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ABSTRACT

PARALLEL MACHINE SCHEDULING CONSIDERING

JOB SPLITTING AND MACHINE ELIGIBILITY

In this study, we investigate unrelated parallel machine problem with total tar-

diness objective. The properties of the problem are job splitting, family dependent

setup structure and machine eligibility. Job splitting means that jobs can be splitted

to be produced on different machines and in different times. Family dependent setup

means that a setup is needed before producing a particular family if it is preceded by

another family. Machine eligibility means that jobs can’t be produced on all machines,

but only the ones that are appropriate for producing them.

We propose a heuristic solution method consisting of three phases. In the first

phase, jobs belonging to a family are combined into job batches. When making this

aggregation, in order to decide the point to stop aggregation, we have two control

parameters. These control parameters do not need to be the same for each family.

After finishing Phase-1, generated job batches are used as inputs to phase-2. In phase-

2, a new time structure is created based on the due dates of these aggregate jobs. Also

in phase-2, an aggregate planning model is constructed and solved yielding production

quantities in time buckets. These production quantities are used in Phase-3 for creating

job batches which constructs schedule. For examining the performance of our heuristic,

we compare it with a heuristic in the literature in which control parameters used in

the first phase are the same for all families. According to experimentation results, our

heuristic out performs the existing heuristic.
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ÖZET

İŞ BÖLME VE MAKİNA SEÇİM KRİTERLİ PARALEL

MAKİNA ÇİZELGELEME

Bu çalışmada birbirinden farklı paralel makinalarda toplam gecikmeyi en aza

indirmeye yönelik bir problem ele alınmıştır. Problemin işin bölünebilmesi, aile bazında

makina hazırlama süresi, makina seçilebilirlik gibi özellikleri vardır. İşin bölünebilmesi,

bu işin farklı makinalarda farklı zamanlarda yapılabilmesi anlamına gelmektedir. Aile

bazında makina hazırlama süresi, eğer belirli bir aile başka bir aileden sonra üretiliyor

ise, makina hazırlama süresine gerek duyulması anlamına gelmektedir. Makina seçme

özelliği işlerin her makinada üretilememesi, sadece onları üretmeye uygun makinalar

tarafından üretileblmeleri anlamına gelmektedir.

Üç fazdan oluşan bir sezgisel yaklaşım metodu önermekteyiz. İlk fazda bir aileye

ait olan işler iş grubu halinde bir araya getirilmektedir. İşleri bir araya getirirken,

bir araya getirmeyi ne zaman durduracağımızı belirlemek için iki kontrol parame-

tremiz mevcuttur. Bu kontrol parametrelerinin tüm aileler çin aynı olması gerek-

memektedir. İlk faz sonucunda oluşturulan iş grupları ikinci fazın girdisi olarak kul-

lanılmaktadır. Bu ürün gruplarının termin zamanları kullanılarak ikinci fazda yeni

bir zaman yapısı oluşturulmaktadır. Ayrıca ikinci fazda bütüncül planlama modeli

oluşturulup çözülmektedir. Bunun sonucunda, oluşturulan zaman yapılarındaki üretim

miktarları bulunmaktadır. Bulunan bu üretim miktarları, üçüncü fazda çizelgeyi mey-

dana getiren iş grupları oluşturmak için kullanılır. Sezgisel yöntemimizin performansını

değerlendirmek için yazında var olan , birinci fazda kullandığımız kontrol parame-

trelerinin tüm aileler için sabit tutulduğu sezgisel metod ile karşılaştırdık. Deney

sonuçlarına göre, önerdiğimiz sezgisel metodumuz diğer sezgisel metoddan daha iyi

sonuç vermektedir.
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1. INTRODUCTION

Scheduling is a very efficient device for optimizing use of any type of resources such

as manpower, machines and facilities while considering some requirements, constraints

and objectives. Scheduling consists of making systematic planning and prioritizing

tasks which in turn helps companies to compute in today’s competitive environment.

Since customer satisfaction turns out to be one of the most significant goal in manufac-

turing, it is really important to complete jobs no later than their due dates which are

achieved by scheduling. Scheduling is a very crucial aspect of manufacturing industry,

since companies become less tolerant to delays in production.

Parallel machine environment is very common in manufacturing industry. Parallel

machines can be either identical or unrelated machines. Unrelated parallel machines

case is the most general one since the features of machines differ a lot in production

lines due to differences in their technology, or there may exist machines which are

processing more than one kind of jobs with different speeds. So the production line

may be very fast when producing one kind of job, while it is too slow after making

regulations and processing the other kind of job. Some examples of companies where

we can see the parallel machine production environment in Turkey are: Trakya Otocam

Company, Vestel TV Assembly Company and AKSA Acrylic Company. Due to these

reasons we studied the unrelated parallel machine environment in this study.

Also we considered set up times which are needed between processing of jobs for

preparation of the production line for the coming job. Setup times may be sequence

dependent between jobs or they can be based on the similarity between the jobs. We

call a set of products with similar setup characteristics a “family of products”, and

this type of setup structure is referred to as “family setup”. There are two types

of family dependent setup which are minor and major setup while the former is the

setup required between production of jobs in one family due to small differences of

their production requirements and this kind of setup is negligible in most of the cases

and the latter one is the setup time between processing of jobs belonging to different
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families.

Other important aspects of our problem are job splitting and machine eligibility

considerations. Job splitting property means that we can produce some part of a

particular job in one machine while processing the other parts on other machines.

These processing can be done on different times or at the same time. Machine eligibility

constraint is a very important factor for determining on which machine to produce since

every machine is not capable of processing all jobs.

In this study, we consider unrelated parallel machine scheduling with family de-

pendent set up, job splitting and machine eligibility considerations. The objective

function is to minimize the total tardiness.

This study is organized as follows: Chapter 2 gives a detailed overview of the ma-

chine scheduling literature involving related considerations to our problem. It discusses

various solution methodologies like exact algorithm, heuristics, simulated annealing, ge-

netic algorithm and tabu Search. Chapter 3 presents the formal problem definition,

the mathematical model. Later, in Chapter 4, the heuristic that is suggested will be

presented in detail. In Chapter 5, details of simulated annealing approach used in this

work are given. In Chapter 6, implementation of the algorithm is done for 540 problem

instances, and the results of experiments related to the suggested heuristic are shown.

These experiments compare the heuristic proposed by Sansarcı (2007) and our work;

moreover the effects of different factors on our heuristic are also given. Finally, in

Chapter 7, with discussing results of the suggested heuristic, a conclusion is made.
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2. LITERATURE REVIEW

Our problem area is unrelated parallel machine environment. Due to the different

attributes of the machines, the processing time for a job depends on the machine.

There exist many articles concerning unrelated parallel machines. One of these articles

is written by Liaw et al. (2003) where the objective is to minimize the total weighted

tardiness. They proposed a branch and bound algorithm for that problem and solved

an assignment problem for finding lower bound. Also they generated a heuristic for

finding upper bound for the branch and bound algorithm.

Ghirardi and Potts (2005) also studied unrelated parallel machines with the ob-

jective of makespan minimization. Recovering Beam Search method which is a Beam

Search that allows recovering of previous steps when needed is used in the article. The

authors stated that their algorithm performs well on large instances. Sung and Vlach

(2005) presented an algorithm for minimizing weighted number of jobs that are com-

pleted exactly at their due dates since being not only late but also early usually means

penalties. Authors considered the problems with the same objective for single machine

and identical parallel machines and demonstrated that these are polynomial time solv-

able. Moreover the same problem with fixed number of unrelated parallel machines

case is also studied and a polynomial time algorithm is presented and it was shown

that the problem becomes NP-hard in the strong sense when the number of machines

is not fixed. By comparing unrelated paralllel machine case with other cases of the

problem, the complexity of unrelated parallel machine case has been demonstrated.

These articles are related to unrelated parallel machine problem without setup

considerations. But as we have setup in our case, we have to consider the unrelated par-

allel machine articles regarding setup. Weng et al. (2001) constructed seven heuristic

algorithms for sequence dependent setup case to minimize a weighted mean completion

time. They either assigned a job to the machine with the least cost contribution or

to the machine on which the job has the shortest processing time. They also tried a

strategy where they assigned first the job with the smallest ratio of processing time
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plus setup time to weight. This strategy outperformed the rest significantly. They

programmed these algorithms in C++ and concluded that algorithms are extremely

fast and end up with solutions for up to 120 jobs and 12 machines.

Bank and Werner (2001) compared constructive and iterative heuristic algorithms

for a solution in which the sum of weighted linear earliness and tardiness penalties is

minimal. The constructive heuristics are composed of two stages which are assignment

of jobs to machines and after assignment determining schedule of jobs for each machine

in order to minimize objective function value.

Balasubramanian et al. (2004) proposed two genetic algorithms with three phases

for minimizing total weighted tardiness in on parallel batch machines with incompat-

ible job families. Differences between the two genetic algorithms come from batching

decision making order. In both versions batching is done with heuristic algorithms.

The first version makes batching decision on the first phase and then assigns those

batches to machines and the second version assigns the jobs to machines and then

makes batches on each machine. It is also concluded that the first version of genetic

algorithm is better than the second version in solution quality and computation time.

Chena and Wu (2006) studied on unrelated parallel machines with setup consid-

erations in order to minimize total tardiness. They presented a heuristic which is a

combination of threshold-accepting methods, tabu lists and improvement procedures.

After the heuristic is compared with simulated annealing method and optimal solution,

it is seen that proposed heuristic results with optimal solutions for problems in small

sizes and outperforms simulated annealing method for problems in larger sizes.

Rabadi et al. (2006) generated new meta-heuristic called Meta-RaPS and com-

pared it with an existing heuristic in the literature called Partitioning Heuristic. From

the comparison it was stated that their meta-heuristic outperforms the existing one for

large scaled problems and end up with optimal solutions in small sized problems.
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The previously mentioned articles were concerning sequence dependent setups on

unrelated parallel machines. There are fewer articles about family dependent setups

in the unrelated parallel machine literature. One of them is the article of Brucker

et al. (1998) in which the authors worked on groups of jobs and made the batching

decision of them. A group can be split into batches but there is no permission for

interrupting a batch being processed if the process has started. There is a setup time

if batches from different groups are being processed on a machine concurrently. This

setup time is dependent on the group of batch that is going to be processed. The

objective in the article is to come up with a solution according to which all the groups

are being processed before their due dates. The completion time of a group is the

completion time of the last processed job in that group. The problem is composed of

three sub problems which are determination of batch sizes, determination of machines

on which each batch will be processed and the order of batches that are assigned

for each machine. It was stated in the article that the problem is NP-hard even for

the case of two identical machines, unit processing times, unit set-up times and a

common deadline. It is strongly NP-hard if machines are uniform, the number of jobs

in each group is and processing times, set-up times and deadlines are unit. A family

of approximation algorithms has been constructed in the article. Chen (2006) also

studied family dependent setup structure on unrelated parallel machines. Their aim is

to minimize maximum tardiness. They considered the production environment is in die

casting departments and stated that a setup for dies is incurred if the type of the job

scheduled is different from the previous one on that machine. A heuristic which is based

on guided search, record-to-record travel, and tabu lists is proposed for the problem.

The proposed heuristic is tested in terms of computational time and quality of the

solution and is compared with optimal solutions and a simulated annealing method.

As a result of these comparisons, it was seen that the heuristic outperforms simulated

annealing method and also can end up with optimal solutions in small scaled problems.

Although there are few articles in the literature related to family dependent setups

in unrelated parallel machines; we can find more articles about family dependent setup

issue in identical parallel machine environment or single machine environment. In

order to understand family dependent setup subject, we have to mention these articles
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also. One of the authors interested in single machine problems with family dependent

setup concept is Chen (1997). In his article, there exist batches of jobs and a setup

time is incurred when job from one batch is processed after a job from another batch.

Two problems are studied in the article one is minimization of the total earliness and

tardiness penalties provided that each due date of batches is externally given and the

other one is minimization of the total earliness and tardiness penalties plus the total

due date penalty where each due date is a decision variable. It was shown that the first

problem is NP-hard and for the second problem a polynomial dynamic programming

is proposed with two batches of jobs.

Webster (1997) analyzed scheduling of job families in unrelated parallel machine

case in order to minimize weighted deviation about a common due date where a setup

is done between processing of jobs from different families. It is shown that the total

earliness/tardiness problem is NP-hard when the number of machines and families are

arbitrary.

Chen and Powell (2003) studied family dependent setup in identical parallel ma-

chines where jobs to be processed can be divided into different families such that a

setup is required whenever there is a switch from processing a job of one family to

another job of a different family. The authors considered two problem instances one is

to minimize total weighted completion and the other one is to minimize weighted num-

ber of tardy jobs. Column generation based branch and bound algorithm is proposed

for these problems and it was seen that proposed algorithms are good enough to solve

medium sized problems optimally.

Another study for parallel machine scheduling with family dependent setup con-

sideration is done by Dunstalla and Wirth (2005). They generated heuristics for min-

imization of the total weighted completion time and the performance of the generated

heuristics are calculated by making comparison between heuristic solutions and lower

bounds and solutions obtained using an exact algorithm.
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Omar and Teo (2006) also worked on this subject and they presented a mixed

integer programming formulation model in order to minimize the sum of earliness and

tardiness. It was stated in the article that their mixed integer programming formulation

model can provide optimal solutions for up to 18 jobs with up to four job families.

Up to now, we have considered setup related portion of our problem which was

unrelated parallel machine case with family setup, job-splitting and machine eligibility

constraints. So we need to consider job-splitting issue and articles related to job-

splitting. The article by Santilan (2002) is one of the articles on job-splitting property.

In this article, jobs can be split into lots and the objective in the article is to minimize

total tardiness. The problem is presented as a mixed integer programming problem.

Decisions for lot sizing, assigning of these lots to machines and appropriate sequence

should be made and since this problem is NP-hard, a local search heuristic based on

simulated annealing is proposed. Heuristic methods are used for initial feasible solution

and neighborhood solution generation. It was shown that the proposed approach yields

optimal solutions in small sized problems, near optimal solutions in medium sized

problems and good solutions in large sized problems.

Yalaoui and Chu (2002) also considered job splitting by considering the problem

of minimizing total tardiness in a identical parallel machine environment. A branch

and bound algorithm is given in the article which considers dominance properties, lower

and upper bounding schemes developed by the authors.

Kim et al. (2004) studied on a total tardiness minimization problem where a job

can be split into a discrete number of sub jobs that can be processed independently on

parallel machines, and also simultaneously on different machines. A two-phase heuristic

algorithm is proposed in the article where an initial sequence is constructed in the first

phase and splitting each job into sub jobs and rescheduling jobs and sub jobs on the

machines is executed in the second phase.

Shim and Kim (2006) concerned the objective of minimizing total tardiness with

job splitting property on identical parallel machines. A branch and bound algorithm
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considering dominance properties and lower bounds is suggested and the algorithm

is shown to be good to solve problems of moderate sizes in a reasonable amount of

computation time.

Job splitting concept is also studied by Tahar et al. (2006). The problem is

scheduling a set of independent jobs in order to make span minimization on a set of

identical parallel machines and a heuristic algorithm is developed, which is a heuristic

based on linear programming formulation is developed and it was seen that the method

is very practical in real-life problems.

The articles that we have considered related to job splitting property are identi-

cal parallel machine environment cases, but since our problem is, an unrelated parallel

machine related; we have to mention job splitting articles in unrelated parallel ma-

chines which are fewer than the identical parallel machine cases. Logendran and Subur

(2004) studied minimizing total weighted tardiness on job splitting on unrelated paral-

lel machines and a tabu search based six different heuristic solution is proposed for the

problem which uses four different methods based on dispatching rules for generating

an initial solution. It is assumed in the article that a job can only be split into two

portions since large number of lot splits may result in higher work in process inventory

due to the reason that lots which are completed earlier have to wait for the other split

parts of the job. The six proposed heuristics were tested on small problems, compared

with optimum solutions and seen that good solutions can be obtained by these heuris-

tics. Also the heuristics used for generating initial solution are seen to be capable of

obtaining initial solutions that significantly accelerate the tabu-search-based heuristics

to attain the best solution. The use of long-term memory in tabu search based heuris-

tics is significant since it helps to obtain a good solution and a variable tabu list size

is preferred for solving small sized problems and a fixed tabu list size is preferred for

solving medium and large sized problems.

