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Scientific Research Institute during my thesis period.

This research has been partly supported by the Boğaziçi University Research
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ABSTRACT

SOLVING THE CAPACITATED MULTIFACILITY WEBER

PROBLEM APPROXIMATELY

In this study, we consider the capacitated multifacility Weber problem which is

concerned with locating m facilities in the plane, and allocating their limited capacities

to n customers at minimum total cost. In this group of location-allocation problems,

the only cost dealt with is the transportation cost that is proportional to the distance

between the facility and the customer. The capacities of each facility and the de-

mands and the locations of each customer are predetermined and given as parameters.

This problem is an intractable non-convex optimization problem and difficult to solve.

Therefore, using approximation strategies to compute efficient and accurate lower and

upper bounds for the capacitated multifacility Weber problem can be a good approach.

We first concentrate on the alternating location allocation heuristics. Then we

continue with the discretization strategies and the Lagrangean relaxations of the ap-

proximating models. Some specific lower bounding algorithms are also defined by using

the special properties of some of the distance functions. In addition to them, the relax-

ation of the main model is investigated and a Lagrangean heuristic is devised. In this

heuristic, either a linear relaxation or exact solution of the Lagrangean subproblem

is found by using column generation and branch and price algorithms combined with

concave minimization.

Although an exact solution methodology is not found, the approximation methods

give accurate results. The tight bounds calculated by using these algorithms can be

convenient in searching the exact solutions for this group of problems.
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ÖZET

SINIRLI SIĞALI ÇOK TESİSLİ WEBER PROBLEMİ İÇİN

YAKLAŞIK ÇÖZÜM YÖNTEMLERİ

Bu çalışmada enküçük maliyetle, m tane tesisin düzleme yerleştirilmesi ve sınırlı

sığalarıyla n müşterinin istemlerinin karşılanmasını amaçlayan sınırlı sığalı çok tesisli

Weber problemi üzerinde çalışıldı. Bu tür tesis yerleştirme atama problemlerindeki tek

maliyet tesis ve müşteri arasındaki uzaklıkla doğru orantılı olan taşıma gideridir. Tesis

sığaları ile müşteri yerleri ve istemleri önceden belirlenmiştir ve problem için veridir.

Bu problem çözümü zor olan, bir dışbükey olmayan eniyileme problemidir ve bazı

yaklaşık çözüm yöntemleriyle eniyi amaç fonksiyonu için üst ve alt sınırlar bulunup

sürekli olarak iyileştirilmesi iyi bir yaklaşım olabilir.

Yaklaşık çözüm yöntemlerine değişmeli yerleştirme atama benzeri sezgiselleriyle

başlandı ve asıl problemin kesikli uyarlaması ile onun Lagrange gevşetmesi ile devam

edildi. Bazı alt sınır algoritmaları da bazı uzaklık normlarının özel niteliklerinden

faydalanılarak tanımlandı. Bunlara ek olarak, asıl model gevşetilerek incelendi ve

bir Lagrange sezgiseli tasarlandı. Bu sezgiselde, Lagrange alt problemin ya doğrusal

gevşetmesi ya da tam sonucu sütun üretme ve dal maliyetlendir algoritmaları kul-

lanılarak ve içbükey enküçükleme alt problemleri çözülerek bulundu.

Her ne kadar bu çözüm yöntemleriyle her zaman kesin çözüm bulunamasa da

yaklaşık çözüm yöntemleri ümit verici sonuçlar verdi. Bu algoritmalar kullanılarak

hesaplanan sıkı sınırlar, bu grup problemler için kesin çözüm arayan yöntemlerde de

yararlı olabilirler.
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1. INTRODUCTION

Facility location allocation problems are used for deciding the locations of new

facilities –such as warehouses, factories and retailers– and the allocation of customers

to these new facilities. This decision is aimed to minimize the total cost composed

of the summation of transportation cost, which is the product of the defined distance

between customers and the supplying facility and the amount of product carried from

the given facility to the customer, and the fixed cost of opening facilities. If the possible

locations for the facilities is chosen from a set of candidate facility locations, problem

becomes discrete location allocation problem (DLAP) whereas if the facilities can be

located anywhere in the Euclidean space, the problem is named as continuous location

allocation problem (CLAP).

In the (single facility) Weber problem (SFWP), the aim is to find the optimal

location for a single facility in the Euclidean space which minimizes the total trans-

portation cost. Similar to SFWP, in the multifacility Weber Problem (MFWP), facility

location costs are not included in the objective, the only cost dealt with is the trans-

portation cost. In addition to that, the number of facilities is predetermined, given as

a parameter and facilities can be located anywhere in the continuous Euclidean space.

In the capacitated MFWP (CMFWP), each facility has a predetermined capacity

to supply customers whereas in the (uncapacitated) MFWP (UMFWP) facilities do

not have any capacity limitation so every customer is served by the closest facility.

Both the UMFWP and the CMFWP are nonlinear nonconvex optimization problems

and difficult to solve. These problems are NP-hard problems even if all customers are

located on a straight line [1]. However, if the optimal locations for the facilities are

given, the optimal allocation can be found by solving a transportation problem for the

CMFWP and assigning every customer to the nearest facility for the uncapacitated

case. Similarly, if the optimal allocations are given, both problems can be separated

into SFWP’s for every facility and their allocations over customers and solved easily.
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Table 1.1. Distance functions most frequently used in the literature

Distance Formula

Euclidean d (xi, aj) =
[
(xi1 − aj1)

2 + (xi2 − aj2)
2]1/2

rectilinear d (xi, aj) = |xi1 − aj1|+ |xi2 − aj2|

squared Euclidean d (xi, aj) = (xi1 − aj1)
2 + (xi2 − aj2)

2

lp d (xi, aj) = [|xi1 − aj1|p + |xi2 − aj2|p]1/p

lqp d (xi, aj) = [|xi1 − aj1|p + |xi2 − aj2|p]q/p

MFWPs can be categorized according to their distance functions. The most com-

mon distance functions investigated by the researchers are the Euclidean, rectilinear

and squared Euclidean distances. Although not specifically investigated in the liter-

ature, there are also some results for some of the lp distance functions. The most

frequently used distance functions can be seen in Table 1.1.

CMFWPs can be grouped into two classes: single-source and multi-source prob-

lems. In the single-source CMFWP every customer can only be supplied by a single

facility whereas in the multi-source CMFWP, customers are allowed to have more than

one supplier.

In this study, we are aiming to propose approaches to solve the lp-distance multi-

source CMFWP (LpCMFWP) for 1 ≤ p ≤ 2 approximately. In Chapter 2, we will

give general problem formulations for both the continuous and the discrete versions

for the capacitated and the uncapacitated MFWPs. This part will be followed by a

general literature survey on the MFWP in Chapter 3. In Chapter 4, a general overview

about the Lagrangean relaxation and subgradient optimization will be given. These

two will be used in several different parts of the thesis. Chapter 5 will include some

alternating location allocation type heuristics to solve the CMFWP, which gives upper

bounds for our problem. In Chapter 6, we will give information about the discretization

strategies for the CMFWP. The main motivation in this chapter is to solve CMFWP

approximately by solving approximating discrete capacitated multifacility location al-

location problem. In Chapter 7, a LR scheme will be formulated. In addition, we will

define some lower bounding algorithms for the Lagrangean relaxation of the CMFWP.
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Computational results will be given in Chapter 8 and the thesis will be concluded by

making comments and giving directions for the future work in the last chapter.
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2. PROBLEM FORMULATION

In CMFWP, the aim is to find the locations of m capacitated facilities and their

allocation for each of n customers in a Euclidean space which minimizes the total

transportation cost. Each facility has a predetermined supply capacity and their total

allocation to customers cannot exceed this amount. The mathematical programming

formulation of the CMFWP can be stated as follows:

CMFWP:

min
m∑

i=1

n∑
j=1

cijwijd (xi, aj) (2.1)

s.t.
m∑

i=1

wij = hj j = 1, ..., n (2.2)

n∑
j=1

wij = si i = 1, ...,m (2.3)

wij ≥ 0 i = 1, ...,m; j = 1, ..., n. (2.4)

In this model m is the number of facilities to be located and n is the number of

customers. hj is the demand and aj =
(
aj1 aj2

)T

is the coordinates of customer j.

si represents the capacity of facility i. xi =
(
xi1 xi2

)T

and wij are respectively the

unknown coordinates of facility i and the amount shipped from facility i to customer

j with the unit shipment cost per unit amount per unit distance cij. The formulation

assumes that the problem is balanced; i.e. total demand equals to total supply. If the

total demand exceeds the total supply, the problem is infeasible. On the other hand, if

total supply exceeds total demand, a dummy customer with the demand of the excess

supply and zero shipment cost per distance can make the problem balanced.

