tia

’0" CBF .AgEy e

ROM Trig ROOM E

" FOUR HEURISTIC SOLUTION PROCEDURES TO
THE TRAVELLIRG SALESHAN PROBLEH AID
AN APPLICATION TO THE MULTI-DEPOT
VEHICLE ROUTING PROBLEM

by

_ Yasef Tovya
B.S. in I.E. » Bodazici University, 1981

| {lllillITII|IIIIITIIIIllIillIIIIIIIIIIII

Submitted to the Institute for Graduate Studies in
Science and Engineering 1in partial fulfillment of
the'reqUirements for the degree of

Master
of

Science

 Bogazici University

1983

182063



i1

ACKNOWLEDGEMENT

I am greét]y indebted to Dog¢. Dr. Giindiiz ULUSOY, my instructof
and thesis advisor for his invaluable guidance and practical discussions
of the techniques and procedures used. Not only was he tireless in co-
operating throughout all the aspects of the study but he also provided

tangible long-term encouragement.

Yasef TOVYA



iv

ABSTRACT

This study consists of two parts. In the first part, four
heuristic algorithms for'so1ving the Travelling Sa]eéman Problem (TSP)
is developed. Given a graph, the first algorithm forms a subgraph in
which the necessary conditions for the existence of 5 frave1]ing sales-
man tour are satisfied. In case the subgréph does not éontain any
travelling salesman tour, Little's branch and bound algorithm is_par-
tially applied to the resultant cost matrix. The second a]gorithm,

. starts with the minimum cbst assignment and ranks the assignment solu-

tions in as;ending costs by introducing subtour breaking constraints.

~ The third algorithm produces some best achievable n-paths which start
from a root node and end at some node incident to the root node. These
paths are then completed to tfave]1ing salesman tours and fhe least co;t
tour is taken as the best achievaS]e solution. A geometric approach to
solving the TSP is described in the last algorithm. Startihg with a
partial tour, the algorithm determines which of the remaining nodes are

_to be inserted between which consecutive pair of nodes on the subtour

and in what order. After all, a summary of computational results re-

garding both the efficiency and the computationa1 effort of all the

algorithms is presented.



In the second part, it is shown that‘the TSP can be applied to
the Multi-Depot Vehicle Routing Problem (MDVRP) in which p vehicles
Tocated at m depots deliver products to demand nodes. The routing
decision involves determining what route each vehicle will follow so
that the total distance travelled is minimized subject to the condi-
tion that the demands are satisfied, and the vehicles return to their -
original depots. A transformation is applied to the MDVRP in order
to formulate it as a TSP. The transformed graph includes two additio-
nal nodes for each vehicle where one serves as a departure'node and
the other serves as an arrival node for the depot at which that par-
ticular vehicle is initially located. By imposing the additiona1
requirement that each demand node is visited by one and only one
vehicle the solution to the original problem can be obtained by
_ solving the TSP on the transformed graph. As a resu]t, the algorithms
developed in thevfirst part of the study are applied to solve the MDVRP.
Computationa{ results reveal that, the computational effort needed for
solving the TSP in a transformed gréph is less than the computational
effort needed for solving the TSP in a complete travelling salesman

graph of the same size.
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KISA OZET

Bu ca]1sma iki boliimden olusmaktadir. Birinci bdlimde, Gezgin
Satic1 Probleminin (GSP) c¢oziimlinde ku]]an1]ébi1ecek dort sezgisel al-
goritma ge]istiri]mistir. Birinci algoritma, verilen serime ait maliyet
| matrisini indirgemekte ve i¢inde bir gezgin satici turunun varo]abi]me;i
i¢in gerek sartlarin saglandigi bir alt serim olusturmaktadir. Alt se-

rimde herhahgi bir gezgin satic1 turu bulunmadig1 takdirde ise Little'in

" gulanmaktadir. tkinci algoritma ¢Oziime dnce maliyet matrisi iizerinde
bir atama prdb]emi cdzerek baslar. Daha sonra, elde edilen alt turlari
. parc¢alayan k1s1f1ar probleme eklenerek yeni bir atama problemi ¢ozilir.
Probleme kisit ekleme ve c¢ozme siireci bir gezgin satici turu olusuncaya
kadar devam eder. Uciinci algoritma ise bir noktadan baslayarak bu bas-
langi¢ noktasina baglanabilen noktalarda biten ve problemin icindeki

her noktay1 sadece bir kere ziyaret eden yollar olusturur. Bu yollar
gezgin satici tdr]ar1na tamamlanarak aralarindan maliyeti en diisiik olani,
bulunabilecek en 1iyi ¢oziim olarak secilir. D6 rdiincii algoritmada GSP'nin
¢oziimline géometrik olarak yaklasilmaktadir. Buna gore, kismi bir tur
ile baslayan algoritma, kismi tura dahil olmayan noktalarin bu tura
nasil ve hangi sira ile ekleneceklerini bularak bir gezgin satici turu

olusturur. Algoritmalara ait verimlilik ve hesaplama karmasikligr ile
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ilgili sonuclar bilgisayar sonugclari ile birlikte ayrica ozetlenmek- -
tedir.

Calismanin ikinci kisminda ise GSP'nin Cok Depolu Tasit Gii-
zefgah1 Belirleme Problemine (CDTGBP) uygulanabilecegi gosterilmistir.
Bu prob]emde p depoya dag1t1im1s m adet tasit burada depolanmis olan
lirlinTeri istem noktalarina dagitmaktadir. Buna gore her tasit oyle
bir gizergah izlemelidir ki toplam katedilen mesafe enaz]ah1rken tiim
istemler kars11ahm1$ ve tasitlar depolarina donmis olmalidir. Verilen
serime uygulanacak olan bir doniisiim problemin GSP olarak coziiimesini
saglar. Serimde, depo noktalari elenirken her ta$1t_i;in bulunduklari
depolara karsi gelen kalkis ve varis nokta}ar1 yaratilir. Bby]eée
© serimdeki her noktanin ya1n1z-bir defa ziyaret edilecedi gozoniine a11n—_
d1ginda CDTGBP'nin ¢6zimi dontistiiriiimiis serimde GSP'nin‘c62U1me$i ile
~elde edilebilir. Sonu¢ Q]arak’ca]1sman1n i1k bollimiinde gelistirilien N
a]goritmalar CDTGBP'nin ¢oziilmesinde uygd1anm1$t1r. Bilgisayarda elde
edilen sonucglar dSnUstUrU1mUs olan bir serimi ¢ozmek i¢in gerekli o]én
cabanin ayn1 biyiikliikteki tambagla Biruserimde GSP'ni ¢ozmek ic¢in ge-

rekli cabadan daha az oldugunu gostermistir.



TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT -
KISA UZET
LIST OF FIGURES
LIST OF TABLES

I. ~ INTRODUCTION

Description of the Problem and Its Complexity
Interpretation of the TSP as a Vehicle Routing
Problem

Extension to the Mu]tip]e TSP

Extension to the Multi-Depot Vehicle Routing Problem
Importance of the Polynomially Bounded Algorithms
Outlines of the A1gor1thms Developed for Solving

the TSP

Contents of the Thesis

— ] —d —d
. . e s e .
~! (o) 2 0 #N] N~

II.- THE TRAVELLING SALESMAN PROBLEM (TSP): A LITERATURE
SURVEY

2.1 Statement of the Problem
2.2 Formulation of the TSP
2.3 Solution Procedures for the TSP

2.3.1 Enumeration Methods

2.3.1.1 Latin Multiplication Method
2.3.1.2 Algebraic Methods
2.3.1.3 Other Enumeration Methods

2.3.2 Exact Solution Methods with Branch and Bound

viii

Page

iii
v

vi
xi

X143

(22~ IVR N -

— 00

2.3.2.1 The TSP and the Assignment Problems (AP) -30

2.3.2.2 The TSP and Minimal Spanning Tree
Problems



II1.

IV,

2.3.2.3 The TSP and Matching Problems
2.3.2.4 The Shortest n-Paths and the TSP
2.3.2.5 Little's Branch and Bound Algorithm

2.3.3 Dynamic Programming Solution of the TSP

2.3.4 Exact Solution Methods Based on Linear
Programming

2.3.5 Approximate Methods for the TSP

'2.3.5.1 Tour Building Techniques '

2.3.5.2 Successive Improvement Techniques

2.3.5.3 Techniques Using Minimal Spanning
Trees

FOUR HEURISTIC ALGORITHMS FOR SOLVING THE TRAVELLING
SALESMAN PROBLEM

3.1 Algorithm I

3.2 Algorithm II

3.3 Algorithm III

3.4 Algorithm IV

3.5 Computational Results

- THE MULTI-DEPOT VEHICLE ROUTING PROBLEM AND ITS

FORMULATION AS A TRAVELLING SALESMAN PROBLEM

4.1 Introduction
4.2 Vehicle Routing Problems. as Extensions of the
Travelling Salesman Problem

4.2.1 The Multiple Travelling Salesman Prob]em (MTSP)
4.2.2 The Multi-Depot Vehicle Routing Problem (MDVRP)

Solution Techniques for the Vehicle Routing Problems
Solution Procedures for the Vehicle Routing Problems

S
S w

Which Build Upon the Travelling Salesman Problem
as the Core Model

4.4.1 The Single Depot Case (MTSP)
4.4.2 The Multi-Depot Case

4.4,.2.1 Transformation of the Node Set

4.4.2.2 Transformation of the Arc Set
4.4,2.3 Transformation of the Cost Matrix
4.4.2.4 An ITlustrative Example

4.4.2.5 Equivalence of the Two Problems

ix

Page

44

47
51
52
55
56
65

68

72

74
86
97
103
115

124
124
127
127
128

132

134

134
136

136
137
138
138
141



V. APPLICATION OF THE PROPOSED ALGORITHMS TO THE
MULTI-DEPOT VEHICLE ROUTING PROBLEM

5.1 Application of Algorithm I
5.2 Application of Algorithm II
3 Application of Algorithm III

5.
5.4 Application of Algorithm IV
5.5 Computational Results

VI.  CONCLUSIONS AND EXTENSIONS

APPENDIX A
APPENDIX B
REFERENCES

143
146
150
157

165
169

172

177
199
206



Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure.

Figure
Figure

Figure

Figure

LIST OF FIGURES

A difficulty assocfated with the largest ang]ek
method.

A difficulty associated with the most eccentric
ellipse method. '

Stages in constructing the subgraph G' for
Example 3.1.

Subgraphs G&

Resultant subgraph G'

Subtours and penalties corresponding to the AP -

solutions in Example 3.2.

The convex hull corresponding to the travelling
salesman graph in Example 3.4.

Steps in building the travelling salesman tour.
Behaviour of the proposed algorithm in the case
where Norback's and Love's largest angle method
fails.

Behaviour of the proposéd algorithm in the case
where Norback's and Loves' eccentric ellipse
method fails.

Comparison of the height criterion with other
criteria.

An example of back transformation for an MTSP.

The original graph (MDVRP) and the equivalent
travelling salesman graph.

Optimum solutions to the travelling salesman
graph and the MDVRP

The graph represent1ng the MDVRP.

Stages in constructing the subgraph G'.

xi

Page

61

62

80
80
82

93

107

11

112

113

114
136

140

141
144
147



Figure
Figure

Figure

Figure

Figure

5.3 - Subgrapls G‘;,
5.4 - The-fesu]tant subgraph G'.

5.5 - Subtours and penalties corresponding to the
AP solutions.

5.6 - Stages of the node insertion process.

Pa

5.7 - Solutions to the MDVRP.

X1

Page

149
152

153

167
169



Table

Table
Table
Table

Table
“Table

Table
Table

Table
Table

Table

Table
Table

Table
Table

.10-

11-
3.12-

13-
14~

LIST OF TABLES

The maximum size of problems solvable in one hour
with respect to the developments in computer
technology.

Reduced matrices obtained during the application of

steps (1) through (4) of algorithm I.

Reduced matrices obtained during the application
of Little's branch and bound algorithm partially.

The cost matrix corresponding to the TSP solved
in Example 3.2.

AP solution to the Example 3.2.

List of nodes at the end of the initial branching
in Murty's algorithm.

List of nodes at the end of the second branching
in Murty's algorithm.

The third and the fourth partitions in Murty's
algorithm.

The cost matrix corresponding to thé.solution (1).

The cost matrix corresponding to the TSP solved
in Example 3.3.

The cost matrix after subtracting each entry from
a large number L = 50.

The cost matrix in Example 3.4.

The cost matrix after subtracting each element from

a large number L = 400.
List for arcs in T in the first step.

List for.arcs in T in the second step.

Xidi1

Page

78
84

91
91

92
92

93
94

100
100
108
108

109
110



Table
Table
Table
Table

Table

~ Table
Table
Table
Table
Table
Table

Table
Table

Table-5.

Table

Table 5.

Table

w w W

WM™

(S BN & 2 BN &2

.15
.16
17
.18

.19

e

.10

List for arcs in T in the third step.

List for arcs in T in the fourth step.
Computational results regarding algorithm I.
Results regarding the application of Little's
algorithm partially to the reduced matrix or
to the original matrix.

Computational results for the proposed algorithms
when applied to problems where 10 < n¢ 70

Transformation of a cost matrix for the MTSP.
Transformation of a cost matrix for the MDVRP.
The cost matrix corresponding to the MDVRP.
The transformed cost matrix. |

The resultant reduced cost matrix.

The transformed cost matrix after the AP is solved
in the first step of algorithm II.

The cost matrix that corresponds to solution (1).

The cost matrix after subtracting each element
from a large number L = 250.

List for arcs in T in the first step.
List for arcs in T in the second step.
List for arcs in T in the third step.

Computational results for the MDVRP.

Xiv

Page
110
12

117

118 -

121
135
139
145
145
152

153
155

158
166
166
168
170



I. . INTRODUCTION

1.1  DESCRIPTION OF THE PROBLEM AND ITS COMPLEXITY

-

The Travelling Salesman Problem (TSP) has been a chalienge that
has attracted researéhers who have wanted to derive an efficient solu-
tion method for the problem. The problem is formidable in the sense
that the associated solution methods are quite difficuit cbntrary to
the simplicity of its statément. Mainly, it is a classical example
which represents the challenge of the combinatorial optimization prob-
. lems.that have found a considerable interest up to now.

Considef a case in which there is a set of n cities which are
to\be visitéd by a salesman. The salesman, starting from a city is
required to vis{t each of (n-T1) other cities before returning to the
start. The problem is to design a route which minimizes the total
distance travelled assuming that the distancésbetween all city pairs
are known.

One possible way of approaching to this problem, which is certain
to give the correct answer is to enumerate all the possible tours and
pick the shortest one. However, the complete enumeration of all the
possible tours becomes a cohputationa]]y impossible task even for prob-
Tems with relatively small number of cities. As a matter of fact, even
the fastest algorithms designed %or solving this problem exactly require

an inordinate amount of time.



Simi]ar‘to most of the other combinatorial optimization problems
the TSP fal]s'into a categorvahich is well known as NP-complete prob-
Tems. The letters NP stand for "Nondeterministic Polynomial". The
status of this category is uncertain in the sense that only exponential
algorithms are known for the‘NP-comp1ete problems. Neither an efficient
algorithm for solving the pfob]ems has been developed, nor has it been
proven that such_a]gorithms'do nbt exist. However, NP-complete prob-
lems have a remarkable property. That is, each problem in this category
is efficiently (i.e. in a polinomial time) reducible to another NP-com-
plete problem. Consequently, if any one of them has an efficient a]gb-
rithm, then every NP-complete problem can bé solved efficiently [1,2].

Not all situations to which the’TSP is confined involve cost mini-
mization. Instead of cost other measufes of effectiveness may be subs-
tituted according to their applications. The problem is known to have
wide app]icatioﬁs»in freduent]y encountered problems arising in prac-
tical situations. Among those problems are scheduling, sequencing, and
vehicle routing problems which can be interpreted as a TSP with‘side

constraints [3].

1.2 INTERPRETATION OF THE TSP AS A VEHICLE ROUTING PROBLEM

The Vehicle Roufing Problem (VRP) involves the visiting of a set
of required stops in a network by vehicles. 'In other words, the stops
or alternatively the destinations with known requirements must be served
with a fleet of vehicles stationed at some depot(s) in such a way as |
to minimize some\objective. It is also required that a]l'vehic]es'must‘

start and finish-at the depot(s) where they are initially located. -



Although the structure of the VRP reveals that it is?re]ated to the
physical delivery of goods, the delivery operation may be replaced

by a collection, collection and/or delivery Or some other operation
which may not even be of physical nature. In fact, the VRP appears
frequently in practical sitﬁations not directiy related to the physi-
cal delivery. For example, service delivery, house call-tours of a
doctor, preventive maintenance tours are 611 VRPs in which there are
no physical delivery operations.

The TSP can be interpreted as a VRP with one depot and with one
vehicle whose capacity exceeds total demand. That is, a vehicle is
required to visit all the destinations once and only once before ré—_
turning to the-depot where it is located. However, the structure of
the problem is changed considerably when more vehicles, more depots,
different vehicle capacities and additional route restrictions are
involved. As a matter of fact, the VRP 1is also an NP—comp]ete’prob1em

for which no polynomially bounded algorithm has been developed [4,5].

1.3  EXTENSION TO THE MULTIPLE TSP

An extension of the TSP which has proven to be more appropriate
for serving as a core problem to the VRP is the Muitip]e Travelling
Salesman Problem (MTSP). In this problem, m salesmen are required to
design m subtours in such a way that each destination is visited
exactly once by exactly one salesman while the total distance trave]]gd
by all the salesmen is being mfnjmized. As a result, the MTSP can be
interpreted as_the problem of routing a fleet of m vehicles froma ~.

single depot to many destinations with the condition that each routed -



vehicle will return to the depot and each destination will be visited
once and only once. The vehicle capacities are assumed to exceed the -
demand in any subtour that may be designed.

Similar to the TSP, the MTSP is an NP-complete problem. However,
it has been showh that the §o1ution.to the MTSP is nokmore difficult
than the solution to the TSP.[6,7,8]. In addition, equivalent TSP
formulations of the MISP have been deriVed. The equivalence is obtained
by cfeating m copies of the depot one for each vehicle. Eé#h’of thése
copies afe.Connected to each destination exactly as the original - depot.
That is, the distancesassociated with each such pair of nodes are the
same. However, there is no connection between any pair of thg copies
of the depot. In other words 1nfinitie$ are 1nserted'in the associated
elements of the transformed matrix so that the optimal travelling sales-
man tour in the expanded graph will never contain an arc connecting any
pair of the copies. Once the TSP is solved forAthe expanded matrix,
the copies are coalesced back into a sinQ]e depot and consequent1y the

travelling salesman tour is decomposed into m subtours.

1.4  EXTENSION TO THE MULTI-DEPOT VEHICLE ROUTING PROBLEM

A further extension of the VRP is to allow vehicles to reside at
mofe than one depot. The problem is known as the Multi-Depot Vehicle
Routing Problem (MDVRP). A vehicle fleet of m vehicles distributed
to p depots is réqujred to satisfy the demand at each desfination. The
routiﬁg décisiqn %nvo]ves the determination of what route each vehicle

will follow so.that the total distance travelled is minimized subject



to the constraints (i) that the deménds are satisfied, (ii) each
destination is visited once and only once and (iii) the vehicles
return to their oniginal depots.

Although the VRP has attracted considerable attention, the
MDVRP has not been studied wfde]y yet and therefore is a promising
area for further research. In the relevant literature, it has been
stated that exact methods for solving the single depot VRP can be
extended to the multi-depot case'[4]. The prinéipal exact methods
for solving the single depot VRP are branch and bound technidueéi[S].
But only methods based on heuristic programming have appeared to be
computationally. feasible for so]ving.1érge practical prob}ems. As
it has been reported by Golden, et.al [4] pkob]ems with about four
depots and hundred destinations can be handled on a computer in less
than 10 seconds. |

The property that ény NP-complete problem can be reduced to
another NP-comp]ete problem in polynomial time is of particd]ar im-
portance in this case. Once the problem is reduced to another NP-
complete problem for which an efficient heuristic algorithm is deve-
Toped, the algorithm can be used to so]ve‘fhe original problem. The
TSP is one such pfob]em which has been studied widely. There are
several heuristic algorithms for so]viﬁg the TSP efficiently. More-
over, these algorithms require less computation effort in comparison
with the algorithms deve]oped for solving the MDVRP. Fortunately, it
is possib]e.to model the MDVRP as a TSP by transforming the original
graph into one for which the TSP can be solved. The transformed graph-

includes two additional nodes for each one of the m vehic]es where oﬁé 
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servés only as a departure node and’the other serves as an arrival node
for the depot at which that partitu]ar vehicle is initially located.
Each departure node is connected to another arrival node with zero
cost. In addition, the departure nodes are connected to each destina-
tion node and each destinatidn node is connected to the arrival nodes
with exactly the same costs as the corresponding original depots. Tﬁé
connections between all pairs of destination nodes remain the same.
The cost matrix is updated accordingly. The solution to the original
problem can be obtained by first solving the TSP on the transformed
graph * and then coalescing all the departure and arrival nodes back
into p depots, so that the travelling salesman tour is decomposed into
m subtours. Note that not all vehicles have to be used as a result of

this transformation.

1.5 IMPORTANCE OF THE POLYNOMIALLY BOUNDED ALGORITHMS

As the size of the graphs being examined 1ncreases the time
needed.for solving fhe TSP and the NP-complete problems increases ex-
ponentially. Growth of this kind can be described by a mathematical
function such as an whefe n is a number related to the problem size.
In fact, n is the-number of cities for the TSP. Many other functions
exist which can be regarded as having the same property of éxponentia]
growth. Among them are n" and'n!. On the other hand, there exists
some mathematical functions of another kind which are known as poly-
nomials. What distinguishes polynomials from exponential functions
is that n does not appear in an exponent. Linear functions, functioq;v

such as n2, n® and the sum of such functions are all suitable for



.describing the polynomially bounded computation times. For small values
of h, a polynomial functionwmay exceed an exponential one but there
always exists a value n beyond which the exponentia]bfunction is greater.
For sufficiently large values éf n any exponential function overtakes
and exceeds the polynomial functions [9].

1t has been aCcepted that algorithms whose execution time increases
exponentially as a function of the size of the problem are not of prac—
tical value. Algorithms of th1s k1nd are known to be 1neff1c1ent For
sufficiently large problems, a po]ynom1a11y bounded algorithm executed
on even the siowest computer will find the answer sooner than an expo-
- nential time algorithm on the fastesf computer. This can be best seen

in Table 1.1 [10].

AN

TABLE 1.1 - The Maximum Size of Problems Solvable in one
Hour With Respect to the Developments in
Computer Technology

Function Existing Computers that are Computers that are
Computers - 100 times fast . 1000 times fast

| n , n,; 100n, 1000n,
n? n, '10n2 ‘ 31.6n,

. n? ns ' 4.64n, , 10n,
n® ny 2.5 n, 3.98n,
2" ns . ng + 6.64 ng + 9.97
3" e n, +4.19 ng + 6.29

As a result, we can conclude that algorithms with'exponéntia1-growth‘
will not benefit from the technological developments made on the com-

puters. That -is, even if the efficiency of the computers improves by



a factor 1000 the time required for solving an exbonentia]]y bounded
a]gorithm will decrease by a fixed amount which differs slightly from

the efficiency of the existing algorithms.

1.6 OUTLINES OF THE ALGORITHMS DEVELOPED FOR SOLVING THE TSP

Since the NP-complete problems and therefore the TSP have no
efficient algorithms, a possible way of atfack is to seek approximate
solutions that are good even if they are not precisely optiﬁa] fﬁstéad
of expending further effort in seeking optimum solutions. The thesis
focuses first on the development of four algorithms for solving the
TSP efficiently. The study is based on reducing the computational work
while the resulting solutions remain close to the exact optimal solu-
tion; Experimental results reveal that this objective fs,achieved
efficiently. Finally, the algorithms are applied to the MDVRP.

The first algorithm developed for solving the TSP uses a tour
bﬁilding approach. First, the cost matrix is reduced. The minimum
element of each row is found and subtracted from every element in that
row. In the resultant matrix, the minimum element of each column is
subtracted from every element in that column. As é result, the arcs
corregponding to the zero elements in the resultant matrix comprise
a subgraph whose node set is the same as the original graph.‘ Then,
the cost matrix is further reduced in order to ensure that the necesséry

conditions for the existence of a travelling salesman tour hold in the

subgraph. In other words, the reduction continues until there exists o

a path between each pair of nodes (i.e. strong connectedness). The

reduction process is further invoked so that given a pair of nddes i

e



and j, there exists a path either from i to j or from j to i (i.e. uni-
1ateré] connectedness) when oﬁe of the nodes is removed from the sub-
graph. Once the necessary conditions hold, the a1gorithm searches for
avtrave111ng salesman tour in the subgraph. In case the subgraph does
not possess any travelling salesman tour, Little's branch and bound
algorithm [11] is applied to the resultant matrix until a feasib]e tour
can be obtained.- | |

The ré1atﬁon between the Assignment Problem (AP) and the TSP forms
the basis of the second algorithm developed. Considering tHé faét that
the travelling salesman tours correspond to extreme points of the as-
signment polytope, the a]gorithm start§ with the minimum cost assign-
ment and finds new solutions ranked in ascending cost until a travelling .
salesman tour is obtained. At each iteration a cutting plane which
forces the assignment so}ution to form a tour is introduced. The main
difference between this algorithm and the related ones in literature
is that no branch and bound procedure is involved. However, the effié
ciency i; similar in the sense that it depends on the total number of
extreme points between the optjmum trave]ling $a1esman soiution and
the minimum cost assignment. In fact, the larger the problem size is,
the ]érger is the number of extreme points in betWeen.

A dynamic programming type approach is presented in the third
a]gorithm; First, the elements of the cost matrix Cij are subtracted
from a large number 1h order to achieve triangle inequality (i.e.

Ci; < Ci

iJ k
to the sequence so that the total cost of the elementary path formed

+'ij ¥i,k,j). At each stage, the algorithm adds a new arc -

by the arc sequence is maximal. Finally, the elementary paths}are , |
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completed to travelling salesman tours and the 6ne with the maximum
cost is selected as the best 5chievab1e solution.

A geometric approach to the TSP is pfesented in the fourth algo-
rithm. Similar to the ré1ated approaches in the 1iteréture the algo-
rithm starts with the convex hull or alternatively a partial tour. Then,
the travelling salesman tour is obtained by successive sequéncing of
each of the remaining nodes between consecutive pair of nodes on the
partial tour. In order to determine the node to be inserted the heﬁghts
of the triangles whose bases are determined by the arcs thrbﬁgh conse-
cutive pair of hqdes on the'part1a1 tour and whose third vertices are
the remaining nodes are calculated. fhe node corresponding to the lar-
gest of these heights is chosen and inserted.into the sequence. The
a]gorithm,terminatesAwhen a travelling salesman tour is obtained.

A1l of the four algorithms proved to work well on several test
problems. For small size problems, it was possible to check the dif-
ference between the solutions obtained and the actual optimum solutions
by applying an exact solution procedure. However; for problems with
more than twenty cities the optimality check could not be conducted
cbnsidering the 1nordinaté amounf of CPU time required for the calcu-
1ati6ns.‘ Instead, the solutions obtained by using the new algorithms

. are compared. ' ;

In order tb apply the algorithms to the MDVRP, the associated
cost matrices pass through a transformation so that the TSP solutions
to the resultant matrices are the solutions to the MDVRP as well. An
obvious result which is of practical importance is that the time re-
quired to solve.an MDVRP is less than the time required to solve a B

~complete TSP of the same size.
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1.7 CONTENTS OF THE THESIS

Chapter 2 presents a complete description and formulation of
the TSP. A literature survey is made on both the exact and heuristic
solution methbds for So]ving'the TSP. Algorithms representing diffe-
rent solution techniques are presented. As a result, comments are
made on the efficiency and computation effort of different solution
procedures.

In Chapter 3, four new algorithms representing distinﬁt heuristic
techniques are presented. Each algorithm is described explicitly and
used to solve randomly generated examples. For purposes of defining
the power of each of these methods, computational results regarding
both the efficiency and computation effort are given.

It is well known that the TSP is a subproblem of many other prob-
* lems frequently encountered in practice. Among them are the VRPs which
can be considered as extenéions of the TSP. In fact, models representing
some of the VRPs are)usua]]y built on the TSP as the core model. As a
consequence of this fact, some efficient transformations have made it
.possib1e to reduce some of the VRPs to a TSP. One of such probiems is
the MDVRP. _ ;

.Chapter 4 gives fuf] descfjption and formulation of the MDVRP.
The transformation is made more exp1icit by the use of an example.

In addition, one to one correspondence between the TSP and the MDVRP
is shown. A - »

Chapter 5 is a treatment of the-app1ication of the proposed a]go—b
rithms to the MDVRP. Each algorithm is used to solve the same examp]e‘\

problem in order to make comparisons on the behaviour of the methods.



The cohc1uding chapter in the thesis, Chapter 6, summarizes
general conclusions and gives an insight to the extensions of the

study which may be subject to further work.

12
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I1. THE TRAVELLING SALESMAN PROBLEM (TSP):
A-LITERATURE SURVEY

2.1 STATEMENT OF THE PROBLEM

Consider a graph G.= (N,E) where N = {1,...,n}‘is a set 6f n
nodes/cities which are to be visited.by a salesman and E is a set of
arcs/roads joining the nodes. Let Cij bé the cost associated with
arc (i,j). The problem of finding a tour that includes each node
in the graph at 1east:once is known as the General Travelling Sales-
man Problem (GTSP). The problem of finding a Hamiltonian circuit, a
circuit that passes through each hode exactly once, with the least
cost is the well known TSP. | |

| In this chaptér, we review some of the exact and approximate
solution methods that have been suggested for solving the TSP. The
solution techniques are mainly based on solving the TSP rather than
so]viﬁg the GTSP. Usually, the optimum solution to the TSP is also
the optimum solution-to the GTSP. -However, it follows that if a
graph G does not satisfy the triangle inequality then the optimum
solution to the TSP may hot be the optimum solution to the GTSP. In
that case, tﬁe GTSP can be reduced to the TSP by a suitable trahsfor—

mation.
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Consider that a graph G does not satisfy thé triangle inequality
(i.e. Cij > Cik + ijF for some k # i, k # j) and that one needs to
obtain the optimum solution to the GTSP defined in G. A GTSP stated
in this manner can be reduced to a TSP by the technique of changing each
arc cost Cij to the 1ength of the shortest path between i and j. If
an arc (i,j) whose cost is lessened as specified above is contained
in the optimum solution to the.TSP; then the arc is placed by the’
shortest path from i to j in the optimum solution and hence, the op-
timum so]ﬁtion to the GTSP is obtained. As a consequeﬁce of the fact
that the GTSP is reducible to the TSP, solution techniques for only
the TSP aré needed. |

2.2 FORMULATION OF THE TSP

Consider the travelling salesman graph G = (N,E). Let

>
1]

i 1 if arc (i,j) e E is in the tour

0 otherwise

Then, the problem is -

n n
minimize ¥ % C.:X:. (2.1)
-i;] .j=.| 1 1] .
n v '
s.t. I Xij = 1 j=T1,...un (2.2)
1=1
n . ‘ .
§1‘Xij =1 i=zT1,...,n | (2.3)“

The solution must form a tour (2.4)
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x;5€ 0,1} ¥igeN (2.5)

Constraint set (2.4) can be written in a number bf_different ways.

Three alternates that have been proposed are

I L x..>1 ¥ScN (2.4a)
ieS je§ W~
IX o x:<|S]-1 ¥SgN . (2.4b)
ieS jeS J ' :
T X.s<|S. | -1 ¥ S, <N _
(1,3)e0y 1] k* V.¢k c (2.4c)
k& >k

where S US =N 5

¢k is any Hamiltonian circuit in the 1ndﬁced subgraph G' =
(Sk,Ek).

Constraint set (2.4a) ensures thaf there exists at least one
arc between two complementary subsets of nodes of N. Constraint set
(2.4b) expresses the fact that no subtour through any subsets of N
can exist by imposing that arcs belonging to any subset of nodes, S,
cannot be greater than (|S] - 1). Equiva1eht1y, constraint set (2.4c)
expresses the samé fact by restricting the existence of a Hamiltonian
circuit in al]fthe induced subgraphs. |

It should be noted that the formulation given above takes care

of both the symmetric TSP, (i.e.yci C:. ¥ 1i,j € N) and the asym-

NI

metric TSP (i.e. cij # Cji for some i,j € N). However, the problem
can be formulated in several different ways when G is undirected and
therefore the associated cost matrix is symmetric. Two of .such for-

mulations are
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e

minimize I Crxr “ (2.6)
r=1
e
s.t L X, =n (2.7)
r=1
I oX.>2 ¥ K = (S5.9) (2.8)
r=K SCN
Xp € {0,1} r=1,...,e (2.9)
and
. I3 - e . y
minimize I Crxr : (2.10)
r=1
s.t T X > ¥ K = (S,5) , (2.11)
rek SEN
> Xy = 2 i=z1,...,n (2.12)
rek.
3
X, € {0,1} r=1,...,¢e (2.13)

where e is the total number of arcs in G

K = (S,S) is an arc cut-set of G wh1ch contains arcs (i,j)
with i ¢ S and j € S :

E; is the set of arcs incident an node i

Cr is the cost associated with arc r.

Both of the formulations are equivalent since constraints (2.7), (2.8)

imply constraints (2.11), (2.12).

2.3 SOLUTION PROCEDURES FOR THE TSP

Many solution tgchniqueﬁ are available for the TSP [12,13,14].
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A1l of these techniques fall into one of two categories:

a) Techniques that are certain to find an optimum solution
but at worst require an inordinate number of calculations

(exact solution methods)

b) Techniques that are not always certain to find an optimum
solution but require a small number of calculations and

therefore less computdtion'effort (heuristic methods).

Exacf‘so]ution techniques are main1y based on using the édvanced
results of integer programming, 1inear.programming and dynamic prog-
ramming as well és enumerating all the eXisting Hamiltonian circuits
of é graph. On the other hand, heuristic algorithms rely upon tour
constructing node inserting and node and arc exchanging techniques.

In the following sections, we will describe these techniques separately
and present a]gbrithms which utilize these methods. Throughout the
discussion, the themes touched are related upon to papers in litera-
ture. Actually, the aim is not to survey the whole field in the area.
Rather, the goal is to give an insight to the techniqﬁes existing in

1iterature.

2.3.1 Enumeration Methods

In principle, the optima] solution to the TSP can always be

obtained by finding all the existing Hamiltonian circuits, calculating

their lengths and thus determining the one that is optimaT. However,

considering complete graphs, the complete enumaration of all the tours- -
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becomes a computationally exhaustivé»task even for comparatively small
size'problems. On the other hand, including some simple tests in the
computation procedure, the set of all possible tours can be greatly
reduced. Then, partial enumeration can be used to select the best
tour without considering thevex;1uded ones.

A possible case is that a graph may not contain a Hamiltonian
circuit. As a matter of fact, one should first try to establish the
existence of a Hamiltonian circuit-before proceeding to Tlook for the
optimum one. Unfortunately, there exists no easy wéy for deciding
whether or ﬁot a graph contains a Hamiltonian circuit. The existing
" necessary or sufficient conditions éré not effective for arbitrary,

graphs- encountered in practical situations.
Necessary conditions for the existence of a Hamiltonian Circuit

A necessaky condftion for the existence of a Hamiltonian cifcuit

is that the graphAG = (N,E) be strongly connected. In other words,
for any two nodes i,j € N, there must be a path from i to j. Another
necessary condition, however, is that the subgraph, Gk, obtained by
removing any node k from G, must be uni]atera]iy tonnected.‘ That’

is, for any two nodes i,j & N - {k} in the subgraph there must be a
path either from i to j or from j to i. Note that both conditions

are necessary but not sufficient for a directed graph to possess a

‘Hamiltonian circuit.
Sufficient conditions for the existence of a Hamiltonian circuit

If in a strongly connected directed graph G = (N,E), the degreg“

of each node is-greater than or equal to n, where the degree of a node
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js the sum of all arcs entering or emanating from that node, then the
graph‘possesses a Hami]tonian“circuit.

In the case of an undirected graph thg'dégree of a node'is
given by the number of arcs jncident to that node. In light of this
definition the following result due to Chavatal [16] describes a
sufficient condition for the ex1stence of a Hamiltonian c1rcu1t in
an und1rected graph:

Let the nodes of an undirected graph G = (N,E) be numberéd in
such a way that d(1) < d(2) < ... < d(n) where d(.) denotes thekdegree
of node (.). For n > 3 if d(k)_i k, ¥ k <n/2 or equivalently if |
7d(n-k),3'n—k Yk < n/2, then the grabh‘contains a Hami]toniah‘circuit.
Note that d(k) < k, ¥k < n/2 implies that d(n-k) > n-k ¥k < n/2.

Actually, it is easy to verify the latter condition. The nodes
are first ranked in ascending order of their degrees. Then, the con-
dition is checked for the first (n/2) nodes. Nevertheless, these
'cr1ter1a are too loose to be of value for graphs frequently encoun-
tered in practice since they imply the eX1stence of nodes with high
degrees. Once these conditions are not satisfied, the only way of
détermining,whether or not the graph contaiﬁs a Hamiltonian circuit
is to make a compTete search on the graph. 1In the following sections
ve will déscribe a few algorithms which can successfully be used fo
find all the Hamiltonian circuits of a directed graph. However, one
should keep in mind that even the most efficient algorithm is unable
‘to handle problems with more than twenty nodes with degrees greater

than four in a reasonable number of calculations [171.
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2.3.1.1 Latin Multiplication Method

. The Latin multiplication method enumerates simple paths of
lengths 1 through (n-1) in a directed graph G = (N,E). Once all the
simple paths of length (n-1) are identified the paths can(be comp]eted‘
to Hamiltonian circu{ts by adding an4arc that joins theirtwoend nodes.
Then, the least cost Hamiltonian circuit is the optimal solution to

“the TSP. The algorithm due to Kaufman [18] can be outlined as follows:

1. Define an (nxn) matrix V! .using the cost matrix C in the

following way:

a) Let each entry of V! be denoted by strings

b) If C;5 >0 i 7] put ViV in the (i,j) location in V!.
Otherwise, put 0 for nonexistent arcs.

k by

deleting the first node in each nonzero string of Vk.