Machine eligibility is another issue that we consider in our problem. Machine

eligibility means that not all machines are capable of processing all jobs, so jobs can

only be processed on their eligible machines. Centeno and Armacost (1997) present
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an algorithm for the problem of minimizing maximum lateness and apply the algo-

rithm for semiconductor manufacturing firm which is an environment with identical

parallel machines. Also they evaluated their work using real data from an operational

environment of a semiconductor manufacturing firm and after comparing it with the

actual scheduling system being used by the organization it was seen that a significant

performance improvement is provided using the proposed scheduling algorithm.

Bekkia and Azizoglu (2007) proposed a branch and bound algorithm that em-

ploys dominance conditions and tight bounds for maximizing the total weight of the

jobs processed and coded the branch and bound algorithm in Turbo Pascal. The com-

putational results revealed that the bounding procedures are quite powerful and the

branch and bound algorithm ends up with optimal solutions in reasonable time. Sheen

et al. (2006) worked on minimization of the maximum lateness and generated a branch

and bound algorithm for searching for the optimal solution of the problem which uses

several immediate selection rules for solving this scheduling problem. They evaluated

the performance of the branch and bound algorithm and experimental results showed

that the proposed branch and bound algorithm can solve instances optimally in a

reasonable time.

Liao and Sheen (2007) propose a polynomial time binary search algorithm for the

problem of minimizing the make span with machine eligibility constraint. The authors

aim to either verify the infeasibility of the problem or solve it optimally if a feasible

schedule exists. The proposed algorithm first verifies the infeasibility of the problem

and if there is no feasible schedule then the algorithm is terminated; otherwise the

optimal value can be obtained by performing the binary search.

Machine eligibility in unrelated parallel machines is studied by Salem (1999) and

developed four heuristic algorithms for finding efficient and quick solutions for mini-

mization of make span. Also the performances of heuristics were evaluated by making

comparisons of the make span values found by these heuristics with the optimal make

span value and it was seen that the performance of heuristics were satisfactory. Another

problem of unrelated parallel machine with machine eligibility is studied by Senniappan
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(2001) in order to minimize the sum of completion time on all machines. He proposed

a mathematical programming model for the problem and since the problem is com-

plex, heuristics and a genetic algorithm were developed to generate quick and effective

solutions. Also heuristics are used for the genetic algorithm to generate initial set of

solutions in order to reduce computational time. The proposed solutions are evaluated

by using them for an aluminum processing plant in Turkey. After the evaluation it was

seen that the proposed methodology outperformed the company’s existing procedure.

Rojanasoonthon (2004) worked on the same problem considering time windows.

It was proven that the problem is NP-hard and mixed-integer linear programming for-

mulations are presented in the article. Since the problem is difficult to solve, the author

developed a dynamic programming-like heuristic and a greedy randomized adaptive

search procedure. Also an exact method was also developed and a branch-and-price

method is applied where the initial solution is provided by the greedy randomized

adaptive search procedure. It was shown that the proposed procedure was found to

be very effective, providing the true optimum for instances with up to 100 jobs and 2

machines and it is able to solve many instances that were believed to be beyond the

capabilities of exact methods.

Logendrana et al. (2007) studied minimizing the weighted tardiness of jobs in un-

related parallel machines considering machine eligibility restrictions. For the problem

six different search algorithms based on tabu search for and four different initial solution

finding mechanisms, based on dispatching rules are developed. Four different initial

solution finding mechanisms are important since better quality initial solutions might

lead to identifying better quality final solutions. After computational experiments and

statistical analysis performed, the search algorithm with short-term memory and fixed

tabu list size is seen to better in solving small size problems, while the one with long-

term memory and variable tabu list size is seen preferable for solving medium and large

size problems.

Sansarcı (2007) studied the problem which is closely related to our problem since

he worked on unrelated parallel machine environment with machine eligibility con-
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straints, job-splitting property and family setup structure. The objective is to mini-

mize total tardiness. In the study, a four phased heuristic algorithm using an aggregate

planning approach is proposed. Aggregate planning model in order to determine the

batch sizes, batch sequencing, and alternative machine selection is done using two con-

trol parameters which are related to aggregation. The two control parameters which

are production-per-setup and aperture are used as inputs in this aggregation phase.

For solving the aggregate planning model, a linear programming formulation is ap-

plied. After solving aggregate planning, the result of aggregate planning model is used

in reducing the problem into several single machine total tardiness problems with a

heuristic algorithm. A search algorithm is used for tuning the control parameters. In

the study it was stated that in order to implement the proposed heuristic and investi-

gate its performance, a problem set is generated. Test demonstrated that the heuristic

performs best.

The most related problems to our problem are studied by Shim and Kim (2006),

Brucker et al. (1998), Chen (2006), Logendran and Subur (2004) , Logendrana et

al. (2007) and Sansarcı (2007). However, our problem differs from the problem that

Shim and Kim (2006) studied since they did not consider machine eligibility and their

problem is in identical parallel machine environment. Also the problem of Brucker

et al. (1998) is different from our problem in ways that there is no splitting of jobs

and machine eligibility in their problem although the objective of their problem is

minimization of maximum lateness. Chen (2006) studied minimization of maximum

tardiness in unrelated parallel machines; but they also did not consider job splitting and

machine eligibility. Logendran and Subur (2004) studied a different problem from ours

since our problem and their problem involves only job splitting property in common.

Logendrana et al. (2007) studied a distinct problem since they studied only machine

eligibility restriction but did not work on other features of our problem. The only

study which considers the same problem is the one of Sansarcı (2007). Other problems

in the literature differ from our problem and the difference is mainly about the setup

structure, eligibility constraints, and job-splitting property.
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3. PROBLEM DEFINITION

In this study, we worked on parallel machine scheduling in which there are n

jobs, m machines and F product families. Each specific customer order is a job and

machines are assumed to be unrelated parallel machines. In general parallel machines

may be either identical or non-identical. Identical parallel machines have the same

technological properties, so speed of production is the same for each identical parallel

machine. But non-identical machines have different technological properties which lead

to different production speeds. Unrelated parallel machines environment is a special

case of the non-identical machines which have different production speeds for each

product family.

Product families are formed considering the production needs of jobs for produc-

ing products and jobs with similar requirements are combined to form a family. Family

concept is very significant since there is no need for setup between processing of jobs

belonging to the same family but a family dependent setup is incurred between jobs

of different families. So in order to minimize setup times, it is better to sequence jobs

of the same family consecutively in many cases. When we plan to process a job from

a family different than the current job, then some regulations and preparations are

needed to be done on the machine.

Since unrelated parallel machines have different technological properties, all ma-

chines are not capable of producing all jobs and so there is a set of eligible machines

for each job. These jobs can only be processed on machines in their eligibility set of

machines. This situation turns to be the machine eligibility constraint for our problem.

Moreover, we do not have to finish processing of a job once we start it; we can

split the job and finish some portion of it and then finish other portion in another

machine and in another time. This situation does not constrain our problem but gives

us a small freedom while assigning jobs to machines.
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The objective of our problem is to minimize total tardiness since producing goods

on time is one of the crucial aspects of customer satisfaction. Tardiness of a job is found

from the difference between the delivery time and the due date of that job. If this

difference is bigger than zero, than tardiness is that difference. Otherwise, tardiness

is zero. So if the job is delivered before its due date, then its tardiness value is zero,

otherwise the value is the difference between the delivery time and the due date.

3.1. Formal Problem Definition

In our problem for the minimization of total tardiness, we have n jobs and m

unrelated parallel machines and F product families. For each job j where j is the

job index we have due date information: dj. Since there is a need for setup between

processing of different families, we need to consider the case where no setup time is

needed. So we call production of a family without interruption on a machine as a

“batch” and form variables considering batch concept. Other related variables are:

bjf is a binary parameter which shows that job j belongs to family f ;

Qf is the set of jobs j where bjf = 1;

pfr is the unit production time of a job of family f on machine r;

Sfr is the setup time required whenever a family f is produced after any other

family or at the first place on machine r;

xE
fr is the eligibility constraint which is a binary parameter that equals 1 if family

f can be produced on machine r and zero otherwise;

XB
rb represents the quantity of batch b on machine r;

xBF
rbf is a binary variable showing if the batch b on machine r is of family f ;

There exist other aspects of our problem that we need to mention which is one

machine can process one job at a time and we know the machines which are eligible to

produce jobs belonging to a certain family. Also setup times are constant and known.

The objective of our problem is total tardiness. A tardy job is the one which have

a completion time later than its due date and tardiness of a tardy job is maximum of
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zero value and the difference between its completion time and due date. Total tardiness

value is the sum of tardiness values of all jobs.

3.2. Mathematical Model

In this section of this study, we present a mathematical model for our problem.

The problem can be formulated as a MIP. This mathematical model demonstrates the

formal definition of the problem.

min
∑

j

Tj

s.t.

∑

r

yjr = 1, ∀j (3.1)

xjr − yjr ≥ 0, ∀j, r (3.2)

XE
j r − xjr ≥ 0, ∀j, r (3.3)

∑

j

x0jr = 1, ∀r (3.4)

∑

j

xkjr,≤ 1 ∀k, r (3.5)

∑

j 6=k

xkjr + x0jr − xjr = 0, ∀j, r (3.6)

Tj − Cj + dj ≥ 0, ∀j (3.7)

Cjr − pjr ∗ yjr −
∑

j 6=k

skjr ∗ xkjr − sjr ∗ x0jr −
∑

j 6=k

Ckr ∗ xkjr = 0, ∀j (3.8)

Cj − Cjr ≥ 0, ∀j, r (3.9)

Tj ≥ 0, yjr ≥ 0, xjr = (0, 1), xkjr = (0, 1), x0jr = (0, 1), Cj ≥ 0, Cjr ≥ 0 (3.10)

where;

yjr : Proportion of job j which is produced on machine r;

xjr : 1 if job j is processed on machine r and 0 otherwise;

x0jr : 1 if job j placed at the first place on machine r and 0 otherwise;

xkjr : 1 if job j comes just right after job k on machine r and 0 otherwise;
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Tj : Tardiness of job j;

Cj : Completion time of job j;

Cjr : Completion time of job j on machine r;

dj : A constant which represents the due date of job j;

pjr : A constant which represents the processing time of job j on machine r;

sjr : A constant which represents the setup time for job j on machine r;

skjr : A constant which represents the setup time for job j on machine r if job k

and job j belong to different families and is equal to 0 otherwise;

The explanations of the constraints are as follows:

1. Equation (3.1): For each job, proportions of that job which are produced on the

machines must add up to 1.

2. Equation (3.2): If a job is not produced on a machine, than the corresponding

proportion for that job is 0.

3. Equation (3.3): A job can be produced on a machine only if the machine is eligible

for that job.

4. Equation (3.4): There can be only one job to be placed first for each machine.

5. Equation (3.5): Each job can follow only one job on each machine.

6. Equation (3.6): If a job is produced on a machine, it must either be the first job,

or follow any other job on that machine.

7. Equation (3.7): Tardiness of a job is greater than or equal to completion time

of that job minus its due date. They are not necessarily equal since tardiness

cannot be negative.

8. Equation (3.8): Completion time of a partial production of a job on a machine

is the sum of its processing time, setup time, and the completion time of the

previous partial production of a job on the same machine.

9. Equation (3.9): Completion time of a job is greater than all of the completion

times of the partial production of that job on the machines.

10. Equation (3.10): xjr, x0jr and xkjr are binary integer variables while other vari-

ables are greater than or equal to 0.
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4. PROPOSED HEURISTIC

In this study, we suggest to handle the problem with simulated annealing ap-

proach. While solving problem in neighborhoods that are found by simulated annealing

procedure, we apply a three phased heuristic.

The first phase of the suggested heuristic tries to aggregate jobs which are in-

cluded in the same family. Aggregated jobs form a job batch. So with that aggregation,

problem reduces from scheduling each job to scheduling these job batches. Aggregation

is made with two control parameters.

By using the job batches generated, a new time structure is constructed which

is consisting of different types of time buckets that will be used in later phases. After

aggregation of jobs of a family, production quantities in time buckets generated are

found by solving an LP. As a result of solving the LP we make our procedure to use

capacity effectively. The results of phase 2 will be used as inputs of the latter phase.

Production quantities of second phase are formed as batches in third phase. Those

batches have machine information by which they are produced, the family information

that they produce, start and finish times.

After formation of batches, we know in which machine, between which times a

particular family is produced. Then jobs of a family are assigned to those batches

producing the family. Jobs can be splitted into more than one batch. After the

assignment of jobs of a family to the batches, tardiness of a job can be calculated. So;

total tardiness value can be found.

4.1. First Phase

At the first phase of the suggested heuristic, jobs of a family are combined into

job batch. In performing these job batches, the aim is to make enough quantity of
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production by combining jobs while making sure that jobs that are aggregated have

closer due dates. So there are two control parameters which are production per setup

and maximum difference.

Production per setup tries to combine enough quantity of jobs so that the setup

done for these combined jobs worth to produce. For example an instance in which we

spent more time for setup than production is not a logical case. So there should be

a ratio between time spent for production and time spent for setup which is produc-

tion per setup. When production per setup value is large, it means that setup time is

very crucial and we should produce larger quantities for that setup.

When trying to combine larger quantities of jobs, we may also get into the mistake

of combining jobs which have due dates very far a way from each other which is not

logical too. For not getting into that mistake, maximum difference parameter controls

the process. Maximum difference parameter is the maximum difference value that can

be between the due dates of jobs included in a job batch. When maximum difference

value is small, it means that we can only combine jobs with very close due dates. But

when that control parameter is large, we can combine jobs that have different due

dates, so we can produce a job that has later due date earlier than its due date since

it is combined with a job that has very earlier due date.

For explaining the meaning of control parameter better: assume that a job batch

consists of four jobs all of which have a production time of 10 with due dates 1, 2, 4 and

5. Also assume that there is a setup time of 2 before the production of this job batch.

Since production per setup value is the ratio between production time and setup time,

it is found as 20 in this example since production time is 40 due to (10 + 10 + 10 + 10)

and setup time is 2. The maximum difference between due dates of jobs is 4 due to

difference between due dates of jobs four and one. The decision to combine these jobs

in a job batch is done with the two control parameters, if the production per setup and

maximum difference of the job batch is not disturbing the control parameters boundary,

then these jobs can be formed into a job batch; otherwise they should be combined

into more than one batch.
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For making a reasonable amount of production after a setup, production per

setup value is desired to be at high levels and for not combining jobs with very distinct

due dates, maximum difference value is desired to be at lower levels.

In the first phase, an algorithm is run for gathering the jobs of a family into a

batch according to two control parameters which are production per setup and maxi-

mum difference. For making the logic of the algorithm clearer, we will define a notation.

4.1.1. Notation

The notation to be used in the algorithm is as follows:

MDf : Maximum difference control parameter value for family f

PPSf : Production per setup control parameter value for family f

dj : Due date of job j

Dj : Demand of job j

pfr : Production time for producing one unit of family f on machine r

Sfr : Setup time for producing one unit of family f on machiner

bjf : If job j is included in family f , it is equal to 1; otherwise it is 0

dbf : Due date of job batch b included in family f

dbff : Due date of the first job in job batch b of family f

dbfl: Due date of the last job in job batch b of family f
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Qbf : Total quantity of jobs included in job batch b of family f

Af : set of machines that family f can be produced

4.1.2. Inferences

The inferences we can get at the first phase are as follows:

Time spent for production of job batch b of family f in machine r: [Qbf ∗ pfr] ;

Production per setup value of job batch b of family f in machine r: [Qbf ∗ pfr/Sfr] ;

Maximum due date difference between jobs in job batch b: dbfl − dbff

In phase 1, production per setup value of a job batch b is not wanted to be less

than PPSf of the related family. So jobs should be combined enough to satisfy this

boundary. At the maximum difference point of view, maximum difference between job

due dates of a job batch is wanted to be smaller than MDf of the family. So we can’t

combine jobs with due dates that have difference more than maximum difference value

of the family.

