an exponent. Linear functions, functions 
' .. 

such as n2
, n3 and the sum of such functions are all suitable for 
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.describing the polynomially bounded computation times. For small values 

of n, a polynomial function may exceed an exponential one but there 

always exists a value n beyond which the exponential function is greater. , 
For sufficiently large v~lues of n any exponential function overtakes 

and exceeds the polynomial functions [9]. 

It has been accepted that algorithms whose execution time increases 

exponentially as a function of the size of the problem are not of prac­

tical value. Algorithms of this kind are known to be inefficient. For 

sufficiently large problems, a polynomially bounded algorithm executed 

on even the slowest computer will find the answer sooner than an expo­

nential time algorithm on the fastest computer. This can be best seen 

in Table 1.1 [10]. 

TABLE 1.1 - The Maximum Size of Problems Solvable in one 
Hour With Respect to the Developments in 
Computer Technology 

Function Existing Computers that are Computers that are 
Computers - 100 times fast 1000 times fast 

n n} . lOOn} 1000n} 

n2 n2 10n2 31.6n2 

. n3 n3 4.64n3 10n3 

nS n4 2.5 n4 3.98n4 
2n ns ns + 6.64 ns + 9.97 

3n -n6 n6 + 4.19 n6 + 6.29 

As a result, we can conclude that algorithms with"exponential growth' 

will not benefit from the technological developments made on the com-

puters. That .is, even if the efficiency of the computers improves by 
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a factor 1000 the time required for solving an exponentially bounded 

algorithm will decrease by a fixed amount which differs slightly from 

the efficiency of the existing algorithms. 

1.6 OUTLINES OF THE ALGORITHMS DEVELOPED FOR SOLVING THE TSP 

Since the NP-complete problems and therefore the TSP have no 

efficient algorithms, a possib~e way of attack is to seek approximate 
. . 

solutions that are .good even if they are not precisely optimal instead 

of expending further effort in seeking optimum solutions. The thesis 

focuses first on the development of four algorithms for solving the 

TSP efficiently. The study is based on reducing the computational work 

while the resulting solutions remain close to the exact optimal solu­

tion. Experimental results reveal that this objective is achieved 

efficiently. Finally, the algorithms are applied to the MDVRP. 

The first algorithm developed for solving the TSP uses a tour 

building approach~ First, the cost matrix is reduced. The minimum 

element of each row is found and subtracted from every element in that 

row. In the resultant matrix, the minimum element of each column is 

subtracted from every element in that column. As a result, the arcs 

corresponding to the zero elements in the resultant matrix comprise 

a subgraph whose node set is the same as the original graph. Then, 

the cost matrix is further reduced in order to ensure that the necessary 

conditions for the existence of a travelling salesman tour hold in the 

subgraph. In other words, the reduction continues until there exists 

a path between each pair of nodes (i.e. strong connectedness). The 

reduction process is further invoked so that given a pair of nodes i 
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and j, there exists a path either fro~ i t6 j or from j to i (i.e. uni­

lateral connectedness) when one of the nodes is removed from the sub­

graph. Once the necessary conditions hold, the algorithm searches for 

a travelling salesman tour in the subgraph. In case the subgraph does 

not possess any travelling salesman tour, Litt1e ' s branch and bound 

algorithm [llJ is applied to the resultant matrix until a feasible tour 

can be obtained. 

The relation between the Assignment Problem (AP) and the TSP forms 

the basis of the second algorithm developed. Considering the fact that 

the travelling salesman tours correspond to extreme points of the as­

signment polytope, the algorithm starts with the minimum cost assign­

ment and finds new solutions ranked in ascending cost until a travelling 

salesman tour is obtained. At each iteration a cutting plane which 

forces the assignment solution to form a tour is introduced. The main 

difference between this algorithm and the related ones in literature 

is that no branch and bound procedure is involved. Rowever, the effi­

ciency is similar ii the sense that it depends on the total number of 

extreme points between the optimum travelling salesman solution and 
\ 

tHe minimum cost assignment. In fact, the larger the problem size is, 

the larger is the number of extreme points in between. 

A dynamic programming type ~pproach is presented in the third 

algorithm. First, the elements of the cost matrix Cij are subtracted 

from a large number in order to achieve triangle inequality (i.e. 

C .. < CO k + Cko Vi,k,j). At each stage, the algorithm adds a new arc 
lJ 1 . J 

to the sequence so that the total cost of the elementary path formed 

by the arc sequence is maximal. Finally, the elementary paths are 



completed to travelling salesman tours and the one with the maximum 

cost is selected as the best achievable solution. 
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A geometric approach to the TSP is presented in the fourth algo­

rithm. Similar to the related approaches in the literature the algo­

rithm starts with the convex hull or alternatively a partial tour. Then, 

the travelling salesman tour is obtained by successive sequencing of 

each of the remaining nodes between consecutive pair of nodes on the 

partial tour. In order to determine the node to be inserted the heights 

of the triangles whose bases are determined by the arcs through conse­

cutive pair of n~des on the partial tour and whose third vertices are 

the remaining nodes are calculated. The node corresponding to the lar­

gest of these heights is chosen and inserted into the sequence. The 

algorithm terminates when a travelling salesman tour is obtained. 

All of the four algorithms proved to work well on several test 

problems. For small size proble~s, it was possible to check the dif­

ference between the solutions obtained and the actual optimum solutions 

by applying an exact solution procedure. However, for problems with 

more than twenty cities the optimality check could not be conducted 

considering the inordinate amount of CPU time required for the calcu­

lations. Instead, the solutions obtained by using the new algorithms 

are compared. 

In order to apply the algorithms to the MDVRP, the associated 

cost matrices pass through a transformation so that the TSP solutions 

to the resultant matrices are the solutions to the MDVRP as well. An 

obvious result which is of practical importance is that the time re­

quired to solve.an MDVRP is less than the time required to solve a 

complete TSP of the ~ame size. 
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1.7 CONTENTS OF THE THESIS 

Chapter 2 presents a complete description and formulation of 

the TSP. A literature survey is made on both the exact and heuristic 

solution methods for solving the TSP. Algorithms representing diffe­

rent solution techniques are presented. As a result, comments are 

made on the efficiency and computation effort of different solution 

procedure,s. 

In Chapter 3, four new algorithms representing distinct heuristic 

techniques are presented. Each algorithm is described explicitly and 

used to solve randomly generated examples. For purposes of defining 

the power of each of these methods, computational results regarding 

both the efficiency and computation effort are given. 

It is well known that the TSP is a subproblem of many other prob­

lems frequently encountered in practice. Among them are the VRPs which 

can be considered as extensions of the TSP. In fact, models representing 

some of the VRPs are usually built on the TSP as the core model. As a 

consequence of this fact, some efficient transformations have made it 

possible to reduce some of the VRPs to a TSP. One of such problems is 

the M~VRP. " " 

.Chapter 4 gives full description and formulation of the MDVRP. 

The transformation is made more explicit by the use of an example. 

In addition, one to one correspondence between the TSP and the MDVRP 

is shown. 

Chapter 5 is a treatment of the application of the proposed algo­

rithms to the MDVRP. Each algorithm is used to solve the same example 

problem in order to make comparisons on the behaviour of the methods. 



The concluding chapter in the thesis, Chapter 6, summarizes 

general conclusions and gives an insight to the extensions of the 

study which may be subject to further work. 

12 
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II. THE TRAVELLING SALESMAN PROBLEM (TSP): 

A·LITERATURE SURVEY 

2.1 STATEr,tENT OF THE PROBLHt 

Consider a graph G = (N,E) where N = {l, ... ,n} is a set of n 

nodes/cities which are to be visited by a salesman and E is a set of 

arcs/roads joining the nodes. Let Cij be the cost associated with 

arc (i,j). The problem of finding a tour that includes each node 

in the graph at least once is known as the General Travelling Sales­

man Problem (GTSP). The problem of finding a Hamiltonian circuit, a 

circuit that passes through each node exactly once, with the least 

cost is the well known TSP. 

In this chapter, we review some of the exact and approximate 

solution.methods that have been suggested for solving the TSP. The 

solution techniques are mainly based on solving the TSP rather than 
-

solving the GTSP. Usually, the optimum solution to the TSP is also 

the optimum solution·to the GTSP .. However, it follows that if a 

graph G does not satisfy the triangle inequality then the optimum 

solution to the TSP may not be the optimum solution· to the GTSP. In 

that case, the GTSP can be reduced to the TSP by a suitable transfor-

mati on. 
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Consider that a grapn G does not satisfy the triangle inequality 

(i.e. C .. > C. k + Ck·; for some k ~ i, k ~ j) and that one needs to 
1J 1 J 

, 

obtain the optimum solution to the GTSP defined in G. A GTSP stated 

in this manner can be reduced to a TSP by the technique of changing each 

arc cost Cij to the length of the shortest path betvJeen i and j. If 

an arc (i,j) whose cost is lessened as specified above is contained 

in the optimum solution to the TSP, then the arc is placed by the' 

shortest path from i to j in the optimum solution and hence, the op­

timum solution to the GTSP is obtained. As a consequence of the fact 

that the GTSP is reducible to the TSP., solution techniques for only 

the TSP are needed. 

2.2 FORMULATION OF THE TSP 

Consider the travelling salesman graph G = (N,E). Let 

x .. = 1 
1J 

if arc (i,j) £ E is in the tour 

= 0 otherwise 

rhen, the problem is 

n n 
minimize E E C .. x .. 

i=.l "j=1 1J 1J 

s.t. 
n 
E x .. = 1 

i=l lJ 

n 
E x·· = 1 

1J j=l 

j = 1, ... ,n 

i = 1, ... ,n 

The solution ~ust form a tour 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 



x·· E {a, l} 
lJ 

V i ,j E N 
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(2.5) 

Constraint set (2.4) can be written in a number of different ways. 

Three alternates that have been proposed are 

I: I: x.· > 1 
. S . '7'C lJ­
lE JE;) 

I: I: x.· < lSI - 1 
. S . S lJ-
lE JE 

where S US = N , 

VScN (2.4a) 

(2.4b) 

(2.4c) 

~k is any Hamiltonian circuit in the induced subgraph G' = 
(Sk,Ek)· 

Constraint set (2.4a) ensures that there exists at least one 

arc between two complementary subsets of nodes of N. Constraint set 

(2.4b) expresses the fact that no subtour through any subsets of N 

can exist by imposing that arcs belongi.ng to any subset of nodes, S, 

cannot be greater than (lSI - 1). Equivalently, constraint set (2.4c) 

expresses the same fact by ·restricting the existence of a Hamiltonian 

circuit in all the induced subgraphs. 

It should be noted that the formulation given above takes care 

of both the symmetric TSP, (i.e. Cij = Cji V i,j E N) and the asym­

metric TSP (i.e. Cij ~ Cji for some i,j EN). However,the problem 

can be formulated in several different ways when G is undirected and 

therefore the associated cost matrix is symmetric. Two of such for--

mulations are 



and 

minimize 

s. t. 
e 
l: x = n r r:l 

l: x > 2 r­r=K 

e 
minimize l: Crxr r=l 

s.t. l: x > 1 
rEK r-

l: 
rEE. 

1 

x = 2 r 

X E {O,l} 
r 

V K :: (S.5) 
SeN 

r = 1, ... ,e 

V K ;: (S ,5) 
S~N 

i = 1, ... ,n 

r = 1, ... ,"e 

where e is the total 'number of arcs in G 

K = (S,5) is an arc cut-set of G which contains arcs (i,j) 
with i E Sand j E ~ 

E. is the set of arcs incident an node i 
. 1 

Cr is the cost associated with arc r. 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) ,. 

Both of the formulations are equivalent since constraints (2.7), (2.8) 

imply constraints (2.11), (2.12). 

2.3 SOLUTION PROCEDURES FOR THE TSP 

Many solution ~echniques are available for the TSP [12,13,14J. 
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All of these techniques fall into one of two categories: 

a) Techniques that are certain to find an optimum solution 

but at worst require an inordinate number of calculations 

(exact solution methods) 

b) Techniques that are not always certain to find an optimum 

solution but require a small number of calculations and 

therefore less computation effort (heuristic methods). 

, Exact solution techniques are mainly based on using the advanced 

results of integer programming, linear programming and dynamic prog­

ramming as well as enumerating all the existing Hamiltonian circuits 

of a graph. On the other hand, heuristic algorithms rely upon tour 

constructing node inserting and node and arc exchanging techniques. 

In the following sections, we will describe these techniques separately 

and present algorithms which utilize these methods. Throughout the 

discussion, the themes touched are related upon to papers in litera­

ture. Actually, the aim is not to survey the whole field in the area. 
-

Rather, the goal is to give an" insight to the techniques existing in 

1 ;'terature. 

2.3.1 Enumeration Methods 

In principle, the optimal solution to the TSP can always be 

obtained by finding all the existing Hamiltonian circuits, calculating" 

their lengths and thus determining the one that is optimal. However, 

considering complete graphs, the complete enumaration of all the tour~ 
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becomes a computationally exhaustive task even for comparatively small 

size problems. On the other~hand, including some simple tests in the 

computation procedure, the set of all possible tours can be greatly 

reduced. Then, partial enumeration can be used to select the best 

tour without considering the excluded ones. 

A possible case is that a graph may not contain a Hamiltonian 

circuit. As a matter of fact, one should first try to establish the 

existence of a Hamiltonian circuit,before proceeding to look for the 

optimum one. Unfortunately, there exists no easy way for deciding 

whether or not a graph contains a Hamiltonian circuit. The existing 

'necessary or sufficient conditions are not effective for arbitrary, 

graphs· encountered in practical situations. 

Necessary conditions for the existence of a Hamiltonian Circuit 

A necessary condition for the existence of a Hamiltonian circuit 

is that the graph G = (N,E) be strongly connected. In other words, 

for any two nodes i,j £ N, there must be a path from i to j. Another 

necessary condition, however, is that the subgraph, Gk, obtained by 

removing any node k from G, must be unilaterally connected. That· 

is, for any two nodes i,j E N - {k} in the subgraph there must be a 

path either from i to j or from j to i. Note that both conditions 

are necessary but not sufficient for a directed graph to possess a 

Hamiltonian circuit. 

Sufficient conditions for the existence of a Hamiltonian circuit 

If in a strongly connected directed graph G = (N,E), the degre~ 

of each node is "greater than or equal to n, where the degree of a node 
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is the sum of all arcs entering or emanating from that node, then the 

graph possesses a Hamiltonian circuit. 

In the case of an undirected graph the degree of a node is 

given by the number of arcs incident to that node. In light of this 

definition the following result due to Chavatal [16J describes a 

sufficient condition for the existence of a Hamiltonian circuit in 

an undirected graph: 

Let the nodes of an undirected graph G = (N,E) be numbered in 

such a way that d(l) .:: d(2) .:: ... .:: d(n) where d(.) de.notes the degree 

of node (.). For n ~ 3 if d(k) ~ k, V k < n/2 or equivalently if 

d(n-k)~ n-k Vk < n/2, then the graph contains a Hamiltonian-circuit. 

Note that d(k) .:: k, Vk < n/2 implies that d(n-k) ~ n-k Vk < n/2. 

Actually, it is easy to verify the latter condition. The nodes 

are first ranked in ascending order of their degrees. Then, the con­

dition is checked for the first (n/2) nodes. Nevertheless, these 

criteria are too loose to be of value for graphs frequently encoun­

tered in practice sfnce they imply the existence of nodes with high 

degrees. Once these conditions are not satisfied, the only way of 

determining whether or not the graph contains a Hamiltonian circuit 

is to· make a complete search on the graph. In the following sections 

we will describe a few algorithms which can successfully be used to 

find all the Hamiltonian circuits of a directed graph. However, one 

should keep in mind that even the most efficient algorithm is unable 

to handle problems with more than twenty nodes with degrees greater 

than four in a reasonable number of calculations [17J. 
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2.3.1.1 Latin Multiplication Method 

The Latin multiplication method enumerates simple paths of 

lengths 1 through (n-l)' in a directed graph G = (N,E). Once all the 

simple paths of length (n-l) are identified the paths can be completed 

to Hamiltonian circuits by adding an arc that joins the:irt\'JO end nodes. 

Then, the least cost Hamiltonian circuit is the optimal solution to 

/the TSP. The algorithm due to Kaufman [18J can be outlined as follows: 

1. Define an (nxn) matrix VI using the cost matrix C in the 

following way: 

a) Let each entry of Vl be denoted by strings 

b) If C .. > b i ~ j put v.v. in the (i,j) location in Vl. 
lJ 1 J 

Otherwise, put 0 for nonexistent arcs. 

2. Define an (nxn) matrix LI. Lk is obtained f~om Vk by 

deleting the first node in each nonzero string of Vk. 

3. Find Vk~ Li = Vk+i where ~ stands fo~ a symbol of Latin 

multiplication. Latin multiplication is performed like 

ordinary matrix multiplication as follows: 

a) Zero multiplied by any string is zero. 

b) String multiplications are done by jOining two 

strings into one string, i.e. 

V1V2V3 x V4VSV7 = V1V2V3V4VSV7 

c) String additions are written one below the other, i.e. 

V1V2V3 + V4VSV7 = V1V2V3 
V4VSV7 
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d) Any string that has a node more than once equals zero. 

4. The entries in matrix Vk give the simple paths of length 

k. Vn- 1 gives the Hamiltonian paths. For all entries 

representing Hamiltonian paths, check if there exists 

an arc which connects the terminal nodes of the path. 

Out of those paths which can be completed to Hamiltonian 

circuits, choose the one with the least total cost. 

Considering the time and storage requirements of the method, 

even the best computer language cannot provide any advantages on the 

exhausting need of memory space for finding all the Hamiltonian cir­

cuits of comparatively small _size problems. However, for problems 

of less than 20 nodes and an average node degree of less than 3 the 

algorithm provides a successive means of finding the existing Hamil­

tonian circuits. In case the graph does not have a Hamiltonian cir­

cuit or even a Hamiltonian path, the ~lgorithm can be used to deter-
, 

mine all the simple paths upto and including the simple path with 

the highest cardinality of nodes. 

2.3. 1 .2 A.l gebra i c Methods 

In addition to the algorithm presented above the method based 

on the work of Yau [19J, Danielson [20J, and Dhawan [21J also uses 

matri*multiplications to generate all of1the simple paths of a graph. 

The steps of such algorithms are mainly as follows: 

1. Let A be a modified adjacency matrix where a . = j if there rJ 
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is an arc from r. to j. Let Bk be an (nxn) matrix where 

bk . is the sum of the internal node products of all the 
rJ 

elementary paths of cardinality k between nodes rand j. 

The internal node product of a path i l ,i 2, ... ,i k is de­

fined as the sequence of nodes i 2,i 3, ... ,i k_
1 

excluding 

the two end nodes i l and ike Let B1 be the adjacency 

matrix. 

2. Using the ordinary algebraic matrix multiplication obtain 
k+l k the product B . = A.B where 

k+; • k b . = L a .b. 
rJ s rs SJ 

is the sum of all inner products of all paths from i to j. 

3. k+l k+l' Obtain B from B by setting all of its diagonal 

elements toO and eliminating all terms containing node 
k+l . k+l s from bsj ' The matrlx B is the matrix of all ele-

mentary paths of cardinality (k+l) .. 

4. Repeat steps (2) and (3) until the path matrix Bn-1 is 

generated. The Hamiltonian circuits can be obtained by 

adding those arcs of the graph whith join the terminal 

nodes of the paths. Alternatively any diagonal element 

of the matrix obtained from the product A.Bn-1also gives 

the existing Hamiltonian circuits. 

Considering the alternative given in setp (4) we may infer that 
n-l only bll will suffice for determining all the Hamiltonian circuits 

in the graph. This can be obtained by multiplying only the first 
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column of Bk at each iteration. As a result, this reduces both the 

storage and computation effort by considerable factors. However, 

even with these modi~ications, the algorithm is still incapable of 

handling problems of large sizes. 

2.3.f.3 Other Enumeration Methods 

The two methods presented in the previous sections attempt to 

find all Hamiltonian circuits at once. As a result, all paths that 

might take part in forming such circuits have to be stored. Thus, 

an undesirable increase in the storage requireme~ts results. Cont­

rary to this approach, other enumerative methods consider one path 

at a time. The path is tried to be extended to form a Hamiltonian 

circuit. If the path does not lead to a Hamiltonian circuit, then 

it is modified in such a way that all the possibilities are exhausted. 

Consequently, the Hamiltonian circuits are found one at a time. 

The following enumerative method was first exploited by Roberts 

and Flores [22J. The steps of the algorithm are,as follows:-

1. Form a (kxn) matrix D where the entry d . represents 
. rJ 

the end node of the rth arc that emanates from node j . 

. Note that the number of rows k of the matrix D corres-

ponds to the largest outdegree of tha.nodes in the graph 

G = (N,E). Let i l be the initial node of path S. 

2. Add the first feasible node in column i l to S. 'A feasible 

node is a node that has not already been added to S. If 

no feasible node can be found then go to step (4). Other­

wise, repe'at this step until a path of cardinai ity (n-l) 

is formed .. 
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3. At this stage, let S = {i l ,i 2,· .. ,i n} where i l ,i 2, ... ,i n 
denotes the sequence by which the nodes appear on path S. 

If arc (in?i l ) exists in G, then a Hamiltonian circuit is 

found. Find the cost of this circuit and store it if the 

cost is 'less than the cost of. the circuit that has already 

been stored in the memory. 

4. Remove the. last entered node from S. If this removal 

causes S = {¢} then terminate the algorithm. The Hamilto­

nian circuit stored in the memory is the optimum solution 

to the TSP. If no Hamiltonian circuit has been stored, 

then the TSP is infeasible. If there is at least one 

node in S, then return to step (2). 

Improvements to this method are possible by means of applying 

a better selection rule for adding the remaining nodes, to S. Suppose 

that at some stage of the algorithm we are searching for a feasible 

node in column ip of the matrix D. If there exists a node r in 

column ip such that r i Sand R-l(r)c:S where R-l(.) is the set of 

all nodes reaching node (.), then r is the only node that can be added 

to S since the addition of any other node will exclude r from further 

consideration and therefore result in a path that cannot lead to a 

, Hamiltonian circuit. On the other hand, if there exists a node r in 

column i such that r i S, r i R-l(i l ) and R(r)c. S U {q} for some . p 

other node q in column i k where R(.) is the node set reachible by (.), 

then q cannot be added to S since the addition of q to S will cause 

the remaining subgraph not to contain a path from r to i l and there­

fore result in a path that cannot lead to a Hamiltonian circuit. 

" 
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Computational results reveal that, although the tests for the cases 

mentioned· above slow down the procedure for small graphs (less than 

20 nodes) they cause a ,considerable improvement in the computational 

effort especially for larger graphs. 

The method suggested -by Roberts and Flores can further be im­

proved by considering the fact that a path constructed in S implies 

the existence of other paths in the graph. These paths may possibly 

help to complete a Hamiltonian circuit more quickly or point out that 

a path S ~annot lead to a Hamiltonian circuit. The following algorithm 

is based on the enumarative scheme proposed by Roberts and Flores and 

incorporates the improvements developed by Selby [23] and Christofides 

[24]. The algorithm is summarized in six steps. 

o. Let d- (j) and d+(j) denote the- indegree and outdegree of 

node j respectively. Select the root node i l of S as the 

node with the maximum indegree. Ties are broken by choosing 

i l wi,th minimum outdegree. Set I = {<P},_k = 1, S = {1 1} 

where I is the set of implied arcs and k is the level of 

the decision scheme. 

1. Search for implied arcs, i.e. arcs (j,r) such that d-(r) = 1 

or d+(j) = 1. For any such arc (j,r) form the longest path 

by using (j,r) and all the arcs in I. 

a) If the cardinality of the path is less than (n-]), 

then add (j,r) to I and remove all the arcs emanating 

from j and terminating at-r. If this removal causes 

any node q to have d-(q) = 0 or d+(q) = 0 then go to 

step (5). 
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b) If the cardinality of the path is (n-l), then check 

whether the arc (in,i l ) exists. If (in;i l ) exists, 

then a' Hamiltonian circuit is found, go to step (4). , 

. Otherwise go to step (5). 
" 

Iterat~··. step (1) until no further arc can be added io I. 

2. Check if an implied arc emanates from node i k say 

(ik,r) £ I. If r = i l and k< n, go to step (5). Other­

. wise, set k = k+l, \ = rand S = S + {\}. If k = n, 

then check whether arc (in,i l ) exists. If so, a Hamilto­

nian circuit is found, go to step (4)~ Otherwise, go to 

step (5). Iterate';, step (2) until no further implied 

arc can be added to S. 

3. Select the next node r to be added to S from the nodes 

not included in S so that r is the node whose min{d-(r), 

d+(r)} is a minimum among all other nodes. Ties are 

broken by choosing q with min{d- (r) +. d+(r)}. If 'no 

feasible node exists then go to step (5). Otherwise, 

remove all the arcs emanating from i k and the arcs ter­

minating at r as well as the arc (r,i l ) from the graph. 

Set k = k+l, i k = r. If the removal of the arcs cause 

any node q to have d-(q) = 0 or d+(q) = 0, go to step 

(5). If not, return to step (1). 

4. Chec'k if the prescribed number of Hamiltonian circuits 

have been found. If so, terminate the search. Other-

wise continue. 
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5. (a) If k = 1 then stop. 'All possibilities have been exhausted. 

Terminate the search. Otherwise, remfrve node i k from S. 

(b) If arc (ik-1,i k) s I, then set k = k-l and return to step 

(5a). Otherwise, continue. 

(c) If ar,c (\-1'''\) was ad~ed to S at step (3), then reinsert 

all the arcs removed from the graph at level k, remove 

all the arcs inserted in I at level k and set k = k-l. 

Return to step (3). 

The algorithm was tested on randomly generated graphs with both 

the indegree and the outdegree of each node lying in prefixed ranges. 

As it has been indicated by Martello [25J for node degrees in range 

1-3, the algorithm is very fast since a few or no Hamiltonian circuits 

exist. In case the node degrees range between 2 and 3 the computational 

effort shows. an increase which is proportional to the number of nodes n. 

Finally, it has been observed that the running times tend to be imprac­

tical for node degrees ranging between 2 and 4 and higher. 

2.3.2 Exact Solution Methods with Branch and Bound 

The branch and bound algorithm comprises a theoretical frame­

work for solving different types of combinatorial optimization prob­

lems. The method examines successively subsets of the set of all 

solutions until one of the solutions located in one of the subsets 

is proven to be-optimal. 

The set of all solutions is partitioned into a finite number 

of equivalence classes by using partitioning properties. Then, each 
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class is examined by using a decision tree. The tree consists of nodes 

and edges which join the nodes. A path from any-node to the root of 

the tree is called a branch and the solutions are given by the unique 

branches down the tree. 

For each node on the "tree, we first check the feasibility of the 

corresponding solution class. If the solution class does not contain 

any feasible solution or if the node is terminal, i.e. the solution 

class cannot be partitioned again, then that node is fathomed (closed). 

Otherwise an upper bound is calculated and a parameter, which 'is a 

numerical value of a special function called the branching function, 

is defined. This value giyes a measure of the desirability for exploring 

further that particular branch of the search tree. The branching stra­

tegies are given different names which vary with the specified branching 

function. The commonly known strategies include the breadth first stra­

tegy, the branch search strategy and the branch and bound strategy. 

Termination occurs. when either all nodes are fathomed or when 

all the upper bounds of the unfathomed nodes are less than or equal to 

the lower bound corresponding to the best feasible solution found so 

far. If the algorithm does not terminate, then the branching node is 

selected to be the node having the highest value of the branching 

function. The new solution class to be examined is obtained by applying 

a partitioning property given by a special rule called the partitioning 

rule. Besides, a priorlty rule is used to determine the subclass to 

be examined. 

In view of the facts mentioned above, a general branch and bound 

algorithm can be summarized as follows [26J: 

) 



1. Let the whole set of solutions be assigned to the root 

node of the decision search tree. 
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2. Check fo~ a feasible solution. If the solution class does 

not contain any feasible solution, then fathom the node 

and go to step (3). Otherwise, 

a) compute an upper bound for the solution class, 

b) compute a lower bound, if possible, 

c) evaluate the branching function. 

3. Terminate the search if either all nodes are fathomed or 

all the upper bounds of the unfathomed nodes are less than 

or equal to the current lower bound of the problem. Other­

wise, continue. 

4. Select the branching node. Use the partitioning rule and 

the priority rule to determine the new node to be examined. 

Close the branching node after alT the nodes corresponding 

to the subclasses have been generated. Go to step (2). 

Analysing the general branch and bound algorithm, we see that we 

need a mechanism for finding a feasible solution, a mechanism for com­

puting upper bounds, a termination test, a branching function, a defi­

nition of the partit~oning properties, a partitioning rule and a prio­

rity rule to apply the method properly. Generally, all of the bran.ch 

and bo~nd algorithms differ depending on the selection of the required 

·information for their application. As a result, there are many branch 

and bound algorithms which are designed for solving the TSP but which 

differ in selecting the required information. 
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Most of the exact solution methods for solving the TSP are of 

the branch and bound type. At each node of the decision tree, prob­

lems which are relaxations of the TSP are solved in order to compute 

good quality lower bounds. Actually, good quality lower bounds affect 

the effectiveness of the al~orithm much more than any ~ffective branch-

ing rules. Therefore, many algorithms found in literature have p~t 

emphasis on the problems of calculating lower bounds. The lower bounds 

are usually calculated from problems which are relaxations of the TSP 

and whose solution methods are known to be efficient. Among these 

problems are the assignment problems, the minimal spanning tree prob­

lem, matching and covering problems and shortest path problems. The 

following sections are confined to different branch and bound techniques 

uSing. these problems for generating lower.bounds. 

2.3.2.1 The TSP and the Assignment Problems (AP) 

Consider the AP and its dual problem defined as follows: 

Prima 1 

Dual 

n 
minimize L 

s.t. 

i=l 

n 
L x .. 

i=l 1J 

n 
L x .. 

j=l . lJ 

x .. > 0 
lJ -

n 

n 
L C .. x .. 

j=l 1J 1J 

= 1 

= 1 

n 
minimize L u. + 

1 
L v. 

i=l j=l J 

(2.14) 

j = l, ... ,n (2.15) 

i = l, ... ,n (2.16) 

(2.17)-

(2.18) 



s.t. 

= 

u.+v.<C .. 
1 J - lJ 

u.,v. unrestricted 
1 J 
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i,j = l, ... ,n (2.19) 

(2.20) 

= ex) = where C .. 
. lJ 

cost of arc (i ,j ) and C .. i 1 , ... , n 
11 

x· . = 1 if arc (i ,j ) is in the solution set 
lJ .v, 

= 0 otherwise. 

The AP is a relaxation of the TSP where the additional constraint 

that the solution must form a tour has been dropped. The AP defined 

above may have solutions composed of a number of disjoint circuits. 

One may then impose the additional constraints that have been dropped 

in order to obtain a single circuit containing all the nodes. The 

restrictions are usually imposed within the framework of the branch 

and bound algorithms (Eastman [27], Shapiro [28J, Bellmore and Malone 

[ 29]). 

Let the solution of the AP defined above be used in the solution 

procedure of the TSP. Then, the following branch and bound algorithm 

can be used to determine the optimum solution to' the TSP by imposing 

the additional constraint that the AP solved on the modified cost matrix 

gives a single tour. 

1. Begin at the live node o. Solve the AP and let Zo be the 

optimal objective function value. 

2. Apply the breadth first strategy to select.a live node j 

such that Zj = min Zk where K is the set of live nodes. 
kEK 

If no such j can be found, i.e. all the nodes are fathomed 

then stop. The problem is infeasible. Otherwise, continue. 
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3. If the solution in node j is a Hamiltonian circuit, then 

terminate the algorithm. This is the optimal solution to 

the TSP. If the solution to node j is composed of a number 

of independent circuits, then let {i l ,i 2, ... ,i r ,i l } be the 

circui·t with the minimum number of arcs. Subdivide the prob­

lem into r subproblems. In each problem, set the cost of 

one of the arcs to infinity with all the other costs remaining 

unchanged. Let each subproblem be represented by the succes­

sor nodes of j. Solve the AP for each successor node using 

the corresponding modified matrix. If a feasible solution 

to the TSP with an objectiverfunction value of Zq is obtained, 

then fathom all the nodes whose Zk < Zq where k E K. Return 

to step (2). 

Note that the branchingrul e given above removes the :;ci'rauit by excl uding 

one of its arcs. However, the subproblems created by using this method 

are not disjoint. On the other hand, a branching rule which produces 

mutually exclusive subproblems created by using this method are not 

disjoint. On the other hand, a branching rule which produces mutually 

exclusive subproblems is desirable. 

The following branching rule can be used in producing disjoint 

subproblems. Let.{i l ,i 2, ... ,i r ,i l } be the cir.cuit which is going to 

be removed. Then the cost matrices can be modified as follows: 

Problem.l c .. = 00 

'1'2 
Problem 2 c .. = -M, - c .. = 00 

'1'2 
.-

'2'3 
Problem 3 c .. = -M, c .. = -M, c .. = 00 

'1'2 '2'3 '3'4 

Problem r 
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-M is a large negative number which ensures that the arc whose cost is 

assigned -M will remain in the optimal solution. This can also be 

achieved ·by deleting the corresponding row and columns of those parti­

cular arcs and solving the problem on the reduced matrix. 
J . 

A better branching rule can be applied to the algorithm by con-

sidering the fact that there must be at least one arc leading from the 

set of nodes that comprise the circuit to the set of the remaining nodes. 

Each subproblem would be created upon insisting on the existence of 

such an arc whose initial node is in S = {i l ,i2, ... ,i r ,i l } and the 

final node in S = N-S. This can be done by setting Cjr = 00, Vr £ S 

and leaving all other distances unchanged for subproblem j. As a result, 

the branching rule will lead to the disjoint problems with the following 

updates: 

Problem 1 

Problem 2 

Problem 3 

Problem r 

c. . = c. . = 
'2'1 ~ '2'3 

C. . = C. . = 
'3'1 '3'2 

= C .. = 00 

'4'r 

= c .. = 00 " , 
.2 r 

= Ci i = 00 

r r-' 

This branching rule and the one presented previously takes only one of 

the circuits of the solution into consideration. Another branching 

rule will be one that considers the remaining nodes based on the same 

reasoning described above. 

Suppose that at some node q of the decision tree we have the 

cost matrix C which represents the graph Gq = (N,Eq). Let S = {il, ... ,i r } 

be the node set representing a circuit .in the solution associated with 
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node q and S = N-S. Then the new branching rule requires the following 

[29] : 

Problem 1 c .. = co Vj e: S, j T- il 1.J 1 
Problem 2 c .. 

llJ 
= co Vj e: S, c .. 

12J = co Vj e: S, j t- i2 

Problem 3 C .. = C .. = co Vj e:S C .. = co Vj e: S, j ,-:i3 llJ 12J 13J 

. 
Problem r 

As it has been described previously an efficient branching stra­

tegy would be the breadth first strategy as it is used in the given 

algorithm. But one could also use the depth first strategy and· tbere­

fore branch to one of the successor nod~s of a node just partitioned. 

Note that the termination criteria remain the same in both cases. 

No matter which branching strategy is used, the quality of the 

lower bounds computed has a significant influence on the number of 

branchings in the decision tree and therefore on the computational 

efficiency of the branch and bound method. The objective function 

value of the AP is a valid lower bound and can be used quite effi­

ciently. However, a tighter bound can be calculated from the optimal 

solution to the APat the expense of a little extra effort [17J. 

Let the optimal solution to the AP contain nl disjoint'circuits. 

Then, each circuit is contracted so that all the drcuits, qi'- are 

represented by single nodes. Construct a graph G1 = (Sl,E1) \'ihere 

Sl {SIll} d h d 1 t··t 1 a d E1 = 1,s2, ... ,sn
1 

an eac no e Sj represen s a ClrCUl qj n 

is the arc set taken as 



[1 ={(:S~,:s~) le1.1 - 1= min {C1
k}} 

1 J Si,Sj re:q~ r 
kE:ql~ 

J 
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where [c~~,s~] are the elements of the resultant cost matrix. The AP 
1 J 

is solved once more on the contracted problem using matrix C1
• How-

ever, the solution to this problem ma·y also contain n2 disjoint cir­

cuits. Note that these circuits have the previous circuits as nodes. 

The new circuits, q., are further contracted into nodes to form a new 
1 

graph, G2 = (52,[2) where 52 = {si,s2' ... 'S~2} is the set of n2 nodes 

each representing a circuit q. having the previous circuits as nodes 
. 1 

and [2 is the edge set taken as 

= min {c~k}} 
re:q: 
ke:q~ 

J 

The AP solved for this doubly contracted problem may still have n3 dis-

joint circuits. Thus, the contraction is continued iteratively until 

the problem is reduced to a single node. 

An important point that should be taken care of is that the 

cost matrix obtained at the end of each iteration must satisfy the 

triangle inequality. If the cost matrix produced fails to satisfy 

the triangle inequality, it has to be tran·sformed into one that does. 

This procedure is called compression and compression is performed by 

replacing every element 9sk~ -k for which 
1 Sj 

.k k 5k C~kk for some sr e: s s. 
r J 

k k 
Cs~,s~ > C~~ ~k + 

1 J 1 r 

by the value of 

.1 
i 
! 
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As it has been shown by Christofides [17] the sum of the values 

of the solutions to the APs obtained during the "solution-contraction­

compression process", is a valid lower bound to the TSP. The computa­

tion effort for the contraction and compression parts of the process 
" 

is known to vary in order of n and the time required to calculate the 

-bound is approximately 14.3% greater than the time required to solve 

an AP o~ the same size. This increase in time, however, results in a 

considerable amount of saving in the decision tree search. 