The objective (2.1) equals the total transportation cost. Constraints (2.2) and

Constraints (2.3) ensure demand satisfaction of each customer and supply limitation
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of each facility respectively.

The only difference between the CMFWP and its uncapacitated counterpart is

the capacity limitations over facilities. In the UMFWP capacities of the facilities are

unlimited. Because of this, the CMFWP formulation without the facility supply lim-

itation constraints, namely Constraints (2.3), can be used for the UMFWP. However,

since the customers are assigned to the nearest facility in the uncapacitated case, the

problem can be formulated using binary decision variables as follows:

UMFWP:

min
m∑

i=1

n∑
j=1

yijhjd (xi, aj) (2.5)

s.t.
m∑

i=1

yij = 1 j = 1, ..., n (2.6)

yij ∈ {0, 1} i = 1, ...,m; j = 1, ..., n. (2.7)

Different than the capacitated case, instead of wij, binary decision variable yij is

used. It is set to 1 if customer j fulfills all its demand from facility i, and 0 otherwise.

Constraints (2.6) ensure that each customer is assigned to a facility.

One of the other ways to formulate the UMFWP is to use an equivalent set par-

titioning problem (SPP) formulation (UMFWP2). In this formulation, every possible

subset of the customer set N are created which will be the sets in our SPP model. A

SFWP model is solved for every subset to find the cost of assigning a single facility

for the elements of this subset, or cost of selecting the given set for the SPP. The

mathematical formulation of the UMFWP2 is given by Krau [2] as follows:
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UMFWP2:

min
∑

s:Ss⊂N

cszs (2.8)

s.t.
∑

s:Ss⊂N

bjszs = 1 j = 1, ..., n (2.9)

∑
s:Ss⊂N

zs = m (2.10)

zs ∈ {0, 1} (2.11)

where,

bjs =

 1 if j ∈ Ss

0 otherwise
and cs = min

xs

{
n∑

j=1

bjsd (xs, aj)

}
(2.12)

and d (xs, aj) is any defined distance function for (xs, aj) pair.

In the above UMFWP2 formulation, Ss is the subset s of the customer set N ,

cs is the cost associated with this subset, zs is the binary decision variable, equals to

1 if subset Ss is selected or the customers in the subset Ss are supplied by the same

facility, 0 otherwise. Constraints (2.9) guarantee that every customer is assigned to a

facility. Constraint (2.10) ensures that the number of facilities which can be opened

equals to m. Equations (2.12) shows that for every subset Ss, a SFWP must be solved

to determine cs. Since the SFWP can be solved easily to optimality by using the

Weiszfeld procedure [3], the related costs cs can be calculated efficiently. However, the

main problem for this formulation is the exponential number of variables related to the

number of customers. There are 2n − 1 decision variables in this model.

In the discrete capacitated multifacility location allocation problem (DCMLAP),

the facilities have limited capacities and serve customers by using this limited sup-

ply in the Euclidean space, as it is the case in CMFWP. Both the locations of the

facilities and their allocations to customers which minimizes the total transportation

cost are found. The only difference is the possible set of locations for the facilities.
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In CMFWP, the facilities can be placed anywhere in the Euclidean space, whereas in

the DCMLAP, the set of candidate locations are predetermined and facilities can only

be placed on these sides. Besides, even though the CMFWP does not have a known

linear model, its discrete version, discrete capacitated multifacility location allocation

problem (DCMLAP), can be modeled and solved as a difficult mixed integer linear

programming (MILP) problem.

When K = {b1, ...,bk, ...,br} is the set of candidate locations for the facilities

and d(b, a) is the distance between customer location a and candidate location b, the

mathematical model of the DCMLAP can be stated as:

DCMLAP:

min
m∑

i=1

n∑
j=1

r∑
k=1

wijkcijd (bk, aj) (2.13)

s.t.
n∑

j=1

wijk = sixik i = 1, ...,m; k = 1, ..., r (2.14)

m∑
i=1

r∑
k=1

wijk = hj j = 1, ..., n (2.15)

r∑
k=1

xik = 1 i = 1, ...,m (2.16)

wijk ≥ 0 i = 1, ...,m; j = 1, ..., n; k = 1, ..., r (2.17)

xik ∈ {0, 1} i = 1, ...,m; k = 1, ..., r. (2.18)

Different than its continuous counterpart CMFWP, for the DCMLAP model given

above, binary decision variables xik are used to determine facility locations xi; it is set

to 1 if facility i is located on candidate location k, or 0 otherwise. Constraints (2.14)

ensure that only opened facilities can serve the customers. Constraints (2.15) guarantee

that the demand of each customer is satisfied and Constraints (2.16) force each facility

to be located only on one of the candidate locations.
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It is important to note that DCMLAP does not guarantee the optimal solution for

the CMFWP if candidate facility locations set does not include optimal facility sites.

In other words, if optimal facility locations for the CMFWP are included in the set of

candidate facility locations, DCMLAP will find an optimal solution for the CMFWP.

We can also state that, as the size of the candidate location set goes to infinity, the

optimal value of DCMLAP converges to the one of CMFWP.
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3. LITERATURE SURVEY

SFWP in the Euclidean space was first proposed by Pierre de Fermat. He com-

posed the problem with three equal demanding customers and it is solved in the same

decade [4]. Then the problem was expanded in three dimensions: different demands

for each customer, increased number of customers and increased number of facilities.

Cooper introduced the MFWP first [5]. He also proved that the objective func-

tion of the given problem is neither concave nor convex [6]. In addition to these, he

tried to solve the problem by a converging Alternating Location Allocation (ALA)

heuristic, which is still one of the widely used heuristics to solve the MFWP [7]. A

similar heuristic for the capacitated version, Capacitated Alternating Location Alloca-

tion (CALA) heuristic, was also proposed by Cooper. The only difference from ALA is

that, instead of assigning the customers to the closest facilities in the allocation phase,

a transportation problem is solved [8]. In addition to heuristic methods, Cooper also

defined an exact method, which enumerates all basic feasible solutions which is based

on the fact that the optimal solution lies at an extreme point of the feasible region [8].

Since the number of extreme points can be very large, this method is applicable for

only small sized problems.

Ostresh devised an exact method called TWAIN to solve the uncapacitated two

center location-allocation problem in particular [9]. His method first partitions the

customers into every possible two groups and solves a single facility location problem

for every group. However, since the convex hulls of each facility-customer group cannot

coincide at the optimality, he partitioned customers according to Thiessen polygons.

This method decreases possible partition groups from Stirling number of the second

kind, S(n, 2) = 2n−1 − 1 to C(n, 2) = n(n−1)
2

and less if colinearity exist in customer

locations. However, the method is impractical for the UMFWP with more than two

facilities.
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Rosing [10] devised a method using Ostresh’s approach, which works in two stages.

In the first stage, every possible convex hull and their costs are found. Costs are

calculated by solving a Weber problem for each convex hull which also finds optimal

facility locations for every convex hull. Then a set partitioning problem is solved which

includes every (or some intelligently selected) convex hulls and their associated costs

as columns.

Bongartz et al. [11] conducted a solution procedure which is generalized for lp

distance location allocation problems. Their algorithm finds stationary points and

descent directions by using second-order information for the locations and first-order

information for the allocations after relaxing the binary restrictions of the allocation

variables.

Bischoff and Klamroth [12] proposed two branch and bound schemes for the

multi connection location problem and UMFWP, one of which is branching on discrete

assignment variables whereas the other is branching on continuous location variables.

These are promising methods for both problems and neither of them dominates the

other.

Chen at al. [13] models UMFWP as a difference of convex function (DC) pro-

gramming problem and convert it into a concave minimization problem that is solved

by outer approximation method in which number of dimensions increases as the num-

ber of facilities increases. As a result problems with 20 facilities or less are solved

optimally.

Krau [2] reported an exact method that first models the UMFWP as a set covering

problem and solves them by using column generation and DC programming subprob-

lems. He also proposes a branch and price strategy to get binary optimal solution. As

a branching strategy, he selects two customers and creates child nodes by using them.

In the left child’s feasible column set, the selected customer pair either exist together

or does not exist at all, whereas in the right child’s column set, at most one of the

customers exists. UMFWP instances with at most 100 facilities are solved optimally
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by his algorithm and from the experimental results, he claims that, his method works

better for instances with small facility-to-customer ratio .