4.1.3. Algorithm

Step 0: Sort families in ascending order with respect to index. Start with the

first non-processed family and go to Step 1.

Step 1: Sort jobs in family in ascending order with their due dates.

Step 2: Create a new job batch. Add job to this job batch.

Step 3: Calculate due date of job batch as follows:
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For all jobs in the batch calculate:

{due date of the job + processing time of succeeding jobs of this job in the batch}
The maximum value among all jobs is the due date of the job batch.

Step 4: If all jobs are processed, go to step 5.

Iterate succeeding job in the sequence.

Let i show the job sequence.

Look if control parameters are satisfied.

For maximum difference: [di − dbff ] < MDf should be satisfied.

For production per setup:
∑

r∈Af

[Qbf ∗ pfr]/
∑

r∈Af

Sfr < PPSf should be satisfied.

If parameters are satisfied add job to the existing job batch. Go to step 3.

If maximum difference of job batch is greater than or equal to MDf or if pro-

duction per setup is greater than or equal to PPSf , go to Step 2.

Step 5: If all families are processed, stop. Otherwise, pick the succeeding family

and go to step 1.

4.2. Second Phase

In the second phase of the suggested heuristic, outputs of first phase will be used

as input and by using job batches of families generated in the first phase, new time

structure will be constructed in this phase. An LP model is solved in second phase in

order to find effective production values in constructed time buckets.

After creating job batches of all families in first phase, phase 2 uses these job
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batches for creating time buckets. Time bucket structure generated in phase 2 consists

of family time buckets and resource time buckets.

Family time buckets are generated for each family, so each family has different

family time buckets according to due dates of their job batches. For constructing family

time buckets of a family, sequence job batches of that family in ascending order in their

due dates. A family time bucket is the time between consecutive due date values.

For explaining meaning of family time bucket better, assume that there is a family

with job batches which have due dates 3, 5, 7 and 9. So; first family time bucket for

that family will be time between 0 and 3. Second family time bucket is between time 3

and time 5. Third family time bucket is time between time 5 and 7. Last family time

bucket is between time 7 and time 9.

In order to construct resource time buckets, all job batches of all families are

combined and then arranged in ascending order according to their due dates. Resource

bucket is the time between consecutive due date values. Resource buckets are the same

in all machines.

Assume that we have two families. First family is a family with job batches which

have due dates 3, 5, 7 and 9. Second family have job batches with due dates 2, 5 and 8.

When we combine all job batch due dates; we have 2, 3, 5, 7, 8 and 9. So resource time

buckets for all families are: first resource time bucket between time 0 and 2, second

resource time bucket between time 2 and 3, third resource time bucket between 3 and

5, fourth resource time bucket is between 5 and 7, fifth resource time bucket between

7 and 8, last resource time bucket is between 8 and 9.

4.2.1. Notation

The notation to be used in the algorithm is as follows:

Tftf : Tardiness of family f in family time bucket tf which is the quantity of
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unsatisfied demand

Sfrt: Setup time for producing family f at machine r in resource time bucket

t

Xfrt: Total quantity of production of family f , at machine r, in resource time

bucket t

xfrt: Equals to 1 if family f can be produced on machine r in resource time

bucket t

pfr: Unit production time of family f at machine r

Sfr: Setup time needed for family f on machine r

Ct: Length of resource time bucket t

Ctf : Length of the resource time bucket succeeding family time bucket tf

Dft: Total demand of family f to be satisfied at the end of resource time bucket

t. Demand quantity is the demand of job batch of family f which has due date

equal to finish time of resource time bucket t

LP model for phase 2 is presented with its objective function and constraints.

4.2.2. Objective Function

Objective function of the LP model is minimizing total tardiness value. Sum

of tardiness (quantity of unsatisfied demand) of family f on family time bucket tf

multiplied by length of the resource time bucket succeeding family time bucket tf is
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calculated.

∑

f

∑

tf

Tftf ∗ Ctf (4.1)

4.2.3. Constraints

The LP model has three constraints. First constraint tries to make sure that

total time spend for setup and production inside a resource time bucket is less than or

equal to total time of resource time bucket itself for all resource time buckets and for

all machines.

∑

f

Xfrt ∗ pfr +
∑

f

Sfrt − Ct ≤ 0 ∀t,∀r (4.2)

Second constraint is for guaranteeing that total setup time in the resource time buckets

inside a family time bucket on a machine is equal to required setup for the corresponding

family and machine.

∑

t∈tf

Sfrt − Sfr = 0 ∀f,∀r (4.3)

Third constraint is for quantity of unsatisfied demand of a family in a family time

bucket, which is represented as tardiness, is greater than or equal to total demand up

to the family time bucket and cumulative production of that family due to the family

time bucket.

∑

t≤tf

∑

r

Xfrt ∗ xfrt −
∑

t≤tf

Dft + Tftf ≥ 0 (4.4)

All of decision variables should be greater than or equal to zero.

Tftf ≥ 0, Sfrt ≥ 0, Xfrt ≥ 0 ∀f,∀r,∀t,∀tf (4.5)
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4.3. Third Phase

After solving LP in the second phase, we know the production quantities in

resource time buckets. But we have to assign jobs to those productions in order to

generate a schedule showing in which machine each job is produced and between which

times.

In order to generate a schedule, production quantities of a family in different

resource time buckets are aggregated. This aggregation is done as follows: for resource

time buckets in a machine belonging to the same family time bucket are combined and

their total production quantity form a batch. The reason for that aggregation is that:

the production quantities of resource time buckets in a machine belonging to the same

family time bucket are partial productions of the same aggregate job.

Also there may be cases in which existing production quantities can’t satisfy the

demand. So; for those cases the unsatisfied proportion of demand is also made a batch

and is assigned to the machine where it can be finished first.

After combining production quantities of resource time buckets in a machine

belonging to the same family time bucket, and also generating batches for unsatisfied

demand, we find start times and finish times of batches in order to represent those

batches as schedule.

At the end of aggregation and finding start and finish times of job batches, a

schedule is at hand with job batches in which we can know the quantity, the producing

family, time information and the machine information.

Since we do not know exact finish times of jobs with the schedule at hand, and so

real tardiness values; we have to assign the jobs to those job batches. While assigning

jobs to job batches we can split jobs to more than one batch since we have the job

splitting property. After assignment of jobs to batches, we know real completion time

of all jobs. So with the real completion time of jobs, we calculate real tardiness values
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of all jobs.

4.3.1. Algorithm

Step 0: Sequence all family time buckets in ascending order with their due dates.

Start with the first non-processed family time bucket and go to Step 1.

Step 1: Combine production quantities of resource time buckets belonging to a

machine that is between start and finish time of the family time bucket. Create a job

batch for these combined resource time buckets.

Step 2: Find start and finish times for that created batch with considering family

setup structure.

Start time of the job batch: If there does not exist job batches in the machine

of the job batch, then start time of the job batch is the start time of the resource

time bucket that has the minimum start time among resource time buckets that have

constructed the job batch.

Assume that three resource time buckets have constructed the job batch, which

are the resource time buckets between times 2-5, 3-4 and 1-7. If there is not an existing

job batch on the machine of these resource time buckets, then start time of job batch

would be time 1 since the minimum start time is time 1.

If there exist job batches in the machine of the job batch, the last finishing one

among those job batches is the preceding batch of the job batch. Then start time of

the job batch is either start time of the resource time bucket that has the minimum

start time among resource time buckets that have constructed the job batch or finish

time of the preceding job batch. The selection is the one which has maximum value.

Also if the preceding batch is of another family, then we have to add the corresponding

family dependent setup value before starting the job batch. Finish time of the job

batch: Start time of the job batch + (total quantity of production) * (unit production
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time of family f on machine r)

Step 3: If all family time buckets are being processed, then go to Step 4, otherwise

move to to Step 1.

Step 4: All the resource buckets belonging to a family time bucket on a machine

are combined into a batch.

We have the batch information processing a particular family. With this infor-

mation we look whether the total demand of jobs belonging to each family is satisfied

with the current production or not.

If the demand is not satisfied, the unsatisfied portion is formed into a batch.

Assignment of this batch to a machine is done as follows: For all machines compute the

following: [(Finish time of last batch scheduled at machine) + (Quantity of unsatisfied

portion) * (Processing time of the family on machine)]

The machine with the minimum value is the machine to which the batch of

unsatisfied portion will be assigned.

Step 5: For finding tardiness values of jobs, assign them to batches.

This assignment is done as follows:

For each family, sequence all jobs in ascending order according to their due dates.

Also sequence the batches of the family in ascending order according to their start

times.

Assign the first non processed job in the sequence to the first job batch in the

sequence that has enough empty capacity. Remember that a job can be assigned to

more than one batch since it can be splitted. Go to Step 6.
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Step 6: If all jobs are assigned to a job batch, then go to step 7; otherwise make

a move to step 5.

Step 7: After generating a schedule with job batches, family dependent setup

times are added in this step. A rework is done on start and end times of job batches

and starting from the first job batch on all machines, if there is a family dependent

setup between a job batch and its preceding job batch, then this setup time is added

into the schedule and job batches are shifted accordingly.

After completing third phase, we have a complete schedule in which we can get

information about which job is processed on which machine(s), and between which

times. So we get the tardiness information of each job.

When calculating tardiness values of jobs, we look at the batches that the job is

assigned to. If a job is assigned to one batch which has a quantity equal to quantity

of the job, then completion time of the job is the completion time of batch. If job is

assigned to more than one batch, then completion time is calculated according to last

batch that it is assigned. But we have to think that the batch a job has been assigned

can have more than one jobs so when calculating completion time of a job, we have to

consider other jobs assigned to the same batch.

In an instance that a batch is producing more than one job, the completion time

of jobs included are not the same. Completion time of a job is the completion time of

the jobs that are assigned to the batch before this job and the job itself.

As example, we have job 1 with quantity of 100, which is assigned to batch 1

with quantity 70 starting at time 2 finishing at time 4, and batch 2 with quantity 150

starting at time 4, finishing at time 7. Also we have job 2 with quantity 40 which is

assigned to batch 2 after job 1 and a job 3 with quantity 130 which is assigned to batch

2 and batch 3 with quantity 50 starting at time 8 finishing at time 10.

Finishing time of job 1 is calculated from batch 2 since it is the last batch that job
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1 is assigned. Batch 1 produces 70 units of job 1 and 30 units of job 1 is produced by

batch 2. At batch 2 a production quantity of 150 is done in 3 unit times, so production

time per unit is: 0.02. Since job 1 is produced firstly on batch 2 and 30 units of job 1 is

produced, time spent for producing job 1 on batch 2 is 30 * (0.02) = 0.6 times. So since

batch 2 starts at time 4, when we add 0.6 production time, we find that completion

time of job 1 is time 4.6.

After finding completion time of job 1, we will find completion time of job 2

which is produced by batch 2 after job 1. Job 2 consumes 40 from batch 2. Since

40 units spend 40* (0.02) = 0.8 times to produce, job 2 will be completed at time

(4.6) + (0.8) = 5.4.

Job 3 is produced by two batches which are batch 2 and batch 3; 80 units on

batch 2 and 50 units on batch 3. Since completion time of batch 3 is the latest one

among these and its all production is only for job 3, completion time of job 3 is time

10 which is the completion time of batch 3.

4.4. Illustration of the Proposed Heuristic

In this section, first a simple example will be studied in order to make the pro-

posed solution more clear, and then a more complex example will be studied for better

understanding of the proposed heuristic.

Assume we have 3 machines, 5 jobs and 2 families. Quantities, due dates and

families of the jobs are presented in Table 4.4. In family 1 we have jobs with quantities

1500, 200 and 150. In family 2, we have jobs with quantities 1100 and 300. Jobs

of family 1 can be produced on both of the machines where jobs of family 2 can be

produced on only machine 12. Production time is 200 per unit for family 1 on all

machines and for family 2 production time is 75 per unit on machine 3.

In phase 1 of the proposed heuristic, according to the control parameters “pro-

duction per setup” and “maximum difference”, jobs of a family is grouped into job
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Table 4.1. Job information of example 1

Job Quantity Due date Family

1 1500 6 1

2 150 3 1

3 200 7 1

4 1100 5 2

5 300 10 2

batches. At the end of Phase 1, we have 3 job batches for family 1 and 2 job batches

for family 2 which are composed of a single job. Control parameters are assumed

production per setup as 100 and maximum difference as 1 day for all families. So pro-

duction per setup should be less than 100 and maximum difference should be less than

one day for aggregating jobs.

By using aggregate jobs formed at the Phase 1, we are going to construct the

time structure of the problem given the due dates of the aggregate jobs. Table 4.2

shows the due date structure of the families and the aggregate jobs.

Table 4.2. Aggregate jobs of all families of example 1

Aggregate Job Quantity Due date Family

1 1500 6 1

2 150 3 1

3 200 7 1

4 1100 5 2

5 300 10 2

In beginning of phase 2, family time buckets and resource time buckets are con-

structed. Family time buckets for family 1 is between time zero (0) and 3 and between

3 and 6 and between 6 and 7. Family time buckets for family 2 is between time zero

(0) and 5 and between 5 and 10.
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According to family time buckets, resource time buckets are generated for all ma-

chines. The resource buckets are: between time zero and 3, between 3 and 5, between

5 and 6, between 6 and 7, between 7 and 10. In Figure 4.3 family time buckets and

resource time buckets can be seen for each family and machine.

After constructing family time buckets and resource time buckets, an aggregate plan-

Figure 4.1. Family and resource time buckets of example 1

ning problem structure is constructed and solved in Phase 2. Values for production

variables at the end of Phase 2 are presented in Table 4.3.

Resource time buckets are abbreviated as ResTB and ResTB1 is between time

zero and 3, ResRB2 is between 3 and 5, ResTB3 is between 5 and 6, ResTB4 is between

6 and 7 and RestTB5 is between 7 and 10. Tardiness values of family time buckets

Table 4.3. Values of the production variables after running LP for example 1

Family Machine ResTB1 ResTB2 ResTB3 ResTB4 ResTB5

1 1 864 864 122 0 0

2 3 1400 0 0 0 0

are zero so the optimal objective value is also zero. Using the results of the LP solved
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in Phase 2, we will generate a schedule in Phase 3 which is represented as a set of

batches, including the information of start time, finish time, family and machine.

In Phase 3, batches are generated. In machine 1, batches are 864 and 986 sized

batches, in machine 3; a batch with size 1400 exists. These production quantities form

a batch and the batches form a schedule with start times, and times, corresponding

family and the resource information. After the formation of the batches, they are

sequenced in ascending order according to their due dates starting from the earliest

due date.

Batch of size 864 on machine 1 starts at time 1 and finishes at time 3 where

the other batch of the machine is between time 3 and 5. The batch on machine 3 is

between time 1 and 2.

Assignment of these batches to jobs is done like this: we have production of family

1 in machine 1 and we have jobs in family 1 with sizes 150, 1500 and 200 sequenced

in ascending order of due dates. Batch of size 864 is producing jobs 150 and 1500.

Batch of size 986 is producing jobs 1500 and 200. Job 1500 consume 714 from batch

of size 864 and consume 786 from batch of size 986. For family 2, we have production

on machine 3 and this batch produces all the jobs belonging to family.

Job with size 1500 finishes at time 4, job with size 1100 is produced at time 1,

job with size 200 is produced at time 5, job with size 300 is produced at time 2, and

job with size 150 is produced at time 1. According to these finishing times, tardiness

of all jobs is zero.