Another bound which also uses the AP was introduced by Balas and 

Christofides [30]. They consider the introduction of some violated 

constraints of the TSP into the objective function by the use of Lagrange 

multipliers. In addition to the AP formulation, the TSP includes con-

straints that forces the solution to form a tour. Such constraints are 
> 

given by (2.4a), (2.4b) and (2.4c). Let Ap be the multiplier associated 

with the rt~ constraint of the ste (2.4a) which is not satisfied. The 

problem, then, becomes 

minimize 1: 1: C .. x .. - 1: Ar 1: 1: x .. + 1: A (2.21 ) 
i j lJ lJ r iE:Sr j£"S"r lJ r r 

s. t. 1: x .. = 1 j = 1 , ... ,n (2.22) 
i lJ 

1: x .. = 1 i = 1 , ... ,n (2.23) . lJ 
J . 

x .. > 0 
lJ -

lJi,j £'N (2.24) 

An approximate method for finding these multipliers can be given as 

follows: 
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1. Form the graph Go = (N,Eo) where Eo = {(i,j):Cij = O} and 

[C .. J are the elements of the cost matrix after the AP is 
lJ 

solved. 

2. For each node i, find R(i) the node set reachible from i via 

arcs in 'Go' If the number of reachible nodes is (n-l) Vi, 

then stop. The multipliers are calculated. Otherwise, gene­

rate cuts for the nodes whose reaching sets are incomplete. 

Let k be one of such nodes whose reaching set is given by 

R(k). ForR(k) = N-R(k) the corresponding Lagrange multip-

lier Ak is calculated as 

Ak = min {C .. } 
. iER(k) lJ 

jER(k) 

and the cost matrix is updated by 

C .. = C' .. - Ak lJ . lJ Vi E R(k), j E R(k) 

3. Update Go so that arcs for which Lij has become 0 are 

included in Go' Return to step (-2). 

At this stage it is probable that there exists some unsatisfied 

constraints of type (2.4b). Once again, these constraints can be in­

troduced by using a.further Lagrangean relaxation. Let Uq be the 

multiplier associated with the qth unsatisfied constraint of the set 

(2.4b). The new problem can be stated as 

minimize ~ ~ CijXij - I Ar.~ .~ xij ~ ~ Ar 
1 J r 1 ESr J E"S'r r 

+ ~. ~ ~ x .. - ~ ~qlSql + ~ ~ 
q q i, j ES q 1 J q q q 

(2.25) 
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s. t. L x .. = 1 j = 1 , ... ,n (2.26) 
i lJ 

L x· . = 1 i = 1 , ... ,n (2.27) 
j lJ 

x .. > 0 
lJ -

. Vi ,j £ N (2.28) 

.,' 

Then, the procedure continues with the following step. 

4. Calculate ~q in a similar way that th~ duals are computed for 

the AP. For each ~q determined, calculate new dual variables 

u· and v. for the AP and update the costs by C
1
·
J
· = C .. -u.-v .. 

1 J lJ 1 J 

Note that at the end of this procedure, the initial AP solution 

is still optimal and 

TCAP + L Ar + L ~q 
. r q 

with TCAP being the optimal objective function value of the AP, 

constitutes a lower bound to the TSP. 

Since the number of zero elements of the cost matrix has been 

increased after the application of step (1)-(4) mentioned above, it 

might be the case that those elements comprise a Hamiltonian circuit 

although w~ know that the initial AP solution is still optimal. If 

there is not any Hamiltonian circuits then the lower bound can be 

, improved by applying the following step. 

,5. Consider the final version of Go. Let G~ = (Ns,E~) be the 

graph generated from Go.bY removing node s. If G~ is not 

unilaterally connected then there must be a pair of cuts 

Kl K2 of G~-·for \'1hich ES n Kl = ES n K2 = ''' .. Define s' so· 0 s 0 s ~ 



TIs :.. min fc".·} 
(i,j)e:k~UK~ lJ 

and make the transformation 

C .. :C .. -TI 
lJ lJ S 

. s 
Perform this procedure for every s e: N so that Go is uni-

laterally connected after the removal of any node s. 

As a result, the quantity 

~ Ar + ~ ~q + ~ TIs 
r q s 

is a valid lower bound for the TSP. Note that the procedure can be 

applied to both symmetric-and asymmetric problems but produces better 

bounds for asymmetric problems [31J. 

After all, the use of the AP based bounds have been observed 

to perform well in tree search algorithms. Up to date results reveal 

that problems with 250 or more nodes can successfully be solved by 
I 

the use of the AP based bounds with different type.s of branching 

schemes [30]. 

2.3.2.2 The TSP and Minimal Spanning Tree Problems 

~ The minimal spanning tre~ problem (MSTP) is the problem of 

finding the tree that spans all the nodes of a graph with the minimum 

total cost. The TSP is closely related to the MSTP in the sense that 

the problem of finding the shortest Hamiltonian path of a graph is 

equivalent to the problem of finding the minimal spanning tree of a 

graph with the additional constraint that no node should have a degree 
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greater than 2. The minimal spanning tree of a graph may contain arcs 

which result in a degree d(i) > 2 for some node i. If such a node i 

exists, then at least one of the arcs incident to node i must be e1i-

minated. Thus, there are d(i) problems which must be taken into con­

sideration. In each one of the d(i) problems, one of the arcs incident 

to node i is eliminated (Cij = roland the MSTP is solved again in order 

to see if the absence of the eliminated arc leads to a Hamiltonian path. 

The following branch and bound algorithm can be used to deter­

mine the shortest Hamiltonian path with the aid of the MSTP [17J: 

1. Begin at the live vertex O. Solve the MSTP. Let Zo be the 

cost of the minimal spanning tree. 

2. Find a live nodej on the decision tree such that Z. is 
J 

minimum. If no live node can De found then stop, the 

problem is infeasible. Otherwise, continue .. 

3. If the solution to node j is a Hamiltonian path then stop, 

the optimum solution is obtained. Otherwise~ select a 

node i on the spanning tree such that d(i) > 2. Subdivide 

the problem into d(i) subproblems. In each problem, set 

the cost of one of the arcs incident to-i to infinity, 

while all other costs remain unchanged. Let each subproblem 

be represented by the successor nodes of j on the decision 

tree. Solve the MSTP for each successor node. If a feasible 

solution (i.e. a Hamiltonian path) is found with an objective 

function value Zq' then fathom all the live nodes, k, where 

Zk < Zq' k E L, and_L. is.the.set of,a1l live nodes. Return 

to step (2). 
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Note that this algorithm deals with finding the minimal spanning 

tree of a graph rather than finding the shortest Hamiltonian circuit 

which is the solution to the original TSP. However, once a solution 

method for finding the shortest Hamiltonian path is known, a small 

modification will s·uffice fo'r dealing with finding the shortest Hamil-

tonian circuit. 

Let the shortest l-tree of a graph, G, be defined as the minimal 

spanning tree of the subgraph of G with node 1 removed, plus the two 

shortest arcs from node 1 to two other nodes of the tree [14J. Then, 

the shortest I-tree with all node degrees of value 2 is the shortest 

Hamiltonian circuit of the graph. Thus, the branch and bound method 

discussed above can be used to solve this problem as well. 

Instead of using the cost of the shortest spanning tree as a 

lower bound by itself, one may count the longest branch on the tree 

twice and then let the overall cost be a better bound to the optimal 

TSP. This follows from the fact that the spanQing tree contains (n-l) 

arcs that connect all of the n nodes whereas n arcs are needed to 

comprise a Hamiltonian circuit. Consequently, since the longest arc 

on the shortest Hamiltonian circuit is at least as long as the longest 

arc on the minimal spanning tree the quantity 

TCL1ST + m a x C .. 
I' (..) T lJ 1,J E 

whereTCMST is .the cost of the minimal spanning tree and T is the set 

of arcs on the minimal spanning tree, is a lower bound to the shortest 

Hamiltonian circuit. 

Another \,-Iay of deriving a better bound by using the I~STP is to 
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include the cons~raints d(i) .:: 2, Vi E N to the objective function 

by means of Lagrange multipliers. In other words, nodes with degrees 

greater than 2 are penalized. There are many penalizing procedures 

proposed for solving the TSP with the aid of minimal spanning trees. 

Methods of this tyge were first exploited by Held and Karp [14J and 

Christofides [24J. Improved methods for deriving the penalties were 

later introduced by Hansen and Krarup [32J. 

The method due to Volgenant and Jonker [33J, uses arc exchanges 

in minimal trees in combination with a branch and bound algorithm based 

on the l-tree relaxation. Once a minimal spanning l-tree, T, is obtained 

the method distinguishes two types of arcs: 

1. Arcs not incident to node 1 

For an arc (i,j) in T, the l-tree Tij follows from T by 

exchanging (i,j) with a shortest arc (rl,sl) not in T in 

its fundamental cut set. Now arc (i,j) must be part of 

an optimal solution if 

CT- = CT - C.. + C I I > U . . lJ r s 
lJ 

where CT:. is the cost of the l-tree following from the 
. lJ . 
original l-tree whose cost is given by CT and u is an 

upper bound on the optimal TSP va1ue. 

For an arc (k,q) not in T, ,the l-tree T;q follows from T by 

exchanging (k,q) with a longest arc (rU,s") on its-funda­

mental path in T. Now arc (k,q) cannot be part of an optimal 

solution,· if 



CT+ = CT + Ck - C IISII > u 
kq q r 

where CT+ is the cost of the l-tree following from T. 
kq , 

2. Arcs incident to node 1 
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Let (l,i)'and (l,j) be the arcs of the minimall-tree T and 

Cli < C,j" Let k be an index with Clk = min{C,qlq £ N, q 1 i,j}. 

Then, the l-tree T~i and T~j follow from T by exchanging arcs 

(l,i) respectively (l,j) with the arc (l,k) which is not in T. 

So, an arc (l,j) must b~ part of an optimal solution if 

CT-,. = CT - C j + Clk > u 
.J 

Similarly, the l-tree T~k' kEN, k r i,j folloVJS from T by 

exchanging an arc (l,k) not in T with ar~ (l,j) in T. Thus, 

arc (l,k) cannot be part of an optimal solution, if 

, . 

The TSP algorithm of Volgenant and Jonkers is based on the 

l-tree relaxation of Held and Karp [14,15J and modified with the 

edge exchanges on one major point: Using a minimall-tree in one 

of the live nodes of the decision tree, the branching is governed 

by the CT- values of , the arcs incident to an arbitrary node i with 

d(i) > 2 on the subtour of the minimall-tree. The set of feasible 

sol~tions is split into three subsets. The first set is characterized 

by requiring to edges, say el and e2, incident to i; the second set 

by forbidding e2 and keeping el . required and the third set by forbidding 

el only. As el and e2. the arcs with the largest respectively second 
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largest CT- value are chosen. Throughout the algorithm a heuristic 

subalgorithm is used on simply chained l~trees to obtain a better 

upper bound for the TSP, so that more variables can be eliminated 

and more sensitive CT- values can be calculated. 

As it has been reported, computational results has shown that 

'the arc exchanges are advantageous for Eucledian problems up to 120 

nodes as well as for random table problems upto 200 nodes. Neverthe­

less, up to date results reveal that problems up to 100 nodes can be 

solved successfully be embedding the MSTPs as lower bounds into branch 

and bound algorithms. 

2.3.2.3 The TSP and Matching Problems 

This section presents a method for calculating a lower bound 

on the length of an optimum Hamiltonian 'circuit by the use of the 

matching problem. Given an undirected graph G = (N,E) a subset 0 c:E 

is called a b-matching of G, if the node degrees d(i) = b for all i E N. 

Then the problem of finding a minimum cost b-matc~ing is the integer 

programming problem 

minimize L: Ckxk (2.29) 
kEE 

s.t. L: xk = b i = 1 , ... ,n (2.30) 
kEA. 
. 1 

Xk E {O, l} Vk E E (2.31) 

where Ai is the set of arcs incident to node i. Adding the constraint 

(2.32) 
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to ~he 2-matching problem we obtain the formulation of the symmetric 

TSP. Thus, the 2-matching problem is a relaxation of the TSP and can 

therefore be used as a valid lower bound. - On the other hand, the 

additional constraints can be included into the objective function by 

means of Lagrange multiplie~s. Hence, we obtain a problem which can 

be solved by a technique similar to the one used in deriving a lower 

bound via the assignment problem. 

Occasionally, the lower bound obtained by solving a 2-matching 

problem can be embedded into a decision tree search algorithm. Experi­

ments showed that the lower bounds generated by the 2-matching problem 

are much better than the lO\'/er bounds generated by the assignment prob­

lem when the graph is symmetric. 

2.3.2.4 The Shortest n-Paths and the TS~ 

Consider a Hamiltonian circuit. Obviously, this is an n-path 

from a node j back to j where each node appears once and only once on 

the path. On the other hand, excluding the restriction that each node 

must appear exactly once on the path, the computation of the shortest 

n-path from j back to j becomes a simple problem which can be solved by 

dynamic programming. Note that a node can appear an arbitrary number 

of times on the shortest n-path. The recursion formulae for the compu­

tation of such a path can be given as 

fl (i) = C .. 
J1 Vi E N i r j (2.33) 

fk (i) = min {fk (q) + C .} i t j , i E N (2.34) 
qEN -1 q1. 
qr i ,j k = 2, ... ,n-l 
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(2.35) 

Even~ually, if the ri-path passes through each node exactly once, then 

it is the solution to the TSP. If a node appears on the path more 

than once, then fn(j) can be used as a lower bound on the value of 

the TSP. 

A better bound can be derived by penalizing the nodes which 

appear on the path more than once. Let the costs Cij be transformed 

byt .. = C .. + A. + A. where A. is a penalty associated with node i. 
lJ lJ 1 J 1 

Then the cost of any Hamiltonian circuit in the graph is increase9 by 

the same constant amount 2E Ai. On the other hand, n-paths that are 
i 

not Hamiltonian circuits are penalized by first computing fn(j) with 

the modified costs C... Let the n-path pass through node i k
1
· times. lJ 

Then 

W(A) = f (j) + 2 E (k. - l)A. . n . 1 1 
1 

(2.36) 

is a valid bound to the TSP. The problem is therefore to choose that 

A* which corresponds to the maximum of the expression 

. W(A*) = max{w(A)} (2.37) 
A 

and use W(A*) as. a~ower bound for the TSP. Subgradient optimization 

i$ one possible procedure for solving this problem. 

As i.t has been reported by Houck et. a 1 [34] one type· of node 

repetition can be prevented by a simple modification on the recursion 

formulas. In other words, it is possible to exclude occurrences where 

the rth and (r+2)th nodes on the n-path correspond to the same node 
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in the graph for some value of r. The quantity calculated by s9lving 

the shortest n-path with the modified recursion formulas plus the / 

associated penalties is a better lower bound to the TSP. 

An advantage of the lower bounds using the shortest n-paths is 

that additional constraints· for problems related to the TSP can easily 

be included in the structure of the problem. On the other hand, the 

fact that 0(n3) :operations are required to compute the shortest n-path ' 

as compared with 0(n2) operations for the minimal spanning tree problem 

and 0(n2.5) operations for the assignment problem is a disadvantage of 

the method. 

2.3.2.5 Little's Branch and Bound Algorithm 

The basis of Little's algorithm [11] is to first identify a 

feasible solution to the TSP and then to decompose the set of all 

remaining feasible tours into smaller and smaller subsets. At each 

step of the decomposition, the bounds proVide a guide for partitioning 

the subsets of a feasible tour. A tour with a 19n9th less than the 

length of the current best tour is assigned to be the minimum lower 
, 

bound of all the tours. The process of bounding tours, eliminating 

the suboptimal ·alternatives and branching continues until all of the 

bounds on the decision search tree are greater than or equal to the 

length of the best available tour. 

The algorithm starts with the original cost matrix C and sub-
, 

tracts from every entry in each row the minimum element of that row. 

and repeats this process for all the rows. Then, the minimum element 

of each column is subtracted from every entry in that column in the 

resultant cost matrix. The process of subtracting the minimum element 
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from the entries in each row and column is called row reduction and 

column reduction respectively. The reduced matrix contains at least 

one zero in each row and in each column. Since' all the elements in 

the reduced matrix are nonnegative,the sum of the reduced constants, 

H, constitutes a low~r bound on the length of any tour under the matrix 

before reduction. 

The next step is to identify the minimal length tour by assigning 

one zero valued cell in each row and column. If such a zero valued tour 

can be found, then this is the optimal solution. However, the arcs of 

the optimal tour are not identified simultaneously. The tour is formed 

by selecting one arc at a time from the cost matrix. 

As it has been suggested by Little, a penalty is calculated for 

each zero element in the cost matrix. The penalties, P'
J
" give the 1 ' 

minimum cost that would be incurred if the optimum tour does not contain 

the arc (i,j). Thus, that arc whose cost under the reduced matrix is 

zero and whose penalty is the largest governs t~e partitioning of the 

solutlon set. The total number of tours is divided. into two subsets; 

those that include arc (i,j) and those. that do not. Let these subsets 

be represented by two subsequent nodes on the decision tree. The bound 

on the node Which represents the tours not including arc (i,j) is 

(H+p .. ). Before we can determine the new bound on the node which rep-
1J 

resents the tours that include arc (i,j), certain modifications have 

to be performed in the cost matrix. Since arc (i,j) is selected to 

appear in the final tour it is impossible to include another arc corres-

. ponding to an entry in row i or column j .. Thus, row i and column j are 

deleted from the cost matrix. Finally, costs of arcs which if not taken 
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out of consideration might create subtours are set to infinity. After 

these modifications are made the cost matrix is further reduced so 

that each row and column contains at least one zero. The bound on the 

node is now computed ~s the sum of the riew reducing constants plus the 

lower bound of the predecessor node. As a result, a new branching 

becomes possible. The subset of ail tours is partitioned into smaller 

subsets. The partitioning process continues until the final subset 

contains a single tour. Furthermore, the branching process is controlled 

by the lower bounds. The subset of tours whose lower bound is larger 

than the lower bound of a node representing the best feasible tour are 

deleted from further'consideration. That is, nq additional branching 

is performed from the corresponding node. The algorithm is summarized 

in the. following steps: 

1. Begin at the live node O. Let Zo = O. 

2. Reduce C .. Set H to the sum of reducing constants. Set 

the lower bound of the node to the sum of H plus the lower 

bound of the predecessor node. If the lower bound is greater 

than the cost of the best tour available, go to step (6). 

3. Calculate the penalty for each zero element in C .. Choose 

arc (q,r) such that Pqr = max{p .. }. Set the bound of the . . lJ 
1 ,J 

node which represents the subset of all tours not including 

arc (q,r) to the lower bound of the predecessor node plus 

the penalty Pqr. 

4. Branch to the node which represents the subset of tours 

that include arc (q,r). Cross out row q and column r. 
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Insert infinities in C to prevent subtours from being formed. 

I~ C is·not a (2x2) matrix, then return to step (2). Other­

wise, continue. 

5. Since C is now a (2x2) matrix, a tour has been obtained. If 

the cost of this tour is less than the cost of the best 

available tour, then record it. Otherwise, continue. 

6. Select the next node to branch from, as the node with the 

least lower bound. If all the bounds are greater than the 

least cost tour, then stop. The tour stored is optimal. 

Otherwise continue. 

7. Updat~ and set up matrix C so that it corresponds to the node 

selected in step (6)~ Return to step (3). 

Little's method has many advantages as compared with other 

branch and bound techniques. The method can be extended to handle 

additional constraints which are not includeo in the TSP, but may 

appear in problems which are closely related to ·the TSP. Another 

important property is that if for any reason the tree search is 

stopped before the search ends with an optimal solution, then a good 

and sometimes the optimal solution is obtained. But, similar to all 

other branch and bound methods the computational complexity of this 

method is exponentially dependent on the number of nodes of the prob­

lem. In other words, the combinatorial structure of the TSP is still 

in effect. 
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2.3.3 Dynamic Programming Solution of the TSP 

An alternative solution to the TSP by means of dynamic program­

ming has been offered independently by Bellman [35J, Held and Karp [36] 

and Gonzales [37J. 'The procedure is more general than the branch and 

bound technique and requires less computation effort. However, the 

storage requirements for dynamic programming are more limiting as com-

pared with the branch and bound technique. 

Consider the n-node TSP with costs specified by the elements 

of matrix C. Let node 1 be the origin of the travelling salesman tour. 

Considering that i is any node other than node 1, define the following: 

Sk = a set of k nodes other than nodes 1 and i 

Sk = a set consisting of the remaining (n-k-2) nodes 

Suppose that starting at node 1 on the o~timal tour; a path pass~s­

through each of the nodes of Sk in some particular order and ends at 

node 1. Note that the nodes in Sk have to be i,ncl uded in the path in 

some order before returning to node 1. That is, the portion of the 

tour from node i through the nodes of Sk and back t~ node 1 has to be 

considered., Obviqusly, this will be the shortest possible path from 

node i back to node 1 passing through k nodes of Sk' Let f(i,Sk) be 

the shortest possible path from i back to 1 with k nodes of Sk in 

between. Then, the recursion formulas can be given as 

f (i , ¢) = Cl · k = 0 
, 1 

f(i,Sk) = ~in {Cij + f(j,Sk - {j}) ,k = l, ... ,n-l 
J£Sk 

(2.38) 

(2.39) 
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Note that f(l,Sn_,) would be the length of the optimal tour of the TSP. 

The formulation of the TSP by dynamic programming can be simpli­

fied for the case of symmetric cost matrices. If the total number of . 

nodes of such a problem is n, then this number can be expressed as 

(2q+l) if it is odd and as 2q if it is even. If n is odd, the recur­

sion formulas given above can be used recursively from k = 0 to k = q 

to obtain an optimal path of length (q+l). On the other hand, since 

the cost matrix is symmetric, the path including the remaining nodes 

would have alreadly been computed and hence the problem is solved. 

If n is even, then the procedure remains the same except that the 

recursion ranges from k = 0 to k = q-l. 

As it can be seen, the storage requirements for· the problem is 

extremely large. One must be able to store all the computations at 

two consecutive stages since it is not.possible to overwrite any of 

the computations made at a given stage until all the computations at 

the following stage have been made. As a concluding remark, we can 
, 

state that the storage requirements for dynamic programming are more 

than doubled for each additional node. Unfortunately, even the best 

methods developed are not able to overcome this difficulty.· 

2.3.4 Exact Solution Methods Based on Linear Programming 

The TSP cannot be directly formulated and solved as a linear 

p!'ogramming problem in practice. However, a possible proce~ure for 

solving the TSp·is to solve its relaxations by means of linear prog-

ramming an~ then to impose the relaxed constraints by either a branch 

and bound algorithm ~r a cutting plane procedure. Actually~ there 
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constraints \'lOuld be taken into consideration when they are violated 

by the linear programming solution of the relaxed problem. 

The basic method described as above has be~n adopted in numerous 

different ways. For e~ample, consider the method proposed by Crowder 

and Padberg [38]. for the symmetric TSP. The basic idea of applying 

the~r method goes ai follows: First the linear program 

min{CxlAx = 2, 0 < x < l} - - (2.40) 

where C is the vector with (n(n-l)/2) components given by the arc dis­

tances and A is the incidence matrix of the complete graph is started 

with a feasible solution. If the next feasible solution is a tour, 

a usual pivot is carried out. Otherwise, the next feasible solution 

is chopped off by some cutting plane which is satisfied by the current 

solution at equality. Consider the constraints 

'k k 
~ x (S .) < I S I + ~ (I S . I - 1) - r 21 kl 
'0 1 - 0 . 1 1= 1=1 . 

(2.41) 

where I-.l denotes the next highest integer, lSI de~otes the cardina­

lity of set S and the sets S. are proper subsets of N satisfying the 
1 

following conditions for i = 0,1, ... ,k. 

IS nS·1 >1 i = 1 , ... , k (2.42) o 1-

IS. - S I 
1 0 

> 1 i = 1 , ... , k (2.43) , 

ISif)Sjl = 0 1 <i~j~ k (2.44) 

k odd (2.45) 
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k The arc set {Ui=o E(Si)} is called a comb in G and the inequalities 

(2.41) are called comb constraints. A comb with k = 1 and /5
0

/ = 1 

is a subtour elimination constraint. [39]. A comb is a 2-matching 

constraint [40] if the inequalities both (2.42) and (2.43) hold as 

equalities. As a result, in order to introduce a cutting plane into 
, 

the linear program, some suitable subtour elimination, 2-matching and 

comb constraints are identified by the use of (2.41). Once a usual 

pivot is executed on the enlarged linear program, a tighter relaxation 

of the TSP is obtained. Continuing in this manner, a situation where 

no suitable constraint can be found is encountered. Then, the next 

step is to reduce the problem under consideration in size by fixing 

variables at either zero or one utilizing the fact that both a value 

for a tour which is obtained by applying a heuristic due to Lin and 

Kernighan and a true lower bound on the .optimum tour length (i.e. the 

current solution of the LP) have been obtained. Let Cj be the reduced 

cost of the corresponding optimal tableau and b denote the difference 

between the cost of the best tour obtained so far and the optimum 

value of the objective function of the linear program. Then, all non­

basic variables whose~. > b in the optimal tableau are fixed with value 
J -

zero and all nonbasic variables whose -c. > b in the optimal tableau 
J -

. are fixed with value one. Thus the linear program is reduced in size 

and takes the form . 

(2.46) 

where CR are the costs of the arcs whose corresponding variables could 

not be fixed at either zero or one, AR is the corresponding node-arc 
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incidence matrix, b is a vector with components equal toO, 1 or 2, 

D is a matrix corresponding to the cutting planes generated and d is 

the corresponding right handside adjusted for the variables fixed at 

value one. 

Once the linear program (2.46) is solved, a branch and bound 

procedure is used to find an optimal zero-one solution. If the opti­

mal solution defines a tour, then the optimal solution to the TSP is 

found. If the zero-one solution defines a collection of subtours in 

the graph then the subtour elimination constraints are appended to 

the program. This new linear program is reoptimized starting with 

the optimal basis from the previously solved linear program. Then, 

the branch and bound technique is used again and the procedure is 

iterated. After finitely many steps the procedure finds the minimum 

length tour of the graph. 

Other algorithms using the same basic idea have been proposed 

by Mi1iotis [41], Grotsche1 [42], and Christofides and Whitlock [43]. 

We will not go into the details of these a1gori~hms but instead • 

state a general result. on their performance. Comparing the linear 

programming based method with pure branch and bound procedures, we 

see that they are competitive with branch and bound methods for 

solving symmetric TSPs whereas they are not competitive for asymmetric 

.cases [31]. 

2.3.5 Approximate Methods for the TSP 

In this section, we analyse techniques that are not always 

certain but find a near optimum and sometimes the optimum solution 
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to the TSP with a reasonable number of calculations. The algorithms 

corresponding to these approximation methods have been observed to 

run faster than the best known exact solution method? In view of 

the computational difficulties that arise from the expon~ntial compu­

tation time dependent on the number of nodes, the approximate algo­

rithms become preferable although they may not produce an optimal 

tour. Furthermore, some of these methods have known bounding ratios 

of the obtained total cost to the optimal tour cost. The ratios are 

dependent on the number of nodes in some cases and constant in qthers. 

It is possible to classify the techniques in different cate­

gories according to their algorithmic approaches. These categories are: 

i) tour building techniques 

ii) successive improvement techniques 

iii) techniques using minimal spanning trees. 

2.3.5.1 Tour Building Techniques 

The basic idea of . the insertion methods is to start with 
, 

a partial tour and construct subtours progressively each time with 

an increase· in the numfier of nodes. That is, each time one node is 

inserted into the partial tour. Then, the new partial tour is used 

in the same way to obtain another partial tour. The procedure is 

continued until all nodes are covered. 
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2.3.5.1.1.1 Nearest Insertion Method 

The first insertion method we study is t~e nearest insertion 

method. The corresponding aigorithm can be summarized as follows: 

Given a graph G = (N,E) and a subtour Tj = {i l ,i 2,···,i j , i l } 

with cardinality j"construct another subtour Tj +l by performing the 

steps described below. 

a) Find a node i k E Tj such that 

C., r = min {m i n {Ci }} 
'k'. qEN-{Tj}s=l, .. ,j s,r 

where C is a symmetric cost matrix satisfying triangular 

inequality. 

b) Delete arc (i k,\+,) in Tj and add arcs (ik,r) and (r,\+,) 

to obtain the new subtour T.+ and let the new sequence of J , . 

nodes be {i l ,i 2, ... ,i j ,i j+,}' Note that \+, = i l if k = j. 

c) Repeat steps (a) and (b) until Tn is obtained. 

It has been proven that the ratio of the tour cost obtained by 

the nearest insertion method to the optimal tour cost is less than 2. 

[44]. As a result, this method can be programmed to run in polyno­

mially bounded time with an order of n2 where n stands for the total 

number of nodes .. 

2.3.5.1.1.2 lhe fh!ape~t_I!!.s!rti.9.n_Met.b.od 

Similar to the nearest insertion method the cheap-est 

insertion method produces a tour no worse than twice the optimal 

regardless of the number of nodes .. The algorithm can be outiined 

as foll ows: 
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Given a graph G = (N,E) and a partial tour Tj = {il, ... ,ij,i l } 

of cardinality j, construct another subtour Tj +1 by performing the 

following steps. 

a) Find a node q suc~that 

TCj+1 = m i n{TC. + c. + C 
q, \+1' 

- C. . } 
qe:N-{T.} J 1 k,q 1 k' 1 k+1 
. T J 1 ke: j 

where TCj is the cost of tour j and i k+1 = i l ifk = j. 

b) Delete arc (\'\+1) in Tj and add, arcs (\,q) and (q'\+1) 

to obtain the new subtour Tj +1 = {il,i2, ... ,ij,ij+1,il} 

c) Repeat steps (a) and (b) until Tn is obtained. 

As it has been stated in Rosenkrantz, Stearns and Lewis [44J 

the fastest program devised for this method runs in a time propor­

tional to n2 10g n. 

Contrary to the nearest insertion method, the farthest 

insertion method inserts nearby nodes late in the approximation. 

Intuitively, the reason for such an approach is simple in the sense 

that the smallest distant arcs used late in the approximation have' 

more chance of not being deleted by the later insertions. Eventually, 

it has been observed that this method performs well in comparison 

with the previously mentioned insertion methods. The algorithm is 

the same as the nearest insertion method except that the farthest 

insertion method is associated with maximization whereas the nearest 

insertion method is associated with minimization. The algorithm is 

as foll ows: 
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Given a subtour Tj = {il' ... ·,ij,i l } with cardinality j construct 

another subtour Tj+, as mentioned in the following steps. 

a) Find a node i k E T. such that . ' J 

c. ~ m a x {m i n {C. r}} 
'k,r 'qEN-{T.} s=l, ..• ,j 's' 

J 

. b) Delete arc (\,\+')in Tj and add arcs (\,r) and r,i k+,) 

to obtain the subtour Tj+, = {il,i2, ... ,ij,ij+"il}. 

c) Repeat steps (a) and (b) until T is obtained. n . 

Needless to say, the running time associated with this method 

is proportional to n2 as it is in the nearest insertion method. 

2.3.5. 1.1.4 Qe£metri~~pproa£h~s_ 

All of the presented insertion methods of solving the TSP 

use the cost matrix directly to find an optimal or a near optimal 

solution to the problem. We will now show that given a travelling 

salesman graph, if the nodes can be located as points in a two di­

mensional space, then an optimal or at least satisfactory tour of 

all nodes can be obtained without reference to the cost matrix. 

However, the general approach remains the same. That is, the algo­

rithm starts with a collection of nodes which comprises a partial 

tour and then decides which of the remaining nodes are to be inserted 

b~tween which consecutive pair of nodes on this subtour and .in what 

order. Knowing that the order of the nodes on the convex hull is 

the same as the order of the nodes on the optimal tour, the algo-

rithm starts with a partial tour containing those nodes on the convex 

hull or with the convex hull itself. 
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Actually, there are two impor~ant factors which determine the· 

efficiency and performance of the algorithms that fall into this cate­

gory. First, the convex hull must be determined in order to obtain 

the starting partial/tour. Next a criterio~ for choosing the next 

node to be inserted,must be determined. The determination of the 

latter have caused researchers to develop different algorithms which 

are 'efficient in terms of both computational time and the satisfactory 

solutions obtained. The following algorithms are some of the best 

known algorithms found in literature. 

2.3.4.1.1.4.1 lhe ~aEges! An~l~~e!h~d~ 

This method due to Norback and Love [45] uses the same 

approach mentioned above. However, the criterion for determining the 

next node to be inserted between two consecutive nodes on the partial 

tour is to measure the angles whose vertices are the nodes to be' 

chosen and whose sides are the arcs through consecutive nodes on 

the partial tour. Then; the node that corresponds to the largest 

of these angles is chosen to be inserted between the associated con­

secutive nodes on the subtour. This process is repeated until a tour 

containin~ all the nodes can be found. 

It has been shown by Norback and Love that the. tour generated 

by this method may not be optimal. For instance consider the case 

shown in Fig. 2.1. Starting with the convex hull {1,2,5,1} the tour 

obtained by the largest angle method is given as {l ,2,3,5,4,.1}. although 

the optimum to~r is {1,5,3,4,2,1}. 



1 1 1 
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(a) 
2 

(b) (c) 

Figure 2.1 -A difficulty associated with the largest 
angle method 

Despite of this problem the largest angle method has the 

special advantage of ease of application. The method has been 

examined to work well and fast even for large scale problems up to 

2000 nodes. 

2.3.5.1.1.4.2 The Most_E~c~n!ric_Ellipse_M~t~od 

In this method, the general approach still remains 
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5 

the same while the node to be inserted is being chosen by considering 

each consecutive pair of nodes on the convex hull as foci of an ellipse 

and the_ node to be chosen as being on the ellipse. Then, the least 

circular ellipse determines the node to be ins~rted in the subtour. 

An important feature of this method is that the triangle inequality 

is required to hold. However, considering that the nodes ar.e:points 

in two dimensional space, the distances between all pairs of nodes 

do satisfy this condition. 

Nevertheless, this method may not generate an optimal tour 

either. The choice mechanism may fail as it does in the particular 

case shown in Fig. 2.2. Note that the starting hull is given as 

{1,2,4,3,1} and the most eccentric ellipse method inserts node 5 

between nodes 2 and 4 whereas a less costly tour can be obtained 
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Fig. 2.2 - A difficuity associated with the most eccentric 
ellipse method 

by inserting node 5 between nodes 4 and 3. 

2.3.5.1.1.4.3 Qther fo~vex_H~ll Al~o~i!hms_ 

Analysing the geometric approaches mentioned aoove, 

we see that in parti cul ar the/nodes of the travel 1 ing sal esman 

graphs are required to be modelled as pOints in a two dimensional 

space and-that the existence of the triangle inequality is amust~ 

On the other hand, once the convex hull is "known the cost matrix 

can be used to determine the next node to be inserted in the subtour. 

Again, the criteria used in determining the successive nodes to be 

sequenced are important and affect the efficiency anq the perfor-· 

mance of the algorithm. As it has been proposed by Or [46] using 

the cost matrix, three different measures can provide a means of 

finding out the next node to be inserted between any two consecutive 

nodes on the particular tour. 

Let i and j be any two consecutive nodes on the convex hull, 

and let k be one of the remaining nodes to be inserted. Then, the 

measures can be defined as follows: 

i) DIST = min{Co k + Cko - C .. } 
. 1 J lJ 

ii) RATIO = min{(C··k - Ck·)/C .. } 
1 J lJ 

iii) MULT = DIST x RATIO 
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Experimental results showed that the best solutions were obtained when 

the third criterion was applied in the algorithm. Although the reason 

for such a result has not been determined, the fact that the third 

criterion is a good way of breaking ties that may occur when the 

first two measures are/applied has been accepted to affect the solu­

tion. That is, ties that may occur in the first two measures are 

probable not to occur in the third one. 

After all, neither of the above criteria guarantees that the 

optimal solution will be found. But, observations reveal that the 

algorithms work efficiently and obtain satisfactory results. An 

advantage of applying these measures is that the cost matrix need not 

satisfy the triangle inequality. However, since the structure of the 

algorithm is dependent on the topographic structure of the problem, 

it may generate tours which are far from being optimal for cost 

matrices containing arbitrary numbers. Eventually, the algorithm 

can also be applied to situations where the nodes ,are modelled as 

points in two dimensional space. Once the coordinates of the nodes 

are known, it is possible to obtain the associated costs by using 

the distance formula. 

2.3.5.1.2 ~~2r~§~_~~r9iD9_~~~bQ9 

This method is different from the previous methods in the 

sense that it first constructs a set of ~ubtours covering all the 

nodes and then merges two subtours at each iteration until a tour 

-including all the nodes is constructed. In summary, the algorithm 

is as follows: 
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1. Let S, be a set of n tours each containing a single node 

Set i = 1. 

2. Find an arc (q,r) such that 

3. 

C = min{Ck · for k and j in different ~ubtours in S.} qr , . J , 

Obtain S.+ from S. by merging two subtours containing q , , , 
and r. Let those subtours be Tl and T2 respectively. Then, 

the merging process is performed as follows: 

a) If Tl consists of a single node, q, then insert q into 

T2, else if T2 consists of a single node, r, then insert 

r into Tl . 

b) If Tl and T2 each contain at least two nodes then let s 

and t be nodes such that s is in Tl and t is in T2 and 

Cqr + Cst - Cqs - Crt is minimized. Delete arcs (q's) 

an~ (r,t) and add arcs (q,r) and (s,t) so that Tl and 

T2 are merged. Set i = i+l. 

4. Repeat steps (2) and (3) until Sn contains one tour including 

all nodes. 

This·algorithm is also bounded with a ratio similar to other 

insertion algorithms. That is, the ratio of the approximated tour 

'cost to the optimal tour cost is less than 2. 