Righini and Zaniboni [14] extends Krau’s early work [2] and propose a method

which first models the UMFWP as a set partitioning model and solves the problem

again by column generation method. The difference between the work of Krau and

that of Righini and Zaniboni is that, in the latter one, subproblems are solved by

SFWP with limited distance instead of DC programming. They use two lower bounds

to decrease the CPU seconds. Similar to Krau [2] they apply a branch and price

technique which groups customers and create nodes accordingly. Last but not least, in

order to eliminate degeneracy, they added two different stabilization methods namely

box stabilization [15] and interior point method [16]. They solve problems optimally

with at most 2000 customers and 1300 facilities. Their claim about the algorithm is

that, it works better for instances with high facility-to-customer ratio.

Sherali and Tunçbilek transformed squared Euclidean distance CMFWP problem

into convex quadratic function with transportation constraints [17]. They developed

a branch and bound scheme which uses four upper bounding schemes one of which

is derived by using reformulation linearization technique (RLT) [18]. RLT linearizes

the original nonlinear problem unfortunately by increasing the number of variables

enormuously. Although RLT needs more computational effort, it results in tighter

bounds for the original problem. This lower bounding algorithm is used together with

branch and bound algorithm that implicitly enumerates the vertices of the feasible

region. In their branching scheme, the allocation space is partitioned according to the

values of the variables, either zero or positive.

Sherali et al. extend the same procedure for the Euclidean distance CMFWP

[19]. They again used RLT to find a lower bound for the subproblems arising at each

node. In addition to the Euclidean distance, they generalized the method for the lp

distance as well.
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In addition to exact methods given above, there are some heuristics which ap-

proximates the CMFWP. Aras et al. devised heuristics for both the rectilinear [20] and

the Euclidean distance [21] CMFWP’s. In the rectilinear distance case, they proposed

a new formulation which is more efficient than Sherali et al.’s [19] RLT based one. This

is based on Wendell and Hurter’s dominance results. They showed that Weber problem

has an optimal solution located within the convex hull of the set of customers for every

distance norm and located on the intersection point of vertical and horizontal lines

drawn through customer locations for rectilinear norm [22], Hansen et al. generalized

these two results for the MFWP [23]. Aras et al. exploited these results to formulate

the MFWP with the rectilinear distance function as equivalent MILP problem [20] and

developed an efficient discrete approximation heuristic (DAH) when the lp distance is

used instead [21]. In addition to these, it is worth noting that in both papers, Cooper’s

alternating location allocation heuristic [7] is used to improve the results at the final

stage.
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4. LAGRANGEAN RELAXATION AND SUBGRADIENT

OPTIMIZATION

This chapter aims to give a general idea about the Lagrangean relaxation and the

subgradient optimization. These two techniques are used together in several different

parts of this thesis. Lagrangean relaxation is one of the best relaxation technique for

the problems with complicated constraints. First we will describe this technique and

give an example that is somewhat similar to the problems considered in this research.

Then, we will give the general scheme for the subgradient optimization to solve the

Lagrangean dual problem.

As stated in the previous sections, it is computationally difficult to solve CMFWP

even for small instances. This is a nonlinear, nonconvex optimization problem. In order

to find good solution for these types of problems, lower and upper bounds for the same

problem can be calculated. However, accuracy and efficiency are the key issues in

calculating the lower and upper bounds.

Upper bounds (UB) (for minimization problems) can be calculated by using

heuristics. There are various types of heuristics reported in the literature. On the

other hand, lower bounds (LB) can be found by relaxing the original problem and

solving it. The most commonly used relaxation strategies are the linear programming

relaxation and the Lagrangean relaxation.

Lagrangean relaxation (LR) has been successfully applied to many difficult opti-

mization problems ever since Held and Karp’s work on the traveling salesman problem

[24]. It is used to find bounds on the optimal value of the MILP problems. In LR

one or some of the constraints are added to the objective function by multiplying this

function with a so called Lagrangean multiplier. Usually complicating constraints are

selected to be relaxed. The main issue in LR is the decision of constant values multi-

plied (i.e. Lagrangean multipliers) by the constraints and the choice of constraints to

be relaxed. Now let us show this technique on a generic model. Assume that our main
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problem (MP) is formulated as:

MP:

min cx (4.1)

s.t. Ax ≥ b (4.2)

Bx ≥ d (4.3)

x ≥ 0. (4.4)

If we decide to relax Constraints (4.3) our Lagrangean subproblem (LSP) can be re-

formulated as,

LSP:

min cx + λ (d−Bx) (4.5)

s.t. Ax ≥ b (4.6)

x ≥ 0 (4.7)

λ ≥ 0. (4.8)

As stated above, the objective function value of the LSP is a LB for the main

problem, and our aim is to make it as tight as possible. In other words, we are aiming

to maximize the LSP by choosing λ vector wisely. This new problem is named as the

Lagrangean dual problem (LDP) and has the following form:

LDP:

max
λ≥0


min cx + λ (d−Bx)

s.t. Ax ≥ b

x ≥ 0

 . (4.9)
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There are several ways for determining the values of these multipliers. One of

them is to solve LDP using the subgradient optimization (SO). SO is an iterative pro-

cedure and it creates multipliers for the LRP in every step with given initial values. It

attempts to maximize the lower bound obtained from the LR by calculating multipliers

wisely. SO computes tight lower bounds efficiently for the most of the MILP problems

and it is widely used in the literature as a result [25].

The generic subgradient algorithm for the minimization problem (4.1) - (4.4) is

given above. Here λ and G are respectively the Lagrangean multiplier and subgradient

vectors, CUB and CLB denote the recent bounds and ZUB and ZLB denote the current

best upper and lower bounds. π is the step size parameter.

1. Decide initial λ and π (where 0 < π ≤ 2).

2. Calculate CUB by using a problem specific heuristic.

3. Solve the LRP by using the current λ and find CLB

4. ZUB ← min {ZUB, CUB} and ZLB ← max {ZLB, CLB}

5. Calculate G as the infeasibility of the relaxed constraints.

6. Calculate step size T by using ZUB and CLB: T = π(ZUB−CLB)

|G|2

7. Update λ using the step size calculated above: λ = max {0,λ + TG}

8. Update π if necessary.

9. Go to Step 3 until termination criteria are satisfied.

Figure 4.1. General subgradient optimization algorithm
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5. ALTERNATING LOCATION ALLOCATION

HEURISTICS

Alternating location allocation heuristic [7] and its capacitated version [8] were

first proposed by Cooper and they are still two powerful heuristics to solve the MFWP.

One of their weak points is the dependency on the starting points of the heuristics. In

this chapter, first the CALA heuristic will be defined and then some more heuristics

built on CALA will be explained.

5.1. Capacitated Location Allocation Heuristic

As mentioned above, CALA heuristic was proposed by Cooper, who defined the

CMFWP in 1971 [8]. The heuristic is simply composed of the sequential location and

transportation problems (TPs). Even though the CMFWP is an NP-complete problem,

the location and transportation problems are easy to solve.

In TP the aim is to minimize the total transportation cost by only deciding the

allocations between facilities and the capacitated customers. Different than CMFWP,

in TP, locations of the facilities are known. The mathematical model for the TP is as

follows:

TP:

min
m∑

i=1

n∑
j=1

cijwijd (xi, aj) (5.1)

s.t.
m∑

i=1

wij = hj j = 1, ..., n (5.2)

n∑
j=1

wij = si i = 1, ...,m (5.3)

wij ≥ 0 i = 1, ...,m; j = 1, ..., n. (5.4)
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As given before in the CMFWP, facility locations are given as decision variables

whereas in TP xi’s are predetermined. Because of this difference, TP is an easy to

solve linear programming problem. Similar to CMFWP, wij is the decision variable

for the allocation amount sent from facility i to customer j. In addition to that,

Constraints (5.2) ensure demand satisfaction of each customer and Constraints (5.3)

limit the amount of goods that can be sent by the facilities.

The second part of the heuristic is composed of finding the allocations between

the facilities and the customers by solving a SFWP for every facility. In the SFWP, the

aim is to locate a single facility in a Euclidean space to minimize total transporation

cost. Allocations are predetermined and given as parameters to the problem. Different

than its multifacility counterpart, the SFWP can be solved easily by the Weiszfeld

procedure [3] or its generalizations [26]. Weiszfeld procedure is an iterative algorithm

which has fast asymptotic convergence. For wij is the predetermined allocations from

facility i to customer j, the overall Weiszfeld procedure can be formally stated as in

Figure 5.1.