After giving the first simple example, it is better to work on a more complex test

example in which we can examine the specifications of our problem. In this second

example, we have the machine eligibility feature in which jobs can be produced on

some of the machines not on all of the machines.
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Figure 4.2. Gantt Chart of example 1

Assume we have 4 machines, 15 jobs and 3 families. Quantities, due dates and

families of the jobs are presented in Table 4.4. In family 1 we have jobs with quantities

1000, 2000, 500, 900, 400 and 600. In family 2, we have jobs with quantities 1400, 100

and 100. In family 3, we have jobs with quantities 1000, 1500, 300, 700 and 800.Jobs of

family 1 can be produced on only machine 2. Jobs of family 2 can be produced on any

machine. Jobs of family 3 can be produced on machine 2 and machine 3. Production

time is 100 per unit for family 1, 50 per unit for family 2, 150 per unit for family 3.

In phase 1 of the proposed heuristic, according to the control parameters “pro-

duction per setup” and “maximum difference”, jobs of a family is grouped into job

batches. At the end of Phase 1, we have 5 job batches for family 1, 3 job batches for

family 2 and 5 job batches for family 3 which are composed of a single job. In this

second example, we use control parameters different than example 1. Production per

set up is 50 and maximum difference is one day. So production per setup should be

less than 50 and maximum difference of due dates of jobs in a job batch should be less

than one day.

By using aggregate jobs formed at the Phase 1, we are going to construct the

time structure of the problem given the due dates of the aggregate jobs. Family 1

has 6 aggregate jobs, family 2 has 3 aggregate jobs and family 3 has 5 aggregate jobs.

Table 4.5 shows the due date structure of the families and the aggregate jobs.
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Table 4.4. Job information of example 2

Job Quantity Due date Family

1 1400 2 2

2 100 6 2

3 100 3 2

4 1000 3 1

5 2000 9 1

6 500 10 1

7 900 4 1

8 1000 10 3

9 1500 10 3

10 300 5 3

11 700 6 3

12 800 10 3

13 900 3 2

14 400 9 1

15 600 4 1

In beginning of phase 2, family time buckets and resource time buckets are con-

structed. Family time buckets for family 1 is between time zero (0) and 3, between 3

and 4, between 4 and 9, between 9 and 10. Family time buckets for family 2 is between

time zero (0) and 2, between 2 and 3, between 3 and 6. Family time buckets for family

3 is between time zero (0) and 5, between 5 and 6, between 6 and 10.

According to family time buckets, resource time buckets are generated for all

machines. The resource buckets are: between time zero and 2, between 2 and 3 and

between 3 and 4 and between 4 and 5 and between 5 and 6 and between 6 and 9 and

between 9 and 10. In Figure 4.3 family time buckets and resource time buckets can be

seen for each family and resource.
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Table 4.5. Aggregate jobs of all families of example 2

Aggregate Job Quantity Due date Family

1 1000 3 1

2 1500 4 1

3 2000 9 1

4 400 9 1

5 500 10 1

1 1400 2 2

2 1000 3 2

3 100 6 2

1 300 5 3

2 700 6 3

3 800 10 3

4 1500 10 3

5 1000 10 3

After constructing family time buckets and resource time buckets, an aggregate

planning problem structure is constructed and solved in Phase 2. Values for production

variables at the end of Phase 2 are presented in Table 4.6.

Resource time buckets are abbreviated as ResTB and ResTB1 is between time

zero and 2, ResTB2 is between 2 and 3, ResTB3 is between 3 and 4 and ResTB4 is

between 4 and 5 and ResTB5 is between 5 and 6 and ResTB6 is between 6 and 9 and

ResTB7 is between 9 and 10.

Table 4.6. Values of the production variables after running LP for example 2

Family Machine ResTB1 ResTB2 ResTB3 ResTB4 ResTB5 ResTB6 ResTB7

1 1 864 244 0 0 0 0 0

1 3 0 528 864 814 864 1222 0

2 3 1727 673 0 100 0 0 0

3 3 0 0 0 543 576 913 576

3 4 576 576 576 576 507 0 0
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Figure 4.3. Family and resource time buckets of example 2

Tardiness values of family time buckets are zero so the optimal objective value is

also zero. Using the results of the LP solved in Phase 2, we will generate a schedule

in Phase 3 which is represented as a set of batches, including the information of start

time, finish time, family and machine.

In Phase 3, batches are generated. In machine 1, a batch exists with size 1108. In

machine 3, batches are 1727, 528, 673, 864, 100, 2900 and 1489 sized batches, in machine

4, batches with size 2304 and 507 are produced. These production quantities form a

batch and the batches form a schedule with start times, and times, corresponding family

and the machine information. After the formation of the batches, they are sequenced

in ascending order according to their due dates starting from the earliest due date.

The sequence of batches in machine 2 is: first the one with 1727 size, then 528

sized, then 673, 864, 100, 2900 sized and finally the one with size 1489. Sequence of

batches at machine 4 is: first 2304 sized and the 507 sized batch.

Assignment of these batches to jobs is done like this: 1108 sized batch on machine

1 produces jobs sized 1000, 600 and 900. 1727 sized batch on machine 3 produces jobs
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1400 and 900, and 528 sized batch produces job sized 100. The batch with size 673 on

machine 3 is for job 900 and job 100. The batch with size 864 is for job with size 900.

Job with size 100 is produced by the batch with size 100 on machine 3 and jobs with

sizes 400, 200 and 500 are produced by batch sized 2900 on machine 3. Batch sized

1489 produces job with size 1500 on machine 3. On machine 4, we have batch with

size 2304 which is producing jobs with sizes 300, 700, 800 and 1000. Job with size 1000

and job with size 1500 are produced by batch with size 507 on machine 4.

Job with size 1400 finishes at time 1, job with size 300 is produced at time 1,

job with size 700 is produced at time 2, job with size 800 is produced at time 5, job

with size 900 is produced at time 3, job with size 400 is produced at time 6, job with

size 600 is produced at time 2, job with size 100 is produced at time 4, , job with size

100 is produced at time 3, job with size 1000 is produced at time 2, job with size 2000

is produced at time 6, job with size 500 is produced at time 7, job with size 900 is

produced at time 4, job with size 1000 is produced at time 5, job with size 1500 is

produced at time 9. According to these finishing times, tardiness of all jobs is zero.

Figure 4.4. Gantt Chart of example 2

4.5. Modeling with ICRON

In this part, we introduce the methodology used in design and implementation

phase of the study . In order to implement the heuristic that we propose, and also com-

pare performance of our heuristic over Sansarcı (2007), we implement these heuristics
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in ICRON. For making the implementation, we have used object oriented methodol-

ogy, object oriented mathematical programming and Graphical Scheduling Algorithm

Modeling System (GSAMS) module of ICRON software.

In order to apply the proposed heuristics explained in the previous chapters, we

have used ICRON software. ICRON is an optimization system developed in C++

to provide Advanced Planning and Scheduling (APS) and Capacity Planning (CP)

solutions.

ICRON is based on object oriented data models which involves classes and their

relationships. In object oriented methodology, real objects are represented in the by

class definition and their particular instances, namely objects of these classes. In

ICRON, user can make any class definition having attributes that may also refer to

other objects in the system. Algorithms can be constructed based on these class de-

finitions which are methods of the associated class in order to model the system and

execute as a solution procedure.

Graphical scheduling algorithm generation process is based on visualization with

node and link structures. User does not have to know any coding language and ICRON

requires no experience in software development from the user. ICRON provides an

environment for users to develop algorithmic modeling of variety of problems due to its

generic system architecture and also modeling of mathematical programming problems.

An example for demonstrating ICRON environment is given in Figure 4.5.



Figure 4.5. ICRON Environment
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5. SIMULATED ANNEALING APPROACH

For finding good control parameters for each family, a simulated annealing ap-

proach is used in this study. The details of the simulated annealing procedure are

provided in this section. Given an initial family control parameters sequence, a new

sequence is created by neighborhood generation.

Performance of the schedules generated by each neighborhood is compared based

on total tardiness values. The new control parameters sequence is accepted if its total

tardiness is smaller than the previous sequence. If the new total tardiness value is equal

to the previous total tardiness value, keeping the new tardiness value (abbreviate it

as: equal) in mind, another sequence is found by neighborhood generation, if the total

tardiness value found by that sequence (abbreviate it as: after equal) is lower than

equal value, than the control parameter sequence which generates after equal value is

accepted, otherwise the parameter sequence which generates equal value is accepted. If

the new total tardiness value is bigger than the previous total tardiness value, the new

control parameter sequence is accepted with some probability which decreases as the

process evolves. This acceptance probability depends on a temperature value which is

set to higher levels in initial iterations of the process and then this temperature value

is lowered (cooled) in later iterations. As the stopping criterion is met, the smallest

objective value found is selected as the solution of the simulated annealing approach.

5.1. Neighborhood Generation

The simulated annealing tries to find better total tardiness values by examining

the solution space. In order to examine the solution space, neighborhood generation

attempts are made. By changing the sequence of family control parameters, a new

neighborhood is generated and then the total tardiness value due to this new neigh-

borhood is calculated and the new tardiness value is compared with the old tardiness

value.
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Generation of the new sequence is accomplished in two ways. Either by swap-

ping control parameter values of two families, or by changing (increasing or decreasing)

control parameters of one family. While making change move, we decrease or increase

control parameters of a randomly selected family by a constant percentage amount.

This percentage is important since when it is low, then that will result with small

changes in results between two neighbourhods. So the search space of simulated an-

nealing will be bounded by that small percentage and will be a small search area. But

when the percentage is at higher values, then difference between two neighbourhood

results will be higher and which makes the search ineffective.

In this study, we select to use 5 percent as the percent change between two

neighbourhood values. Also when making swap move, the family to be swapped is the

family which includes the job with maximum tardiness value since it is wise to change

the parameter values of this family in order to look if some adjustments can lower the

total tardiness value. Other family to be swapped with the family which includes the

job maximum tardiness value and the family whose control parameters are changed

are selected randomly.

5.2. Acceptance Decision

In simulated annealing the procedure not only goes to better solutions, but it

can also jump to worse solutions. The decision to jump to a worse solution is done

based on an acceptance probability calculation. This acceptance probability is based

on difference between the new solution and the old solution and also to temperature

value. The temperature value is set to a higher level initially and decreased later.

Probability calculation is based on an exponential function where is the difference

between the new tardiness value found by the neighborhood family control parameter

sequence and the old tardiness value found by the previous family control parameter

sequence.

P(acceptance) = e−∆/T (5.1)
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Temperature value is set initially to a higher value which is calculated as:

((

number of families

2

))

∗ 4 ∗ number of families ∗ 1010. (5.2)

Temperature value is calculated like that since we can have
(

number of families
2

)

different

combinations of swap moves and for the other move. Since each family have two

control parameters and we can decrease one parameter, increase the other; increase

one parameter, decrease the other; decrease both or increase both. All these moves are

also done randomly. The temperature value is divided into 10 after each 10 iterations.

Acceptance probability is calculated and is compared with a random number

between 0 and 1. If acceptance probability is larger than the random number, the

new sequence is accepted although the new total tardiness value is a worse one. If

acceptance probability is smaller than the random variable, then the new sequence is

not accepted and procedure goes back to previous family parameter sequence.

5.3. Stopping Criterion

The simulated annealing procedure terminates when the solution is equal to the

lower bound or it reaches maximum number of non-improving solutions. Lower bound

is calculated as the solution in which jobs are scheduled in ascending order according

to their due dates and with zero setup. Maximum number of non-improving solutions

is calculated
[(

number of families
2

)

∗ 4 ∗ number of families
]

in order to include a logical

number of neighborhood generation moves.
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6. EXPERIMENTAL STUDY

In this section, we will first justify that making control parameters different for

each family gives better solutions than fixing the control parameters for all families.

We make this justification by generating a set of problem instances. Then we will give

an example presenting the simulated annealing approach. Moreover; we will compare

solutions of the work of Sansarcı (2007) and our solution. Then we will investigate the

effects of factors on the performance of the heuristic.

6.1. Need for Different Parameters

Sansarcı (2007) kept the control parameters the same for all families. But it is

better to give different control parameters for each family since each family has different

job combinations. In order to look whether changing values of the control parameters

are effective on the performance of the heuristic, we generate 629 problem instances. In

these instances the max earliness and production per setup values are set to different

values and the heuristic is run for each instance yielding the total tardiness value of all

jobs.

Assume we have 3 machines, 100 jobs and 2 families. The parameters are kept

the same for family 1 and for family 2, the parameters are changed. Maximum differ-

ence value is 6 days for family 1 and production per setup value is 50. For family 2,

maximum difference value can take on 17 different values. These are ranging between

1 day and 9 days. Production per setup value can take on 37 different values ranging

from 10 to 360. The results according to changing values of the control parameters are

shown in Table 6.1 as a matrix. Tardiness is given as hours in the results.
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Table 6.1: Results of control parameters

1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9

360 605 598 598 592 592 592 592 592 592 592 592 592 592 592 592 592 592

350 605 598 598 592 592 592 592 592 592 592 592 592 592 592 592 592 592

340 605 605 605 618 618 592 592 592 592 592 592 592 592 592 592 592 592

330 605 605 605 618 618 618 618 618 618 618 618 618 618 618 618 618 618

320 605 605 605 618 618 618 618 618 618 618 618 618 618 618 618 618 618

310 605 592 592 598 598 599 599 599 599 599 599 599 599 599 599 599 599

300 605 592 592 598 598 599 599 599 599 599 599 599 599 599 599 599 599

290 605 598 598 592 592 598 598 598 598 598 598 598 598 598 598 598 598

280 605 602 602 605 605 605 605 605 605 605 605 605 605 605 605 605 605

270 605 602 602 605 605 605 605 605 605 605 605 605 605 605 605 605 605

260 605 602 602 605 605 605 605 605 605 605 605 605 605 605 605 605 605

250 605 610 610 602 602 602 602 602 602 602 602 602 602 602 602 602 602

240 605 602 602 610 610 610 610 610 610 610 610 610 610 610 610 610 610

230 605 602 602 616 616 616 616 616 616 616 616 616 616 616 616 616 616

220 605 598 598 618 618 618 618 618 618 618 618 618 618 618 618 618 618

210 605 602 602 610 610 610 610 610 610 610 610 610 610 610 610 610 610

200 605 602 602 596 596 596 596 596 596 596 596 596 596 596 596 596 596

190 605 610 610 610 610 610 610 610 610 610 610 610 610 610 610 610 610

180 605 602 602 610 610 610 610 610 610 610 610 610 610 610 610 610 610

170 605 602 602 610 610 610 610 610 610 610 610 610 610 610 610 610 610

160 605 613 613 613 613 613 613 613 613 613 613 613 613 613 613 613 613

150 605 605 605 613 613 613 613 613 613 613 613 613 613 613 613 613 613

140 605 602 602 596 596 596 596 596 596 596 596 596 596 596 596 596 596

130 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

120 605 592 592 592 592 592 592 592 592 592 592 592 592 592 592 592 592

110 605 605 605 613 613 613 613 613 613 613 613 613 613 613 613 613 613

100 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

90 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

80 605 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618 618

70 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

60 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

50 605 614 614 614 614 614 614 614 614 614 614 614 614 614 614 614 614

40 605 614 614 614 614 614 614 614 614 614 614 614 614 614 614 614 614

30 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

20 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

10 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605

As we can see from the results matrix, the results are changing in different combi-

nations of control parameters. Although the results are not the same for all parameter

combinations, the results are not converging. We can’t generalize the structure of the

change in results according to change in parameter values. The changing results accord-

ing to different parameter combinations are presented in Figure 6.1. From the figure,
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Figure 6.1. Solution space for changing parameters

we can say that results are changing over a non- linear space for different parameter

combinations. Also we can’t generalize the results for change in production per setup

and maximum difference values, like we can’t say that it is decreasing or increasing

when parameters are increased. But more importantly, we can say that it is changing

for different parameter combinations, it can take on lower and higher values.