This algorithm starts with. an arbitrary node and builds up a 

path sequentially. Finally, the path is completed to a circuit by 
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adding an arc joining its end points. The algorithm uses the following 

steps: 

1. Start with'an arbitrary node. 

2~ Find the node not yet on the path and which is the closest , 

to the node last added. Add the arc connecting these two 

nodes to the path (Ties are broken arbitrarily). 

3. When all nodes have been added to the path add the arc 

connecting the two end nodes so that the path is completed 

to a circuit. 

As it has been stated by Rosenkrantz, Stearns and Lewis [45] 

this algorithm can be programmed to operate in a time proportional 

to n2
• A possible improvement of the ~ethod is to repeat the algo­

rithm for each possibl~ starting node. As a result, the runnini time 

will be proportional to n3
• Furthermore the ratio of the approximate 

to~ cost to the optimal tour cost is less than ((1/2)ln(n) + (1/2)). 

Note that the bounds found for all these algorithms are for their worst 

case behaviour. However, experiments suggest that the performance of 

the methods are far from being tied to their worst case behaviour. 

2.3.5-.2 Successive Improvement Techniques 

Another approach to finding a satisfactory solution to 

the TSP is to start with a, travelling salesman tour and perturb it to 

see if a better tour can be obtained. If a better tour is obtained, 

then the initial tour is discarded and the new tour is further mani~ 

pulated. The procedure is repeated until no more improvement can be 

mad~ and hence, the tour at hand is the b~st ac~ievable solution. 
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The first method that we will analyse was first exploited by 

Croes [47]. The algorithm makes use of the important result that if 

the cost matrix of a travelling salesman graph represents,Euc1idean 

distances than the optimal tour does not intersect itself. Once an 

arbitrary tour is selected 'initially, the algorithm tries to produce , 

an intersection1ess tour by replacing two arcs in the tour by two 

other arcs that are not in the tour. 

The method Qf local optimization was further carried by Reiter 

and Sherman [48]. Their algorithm starts with an arbitrary tour and 

tries to find the best location of each node separately. In other 

words, once a node is removed from the tour, the algorithm tries to 

find its best location in the remaining sequence. The procedure is 

continued until no improvement in the tour is possible: Then, the 

a1gorithm'tries to find the best 10cati0n of an arc joining two nodes 

in the sequence. For example, the location of the arc (i 1,i 2) is 

tried to be found in the remaining sequence {i 3,i 4, ... ,i n}. This 

procedure is also continued-until no improvement is'possib1e .. Finally, 

the algorithm checks chains of three nodes in alternative locations. 

A similar approach was introduced by Lin [49] who generalized' 

the local .optimizati6n methods. Lin defines a tour to be r-optima1 

if the deletion 6f r arcs and their replacement ~ other r arcs produces 

, no better tour. Starting with an arbitrary tour, if r arcs are removed 

from the tour then'r disconnected paths are produced. These paths can 

be connected in.one are more different ways to produce anotner tour with 

a better total cost. As far as r-optima1ity is concerned, the method 

exploited by Croes would be called 2-optima1 since it tries to obtain 

an improvement by interchanging any two arcs by another set of two arcs. 
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It is shown by Rosenkrantz, Stearns and Lewis [44] that for 

n > 8 there exists a graph having a tour which is r-optimal -for all 

r ~ n/4 and for which the cost of that tour satisfies 

TC(r-opt) =' 2(1 _ +) 
TCTSP 

where TC(r-opt) is the cost of an r-optimal tour and TCTSP is the 

cost of the optimal solution to the TSP. 

An important feature of this method is that the number of calcu-

lations required to obtain an r-optimal tour is polynomial in n while 

it is exponential in r.Therefore, only small values of r can be used 

in the algorithm. Note that the TSP is n-optimal and the number of 

operations required to obtain the n-optimal tour is (n-l)! for asymmetric' 

problems and (n-l)!/2 for symmetric problems. In fact, this is the 

quantity required for the complete enumeration of all the possiple tours. 

The method was further improved by Lin and Kernighan [50] in a more 

powerful way. 

Anoth~r successive improvement technique for finding an approximat 

tour is accomplished by first starting with any tour and then trying to 

switch the position of the nodes. Let {i l ,i 2, ... ,i n} denote the order 

of the nodes in the initial tour. Then, the algorithm tries to find a 

shorter tour by switching each possible pair of nodes in the tour. 

Switching nodes i j and i k means replacing arcs (i j _
1

,i j ), (ij ,i j +
1
), 

(\-1'\)' (\'\+1) by arcs (i j _1,\), (\,i j +1), (i k_1 ,i j ), (i j ,i k+1)· 

The switching procedure continues until no improvement is possible [51]. 
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As in all improvement techniques the final tour depends on the 

initial tour. Moreover, the cost of the initial tour should not be 

considered as a good indicator of the cost of the final tour. In general 

one cannot be certain' about the optimality of the final tour produced by 

these'methods. But they are known to perform well in most of the cases. , 

2.3.5.3 Techniques Using Minimal Spanning Trees 

Most of the methods which are proven to have constant bounds 

use comparisons with minimal spanning trees in their proofs. Then, a 

question that may come into mind is "why shouldn't minimal spanning 

trees be used in finding approximate solutions to the TSP?" Eve~tually, 

there are widely known methods which determine approximate solutions 

by first finding the minimal spanning trees. We will analyse some of 

these methods and outline their algorithms to give an insight to the 

use of the minimal spanning trees in finding approximate solutions 

rather than using them as lower bounds to the,TSP as has been explained 

previously. 

The first method we will analyse is the penalty method introduced 

by Christofides [24J. The spirit of this algorithm is to transform the 

cost matrix in such a way that the minimal spanning tree of the trans­

formed matrix is~orced to form a Hamiltonian path. The algorithm pro-

ceeds as ·fo 11 ows : 

1. Find. the minimal spanning tree of G = (N,E) using the cost 

matrix C. 

2. If the minimal spanning tree is a Hamiltonian path then the 

problem is solved. If not, then calculate a penalty, Pi' 

for each node i and transform ·the cost matrix such that 
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C .. =C .. +p.+p. 
lJ lJ 1 J Vi ,j e: N 

3. Repeat steps (1) and (2) until a Hamiltonian (shortest) path 

is found. 

4. Add the arc joining the two ends of the Hamiltonian path to 
, 

produce a travelling salesman tour. 

There are many strategies for computing the associated penalties 

at each step. Held and Karp [14] who developed a similar algorithm gave 

two methods of finding the penalties which minimize the difference bet­

ween the cost of the shortest Hamiltonian path and the cost of the mini­

mal spanning tree under the modified cost matrices. A pitfall of this 

algorithm, however, is that it is not necessarily convergent. But it 

can be considered as a valuable method since it converges in the great 

majority of the cases .. Moreover, it may be used as a valid lower bound 

in cases when the algorithm does not converge. 

Another widely known but unpublished method using minimal spanning 

trees is as follows [44J: 

1. Find the minimal spanning tree of the graph. 

2. Double the arcs of the minimal spanning tree so that an 

Eulerian circuit containing each node at least once is 

obtained. 

3. Construct a travelling salesman tour by traversing the arcs 

of the Eulerian circuit (i.e. a circuit traversing each of 

the arcs at least once). If a node already included in the 

travelling salesman tour appears in the sequence of. the 

Eulerian tour, skip that node and continue traversing until 

all the nodes are included in· the travelling salesman tour. 
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This method also has a ratio of the obtained tour cost to'the optimal 

tour cost which is less than 2. 

Christofides [52] developed a similar algorithm which give a 

better bound for the worst case behaviour. A worst case analysis of 

his heuristic showed that the bounding ratio is strictly less than (3/2) , . 

This brought a 50% reduction over the previously best known ratios for 

other polynomially bounded algorithms. The algorithm can be stated as 

follows: 

1. Find the minimal spanning tree of the graph G = (N,E). 

2. Relative to the minimal spanning tree, let Ni be the set 

of nodes having odd degree. Solve the l-matching problem 

for the graph G1 = (N1,El). 

3. Let only those arcs in the minimal spanning tree and those 

arcs in the matching and the set of nodes N comprise the 

graph G2 = (N,E 2). This graph has all nodes of even degree 
, 

and consequently possesses an Eulerian circuit. 

4. Transform the Eulerian circuit into a travelling salesman" 

tour by removing extra occurrences of each node. 

Several good algorithms exist for finding the minimal spanning 

tree of a graph. Usually, these algorithms have a computational time 

w~ich is of or~er 0(n2). However, the best known algorithms for findi 

the minimum matching have a computational growth rate O(n3 ).. Therefore 

the overall computational time is proportional to n3. Note that, the 

last step of converting the Eulerian circuit to a Hamiltonian circuit 
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can be done in linear time. After all, the best known bound has been 

improved by 50% in the expense of increasing the computational effort 

with regard to methods which have worse bounds but have computational. 

effort which is proportional to n2
• 

A final remark that· should be made for the methods that fall 

into this category is that techniques using minimal spanning trees 

are applicable only to symmetric TSPs. This is a consequence of the 

fact that minimal spanning trees tan only be computed for undirected 

graphs. 



III. FOUR HEURISTIC ALGORITHMS FOR SOLVING 

THE TRAVELLING SALESMAN PROBLEM 
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In this chapter we introduce four heuristic algorithms using 

four distinct approaches for solving the TSP. Similar to all of the 

heuristic methods that:have,be"en put'foO'lard recently the algorithms are 

designed so that they do not suffer from inefficiency. Actually, the 

algorithms are easily programmable on a computer and produce tours 

which are close to the optimal solutions. 

The first algorithm u?es the necessary conditions for the 

existence of a Hamiltonian circuit as a tool for constructing a·sub-
" . 
graph of the original graph in which the optimum or a near optimum 

solution to the TSP is contained. The arc set of the subgraph is 

extended by including arcs corresponding to the zero cost elements 

in the updated cost matrix as a result of reducing it iteratively. 

The reduction is made in such a way that the necessary conditions 

for the existence of· a Hamiltonian circuit tend to hold as the sub-

gr~ph is developed. In case, the subgraph does not contain any 

Hamiltonian circuit, the algorithm applies Little's branch a~d bound 

algorithm to the resultant matrix partially so that a feasible tour 

is obtained. 
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The fact that the travelling salesman tours are extreme points 

of the assignment polytope constitutes the main idea used in the second 

algorithm. The TSP is solved by the aid of the embedded assignment 

problems. The subtou'rs produced by the assignment sol utions are broken 

is such a way as to make the algorithm work as fast as possible. 

The third algorithm uses a dynamic programming type approach 

which is very similar to Ford's [53] shortest path algorithm. First, 

all the elements of the cost matrix are subtracted from a large number 

so that the triangle inequality is satisfied. Then, given a specified 

root n6de, the algorithm tries to find all the longest Hamil~onian 

paths in which all the nodes appear once and only once. The longest 

paths are then completed to Hamiltonian circuits and the one with the 

least cost (i.e. calculated by using the original cost matrix) is 

selected as the best achievable solution. 

The last algorithm is a geometric approach which uses the well 

known tour building technique. Similar to other relevant algorithms, 
, 

tHe method worki well for problems defined in the Euclidean space. 

Given the convex hull, the algorithm calculates the heights of the 

triangles whose bases are ihe arcs through consecutive node pairs in 

the convex hull and whose third vertices are the interior nodes that 

are not in the convex hull. As a result, the heights are considered 

as a measure of inserting the interior nodes and therefore building 

the, final tour. 

·.,Repeated runs on randomly generated graphs resul1ed:in finding 

solutions which are near optimal. The heuristics showed different 

growth rates in the computation effort all of which are as substan­

tially well as other e'xi,sting algorithms which use the same approaches. 
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3.1 ALGORITHM I 

Given an undirected (directed) graph G = (N,E), the algorithm 

con~tructs a subgraph G1 = (N,E') of G which is (strongly) connected. 

Then, the arc set of G1 is extended in such a way that each subgraph 

Gk constructed by removing a node from G1 i,s un.ilaterally connected. 

The algorithm starts with reducing the associated cost matrix 

C. That is, the minimum element of each row is subtracted from all 

the elements of that row and the minimum element of each column is 

subtracted from all the elements of that column. As a result, all 

the arcs (i,j) with Gij = 0 comprise the arc set E' of G1
• Then 

the (strong), connectedness of G1 is checked. If the ~raph is not 

(strongly) connected the cost matrix is further reduced in a sequen­

tial manner so that other arcs with Cu =.0 can be included in EI ~nd 

therefore (strong) connectedness can be achieved. Note that (strong) 

connectedness is necessary for the existence of a Hamiltonian circuit, 

i.e. a solution to the TSP, but is not sufficient. 

Consider that there exists a Hamiltonian circuit in G1
• If a 

node k is removed from G1
, the resulting s~bgraph Gk contains a 

Hamiltonian path through the remaining (n-l) nodes and is, therefore, 

a unilaterally connected subgraph. In other words, for any two nodes 

i and j of Gk, there ~xists a path either from i to j or from j to i~ 

Hence, unilateral connectedness in Gk is also a necessary cond.ition 

for .the existence of a Hamiltonian circuit. As a consequence.of 

this fact, for every excluded node ks N, the algorithm checks if the 

resultant subgraph Gk is unilaterally connected. If not, the cost 

matrix is reduced iteratively until the condition holds. 
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As a matter of fact, since both of the conditions checked are 

not sufficient conditions the resultant subgraph G1 may still not 

contain any Hamiltonian circuit. Experiments show that this is true 

especially when n, i.e.', the number of nodes gets larger. In that 

case, a procedure which incorporates the first part of Litt1e 1 s branch 

and bound algorithm is applied to the resultant matrix. However, the 

branch and bound procedure is never used completely. The procedure 

stops as soon as a feasible solution is found. The solution is assumed 

to be the best one that can be obtained. More formally, the algorithm 

can be expressed as follows: 

1. Reduce the rows and columns of the cost matrix, C, such that 

each row and column has at least one zero. Let all the arcs 

(i,j) with c .. = 0 comprise the arc set of G1 = (N,E 1
). 

lJ 

2. Check for (strong) connectedness. If G1 is not (strong1y)-" 

connected then apply the following steps to achieve (strong) 

connectedness: 

a) Choose a node kEN 

b) Find the node set R(k) which can be reached from node 

k by means of path in G1
• Let node k be included in R(k). 

c) If R(k) r N, then find 

TIk = min {C .. } 
iER(k) lJ 
j EN-R( k) 

and update the cost matrix by 

Vi E R(k), j E N-R(k) 
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include new arcs having C .. = 0 into EI return to step (b). 
lJ 

Otherwise, continue. 

d) If R(k) = N, then choose another node kEN among the ones 

which have not been checked yet. If all the nodes have 

been chec~ed, then continue with step (3). Otherwise 

return to step (b). 

3. For each node kEN, perform the following steps: 

a) Let Gk = (N-{k},Ek) be the subgraph obtained by removing 

node k and the arcs entering and emanating from node k 

in G1
• 

..... 
b) Find the set of nodes R(i) which can be reached from node 

i via arcs in Gk for every i E N-{k}. Check if Gk is uni­

laterally connected by going through the following: 

i) Choose a node q E N-{k}. 

ii) If R(q) ~ N-{k}, then for all nodes r E N-{k}-R(q) check 

if q E R(r). In other words, check if there exists a 

path from r to q for all q which are not reachible from 

r. If such a node q is found, let 

~ = min{ min 
qr kR(q) 

·{C .. }, min {C .. }} 
lJ iER(r) lJ 

jEN-{k}-R(q) jEN-{k}-R(r) 

Update the cost matrix by 

C .• = C .• - ~ 
'1J' lJ qr Vi E R(q) , j E N-{k}-R(q) 

Vi E R(r) , j E N-{k}-R(r) 

Include new arcs (i,j) with Cij = 0 in EI and Ek. 
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Define the reachible sets R(i) again and repeat this step. 

If either R(q): N-{k} or no node r such that r ¢ R(q) and 

q ¢ R(r) can be found, then choose another node q among 

the ones which have not been tried yet. Repeat this step 

until a.ll nodes are considered. 

4. As a result of performing steps (1) through (3), the necessary 

conditions for the existence of a Hamiltonian circuit in G1 

are satisfied. Therefore, check if G1 contains a Hamiltonian 

circuit. If so, evaluate all the Hamiltonian circuits in G1 

and select the one with the least cost as the best achievable 

solution to the TSP. Otherwise continue. 

5. Apply Little1s branch and pound algorithm partially to the 

resultant matrix until a feasible solution can be obtained. 

The steps of Little1s branch and bound algorithm are not repeated 

here since the whole algorithm is given in Chapter 2. However, it should 

be noded that,.no branching procedure is performed if the cost matrix 

corresponds to a complete graph. Moreover, it is highli probable that 

the branching procedure would not be performed for graphs that are not 

complete either. 

Example 3.1 , 

Consider a complete directed graph whose cost .matrix is given 

in Table 3.1a andsuppose that we want to solve the TSP by the use of 

the algorithm d~scribed above. Applying the,first step of the algo­

rithm, the reduced matrix and the corresponding subgraph G1 are shown 
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in Table 3.1b and Fig. 3.1a respectively. As it can be seen G1 is dis­

connected and therefore we proceed by applying step (2). 

2 3 ~ 567 B . 

00 76 43 38 51· 42 ,19 80 

2 42 00 49 26 78 52 39 87 
0' 

3 49 28 00 36 53 44 68 61 

~ 72 31 29 00 42 49 50 38 

5 30 52 38 47 00 64 75 82 

6 66 51 83 51 22 00 37 71 

7 77 62 93 54 69 38 00 26 

8 42 58 66 76 41 52 83. 00 

(a) 

,t. 7 
12 3 ~ 5 6 7 B 

00 49 16 11 32 12 0 61 

2 11 00 23 0 47 10 8 56 

3 15 0 00 8 20 0 35 28 

~ 38 2 0 00 8 4 1 6 4 

5 0 14 0 9 00 23 45 52 

6 44 21 53 21 0 00 15 49 

7 51 28 59 20 43 1 00 o 
8 1 817 27 o o 42 00 

(c) 

1 2 3 ~ 5 6 7 B 

1 00 57 24 19 ·32 12 0 61 

2 16 00 23 0 52 15 13 61 

3 20 o 00 8 25 5 40 33 

~ 43 2 0 00 13 9 21 9 

5 o 14 0 9 00 23 45 52 

6 44 21 53 21 0 00 15 49 

7 51 28 59 20 43 1 00 o 

B 1 8 17 27 0 0 42 00 

(b) 

1 2 3 ~ 567 B ).-----------------------, 
00 49 16 11 32 12 0 61 

2 11 00 23 0 47 10 8 56 

3 15 0, 00 8 20 0 35 28 

~ 

5 

38 2 O· 00 8 4·16 4 

o 14 0 9 00 23 45 52 

6 44 21 53 21 0 00 15 49 

7 51 28 59 20 43 1 00 o 

B 1 8 17 27 o o 42 

(d) 

Table 3;1 - Reduced matrices obtained during the application of steps 
(1) through (4) of algorithm I 
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Table 3.1 continued. 
2 3 " 5 6 7 8 1 2 3 " 5 6 7 8 

00 45 16 7 32 12 0 61 1 00 44 15 6 32 12 0 61 

2 7 00 23 0 43 6 4 52 2 6 00 23 0 43 6 3 52 

3 15 0 00 8 20 0 35 '28 3 14 0 00 8 20 0 34 28 

" 34 2 0 00 4 0 12 0 " 33 2 0 00 4 0 11 0 

5 0 10 0 5 00 23 45 52 5 0 10 0 5 00 23 45 52 

6 44 17 53 17 0 00 15 49 6 43 16 52 16 0 00 14 49 

7 51 24 59 16 43 1 00 0 7 51 23 58 15 43 1 00 0 

8 1 4 17 23 0 0 42 00 8 0 3 16 22 0 0 41 00 

{e) (f) 

Choose node 1. R( 1 ) = {1,5,6,7,8} ~ N 

1Tl = min {C .. } = C53 : 8 
iER(l) lJ 
jEN-R(l) 

The updated cost matrix is given in Table 3.1c. Including arc (5,3) 

in G', (Fig. 3.1b) ,we see that R(l) = N. 

Choose node 2. R(2) = {2,3,4} ~ N 

1T2 = min {Cij } = C36 = 5 
iER(2) 
jEN,.-R(2) 

Once arc (3,6') is included in G', we obtain R(2) = N. The resultant 

matrix is given in Table 3.1d. and G' is shown in Fig. 3.1 c. 

Choose node 3. R(3) = N 

Choose node 4. R(4) = N 

Choose node 5. R(5) = N 



thoose node 6. R{6) = N 

Choose node 7. R(7) = N 

Choose node 8. R(8) = N 

Since all the nodes have been tried and R(i) = N, Vi E N, (strong) 

(a) (b) 

(c) 

Figure 3.1 ~ Stages in constructing the subgraph G1 for 
Example 3.1. 
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Figure 3.2a - Subgraph G, Figure 3.2b - Subgraph G2 



Figure 3.2c - Subgraph G3 Figure 3.2d - Subgraph G3 
connectedness is achieved. We proceed with step 3 to see if G1 is 

unilaterally connected after removing any node k 
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Remove node 1. G~ is unilaterally connected (Fig. 3.2a). 

Remove node 2. G2 is unilaterally connected (Fig. 3.2q). 

Remove node 3. G3 is not unilaterally connected (Fig. 3.2c). 

There is not a path either from node 1 to 2 or from 2 to 1. 

R(l) =' {l,S,6,7,8} 

N-{3}-R(1) = {2,4} 

~R(2) = {2,4} 

N-{3}-R(2) = {1,S,6,7,8} 

1112= mini min {C .. }, min . {CiJ·}} = C46 = C48 = 
iER(l) .. 1J iER(2) 
jEN-{3}-R(1) jEN-{3}-R(2) 

The resultant cost matrix is given in Table 3.1c and and the updated 

G3 is shown in Fig. 3.2d. Note that G3 becomes unitalerally connected. 

Remove node 4. 

Remove·node S. 

G1 is unilaterally connected (Fig. 3.2e). 
4 

G~ is not unilaterally connected (Fig. 3.2f). 

There is not a path either from node 1 to 2 or from 2 to 1. 

R(l) = {l,6,7,8} 

N-{S}-R(l) = {2,3,4} 

R(2) = {2,3,4,6,8} 

N-{S}-R(2) = {1,7} 
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Figure 3.2e'-Subgraph G~ Figure 3.2f - Subgraph G~ 

Figure 3.2g - Subgraph G~ Figure 3.2h - Subgraph G~ 

Figure 3.2i - Subgraph Gy Figure 3.2j - Subgraph GS 

Figure 3.3 - Resultant subgraph G' 
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~12 = min{ min {C .. } 
iER{l) lJ 

min {C .. }} = C8l = 1 
iER(2) lJ 

jEN-{5}-R(1) jEN-{5}-R(2) 

The c~st matrix is updated as shown in Table 3.lf. As a result, GS 
becomes unilaterally connected (Fig. 3.2g). 

Re~ove nOde'6. G1 

6 is unilaterally connected (Fig. 3.2h). 

Remove node 7. G1 

7 is unilaterally connected (Fig. 3.2i). 

Remove node 8. G1 

8 is unilaterally connected (Fig. 3.2j). 

The resultant subgraph G1 is shown in Fig. 3.3. Note that G1 does not 

possess any Hamiltonian circuit. Consequently we proceed with step (5). 

The steps of Little's branch and bound algorithm can be followed in 

Table 3.2. 

Starting with the resultant matrix we calculate the associated 

penalties Pij which correspond to entries with Cij = o. The maximum 

of the penalties (Table 3.2a) is P65 = 14. We delete row 6 and column 
\ 

5 and insert infinity to C56 . " The new matrix and the associated penal-
r 

ties are given in Table 3.2b. At this stage, P17 = 9 is the maximum 

penalty. Therefore, we delete row 1 and column 5, insert infinity 

into C7l and obtain the matrix in Table 3.2c. Calculating the penalties 

/ in the new matrix we choose P24 = 11 as being the maximum one. We 

delete row 2 and column 4 and insert infinity to C42 . The induced 

matrix and the corresponding penalties are given in Table" 3.2d. As a 

result, we choose the penalty P32 = 3 and delete row 3 and column 2. 

Note that we have to insert infinity into C43 in order to prevent the 

subloop (3-2-4-3). Once we obtain the new matrix and calculate the 

associated penalties (Table 3.2e) the maximum penalty corresponds to 
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Table 3.2a 

1 2 3 4 5 6 7 B 

<Xl 44 15 6 32 12 0 61 P17 = 9 P46 = 0 P78 = 1 

2 6 <Xl 23 0 43 6 3 52 P24 = 8 P48 = 0 P81 = 0 
3 .14 0 <Xl 8 ,20 0 34 28 P32 = 2 P51 = 0 P85 = 0 
4 33 2 0 <Xl 4 0 11 0 P36 = 0 P53 = 0 P86 = 0 

5 0 10 0 5 <Xl 23 45 52 P43 = 0 P65 = 14 

6 43 16 52 16 0 <Xl 14 49 

7 51 23 58 15 43 1 <Xl 0 

B 0 3 16 22 0 0 41 <Xl 

Table 3.2b 

1 2 3 4 6 7 B 

<Xl 44 15 6 12 0 61 P17 = 9 P43 = 0 P53 = 0 

2 6- <Xl 23 0 6 3 52 P24 = 8 P46 = 0 P78.= 1 
3 14 0 <Xl 8 0 34 28 P32 = 2 P48 = 0 P8l = 0 

11 0 P36 = 0 
-

= 0 P86 = 0 4 33 2 0 <Xl 0 P51 
5 0 10 0 5 <Xl 45 52 

7 51 23 58 15 1 <Xl 0 

B 0 3 16 22 0 41 <Xl 

Table 3.2c 

1 2 3 4 6 B 

·2 6 <Xl 23 0 6 52 P24 = 11 P46 = 0 . P78 = 1 

3 14 0 <Xl 8 0 28 P32 = 2 P48 = 0 P81 = 0 

P36 = 0 
- = 0 P36 = 0 4 33 2 0 <Xl 0 0 P51 

5 0 10 0 5 <Xl 52 P43 = 0 P53 : 0 

7 <Xl 23 58 15 . 1 0 

B 0 3 16 22 0 <Xl 
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Table 3.2d 
1 2 3 6 8 

3 14 0 00 0 28 P32 = 3 P48 = 0 P81 = 0 

P36 = 0 
- = 0 P86 = 0 4 33 00 0 0 0 P51 

5 0 10 0 00 52 P43 = 0 P53 = 0 

7 00 23 58 1 0 P46 = 0 P78 = 1 

8 0 3 16 0 00 

.Table 3.2e 

1 3 6 8 

4 33 00 0 0 P46 = 0 P53 = 16 P86 = 0 

5 0 0 00 52 P48 = 0 P78 = 1 

7 00 58 1 0 -
P51 = 0 P8l = 0 

8 0 16 0 00 

Table 3.2f 
1 6 8 

4 33 00 0 P48 = 33 P8l =. 33 

7 00 1 0 P78 = 1 P86 = 1 

8 0 0 00 

Table 3.29 

1 6 1 6 

7001 7000 

80 00 8 0 00 



the zero entry in C53 with P53 = 16. =We delete row 5 and. column 3 

and insert infinity into C46 so that the subloop (6-5-3-2-4-6) is 

prohibited (Table 3.2f). The next maximum penalty is P48 = 33. 
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After deleting row 4 and column 8 we insert infinity to C86 in order 

not to allow the s,ubloop (6-5-3-2:4-8-6) to appear in the final solu­

tion. Note that we have a (2x2) matrix at hand now. On the other 

hand we have to reduce the matrix in order to have at least one zero 

in each row and in each column (Table 3.2g). As a resul~, we have 

one choice. That is, we include arcs (7,6) and (8,1) into the solu­

tion set. Therefore, the solution obtained is (1-7-6-5-3-2-4-8-1) 

with a total cost of 251 which happens to be the actual optimum solu­

tion to the problem. 

3.2 ALGORITHM II 

Methods using the assignment problem (AP) have been a feasible 

line of attack for solving the TSP since the AP ;s a valid relaxation 

of the TSP and has a polynomially bounded solution method~ It is 

obvious that the optimum solution to the TSP is a feasible solution 

to the AP since any travelling salesman tour is an assignment. Unfor-

tunately, the reverse is not true. That is, an assignment solution is 

not necessarily a travelling salesman tour. However, we know that the 

t~avelling salesman tours correspond t6 extreme pOints of the assign­

ment polytope. Therefore, ranking methods can be used to find the 

. optimum to the TSP by solving the AP successfully. 

Consider the AP with an (nxn) cost matrix C whose diagonal 

elements are all set ·to infinity. We want to rank all the assignments 
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in increasing order of cost until a TSP solution is obtained. This 

can be achieved by using a branch and bound scheme. An important 

operation performed on the ntides of the decision tree is that of par-
, 

titioning them using the minimum cost assignment solution. Let M be 

the node representing the set of all solutions and 
" 

, 

denote an optimum solution in M where the first set of u arcs are those 

which are required to appear in the optimum solution and the second set 

of v arcs are those which are not wanted to appear in the optimum solu­

tion. The last set of arcs are the optjmal combination of the remaining 

assignments. Then, the partitioning scheme can be'performed as follows: 

Ml = {(al,bl), .. ·,(au,bu),(ql,rl),···,(qv,rv),(il,jl)J 

M2 = {(al,bl),~···,(au,bu),·(ql,rl),···,(qv,rv),(il,jl),(i2,j2)} 

Mn- 1 = {(al ,bl ), ... ,(au,bu),(ql ,rl ); ... ,(qv':v),(i l ,jl ), ... , 

(i n-2,jn-2),(i n- l ,jn-l)} 

The partitioning of Musing SM generates the subnodes Ml, ... ,Mn-
1 

and the partition itself is 

Not~ that the subnodes r~1, ... ,~1n-l are all nonempty and mutua1ly dis­

joint. At each stage, the algorithm maintains a list which is a set 

of nodes. Each node in the list is stored together with the minimum 

cost assignment and it$ objective function value. This algorithm was 
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first developed by Murty [54] and used to solve problems in which the 

minimal cost assignment satisfying additional constraints is required. 

One such problem is the TSP. For that case, the algorithm is initiated 

by finding a mi'nimum cost assignment using the Hungarian method. Then, 

the set of all solutions is partitioned as mentioned above. For each , 

subnode the corresponding minimum assignment is found. As a result, 

the algorithm branches to the node with the minimum cost. The proce­

dure is continued until the assignment corresponding to the branched 

node is a travelling salesman tour. However, the storage requirements 

for the list of nodes and the associated AP solutions are considerably 

high. Furthermore, the number of branches in the decision tree is 

highly dependent on the nature of the cost matrix of the TSP. In other 

words, the size of the decision tree depends on the difference between 

the optimum solution to the TSP and the 'optimum solution to the AP, 

and therefore, on the number of extreme pOints in between. 

The proposed algorithm provides a means of getting rid of the 

need of information keeping required in the algor~thm presented above. 

Moreover, at each iteration the algorithm introduces a new cut that 

forces the AP solution to form a tour. Thus, exclusion of some ex-

treme points from consideration becomes possible. The only book 

keeping involves the storage of the cost matrix belonging to the 

( previous iteration. 'The algorithm is as follows: 

1. Solve the AP. Let Zo be its objective function value. 

2. If the assignment is a tour then stop. It is the optimum 

solution to the TSP. Otherwise continue. 
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3. For each arc (ik,jk) corresponding to the assignment, 

calculate a minimum penalty p. . which would be incurred 
. 1 k ,J k 

if that arc is not to appear in the next solution. The 

penalties are calculated as follows: 

a) Let Tt be the set of nodes corresponding to the subtour 

in which arc (ik,jk) is included. Calculate 

b) 

p. . 
1 k ,J k 

= min {C. }+ min{C .} 
re:T lk,r q~\ q,Jk 

t qe:N 

If p. . < 0, then find a combination of nodes, say r 
lkJ k 

and q such that 

s e: N, s r \ 

is a minimum positive quantity. 

c) Repeat steps (a) and (b) for every assignment (ik,Jk)' 

4. Starting with the minimum penal ty perform" the foll oWing: 

a) Insert infinities to all Ci such that r e: To' k,r N 
Set 

b) Solve the AP on the updated matrix by using the Hungarian 

algorithm. Be careful ·not to perform reductions which 

will cause the corresponding objective function value 

Zl to. become less than zero. Furthermore, store the 

reductions made in the entries into which infinities were 

inserted. At the end of the Hungarian algorithm add the 
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stored quantities to the corresponding entries. Note 

that, after these entries are ~pdated the resultant 

values may be less than zero. The infinities are then 

replaced by the updated quantities so that the arcs 

corresponding to these entries may enter the basis later. 

* * If Zl <. Zl' then set Zl = Zl· 

c) Repeat steps (a) and (b) by considering the penalties 

in ascending order. The procedure is continued until 

Z~ is less than or equal to the next minimum penalty 

that will be considered. Then set Zo = Zo + Z~ and 

return to step (2). 

Recalling the formulation·of the TSP, the unsatisfied constraints 

after the AP is solved are of the constraint type (2.4a). These con­

straints are considered while the penalties are calculated. In other. 

words, let T~ ~ = l, ... ,q be the subsets of nodes corresponding to q 

subtours in. the AP solution. Then, the unsatisfied constraints. are 

~ = l, ... ,q (3. 1 ) l: l: x.· > 1 
. T . l' lJ-
le:~Je:~ 

where T~ U i~. ~ N. Eventually, for all Pi j such that \,jk e: T~, 
k k . 

~ = l, ... ,q, the quantity 

min {C. r} 
riT 1 k' 

~ 

determines the corresponding zero-one variable x. that wilT probably 
1 k' r 

enter the basis and therefore satisfy the associated constraints. As 

a result, the penalties provide a means of introducing cuts that force 

the AP solution to form a tour. 
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Example 3.2 

Consider the travelling salesman graph whose cost matrix is 

given in Table 3.3. We will solve the TSP by using first the branch 

and bound scheme developed by Murty and then the proposed algorithm. 

Table 3.3 - The cost matrix corresponding to the TSP 
solved in Example 3.2 

1 2 3 4·, 5 6 

1 00 4 10 18 5 10 

2 4 00 12 8 2 6 

3 10 12 00 4 18 16 

4 18 8 4 00 14 6 

5 5 2 18 14 00 16 

6 10 6. 16 6 16 00 

The minimum cost assignment solution to this problem and the resultant 

matrix is given in Table 3.4. 

Table 3.4 - AP solution to the Example 3.2 

2 3 4 , 5 6 

1 00 0 3 14 0 1 cost = 30 

2 0 00 8 7 0 0 AP solution: 

3 3 8 00 0 13 7 {(l,5),(2,6),(3,4),(4,3), 

4 14 7 0 00 12 0 (5,1),(6,2)} 

5 0 0 13 12 00 9 

6 1 0 7 0 9 00 
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Once the AP solution is partitioned, the list at the end of the initial' 

stage consists of five nodes as given in Table 3.S. Branching to 

Table 3.S ,- List'of nodes at the end of the initial 
. branching in Murty's algorithm 

Nodes: AP solutions: 

5, =,{(l,S)} {(1,6),(2,S),(3,4),(4,3),(S,1),(6,2)}= 31 

52 = {(l,S),(~)} {(1,S),(2,1),(3,6),(4,3),(S,2),(6,4)}= 37 

53 = {(1,S),(2,6),(T,4)} {(1,S),(2,6),(3,1),(4,3),(S,2-),(6,4)}= 33 

54 = {(1,S),(2,6),(3,4),(P)} {(1,S),(2,6),(3,4),'4,2),(S,1),(6,3)}= 44 

5S = {(1,S),(2,6),(3,4),(4,3), {(1,S),(2,6),(3,4),(4,3),(S,2),(6,1)}= 31 

(b,T)} 

5" the least cost node, we obtain the pa~tition listed in Table 3.6. 

We next branch to 5S since; it possesses the least cost AP solutitin . 

Table 3.6 - List of nodes at the end of the second 
branching in ~1urty's algorithm 

Nodes: 

5'1 = {(', S ) , (1 ,6 )} 

5'2 = {(1,S),(1,6),(2,S)} 

AP solutions: 

{(1,3),(2,S),(3,4),(4,6),(S,1),{6,2)} = 33 

{(1,6),(2,1),(3,4),(4,3),(S,2),(6,S)} = 40 

5'3 = {(1,S),(1,6),(2,S),(3,4)} {(1,6),(2,S),(3,1),(4,3),(S,2),(6,4)} = 34 

5'4 = {(1,S),(1,6),(2,S),{3,4), {(1,6),(2,S),(3,4),(4,2),(S,1),(6,3)} = 4S 
(4,3)} 

SlS = {(l,S),(1,6),(2,S),(ldJ, {(1,6),(2,S),(3,4),(4,3),(S,2),(6,1)} = 32 
. (4,3),(S,1)} .. 

in rank. The corresponding partition consists of only one node in 

which the AP is infeasible. Choosing the'next node to branch we see 
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that M15 has the least cost. However, this partition also consists of 

only one node with an infeasible AP solution (Table 3.7). As a result 

we, can either branch to S3 or to Sll since both nodes have the same 

Table 3.7 - The third and the fourth partitions in 
Mur.ty's algorithm 

Nodes: AP solution: 

S51 = {(1,5},(2,6)(3,4),(4,3),{~),(5,2)} infeasible 

5151 = {{1:5),(1,6),(2,5),(3,4),(4,3),(~),(~}} infeasible 

cost. Note that, the assignments corresponding to these nodes form 

two travelling salesman tours. Moreover, these tours are the same 

in the sense that they represent the same solution for the undirected 

graph. Thus, the optimum solution to the TSP is given by one of the 

AP solutions with a cost of 33. The number of nodes in the corresponding 

decision tree is 13 which means that the solution is obtained by solving 

13 APs. 

Now,.let us apply the proposed algorithm ~o the problem. The 

solution to the AP and the corresponding cost matrlx is obtained as 

given in Table 3.4. The associated subtours and the penalties are 

shown in Figure 3.4a. We start from the minimum penalty and solve 

T
1CJ ~ 

P15 = 0 P43 = 3 

P26 = 0 P5l = 0 
-

P34 = 3 P62 = 0 

T3 0 Z = 30 
0 

Figure 3.4a - Subtours and penalties corresponding to the AP 
solution 
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the corresponding AP. Then, the AP corresponding to the next minimum 

penalty is solved. The procedure is continued until the best solution 

found so far is less than the next penalty to be considered. The fol-

lowing solutions are obtained in each case: 

" 
Updates: AP solution: 

(1 ) Clj = 00 Vj E: Tl {(1,6),(2,5),(3,4),(4,3),(5,1),(6,2)} Zl = 1 , 

(2) C2j =00 Vj e: T2 {(1,6),(2,5),(3,4),(4,3),(5,1),(6,2)} Zl .= 1 , 

* z· 1 
* Zl 

* (3) C5j =00 Vj e: Tl { (1 ,5) , (2,6) , (3,4) , 14,3) , (5,2) , (6,1 )} Zl - l~. Zl 

(4) C6j = 00 Vj e: T2 {(l,5),(2,6),(3,4),(4,3),(5,2),(6,1)} Zl = 

At this stage, since the best solution at hand is less than the next 

penalty to be considered and this solution does not form a tour, we 

set Zo = 31 and continue with the c6st matrix correspondjng to the 

solution (1) (Table 3.8). The associated subtours and penalties are 

shown in Figure 3.4b. 