2.. Define an (nxh) matrix L?. Lk is obtained from V

3. Find Vkﬁ Lir=5Vk+i where 8 stands fo} a symbol of Latin

multiplication. Latin multiplication is performed Tike

ordinary matrix multiplication as follows:

a) Zero multiplied by any string is zero.
b) String multiplications are done by joining two
strings into one string, i.e.
V]VZV3 X V4V5V7 = V]V2V3V4V5V7 -
c) String additions are written one below the other, i.e.

V]VZV3 + V4V5V7 = V]VZV3
V, V.V

4°5°7
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d) Any string that has a node more than once equals zero.

4. The entries in matrix Vk<giveithe'simp1e paths of length

K Vn—1

gives the Hamiltonian paths. For all entries
representing Hami]tonién paths, check if there exists

an arc whiéh-connects the terminal nodes of the path.
Out of those paths which can be completed to Hamiltonian

circuits, choose the one with the least total cost.

Considering the time and storage requirements of the method,
even the best computer language cannot provide any advantages on the
exhausting need of memory space for finding all the Hamiltonian cir-
cuits of comparatively small sjze problems. However, for problems
of Tess than 20 nodes and an average node degree of less than 3 the
- algorithm provides a successive means of‘finding the existing Hamil-
tonian circuits. In case the graph does not have a Hamiltonian cir-
cuit or even a Hamiltonian path, the algorithm can be used to deter-
mine all the simp1e paths upto and including the simple path with

the highest cardinality of nodes.

2.3.1.2 Algebraic Methods

In addition to the algorithm presented above thé method based
! . .
on the work of Yau [19], Danielson [20], and Dhawan [21] also uses
matrix multiplications to generate all of the simple paths of a graph.

The steps of such algorithms are mainly as follows:

1. Let A be a modified adjacency matrix where a . = J if there

rj
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is an arc from ¥ to j. Let BX be an (nxn) matrix where
b&j is the sum of the internal node products of all the

elementary paths of cardinality k between nodes r and j.
The internal node producf of a path i],iz,...,ik is dé—
fined as the Seduence'of nodes 12,i3,...,ik_1 excluding
the two end nodes 1] and 1k. Let B! be the adjacency

matrix.

2. Using the ordinafy algebraic matrix multiplication obtain

the product Bk+j = A.BX where
k+i' o .k
brj - g ars'bsj

is the sum of all inner products of all paths from i to j.

1
3. Obtain BX'Y from 8X"7 by setting all of its diagonal

. elements to O and eliminating all terms containing node

k+1

s.from st The matrix Bk+1 is the matrix of all ele-

mentary paths of cardinality (k+1).

4.  Repeat steps (2) and (3) until the path matrix "7 s

| generated. The Hamiltonian circuits can be obtained by
adding those arcs of the graph which join the terminal
nodes of the paths. Alternatively any diagonal element
of the.matrix obtained from the product A.B"7 also gives

the existing Hamiltonian circuits.
Considering the alternative given in setp (4) we may infer that

only b?;1 will suffice for determining all the Hamiltonian circuits

in the graph. This can be obtained by multiplying only the first
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column ofVBk at each iteration. As a result, this reduces both the
storage and computation effort by considerable factors. However,
even with these modifications, the algorithm is still incapable of

handling problems of large sizes.

2.3.1.3 Other Enumeration Methods

The two methods presented in the previous sections attempt to
find all Hamiltonian circuits at once. As a result, all paths that
might take part in forming such circuits have to be stored. Thus,

j an, undesirable increase in the storage requiremeqts results. Cont-
rary to this approach, other enumerative methods consider one>path
at a time. The path is tried to be extended to form a Hamiltonian
circuit. If the path does not lead to a Hami]tonian.circuit,'then
it is modified in such a way that all the possibilities are exhgusted.k
Conséquent]y, the Hami1£0nian circuits are found one at a time.

The fo])owing enumerative method was first exploited by Roberts

and Flores [22]. The steps of the algorithm are as follows: -+

1. - Form a (kxn) matrix D where the entry drj_represents

h a}c that emanateS'from node j.

the end node of the rt
 Note that the number of rows k of the matrix D corres-
ponds to the Targest outdegree of the.nodes in the graph

G = (N,E). Let i] be the initial node of path S.

2. Add the first feasible node in column i, to S. "A feasible

1
node is a node that has not already been added to S. If
no feasible node can be found then go to step (4). Other-

 wise, repeat this step until a path of cardinality (n-1)

is formed.
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3.. At this stage, let S = {1],1 .,in} where 1],1

PIRE 25"”1n
denotes the sequence by which the nodes appear on path S.
If arc (in,i]) exists in G, then a Hamiltonian circuit is
found. Find the. cost of this circuit and'store it if the
cost is 1ess than the cost of the circuit that has already

been stored in the memory.

4.  Remove the last entered node from S. If this removaT
causes S = {¢} then terminate the algorithm. The Hamilto-
nian circuit sfored in the memory is the optimum solution ’
to the TSP. 1If no Hami]tonian'circuit has been stored,
then the TSP 1is -infeasible. If there is at least one

node 1in S, then return to step (2).

Improvementé'to this method are pbssibie by means of applying
a better se1ectf0n rule for adding the remaining nodes to S. Suppose
that at.some stage of the a]gofithm we are sea(ching for a feasible
node in column ip of the matrix D. If there exists a node r in
- column ip such that r ¢ S and R'l(r)C:S where R7}(.) is the set of
all nodes reaching node (.), then r is the only node that.can be added
to S since the addition of any other node will exclude r from further
conéideration and therefore result in a path that cannot lead to a
"Hamiltonian circuit. On the other hand, if there exists a node r in
cngmn ip such that r ¢ S, r ¢ R71(i;) and R(r)= S U {q} for some

other nbde g in column ik where R(.) is the node set reachib]é by (.),

~ then q cannot be added to S since the addition of q to S will cause

the remaining subgraph not to contain a path from r to i] and there-

fore result in a path that cannot lead to a Hamiltonian circuit.
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Computational reéu]ts reveal that, although the tests for the cases
mentioned above slow down the procédure for small graphs (less than
20 nodes) they cause a considerable improvement in the computational
effort especially for larger graphs.

The methodisuggested'ﬁy Roberts and Flores can further be im-
broved by considering the fact that a path constructed in S implies
the existence of other paths in the graph. These paths may possibly
~ help to complete a Hamiltonian ciréuit more quickly or point out that
a path S cannot lead to a Hamf]tonian circuit. The following algorithm
is based on the enumarative scheme propqsed by Roberts and Flores and
incorporates the ihprovements déve]oped by Selby [23] and Christofides

[24]. The a]gorithm is summarized in six steps.

0. Let d (j) and d+(j) denote the indegree and outdegree of

node j respectively. Select the root node i, of S as the

1
node with the maximum indegree. Ties are broken by choosing
iy with minimum outdegree. Set I = {¢}, k =1, S = {i;}
where I is the set of implied arcs and k is the level of

. the decision scheme.

1. Search for implied arcs, i.e. arcs (j,r) such that d (r) =1
or d¥(j) = 1. For any such arc (j,r) form the longest path

by using (j,r) and all the arcs in I.

a) If the cardinality of the path is less than (n-1),
then add (jor) to I and remove all the arcs emanat{ng
from j and terminatihg at'r. If this removal causes
any node q to have d (q) = 0 or d*(q) = O then go to

step (5). )

| ‘ » . . . n S‘
BOGAZIG) {INIVERSITES! KUTUPHANE t
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b) If the cardinality of the path_is (n-1), then check
whether the arc (in,i]) exists. If (in,i]) exists,
‘then a Hamiltonian circuit is found, go to step (4).
Otherwise go to step (5). ,

Iteratétd step (1) until no further arc can be added to I.

Check if an imp]ied arc emanates from node 1k say

(fk,r) el. If r =1, and k <n, go to step (5). Other-
"wise, set k = k+1, ik =rand S =S+ {ik}. If k = n,
then check whether arc (in,i]) exists. If so, a Hamilto--
nian circuit is found, go to step (4). Otherwise, go to

step (5). Iteraté:. step (2) until no further implied

arc can be added to S.

Select the nextvnode r to bé added to S from the nodes
not 1hc1uded in S so that r is fhe node whose min{d (r),
'd+(r)} is a minimum among all othgr nodes. Ties are
broken by choosing q with min{d (r) +.d+(r)}. If no
feasible node exists theh go to step (b). Otherwise,
remove all the arcs emanating from ik and the arcs ter-
minat{ng at r as well as the arc (r,i]) from the graph.
Set k = k+1, ik = r. If the removal 6f the arcs cause
any node q to have d (q) = 0 or d*(q) = 0, go to step
(5). If not, return to step (1). | |

Check if the prescribed number of Hamiltonian circuits
have been found. If so, terminate the search. Other-

wise continue.
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5. (a) If k = 1 then stop. 'All possibilities have been exhausted.
Terminate the search. Otherwise, remove node ik from S.
(b) If arc (1k_1,ik) e I, then set k = k-1 and return to step
(5a). IOtherwise, continue.
(c) If arc (ik_1,jk) was angd to S at step (3), then reinsert
all the arcs removed from the graph at Tevel k, remove
all the arcs inserted in I at level k and set k = k-1.

Return to step (3).

The algorithm was tested on randomly generated graphs with both
the indegree and the outdégree of each node lying in prefixed ranges.
As it has been 1nd1cated by'Martello [25] for node degrees 1in range
1-3, the algorithm is very fast since a few or no Hamiltonian circuits
exist. In case the node degrees range‘betweén 2 and 3 the computational
effort shows_an increase which is proportional to the number of nodes n.
Finally, it has been observed that the running times tend to be imprac-

tical for node degrees ranging between 2 and 4 and higher.

2.3.2 Exact Solution Methods with Branch and Bound

The branch and bound a]gorithm»comprises a theoretical frame-
work for solving different types of combinatorial optimization prob-
lems. The method examines successively subsets of the set of all
solutions untiT one of the solutions located in one of the subsets
1§ prdven to be-optima].» |

‘vThe set of all solutions is partitioned into a finite number

of equivalence c]asses'by using partitioning properties. Then, each



28

class is examiﬁed'ﬁy Qsing a decision tree. The tree ConSists of nodes
and edges which'join the‘nodes. A path from any node to fhe root of
the tree is called a brqnch and the solutions are given by the unique
branches down thé tree. | |

For each node on the tree, we first check the feasibility of the
corresponding solution class. If the solution class does ﬁot contain
any feasible solution or if the node is terminal, i.e. the solution
class cannot be pértitioned again, then that node is fathomed (closed).
Otherwise an uppef bound is caicu]atéd and a parameter, which'is a
numerical value of a specia]vfunction called the branching function,
is defined. This value gives a measure of the desirability fbr exploring
further that particular branch of the search tree. The braﬁching stra-
tegies are given different names which vary with the specified branching
function. The commonly known strategfes include the breadth first stra-
tegy, the branch éearch Strategy and the branch and bound strategy.

Termination occurs. when either all nodes are fathomed or when
all the upper bounds of the unfathomed nodes afe less than or equal to
the lower bbund corresponding to the best feasible solution found so
far. If the algorithm does not terminate, then fhe branching node is
selected to be the node having the highest value of the branching -
function. The new solution class to be examined is obtained by applying
a partitioning properﬁy given by a special rule called the partitioning
ru]e} Besides, a priority rule is used to determine the subc]éss to
be examiﬁed. .

In view of the facts mentioned above, a general branch and bound

~algorithm can be summarized as follows [26]:
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1. Let the whole set of solutions be assigned to the root

node of the decision search tree.

2.  Check for a feasible solution. If the solution class does
not contain any'feasib]e so]ution, then fathom the node

/,

and go to step (3). Otherwise,

a) compute an upper bound for the solution class,
b) compute a Tower bound, if possible,

c) evaluate the branching function.

3. Terminate the search if either all nodes are fathomed or
all the upper bounds of the unfathomed nodes are less than
or equal to the current lower bound of the problem. Other-

wise, continue.

4. Select the branching node. Use the partitioning rule and
the priority rule to determihe the new node to be examined.
. Close the branching node after alT the nodes correSponding

to the subclasses have been generated. Go to step (2).

Analysing the general branch and bound algorithm, we see that we
need a mechanism for finding a feasible solution, a mechanism for com-
puting upper bQunds, a termination test, a branching function, a defi-
- nition of the partitioning properties, a partitioning rule and a prio-
rity rule to apply the method properly. Generally, all of the branch
and bound algorithms differ depending on the selection of thé required
“‘informatiqn for their app]ication;_ As a feéu]t, there are many branch
and bound a]gorithms which are‘designed for solving the TSP bﬁt which

differ in selecting the required information.
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Most of the exact‘solution methods for solving the TSP are of
the branch and bound’type. At each node of the decision tree, prob-
lems which are re]éxqtions_of the TSP are solved in order to compute
good quality lower boundé. A;tuaT]y, good qhq]ity lower. bounds affecf
the effectiveness of the algorithm much more than any effecfive branch-
ing rules. Therefore, mahy algorithms found in literature have put -
emphasis on the problems of calculating lower bounds. The lower bounds
are usually calculated from problems which are relaxations of the TSP
and whose solution methods are known to be efficient. Among thése'
problems are the assignment problems, the minimal spénning tree‘prob—
lem, matching and covering problems and shortest path'problems. The
following sections are confined to different branch and bound techniques

using. these problems for generating lower bounds.

- 2.3.2.1 The TSP and the Assignment Problems (AP)

thsidef the AP and its dual problem defined as follows:

n n
Primal  minimize T CisXss (2.14)
E ' i=1 j:T RN : )
n - . _
s.t. .Z xij =1 J=T1,...,n ’ (2.15)
1=1
n
L Xes o= 1 i=T1,...5n - (2.16)
j:T- i ' .
*ij >0 . (2.17)
: ' n n o
Dual ‘minimize I u; + 2 v , : (2.18)
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s.t. us + Vj.i Cij i, = 1,...50 (2.19)
ujsV;  unrestricted (2.20)
where Cij = cost of arc (1,J) and Cii = i=1,...,n
X;5 = 1 if arc (i,3) is in the solution set

0 otherwise.

The AP is a relaxation of the TSP where the-additiona1 constraint
that the solution must form a tour'has been dropped. The AP defined
above may have solutions composed of»a number of disjoint ciréuits.

One may then impose the additional constraints that have been dropped
in order to obtain a single circuit containing all the nodes. The
restrictions aré usually imposed within the framework of thevbranch
and bound algorithms “(Eastman [27], Shapiro [28], Bellmore and Malone
[ 29]). |

Let the solution of the AP defined above be used in the solution
‘procedure of the TSP. Then, the following branch and bound algorithm
can be used to determine the‘optimum solution to the TSP by fmposing
the additional constraint that the AP solved on the modified cost matrix

gives a single tour.

1. Begin at the live node 0. Solve the AP and let Z, be the

optimal objective function value.

2. Apply the breadth first strategy to select a 1ive node j
such that Z. = hin Zk where K is the set of 1ive nodes.
. kek
If no such j can be found, i.e. all the nodes are fathomed

then stop. The problem is infeasible. Otherwise, continue.
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- 3. If the solution in node j is a Hamiltonian circuit, then
terminate the algorithm. This is the optimal solution to
the TSP."If the solution to node j is composed of a number
of independent circuits, then let {i],iz,...,ir,i]} be the
circuit with the'minimum number of arcs. Subdivide the prob-
lem into r subprob]ems. In each problem, set the cost of

_one of the arcs to infinity with all the other costs remaining

unchanged. Let each subprqb]em be represented by the succes-
sor nodes of j. Solve the AP for each successor>nodé using
the corresponding modified matrix. If a feasible solution
to the TSP with an objective /function value of Zq is obtained,

then fathom all the nodes whose Zk < Zq where k € K. Return

to step (2).

Note that the branching rule giQen above removes the:circuit by excluding
one of its arcs. However, the subproblems created by using this method
are not disjoint. On the other hand, a braﬁching rule which produces
mutually exclusive subproblems created by using this method‘are not
disjoint. On the other hand, a branching rule which produces mutually
exclusive subproblems is desirable.

The following branching rule can be used in producing diéjoint
subproblems. 'Let.{i],iz,...,ir,i]} be the circuit which is going to

be removed. Then the cost matrices can be modified as follows:

Problem.1 C. .

I
8

112
Problem 2 C. . =-M,- C, . =
' RS R 213
Problem3 C, . =-M, C., . =-M, C, . =
. 1112 1213 ]314
Problem r Cos =Cis =it 20 o= MC L =

112 123 Tr=1lp v

|
|
i
]
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-M is a large negative number which ensures that the arc whose cost is
assigned -M will remain in the optimal solution. This can also be
achieved by deleting the corresppnding row and columns of those parti-
cular arés and solving the problem on the reduced matrix.

A better b}anching rule can be applied to the algorithm by con-
sidering the fact that there must be at least one arc leading from the
set of nodes that comprise the circuit to the set of the remaining nodes.
Each subproblem would be created upon insisting on the existence of

such an arc whose initial node is in S = {i1,i .,ir,ij} and the

PR
final node in S = N-S. This can be done by setting er =®, ¥r e S
and leaving all other distances unchanged for subproblem j. As a result,

the branching rule will lead to the disjoint problems with the following

updates:

Problem 1 C. . =¢C. . = . =C = ®
Tl N3 T4l

Problem 2 C. - =C, . = ... 20, . =z

' Talp - T3 o Toly

Problem 3 C. . =GC. s = veeee =Cs o =
'131-' '13'12 . ]3'1‘”

Problem r C. . =C. . = coue. 2Cs . =
1.4 i, v i,

This branching rule and the one presented previously takes only one of
the circuits of the solution into consideration. Another branching
rule will be one that considers the remaining nodes based oh the same
feasdning described above. .
Subpose that at some node q of the decision tree we have the
cost matrix C which represents the graph 67 = (N,Eq). Let S = {i],...,ir}

be the node set representing a circuit in the solution associated with
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node g and“§ = N-S. Then the new branching rule requires the following

[29]:

Prqb]em 1 Ciij‘- © ¥jes, Jzi

Problem 2 ) Ci]j = ® yJ e S, Cizj =e¥jesS, J¢i,

Problem 3 C, 55 G j= ¥es, C == ¥eSs, ]z,
1 2 3

Problem r C; s =C; s =z .....=C;, . =z=oV¥j E§Q C. - =
1d 15d | Tpoqd - 1.d

VjeS, j#i.

As it has been described previoué]y an efficient branching stra-
tegy would be the breadth first strategy as it is used in the given
algorithm. But one could also use the depth first stfategy and- there-
fore branch to one of the successor nodes of a node just partitioned.
Note that the termination criteria remain the same in both casesl

No matter which'branching’strategy is used, the quality of the
lower-bounds computed has a significant influence on the number of
branchings in the decision tree and therefore on fhé computational -
efficiency of the branch and bound method. The objective function
value of the AP\is a valid Tower bound and can be used quite effi-
ciently. Howevér, a tighter bound can be calculated from the optimal

solution to the AP at the ekpénse‘of a little extra effort [17].

Let the optimal solution to the AP contain ny disjoint circuits.
Then, each circuit is contracted so fhat all the dircuits, q;,‘are
~ represented by s{ngle nodes. Construct a graph G' = (S*,E') where
S? ; {s%,Sé,...,s; } and each node S; represents a circuit q§ and E!

) T -
is the arc set taken as
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-{(sl,s )]el

L =12 min {c 13}
S sJ req rk
keq

where [c sl] are the elements of the resu]tant cost matrix. The AP

J
is so]ved once more on the contracted problem using matrix C'. How-

ever, the solution to this problem méy also contain n, disjoint cir-
cuitg. Note that these circuits have the previous circuits as nodes.
The new circuits, 955 afé further contracted into nodes to form a new
graph, G? = (S%,E?) where S? = {s%,sg,...,sgz} is the set of n, nodes
each representing a circuit q; having the previous circuits as nodes
and E? is the edge set taken as -

E2 = {(s2,52)|c2,

3 2 = min {Crk}}

J req’
ksqi

S,S

The AP solved for this doubly contracted problem may still have ng dis-_
- joint circuits. Thus, the contraction is continued iterative]y until
~the problem is reduced to a sihQ]e node.

An important point that should be taken care of is that the
cost matrix obtained at the end of each 1terat1on must sat1sfy the
triangle inequality. If the cost matrix produced fails to satisfy
the triangle inequality, it has to be transformed into one that does.

This proéedure is called compression and compression is performed by

replacing every element sz gk fqr which

177 :
k k k | k ok
Cok k>Clk ok +Ck .k for some s €S
s],sJ : s1 Sr Sr Sj r

by the value of
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As it has been shown by Christofides [17] the sum of the values
of the solutions to the APs obtained during‘the "solution-contraction-
compression process" is a valid lower bound to the TSP. The computa-
tion effort for the contraction and compression parts of the process
is known to vary in order of n and the time required to calculate the
-bound is approximately 14.3% greater than the timekrequired to-so1ve
an AP of the same size. This increase in time, however, results in a
considerable émount of saving in the decision tree seérch.'

Another bound which also uses the AP was introduced by Balas and
Christofides [30]. They consider the introduction of some violated
constraints of the TSP into the objective functionvby the use of Lagrange
mu1t1p1iers. In‘addition,to the AP formulation, the TSP includes con-
straints that forces the solution to form é tour. Such constraints are
given by (2.4a);'(2.4b) and (2.4c). Let Ap be the multiplier associated
with the rth constraint of the ste (2.4a) which is not satisfied. The

problem, then, becomes

minimize % » C..X.. -Z A, I T Xe: + I A (2.21)
ild 13,13 r " es jeS. W T
v r r '
s.t. ? Xij =1 j=T1,...5n . (2.22)
Z..‘ X’ij =1 i=z=1,...,.0 : (2.23)
J . _ ,
X33 >0 ¥i,jeN . : C(2.24)

An'approximate method for finding these multipliers can be given as

- follows:
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1. Form the graph G = (N,E) where E = {(i,j):fgj = 0} and
[tij] are the elements of the cost matrix after the AP is

solved.

2. For each node i, find R(i) the node set reachible ffom i via
arcs in G,. If the number of reathib]e nodes is (n-1) ¥i,
then stop. The multipliers are calculated. Otherwise, gene-
rate cuts for the nodes whose reaching sets are incomp]ete.'
Let k be one of such nodes whose reaching set iérgiven by
R(k). For R(k) = N-R(k) the corresponding'Lagrange multip-
lier A is calculated as

M Ts;(rﬁ){c"j} | -
jeR(k)

and the cost matrix is updated by

E].JQ =Ty " X - ¥ieR(k), §eRK)

3. Updafe G, so that arcs for which t}j has become 0 are

included 1in GO. Return to step (2).

At this §tage it is probable that there exists some unsatisfied
constraints of type (2.4b). Once again, these constraints can be in-
troduced by using a further Lagrangean relaxatijon. Let uq be the
multiplier associated with the qth unsatisfied constraint of‘the set

(2.4b). The new problem can be stated as

minimize T X C..Xx..-T XA % T Xe. + XN
' i3 WW oy Tiyes 45 ¥ 7
r r .
+Iu I Xe. - D[S |+ ou (2.25)
q q i,3eS 1 q q ‘q q q

q
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s.t. I X.o =1 J=T1,...,n _ (2.26)

R |
RV iz 1, | (2.27) -

J

X320 Ve (2.28)

Then, the procedure continues with the foi]owing step.

4. Ca]cu]ate Hq in a similar way that the duals are computed for

the AP. For each “q determined, calculate new dual variables

u; and v for the AP and update the costs by tﬁj ; Cij'ui_vj'

-

Note that at the end of this procedure, the initial AP solution

is still optimal and

TC,p, + 2 Ar + Iy

r q )
with TCAP being the optimal objective function value of the AP,

AP q

constitutes a lower bound to the TSP.

Since the number of zero elements of the cost matrix has been

increased after the application of step (1)-(4) mentioned above, it

might be the case that those elements comprise a Hamiltonian circuit

although we know that the initial AP solution is still optimal. If

there is not any Hamiltonian circuits then the lower bound can be

‘ improved by app]ying'the following step.

. 5. Consider the final version of G,- Let Gz = (NS,EZ) be the
graph generated from GO by removing node s. If GZ is not
‘unilaterally connected then there must be a pair of cuts

1 2 S." s S 1 _ S 2 _. Pafi
Kg» Ko of G for which Eofﬁ Ks = EOIW Kg =¢. - Define
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7. = min {C,.}
* o (d.3)ekiue iJ

and make the transformation

Perform this procedure for every s € N so that.GZ is uni-

laterally connected after the removal of any node s.

As a result, the quantity
TCap ZTA+Z Mg+ I

is a valid 1ower.bound for the TSP. Note that thevpr0cedure can be
applied to both symmetric~and asymmetfic problems but produces better
bounds for asymmetric problems.[31]. |

-After all, the use of the AP based bounds have been observed
to perform well in tree Seafch a]gorithms. Up.to'date‘results reveal
that prob]ems with 250 or more nodes can successfu]ly be solved by
the use of the AP based bounds with different types of branching
schemes [30].

2.3.2.2  The TSP and Minimal Spanning Tree Problems

- The minimal spanning tree problem (MSTP) is the problem of
-finding the tree thaf spans a11'th¢ nodes of a graph with the minimum
total cost.'rThe TSP 1is closely related to the MSTP in the sehse that
the:problem of finding the shortest Hamiltonian path of a grabh is
: »equiva1entlto~the problem of finding the minimal spanning tree of a

grapn with the additional constraint that no node should have a degree
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greater than 2. The minimal spanning tree‘of a graph may contain arcs
which result in a degree d(i) > 2 for some node i. If such a node i
exists, then at least one of the arcs incident to node i must be eli-
minated. Thus, there are d(1i) prob]ems which must be taken into con-
sjdération. In each one of the d(i) problems, one of the arcs incidenf
to node i is eliminated (Cij = =) -and the MSTP is solved again in order
to see if the absence of the eliminated arc leads to a Hamiltonian path.

The following branch and bound algorithm can be used to deter-

 mine the shortest Hamiltonian path with the aid of the MSTP [17]:

1. Begin at the live vertex 0. Solve the MSTP. Let Z0 be the

cost of the minimal spanning tree.

2. Find a 1ive node j on the decision tree such that Zj is
minimum. - If no Tive node can be-found then stop, the

problem is infeasible. Otherwise, continue.

3. If the solution to node j is a Hamiltonian path then stop,
the optimum solution is obtained. Otherwise, select a
node i on the spanning tree such that d(i) > 2. Subdivide
the problem into d(i) subproblems. In each problem, set
the cost of one of the arcs incident to-i to infinity,
while all other costs remain unchanged. Let each subproblem
be represented by the successor nodes of j on fhe decision
tree. Solve fhe MSTP for each successor node. If a feasibie

_ so]utioﬁ:(i.e.'a Hamiltonian path) is found with an objective

function value Zq, then fathdh all the Tive nodes, k, where
zZ < Zq, k e L, and.L.is.the set of;a11 Tive nodes. Return

to step (2).
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Note that this algorithm deals with finding the minimal spanning
tree of a graph rather than finding the shortest Hamiltonian circuit
which is the So]utionlto the original TSP. However, once a solution
method for finding the shortest Hamiltonian path is known, a small
modificafion will suffice for dea]iné with finding the shortest Hamil-
tonian circuit. . »

Let the shortest 1-tree of a graph, G, be defined as the minimal
spaﬁning tree of the subgraph of G with node 1 removed, plus the two
shortest ércs from node 1 to fwo other nodes of the tree [14]. Then,
the shortest l-tree with all node degrees of value 2 is the shortest
Hamiltonian circuit-of the graph. Thus, the branch ahd bound method
discussed above can be used to solve this problem as well.

Instead of using the cost of the shortest spanning tree as a
Tower bound by itself, one may count the longest branch on the tree
twice and then let the overall cost be a better bound to the optima1
TSP. This follows from the fact that the spanning tree contains (n-1)
arcs that connect all of the n nodes whereas n arcs are needed'to
comprise a Hami]tonién circuit. Consequently, since the longest arc
on the shortest Hamiltonian circuit is at least as long as the longest
arc on the minimal Spanning tree the quantity

Toyst e Ci3
whef'eTCMST is .the cost of the minimal spanniﬁg tree and T is the set
of ércs'on the minimal sﬁanning tree, is a lower bound to the shortest
Hamiltonian circuit.

Another way of deriving a better bound by using the MSTP is to



42

include the constraints d(i) < 2, ¥i € N to the objective function
by means of Lagrange multipliers. In other words, nodes with degrees
greater than 2 are penalized. There are many penalizing procedures
proposed for solving fﬁe TSP with the aid of minimal spanning trees.
Methods of this type were fifst exploited by Held and Karp [14] and
Christofides [24]; Improved methods for deriving the penalties were
later introduced by Haﬁsen and Krarup [32].

| The method due to Volgenant and Jonker [33], uses arcAexchanges
in minimal trees -in combination with a branch and bound algorithm based
on the l-tree relaxation. Once a minimal spanning 1-tree, T, is obtained

the method distinguishes two types of arcs:

1. Arcs not incident to node 1

For an arc (i,j) in T, the l-tree T;j follows from T by
exchanging (i,j)IWith a shortest arc (r',s') not in T in
its fundamental cut set. Now arc (i,j) must be part of

an optimal solution if

C- =¢C

"C..+C||>u
T1j r

T ij S

where C;- s the cost of the }-tree following from the
A j .

origiha] %Ftree whose cost is‘given by CT and u is an

upper bound on the optimal TSP value.

For an arc (k,q) not in’T, the 1?tree TEq follows from T by
exchanging (k,q) with a longest arc (r",s") on its’ funda-
mental path in T. Now arc (k,q) cannot be part of an optimal

solution, if
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CTEq = CT + qu - CY‘"S" >u

where CT+ is the cost of the l-tree following from T.
kg

2. Arcs incident to node 1
Let (1,i)’and (],5) be the arcs of the minimal l-tree T and
C,. <¢C

11 13°
Then, the 1-tree.T

;i and T;j follow from T by exchanging arcs
(1,1) respectively (1,j) with the arc (1,k) which is not in T.
So, an arc (1,j) must be part of an optimal solution if

CTij = Gy - C i + Clk > u

Simi]ar1y, the 1-tree T?k, keN, k#i,j fo]]oWS’from T by

‘exchanging an arc (1,k) not in T with arc (1,3) in T. Thus,

arc (1,k) cannbt be pért of aﬁ\optimal solution, if

CTTk = CT + Clk - C}j >u - |
The TSP algorithm of Volgenant and Jonkers 7s based on fhé

1-tree relaxation of Held and Karp [14,15] and modified with the
edge exchanges onkone major point: Using a minimal 1-tree in one
of the live nodes of the decision tree, the branching is governed'
by the CT— values of.the arcs incident to an arbitrary node i with
/d(i) > 2 on the subtour of the minimal 1-tree. The set of feasible
so]@tions is split into three subsets. The first set is chéracterized
by requiring to édges, say e and €5 incident to i; the second set
by forbiddjng e, and keeping e],réquired and the third set by forbidding

& onﬁy. As e and~e2,the arcs with the largest respectively second

Let k be an index wi’(:h’C]k = min{C1q|q e N, g# i,3}.
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largest Ci- vé]ue are chosen. Tproughout the algorithm a heuristic
suba]gorithm is used on simply chained 1-trees to obtain a better
upper bound for the T§P, So that'morevvariab1es can be eliminated
and more sensitive CT— va]ues can be calculated.

As it has been reported, computational results has shown that
‘thé arc exéhanges are advantageous for Eucledian problems up to 120
nodes as well as for random table problems upto 200 nodes. Neverthe-
less, up to date results reveal that prob]ems up to 100 nodes can be
solved successfuT]y be embedding the MSTPs as lower bounds into branch

and bound algorithms.

2.3.2.3 The TSP and Matching Problems

This section presents a method for calculating a lower bound
on the length of an optimum Hamiltonian ‘circuit by the use of the

matching problem. Given an undirected graph G = (N,E) a subset D CE

is called a b-matching of G, if the node degrees d(i) = b for all i e N.

~ Then the problem of finding a minimum cost b-matching is the integer

programming prob1em ‘

minimize I Ckxk (2.29)
keE : :
s.t. LooX o= b i=z1,...,n (2.30)
keA., :
S | ,
x, € 10,1} VkeE : ' . (2.31)

where Ai is the set of arcs incident to node i. Adding the cbnstraint

> 1 y Kr'z (5..5) 5 S.CN (2.32)
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to the 2-matching problem we obtain the formulation of the symmetric
TSP.  Thus, the 2-matchin§ problem is a relaxation of thelTSP'and can
therefore be used as alva]id Tower bound.” On the other hand, the
additional constraints can be included into the objective function by
means of Lagrange multipliers. Hence, we obtain a problem which can
be solved by:a technique similar to the one used in deriving a Tower
bound via the assignment problem.

Occasionally, the lower bound obtained By So]ving a 2-matching .
problem can be embedded into a deéision tree search algorithm. Experi-
ments showed that the Tower bounds generated by the 2-matching problem

are much better than the lower bounds generated by the assignment prob-

lem when the graph is symmetric.

2.3.2.4 The Shortest n-Paths and the TSP

Consider a Hami]tohian circuit. Obviously, this is an n-path
from a node j back to j where each node appears once and only once on
the path. On the other hand, excluding the resériction that each node

vmust appear exactly once on the path, the computation of the shortest
n-path from j back to j becomes a simple problem which can be solved by
dynamic programming. Note that a node can appear an arbitrary number
~ of times on the shortest n-path. The recursion formu]ae'for the compu-

tation of such a path can be given as

() = Gy VieN, i3] (2.33)
f (1) = E;R (o (@) + Cyp) izd, iel (2.34)

o] K=z2,...,n-1
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f () = g;g{fnq(q) + Gzt : (2.35)
qeN

Evenfua]]y, if the n-path passes through each node exaétly once, then
it is the solution to the TSP. If a node appears on the path more
than once, then f;(j) can be used as a lower bound on the value of
the TSP.

A bétter bound can be derived by penalizing the nodes which
appear on the path more than once. Let the costs Ci' be transformed

J

byffij = Cos t A5 4 Aj where A, is a penalty associated with node i.

1J
Then the cost of any Hamiltonian circuit in the graph is increased by
.thg same constant amount 2% ki’ On the other hand, n-paths that are
not Hamiltonian circuits a;e penalized by first computingvfn(j) with
the modified costs f}j. Let the n-path pass through node i ki times.

Then

w(A) = F(3) + 25 (ky - 1, : (2.36)
1 ;

is a valid bound to the TSP. The problem is therefore to choose that

A* which corresponds to the maximum of the expression
w(A*) = max{w(A)} o (2.37)
pY .

and use w(A*) as‘a'iower bound for the TSP. Subgradient optimization
is one possib]g!procedure for soTving tﬁis prqb]em.

“As it hag‘been reported by Houék'et.a1 [34] one type of node
repetition can be prevented by a simple modification on the recursion

formulas. In other words, it is possible to exclude occurrences where

the rth and (r+2)th nodes on the n-path corréspond to the same node
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in the graph for some value of r. The quantity calculated by solving
the shortest n-path with the modified recursion formulas plus the -
associated penalties is a better lower bound to the TSP.

| An advéntage of the Tower bounds using the shortest n-paths is
that additional constraints-for problems related to the TSP can easily
be included in the structure of the problem. On the other hand, the
fact that O(na)joperatidns are required to compute the shoftest n-path
as compared with 0(n?) operations for the minimal spanning tree problem
and 0(n2°>) operations for the assignment problem is a disadvantage of

the method.

2.3.2.5 Little's Branch and Bound Algorithm

The basis of Little's algorithm [11] is to first identify a
feasible solution to the TSP and then to decompose the set of all
remaining feasiblé tours into smaller and smaller subsets. At each
step of the decomposition, the bounds provide a guide for partitioning
the subsets of é feasible tour. A tour with a length less than the
length of tﬁe/current best tour is assigned to be the minimum Tower
‘bound of all the tours. The process of bounding tours, eliminating
fhe suboptimal.alternatives and branching continues until all of the
bounds on.the decision search tree are greater than or eqUa] to the
length of the best available tour.

The algorithm starts with the origina] cost matrix C énd sub-
trécts:from every entry in each row thevminimum element of that row
and repeats this process‘fo} all the rows. Then, the minimum element
of each column is subtracted from every entry in that column in the

resultant cost matrix. ' The process of subtracting the minimum element
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from the entries in each row and column is called row reduction and
column reduction respectively. The reduced matrix coniains at least
one zero in each row and in each column. Since all the elements in

the reduced matrix are‘nonnegative,'the sum of the reduced constants,
H, constitutes a Towgr bound on the length of any tour under the’matrix

before reduction.