Also we can figure out that changing parameter values for families are a good

approach since for the fixed parameter values 50 for production per setup and 6 for

maximum difference the result is not a better one among other results. Maximum value

is 618 hours and the result when we fix the parameters for all families is 614 hours.

Whereas we can get minimum result for example when production per setup value is

360 and maximum difference is 6 days. This result justifies our claim that changing

control parameter values for each family is an acceptable claim in which we can get

lower objective values.

Since the solution space is a non-linear one, it is wise to use search techniques

for control parameter values of families. In this study, we decide to use simulated
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annealing algorithm for searching the values of control parameters.

6.2. Simulated Annealing Procedure

For examining results of the simulated annealing used, an example is presented.

Assume we have 4 machines, 100 jobs and 3 families. In family 1 we have 33 jobs.

In family 2, we have 36 jobs. In family 3, we have 31 jobs. Jobs of family 1 can be

produced on second and third machines where jobs of family 2 can be produced on

first, second and third machines. Jobs of family 3 can be produced on first and fourth

machines. Control parameter values for family 1 are: production per setup value:

100 and maximum difference value: 172800 minutes (2 days), and control parameter

values for family 2 are: production per setup value: 150 and maximum difference value:

259200 minutes (3 days), and control parameter values for family 3 is: production per

setup value: 260 and maximum difference value: 345600 minutes (4 days).

So initial control parameter sequence is: “100-172800(2 days), 150-259200(3

days), 260-345600(4 days)”. In Table A.1 of Appendix A, results of simulated anneal-

ing are shown. Family control parameters sequence, the resulting total tardiness and

the neighborhood generation move used can be seen in that table. For example we

start with sequence “100-172800, 150-259200, 260-345600 ” in which the total tardi-

ness value is 444. Then a new sequence which is a neighborhood sequence of previous

sequence is generated by making a change move by changing the control parameters

of family 3 which results with 456 total tardiness value, then a new sequence is gen-

erated also by making a change move resulting with an objective value 458. Then a

swap move is done by changing the control parameters of family 2 and 3 resulting with

a total tardiness value of 335, after that a change move is done by changing control

parameters of family 2. The procedure goes on in this manner. After applying sim-

ulated annealing procedure, we generate different solutions in different family control

parameter combinations. The best total tardiness value is the solution of simulated

annealing. In this example the minimum value of total tardiness is found as 298. In

Figure 6.3., results of simulated annealing are shown in a chart. As can be seen from

the figure, procedure can jump to worse values as well as better total tardiness values.
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Figure 6.2. Results of simulated annealing

6.3. Problem Generation

Four factors are considered in order to generate problem instances. There are

different levels of these factors. These factors are number of machines, number of

families, due date structure and eligible machine structure.

Levels of the four factors considered are:

• Two levels are generated for number of machines. These are: 3 or 7

• Three levels are generated for number of families. These are: 3, 5 or 7

• Three levels are generated for due date structure: U (0, 10), U (0, 20), or U (0,

30)

• Two different levels are generated for number of eligible machines for each family:

U (0.3, 0.7)*(number of machines) or U (0.1, 0.9)*(number of machines)

In order to see the performance of the proposed heuristic under different levels of
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the factors, an experimental design is prepared. Since there are two levels of number of

machines, three levels of number of families, three levels of due date structure and two

levels of number of eligible machines for each family, we have 36 different combinations

of these factors.

For all these different combinations of levels, we generate problem instances with

100 jobs. These problem instances are solved by the heuristic proposed by Sansarcı

(2007) and also the heuristic proposed in this study. Results of these two works are

compared for these 36 factor combinations. Results of the two compared heuristics

acording to each factor combination is in Table 6.2.

Also 15 problem instances are generated for each factor combination. So we

generate 540 problems at all and solve each problem instance with these two heuristics.

Detailed results can be seen in Table B.5. of Appendix B.



Table 6.2: Results in Different Factor Combinations

Number of machines Number of families Number of eligible machines Due date structure Other Heuristic Proposed Heuristic Difference (%)

3 3 U (0.3, 0.7) U (0, 10) 1949 1851 5

3 3 U (0.3, 0.7) U (0, 20) 1779 1548 13

3 3 U (0.3, 0.7) U (0, 30) 1682 1494 11

3 3 U (0.1, 0.9) U (0, 10) 1644 1582 4

3 3 U (0.1, 0.9) U (0, 20) 1650 1584 4

3 3 U (0.1, 0.9) U (0, 30) 1574 914 42

3 5 U (0.3, 0.7) U (0, 10) 1727 1552 10

3 5 U (0.3, 0.7) U (0, 20) 1418 1280 10

3 5 U (0.3, 0.7) U (0, 30) 1402 1086 23

3 5 U (0.1, 0.9) U (0, 10) 1750 1483 15

3 5 U (0.1, 0.9) U (0, 20) 1538 1313 15

3 5 U (0.1, 0.9) U (0, 30) 1440 896 38

3 7 U (0.3, 0.7) U (0, 10) 2109 1842 13

3 7 U (0.3, 0.7) U (0, 20) 2313 1716 26

3 7 U (0.3, 0.7) U (0, 30) 1790 1574 12

3 7 U (0.1, 0.9) U (0, 10) 1879 1961 -4

3 7 U (0.1, 0.9) U (0, 20) 2130 1824 14

3 7 U (0.1, 0.9) U (0, 30) 2022 1807 11

7 3 U (0.3, 0.7) U (0, 10) 174 103 41

7 3 U (0.3, 0.7) U (0, 20) 76 30 60

7 3 U (0.3, 0.7) U (0, 30) 93 13 86

7 3 U (0.1, 0.9) U (0, 10) 263 234 11

7 3 U (0.1, 0.9) U (0, 20) 151 95 37

7 3 U (0.1, 0.9) U (0, 30) 152 74 51

7 5 U (0.3, 0.7) U (0, 10) 760 599 21

7 5 U (0.3, 0.7) U (0, 20) 461 233 49

Continued on Next Page. . .



Number of machines Number of families Number of eligible machines Due date structure Other Heuristic Proposed Heuristic Difference (%)

7 5 U (0.3, 0.7) U (0, 30) 263 105 60

7 5 U (0.1, 0.9) U (0, 10) 812 617 24

7 5 U (0.1, 0.9) U (0, 20) 684 513 25

7 5 U (0.1, 0.9) U (0, 30) 378 359 5

7 7 U (0.3, 0.7) U (0, 10) 790 738 7

7 7 U (0.3, 0.7) U (0, 20) 602 379 37

7 7 U (0.3, 0.7) U (0, 30) 461 226 51

7 7 U (0.1, 0.9) U (0, 10) 896 725 19

7 7 U (0.1, 0.9) U (0, 20) 743 656 12

7 7 U (0.1, 0.9) U (0, 30) 460 401 13
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6.4. Comparison of Solutions

There are 36 combinations of factors for each of which 15 problem instances are

solved. When we look at results of experiments for these 36 combinations, we see that

the heuristic that we suggest gives better solutions in 35 factor combinations. It only

gives worse results in one factor combination which is sixteenth factor combination.

Moreover; in the sixteenth combination, our heuristic gives 7 better results where

the other heuristic gives 8 better results out of 15 results which is not an important

difference.

For making this comparison statistically, we perform paired t-test. In order to

compare whether the means of results of the two algorithms are equal or not; we will

use paired t-test. The paired t test provides a hypothesis test of the difference between

population means for a pair of random samples whose differences are approximately

normally distributed. In this case; the first population is the results found by using

the other heuristic and the second population is the results of our proposed heuristic.

In paired t-test; we use difference of the observations. We will take the null

hypothesis H0 that the difference of means of the first and second observations is 0;

and the alternative hypothesis H1 that the difference is not 0. The general paired t

test formation is given in the following:

Null Hypothesis: H0 : µ1 − µ2 = 0

Test Statistic Value: T =
d

Sd/
√

n

(d) is the sample mean of differences and Sd is the standard deviation of the differences

Sd
2 =

n
∑

i=1

[di − d]
2

n − 1
(6.1)
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Alternative Hypothesis: Rejection Level for H0

H1 : µ1 − µ2 > 0 T ≥ tα,n−1

H1 : µ1 − µ2 < 0 T ≤ −tα,n−1

H1 : µ1 − µ2 6= 0 either T ≤ −tα,n−1 or T ≥ tα,n−1

After making necessary calculations, d is found as 183.5556 and Sd is found as 156.7118.

Since we have 36 different factor combinations n is equal to 36. So resulting t statistic

value is found as 7.027761

In the investigated case; we have a power value of 0, 90 and α level of 0.05.

So, the t-value that we have to compare with the test statistic value we found is:

tα/2,n−1 = t0.025,35 as 2.021.

Since T > 2.021; we reject H0 which is µ1 − µ2 = 0. Now; we will determine

which one of the two heuristics is better by looking at the alternative hypothesis.

Alternative Hypothesis: Rejection Level for H0

H1 : µ1 − µ2 > 0 T ≥ tα,n−1

H1 : µ1 − µ2 < 0 T ≤ −tα,n−1

For making this decision, tα,n−1 = t0.05,35 is 1.684 and we will compare this with

our test statistic value.

Since T > 1.684; we will say µ1 − µ2 > 0 which means that difference between

the result of other heuristic and our heuristic is greater than zero.

That result shows that our proposed heuristic gives smaller total tardiness values

than the other heuristic. So; it is more logical to use our heuristic in our problem.
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6.5. Effects of Factors on Suggested Heuristic

Problem set is generated considering different levels of four factors which are

machine factor, family factor, eligibility factor and due date factor. In this section

effects of these four factors will be studied by presenting results according to different

levels of each factor. Also results based on statistical analysis will be given.

6.6. Effect of Machine Factor

For the number of machines factor, we have two levels which are 3 machines as

the low level and the other is 7 machines as the high level. Results with machine

number 3 are shown at the first column and results with 7 machines are shown at the

second column in table B.1 of Appendix B.

Average result with 3 machines is 1533 where average result with 7 machines is

346. This results with a 78 percent difference between two levels. We can say from this

result that machine number factor is affecting result of our suggested heuristic. This

result is logical since when number of machines is increased, we can finish jobs earlier

than when the number of machines is smaller. With increasing number of machines;

we can produce a job on more machines and can finish job earlier. So; tardy jobs are

produced earlier, resulting with a lower total tardiness value.

In order to investigate whether machine factor has an effect on our heuristic

or not, we use statistical t-test again. The null hypothesis in the test is: difference

between levels is zero. So, null hypothesis says that different levels of machine factor

doesn’t result in different results. Since we have 15 different problem instances, degrees

of freedom is 14 and α level is 0.05. So resulting t value is t0,025,14 which is 2.145. Since

test statistic value found by calculations is 13.0749371 ; we reject the null hypothesis

and conclude that machine factor is affecting our heuristic.
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6.7. Effect of Family Factor

For the number of machines factor, we have three levels which are 3 families as

the low level, 5 families as the medium level and the other is 7 families as the high

level. Results according to changing levels of family number factor are shown in table

B.2 of Appendix B.

Average result when there are 3 families is 804, average result with 5 families is

856 and average result when number of families is 7 comes as 1159. This results with

a 30 percent difference between low and high levels and 26 percent diference between

medium and high levels. As we can see from these results, total tardiness value is

increasing when number of families is increased. This result is also making sense when

we think the family dependent setup aspect of our problem. When number of families is

increased, occurrence of family dependent setups between batches is increasing. With

increasing time spend for family dependent setup; production of a job is shifted on

later times. So; tardy jobs are produced later, resulting with a higher total tardiness

value.

For searching the effect of family factor on our heuristic, the t-test is used. The

null hypothesis in the test is: difference between levels is zero. The t-value that we have

to compare is 2.145. Since test statistic value found by calculations is -5.915707393 ;

we reject the null hypothesis which results in conclusion that family factor is affecting

our heuristic.

6.8. Effect of Eligibility Factor

Eligibility factor for each family has two levels. The first level is U (0.3, 0.7) and

the second one is U (0.1, 0.9). Results with eligibility factor U (0.3, 0.7) are shown at

the first column and results with eligibility factor U (0.1, 0.9) are shown at the second

column in table B.3 of Appendix B.

Average result with eligibility factor U (0.3, 0.7) is 908 where average result with
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eligibility factor U (0.1, 0.9) is 971. So there is a 6 percent difference between two

levels. We can say from this result that eligibility factor has a slight effect on results

of our suggested heuristic.

T-test is used for examining the effect of eligibility factor on our heuristic. The t-

value that we have to compare which is t0.025,14 is 2.145. Since test statistic value found

by calculations is -0.967936931 which is lower than 2.145; we conclude that eligibility

factor is not affecting our heuristic.

6.9. Effect of Due Date Factor

For the due date factor, we have three levels which are U (0, 10) as the low

level, U (0, 20) as the medium level and the other is U (0, 30) as the high level.

Results according to these three levels of family number factor are shown in table B.4

of Appendix B.

Average result when due date factor level is at its low level is 1112, average result

when due date factor is U (0, 20) is 948 and average result when due date factor is at

its high level is 757. So there is a 32 percent difference between low and high levels

and 15 percent difference between medium and low levels.

From these results, we can conclude that when due date factor is affecting re-

sults of our heuristic. With increasing due date interval, maximum tardiness value

is decreasing since due dates of jobs are more different and more far away from each

other and also jobs have further due dates. More jobs can be produced with lower

tardiness values since their due dates are on later times. So; maximum tardiness value

is decreasing when due date factor is at higher levels.

For examining the effect of due date factor on our heuristic, statistical t-test

is used again. The test statistic value found after calculations is compared with the

t value that is corresponding to degrees of freedom and confidence interval. Since

degress of freedom is 14 and confidence interval is 90, t-value is found as t0,05,14. The
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test statistic value is compared with t0,05,14 which is 2.145. Comparison showed that

the test statistic value found by calculations which is 7.335507479 is larger than 2.145;

so we can conclude that due date factor is affecting our heuristic.
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7. SUMMARY AND CONCLUSIONS

In manufacturing facilities, one of the most important goals is to satisfy customer

demand on time. Being tardy makes companies to lose money and more importantly to

lose trust of their customers. So it is a significant issue not to produce jobs later than

their due dates. Facilities have to produce products efficiently and use their capacity in

a logical way. Also in facilities which produce different types of products, this need for

effective capacity usage plays an important role. Capacity has to be shared effectively

among these different product types.

In many situations where different types of products are produced, a setup time

has to be realized in between these different product types. But this situation is opposed

to the objective of being not tardy since end of production times of jobs are shifted to

later times. Due to this production environment, scheduling plays an important role.

Also, manufacturing systems which produce different products usually share machines

for those products. This situation increases the importance of scheduling, too.

The problem we focus in this study is a very common problem that many manu-

facturing facilities encounter. In our problem, there are several parallel machines with

different technological properties in order to produce different customer orders for dif-

ferent product families. Problem has family dependent type of setup structure which

means there is not a setup between jobs of the same family but there is a setup time

between productions of two families on the same machine consecutively.

Problem has also machine eligibility aspect in which jobs of a family can’t be

produced on all machines since machines have different technological properties. Only

machines which have technology that is appropriate for a family can produce the family.

This makes the problem more complex to solve. Job splitting is another property of

the problem we concern. Production of a job can be split into small productions on

different machines and/or different time buckets.
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In scheduling literature, there are articles related to our problem but the only one

considering our problem is Sansarcı (2007). Other articles handle parts of our problem

like job splitting and eligibility. Since the problem we focus in this study is a complex

problem with properties like machine eligibility, family dependent setup structure and

job splitting, there is hard to find much related articles. In chapter two, these articles

relating our problem are presented.

In section three of this work, the studied problem is described in detail and

formal problem definition of the problem is given by mathematical model. For solving

the problem defined, we suggest a heuristic consisting of three phases. Details of the

proposed heuristic are given in section four of this study.