1. t← 0

2. Initialize the facility location by setting x0
i1 =

nP

j=1
wijai1

nP

j=1
wij

and x0
i2 =

nP

j=1
wijai2

nP

j=1
wij

3. Calculate the distance d
(t)
ij = d

(
x

(t)
i , aj

)
4. Update the location of facility i as x

(t+1)
i1 =

nP

j=1

wijx
(t)
i1

d
(t)
ij

nP

j=1

wij

d
(t)
ij

and x
(t+1)
i2 =

nP

j=1

wijx
(t)
i2

d
(t)
ij

nP

j=1

wij

d
(t)
ij

5. t← t+ 1

6. Go to Step 3 until the termination criteria are satisfied

Figure 5.1. Weiszfeld procedure

Now we can define the CALA heuristic. CALA heuristic is initialized at given

initial facility locations. This locations are used to calculate distances that are the

main ingredients of the costs of TP. Then the TP is solved. The optimal allocations

found from the TP are treated as given during the location phase of the problem. A

SFWP is solved with them by using the Weiszfeld Procedure for every facility. Then,
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the location and allocation phases are repeated alternately until the stopping criteria

are not satisfied. The overall CALA heuristic procedure is given in Figure 5.2.

1. Define initial facility locations xi for i = 1, ...,m

2. Set facility locations xi for i = 1, ...,m as parameters and solve the TP to find

the allocations wij for i = 1, ...,m; j = 1, ..., n

3. Set allocations wij for i = 1, ...,m; j = 1, ..., n as parameters and solve a SFWP

for every facility to find the locations xi for i = 1, ...,m

4. Go to Step 2 until termination criteria are not satisfied

Figure 5.2. Capacitated alternating location allocation heuristic

It is worth to note here that, performance of CALA heuristic heavily relies on

the initial facility locations. For this reason we define some initialization methods.

5.2. Region Rejection Heuristic

In the region rejection heuristic (RRH), which is due to Luis et al. [27], the

aim is to select initial locations of the facilities well seperated. This is accomplished by

checking whether or not there is an already placed facility that remains within the circle

of a given radius centered at the newly initialized one. If this is the case, a new location

is randomly selected for that facility. Initialization is completed when all the facilities

are located within the convex hull of the customers, according to this procedure. In

other words, while the initial facility locations are assigned, if the randomly selected

location is not away from one of the previously placed facilities by a certain threshold

distance, the selected location is renewed or the radius is decreased by some amount.

Then the usual ALA steps are implemented. For the predetermined radius R, radius

decrasing factor α and the iteration limit P , the general scheme of RRH can be defined

as in Figure 5.3.
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1. Initialize R, P and find convex hull H of the customer locations

2. Let the facilities be in arbitrary order and set i← 1

3. If i = m+ 1 then go to Step 7, else t← 1

4. Repeat

(a) Select a point x̃i ∈ H randomly

(b) t← t+ 1

(c) If t > P then R← αR and t← 1

(d) Until min
i<i
{d (xi, x̃i)} ≥ R

5. xi ← x̃i

6. i← i+ 1 and go to Step 2

7. Run CALA heuristic starting with these initial facility locations

Figure 5.3. Region rejection heuristic

5.3. Discrete Region Rejection Heuristic

Discrete region rejection heuristic (DRRH) is developed as an enhancement of the

region rejection heuristic. In DRRH, instead of selecting a random initialized location

within the convex hull of the customers, a random customer is selected from the set of

customers and its coordinates are used as an initial location. The motivation behind

this is that the optimal facility locations usually overlaps with the customer locations

as observed for the UMFWP by Hansen et al. [23] and by Aras et al. [21] for the

CMFWP. The overall procedure for the DDRH is provided in Figure 5.4.

5.4. Region Rejection Heuristic with Dynamic Radius

In RRH, the size of the region is set to a fixed value, all restricted regions have the

same radius. However, this selection can be improper since some circles can have more

customer demands. For this reason RRH heuristic was improved with the dynamic

radius concept [27]. The radius of the facility is found by using an iterative procedure.

First, a value Q, which is the total demand of the customers remaining within the circle

centered of facility i with dynamic radius Ri are determined. Second, Ri is updated
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1. Initialize R and P

2. Let the facilities be in arbitrary order and set i← 1

3. If i = m+ 1 then go to Step 7, else t← 1

4. Repeat

(a) Select a random customer, say customer j and set x̃i ← aj

(b) t← t+ 1

(c) If t > P then R← αR and t← 1

(d) Until min
i<i
{d (xi, x̃i)} ≥ R

5. xi ← x̃i

6. i← i+ 1 and go to Step 2

7. Run CALA heuristic starting with these initial facility locations

Figure 5.4. Discrete region rejection heuristic

to satisfy the inequalities θhi ≤ Q ≤ hi, and the circle is created with center xi and

radius Ri. All the other parts of the heuristic is the same as the simple RRH heuristic.

In addition to parameters defined in RRH, for Re
i is the radius of facility i at iteration

e, Q(xi, Ri) is the total demand of customers inside the circle with center xi and radius

Ri, and E is the iteration limit in radius adjustment, the overall procedure of the region

rejection heuristic with dynamic radius (RRH′) can be seen in Figure 5.5.

5.5. Discrete Region Rejection Heuristic with Dynamic Radius

Similar to the modification done between RRH and RRH′, discrete region rejec-

tion heuristic with dynamic radius (DRRH′) includes notion of capacity of the facility

and demands of the customers around it. In addition to selection of random locations

over the customers, a dynamic radius is assigned for every located facilities. This value

is the radius of the customers whose demands’ summation is close to the capacity of

the facility. This radius is either found by multiplying it with a calculated parameter

or by bisection method. For the same parameters given in RRH′, the overall procedure

for the DRRH′ is listed as Figure 5.6.
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1. Initialize E, R, P and find convex hull H of the customer locations

2. Let the facilities be in arbitrary order and set i← 1

3. If i = m+ 1 then go to Step 14, else t← 1

4. Repeat (location selection)

(a) Select a point x̃i ∈ H randomly

(b) If t > P then go to Step 13

(c) t← t+ 1

(d) Until min
i<i
{d (xi, x̃i)} − ri ≤ 0

5. xi ← x̃i

6. Initialize R̃(0) = R and set e← 1

7. Repeat (radius adjustment)

(a) β ←
√

b

Q(xi,R̃(e))
and R̃(e) ← R̃(e−1) ∗ β

(b) e← e+ 1

(c) Until θhi ≤ Q
(
xi, R̃

(e)
)
≤ hi or e > E

8. If θhi ≤ Q
(
xi, R̃

(e)
)
≤ hi then Ri ← R̃(e) and go to Step 13 else go to Step 10

9. If Q
(
xi, R̃

(e)
)
> hi then Rl ← R̃(e) and Ru ← R̃(e−1) else Rl ← R̃(e−1) and

Ru ← R̃(e)

10. Repeat (bisection)

(a) Rm = Rl+Ru

2

(b) If Q (xi, Rm) > hi then Ru ← Rm else Rl ← Rm

(c) Until θhi ≤ Q (xi, Rm) ≤ hi

11. Ri ← Rm

12. i← i+ 1 and go to Step 2

13. Locate all of the unassigned facilities to random locations

14. Run CALA heuristic starting with these initial facility locations

Figure 5.5. Region rejection heuristic with dynamic radius
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1. Initialize E, R and P

2. Let the facilities be in arbitrary order and set i← 1

3. If i = m+ 1 then go to Step 14, else t← 1

4. Repeat (location selection)

(a) Select a random customer, say customer j and set x̃i ← aj

(b) If t > P then go to Step 13

(c) t← t+ 1

(d) Until min
i<i
{d (xi, x̃i)} − ri ≤ 0

5. xi ← x̃i

6. Initialize R̃(0) = R and set e← 1

7. Repeat (radius adjustment)

(a) β ←
√

b

Q(xi,R̃(e))
and R̃(e) ← R̃(e−1) ∗ β

(b) e← e+ 1

(c) Until θhi ≤ Q
(
xi, R̃

(e)
)
≤ hi or e > E

8. If θhi ≤ Q
(
xi, R̃

(e)
)
≤ hi then Ri ← R̃(e) and go to Step 13 else go to Step 10

9. If Q
(
xi, R̃

(e)
)
> hi then Rl ← R̃(e) and Ru ← R̃(e−1) else Rl ← R̃(e−1) and

Ru ← R̃(e)

10. Repeat (bisection)

(a) Rm ← Rl+Ru

2

(b) If Q (xi, Rm) > hi then Ru ← Rm else Rl ← Rm

(c) Until θhi ≤ Q (xi, Rm) ≤ hi

11. Ri ← Rm

12. i← i+ 1 and go to Step 2

13. Locate all of the unassigned facilities to random customer locations

14. Run CALA heuristic starting with these initial facility locations

Figure 5.6. Discrete region rejection heuristic with dynamic radius
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6. DISCRETIZATION STRATEGIES

As mentioned in Chapter 2, even though the CMFWP is a nonlinear programming

problem, its discrete approximation DCMLAP can be formulated as the MILP problem

given with Equations (2.13) - (2.18). In this chapter, our aim is to define solution

approaches based on the discrete approximation DCMLAP. We will first define the

discrete approximation heuristic which is simply finding the initial locations by solving

a DCMLAP formulation and improving it by a single CALA run. Then the Lagrangean

relaxation for the discrete approximation heuristic will be introduced. It is especially

meaningful when the number of binary decision variables in the DCMLAP is large.