Table 3.8 - Cost matrix corresponding'to the solution. (1) 

1 2 3 .. 5 6 

00 o 2 14 -1 o 

2000 8 8 0 0 

3 2· 8 00 0 12 6 

.. 14 8 0 00 12 0 

5 0 1 13 13 00 9 

6 006 0800 

* 1 , Zl 

= 

= 

= 

= 



Tl 

P16 = 2 P43 = 

P2S = 7 PSl = 

TO P34 = 2 P62 = 2, 4 

Figure 3.40 - Subtours and penalties corresponding to 
the AP solution at the end of the first 
stage. 

9S 

2 

13 

0 

The solutions corresponding to the successively solved APs are as follows: 

Updates: AP solution: 

* (1 ) C6j = 00 Vj E Tl {(1,6),(2,S),(3,1),(4,3),(S,2),(6,4)} Zl = 3, Zl 

(2 ) Clj = 00 Vj E Tl {(1,6),(2,S),(3,4),(4,6),(S,1),(6,4)} Zl = 2, Z* 
1 

.At this point, we do not need to continue with solving other AP's since 

* . Zl = 2 is equal to the next penalty that would be considered. On the 

other hand, solution (2) is a tour and therefore, the best achievable 

solution to the TSP. 

As can be seen, the number of APs that have been solved is 6 

which constitutes a SO% reduction as compared with the previous ~lgo-

rithm. Another advantage of the algorithm is that each of the prob­

lems can be solved by storing the cost matrix of the previous prob­

lem from' which it was derived. Thus, the storage requirements cause 

no problems even for large problems. After all, the efficiency of 

the algorithm is highly dependent on the structure of the cost matrix 

although the cut introduction procedure reduces the number of APs to 

be solved. However, since we always set one of the assignments to 

infinity the other (n-l) assignments are still valid. Therefore, the 

so 1 ut i on of a mod i fi ed .prob 1 em can be deri ved by reenteri rig the Hunga-

rian algorithm at the last step in order to increase the number of 

assignments from (n-l) to.n and consequently, to produce the optimal 

= 
= 

3 

2 



solution to the new AP with the least possible computation effort. 

A disadvantage of the algorithm arises from the restriction 

imposed in calculating the penalties at the third step. That is, , , 

we are restricted to cal~ulating positive penalties. In addition, 
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the AP solved must end up with a positive objective function value. 

This value gives a magnitude of the improvement made from the present 

solution towards the optimum solution to the TSP. An AP solution with 

a negative value means that the overall solution is getting worse. 

This may lead to an infinite loop going back and forth in the solution 

space. Therefore, all the calculations have to be made in the posi­

tive domain. As a consequence of this fact, each time only one vari­

able which has been removed from the basis previously, may enter the 

basis once again. It is not possible, that two or more variables 

which have become nonbasic enter the basis simultaneously.-Ih·that 

case, the optimal solution may not be caught. 

Another case, which may end up with mis~ing the optimal solution 

occurs when there exists an AP solution which has the same objective 

function.value as the TSP solution. The algorithm may arrive at this 

solution but ignore it since it does not form a tour. As a result, a 

nonoptimal TSP solution may be obtained. After all, considering these 

drawbacks the algorithm may seem to be inefficient when compared with 

the other proposed methods. However, it represents an efficient ex­

treme point ranking approach. 
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3.3 ALGORITHM III 

For a given graph G = (N,E) with arc costs given by the matrix 

C the longest path pr9blem is to find a simple path between two speci­

fied nodes such that the sum of the arc length is maximum provided that 

such a path exists ~nd no positive cost circuit exists in G. If such 

a circuit exists, traversing t~e circuit an arbitrary la.rge number of 

times will result in a path with an arbitrary large (+ 00) cost so that 

the best path is not uniquely defined. If on the other hand, such 

circuits exist but are excluded from consideration somehow, then 

finding the longest path between two specified nodes becomes equivalent 

to the problem of finding the longest Hamiltonian path of the graph 

with the specified end nodes. As a matter of fact, if each entry Cij 
of the cost matrix C is subtracted from a large number, L, to produce 

a new cost matrix C' in which the triangle inequality is satisfied, 

then the longest path between any specified two nodes excluding posi­

tive circuits must pass through all other nod~s. As a result, the 

following theorem due to Hardgrave and Nemhauser [55] allows one to 

solve the TSP as a longest path problem defined as above. 

Theorem 3.1. Given the nodes {l, ... ,n}, arcs (i,j) and cost matrix C 

construct a new graph containing the nodes and arcs from the original 

graph plus one additional node denoted by 0'. and an additional arc 

(j,O'.) for each j such that (j~l) is an arc in the original g~aph. 

The costs in the new graph are 

c .. = 0 Vi 
lJ 

Cj1 = -00 V' .J r 1 

,<. 



c. 
Ja. = L 

c .. L 
= lJ 

- Cjl 
- C .. 

lJ 

Vj f. a. 

otherwise 
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where L is any finite number greater than the sum of n largest Cij . 

Then, a longest path from 1 .to a. in the new graph contains every 

intermediate node {·2, ... ,n} and if {l,i l ,i 2, ..• ,i n_l ,a.} is such a 

longest path, {l,il, ... ,in_l,l} is an optimal tour. 

Unfortunately, the theorem has not been useful since no effi­

cient algorithms for the longest path problems defined as above have 

been discovered. However, the proposed algorithm provides a heuristic 

means of finding the longest path of a graph in which all of the nodes 

appear once and only once by the use of a dynamic programming type 

approach which is very similar to Ford's shortest path algorithm. 

The proposed algorithm starts with subtracting each entry Cij 

of the co~t matrix C from a large number L in order that the triangle 

. inequality holds in the resultant matrix C', i.e. Cij ~~ Cik + Ckj · 

Eventually, the method is iteratively based on node labelling where 

at th~ end of the kth iteration the labels represent values on the 

longest path (from an arbitrarily chosen root node, s, to all other 

nodes) which contains (k+l) arcs. Once the lengths of the longest 

paths from s to all other nodes are obtained, the paths are identified 

immediately since another label representing predecessor nodes on the 

path is stored for each node during the computations. The algorithm 

can be summarized as follows: 

Let R(.)·= the union of the reachible sets of nodes in (.) 

R-1(.) = the union of the reaching sets of nodes in (.) 

tk+1(i) = label on node i at the end of the kth iteration. 
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ek+1{i) = label showing the predecessor node of i in the 

longest path during the kth iteration. 

pk+1{i) = the node set in the longest path from s to i 

'at the end of the kth iteration. 

O. Let C!. =" L - C.. Vi ,j E N where L is a very 1 arge number 
1J 1J 

1. Set S = R{s), k = 1, Ll(S) = 0, Ll(i) = C~i for all i E R(s) 

. and L (i) = 00 for all other i, e1 (i) = s for all i E R(s), 

and pl(i) = {s,i} for all i E R(s). 

2. For every node i E R(S), i F s, update its label according 

to the expression 

~k+1{i) = m a x {~k(j) + C~.} = ~k(r) + C'. 
. J1 rl JET. 
i¢pk~j ) 

where Ti = (R- 1 (i}n S). Set"pk+1(i) = pk(r) U {r}, > 

ek+1(i) = r. For those nodes i ¢ R(S), set ~k+1(i) = ~k(i), 
k+1 ( .) k( .) d ek+1 ( .) . P 1 = plan 1 = 1 • 

. 3. If k = n-2, then stop. Fihd the longest paths from s to 

all other nodes i by tracing in the reverse· order as 

2 (3{ en-1 ( . » ) en-2 (en-1 ( . ». en-1 ( .) . s,e e... , , ... , 1,' ,1 

Complete the longest paths for which arcs (i,s) exist to 

Hamiltonian circuits and choose the one with the maximum 

cost as the best achievable solution. Otherwise continue. 

4. Update the set S as 

" S = {i I ~ k+1 (i) F L k (i )} 

5. Set k = k+1 and return to setp (2). 
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Example 3.3 

Consider the undirected graph G whose cost matrix is given in 

Table 3.9. It. is required to solve the TSP on this matrix. The 

algorithm proceeds as follows: Let L = 50. The matrix obtained 

Table 3.9 - The cost matrix corresponding to the TSP 
solved in Example 3.3 . 

1 2 3 It 5 6 

1 00 9 8 7 6 10 

2 9 00 10 9 15 20 

3 8 10 00 5 15 25 

It 7 9 5 00 20 5 

5 6 15 15 ·20 00 20 

6 10 20 25 5 20 00 

after subtracting each entry Cij from L is given in Table 3. ] o. 

Table 3.10- The cost matrix after subtracting each 
entry from a large number ~ = 50 

1 2 3 It 5 6 

1 00 41 42 43 44 40 

2 41 00 40 41 35 30 

3 42 40 00 45 35 25 

It 43 41 45 00 30 45 

5 44 35 35 30 00 30 

6' 40 30 25 45 30 00 



Step (1) s = 1, S = {2,3,4,5,6}~ k = 1 

Q.1 (2) = 41 e1(2) = 1 

Q.l (3) = 42 e1 (3) = 1 

Q.l (4) = 43 el (4) = 1 

Q.l(5) = 44 " el (5) = 1 

Q.l(6) = 40 e1(6) = 1 

Step (2) R(S) = {1,2,3,4,5,6} 

Q.2(2) = 84 e2(2) = 3 

Q.2(3) = 88 e2(3) = 4 

Q.2(4) = 87 e2 (4) = 3 

Q.2(5) = 77 e2(5) = 3 

Q.2(6) = 88 e2(6) = 4 

step (3) k < 4 , continue 

step (4) S = {2,3,4,5,6} 

step (5) k = 2 

step (2) R(S) = {1,2,3,4,5,6} 

Q. 3 (2) = 128 e3(2) = 3 

Q.3(3) = 113 . e3(3) = 6 

Q. 3 (4) = 125 e3(4) = 2 

Q.3(5) = 123 e3(5) = 3 

Q. 3 (6) = 132 e3(6) = 4 

pI (2) = {l,2} 

pI (3) = {l,3} 

pl(4) = {l,4} 

pl(5) = {l,5} 

pl(6) = {l,6} 

p2 (2) = {l,2,3} 

p2(3) = {l,3,4} 

p2(4) = {l,3,4} 

p2 ( 5) = {l, 3,5} 

p2 ( 6) = {l, 4,6} 

p3(2) = {l,2,3,4} 

p3(3) = {1,3,4,6} 

p3(4) = {1,2,3,4} 

p3(5) = {l ,3,4,5} , 

p3(6) = {1,3,4,6} 
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step (3) k < 4, continue 

step (4) S ={2,3,4,5,6} 

step (5) k = 3 

step (2) R(S) = {1,2~3,4,5,6} 

J/, 4 (2) = 162 " 

J/,4(3) = 113 

J/, 4 (4) = 125 

J/,4(5) = 163 

J/,4(6) = 170 

step (3) k < 4, continue 

step (4) S = {2,5,6} 

step (5) k = 4 

84(2) = 6 

84(3) = 3 

84(4) = 4 

84(5) = 2 

84(6) = 4 

step (2) R(S) = {1,2,3,4,5,6} 

J/,5(2) =162 85 (2) = 2 

J/,5(3) = 113 85(3) = 3 

J/, 5 (4) = 125 85(4) = 4 

J/,5(5) = 200 85(5) = 6 

J/,5(6) = 200 85(6) = 5 

step (3) k = 4, stop. 

Longest paths: 

path 1: {1,4,3,2,S,6} 

path 2: n,,3,2,4,6,S} 

cost1 = 200 

cost2 = 200 

p4(2) = {1,2,3,4,6} 

p4(3) = {1 ,3,4,6}. 

p4(4) = {1,2,3,4} 

p4(5) = {1,2,3,4,5} 

p4(6) = {1,2,3,4,6} 

p5(2) - {1,2,3,4,C} 

p5(3) = {1,3,4,6} ~ 

p5(4) = {1,2,3,4} 

p5(5) = {1,2,3,4,5,6} 

p5(6) = {1,2,3,4,5,6} 
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Since costl + C~l = 240:< cost2 + C~l = 244, the best achievable 

solution to the TSP is selected as (1-3-2-4-6-5-1) with an original 
/ 

cost of 56. 'However, the' optimum solution to this problem is 

(1-5-2-3-4-6-1) with a cost of 51. As can be seen, the algorithm 

may not be able to find the 'optimum solution since it has a memory-
~ , 

less property in the sense that stage k is only dependent on stage 

(k-l) and previous stages have no effect. On the other hand, the 

algorithm is efficient considering that-it requires on the 'order of 

n3 operations for the case of a completely connected graph of n nodes. 

3.4 ALGORITHM IV 

The TSPs defined in Euclidean two space often have computational 

advantages. Once the nodes of a TSP are points in a two-dimensional 

space, the triangle inequality is satisfied. It is then possible to 

generate reasonable and sometimes optimal solutions to the problem by 

appealing to the geometric properties of the space. Examples ofgeo­

metric approaches are described by Norback and Love [45] and Or [46]. 

Almost all algorithms falling into this category take advantage 

of the exploitable properties of the problem structure. The following 

theorems reveal the i mpl i cat i on of such pr'opert i es. 

Theorem 3.2. If the cost matrix C represents Euclidean distances then 

the optimal tour does not intersect itself [56J. 

The theorem is obvious since any two intersecting arcs in the Euclidean 

space can be replaced by two nonintersecting arcs of a less total cost. 
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Theorem 3. 3. IfH is the convex hull of the pOints representing the 

TSP in a two-dimensional Euclidean space, then the order in which the 

nodes appear on H is the same as the order in which they appear in the 

optimal tour [57]. 

This theorem is a girect consequence of Theorem 3.2. As a result if 

k nodes lie on a convex hull, theri The~rem 3.3 reduces the total 

number of tours which are to be investigated from (1/2)(n-~)! to 

(n-l)!/(m-l)! (for undirected problems) where n is the total number 

of nodes associated with the problem. 

Once the nodes on the convex hull are speci fi ed, the problem is 

to decide how to sequence the remaining interior nodes between differ­

ent consecutive pair of nodes on the partial tour. The decision is 

made by conSidering the heights of the triangles whose bases are the 

arcs through consecutive pair of nodes ;n the partial tour and whose 

third vertices are theremaini,ng interior nodes which have not been 

considered yet. Each time,-a new partial tour having an additional 

node is constructed. The process of calculating ~he heights of tri­

angles and choosing the appropriate one can then be repeated by using 

the new partial tour and the remaining interior nodes. 

Assuming that the nodes are located tn a two dimensional space 

we are sure that the triangle inequality is always satisfied. However, 

this may not be the case, when the cost matrix of a TSP contains arbit­

rarily chosen numbers. In order to achieve triangle inequality, all 

the elements C.- of the cost matrix are subtracted from a large number lJ . 

L. This may also be done when the cost matrix satisfies the triangle 

inequality since any matrix transformed in this manner does satisfy the 
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triangle inequality after the subtraction process. Obviously, the 

problem becomes to find a Hamiltonian circuit with the maximum length. 

Therefqre, triangles with maximum heights are considered first in 
. ' 

building the travelling salesman tour. 

In order to ,pegin the process of calculating the heights and 

choosing the largest one, the convex hull must be determined. In fact, 

if the nodes are located in a two-dimensional space and can be mapped 

on a paper, then the convex hull can be determined easily by taking a 

look at the whole layout. However, for problems which involve a very 

large number of nodes the procedure may not be that easy. Besides, it 

is not possible to determine a convex hull for problems which are not 

defined in Euclidean space." The following procedure due to Norback and 

Love [45J is applicable to problems in which the nodes have known coor-

dinates: 

1. Choose the node with the x coordinate of least value. This 

node is on the convex hull and can Qe labelled hl - the first 

hull node. 

2. Using this node as vertex, form all possible angles whose 

sides are rays containing this node and another node of the 

problem. Choose the largest of these angles. 

3. Choose one of the nodes that determine this angle other than 

the vertex and label it h2' the second hull node. , 

4. USing-h2 as a vertex and the ray containing hl and h2 as a 

side determine all angles whose remaining side contains h2 

and another node of the problem. Choose the largest of these 

angles and l~bel the corresponding node h3.· 
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5. Repeat step (4) as many times as necessary, with the most 

recent hull node generated h., as vertex and the one given 
, 1 

side of the angle ray containing h. and h. . 
. 1 1-1 

6. The convex hull will be determined when the next candidate 

for a node on the hull is hl . 

Once the convex hull is given as an input, the proposed algorithm 

initiates a list keeping procedure. The list contains the necessary 

information about the existing arcs on the convex hull. All the book­

keeping and manipulations are made on th~slist. The algorithm can be 

summarized as follows: 

1. Find the convex hull H associated with the problem .. Let T 

be the initial partial tour (T :: H if H can be fo:un~. Set 

C!. = L - C .. for all i ,j e: N. lJ lJ 

2. If T covers n nodes, then stop; T is the best achievable 

solution to the TSP. Otherwise continue. 

3. For each arc in T, form a 1 ist by performing the following 

steps: 

a) Specify the end nodes of the arc (i,j) e: T. 

b) For each node k ¢ T calculate the height of the triangle 

determined by nodes, i, k, and j as 

'h = 2/u(u - C1!k){u - Ck'J·){u - C!.)/C~. lJ lJ 

where u = (C!k + Ck' · '+ C!.)/2. 1 J lJ 
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. c) Select the node corresponding to the largest height and 

record it as a candidate for being inserted between i 

and j in T. 

4. Choose the arc (i,j) which has a candidate, k, corresponding 

to the ma·ximum height in the list .. Delete arc (i,j) from the 

list. Instead, include arcs (i,k) and (k,j) as the new arcs 

in the new partial tour T. Return back to step (2). 

Example 3.4 

Consider a complete undirected graph whose nodes are located in 

a two dimensional space as shown in Figure 3.5 and whose cost (distance) 

matrix is given in Table 3.11. 

I 

Figure 3.5 - The convex hull corresponding to the 
travelling salesman graph in Example 3.4. 

Th~ convex hull of this problem can be identified by taking a look 

at the node locations in Figure 3.5. - Eventually, the convex-hull 

is (1-2-5-9-10-3-1). Initially, we set T = (1-2-5-9-10-3-1) and 

subtract all the elements Cij from a large number L which is chosen 

to be 400 in this case. The resultant matrix is given in Table 3.12. 
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Table 3.11- The cost matrix of Example 3.4 

1 2 3 4 5 6 7 8 ! 10 

00 42 72 50 86 89 92 130 151 182 

42 00 ,91 36 45 86 61 108 120 162 

72 91 00 61 114 45 94 ·103 136 143 

50 36 61 00 .54 50 45 81 102 133 

86 45 114 54 00 91 36 85 85 136 

89 86 45 50 91 00 61 58 92 101 

92 61 94 45 36 61 00 50 60 103 

130 108 103 81 85 58 50 00 36 54 

151 120 136 102 85 92 60 36 00 58 

182 162 143 133 ,136 101 103 54 58 00 

Table 3.12- The cost matrix after subtracting each 
element from a large number L = 400 

1 2 3 4 5 6 7 8 ! 10 

" 
00 358 328 350 314 311 308 270 249 ·218 

358 00 309 364 355- 314 339 292 280 238 
-

328 309 00 339 286 355 306 297 264 257 

350 364 339 00 346 350 355 319 298 267 

314 355 286 346 00 309 364 315 315 264 

311 314 355 350 309 00 339 342 308 299 

308 339 306 355 364 339 00 350 340 297 

270 292 297 319 315 342 350 00 364 346 

249 280 264 298 315 308 340 364 00 342 

218 238 257 2f;,7 264 299 297 346 342 ' 00 

108 



109 

Note that the partial tour T does not cover n nodes and we have four 

remaining interior nodes {4,6,7,8}. As a result, the list formed in 

the third step of the algorithm is given in Table 3.13. Since the 

Table 3.13- List for arcs in T in the first step 

Starting Ending Candidate 
node node node Height 

1 2 4 308.60 

2 5 4 -307.04 

5 9 7 313.88* 

9 10 8 310.67 

10 3 6 293.47 

3 1 4 302.78 

maximum height in the list corresponds-to arc (5,9) we insert node 

7 between nodes 5 and 9 and obtain the new tour as T = (1-2-5-7-9-

10-3-1). The tour is shown in Figure 3.6a. Now, T covers seven 

nodes and the set of the remaining nodes is {4,6?8}. Therefore, 

the list is updated as given in Table 3.14. The maximum height in 

this list corresponds to the arc (7,9). This implies the insertion 

of node 8 between nodes 7 and 9 and result in the partial' tour shown 

in Figure 3.6b. Once again, T does not cover n nodes and the remain­

ing node set {4,6} consists of two nodes. The list is updated as 

shown in Table 3.15. In this case the maximum height corresponds to 

the arc (1,2) with a ~a1ue of 308.60. After riode 4 is in~e~ted bet­

ween nodes.1 and 2 the resultant tour (1-4-2-5-7-8-9-10-3-1) is as 

shown in Figure 3.6c. At this stage node 6 remains to be inserted 
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Table 3.14 - List for arcs in T in the second step 

Starting Ending. Candidate 
node node node Height 

1 2 4 308.60 

2 5 4 307.40 

5 7 4 299.45 

7 9 8 313.66 

9 10 8 310.62* 

10 3 6 293.47 

3 1 4 302.72 

Table 3.15-- List for arcs in T in the third step 

Starting Ending Candidate 
node node node Height 

1 2 4 308.60* 

2 5 4 307.04 

5 7 4 299.45 

7 8 6 292.08 

8 9 6 268.08 

9 10 6 250.65 

10 3 6 293.47 

3 1 4 302.72 
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(a) (b) 

(c) (d) 

Figure 3.6 - Steps in building the travelling salesman tour 

in order to obtain the final tour. The corresponding list is given 

in Table 3.16. The maximum height is this list corresponds to the 

arc (10,3). Inserting node 6 between nodes 10 and 3, the best 



Table 3.16' - List for arcs in T ln the fourth step 

Starting Ending Candidate 
node node node Height 

1 4 6 278.62 

4 2 6 276.31 

2 ,. 5 6 255.96 

5 7 6 267.14 

7 8 6 292.08 

8 9 6 268.08 

9 10 6 250.65 

10 3 6 293.47* 

3 1 6 287.20 

achievable tour is found to be (1-4-2-5-7-8-9-10-6-3-1) with an 

original total cost of 529 (Figure 3.6d). 
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Comparing the proposed measure used to determine the sequence 

of nodes with other measures proposed before we see that once the 

heights are used the algorithm does not fail in cases where other 

measures have been observed to fail. For instance, consider the 

example in which the largest angle method proposed by Norback and 
r 

Love·fails. Using ,the largest angle method, the tour generated is 
1 

2 2 
(a) 5 (b) (c) 

Figure 3.7 - Behaviour of the proposed algorithm in the case 
where Norbackls and Lovels largest angle method fails. 

5 ' 
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given in Figure 3.7b whereas applying the heights as a measure yields 

the tour given in Figure 3.7c. Note that, in this case the minimum 

hei~hts are chosen since the problem is defined in the Euclidean space 

and the triangle inequality is satlsfied without need of subtracting 

the elements of the cost matrix from a large number. 

Similarly the eccentric ellipse method fails in the example 

shown in Figure 3.8. The choice mechanism in the eccentric ellipse 

method will sequence node 5 between nodes 2 and 4 as shown in Figure 

3.8b. However, when heights of the triangles are applied a less 

costly tour can be obtained as shown in Figure 3.8c. 

2 

I 
\ 

1 

\ .... 
_----~ ... (b) ... 

" 

.. 

2 

Figure 3.8 - Behaviour of the proposed algorithm in the 
case where Norback's and Love's eccentric 
ellipse method fails. 

1 

As it has been reported by Or [46J the measures used in his 

algorithm namely (i) DIST = C' k + Cko - Co ° 
1 J lJ 

(ii) RATIO = (Cok-Cko)/Co ° 
1 J lJ 

fail since they do not apply any preference when ties have to be broken. 

In addition consider the case shown in Figure 3.9 for the DIST measure. 

The minimum DIST is given by C24 + C4l - C2l whereas the minimum height 

measure inserts node 4 between nodes 2 and 3 which in case yields a 

less costly solution. In addition to these advantages it is less 

3 



1 

Figure 3.9 - Comparison of the height criterion with 
other criteria 

probable that two or more heights happen to be equal and ties have 

to be broken. However, it is difficult to make any comparison with 

the third criterion proposed by Or which js ~1ULT = DISTx RATIO. 

After.al\ our algorithm seems to be more advantageous in any case. 

Note that, MULT requires two operations, i.e., the calculation of 

DIST and the calculation of RATIO as compared wi'th out algorithm. 

The efficiency of the algorithm is highly dependent on the 
~ 
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topological conditions of the problem. For problems defined in the 

Eucl idean space the sol utions obtciined by starting with a convex hull 

are better than the solutions obtained by starting with an arbitrary 

partial tour. Note that, although the convex property of the convex 

hull is lost immediately after inserting a node into it, all the other 

nodes remain interior with respect to the new boundaries .. Thi~ struc­

ture, however, plays an important role in obtaining better solutions 

than an arbitrary partial tour would yield. 
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A general advantage of the algorithm is that it is easy to 

ap~y. Reasonable solutions to problems where the number of nodes is 

small enough can be found quickly without the aid of a computer but 

just with the help of a pocket calculator. 

3.5 COMPUTATIONAL ·'RESULTS 

Since the published computational results of various algorithms 

found in literature are given for different problems solved by different 

computers comparisons based on these results are difficult. In terms 

of computational effort we.had two alternatives to choose. We could 

either base the comparisons on the published results which were tested 

in different environments or write all the programs in order to test 

them in our environment. In the former case, we could have been unfair 

to algorithms tested under different cond~tions. The latter case was 

infeasible in the sense that it would have been far beyond the scope 

of this study. Therefore, neither of the alternatives were chosen. On 

the other hand, we were unable to find the data of the problems tested 

by other authors since they are unpublished. As a result,the compu­

tational aspects were examined on the relative merits of the proposed 

algorithms. 

To check the effectiveness of the proposed methods in solving 

the TSP 35 complete Euclidean problems were generated with points 

randomly sel ected from the unit square ({ (x,y) I 0 ~ x ~ 1, 0 ~ y ~ l}). 

The problems contajned nodes ranging between 10 and 70. The optimum 

solutions to the problems with at most 20 nodes were found by using 

Little's branch and bound approach. The methods were then applied 



to the same problems. For the problems which contain more than 20 

nodes, only comparisons between the proposed algorithms are made 

since an inordinate amount of time is required to solve problems 

of that size by using' Little1s branch and bound approach. 
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There are several different interrelated measures to consider 

in order to define the power of each heuristic method separately. 

For instance consider the reductions applie~ in the first method. 

The effect of reduction is felt in several ways. The most obvious 

is a considerabl~ decrease in the number of arcs on which the Hamil-

tonian circuit search takes place. Results reveal that after connec­

tedness and unilateral connectedness is achieved, the number of arcs 

that comprise ~he subgraph is less than about 10% of the total number 

of graphs existing in the original graph (Table 3.17). As a result, 

the computation effort is decreased. However, this saving in effort 

is not the only effect in introducing reduction. Rather, reduction 

introduces a bias into the procedure when no Hamiltonian circuit is 
, 

formed although the necessary conditions are satisfied. In that case, 

Little1s algorithm is applied partially to the resultant matrix. the 

solutions obtained by using the resultant matrix are different than 

the ones that can be obtained by using the original matrix. Results, 

regarding this facti are given in Table 3.18. Another fact that has 

been observed is that as the number of nodes increases, the probability 

th~t a Hamiltonian circuit will be produced in the subgraph decreases. 

Horeover, the solutions obta.ined tend to be only suboptimal s"ol utions. 

In other words the applica~ion of Little1s algorithm partially may not 

be able to break out of this to actually get the optimum solution. The 

results are indicated "in Table 3.16a and Table 3.16b. 
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Table 3.17 - Computational results regarding Algorithm I 

\ 

Total No. No. of arcs Solution Total No. No. of arcs Solution n of arcs in Go in Go 
n of arcs in Go in Go 

10 90 28 Yes 40 1560 112 No 

10 90 32 No 40 1560 114 No 

10 90 32 Yes 50 2450 154 No 

10 90 25 Yes 50 2450 134 No 

10 90 26 No 50 2450 150 No 

20 380 52 No 50 2450 134 No 

20 380 52 No 50 2450 138 No 

20 380 68 Yes 60 3540 178 No 

20 380 62 Yes 60 3540 182 No 

20 380 50 No 60 3540 174 No 

30 870 82 No 60 3540 160 No 

30 870 92 No 60 3540 193 No 

30 870 84 No 70 4830 206 No 

30 870 86 No 70 4830 198 No 
~ 

30 870 82 No 70 4830 198 No 

40 1560 115 No 70 4830 192 No . 
40 1560 112 No 70 4830 , 212 No 

40 1560 106 No 



Table 3.18 - Results regarding the application of Little1s 
algorithm partially to the reduced matrix or 
to the original matrix 

Problem Solution found Solution found 
size by using the by using the 

reduced matrix original matrix 

10 362 305 

10 279 279 

20 381 386 

20 462 433 

20 488 475 
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Considering the computational complexity of this algorithm it 

can be seen that the number of operations made during the execution 

is of order n3 where n is the number of nodes in the graph. The 

algorithm consists of three parts: (strong) connectedness of the sub­

graph can be achieved in n (n-2) operations. This results from the 

fact that, in the worst case, the first reduction may end with 1~/2J 

subtours where L·l indicates the integer part of (.). Thus, at most, 

(n-2) other reductions are needed to achieve .(strong) connectedness. 

On the other hand, since n operations are needed to define the reachible 

set of a node, the total number of operations increases to n2 when all 

nodes are considered. As a restil~ of repeating the checking procedure 

(n-2) times in the worst case the total number of operations is of 

order 0(n 3
). Similarly, in the second part of the algorithm, the 

number of operations needed for checking unilateral connectedness is 

n(n-l)2, since (n~l) operations are needed to find the reachible sets 
. 

of the (n-l) distinct nodes after a specific node is removed from the 
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n 

10 

10 

10 

10 

10 

20 

20 

20 

20 

20 

30 

30 

30 

30 

30 

Table 3.19a - Computational results for the proposed 
~lgorithms when applied to problems where 

10 < n < 30 
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Optimum Algorithm 1. . Algorithm II Algorithm III Algorithm IV 
cost 

* Cost, . CPU Cost CPU Cost CPU Cost CPU 

280 280 1 .315 305 5.101 291 0.320 363 0.478 

299 362 1.790 342 8.199 299 0.317 356 0.278 

275 279 1.580 279 4.029 292 0.321 335 0.322 

285 285 1.239 295 2.895 285 0.303 297 0.307 

279 279 1.443 280 3.091 291 0.311 300 0.338 

354 381 8.305 410 72.450 384 1.323 394 1.239 

400 462 8.587 437 33.571 492 1.305 463 1.323 

377 387 8.732 411 95.632 441 1.377 387 1.479 

389 389 9.070 411 51. 369 482 1.386 503 1.254 . 
378 488 7.614 387 32.95 432 1.476 560 1.400 

- 491 27.594 - - 624 3.708 542 2.647 

- 614 29.742 - - 564 3.728 604 3.059 

- 528 29.174 - - 490 3.709 661 2.789 

- 595 32.328 - - 509 3.428 629 3.008 

- 471 31.332 - - 464 3.737 558 3.135 

CPU times are in seconds of UNIVAC 1106 computer, Bogazici Un-iversity. 
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subgraph. As a result of repeating the process n times (i.e. each node 

in the subgraph is removed one by one) the number of operations needed 

for the whole procedure is of order 0(n 3). Finally, since Litt1e ' s al­

gorithm is applied until a feasible solution is found and therefore the 

order of this procedure is far from being greater than the orders of 
~ 

the other parts of the algorithm, the overall order of the proposed al­

gorithm is 0(n3). Note that, a careful examination of Table 3.19a and 

Table 3.19b reveals that the CPU times can be expressed approximately 

as (n3/1000)~ 

The experiments made on the second method showed that the method 

might end up with high computation times asa result of jumping over 

the optimal solution. In other words, the algorithm may omit~the opti-

mal solution and then continue with the search in an unknown direction 

until a feasible solution is obtained. This may be the consequence of 

the fact that there may exist more than one AP solution with the -same 

objective function value such that one is the optimum solution to the 
, 

TSP and the other is not. On the other hand, the optimum solution may 

be omitted due to the fact that two previously basic but currently non­

basic variables may not enter the basis at the same time. Hence, the 

algorithm may require a considerable amount of computation time in 

order to find at least a feasible tour. Experiments' for this method 

- were conducted upto 20 nodes. The results can be seen in Table 3. l~a. 

It should be noted .that the CPU times are still efficient as ~ompared 

with the re1evan~ ranking and subtourbreaking methods in literature. 

In addition, problems of the same size showed a considerable variation 

in the computation times. This can be explained by the variation in 



n 

40 
,~ 

40 

40 

40 

40 

50 

50 

50 

50 

50 

60 
. 
60 

, 

60 

60 

60 

70 

70 

70 

70 

70 

Table 3.19b -. Computational results for the proposed 
algorithms when applied to problems where 

40 < n < 70 - -

Algorithm I Algorithm III Algorithm IV 

Cost GPU Cost CPU Cost CPU 

569 71.070 645 7.391 664 5.005 

617 72.314 742 7.907 807 6.321 

557 65.438 597 7.136 609 5.203 

617 68.765 714 7.713 626 5.124 

599 65.321 672 7.319 722 4.892 

691 146.737 714 14.587 605 12.135 

702 135.878 733 13.546 721 8.800 

838 142.656 706 13.631 758 6.831 

761 132. 196 724 13.323 814 8.507 

683 113.126 791 14.442 770 8.513 
, 

695 206.103 848 22.455 , 934 12.255 

816 212.328 776 22.934 ·999 11.450 

761 192.707 821 24.567 .958 13.131 

739 195.737 784 23.757 825 15.855 

779 231.319 835 23.160 838 11 . 189 

1010 328.886 967 44.765 1035 20.699 

745 335.943 889 . 35.342 965 21. 743 

809 350.958 877 35.288 812 13.864. 

746 313.229 891 33.965 794 21.440 

942 363.803 876 33.472 1015 17.355 

121 
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the number of extreme points found between the optimum AP solution and 

the TSP solution. 

Experimental results regarding the computation times of the third 

algorithm are.also listed in· Table 3.19a and Table 3.19b. The results 

indicate that this is a highly effective procedure for building a tour. 

The computation time required to solve problems with 70 nodes .is about 

35 seconds. The procedure was also capable of finding the optimal solu­

tions in some of the problems. Of those that are not optimal, the devia­

tion from the optimal value is less than 8%. But, of the 10 runs whose 

optimal solutions are known only 2 are optimal. 

The computation effort of the algorithm can be expressed as 

follows: At the first stage, (n-2) operations are made for each of 

the (n-l) nodes other than the root node. At the second stage, the 

number of operations is (n-3) since (n-3} nodes remain to be sequenced. 

The other stages proceed similarly. Therefore, the total number of 

operations can be given by the expression 

n-2 
(n~l) L i = (n ~ 1)2(n - 2)/2 

i=1 

which shows that the proposed algorithm is of order 0(n 3 ). 

In terms of the computation effort, the last algorithm using 

the geometric approach is the most efficient one although it seems to 

find solutions worse than the others. Thjs is because arbitrary 

convex hulls with the least possible number of nodes were input to 

the algorithm in order to measure its computational efficiency. 

Consider that in the worst case the algorithm starts with a 

partial tour containing only two nodes and therefore two arcs. As a 
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result, the number of operations in the first step is 2(n-2) since 

there are two_arcs and (n-2) remaining nodes to consider. Similarly, 

3(n-3) operations are conduct~d for the second step. O~erall, 

n-1 
L i(11- i ) 

i=2 

operations are needed for the whole procedure. Expanding this expres-

sion we obtain 

n-1 
n Li­

i=2 

which makes (n 3 
- 19n + 6)/6 operations at most. Therefore we can 

conclude that the algorithm is of order 0(n 3
). Analysing the results 

indicated in Table 3.19a and Table 3.l9b we see that, even for the 

worst case, the computational effortbf this algorithm is the best 

as compared with the others. Nevertheless, results regarding the­

costs are promising considering that the convex hulls which are 

necessary as input to the algorithm were not identified. 