Heuristic consists of three phases. In the first phase, jobs of a particular family are

aggregated according to control parameters. These control parameters are production

per setup and maximum difference value. When combining jobs, these parameters

decide whether to go on combining or to stop. Production per setup is a measure

of time spend for production according to time spend for setup. It forces system to

produce more so that it is worth to make setup for that production. It is logical

that a control like this exists since making too much setup and producing in fewer

amounts is not a well situation when we think from economical aspect of view. The

other parameter, maximum difference determines if the differences of the due dates

of jobs are acceptable for aggregation. This control parameter is also making sense

since combing jobs with very different due dates is not acceptable in many cases.

If total production of jobs that are aggregated is smaller than production per setup

parameter multiplies by setup time and maximum difference between jobs is smaller

than maximum difference, then aggregation of jobs is continued.

After completing first phase, created job batches are used for generating time

buckets which are used as inputs of phase two. In phase two, production values in

these time buckets are found by solving LP. These production quantities are inputs of

phase three for generating job batches. Jobs are assigned to job batches generated in

phase three so that production time and tardiness values for all jobs can be found.
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In our study, we use simulated annealing approach for finding good control para-

meter values for families. Starting with an initial family control parameters sequence,

simulated annealing procedure is applied by moving to neighborhoods. Solutions at

each neighborhood are found by the suggested heuristic and according to simulated

annealing logic that we use, appropriate moves are done.

In experimentation section of this study, solutions of Sansarcı (2007) and our

study are compared. In other study, control parameters for all families are kept the

same whereas control parameters of families are different in our study. Since job

structures of all families are not the same, it makes sense that control parameters of

each family should be different than each other. For making this comparison between

two studies, problem instances are generated at different levels of factors which are

number of families, number of machines, eligibility structure and due date structure.

In order to implement heuristic of Sansarcı (2007) and our heuristic, ICRON is

used. Both heuristics are modeled in ICRON and problems are solved by each heuristic.

There are 36 combinations for these factor levels and for each factor combination, 15

problems are generated resulting in 540 problem instances. Each problem instance is

solved by heuristic of Sansarcı (2007) and our heuristic. Results of experimentations

showed that in only one factor combination the other heuristic is better than our

heuristic which is a very good performance.

Also from experimentations, effects of factors over the heuristic that we concern

are also investigated. Results showed that number of families is affecting our heuristic

since when number of families is increased, tardiness increases. Also number of ma-

chines is affecting our heuristic due to decrease in tardiness when number of families

increase. Due date structure is another factor that affects our heuristic since when due

date interval is increased, tardiness decreases.

As guide to further researches, different control parameters when aggregating jobs

can be used in later studies like a control parameter considering demand of jobs that

are aggregated.
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Moreover for making comparison between the other heuristic and other heuristic,

different performance evaluation criterion can be used like maximum completion time,

value or total tardiness value.

Also different search methods can be used other than simulated annealing like ge-

netic algorithm or tabu search. A different approach can be used in simulated annealing

like other neighborhood generation methods.

Later studies may also try to solve problem optimally. Although it is a high

possibility that it will take large amount of time for finding optimum solutions, it may

worth to try for that. So that optimum results can be compared by result found by

our heuristic.
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APPENDIX A: Results of Simulated Annealing

Table A.1: Results of simulated annealing

OBJECTIVE FAMILY PARAMETERS NEIGHBOURHOOD

444 100-172800 150-259200 260-345600

456 100-172800 150-259200 273-362880 change

458 100-172800 157.5-272160 273-362880 change

335 100-172800 273-362880 157.5-272160 swap

316 100-172800 286.7-344736 157.5-272160 change

330 100-172800 286.7-344736 149.6-285768 change

451 100-172800 149.6-285768 286.7-344736 swap

330 100-172800 286.7-344736 149.6-285768 swap

330 100-172800 301-327499.2 149.6-285768 change

330 100-172800 316.1-343874.2 149.6-285768 change

330 100-172800 300.3-326680.5 149.6-285768 change

330 100-172800 285.3-310346.5 149.6-285768 change

451 100-172800 149.6-285768 285.3-310346.5 swap

477 100-172800 149.6-285768 271-325863.8 change

330 100-172800 271-325863.8 149.6-285768 swap

314 105-181440 271-325863.8 149.6-285768 change

483 105-181440 149.6-285768 271-325863.8 swap

428 105-181440 149.6-285768 284.6-342157 change

441 105-181440 142.1-271479.6 284.6-342157 change

456 99.8-172368 142.1-271479.6 284.6-342157 change

394 99.8-172368 284.6-342157 142.1-271479.6 swap

425 284.6-342157 99.8-172368 142.1-271479.6 swap

351 284.6-342157 142.1-271479.6 99.8-172368 swap

425 284.6-342157 99.8-172368 142.1-271479.6 swap

461 142.1-271479.6 99.8-172368 284.6-342157 swap

445 142.1-271479.6 99.8-172368 270.4-325049.1 change

461 142.1-271479.6 99.8-172368 283.9-341301.6 change

404 142.1-271479.6 283.9-341301.6 99.8-172368 swap

401 149.2-257905.6 283.9-341301.6 99.8-172368 change

461 149.2-257905.6 99.8-172368 283.9-341301.6 swap

401 149.2-257905.6 283.9-341301.6 99.8-172368 swap

Continued on Next Page. . .
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OBJECTIVE FAMILY PARAMETERS NEIGHBOURHOOD

351 283.9-341301.6 149.2-257905.6 99.8-172368 swap

351 283.9-341301.6 141.7-245010.3 99.8-172368 change

422 283.9-341301.6 99.8-172368 141.7-245010.3 swap

351 283.9-341301.6 141.7-245010.3 99.8-172368 swap

422 283.9-341301.6 99.8-172368 141.7-245010.3 swap

417 283.9-341301.6 99.8-172368 134.6-257260.8 change

420 283.9-341301.6 94.8-180986.4 134.6-257260.8 change

424 283.9-341301.6 94.8-180986.4 141.3-270123.8 change

473 141.3-270123.8 94.8-180986.4 283.9-341301.6 swap

449 141.3-270123.8 94.8-180986.4 269.7-324236.5 change

379 141.3-270123.8 269.7-324236.5 94.8-180986.4 swap

351 269.7-324236.5 141.3-270123.8 94.8-180986.4 swap

351 283.2-308024.7 141.3-270123.8 94.8-180986.4 change

351 297.4-323425.9 141.3-270123.8 94.8-180986.4 change

360 297.4-323425.9 148.4-283630 94.8-180986.4 change

428 94.8-180986.4 148.4-283630 297.4-323425.9 swap

314 94.8-180986.4 297.4-323425.9 148.4-283630 swap

438 297.4-323425.9 94.8-180986.4 148.4-283630 swap

385 297.4-323425.9 99.5-190035.7 148.4-283630 change

385 282.5-307254.6 99.5-190035.7 148.4-283630 change

455 282.5-307254.6 99.5-190035.7 155.8-269448.5 change

469 282.5-307254.6 94.5-199537.5 155.8-269448.5 change

360 282.5-307254.6 155.8-269448.5 94.5-199537.5 swap

300 282.5-307254.6 163.6-255976.1 94.5-199537.5 change

469 282.5-307254.6 94.5-199537.5 163.6-255976.1 swap

455 282.5-307254.6 99.2-209514.4 163.6-255976.1 change

300 282.5-307254.6 163.6-255976.1 99.2-209514.4 swap

298 282.5-307254.6 163.6-255976.1 104.2-219990.1 change

401 163.6-255976.1 282.5-307254.6 104.2-219990.1 swap

298 282.5-307254.6 163.6-255976.1 104.2-219990.1 swap

374 282.5-307254.6 171.8-243177.3 104.2-219990.1 change

418 282.5-307254.6 104.2-219990.1 171.8-243177.3 swap

485 171.8-243177.3 104.2-219990.1 282.5-307254.6 swap

401 171.8-243177.3 282.5-307254.6 104.2-219990.1 swap

401 180.4-231018.4 282.5-307254.6 104.2-219990.1 change

Continued on Next Page. . .
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OBJECTIVE FAMILY PARAMETERS NEIGHBOURHOOD

401 171.4-242569.3 282.5-307254.6 104.2-219990.1 change

401 171.4-242569.3 282.5-307254.6 109.4-208990.6 change

396 109.4-208990.6 282.5-307254.6 171.4-242569.3 swap

456 109.4-208990.6 171.4-242569.3 282.5-307254.6 swap

396 109.4-208990.6 282.5-307254.6 171.4-242569.3 swap

356 109.4-208990.6 282.5-307254.6 162.8-230440.8 change

356 109.4-208990.6 296.6-322617.3 162.8-230440.8 change

356 109.4-208990.6 281.8-306486.4 162.8-230440.8 change

455 281.8-306486.4 109.4-208990.6 162.8-230440.8 swap

298 281.8-306486.4 162.8-230440.8 109.4-208990.6 swap

401 162.8-230440.8 281.8-306486.4 109.4-208990.6 swap

298 281.8-306486.4 162.8-230440.8 109.4-208990.6 swap

401 162.8-230440.8 281.8-306486.4 109.4-208990.6 swap

401 154.7-241962.8 281.8-306486.4 109.4-208990.6 change

401 154.7-241962.8 281.8-306486.4 114.9-219440.1 change

411 281.8-306486.4 154.7-241962.8 114.9-219440.1 swap

471 114.9-219440.1 154.7-241962.8 281.8-306486.4 swap

471 114.9-219440.1 147-254060.9 281.8-306486.4 change

362 114.9-219440.1 281.8-306486.4 147-254060.9 swap

362 109.2-208468.1 281.8-306486.4 147-254060.9 change

471 109.2-208468.1 147-254060.9 281.8-306486.4 swap

362 109.2-208468.1 281.8-306486.4 147-254060.9 swap

401 109.2-208468.1 281.8-306486.4 139.7-241357.9 change
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APPENDIX B: Results of Experimentations

Table B.1. Effect of machine factor

MACHINE NUMBER: 3 MACHINE NUMBER: 7

1851 103

1548 30

1494 0,13

1644 234

1584 95

914 152

1552 599

1280 223

1086 105

1483 617

1538 513

896 378

1842 738

1716 379

1574 226

1961 725

1824 656

1807 460



64

Table B.2. Effect of family factor

FAMILY NUMBER: 3 FAMILY NUMBER:5 FAMILY NUMBER:7

1851 1552 1842

1548 1280 1716

1494 1086 1574

1644 1483 1961

1584 1538 1824

914 896 1807

103 599 738

30 223 379

0,13 105 226

234 617 725

95 513 656

152 378 460
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Table B.3. Effect of eligibility factor

U (0.3, 0.7) U (0.1, 0.9)

1851 1644

1548 1584

1494 914

1552 1483

1280 1538

1086 896

1842 1961

1716 1824

1574 1807

103 234

30 95

0,13 152

599 617

223 513

105 378

738 725

379 656

226 460
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Table B.4. Effect of eligibility factor

U (0.3, 0.7) U (0.1, 0.9)

1851 1644

1548 1584

1494 914

1552 1483

1280 1538

1086 896

1842 1961

1716 1824

1574 1807

103 234

30 95

0,13 152

599 617

223 513

105 378

738 725

379 656

226 460



Table B.5: Comparison of Heuristic Methods

Number of machines Number of families Number of eligible machines Due date structure Other Heuristic Proposed Heuristic

3 3 U (0.3, 0.7) U (0, 10) 3022 2322

3 3 U (0.3, 0.7) U (0, 10) 2649 1694

3 3 U (0.3, 0.7) U (0, 10) 2605 1337

3 3 U (0.3, 0.7) U (0, 10) 1399 2830

3 3 U (0.3, 0.7) U (0, 10) 1416 2890

3 3 U (0.3, 0.7) U (0, 10) 1875 2353

3 3 U (0.3, 0.7) U (0, 10) 1432 1353

3 3 U (0.3, 0.7) U (0, 10) 2649 1720

3 3 U (0.3, 0.7) U (0, 10) 1473 1330

3 3 U (0.3, 0.7) U (0, 10) 1629 1333

3 3 U (0.3, 0.7) U (0, 10) 1403 1345

3 3 U (0.3, 0.7) U (0, 10) 3040 1711

3 3 U (0.3, 0.7) U (0, 10) 1416 2863

3 3 U (0.3, 0.7) U (0, 10) 1473 1360

3 3 U (0.3, 0.7) U (0, 10) 1759 1337

3 3 U (0.3, 0.7) U (0, 20) 2636 1165

3 3 U (0.3, 0.7) U (0, 20) 1487 2155

3 3 U (0.3, 0.7) U (0, 20) 1191 1497

3 3 U (0.3, 0.7) U (0, 20) 1176 1116

3 3 U (0.3, 0.7) U (0, 20) 2255 2605

3 3 U (0.3, 0.7) U (0, 20) 1436 1219

3 3 U (0.3, 0.7) U (0, 20) 2814 1112

3 3 U (0.3, 0.7) U (0, 20) 1597 2110

3 3 U (0.3, 0.7) U (0, 20) 2674 1093

3 3 U (0.3, 0.7) U (0, 20) 2654 1473

3 3 U (0.3, 0.7) U (0, 20) 1452 1232

Continued on Next Page. . .



No. of Machines No. of Families No. of Eligible machines Due date structure Other Heuristic Proposed Heuristic

3 3 U (0.3, 0.7) U (0, 20) 1447 1494

3 3 U (0.3, 0.7) U (0, 20) 1452 1239

3 3 U (0.3, 0.7) U (0, 20) 1176 1079

3 3 U (0.3, 0.7) U (0, 20) 1245 2645

3 3 U (0.3, 0.7) U (0, 30) 2547 1841

3 3 U (0.3, 0.7) U (0, 30) 988 2396

3 3 U (0.3, 0.7) U (0, 30) 1498 1849

3 3 U (0.3, 0.7) U (0, 30) 2588 814

3 3 U (0.3, 0.7) U (0, 30) 2525 846

3 3 U (0.3, 0.7) U (0, 30) 1034 1207

3 3 U (0.3, 0.7) U (0, 30) 925 862

3 3 U (0.3, 0.7) U (0, 30) 2413 940

3 3 U (0.3, 0.7) U (0, 30) 2477 829

3 3 U (0.3, 0.7) U (0, 30) 1352 2351

3 3 U (0.3, 0.7) U (0, 30) 933 1845

3 3 U (0.3, 0.7) U (0, 30) 975 943

3 3 U (0.3, 0.7) U (0, 30) 2610 918

3 3 U (0.3, 0.7) U (0, 30) 1450 2367

3 3 U (0.3, 0.7) U (0, 30) 927 2402

3 3 U (0.1, 0.9) U (0, 10) 1694 2646

3 3 U (0.1, 0.9) U (0, 10) 1494 1669

3 3 U (0.1, 0.9) U (0, 10) 1266 903

3 3 U (0.1, 0.9) U (0, 10) 1344 1358

3 3 U (0.1, 0.9) U (0, 10) 1342 1540

3 3 U (0.1, 0.9) U (0, 10) 1366 1403

3 3 U (0.1, 0.9) U (0, 10) 1368 1351

3 3 U (0.1, 0.9) U (0, 10) 1756 3061

3 3 U (0.1, 0.9) U (0, 10) 2834 1416
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3 3 U (0.1, 0.9) U (0, 10) 1266 1519