These two strategies can be used to compute upper bounds on the optimal value of the

CMFWP. In the last section of this chapter, we will propose two discrete approximation

strategies. They are based on the relation of l1, l∞ and lp norms and result two

approximating MILP’s whose optimal values give lower bounds for the CMFWP.

6.1. Discrete Approximation Heuristic

As mentioned in the previous chapter, CALA depends very much on the initial

locations of the facilities. As a result, a DCMLAP model is solved first to improve

CALA heuristic solution. This overall heuristic, which is named as the Discrete Ap-

proximation Heuristic (DAH), is due to Aras et al. [21]. In DAH, the candidate facility

location set is formed by the customer locations, K = {a1, a2, ..., an}, and a DCMLAP

is solved to find initial facility locations before running a CALA heuristic. Recall that

DCMLAP is formulated in Chapter 2 using the Equations (2.13) - (2.18). A formal

definition of DAH is given in Figure 6.1.

1. Set candidate location set K ← {a1, a2, ..., an}

2. Solve the DCMLAP problem defined on K

3. Run CALA after initializing at the locations obtained by solving DCMLAP.

Figure 6.1. Discrete approximation heuristic
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6.2. Relaxed Discrete Approximation Heuristic

Depending on the size of the candidate point set K, DCMLAP can be very large

and very difficult to solve exactly. However, Lagrangean relaxation and subgradient

optimization can be used to compute a good solution, which can be made even better

if CALA is also incorporated. As stated before, the relaxed constraints in LR is an

important issue and we are aiming both tight bounds and easier solution process by

this relaxation. All possible relaxations are formulated but finally relaxing the demand

constraints (2.15) is seen as the best strategy because of two reasons. First, choosing

the demand constraints makes the Lagrangean subproblems seperable over facilities.

Second, computational experiments show that this relaxation generates tight lower

bounds. The Lagrangean subproblem obtained by relaxing the demand constraints

can be given as:

RDCMLAP:

min
m∑

i=1

n∑
j=1

r∑
k=1

wijk [cijd (bk, aj) + µj]−
n∑

j=1

µjhj (6.1)

s.t. Constraints (2.14), (2.16) - (2.18) (6.2)

wijk ≤ hj i = 1, ...,m; j = 1, ..., n; k = 1, ..., r. (6.3)

In the RDCMLAP, µj represents the Lagrangean multipliers. All the constraints,

except the relaxed (2.15), of the DCMLAP are added to the new model. In addition,

Constraints (6.3) which limit the demand satisfied are added to the model. In fact,

these newly added constraints are redundant in the main model but when the demand

constraints (2.15) are relaxed they increase the optimal value of RDCMLAP, which

improves the lower bound.

As can be observed, the second summation of the objective function (6.1) is

constant and does not affect the optimal solution. As a result, RDCMLAP can be

decomposed into m problems RDCMLAPi each for one facility i.
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RDCMLAPi:

min
n∑

j=1

r∑
k=1

wijk [cijd (bk, aj) + µj] (6.4)

s.t.
n∑

j=1

wijk = sixik k = 1, ..., r (6.5)

r∑
k=1

xik = 1 (6.6)

wijk ≥ 0 j = 1, ..., n; k = 1, ..., r (6.7)

xik ∈ {0, 1} k = 1, ..., r (6.8)

wijk ≤ hj j = 1, ..., n; k = 1, ..., r (6.9)

The above RDCMLAPi model can be solved easily by inspection. First, customers

are sorted in nondecreasing order with respect to the cost of sending one unit of good

from facility i to customer j, when the facility is located at candidate location k.

Second, all the capacity of the facility is distributed to the customers by using the

sorted list and the cost of assigning the facility to the given candidate location is found.

This sorting and cost calculation processes are done for every candidate location. The

candidate location with the minimum reduced cost is the optimal solution for facility

i. The overall inspection algorithm for the RDCMLAPi is given in Figure 6.2.

For the upper bounding algorithm the discrete CALA (DCALA) heuristic is used.

DCALA is the discrete version of CALA and the location phase is accomplished solving

1-median problems instead of SFWP using Weiszfeld procedure. DCALA heuristic is

stated as algorithm given in Figure 6.3.

After defining all the required algorithms, the SO algorithm for the RDAH can

be formally listed as Figure 6.4.
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1. Calculate c̃ijk ← cijd (bk, aj) + µj for j = 1, ..., n; k = 1, ..., r

2. For each candidate location k

(a) Sort the customers in nondecreasing order with respect to c̃ijk. Let the

customers in this order be given as j(1), j(2), ..., j(n)

(b) h̃i ← hi, current objective C ← 0 and l← 1

(c) Repeat

i. If dj(l) < h̃i then C ← C + c̃ijkdj(l) else C ← C + c̃ijkh̃i

ii. h̃i ← max
{
h̃i − dj(l), 0

}
iii. Until h̃i = 0

(d) If C∗
i > C then C∗

i ← C and k∗i ← k

3. k∗i is the optimal candidate location and C∗
i is the optimal objective value for the

subproblem of facility i

Figure 6.2. Inspection method for RDCMLAPi

1. Define initial facility locations from the candidate location set K

2. Set facility locations xi for i = 1, ...,m as parameters and solve the TP to find

the allocations wij for i = 1, ...,m; j = 1, ..., n

3. Set allocations wij for i = 1, ...,m; j = 1, ..., n as parameters

4. For each facility i do

(a) k∗i ← arg min
bk∈K

{∑
j

cijwijd (bk, aj)

}
(b) xi ← bk∗i

5. Go to step 2 until termination criteria are satisfied

Figure 6.3. Discrete capacitated alternating location allocation heuristic
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1. Decide µj, π (where 0 ≤ π ≤ 2) and set ZUB ←∞, ZLB ← 0

2. Run DCALA algorithm, CUB is the objective

3. ZUB ← min (ZUB, CUB)

4. Calculate the objective by solving CALA. Keep the solution if it is the best so

far

5. For each facility i do, find the optimal candidate location index k∗i , by solving

subproblems RCMLAPi

6. Calculate CLB and set ZLB ← max (ZLB, CLB)

7. Gj ←
n∑

i=m

wijk?
i
− dj j = 1, ..., n

8. T ← π(ZUB−CLB)
mP

j=n
G2

j

9. µj ← µj + TGj j = 1, ..., n

10. Update π if needed

11. Go to Step 2 until termination criteria are satisfied

Figure 6.4. Relaxed discrete approximation heuristic

6.3. Discrete Approximations Using l1 and l∞ Norms

l1 (rectilinear) and l∞ (Tchebycheff) norms are two common distance functions,

which have two important properties for the MFWP. The first property is that, the

locations for the optimal solutions are an element of a finite set. This finite set contains

the intersection points of the vertical and horizontal lines drawn through customer

locations if it is l1 norm and the intersection points of the 45◦ projection of the vertical

and horizontal lines drawn through customer locations if it is l∞ norm [28]. In addition

to that, Wendell and Hurter showed that facility locations lie inside the convex hull

of the customers [22]. As a result, since we have a set of candidate locations which

contains the optimal locations for the CMFWP, optimal solution for it can be found

by solving a DCMLAP problem with the appropriate candidate location set. The

mathematical model for the DCMLAP is given by Equations (2.13) - (2.18).