The next step is to identify the minimal length tour by assigning.

one zero valued cell in each row and column. If such a zero valued tour

can be found, then this-is the optimal solution. However, the arcs of
the optimal tour are not identified simultaneously. The tour is formed
by selecting one arc at a time froﬁ the cost matrix. |

As it has been suggested by Little, a penalty is calculated for
. each zero element in the cost matrix. The penalties, ng, give the
Aminimum cost that would be incurred if the optimum tour does not contain
the arc (i,j). Thus, that arc whose cost under the reduced matrix is
zero and whose ﬁena]ty is the largest governs the partitioning of the.
solution set. Thé toté] number of tours is divided.into two sUbsets;
" those that include arc (i,j) and those that do not. Let these subsets
be represented by two subsequent nodes on the decision tree. The bound
| on the node which represents the tours nbt including arc (i,J) is
(H¥5ij). Before we can determine the new bound on the node which rep-
resents the tours that include arc (1,3), certain modifications have
to be performed‘in the cost matrix. . Since arc (i,j) is selected to
appea} in the final tour it is jmpossible to include another afc corres=~
“ponding to an entry in row i or column j.: Thus, row i and column j are.

deleted from the cost matrix. Finally, costs of arcs which if not taken
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out of consideration might create subtours are setvto infinity. After
these modifications are made the cost matrix is further reduced so
that each row and column contains at least one zero. The bound on the
node is now computed as the sum of .the new reducing constants plus the
Tower bound of the predecessor node. As a result, a new branching

becomes possible. The subset of a11Atours is partitioned into smaller

subsets. The partitioning process continues until the final subset

contains a single tour. Furthermore, the branching process is controlled

by the lower bounds. The subset of tours whose lower bound is larger
than the lower bound of a node representing the best feasible tour are
deleted from furthef”consideration. That is, no additional branching
is performed from the corresponding node. The aTgorithm is summafized

in the following steps:

1. Begin at the 1ive‘node 0. Let Z0 = 0.

2. Reduce C. ,Set H to the sum of reducing constants. Set
the Tower bound of the node to the sum of H plus the ]owerk
bound of the predecessor node. If the Tower bound is greater

than the cost of the best tour available, go to step (6).

3. Calculate the penalty for each zero element in C.. Choose

arc (g,r) such that pqr = Te¥{pij}.

J
node which represents the subset of all tours not including

Set the bound of the

arc (q,r) to the lower bound of the predecessdr node‘plus

* the penalty pqr'

4. Branch.to the node which represents the subset of tours

that include arc (q,r). Cross out row g and column r.



50

Insert infinities in C to prevent subtours from being formed.
If-C is.not a (2x2) matrix, then return to step (2). Other-

wise, continue.

. Since C is now a (2x2) matrix, a tour has been obtained.  If
the cost of this tour is less than the cost of the best

available tour, then record it. Otherwise, continue.

. Select the next node to branch from, as the node with the
least lower bound. If all the bounds are greater than the
least cost tour, then stop. The tour stored is optimal.

Otherwise continue.

. Update and set up matrix C. so that it.corresponds to the node

selected in step (6). Return to step (3).

Little's method has many advanfages as compared with other

branch and Bound techniques. The method can be extended to handle

additional constraints which are not included in the TSP, but may -

appear in problems which are closely related to ‘the TSP. Another

important property is that if for any reason the tree search is

stopped before the search ends with an optimal solution, then a good

and sometimes the optimal solution is obtained. But, similar to all

other branch and bound methods the computatioha] complexity of this

method is exponentially dependent on the number of nodes of the probj

Tem. In other words, the combinatorial structure of the-TSP is still

“in effect.
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2.3.3 Dynamic Programming Solution of the TSP

'An alternative solution to the TSP by means of dynamic program-
ming has been offered independently by Bellman [35], Held and Karp [36]
and Gonzales [37]. ‘Thé procedure is more general than the branch and
bound technique and requirés less computation effort. However, the
storage requirements for dynamic programming are more 1imiting as com-
pared with the branch and bound technique.

Consider the n-node TSP with costs specified by the elements

of matrix C. Let node 1 be the origin of the travelling salesman tour.

Considering that i is any node other than node 1, define the following:

Sk = a set of k nodes other than nodes 1 and i

S = a set consisting of the remaining (n-k-2) nodes

Suppose that starting at node 1 on fhe optfmal tour, a path passeé‘
through each of the nodes of §k in some particular order and ends at

- node 1. Note that the nodes in S, have to be included in the path in
some order before returning to node 1. That is, the portion of the
tour from node i through the nodes of S, and back to node 1 has to be
considered.. Obviously, this will be the shortest possible path from
node i back to node 1 passing through k nodes of Sk. Let f(i,Sk) be
the shortest possible path from i back to 1 with k nodes of Sk in

“between. Then, the recursion formulas can be given as

f(ia‘i’) = C'I.i ‘ ‘ ‘ k 0 . (2.38)

f(1,S,) = min {C.. + f(j;S. - {j}) -k
k = i) k

T,o.oon-1 (2.39)
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Note that f(],Sn_1) would be the length of the optimal tour of the TSP.

The formulation of the TSP by dynamic programming can be simpli-
fied for the case of symmetric cost»matrices. If the total number of -
nodes of»such'a problem is n, then this number can be expressed as
(2g+1) if it is odd and as‘éq if it is even. If n is odd, the recur-
sion formulas givén above can be used recursively from k =AO to k =g
to obtafn an optimal path of 1ength (qg+1). On the other hand, since
“the cost matrix is symmetric, the path including the remaining nodes
would have alreadly been computed and hence the problem is solved.

If n is even, then the procedure remains the same except that the
recursion ranges from k = 0 to k = q-1;

As it can be seen, the storage requirements for the problem is
extremely large. One must be able to store all the compufations at
two consecutive stages sihce it is not.possible to overwrite any of
the‘computations made at a'given stage until a]T the computatioﬁs at
the following stage hévé been made. As a concluding remark, we can
state that the storage requirements for dynam}c programming are.moke
than doubled for each additional node. Unfortunately, even the best

methods developed are not able to overcome this difficulty.-

2.3.4 Exact So]utibn Methods Based on Linear Programming

The TSP cannét be directly formulated and so]ved as a 1fnear
pfpgramming prob1em-in practice. However, a possible procedure for
so1viﬁg the TSP is to solve its relaxations by means of linear prog-
ramming and then to impose the relaxed constraints by either a branch

and bound algorithm or a cutting plane procedure. Actually, there
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constraints would be taken into consideration when they are violated
by the linear programming solution of the relaxed problem.

The basic method described as above has been adopted in numerous
different ways. For example, consider the method proposed by Crowder
and Padberg [38]. for the symmetric TSP. The basic idea of applying

their method goes as” follows: First the Tinear program
min{Cx|Ax = 2, 0< x< 1} - (2.40)

where C is the vector with (n(n-1)/2) components given by the arc dis-
tances and A is the incidence matrix of the complete graph is started
with a feasible solution. If the next feasible solution is a tour,

a usual pivot is carried out. Otherwise, the next feasible solution
is chopped off by some cutting plane which is safisfied by the'current
solution at equality. Consider the constraints

k -
K < IS5+ 3 dIsg] = 1) - - R (2.41)
. 1= .

o~ R

i=0

where [.] denotes the next highest integer, |S| denotes the cardina-
lity of set S and thg sets Si are proper subsets of N satisfying the

following conditions for i = 0,1,...,k.

1SN S:l > 1 d= 1,0k (2.42)
5= Sl 21 =,k - (2.43) .
Is; N Sjl =0 1<i<jc<k - (2.44)

k odd - : - (2.45)
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The arc set {U§=0,E(Si)} is called a comb in G and thg inequalities
(2.41) are called comb constraints. A comb with k =1 and |S | =1

is a subtour e]imination constraint. [39]. A‘cohb is a 2-matching
constraint [40] if the inequalities both (2.42) and (2.43) hold as
equalities. As a result, iﬁ order to introduce a cutting plane into
the Tinear program,fsome suitable subtour e]imfnation, 2-matching and
comb constraints are identified by the use of (2.41). Onée a usual
pivot is executed on the enlarged linear program, a tighter relaxation
of the TSP is obtained. Continuing in this manner, a situation where
no suitable constraint can be found is entountered. Then, the next
step is to reduce the problem under»consideration in size by fixing
variables at either zero or one uti]jzing the fact that Both a value
for 5 tour which is obtained by applying a heuristic_due'to'Lin and
Kernighan and a true Tower bound on the_optim@m tour 1ehgth (iﬂe. tﬁe
current solution of the LP)‘héve been obtained. Let E& be the reduced
cost of the-corresponding optima1’tab1eau and A denote the difference
between the cost of the best tour obtained so Far and the optimum
value of the objective function of the linear proéram; Then, all non-
basic variébies whose fj_z A in the optimal tableau are fixed with value
Zgro_and all nonbasic variables whose JEj_Z A in-the optimal tableau
~are fixed With value one. Thus the Tinear program is reduced in éize

/ and takes the form

min{CRy[ARy = b, Dy<d, O0<y<1} (2.46)

R

wherefC are the costs of the arcs whose corresponding variables could

not be fixed at either zero or one, AR is the corrésponding node-arc
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incidence matrix, b is_a vector with compdnents equal to-0, 1 or 2,
D is a matrix corresponding to the cutting planes generated and d is
the corresponding righf hahdside adjusted for the variables fixed at
value one. |

Once the linear program (2.46) is solved, a branch and bound
proéedure is used to’find an optimal zero-one solution. If the opti-
mal solution defines a tour, then the optimal solution to the TSP is
found. If the zero-one solution defines a collection of subtours in
the graph then the subtour elimination constraints are appended to
the program. This new linear program is reoptimized starting with
the optimé] basis from the previously so]Ved Tinear program. Then,
the branch and bound technique is used again and the procedure is
iterated. After finitely many steps the procedure finds thé minimum
length tour of the graph. |

Other aTgorithms.using the same basic idea have been propoﬁéd
by Miljotis [41], Grotschel [42]; and Christofides and Whitlock [43].
We will not go into the details of these algorithms but instead ’ |
state a general resu1t 0n their performance. Compéring the 1inear
programming based method with pure branch and bound prdcedures, we
see that they are competitive with branch and bound methods for
solving symhétric TSPs whereas they are not competitive for asymmetrﬁc

cases [31].

2.3.5 Approximate Methods for the TSP

In this section, we analyse techniques that are not always

certain but find a near optimum and sometimes the’optimum solution
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to the TSP with a'reaéonable number of calculations. The algorithms
corresponding to these approximation methods have been observed to

run faster thén,the best known exact solution methods. In view of

the computatioha] difficulties that,afise»from the exponential compu-
tation time‘dependent on the~number of nodes, the approximafe algo-
rithms become préfer;ble although they may not prbduce an optimal

tour. Furthermore, some of these methods have known bounding ratios
of the obtained total cost to the optimal tour cost. The ratios are
dependent on the number of nodes in some cases and constant inrqthers..

It is possible to classify the techniques in different cate- .

gories according to their algorithmic approaches. These categories are:

i) tour building techniques
ii) successive improvement techniques

-111) techniques using minimal spanning trees.

. 2.3.5.1T  Tour Budeing Techniques

2.3.5.1.1 Insertion Methods

" - = s e - - —

The basic idea of .the insertion methods is to start with
a partial tour and construct subtours prégressive]y each time with
an increase in the number of nodes.  That is, each fime one node 1is
inserted into the partial tour. Then, the. new partial tour is used
"in the samé way to obtain another partial tour. The procedure is

continued until all nodes are covered.

-
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2.3.5.7.1.1 Nearest Insertion Method

The first insertion method we study is the nearest insertion

method. The corresponding algorithm can be summarized as follows:
Given a graph G = (N,E) and a subtour Tj = {1],12,...,1j, 1]}
with cardinality j,’construtt ahother subtour Tj+] by performing the

steps described below.

a) Find a node ik € Tj such that

C....min {min {C, _3}}

el qeN-{T }s=1,... TgsT
where C is a symmetric cost matrix satisfying triangular

inequality.

b) Delete arc (jk’jk+1) in Tj and add arcs (ik,r) and (r,ik+1)

to obtain the new subtour Tj41 and let the new sequence of

k+1

nodes be {1]’12""’1j’1j+1

c) Repeat steps (a) and (b) until Tn is obtained.

It has been proven that the ratio of'thé tour cost obtained by
the nearest insertion method to the optimal tour cost is less than 2.
[44]. As a result, this method can be programmed to run‘in polyno-
mia]]y'bounded time with an order of n? where n standé for the total

number of nodes. -

/ 2.3.5.1;1.2 The Cheapest Insertion Method
Simi]ar to the nearest insertion method the cheapest
insertion method.produces a tour no worse than twice the optimal
regardless of the number of nodes;"The algorithm can be outiined

as follows:

}. Note that i = i; if k = §.
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Given a graph G = (N,E) and a partial tour Tj = {i],...,ij,i]}

of cardinality j, construct another subtour Tj+ by performing the

1
following steps.

a) Find a node g such that

i

TC.,. = m i n{TC. + c.

+ C_ . -C. . }
I geN-{T, 3 9 T8 Dy T T
i eT. J
k™'J
where ch is the cost of tour j and 1k+1 = i] if k = J.

b) Delete arc (ik,ik+1) in T, and add arcs (1,-) and (q,1,,.)

to obtain the new subtour TJ.+1 = {1],12,...,1j,1

.j+1’11}

c) Repeat steps (a) and (b) until Tn is obtained.

~

- As it has been stated in Rosenkrantz, Stearns and Lewis [44]
the fastest program devised for this method runs in a time propor-

" tional to n?log n.

2.3.5.1.1.3 Farthest Insertion_Method

Cdntrary to the nearest insertion method, the farthest
insertion method inserts nearby nddes late in the approximation.
Intuitively, tﬁe reason for such an approach is simple in the sense
that the smallest distant arcs used late in the apprdximétion have
more chance of not being deleted by the later insertiéns. Eventually,
it has been observed tﬁat this method perfdrms well in comparison
with fhe previously menfioned insertion methods. The a]gorithm is
the same és the nearest insertion method except that the farthest
‘ihsertion method is associated with'méximizatiqn whereas the nearest
insertion method is assopiated with minimization. Tﬁé-algorithm is

as follows:
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Given a subtour Tj = {1]""3ij’1]} with cardinality j construct

another sub'tour‘Tj+1 as mentioned in the following steps.
a) Find a node i, ¢ Tj such that

1}

C Z max {min {C

ik,r i,r

_ ’qu-{Tj} s=l,...,J s
,b) De}ete arc (ik,ik+1)-in Tj and add arcs (1k,r) and r,ik+1)

to obtain the subtogr Tj+1 = {1],12,...,1.,1

J j+1’11}'

c). Repeat steps (a) and (b) until T is obtained.

Needless to say, the running time associated with }his method

is proportional to n® as it is in the nearest insertion method.

[t R S AR I X S i SRU .

A11 of the presented insertion méthods of solving the TSP
use the cost matrix diréét]yAtQ find an optimal or a near optimal
solution to the problem. We will now show that given a travelling
salesman graph, if the nodes can be located as points in a two di--
mensional space, then an optimal or at least satisfactory tour of
all nodes can be obtained without reference to the cost matrix.
However, the general approach remains the same. ‘That is, the algo-
rithm stafts With a collection of nodes which comprises a partial
tour and then decides which of the remaining nodes are to be inserted
between which consecutive pair of nodes on this subtour and\inrwhat
order. Knowing that the order of the nodes on the convex hull is
the,same as thé‘order of the nodes on the optimal tour, the algo-

rithm starts with a partial tour containing those nodes on the convex

hull or with the convex hull itself.
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Actually, there are two important factors which determine the -
efficiency and performance of the algorithms that fall into this cate-
gory. First, the convex hull must be determined in order to obtain
the starting paftial,four. Next é criterion for choosing the next
node to be inserted.must be.determined. The determination of the
Jatter have caused researchers to develop different algorithms which
are refficient in terms of both computational time and thé satisfactory
solutions obtaihed. The following algorithms are some of the best

known algorithms found in Titerature.

This method due to Norback and Love [45] uses the same
appr;ach meﬁtioned above. However, the criterion fdr determihing the
next nodé to be inserted between two consecutive nodes on thévpartia]
tour is to measure the angles whose vertices are the nodes to be
chosen and whose sides are the arcs through consecutive nodes .on
the partial tour. Then, the node that corresponds to the largest
of these angles 1s}chosen to be inserted between the associatéd con-
secutive nodes on the subtour. This process is repeated until a tour
containihg all the nodes can be found.

It:hasvbeen shown by Norback and Love that the tour generated
rby this method mﬁy not be optimal. For instance conéider the case
shown in Fig. 2.1. Starting‘ﬁith the convex hull {1,2,5,1} the tour
obtainéd by the largest angle method 1is given as {1,2,3,5,4,1} although

the optimum tour is {1,5,3,4,2,1}.
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(b) ' (c)
Figure 2.1 - A difficulty associated with the largest

angle method
Despite of this problem the largest angle method has the
special advantage of ease of application. The method has been
examined to work well and fast even for large scale brob]ems up to

2000 nodes.

2.3.5.1.1.4.2 The Most Eccentric Ellipse Method '

In this method, the general approach still remains -
the same while the node to be inserteﬁ is being chosen by considering
each consecutive pair of nodes on the convex hull as foci of an ellipse
and the node to be chosen as being on the ellipse. Then, the least
circular ellipse determines the node to be inserted in the subtour.
An importantAfeature of this method is that the triangle inequality
is required to hold. However, considering that the nodes ane:points
in two dimensional spaﬁe, the distances between all pairs of nodes
do satisfy this condition.

Neverthe]ess, this method may not generate an'optimal tour
‘either. The choice mechanism may fail as it does in the particu]af
case shown iﬁ'Fig. 2.2. Note that the starting hull is given as
‘{1,2,453,1} and the most eccentiic ellipse method inserts node 5

between nodes 2 and 4 whereas a less costly tour can be obtained



(a) (b) (c)
" Fig. 2.2 - A difficulty associated with the most eccentr1c
ellipse method

by inserting node 5 between nodes 4 and 3.

Ana]ysing the geometric approaches mentioned abové,
we see that in particular the/nodes of the travelling salesman |
graphs are kequired to be mdde]led as points in a two dimensional
space and- that the existence of the’trianglé'inequality is a-must.
Oﬁ the other hand, once the convex hu}] is ‘known the coStvmatrix ]
can be used to determine the next node to be inserted in the subtour.
Again, the criteria used in determining thé successiye nodes to be
sequenced are important and affect the’efficienﬁy\and the perfor--

- mance of the a]gorithh. As it has been proposed by Or [46] using
the cht mafrix, three different measures can provide a means of
finding out the next node to be inserted between any two consecutive
nodes on the particuiar tour.

Let i and j be any two consecqtive nodes on the convex hull,
and Tet k be one of the femaining nodes to be inserted. Then, the

- measures can be defined as follows:

i) DIST = min{Cyy + Cs = Cy5)
i1) RATIO = min{(Cyy - C.3)/C,5)

ii1) MULT = DIST x RATIO
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Experimental results showed that the best solutions were obtained when
the third criterion was applied in the algorithm. Although the reason
for such a result has not been determined, the fact that the third
criteribn is a goo& way of breaking ties that may occur when the

first two measuresyaré;applied has been accepted to affect the solu-
tion. That is, ties that may dCcuf in the firsf two measures are
probable not to occur in the third one. ‘

After all, neither of the above criteria guarantees that the
optimal solution will bé found. But, observétions reveal that the
algorithms work efficiently and obtain satisfactory results. An
advantage of applying these measures is. that the cost matrix need not
satisfy the triangTe‘inequa1ity. However; since the structure of the
algorithm is dependent on the topographic structure of the.problem,
it may generate tours‘which are far‘from befng optimal for cost
‘matrices containing arbitréry numbers. >Eventua11y, the d]gorithm
can also be applied to situations where the nodes\ake modelled as
points in two dimensional space. Once the coordinates.of the nodes
are known, it is possible to obtain the associated costs by using‘

the distance formula.

2.3.5.1.2 Nearest Mergihg Method

This method is different from the previous meth0d§ in the
sense that it first constructs a set of subtours covering all thé
nodes and then merges two subtours at each iteration until a tour
including a]]»the nodes is constructed. In summary, the algorithm

is as follows:
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1. Let S1 be a set of n tours each coniaining a single node

Set i = 1. o : ,
2. Find an arc (q,r) such that

qu’= m1n{ij for k and j in different ‘subtours in Si}

3. Obtain 51.+1 from Si by merging two subtours containing g
and r. Let those subtours be T] and T2 respectively. Then,

the merging process is performed as follows:

- a) If T] consists of a single node, q, then insert q into
T2, else if T2 consists of a single node, r, then insert

~rinto T,.

b) If T and T, each contain at least two nodes then et s

and t be nodes such that s is 1n‘T] and t is in T2 and
_qu oy - Cq v
and (r,t) and add arcs (q,r) and (s,t) so that T and

¢ = Cog s minimized. Delete arcs (gs)

T2 are merged. Set i = i+1.

4. Repeat steps (2) and (3) until S,, contains one tour including

all nodes.

This-algorithm is also bounded with a ratio similar to other
insertion algorithms. That is, the ratio of the approximated tour

‘cost to the optimal tour cost is less than 2.

‘This algorithm starts with. an arbitrary node and builds up a

path sequentially. Finally, the'path is completed to a circuit by
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adding an arc joining its end points. The algorithm uses the following

steps:

1. Start with'an arbitrary node.

2. Find the’node not yet on the path and which is the closest
to the node last added. Add the arc connecting these two

nodes to the path (Ties are broken arbitrariiy).

3. When all nodes have been added to the path add the arc
éonnecting the two end nodes so that the path is completed

to a circuit.

As it has been stated by Rosenkrantz, Stearns and Lewis [45]
this algorithm can be programmed to operate in a time proportional

to n?.

A possible improvement of the methdd is to repeat the algo-
rithm for each possible starting node. As a result, the running time
will be proportiona1_to nd. Furthermore the ratio of the approximate
tour cost to-the optimal tour cost is Tess than ((1/2)1q(n) +‘(1/2)).
Note that the bounds found for all these a]gorithhs are for their worst

case behaviour. However, experiments suggest that the performance of

the methods are far from being tied to their worst case behaviour.

 2.3.5.2 Successive Improvement Techniqueé

| Another approach'to finding a satisfactory so]utién to
the TSP is to start with a travelling salesman tour ahd pertﬁrb it to
see ff a better tour can be obtained. If a better tour is obtained,
then the initial tour is discarded and the new tour is further mani-
pulated. 'The procedure is,Yepeated until no more improvement can be

made and hence, the tour at hand is the best achievable solution.
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The first method that we will analyse was first exploited by
Croes [47]. The algorithm makes use of the important result that if
the cost matrix of a travelling sa]eéman,graph represents. Euclidean
distances than the opfima] tour does not intérsect itself. Once an
arbitrary tour is sg]ected'initially, the algorithm tries to produce
an intersection]ess tour by replacing two arcs in the tour by two
other arcs that are not in the téur._

The method of local optimization was further carried by Reiter
and Sherman [48]. Their algorithm sfarts with an arbitrary tour and
tries to find the best 1océtion of eachrnode separately. In other
words, once a node is removed from the tour, the algorithm tries to
find its best location in the remaining sequence. The procedure is
continued until no improvement 1n<the'tour 1s‘possib1ef Then, the
algorithm tries to find the best locatien of an arc joining two nodes
in the sequente.  For example, the location of the arc (1],12) 1;
tried to be found in the remaining sequence {13,14,...,1n}. This
procedure is a1$o continued until no 1mprovemént js‘possib}e.‘ Finaily,
the algorithm checks chains of three nodes in alternative locations.

A similar approach was introduced by Lin [49] who generalized
the local optimization methods. Lin defines a tour to be r;optima1
if the deletion of r afcs and their replacement by otherwr arcs produces
no better tour. Stérting with an arbitfary tour,'if r arcs are removed
from the tour theh'r‘distonnected paths are produced. These paths can
be'connected in.qne are more different Ways to produce another tour with |

|

a betfer’tota] cost. As far as rfoptima]ity is concerned, the method |

. \
exploited by Croes would be called 2-optimal since it tries to obtain I

. |
an improvement by interchanging any two arcs by another set of two arcs.|
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It is shown by Rosenkrantz, Stearns and Lewis [44] that for
n > 8 there exists a graph having a tour which is r-optimal .for all

r < n/4 and for which the cost of that tour satisfies

TC(r-opt) :.2(1 _‘~%_)
Trsp |
where TC(r-th),is the cost of an r-optimal tour and TCTSP is the

cost of the optimal solution to the TSP.

An important feature of this method is that the number of calcu-
lations requiked to obtain an r-optima1‘tour is polynomial in n while
it is exponential in r. Therefore, only small values of r can be used
in the a]gorithm; Note that the TSP is n-optimal and the number of
operations required to obtain the n-optimal tour is (n;l)! for asymmetric
problems and (n-1):!/2 for symmetric problems. In fact, this is the
quant%ty required for the complete enumeration of all the possible tours..
The method was further improved by Lin and Kernighan [50] in a more
powerful way. ‘

Another successive improvement technique for finding an approximat
tour is accomplished by first startiné with any tdur and then trying to
switch the position of the nbdes. Let*{il,iz,...,in} denote the order
of the nodes'in the.iﬁitié1 tour. Then, the algorithm tries to find a
shorter tour by switching each possible pair of nodes in the tour.
Switching nodes ij ghd i, means replacing arcs (ij-1’ij)’,(ij’ij+1)’
(eyaiyds Ggoiey) by ares (5 01000 Giodge)s (Giopaiy)s Gyai,):

The switching procedure continues until no improvement is possible [51].
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As in all improﬁement techniques the final tour depends on the
initial tour. Moreover, the cost of the initial tour should not be
considered as a good indicator of the cost of the final tour. In general,
one cannot be certain about the optimality of the final tour produced by

these methods. But they are known to perform well in most of the cases.

2.3.5.3 Techniques Using Minimal Spanning Trees

Most of the methods which are proven to have constant bounds

use comparisons with minimal spanning trees in their prodfs. Then, a
question that may come into mind is "why shouldn't minimal spanning
trees be used in finding approximate éolutions to thevTSP?“ Eveintually,
there are widely known methods which determine approximate solutions
by first finding the minimal spanning trees. 'We will analyse some of
these methods and outline their a]goritﬁms to give an insight to the
use of the minimal spanning trees in finding approximate solutions
rather than using them as lower bounds to the.TSP as has been explained
previously. | .

The first method we will analyse is the penalty method introduced
by Christofides [24]. The spir%t of this algorithm is to transform the
vcostkmatrix in such a way that the minimal spanning tree of the trans-
forméd matrix is forced to form a Hamiltonian path. The algorithm pro-

Ceeds as»folldws:

1. Find.the.minima1 spanning tréevof G = (N,E) using the cost

matrix C.

2. If the minimal spanning tree is a Hamiltonian path then the

probiem is solved. If not, then calculate a penalty, Bi’

for each node i and transform the cost matrix such that

i
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Cij = Cij + P + pj ¥i,j e N

3. Repeat steps (1) and (2) until a Hamiltonian (shortest) path

is found.

4. Add the arc joining the two ends of the Hamiltonian path to

produce a travelling salesman tour.

There are many strategies for computing the associated penalties
at each step. Held and Karp [14] who developed a similar algorithm gave
two methods of finding the penalties which minimize the difference bet-
ween the cost of the shortest Hamiltonian path and the cost of the mini-
-mal spanning tree under the modified cost matrices. A pitfall of this
algorithm, however, is that it is not necessari]y convérgent. But it
can be considered as a valuable method since it converges in thé great
majority of the cases. Moreover, it may be used as a valid lower bound
in cases when the algorithm does not converge.

Another wide]y known but unpublished method using minimal spanning.

trees is as follows [44]:

1. Find the minimal spanning tree of the graph.

2. Double the arcs of the minimal spanning tree so that an
Eu]eriah circuit containing each node at least once is

obtained.

- 3. Consfruct a travelling salesman tour by traversiﬁg the arcs

| of the Eulerian circuit (1.é. a circuit traversing each of
the arcs at least once). If a node already 1nc1udedvin the
travelling salesman tour appears in the sequence of the
Eu]érian tour;‘skip that node and continue traversing until

all the nodes are included in'the travelling salesman tour.
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This method é]so has a‘ratio 6f~the obtained tour cost to the optimal
tour costvwhich is less than 2.

Christofides [52] developed a similar algorithm which give a
better bound for theFWOrst case behaviour. A worst case analysis of
his heuristic show%d that the bounding ratio is strictly less than (3/2).
This broughf a 50% reduction over the'previous1y best known ratios for
other po]ynomia11y bounded algorithms.  The algorithm can be stafed,as

follows:

1. Find the minimal spanning tree of the graph G = (N,E).

2. Relative to the minimal spanning tree, let N! be the set
of nodes having odd degree. Solve the 1-matching problem

for the graph G! = (N!,E').

3. Llet only those arcs in the minimal spanning tree and those
arcs in the matéhing and the set of nodes N comprise\the
graph G2 = (N,E2). This graph has all nodes of even degree

and consequently possesses an Eulerian circuit.

4. Transform the Eulerian circuit into a travelling salesman’

tour by removing extra occurrences of each node.

Several goodva1gorithms exist for finding the minimal spanning
tree of a graph. Usually, these algorithms have a cbmputationa] time

which is of order 0(n?). However, the best known algorithms for finding

the minimum matching have a computational growth rate 0(n3)J Thereforew
the overall computational time is proportional to n®. Note that, the J

- last stép of converting the Eulerian circuit to a Hami]tohian circuit
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can be done in 1inear,time. After all, the best known bound has been
1mprovéd'by 50% in the expense of increasing the computational effort
with regard to methods which have worse bounds but have computational-
effort which is proportional to n”. | »

A final rem?rk that should be made for the methods that fall
into thfs category ié that techniques using minimal spanning trees
are applicable only to symmétric TSPs. This is a consequence of the
fact that minimal spanning trees can only be computed for undirected

graphs.
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111, FOUR HEURISTIC ALGORITHMS FOR SOLVING
THE TRAVELLING SALESMAN PROBLEM

In this chapter we introduce four heuristic algorithms uSing
four distinct approaches for so]ving‘the TSP; Similar to a]] of the
heuristic methodsthathave;beéhputﬂbrmaﬁdrecent]y the algorithms are
designed so that they do not suffer from inefficiency. Actually, the
-_a]gokithms are easily programmable on a computer and produée tours -
which are close to the optimal solutions. |

The first a]gorithm'uses the necessary conditions for thé
existenée of a Hamiltonian circuif as a tool for constructing asub-
graph of the original graph in which the optiﬁum or a near optimum |
~ solution to the TSP 1s.contained. The arc set of the‘subgraph is
extended by including arcs corresponding to the zero cost elements
in the updated cost matrix as a result of reducing it iterativeiy.
The reductfon is made in such a way that the necessary conditions
~ for the existehce of-a Hamiltonian circuit tend to hold as the sub-
graph is deve]oped. In case, the‘subgraph does not contain any
Hami]tbnian circqit, the algorithm applies Litt]e's Branch and bound
_ a]gprithm to the‘fesu]tant matrix»partia]]y SO thatra feasib]e'tdur

is obtained.




73

The fact that the travelling sa]ésman tours are éxtreme points
of‘the assignment polytope constitutes the main idea used 1n’the éecond'
algorithm. The TSP is solved by the aid of the embedded assignment
problems. The subtours produced by the assignment solutions are broken
is such a way as tq make thevalgorithm work as fast as possible.

The third aigorithm uses a dynamic programming type approaéh
which is veryvsimi1ar to Ford's [53] shortest path a]gorithm. First,
all the elements of the cost matrix are subtracted from a 1arge number
so that the triang]é{inequa1ity is satisfied. Then, given a specified
root nbde; the algorithm tries to find all the longest Hamiltonian
paths in which all the nodes appear once and only once. The longest
paths are then cohp]eted to Hami]tonian circuits and the one with the
least cost (i.e. ca]cﬁ]ated by Using the original cost matrix) is
selected as the best achijevable éo]ution. ’ |

The last é]gorithm is a geometric approach which uses the'well
known tour building technique. Sfmi]ar to other relevant algorithms,
the method works well for problems defined in %he‘Euc1idean space.
Given the cdnvex hull, the algorithm ca]cu]ates the héights of the
triangles Whosé bases are the arcs through consecutive node pairs in
the convex hull and whose third vertices are the interior nodes that
are not invthe convek hull. As a result, the heights are considered
~as a measure of‘inserting the interior nodes and therefore building
the final tour. | |

- “Repeated runs on randomly generated graphs resultdin finding

. solutions which are near optimal. The heuristics showed different

growth rafes in the computation effort all of which are as substan-

tially well aé other existing algorithms which use the‘same approaches.
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3.1  ALGORITHM I

Given an undirected (directed) graph G = (N,E), the algorithm
constructs a subgraph G' = (N,E') of G which is (strongly) connected.
Then, the arc set of G' is extended in such a way that each subgraph
Gé constructed by removing a node from G' is uni]ateralﬁy connected.
| The algorithm starts with reducing the associated cost matrix
C. That is, thé minimum element of each row is subtracted from all
the elements of that row and the minimum element of each column is
subtractéd from all the elements of that column. As a resu]t,'ai]
the arcs (i,J) with Cij = O comprise the arc set E' ova'. Then
the (strong),connectédness of G' is checked. If the graph is not
(strongly) connected the cost matrix is further reduced in a séquen—

’.

tial manner so that other arcs with Cﬁ =.O can be included in E' “and
therefore (strong) connectedness can be achieved. Note that (strong)
connectedness is necessary for the existence of a Hamiltonian circuit,
i.e. a solution to the TSP, but is not sufficient.

Consider that there exists a Hamiltonian circuit in G'. }If a
node k is removed from Gf, the resulting subgraph Gé contains a
Hamiltonian path through the remaining (n-1) nodes and is, therefore,
a unilaterally connected subgraph. In other words, for any two nodes

iand j of G&, there exists a path either from i to j or from j to i:

Hence, unilateral connectedness in'Gé is also a necessary condition

for.the_existence’of a Hami]tonian circuit. As a consequence of
this fact, for every excluded node k ¢ N, the algorithm checks if the
resultant subgraph Gé is uni]atera11y connected. If not, the cost

matrix is reduced iteratively until the condition holds.
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As a matter of fact, since both of the conditions checked are
not sufficient conditions the resultant subgraph G' may stii] not
contain any Hamiltonian circuit. Experiments'sﬁow that this is true
especially when n, i.e., the number of nodes gets ]érger. In that
case, a protedure which 1ncofporates the first part of Little's branch
and bound a]gorithm {s applied to the resU]fant matrix. . However, the
branch and bound procedure is never used completely. The procedure
stops‘as soon as a feasible so]ution\is found. The solution is assumed
to be the best oné that can be obtained. More formally, the é]gorithmk

can be expressed as follows:

1. Reduce the rows and columns of the cost matrix, C, such that
each row and column has at least one zero. Let all the arcs

(1,3) with C;; = O comprise the arc set of G' = (N,E').

2. Check for (strong) connectedness. If G' is not (strongly) ™
connected then apply the following steps to achieve (strong)

connectedness:
a) Choose a node k € N

b) Find the node set R(k) which can be reached from node

k by means of path in G'. Let node k be iﬁc]uded in R(k).

c) If R(k) # N, then find

m = min {C;.}
kK™ jer(k) W
jeN-R(k)

and update the cost matrix by

ACij = Cij - T ¥i e R(k), | Jj & N-R(k)
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._include new arcs having Cij = 0 into E' return to step (b).

Otherwise, continue.

d) If R(k) = N, then choose another node k € N among the ones
which have not been checked yet. 1If all the nodes have
been checked, then continue with step (3). Otherwise

return to step (b).
3. For each node k ¢ N, perform the following steps:

a) Let G& = (N-{k},Eé) be the subgraph obtained by removing
node k and the arcs entering and emanating from node k
in G'.
o ) ~
'b) Find the set of nodes R(i) which can be reached from node

i via arcs in Gy for every i N-{k}. Check if Gy is uni-

laterally connected by going through the following:

i) Choose a node q g N-{k}.

ii) If R(q) # N-{k}, then for all nodes r e N-{k}-R(q) check
if d e‘R(r). In other words, theék‘if there exists a
path from r to q for all q which are not reachib]e from

r. If such a node q is found, let

w_ = min{ min {C.:}omin  {C..)}
T HeR(q) " deR(r) H
jeN-{k}-R(q) jeN-{k}-R(r)

~ Update the cost matrix by

¥ieR(@) , §eN-TkI-R(q

C.. =C..-qn )
- ¥ieR(r), Je N-{k}I-R(r)

1] 1] qr

Include new arcs (i,j) with Cij =0 in E' and Eé.
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Define the reachible sets R(i) again and repeat this step.
If either R(q) = N-{k} or no node r such that r ¢ R(q) and

q ¢ R(r) can be»found, then choose another node q among

thé ones thch.have not been tried yet. Repeat this step

until all nodes are considered.

4. As a result of performing steps (1) through (3), the necessary
conditions for the existence of a Hamiltonian circuit in G
are satisfied. Therefore, check if G' contains a Hamiltonian

" circuit. If so, evaluate all the Hamiltonian circuits in G'
and select the one with the least cost as the best aéhievable

solution to the TSP. Otherwiée continue.

5. Apply Little's branch and bound algorithm partially to the

resultant matrix until a feasib}e solution can be obtained.

Theksteps of Little's branch and bound algorithm are not repeated
‘here since the whole algorithm is given in Chapﬁgr 2. However, it should
be noded that, no branching procedure is berformed if the cost matrix
corresponds to a comp]ete graph. Moreover, it is highly probable that
the branching proceduré would not be performed for graphs that are not

complete either.
Example 3 1

Cons1der a comp]ete directed graph whose cost matrix is g1ven
in Tab]e 3 la andsuppose that we want to so]ve the TSP by the use of .
" the algorithm described above. Applying the first step of the algo-

~rithm, the reduced matrix and the corresponding subgraph G' are shown
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in Table 3.7b and Fig. 3.1a respectively. As it can be seen G' is dis-

connected and therefore we proceed by applying step (2).