3 3 U (0.1, 0.9) U (0, 10) 1481 1461

3 3 U (0.1, 0.9) U (0, 10) 1336 1571

3 3 U (0.1, 0.9) U (0, 10) 2326 1115

3 3 U (0.1, 0.9) U (0, 10) 1482 1597

3 3 U (0.1, 0.9) U (0, 10) 2315 1115

3 3 U (0.1, 0.9) U (0, 20) 2636 852

3 3 U (0.1, 0.9) U (0, 20) 1321 2086

3 3 U (0.1, 0.9) U (0, 20) 2186 569

3 3 U (0.1, 0.9) U (0, 20) 2136 2595

3 3 U (0.1, 0.9) U (0, 20) 1292 2089

3 3 U (0.1, 0.9) U (0, 20) 2774 1097

3 3 U (0.1, 0.9) U (0, 20) 1272 1472

3 3 U (0.1, 0.9) U (0, 20) 1285 2091

3 3 U (0.1, 0.9) U (0, 20) 2186 563

3 3 U (0.1, 0.9) U (0, 20) 1273 979

3 3 U (0.1, 0.9) U (0, 20) 1283 2086

3 3 U (0.1, 0.9) U (0, 20) 1278 2605

3 3 U (0.1, 0.9) U (0, 20) 1198 2642

3 3 U (0.1, 0.9) U (0, 20) 1535 1066

3 3 U (0.1, 0.9) U (0, 20) 1094 968

3 3 U (0.1, 0.9) U (0, 30) 2547 1243

3 3 U (0.1, 0.9) U (0, 30) 1921 733

3 3 U (0.1, 0.9) U (0, 30) 1147 1257

3 3 U (0.1, 0.9) U (0, 30) 1118 464

3 3 U (0.1, 0.9) U (0, 30) 1005 383

3 3 U (0.1, 0.9) U (0, 30) 1964 616

3 3 U (0.1, 0.9) U (0, 30) 1092 1001
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3 3 U (0.1, 0.9) U (0, 30) 486 1870

3 3 U (0.1, 0.9) U (0, 30) 2523 358

3 3 U (0.1, 0.9) U (0, 30) 1098 389

3 3 U (0.1, 0.9) U (0, 30) 1383 2347

3 3 U (0.1, 0.9) U (0, 30) 2527 846

3 3 U (0.1, 0.9) U (0, 30) 1922 766

3 3 U (0.1, 0.9) U (0, 30) 895 567

3 3 U (0.1, 0.9) U (0, 30) 1989 867

3 5 U (0.3, 0.7) U (0, 10) 2482 2293

3 5 U (0.3, 0.7) U (0, 10) 1414 1269

3 5 U (0.3, 0.7) U (0, 10) 1477 1256

3 5 U (0.3, 0.7) U (0, 10) 1617 2299

3 5 U (0.3, 0.7) U (0, 10) 1485 1335

3 5 U (0.3, 0.7) U (0, 10) 2473 1350

3 5 U (0.3, 0.7) U (0, 10) 1639 2289

3 5 U (0.3, 0.7) U (0, 10) 1580 1435

3 5 U (0.3, 0.7) U (0, 10) 1520 1295

3 5 U (0.3, 0.7) U (0, 10) 1535 1401

3 5 U (0.3, 0.7) U (0, 10) 2500 1337

3 5 U (0.3, 0.7) U (0, 10) 1383 1497

3 5 U (0.3, 0.7) U (0, 10) 1502 1376

3 5 U (0.3, 0.7) U (0, 10) 1928 1328

3 5 U (0.3, 0.7) U (0, 10) 1367 1521

3 5 U (0.3, 0.7) U (0, 20) 2154 1006

3 5 U (0.3, 0.7) U (0, 20) 1181 976

3 5 U (0.3, 0.7) U (0, 20) 1279 1136

3 5 U (0.3, 0.7) U (0, 20) 1195 1216

3 5 U (0.3, 0.7) U (0, 20) 1471 1056
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3 5 U (0.3, 0.7) U (0, 20) 1252 1643

3 5 U (0.3, 0.7) U (0, 20) 1081 1228

3 5 U (0.3, 0.7) U (0, 20) 1639 1643

3 5 U (0.3, 0.7) U (0, 20) 1487 1341

3 5 U (0.3, 0.7) U (0, 20) 1533 1056

3 5 U (0.3, 0.7) U (0, 20) 1252 1643

3 5 U (0.3, 0.7) U (0, 20) 1081 1228

3 5 U (0.3, 0.7) U (0, 20) 1639 1643

3 5 U (0.3, 0.7) U (0, 20) 1487 1341

3 5 U (0.3, 0.7) U (0, 20) 1533 1053

3 5 U (0.3, 0.7) U (0, 30) 1932 741

3 5 U (0.3, 0.7) U (0, 30) 1135 1807

3 5 U (0.3, 0.7) U (0, 30) 1094 896

3 5 U (0.3, 0.7) U (0, 30) 877 1835

3 5 U (0.3, 0.7) U (0, 30) 765 982

3 5 U (0.3, 0.7) U (0, 30) 1912 924

3 5 U (0.3, 0.7) U (0, 30) 1022 987

3 5 U (0.3, 0.7) U (0, 30) 1608 771

3 5 U (0.3, 0.7) U (0, 30) 2067 1418

3 5 U (0.3, 0.7) U (0, 30) 1932 889

3 5 U (0.3, 0.7) U (0, 30) 1496 930

3 5 U (0.3, 0.7) U (0, 30) 1466 1340

3 5 U (0.3, 0.7) U (0, 30) 827 764

3 5 U (0.3, 0.7) U (0, 30) 992 974

3 5 U (0.3, 0.7) U (0, 30) 1912 1034

3 5 U (0.1, 0.9) U (0, 10) 2482 2293

3 5 U (0.1, 0.9) U (0, 10) 1414 882

3 5 U (0.1, 0.9) U (0, 10) 1634 2307
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3 5 U (0.1, 0.9) U (0, 10) 2434 1110

3 5 U (0.1, 0.9) U (0, 10) 1293 1565

3 5 U (0.1, 0.9) U (0, 10) 2482 2293

3 5 U (0.1, 0.9) U (0, 10) 1414 882

3 5 U (0.1, 0.9) U (0, 10) 1634 2307

3 5 U (0.1, 0.9) U (0, 10) 2434 1110

3 5 U (0.1, 0.9) U (0, 10) 1293 1565

3 5 U (0.1, 0.9) U (0, 10) 2503 1106

3 5 U (0.1, 0.9) U (0, 10) 1111 1233

3 5 U (0.1, 0.9) U (0, 10) 1506 1106

3 5 U (0.1, 0.9) U (0, 10) 1135 1420

3 5 U (0.1, 0.9) U (0, 10) 1495 1074

3 5 U (0.1, 0.9) U (0, 20) 737 2154

3 5 U (0.1, 0.9) U (0, 20) 2075 1496

3 5 U (0.1, 0.9) U (0, 20) 1136 1082

3 5 U (0.1, 0.9) U (0, 20) 665 1304

3 5 U (0.1, 0.9) U (0, 20) 1211 873

3 5 U (0.1, 0.9) U (0, 20) 1050 2114

3 5 U (0.1, 0.9) U (0, 20) 1702 2112

3 5 U (0.1, 0.9) U (0, 20) 1223 843

3 5 U (0.1, 0.9) U (0, 20) 2166 803

3 5 U (0.1, 0.9) U (0, 20) 2116 1608

3 5 U (0.1, 0.9) U (0, 20) 1620 1113

3 5 U (0.1, 0.9) U (0, 20) 2067 718

3 5 U (0.1, 0.9) U (0, 20) 1598 1495

3 5 U (0.1, 0.9) U (0, 20) 2087 705

3 5 U (0.1, 0.9) U (0, 20) 1624 1273

3 5 U (0.1, 0.9) U (0, 30) 1932 766
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3 5 U (0.1, 0.9) U (0, 30) 705 921

3 5 U (0.1, 0.9) U (0, 30) 1472 1394

3 5 U (0.1, 0.9) U (0, 30) 1969 956

3 5 U (0.1, 0.9) U (0, 30) 2021 738

3 5 U (0.1, 0.9) U (0, 30) 1151 560

3 5 U (0.1, 0.9) U (0, 30) 991 429

3 5 U (0.1, 0.9) U (0, 30) 1369 963

3 5 U (0.1, 0.9) U (0, 30) 1980 910

3 5 U (0.1, 0.9) U (0, 30) 816 600

3 5 U (0.1, 0.9) U (0, 30) 1041 975

3 5 U (0.1, 0.9) U (0, 30) 1912 653

3 5 U (0.1, 0.9) U (0, 30) 1090 830

3 5 U (0.1, 0.9) U (0, 30) 1922 867

3 5 U (0.1, 0.9) U (0, 30) 1228 1891

3 7 U (0.3, 0.7) U (0, 10) 3097 1579

3 7 U (0.3, 0.7) U (0, 10) 1751 1606

3 7 U (0.3, 0.7) U (0, 10) 2531 1591

3 7 U (0.3, 0.7) U (0, 10) 1818 2028

3 7 U (0.3, 0.7) U (0, 10) 2400 1605

3 7 U (0.3, 0.7) U (0, 10) 2170 1766

3 7 U (0.3, 0.7) U (0, 10) 1685 1884

3 7 U (0.3, 0.7) U (0, 10) 2050 2036

3 7 U (0.3, 0.7) U (0, 10) 1829 2036

3 7 U (0.3, 0.7) U (0, 10) 1788 2523

3 7 U (0.3, 0.7) U (0, 10) 1698 1680

3 7 U (0.3, 0.7) U (0, 10) 2796 1571

3 7 U (0.3, 0.7) U (0, 10) 1807 1935

3 7 U (0.3, 0.7) U (0, 10) 2451 2136
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3 7 U (0.3, 0.7) U (0, 10) 1765 1660

3 7 U (0.3, 0.7) U (0, 20) 2728 2203

3 7 U (0.3, 0.7) U (0, 20) 2764 1454

3 7 U (0.3, 0.7) U (0, 20) 2011 1348

3 7 U (0.3, 0.7) U (0, 20) 2493 1401

3 7 U (0.3, 0.7) U (0, 20) 3033 1843

3 7 U (0.3, 0.7) U (0, 20) 3191 1401

3 7 U (0.3, 0.7) U (0, 20) 1912 1404

3 7 U (0.3, 0.7) U (0, 20) 1742 1861

3 7 U (0.3, 0.7) U (0, 20) 2593 2056

3 7 U (0.3, 0.7) U (0, 20) 2644 2071

3 7 U (0.3, 0.7) U (0, 20) 1514 2189

3 7 U (0.3, 0.7) U (0, 20) 1392 1316

3 7 U (0.3, 0.7) U (0, 20) 1560 1706

3 7 U (0.3, 0.7) U (0, 20) 2426 2008

3 7 U (0.3, 0.7) U (0, 20) 2692 1482

3 7 U (0.3, 0.7) U (0, 30) 1929 1092

3 7 U (0.3, 0.7) U (0, 30) 1676 1142

3 7 U (0.3, 0.7) U (0, 30) 2227 1678

3 7 U (0.3, 0.7) U (0, 30) 1251 2471

3 7 U (0.3, 0.7) U (0, 30) 1821 1816

3 7 U (0.3, 0.7) U (0, 30) 1251 2392

3 7 U (0.3, 0.7) U (0, 30) 2257 1269

3 7 U (0.3, 0.7) U (0, 30) 2070 1089

3 7 U (0.3, 0.7) U (0, 30) 2329 1705

3 7 U (0.3, 0.7) U (0, 30) 1428 1656

3 7 U (0.3, 0.7) U (0, 30) 1652 1570

3 7 U (0.3, 0.7) U (0, 30) 1197 1085
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3 7 U (0.3, 0.7) U (0, 30) 2032 1483

3 7 U (0.3, 0.7) U (0, 30) 1179 1341

3 7 U (0.3, 0.7) U (0, 30) 2552 1835

3 7 U (0.1, 0.9) U (0, 10) 3121 1211

3 7 U (0.1, 0.9) U (0, 10) 1807 1909

3 7 U (0.1, 0.9) U (0, 10) 1906 2207

3 7 U (0.1, 0.9) U (0, 10) 2647 1626

3 7 U (0.1, 0.9) U (0, 10) 1440 1106

3 7 U (0.1, 0.9) U (0, 10) 2101 1682

3 7 U (0.1, 0.9) U (0, 10) 1154 2464

3 7 U (0.1, 0.9) U (0, 10) 1423 2398

3 7 U (0.1, 0.9) U (0, 10) 1423 2398

3 7 U (0.1, 0.9) U (0, 10) 1040 1486

3 7 U (0.1, 0.9) U (0, 10) 2758 2666

3 7 U (0.1, 0.9) U (0, 10) 2050 2036

3 7 U (0.1, 0.9) U (0, 10) 1829 2036

3 7 U (0.1, 0.9) U (0, 10) 1788 2523

3 7 U (0.1, 0.9) U (0, 10) 1698 1680

3 7 U (0.1, 0.9) U (0, 20) 2684 1602

3 7 U (0.1, 0.9) U (0, 20) 1871 1353

3 7 U (0.1, 0.9) U (0, 20) 2002 2111

3 7 U (0.1, 0.9) U (0, 20) 2026 2186

3 7 U (0.1, 0.9) U (0, 20) 2147 1814

3 7 U (0.1, 0.9) U (0, 20) 1896 2328

3 7 U (0.1, 0.9) U (0, 20) 2629 1783

3 7 U (0.1, 0.9) U (0, 20) 2040 2745

3 7 U (0.1, 0.9) U (0, 20) 2463 870

3 7 U (0.1, 0.9) U (0, 20) 1843 1630
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3 7 U (0.1, 0.9) U (0, 20) 2684 2869

3 7 U (0.1, 0.9) U (0, 20) 1090 1022

3 7 U (0.1, 0.9) U (0, 20) 2355 2193

3 7 U (0.1, 0.9) U (0, 20) 1866 1146

3 7 U (0.1, 0.9) U (0, 20) 2347 1713

3 7 U (0.1, 0.9) U (0, 30) 2549 1817

3 7 U (0.1, 0.9) U (0, 30) 2236 2071

3 7 U (0.1, 0.9) U (0, 30) 2430 1829

3 7 U (0.1, 0.9) U (0, 30) 2523 2174

3 7 U (0.1, 0.9) U (0, 30) 1312 1393

3 7 U (0.1, 0.9) U (0, 30) 2472 1675

3 7 U (0.1, 0.9) U (0, 30) 1812 2328

3 7 U (0.1, 0.9) U (0, 30) 2123 1978

3 7 U (0.1, 0.9) U (0, 30) 871 1996

3 7 U (0.1, 0.9) U (0, 30) 2159 2298

3 7 U (0.1, 0.9) U (0, 30) 2552 1835

3 7 U (0.1, 0.9) U (0, 30) 1642 1844

3 7 U (0.1, 0.9) U (0, 30) 1701 1178

3 7 U (0.1, 0.9) U (0, 30) 1963 1661

3 7 U (0.1, 0.9) U (0, 30) 1991 1038

7 3 U (0.3, 0.7) U (0, 10) 363 143

7 3 U (0.3, 0.7) U (0, 10) 186 125

7 3 U (0.3, 0.7) U (0, 10) 154 139

7 3 U (0.3, 0.7) U (0, 10) 161 13

7 3 U (0.3, 0.7) U (0, 10) 335 21

7 3 U (0.3, 0.7) U (0, 10) 27 51

7 3 U (0.3, 0.7) U (0, 10) 79 134

7 3 U (0.3, 0.7) U (0, 10) 342 10
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7 3 U (0.3, 0.7) U (0, 10) 153 51

7 3 U (0.3, 0.7) U (0, 10) 57 14

7 3 U (0.3, 0.7) U (0, 10) 168 47

7 3 U (0.3, 0.7) U (0, 10) 54 324

7 3 U (0.3, 0.7) U (0, 10) 162 9

7 3 U (0.3, 0.7) U (0, 10) 353 144

7 3 U (0.3, 0.7) U (0, 10) 20 324

7 3 U (0.3, 0.7) U (0, 20) 4 123

7 3 U (0.3, 0.7) U (0, 20) 145 0

7 3 U (0.3, 0.7) U (0, 20) 132 0

7 3 U (0.3, 0.7) U (0, 20) 153 0

7 3 U (0.3, 0.7) U (0, 20) 153 0

7 3 U (0.3, 0.7) U (0, 20) 0 0

7 3 U (0.3, 0.7) U (0, 20) 174 3

7 3 U (0.3, 0.7) U (0, 20) 3 111

7 3 U (0.3, 0.7) U (0, 20) 121 0

7 3 U (0.3, 0.7) U (0, 20) 120 91

7 3 U (0.3, 0.7) U (0, 20) 3 0

7 3 U (0.3, 0.7) U (0, 20) 125 0

7 3 U (0.3, 0.7) U (0, 20) 0 125

7 3 U (0.3, 0.7) U (0, 20) 6 0

7 3 U (0.3, 0.7) U (0, 20) 3 0

7 3 U (0.3, 0.7) U (0, 30) 3 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 16 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 25 0
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7 3 U (0.3, 0.7) U (0, 30) 0 0