Second, these two distance norms can be used as lower bounds for the other lp

norms [19]. More specifically if we let Z∗p denotes the optimal value of any given LAP
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in lp distance with 1 ≤ p ≤ ∞,

Z∗p ≥ Z∗∞ (6.10)

2(p−1)/pZ∗p ≥ Z∗1 (6.11)

By using the inequalities, lower bound for the CMFWP with lp distance can

be computed solving MILP’s based on the two properties mentioned in the previous

paragraph. Last but not least, since the LR of DCMLAP produces a lower bound for

the optimal value of the original model, RDCMLAP can also be used as a lower bound

generated for the CMFWP. Then the overall procedure given in Figure 6.4 can be used

without Step 4, namely the step where CALA heuristic is run for this purpose.
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7. LAGRANGEAN HEURISTICS

As stated before, both the capacitated and the uncapacitated MFWP are NP-

hard problems [1]. However, we know that, UMFWP has an equivalent pure binary

linear programming set partitioning model with exponential number of decision vari-

ables. Even though it is a difficult problem with an exponential number of decision

variables, relaxing some of the constraints and turning the CMFWP into an uncapac-

itated problem can be a good idea. In this section, we will relax the CMFWP by

Lagrangean relaxation and solve it using different methods.

It is important to note that, we need either an optimal solution or a lower bound

on the optimal value of the relaxed CMFWP. For this reason a set partitioning model

of this relaxed problem is created, which is similar but more complicated than the

usual UMFWP2. This set partitioning model turns into an equivalent set covering

model and a column generation scheme is created to solve the linear relaxation of this

model optimally. In the next section, this column generation algorithm is combined

with a branch and price scheme, which finds the (binary) optimal solution of the set

covering problem, which gives a tighter lower bound. Finally, three more algorithms

will be defined which are not valid lower bounds but can be used to make valid lower

bounding algorithms faster.

7.1. Lagrangean Relaxation and Capacitated Multifacility Weber Problem

As mentioned above, in this part our aim is to relax the CMFWP model given

with Equations (2.1) - (2.4) and deal with a problem which can be modeled as a set

partitioning problem. In order to do this, we relax the capacity constraints (2.3) of the

facilities to obtain the following LR of the CMFWP (RCMFWP) is obtained:
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RCMFWP:

min
m∑

i=1

n∑
j=1

wij [cijd (xi, aj) + λi]−
m∑

i=1

λisi (7.1)

s.t.
m∑

i=1

wij = hj j = 1, ..., n (7.2)

wij ≥ 0 i = 1, ...,m; j = 1, ..., n. (7.3)

In this formulation λi stands for the weights of the relaxed constraints and must

be chosen wisely to have better lower bounds so these values are updated by using

subgradient optimization (SO). In SO, an iterative procedure is used. Initial values of

the multipliers (λ) are set to a certain value and updated according to the subgradients

(G) and the step length T . The subgradient vector and the step length are calculated

by using upper and lower bounding algorithms. Even though the upper bound can be

found by using any heuristic solving the CMFWP, calculating a tight lower bound is

not as easy as it seems. Lower bounds used for the CMFWP can either be the optimal

value of the RCMFWP or a lower bound of it. The overall SO algorithm for solving

the CMFWP is given in Figure 7.1.

1. Decide λi, π (where 0 ≤ π ≤ 2) and set ZUB ←∞

2. Run selected UB method and set CUB as the objective value

3. ZUB ← min (ZUB, CUB)

4. Run selected LB method and set CLB as the objective value

5. ZLB ← max (ZLB, CLB)

6. Gi ← si −
n∑

j=1

yijhj i = 1, ...,m

7. T ← π(ZUB−CLB)
mP

i=1
G2

i

8. λi ← max (0, λi + TGi) i = 1, ...,m

9. Update π if needed

10. Go to Step 2 until termination criteria are satisfied

Figure 7.1. Subgradient optimization procedure for the CMFWP
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Before defining some lower bounding algorithms to use in the SO steps given

before, let us rewrite our RCMFWP model. As it can be seen from the above model,

the objective function (7.1) has a constant part which is the weighted sum of the facility

capacities. For di (xi, aj) = cijd (xi, aj) + λi the objective function (7.1) of the relaxed

model without the constant part can be rewritten as

min
m∑

i=1

n∑
j=1

wijdi (xi, aj). (7.4)

Before continuing, please note that for d (xi, aj) is any defined distance function,

cij and λi are nonnegative constants, di (xi, aj) always has nonnegative values. Since

di (xi, aj) is always nonnegative and there is no capacity restrictions over facilities, the

customers satisfy their demands from the one and only one facility, probably the one

with the minimum function value of di (xi, aj). In other words, RCMFWP can be

modeled using binary decision variables instead of the continuous wij. For yij is the

binary decision variable which determines whether customer j is supplied by facility i

or not, RCMFWP can be reformulated as

RCMFWP2:

min
m∑

i=1

n∑
j=1

yijhjd (xi, aj)−
m∑

i=1

λisi (7.5)

s.t.
m∑

i=1

yij = 1 j = 1, ..., n (7.6)

yij ∈ {0, 1} i = 1, ...,m; j = 1, ..., n. (7.7)

The formulation given above is an extension of the UMFWP model given by

equations (2.5) - (2.7) if the constant part is disregarded. The only difference between

the ordinary UMFWP and the problem given with the above formulation is that, in

RCMFWP2 the distance function is facility specific and has a different value for every

facility. In the remaining part of the chapter, we will define some algorithms to solve
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RCMFWP2 which will be used to compute lower bounds in procedure given in Figure

7.1. Please note that, for the upper bounding algorithms, any heuristic giving a feasible

solution for the CMFWP can be used. In other words any strategies defined in Chapter

5 and Chapter 6 are suitable as an upper bounding procedure.

7.2. Set Partitioning

The ordinary UMFWP can be modeled as a set partitioning problem (2.8) - (2.12)

by creating all possible subsets of customer set and solving a Weber problem for each

subset to find their objective coefficients. However, in our case every facility can have

different distance function because of the facility specific unit shipment cost cij per

unit good per unit distance and multipliers λi. In order to solve our case, we have to

create all possible subsets of the customer set for every facility and solve them. For

di (xi, aj) is any defined distance function for (xi, aj) pair for facility i and,

bjs =

 1 if j ∈ Ss

0 otherwise
and cis = min

xi

{
n∑

j=1

bjsd (xi, aj)

}
(7.8)

the set partitioning formulation for RCMFWP2 can be given as

RCMFWP3:

min
m∑

i=1

∑
s:Ss⊂N

ciszis (7.9)

s.t.
m∑

i=1

∑
s:Ss⊂N

bjszis = 1 j = 1, ..., n (7.10)

∑
s:Ss⊂N

zis = 1 i = 1, ..,m (7.11)

m∑
i=1

∑
Ss⊂N

zis = m (7.12)

zis ∈ {0, 1} i = 1, ...,m; s : Ss ⊂ N . (7.13)
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For every (xi, aj) pair, since di (xi, aj) ≥ 0, every objective coefficient of subset

s of facility i cis is nonnegative. Because of that customers are not assigned to more

than one facility in an optimal solution even though it is restricted with greater than

or equal to instead of equal to in Constraints (7.10). Second, relaxing Constraints

(7.11) with less than or equal to would not change the optimal value either, since the

empty subsets are also created for the model and assigning an empty set to a facility

is equal to not opening the facility. The former and latter facts ensure that relaxing

the constraint sets (7.10) and (7.11) with greater than or equal to and less than or

equal to respectively, would not make any difference at the optimality and the above

model can be formulated with the new constraints which makes the model equivalent

to a set covering problem (SCP). The RCMFWP can be modeled by using the SCP

formulation RCMFWP4 as follows:

RCMFWP4:

min
m∑

i=1

∑
s:Ss⊂N

ciszis (7.14)

s.t.
m∑

i=1

∑
s:Ss⊂N

bjszis ≥ 1 j = 1, ..., n (7.15)

∑
s:Ss⊂N

zis ≤ 1 i = 1, ..,m (7.16)

m∑
i=1

∑
s:Ss⊂N

zis ≤ m (7.17)

zis ∈ {0, 1} i = 1, ..,m; s : Ss ⊂ N . (7.18)

Since the objective of this model is used as a lower bound in the main problem,

the linear relaxation of the set covering version of RCMFWP is also a valid lower bound

for the main problem. The linear relaxation of the RCMFWP4 is obtained by replacing

Constraints (7.18) with the nonnegativity restrictions

zis ≥ 0 i = 1, ..,m; s : Ss ⊂ N . (7.19)
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Even though the relaxed model given above does not contain any binary variables,

even the medium sized problems cannot be solved easily, because of the very large

number of decision variables and SFWPs that must be solved: We need to solve 2nm

SFWP to create the set covering model with the same number of decision variables.