1 2 3 L ) 6 7 8 - 1 2 3 4 5 6 7 8
© 76 43 38 5142 19 80 1| o 57 24 19 32 12 0 61
42 » 49 26 78 52 39 87 2116 © 23 0 52 15 13 61
1928 o 36 53 44 68 61 220 0 o 8 25 5 40 33
7231 29 « 42 49 50 38 w1483 2 0 » 13 9 21 9
3052 38 47 « 6475 8| 5| 0 14 0 9 o 23 45 52
6651 83 51 22 « 37 71 s |44 21 83 21 0 « 15 49
7762 93 54 69 38 o« 26 ;151 28 50 20 43 1 » O
4258 66 76 41 52 83. s 1 81727 0 0 42
(a) . | | (b)
1 2 3 4 S [ 7 8 % 2 3 L 5 [ 7 8
©49 16 11 32 12 0 6 | = 49 16 11 32 12 0 6
M = 23 047 10 8 56| 2|1 « 23 0 47 10 8 56
15 0 » 8 20 0 35 28 5|15 0. 8 20 0 35 28
B2 0 « 8 4 16 4 .38 2 0 » 8 216 4
014 0 9 w 23 45 52 s| 014 0 9 « 23 45 52
4421 53 21 0 « 15 49 s |44 21 53 21 0 = 15 49
5128 59 20 43 1 w 0| 5|51 28 59 20 43 1 o O
181727 0 042 s 1 817 27 0 0 42 w
(c) | | ~ (d)

Table 3.1 - Reduced matrices obtained during the application of steps
(1) through (4) of algorithm I '




Table 3.1 continued.

1 2 3 4 5 6 7 8
» 45 16 7 32 12 0 61
7 © 23 0.43 6 4 52
15 0 o 8 20 0 35 28
3 2 0 470 12 0
0 10 0 5 o 23 45 52
44 17 53 17 0 « 15 49
51 24 59 16 43 1 » 0
1 4 17 23 0 0 42
(e) -
Choose node 1. R(1) = {1,5,6,7,8} #
" 12R21? e
jeN-R(1)

ij0 = Cs3
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» 44 15 6 32 12 0 61
6 « 23 0 43 6 3 52
4 0 « 8 20 0 34 28
33 2 0 o 4 0 11 0
010 0 5 o 23 45 52
43 16 52 16 0 o 14 49
51 23 58 15 43 1 o 0
0 316 22 0 0 41 o
(f).
N
= 8

The updated cost matrix is given in Table 3.1c.

in G', (Fig. 3.1b) we see that R(1) = N.

Choose node 2. R(2) = {2,3,4} # N

Once arc (3,6) is included in G', we obtain R(2) = N.

m

min
igR(2)

jeN-R(2)

{Cij} = C36 =5

Including arc (5,3)

The resultant

/ matrix is given in Table 3.1d.and G' is shown in Fig. 3.1c.

Choose node 3.

Choose node 4.

Choose node 5. R(5) = N

R
R

(3)
(4)

N
N
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Choose node 6. R{6) = N
Choose node 7. R(7) = N
Choose node 8. R(8) = N

Since all the nodes have been tried and R(i) = N, ¥i € N, (strong)

(c) ,
Figure 3.1 = Stages in constructing the subgraph G' for
Example 3.1.

Figure 3.2a - Subgraph Gi | "~ Figure 3.2b - Subgraph G2
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Figure 3.2c - Subgraph Gé Figure 3.2d - Subgraph Gé

connectedness is‘achieved. We proceed with step 3 to see if G' is

unilaterally connected after removing any node k

Remove node 1. Gi is unilaterally connected (Fig. 3.2a).

Remove node 2. Gé is unilaterally connected (Fig. 3.2b).

Remove node 3. Gg is not unilaterally connected (Fig. 3.2c).

There is not a path either from node 1 to 2 or from 2 to 1.

R(1) = {1,5,6,7,8} R(2) = (2.4

N-{3}-R(1) = {2,4} N-{3}-R(2) = {1,5,6,7,8}

Hep =min{ min {C..}, min © {C..}) =,C‘ = C,p, = 4
12 ieR(1) 1377 yer(2) 3 46 © 48
jeN=-{33}-R(1) jeN-{3}-R(2)

The resultant cost matrix is given in Table 3.7c and and the updated

G is shown in Fig. 3.2d. Note that G; becomes unitalerally connected.

Remove node 4. GA is unilaterally connected (Fig. 3.2e).

Remove node 5. Gé is_notvuni1atera11y connected (Fig. 3.2f).

There 1is not a ﬁath either from node 1 to 2 or from 2 to 1.

’ R(]) = {],6,7,8} . R(2) = {2a3’43638} -

N-{53-R(1) = {2,3,4) N-{5}-R(2) = {1,7} .
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Figure 3.2e’-~Subgraph GA * Figure 3.2f - Subgraph Gg

Figure 3.2g -'Subgraph Gé Figure 3.2h - Subgraph Ge

Figure 3.2i - Subgraph G; Figure 3.2j - Subgraph'G8

Figure 3.3 - Resultant subgraph G'
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Hipo = Min{ m in {C.:} , min {C..}} = Cqq =1
12 ieR(1) 577 ger(2) CASL
JeN-{5}-R(1) JeN-{5}-R(2)

The cost matrix is updated as shown in Table 3.1f. As a result, Gé

becomes uni]atera]]y’connected (Fig. 3.2g).

Rerove node 6. Gé is unilaterally connected (Fig. 3.2h).
Remove node 7. G; is unilaterally connected (Fig. 3.21).

Remove node 8. é is unilaterally connected (Fig. 3.2j).

The resultant subgraph G' is shown in Fig. 3.3. Note that G' does not
possess any Hamiltonian circuit. Consequently we proceed with step (5).
The steps of Little's branch and bound algorithm can be followed in
Table 3.2. | 7

Starting with the resultant matrix we calculate the associated
pena]ties'ﬁij which correspond to entries with Cij = 0. The ma;imum
of the penalties (Table 3.2a) is 565 = 14. We delete row 6 and column
5 and 1ns;rt 1nf1nity to C56" The new matrix and the associated penal-
ties are given’in Tab]e»3.2b. At this stage,\§i7 = 9 is the maximum
penalty. Therefore, we delete row 1 and column 5, insertAinfinity:

into C;, and obtain the matrix in Table 3.2c. Calculating the penalties

7
in the new matrix we choose Eé4 = 11 as being the maximum one. We
delete row 2 and co]uﬁn 4 and insert infinity to C42. The 1induced
matrix and the corresponding penalties are given in Table 3.2d. As a
result, we choose the penalty 532 = 3 and deiete row 3 and column 2.
Note ﬁhat we have to insert infinity into C;5 in order to prevent the

subloop (3-2-4-3). Once we obtain the new matrix and calculate the

associated penalties (Table 3.2e) the maximum penalty corresponds to



Table 3.2a

1 2 3 4 5 6 7 8
© 44 15 6 32 12 0 61
6 = 23 043 6 3 52
14 0 » 8 20 0 34 28
33 2 0 » 4 0°11 0
0 10 0 5 o 23 45 52
43 16 52 16 0 o 14 49
51 23 58 15 43 1 o 0
0-3 16 22 0 0 41
Table 3.2b

1 2 3 4 g 7 8
© 44 15 6 12 0 61

6 » 23 0 6 3 52
4 0 o 8 0 34 28
3 2 0 « 011 0
010 0 5 o« 45 52

51 23 58 15 1 « O

0 3 16 22 0 41 -
‘Table 3.2c

1 2 3 - 4 & 8

6 o 23 0 6 52

14 0 «» 8 0 28

3 2 0 « 0 0
010 0 5 = 52

» 23 58 15 1 0

0 3.16 22 0 o

P17
P24
P32
P36

P24
P32
P36
Ps3

Pa3 =
Pag =
Pag =
P51 =

Pig

Pag

P51
Ps3

o O o o

o o O o

Pgy

]
—_—

P7g =

Pgs =

1
o o o

Pgs

1"

P53

Pg]

Pge

P7g
Pg]
P3g
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Table 3.2d

1 2 3 6 8
14 0 « 0 28
33 « 0 0.0

010 0 = 52
@ 23 58 1. 0

0 3 16 0 =
.Table 3.2e

1 3 6 8
33 « 0 0

0 0 o 52
© 58 1 0

0 16 0 o
Table 3.2f

1 6 8
33 « 0
© 1 0
0 0 e
Table 3.2q "

P32
P36
Pa3
Pap

Pse
Psg
P5q

Pag
P7g

1" n
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0. '551 =0 586 =0
0 553 =0

0 378 =1

0 Pg3=16  Pgg=0
0 578 =1

0 Bé1 =0

33 681, = 33

1 586 =1
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the zero entfy in C53 with 553 = 16. _We delete row 5 aﬁd_co]umn 3
and insert infinity into'C46 so that the subloop (6-5-3-2-4-6) is
prohibited (Table 3.2f).. The next maximuh penalty is 5@8 = 33.

After deletinQ row 4’and cq]umn'8'we insert infinity to Cgg 0 order
not to allow the subloop (6-5-3-2-4-8-6) to appear in the final sb]u—'
tion. Note that we have a (2x2) matrix at hand now. On the other
hand we have to reduce the matrix in order to have at least one zero
in each row and in each column (Table 3.2g). As a resuit, we have
one choice. That is, we include arcs (7,6) and (8,1) into the solu-
tion set. Therefore, the solution obtained is (1-7-6-5-3-2-4-8-1)
with a total cost 6f 251 which happens to be the actual optimum solu-

tion to the problem.

3.2 ALGORITHM II

Methods using the assignment problem (AP) have been a feasible
line of attack for solving the TSP since the AP is a valid relaxation
~of. the TSP and has a polynomially boundediso]utidn method= If is
obvious that the optimum solhtion to the TSP is a feasible solution

to the AP since any travelling salesman tour is an assignment. Unfor-

tunately, the reverse is not true. That is, an assignment solution is .

not necessarily a travelling salesman tour. However, wé know that the
trave]]ing salesman tours correspond to extreme points of the assign-
ment po]ytdpe. Therefore, ranking methods can be used to find the
.optimum to the TSP by solving the AP successfully.

' Consider the AP with an (nxn) cost matrix C whose diagonal

elements are:a1] set -to 1nf1nity. We want to rank all the assignments
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in increasing order of cost until a TSP solution is obtained. This
can be aéhieved by using a branch and bound scheme. An important
operation performed on the nodes of the decision tree is that of par-
titioning them using the minimum cost assignment solution. Let M be

the node represehtiqg the set of all solutions and

Sy = {(a],p]),;..,(au,bu),(q&,r]),...,(qv,rv),(i1,j1),...,(1n,jn)}

denote an optimum solution in M where the first set of u arhs are those
which are required to appear in the optimum solution and the second set
of v arcs are>those which are not wanted_to appear in the optimum solu- A\
tion. The last set of arcs are the optimal combination of the remaining

assignments. Then, the partitioning scheme can be'performéd as follows:

= {(a],b]),..;,(au,bu),(q],r])?...,(qv,rv),(i],j1)}

1 1

_ {(a],b]),;..3(au,bu),(q],r]),...,(qv,rv),(i],j]),(iz,jz)}

Mi_q = {(a],b]),...,(au,bu),(q],r])’....,(‘———qv,rv),(i],j]),*....,l

(in-Z’jn-Z)’(T;:?:EE:T)}
The partitioning of M using SM generates tHe subnodgs MT""’Mn-1
and the partition itsé]f is
n-1

; M= {SM} U k21 My

Noté thqt the subpodes M],...,Mn_1 are all nonempty and mutually dis-
joint. At each stage, the algorithm maintains a 1ist which is a set
'of nodes. - Each node in the list is’ stored together with the minimum

cost assignment and its objective function value. This algorithm was
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first deve]oped by Murty [54] and used to solve problems in which the
minimal cost assignment satisfying additional constraints is required.
One such problem is the TSP. For that case, the algorithm is initiated
by finding.a‘mfnimum cost assignment using the Hungarian method. -Then,
the set of all solutions is partitioned as mentioned above. For each
subnode the corresponding minimum assighment is found. As a fesult,
the algorithm branches to the néde with fhe minimum cost. The proce-
dure is continued untii the assignment corresponding to the branched
node 1is a frave]]ing sa]esman tour. However, the storage kequiréments
for the 1ist of nodes and the associated AP Qo]utions are considerably
high. Fufthermore, the number of branches in the decision tree is
highly dependent on the nature of the cost matrix of the TSP.  In other
words, the size of the decision tree depends on the difference between
the optimum solution to the-TSP and the -optimum solution to the AP,

and fherefore, on the numbef of extreme points in between.

The proposed a]gori%hm provides a means of getting rid of the
need of informafion keeping required in the a]éorithm‘presented above.
Moreover, at each iteration the algorithm introduces a new cut that
forces the AP solution to form a tour. Thus, exclusion of some ex-
treme points from consideration becomes possible. . The on]y.book

| keeping 1nvoTves thevstorage of the cost mafrix be]onging to the

. previous iteration. "The algorithm is as follows:

1. Sb]ve the AP. Le}t'Z0 be its objective function value.

- 2. If the assignment is a tour then stop. It is the optimum

‘solution to the TSP. Otherwise continue.
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-3. For each arc (ik,jk) corresponding to the assignment,

calculate a minimum penalty E} j which would be incurred
: k*vk
if that arc is not to appear in the next solution. The

penalties are calculated és follows:

a) Let Tz be the set of nodes corresponding to the subtour

in which arc (ik,jk) is included. Calculate

p. . =min {C., }+ min{C_ .}
el v, Tk qpi, B0k

geN
by If 55 o S 0, then find a combination of nodes, say r
k- k
and q such that
pik’jk =‘Cikr + quk r¢ Tz > SeN, s T

is a minimum positive quantity.

c) Repeat steps (a) and (b) for every assignment (ik,jk).

. Starting with the minimum penalty perform the fo]]owihg:

a) Insert infinities to all C; such that r ¢ TR' Set

k>’

b) Solve the AP on the updated matrix by using the Hungarian
- algorithm. Be careful.not to perform reductions which
~will cause the corresponding objective function Qa]ue

Z; to become less than zero.b Furthermore, store-the
reductions made in the,entfiés into whfch infinities were

inserted. At the end of the Hungarian algorithm add the
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stored quantities to the corresponding entries.‘ Note
that, after these entries are updated the resultant
values may be léss than zero. The infinities are then
reﬁ]aced by the updated quantities so that the arcs
cdrresponding.to these entries may enter the basis later.

If Z, < Z?, then set 73 = Z,.

1 1759

c) Repeat steps (a) and (b) by considering the penalties
in ascending order. The procedure is'continuéd/until
Z? is less than or equal to the next minimum penalty
that will be considered. Then set Z, =7, + 7] and

return to step (2).

- Recalling the formulation.of the TSP, the‘unsatiéfied constraints -
after the AP is solved are 6f the constraint type (2.4a). These con-
straints are considered»whilé the penalties are calculated. In’oéherl
words, let T¢§ L = 1;...,q be the subséts of nodes corresponding to q
subtours in the AP solution. Then, the unsatis%ieq constraints.are

1§T2 jéTz Xi3 > 1 : 2= 1,...,q (3.1)

where T, U T&;é N. Eyentua]ly, for'all'ﬁi such that i..j, e Ti,

v 'k
£=1,...,9, the quantity
| min {C. _}
1 ,Y‘
, réTk k |
determines the corresponding zero-one variable xi _that wilT probably

| k*"
- -enter the basis and therefore satisfy the associated constraints. As

a result, the penalties provide a means of introducing cuts that force

the AP solution to form a tour.
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Consider the travelling salesman graph whose cost matrix is

given in Table 3.3. We will solve the TSP by using first the branch

and bbund scheme deve]oped by Murty and then the proposed algorithm.

Tab]e 3.3 - The cost matrix corresponding to the TSP

so]ved in Example 3.2

1

2

3

4

5:

6

,1 ®
2| 4
3 { 10
v | 18
5 5
& | 10

4

(o]

1

) :

8

2 18 14
6.

10
12

16

[o0]

18
8
4 18

4 o

5

2

14

(o]

16

10

6

16

6

16

o]

The minimum cost assignment solution to this problem and the resultant

matrix is given in Table 3.4.

Table 3.4 - AP solution to the Example 3.2

1

2

3

L,

5

1| o
2 OV
3| 3 |
1 14
s| O
&1 1

0

3

14
7
0

0
0
13

Yo o ~N T o

cost = 30

AP solution:

{(1,5),(2,6),(3,4),(4,3),
(5.1),(6,2)
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Once the AP solution is partitioned, the 1ist at the end of the initial’
stage consists of five nodes as given in Table 3.5. Branching to -.

Tab]e 3.5 - List' of nodes at the end of the initial
branch1ng 4n Murty's algorithm

/Nodes: V " AP solutions:
s; = {(T,5)F {(1,6),(2,5),(3 4),(4,3),»(5,1),(6,’2)}= 31
S, = {(1,5),(’276)} | : {(1,5),(2,1),(3,6),(4,3),(5,2),(_6,4)}= 37
Sy = L(15),(2:6), (3} 1(1,5),(256),(3,1),(4,3),(5,2), (6,4))= 33
S = 1(1,5),(2,6),(3,4),(F:3)}  {(1,5),(2,6),(3.4),'4,2);(5,1),(6,3)}= 44
S = {(1,5),(2,6),(3;4),(4,3), {(1,5),(2,6),(3,4),(4,3),(5,2),(‘6,1)}-.- 31

(5,T)}

S],'the;least cost node, we obtain the partition listed in Table 3.6.

~ We next branch to Sg sinée; it possesses the Teast cost AP solution .

Table 3.6 - List of nodes at the end of the second
branching in Murty's algorithm

Nodes: ‘ : ‘AP solutions:.

o UTELME  1(1,3),(2,5)5(3,8),(4,6)5(5,1),(6,2)) = 33

S5 = 1(T35)5(1,6),(Z;5)} 1(1,6)5(2,1)5(3,4)5(453),(5,2), (6,5)} = 40

S13 = {(T35),(1,6),(2,5), (TA)3 11,60, (2,5)5(3,1),(4,3),(5:2), (6,4)} = 34

S14.= 1{T5):(1,6),(2,5), (3]s 111,6),(2,5),(3,4), (4:2),(5:1),(6:3)) = 45,

S15 = {(T35)5(1,6)5(2,5),(3.4), 1(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} = 32
. (4,3) (5,1) _ T

in rank. The corresponding partition consists of only one node in

~ which the AP 1is infeasible. Choosing the next node to branch we see
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that M]S has the least cost. However, this partition also consisp; of
only one node with an infeasible AP solution (Table 3.7). As a result
we, can either branch to Sg or to S]i since both nodes have the same
Table.3.7.— The third and the fourth partitions in
Murty's algorithm
Nodes: : ‘ A AP solution:

S = 1(1,5),(2,6)(3,4),(4,3),(5,1),(5,2)}  infeasible
S151= 1(155),(1,6)5(2,5),(3,4),(4,3),(5,T),(5,2)}  infeasible

cost. Note that, the assignments corresponding to thésé nodes form
two travelling salesman toﬁrs. Moreover, these tours are the same
in the sense that they represent the same solution for the undirected
graph.- Thus, the optimum solution to the TSP is given by one 6f the
AP solutions with a cost of 33. The number of nodes in the corresponding
decisidn tree is 13 which means that the solution is obtained by solving
13 APs.

Now,.let us apply the proposed algorithm to the problem. The
solution to the AP and the corresponding cost matrix is obtainéd as

given in Table 3.4. The associated subtours and the penalties are

shown in Figure 3.4a. We start from the minimum penalty and solve

Pag = 0 P5y =0
Py =3 Pgp =0

Figure 3.4a - Subtours and penalties corresponding to the AP
- ' ' solution '



the corresponding AP.

penalty is solved.
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Then, the AP corresponding to the next minimum

The procedure is continued until the best solution

found so far 15 less than fhe next penalty to be considered.

lowing solutions are obtained in each case:

Updates:
(1) C]j=°° VjéT-l
(2) Czj':oo‘ VjETz
(3) C5j o Yje *T-I
(4)’ C6j =  ¥je TZ

N

AP solution:
£(1,6)5(2,5),(3,4),(4,3),(5,1)
£(1,6)5(2,5)5(3,4),(4,3),(5,1)5
{(1,5),(2,6),(3, 4) '4 3),(5,2),
{(1,5),(2,6) (3 4) (4,3), (5 2),

(6,
(6,
(6,
(6,

2)}
2)}

13
1)}

The fol-
*
Z-I =1, Z'-l
1
Z-I _=], Z']
Z-I -],.Z-l
: - %
Z] =1, Z]

" At this stage, since the best solution at hand is less than the next

~ penalty to be considered and this solution does not form a tour, we

set Z0 =

. solution (1) (Table 3.8).

shown in Figure 3.4b.

Table 3.8 - Cost matrix corresponding to the solution (1)

1 2 3 u 5 6
© 0 2 14 -1 0
0 © 8 38 0 0

2 -8 e 0 12 6

14 8 0 o 12 0
o 1 13- 13 o 9
0 0 6 0 8 o

31 and continue with the cost matrix corresponding to the

The associated subtours and penalties are
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o S0
(1) Pig = 2 | Py3 = 2
) Pps =7 Py =13
T ‘Q | Py =2  Pgp =0

Figure 3.4b - Subtours and penalties corresponding to
the AP solution at the end of the first
stage. ' .

The solutions corresponding to the successively solved APs are as follows:

Updates: AP solution:
(1) Cgy == ¥ e Ty £(1.6),(2:5),(3.1),(4:3),(5:2),(6.4)} 7y =3, 7] =
(2) Cp5 == ¥je Ty {(1,6),(2,5),(3,4):(4,6),(5,1),(6,4)} 7 = 2, z;‘ -

-At this point, we do not need to continue with solving other AP's since
Z? = 2 is equal to the next pena1ty'that‘wou]d be considered. On the
other hand, solution (2) is a tour and therefore, the best achievable
solution to the TSP.

As can be seen, the number of APs that have been solved is 6
which constitutes a 50% reduction as compared with the previous algo-
rithm. Another advantage of the algorithm is that each of the prob-
1em$ can be solved by storing the cost matrix of the brevious proB-
lem fromwhich it was derived. Thus, the storage requirements cauée
‘no problems even forvlarge problems. After all, the efficiency of
the algorithm is highly dependent on the structure of the cost matrix
a]tﬁough the cut introduction proﬁedure reduces the number of APs to
be solved. HoweQér, since we always set one of the assignments to
infinity the other (n-1) assignments are still valid. Therefore, the
- solution Of}a modified.problem can be derived by reentering thé Hunga-

rian'a]gorithm»at the last step in order to increase the number of

éssighments from (n-1) to.n and consequently, to produce the optimal
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solution to the new AP with fhe least poss%b]e computatioh effort.
A disadvantage of the a]gorithﬁ arises from the restriction
imposed in ca]cu]ating the péna]ties at the third step. That is,
we are restricfed to calculating pbsitive penalties. In addition,
thé AP so]ved‘muéf end up w%th a positive objective function value.
This Va]ue gives a magnitude of the improvement made from the present
solution towards the optimum solution to the TSP. An AP so]ution with -
a negative value means that the overall solution is getting worse.
This may lead to an infinite Toop going back and forth in the solution
space. Therefore, all the calculations have to be made in the posi-
tive domain. As a consequence of this faét, each time only one vari-
_ able which has been removed from the basis previously, may enter the
basis once again. It is not possible, that two or more variables |
which have become nonbasic'eﬁter the basis simu]tanebus]y.v“lh“thaf
case, the optima]vsolution may not be caught. -
Another case, which may end up with missing the optimal solution
occurs when there exists an AP solution which has the same objéctive
function.value as the TSP solution. The algorithm may arrive at this
solution but igﬁbre it since it does not form a tour. As a result, a
nonoptimal TSP solution may be obtained. After all, considering these
drawbacks the algorithm may seem to be inefficient when compared with
the other proposed methods. However, it represent§ an efficient ex-

treme point ranking approach.
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3.3 ALGORITHM III

For a given graph G = (N,E) with arc costs given by the matkix
C the 1ongest'pathrpkpb1em is to find a simple path between two speci-
fied nodes such that the sum of the arc length is maximum provided that
such a path exists'énd‘no positive cost circuit exists in G. If such
a circuit exists, traversing the circuit an arbitrary ]arge number of
times will result in a path with an arbitrary large (+ «) cost éo tﬁat
the best path is not uniquely defined. If on the other hand, such
circuits exist but aré excluded from consideration somehow, then
finding the longest path-between two specified nodes be;omes equivalent
to the problem of finding the Tongest Hamiltonian patﬁ of the graph
with the specified end nodes. As a matter of fact, if each entry Cij
of the cost matrix C is subtracted from a large number, L, fo produce
a new cost matrix C' in which the triané]e inequality is satisfied,
then the longest path between any specified two nodes excluding posi-
tive circuits must pass through all other nodes. As a result, the
following theorem due to Hardgrave and Nemhauser {55] allows one to

solve the TSP as a longest path problem defined as above.

Theorem 3.1. Given the nodes {1,...,n}, arcs (i,j) and cost matrix C
construct a new gréﬁh éontaining the nodes and arcs from the origihé]
graph plus one additiona] node denoted by a and an additﬁona] arc
(3,a) for eaéh jAsuch that (j,])'is an arcrin the original graph.

The costs in the new graph are

(e

- ¥ig 1

J1
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Cja =L - Cj1 ¥j £ a

L - Cij - otherwise

ij =
where L is any’finitélnumbef»greater than the sum of n largest Cij‘
Then, a longest path fromkl.to a in the new graph contains every
intermediate node {2,...,n} and if {],1],12,...,in_1,a} is such a-
longest path, {],i],...,in_],]} is an optiha] tour.
Unfortunafely,‘the theorem has not been useful sihce no effi-
cient algorithms for the longest path problems defined as above have
been discovered. However, the proposed algorithm provides a heuristic
means of finding fhe longest path of a graph in which all of the nodes
appear once and only oncé by the use of a dynamic progrAmming type
approach which is very similar to Ford's shortest path algorithm.
| The proposéd algorithm starts with subtracting each entry Cij
of the.cogt matrix C from a_]akge number L in order that the triangle
“inequality holds in the resu]taht matrix C', i.e. C%jlﬁ C%k + C&j.
Eventually, the method is iteratively based on node labelling where.
at the end of the kth iteration the labels reﬁresent values on the ‘
longest path (from an arbitrarily chosen root node, s, to all other
nodes) which contains (k+1) arcs. Once the lengths of the Tongest
paths from s to all other nodes are obtained, the paths are identified
immediately since another label representing predecessor-nodeSIOn the
path is stored for each node during the computations. The algorithm
can be summarized as follows: |
Let R(.)': the union of the reachible sets of nodes iﬁ (.)
R'1(.) = the union of the reaching sets of nodes 1in (.)k

25*1(4) = 1abel on node i at the end of the k" jteration.
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k+1(1) = label showing the predecessor node of i in the

longest path dur1ng the k th iteration.

k+1(1) = the node set in the Tongest path from s to i

‘at the.end of the k th iteration.

. Let C%. =L - C.j ¥i,j € N where L is a very large number

. Set S = R(s), =1, L}(s) = 0, L} (i) = C' for all i e R(s)
-and L (i) = = for all other i, 8!(i) = s for all i € R(s),
and p!(i) = {s,i} for all i e R(s).

. For every node i € R(S), i # s, update its label according

to the expression

1) - ma x 12X (3) + Ciid = ¥(r) + Crsi
| ipkly)
where T, = (R2(1)(1 S). set p< (i) = p¥(r) U 1}, - |
k+1(1)‘- ~ For those nodes i ¢ R(S), set 2k+1( i) = zk(i),
k+1

(1) =P (1) and e (1) = 1.

. If k = n-2, then stop. Find the 1onges£ paths from s to

all other nodes i by tracing in the reverse order as

5,62(8%(...0" 1 (4))),-..,8" 2 (6" T (1)), (1),
complete the longest paths for which arcs (i,s) exist to

Hamiltonian circuits and choose the one with the maximum

cost as the best_achieVab]e solution. Otherwise continue.

. Update the set S as

= G £ L)
. Set k = k+1 and return to setp (2).

w
1



Example 3.3
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Consider the undirected graph G whose cost matrix is given in

Table 3.9. It is redu{red to solve the TSP on this matrix. The

algorithm proceeds as fo]]owé:

Let L =

50. The matrix obtained

Table 3.9 - The cost matrix corresponding to the TSP
solved in Examp]e 3.3

1

y

5

6

1) =
2 9
3 8
y 7
5 6
6 { 10

9
15
20

5
15
25

7
9
5

[o0]

- 20

5

6

15

15
20

(o]

20

20

10

25
5
20

[oo)

after subtracting each entry C

. from L is given in Table 3. 10

Table 3.70- The cost matr1x after subtracting each
entry from a large number L = 50

1

2

3

A

5

6

1 ©
2| 41
3 | 42
"4 | 43
s | 44
“s-] 40

41

©

40

41
35
30

42
40
45
35
25

43
41
45
30
45

44
35
35
30

o0

30 -

40

30
25
45
30

w.




Step (1) s =1, S =1{2,3,4,5,6}, k =1

21(2)‘= 41
21 (3) = 42
21(4) = 43
2¥(5) = 44
21 (6) = 40,

01 (2) =
81 (3) =
8! (4) =
8l (5) =
81(6) =

Step (2) R(S) = {1,2,3,4,5,6}

22(2) =>84

22(3) = 88
22(4) = 87
22(5) = 77
22(6) = 88

62(2) =
82(3) =
62(4) =

‘ 62(5) =

82(6) =

step (3) k < 4 , continue

Step (4) S = {23334a5,6}-

step (5) k=2

step (2) R(S) = {1.2,3,4,5,6}

23(2) = 128
23(3) = 113
23(4) = 125
23(5) = 123

23(6) = 132

6%(2) =

- 8%(3) =
- 93(4) =

83(5) =
83(6) =

1
1

1

1

W

pt(2) = {1,2}
p1(3) = {] ’3}

P4 = 1.4

p!(5) = {1,5}
p!(6) = {1,6}

p2(2) = {1,2,3}
p2(3) = {],3,4}
2(4) = {1,3,4}

p*(
p2(5) = {1,3,5}
p*(

2(6) = {1,4,6}

p¥(2) = {1,2,3,4}
p*(3) = {1,3,4,6}
p3(4) =,{]a233s4}

p3(5) = {1,3,4,5}
p3(6) = {1,3,4,6}

101
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step‘(3) k < 4, contiﬁue

step (4) S ={2,3,4,5,6}

step (5) k=3

step (2) R(S) = {1,2,3,4,5,6}

g4(2) = 1627 68%(2) = 6 p*(2) = {1,2,3,4,6}

R¥(3) = 113 6*(3) = 3 ©p*(3) = 11,3,4,6}
2%(4) = 125 8*(4) = 4 p*(4) = {1,2,3,4}
24 (5) = 163 0" (5) =2 p*(5) = {1,2,3,4,5}
2% (6) = 170 6% (6) = 4 pt(6) = {1,2,3,4,6}

step (3) k < 4, continue

step (4) S = {2,5,6}

step (5) k = 4

Step (2) R(S) = {1329334:5:6}

25(2) =162 6%(2) = 2 pS(2) = {1,2,3,4,5}
25(3) = 113 85(3) = 3 p5(3) = {1,3,4,6) °
95(4) = 125  85(4) = 4 pS(4) = {1,2,3,4)
95(5) = 200 - 05(5) =6 pS(5) = {1,2,3,4,5,6)
25(6) = 200  %(6) = 5

p5(6) = {1,2,3,4,5,6}

step (3) k = 4, stop.
Longest paths:
200

path 1: {1,4,3,2,5,6} cost,
path 2: {1,3,2,4,6,5} cost, = 200
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Since cost, + Cé1 = 240‘~<vcost2 + Cé] = 244, the best achievable
solution to the TSP is selected as (143—2-4-6-5-1) with an original
co;t of 56. "However, the optimum solution to this problem is
(]-5-2-3-4-6—1) with a cost of 51. As can be seen, the algorithm
may not be able to find the"optimum solution since. it has a memory-
less property in tﬁe senée that stage k is only dependent on stage
(k—T) and previous stages have no effect. On the other hand, the

algorithm is efficient considering that it requires on the order of

n® operations for the case of a completely connected graph of n nodes.

3.4 ALGORITHM IV

The TSPs defined in Euclidean two space often have combutationa]
advantages. Once thé nodes of a TSP are points in a two-dimensibna]
space, the triangle inequality 1slsatisfied. It is then possible to
generate reasonabie and sometimes optimal solutions to the problem by
appealing to the geometric properties of the space. Examples of geo-
‘metric approaches are described by Norback and Love [45] and_Of [46].

Almost all algorithms falling into this category take advantage
of the exploitable properties of the problem structure. The following

theorems reveal the implication of such properties.
Theorem 3.2. If the cost matrix C represents Euclidean distances then
the optimal tour does not intersect itself [56].

The theorem is obvious since any two intersecting arcs in the Euclidean

space can be replaced by two nonintersecting arcs of a less total cost.
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Theorem 3.3. If H is the convex hull of the points representing the
TSP in a two-dimensional Euclidean Space, then the order in which the
nodes appear on H is the same asvthe order in which they appear in the

optimal tour [57].

This theorem is a direct cohsequence of Theorem 3.2. As a result if
k nodes lie on a convex hull, then Theorem 3.3 reduces the total
number of tburé'which'are to be investigated from'(1/2)(n—])3 to
(n-1):/(m-1)! (for undirected problems) where n is the total nUmber
of node§ associated with the problem. |

“Once the nodes on-the convex hull are sbecified, the problem is
to decide how to sequence the remaining interior nodes between differ-
ent consecutive pair of nodes on the partial tour. The decisidh is
‘made by considering the heights of the triangles whose bases are the
arcs through consecutive pair of nodes in thehpartial tour and whosev'
third vertices are the reméining,interior nodes which have not been
considered yet. Each time, a new partial tour having an additional
node is constructed. The process of calculating the heights of.trj-
angles and éhoosing the appropriate one can then be‘ﬁepeated by using
the new partial tour and the remaining interior nodes.

Assuming thatwfhe nodes are located in a two dimensional space
we are sure that the triang]é inequality is always satisfied. However,
this may not be the caée, when the cost matrix of'a TSP'confains arbit— v
rarily chosen numbers. In order to achieve triangle inequa]fty, all
~the elements Cij,of the cost matrﬁx‘are‘subtracted from a 1afge number
L;~.This_may also be done when the cost matrix satisfies the triangle

inequality since any matrix transformed in this manner does satisfy the
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triangle ineqUa11ty after the subtraction process. Obviously, the
problem becomeé to find a Hamiltonian circuit with the maximum length.
Therefore, triahg]es with maximum heights are considered first in
building the tfave]]iﬁg salesman tour.
| In order to begin the process of calculating the heights and

choosing the largest one, thé_convex hull must be determined. In fact,
if the nodés are located in a two-dimensional space and can be mapped
on a papef, then the convex hull can be determined easily by taking a
‘look at the whole ]ayodt. However, for problems which involve a very
large number Qf nodes the procedure may not be that easy. Besides, it
is not possible fo determine a convex hull for problems which are not
defined in Euclidean space.’ The following procedure due to Norback and-

Love [45] is applicable to problems in which the nodes have known coor-

dinates:

1. Choose the node with the x coordinate of least value. This

node is on the convex hull and can be labelled h] - the first
hull node.

- 2. Using this node as vertex, form all possible angles whose
sides are rays containing this node and another node of the

problem. Choose the largest of these angles.

3. Choose one of the nodes that determine this angle other than

the vertex and label itkhz, the second hull node.

4. Using"h2 as a vertex and the ray containing h] and h2 as a
- side determine all angles whose remaining side contains h2
and another node of the problem. Choose the largest of these

angles and Tabel the corresponding node h3.-
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5. Repeat step (4) as many times as necessary, with the most
recent hull node generated hig as vertex and the one given
side of the angle ray containing hi and‘hi_1.

6. The convex hull will be determined when the next candidate

for a node on the hull is h..

Once the'convex—hu11 is given as an input, the proposed algorithm
initiates a ]isf keeping proceduré. The 1ist contains the neCessary '
information about the .existing arcs on the convex hull. A1l the book-
keeping and manipulations are made on this. list. The algorithm can be

summarized as follows:

1. Find the convex hull H associated with the .problem. let T
be the initial partial tour (T = H if H can be found). Set
T - ' : s 2 ’
Cij = L Cij for all i,j € N.
2. If T covers n nodes, then stop; T is the best achievable
~solution to the TSP. Otherwise continug.
3. For each arc in T, form a 1ist by performing the following -
steps:
+ a) Specify the end nodes of the arc (i,j) € T.

b) For each node k ¢ T calculate the height of the triangle

determined by nodes, i, k, and j as

‘h‘= 2v/u(u - C%k)(u - Céj)(u - C%j)/céj

- 1 t : 1
where u = (C. + ij‘+ ij)/z.
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.c) Select the node corresponding to the 1arges£ height and

record it as a candidate for being inserted between i
and J in T.
4. Choose the arc (i,j) which has a candidate, k, corresponding
to the maximum height in the Tist. Delete arc (i,j) from the
Tist. Instead, include arcs (i,k) and (k,j) as the new arcs

in the new partial tour T. Return back to step (2).

Example 3.4
Consider a complete undirected graph whose nodes are located in
a two dimensional space as shown in Figure 3.5 and whose cost (distance)

matrix is given in Table 3.11.

Figure 3.5 - The convex hull corresponding to the
travelling salesman graph in Example 3.4.

The convex hull of this problem can be identified by taking a look
at the node locations in Figure 3.5. - Eventually, the convex-hull
is (1-2-5-9—10-3;1).' Initially, we set T = (1-2-5-9-10-3-1) and
subfract all the elements Cij from-a 1ar§e number‘L which is chosen

to be 400 in this case. The resultant matrix is given in'Tab1e_3.12.
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Table 3.11- The cost matrix of Example 3.4

1

2

3

u

5

. 6

7

8 .