IV. THE MULTI-DEPORT VEHICLE ROUTING PROBLEM AND 

ITS FORMULATION AS A TRAVELLING SALESMAN 

PROBLEM 

4.1 INTRODUCTION 

Vehicle routing and scheduling problems which involve the 

periodic collection .and delivery of goods and services are both of 

theoretical and practical importance. The ideas lying under this 
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. subject have proven to be interesting for·the researchers who are 

specialized in computer science and graph theory as well as opera­

tions research. On the other hand, routing and scheduling proce­

dures contribute to saving a considerable amount of .money by increas­

ing the productivity, improving the operations, aiding in long range 

planning, handling the job scheduling and sequencing problems and 

controlling vehicle utilization from the financial point of view. 

The vehicle routing problem (VRP) invQlves the designation 

of a set of routes which are sequences of pickup and/or delivery 

points that are to be traversed by vehicles in order, starting and 

ending at some depots. The problem is referred to as scheduling 

problem (VSP) when arrival and departure times of the vehicles are 

specified. As a matter of fact, the problem can be viewed as a 
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combined routing and scheduling problem when both routing and scheduling 

functions need to be performed. 

A specific vehicle routing and/or scheduling problem can be 

described on the'basis 'of a number of characteristics. The following 

taxonomy given by Bodin and Golden [58] is useful in identifying the 
~ 

type of the vehicle routing and/or scheduling problem that is being 

confined: 

A. time to service a' particular node or arc 

1. time specified and fixed in advance (pure VSP) 

2. time windows (combined VRP and VSP) 

3. time unspecified (VRP) 

B. number of depots 

1. one depot 

-2. more than one depot 

c. size of fleet available 

1. one vehicle 

2. more than one vehicle 

D. type of fleet available 

1. homogeneous case (all vehicles are the same) 

2. heterogeneous case (not all vehicles are the same) 

E. nature of demands 

1. deterministic 

2. stochastic 



F. location of demands. 

1. at nodes (not necessarily all) 

2. on arcs (not necessarily all) 

3. mixed 

G. underlying" graph 

1 .. undirected 

2. directed 

3. mixed 

H. vehicle capacity constraints 

1. imposed - all the same 

2. imposed - not all the same 

3. not imposed 

I. maximum vehicle route-times 

1. imposed - all the same 

2. imposed - not all the same 

3. not imposed 

J. costs 

1. variable or routing costs 
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2. fixed operating or vehicle acquisition costs (capital 

costs) 

K. operations 

1. pickups only 

2. delivery only 

3. mixed 
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L. objective 

1. minimize routing costs incurred 

2. minimize sum of fixed and variable costs 

3. minimize number of vehicles required 

M. other (pr9blem-dependent) constraints 

Note that, this framework includes a vast variety of combina­

tions which cover all of the well known problems as well as problems 

that have not received much research attention. 

4.2 VEHICLE ROUTING PRQBLEMS AS EXTENSIONS OF THE 

TRAVELLING SALESMAN PROBLEM 

4.2.1 The Multiple Travelling Salesman Problem (MTSP) 

Most of the VRPs are variants or extens';ons of the TSP. Actu­

ally, the problein of satisfying the demand at each node of a graph with 

a single vehicle of unlimited capacity while the total routing cost is 

being minimized is the TSP. Building upon the TSP, other problems 

progressing from the very simple to the more complex have been extended 

and synthesized. One of su~h problems is the MTSP which represents a 

large number of ·real world problems. 

Given m salesmen and n nodes in a graph, the MTSP is to assign 

a subtour to each salesman such that the subtours start and end at a 

central depot and the sum of m subtour costs is minimized. The integer 

programming formulation of the ~1TSP can be obtained by changing the 

formulation of the TSP slightly [4J as 



wnere 

n n 
minimize ~ ~ C .. x .. 

i=l j=l 1J 1J 

n 

= 1 
m if j = P 

s.t. ~ x .. = b. j = 1 , ... , n 
i=l 1J J 1 otherwise 

n 

= { ~ 
if i = P 

.~ x .. = a. i = 1 , ... , n 
j=l 1J , 

otherwise 

x· . 1J e: S 

x .. e: 
1J 

{O,l} Vi,j 

p is the node representing the central depot 

S is the set of constraints prohibiting subtour solutions 
and can be represented by one of the constraint sets 
(2.4a),(2.4b) and (2.4c). 

4.2.2 The Multi-Depot Vehicle Routing Pr.ob1em (MDVRP) 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The MDVRP' is an extension of the MTSP which incorporates multiple 

depots. The MDVRP allows vehicles to reside at ~ore than one depot and 

seeks for the minimum number of vehicles needed to satisfy all the de­

mands while the total traversing cost is being minimized. The problem 

can be classified as being a pure VRP with more than one depot and more 

than one vehicle. The type of the fleet is assumed ,to be homogeneous, 

i.e. all of the vehicles are the same. The demands are deterministic. 

Neither vehicle capacity constraints! nor maximum vehicle route times 

are imposed. That is, the vehicles are assumed to have capacities which 

exceed the total demand. The underlying graph can be undirected; directed 

or mixed. The problem can be related to delivery or pickup operations 

, where only routing costs are being considered. 
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The integer programming formulation of the MDVRP can be summarized. 

as follows: 

Let the nodes of the graph be numbered such that the nodes l, .•. ,p 

denote the depots and the nodes p+l, ... ,p+n denote the demand points. 

Then, the formulation can be given as 

minimize 

subject to 

p+n p+n m k 
L L Leo oX 00 

i=l j=l . k=l lJ lJ 

p+n m 
L L 

i =1 k=l 

p+n m 
L L 

j=l k=l 

k 
X 00 = 1 lJ 

k 
X 00 = 1 lJ 

(4.6) 

j = p+ 1 , .•. , p+n (4.7) 

i = p+ 1 , ... , p+n (4.8) 

p+n k p+n k k = l, ... ,m 
L X 0 - L x 0 0 = 0 1 + (4.9) 

i=l lr j=l lJ r = , ... ,p n 

p p+n 
L L' 

i=l j=P+l 

p p+n 
L L 

j=l i =p+l 

XES 

k 
Xo 0 < 1 lJ -

k 
Xo 0 < 1 lJ -

k 
Xo 0 E {O;l} 
lJ 

k' = l, •.. ,m 

k = l, ... ,m 

Vi,j,k 

where S is redefined as one of the three following alternatives 

(4.10) 

(4.11) 

(4.12) 

(4.13) 



and 
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S :: {x .. , r r x .. > 1, VQ £;; {l , ... ,pH (4.12a) 
,1J ie:Q j¢Q lJ-

S = {x .. 1 r r x. '. < I Q I - 1 VQ c: {p 1, ... , n}} (4. 12b) 
lJ ie:Q je:Q lJ-

S = {x .. , y. - y. - nx .. < n-l p 1 _< i # j < n, Yl' 'e: 1lR} (4. 12c) lJ.J J lJ -

n = total number of demand nodes 

p = total number of depots 

m = total number of vehicles 

C .. = cost of traversing arc (i,j) lJ 
if arc (i,j) is traversed by vehicle k 

otherwise 

m k 
X = matrix with components x·· = .r x.. specifying the 

lJ k=l lJ 
number of times arc (i,j) is traversed. 

The objective function (4.6) states that the total cost is to 

be minimized. Constraints (4.7) and (4.8) ensure that each demand node 

i,s visited by one and only one vehicle. Constraints (4.9) represent 

the route continuity. They imply that a vehicle entering to a node 

must exit from that node. The fact that the vehicle availability is 

not exceeded is made certain by constraints (4.10) and (4.11). Using 

inequalities, the problem is relaxed in the sense that there is no 

restriction to employ all the vehicles available. Some of them may be 

fo~nd useless in the optimal solution. Finally, constraints (4.12) can 

be any of the subtourbreaking constraints.specified,in (4.12a), (4.l2b) 

. and (4. 12c). 



In this model, we assume that vehicle capacities exceed the 

total demand in the problem and therefore put no restriction on the 

subtour lengths.· As a result, when a demand node is visited, its 

requirements are satisfied. However, it may be more realistic to 

include constraints associated-with vehicle capacities and total 

elapsed route time in~the model. In this case, these constraints 

can be included iri the model as follows: 
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p+n p+n k 
~ ~ d.x .. < Pk J 1J -1=1 j=P+1 

k = l, ... ,m (4.14) 

Here, 

p+n k p+n k p+n p+n k k 
~ t. ~ x.· + ~ ~ t .. x .. < Tk k = l, •.. ,m 

i=1 1 j=1 1J i=1 j=1 1J 1J -
(4.15) 

Pk = capacity of vehicle k 

Tk = maximum time allowed for a route of vehicle k 

dj = demand at node j 

t t. = 
1 

t~.= 
1J 

time required for vehicle k to deliver.or collect at node i 

travel time for vehicle k from node i to node j(t~. = 00). : 11 

Overall, a careful examination of constraints (4.7)-(4.13) reveals that 

constraints (4.7) and (4.9) imply constraints (4.8). Similarly, con­

straints (4.9) .and (4.10) imply constraints (4.11). As a consequence 

of this fact, constraints (4.8) and (4.11) may be excluded from the 

formulation since they are redundant in solving the problem. ~oreover, 

it should be noted that initial vehicle locations are not being consi­

dered by the formulation. The fact that the vehicles must start and 
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end at the deports where they are initially located is not under control 

either. But the requirement that at most the given number of vehicles 

can be used is strongly imposed. 

4.3 SOLUTION TECHNIQUES FOR THE VEHICLE ROUTING PROBLEMS 

Proposed techniques for solving VRPs fall into seven distinct 

classes as specified by Bodin and Golden [58J: 

l. Cluster first - route second 

2. route first ":' cluster second 

3. savings/insertion 

4. improvement/exchange 

5. mathematical programming based 

6. interactive optimization 

7. exact procedures. 

Cluster first-route second procedures group demand nodes first 

and then design economical routes over each cluster .as a second step. 

Examples of this idea are given by Gillett and Miller [59J, Gillett 

and Johnson [60J and Kgrp [61J for the standard single depot VRP. 

Route first and cluster second procedures construct a large 

route which includes all the nodes ignoring capacity and range con­

straints first and then, if infeasible, partition this route into a 

number of smaller but feasible and economical routes. Examples of 

route first-cluster second procedures are given by Newton and Thomas 

[62J, Bodin and Berman [63J and Bodin and Kursh[64J. 
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Savings and insertion procedures build a solution in ~uch a way 

that at each step a comparison is made between the current solution and 

the alternative solution. The alternative solution is one that yields 

the largest savings in 'terms of cost or distance travelled or that in­

serts a demand entity not existing in the current solution econgmically. 
," 

Various savings/insertion procedures for single depot and multiple depot 

routing problems have been des'cribed by Clarke and Wright [65], Golden 

et.al [66] and Norback and Love [45]. 

Improvement or exchange procedures such as the heuristics deve­

loped by Lin [49], Lin and Kernighan [50J always maintain feasibility 

and strive towards optimality. At each step, the current feasible solu­

tion is altered to yield another feasible solution with a' reduced objec-

tive function value. The procedure continues until no more improvements 

are possible. Examples of these procedur~s can be found in Christofides 

and Eilon [67J and Bodin and Sexton [68] . 

. Mathematical programming approaches include algorithms that are 

directly based on a mathematical programming formulation of the under­

lying model. Examples of this approach can be found in Fisher and 

Jaikumar' [69J, Christofides, Mingozzi and Toth [5]. 

Interactive optimization is a general purpose approach in which 

an experienced decision maker who has the capability of setting and 

revising parameters and injecting subjective assessments based on know­

ledge and intuition is incorporated into the problem-solving process. 

Adaptations of this approach to the VRP are presented by Krolak, Felts 

and Marble [70] and Krolak, Felts and Nelson [71J. 
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Exact procedures for solving the VRP include the branch and 

bound and cutting plane algorithms. However, these procedures have 

been viable only for small problems. Examples of these procedures 

which proved to be effective are described by Christofides et.al [5] 

and Crowder and Padberg [38J. 

4.4 SOLUTION PROCEDURES FOR THE VEHICLE ROUTING PROBLEMS 

WHICH BUILD UPON THE TRAVELLING SALESMAN PROBLEM 

AS THE CORE r~ODEL 

It is well known that theiTSP is embedded within the most commonly 

encountered vehicle routing formulations. Two of such problems which are 

extensions of the TSP, namely the MTSP and the MDVRP were discussed in 

the previous sections. In this section we will show that although these 

problems are extensions of the TSP they can be solved as a TSP. 

4.4.1 The Single Depot Case (MTSP) 
, 

As it has been shown by Sweetska and Huckfeldt [8], Bellmore 

and Hong [6J and the others, it is possible to derive equivalent TSP 

formulations of the MTSP by the use of a suitable transformation. The 

transformation is applicable to both symmetric and asymmetric matrices. 

In summary, it consists of 

1. creating m copies of the central depot 

2. connecting each of the m copies to the other nodes exactly 

as the original central depot is connected 
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3. inserting infinities in the elements of the extended cost 

matrix which correspond to arcs connecting the copies of 

the central depot .. 

For example, consider the MTSP on a complete travelling salesman 

graph G = (N,E) wher~ N = {1,2,3,4,5}. The associated inter-node cost 

matrix is given in Table 4.1a. If we let node 5 represent the central 

depot in which two vehicles are located initially, then the transforma­

tion described above yields the cost matrix given in Table 4.1b. 

Table 4.1 - Transformation of a cost matrix for the MTSP 

1 2 3 4 5 1 2 3 If 5 6 

·00 C12 C13 C14 C15 
1 I 00 C12 C13 C14 C15 C15 

2 C21 00 C23 C24 C25 2 C21 00 C23 C24 C25 C25 
3 C31 C32 00 C34 C35 3 C31 . C32 00 C34 C35 C35 
4 C41 C42 C43 00 C45 4 C41 C42 C43 00 C45 C45 

5 C51 C52 C53 C54 00 5 C51 C52 · C53 C54 00 00 

6 C51 C52 C53 C54 00 00 

(a) (b) 

Any AP solution using the extended cost matrix and producing m subtours 

each containing one of the copies created is the optimal MTSP solution. 

The optimal solution to the MTSP can also be obtained by solving the 

TSP on the extended cost matrix. As a result, the travelling salesman 

tour is decomposed into m subtours as required in the MTSP, by. coalescing 

the copies back irito a single node. For instance, suppose that the 

optimal travelling salesman tour obtained by solving the TSP on the 



136 

extended matrix is (1-3-5-4-2-6-1). Then, coalescing nodes 5 and 6 back 

into a single node, namely node 5 in the original problem, yields the 

subtours (5-1-3-5) and (5-4-2-5) which correspond to individual salesman 

tours and therefore represent the optimal solution to the MTSP. The back 

transformation is shown in Figure 4.1. 
," 

(a) (b) 

Figure 4.1 - An example of back-transformation for an MTSP. 

4.4.2 The Multi-Depot Case (MDVRP) 

Similar to the MTSP, the MDVRP can also be converted into an , 
, 

equivalent TSP in a way not principa"lly different from the transfor-

mation used for the MTSP. Assuming that we know how the vehicles are 

located initially, the proposed transformation can be realized byex­

tending both the node set and the arc set together with the associated 

cost matrix. 

4.4.2.1 Transformation of the Node Set 

It is clear that the node set of the problem consists nf demand 

nodes and nodes representing the depots. First, the nodes corresponding 

to the depots are deleted from the node set. Instead, duplicates of the 
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depots are generated. For each vehicle in a specific depot, two copies 

of the depot are generated. One of the copies serves as the departure 

node while the other-serves as the arrival node for that particular 

vehicle. For the sake .of simplicity the new nodes are labelled in such 

a way that nodes labelled with odd numbers represent the departure nodes 

whereas nodes labelled with even numbers represent the arrival nodes. 

Considering that there are m vehicles, the number of nodes is increased 

from (p+n) to (2m+n). 

4.4.2.2 Transformation of the Arc Set 

First, the arcs connecting the deleted nodes which correspond 

to the depots are deleted from the arc set. Then, the transformation 

is executed by . 

1. connecting the departure node Of each vehicle to its 

arrival node 

2. connecting the arrival node of each v,ehicl e to the 

dep~rture node of another vehicle which has been 

labelled with a larger number with one exception; , 

The arrival node of the last labelled vehicle is con-

nected to the departure node of the first labelled 

vehicle 

3. connecting each demand node to each arrival node and 

each departure node to each demand node exactly as the 

.original depots are connected. 
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As a result, the number of arcs in the arc set of a complete graph is 

increased by 2m(n+l). After all, there are no arcs entering the de­

parture node except the arc that comes from one of the arrival nodes. 

Conversely, there are no arcs leaving the arrival nodes except the one 

incident to one of the departure nodes. 

4.4.2.3 Transformation of the Cost Matrix 

The cost matrix of the MDVRP is transformed in such a way that 

the costs of the arcs between the arrival nodes and the demand nodes 

and between the nodes and the departure nodes are the same as they are 

for the corresponding depots in the origjnal matrix. The arcs that 

connect the departure and the arrival nodes are assigned a zero cost. 

In addition, the costs of the arcs co~necting the demand nodes to each 

other remain the same as they are in the original cost matrix. Finally, 

infinities are inserted for costs representing nonexi$tent arcs. 

4.4.2.4 An Illustrative Example 

Consider an MDVRP defined in a graph G (Figure 4.2a) whose 

associated cost matrix C is as shown in Table 4.2a. There are eight 

demand nodes 1, ..• ,8 and two depots 9,10. Suppose that one vehicle is 

located in each depot. The equivalent travelling salesman graph is 

shown.in Figure 2.4b. After nodes 9 and 10 are deleted four nodes are 

created. In this case nodes·9 and 11 ~erve as the departure nodes and 

nodes 10 and 12 as the arrival nodes. Suppose that the optimal solution 

to the TSP in the transformed graph is given by (1-2-4-10-11-6-7-8-5-12-9-3-1) 
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Table 4.2a - The cost matrix 
2 3 4 5 6 7 8 !l 

, . 
10 

1 co . co 00 00 co 00 00 

2 co 00 co 00 00 

3 co co 00 co 00 00 

co 00 co co 

5 co 00 co 00 co co 

.' 

6 co co co co 00 00 co 

7 00 co 00 co co 00 

8 co co 00 co co 00 00 

!l 00 co 00 00 00 00 00 

10 co co co C105 C1Do 
co 00 00 

Table 4.2b - The transformed cost matrix _ 

1 00 co co co 00 co - 00 co 00 

2 00 00 co 00 00 00 00 

3 00 co co co co 00 00 00 

4 co 00 co 00 00 00 

5 00 00 00 00 00 co 00 00 

6 00 00 co 00 00 00 00 00 00 

7 00 00 co 00 00 00 00 00 

8 00 00 00 co 00 00 00 00 00 

9 00 00 00 00 00 00 o 00 00 

10 00 00 00 00 00 00 co 00 00 00 o 00 

11 co 00 00 co 00 co 00 o 
12 00 00 00 co 00 00 00 o 00 00 00 
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Figure 4.2a - The original graph 

Figure 4.2b -The equivalent travelling salesman graph 

Then, . coa 1 esc i ng nodes 9,. 10 and 11, .12 back into two nodes the 

travelling salesman-tour is decomposed into two subtours corresponding 

to nodes representing depots 9 and 100f the original problem. As a 

result the subtours are: (9-3-1-2~4-9) and (10-6-7-8-5-10) (Figure 

4.3a and Figure 4.3b). 
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Figure 4.3a - Optimum tour for the travelling salesman graph 

Figure 4.3b - Optimum solution to the MDVRP 

4.4.2.5 Equivalence of the Problems 

In this section, we will try to prove th·at the TSP and the 

MDVRP become two e.quivalent problems when the transformation described 

in the previous section is applied. We will show that there is a one 

to one correspondence between the solutions of both problems. In 
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addition, the one to one correspondence in ranking the solutions cost-

wise will be illustrated. 

Since the TSP solution has to coverall the nodes in a graph 

once and only once, all of the demand nodes will be visited once any 

only once in the original MDVRP and therefore the demands will be 

satisfied. Considering the integer programming formulation of the 

MDVRP) the number of vehicles to be used is bounded from above, but 

there is no restriction on the number of vehicles that have to be 

utilized. Actually, the total number of vehicles. is an upper bound 

for the number of subtours.in the MDVRP. If,' in the TSP solution, the 

nodes are sequenced in such a way that an arrival node appears immedi­

ately after a departure node, then the vehicle corresponding to these 

. nodes is not used in the associated solution of the MDVRP. Hence a 

one to one correspondence is achieved. 

Note that the arcs connecting the arrival nodes to the depar­

ture nodes and the arcs connecting the departure nodes to- the arrival 
, 

nodes are assigned zero costs. Besides, the costs corresponding to 

the arcs~hich connect the departure nodes to the demand nodes and the 

demand nodes to the' arrival nodes are the same as they are given in 

the rows and columns of the corresponding depots in the original matrix. 

As a result, the cost of a travelling s~lesman tour is exactly the same 

as the cost of the corresponding solution of MDVRP. Thus, the optimal 

solution to the TSP in the transformed graph is equivalent to the opti­

mal solution of the MDVRP in the original graph. 



V. APPLICATION OF THE PROPOSED ALGORITHMS 

TO THE MULTI-DEPOT VEHICLE ROUTING 

PROBLEM 
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This section of the thesis is completely devoted to the appli­

cation of the proposed algorithms to the MDVRP. All of the algorithms 

are applied to the same problem in order .to compare them in equivalent 

conditions. Actually, the algorithms are expected to perform better 

for the transformed cost matrix than they do for complete graphs for 

which examples and computation times are already given in the thfrd 
. 

chapter. This expectation is due to the special structure of the 

transformed matrix. In fact, it is certain that all TSP tours will 

traverse arcs defined between the arrival and departure nodes. There­

fore, these arcs need not carried along the search process continuously. 

This is especially true for the reduction algorithm. But still the 

other algorithms are also affected by the structure of the transformed 

matrix. 

Consider the MDVRP defined in Figure 5.1. The associated cost 

matrix, C, is given in Table 5.'1. Assume that nodes 8 and 9 represent 

the depots in which two vehicles are located initially. It .is desired 

to investigate the optimal tours each vehicle should traverse so that 
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all of the other nodes are visited once only once. We first need to 

transform the cost matrix in order to apply the proposed algorithms. 

Accordingly, nodes 8 and 9 are deleted from the problem. Instead two 

arrival nodes and two departure nodes are created. Each arrival node 

is connected to a departure "node. Similarly, each departure node is 

connected to an arrival node. Besides all of the demand nodes {l, •.. ,7} 

are connected to each arrival node and each departure node is connected 

to the demand nodes exactly as nodes 8 and 9 were connected. The re­

sultant cost matrix C' is given in Table 5.2. Note that nodes 8 and 9 

represent the departure and the arrival nodes for the vehicle located 

in depot 8 in the original problem respectively. Similarly, nodes 10 

and 11 represent the departure and the arrival nodes for the vehicle 

located in depot 9-respectively .. Now we are ready for applying the 

. proposed algorithms in order to solve the TSP by using the transformed 

matrix. 

Figure 5.1 - The graph repre~enting the MD~RP 
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Table 5.1 - The cost matrix corresponding to the MDVRP 

1 2 3 1+ 5 6 7 B ! 

00 45 00 95 70 00 00 00 48 

2 '45 00 40 00 00 00 00 00 00 

3 00 40 00 00 65 '70 125 00 40 

1+ 95 00 00 0(; 43 48 00 33 00 

5 70 00 65 43 00 25 00 00 28 

6 00 00 70 48 25 00 60 47 00 

7 00 00 125 00 00 60 00 25 00 

B 00 00 00 33 00 47 25 00 00 

! -48 00 -40 00 28 00 00 00 00 

Table 5.2 '7 The transformed cost matrix 

1 2 3 1+ 5 6 7 B- ! 10 11 

1 00 45 00 95 70 00 00 00 00 cO 48 

2 45 00 40 00 00 00 00 00 00 00 . 00 

3 00 40 00 00 65 70 125 00 00 ~CX) 40 

1+ 95 00 00 00 43 48 00 00 33 00 00 

5 70 00 65 -43 00 25 00 00 00 .00 28 

6 00 00 70 48 25 00 60 00 47 00 00 

7 00 00 125 00 00 60 00 00 25 CXl CXl 

B 00 00 00 33 00 47 25 00 ' 0 CXl CXl 

! 00 CXl 00 CXl 00 CXl 00 00 CXl 0 CXl 

10 48 CXl 40- CXl 28 CXl CXl 00 CXl CXl 0 

11 00 00 00 00 00 00 CXl 0 00 00 00 



146 

5.1 APPLICATION OF ALGORITHM I 

As a result of reducing the cost matrix C' the corresponding 

subgraph G' is shown in Figure 5.2a. Note that G'· is not connected . 

. The algorithm proceeds as follows: 

... ' 
Choose node 1. R{l) = {1,2,3,7,8,9,10,11} t N 

TIl = min {C!.} = CS4 = 15 
ie:R(l) lJ 
je:N-R(l) 

Including arc (8,4) in G' (Figur.e 5.2b) we see that G' is still 

disconnected. 

R(l) = {1,2,3,4,7,8,9,10,11} ~ N 

TIl = min {C!.} = Cis = C~5 = C~5 = 10 
, ie:R(l). lJ 

je:N-R(l ) 

Once arcs (1,5), (3,5), (4,5) are included in G' we obtain 

R(l) = N. The resultant subgraph is shown in Figure 5.2c. 

Choose node 2. R(2) = N 

Choose node 3. R(3) = N 

Choose node 4. R(4) = {4,5,6,7,8,9,10,11} ~ N 



(a) (b) 

(c) (d) 

Figure 5.2 - Stages in constructing the subgraph* G1 

After lnc1udlng arcs (5,1), (5,3) (10,3) in G1
, the set of 

nodes reachib1e from node 4 becomes equivalent to N, i.e. R(4) = N~ 

The resultant subgraph G1 is shown in Fi9ure 5.2d. 

* Lines without arrows denote arcs in two directions. 

147 
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Choose node 5. R(5) = N. 

Choose node 6. R(6) = N. 

Choose node 7. R(7) = N. 

Choose node 8. R(8) = N. 

Choose node 9. R(9) = N. 
,~ .. 

Choose node 10. R(lO) = N. 

Choose node 11. R(ll ) = N. 

·Since all nodes have been tried and strong connectedness is achieved 

we proceed by checking the unilateral connectedness in any subgraph 

Gk obtained by removing a node k and the associated arcs from G1. 

Remove node 1. G1 
1 is unilaterally connected (Fig. 5. 3a). 

Remove node 2. G1 
2 is unilaterally connected lFig. 5. 3b). 

Remove node 3. G1 
3 is unilaterally.connected (Fig. 5.3c). 

Remove node 4. G1 
4 is unilaterally connected (Fig. 5. 3d). 

Remove node 5. G1 
S is not unilaterally connected (Fig. S.3e). 

There is no path either from node 1 to node 6 or from node 6 to node 1. 

R(l) = {l,2,3,4,7,8,9,10,1l} R(6) = {6} 

N-{5}-R(1) = {6} N-{5}-R(6) = {1,2,3,4,7,8,9,10,11} 

~16 = min{m i n {C! .}, min {C! .}}: C316:C416=C613=C614= 
isR(l) lJ isR(6) lJ 
jsN-{5}-R(1) jsN-{S}-R(6) 

The updated G~ is shown in Fig. S.3f.· Note that G~ becomes uni­

laterally connected. 



Figure 5.3a - Subgraph GJ 

. . 1 

Figure 5.3c - Subgraph G1 

3 

Figure 5.3e - Subgraph GS 

.~ '.<;;. '::~~~"~;)5f£~'~ : '~''" 
.. .. "{9·.~(:':~?~:. 

149 

Figure ~.3b - Subgr~ph G~ 

, 

Figure 5.3d-.Subgraph G~. 

Figure 5.3f - Subgraph G~ 



150 

Remove node 6. G1 

6 is unilaterally connected (Fig. 5.3g). 

Remove node 7. G1 

7 is unilaterally connected (Fig. 5. 3h). 

Remove node 8. G1 

8 is unilaterally connected (Fig. 5.3i). 

Remove node 9. ,Gg is unilaterally connected (Fig. 5. 3j ). 

Remove node 10. G10 is unilaterally connected (Fig. 5.3k). 

Remove node 1i. G11 is uniJatera11y connected (Fig. 5.3 ). 

Unfortunately at this stage G1 does not possess any Hamiltonian 

circuit (Figure 5.4); therefore we proceed with applying Litt1e ' s algo­

rithm partially to the resultant matrix which is given in Table 5.3. 

We will not go over the steps of the algorithm but instead give the 

solution found which is (1-4-6-5-11-8-7-9-10-3-2-1) with a total cost 

of 371. Coalescing nodes 8 and 9 and nodes 10 and 11 back lnto depots 

8 and 9 in the original problem respectively, we obtain two subtours 

with the same total cost. The tours are . 

Tour 1 = (8-7-8) 

Tour 2 = (9-3-2-1~4-6-5-9) 
Total cost = 371 

The tours are shown in Figure 5.7a. 

5.2 APPLICATION OFALGQRITHM II 

Starting with the transformed matrix we apply the second 

algorithm as follows: According to the first step of the algorithm 

we solve the AP. The resultant matrix is given in Table 5.4. The 

associated subtours and the corresponding penalties are shown in 

Figure 5.5a. Starting from the minimum of the penalties that would 



Figure 5.3g - Subgraph G1 

6 

Figure 5.3i - Subgraph GS 

Figure 5.3k - Subgraph G10 
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Figure 5.3h - Subgraph G7 

Figure 5.3j - Subgraph Gg 

Figure 5.31 - Subgraph G'l 
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Figure 5.4 -The resultant subgraph G" 

Table 5.3 - The resultant reduced transformed matrix 

1 2' 3 Ii 5 "6 7 8 !I 1 0 11 

1 00 0 00 17 0 00 00 00 00 00 3 

2 0 00 0 00 00 00 00 00 00 00 00 

3 00 0 00 00 0 0 60 00 00 00 0 

Ii 17 00 00 00 0 0 00 00 0 00 00 

5 0 00 0 0 00 0 00 00 00 00 3 

6 00 00 0 0 0 00 5 00 17 00 00 

7 00 00 60 00 00 5 00 00 0 00 00 

8 00 00 00 0 00 17 0 00 0 00 00 

!l 00 00 00 00 00 00 00 00 00 0 00 

10 3 00 0 00 3 00 00 OCJ 00 00 0 

11 00 00 00 00 00 00 06 0 00 00 00 



1 

2 

3 

If 

5 

6 

7 

B 

!I 

10 

11 

Tl 

Table 5.4 - The transformed cost matrix after the AP is 
solved in the first step of algorithm II 

1 2 3 4 5 6 7 B !I 10 11 
,'. 

co 0 co 2· 0 co co co co co 3 

0 co 0 ~ co co co co co co co 

,~. , 

co 0 co co 0 0 25 co co co 0 

32 co co co 0 0 co co 0 co co 

30 co 30 0 co 0 co co co co 33 

co co 30 0 0 ' co 0 co 32 co co 

co co 75 co co 20 co co 0 co co 

co co co 20 co -, 52 0 co 20 co co 

co co co co co co co co co 0 co 

3 co 0 co 3 co co co co co 0 

co co co co co co co 0 co co co 

r:J P12 = 0 P7~ = 20 

P21 = 3 P87 - 20 
2 T2 

-

P311 = 0 PglO = co 

P45 - 0 P103 = 3 -

P56 = 30 P1l8 = co 

P64 = 0 

Zo - 336 -

Figure 5.5a - Subtours and penalties corresponding to the 
AP solution 

153 
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be incurred if the assignments are not to be made, we solve the corres­

ponding APs until the best solution found Z~ is less than the next 

penalty to be considered. The following solutions are obtained in 

each case: 

1 C I 00 
. lj = VJ E Tl 

{(l,11),(2,1),(3;2),(4,5),(5,6),(6,4),(7,9),(8,7),(9,10), 

(lO,3),(ll,8n 

* Zl = 3 Zl = 3 

{(l,2),(2,3),(3,6),(4,5),(5,1),(6,4),(7,9),(8,7),(9,10), 

'(lO,11),(11,8)} 

* Zl = 30 Zl = 3 

3 C I 00 
• 4j- Vj E T3 

{(1,2),(2,1),(3,11),(4,9),(5,4),(6,5),(7,6),(8,7),(9,10), 

(10,3),(11 ,8)} 

* Zl = 20 Zl = 3 

{(1,2),(2,1),(3,11),{4,5),(5,6),(6,7),(7,9),(8,4),(9,10), 

(10,3),(11 ,8)} 

Zl = 20 * Zl = 3 
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Since Ii equals to P31 = 3 which is the next penalty to be considered, 

we do not need to solve any other AP at this point. Instead,':: we up­

date the cost matrix, i.e. take, the one which corresponds to Il = 3 

and calculate the new penalties. The-associated cost matrix is given 

in Table 5:5. Defining the subtours, the corresponding penalties are 
,j"' 

as shown in Figure 5.5b. Note that Io = 339 becomes the new objective 

function value of the original problem. The following AP solutions are 

obtained by solving an AP for each penalty in rank: 

Table 5.5 - The cost matrix that corresponds to solution (1) 

1 2 3 5 6 7 8 10 11 

1 00 -3 00 2 o 00 00 00 00 00 o 
2 0 00 .0 00 00 00 00 00 00 00 00 

3 00 0 00 00 3 3 28 00 00 00 o 
1+ 29 00 00 00 o 0 00 00 0 00 00 

5 27 00 27 0 00 0 00 00 00 00 33 

6 00 00 27 0 o 00 0 00 32 00 00 

7 00 00 75 00 00 20 00 00 0 00 00 

8 00 00 00 23 00 35 0 00 23 00 00 

!l 00 00 00 00 00 00 00 00 00 o 00 

10 3 00 0 00 6 00 00 00 00 00 o 
11 00 00 00, 00 00 00 00 0 00 00 00 



, 

-
Plll = 0 P79 = 20 
-

P87 = 23 P21 = 00 

- = 0 P32 P910 = 00 

- = 0 Pl03 = 6 P45 
- = 27 

-
P56 P1l8 = 00 

- = 0 P64 
Zo = 339 

Figure 5.5b - Subtours and penalties corresponding to 
the AP solution (1) . 

1 C' -. lj - 00 Vj E: Tl 
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{ (1 ,5) , (2, 1 ) , ( 3,2) , ( 4,6) , (5,4) , ( 6,3) , (7 ,9) , ( 8,7 ) ~ ( 9 ~ 1 0 ) , ( 10, 11 ) , (11 ,8)} 

* Zl = 27 Zl = 27 

2 C' . . 3j = 00 Vj E: T 1 

{ (1 ,2) , (2, 1 ), ( 3,6) , ( 4,5) , (5,4) , (6,3) , (7,9 )" (8,7) , (9,10) , (10,11 ) , (11 ,8)} 

* Zl = 27 Zl = 27 

{ (1,,11 ) , (2,1 ) , ( 3,2) , ( 4,9) , (5,4) , (6,5) , (7,6) , (8,7) , (9,10) , (10,3) , (11 ,8)} 

* Zl = 20 Zl = 20 

{(1,11),(2,1),(3,2)~(4,5),(5,6),(6,7),(7,9),(8,4),(9,10),(10,3),(11,8 

* Zl = 20 Zl = 20· 
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5 C• - 00 . . 10j- Vj s Tl 

{(1,11),(2,1),(3,2),(4,6),(5,3),(6,4),(7,9),(8,7),(9,10),(10,5),(11,8» 

Zl = 33 

At this point, we do not need'to proceed with solving any other AP since 

* Z, equals to the next pena l..:!:y to be cons i dered. On the other hand, sol u-

tions .(3) and (4), both of which have the objective function value Zl = 
* Z, = 20, are travelling salesman tours. Therefore, the best achievable 

solution is obtained with Zo = 359. It should be noted that the fact 

that there are two solutions with the same objective function value in 

this case is a consequence of the. symmetric nature of the original cost 

matrix. In other words, both of the solutions correspond to' the same 

subtours in the original problem. Choosing solution (3) the best achiev­

able tour is expressed as (1-11-8-7-6-5-4-9-10-3-2-1). Coalescing the 

vehicle departure and arrival nodes back into single depots the following 

tours are obtained (Figure 5.7b). 

Tour 1 - (8-7-6-5-4-8) 

Tour 2 = (9-3-2-1-9) 

Total cost = 359 

5.3 APPLICATION OF ALGORITHM III 

As required by the third algorithm, all of the elements C!. are 
lJ 

subtracted· from a large number L which is chosen to be 250 in this case. 