In order to deal with this problem, we use the column generation approach explained

in the next section.

7.3. Column Generation

One of the most successful approaches to solve large integer programming prob-

lems optimally is to adopt the column generation developed by Dantzig and Wolfe

in 1960 [29] for solving large liner programming problems. The main idea in column

generation is choosing entering variable to the basis by generating and solving a spe-

cific subproblem in every step to calculate and find the nonbasic variable which has

the minimum reduced cost instead of introducing every possible columns to the model

from the beginning and solving it.

The set covering problem mentioned above can also be modeled and solved by

the column generation approach. It should be recalled that, the column generation

approach for the UMFWP was originally proposed and used by Krau [2]. We adopt

this method for our case and our derivations are heavily drawn on his work.

Assume that not all of the columns, but a set of them that can give a feasible

solution in RCMFWP4 are used and a new model is generated (RCMFWP5). The

linear programming relaxation of the problem that is used in our column generation

approach is given below. Here Ti is the number of columns generated for facility i, cit

is the objective coefficient for column t of facility i, bjit equals to 1 if customer j is

served in column t of facility i, 0 otherwise, uj, vi and w are related dual values for the

related constraints.
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RCMFWP5:

min
m∑

i=1

Ti∑
t=1

citzit (7.20)

s.t.
m∑

i=1

Ti∑
t=1

bjitzit ≥ 1 j = 1, ..., n : uj (7.21)

it∑
t=1

zit ≤ 1 i = 1, ..,m : vi (7.22)

m∑
i=1

Ti∑
t=1

zit ≤ m : w (7.23)

zit ≥ 0 i = 1, ..,m; t = 1, ..., Ti. (7.24)

In order to find the nonbasic variable with the minimum reduced cost, we must

derive a subproblem related to this master problem. At every iteration (t), this sub-

problem must be solved for every facility to find the column with the minimum reduced

cost. For u
(t)
j , v

(t)
i and w(t) are the dual values of the related Constraints (7.21), (7.22)

and (7.23) at iteration t respectively, c
(t)
i is the cost and c

(t)
i is the reduced cost related

to any column created at iteration t for facility i, the following calculations should be

done to accomplish the pricing operation. The reduced cost is defined as

c
(t)
i =c

(t)
i −

n∑
j=1

b
(t)
ji u

(t)
j + v

(t)
i − w(t) (7.25)

where b
(t)
ji =


1, if customer j is served by facility i in

column created at iteration t for facility i

0, otherwise

Then, for c
(t)∗
i is the minimum reduced cost calculated among the columns of

facility i and c(t)∗ is the minimum reduced cost among all columns at iteration t, we
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can state that,

c(t)∗ = min
1≤i≤m

{
c
(t)∗
i

}
(7.26)

c
(t)∗
i = min

b
(t)
ji

{
c
(t)
i −

n∑
j=1

b
(t)
ji u

(t)
j + v

(t)
i − w(t)

}
. (7.27)

The cost c
(t)
i of the column of facility i at iteration t can be calculated using the

expression

c
(t)
i = min

xi,b
(t)
ji

{
n∑

j=1

b
(t)
ji hj

[
cijd (xi, aj) + λ

(t)
i

]}
. (7.28)

In order to increase the readibility we continue our derivation without the itera-

tion symbol superscript (t). After Combining (7.27) with (7.28) the minimum reduced

cost c∗i becomes

c∗i = min
bji

{
min

xi

{
n∑

j=1

bjihj [cijd (xi, aj) + λi]

}
−

n∑
j=1

bjiuj + vi − w

}
. (7.29)

For γi (xi, j) = hj [cijd (xi, aj) + λi] (7.29) reduces to

c∗i = min
bji

{
min
xi

{
n∑

j=1

bjiγi (xi, j)

}
−

n∑
j=1

bjiuj + vi − w

}
, (7.30)

which turns into

c∗i =min
xi,bji

{
n∑

j=1

bji [γi (xi, j)− uj]

}
+ vi − w (7.31)

after some simple algebraic manipulations. Since bji ∈ {0, 1} and it is aimed to find
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the minimum over xi and bji,

bji =

 1, if [γi (xi, j)− uj] ≤ 0

0, otherwise
(7.32)

is obtained. In other words,

min
xi,bji

{
n∑

j=1

bji [γi (xi, j)− uj]

}
= min

xi

{
n∑

j=1

min {γi (xi, j)− uj, 0}

}
. (7.33)

After performing the change given in (7.33) on (7.31)

c∗i =min
xi

{
n∑

j=1

min {γi (xi, j)− uj, 0}

}
+ vi − w. (7.34)

Since,

min {γi (xi, j)− uj, 0} = [γi (xi, j)− uj]−max {γi (xi, j)− uj, 0} , (7.35)

(7.34) can be rewritten as,

c∗i =min
xi

{
n∑

j=1

[γi (xi, j)− uj]−
n∑

j=1

max {γi (xi, j)− uj, 0}

}
+ vi − w, (7.36)

or equivalently as for a particular iteration t as,

c
(t)∗
i = min

xi

{
n∑

j=1

γi (xi, j)−
n∑

j=1

max
{
γi (xi, j)− u(t)

j , 0
}}
−

n∑
j=1

u
(t)
j

+v
(t)
i − w(t)

(7.37)

because the dual variables u
(t)
j , v

(t)
i and w(t) are independent of the location variables
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xi for i = 1, ...,m.

In (7.37), the last summation is the constant part of the inner minimization, and

the first two summations are the two convex functions. The remaining parts are the

constants. The first summation is convex since it is the summation of distance func-

tions which are convex, and the second summation is the summation of the maximum

functions which are also convex. In the literature, these types of problems where the

objective function and the constraints can be expressed as the difference of two convex

functions are known as the d.c. programming (DC) problems.

There are several methods to solve DC programming problems. One of them

is to convert the problem into a concave minimization problem, which requires the

introduction of auxiliary variables [30]. The model after converting the problem into a

concave minimization problem becomes

CGi:

minF (xi, ri) =ri −
n∑

j=1

max
{
γi (xi, j)− u(t)

j , 0
}
−

n∑
j=1

u
(t)
j + v

(t)
i − w(t) (7.38)

s.t.
n∑

j=1

γi (xi, j)− ri ≤ 0 (7.39)

ri ≥ 0 (7.40)

xi ∈ H (7.41)

where H is the convex hull of the customer locations. Here ri is the auxiliary vari-

able. The concave minimization subproblem CGi for every facility i is solved by outer

approximation method. A detailed explanation of the outer approximation method is

provided in Section 7.5.

After solving the subproblem CGi for facility i, suppose x∗i , r
∗
i are optimal values

for problem related to facility i and i∗ = arg min
i
{F (x∗i , r

∗
i )}. If c∗ which is c∗i∗ is

nonnegative then the model is optimal, meaning that the remaining columns have
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positive reduced costs and thus no need to add any more columns. However, if c∗ < 0

then attach the column b
(t)∗
ji∗ after setting

b
(t)∗
ji∗ =

 1, if γi (xi, j)− uj < 0

0, otherwise
for j = 1, ..., n. (7.42)

The basic column generation scheme for solving the RCMFWP5, which is denoted as

CG1, is given in Figure 7.2.

1. Set t← 0

2. Initialize the RCMFWP5 model with a feasible solution

3. Repeat

(a) t← t+ 1 and c∗ ← +∞

(b) Solve the main problem and find the dual values u
(t)
i , v

(t)
j and s(t)

(c) For each facility i

i. Solve the CGi problem for facility i.

ii. If c∗i ≤ c∗, then c∗ ← c∗i ≤ c∗

(d) If c∗ < 0, then insert column for facility i which is found by Equation (7.42)

(e) Until c∗ ≥ 0

Figure 7.2. Basic column generation algorithm for the RCMFWP5

As mentioned above, these concave minimization problems are solved by outer

approximation [31] which has asymptotic convergence. In other words, the values that

are found by concave minimization are not optimal but they are ε close to an optimal

solution, or the solution reaches to optimality in an infinite number of iterations. In

order to eliminate problems related to asymptotic convergence, a ξ value is decided

and columns are created using (7.43) instead of (7.42):
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b
(t)∗
ji∗ =


1, if γi (xi, j)− uj ≤ −ξ

0 or 1, if − ξ < γi (xi, j)− uj ≤ ξ

0, otherwise

for j = 1, ..., n. (7.43)

With the above modification, in column generation, there is a possibility to create

more than one column with negative reduced cost for a single concave minimization

problem which increases the convergence rate of the problem and decreases the running

time.