L

10

o]

42
72

50
86
89
92
130
151

182

42
91
36
45
86
61
108
120
162

72

91

o]

61

114
45
94

103

136

143

50
36

61

54
50
45
81
102
133

86 .

45

14

54
91
36

85
85
136

89

86

45
50
91
61
58
92
101

92

61

94
45
36
61
50
60
103

130

108
103

81
85
58
50

36
54

151
120
136
102
85
92
60
36

o]

- 58 -

182
162

143

133
136
101
103
54
58

Sl Tab]e 3.12-

The cost matrix after subtracting each
element. from a Targe number L = 400

10

358
328
350

314

311
308

270

249

218

358

309

364
355
314
339
292

280

238

328
309

339
286
355
306
297
264
257

350
364
339

346
350
355
319
298
267

314

355-

286
346

309

364

315
315
264

3N
314
355
350
309

339

342

308

299

308
339

306

355
364
339

350

340

297

270
292
297
319
315
342
350

364
346

249
280
264
298
315
308
340

- 364

342

218

238
257
267
264
299
297
346

342

108



- 109

Note that the partial tour T does not cover n nodes and we have four
remaining interior nodes {4,6,7,8}. As a result, the 1ist formed in
the third step of the algorithm is given in Table 3.13. Since the

Table 3.13 - List for.arcs in T in the first step

~ Starting Ending Candidate

node node node Height
1 2 4  308.60
2 5 4 *+307.04
5 9 7 - 313.88*
9 10 8 310.67
10 3 6 293.47
3 1 4 302.78

maximumvheight in- the list corresponds-to arc (5,9) we insert npde
7 bétween nodes 5 and 9 and obtain the new tour as T = (1-2-5-7-9-
10-3-1). The tour is shown in Figure 3.6a. Now, T covers seven
nodes and the set of the remaining nodes is {4,6,8}. Therefore,
the Tist is updated as given in Table 3.14. The maximum heigﬁt in
vthis 1ist corresponds to the arc (7,9). This implies the insertion

of node 8 between npdes'7 and 9 and result in the partial tour shown

in Figure 3.6b. Once again, T does not cover n nodes and the remain-

ing node set {4,6} consists of two nodes. The 1ist is updated as

shown in Table 3.15. 1In this case the maximum height correSponds to
“the arc (1,2) with a value of 308.60. After node 4 is inserted bet-

ween nodes .1 and_2 the resultant tour (1-4-5—5-7-8—9—]0—3-1) is és

shown in Figure 3.6c. At this stage node 6 remains to be inserted
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Table 3.14‘- List for arcs in T in the second step

Starting | Ending Candidate

node node node Height
1 T2 . s 308.60
2 5 4 307.40
5 7 4 ~ 299.45
7 9 8 313.66
9 10 8 310.62%
10 3 6 293.47
3 : 1 ' 4 302.72

~

Table 3.15 - List for arcs in T in the third step

Starting Ending Céndidate ,
node node node Height
1 | 2 4 308.60*
2 5 ' 4 307.04
5 7 4 299.45
7 8 6 292.08
8 9 6 268.08
9 10 6 250.65
10 | 3 6 293.47

3 1 4 302.72



Figure 3.6 - Steps in bui]dﬁng the‘traveT]ing salesman tour

in order to obtain the final tour. The corresponding list is given
in Table 3.16. The maximum height is this list corresponds to the

~arc (10,3). Inserting’node 6 between nodes 10 and 3, the best
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Table 3.15 - List for arcs in T in the fourth step

Starting " Ending - Candidate

node node node Height
1 s | 6 278.62
' 2 6 276.31

2 . b 6 255.96

5 7 6 267.14

7 8 6 292.08

8 9 \ 6 268.08
9‘_ 10 6 250.65
10 3 6 293.47*
3 1 6 287.20

achievable tour is found to be (1-4-2-5-7—8-9-10—633-1) with an
original total cost of 529 (Figure 3.6d).

| Comparing the proposed méasure/used to determine the sequence
of nodes with other measures proposed before we see that once the
heights are used fhe algorithm does not fail in ca;eé where other -
measures have been observed to fail. For instance, consider the
example in which the largest angle method proposed by Norback and

Love fails. Using.thé largest angle method, the tour generated is
| o a

Figure 3.7 - Behaviour of the proposed algorithm in the case 4
where Norback's and Love's Targest angle method fails.
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given in Figure 3.7b whereas applying the heights as a measure yields
‘the tour given in Figure 3.7c. Note that, ih this case the minimum
heights are chosen sincé the problem is defined in the Euclidean space
and the triangle inequality is satisfied without need of subtracting
the elements of the cost matrix from a large number.

Similarly the eccentric ellipse method fails in the example
shown in Figure 3.8. The choice mechanism in the eccentric ellipse
- method will sequence node 5 between nodes 2 and 4 as shown in Figure.
3.8b. However, when heights of the triangles are app]fed a less

costly tour can be obtained as shown in Figure 3.8c.

-

——— \‘\\ (b) . _

~
.

Figure 3.8 - Behaviour of the proposed algorithm in the
case where Norback's and Love's eccentric
ellipse method fails.

As it has been reported by Or [46] the measures used in his
a]gér1thm namely (i) DIST = Cik + ij - Cij (i1) RATIO = (Cik—ij)/Cij
fail since they do not apply any preference when ties have to.be broken.
~ In addition consider the case shown in Figure 3.9 for the DIST measure.

The minimum DIST is given by C24 + C4] - CZ] whereas the minimum height

measure inserts node 4 between nodes 2 and 3 which in case yields a

less costTy solution. In addition to these advantages it is less
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Figure 3 9 - Comparison of the height criterion with
other criteria

probable that two or more heights happen to be equal and tiea have
to be broken. However, it is difficult to make any comparisan with
the third criterion proposed by Or which is MULT = DIST 'x RATIO.
AfterfalL our aigarithm seems to be more advantageous in any case:
Note that, MULT requires fwo operations, i.e., the calculation of
DIST and the ca]cuiation of RATIO as compared with out algorithm.

The efficiency of the a]gorithm:is highly dependent on the
topological conditions of the prob]en. “For problems defined in the
Euclidean space the solutions obtajned by starting with a convex hull
are betﬁer than the soiutions obtained by starting with an arbitrary
partial tour. Note that, although the convex property of the convex
hull is Tost immediately after inserting a node into it, all the other
nodes remain intérior with respect to the new boundaries. . This struc-
ture, nowever, p]ay§ an important role in obtaining better,so]utioné

than an arbitrary partial tour would yield.
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A genera] advantage of the algorithm is that it is easy to
apply. Reasonable solutions to problems where the number of nodes is
small enough can be found quickly without the aid of a computer but

just with the help of a pocket calculator.

3.5 COMPUTATIONAL “RESULTS

Since the published computational results of various algorithms

found in literature are given for different problems solved by different

computers comparisons based on these'results are dif%icu]t. In terms
of computational effort we had two alternatives to choose. We could
either base the comparisons on the published results which were tested
in different environments or write all the programs in order to test
them in our environment. In the former case, we could have been unfair
to algorithms tested under different‘conditions. The latter case was
infeasible in the sense that it would have been far beyond the scépe
of this study._ Therefore, neither of the alternatives were chosen. On
the other hand, we Mereﬁnable to find the data o% the prpb]ems tested
by other authors since they are unpublished. As a result, the compu-
tational aspects were examined on the relative merité of the proposed
algorithms.

- To check the effettiveness of the proposed methods in solving
the TSP 35 complete Euclidean problems were generated wjth points
randomly selected from the unit squére ({(xsy)]0<x<1,0%< y.5 11).
The problems contained nodes ranging befween 10 and 70. The optimum
solutions to the problems with at most 20 nodes were found by using

Little's branch and bound approach. The methods were then applied
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to the same problems. For the probiems which contain moré than 20
nodes, only comparisons between the proposed algorithms are made
since an inordinate ambuht of time is required to solve problems .
of that size by using’Litt]e's branch and bound approach.

There are several different interrelated measures to consider
in order to define'fhe power of each heuristic method separéte]y.
For instance consider the reductions applied in the first method.
The effect of reduction is felt in several ways. The most obvious
is a considerable decrease in the number of arcs on which thé Hamil-
tonian circuit search takes place. Results reveal that after connec;
tedness and unilateral connectedness is échieVed, the number'of arcs
that comprisé\the subgraph is less than about 10% of the total number
of graphs existing in the original graph (Table 3.17). As a result,
the éomputation effort 15 decreased. However; this saving in effort
is not the only effett in introducing reduction. Rather, reduct%on
introducés a bias into the'procedﬁre when‘no Hamiltonian circuiﬁ is -
formed a]thoﬁgh the necessary conditidn§ are satisfied. In that casé,
Little's a]gofithm'is applied partially to the }egultént matrix. The
solutions obtained by using the resultant matrix are different than
the ones that can‘be obtained by using the original matrix. Results,
regarding this fact’ are given in Table 3.18. Another fact that has
béen‘observed is that as the number of nodes increases, thé probability -
that a Hamiltonian circuit will be produced in the subgraph decreases.
Moreover, the solutions obtained tend to be only suboptimal solutions.
In other words the application of Little's a]gorithm partially may not
be able to break out of this to acfua]]y get the optimum solution. The
results are indicated in Table 3.16a and Table 3.16b.




Table 3.17 - Computational results regarding Algorithm I

117

Ay

0 ggtglcgo. No. ognagcs 'S?lugion n lgtglcgo. Nofingarcs S?;uéion
-0 0 0 0

10 90 28 Yes | 40| 1560 112 No
0] 90 " 32 ‘No | 40| 1560 14 No
10 90 32 Yes | 50 - 2450 154 No
10 90 25 Yes 50 2450 134 No
10 90 26 No 50| 2450 150 No
20 380 52 No so| 2450 134 No
20 | 380 52 No 50| 2450 138 No
20 | 380 68 Yes | 60| 3540 178 No
20 | 380 62 Yes | 60| 3540 182 No
20 380 50 No 60 3540 174 ~ No
30 870 82 No 60 3540 160 No
30| 870 92 No | 60| 3540 193 No
30| 870 84 No 70{ 4830 206 No
30 | 870 86 No 0| 4830 198 No
30 | 870 82 No 70| . 4830 198 No
40 | 1560 115 No 70| 4830 192 No
20 | 1560 M2 No 70| 4830 , 212 ' No
40 | 1560 106 No
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Table 3. 18 - Results regarding the app11cat1on of Little's
algorithm partially to the reduced matrix or
to the original matrix

AT il b
reduced matrix original matrix-
10 T 362 | 305
0. 279 279
0 38 | 386
20 462 433
20 488 475

Considering the computational comp]éxity~of this algorithm it
~can be éeén that the number of operations made during the executioh _
is of order n® where n is the number of nodes in the graph. The |
a]goriﬁhm consists of three parts: (strong) conhectedneés of-the)sub-
gkaph can be achieved in n (n?2) operations. /This results from the

- fact that, in the worst case, the first reduct1on may end w1th |n/2j
subtours where |+| indicates the integer part of (). Thus, at most,
(n-2) other reductions are needed to achieve‘(strong) connectedness.
On the other hand, since n operations are needed to define the reachible
set of a node, the total number of 6perations increases to n? when. all
nodes are considered. As a result of repeating the checking procedure
(n-2) times in the worst case the total number of opérations is of
order 0(n®). Similarly, in the second part of the algorithm, the
nuhﬁer of operations needed for checking unilatera1 c0nhectedhess is

n(n-1)2, since (n-1) operations are needed to find the reachible sets

of the (n-1) distinct node;_after a specific node is femoved from the
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Table 3.19a - Computational results for the proposed
algorithms when applied to problems where
10 <n <30

) Optimum - Algorithm I| Algorithm II|Algorithm III|Algorithm IV
cost *
Cost| CPU| Cost| CPU | Cost{ CPU |[Cost| CPU

10| 280 - 280| 1.315| .305| 5.101| 291| 0.320 | 363} 0.478
10| 299 - 362| 1.790| 342| 8.199| 299| 0.317 | 356| 0.278
10| 275 279| 1.580| 279| 4.029| 292| 0.321 | 335| 0.322
10| 285 285 1.239| 295 2.895( 285| 0.303 | 297 0.307
10 279 279| 1.443|  280| 3.091| 291| 0.311 | 300| 0.338
20| - 354 381{ 8.305|. 410{72.450| 384( 1.323 | 394| 1.239
20{ 400 462| 8.587| 437|33.571| 492| 1.305 | 463| 1.323
20| 377 | 387{ 8.732| 411(95.632| 441 1.377 | 387] 1.479
20f 389 389 9.070 411{51.369| 482| 1.386 | 503| 1.254
20| 378 ~ | 488} 7.614| 387(32.95 | 432| 1.476 | 560| 1.400
30 - 49127.594 - | - 624{ 3.708 | 542| 2.647
0| - 614|29.742] - | - 564 3.728 | 604| 3.059
o - 528(29.174 - - 490( 3.709 | 661{ 2.789
30{ - 595/ 32.328 -l - 509| 3.428 | 629 3.008
30 - 471{31.332 - - 464| 3.737 | 558| 3.135

*
CPU times are in seconds of UNIVAC 1106 computer, Bogdazi¢i University.
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subgraph. As a result of repeating the process n times (i.e. each node
in the subgraph is removed one by oné) the number of operations needed
for the whole procedure 1is of order 0(n®). Finally, since Litf]e's al-
~ gorithm is applied until a feasible solution is found and therefore the
order of this proceQure is far from beﬁng greater than the orders of
the othef parts of fhe algorithm, the overall order of the proposed al-
gorithm is 0(n?). Note that, a careful examination of Table 3.19a and
Table 3.19b reveals that the CPU times can be expressed approximately
as (n/1000). | |

 The experiments made on -the second method showed that the method
might end ub with high computation times‘as'a result of jumping over |
the optimal sb]utibn. In other words, the algorithm may omit the opti-
mal solution and then continue with the search in an unknown direction
until a feasible solution is obfained. This may be the consequence of
the fact that there may exist more than one AP sé]ution with thélsame
objective funcfion value such thaf one is the optimum solution to the
TSP and the other is not. On the other hand, the optimum solution ﬁéy
be omitted due to the fact that two previously basic but curreht1y non-
basic’variabTes may not enter the basis at the same time. Hence, the
algorithm may requiré‘a coﬁsiderab]e émount df computation time in
order to find at 1éa§t a feasible tour. Experiments’ for this method
were cohducted upto 20 nodes. The results can be seen in Table 3.19a.
"It should be noted that the CPU times are still efficient as Combared
with thé relevant fénking ahd subtour breaking methods iﬁ Titerature.
In addition,:probfems of the same_sizé showed a considerable varfation

in the computation times. This cén be explained by the‘Variation in



Tab]e 3 19 - Computat1ona1 results for the proposed

algorithms when applied to problems where

40 <n <70
* Algorithm 1 " Mgorithm III | Algorithm IV
n - .
Cost GPU Cost CPU Cost CPU
10 569 71.070 645  7.391 664  5.005
40 617  72.314 | 742 7.907 807  6.321
40 557  65.438 597 7.136 | 609  5.203
40 617  68.765 | 714  7.713 626  5.124
40 599 65.321 672 7.319 722 4.892
50 691  146.737 714 14.587 605 12.135
50 702 135.878 733 13.546 721 8.800
50 838  142.656 706 13.631 758 6.831
50 761 132.19 724 13.323 814  8.507
50 683 113.126 791 14.442 770 8.513
60 695 206.103 | 848 22.455 934  12.255
‘60 816  212.328 776 22.934 1999 11.450
60 761 192.707 821  24.567 958 13.131
60 739 195.737 784 23.757 825 15.855
60 779 231.319 | 835 23.160 838 11.189
70 1010 328.886 967  44.765 1035 20.699
70 785 335.943 889 35.342 965  21.743.
70 809  350.958 877  35.288 812 13.864
70 746 313.229 891  33.965 794 21.440
70i 942 363.803 876  33.472 1015 17.355

121
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the number of extréme points found between the optimum AP solution and
the TSP solution. | |

Experimental results regarding the'computation times of the third
algorithm are also Tisted in.Table 3.19a and Table 3.19b. The results
indicate that this 1§ a high]y effective procedure fbr building a tour.
Thé compUtation time required to solve problems with 70 nodes .is about
35 seconds. The procedure was also capable of finding the optimal solu-
tions in some of the prob]ems; Of those that are not optimal, the devia-.
tion from the optimal value ié less than 8%. But, of the 10 runs whose
optimal so]ut%ons are known only 2 are optima]!

The computation effort of the1algorithm can be expressed és
follows: At the first stage, (n-2) operations are made for each of
the (n-1) nodes other than the root node. At the second stage, the
number of operations is (n-3) since (n-3) nodes remain to be sequenced.
The other stages proceed simi]ar]y. ‘Therefore, the total number of
operations can be given by the expression

n-2
(n-1) I i=(n- 1)%(n - 2)/2
=
which show§ that the proposed algorithm is of order O(n3).

In terms of the computation effort, the last algorithm using
“the geometric approach is the_most efficient one although it seems to
find solutions worse thgn the others. This is because arbitrary
convex hulls with the least possibTe number of nodes were input to
the algorithm in order to measure its computational efficiencyl

" ‘Consider that in the worst case the algorithm Starts with a

partial tour containing only two nodes and therefore two arcs. As a
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result, the number of operations in the first step is 2(n-2) since
there are two arcs and (n-2) remaining nodes to consider. Similarly,
3(n-3) operations are conducted for‘the second step. Overall,
n-1
Z i(n - i)
i=2
operétions ére needed for the whole procedure. Expanding this expres-
sion we obtain '
n-1 n-1
n I i- I i?
i=2 i=2
which makes (n® - 19n + 6)/6 operations at most. Therefore we can
conclude that the algorithm is of order 0(n®). Analysing the results
indicated in Table 3.19a and Table 3.19b we see that, even for the
worst case, the computational effort.of this algorithm is the best
as compared with the others. Nevertheless, results regarding the

costs are promising considering that the convex hulls which are

necessary as input to the algorithm were not identified.
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IV, THE MULTI-DEPORT VEHICLE ROUTING PROBLEM AND
ITS FORMULATION AS A TRAVELLING SALESMAN
PROBLEM

4.1 INTRODUCTION

Vehicle routihg and scheduling problems which involve the N
periodic co]]ectioh,and delivery of goods and services are both'of
theoretical and practical importance. The ideas 1ying under this
‘subject have proven to be interesting for ‘the researchers who are ‘

: specfa]ized in computer science and graph theory as well as opera-
tions research. On the other hand, routing and scheduling proce-
dures contribute to savin§ a considerable amount of,mbney by increas-
»1ng the productivity, improving the dpératipns, aiding in long range
planning, handling thé job scheduling and sequencing problems and
controlling vehicle utilization from the financial point of view.

The vehicle rbuting problem (VRP) invg]ves the designétidn
of a set of routes which are sequences of pickup and/or delivery.
points that are to be traversed by vehicles in order, starting énd
ending at some depots. The problem is reférred to as schedu]iné
problem (VSP) when arrival and departure times of the vehicles are

specified. As a matter of fact, the problem can be viewed as a




125

combined routing and scheduling problem when both rduting and scheduling
functionsvneed to be performed.

A specific vehicle routing and/or scheduling problem can be
described on the basis of a number of characteristics. The following
taxonomy given by Boqin and Go]deﬁ [58] is useful in identifying the
type of the vehicle }outing and/or sthedu1ing problem that is being

confined:

~A. time to service a particular node or arc

- 1. time specified and fixed in advance (pure VSP)
2. time windows (combined VRP and VSP)
3. time unspecified (VRP)

B. number of depots

1. one depot

2. more than one depot
C. size of fleet available

1. .one vehicle

2. more than one vehicle
D. type of fleet available

1. homogeneous case (all vehicles are the same)

2. heterogeneous case (not all vehicles are the same)
E. nature of demands
1. deterministic

2. stochastic
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. location of démands.

1. at nodes (not necessarily all)
2. on arcs (not necessarily all)

3. mixed
. underlying graph

1. undirected
2. directed

3. mixed
. vehicle capacity constraints

1. -imposed - all thé same
2. %mposed - not all the same

3. not imposed

. maximum vehicle route-times

-

1. imposed - all the same
2. imposed - not all the same

3. not imposed

. costs

1. variable or routing costs
2. fixed operating or vehicle acquisition costs (capital

costs)
. operations

1. pickups only
2. delivery only

3. mixed



127

L. objective

1. minimize routing costs incurred
. 2. minimize sum of fixed and variable. costs

3. minimizé number of vehicles required

M. other (problem-dependent) constraints

Note that, this framework includes a vast variety of combina-
tions which cover all of the well known problems as well as problems

that have not received much research attention.

4.2 VEHICLE ROUTING PROBLEMS AS EXTENSIONS OF THE ’ )
TRAVELLING SALESMAN PROBLEM

4.2.1 The Multiple Travelling Salesman Problem (MTSP)

Most of thevVRPs are variants or extensions of the TSP. Actu—b
ally, the problem of satisfying the demand at each node of a graph with
a single vehicle of unlimited capacity'whi1e the total routing cogt is
being minimized is the TSP. Building upon the TSP, other prob]éms
‘progressing from the very sihp]e to the more complex have been extended
and synthesized. One of such problems is the MTSP which represents a |
“large number of real world problems.

| Given m salesmen and n nodes in a graph,.the MTSP_i§ to assign
a_§ubtour to each salesman such that the subtours start and end at a
central depot and the sum of m subtour costs is minimized. The integer
programming formufdtion of the MTSP can be obtained by changing ﬁhe

formulation of the TSP slightly [4]'as ’
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n

n
minimize ¥ I C,.x. (4.1)
' i=1 j=1 13743 ‘ :
n rm if j=p :
s.t z Xi. = b. = o J=1,...,n (4.2)
i=1, J J 1 otherwise
n m if i=p
X Xq3 = a; = i=T1,...,n (4.3)
j:i» 1 otherwise .
Xij €S (4.4)
Xi5 € {0,1} ¥i,J | : (4.5)

where p‘is the node representing the central depot
S is the set of constraints prohibiting subtour solutions

and can be represented by one of the constraint sets
(2.4a),(2.4b) and (2.4c).

~4.2.2  The Multi-Depot Vehicle Routing Problem (MDVRP)

“The MDVRP‘is an extension of the MTSP which incorporates multiple
depots. The MDVRP allows vehicles to reside at more than one depot and
seeks for the minimum number of vehicles needed to satisfy all the de-
mands while the tdta] traversing cost is being minimized. The problem
can be classified as being a pure VRP with more than one depot and more
than one vehicle. The type of the f]eef is essumed'to be homogeneous,
i.e. ali.of the vehie]es are the same. The demands are deterministic.
Neither vehicle capacity constraints nor maximum vehicle noute‘times
are imposed. That is, the vehicles are assumed to have capacities which
exceed the total demand. The underlying graph can be undirected;.direeted
or mixed. The problem can be related to delivery or pickup operations

- where only routing costs are being considered.
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The integer programming formulation of the MDVRP can be summarized

as follows:

Let the nodes of the graph be numbered such that the nodes 1,...,p

denote the depéts and the nodes pt+l,...,ptn denote the demand points.

Then, the formulation can be given as

o ptn ptn. m K
minimize I I z Ci.x..
i=1 j=1 k=1 WV
subject to
ptn - m
i=1 k=1
ptnom
2 % Xi. = 1
j:'l k=1 J
ptn ptn
X x?r - I xs.
i=1 j=1 J
p ptn
z r Xi' <1
i=1 j=pt1 M
p ptn k
pX Lo Xys <1
J=1 i=p+1 J
XesS
Xij € {0,1}

where S is redefined as one of the three following alternatives

¥i,j,k

ptl,...,ptn

p+1,;..,p+n -~
k = ], oMM
r = ], ..,p+n
K = ], s sl

k =1,

oo s

(4.6)

(4.7)

(4.8)

(4.9)

- (4.10)

(4.11)

(4.12)

(4.13)
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{x::] T = x:>1, ¥Qc{l,...,p}} (4.12a)

..
- Wieqigg M7
S=ixyl 2 T oxp< 0 -7 Yo {p 1,....n}}  (4.12b)

ieQ je@ M

wn
1

= Og4lyg m vy s xgp el L p 1< i<,y e R (A02)

1]
and
n = total number of demand nodes
'p = total number of depots
m = total number of vehicles
Cij = cost of traversing arc (i,J)
X 1 if arc (i,j) is traversed by vehic]e k
xij ) { 0 otherwise '
o | mok s
X = matrix with cpmponents Xij = ki1 Xij specifying the

number of times arc (i,j) is traversed.

The objective function (4.6) states that the total cost is to.
be minimized. Constraints (4.7) and (4.8) ensure that each demand node
is visited by.qné and only one vehicle. Constraints (4.9) represent
the route continuity.. Théy imply that a vehicle entering to a node
must exit from that node. The fact that the vehicle availability is
not exceeded is made certain by constraints (4.10) and (4.11). Using
inequa]itiés, the problem is relaxed in the sense that thére is no
rest}iction'to emp]dy all the‘véhicles available. Some of them may be
fognd,use1ess in the optimal solution. Finally, constraints (4.12) can
be ahy of the subtour -breaking constraints;specjfied_in (4.12a), (4.12b)

~and (4.12¢).
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~In this model, we assume that vehicle capacifies exceed the
total demand in the prbblem and therefore put no restriction on the
subtour lengths.  As a result, when a demand node is visited, its
requirements are satisfied. 'However, it may be mdre realistic to
include constraints associatéd.with thicTe.capacities and total
elapsed route time in"the model. In this case, these constraints

can be included in the model as follows:

ptn ptn

oz dafo<p K=1,....m ©(4.18)
iz1 j=p+1 RN :
ptn pin lp'*'n P ‘

z 1:_i T Xij + ¥ I tijxij f-Tk k=1,...,m (4.15)

i=1 0 j=1 i=1 j=1

Here,
Pk = cépacfty of Vehfc1e k
Tk = maximum time a]]bwed fpf a route of vehicle k
dj = demand at node j )
tg = time required for vehicle k to deliber.br collect at node i
t§j= trqye] time for vehicle k from node i to node J (tEi = ).

Overall, a careful examination of constraints (4;7)—(4.]3) reveals that
constraints (4.7) and (4.9) imply constraints (4.8). Simi]ar1y, con-
straints (4.9) .and (4.]0) imply constraints\(4.11). As a consequence
of tbis faét,'constraints (4.8) and (4.11) may be excluded from the
formulation since they are redundant in so]&ing thekprob1em. Moreover,
it shou]dkbe noted.that init{a1 vehicle locations éré not being consi-

dered by the formulation. The fact that the vehicles must start and
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end at the deports where they are initially located is not under control
either. But the requirement that at most the given number of vehicles
can be used is strongly imposed.

4.3 SOLUTION TECHNIQUES FOR THE VEHICLE ROUTING PROBLEMS

Proposed techniques for'solving VRPs fall into seven distinct

classes as specified by Bodin and Golden [58]:

1. Cluster first - route secohd

N
.

route first - cluster second

. savings/insertioh |
1mprovehent/exchange
mathematical programming based

interactive optimization

N oy B W

. exact procedures.

Cluster first-route second procedures group demand nodes f1rst
and then design economical routes over each c]uster as a second step.
Examples of this idea are given by Gillett and Miller [59], Gillett
and Johnson [60] and Karp [61] for the standard single depot VRP.

| Route first and cluster second procedureé conétruct a large
route which includes ai] the nodes ignoring capacity and range con-
straints first and then, if infeasible, partition this route into a
number of smaller but feasible and économica] routes. .Examp1estof
route first-cluster second procedure§ are given by Newton and Thomas

[62], Bodin and Berman [63] and Bodin and Kursh [64].
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Savings and insertion procedures build a solution in such a'way
that at each step a comparison is made between the current solution and
the a]ternativeieoiution. nThe alternative solution is one that yields
the largest savings in ‘terms of cost or distance travelled or that in-
serts a demand entity not extsting in the current solution econpmically.
Various savings/insertion procedures’for single depot and multiple depot
routing problems have been described by Clarke and Wright [65], Golden
et.al [66] and Norback and Love [45]. | |

Improvement or exchange procedures such as the heuristics deve-
loped by Lin [49], Lin and Kernighan [50] é]ways maintain feasibility
and strive towards optimality. At each step, the current feasible solu-
tion is'altered to yield another feasible solution with a reduced objec-
tive function value. The procedure continues until no more improvements
- are possible. Exampies of these procedures  can be;found in Christofides
and Eilon [67] and Bodin and Sexton [68]. |

“Mathematical programming aoproaches include algorithms that are
_direct1y based on a mathematical programming formulation of the‘under-
lying model. Examples of this approach can be found in Fisher and\
Jaikumar: [69], Christofides, Mingozzi and Toth [5].

Interactive optimization is a general purpose approach in which
an experienced decision maker who has the capabi]%ty of setting and
revising parameters and injecting subjective asseSsments_based on know-
ledge and intuition is incorporated into the problem-solving process.
Adaptations of thjs approach to the VRP are presented by Krolak, Felts
and Marble [70] and Krolak, Felts and Nelson [711.
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Exact procedures for solving the VRP include the branch and
bound and cutting plane algorithms. However, these procedures have
been viable only for small problems. Examples of these procedures
whwch proved to be effective are described by Chr1stof1des et.al [5]

and Crowder and Padberg [38]

4.4 SOLUTION PROCEDURES FOR THE VEHICLE ROUTING PROBLEMS
WHICH BUILD UPON THE TRAVELLING SALESMAN PROBLEM
AS THE CORE MODEL | |

It is well khown that the:TSP is embedded within the most commonly
encountered‘vehicle routing'formu1ations. de of such'brob]ems which are
extensions of the TSP, namely the MTSP and the MDVRP were discussed in
the previous sections. In this section we will show that a]though these

" problems are extensions of the TSP'they can be solved as a TSP.

4.4.1 The Single DepotvCase,(MTSP)'

As it has been shown by Sweetska and Hu&kfg]dt [8l, Be]]more‘
and Hong [6] and the others, it is possible to derjve equivalent TSP
formulations of the MTSP by the use of a suitable transformation. = The
transformation is applicable to both symmetric and asymmetric matrices.

In summary, it consists of

- 1. creating m copies of the cehtra] depot
2. connecting each of the m copies to the bthér nodes exactly

as the original central depot is connected
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3. inserting infinities in the elements of the extended cost
matrix which correspond to arcs connecting the copies of

the central depot. .

For~examb1e, cdnsider'the MTSP on a complete travelling sa]eéman
graph G = (N,E) where N = {1,2,3,4,5}. The associated inter-node cost
matrix is given in Table 4.7a. If we let node 5 represent the central
depot in which twokvehic1es are located initiaily, then the transforma-

tion described above yields the cost matrix given in Table 4.1b.

. Table 4.1 - Transformation of a ébst matrix for the MTSP

1 2 3 4 5 1 2 3 .5 6
1l Gy Gy Gy G 3 © Gy G Gy G Gp
2 G = Gz G Gs | 2 Gt = Gz G Cos Cos
I T I VIR B B T " - -
v Gy Cgp Gz o= G| x| Gy Cgp G5 2 s Cys
5| G5 Cop Cg3 Cgy = 5| o Cop Gy Cgg = =
| b1 Cs2 Ce3 G v
() | ()

Any AP solution using the extended cost matrix and producing m subtours
each containing one of the copies created is the optimal MTSP solution.
The optimal solution to the MTSP can also be obtained by so]vingrthe

TSP on the extended cost matrix. As a result, the trave]iing salesman
touf is decomposed into m subtours as required in the MTSP, by coalescing
the copies back into a single node. For instance, suppose that the

optimal travelling salesman tour obtained by solving the TSP on the
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extended matrix is (1-3-5-4-2-6-1). Then, coalescing nodes 5 and 6 back
into a sihg]e node,’name1y node 5 in the origina] problem, yields the
subtours (5-1-3-5) and (5-4-2-5) which correspond to individual salesman
tours and therefore represent the optimal so]utioﬁ to the MTSP. The back

transformation is shown in Figure 4.1.

Figure 4.1 - An example of back-transformation for an MTSP.

4.4.2 The Multi-Depot Case (MDVRP)

Similar to the MTSP, the MDVRP can also be converted into an
equivaient TSP in a way not principally different from the transfor-
mation used for the MTSP. Assuming that we know how tHe vehicles are
located initia11y, the proposed transformation can be realized by ex-

tending both the node set and the arc set together with the associated

cost matrix.

4.4.2.1 Transformation of the Node.Set

It s clear that the node set of the problem consists of demand
nodes and nodes representing the_depots. First, the nodes cofresponding

to the depots are deleted from the node set. Instead, duplicates of the

“~
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depots are generated. For each vehicle in a specific depot, two copies
of therdepot are generated. One of the copies serves as the departure
node while the pther\serves as the arrival node for that particular
vehicle. For the sake of simplicity the new nodes are labelled in such
a way that nbdes labelled with odd numbers repfesent the departure nodes
whereas nodes labelled with even nﬁmbers represent the arrival nodes.
Considering that there are.m vehicles, the number of nodes is increased

from (p+n) to (2mn).

4.4,2.2 Transformation of the Arc Set

First, the arcs connecting the deleted nodes which correspond
to the depots are deleted from the arc set. Then, the transformation

is executed‘by

1. connecting the departure node of each vehicle to its

arrival node

2. connecting the arrival node of each vehicle to the
departure node of another vehicle whiéh has been
labelled with a larger number with one exception;

The arrival ﬁode of the last labelled vehicle is con-
nected to the departure node of‘the first labelled

" vehicle

3. connecting each demand node to each arrival node and
each departure node to each demand node exatt]y as the

original depots are connected.
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As a resu]t, the anber of arcs in the arc set of a complete graph is
1ncreésed byvém(n+1). After all, there are no arcs entering the de-
parture node except the arc that comes fkom one of the arriva]ynodes.
Conversely, therevare no arcs,leaviﬁg the arrival nodes except the one

incident to one of the departure nodes.

4.4.2.3 Transformation of the Cost Matrix

The cost matrix of the MDVRP is transformed in such a way that
the costs of the arcs between the arrival nodes and the'demand nodes
and between the nodes and the departure nodes are the same as they are
for the corresponding depots in the origjnal matrix. The arcs that
connect the departure and the arrival nodes are assigned a zero cost.
AIn addition, the costs of the arcs connecting the demand nodes to each
"other remain the same as they are in the ofigina] cost matrix. Finally,

infinities are inserted for costs representing nonexistent arcs.

4.4.2.4 An Illustrative Example

Consider an MDVRP defined in a graph G'(Figure 4.2a) whose
associated cost matrix C is as shown in Tab]e 4.2a. There are eight
demand nodes 1,.;.,8 and two depots 9,10. Suppose that one vehicle is
Tocated in each depot. The equivalent travelling salesman graph is
shown in Figure 2.4b. After nodes 9 and 10 are deleted four nodes are
created. In this case nodes-9 and 11 serve as the departure nodes and
nodes 10 and 12 as the arrival nodes. Suppose that the optimél so]ufion

to the TSP ih the transformed graph is given by (1—2-4-10—11—6-7-8-5—12-9—3—1).
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Table 4.2a - The cost matrix
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Figure 4.2b - The equivalent travelling salesman graph

Then, coalescing nodes 9,.10 and 11,.12 back into two nodes the
travelling salesman” tour is decomposed into two subtours corresponding
to nodes representing~debots 9 and 10 of the original prob]ém. As a
result the subtours are: (9-3-1-2-4-9) and (10-6-7-8-5-10) (Figure
4.3a and Figure 4.3b).
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Figure 4.3b - Optimum solution to the MDVRP

4.4.2.5 Equivalence of the Problems

In this section, we will try to prove that the TSP and the
MDVRP become two equivalent problems when the transformation described
in the previous section ié applied. We will show that there is a one

to one correspondence between the solutions of both problems. In
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addition, the one fo one correspondence ih ranking the solutions cost-
wise will be illustrated.

Since the TSP solution has to cover all the nodes in a graph
once and only once, all of the demand nodes will be visited once any
on]y‘once in the original MDVRP and therefore the demands will be
satisfied. Consider%ng the integer programming formu]afion of the
MDVRP, the number of vehicles to be used is bounded from above, but
there is no restriction on the number of vehicles that have to be
utilized. Actually, the total number of vehicles.is an upper<bound
for the number of subtours in the MDVRP. If, in the TSP solution, the
nodes are sequenced in such a way that anvarriva1 node appears immedi-
ately after a departure node, then the vehicle corresponding to these
nodes is nqt used in the associated solution of the MDVRP. Hence a
. one to one correspondence is achieved. |

Note that the arcs connecting the‘arriva1 nodes to the deﬁar-
ture nodes and the arcs connecting the departure nodes to- the arrival
nodes are assigned zero costs. Besides, the coéis corresponding to
the arcs which connect the departufe‘nodes to the demaﬁd nodes and the
demand nodes to the arrival nodes are the same as they are given in
the rows and columns of the corresponding depots in the original matrix.
As a result, the costlof a travelling salesman tour is exactly the same
as the cost of the corresponding sO]dfion of MDVRP. Thus, the optimal
solution to the TSP in the transfofmed graph is equivalent to the opti-

mal solution of the MDVRP in the original graph.
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V. APPLICATION OF THE PROPOSED ALGORITHMS
TO THE MULTI-DEPOT VEHICLE ROUTING
' PROBLEM

VThis section of the thesis is comb]ete]y devoted to the appli-
cation of the proposed algorithms to the MDVRP. A1l of the algorithms
are applied to the same problem in order .to compare them in equivalent
conditions. Actua]]y,\the algorithms are expected to perform better
. for the transformed cost matrix than they do for complete graphs for
which examples and éomputation times are already given in the third
chapter. This expectation is due to the speéia] structu?e{of the
transformed matrix. In fact, it is certain that all TSP tours will

traverse arcs defined between the arrival and depafturé nodes. There-

fore, these arcs need not carried along the search process continuously.