7 3 U (0.3, 0.7) U (0, 30) 3 0

7 3 U (0.3, 0.7) U (0, 30) 25 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 16 2

7 3 U (0.3, 0.7) U (0, 30) 3 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.3, 0.7) U (0, 30) 4 0

7 3 U (0.1, 0.9) U (0, 10) 3 3

7 3 U (0.1, 0.9) U (0, 10) 188 139

7 3 U (0.1, 0.9) U (0, 10) 16 128

7 3 U (0.1, 0.9) U (0, 10) 3 131

7 3 U (0.1, 0.9) U (0, 10) 20 3

7 3 U (0.1, 0.9) U (0, 10) 4 3

7 3 U (0.1, 0.9) U (0, 10) 185 918

7 3 U (0.1, 0.9) U (0, 10) 204 934

7 3 U (0.1, 0.9) U (0, 10) 961 3

7 3 U (0.1, 0.9) U (0, 10) 924 43

7 3 U (0.1, 0.9) U (0, 10) 193 13

7 3 U (0.1, 0.9) U (0, 10) 882 3

7 3 U (0.1, 0.9) U (0, 10) 3 913

7 3 U (0.1, 0.9) U (0, 10) 184 140

7 3 U (0.1, 0.9) U (0, 20) 728 0

7 3 U (0.1, 0.9) U (0, 20) 3 0

7 3 U (0.1, 0.9) U (0, 20) 4 0

7 3 U (0.1, 0.9) U (0, 20) 4 0

7 3 U (0.1, 0.9) U (0, 20) 4 716
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7 3 U (0.1, 0.9) U (0, 20) 27 713

7 3 U (0.1, 0.9) U (0, 20) 6 0

7 3 U (0.1, 0.9) U (0, 20) 0 0

7 3 U (0.1, 0.9) U (0, 20) 0 0

7 3 U (0.1, 0.9) U (0, 20) 23 0

7 3 U (0.1, 0.9) U (0, 20) 3 0

7 3 U (0.1, 0.9) U (0, 20) 740 0

7 3 U (0.1, 0.9) U (0, 20) 704 0

7 3 U (0.1, 0.9) U (0, 20) 3 0

7 3 U (0.1, 0.9) U (0, 20) 23 0

7 3 U (0.1, 0.9) U (0, 30) 0 4

7 3 U (0.1, 0.9) U (0, 30) 0 4

7 3 U (0.1, 0.9) U (0, 30) 0 3

7 3 U (0.1, 0.9) U (0, 30) 0 0

7 3 U (0.1, 0.9) U (0, 30) 0 2

7 3 U (0.1, 0.9) U (0, 30) 466 3

7 3 U (0.1, 0.9) U (0, 30) 453 3

7 3 U (0.1, 0.9) U (0, 30) 439 4

7 3 U (0.1, 0.9) U (0, 30) 466 508

7 3 U (0.1, 0.9) U (0, 30) 0 12

7 3 U (0.1, 0.9) U (0, 30) 0 548

7 3 U (0.1, 0.9) U (0, 30) 0 17

7 3 U (0.1, 0.9) U (0, 30) 0 3

7 3 U (0.1, 0.9) U (0, 30) 466 3

7 3 U (0.1, 0.9) U (0, 30) 0 4

7 5 U (0.3, 0.7) U (0, 10) 864 1006

7 5 U (0.3, 0.7) U (0, 10) 770 643

7 5 U (0.3, 0.7) U (0, 10) 1119 401
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7 5 U (0.3, 0.7) U (0, 10) 778 440

7 5 U (0.3, 0.7) U (0, 10) 749 597

7 5 U (0.3, 0.7) U (0, 10) 487 337

7 5 U (0.3, 0.7) U (0, 10) 537 448

7 5 U (0.3, 0.7) U (0, 10) 728 830

7 5 U (0.3, 0.7) U (0, 10) 549 845

7 5 U (0.3, 0.7) U (0, 10) 1159 807

7 5 U (0.3, 0.7) U (0, 10) 536 794

7 5 U (0.3, 0.7) U (0, 10) 1159 761

7 5 U (0.3, 0.7) U (0, 10) 845 312

7 5 U (0.3, 0.7) U (0, 10) 712 372

7 5 U (0.3, 0.7) U (0, 10) 418 406

7 5 U (0.3, 0.7) U (0, 20) 566 255

7 5 U (0.3, 0.7) U (0, 20) 406 217

7 5 U (0.3, 0.7) U (0, 20) 654 278

7 5 U (0.3, 0.7) U (0, 20) 668 303

7 5 U (0.3, 0.7) U (0, 20) 390 268

7 5 U (0.3, 0.7) U (0, 20) 228 98

7 5 U (0.3, 0.7) U (0, 20) 285 334

7 5 U (0.3, 0.7) U (0, 20) 409 80

7 5 U (0.3, 0.7) U (0, 20) 507 279

7 5 U (0.3, 0.7) U (0, 20) 162 238

7 5 U (0.3, 0.7) U (0, 20) 433 195

7 5 U (0.3, 0.7) U (0, 20) 484 311

7 5 U (0.3, 0.7) U (0, 20) 502 259

7 5 U (0.3, 0.7) U (0, 20) 295 69

7 5 U (0.3, 0.7) U (0, 20) 928 161

7 5 U (0.3, 0.7) U (0, 30) 578 301
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7 5 U (0.3, 0.7) U (0, 30) 142 27

7 5 U (0.3, 0.7) U (0, 30) 264 33

7 5 U (0.3, 0.7) U (0, 30) 61 231

7 5 U (0.3, 0.7) U (0, 30) 142 25

7 5 U (0.3, 0.7) U (0, 30) 244 12

7 5 U (0.3, 0.7) U (0, 30) 230 43

7 5 U (0.3, 0.7) U (0, 30) 420 357

7 5 U (0.3, 0.7) U (0, 30) 222 71

7 5 U (0.3, 0.7) U (0, 30) 220 36

7 5 U (0.3, 0.7) U (0, 30) 120 24

7 5 U (0.3, 0.7) U (0, 30) 65 46

7 5 U (0.3, 0.7) U (0, 30) 144 51

7 5 U (0.3, 0.7) U (0, 30) 795 285

7 5 U (0.3, 0.7) U (0, 30) 312 43

7 5 U (0.1, 0.9) U (0, 10) 1949 1162

7 5 U (0.1, 0.9) U (0, 10) 792 483

7 5 U (0.1, 0.9) U (0, 10) 339 262

7 5 U (0.1, 0.9) U (0, 10) 289 276

7 5 U (0.1, 0.9) U (0, 10) 761 241

7 5 U (0.1, 0.9) U (0, 10) 407 1288

7 5 U (0.1, 0.9) U (0, 10) 1026 279

7 5 U (0.1, 0.9) U (0, 10) 365 326

7 5 U (0.1, 0.9) U (0, 10) 2427 1400

7 5 U (0.1, 0.9) U (0, 10) 369 700

7 5 U (0.1, 0.9) U (0, 10) 379 430

7 5 U (0.1, 0.9) U (0, 10) 321 1040

7 5 U (0.1, 0.9) U (0, 10) 1071 764

7 5 U (0.1, 0.9) U (0, 10) 1042 276
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7 5 U (0.1, 0.9) U (0, 10) 640 341

7 5 U (0.1, 0.9) U (0, 20) 175 658

7 5 U (0.1, 0.9) U (0, 20) 1619 737

7 5 U (0.1, 0.9) U (0, 20) 473 533

7 5 U (0.1, 0.9) U (0, 20) 645 414

7 5 U (0.1, 0.9) U (0, 20) 334 1113

7 5 U (0.1, 0.9) U (0, 20) 303 139

7 5 U (0.1, 0.9) U (0, 20) 1174 119

7 5 U (0.1, 0.9) U (0, 20) 585 235

7 5 U (0.1, 0.9) U (0, 20) 136 998

7 5 U (0.1, 0.9) U (0, 20) 417 630

7 5 U (0.1, 0.9) U (0, 20) 1076 1094

7 5 U (0.1, 0.9) U (0, 20) 522 533

7 5 U (0.1, 0.9) U (0, 20) 600 97

7 5 U (0.1, 0.9) U (0, 20) 557 68

7 5 U (0.1, 0.9) U (0, 20) 1640 328

7 5 U (0.1, 0.9) U (0, 30) 35 284

7 5 U (0.1, 0.9) U (0, 30) 31 123

7 5 U (0.1, 0.9) U (0, 30) 412 322

7 5 U (0.1, 0.9) U (0, 30) 19 270

7 5 U (0.1, 0.9) U (0, 30) 1374 42

7 5 U (0.1, 0.9) U (0, 30) 1378 191

7 5 U (0.1, 0.9) U (0, 30) 291 313

7 5 U (0.1, 0.9) U (0, 30) 38 1391

7 5 U (0.1, 0.9) U (0, 30) 32 249

7 5 U (0.1, 0.9) U (0, 30) 294 443

7 5 U (0.1, 0.9) U (0, 30) 294 114

7 5 U (0.1, 0.9) U (0, 30) 292 353
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7 5 U (0.1, 0.9) U (0, 30) 850 341

7 5 U (0.1, 0.9) U (0, 30) 291 902

7 5 U (0.1, 0.9) U (0, 30) 49 41

7 7 U (0.3, 0.7) U (0, 10) 802 656

7 7 U (0.3, 0.7) U (0, 10) 587 488

7 7 U (0.3, 0.7) U (0, 10) 696 490

7 7 U (0.3, 0.7) U (0, 10) 603 491

7 7 U (0.3, 0.7) U (0, 10) 825 483

7 7 U (0.3, 0.7) U (0, 10) 968 547

7 7 U (0.3, 0.7) U (0, 10) 715 766

7 7 U (0.3, 0.7) U (0, 10) 614 937

7 7 U (0.3, 0.7) U (0, 10) 642 569

7 7 U (0.3, 0.7) U (0, 10) 580 956

7 7 U (0.3, 0.7) U (0, 10) 723 519

7 7 U (0.3, 0.7) U (0, 10) 820 1168

7 7 U (0.3, 0.7) U (0, 10) 1259 1443

7 7 U (0.3, 0.7) U (0, 10) 970 730

7 7 U (0.3, 0.7) U (0, 10) 1042 826

7 7 U (0.3, 0.7) U (0, 20) 678 666

7 7 U (0.3, 0.7) U (0, 20) 703 341

7 7 U (0.3, 0.7) U (0, 20) 424 330

7 7 U (0.3, 0.7) U (0, 20) 454 444

7 7 U (0.3, 0.7) U (0, 20) 679 318

7 7 U (0.3, 0.7) U (0, 20) 515 350

7 7 U (0.3, 0.7) U (0, 20) 481 319

7 7 U (0.3, 0.7) U (0, 20) 461 373

7 7 U (0.3, 0.7) U (0, 20) 553 322

7 7 U (0.3, 0.7) U (0, 20) 537 373
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7 7 U (0.3, 0.7) U (0, 20) 624 342

7 7 U (0.3, 0.7) U (0, 20) 701 310

7 7 U (0.3, 0.7) U (0, 20) 777 336

7 7 U (0.3, 0.7) U (0, 20) 569 328

7 7 U (0.3, 0.7) U (0, 20) 867 538

7 7 U (0.3, 0.7) U (0, 30) 435 103

7 7 U (0.3, 0.7) U (0, 30) 586 87

7 7 U (0.3, 0.7) U (0, 30) 862 89

7 7 U (0.3, 0.7) U (0, 30) 541 314

7 7 U (0.3, 0.7) U (0, 30) 479 399

7 7 U (0.3, 0.7) U (0, 30) 515 385

7 7 U (0.3, 0.7) U (0, 30) 588 90

7 7 U (0.3, 0.7) U (0, 30) 246 328

7 7 U (0.3, 0.7) U (0, 30) 393 355

7 7 U (0.3, 0.7) U (0, 30) 283 290

7 7 U (0.3, 0.7) U (0, 30) 549 136

7 7 U (0.3, 0.7) U (0, 30) 482 351

7 7 U (0.3, 0.7) U (0, 30) 211 68

7 7 U (0.3, 0.7) U (0, 30) 224 79

7 7 U (0.3, 0.7) U (0, 30) 526 326

7 7 U (0.1, 0.9) U (0, 10) 650 978

7 7 U (0.1, 0.9) U (0, 10) 633 1260

7 7 U (0.1, 0.9) U (0, 10) 452 495

7 7 U (0.1, 0.9) U (0, 10) 580 493

7 7 U (0.1, 0.9) U (0, 10) 429 419

7 7 U (0.1, 0.9) U (0, 10) 2017 403

7 7 U (0.1, 0.9) U (0, 10) 531 420

7 7 U (0.1, 0.9) U (0, 10) 625 696
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7 7 U (0.1, 0.9) U (0, 10) 2102 500

7 7 U (0.1, 0.9) U (0, 10) 571 370

7 7 U (0.1, 0.9) U (0, 10) 445 1609

7 7 U (0.1, 0.9) U (0, 10) 465 1160

7 7 U (0.1, 0.9) U (0, 10) 1559 633

7 7 U (0.1, 0.9) U (0, 10) 1108 951

7 7 U (0.1, 0.9) U (0, 10) 1283 488

7 7 U (0.1, 0.9) U (0, 20) 993 151

7 7 U (0.1, 0.9) U (0, 20) 812 305

7 7 U (0.1, 0.9) U (0, 20) 811 590

7 7 U (0.1, 0.9) U (0, 20) 567 578

7 7 U (0.1, 0.9) U (0, 20) 807 363

7 7 U (0.1, 0.9) U (0, 20) 473 1002

7 7 U (0.1, 0.9) U (0, 20) 665 1679

7 7 U (0.1, 0.9) U (0, 20) 832 857

7 7 U (0.1, 0.9) U (0, 20) 993 163

7 7 U (0.1, 0.9) U (0, 20) 800 189

7 7 U (0.1, 0.9) U (0, 20) 1139 858

7 7 U (0.1, 0.9) U (0, 20) 386 515

7 7 U (0.1, 0.9) U (0, 20) 498 1190

7 7 U (0.1, 0.9) U (0, 20) 580 540

7 7 U (0.1, 0.9) U (0, 20) 782 866

7 7 U (0.1, 0.9) U (0, 30) 1421 350

7 7 U (0.1, 0.9) U (0, 30) 53 86

7 7 U (0.1, 0.9) U (0, 30) 43 957

7 7 U (0.1, 0.9) U (0, 30) 994 123

7 7 U (0.1, 0.9) U (0, 30) 370 306

7 7 U (0.1, 0.9) U (0, 30) 454 848
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7 7 U (0.1, 0.9) U (0, 30) 257 164

7 7 U (0.1, 0.9) U (0, 30) 345 401

7 7 U (0.1, 0.9) U (0, 30) 39 780

7 7 U (0.1, 0.9) U (0, 30) 475 860

7 7 U (0.1, 0.9) U (0, 30) 1167 588

7 7 U (0.1, 0.9) U (0, 30) 469 75

7 7 U (0.1, 0.9) U (0, 30) 41 185

7 7 U (0.1, 0.9) U (0, 30) 734 71

7 7 U (0.1, 0.9) U (0, 30) 43 218
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