The resultant matrix is Biven in Table 5.6. 
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Table 5.6 - The cost matrix after subtracting each 
element from a large number L = 250 

2'. 3 1+ 5· 6 7", B !. 10 11 

1 00 205 00 155 180 00 00 00 00 00 202 

2 ":205 00 210 00 00 00 00 00 00 00 00 

3 00 210 00 00 185 ,~ .. 180 125 00 00 00 210 

1+ 155 00 00 00 207 202 00 00 217 00 00 

5 180 00 185 207 00 225 00 00 00 00 222 

6 00 00 180 202 225 00 190 00 203 00 00 

7 00 00 125 00 00 190 00 00 225 00 00 

B 00 00 00 217 00 203 225 00 250 00 00 

! 00 00 00 00 00 00 00 00 00 250 00 

10 202' 00 210 00 222 00 00 00 00 00 250 

11 00 00 00 00 00 00 00 250 00 00 00 

As a result, the algorithm proceeds as follows: 

, 
Step (1) s = 1, S = {2,4,5,11}~ k = 1 

.Q,1(2) = 205 81 (2) = 1 pI (2) = {l,2} 

.Q,1(3) = 0 81 (3) = 1 pl(3) = <I> 

.Q, 1 (4) = 155 81 (4)= 1 pl(4) = {1,4} 

.Q, 1 (5) = 180 81 (5) = 1 pl(5) = {1,5} 

.Q,1(6) = 0 81 (6) = 1 pl(6) = <I> 

.Q, 1 (7) = 0 81 (7) = 1 pl(7) = <I> 

.Q,1(8) = 0 81 (8) = 1 pl(8) = <I> 

.Q,1(9) : 0 81 (9) = pl(9) = <I> 

.Q,1(10): 0 81 (10): 1 pl(10): <I> 

.Q,1(11)= 202 81 (11): 1 pI (11)= {1, 11 } 



Step 2 R(S) = {1,3,4,5,6,8,9,11} 

R,2(2) = 205 82 (2) = 1 

R,2 (3) = 415 . , 82 (3) = 2 

R,2(4) = 387 82 (4) = 5 

R,2(5) = 362 
,;" 

82 (5)=4 

R,2(6) = 405 82 (6) = 5 

R,2(7) = 0 82 (7) = 1 

R, 2 (8) = 452 82 (8) = 11 

R,2(9) = 372 82 (9) = 4 

R,2(10)= 0 82 (10)= 1 

R,2(11)= 402 82 (11)= 5 

Step (3) k< 9, continue 

Step (4) S = {3,4,5,6,8,9,11} 

Step (5) k = 2 

p2 (2) = {1 ,2} 

p2 (3) = {1, 2, 3} 

' p2(4) = {1,4,5} 

p2(5) = {1,4,5} 

p2 (6) = {1, 5, 6} 

p2 (7) = cf> 

p2 (8) = {1, 8, 1}} 

p2 (9) = {1,4, 9} 

p2(10)= cf> 

p2 (11 ) = {l, 5 , 11 } 

Step (2) R(S) = {1,2,3,4,5,6,7,8,9,10,11} 

R,3(2) = 205 , 8"3 (2) = 2 p3 (2) =' {l ,2} 

R, 3 (3) = 585 83(3) = 6 p3(3) = {1,3,5,6} 

R, 3 (4) = 669 8 3(4) = 8 p3(4) = {1,4,8,11} 

R, 3 (5) = 600 8 3(5) = 3 p3(5) = {1,2,3,5} 

R, 3 (6) = 655 8 3(6) = 8 p3(6) = {1,6,8,11} 

R,3(7) = 677 83(7) = 8 p3(7) = {1,7,8,11} 

R,3(8) = 652 83(8) = 11 p3(8) = {1,5,8,1l}. 

R, 3 (9) = 702 83(9) = 8 p3(9) = {1,8,9,11} 

R,3(10)= 622 83(10)= 9 p3(10)= {1 ,4,9, 10} 

R,3(11)= 625 ,8 3(11)=3 p3(1l)= {1,2,3,1l} 
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Step (3) k < 9, continue 

Step (4) S = {3,4,5,6,7,8,9,10,11} 

Step (5) k = 3 
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Step (2) R{S) = ,{-.1,2,3,4,-5,6,7,8,9,10,1l} 

R,1f(2) = 795 
,:"' elf (2) = 3 

/ R, If (3) = 835 elf (3) = 6 

R,1f(4) = 869 elf (4) = 8 

R,1f(5) = 880 elf (5) = 6 

R,1f(6) = 871 elf (6) = 4 

R,1f(7) = 877 elf (7) = 8 

R,1f(8) = 875 elf (8) = 11 

R,1f(9) = 902 elf (9) = 7 
~ 

R,1f(10)= 952 elf(lO)= 9 

R,1f'{1l)= 872 elf(ll)= 10 

Step (3) k < 9, continue 

Step (4) S = {2,3,4,5,6,7,8,9,10,11} 

Step (5) k = 4 
, -

plf(2) • {1,2,3,5,6} 

plf(3) = {1,3,6,8,11} 

plf(4) = {1,4,5,8,11} 

plf(5) = {1,5,6,8,11} 

plf(6) = {1,4,6,8,11} 

plf (7) = {1, 5,7 ,8,11 } 

plf(8) = {1,2,3,8,11} 

plf (9) = {1,7 ,8,9,11} 

plf(lO)= {1,8,9,10,1}} 

plf(ll)= {1,4,9,10,11} 

Step (2) R(S) = {1,2,3:4,5,6,7,8,9,10,11} 



R, 5 (2) = 1045 85(2) = 3 

R,5(3) = 1162 85(3) = 10 

R, 5 ( 4) = 1 092 85(4) = 8 

R,5(5) = 1174 65(5) = 10 

R, 5 (6) = 1078 85(6) = 8 

R, 5 (7) = 11 00 
.,". 

85(7) = 8 

R,5(8) = 1122 85(8) = 11 

R, 5 ( 9) = 1125 85(9) = 8 

R,5(10)= 1152 65(10)= 9 

R,5(11)= 872 85(11)= 11 

Step (3) k < 9, continue 

Step (4) S = {2,3,4,5,6,7,8,9,10} 

Step (5) k = 5 
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p5(2) = {1,2,3,6,8,11} 

p5(3) = {1,3,8,9,10,11} 

pS(4) = {1,2,3;4,8,11} 

p5(5) = {1,5,8,9,10,11} 

p5(6) = {1,2,3,6,8,11} 

p5(7) = {1,2,3,7,8,11} 

p5(8) = {1,4,8,9,10,11} 

p5(9) = {1,2,3,8,9,11} 

p5(10)= {1,7,8,9,10,11} 

p5(11)= {1,4,9,10,11} 

Step (2) R(S) = {1,2,3,4,5,6,7,9,lD,11} 

R, 6 (2) = 1372 86(2) = 3 p6(2) = {1,2,3,8,9,10,11} 

R,6(3) = 1362 86(3) = 10 p6(3) = {1,3,7,8,9,10,11} 

R, 6 (4) = 1381 86(4) = 5 p6(4) ; {1,4,5,8,9,10,11} 

R,6(5) = 1374 86 (,5) = 10 p6(5) = {1,5,7,8,9,10,11} 

R,6(6) = 1399 86(6) = 5 p6(6) = {1,5,6,8,9,10,11} 

R, 6 ( 7) = 1 347 86(7) = 8 p6(7) = {1,4,7,8,9,10,11} 

R, 6 ( 8) = 1122 86(8) = 8 p6(8) = {1,4,8,9,10,11} 

R, 6 ( 9) = 1325 66(9) = 7 p6(9) = {1,2,3,7,8,9,11} 

R,6(10)= 1375 86(10)= 9 p6(10)= {1,2~3,8,~,10,11} 

R,6(11)= 872 86(11)= 11- p6(11)= {1,4,9,10,11} 



Step (3) k < 9, continue 

Step (4) S = {2,3,4,5,6,7,9,10} 

Step (5) k = 6 
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Step (2) R(S) =, {1 ,2,3,4,5,6,7,9,10, 1l} 

~7(2) = 1572 87(2} = 3 
,~ .. 

R,7(3) = 1579 87(3) = 6 
\ 

R, 7 ( 4) = 1601 e7(4) = 6 

R, 7 ( 5) = 1 547 e7(5) : 3 

R, 7 (6) = 1599 e7(6) = 5 

R,7(7) = 1589 . e 7 (7) = 6 

R, 7 ( 8) = 11 22 87(8) = 8 

R,7(9) = 1336 87(9} = 9 

R,7(10): 1575 87(10)= 9 

R,7(11)= 872 87(11)= 11 

Step (3) k < 9, continue 

Step (4) S = {2,3,4,5,6,7,10} 

Step (5) k = 7 

Step (2) R(S) = {l,2,3,4,5,6,7,9,1l} 

p7(2) = {1,2,3,7,8,9,10,11} 

p7(3} = {1,3,5,6,8,9,10,11} 

p7(4) = {1,4,5,6,8,9,10,11} 

p7(5} = {1,3,5,7,8,9,10,11} 

p7(6) = {1,5,6,7,8,9,10,11} 

p7(7) = {1,5,6,7,8,9,10,11} 

P 7 ( 8 ):: {1, 4,8,9, 1 0, 11 } 

. p7(9) = {1,2,3,7,8;9,11} 

p7(10)= {1,2,3,7,8,9,10,11} 

p7(11)= {1,4,9,10,11} 



iB(2) = 1789 ~B(2) = 3 

iB(3) = 1796 6B(3) = 10 

i B (4) = 1801 6B(.4) = 6 

i B (5) = 1797 6B (5) = 1O 

i B (6) = 1772 6B(6) = 5 
,j''' 

i B (7) = 1704 6B(7) = 3 

iB(8) = 1122 6B(8) = 8 

i B (9) = 1336 6B(9) = 9 

i B (10)= 1586 6B(10)= 10 

i B(ll)= 872 6B(11)= 11 

Step (3) k < 9, continue 

Step (4) S = {2,3,4,5,6,7} 

Step (5) k = 8 

Step (2) R(S) = {1,2,3,4,5,6,7,9,11} 

i!(2) = 2006 69(2) = 3 

i! (3) = 1796 6!(3) = 3 

i 9(4) = 2224 6!(4) = 6 

i! (5) = 1981 69(5) = 3 

i 9(6) = 2022 69(6) = 5 

i!(7) = 1710 6!(7) = 7 

i! (8) = 1122 6!(8) = 8 

i 9(9) = 1336 6!(9) = 9 

i 9 (10)= 1586 69(10)= 10 

i 9(11)= 872 69(11)= 11, 
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pB(2) = {1,2,3,5,6,8,9,10,11} 

pB (3) = {1 ,3,4,6,7,8,9,10, 11} 

pB(4) = {1,4,5,6,7,8,9,10,11} 

pB(5) = {1,2,3,5,7,8,9,10,11} 

pB(6) = {1,3,5,6,7,8,9,10,11} 

pB(7) = {1,3,5,6,7,8,9,10,11} 

pB(8) - {1,4,8,9,10,11} 

pB(9) = {1,4,6,7,8,9,11} 

pB(10)= {1,2,3,7,8,9,10,11} 

pB(11)= {1,4,9,10,11} 

p!(2) = {1,2,3,4,6,7,8,9,10,11} 

p9(3Y = {1,3,4,6,7,8,9,10,11} 

p9(4) = {1,3,4,5,6,7,8,9,10,11} 

p!(5) = {1,3,4,5,6,7,8,9,10,11} 

p!(6) = {l,2,3,5,6,7,8,9,10,1l} 

p9(7) = {1,3,5,6,7,8,9,10,11} 

p!(8) = {1,4,8,9,10,11} 

p9(9) = {1,4,6,7,8,9,11} 

p9(10)= {1,4,6,7,8,9,10,11} 

p9(11)= {1,4,9,10,11} 



164 

Step (3) k < 9, continue 

Step (4) S = {2,4,5,6} 

Step (5) k = 9 

Step (2) R(S) =, {1 ,3,4,5,6,7,9, 11} 

R, 
1 ° (2) = 2006 ,'" a1°(2) = 2 pl°(2) = {1,2,3,4,6,7,B,9,10,1l} 

R,10(3) = 1796 alO(3) = 3 pI ° (3) = {1,3,4,6,7,8,9,10,1l} 

R, 1 ° (4) = 2224 a1°(4) = 6 pl°(4) = {1,2,3,4,5,6,7,8,9,10,11} 

R, 1 ° ( 5) = 1981 a1°(5) = 5 pl0(5) = {1,3,4,5,6,7,8,9,10~11} 

R,1°(6) = 2022 a1,0(6)= 6 pl°(6) = {1,2,3,5,6,7,8,9,10,11} 

R, 1 ° (7) = 171 0 alO(7) = 7 pI ° (7) = {1,3,5,6,7,8,9,10,1l} 

9, 1 ° ( 8) = 1122 a1°(8) = 8 pl°(8) = {1,4,8,9,10,1l} 

R, 1 0 ( 9) = 11 36 a1°(9) = 9 pl°(9) = {1,4,6,7,8,9,1l} 

R, 1 ° (10) = 1586 a1°(10)= 10 pl°(lO)= {1,4,6,7,8,9,10,11} 

R,1°(11)= 872 a1°(11)= 11 ·plO(ll)= {1,4,9,10,11} 

Step (3) k = 9, stop. 

The best achievable tour is obtained as (1-2~3-11-8-7-9-10-5-6-4-1) 

with the cost 371. Note that, this solution is the same as the one found 

by the first algorithm. The tours produced for the MDVRP are, therefore, 

(Figure 5.7a) 

Tour 1 = (8-7-8) 

Tour 2 = (9-5-6-4-1-2-3-9) 

Total cost = 371. 

-1.::.. ...... ,.:'. 
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- 5.4 APPLICATION OF ALGORITHM IV 

The first step of the fourth algorithm is to determine the con­

vex hull or a partial tour for the problem in order to start the node 

insertion process. For problems that are not defined in two-dimensional 

space, however, the problem of determining the convex hull is very diffi­

cult or even impossible. Although the original problem (i.e. the MDVRP) 

is defined in the Euclidean space, the structure of the problem is changed 

by the transformation. In other words, the transformed matrix does not 

represent a problem in the Euclidean space anymore. Neither is the tri­

angle inequality satisfied. Consequently, it is not possible to deter­

mine the convex hull of the problem since it does not exist. On the 

other hand, we have do determine a partial tour to start with. A reason-

able subtour is T = (8-7-9-10-1-2-3-11-8) and will be used as the startfing 

point (Figure 5.6a). 

We will use the cost matrix given in Table 5.6. That is, the 

cost matrix with all elements C!. subtracted from a large number L = 250 
lJ -

. . 
will be used rather than using the original transformed matrix. The 

algorithm proceeds as follows: 

First, a list for the arcs in T is prepared. The list is given 

in Table 5.7 .. Note that, T does not cover all the nodes and the set of 

candidate nodes to be inserted is {4,5,6}. Since the maximum height in 

the ljst correspondi to arc (3,11) with a value of 171.59, nodeS is 

inserted between nodes 3 and 11. The resultant tour (8-7-9-10-1-2-3-5-

11-8) is shown in Figure S.6b. At this stage, T covers nine nodes and 

the set of remaining nodes is .{4,6}. The list is updated as shown in 
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Table 5.8. Note that there are three arcs whose end nodes allow the 

insertion of another node in between. Since, the maximum.height 

Table 5.7 - List ,for the arcs in T in the first step 

Starting 
node 

8 

7 

9 

10 

1 

2 

3 

11 

Table 5.8 -

Starting 
node 

8 

7 

9 

10 

1 

2 

3 

5 

11 

Ending 
node 

7 

9 

10 

1 

2 

3 

11 

8 

Candidate 
node 

6 

6 

5 

5 

Height 

160.83 

160.83 

169.98 

171. 59 * 

List for the arcs in T in the s~cond step 

Ending Candidate 
node node Height 

7 6 160.83 

9 6 160.83 

10 

1 

2 

3 

5 6 174.72* 
I 

11 

·8 
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(a) (b) 

(c) (d) 

Figure 5.6 - Stages of the node insertion process 

corresponds to arc (5,1) with a value of 174.72 we chobse arc (5,1) 

so that node 6 is inserted between nodes 5 and 11. The new tour is 

T = (8-7-9-10-1-2":3-6"-5-11-8) (Figure 6.5c). The number of nodes 

in T isstillless than 11 and only one node, namely node 4, remains 

to be sequenced. At this point, the list for the arcs in T is as 
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·Table 5.9 - List for the arcs in T in the third step 

Starting Ending Candidate 
node node node Height· 

8 7 

7 ,',. 9 

9 10 

10 1 -. 

1 2 

2 3 

3 6 

6 5 4 170.73 

5 11 

11 8 

given in Table 5.9. The list indicates that we do not have much choice. 

Consequently, being the only location in the sequence node 4 is inserted 

between nodes 5 and 6. The final tour is obtained as (8-7-9-10-1-2-3-

6-4-5-11-8), (Figure 5.6d). The cost of the tour is 372. Using the 

back transformation' once again this tour is subdivided into two tours 

as follows (Figure 5.7c): 

Tour 1 = (8-7-8) 

Tour 2 = (9-1-2-3-6-4-5-9) 

Total cost = 372 / 

Note that, the best tour among the ones shown in Figure 5.7 is 

obtained by applying algorithm II and that other tours have the same 

objective function value~ The. solution obtained by using algorithm II 



is the optimal solution to the problem at the same time. 

cost = 372 : 

(a) 

cost = 372 
(c) 

Figure 5.7 Solutions to the MDVRP 

5.5 COMPUTATIONAL RESULTS 

cost = 

(b) 
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Considering the difficulties associated with the second. and the 

fourth algorithms, experiments were conducted on the first and the third 
. . 

algorithms. Six comp1ete Euclidean problems were generated on the unit 

square and the algorithms were applied to them. Actually, the aim in 
-

conducting these experiments was to show that solving the TSP on transformed 
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matrices requires less computation time than it is required for solving 

the TSP on matrices representing complete graphs of the same size. This 

is obvious since the rows and columns corresponding to arcs connecting 

the generated arrival and departure nodes to each other are full of 

infinities. As a resu~t,there is no need to search on these rows and 

columns since those' arcs have to appear in any feasible solution. The 

results are indicated in Table.5.l0. A careful analysis of Table 5.10 

Table 5.10 - Computational results for the MDVRP 

No. of No. of Tota 1 No.· Algorithm I Algorithm II~ 
n vehicles depots of nodes -

Cost CPU Cost CPU 

10 . 2 2 12 313 2.522 284 0.913 

20 4 2 26 407 18.727 411 4.223 
, 

30 4 3 35 534 50.;66b 587 7.993 

40 4 4 44 565 90.660 587 12.444 

50 4 4 54 605 140.540 679 21.045 

60 7 6 70 749 298.361 779 39.231 

reveals that for problems of small size, i.e. 10-30 nodes, the computa­

tion time for solving an MDVRP seems to be greater than the time re­

quired for solving a TSP on a complete graph of the same size as compared 

with the results given in Chapter 3. However, it- should be noted that 

these figures include the time needed for transforming the MDVRP to an 

equivalent TSP first, and then making a back transformation after the 

TSP is solved. Actually,. the time needed to perform this procedure 
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grows linearly with m (i.e. the number of vehicles) and looses its 

effect as the problem size, n, increases in comparison with m since 

the algorithms themselves require computation times of orderO(n 3 ). 

Note that, here n is the number of demand nodes plus two times the 

number of vehicles. This fact becomes more explicit when the compu­

tation times of problems with more than 50 nodes are compared. 
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VI •. £ONCLUSIONS AND EXTENSIONS 

Several algorithms developed for solving the TSP are presented 

in this thesis. First, a literature survey is made on the existing al­

gorithms for solving the TSP in order to ~ive an insight to the various 

techniques which have proven to be of value up to date. A computational 

study has been conducted on the new algorithms. We have shown that the 

algorithms are at least as well as the existing algorithms belonging to 

the same general class of heu~istic procedu~es available in literature. 

The methods used here in solving -the TSP were based upon heuris­

tic principles believed to be of general applicability. In dealing with 

np-complete problems such as the TSP for which an efficient algorithm 

is unavailable, the general approach is to develop a technique by which 

near optimum solutions canbe obtained very fast. In general, to work 

on refinement techniques to obtain the best solution has been accepted 

to be,if not entirely hopeless, time consuming. Instead, much effort 

is spent on finding the best of a set of good locally optimal solutions 

which will be close enough to the global optimal solution so as to offer 

a satisfactory answer in most cases. 

In the first algorithm, a tour"construction technique is used 

by the aid of reducing the cost matrix. The effect of reduction is felt 

in several ways. The most obvious is a considerable decrease in running 
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time as a result of making the Hamiltonian circuit search on a very small 

number of arcs.- The reduction is based on the existence of a Hamiltonian 

circuit. Thus, the domain of the search is restricted substantially. 

This is done eve~ with the possibility that the optimal solution may be 

lost in the process. 
:," 

As mentioned earlier, (strong) connectedness and after removing 

a node from the graph, unilateral connectedness are necessary for the 

existence of a Hamiltonian circuit but not sufficient. In fact, a 

feasible solution may not be obtained even though the necessary condi­

tions are satisfied. Then, Little's branch and bound algorithm is 

applied partially to the resultant cost.matrix until a feasible solution 

is obtained. In other words, the subgraph that has been constructed in 

the first part of the algorithm is not~onsidered anymore. As an ~xten­

sion of this work, however, a means of further reducing the resultant 

cost matrix may be investigated. It has been observed that certain arcs 

appear in all the paths that have been found in the searching process. 

Therefore, since much of the time spent by the proced.ure thereafter is 

essentially a repetition of the previous work, this information may be 

used to guide further search and reduction and therefore result in saving 

computational effort. As a result, a decomposition of the cost matrix 

may be possible. Such a decomposition would not only decrease the size 

of the matrix being manipulated but also direct the search to find a 

feas.ib·le solution as fast as possible. 

For symmetric cost matrices, the reduction procedure may further 

be improved. That is, a significant reduction in computation effort can 

be achieved by taking advantage of the fact that the graph is undirected. 
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Eventually, the effort required for searching the whole matrix can be 

halved since half of the symmetric matrix contains sufficient informa­

tion for the whole problem. 

Considering the >second algorithm, further work may be based on 

finding all the multip~~ locally optimal solutioffiat the end of each 

iteration so that an optimum or a near optimum solution is not ignored. 

As mentioned before, the omission of a feasible solution in rank tends 

to increase the computation effort disproportionally and is not prefer­

able. Another means of extending the study is to "find a way of making 

more than one nonbasic variable which has been removed from the basis 

previously enter into the basis simultaneously. One possible way of 

achieving this objective, however, is to consider negative penalties 

and costs during the calculations with the condition that the final 

objective function value is positive. This.is necessary since a nega­

tiv~ objective function value means a decline in the process. On the 

other hand, attention should be directed to the trade off between the" 
, 

increase in the computation effort and the maximum improvement obtained 

at each step. 

An extension to the third algorithm would be the determination 

of the root node with which the algorithm starts. It is observed that 

" starting from different nodes yields different solutions. One way of 

dealing with this fact is, of course, to repeat the algorithm for each 

possible starting node and take the least cost solution as the best 

achievable one. However, one should note that the number of comparisons 

and calculatioffiwill be multiplied by n. A second and easily applicable 

extension is first to generate a tour with regard to this algorithm and 
\ 

then to test each node on' the tour between each consecutive pair on the 
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tour to see if such a change in the sequence will lower the cost. 

This is the simplest case of the processes which are referred to as 

"tours optimal relative to insertion and inversion". [49J. The process 

continues until no improvement is possible relative to insertion and 

. inversion. Needless to~say, an extra computation effort would be re­

quired in this case. However, one should be careful in directing his 

attention to finding improvements with a minimum amount of computation 

rather than to making the maximum improvement possible. 

The·insertion and inversion process can also be applied to the 

tours generated by the fourth algorithm. To achieve a tour optimal 

relative to the one produced by the algorithm, the testing process must 

be started from the beginning each time the tour is improved. In addi­

tion to improving the tours produced, extended work may be based on 

defining the convex hull since the identification of the convex hull 

plays an important role in forming.the final sequence. Overall, the 

extensions should be evaluated by cons1dering the trade-offs between 

effectiveness and computation effort. The question "How much can the 

computation effort be decreased by sacrificing some effectiveness" 

should always be kept in mind. 

The second part of the thesis is focused on the application of 

the algorithms to a special routing problem, namely the multi-depot 

vehicle routing problem. The relevance between the TSP and the VRPs 

is emphasized by first considering the TSP as the simplest VRP'and then 

progressing from the simplest to the more complex. As.a result, the 

MTSP is considered first and the MDVRP next. In each problem, we des­

cribe the constraints which are added to the previous problem in order 

to present the steps which lead t6 the more complex. 

I: 
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The fact that the MTSP can be transformed to an equivalent TSP 

has been studied extensively. However, the MDVRP which is an extension 

of the MTSP has not received that much attention. On the other hand, 

we have shown that the MDVRP can also be transformed to an equivalent 

TSP. Heuristic method~ presented in the relevant literature do not 

consider this possibility. Moreover, no efficient algorithm has been 

developed for solving even small size MDVRPs efficiently. However, exact 

algorithms developed for solving the TSP have shown a considerable prog­

ress in comparison with methods developed for other np-complete problems. 

Therefore, exact solution methods for solving the TSP can be used as a 

tool for solving MDVRPs of reasonable sizes. MDVRPs of large size, how­

ever, can be solved by using efficient heuristics developed for the TSP. 

The application of the heuristic algorithms presented in the 

thesis to the MDVRP showed that, in general, the algorithms require less 

computation time than it is required for solving the TSP on a complete 

graph of the same size. This is an important result, since it implies 

that heuristics developed for the TSP can be applied.to the MDVRp· more 

efficiently. 

An important extension which is a promising area for further 

work is the application of the fourth algorithm presented in the thesis 

to the MDVRP directly in a modified version. With the additional res­

triction that all of the vehicles in the depot will be used, the algo­

rithm'may be used to produce independent partial tours separately. A 

problem arises in determining the starting partial tours. One way of 

dealing with this difficulty is to form subtours containing the two 

arcs which join the nearest nodes to the depots. However, some other 

means of dealing with thi~ problem can be found. 
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KOGHAM'lHFSJ'-,( rI'JI-'IIT,OUll-'lll ); 

****************~********.**~+***+******+****+t*****************, 
THTS PHOGRI\M It:; I-'~EI-'EI\KE.'"' !H Yl\sn:JOVYI\. JUlY, 1 0 R3 *, 
INS1ITl!TE FOR ~RAlllJATE ~T\J[Jlf:S T~I SCIENr:F ANIl I::NGH'I::I::PJl'~(; *, 
ROGAZTCT lJNIVEqSITy, ISTf\NRUL· *, . . * , 
THIS PkOGR.I\M Ie- lHE COUE OF u nIFFERtNT Ht.UI-nSlIr I\LGOHT lHMS *, 
~OR S0LVTNG TH~ lRj\VELIN~ S/\I.I:.SMIIN-I-'KORI ~I"I (19..1,. TN I'IJnI1JON *) 
GIVEN f\ DISTI\NrE MI\H~TX i\SSOCIl\TFD 1I,IJ1H 1\ MULTIPLE - rEPOT - *, 
"EHIlL!-. ROlll tN~ PRO~LEtJ! rMDVHI-') , THI:. P"'O"t<I\~ CREI\Tt:.S A *, 
TRI\N~FURMEn MI\.,;RIX So lH~l !HI:. SoLtJlION TV lHr Mn\fPI-' r.A~l HI:. *, 
OHTI\INt:.1) BY ~(),_\lHJG THI:. TSP ON THE lKAN~FVt<wl-n ~I\TPIX.. ••• *, 

*> 
***************.*********.******************* •• *****************, 
UNST NO = 70; Nnl = 71; NnN·= 2000; 

YPE ~ATKTX = I\R~AY(.l •• NUrl •• NU.' OF INT~Gt.t<: 
I\HRY = I\HHl\v(.' •• I\Jn.) OF TNTEGER; 

'f\H FtC: MATRIX. 
\j~'N()OEtHC'Vt~,IJ ~ ARHY; 
nEMANn,DFYOTs : SET OF 1 •• NU; 
Nl, INF, TSI-', \/nP' Nnt-.M, N[Jrp ,lDU, J, HJV Tf'11 r_(;~ II; 
I , K , I'J, L, M, rv,~ r L 1 , L2, VlJ, VM : I NTFGER ; 

~OCEUURt:. PRINT( \lAP C : M~TRIX; 
\fl\l~ N : I"'TEbEH ); 

r***************~*********~***.**************.~.*****************) 
, THTS pHOCEnlJRI:. OUTPUTS A"IY N X I\J SQUARE ~/A I Hl Y *, 
.***********+*********************************~.*****************, 

fAR T'~'~l'J? : TNTEGEH~ 

it,:G Hl \"iR 1 TF:UH 
~OH 1:=1 TO N ~O 
n I:. GIN I.! R T T F L N; 'J 1 ~ = u; J 2 • = 0 ; 

RE.PF:" T \'JR T TE, fIn I·!H J H_ ( , HOI"i" 1 : 3" , H 
~1:= • .J2+1; 'j?:=J2+?O; 
IF J~ ) N ~HI::N J?:=N; 
~OH J:=Jl TO ~2 DO WDITE(C(.T,J.I:~' 

tJNTIL ~2 = N· 
END 

:Nr1: 

Jf-<OCEl)ur~t. YTSI-' ( III\K C : MATHI x; 
I/I\H r-~HC : I\RRY; 
\}I\H !'1'TNt- ~ TNTI:.GF.P); 

t*********************************************~~****************) * THrS PHOCEfJIJHF.: FTNDS .A Hr=-lJRISTIC SOLllTI')"! 10 THE TC;P FlY. *) 
t CHEATING A SIJH~Rf\PHG(1 \,illTCH IS COMI-'HIseD HY M~CC; t·.II1J-l 7~.RO *) * COSTS AS A HES,jLT 01- RtU,-,CTNG THF COST ~1'\lKp' •. THE ~Erur.l ION *) * lS' CU!'JI I!'lLlF:1J U",TIL A HI\!V'TLTor-.,'II\N CTRCUIT t.)q(-.TS 11'·\ (:;0, *) 

4o*********************************************.~*********.******) 
TYPE AHRl = AHHAy(.l •• NUN.,Ot- INTFGF:R; 

I\HR2 = AHHl\y(.l •• NOJ., ot- INT~GEK; 
AKR3 = i\H~A~(.t •• ND.' OF TNTEGER; 
NODI::S = St:.T-OI- 1 •• NI); 
AHR4 = i\HHA v (.'1. •• NLJ.' O~ NODES; 

VAH FI\R,HA~ : AHpl; 
PH,Pt- ! I\KH2. 
on,ltJ,Hc,CAR;PA :IWH3: 
R,Sl,S? : NOnF.S; 
o : IVI\TRTX; 
RH,F .... : AHKq. . _ 
T , J , '" I'l , M , N I , ;. () N , L , K , "q ~, , tI'- 1\ )( M , N S , f\JR , H N , 1\ L L , I ,- , C () S T , 
~~AXrMC()STrTt;T?'COS1A"'COSTA : Il'JTt:.GEI?; 

PKOCEIJURt I-iI\MTL( \lAI~ t-I\H,I:\"H : ARRU 
VAR I-'F,I-'H : ARK?: 
\11\!~ on,JIJ : I\RH:S: 
'fI\HN,MtI~'''I\LL'FF : JI'lTEGFK} : 

********~**********+.*****+*******.*******+** •• ~****** •• *********, * THT~ PKOCEnUKE Flf\JnS ONI:. OH ~ORE Hl'~'lLT/,)N1AN (THrIJT1S 1'" 1\ *, 
* UIPl:Cn':-D GRAPH RYf\N t:.NlJ"EH 1\ T I \IF METHon *, 
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ty*************+.*y+.**********+*******+***************+**********) 
!\ I~ ELl n I] , ? 0 f") , 3 f) n ,4 f) n , 511U , {., 0 n : 
!\~~ KLI,CY,P,TOH,HC : f\RR/\v(.l •• NIJ.) 01- J"'Tt.l:1ER: 

T , NP 1 , tvlp 1 , K.1 , K , ,J , J 1 "J2. L , JL , PEl-? , J 1 , 12 ,.,JJ , L L , JS , 
L 1 , L 2 , n [) , S , 1: r , KKK , H J 

, J 'I , K ~ , I F r , It, I< J , ~.' "! ' 1 L , I I 1. , T T 2 : TNT E <; t.,~ J 

-{OCF:OUm- I-'ATH( "I\R T'J,l-'tn,TJrl2 ~ INTI:::GJ:"PH 

***********+*************~**+.***********************************) 
THIS PKOCE8URE FINns THE LI\RG[ST PA1H THnl CAN R~ FOR~En BY *) 
THE I~~""LIEr)."I{,.s 1I."m THAT CO"qI\HIS PRe (T'J). THE Sll\rHTNG *) 
NOnl:. "1'10 THI:.. t:,',f)lI'!G "lOUt:. OF THI:. IJI\TH ARF A~SO SPFCTFTFO... *) 

****************************************************************) 
AR L,KK,Ll,JA : TNTEGFR: 

~GIN PER:=O: L:-1: 11:=1: 
"I H T L E C T ( • ! 1 • ) .-< ) 0 DO 
HtGIN 11:=Cl('T1.): L:=L+l 
ENO: 
12:=J: L:=L+l: 
WHTLt:. ~LT(.12.) <~ U OU 
BI:.GIN 12:=-KLI(.1?)+(KLT(.1?) nY\I NPll*1'J1-'1; L:=L+1 
ENr); 
IF L = N THEN 
AI:.GIN KK:=-K*N~': L:=P!-(.l?); L,:=U: 

REPEI\T L:=L+ 1 : 
IF FAR( .L. " = T1 THbl Ll :=, Ft..SI:: 
I F (F A R ( • L) < U) AN r"\ (K K - rAP. ( • L.) - 11) THE"! L 1 : = 1 

llNTTL (l1 = il OR (L = PF(.I?+1.»; 
T f- U. <) 1 T i~ F: N PI:. R : = - ~ E L S E 
HEGIM PER:=li Cl(.J.):=I; 

CI(.TI.)::::T?: HC(.N.,::::Cl(.R"".l; L:="'-1: 
WHILE'- <)'K 1)0 
~EbTN Jn~=HC(.L+l.); HC(.L.)!=CI(.J~.'~ L:=L-l 
["!Il ; 
CI(.Tl.)::::n; CT(.J.I·=O 

ENIJ -
FNn 

:Nl) ; 

J~OCF.1J.URt.. T I jPI) ( IJ lI.R T A rI H" , K 1 : PITEGI"I-U 
\I!\R "1,1\? .. f\~R1; 
III\R r>],P(> ; I\RR2: 
1.lI\H Ill, IJ(> ~ f\~R3 ): 

**************************+***+*******+**************************) * THIS PH()CEOIJRE HI:."'(WF:S IXI L IHEAPCS t:ITHFK EI'lf\NI\TH.J{-; FR()I'I OR *l * TER"'INATTNG AT TH. *) 
****+.***********+*****************+******************************l 
V~H M,lll.H,J : INTEGFR: 

HI:.G HJ r-': =P 1 ( • T H • ) ; 
HEPEAT M:=M+l: TAR==Al(.".); 

I~ II\R ) n T"EN 
REGTN 
. I~ 02(.IAH ) <) 1 lHrN 

~EGTN J:=P;(.TI\K.): 
REPF."T J~':::J+1 
UNTIL (1\6(.,J.) ::: 11'1) OR (J = P2(.TI\K+I.» 

E"!U ELSE . 
IF JAR = Tf\ 1Ht:.N J:=L ~L~E Tf\:=O: 
1FT 1\ <) r)' THF-:".! 
HE(';TI\J {I. 2 ( .,J. I ~=K1-1\2/.J.); 

t)2( .TAR.) !=I)? (.I/\H. )-1; 
A I ( • M. ) : -K 1-TAR; 
U 1.( .1 H. ) ;=1) U • J H • )-1 

E.."tI) • 
ENG 

IINTIL ql\ = I) OR (M = P1{.It-H1.ll. 
eNI); 

"'~OC~[JURt.. FLJIJIJ( "I\R 1I.1,A2 .lI.~Hl; 
\f1\R P1,P2 • ARH2: 
'1[\\-{ n1,D? • I\HH!>: 
Vl\~ T,K1 : INtEGER ); 

C****+******.********+*+***+*******+***+***+*********************) 
(* THIS f>HOCEOI'JHF.: P~YFORtJ;~ THF I-OHWI\RIl tJpnl\T1NG PHI\SF.:... . *) 

1**************************+*************************************) 



AK J'I~'L : .TN1FG~~: 

iI:.GIf\J .. 
FOR J:=Pl(.I.'+l TO PI(.Ttl.) no 
II-A! (. J.) > f) THFI'! 
HEGIN JI\!=I\U •. ,.); L:=1-'2'.TI\.): 

REI-'F.1\T L:=L+; 
tlNTTL (1\?(.L) = 1) UK (L:= P2r.TA+l.'); 
D2 ( • 11\. ) ! =n~ 1 • I 1\. ) -1 ; 
./\ 2 ( • L • ) : =K l-I\? ( • L • ); A, ( • J. ) : =1< 1 - J A 

END: 
01(.1.):=0 

:NO; 

'I-<OCEDlJRI:. RUPIH \/,1\1-< 1\1,11.2 • AH~l: 
"AH PI,1-'2 • I\K~2: 
"I\H Ol,lJ2 • I\H~3; 
01\H I,Kl,K0 ~ TNTEGE~ ); 
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,***+***********+***********************************************) 
, THTS PI-<OCEOUI-<E PtHFOR~~ THE HACK~ARO uPnnlING PH~SF.... *) 
,***************************************************************, 
IAR L'lI\'J :. INTr-Gl:.R; 

it:.G I !\I 
FOR L ~ =p 1 ( • 1 • ) + 1. lOP 1 ( • ,. + 1 .) [10 
11- <!\l(.L.) <= Kl) ANO ('\1(.L.) ~= K?) THt.N 
REGIN !1\:=KI-I'I,(.L.); A1'.L.):=II\; 

D 1 ( • 1 • ) : =01 ( - I • ) + 1: J: :7 P? ( • If\.. , : 
REJJEAT J:=J+'; 
lJNTTL (Kl-!\~LJ.) = I) OK (J = P~(.II\+'.»; 
1\2 ( • J • , : =!: I")? ( • T 1\. ) : =n2 ( • T A. ) + 1 ' 

END 
: 1\]1) ; 

~**************************************************************) " THTS PI-<OCEDlJl-<t:: THIES TU nl:.MUIIE I\PC (IA,TR) FHOM THF GRI\.PH. *) 
~ THF.ARC MAY NOT HE HFfVOVrO !Jill:. Tn THt. FI\r:t lHAT EITHEr T' *) 
~ TS NOT TN THE r;RAPH OH ITS K~MOVI\L I-'~EVF'Nts THE FXTSTENCf: *> 
~ OF. I\. HAW:TLTONT"N CTf-<CUll. ••• '*) 

,,***.**********************************************************1 
JAHIe : INTfGEH: 

~I:.GIN JJ:=PF(.I/\ ): TC:=U; 
REf'lEI\T J.J:=J,J+;; 

TF ( FI\R(.JJ ) '> 0) ANn P-I\I'Ue-JJ.)= TRJ T~F:I'J 
nEG!'" Ll:=IJRr.JH.); 

HEfJEI\T LL:"'::'LL+1 ' 
UN" TL (H1\I'Q'.LL.) = J ~) OR (LL = fJH(. T!j+l.»; 
IF HI\.R(.LL ) = IA lHrN lC:=1 

FNO • 
UNTIL IIC = 1> Of-< (JJ = "'1- (. TA+1.»: 
IF IC = 0 THEN .JJ~=O ELS~ 
TI- (OO(.T~.) = U OK (JlJ'.n~.) = 1) lHEt>' uJ:=-] FL<;l:. 
Hl:.GIN I-AR(.JJ.):=K\-TH; 

00 ( • I A. ) : =o[) ( • I 1\. ) -1 : 
RAH ( • LL. ) : =K 1-1.1\; 

, TO(.IR.):=lDr. I H.)-l 
END 

t:Nn: 

****************.**+*) * STEP ~ INITIALTZ~ *) 
*********************) 
HI:.GIN rF:=O; 

FOR 1:=1 TO N ~O 
REGIN CT(.I.):=O; KLJ(.I.>:=O: P(.I.):=,: 10H(.I.):=0 
ENI"); 

·NPl :=1'-1+1; MPI:-M+l; 
Kl~=-~fJi; K:=li H(.l.):~HN: 

************~*******.*~*******.***' * STEP 1 SEI\.~CH ~OH T~PLIE~ I\ReS *' 
****************.*****************l 



HEPt..I\T IF f)fl(. J.) = , "HrN .11 :=1 
F:LSF: TF TI)( •. f.) = 1 "HrN .1?:=, 
F:LSE J: =J+1 . 