This is especially true for the reduction algorithm. But still the
other algorithms are also affected by the structure of the transformed
matrix. |

| Consider the MDVRP defined in Figure 5.1. The associated cost
matrix, C, is given in Table 5.7. Assume that nodes 8 and 9 represent
the depots in whiéh two vehicles are located initially. It jé desired

to investigate the optimal tours each vehicle should traverse so that
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all of the other nodes are visited once only once. We first need to
transform the cost matrix in order to apply the proposed algorithms.
Accordingly, nodes 8 and 9 are deleted from the pfob]em. Instead two
arrival nodes and two departure nodes are created. Each afrival node
'1s connected to a departure'ﬁode. Similarly, each departure node is
connected to an arriJé] node. Besides all of the demand nodes {1,...,7}
- are connected to each arrival node and each departure-node is connected
to the demand nodes exactly as nodes 8 and 9 were connected. The re-
sultant cost matrix C' is given in Table 5.2. Note that nodes 8 and 9
represent the departure and the arrival nodes for the vehicle located
in depot 8 1in the originai problem respeéfive]y. Similarly, nodes 10
and 11 represent the departure and the arrival nodes for the vehicle
Tocated in depot 93respecf5ve1y._ Now we are ready for app]ying the
_proposed algorithms in order to solve thé TSP by’using the transformed

- matrix.

Figure 5.1 - The graph representing the MDVRP



10

11

Table 5.1 - The cost matrix corresponding to the MDVRP

1 2 3 L 5 .6 7 8 -]

© 45 ® 95 70 © o o 48
45 © 40 © © © © @ o

© 80 ® © 65 70 125 40

% o o & 43 48 © 33 o

10 o 65 43 o 25 = o 28

= © 70 48 25 » 60 47 @«

© ®125 @ © 60 = 25

® o @ 33 o 47 25 o o
48 © 40 @ 28 © o o o

Table 5.2 - The transformed cost matrix

1 2 3 4 5 6 7 g . 11
© 45 © 95 70 @ o o o 48
45 40 0w © o @ o L
© 40 ® ® 65 70 125 ® o 40
B o o o 43 48 o e 33 w
70 o 65 43 ® 25 o o @ 28
o o 70 48 25 <« 60 o 47 o
© @125 © o 60 o w 25 o
© ® o 33 o 47 25 o« 0 o
48 @ 80w 28 & @ e w 0
e o @ o o w 0 e -
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5.1 APPLICATION OF ALGORITHM I

As a result of reducing the cost matrix C' the corresponding
subgraph G' is shown in Figuré 5.2a. Note that G'- is not connected.

.The algorithm pfoceeds as follows:
Choose node 1. R(1) = {1,2,3,7,8,9,10,11} £ N

M= om in {C } =Ciy =15

ieR(1) 8
jeN-R(1)
Including arc (8,4) in G' (Figure 5.2b) we see that G' is still

disconnected.
R(1) = {1,2,3,4,7,8,9,10,11} # N

w = min {Cl.} = Clo=Cl=Cle=10
jeN-R(1) : »
Once arcs (1,5), (3,5), (4,5) are included in G' we obtain

R(1) = N. The resultant subgraph is shown in Figure'5.2c.

Choose node 2. R(2) =
Choose node 3. R(3) =
Choose node 4. R(4)

{4,5,6,7,8,9,10,11} # N

53 = 10

mo=min {C'.}
47 Ser(a)y J
JeN-N(4)

C 1= = C.

5 3 =40



(c) | (d)

Figure 5.2 - Stages in constructing the subgraph* G'

After including arcs (5,1), (5,3) (10,3) in G', the set of
nodes reachible from node 4 becomes equivalent to N, i.e. R(4) = N.

~ The resultant subgraph G' is shown in Figure 5.2d.

* R 7 . . .
Lines without arrows.denote arcs in two directions.




Choose node

5. R(5)

' bhoosé node 6. R(6)
Choose node 7. R(7)
Choose node 8. R(8)
Choose node 9. R(9)'

- Choose node 10. R(1
Choose node 11. R(1

0)
1)

=2 =2 =2 = =
. . . B .
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n "
= =

-Since all nodes have been tried and strong connectedness is achieved

we proceed by checking the unilateral connectedness in any subgraph

Gé obtajned by removing a node k and the associated arcs from G'.

Remove node 1. Gi
Remove node 2. Gé
Remove node 3. é
Rémove node 4. G,

Remove node 5. 'Gé

There is nq'path'either from node 1 to node 6 or from node 6 to hdde 1.

is
is
is
is

is

unilaterally connected (Fig. 5.3a).
unilaterally connected (Fig. 5.35).
unilaterally connected (Fig. 5.3c).
unilaterally connected (Fig. 5.3d)..

not uni]atera]]y connected (Fig. 5.3e).

R(1) = {1,2,3,4,7,8,9,10,11}  R(6) = {6}

N-{5}-R(1) = {6}

N-{5}-R(6) = {1,2,3,4,7,8,9,10,11}

- mi s 1 : ’ S TS Y oY S
Mg = m‘“{TEQ(?) {Ci5t TeRie) {C;531= C36=Ch6=Cg3=Cag= 5

jeN-{5}-R(1) jeN-{53-R(6)

The updated Gé is shown in Fig. 5.3f. Note that G becomes uni-

laterally connected.

5




 Figure 5.3c - Subgraph G} Figure 5.3d - Subgraph &'

: B Figure 5.3f - Subgraph G
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Remove node 6. Gé is unilaterally connected (Fig. 5.3g).
Remove node 7. ; is unilaterally connected (Fig. 5.3h).
Remove node 8. Gg is unilaterally connected (Fig. 5.31i).
Remove node 9. | g is unilaterally connected (Fig. 5.3j).

Remove node 10. Gio is unilaterally connected (Fig. 5.3k).

Remove node 11.'Gi]is unilaterally connected (Fig. 5.3 ).

Unfortunately at this stage G' does not poﬁsess any Hamiltonian
circuit (Figure 5.4); therefore we proceed with épp]ying Little's algo-
rithm partially to the resultant matrix which is given 1in Table 5.3.

We will not go over the steps of the algorithm but instead give. the
solution found which is (1-4-6-5-11-8-7-9-10-3-2-1) with a total cost
of 371. Coa]éscing nodes 8 and 9 and nodes ]0~énd 11 back ihtoadEpots
8 and 9 in the origina] problem respectively, we obtain‘two subtours

" with the same total cost. The tours are

Tour 1

(8-7-8)

Tour 2

(9-3-2-1-4-6-5-9)
Total cost = 371

The tours are shown in Figure 5.7a.

5.2 APPLICATION OF ALGORITHM II

Starting_with the transformed_matrix.we apply the 'second
algorithm as f0116ws: According to the first step of the algorfthm
we solve the AP. The resultant matrix is given in Table 5.4. The
associated $ubtours and the corresponding penalties are shown in |

Figure 5.5a. Starting from the minimum of the penalties that would
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Table 5.3 - The resultant reduced transformed matrix

Figure 5.4 - The resultant subgraph G'

1 2 - 3 _'i 5 ‘6 7 8. ] 10 11
© 0 © 17 0 @ oo o © e .3
0 ® 0 o ® ® o © © o o
© 0 ® o 0 0 60 © o @ 0
17 © o @ 0 0 o 0 =
0 o 0 0 ® 0 ® o o ® 3
©= ® 0 0 0 ® 5 w 17 PR
© ® 60 w w 5 o o 0 @ o
® ® @ 0 o 17 0 = 0 o =
o © P> © P © © o © 0 o
3 ® 0 ® 3 @ ® & @ @ Q

e o e @ @ o 0 @ @ o
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" Table 5.4 - The transfbrmed cost matrix after the AP

10|

11

solved in the first step of algorithm II

is

32
30

o o) 20 oo o 0 oo ©

20 @ 52 0 o 20 @ e

[ o) © (<] o =%} 0 ©
oo 3 co [+ [°3) o oo 0
© © [-) © 0 [+ oo oo

F1gure 5.5a - Subtours and pena1t1es correspond1ng to the

P7g =
20

Pg7

P10

1
w

P1o3 =

P118

AP solut1on

153




154

be incurred if the assignments are not tor be madé, we solve the corres- .
ponding APs until the best solution found Z;' is less than the next ”
penalty to be considered. The fol]owing solutions are obtained in
each case: |

ST .
1.0”._ ¥ieT

1
{(1,11),(2,1),(3,2),(4,5),(5,6),(6,4),(7,9),(8,7),(9,10),
‘ | (10,3),(11,8)}

Z]:3 Z. =3

*
1

L .
2. C.. = ¥j e T2

2
£(1,2)5(2,3),(3,6)5(455),(5,1),(6,4),(7,9),(8,7)5(9,10),
- S (10,11),(11,8)}

*
z 30 Z] =3

-I -

3.C.=o ¥jeT

43 - 3

£(1,2)5(2,1),(3,11)5(4,9)(5,4),(6,5),(7,6),(8,7),(9,10),
| | (10,3).(11,8)}

e 0
4, C6j = ¥YieT

(1,205 (22105 (3:11), 4:5) (5,6)5 (6,7)5 (7,9, (8:4) (,10),
| (10,3),(11,8)}
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? equals to 551 = 3 which is the next penalty to be considered,

we do not need to solve any other AP at this point. Insteady . we up-

date the cost matrix, i.e. take the one which corresponds to Z1 =3

and calculate the new penalties. The associjated cost matrix is given

in Table 5.5. Defining the subtours, the Corresponding penalties are

as shown in Figure 5.5b. Note that Z0 = 339 becomes the new objective

function value of the original problem. The following AP solutions are

obtained by solving an AP for each penalty in rank:

10

11

Table 5.5 - The cost matrix fhat corresponds to solution (1)

1 2 3 4 5 6 7 8. . 10 11

29 ®» ® @ 0 0 ® & 0 © o«

© -3 o 2 0 (<] o) e © o 0
0 o 0 o © © © oo o © oo

27 o 27 0 ® 0 @ ® oo ® 33
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P17 =0 P7g =20
Py = Pgy = 23
Pz =0 Pgig =
Pgs =0 Pro3=
E%G = 27 E&]S =
Eé4 =0

Figure 5.5b - Subtours and penalties correspond1ng to
the AP solution (1) .

1.C.zwo  ¥je T,

| {(1,5),(2,1),(3;2),(4,5),(5,4),(6,3)a(7,9),(8,7);(9§10)5(]0,11),(11,8)}
Z, =27 zT = 27

2. Co; = ¥jieT

33 1

{(1,2),(2,1),(3,6),(4,5), (5 4), (6,3),(7,9);(8,7),(9,10),(10,1]);(11,8ﬁ

Zy =27 Z] = 27

1

3. Ch: = ¥jeT

4j 2

{(1,11),(2,1),(3,2),(4,9),(5,4),(6,5),(7,6),(8,7),(9,10),(10,3),(11,8)}

¥l
Z]=20 Z]:O

R c! ¥ eT

6j = @ 2

{(1,]1),(2,]),(3,2)5(4,5),(5,6),(6,7),(7,9),(8,4),(9,]0),(10,3),(11,8)}

| .
;=20 7;:20
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5. Clgy = MieT
£(1,11),(251)5(352)5(4,6)5(553) 5 (6,4)5(7,9),(8,7),(9,10),(10,5), (11,8)}
7,-33 7 =20

At this point, we do not need to proceed with solving any other AP since
ZT equals to the nextvpenaIEy to be considered. On the other hand, solu-
tions (3) and (4), both of which have the objective function value Zy =
ZT = 20, are travelling salesman tours. Therefore, the best achievable
solution is obtained with Z = 359. It should be noted that the fact
that there are two solutions with the same objective function value fn
this case 15 a consequence of the symmetric nature of the original cost
matrix. In other words, both of the solutions correspond to-the same
subtours in the original problem. Choosing solution (3) the best achiev-
able tour is expressed as (1-11-8-7-6-5-4-9-10-3-2-1). Coalescing fhe
vehicle departure and arrival nodes back into single depots the following

tours are obtained (Figure 5.7b).

Tour 1 = (8-7-6-5-4-8)

Tour 2 = (9-3-2-1-9)

Total cost = 359

5.3 APPLICATION OF ALGORITHM III

As required by the third a]goriﬁhm, all of the e1ements.C%j are
subtracted from a large number L which 15 chosen to be 250 in this case.

The resultant matrix is given in Table 5.6.
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Table 5.6 - The cost matrix after subtracting each
element from a large number L = 250

1 27 3 4 5 6 77 8 9 10 11

1l ® 206 ® 155 180 « ® © @ o 202
2205 @ 210 o © e @ @ o o o
3] @ 210 o L, 185 180 125 «© = o 210
155 @ e o 207 202 0w o 217 ® o=
s| 180 ® 185 207 © 225 @ @@ o o 222
6| © = 180 202 225 e 190 <« 203 «© @«
7w ® 125 @ ® 190, o @ 225 o o
5| © o o 217 = 203 225 = 250 o o

10] 2027 e« 210 o 222 o © o © © 250

11 oo oo o co ) o o 250 o [ o

As a result, the algorithm proceeds aé follows:

step (1) s=1, S =1{2,4,511}; k=1 |
2 (2) = 205 81 (2) = 1 p'(2) = {1,2}
21(3) =0 81(3) = 1 p1(3) = ¢
21(4) =155 0 (4) =1 pi(4) = {1,4}
21(5) = 180 81(5) = 1 pl(5) = {1,5}
21(6) = 0 81 (6) = 1. p1(6) = ¢
Cei(7) =0 61(7) = 1 pl(7) = ¢
21(8) = 0 61(8) = 1 pI(8) = ¢
9) =0 81(9) = p1(9) = ¢
21(10)= 0 61 (10)= 1 P (10)= ¢
1 (11)= 202 61(11)= 1

pl(11)= {1,11}
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Step 2 R(S) = {1,3,4,5,6,8,9,11}

22(2) = 205‘ 62(2) = 1 ‘ p2(2) = {1,2}
22(3) = 415_ . 82(3) =2 p2(3) = {1,2,3}
22 (4) = 387 62(4) = 5 o p(4) = {1.4,5}
22(5) = 362 ~  @%(5) =4 p2(5) = {1,4,5}
22(6) = 405 62(6) = 5 p2(6) = {1,5,6}
22(7) = 0 62(7) = 1 p2(7) = ¢
27(8) = 452 02(8) = 11 p2(8) = {1,8,11}
22(9) = 372 02(9) = 4 p2(9) = {1,4,9}
22(10)= 0 ei(10)= 1 ~ p2(10)= ¢
22(11)= 402 62(11)= 5  p2(11)= {1,5,11}
Step (3) k<9, continue |

Step (4) S

{3,4,5,6,8,9,11}
Step (5) k = 2 |
Step (2) R(S) = {1,2,3,4,5,6,7,8,9,10,11}

23(2) = 205 63(2) = 2 p3(2) =" {1,2}

23(3) = 585 83(3) = 6 p*(3) = {1,3,5,6}
23(4) = 669 0%(4) = 8 O p3(4) = {1,4,8,11)
23(5) = 600 - 83(5) = 3 - p3(5) = {1,2,3,5}
23(6) = 655 6°(6) = 8 p3(6) = {1,6,8,11}
23(7) = 677 83(7) = 8 p3(7) = {1,7,8,11}
23(8) = 652 63(8) = 11 p3(8) = {1,5,8,11}.
23(9) = 702 63(9) = 8 p3(9) = {1,8,9,11}
23(10)= 622 03(10)= 9 p3(10)= {1,4,9,10}
93(11)= 625 93(11)= 3 p2(11)= {1,2,3,113
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=
N

Step (3) 9, contfnue

w .
n

Step (4) {3,4,5,6,7,8,9,10,11}
Step (5) k=3 |

Step (2) R(S) = {1,2,3,4,5,6,7,8,9,10,11}

24 (2) = 795 . 0“(2) = 3 p*(2) = {1,2,3,5,6}

2°(3) = 835 6%(3) = 6 p*(3) = {1,3,6,8,11}
24(4) = 869 6%(4) = 8 p*(4) = {1.4,5,8,11}
2%(5) = 880 8%(5) = 6 p*(5) = {1,5,6,8,11}
2% (6) = 871 ' 8% (6) = 4 p4(6) = {1,4,6,8,11}
24(7) = 877 - p%(7) = 8 - p#(7) = {1,5,7,8,11}
24(8) = 875 8% (8) = 11 p*(8) = {1,2,3,8,11}
24(9) = 902 . 8%(9) = 7 p*(9) = {1,7,8,9,11}
24(10)= 952 8%(10)= 9 p*(10)= {1,8,9,10,1}}
¥ (11)= 872 8*(11)= 10 = p*(11)= {1,4,9,10,11}

Step (3) k < 9, continue
Step (4) S = {2:39435:6379899’]03]]}
4

Step (5) k
Step (2) R(S) = {1,2,3.4,5,6,7,8,9,10,11}



25(2) = 1045
25(3) = 1162
25(4) =1092
23(5) = 1174
23(6) = 1078
2%(7) = 1100
25(8) = 1122
23(9) = 1125
25(10)= 1152
25(11)= 872
Step (3) k
Step (4) S
Step (5) k

A

5(2) =3 p%(2) =
85(3) = 10 ps(3) =
65(4) = 8 ps(4) =
8°(5) = 10 p*(5) =
e3(6) =8  p6) =
T e5(7) =8 ps(7) =
6°(8) = 1N ps(8) =
0%(9) = 8 ps(9) =
85(10)= 9 ps(10)=
85(11)= 11 ps(11)=
9, continue

{2,3,4,5,6,7,8,9,10}

5

Step (2) R(S) = {1,2,3,4,5,6,7,9,10,11}

28(2) =
25(3) =
25(4) =
28(5) =
25(6) =
28(7) =
25(8) =
25(9) =
28(10)=

28(11)=

1372
1362
1381
1374
1399
1347
1122
1325
1375
872

8%(2) =
85(3) =
6%(4) =
8%(5) =
6%(6) =
8%(7) =
8%(8) =

66(9) =

66(]0)=
8%(11)=

3 pé(2) =
10 ¢ ps(3) =
5 pé(4) =
10 pe(5) =
5 pé(6) =
8 ps(7) =
8 pe(8) =
7 p&(9) =
9 p&(10)=

11 p5(1])=
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(1,2,3,6,8,11}
{1,3,8,9,10,11}
{1,2,3;4,8,11}
{1,5,8,9,10,11}
1,2,3,6,8,11}
{1,2,3,7,8,11}
{1,4,8,9,10,11}

{1,2,3,8,9,11}

{1,7,8,9,10,11}
{1.4,9,10,11}

{1,2,3,8,9,10,11}

{1,3,7,8,9,10,11}

{1,4,5,8,9,10,11}
{1,5,7,8,9,10,11}
{1,5,6,8,9,10,11}
{1,4,7,8,9,10,11}
{1,4,8,9,10,11}
{1,2,3,7,8,9,11}
{1,2,3,8,9,10,11}
{1,4,9,10,11}



Step (3) k
Step (4) S
Step (5) k

9, continue

{2,3,4,5,6,7,9,10}

6
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Step (2) R(S) = {1,2,3,4,5,6,7,9,10,11}

17(2) = 1572

27(3) = 1579
27(4) = 3601
27(5) = 1547
27(6) = 1599
27(7) = 1589
27(8) = 1122
27(9) = 1336

27(10)= 1575
27(11)= 872

Step (3) k
Step (4) S
Step (5) k

Step (2) R(S) = {1,2,3,4,5,6,7,9,11}

87(2) = 3
87(3) = 6
87(4) = 6
87(5) = 3
65(6) =5

6

. 87(7) =

87(8) = 8
87(9) = 9
87(10)= 9
e7(11)= N

9, continue

{2,3,4,5,6,7,10}

7

p’(2) = {1,2,3,7,8,9,10,11}

p7(3) = {1,3,5,6,8,9,10,11}
p7(4) = {1,4,5,6,8,9,10,11}
p7(5) = {1,3,5,7,8,9,10,11}

p’(6) = {1,5,6,7,8,9,10,11}
p7(7) = {1’536373899:]0;1]}
p7(8) = {1,4,8,9,10,11}

p7(9) = {1,2,3,7,8,9,11}

p7(10)= {]’23337’839’]03]]}

p7(1])= {]3439310,]]}



Step (2) R(S) = {1,2,3,4,5,6,7,9,11}

22(2) =
22(3) =
22 (4) =
2%(5) =
29(6) =
23(7) =
22(8) =
S 2%(9) =
22(10)=
Az°(11)=

1789

28(2) =
28(3) = 1796
28(4) = 1801
28(5) = 1797
28(6) = 1772
28(7) = 1704
28(8) = 1122
28(9) = 1336
28(10)= 1586
28(11)= 872
Step (3) k<
Step (4) S =
Step (5) k =

2006
1796
2224
1981
2022
1710
1122
1336
1586
872 |

6%(2) = 3
88(3) = 10
88(4) = 6
6°(5) = 10
'98(6) =5
08(7) = 3
8%(8) = 8
68(9) = 9
68 (10)= 10
58(11)= 11

9, continue

{2,3,4,5,6,7}

8

8%(2) = 3
0%(3) = 3
8°(4) = 6
8°(5) = 3
8°(6) = 5
0%(7) = 7
0%(8) = 8
8°(9) = 9
6%(10)= 10

8°(11)= 11-
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p®(2) = {1,2,3,5,6,8,9,10,11}
p®(3) = {1,3,4,6,7,8,9,10,11}
pe(4) = {1,4,5,6,7,8,9,10,11}
p®(5) = {1,2,3,5,7,8,9,10,11}
pe(6) = {1,3,5,6,7,8,9,10,11}
pe(7) = {1,3,5,6,7,8,9,10,11}
p(8) = {1,4,8,9,10,11}

pe(9) = {1,4,6,7,8,9,11}
p8(10)= {1,2,3,7,8,9,10,11}
p®(11)= {1,4,9,10,11}

p*(2) = {1,2,3,4,6,7,8,9,10,11}
p*(3) = {1,3,4,6,7,8,9,10,11}
p°(4) = {1,3,4,5,6,7,8,9,10,11}
p*(5) = {1,3,4,5,6,7,8,9,10,11}
p*(6) = {1,2,3,5,6,7,8,9,10,11}
p*(7) = {1,3,5,6,7,8,9,10,11}
p(8) = {1,4,8,9,10,11}

p%(9) = {1,4,6,7,8,9,11}

p*(10)= {1,4,6,7,8,9,10,11}
p°(11)= {1,4,9,10,11}




Step (3) k

A

Step (4) S
Step (5) k =

Step (2) R(S) :'{],3’4,5’6,7’9,]]}

9,

continue

{2,4,5,6)

9

219(2) = 2006 .

210(3) = 1796
g10(4) = 2224
g10(5) = 1981
g10(6) = 2022
210(7) = 1710
210(8) = 1122
219(9) = 1136
219(10)= 1586

21°(11)= 872

61°(2) = 2
819(3) = 3
01%(4) = 6
glo(5) = 5
pL%(6) = 6
910(7) = 7
610(8) = 8
8'%(9) = 9
819(10)= 10
alo(11)= N

Step (3) k =9, stop.
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pto(2) = {1,2,3,4,6,7,8,9,10,11}
p19(3) = {1,3,4,6,7,8,9,10,11}
pro(4) = {1,2,3;4,5,6,7,8,9,10,11}
plo(5) = {1,3,4,5,6,7,8,9,10,11}
p19(6) = {1,2,3,5,6,7,8,9,10,11}
pLo(7) = {1,3,5,6,7,8,9,10,11}
p19(8) = {1,4,8,9,10,11}

p1o(9) = {1,4,6,7,8,9,11}

pl®(10)= {1,4,6,7,8,9,10,11}

'p1°(11)= {1,4,9,10,11}

The best achievable tour js obtained as (1-2-3-11-8-7-9-10-5-6-4-1)

with the cost 371. Note that, this solution is thé same as the one found

by the first algorithm.

(Figure 5.7a)

Tour 1

Touf 2

Total cost = 371.

(8-7-8)
(9-5-6-4-1-2-3-9)

The tours produced for the MDVRP are, therefore,

Ciew T
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- 5.4  APPLICATION OF ALGORITHM IV

| The first step of the fourth algorithm is to détermine the con-

vex hull or a}partia] tour for the problem in order to start the node
insertion protess. For problems that are not defined in two-dimensional
space, however, the p;ob1em of deterhining the convex hull is very diffi- . -
cult or even impossible. Although the original problem (i.e. the MDVRP)
is defined in thé Euglidean spacé, the structure of the problem is changed
by the transformation. In other words, the transformed matrix<does nqt
represent a problem in the Euclidean space énymore. Neither is the tri-
angle inequality satisfied. Consequent]y,'it is not possible to deter-
mine the convex hull of the problem since it does not exist. On the
other hand, we have do determine a partial tour to start with{. Abreason—.
able subtour is T = (8-7-9-10-1-2-3-11-8) and will be used aé the starting
~ point (Figure 5.6a). )

We will use the cost matrfx given in Table 5.6. That is, the
cost matrix with all elements C%j subtracted from a large number L = 250
will be used fathef_than using the original transforﬁed matrix. The
algorithm proceeds as follows:

First, a 1ist for the arcs in T is prepared. The list is given
in Table 5.7. Note that, T does not cover all the nodes and the set of
candidate nodes to be inserted is}{4,5,6}. Since the maximum héiéht in
the 1ist corresponds to arc (3,11) With a value of 171.59, node 5 is
inserted between nodes 3 and 11. The resultant tour (8-7-9-10-1-2-3-5-
11-8) 1is shown in Figure 5.6b. At this stage, T covers nine nodes and

the set of kemaining nodes is {4,6}. The 1ist is updated as shown in
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Table 5.8. Note that there are three arcs whose end nodes allow the -

insertion of another node in between. Since, the maximum.height

~ Table 5.7 - List for the arcs in T in the first step

Starting Ending‘ Candidate
node node \node Height
8 , 7 6 160.83
7 9 6 160.83
9 10 - -
10 | 1 5 169.98
1 2 - -
2 3 - -
3 Rt 5 - 171.59 *
1 8 - -

Table 5.8 - List for the arcs in T in the second step

Starting Ending Candidate o \
node node node Height
8 7 6 160.83
7 9 6 160.83
9 10 - N -
10 1 - -
1 2 - -
2 3 . _
3 - , 6 174,72+
5 1 R -

n 8 - -
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(a) ()

() | @

Figure 5.6 —'Stagesvof the node insertion process

corresponds to arc (5,1) with a value of7174.72 we choose aré (5,1)
so that node 6 is inserted between nodes 5 and 11.  The new tour is
T= (8—7-9-10—1-243-6?5-]1-8) (Figure 6.5c). The number of nodes

in T is still less than‘11'and only one node, namely node 4, remains

to be sequenced. At this point, the list for the arcs in T is as
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-Table 5.9 - List for the arcs in T in the}third step

Starting Ending © = Candidate

node node node Height -
8 : 7 . - -
7 o 9 | - : -
9 ' 10 _ - -
10 ] - -
1 2 . - -
2 3 - -
3 6 - -
6 5 4 170.73
5 S - -
1 8 - , -

i given in Table 5.9. The list indicates that we do not have much cﬁoice.
Consequently, being the only 1ocat16n in the sequence node 4 is inserted
between nodes 5 and 6. The final tour is obtained as (8-7-9-10-1—2-3—‘
6-4-5-11-8). (Figure 5.6d). The cost of the tour is 372. Using the

back transformation once again this tour is subdivided into two tours

as follows (Figure 5.7c):

Tour 1 = (8-7-8)

Tour 2 = (9-1-2-3-6-4-5-9)

Total cost = 372 ‘ .

~ Note that, the best tour among the ones shown in Figure 5.7 is
obtained by'applying algorithm II and that other tours have the same

bbjective function value. The solution obtained by using algorithm II
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is the optimal solution to the problem at the same time.

» ~ cost = 359
(a) | (b)

cost = 372

cost = 372
(c)

Figure 5.7 - Solutions to the MDVRP

5.5 COMPUTATIONAL RESULTS ‘ |

Considering the difficulties associated with the Second‘aﬁd the 3
fourth algorithms, experiments were conducted on the first and the third
a]gorfthms. Six cdmp1ete Edc11dé§n problems were generated on'the unit
squaré and the algorithms were app]fed to them. Actually, the aim in

‘conducting these experiments was to show that so1vihg the TSP on transformed ‘
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matrices requireé»less>computation time than it is required for solving
the TSP on matrices representing complete graphs of the same size. This
is obvious‘sinée the rows and cn1umns éorresponding to arcs connecting |
the generated arr%val and departure nodes to each other are full of
infinities. As a result,'thére is no need to search on these rows and
columns since those arcs have to appear in any feasible so1Ution. The

results are indicated in Table 5.10. A careful analysis of TabTe 5.10

Table 5.10 - Computational results for the MDVRP

] No;.of No. of Total No.. Algorithm I Algorithm III

vehicles depots of nodes - Cost " CPU Cost CPU
0] 2. 2 12 313 2.522 | 284  0.913
20 4 2 26 407 18.727 | 411  4.223
30 4 3 35 | 53¢ 50666 | 587  7.993
40 4 4 44 - | 565 90.660 | 587 12.444
50 4 . 54 605 140.540 | 679 21.045
60 7 6 70 749 298.361 | 779 39.231

reveals that for problems of small size, i.e. 10—36 nodes, the comnuta—
tion time for solving an MDVRP seems to be.greater than the time re-
quired for solving a TSP on a complete graph of the same size as compared
with the results givén in Chapter 3. However, it should be noted that
these‘figures include the time needéd for fnansforming the MDVRP to an
equinalent TSP first, and then»making a back transformation after the

TSP ié solved. Actually,. the timé nééded to perform this procedure
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gréws 1ihear1y wfth m (i.e. the number of vehicles) and looses its
effect-a; the prob]ém size, n, increases in comparison with m since
the algorithms themselves requife computation times of order 0 (n3).
Note that, here n is the number of demand nodes plus two times the
number of vehicles. This faét becomes more explicit when the compu-

tation times of problems with more than 50 nodes are compared.
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VI, LCONCLUSIONS AND EXTENSIONS

Several é1gofi£hms developed for solving the TSP are presented
in this thesis. First, a.]iterature survey is made on the existing al-
gorithms for solving the TSP in order to givé an 1nsighﬁ to the various
techniques which have proveh to be of value up to date. A computational
study has.been.conducted on the new algorithms. We have shown thét the
algorithms are at least as well as the existing algorithms be]ongihg to

the same general class of heuristic procedures available in literature.

The methods uséd here in solving the TSP were based upon heuris-
£ic prinCiples\be1ieved to be of general applicability. In dealing with
np-complete problems such as the TSP for which én efficient aigorithm
is unavailable, the general approach is to develop a fechhique by which
near optimum solutions can be obtained very fast. In general, to work
on refinement techhiques to obtain the best solution has been accepted
td be,if not entirely hopeless, time consuming. Instead, mﬂch effort 
fs'spent on finding the best of a set of good 1oca1ly,optima1 solutions
which wi]] be close endugh to the g]qba] optimal solution so as to offer
a satisfactory answer in most éases.

In the firs?hélgorithm, a tour construction technique is used
by theAaid of reducing the cost matri*; The effect of reduction is felt

in several ways. The most obvious is a considerable decrease in running
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time as a result of making the Hamiltonian circuit search on a very small
number of arcs.- The reduction is based on the existence of a Hamiltonian
circuit. Thus, the domain of the search is restricted substantially.
This 1is done even with the possibility that the optimal éo]ution may be
lost in the process. . | . -
As mentioned earlier, (strong) connectedness and after removing
a node from the graph, unilateral connectedness are necesséky for the
existence of a Hami]tonian'circﬁit but not sufficient. In fact, a
feasible solution may not be obtained -even though the necessary condi-
tions are satisffed. Then, Little's branch and bound algorithm is_
applied partially to the resultant cost matrix until a feasible so]utioﬁ
is obtained. In other words, the subgraph that has been constructed in
fhe first part of the algorithm is not“cohsidered anymore. As an exten-
. sion of this work, however, a means of further reducing the resultant
cost matrix may be investigated. It has been observed that certain arcs
appear in all the paths that have been found in the searching process.
Thérefore, since much of the time spent by the pr&cedure‘thereafter is
essentially a repetition of the previous work, this information may be |
used to guide further search and reduction and thérefore result in saving
computational effort. As a result, a decomposition of the cost matrix
may be possible. Such a decomposition would not only decrease the size
of the matrix being manipulated but a]so direct the search to find a
feasible éo]ution as.fast as possible.
For symmetric cost matriceé, the reduction'procedure may further

be 1mproved._ That is, a significant reduction in computation effort can

be achieved by taking advantage of the fact that the graph is undirected.
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Eventua]iy,_the effort required for searching the whole matrix can be
~ halved siﬁce half of the symmetric matrix contains sufficient informa-
fionkfor the whole problem. |
Considering thelsécond algorithm, further work may be based on

finding a]1 the mﬁltip?g 16cé]]y optimal so]utionsat‘the end of eéch |
iteration so that an oﬁtimum or a near'optimum solution is not ignored.
As mentioned before,kthe omission of a feasible solution in rank tends
to increase the computation effort disproportionally and is not prefer-
able. Another means of extending the study is to find a way of‘making
more than one nonbasic variable which hés been removed from the basis
previously enter into the basis simu]taneouﬁ]y. One possible way of
achieving this objective, however, is to consider negative penalties
~and costs during the calculations with the condition that the final
~ objective function va]ueris positive. This.is necessary since a nega-
tive objective function value means a decline in the process. On tﬁe
other hand, attention should be diretted to the trade off between the’
increase in the computation effort and the maximum improvemeﬁt obtained-
at each step. ’ |

| An extension to the third a]gorithm vould be the determination
of the root node with which the algorithm starts. It is observed that
“starting from different‘nodés yields different solutions. One way of
déa]ing with this faét is, of course, to repeat the algorithm for each
possible startingvnode and take the Teast cost solution as the best
~achievable one. However, one should note that the number of comparisons
and calculatiorswill be multiplied by n. A second and.easily app]icab]e
extension is-first to generate a tour with regard to this a]Qorithm and

then to test each node on the tour between eéch consecutive pair on the
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tour to see if suéh a change in the sequence will lower the cost.
This is the simplest case of the processes which are referred to as
"tours optimal relative to inserfion and inversion". [49]. The process
continues until ho:improvément is possible relative to insertion and
-inversjon. Needless to”say,'an extra comﬁutation effort would be fe-
quired in this case. However, one should be careful in directing his
attention to finding improvements with a minimum amount of‘computation
rather than to making the maximum improvement possible.

The -insertion and inversion process can also be app]iéd‘to the
tours generated by the fourth algorithm. To achieve a tour optimal
relative to the one produced by the algorithm, the testing process must
be started from the beginning each time the tour is improved. In addi-
tion tp improving the tours produced, extended wbrk may be based on
, défining the convex hull since the identification of the convex hull -
p]éys én important roie in forming the final sequence. Overall, the
extensions shou]d'be evaluated by considering the trade-offs between
effectiveness and computation effort. The question "How much can the
computation effort be decreased by sacrificing some effectiveness""
should é]ways be kept in ﬁind.

The second part of the thesis is focused on the application of
the algorithms to a special routing problem, namely the multi-depot
vehicle routing problem. The re]evance_between.the TSP and the VRPs
"~ is emphasized by first considering the TSP as the simplest VRP'and.then
progressing frqm the éimp]est to the more compTex. As a result, the
MTSP is considered fifst and the MDVRP next. In each problem, we des-
cribe the constraints which are added to the previous problem in order

to present the sfeps which lead to the more complex. -
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The fact that the MTSP can be transformed to an equivalent TSP
has been studied extensively. However, the MDVRP which is an extension
of the MTSP has not received that much attention. On the other hand,
we have shown that the MDVRP can also be transformed to an equivalent
TSP. Heuristic methods presénted in the relevant 1iterature do not
consider this possibility. Moreover, no efficient algorithm has been
' developed for solving even small size MDVRPS efficiently. However, exact
algorithms developed for solving the TSP have shown a considerable prog-
ress in comparison with methods developed for other np-comp]eté problems.
Therefore, exact solution methods for solving the TSP can be used as a
tool for solving MDVRPs of reasonable sizes. MDVRPs of Targe size, how-
ever, can be solved by using efficient heuristics developed for the TSP.

The application of the heuristic algorithms presented in the
. theéiS'to the MDVRP showed that, in general, the algorithms requirexless
‘computation time than it is required for solving the TSP on a complete
graph of the same size. This is an important result, since it imp]ies 
that heuristics developed fof the TSP can be app]%ed‘to the MDVRP‘ﬁore
efficiently.

An important extension which is a promising area for further
work is the application of the fourth algorithm presented in the thesis
to the MDVRP dire&tly in a modified vefsion. With the additional res-
triction that all of the vehicles in'the depot will be used, the algo-
rithm may be used‘to produce independent paktial tours separate1y. A
problem arises in determining the starting bartia] tours. One Way of
dealing wfth}thﬁs difficulty is to form subtours containing the two
arcs which join the neafest nodes to the depots. However, some other

means of dea]éng with this problem can be found.
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ROGRAM THESTS( ¢NPUT»OUTENT )3

****#****f*******************+***************+#*****************)
THTS PROGRAM Tg PREFEAKRER RY YASFE TOVYAa, JUL.Ye 1083 * )
INS1ITQTE FOR sRANUATE STUDIES Tn SCIENRF AND ENGIMNEERTNG
ROGAZTCT UNIVERSITYy,» ISTANRUL

THIS PROGRAM 1o THE CODE OF &4 NIFFERENT HEURJSTIC ALGORTIHMS
FOR SOLVING THr TRAVELINA SALESMAN PRORBIFM (T9P), TN ADNITION

CGIVEN A DISTANAFE MATRIX ASSOCIATED WITH A MULTIPLE = PEPOT -
VEHICLE ROUTINA PROBLEM (MDVRP) , THE PPRALbKAM CREATES A
TRANSFORMED MA-RIX SO THAT 1HE SOLOTION TU THE MDOVRE AN BE

~OBTAINED BY S0; VING THE TSP ON THE THANGFURNMED MATRIX, ...