IINTIL (J > N) f)H eJl = I) Ol~ (J2 = 1); 
IE J ) N THEN GOTf) 2nO: 
IF J1 = 1 TH~N . 
8EGIN L:=PF(.J ); 

RI:YEAT L:=L+; 
tJNTIL (FAI·n .1:.) > 0) On (L - PF( .J+1.) l; 
JL : =t- f\R ( • L. ) • 
P ~ T H (J , JL "..JE.";, I , , I? ) ; 
Tt- Pt-:H = n THEN 
BEGIN KLJ(.J ) :=KI-Jl.; CT (.JL. 1 :=J; 

I I )PO ( J, JL ,!" ' K 1. , H 1\ H , t- ~ H ~ PH, PF , In, 00) : 
IFJ = 0 THEN GOTO 4"10 I:LSE 
HE b I "1 R 1\ H C ( ! 2 , T 1 , K 1, ,J, L L ) : 

IF JJ = ~1 THEN bOTO 40U 
ELSE GOTI') ]no 

ENIJ 
ENU fLSE 
rt- PER = -1 TH!:"J bOTO 'iOn FLSE 
F~EG TN K: =K+ 1.: Gen 0 5"U 
ENLJ 

EN!); 
IF J2 = ] THEN 
REGIN L:=PR(.J ); 

HI:I..JEAT L:=L+; 
IJNITL (RAR(.,.) > 0> On (L - PR(.J+l.1); 
,JL: =H I\R ( • L. ) i 
p~rH(JL'J,f-JER,Il,I?); 
IF. P!:R = I) T~F.:N 
BEGIN KLT (.J, .) ~=K1-J: CT (.J. > !=JL: 

IUP!)(J,JL'f,Kl,t-f\R'H~R,Pt-'PR,On,JO) : 
IF J = 0 TI1EN GOTO L~"OI:'-SE 
H FbI "l R 1\ H C ( T 2 , T 1 , K 1, I J , L L) : 

IF JJ= _ 1. THt:.:t-J bO";O 4 n U 
t.LSE GOT!) InO 

ENU 
ENU t_LSE 
It:. pr.R = -1 THt-_N GaTO liar) F:LSE 
REGJN I:=HC( K~): K:=K~l: GOTO 50U 
FNU • . 

ENn: 

(**************************~********) 
(* STFP? Aon IWpLIED .I\HCS TO He *> 
(**************************.********) 

'lIO : 

(****************.**) 
(* STFI..J ~ RHANCH· *, 
(*******************, 

illO : L1:=I..JF(.T.)+P( T.): L~:="F(.T+l.); 
TF L1 ) L2 THE~ 60TO 4UO EL~I: 
Ht::GIN ()o:=f\!*SQn(N): J1:="); J?:=O: 

FOR ,J:=L1 TO L? 00 
nEGTN JL!=t-AD(.J.); 

IF JL ) I) THEN 
l3E{'TN KKK:=t: . 

I F on ( • J, .) > n 1 Hc:-N 
HEGTN ':)::::f)U(.JL.>*·'+TIH.JL.>; 

T F otH JL.) )1 U, • JL.) .T!-IEN 
S : = I U ( • JL • 1 * ",j+OIJ , • JL • ) 

I:NO ELSE· 
IF (KLI( JL.) <> 0, I\"m (JI. <> RN) tHE!\!-
HEG 1"'! IE: ~J1. ; . 

HEP!:AT' TE ~=-Kl.l (. IF.' + (KI. J (. TE. 1 Ul V NP1) *"'P1 
I JNT T L vL I ( • IE.) - 0; 
I F I IJ ( . JL • 1 < (1) ( • T t .) TI-lE"J 
S:=I!)(·JL.l*N-fO!Jr.TI--.) F..LSF 
g : =01) ( : Tt • ) *f\.'+ I IJ , • JL. ) 
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~Nn FLSE KKK:=O; 
IF K'<t<, = , THEf'.' 
HEG I"1 . 

TF'IlU '> S THEN 
~EGIN nn:=s: lP:-~-
EN!): .-
TF ~1 - {) THEN ~, :=~ E:L5F 

L TF ~2 - 0 THEN ~~:=~ 
r_NI) 

END 
ENU: 
T~ Jl = 0 THrN GOIO 4U~ ELSt 
REGIN JL:=~A~(.IP.); 

1-1'11-« .IP.) :::FI\R( .~l.): FAR( .J,.) :=~L: 
IF J2 = 0 THEN ~?:=P~(.I+l.l+1; 
P(.I.):=~2_P~(.I.); ~:=K+l; 
HC( .K.) :=~L: K, :=-t<,*~'1-'1; 
J:IJI-'f)(FI\R'~I\R'I-'F'PH,O'""IUd,K') ; 
HJI-'D(RI\R'FI\R.I-'F~'PF' l"',OUf~L,K]): 
TOR ( • K. ) : =n ; 
HAHC(JL,RN~Kl ,~J~,LL): 
IF ~~ = -1 THEt--1 G010 qnu tLSf:' 
IF J~ <> 0 THEN TOH( K.)~=J~~MP1+LL: 
GOiO 100 • 

FNU 
Etm; 

c**********************) 
(* STEP IJ RACKTRl\CK *) 
(**********************) 

QUO : TF K ) 1 THEN 
HEPEAT JA:=HC( K.); 

jP<.JA.l:=l; jA:=HC(.K-1.); 
rF KLT (.JI\.)' <> 0 THfN K:=K-l 

IJNTlL lKLI(.~1\ 1 = U) OK (K = 1): 
IF K'> 1 THEN • . 
HEGIN K1:=-K*Nnl; K2:=Kl_NP1: 

I :=HC< .K-1.); IFF:=O: 
FOH ~: = 11 0 ~J DO 
rF (KLJ( .~.) <= 1'1:1) ANr'I (KLl( •. J.) >= K?J THEN 
REGTN JA:=Kl_KLl(.J.); 

~LI(.J.):=n: 1F~:=1; 
. CI(.JI\.)·=n 
END; -
IF TI-F = 1. THEN 
FqH ~:=1 10 ~I Of) 
Rt:'_GTN L1:=I-'F(.~.)+1; L":=t-'!-=(.~+1.); 

~OH L:=L1 TO L2 DO 
BEGTN JL:=¢I\R(.L.); 
, IF (JL <= K1) I\NI) r~L '>= K?) THEN 

HEGIN JL.=K1-JL; 
. FAR ( • L . ) : =.JL; OU ( • J. ) : =on ( • ~. ) +' ; 

LL : =I-'H 1. JI. • ) : 
REPFAT LL!=LL+l 
IJNTTL ,KI-BAR(.LI.) ':: J) OR (LL = tJR('JL+'.»; 
RI\R(.Lt .)!=~; lUr.JL.):=rn(.~L.)+l 

END -
E.ND 

ENU tLSE 
REG I I'l T T ~ =H C ( • K • ) : 
. ~IJ!Jn-(FI\Hd~I\R,PF'PH,O"'IUrl,K1 ,K2); 

HIJP[)(RI\R,FI\R,I-'R,Pf,In,OU,II,Kl.K2): 
I F TOR ( • K ., < ') IJ THb! 
HEGIN Jl!=~OH(.K.) UTV ~Pl; 

~2:=TOH( K.)-J1*MP1; I-I\H(.,n.):=RI\.I: 
~A:=HC(.~.): On(.~!\.':=OD(.JA.)+l: 
HAR (.J2.)·~=HC (.K.) l IU( .RN.) :=10 (.RN. )+1 

END 
ENU: 
K:=K-l; G010 ~O" 

ENn EL~E 
WRI1ELNJ WRITE, N: . 
~NRT1ELN(, NO lll\tJiTLTONIA-, Cl~CIJIT C/'IN RF t-UUND,): 
GUTO 6ll n; 

<*******************************************J 
(* STE!J S fI HAM.It.TONTI\N cr"ClJIT IS FOUNU _ *' 
(*******************************************) 

500 : WRTTEL~; WRITE,N; 
\'1lHiI::LN ( , ~1\~i.TL TONI AN CTKCUtT:,); 
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,Il 0 

KJ:=O: MN:=O: r0~T:=0; 
HEPEAT KJ:=K.J+': 1I.'t'1:=~N+",O; h!HTTFLN(, , J; 

If- rv'1'J ") N 1 Hr"J ""I'J: =1'1: 
FO~ lI:=KJ T0 MN UO 
R~GTN TI1:=HC(.lT.I: 

IF Tt (> N THEN IJ~:~HC(.II+,.1 f:LSF l.I2:=HC(.,.): 
C0~T:=COST+O(.Tll'II~.I; WUTTE(HC(.TT.):4) FNU . 

UNTIL MN = N; 
'''HTTt::.LI'J: \AJRllE, I\j(, COS ... =, ,COST:9); 
It COS1 ( MCOS": 1HFN 
~EGIN MCOST:=CnST: 

FOK 11:=1 TO N nn MHe( IT.):=HC(.II.) 
ENO: • 
Fr:=l: 
If ALL = 1 THEt\ 
~EC;IN K:=K-U r;OTf) 400 
END I::..L~E GOTO ~OO: 
WRTTI::..LN; WR1TFlN; 
\o,JKITELN(, EN,") OF Hl\f-JIL"'-ON!I\N CTRClJI1 SfAHCH,) 

END; 

I-'HOCEDURI:. F ORAI)J (. V IIR NN, M : 1 "'1 E"GFR I; 
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(****+*******~****~********~***+********************************) 
(* THTS PKOCEnUKE CKEATES 11.1E "'()K\tJA~O ADJArFNCY ARRAY OF THE *) 
(* SURGKI\I-'H GO AN'") SPECf~IE~ THF NUMHER O~-hKCS M TN GO.... *) 
(**************************~************************************) 

VAH I'J : INTEGER; 

~I:.GIN M:=O; Pr(.,.):=U; 
FOR 1:=1 TO N nO TO(.I.).=o: 
FQR 1:=1 TO N r,O 
HI:.GIN 

FOK J: =1 TO ~.I UO 
TF C(.I,J.) (= N~ TH~N 
REGIN ~:=M+li rAR(,v')'=J; IO(.J.):=In(.J.)+l 
END; • 
Pf ( • 1+1 • , : =w" 011 ( .1 • ) : ~rJ:-fJF ( • J • ) 

ENO 
END: 

I-'~OCEOURI:. RACKI\!),): 

c********************+******************************************l. 
(* THTS PKOCFJ1UKE FO~fI.~S THE B.IILKWI\Rn I\I)JAC~Nl,Y ARRAY OF GO... *) 

(**************T.*T.*******~*+**+********+*******~****************) 

, 
H~GIN PR(.1.):=O; , 

FOR 1:=1' TO N nO ' 
REG I N I-'R ( • T + 1. ) : =I-'R ( • I • ) + In t • I • ); TO ( • T. l : =0 
ENO: 
FOP 1:=1. TO N nO 
FOR J:=PFC.l.)+l TO prt.T+l.) 00 
REGIN L:=FI\K(.,).): 

TO(.L.):=II)( t...)+1: 
JA: =I-'B ( • L. ) + Tn ( • L. ) ; 
P A K (' • J 1\ • , : = 1 

ENO 
EN!); 

I-'HOCEUURI:. ROOTNOnE( VAR KN : INTEGER )1 

(**************************+************************************) 
(* THTS pKOCEntJHE FINnS THt:. KOOT NonE WITH 'NHICH THE *)-
(* HAMILTONTAN ClpClJl:T SEA~rH WILL ·STlHn... *) 

(****************~*********.************************************.) 
VAK MAX,~TN'T : INTEGt:.R: 

~~GTN MAX:=YO(.l ): MIN:=O~(.l.)~ RN:=t: 
FOR 1:=2 TO N Ao . 
If ~AX < IO(.t ) THtN 
HEGIN MAX:=I!)(·r.); ~IN:~Of){.I.); RI'l:=I 
END ELSE • 
TF ~AX = TO(.l ) THEN 
IF ~IN > 00(.1°, THEN 
HE.GIN ~IN:=Oll( ·l.); K"::=T 
END . • 
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I-'KOCELJURt: REnUCI:; 

(*****~*********************************************************) 
(* lHI~ PKOCE£1IJHE RF.OUCES lue. COST MI\TRIX •• ~ *) 
(***************************************************************, 
VA~ I'J,MIN : INTEG~R; 

Ht:G HI (* REOt ICE *, 
FOR 1:=1 TO N nO T£1(.I.,.=n: 
FOR 1:=1 TO N rio 
HEGIN MIN:=INF. 

FOH J:=l 10 t, DO 
l~ C(.I,J.> < MtN THt:N ~IN!=C(.I,J.); 
FOK J:=l TO tl no Tt (.I,J.) ~ MtN THtN 
HEGIN IF ('T,J.) <> 1",F'lHEN C(.J'J.l:=C(.Y,J.)-MH' 
ENO I:.LSE . 
TF C(.I,J.) - MIN THEN 
BEG I N In ( • J'-) : = In ( • ...J. l +,; C ( • T , J. ) : = n 
ENLJ • . 

EN£1: 
FOR J:=1. TO N n() 
If 1LJ(.J.) = n TH~N 
HEGIN MIN:=INF: 

FQK 1:=1 TO t--, DO 
If CI.T,J.) ~ MTN THEN MIN~=C(.I,J.): 
FOK J: =1 10 ,,', DO 
IF C(.T,J.) <> IN~ THEN CI.I,J.>:=C(.T,0.)-MIN 

ENn 
t:NLJ: 

I-'KOCELJURt: REnCH( VAR Nl : TNTt:Gt:R l; 

(***************************************************************) 
(* THrS PKOCEDUKI:. FINDS THE NOllE SET REACH T8 Lt. FROM NoDE NT ••• *) 
(**********************~****************************************) 

INTEGER; 

I:1t:G H! 
FOR NP:=l TO N no 
IF NP <> NT THr."l 
REGIN KR( .")P.) :=( • "JI-'. ); 

FOK 1:=1. TO ~I DO 1-'1\(.1.):=0: 
PAC .1.) :=NI-';L:=1; 1<.:=1; 
REPEAT J:=Pl\c.L.H J:="!-"(.J.H 

KEI-'EAT 1:=T+1: 
IF FnK(.T.' <> N1 ~HEN 
IF Nf)T(F~H(.T.)· IN l-nn.NP.» THEN 
HEGI~ KRC.NI-'.):=KKr.NI-'.)+(.FI\HC.J.).); K:=K+l; PQ(.K.>:=FAR(.TI 
I:Nn 

UNT I L (I = PF ( • J+ 1. • ), OR (K = N-1); 
IF (K < N-1' THt:N L:~L+l 

IINTIL (PA(.L·) = 0) UK (K :: N-1); 
CAKC.NP.):=K· 

ENO 
t:.NO; 

I-'KOCFLJURI:.. LIT( V!\R !) : ~!l\l""'IX: 
V!,\R HC : I\I-{....,Y; 
Vi\R N,IN~ : INtEGER ); 

(***************************************************************, 
(* THIS PKOCEOUHE A~PLIES L~TTLE,S !\LGOKIT~M ~ARTI!\LLY... *) 
(**************************~************************************, 

VAR TN~T : I\RKI\Yr.1 •• NO,1. 3.) o~ TNTEGER: 
TKE : ~RRI\ y ( 1 •• NLJ, 1 •• .;.) O~ INTEGER: 
LUP , KlJP, CUP : AI~ru\Y ( • 1 •• fI.!IJ.) 01= I N1 EGt::p ; 
ROW\~' COLL : sET 01- 1 .. OlD; . 
E : MATRTX: 
LEVEL,C1,C2'Q'(N,MING,M,L,MI\X,K : INTE~FK; 
T'J,IIIIT,MI\XT'Kl,K2'TE'1 n ,II,IJ ~ yNTEGt::R; 

I-'HOCELJUR~ REnKOW( V~R C1 : IN1EGER ); 

<***************************************************************) 
(* THIS .PHOCEnUKE Pt:.RFORtJ~ THE ROt." REIHICTT0N... *) 

(**************************.~************************************, 



VAR T,~,MIN : INT[G[R; 

tH".GHJ Ct :=0 i 
FOR I:=t TO N nO 
Rt:.GIN MIN:=O; 

It NOT(t INpOWW) THt:.N 
pEGIN MtN:=hjF; 

FOt< J:=l To N no 
IF NOT(~ t~ COLL) TH~N 
IF E(.I'~.·i < MIN lH~N ~rN:=F(.I'~.l; 
IF MIN <> 0 THEN 
Fat< J:=l TO N no E{.T'J.):=EC.I,J.)_ulN: 
Cl:=Cl+MIN 

ENO 
EN!) 

tNO; 

~HOCEOURt ~EDCOL( vnR C2 INTEGER ); 
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(**************************.***************************.********) 
(* THTS Pt<OCEIlIJRE PEHFORM~ THE COLUMN HfUUr:TIUN... *) 

(***************************************************************) 



WHTLE HIJn(.lq.) <> 0 no Kl~='''Wt-'(.L(1.): 
\'!HTLE CUn(.!':.?) <> 0 UO K2:=CIlt-'(."'').)J 
t-_ ( • K 1 , K. 2 ): = J NF 

EN!); • 
TRI:.. (, LEVEL, 1. ) : ='''-IN+''A'I(: 
HEI)ROloJ{ ell; REnCOL (c~ n 
MTN:=MTN+C1+C?,: 
lRI:..(.LFVI:..L;?l:=~TN; 
LEVEL: =LE\/r:-I.+ 1. 

UNTIL (LF.VEL'"> 1\1) OR ("IN '>= MTNGl: 
IF MIN < MIN~ THEN 
REGIN T:=O; v:=1: 

REPEnT 1:=T'+l; HC(.I ':=K; K:=RUP(.",., 
UNlIL T = N • 

FNLJ I:..LSE 
BEGTN T:=O: TE:=O: 

HEt-'EAT 1:=T+1; . 
IF TRE( ,rEVEL-Ill., < PJIN THEN IE~=l 

UN"'IL (IE:: 1) OR (1 = LEVEL-1); 
IF IF = 1 THEN 
eE6IN LEVEL!=LEVEL-I: 

~OWW:=(. ); CULL:=, •• ); 
~O'~ Y:=',,'TO N (10 
HEGIN THr(.T,l.>:=,,: lR£(.T,2.):='H 

FOR J:-l TO N UU E(.T'J.>:=U{.I,J.); 
TF LUP"(.I.) = LE\lEL THFN 
REGIN '1~=T: L:=R"P(.I.) 
END;' . 
ClJP(,! ):=0; RUl-'f.T.':=O: LtW(.T.J:=O: 

ENn; • 
IP:=o; 
I-OR t:=l TO 1\1 00 
IF INI-T( T",> > L~VEL lHE~ 
HEG T I\J • 

TF II-' = U THE": 
HEGTN TP:=,; . 

TN~T(.I '1. > :=LrVEL; TNFT(.1 ,2.) :=~; 
I NF T ( , I , 3. > : =L: E ( • M, L. , : = I NF 

FNn ELSE INI-T{.I,l.':=INF 
I:..NI1 ELSf~ 
HEcH"j lI.=INF1(.I,.,.); 

T J : = T Nr- T ( • T , 3 • , ; 
F. ( ,IT, T J. ) : = T I'll-

t:I'JD ' 
ENI) 

ENLJ 
IINTIL (MIN < !'JTNb' OR (Iro - 0) 

END; 

HI:..GHI MCOST:=II\JF; 
FOR 1':=1 TO "I nO 
FOR J:=l TO N ~o nC.T,J.,:=C(.I,J.'; 
REnuCF::; '''IN: =1): . 
FORAOJ(NN,M); 

(************************l 
(* OnTAIN CONNECTr:-ONF:SS *l 
(*******~********~**.****) 

FO~ NT:=l TO N no 
REGIN . 

FOK 1:=1 TO tl DO Pl\c.J.>:=O; 
Rt:I-'FAT PI\ (., ): =~J1: Co-! :=U : 

L:"=1: R:=<'NI.)J K:=1; 
KFI-'EI\T J:=r':l/U.L.': 1~=PI-C.J.); 

KEPEI\T 1.=1+,; 
TF NOTfFA~c.J.) TN ~l THFN 
AEGIN D:=R+{.~ARr.I.).): K:=K+l~ ~A(.K.):=FAH(.T., 
ENn ' . 

UNT I L (1. = PF ( • J+ 1 • ) ) '. OR (K = N,: 
IF K = N THEN CON:~l tL~E L:=L+l 

U~JTTL (PA{ L.l = 0) f'lR (K = N); 
I F CON = f). THt-_N 
HEbIN MTN:=TNI-: 

t-OR T:=l TO N no 
IF I IN rJ lHEN 
I-OH J:=l TO N DO 
IF N01(J TN R) lHI:..~! 
IF C(.l, J.) < MIN THFN MJN~=C(.I,J.H 
rOR T:=1' TO N no 
J F 1 IN n 1 HEN 
H)I~ ,J:=l'TO N no 
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JF NOT(J TN R) THf:. ' IF C(.T'.I.) <> If\I~' THr,N C(.I"J.)::::C\.I'J.)-MTN: 
r OR.AnJ (Ntl,r~) ; 
t-OR 1:=1 TO N DO f-I1I(.I.)·=O 

UllJ" . • 
UNTIL CO"! = 1 

END: -

(***********************************, 
(* OBTAIN UNILATEpl\L CONNt-.CTEDNt-::~S *) 

(***********************************) 
FOR NY:=l TO N no 
REGIN KEACH(NI): 

FOK NS:=l TO N 00 
It- NS <> NJ THE"l 
It- (CAR (.NS.) < N-1 I TIJE:.N 
FOK Nr~:=1 TO "J no " 
Tt- (NR <> NI, ANn (NH ,> NS) THEN 
It- (CAI·{(.NH.) (I\J-ll THr:-N 
REf-IEAT CON:=l: 

IF ("lOT(NS TN RR(.NR )1)' AND (N01(ND iN RP(."'S.») THI::.N 
HEGIN MIN::::INF: CON:;O; , 

(**************************+********) 
(* THEHE I S NO f-I ATH 1:-. Tl HEH r:-R(W NS *) 
(* TO NK OR VI CE-\/EKS/\ t"'~r_N NOUE *) 
(* IS UEL~TED t-HOM GO... *) 
(***********************************> 

~1~=(.1. N.)-KR(,Nc:;.); S2:=(.1,.f'.J.I-kH(.NR.>; 
~1:=Sl-(·NI.>; S2:=S?-(.NI.'; 
rOR T:=1'TU N no ' 
1 F I I N D R ( • I'J S.) 1 u E N 
t-OR J:=\ TO N nu 
JF J TN c:;1 THEN 
IF C(.I'J.) < ~TN THFN MIN!=C(.I,J.J; 
t-OR T:=1 TO N 00 
IF I IN nR( .NK.) TqEN 
fOR J:=lTO "J no 
IF J IN <::;2 THEN 
IF c(.I'J.) < ~TN THFN MTN!=CI.I,J.J; 
fOR I:=t TO N 00 r"(.I.):=( •• ); 
t-OR I :=\ TO '" 00 
IF T IN pR ( ."I~".) ,IJtN 
rOR J:=! TO ,,! 00 
IF J TN <::;1 THEN 
IF C(.I,j.) <> INt- THEN 
HE6IN C( Y,J,):=C(.I,J.)-MTN; t-R(.T'):=FR(.I.>+(.J.) 
tN(); • 

, t-OR T :=1 TO ", no 
I F I" IN' nR ( • I'jR.) TuE'" 
t-OR ~J:=lTO 1" no 
TF J IN c-2 lHf:.N 
IF NOT(J'II'J FK(.I.,) lHtN 
IF C(.I'J') <> INt- THrN C(.I,J.):=Cl.I'J.)-MIN; 
t-ORf\nJ(N~l'~); REACL!(t-"l); 
II,'H T TELN; \~f-n TI:.L N; 
\'mrTE(, THE CO..,l tv'l\lRIX 'TS RFDUn:: U 1\(7l\lN,); 
I'.!RTTF:(, ,NIJt-.~t!ER Ur I\KC~ 1"1 GO =,,~:~) 

E"!U 
UNTIL COI\I = 1. 

F.Nn; 

(*******************+~*****+*+*+*******+*********) 
(* THE ~tJHGR,APH CnMPRI~F:1) Hv T1-<I-: 7EPO COST I\KLS *, 
(* IN-THF COST MI\~RIY IS LIT~R~LLY CONN~CTFO ••• *) 
(************************************************) 

1'{QOTNOIJE(HI\J); n,I\CKf\UJ; AI L:=t; _ 
~AMIL(t-~R,8AR,nF,Pn'OD'I~,N'~'RN,ALL,FFI: 
1r t-f = 0 THEN 

(*******************~******' 
(* CALL pkOCEnURE LIT ••• *, 
(**************************' 

BEGIN LIT(C'Mrc,N~INF); "COS1:=O: 
FOK I :=1 TO " 1)0 
nEGTN Tl:=MHrC.T.I; 

I I=' .1 < '> NTH t "J I ? = = f'/I -' C ( • T +] .) E L.., E T?: = tJ H C ( • 1 • I ; 
MCUST: =MCOc::;T+I)( • T 1,1'"1. ) 
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ENIJ 
F.ND; . 
IAJHTTI:.LN: \'H~I TE, N: 
\\IJ.q T I:. ( , f)PT r. ~~I W SUlln 1 ~N :,): 
\'!HT1ELN: ~"'QllEI N: 11:=1.1; J?_:-=O: 
HEPt:.AT 1.oJ'.?IT~_LN(, ,): 

T1:=12+1: I?'=I~+20: 
T~ T~ ) N TH~N t?:=N: 
FOR 1:=r1 T012 no WHITI:.(~HC(.T.):4) 

UNTIL I? = N: 
~HITI:.LN: WRITE, N: 

. \'J H Ill:. C , COS l' -= " ~·1 COS T : " ) 
I:.NI): . 

~HOCrOuRt YMC vno C : ~Alk~X: 
\fl'!.,n He :l\kkY: 
VAn N,TNF : TNTtGI:.H ): 
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C**************************~***********~************~***********) C* THTS PHOCt:DUHE FlI'mS AN ",PTI M UM Of{ A NEI\R. UPTTMtlM c:;OU!TTON *) 
C* TO THE TSP HY [7I'1NKJNG lH.- f:X,TtHMF POINTS UN THE I\S<;JGt!MEI'H *) 
C* f>OL,(TOfJE A"II) r"jTHOnUcTNb SOrvF CUTS SO.THI\I Tt-'t: HtlNKING *) 
(* PHOCI:.S~ CAN HI:. PI:.HFORMt.O IN n MOPE H+rrTt:NT "flN",FI:?.. *) 

C*******************+*******************************************) 
1 Y~E ASSl G!'IMFNT - kl:.COHIJ 

.- COLlINlI\I, TlIH, HO\'I~qN, COL~!T I'll, PEf'!I\L TY 
I:.Nn: . 

NO[)tS = SET nr- l •• f\HJi 
ARH = ARHAYr.1..ND.) nF IN1EGER: 

VAH ASS: I\RRAY( 1 •• ND.) Or I\SSIGNMENT: 
n,t:: : M.ATRIX: 
Tu,nU,nSG,MA~G'RLHL,CLnL,SOHT ~ I\RH: 
TOUR : ARRAY{.1 •• 2~.) ~F NODFS: 
ROW,COL : "JOnES: 
K , RED C , I , 6.. A , L ' F L 1 , F L 2 , r"' OS I , I C , " , M , Z 1 , c::; T UfJ , N N , K r. 

~HOCEUUR~ PRT( VnR AS : AHn ): 

(*******************~**********~***~****************************> 
(* THIS PHOCEOUHE OUTPUTS holE ~OLlJTTON TO THt: A~ fW PnINTTt\I(; *> 
(* F:ACH A~S'TGNMENT ~F.PARAlt::1 Y... *) 

(**********************~***+*******************~****************) 
VA~ T'Il'l~ : INTE~~R:' 

H~GIN WRITELN: WnTTfLN; 
T1:=0: r2:=(1: 
REPcAT WRITELN; WHTTE(, ,); 

11:=12+1: 12:=I?+1S: 
Ir 12 ) N THrN 1?:=N: 
FOH 1:=11 TO t2 no \!JkITE.('("I~2"",,,s(.1.):2,') ,) 

IJNTIL 12· = N 
t:.ND; 

~HOCEUlJR~ REOlJCE: 

(****~**************~***********************.********~**********) 
(* THTS PHOCEOUHF. RE.fJUCFS TilE. COST MATRIX. THt. "'INTMUM fLEVt.NT *) 
c* TN I:.ACH POI'll IS F()IJ~!lJ I\NU SUHTHACTED IT ~RUM EVERY F'Lf~···E"'T *) 
(* TN THl\f ROW... *) 
C***************************************************************} 

VAH I'J,MIN : INTEGfR; 

Ht.(.;IN C* REntJCE *) 
FOR 1:=1 TO N nO 

. HEGIN MJf'I:=II\IF; 
FOK J:=l TO tl DO 
If C{.T,J.) ~ MTN THt.N M1N!=C(.I,J.): 
~~EUC: =REOCHI TN; 
FOH J:=l TO ~l U() 
I~ CI.I,J.) ~ M1N THtN 
REGIN TF CC.r,J.) <) 1~1~ lHtI'J CC.J,J.l:=C(.I,J.)-N'II\1 

'- . 

FNU ~LSE .. 
T r C ( • T , J.) = M I f'1 T HI: N 
HEG T N on ( • T • ) : =OD ( • I • ) ,1: T lJ ( • ,J. ) : = I Of • J. l+ 1: C C • I , J. ) : = u 
ENU 

ENn: 
~OR J:=1 TO N nO 
IF. IUC.d.) = ~ THfN. 



HI:.G IN M '{I\I: = 11\!~ • 
FOK I: =1 TO ~'1 uC) 
n: r. l • r , J.) ~ M H! THI:.N tv'I N ~ =c ( • I , J. ) ; 
REDC: =1~Ef')C+~TN; 
FOK I :=1 TO tl 1)0 
Tt Cl.I,J.) ) MIN THtN 
nEGTN IF C(.T'~') <> ItiF 1HEN r:(.T,~.\:=C(.T,~.)-Mlf'-J 
F~U tLSE 
T~ C(.I,J.I- MTN THtN 
R I:. GIN J 0 ( "J. ") ~ = 1 n ( • ~ .) ... 1; 0 IJ ( • T • ) : = 0 0 ( • 1 • ) + 1; r. ( • I , J. ) : = 0 END .. 

ENf') 
E:.ND: 

~K()CFUURt ALLOCATE: 
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(****+*********************+*************************;****.*****) 
J* THTS PKOCEnllHE MAKES TH~_- INITltlL flLLUCI\TTUNS AMOI'IG THr *) 
(* I\~MIS5IRLE CI:.LI S TN THt rOS' MATRIX WHEP~ IHF AOMISSTriLE *) 
(* CELLS ARE TH(~SF CELLS I'JH"ISE FNlfHES TN THt. KEOI JCEn COST *) 
(* MATRIX fiRE 7ER~..... *) 
(**************************+************************************) 

VAH r'~,IC : TNTrGI:.H: 

HtGTN (* ALLOCATE *) 
FOH 1:=1 TO I\! nO 
BEGIN 

T~ NUTCT IN DnW) lHFN 
IF OIJ(.I.) =1 THtN 
REGTN TC:=O: ~:=O: 

KEI-'EAT J:=.I+l; 
IF NOT(J-IN COL) luEN 
1 F C ( • I " J.) = f) 1 HrN 
HEGIN K:~K+1: . 

_ASG( .1-) :=~.n 
R 0 I~ : = I-{ A \'1 + ( • J • ) ; 
COL:=CnL+( .~.); TC:=1 

tNf') 
UN' T L (T C - -1) OR. l ~ = N) 

ENU; -
T~ NUT(I IN rOLl THEN 
1FT U ( • I .) = 1 1 Htt\1 
~ E G 1'1'1 T C : =!J: J: = n; . 

KF.~E!\T ~:=.I+l;· . 
IF NOT(J-rN pOW) luEN 
IF C('~'T.) = 0 lH~N 
I~EGIN K :-K+1 ; 

ASG(.J-):=Y; 
ROI.\}: =1~nlA!+ ( • J. ) : 
COL:=CnL+(;I.); TC:=1 

t_t.--H1 . 
UNTIL (IC - 1) OR l~ = N) 

FNU 
ENO; 
It- K < N THFN 
rap 1:=1 TO N !If) 
Tr NOTCI IN Kf)",l THtN 
.~E~l~F~ f! 5~ ;Ji: ~o : 

IF NOT(J It I COL) TMbl 
IF C(.I,J., = 0_ THtN 
t3Ft';IN K:=KI-P 

f\5G(.1.):=~: 
HO'-'J:=HO'''l+C.T.) ; 

. COL:=COL+<.J.); lC.=1 
I:.N\.J . 

UNTIL (IC = 1) nR (J = N) 
FND 

t.NLH 
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(*1- If- CnUJ~~N.J TS LAHFU:··.., 1\1\1[1 HOhl T JS ".'nl LI\PELFI1 ~O F!\H *l 
C*. ANnCFLL~(~,.J) HAS AN AlLnCATTON A1 THIS STAGF .THFN HOW *) 
(* 1 TS LAH~LEn AS KlHl(T)=-.J *> 
(**************************+************************************l 

VAR T'.J • .JC : INTrGeR; 

Ht.GHI 
HePcAT FL1:=O: FL?!=O: 

FOK T :=1 TO " IlO 
TF RLRL(.I.) <> n THtN 
FOR J:=l TO tl UO' 
T~ CLRL1 • .J.l .:: n THEN 
T~ C(.T • .J.) - U THEN 
BI:.(;tN .JC:::U·-

IF T = M TI.~EN 
IF.J IN lO'IR(.l.) lHrN .JC:::O: 
IF.JC = 1 THI:.N 
HEbHI CLfiL( • .J.>:.::T: r:U:::l; 1\1\:::AI\-1: 

IF ~lnT(.J iN COL) TlJfN FL~:::l I:.NU '. 
[NU; 
I~ FL? = I) THEN 
FOR 1 :::1 10 "J IJO 
TF RLRL(.I.) :: n lHEN 
HI:.(;tN "I:=l\SG(.I. >; 

IF CLRL( • .J.> () 0 lHrN 
HF(;TN RL~L(.I.):::-.J; FL1~=1: AA:=AA+' 
eNU 

ENU 
. IINTTL (FLl = 0) OH (FL2 - 1) 
t.N(J; 

(*****~*************+***+**+************************************> 
(* THJS PKQCEnlJHE CH!\f\lGES luE !\LLoCIITlor\!s TN OKDEH TO OHTI\TN *) 
c* THF OP1TMAL ~OLIJlTQN TO THF ASSIGNMENl PRUHLt:M. . *) 
(* LET .J HE THE Cf)LUMf\I \!JHICIJ !JOFS NOT HAVE !'IN ALLOCI\TTONdND *> 
C* HAS HEt::N LI\HEL~\1 : . *) 
(* 1- LC:T I=CLRL(,p. MAKE 11.JE NEW AI LOCATI,.,!\! IN CELL (l '.J). *> 
(* ?- Lt:.T .J=RLHL(T1. T~ .J ) 0 IHI:.N STOfJ ALLnLATIO'" ('H(lNGTI\IG. *> 
(* I~ J (.0 THtN HFPLACE .J=AHS(.J) l'\"lI) RF'Pt:I\T THESE STFPS *) 
(****************~*********~*******************~********~*******) 

VAH .J.IT • .J,J.TC : JI'!TEGFIU 

HtGIN_.J:=O: TI!=n; 
HEPEAT .J ~ =.J+ 1: . 

IF NOT(.J IN rnL) lHFN 
T~ CLRL( • .J.)·(> n THtN 11:=CLHL( • .J.) 