LR R R R K R R
S gl il et it ol sl il il ot

L I R L ik T S s L e A T R LS AR A Y
ONST ND = 70% Nn1 = 713 NRN = 20003

YPE MATRIX = ARnAY(,1,.ND,1,.NU,) OF INTEGEK:
T OARRY = ARRAG (L 1LL N0, ) 08 T INTEGER ’

‘MR FeC T MATRIX,
YNy NODE ¢ HC o Viity ¢ ARRY S
DEMANDYDFPOT ¢ SET OF 1, .NDj;
N1y INF s TSP VUpPeNDEM NDER, 1DU e Jd, TNV ¢ TNTEGHD S

TrKeMplyMeMVM 1 1¢1 2,VUruM t INTFGFR;

'ROCFDURE PRINT( VAR C v MATRIY;
VAR N IMTEGER )

THR R kR EF Rk p Rk kb kg Kk Rk gk kEkokk ok kR ok ok kL E R b EF Rk Fokk kg k k¥ ko k)
© THTS PROCEDURE OQUTRPUTS AMY N X N SQUARE MAIRTY *)
Sk ok o Koo K ok o KoK kK ko Ko R ok ok kok bk ok Kok ok K ok kg ok kb 4 f ROK ok ke Kook ok ok ok Wk k)

AR Trdrdled? ' +NTEGER?

IEGIN WRITELM?
FOR I:=1 TO N R0 :
BEGIN WRYTFLN: Jl:=0; J2 ;
k. ROWs» 1230 2 13
)

. dlkfo J2 DO WRITE(C(Trde)5)
2 = N -

'ROCENURE. YTSP L AR C ¢ MATRIX}
AR MHC ! aARRY3
b AR NeTNE 2 INTEGER )3

o Kk R OR O kg KT kb K KK ok W ok kR Kok kK ok ok F R & 4 koo F ook ok ok ok Kok %
« THTS PROCENURE FTINDS A HFURISTIC SOLUTINN 10 THE TSP RY *
< CREATIMNG A SUB~RAPH GO WHICH IS CcOMPRISED BY ARCS wWITH 7RO *
- COSTS AS A RESILT 0OF REDUCING THF COST ®AIKIY. THE REQUCTION #
- 1S CONTINUED UnTIL A HAMTLTONIAN CTRCUIT EXTLTS TN GO, *
KKKy Kok ok Kok g Rk kokok R KR kbR kR Rk kb ko k ke R RN 4 AR Rk Kok ek e F kK ogk

21 = ARRAy (.
ARR2 = ARRAY( .
NODES = SET 0OF
ARRU = ARRAL (.,

AR FAR(HAR ¢ ARp1?
PRePE t ARR2, .
NN TDPHCHCAR,PA ¢ ARK3:
RrS19S2 ¢ NORFES:
N T MATRIX?
ReFk ¢ ARKY., . ~
F-?,\J,[xn\]”\,qg,r\]‘[,},'.()N,LpK,M]’_vu,Mf\XMqu,NHDRN.I\LL'I -1 COST
MAX »MCOST e T1,T29CUSTAYwCOSTA 1 INTEGER: ’

ROCFDURE HAMTL ( VAR FAR»BAR ¢ ARR1S
' VAR PF)PB ! ARRD}
VAR ON»rTID ¢ NRR3ZS
VAR NyMoRyp ALLPFF 1 INTEGFK) 3

)
)
)
)
)
)

10 ND1 .y OF INTFGFR;
10 NBe) OF TNTEGER;
1e N3

1,eNDe) OF NODESH

=*§****************+**********************+***~#******#**********)
< THTS PROCENURE FIMDS ONE OR NORE HAMILTANIAN CTRCUTTS TN A *)
< DIRECTEDN GRAPH RY AN ENMUVERATIVE METHOD . *)
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t****************************+**********************************)

AHEL 100,200 230/,400eS00 40N
AR KLIWCT Py TOR,HC ¢ ARRAV(,1,.ND,) OF TNTEGER;
TINPLyMPYoKY Krdpdlrd2,LedLePERIT19 12, YL ,JS,
L1rl2eDD S e Tr o KKK e TP rJAIK2 s IFF s TT oK Jp NP 1L I11+772 : TINTEGERS
ROCEDURE PATH( (AR TrJrPEPITYI 912 * INTEGFRI

F Rk oy Kok kK oK kiR Rk oK ko R F KK 4ok oK ok oKk ok K sk ok ok ok ok KK sk sk ok ok o K ok ok K koK sk K o ok
THIS PROCENURE FINNS THE LAKGEST PATH THA! CAN RE FORMED BY *
CTHE IMPLIED ARAS AND THAT CONTATIMS ARC (TrJ), THE STIARTTING *
NODE AND THE ExDIMG MOUDE OF THE PATH ARF ALSO SPECTFTIFD, e *
************************************************t***************

AR LeKKeL1pJA ¢ INTEGFRS

)
)
)
)
)

EGIMN PER:=0; Lt.13 11°:=13
CWHTLE CT(,71.)7°¢> 0 o
CREGIN T1:=CT(.71.)5 L=l
- ENDG
I12:=d: LeizL+13
WHYLE KLT(,12.y <> U DU
g&g!N 120==KLT (12,04 (KLY (,124) NIV NP1IY®NF1; L=t 41
IF L = N THEN _
BEGIN KKt==KkNp1i 2=PF( 12.)% L1:=03}
REPEAT Li=L+: : .
IF FAR(.L.y = 71 THEm L1t=¢ FLSE
IF (FAR(.L;) < U) ANN (KK=~FAR({,L,) = 11) THEN {.1°'=
UNTTL (LY = 1) OR (L = PE(,I2+1,)): -
TE LY €3> 1 TigFN PERI==1 ELSE
BEGTN PERIZ1Y CT(,J4) =13
CTlaT1,)2=72% HC( NGYIZCT(, RN, ) Le=Nn=)3
WHILE L <>'K Do
BEGTN JA=C(, 41,07 HCU, L, ) *=CT(,JA,}s Le=l=1
ENL G
CIleT1s)1=n? CT(,Jda) =0
ENL N
FND
ND ¥
'ROCEDURE THPND yAR TA»IBr »K1 ¢ TMTEGERS
VAR A1 sN2 < ARRL:
UlAR P1,H2 « ARRD;
Sy AR D142 s ARR3 )8

kK g ok o ok ok g Kok R Kok K o kKK sk ok Rk 0k ok b ok ok ok Kok ko R R ok ok K ok kg ok kg ¥ sk ko ok )
- THIS PROCENURE REMOVES A1 L. THE APCS EITHFK EMANATING FROM OK * )
- TERMIMATING AT TH, . ' *)
FAF R g F ook ok ok Kbk okoF b R kR R ok Kok ok kb ok ok bk ok b ok R Kok ek kb sk o ok ok ko ok ok K ok ok K )

/AR MeIAReJ ¢+ INTEGERG

SEGIN MIZP1(, TR,y
REPEAT MraM+13 TARIZAT (L., )35
IF IAR > 0 TyEN
REGTN .
IF D2(,TAR, ) <> 1 THeN
BEGIN JI=P3(,TAR,)
REPEAT Je=d+) ) :
l."‘lTIL(’\p(-cJ.) = In) ”R (vJ = P2(.T’\K+1.))
- MU FLSE . o
TAR = vA THEN Ji=L tLSE TA:Z=03
A > N THEM T
NCA2(, 1) t=K1~-A2 1 o J
(.IAR.)SZH?(,IAR.)-I
(JM,) 1=K1=TAR}
(oIHu,f:nl(QIH.)—l

m
o

)i
i

UNTIL (1A = D) OK (M = Pa(,1R+1,))
=N 3

'ROCENDURE FUPH( AR A1,A2 « AKR];
‘ VAR P1,H2 o ARRZY
yAR N1D2 » AR S
YyAR TeK1 2 TNIEGER )3

A K Kok R ok o R K K b K KR L KK K kK ok KR ko ok ok Kok ok ok e kR ok )
< THYTS PROCENURE. PERPFORMS THE FORWARND UPNDATING PHASE,,, *)
AL RS A S TR Nt LS AR T A RAEE LS RIS E LT EE S TS 2 T S R T T
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AR JrIAsL 2 INTEGER;

EGIN . i
FOR J!=P1(,1e)41 TO P1(,.141.) DO
T Al(.J,) > 0 THEN ‘
HEGIN IA::’\’.(._I.): L::PZ’.TA.); )
REPEAT L1=Li]
UNTTL (A2(,L_) = I) OR (L = P2(,TA+1.))3
N2(, TN ) I=D2¢ TN, ) =13 »
A2(, L) t=K1=A2(,1e)3 A (,J,)1=KI=TA
END G
CoD1(.I )=
ND?

'ROCENURE RUPDU AR A1,A2 « ARRYL
YAR . P1/yP2 + AKR2:
yAR N1,D2 « AKR3Z;
VAR TPKirKs ¢ INTEGER )3

R R St L R ST D It Rt S hhd T R L L T T I T S 3 g s e e LT 8]
THTS PROCENURE PERFORMS THE RACKWARD UPNA!ING PHASF .., *)
LI L SRS TR IR L R A I R L D o S e A LT LI I TSI 22 TS

AR e IArd ¢ INTFGER;

IEGIN v
FOR L:=P1(, 1)yt TO PI(.v+1.) DO _
TF (A1(.L.) <= K1) AND (a1(.l,) >= K?) THEN
BEGIN JA!=K1=-A4(,L )% AYlr.Le)=TA; :
N1(.14):=0D1( Ta)413 JI=P2(,IN,)3
REPEAT Ji1=J+]
CUNTTL (K1=A27,.Jd.) = 1) OR (J = P2(.IAs1e))
U A20,J0) 1218 N2 TAL) N2 (L TAL ) +1
ENN
TN}

JROCEDURE. RARCU yAR TA,TBrv1,JJrLL @ INTEGEK )3}

e N LR T S T R AT T 23 DI S T Nt 3 2 R g L e e L T D)
t THTS PROCENURE TRIES TOU oEMUVE ARC (IArTR) FROM THF GRAPH. %)
¢ THE ARC MAY NOTt HF REMOVFED DUE TO THE FAGC! THAT EITHEP T *)
k. 1S NOT TN THE aRAPH OR I7S REMOVAL PREVENTS THE FXTSTENCE *)
Kk OF. A HAMTLTONTAN CTRCUIT, 4, *)
K ok ok ok g ok ok K ok R o R K e kK b R Rk R gk kR ek kb ok koK ek F Rk koK ko ok ok Kk Kok kK ok )

JAR TC ¢ INTEGER;
SEGIN JJIz=ZPF(.IA )b 1C:z0}

C
REPEAT JJ:=JJ+ ‘
ETENT ERATIS 0) ANN (FAR(.JJ.) = TRJ THEN
A ) 3

BEGIN Lp =P

)
REFEAT Lbit=Lt +1 .
UNTTL (BART,LL,) = Ta) OR (LI = PH(,TB+1,));
IF BAR(.LL ) = 1A THreN 1Ciz%
ND
UN?IL (IC = 1) OR (JJd = "F(.TA+1,) )3
IF JC = 0 THEN JJ'=U ELS~ v .
TE (ONC,TA,) = 1) OR (IDr,THR,) = 1) THENM JJt==1 Fi Gk
BEGIN FAR(,JJ, ) 1=K1=TH]
ODC,TA) 2 =0D(JIA, ) =17
RAR (L LL,):=Kq=1A3
. TD(.IR.)::][)(.IH.)—]_
~ END
-ND 3§

¥ sk ook kb kR Rk g Kk )
K STEP n INITIALYTZE %)
¥k kKo kb ok ko kR pokkoky )

= all :
(oTe)t=Ni KLT(,T )2=03 P(,T.)2:=13 TCR(LT,) =0

M+1 3 '
HC(els) s ~RNS

s 1]

#* +=T2

¥ ok g Kok ok H R ok K ok g bk ROk ROK 4ok ok Rk ok )
« STEP 1 SEARCH £OR TMPLIEN ARCS *)
K o oK e ok K ok kR ok gokok ok sk Kok koK R ok ok bk )

Jizli Jii=ni Joi=0:




"REPEAT TF M e ja) = 1 THeN Jdtiz1 ' ' 181
ELSE TF T, 1.) = 1 TH-N J23=1 '
ELSE Ji=J+1 '

UNTIL (J > N AR (g1 = 1y OR (J2 = 1)
TE J > M THEN £0T0 200; o
TF J1 = 1 THEN
BEGIN L!=PF(.,Jd )} ;
REFPEAT Lt=L+9
UNTTL (FARC,) ) > n) On (L = PF(,J+1,)) ¢
JLISFAR(, L, o
PATH(Jr JL'PEDRY»I1,12)
TE PER = 0 TyEN
BEGTIN KLLT(oJ ) i=Kl=Jdli CT(,JL,)t=J}
TUPD e Jl o) 1K1, BARYF AR, PHrPFvIDvOD)'
IF J = 0 THEN GOTO 4a0 ELSE
BEGIN RARC(T2»T1eK1re 1JoeL L)}
IF JJ = o1 THEN GOT0 400
ELSE GOTA 1n0n
E L)
END ELSE :
TH PER = =1 THEN GOTU ,00 FLSE
REGIN Ki=K+1, GOTU 5n¢Q
: ENU : ‘
END
IF d2 -1 THFN'
REGIN L'-PH( J
REPEAT L'-L+,
UNTTL (BAR(.1 .) > 0) Op (L = PR(,J+1,)
JLi=HBAR(, L)y .
P@lHﬂder'PFD'I1r1?)v
TF PER = 9 TuFN :
CBEGTN KLT(,Jp o) =K1=di CT(,J.)*t=JL}
IUPﬂ(d'dLv1'K1'PAR BaR, PF!PR ONeID) ¢
IF J = 0 TiIEN GOTO U4na0 KIS
BEGIN RARC(T2sT1eK1lr (JoL I)-
IF JJ = -1 THEN 60v0 400
EILSE 6GOTh 10p
ENL
END ELSE
IF PER = =1 THEN GOTO n0n ELSE
BEGIN T:=HC( Kyl K=K, 17 GOTO 500
FEND °
END ¢

(% ok e b ook K ook ook Kok ok ko o o KRR ko Rk ok k)
(* STFP 2 ADD IMPLIER ARCS TO HC %)
(Fkkckg bk kb kb bk pohkkd F gk kR g ke F k)

00 ¢ REPEAT T!=HC(,w.)d ‘
TF KLT(,Te) &> 0 THEN
REGIN JSiZ=KI T(aTe)+(KI T(aTe) NIV NPT)INFT;
IF JS = RNT THFM G010 4nu ELSF
BEGINM K"K 17 HC(.KeYITUS
END
FNLD tL%F bOTn 300
UNTIL K =
1IF KLT(, JS < N OTHEN GO0 SN0
FLSE GOTO uOU:

(*******************)
(* STFP 3 RBRANCH: W *)
{ Kk kg koo ¥ ok ook ¥k ¥ koK)

U0 2 L1*ZPE(.TI+P( Te): L2ISoF (. T+1.4)3
TF L1 > L2 THES GOTO 400 ELSE
REGIN DDISN*SQp (NY; J11Sa3 J21=03

FOR J:=L1 T0 2 DO
ntGTN \JL'-FAD(.\J )1
IF JL > 0 tHEN
HEGTIN KKK!:I'
IF ON(.Ji o) > N THeN
BEGIN S —OU( JLDF TN JL ) 3
TF OD( JL.) > lUl.Jl.) THEN
Se=1DC(* JL.)*N+UUI.JL
END FLSE® »
IF (KLI( JL,) ¢ 0y AN (JI. <> RN)Y IHEN -
REGIN TES=JL; , _
REPEAT " TE:==K| . 1( 1F.)+(K|I(.It.\ DIV NP1)Y*MHY
UNTTL wLIC(,IE.) = i
IF IR0 JL.) < UU(.Tt )} THEN
5::10('JL,)*N+UUI.Tr.) FI.SF
‘S::OU(:Tf.)*N+IUr.JL



gn FlSP KKK *=0;
=. THEM
Eth 1 THEN

TF DD § S THEN
© BEGIN nNIz=Si IP:-J-
END S
TF Jl - U THEN J1'=J ELSF
%F J2 = 0 THEN Jni=dJd
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FN GOT an ELSF
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D= Z TN

)
f
Qv

END :
END , :

(o ok K o Ko ok ke ok Kok K g ok koK )
(x STEP 4 HACKTRACK * )
(R F kokop kokok K kok ok K kg kekokskok )

400 @ TF K > 1 THEN
REPEAT J

F~~—5
. e -
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Ve e
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QI e
o

* 200 >

-
11 T~Cun
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PE(oJde)+13 Lat=PF (,J41,)
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tJLL >= K2) THEN
TYUL OD(ede) 1Z0N( Je )41
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-
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-
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END )
END
END ELSE
REGIN- TTt=HC (,K,)i
BUPD(FARruaRvPF PRyOne 10

112K eK2) 3
BUFPD(BAR'FARIPRIPF s In 0L 1T eK1K2) 3
IF TOR( Koy €> U THEN
BEGIN Jli=T0OR(,K,) DrVv NMP1;
J20=TOR( K¢)=Ji1*xMP13 FAR(,)1,) 1=RN?
JAZHC(12,) 3 OD(.JdAG) 1=0D( , JAL ) +1 e
BAR(,J24y THC{ Ked) st TUCRN,)IZID(,RNI+]
EnL) .
END S ] .
KizK=13% GO10 30N
END ELSE
WRITELNG] WRITEy N}
WRITEFLN{, NO uﬂNTlTONTAM CIRCUIT CAN BF PUUND')S
GOTO /UD:

(*******************+***********************)
(* STEP 5§ A HAMI{ TONTAN CIoCUIT IS FOUND
(*******************************************)

500 ¢ WRITELM; WRITE|NS
WRITELN 2» HALTLTONIAN .CTRCUIT HER ]

? (LL = PR(,JL+1,)

)3

182



00

S#é?ﬁ’ xﬂ::n: FOST:=0; * : - 183
EPEAT KJt=KJ+q 3 MMT=MN4+~Qg; ™ : - ;
TF MM STR THEN wniopg 00 MRTTELNG 0
FOR 1T!1=KJ T MN DO
A A P
] e> "M TI2:=HC(,IT+1,) FLSF 11?2
COSTI=COST N, TI1rIIn,) % WRTTE(HC(,TTe)?

N = N3
POWRTITE| N,
MCOST THEN
TI=CnST:

1 TON DO MHEC(,IT«)I=HC(,11,)

HC(e1e)

' )

22

LN COS™ =49COST*8) 3

vl ' et
)
e O

nn

—t

[~

Ery '
»0OTO 400

no:
I N§
n OF HAMILTONIAN CTRCUIT SFARCH,)

1]
= DR
pofo N

Al D e Ot (3 = 2
i

mremzZr- XZCirrc

——
+

e
M T
5

2ZU*F
~as{Tles |}
2

-

N
T WRY
1

. PROCEDURE FORADJ( VAR NNeM : INTEGER )i

(*****%*********f**************+********************* % 3 ok K o K ok kK %
(* THTS PROCEDURE CREATES TuE. FORWARD ADJACENCY ARRAY OF THE . %
(* SURGRAFH GO ANn SPECTFIEC THE NUMBER OF ARCS M TN GOs .0 *
(3 ok e Hok ok Kok o Rk oK bk b o Ko K 4ok Kk ok Kook sk ok ok o o T KK ok sk ok o o kg oo e o K ok ok K

VAR Tr9d ! INTEGER:
BEGIN M:=0: PF(,¢,)=U:

FOR I1:=1 TO N Q0 TN(,T1,)e=07
o2

)
)
)
)

1 TO & DO
Je) ¢= NN THEN
:M+1f FAR(.VQ)f:d; ID(.J.)!:ID('J')+]

SISy OD(WT.) =MaPF(,T,)

~0a XZme

PROCEDURE RBACKAD ;3

(**********************%*****+**********************************)\

(¥ THTS PROCENURE FORMS THE BALKWARND ADJACENLY ARRAY OF GOeew *})
(Ko g R Rkt kF ¥k g kKb F gk hE K g K ¥ ot ok ok okok Kok ok ok KKK ok oK K ok ok K s R oK ok )

VAR TrJdeLeJdA ¢ THTEGEKS
HEGIN PB(.l.)?zﬂg

FOR I:=1-TO N RO .
PR T+14) =PRI, T)INLTL) S IDC,T,) 520

BEGIN
ENDG
FOR 1:=1 TO N nO
FOR Jt=PF(,1.)41 T0 PE(.T+1.) NO
BEGIN L1=FAR(, }.)}
IDC,L ) t=INC La) 413
JA::PF(.L.)+TD(.L.)'
RAR(.JA ) 1T
 END.
END G

FROCEDURE ROOTNORF( VAR KN ¢ INTEGER )3

(KK ok g koK sk skok Kk ok g kb o Kk OR K g kR bk Rk ko ks ok ok F Rk ook ok ko Kok ok ok ook ok )
(* THTS PROCEDNDUKRE FINDS THE ROOT NONE WITH whICH THE *)-
(* HAMILTONTAN CTpCUTT SEARAH wILL STAR1,,, * )
(kg kopkokokkgekde K g kkkok k¥ ¥ kR dedok Rk bk ok k4 Rk ek Kok sk k g ¥k kb gk kK k)

VAR MAX)MINeT ¢ YNTEGER:

BEGTN MAX::ID(.I.)3 MINI=ZON(,1.): RNI=1:
FOR 1:=2 TO N A0 . :
IF MAX < IN(,T,) THEN
REGIN MAX':IH(.T.): MINI=-OD(,I,)7 RNEI=
END ELSE
TF MAX = IN(, 1 ) THEN
IF MIN > OD(,1%) THEN
BREGIN MIN:=OD(*T,); RN:=v
END °




END G , : : ' | 184
PROCEDURE REDUCE,

(***#*$*************************%****i*************** IR TR TR 2
(* THIS PROCEDURE REDUCES Tuk COST MATRIX., .. ErEREL )

(K F ok g ok o ook ok F oK g ok ok ook Ko ok KK g Sk o sk ok o o ok ok ok ok ok ok o ok KKK o ok o ok Kok ok kg R R ok ok )
VAR TrJeMIN ¢ INTEGER}
HEGIN  (* REDUCE %)

FO

R I:=1 TO N nO TD(,1.)+=n3}
FOR I:=1 TO N nO
BEGIN MIN::INF;
FOR J:=1 10 ¢} DO _
TF CCeTrde) ¢ MIN THEN MINS=C(,TIrJe);
FOR J'=1 TO 5 NO
AFG§&°%éJeZ > SIM THEN ¢ € ’

- : oTtde) O ImF TTHEN C(,Ted ) e=CH(, -MIM
FND ELSE T (Trd) (eTrd, )=MIp
T"j .C(QI'\.J.) - MIN THEN
BEGIN  ID(.J I=I0CJer 413 ClL.T0d.) 220
END .

END?
FOR J:=1 TO N n0O -
TE ID(.Je,) = N THEN
REGIN MIN:=INF, -
FOR I:=1 TO 5 DO y -
FOR T:=1 7O » DO .
FN%F ClaTrde) ¢> INF THEN Cl,Ipd,)t=C(.Tyde)=MIN
END 3 '

PROCEDURE REACH( VAR NT ! vNTEGER V3

(% % oy ok b KooK ok ¥R g Kok o Kok KKK g ko Kok SOk Kook b o ok oK o ok KK o sk ok K koo ok ok Kok s K g g KRk )
(x THTS PROCEDURE FINDS THE NOUE SET REACHYRLE FROM NNDE NTaeee *)
(***************************************************************)

VAR NPsTrJrKyL 2 INTEGER:
BEGIN

FOR NPIz=1 TO N DO
TE NP <> NT THeN

BEGIN RR( NP )= (NP )3}
FOR I!=1 TO » DO PA(LTI )2=03
PA(,1,)1=NP3 L2297 KizZq}
REPEAT Je=PA(,L,)7 TI=ZnF(4de) i
REPEAT ITi=y+1: ;
IF FAR(,74) <> N] THEN )
IF NOTIFAR(,T.) IN RR(,NP,)) THEN _
EEGIN RR{GNP I IZRR GNP I+ 0, FARE T, ) e )7 KIZKH17 PA(KG)IZFAR(, T,
- ND : :
UNTIL (1 = PF(,Jd+1.)y OR (K = N-=1); ;
IF (K < N=q) THEN Li=-l+1
UNTIL (PA(LT) = 0) OR (K = N=1)}
CAR(.NP,)=K* .
~ END
END G

FROCEDURE LIT( VAR 1) 1 MAIPIXYF

VAR HC * ARmY§ -

VAR NpINF ¢ INIEGER )3
(% kk g kg pRkkgdkokob b gk kbbb kkkdkok ok k ok kR Rk gk ok kp Rk xRk kK% )
(* THIS PROCENURE AMPPLIES L+TTLE»S ALGORITHM FARTIALLY,,., *)
(FkkkgokkkFkkkpk bk g kkkp Kok Rk gk dekdokk bk kb ko ke ¥ Xk kkkk kb p ko k¥ %)

VAR TNET ¢ ARKAY(,1.,NDsl, 3,) OF TNTEGER:
TRE ¢ ARRAYC (1, 2fiDs1es32] OF INTEGER:
LUP»RUP,CUP ? ARRAY(oli.NH.) OF INTEGFER
ROWW!COLL ¢ &ET OF 14,703
F_t MATRTX: |
LEVEL CLrC2 e INsMINGIM, LeMaX K INTEGFﬁi;
TrdrMTrMAXT i1 v K2 P TEPIneT10 1y ¢ INTEGFRS

PROCFDURE REDROW( VAR C1 ¢ INIEGER )3

{33k o g ok ok K kR e KoK sk kR ok KRR R ok KRR Rk ok ok ok KR ok Rk Kb ko ¥ kR Rk )
(* THTS PKROCENURE PERFORMS THE ROW REDUCTTNN.,., *)
(***************************************************************)
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VAR TrJsMIN ¢ INTFEGER;

BEGIN C13
FOR I"l TO N n0
”t‘%&NNW?F?‘
- N pOWW) THEN
EGIN MIMNI=THF?
FOK J:=1 Tn N DO
IF NOT(J Ty COLL) THEN
IF E(,Trdey < MIN TH-N MINS=F(,Trd.)}
%gRMSN §>T0 LHEN
s NO Flevrdo)I=E(,Trde)=-MINS
(,1::C1+MIN0 . . I. ’
END
~ END
END G

PROCEDURE RENCOL( VAR C2 : INTEGER )3

(5K sk ok g Kok ok oK o KKK ok ok ok K oK g o ok kR ok ok ok K ok K oK ok R K ok ¥ ok sk ke F o sk K KoK )
(* THTS PROCENURE PERFORMS THFE COLUMN REDUCTLION, , . *)
(3% ok g R o ¥ SRk s o K ok g oK K ok o K e K K g o o 3K ok kKo o o e ot Ko o ok KK 3K s ok o o ok o K sk op Kk Kok R Rk )

VAR TrJeMIN 3 INTEGER:

BEGIN CP2z=n:
FOR 1:=1 TO N 00
HEGIN MINt=n;
TF NOT(TI IN rOLI) THEN
REGIN MINMIZINF

FOR J'=1 -Tnh N no
IF NOT(J Ty ROWW) THeN . .
IF E(.J'I.) < MIN THreN MYN F(-J'Io):
IF MIN <> g THEN
FOR J:=1 T N DO F(.]' ISE(,Jr T, ) =MING
C2i=C2+MIN
END
END
END

HEGTr MING!=TNF;
FOR I:=1 TO N n0
CHEGIN INFT(.T:1 Ye=INFS
TRE(«Tr 1, )._g: TRE (I
FOR J‘:l TO & DO E(,1r)
RUP(«T.)2=03 CUP(.T,.) 1=

)

.) L::(Q.)'
EPEAT LEV

(C

+C

MIN"Cl
REPEAT M:?

Nno
' COLL)Y THeN
y=0 THEN

!
i
D
N S e b

To N DO _

Iy ROWW) THeN
T N

T

TS D
Heerd X
I
2
(X Tue |
—
- T
M
=z

HeeZ

N ROwWwW) THEN
) € MT TuEN
THEN MT:=E(, Krd. H
MT*=TNF 3}
TO. N DO
IN COLL) THEN
we) < MY YHtN
THEN MT =B TrK,) 3
' T4+MT ¢
IF MA s MAY THEN
HEGIM MAy !=MAXT: M.zTi L
END
END S
ROWW.-ROWW+( Mo
CUP (L L,)s=us RUy
1F (lFVFL ¢ N=1
HEGTIN K1t=p¢ K2

~QOR~ 2
- Ri=swe

TO N DO
I
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~ Ree
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) TH
Phed VI




33;%& ?H”é‘“"’ <> 0 N0 K1r=RUF(,«1) 3
i - Un (KDY <O DO s =ClIF 5 o
E(,K1LrKD )3:§NF 0 K2:=CtiP (,¥ne )}
END G e

TRE(,LFEVEL 1

*SMIN+MAY S
REDROW(C1 !

NCOL(Cn) 3
=MING

~V+
= e QOXe

v

=~ 1
v

NOR (IN >z MTING)

HC(.1

ZoLKiTO~

Tz
mnz
ZARD e
e
o = T Fid e Y, T —
- Tl

1

|Foe st AMT +

)IZK Ke=RUP (¥, )

=M
m2z
T—=C XGaCCXG —Hr—=X

M Z M TN O
fon]

ST ZT T2 <T2
et T T 2 Mee
o il
M+

AT

'1.1 < MIN THEN IEs=1
(I = LFVEL=-1):

Z - M-~ ]

amz2
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eo 1T =Tt O

S Al A s Tmre
N
o Cee || Tt ibon
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-
~
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UP(e1,)1205 RUPI,T.) =08 LUP(,T,)3=0;

TO N DO 7
Tr1.) > LEVEL THEN
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CUNTIL (MIN <€ M3NG) OR (If = 0)
END 3

r M\C .

R IT=1 TO N AN A

R JIS1T TO N A0 NeaTrdad t=ClaTrd,)s
RENUCE 3 NN:=0: -
FORADJ (NN %) §

BEGT ST:=1INF;
FO 1
FO 1
RE

9
i

(**************f*********)
(* OBRTAIN CONMECTENNESS *)
(R ok kg kok ok ke Rk g kR hok K gd )

FOR NT!=Z1 TO N DO
BEGIN

FOR I:=1 TO n DO PAC(S] ) 2Z00
REPEAT PA(.I‘)!:NI#‘CON!:US
Le=13 2O NTL,)? KIZed
REPEAT J!=ZPA( Le)? T:=PH(,Uo)?
REPEAT To=I+73
TF NOT{FAH(,7.) TN R) THFN ,
EEGIN D::R‘P(."'AR'lIn)c): K::K'P’,: HA(.K.)’:FAR(.TI)
ND ’
ONTIL (T = PF(,J+1,)) OR (K = N);
IF K = N THEN CONI=1 ELSE L:=l+1
UMTTL (PAC L,) = 0) nR (K = f)3
IF CON = N°THEN .
BEGIN MINS=TNF;
FOR 1:=1 TO N NO
1IF 1 IN p THEN
FOR Jt=t TO N DO
IF NOT(J TN R) THEM -
CIF CleT9je) € MIN THEN MINe=C(,IvJ,73
FOR T:=1°TO N DO
JF T IN n_THEN
FOR " J:=1 ' TO N PO
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%E Q?Téd I?'R; THE ‘ )
eTr 4s) <> INF THEN . Jiz=C\, o Y =MTNS
FORANI (N M) THEN CloTrdedzzCleTrde)-MTNG
_FOR T:Z1 TO N DO Pal,1,) 0=
UNTIL CON = 4

ENDG -

(ko o K koK ok ko Kok kg ok ok ok kR K g ok kot Rk Kok )
(* ORTAIN UNTI_ATEpAL CONNECTEDNESS +)
(FF bk bk hhk g Kbk kk b kR F Rk gk dek kR ok k )

FOR NT:Z1 TO N NO
REGIN REACH(NT) 3

FOR NS*=1 TO'N DO

IF NS <> NI THEN

IF (CART,NS.y < N=1) TuEN

FOR NR*=1 TO'N N0 . )

TF (NR <> NIy AND (NK > NS) THEN

IF (CAR(,NR,) <N=1) THeN

REPEAT CON:=Zq:

187

IF (NOTINSTIN RR(,NR_)) ) AND (NOT(NP IN RR(,NS,))) THEN

BEGIN MIN!-INF: CONM:203
Kok kg ok R Rk kg R oK Rk ko Kk E ¥ Lok kkk ki )
HERE IS NO PATH ETTHER cROM NS %)
O NR OR VICE=yFRSA WHEN NODE *)
S DELETED FROm G0N, .., *)
KKk Kokokkp Rk gk ¥k Rk gk kkkkk )

* *
*
* )
*
*

o~~~ o~~~

*
T
T
1

* %

1eoNI=KR(,NR,) 3

S1:Z(els No)=RRI,NG, )i S28=(,
51!:91-(.NI.)3 G2:=52=(.NI, )}
FOR T¢!=1TO N NO
IF T IN nR(U.NS,) TuiEN
FOR J:=1 TO N DO
JF J TN g1 THEN
TF‘C(oIOJ.) < MTN +HFN MINYIC(.I'J,,i
FOR 1:=1770 N DO
IF T IN pRUNR,) TuENM
FOR Jt=1 TO N NO
IF J IN g2 THEN :
TF ClaTIrje) € MIN THFEN MIN®*=C(,19 4,7}
E'OR I::l TO N DO "'”(.1.)::‘..);
FOR T:=21 TO N DO
IF T IN pR(.,NS,) TuEN
FOR Jt=1 TO M DO
IF J IN g1 THEN _
1F Clelrjoa) <> TNME THEN ‘
:EGIM COTrd ) i=C0 Trde)=MTNG FRO,Te)IZFR(, T )+ (de)-
ND ¢ .
TFOR T!Z1 TO N DO :
IF T IN pREMR,) TuEN
FOR J'=1 TO M DO
IF J IN 2 THEN _
IF NOT(J'IN FR({,1.Y) THEN
IE Clelr je) <> INF THEN C(,.Trde)2CleTrds)=MINS
FORADJ (NG eMY 3 REACLI(NT) ¥
WRTTELNS? WRTTEL N3
WRYTE(» THE COST MATRIY 7S RFDUCEU AGATIN, )
WRTTF (» NUMBER O ARCS IN GO =, yMtYH)
END .
UNTIL CON = 4

ENO G

{ % sk ok o oK o o ke KRk koK o R sk KRR ok e K ok kK skok ok K e Kok ok KRR ok o )
{(* THFE SUHGRAPH CAMPRTSED Hv ThE ZERO COST ARCS %)
(¥ IN THF COST MATRIY IS LITERALLY CONNECTEDse e *)
(R Ekkg kg kR kkkphkokpkkk gk k kb gk dhkkkdokkkkkkkrXkk k)

ROOTNOUE (RN) 3 nACKALJ: ArLe=13 ]
HAMIL (F AR yRAR yF rPRIOC Y In N M s RNy ALLPFF Y 3
IF FE = 0 THEN

{ % Ko kg K o K oK g R E R ek ek ok ok
{(* CALL PROCENURE LLIT,,, *\
EALT I FEE SIS LIRS LIS EAEA

BEGIN LIT(CeMEryNoINF)G =»COST =0
CTFOR 1:=1 TO 11 DO :

REGTIN T1:=MHA (4 T,) 5 '
UUTE 1SS N THENTIPIIMUC(LT41.) ELSE TOISNHC(,1.,)
MCOST 1=MCOCTHN (o T1rIN,)



END : ‘ ' , , 188

WRYTELNG WRITE| N
WRITE (r OPTTalM SOLUTIAN 2y) 3
WRTTELNG WRITE\ N} T1:=03 12:=0;
REPEAT WRITELN(y - ¢)3
T1:Z12413 12412420
TF T2 > N THFN Toi=N;
FOR T1:=11 70O 12 NO WRITE(MHC(,T,) )
UNTIL 12 = nj '
WRITELNG WRITE, N3 ;
ENgBI1t(o COST =» +MCOST 2n)

PROCEDURE YM( VAp C * W
' TINTEGER )3

A
VAR HC ARK
VAR Ny TNF @

KeX3
Y

S PR S E AL S S R R T R L 2R R L R L D LT TE 1 1 T e Ot Sy |
(* THTS PROCENURE FINDS AN APTIMUM NR A NEAR UPTTMIM SOLITTON  *)
(* TO THE TSP HY pANKING TH- EXTERMF POINTS UN THF ASSTIGHMENT %)
(* POLYTOFE AMD TMTRODUCTNG SOMF CUTS SO THAL THE RANKING *)
(* PROCESS CAN HE PERFORMED IN A MORE EFFICTENT NMANMER., *)
(*******************+*****************************t********t****)

1YPE ASSIGNMENT = RECORD }
L SOLUMN, TUR s KOUMINS COLV TP PENALTY 2 TNTEGER
NDE '
NODES = SET 0F 1.,NDF -
ARR = ARRAY (,1..ND.) nF INTEGERS

VAR ASS T ARRAY({ 1,.ND,) Or ASSIGNMENMT;
NeE ¢ MATRIX?
TUs DUy ASGrMACGrRLBLYCLNL »SORT * ARRG
TOoUR ¢ ARRAY (,1.,26.) - ~F NODFS:
ROW,COL 3 NORES? |
KPREUCrTr QA9 »FL1PFL29~0S o TCr JeMeZ1,STUPINNIKE ¢ IMTEGER

PROCEDURE. PRT( VAR AS ¢ ARp )
(***************************************************************)
(* THIS PROCENURE OUTPUTS TiE SOLUTTON TO THE AP RY PRINTTNG * )
(¥ FACH ASSTGNMENT SEPARATEI Y., : *)
(¥ kkpokogk bk K oheok pokkk g Kk Kok g kkek ek ok kb ok sk ko k Rk bk bk kok g K b kg Wb ¥4 )
VAR T+I1¢12 * INTEGERS-

HEGTIN WRITELNS WpTTHLNS.

Tl:=0: 12:=03 _ .
REPEAT WRITELN: WRTTE (+ t)?
T1i=10+18 12:210415%;
1F 727> N THEN Toi=n; | |
FOR 1:=T1 TO 12 DO WRITEC(r (r s T2r 0002 AS eTa)2290) o)
tNHY}‘TIL 127 = N
1

PROCEDURE RENUCE ;

(FFokok g R E gk o Tk ok Kk FH pHohH ek Rk kbR ke KRR bk by Kbk kb ¥k )
(* THTS PROCEDURE REDUCFES Tuk COST MATRIX, THE MINIMUM FLEMENT *)
(* TN EACH ROW IS FOUMD AND SURTRACTED IT FRUM EVERY FLEMENT * )
(* TN THAT ROW... *)
(ko g Kook K gokoke Kok * g kb kg Ko kKK ok ¥ ook dokkok bk ko Kk de ok kb kg Kok ok kX g ) -

VAR TeJyMIN ! INTEGERS
HBEGIN (* REMICE *)

CFOR I:=1 TO N_nO : .
REGIN MIM:=INF; , g

FOR J!=1 T0 n DO :
TFE CUoTrde) ¢ MIM THEN MIN!ZC(,IrJ.)
REDC:=RENC+M N}
FOR Ji=1 TO »n DO :
IF CloTrde) > MIN THEN : o

X RtGIN TF C(.T’\Jn) <> 1","' ‘HtN C(.I'd.)!—(,(.l,d.)-“lh!
FND ELSE ) v :
BEGTN ONC(eT,.y:Z0N(,To) 412 TU(LJ)ITID Je)+13 C(, 1)
END |

ENDG

FOR J:=t TO N nO

TF. I10(ede) = N THEN



X
r

MEU=NI=TT4TID
=z

2T Z ~rse ~= g

DO

1o
MIN THEN
rde) <O InF

J- THEN

* colje cor—

i~
S [J O 2

ZMTZTTCMmTCm
Yy -

ca C& =XT

~ END
En 3

PROCFDURE. ALLOCATE?

MTN THEN MINS=C(,TrJ,. )3
14 -

JOYITIDAG U a1t OUCLTLIZOD, Le) 415 G, Trda) 2=

189

(K kg o K ok s e H ok JOK S o KK o F e Kk K e Kb ok ok R Ko kK kb kg Kook K Kk k¥ ok )

{(* THIS PROCENURE MAKES THE INTYIAL
(* ADMISSIBLE CELI S TN THE ~OSI

ALLOCATTUNS AMOMG THYE
MATRIX WHERE [HF ADMIGSTIRLF

(* CELLS ARE THOSE CELLS wWHASE FNTRTES IN THE REPDUCED COGT

(* MATRIX ARE 7.F-R(§.o-.o

(kg okokob s kok g K ok K gk Koo Ko kKK ok koo Ko ok ok o o ke KK ok sk ok ob s ¥ ok ok ok kK ok ok )

VAR TFJoIC

BEGTM

¢ INTFGER;

(¥ ALLOCATE +)

FOR 1:=1 706 N no

BEGIN ) :
- TH NOT(T IN npnOW) THEN
IF OU(,1,) = 1 THEN
BEGIN 1C:=0: Ji=0n?
REPEAT Jf= j+13
IF NOT(J TN COL)Y TwEN
TE CleIv je) = 0 THEN
HEGIN KIZK+1; _
ASG( 1)1z
ROWIZRAWSH (T ,) 3
CorL:=Cnpl+(,J. )i C:=
END .
CUNMTTIL (TC = 1) OR.(J = N)
FND :
TE NOT(T IN £0OL) THEN
IF TO(,T,) = 1 THEN
REGIN 1Ce=03 Jr=0n?
REFPEAT Ji= y+13
IF NOT(J TN ROW) TuEN
IF Cledrre) = 0 TH-N
HBEGIN K!=K+13
ASGl.J]) =T
. ROWIZ=RAW+(  J, )¢
COL'=Cnhl.+(,1,)} *Ct1
END ’
UNTTL. (TC = 1) OR (J = N)
FND
ENN:
TF K ¢ N THFN
FOR I:=1 TO N n0O
TE NOT(T IN ROw) THEN
REGIN 1C:=0: J.z0:

REPEAT Jt=J+1}
IF NOT{J Trt COL) THEw
IF C(,Trdey = 0. THEN
BEGTIN K=K, 1
ASG (4 T4)s=ds
ROWIZROW, (o T,)5
S COLI=COLy (ado )i 1C.=1
ENL '
UNTIL (IC = 1) OR (J = N)

FEND
ENDY;

o o (_wel}

FROCFDURE LBL G VAR € ¢ MATDIX

VAR FL1»FL2,AAPLIM ¢t

.
*

TNTEGFR )3

*)
*)
*)
*)

(**************************************************************&)

(¥ THTS PROCENDURE _ARFLS 1
(* 1= EVFRY ROW I THAT HAS O

(% RLRL (T)=1 _

(¥ 2= IF ROW 71 19 LABELED A=D COLUMM )
(*  AND:TF CELL (I.J) 15 AN

(% THEN COLUMN J 1S | AREYVED

1He RUWS AND CULUMNS AS FOLLOWS ¢

AM_LOCATION. IG LARFLED NS

. 1S NOT LARELED SO EAR
ADMISSTRLE CFLL AT THTS STAGF

XY

* % % % %



g*\i— It COLUMN U TS 1_ABFLEN AND ROW T
* AND CELL (T J) HAS aN ALLOCATTON
(* I 15 LARELEA AS RLRL (v)==

SRS L L2 24 ST L S T L TR e e e e

VAR TrJerdC INTEGER 3

HEG TN
REPEAT FL1t=0D: FLPe=n:
FOR T:=1 TO ¢ DO
TF RLBL(,1.) ¢> n THEN
FOR‘JS:} YO 1 DO
T CLRL(,Js) = N THEN
Tt - 0 THEN

B

—y

]

Z~

o
il
rve(

MTMMTN—O

G

M= -
Eda)

oIl -4

3

4

CMm TG
Nz

=
o 2=
~Y  Pee™N

MM
Zru

AN

cmr
P

EN
YINTTL (FL

, Ny OR (FL2 = 1)
ENDS

FROCEDURE REALLOFATE

(*************************************
(¥ THTIS PROCEDURE CHAMGES TulE ALLOCATI
(¥ THE OPTIMAL SOLUTTON TO THF ASSTGNM
(* LET J BE THE: CALUMN WHICw DUFS NOT

(* HAS HEEN LABELED o

(* 1= LET I=CLBL( j). MAKE T1E NFW Al LO
(¥ 2= LET J=RLBL(y)s TF J > 0 IHEN STO
{(* I+ J .0 THEN RFEFPLACE J=ARS(J) A
{kkskok koK okokpp kb kg kg kb kbt kok b obokk

VAR JrITrJdJeTC ¢ INTEGFR

BEGIN J:1=03 TI:=qps
REPEAT Ji=J+1l:-

TF NOT(J IN cOL) THFN
TF CLBL(,Ja) €> 0 THEN TY:=CLBL(
DNTIL (IT > 0) OR (J = Nyvi o .
TF 11 > 0 THEN
REGIN JJt=Ji Trt=03
REPFAT K!zZK4q3
ROWS=ROWH( TTI,)% COLe=COL+(,.Jd,
ASG(.TT.) 2Ud:
IF RLBL(.17.) < @ THeN
BEGIN JJI=aABSIRLBLG,v1,)) 3
KezK=17 rOL=COL=( JJ.) i
11:=CLBL (,JJ,)
ENMD ELSE Teot=t
UNTTL 7C = 1
FNN
ENDS
VAR C ¢ MALIRIY;

PROCFNURE FRENDUCE(
i TWAR CCCLAArL e o T

(3 ok sk kK okok K s ok sk ok KR K g Ok ko X o ¥R g koK ko ok ok ok
(* THTS PROCEDURE FINDS THE MINTMUM NO
THE CFLLS TN LaRELEL ROWe AN NI AR
RENUCED MATRIX, 1T IS SUXTRACTEDN FR
CELLS TN LABELFD ROWS AN UNILARELETD
CELLS TN UNLABRELED ROWS <N} LARELED
COST MATRIX WHiLF ALL THr OFHER FENT
 UNCHANGED , s as
(* ******w***t***************+********

VAR MINsI . JeJC

.
-

INTFGFR

190

IS Nt LARFLED SO FaRr * )
AT THILIS STAGF » THFEN ROW *)
E 4

Fohk ok ok Kk bk kb kg Kb g Rk k kK ¥ )

TSANSY

Fdkokdke ok F R Kk okok ok kkop Kok kK gk kkk ok )
ONS TN URDER TO ORTATN ®)
ENT PRUHLEM,

HAVE AN ALLOCATTON AND

CATINN IN CELL (1+sy),
P ALI.OLATION CHANGTING.
M) RFPEAT THESE STrFPg

* )
*)
* )
*).
* )
*)
ko ok ¥R Kk ok dok ok g Fhgok kR ¥ )

sde)

NTEGFR )3

F oA KKk F K oKk Kb ok Kok k)

N=NEGALIVE FNTRY AMONG . x)
ELED CULUMNS NF THF %)
OM THF ENTRIFS TN THF *)
COLVIMNS AND ADNED TO x)
COLIMNS OF THE REPNCEDR . *)
RIES ARKE BEING REMATIMED %)

: ’ ‘ *).
¥okkk k¥ ¥k kkkohe ¥ bk prdhkk)



HEGIN MTNS=TNE 191
oM LT IO
© ’ e Lle < ) TH N
FOR J:=1°Th N Rn T1F
TE CLRL(,J,) = N THEN
JE T = M THFy
I J TN TOUR(, L.) THEN JC:=
T’T JC = 1 THrN
IF g:.TrJ.) ¢ MIN THEN .
T — OTP\JO) , 4 THEN MTN::(:(._ .)
END > : Ied
FOR '1:=1 TO N AN
TF RLBL(,T,) <5 0O THEN
FOR J:=1 TO N nn
T CLBL (L,J,) = 0 THEN
TE CloTrd,) <O INF THEN ~{,1rd,)=ClaTr g, ) =NMTNS
FOR I1:=1 70O N R0 : :
TF CLRL(,T,) <5 0 THEN
FOR J:=1 TO N nN
TF RLBRL(,J,) = 0 THEN ‘
TE CladrT,) O INF THEN A, Jrl,)=Cl,JrT, I+MTN;
tN%QC!:CLC+AA*”IM , .

PROCFOURE CHECK( VAR IC ! +NTEGER )3
(% % ok oy ok ok oK ook ko Kok g dkook o ok KOk g kb b kK ok sk okok ok K ok sk ok ¥ KK b o Kok ok o ko o ok ek ok )
(* THIS PROCENURE CHECKS Ik THt ASSTYGMMENT SULUTTON IS A * )
(* TRAVELING SALEGMAN TOUKR, TF NOT ALL OF THE SURTOURS ApRF - *)
(* SPECIFIED, .. * )
(****************k***g*****w************************************)

VAR el yM @ ImrFrFH'
) TOURS ¢ NO)Ec
BEGIN Je=1¢ L:ZU; Mez=13 TC-.=17 TOURS:=(,.):
REPEAT TOURCGM Y= (ea)?
PFPFAT ASS(.J.).CULUMN-:ASG(.J |
IF NOT(J I8 TOUR( ., MeY) YHEN ‘ i
BEGIM TOUR (M) I=TOUn (M )+ (,Jde ) TAURSISTOURSH (o Jeo )}
TASS(de) [ TURSIZMG Loe=L+13
S JI=ZASG (L, ,)
En)
UNTTL J IN TAUR( M, )3
TE L <> N THeN
REGYN TCez=Us Jr=1i
REFEAT Ji= 41 .
UNFPTL NOT(y TN TOURSY?
MMy g
FEND.
UNTIL L = N
END;

. PROCEDURE CALCULATE (VAR 1 « TNTEGER )3

(¥ ko gtk Kok K g ok Ko ok 30Ky ook ke ok b ko ok b ok ko FOK Kok kR K o ok g Koo ok R ¥Rk )
(¥ THTYS PROCENUKRE CALLCUILATES A NON=NEGATIVF FENALTY ASSOCIATED *)
(¥ WITH THE ASSIGHMENT TN Rnyl 1 ., : * )
(Fdok kg k¥ kokop ke Kok kg kb Kk KR ok Kk dok Rk kK Hok ok F Rk kb kKb kb bk kb )

VAR (JrKybL oMy 1 yNTFGERS

HBEGIN :
WITH ASS(,7.) nO
REGIN J!=COLUMM: COLMINI—~TNF3

FOR M:=1 TO 7 DO
IF CleMrde) ¢ COLMTN THEN
TEF M > Y THEN COLMTINI=C(.V rJedd : -
L:=TURS ROWMINIZTNE -
FOR Mt=1 TO » DO
TF MOT(M IN TOUR(.l.)) THEN :
TF Cl.T M) ¢ ROWMTN TUEN ROWMINIZC(, T,oM,) 3
PENALTY $=COLsTN+ROWMIN -
TH PENALTY < 0 THEN
REGTN PENALTy =TNF

FOR Ke=1 Tno N DO

IF K <> T THFN

FOR M1=1 T N NO .

1F NOT (M Tr TOUR(.Ley) THEN

BEGIN Pr=C(,TeM1+C L Kypda)i

1E P € PeNALTY THEw
1F P >= n THEN




SEGIN PFMALTY!:P DOWMTINIZC (L, TeM, Vs COLMINSZC (L K9 de) 192
ND
END

END 4 : |

WRITELNG WRTTE ( PENALTY (psT¢ FOLUNMNS = )

WRITE (PENALTvS6) rrEtPrarserod 2er)= 0
__END
ENMD S

PROCEDURE SOLVE ( VAR E + MaTRIX;
VAR T ¢ InTEGFR )3

(K ok o Fok oA ok sk Kok K koK kg K o SR K g ook ok ok K ok ok ok oK o ok KK ook ok sk ok o o K ok K g R ok K ok )
(* THTS PROCENURE SOILVES THe ASSIGNMENT PRORLEM AFTFR A CUT IS *)
(¥ INTRODUCFD, .. . *)

(******************************+********************************)

VAR (JerMyAANL kLT, FL?.LRthTerC * TNTEGER: |
SUBL ()()P ¢ NO nF

HEGIN
WITH ASS(,.T7.) no ‘
BEGIN Ji=COLUMs CREDISP-NALTY:
FOR M:=1 TO & DO :
1F E(.T;M.) <> TNF THEM EC,TeM ) IZE(,TyMe ) =ROWMTIN;
FOR Mr=1 TO » 30O '
FNTF FOMpJa) > TME THEM F(,Mpd,)1ZE(Med, )=COLMIN
N[ 3 T
KSZN=17 ROWIZ( 1 aNa)=(oa71,)7 COL®=(oele N, I=(oda)?
FOR M:=1 TO N AN
EE%¥N RLBL(WM 1 1=0; CLBL1 M) $=03 ASG( M, JITASS(,M, ), cOLUMN
RLBL(,TI,):=1% ASG(,I,):=nA}? AARIZ1: L:ZASSl- ¢ ) TURY?
WHTILE K ¢ N DO
HEGIN LHL(FrPLlrFL2'AAoL,I)3
TF FL2 = 1 TijEN REALLOFATE ELSF
TF FL1 = 0 TpEN FRFUUL:(ErrRFD ARrL T
- NI 7 :
WRITELNG WRITE; N3 -
WRTTE (o INTERMEDIATE <OLUTION 2,3
PRT(ASL)Y: WRITEING WRTTED N3
WRTITE (1 COST = 4 1CREDR)}
TF CRE <= 71 THEN
REGIN JC:t=17°
TF (CRFED <= f) OR (CREm = 71) THFN
BEGIN J:=13 | =03 %UHLAOP::(. Mzt
REFEAT -
IF NOT(J TN QUHIUUn) FHEM
HEGTN SUnLONPI=SUBI O0P+(,Jd,)5 LIzl 4+1F J:1=ASG(.J,)
EMD
UNTTIL J IN SURLQOP;
IF LN TiiEN gCrz=o
END ¢ ’
1F JC -1 THE 1
BEGTIN Z1+=CRFD: KC:=13

FOR M'-1 Ta N DO
BF‘JT"J M,\S(J{' '.) ASG(. 1.)'
FOR Jt=1 TO N DO M 'd.)::F(. 'rd.
END
FND
~ ENR
ENDG

FPROCENDURE SNRTR:

(***************************************************************)
(* THTS PROCENIRE SORTS THE PENALTIFS TN ASCENDING NORNDER * )
(**************************q************************************)

VAR TrdrlL oM ¢ INTEGER?

BEGTN
FOR T:=1 TO N n0 SORT(.T ):=Ti.
REPEAT {.1=n3
FOR T:=1 TO »=1 DO )
REGTN d::SURT(|¢ )3 mg fSOHT(aT+

1.)4
F ASS(.dJ. PENALTY < ASS(.M,)  PENALTY THEN
%EBIN SOHT}.I._ t=ME cORT(,I+T1.)1=Jdr L o=+
£ ND -
END

UNTIL L = 0
ENO S



BEGIN NNE=N DTV o+l

FOR T:=1 TO NN NO TUUR(.Y.)':(,.);

t=0s RENC:=0:
FOR 1:=1 TO N RO v
END o
COLI=(e,)7 ROWe=(, )i AR.z=n;
RENUCE S
ALLOCATE
TF K ¢ N THEN -
FOR I:=1 7O N nO ,
TF NOT(T IN pOW) THEN
CBEGTN RLBL(.7.)%=13 AA«=nA+1
END . h
END? -
WHILE K ¢ N DO
REGIN L:z1; M2-ni _
LBLICsFLIrFLos AR, LMD
TE FL2 = 1 TnEN
BEGIN REALLOCATE:
CIF K < NCOTIEN
BEGIN AAIZAn;
FOR Tt=1" TU N NO
BEGIN RinlL(,T.):=0: CLRL(.T,)'=0:
TE NOT (T TN ROW) THEN
BEGIN pLBRI (T,):=13 ANIZAA+]
~ FEND o ‘
N
END
END fLQF

TF FL1 = 0 THEN FREDUCE(CPREDC I AA L oMY
FOQT::HFHC,

WRYTELN: WRTTE) N3

SOLNTION TO TuF AR ¢,y

WRYTE (1 ‘
PRT(ASL): WRITFLNS WRITE: N3
WRITE (» COST =+ COSTn)
REPEAT CHECK(Ir)s
TE TC = 0 THEN
REGTIN '
FOR T:=1 Ta N NO CALAULATE(T)
SOKTP;
Mi=ns 71:=tNF3 STOP!1-0;
REPEAT Mizutl? [1=S00T (WM, )3
FOR LLt=1 TO N DU
FOR =1 TO N DO Er Lede) t=ClLed, )i
SOLVE(Err)? .
1F m < N THFEN
CHEGIN T!=SORT(,M+1 )3
TF 71 ¢= ASS (143 PENALTY THEN q-ruy.-1
E.NDY ‘
UNETL (S10p = 1) OR (M = N)3
FOK T:=1 Tn N DO
BFEGIN ASG( T,V =NASGr T4 .
FOR JIZ1°TO N NO CraTrde) 1=0(a 10y,
ENDG \
Losr--ros 4713
WRITFEIM: WnTTFIN? . '
WRITFE (y - CURBENT SALUITON 43
PRI (MASG)Y 3 WRITELNG wRTITELNG
WRITE (o . COST =9 er0S128)
FND
UNTIL 1C = 137
WRITEILME WRITE; N
WRYTE (r THE FURRENT SU'UTION IS OPTIvMe )
=1 HC(.J.)::]:
FOR I:=2 T0O N nN L
BEGIN HC(,T.) t=MASG(.Js): JITMASH((Ja)
END
ENEY §

PROCEDURE PYMAMTA~( VAR € ¢ MATRIX

VAR HC « AKRRY
VAR NelrE 2 INTFGEH )
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(*******************w******¢*********+**************************)

(*

L

(*
(¥

THIS PROCENURE FINMDS THE SNLUTION TO THFE 15P RY
NYNAMTC PROGRAGMING TYFE APPROACH, FIRST, ALL OF THE
TN, THE COST MATRIYX ARF. SHBTRKACTEN FROM A LARGE NUMRER <A
THAT THE TRIANgHLAR TNPQHAIITY HOLNS, THFENy THE ALGORTYTHM
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RTES 10 FYND THE LRGEST PATH OF CARDINALLEIY N BETWEER ANY  *)

(x T
(¥ TWO NONES TN Ay ACYCLTC SAMNER, ONCE THE LARGEST PAY *
Ez REEINﬁgé EIREE ¥0¥PLEThUan ) HA”ILTU&EAN QIQEB;T.‘AETéé *{‘
' . C1 T S TRIE~ TOU BE TMPROVEN BY ATTEM IG T *
(* CHANGE THE LOCATION OF EnCH NOBE CEPANTTELY, o1 EMPTING TO =)

R R Al S O o TR & I SO e s VAN PR

1YPE ARR1 = ARRAv(,1,.MD.) OF TNTEGER;
NONES = SETYOE i TEGE
ARR2 7= ARRAy (o 1,.8D.) OF NODES;

VAR NU»TU + ARK
: RSKR ! MONES
FRyRR ¢ ARR
CMAXYTrJrCMTI e 71,12 ¢ *NTEGER

FROCFDURE LLP( VAp FR,HR : aARRP:
VAp BSP ¢+ NONESS /
VAp CMIN,CMAv SR 1 INTEGER )3

.
L3

D we i

~e

(**#**t********tf***+*******************************************)
%: }E%BHPHOCEDURt FINNS THE LONGEST PATH OF CARDINALTTY N TN A *)
A ava ) * )

(**************************+*w************t*********************)
VAR PATH!PATHL : ARRD;

SrGSeT ¢ NODFSS

P MATRT XS

CReLKPLKT T ARRY;

KeTeMAX b v deme JA,COST « TNTEGER

M SIZER(,SRy - KeZ1d Gaiz(a,)

PATH( Ty 1=(,SR, )3
Je TO 1y Dho

L
— -
—e ||
48 jud

Z= L= GT 210
A~ X -
—_—
-
S
-
=
=

=
™
s
M
Lt G T DNe mee 27
Z0 LAV Zie

MMM~ e ]

=z

Bo( T, %S5 A IZ07
1 TO N DO

v THEN .

T IN PATH( J.) ) THEN
- e da YFCHAY=C( ,JrT )7

XLt =t T3
MT T ==t
;‘c r
-4 -l trm 0@
2 Z~Z2IIUHUL G
A4 X
>2

Snza5
S&

m~ T o= T ZMM= 2

Lot T
mmzZ
SJTATH
* ~=H T >
e T X
- T

T
=

END
UNTIL (K = N=1y:
L FOR T:=1 TO N NO
TerEfE TUIN RGROTHEN
TF (CRU,T,) = #=1) THEN
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HEGIN COST '

!:(h_1)*CMAX-LV (.TQ +C . : )
TTE cOST < WEUTN THEN ! PHCC TSR,
REGIN CMINIZAOST; HC(4nig) 1215 J2=T3

FOR [_t=N- 1L NDOWMTO 1 RO .
BEGIN HC(, o) =P ,Jrn )3 Jrzp(,Jdrl,)

END
END
END
ENDYG
HEGIN ' :
FOR I:=1 TN N n0O
2%%IN FROTI2=(e0)d RRO T,)0Z(,,)5 OD(,Te)2=0: TD(LT,)*=0
CMAX: =0}
FOR J!=1 TO N nn
FOR J!=1 TO N nN
BEGIN FR( To)t=FRO, I, )+ J, )3
BRU,JG)YIZBRITU I+, T4) ¢
OD( 1,)e=0D(" T V412
INCJ ) =T Y )41
TF CMAX C CU Ted,) THEM CVMAXSI=C(,Trd.)
FND ¢ \ v '
CMAX:=CMAY %2} '
CMINI=INF;
HSRIZARR(41,)7 nR(,1.)8=( L)% T1:=13
LPU FRYBRyBSRecMINyCMAX T )3
WRITELMS WRTTE(N;
TF CMTIN >= INF THEM : :
WRTTE (s THE TSP HAS NAa SOLUTION, ) ELSF
BEGIN :
WRITE( APTTMUM SO UTION ¢, )3
WRITEIMG WRITFELN; 71:=ai 12:=03
REPEAT WRITE; N3 WRITE(, ?) i
IT:=72415 §R:=12+20+
IF T2 > N THEN I21=N.
FOR T:=11 10 T2 NO WHITF(H(( T.)y)
UNTTL 12 = N.
WRITEFLNG WRITELN;
WRITE (o CnAST = '.vam 8)
FNDG
CWRTITELNG WRITE|NS
END G

HPROCEDURE YH(VAR 0 ¢ MATRIv:
VAR HULL ¢ ARPY;
VAR Noe IME M 8 INIFbFR )

Kok g g RNy ***:&*****¢***+*******************************
PROCEN!IRE FINDS THE SOLUTTIOM TO THF ISP RY LISTNG A
TRTIC APPRAACH, TT Ic ASSUMEN THAT THE TRTANGU| AR

ALTTY HOLNS. GIVEN a CONVEY HULL THF ALGORITHM TRTFS

* ¥ * )
*)
*)
*)
N THE REeT ALTERNATIVE AMONG THE MOUES THAT AKE MNOT * )
*
*)
* )
*)

*

%
£
U

1

= TRV *

+
H
E
NF
0O
N THE CONVEX gULL SO THAT THE ToTAL COST 1S MTNTMAL AFTER
HAT NODF 1S TuSERTED BE-WEEN TWO CONSECIITIVE NONES OM THE

CONVEY HULEL ..o i
*******************+**********+***********+*******************

PEEEE I
DA D%

o S~ o~~~ — o~ o~

TYPE EDGES = RECoRD
, _ EqDNODE , CANRIDATE ¢ INTEGERS
HETGHT ¢ REaL
END o
VAR (LIST ARRAY (,1.,ND,) AF ENGES:
TOUR SFT OF "1..ND% :
MAXH?*MTN : R AL -
PITYMAY, yddrlir e #121COST ¢ INTEGED:

PROCEFDURE MAXTMTSE (VAR HEIAHT ¢ REALG
o VAR Yed,L INTFGEH }3i

(Fkkok ko k ¥ kb ke b dk gk kb bR h gk ¥ hdopokdkop kR bk b s ¥Rk ook okok o Fokok kb ok kKo )
(* THTS PROCENURE FIMNS THE MAXTMUM HETGHT RELONGING TO ONFE OF =*)

ok TRTANGLES FORMeD QY OME ~F THE REMATNING NODFS THAT ARE NOT *)

(% NOT OM THFE CONyFEX HULL A~D TwO CONSECUTTYE NODES OM THFE wy
(* (ONVtX HIN L ee *)‘

'(**************************+***+*******w*************a**i*******)"

VAR K ¢ INTEGER3
UrSeHH ¢ REA) 3

BEGIN HFEIGHT:=0.n¢
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FOR K*=1 TN .
TE NOTIK IM 101R) THEN
TFE D, Tek,) <> TNE THEN
TFE D, Red, Y <> TNF THEN
HEgINQ'QJ;:{:—an(z:"J.)+U(.]'V YAN( K'\J /200;
G =GQOH (U NC,Tede ) s (U=, Yk (1IaUC Ky, ;
HAT=24S /0 (.17 0. ) rice rded )
TF HETGHT < 1iH THENM
REGTN HFTHHT.-HH; oK
END
FND
END G
Ht(JT” T I'Z :‘-.):
FOR I:=1 TD N A0
WITH 1LIST(,1.) DO )
REGIN ENOMNODE SN} CAMDIDATE :=0} HETGHT t=neU
FND ' : : : -
FOR I:=1 TO ™ [N
REGIN Tie=HULL (.T7.)3
TE T < M THEm I2¢SHULL,T+1,) FLSE I2°+=PULL(.1,):
LIST(,T1,.)EaNNONE =12,
TOURI=ZTOUR4 ( 12.)
ENDG *
WRTTELMN? WRITELN?
WRTTE (» CONGEX HULL :,);
WRTITEIN? WRITEIN; 11le=0} I2:=0; HULL ¢ o)}
REPEAT WRITtLN% WRITF (1 ') J
T10=12418 [2.=12420:
TE 12 > M THeEN T2:1=M3
FOR T:=11 10772 NO i
?ﬁgtN JrzLIST (L Jd,. ) JENDMODE S WRTTE(JS)
UNTIL Jp = m~3 -~
- MAXIZNG .
FOR I:=1 70 N RN
CFOR J'=1 70 M RO
TF D(,Ird,) <> TN+ THEM
CTF D, rde) D> aAX THEN MaXe=0D(,Trd,)
MAY IZOXMAY S COqTITNE,MAXS
FOR I:=1 TO N A0
FOR J:=1 TO N O
TF DC,Ted.) <OTINF THEN
”(.I'd-)::“l\ -r\(oT'\Jc);
“FOR I1:=1 TN N AN
C1IF 1IN TOUR TlFN
WITH LLIST(,1.) NO
MAY IMTZE (HEIGRT» T»FNONOD= » CANDINDATF ) 3
WHYLE ™M < N DO
BREGIN Me=Mi1d mAXH: =0 0
FOR Let=1 TO » DO

1F . TN TOUR THEN

TF NMAXH ¢ |TcT(.!.).HtrGH! THEN
RE&TN MAYHI=Z LIST(,Le) HEIGHT: Te=L
FND

TOURI=TOURE (_1LTST(,T.) CANDINATE, )
T M = M lh:N

REGTM
WITH LTSI(__.) 0o
BFEGIN LI NONODE§
ENDMNNDE 1 =CANDINNATE . JI=CANDINDATE ;
MAYIMIZE(HETGHT , LemNDNODE s CANDIDATE )
ENL S

WITH LTIST( Jd.) DO
BEGTM ENDNANE *=L;
MAVI"I7t(MkTGHTvJ-FNHPUUFvCANDIDATFJ
t'\l”v
FOR T:=1 Tn N DO
WITH LTSTCO 1,) DO
IF CANNIUATE <> 0 TH-N
iF CANDI)ATF TN TOUR THEN
MAXTMIZE (HETGHT e Y ENANNODE f CANDIDATED
FNU
ENDY?
WRTYTEIMN; WRITFE N

WRTITE (1 DPIIMAL TOUR :,)3
WRTTELNG WRITEy NG 7105 I2:=03 JizHULL (1) 7% toe=Js
REPEAT WRITELNy WRTTE (s v ) ?

T1:=12+41: 12o:17+20:

IF T2 > N THEN T21z=N3

FOR 1°*t=11 10 12 DO
REGTN JezlisT(.J. ). ND”ODt : . vl '-‘:::'-’.“f.il“_.,.:_



EREL(.T.{':Ji WRTTH (;:5)?
ST —=r( . .-
Eng Te=COST_Cl,LrJa)i Lo=d
UNTIL 12 = N3
WRTTELNG WRITE| N:
C WRYTE(r COsSy =,,COST
ENDYS
HEGIN

READLNG  READ( 1rINFPTSHruRPY 3
It VRP = { THFr
BEGIN KEANLNS pFEAD(NDEMeniDER)
DEMAND=(,.)s Jr=U}
REPEAT REAULp S
WHILF NOY £oLN 10
BEGTIN Je=Ji1s
IF J <= NDkM THEN @
HEGIN RFAD(THU) DEMAND S=NFMAND+( , TUD, )

tNU
UNTTL J >= N
DEPOIS = (4,
REPEAT READLpS
WHILE NMOT coLN DO
HFbTN Jiz=dyl
IF J <= +\DEP THFEM
HEGTIN READCTNHD YN IDH.))}
DFPOTS- =DFEPOTS+ (" IDU.);
TNV e =THV4+UN(, IlH) .

N
Ji=U0: INve=Us
Ln
H

END
. END
UNTTIL J >= NpFEK
END?
FOR 1:=1 TO N1 NO
BEGIN Ji=0;
© REPEAT READIS
WHILFE NOT rOLN 0o
BEGIN Ji=dy
O IF g <= w1 THFN READ(E (T r.).))
END
UNTTL O >= Ny
ENDYG _
PAGE; WRTTFLNS WRTTEILNS
“WRTTE (v DISTANCE MATR=X t9)3 WRTTELN: WRITELNG

PRINT(E)NML)? WRTTELNG. WRTTELN
1F VRP = 1 THE

REGIN WRITE(, NUMRER nF HEMAND POINTS S¢ ¢NDEN:S)
WRITELM] WRTIYELN: WRITr(, NEMAND PATNES 243
WRITELNG WRITELNG wRITe(y '3 \

FOR T¢=1 TO pn1 DO
T T IM NEMAND THEN WRYTE(TI3)?

WRITELN; WRITELN; o
WRITE (y RUVH%P OF DePOTS = o NOEMEISY S
WRITELNS WRI FELNG WRITe(y NFPOT ¢ OF VEHTCLES»)
WRITELNS WRI FLN'
FOR 1I:=1 10 wt Nno
TF T IN NEFNTS THEN
REGTN WRTTFELn? WRITELN.
WRTITF ( reIt20re rtUN( Te)22)
FND '
WRITELN: WRTFLNS
WRITE ( TOTAL NUMBFR UF VEHICLES =,riNVIR)
Ke=ni Ne=TNVL2+NDEM]
FOR Je=1 TO ¢ DO
FOR J'=1 TO M DO Cl,1r e .-—INF'
FOR T:=1 TUO M1 10
CTF 7T OIN NEMARD THEN
REGTM Ke=K+1:s NODE(.Kav2IZ1F L1707
FOR J'=1 TA N1 DO -
1IF J4 1IN DEMAND. THEN :
BEGIM 1=l 1 Cl,KeL )= (,Ted,)
E N , .
END§
KeZNIEM:
TOR T:=1 10 11 150
gk T ImlnEPOTQ THEN
REGTM™
FOR Me=1 Tn VUN(,T,) ~O
BEGTIM Lt=nN: Ke=K4l? «ONE(,K,Y =73
FOR J'=1 TO M1 DO
1F TN nFMANH THE _
HEGTN Lt=l+13 Cl.K,L,IIZE(,Trd,)
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-
~

+1 )t=ny ¢
NYTHEN Ct

41 NODF (K)o =T
K,K+1,)

Lo

tN“;
“FND
K IZNDEM;
FOR I:=1 10 n1 DO
TF T IM NEPOYS THEN
REGTN
FOR Me=q Tn VM{.T,) ~O
BEGTIN Li=n, K1=K323
FOR J"1 "TO'NYL DO
TF J IN qunNU THEM
QR%IN Leicb413 ClL,K, )=F(,JrT.)

WRTITELNS WRITEFLN: -
TRANGFORMER MATRTY $,)3 -
i WRITELNG PRINT{(CN);
i WRITF (, NUSRER OF NMODES =, ,N:5)

1o o
DO CCaTr o) IZEC T d,)

’

£ TSP OF
YTSP(CrHer o Ny TNF) 5
YM{CoHCrri o INF )3
UYNAMTL(POH('NoTNF\z

1=

soecsco o

S FEUNN = NT

it =l we
—
~

THE ’ .
é %FADLM' READ (TN Y
Vl,
vHI MOT FOLN 1o
BFG Ji=dytid ‘
1F J <= TNV THEN READ(HC (L, )
B AL
TIL J >= Tuvi
(Co HF,M-rNr;1NV)

1 THE®Y
03 MM.=()3
POWRTITELNG wRITriNg
TAURS OF VEUTCLES $,):
WRTTFLM: T:=0;
TO 1 DO VNU(‘J.)::O;

CJe =M
mT2

TzZzU
[

T
-

; 1
IO;

- s 11
zm

=1
I‘OHE(.
M) 1HtN

IRTTELN? MITME] 3 MueZ
T lH r M2y rrL1:3,1.2
T-

T R N
-
P
:
Moo —a
<tah-
P

MM+
:3)

uu

M
Wi 3

TE K < > 2
REGT W
ENID)
HNTTL |2 =
END FLSE
1F L2 = 1
CREGTN VN (.,
NP FLSE
HEGIN I1:1=-T-
TF 1 <1
END
EMD
UUINTTIL MM DT 18
TWRITELNG WRITELNS
FOR J:=1 1O »& DO
IF T TN NEPOTS THEN
REGTM \’”-"'\/N( To)=VRU( I.):
WRITELNS WDT1FLN'

3) £S5k
’ rell22) 0

7~r_
TN
i
3
ﬁ..‘

WR1Tt

CTVYrU (W L2, Y417 MMI=NMED

13
THEN Ti!1=N

N
ENE v

| ENBY, .

ITN ELSE C ek NDEVET,

)

KNez=D s

=0

KM =M+ 1 NM::MN‘_’ 1:
)

KMe=n

WRITE (, VEHTCLES aSFL In NDERPOT .,T:H}o =N AU S
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