I J~T I L (J T "> IJ) nR (J = N'; 
TF II > 0 THeN . 
HEGIN .J.J!=J: Ir:=O: 

REfJFI\T K:=K+i: 
"WW:::HOW+ ( 11.): COL'=CUL+( HJ.J. H 
1\ 56 ( • I I • ) : ~.JJ ; 
IF RLBL(.IT.) < 0 I Hr.!" 
~EGIN .J.J:=~RS(rLHL(.TI.); 

~:=K-l; rOL~=CnL-( .J.J.); 
II ~=CL8L{ • .J,J.) • 

E~JU ELSE. Tr!=1. 
IJNl TL TC = 1.­

ENn 
tNfJ; 

~H0CEOURt. FRFOUC~( V~K C : MAI~IY; 
.- VnR CCC,AA.L.M • INTEGF'R ): 

(*******************~*******************************************1 
{* THTS PHOCEOlJHE FJf'!OS THt MJ!\!TMUM NOf\J""~Ef;l\IIVE FNT~Y /H.' a ".1(; *> 
(* THE CELLS TN L I\RELEU ROWe:: I\NI) IjNLAHtLE.D rULU""f\lS ()f- 1 HF * > 
(* REDUCED M!'ITHIX. 11 IS ~U"'TRACT.EI? r::RO~ THF t.N1RTFS TN THF' *) 
(* eEl LS J 1\] L"HeL~n RQ\'iS I\N"" UNI.I\HELEU COLI ,~~I\J~l\tm l\\1nE.\1 T0 * > 
(* CtLLS II'] U~,lLAfkLtn ROI,I':> -N!) LAPELED COllJ"'I\j~ OF THE Hf:r"'IJC~O *) 
(* COST 'v'''TRP< tA!Hi'LF.I\LL IHr OIHI:.R FNTRIES I\t<t. REJNf; PI:.~ATf'JtO *) 
(* UNr.HI\NhEI1 •••• ' . '*) 

(******************************+********************************> 
V/\H MIN.I.,J,.JC: 1I'11FbFln 



~i t. (.; I f'.J tJ, T I\J : = T !'-!t- : 
Fan 1:=1 TO N nO 
lr RLRL(.I.) <~ 0 THEN 
FOR J:=l TO N ,,0 
TF CLRL(.J.) = n THEN 
HEG~N dC~=p . 

TF T = ~ THEtl 
If J TI\I TOUH{.L.) THr_N JC:=O: 
Tt ... JC = 1 THrN 
IF C(.T"J.) 'jMH1THt-N 
T F C ( • T , ,J.) '> 0 THEN M,.~!: =c ( • I , J. ) 

ENn; 
F!.1R 1 :=1 TO N '10 
IF RLRL(.I.) <~ 0 THEN 
FOH J:=1 TO N nf) 
T F CL!~l ( • J.) = n ,. HI:. N 
If C(.T,J.) <) TNF THEN ~(.I,J.)!=C(.I'J.J-tJTN: 
FOR 1:=1 TO N nO 
If CLRL(.t.) <~ 0 THEN 
fOR J:=l T0 N Iff) 
T F RLRL ( • J.) = n THE 1\': 
r F C ( • J, T .) <) T NF THFI'l f" ( • .J, 1. ) ~ =C ( • J, T • J +tJ Tl\q 
CCC:=CCC+AI\*MI~.1 . 

I:.NI1:' 

f-IHOCFOURI:.. CHECK ( "I\R 1. C : ,. NTt_(';I:..R ); 
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(**************************+*~*+***+***+************************) 
(* THIS PKOCEnIJKF.: CHFCI<S If- THt_ ASSTGI'IMENT SULlJl ION IS A *, 
(* TR/\VI:.LING SALEc;f-IAN TOlJK. IF NOT I\LL OF THt. SlJRTOIIRS APE' *) 
(* SPECIFIED... *) 
(**************************.+************.**********************) 

VAR J,L,M ~ tNrE~EK; 
TOUF~~ : ,,'ODES: 

HI:..GIN J:=1: L:=O; M!=U TC'=l: lOUr6:=( •• }: 
REPEAT TOlm(.t1 ):=( •• ); 

REf-iEAT ASS(.~.).COLUMN.=~~G(.J.); 
1 F NOT (J TN 1 OUK ( • M • ,) 1 HI:..f\J . 
HEbTl'I TOIJR( .M.) :=TOU..,(."". )+(.J.): TnlJt(~:=T()lJRS+( .J.): 
·ASS(.J.).TUI~:=M; L.=L+'; 
J:=A5(;( •. J.) 

END 
UN1Tl. J TN Tr)IJK (.tJ,. ); 
TF L <> N THr"J . 
REbTN TC:=U:J:=1: 

KEPEAT J:= ,+1 . 
UNIIL ",leJT (.J II'J lOtll~S'; 
M:=M+1 . 

FNU . 
IJNTIL'L = "I 

t:N[); 

PKOCEI)UHF~ C A.L CU1~" Tt: (\fI\R 1 • T NTI:..GEP ): 

(****+***********+******************************************t***) 
(* THTS pKOCEnllKt::. CI\I.CULI\Il:.r::; A NOf\I-"JEGAIIVI=' ~t:NI\LTY ASSOCIII.TED *) 
(* \oJITH THE AC;SIG~,MF~f\IT TN K"\,i T •• *) 

(******************************************+********************) 
VAK J,K,L,M,P : T~lFGI:.R; 

Ht:GIN 
I'll T H 1\ ~ S ( • T .) nO 
REG J N J: =COLUiV.t.,: COL~ T f\!:":,: T NF ; 

FOK M:=l TO '" no 
If- C(.~,J.) t' COL'" T f'.! TIJEN 
rF M <> T THr"J COL~TN::-:c( .V,J.l; 
L : = TlJR; ROW Iv' TN: = r N F ; . 
FOK 1VI:=1 10 fl no 
Jf- NOT(M IN Tf)UR(.L.) THt:N 
TF C(.T'~~,) < K()\fJ~TN luEN HU\·/MTN:=C(.T,IVI.): 
PENALTY: =COI..lTl'J+POI'1f'.'l N! 
Tr P~NI\LTY < 0 THt:1\i 
AI:..GTN PENALTy!=rNF; 

rOK K:=l Tn N no 
IF K <> T THI:-J" 
f-OK M:=l Tn N no . 
1 F NOT (fill h.1 1 ()11K ( • L • ,) , Ht:N 
8 E b T 1\, p: = C ,. • T , v. ) + C ( • K , J. ) ; 

IF' P < f-'r-NALTY lHt:·! 
JF P >= ri THFN 
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t-JHOCFOURt-_ SOLVE( I/A'~ t ~ rv;"Hnx; 
1//\ I-? J : I'! T F: (, F I-< ); 

C*****~*********************************************************> 
C* lHrS PHQCEnUKE SOLVt-_S lHr. 1\~'iIGNME"'T PI-{(1PLt.tJ ,I'IFTFR A CUT IS *) 
C * I NTROQUCFO. • • '" ) 
(***************************************************************) 

Vl\R ,J'M,AI\'L,~Ll,FL?,CRtlJ,."C,...1C : TNTE(';EH: 
SUHUJOP : NOn.ES; 

HtJ;P·) 
WITH A~SC.T.) nO 
K t:. GIN ...1: = C Q U J M f I; C RI:.O : = I-' r- I'! 1\ L T Y ; 

FOK N!:=1 TO ~I IJ() 
IfF: ( • T , M .) < ..., HI F T H t , I E ( • J , M. ) : = t ( • T , M. ) - R moJ M J N ; 
FOI-< l1li:=1 TO t,; Dr) 
T ~ F: ( • M , ,J .) ~ ..., Hi ~ THE ~ I E ( • M , ...1. ) : = t. ( • ~,' , J. ) - COL M T N 

END; " 
K : =N-l; R 0'''' : = ( 1. •• f\j • ) - ( • T • ); COL ~ = ( • 1 •• f\!. , -( • ...1. ) : 
FOR M:=l TO N nn 
HEGIN HLRL(.M.~~=O: CLHLr.M.):=O: I\S6(.v.J:=ASS(.~.).~OLUMN 
El'm; 
RLHL(.I.>:=l; nSG(.I.):=n: ~n:=t: L:=ASSC.l.).TUR; 
I-JHTLE K < I'J DO ' 
I;E..GIN LBLCF,I-Ll'fL2"\A,L,I); 

TF FL~ = 1 THEN Rt_I\LLOrI\Tt. tLSF 
If FLl = 0 THEN FI-<FIJUCr:-(F,CKED,AI\,L,I' 

END: 
wKITtLN; WRITEI N; , 
I!!H T TE.. ( , I NT~RIIIIEO 11\ Tt -::OLtH ION :,); 
PKT(AS(,); ~RIT~LN; WRylE, N; 
l'iK y TE C , COST = "OH'JJ of~) ; 
IF CI-<EIl <= 71 THEN 

·YEGTN ...1C!=l; 
If (Cf-H'_n <= 0) OR (CRf~ = 71) THEN 
nEGTN ...1:=U i :=rJ; SlJHLf'\OfJ::::( •• H l1li:=1: 

I-<EI-'E1\T-
IF NOT(...1 TN SUHLUO.-,) IHI:.I'I 
HEGTN Su"LonP:=SUHI 001-'+( • ...1.); L:=I+l; J:=ASGC.J.) trm .' 

Uf\j1 It J IN SUPLOOfJ: 
-IF L < N r'lEN JC:=u 

ENO: ' 
IF ,JC =1 THE,! 
Rt~T~ 11:=CRFO; KC:=l: 

foOl-< ~~:::1 Tf) N flO 
I:H,::Gtl'J MI\5(; ( • M. ) : =I\S6, • IV. ) ; 

I-OR J~=l TO", DO Ur.M,J.>:=E(.M,...1.) 
ENU 

FNIJ 
ENfi 

ENn: 

tJI-<OCEDURt-_ SORTf-J; 

C********~******************************************************) 
(* THrS pI-<OCEn'JI-{E SORTS lHt PFI\jI\LTIFS TN At;CtNDHlG ORnI:.R... *) 

(***************************************************************)-
V/\I-? I,...1,L,M : INTEGf'JU 

H~GIN . 
~OR 1:=1 TO N n.n 50I-<T(.J.):=T:, 
REPcAT L:=rq . 

F 0 I-< J: ::' 1 1 () >, -1 [) 0 
Rt~TN J:=SORTC.T.); M:~SORT(.I+'.): 

IF/.I\SSC • ...1.).PEI'IALTY " "':lS(.f'I.1.).Pf-_NALTY THEN 
HFGP! SORTC.I.):=!V; ~Ol-?l(.I+'.):=...1: L:=L+1 
I:.f\ju . 

ENlJ 
IJNTIL L .= 0 

tNI1: 



H~0IN NN:=N nTv ?+1; 
~OR 1:=l TO NNnO lUIJf~(.T ):::( ). 
K:~O; KEnC:=U: '" , 
FOq 1:=1 TO N nO 
~~AfN If)C.T.):=O; OU(.l.,:=u; I\S~(.I.):=o 
COL:=C •• ); I"WI,oJ.=C. )i /\I\.=n: 

. Rt..nUCE; .' 
I\LL OC./\ 1 E: 
IF K <': N THEN 
f'oOR 1:=1 TO N nO 
RI::..G~N ClqL(.I.)!=n; RLHL'.T.l:=O: 

TF f\JUT (I TN p()\'J) THI:..N 
RI:.GTN RU~L("T.):=I; AI\.=fll\+l 
ENU -

ENn: 
'''JHILE K ( "I 1)0 
~Er,IN L:=l: ~:-n; 

LHL(C,FL] ,FL;,I\I\,L,,,,.); 
TI- FL2 = 1. THEN 
R~GtN REI\LLOrAl~: 

IF K < N hiE!\! 
Hc<:iIN flA:=n; 

t-OR T :=1- TO ~.I no 
HEGIN HLnl (. T.) :=0: CL~L (. T.) :=0; 

T F 1\' U T (T H' fH) IN) 1 H t N 
f~ E r; I N ~ U-I '- ( • T • ) : - I; fI 1\ : = fI A + ·1 ENn '. 

t-~ "lfl 
ENU 

ENU t-LSE 
IF FL1. = I) THF:N FREIJIJCr:-«(,~t..()C,AI\,L'M) 

EI'-!n; 
(OSl::::KEflC: 
I'JK T Tt:LN; I!JR 11 F..I N; 
I'-IRT 1 E ( , SOLjjTIO!'! TO ,IJF: I\P :, I ; 
PRT (ASb): \·lRITrLN: \'!Hlltl N: 
I') R T 1 E. ( , coS T = , ,c 0 S 1 : ~ ) ; 
REPEAT CHECK(lr); 

TF TC :: n 1 H~N REG!'" . .' 
t-()K T:=l Tn N no CI\Lr-uunf_(I); 
~OKTPi 
M!=Oi 71:=TNt-: STnp:-o; 
RFPEAT rt.:=r~+l; I~=~U';T(.~J.); 

I-OR L:=lTO "J no 
t-()R ~J:=t TO N DO c.'.L,J.) :::C( .L,J.); 
~OLVE(E'T); . 
IF M < N' THF'" 

, MEG TN I: =smh ~. tv'+ 1. ) ; 
TF 71 <= ~SS(.I.'.PI:..NALTY THEN STuP:=l 

t_ND '. 
UN I TL .( SIan = ') OK , t-/. = N); 
t-OK T :=1 Tn N no 
HEbTN I\SH( I.l:=Wn~G'.T.); 

I-OR J:=l·TO ".' no CI.T,J.):=O(.l,J.' 
!:.Nt Ii . 
crl~T:=r:()ST+?l ; 
\AIR 1 TFLt-I; I~p T TFLN: 
WR 1 TF (, CUI~Pt:NT S"l..Ilf TON ~,): 
I-'f-? I (tv' I\Sh): "iR T Tt-.. L!'!; I_'f.! T I FLN; 
wH I Tf .. ( , COS" =, "'05 I ~ 8) 

FNU 
UNTIL Ie = 1:' 
WRTT!:.LN; WRIT~I N; 
"JI .. qTE(, THE. flJRI-?FNT ~O!UTION IS (WTI~'tJ"'I,); 
J:=U He(.].):";;': 
FOR I:=? TO N ill') 
HEGIN HC(.T.):=~A~G(.J.)! J:=MnS~(.J.) 
FNn 

r_NIJ; 

I-'KOCFUlJRt-_ nYf'JI\~Tr.( I/I\R C : Mf\'~IX; 
I/I\R He • "I .. my; 
"flH 1\' rl ~,~ : UITFGEH ); 
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(*******************~****'**+************************************, (* THIS pKOCEnURE FII'In~ THt Sf)LlllJO", TO TH~ ,~p RY IJSTf\l(~ I\, *) 
(* DYf\lI\f'i.TC PRO(;Hf\rl~.lI\IG lYPr~ I\P~I-?OI\CH. I-IRST, ALL OF THE CEI LS *) 
C'* TN. THE COST M I\TIH '( AHF ~',HTt-< flCl En FROM 1\ LJ\R(~E N"~RFR' sn '* ) 
(T THAT THE T~lI\NGIJLl\R TN~.Q"ALITY Hnl.ns. TI-lFI'Jr THE flLGORTTHtJ *) 
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(* TInEs 10 FT"!U THt LHGESl P/UH Of- CflHIJINI\LIIY N r~FT"'tFt! I\NY *) 
(* T\~O Nf')I)ES TN I\~I I\CYCLTC ··"""')I-:K. nt'lCF THI:" LARGEST PI\ IH Te:; *) 
(* I1t::FINFJJ, JT Ie:; cor"PLEH.ll TO f\ H.t'~~IL1()NII\"J LIHCI/IT. AFTER *1 
(* I\LL, THE CTI{CUTT IS TK1I-.'"' TU Hf-. TMPROVE~ HY I\TTE~PTINr, TO *) 
(* CHI\NGF THE U)("TIOl\! Of- I:.~CH lI'onF SFYARI\Tr:-LY... *) 

(************+*****************+***+****************************) 
lYPE AKRl = I'IHHl\y(.l •• NU.) OF TNTFGER: 

Nunt-_5 = St T Of- 1 •• !"U: 
AKR2 = I\HK1\y(.1 •• ND.) OF ~UDES: 

v /\ H () U , T tJ ! 1\ H H 1 • 
!lSK : II!Onr.':l:' 
FK,RK ! f\H.K2; 
C r-I A '< rI , J , C M ~ ~ I rT 1 rI? : ... f\lT E G t R : 

I-'KOCFUUPt:. LP( \/I\n I-R,HR : .R~2; 
VI\f' HSP : NO,:[5: 
VAn CMIN,(MA~,SK : I~TEG~H 1; 

(************+******+**~*****+*+********************************> (* lHIS PHOCEnlJHE Flt'mS THI:. L0IW';I:.ST PI\TH 01=' LI\I-·mlNI\I.TTY 1\' TN A *> 
(* GKI\PH... *) 
(******************************+********************************) 

V/\K PAl H,P.lITHl : I\I"m:;>: 
e:;,6<;,T : N()lJrS; 
P : MI\THIX: 
CH,LK,LK1 : "HHl; 
K , I , IV' A 'l , L , J ,,~ , J A , COS·, • TNT t G En: 

tif.GII'I S:=FJ~(.SH.): K:=t: G~:=( •• ): 
FOR 1:=1 "TO N n() 
HE GIN P 1\ T H ( • J .) : = ( • SR • ) : 

FOK J: =1 I() t.1 (}O 
P(.I'J.>:=n· 
CH(.l.>:=1J 

FNn: 
FOR I :=, TO N rtO 
If 1 Tf\! S THf:N 
HEGlN LI< ( • T.) : =CfVIfl.X-C (.S'" T.) ; 

GS: =bS+FI~ ( • T ); 
CK(.!.):=l: • 
p ( • T , 1 .> : =SH 

·tNn ELSE LK(.T >:=ni 
Hl:..PEAT • 

FOH T :::1 11) ~I Ill) 
BtGTI'I LK1(.T ):::tK(.l"i 

I!= T 11'1 bS· THHl 
IF T ('> SR THUI 
tWI;Tt'! T:=Hr.!{. T. )*S: ··I\',(:=Ui 

I-OH ,j:=l TO 1\1 nO 
IF J TN T THEN . 
IF N01( T ]N I-'ATH( J.) ) THEN 
HEG!"! IV.:::I.K( .J. )+C"·AX-CLJ,I. >: 

TF f\II '> r-tI\X lHeN 
nEGTN "".X~=rv; JA'=d 
FNn 

1-. ND : 
IF r-t,r.,X > LK1(.T.) "-HFN 
HFGHI LK1 ( • T • ) : =t--'I\,,; 

'p i\ T H 1 ( - I • ) : =1-11\ I H f • J 1\ • ) + ( • J A • ) ; 
CR(.T.)~=K+li 
P(. T ,Ktl. 1 :=JA 

I:.l'ln 
1:."11) 

FNU: 
K:=K+l : 
T I- (K < I\J-ll THE~I 
~I:.GTN S:=( •• ): GS:=( •• ': 

I-OH T:=1 Tn I" no 
IF LK1(.T.) <~ LK(.l.> T~tI'l 
tWbTl'J S:=St-hT..): 

bS!=GS+Fr) (. T. ); 
LK ( • T.) :-LI<.' \. T.) : 
I-' 1\ T H ( • 1 • ") : =P 1\ l~] ( • T • ) 

UJI) 
[NU 

IINTIL (K = "J-!): 
HW l:=1 Tn N I"')() 

:-::'iN~' T TI\! RSR THrN 
TI- ·(CHl.T.) = ,.,-J) ·'HEN 



Y~GIN COST:=(N_l)*CMAX-Lvl(.T,)+r(.J,SR 1 i 
,TI- CUST < C~T"l TH~N - -. 
~F.GTN r:~TN:=r:O~T; HC( 0".) :~1; .):=J; 

I-OK L:=N-l n()\'/~JTO 1 nO -
~E(';IN HC(.I .) ~=Pc .J'I .); JO-P( J,L ) EN!)" • - , , 

ENU 
ENn 

~Nf); 

Ht-_GHI 
rOR 1:=1 T() N f'")O 
~~giN t-R(,T.):=( •• ); PI-n.I,):=( •• ); OO(.T.):=O: Tn(.T,)~=O 
CMAX:=U: 
rOR 1:=1 TO N nil 
FOR J:=l TO N nn 
If: C{, T "J.) (> TNF lHEN _ 
HEGIN t-RC.T.):=FK(.I.)+(.J.); 

RR(.J.l:=HK( J.)+(,I.)! 
OIJ ( • I • ) : =fJU ( • J • ) -11. ; 
ID(.,.!,) :=TU('J. )+1; 
IF CMAX < C(OI,J.) THfy CIVl\x·=r(.I,J \ 

FN[l; • •. '.- • 
CMAX:=CMI\X*2; 
CMIN:=HJF; 
HSR:=nK (.l.); nR(.1.):=< .); 1:=,; 
1..1-'( I-R'IW,RSH'r~IN,C~Ax'T ); 
~'JK I TU.I'J: toJR T TEtON; 
IF CMTN }= INF-THEN 
WHTT~(, THE TSP HAS N~ SULUTION,) ELS~ 
H~GIN . 

~oJK I TI: (, nl-'T H!:LJN\ ~o, UT I ON :, ); 
I.I.}KITI:L"!: \~KITELN; n:=,.,; 1?:=O: 
REPEAT WRI1E,!\J; WRITE<, ,); 

11:=T2+1; i~:=I2+2U; 
IF T? } N TH~N I?:=N! 
FQH T:=11 TO T? no WnITt(HC(.I.):4) 

UNTTL T2 = N: 
WRITFLN: ~RITELN; 
WHITt(, CnST = "CrvTN:A) 

FNf'"); 
\'mITt::Lf\J; \oJr?lTEt II.); 

t::Nn; -

~KOCFOURt YH(V~K n : ~nTHlv: 
\f I\I~ HULL ~ 1\1<" y ; 
V'~R I'J,H!t-,M : II'IIEGER ): 
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{*******~******************+***+*******+************************1 
(* THTS PHOCEr'lI)Hf. FINDS TH~ S()LU1IO~1 TO lHJ:" '~I-' RY IISTNG A *) 
(* GEOf\f.t::.TKT~ f\p.PRnnCH.- TT Ie: I\SSUMEI1 THAT THt. TRTI\NGULI\R *) 
(* INEQUI\LTTy HIJLf'")S. GIVEN ~ CONVEX HULL TI-lF ALGOHITHfvI TJ7JF~ *) 
(* TO ~ H·ll) THE HEc;T !'lL 1 ERNI\T I\/t. AMO"'G THE ,,'out.S THATI\KE 1'10T *) 
(* ON lHE CON"!::x I-~ULL So tHI\T1HE TIlTl\L COST IS MTNP~IIL I\FTtR *) 
(* THI\ T "lonE TS tt!SEKTEn H!:.,.\MEt-.N T'AJO CONSEr:IJ' I VE "!OnEs 01'1 TI"1E ;:) 
(* COf'..JVl:.X H"LL.... *) 
(****+.**************+~*******+*+***+***+***+********************> 

T 'fPE EUGt-_S = Kt.CnRIJ 
F.~nNnnt,CANnInnT~ : IN1I-GEP: 
Hl='lGI-iT : K~~L 

ENO; 
\I/\R LIST : AI~KI\V r.1 •• I'ln.) ~I- t-JJGFS; 

TUUR : SFT Or 1 •• NO: 
~AXH'MTN : RrI\L: . 
T'IT,Mf\X,J,K,JJ"'Jl,I",CO<-il ~ INT~_GE!?: 

PKOCFIJUqt_ ~Af\XTN!17E(VA~ Ht-_I-::HT ! REII.L; 
. V~H T,J,L : INT~GEH ); 

(****+**************+**+**~~*+*******~*~************************) 
(* THT~ pt-?OCEnUKt:: FJI'H)~ THE MI\XTMllM HEIGHT Rt.LONGING TO ONE OF *) 
(* TI-<T ANGLES FORMr-f) yy 01'11-:. r-f- 'Ht-_ HFMI\ I NING I\lUDES THI\T I\p~ NOT ,*) 
(* Not 0'" THE C::ON"EX HULL A-lU 1l'JU cr)NS~_LUTT"t. NODES Ot-! Tf-1F *). 

(* COl'1"EX H"LL... *) 
(****************+.*********+***********+***********************+) 

V A.H K : I NTEGF.K ; 
U,~,HH : HtI\L: 

HtGII'1 HFrGHT:=u'0: 



HtJ3T~,J T()IJI~:=C •• ). 
~OR 1:=1 T0 N ~n 
I'IITH l.lSTC.T.)"nO 
HEGIN r.f\JmJ01Jf::-n; CMmIIJ"TE:=O: HETGHT:=O.U 
FNn: -
FqR 1:=1 Tn M nO 
f4EGIN Tl:=HIJLL(~T.); 

TF T < r·~ IHE~I I?:=HlILLI.T+'.) FLSf: 12~=HLJLL(.1.),: 
LIS T ( • T 1. ) • F> iflN()nf : = I 2 ! 
TOUI~: =T()"f./+ (T 2. ) 

ENf) ; • 
I·m T TI:.U'H I·J\) IT [I "H 
"mTT!::: (, CON\;EX HULL :.): 
"'fnT!::I.f\J: "JI~TTF..LN; Tl:=tH 12:=0; J:=HULI.( .1.): 
HEPI:.AT WRITf:LN: WHITE!, ,I; 

Tl:=12+1: I?'=I?~?n: 
tF T2-> u l~~N J2~=~; 
FOR 1:=11 TO'T? no 
HI:.GTN J:=LlST( .J.) .t::NIJ·'Of)r.: \!!RTTF(J:5l 
ENLJ 

IJNTIL J2 = 11.';' 
~A'X:=n;_ 
FOR 1:=1 Tn ~ nn 
FOR J~=l TO N ~O 
TF LJ(.I-,J.) ()TNI- rHl:.l'J 
11- 1J(.1 ".1.) ) ·~I\X THEN M~x:=n(. T ,J.): 
MAY:=~*MAX: CO~T:=N*~AX; 
FOR 1:=1 TO N nO 
FOR J:=' Tn N nn 
T F 0 ( • J , J.) ('>' T NI- 1 HEN 
f1 ( • I , J. ) : = k} A X - n ( • I , J. ) : 

·FOR 1:=1 Tn N ~O 
. If I I'" TOIJR THE!\! 

WITH LIST!.I.) nu 
MAXIfviTI'E(f-H=:lf';HT,1 ,FI'!fWUU"',cn"!LJrn"·TF): 
"JHTLE:. !VI < ~,l 1)0 
Rt::GIN M:=M+U ~'''XI-l:=O.'): 

FOH,L:=l TO ~l Dr) 
t I- L T"J TOUI-{ THF"! 
If- tJ/\XI;-l ( LIc,T(.L'.).HI:.TGuI THEil' 
Rl:.bTI'! III'/\XH:= I.IST(.L.) f-1F.l(~HT: T:=L 
FNU: • 
TOUR:=TOIIIH ( LIST(. I.) .CfI!'.:f)IDATE.): 
T I- V; (= f'l THc-N 
(~tGTI'! " 

vi "( 1 H L T S r ( "(.) [) () 
HFbl"! L: =Ff'!!J"JOUE; 

r.t'lntJnUE : ~C I\~!I) J D 1\11:.· J: =CM·ln Tn,,, f:.: 
fVll\ 'II': P} 1 LE"(f--IE T GHT, I , r:-NnNOUE, CAN!)! UI\ TF J 

UJU; , 
viT' H L T S l ( J.) II 0 
HEb PI EI'!I)Nnllr~ ~ =L ; 

fV'A X pq 71: (Ht T GHT , J, !""1\!IWOllF , C ANnI 01\ TF. J 
E"]I 1: 
F()I--< T:=l TI') N DO 
Vi T 'I H L T S T ( T.) DO 
IF C IIJJIl I U I'd-'F < '> rJ r H--": 
IF CfI"JDTJJATE Tt--J T()W{ THt'" 
rlJI,}l, pq?F (Hr- T (-j!-!T , T , t N .... I\!()U .. , C !\t-.IDT f)ATF , 

FNU 
fNri; 
\';HTlEU'I; I'l ln IF, "n 
\'iHTTE(' n!-'I1'~!\L TOUR :,): 
\·IRTll:.l N; 1,!PJlF.:, "H T1!=Oi 1;:>:=0; .J:=HllLLr .1.); L:=J: 
I~EPr.A;= 1,!PTTtLN f W~TTE (, , ) ; 

Jl:=I2+1: I~:=I?t2"; 
11- T2 , NrH~N T~:=N; 
FUH 1 :=11 10 J;:> no 
nEGTI'J d:=I_IST( .,J.) .END·,ont.: , . .'''-'<-':>:':''~::;';l'>J~~;. 
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HULL. ( • T • ) : =J: "IK Tn: (. , : t) ) : 

FN80~T·=r.(lST_«.L 'J.) i L~=J 

UNTIL I? = Ni 
\>.}~ Tl t.LN f~IP 11 EI 1\); 
WRTlt.(, CUSf ="COS1:~) 

ENfli 

Ht.GltJ 
~Ef\l)LNi I-U::I\IHN1 ,TI\IF'l~~'''Hnl: 
11- VKP = 1 lHEn 
~EGIN KEI\OLN: ri,F.AJ)(NOF:.MnlllEt-»; 

Ot.~I\Nn:=( •• ); ~~=u; 
Ht.PF)\T RF."IILn: 

WHILF 1'.,01 F()l!'·j 1)0 
I:IF.(';TI\] J:=J4:l: 

J F J <= ~!nEM 1 HEN 
HEGIN KEl\fl( HII)); l)~r\';l\Nn:=nFMf\NIl+( TUU.) 
~Nn • 

t.Nt} 
tJN1TL .J '>= NnEIVi; 
Dt.P()lS:::( •• l: J~=U; IN'':=tH 
Rt.PE/H HEf\I)L~I; 

VJHILF W)f ~OU'I flO 
HEb Tl'J .J: =J .: 1 ; 

IF J <= 'IOEI-l H-WI" . 
HEGI"J HEI\O(TDIJ,\lN( InD.); 

PEPOTS.=UEPOTS+ (·IDU.); 
TNV:=Tf!"+\/I'I(.llJ1)·) . 

t.Nn • 
E.NI) 

UNTT. L .j '>= NnF.Y 
F.NO; 
FOR I: =, TO N ~ nu 
!~EG I N J: =0; 

RI:.t-JEI\ T HF I\[)L~I : 
WHJLF Nor rOLN UO 
IjEbIN J:=J+l: 

IF J <= t·,l 1Ht.N Kt."ID (I:. ( .1 , . .1.) 
EI'll) 

tiNT TL .j '>= Nl 
END; 
P AGt.; WR T TFLN; 'ajK T TI:.'- l'H 

. "iR Ill:. ( , l) 1 ST f\NeE MI\Tfh x :,); "'IH TFLN: wt< T TELN; 
I-' KIN T (t , N 1); \"1 D T TEL N ;.. "I K ... 1 F L I\q 
IF VKP = 1 THEt.J 
11EGIN t·JRITF.(, f\IIJM!1EH ~I- IJFMf\t\Jn POINTe; =, ,NnEf'J~t)); 

\·JKI TtU·1 i W~ITFL"n \aJ1-11 Tr (, nEtv'I\NI) pnTf\J IS: , l: 
WKITt.LN: WHITELNi WKITr(, ,l; 
FOK 1:=1 TO t,ll no 
Jf T' TN nEM'hjn THEN 1~!K ... 1E(T:3): 
wKITtLN; WKITELN:. 
wK I TI: ( ,- I\IIMHtR O~ DrPOl S =" NOE N': c:; q 
\.IKITI;Ll\ll WRITFLI'H '·JKITr.:-(, DFPOl 1: or VEHICLES,); 
WKITfLN; ~KITELN: 
FOR J:::1 10 tIt no 
I~ T IN ntt->OTS THtN 
REG T N ".IR Tl ELI.I: \'.If) I TE.LN: 

WRITE(, "1:2,, "VN(.1.':2) 
FNOl . 
~KIT~LN: WK~TFLN: 
WKIT~(, T01~L.Nu""erK U~ VF~ICLtS ::,'INV:~); 
~:=0; N:=TN\I~?+N~tM; 
FOK J :=1 TO I'! 1Jr) 
FOR J:=l TO ~J Dr) C(·.l' J.):=HIF: 
FOH J: =1 PI q1 no n.; TIN nt M I\tlll THI-.N 
BEGTN K:=K+l: NOflt(.K..,:=u '-:::0; 

~OK J:::l T~ Nl un . 
IF J 11'] DE~.~I\N!) .. 1 HFN 
eEbHt L:=L+1; C(.K'L.}~=~(.I,J.) 
E.NIJ 

FNU; 
K: ="'1I 1EM: 
r-OH 1 :::1 10 t!l 1)0 
II- TIl" nt::.f-J()TS THt-_N 
PI:-_G TI'l 

fOK M:=l Tn \lNf.T.l ~o 
HEbTI" L:=n: K~=K+U ··ontf.K.l:=Tl 

I-OP ,J:=l TO "'11 DO 
IF J TN nEN'I\f'J1l THt·, 
HE"(;PJ L:~I.+H C(.K,L.I:=t:(.I,J.) 
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t-_I'Hl : 
C( .• K,K+1 .• l:::n: V:='.I+1; NOI1F(.K.):-:T; 

EN~F K < N THFN C(.K,K+l.):=n EL~E r(.K,Nnt- v+1 .):=0 
FNLJ: 
K: =~JIJE~~: 
FOI-{ 1:=1 10 '11 flO 
T~ TIl'l r')!:.f-J(hS ll-H"_I'! 
RI::.GTN 

fOH ~:=1 Tn VN(.T.) ~O 
1:3F1:; T 1'1 L:=f1; K~=K+?: 

H)R J :=1 TO t-H no 
TF J IN !iEtI;l\.t-!IJ THE" 
Hf.(;I"1 L:='-+1; C(.L,I<.):=F(.JPl.) 
t:.NI) 

I::.N!) 
ENU; 

. PAGE: \'II-{nELl'I: \·mITFLN! 
WHIT!:.(, TR~NS~ORMt" VATKTX :,): 
'~JH I TEUH "llq TFL"J: P'~ I I'J'" (r, 1'-'> ; 
l'IKITtL"I; \'JKl;-F(, f\lU'~HEI~ O~ f\IOnr.~ =, ,1\1:5) 

F!'1n ELSE 
REGIN N:=N1; 

FOK 1 :=1-10 t! IlO 
. FOR J:=1 TO tl IlO C(.l r.J.l :=1::.(. T r.J.) 
ENIJ: . 
CASE T~P OF 

1 YTSP(C,Hr,N'TNF); 
2 : YM(C,HC""I!'lF): 
~ i ~r~S~IC(r'H[,N'TN~'; 

ENn; 
If lSP = t~ THE!I 
'~EGIN ·J:=o; HF."nLN; HEAUrT"tl/): 

Rt:.PF f\ T HE A!lL!'1 : 
va II LE NO' FOUl IlO 
I:3F<:7IN J:=J+t; 

JF J <= Tf\JV THEN Hrl\l1(HC( HJ.l) 
I::. f\JlJ 

UNTTL ~J >= Ttl\f; 
Y H ( C , HC , I'! , I Nr- ,1 tN ) 

ENn; 
If VRP = 1 1HEri 
HEGIN M:=n; MM·=O; 

.. \·JR I T 1-. Lf'I: "JR 1 T ELN ; l.m 1 T rLI'J; 
\·jHITI:. (, TO\JRS OF Vt:.lnCL~~S :,); 
~HITI::.LNt WHITELN; T:=U: 
FOK .J:=1 1tl tit 110 VNIJ{ J.) !=O; 
I<t:f-JEI\T 1:=1+,: • 

IF T ) N THEN 1:=1: 
K:=HC(.I.): Ll:=NOUI:.,.K.); 
IF L1 TN LJrP01S THt:.N . 
HF_bH! T:=1+,.; . 

IF 1 ) N THEN 1:=1: 
K : =HC ( • 1: ); L?: =NO'"'E ( • K • ) : 
IF N01 (L; 1 N IlEPOl t::) 1 ~t:"1 
HEGH.I WI'hTt-~L"H \·.!.-n~t.LI\!: I\~:=M+': ~'.I·=Mr-t+::q Kr-t:=:>: 

-I"'I~TTI:.( ~ TOIIf-<, ,M:~', , ,L1 :~,L~:3); 
RFY!::.I\T T:==T+1: 

T f I > I'll He "J. .. : = u 
K : =Hr ( • T • ): L2· ="lUI1I::. ( • K • ); I<,M' ="M+ 1; ~}M: ::MIIt .. 1 ; 
T~ K'! <= 4(1 1 Hr:-N ".If-{ 11 E (L?:.3) rt.~t-. 
RF(~T.tl "JRjlFLI\!; v,IR1TI:.( r , ,L?:~l; t<r-t:::o 
ENIJ 

11~1TlL U~ :: L1 
!:.f\ln F:L~E 
1 F L? = I 1 1 HtN 
HEGTN \/NIJ(.L?):=V>.,u(.L2.)+1; NI~:=~;M+? 
t_Nn !="L':>E 
HE (~I N I: :: T -1 : 

TF 1 < ,. THI:.N T:~N 
r_ "111 

un) 
IINTTL ~M >:: t,: 
wRIT~LN; WKTTF:LN; 
FOK J ::':'110 r:I IJO 
T~ T TN ~tf-JOTS THtN 
n I::. G T 1" \/11: = \.f N ( • T • ) -" r·ll j( • T • ) ; 
- WRITELN; ~pT1fLN; 

VIRITE(, "JEHTCLF:S "SEll lI'J nFPOT "T:~" - "vu:-,:) 
FNU 

EN!) 
t:.ND. 
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