One of the other ways to increase the number of columns created in every step is

to add the every columns with negative reduced cost instead of adding the one with the

most negative value. Theoretically, every column which has negative reduced cost must

improve the master problem. So in our implementation, every generated column with

negative reduced cost is added to the master problem which makes a slight decrease in

the total running time.

On top of all this, the procedure given in Figure 7.3 which is named as column

generation heuristic (CGH) is used in intermediate steps. This heuristic, which is run

for every facility seperately, starts from an initial location and creates the columns

with negative reduced cost by updating its customer subset with the customers which

decreases the reduced cost and finds an optimal location for the updated customer sub-

set after solving a SFWP by using the Weiszfeld procedure [3]. Although CGH does

not guarantee the most negative column, applying this approach does not cause sub-

optimal solutions for the relaxed problem since the optimality of the model is checked

by solving a concave minimization problem for each facility. The solution is declared

optimal and column generation approach is terminated when all the columns created

for every facility by concave minimization have nonnegative reduced cost. In order

to increase the number of columns created, the heuristic is modified as adding every

column with negative reduced cost created in Step 3 and this modification makes slight
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improvements in some cases.

1. Set J prev
s ← Js,Js ← ∅

2. For all j = 1, ..., n if γi (xi, j)− u(t)
j < 0 then Js ← Js ∪ {j}

3. Find c
(t)
i = min

xi

{ ∑
j∈Js

γi (xi, j)

}
4. If J prev

s = Js then go to Step 5, else go to Step 1

5. Add newly created column containing Js and facility i and solve model

RCMFWP5. If the objective function is not improved, then terminate, else go to

Step 6

6. Update u(t), t← t+ 1

Figure 7.3. Column generation heuristic

The column generation algorithm used in computations (CG2) is given in Figure 7.4.

It makes calls to CGH given in Figure 7.3.

As mentioned before, by the column generation approach, the linear relaxation of

the set covering model can be solved, which is a lower bound for the relaxed problem

and can be used as a valid lower bound for the main problem. However, the exact

value of the relaxed problem can be found by combining a branch and price procedure

combined with the column generation approach.

7.4. Branch and Price

In this work, a branching rule that is similar to Ryan and Foster’s [32] is applied.

When a node is needed to be branched, first a branching pair is formed containing

two customers which does not exist in zero or one branched list of the current node.

In addition to the inherited zero and one branched sets from the father node, the left

child adds the new branching pair to its zero branched list whereas the right child

adds the new branching pair to its one branched list. For every customer pairs in zero

branched list, the customers either exist together or both do not exist in the feasible

columns. Similar to that, for every customer pairs in one branched list, either one of

the customers exist or both do not exist in the set of feasible columns.
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1. Set t← 0

2. Initialize the RCMFWP5 model with a feasible solution

3. Repeat

(a) t← t+ 1 and c∗ ← +∞

(b) Solve the main problem and find the dual values u
(t)
i , v

(t)
j and s(t)

(c) For each facility i

i. Solve the subproblem CGi for facility i

ii. If c∗i ≤ c∗, then c∗ ← c∗i ≤ c∗ and i∗ ← i

iii. If c∗i ≤ 0, then

A. Insert column for facility i which is found by as in (7.43)

B. Solve the main problem and find the dual values u
(t)
i , v

(t)
j and s(t)

C. Run CGH for facility i from the locations found in subproblem CGi

(d) Until c∗ ≥ 0

Figure 7.4. Column generation algorithm for the RCMFWP5

After branching the set of customer pairs have to handle by four types of sets:

Z, O, N and S. Z is the set of customer pairs which contains zero branched customer

pairs whose customers are branched only in this pair. SimilarlyO includes the customer

pairs branched in one branched list and both customers of the pair only exist in this

branched pair. N is the set of customers which are not branched yet and S is the special

set of customer group sets which contains customer groups, simple set of customers.

A customer group set contains feasible customer groups of connected customer pairs.

Two customer pairs are connected if either one of the customers are common in both

pairs or common in their connected customer pairs. An example would clearify this

set construction.

If there are 20 customers in the problem and current nodes zero and one branched

set contains the following customer pairs:

zero branched set = {{1, 2} , {2, 3} , {4, 5} , {6, 7} , {8, 9}}

one branched set = {{9, 10} , {11, 12} , {12, 13} , {14, 15} , {16, 17}}



43

{1, 2} and {2, 3} are connected. Similar to that {8, 9} and {9, 10}, and {11, 12} and

{12, 13} are also connected groups. Furthermore, N , Z, O and S include the following

set of customer pairs and sets:

N = {18, 19, 20}

Z = {{4, 5} , {6, 7}}

O = {{14, 15} , {16, 17}}

S = {{∅, {1, 2, 3}} , {∅, {10} , {8, 9}} , {∅, {11} , {12} , {13} , {11, 13}}}

In the branch and price approach, every nodes’ subproblem is different than the others

because of their pricing. Before finding the pricing function let us define sets given

above properly. For J is the set of all customers, N =
{
n1, n2, ..., n|N |

}
where n1, n2, ...,

and n|N | are all in J , Z =
{
{z11, z12} , ...,

{
z|Z|1, z|Z|2

}}
where z11, z12, ..., z|Z|1 and z|Z|2

are all in J , O =
{
{o11, o12} , ...,

{
o|O|1, o|O|2

}}
where o11, o12, ..., o|O|1 and o|O|2 are

all in J , S =
{
S1,S2, ...,S|S|

}
where Sk =

{
Sk1,Sk2, ...,Sk|S1|

}
for k = 1, ..., |S| and

Skl =
{
skl1, skl2, ..., skl|S11|

}
for k = 1, ..., |S| and l = 1, ..., |Sk| and sklp is an element of

J for k = 1, ..., |S|, l = 1, ..., |Sk| and p = 1, ..., |Skl|.

As it is defined before, N is the set of customers which are not branched before,

Z and O sets are set of customer pairs which are zero and one branched and their

elements (customers) only exist in one branch and S is the special set for the sets of

customer subsets, Sk is one of the set of customer subsets, Skl is one of the customer

subsets of Sk and sklp is the pth customer in the customer subset Skl. The aim of this

division is that, only customers of one and only one customer group from each customer

group set can exist in the valid column for this node.

Now we can start to find the pricing of the subproblem for the column of facility

i at iteration (t). Similar to the column generation procedure

c
(t)
i =c

(t)
i −

n∑
j=1

b
(t)
ji u

(t)
j + v

(t)
i − w(t), (7.44)
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and

c
(t)∗
i = min

{
c
(t)
i −

n∑
j=1

b
(t)
ji u

(t)
j + v

(t)
i

}
− w(t). (7.45)

Different than the pure column generation explained previously

c
(t)
i = min

xi


|N |∑
j=1

b
(t)
njiγi (xi, nj)

+

|Z|∑
j=1

b
(t)
zj1i [γi (xi, zj1) + γi (xi, zj2)]

+

|O|∑
j=1

b
(t)
oj1i+b

(t)
oj2i≤1

[
b
(t)
oj1iγi (xi, oj1) + b

(t)
oj2iγi (xi, oj2)

]

+

|S|∑
l=1

|Sl|∑
k=1

|Sl|P
k=1

b
(t)
skli

=1

b
(t)
skli

|Skl|∑
j=1

γi (xi, sjkl)



.

(7.46)

First part under summation, which is for elements of N , is similar to the column

generation. Second summation is for customer pairs in Z and since the customers of

each pair of this set either exist together or do not exist at all, their decision variables

are equal to each other. Third summation includes customer pairs in O where the

customers in the pairs of this set cannot exist together, either one of them exists in the

generated columns or both do not exist. This property is shown as a condition over

the summation. Last summation is for the elements of S. Only customers of one of the

customer group in each customer group set can exist and it is added as a condition over

the summation again. Again the subscript (t) is dropped to increase the readibility.

After inserting cost function (7.46) to (7.45), c∗i becomes
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c∗i =min
xi


|N |∑
j=1

bnjiγi (xi, nj) +

|Z|∑
j=1

bzj1i [γi (xi, zj1) + γi (xi, zj2)]

+

|O|∑
j=1

boj1i+boj2i≤1

[
boj1iγi (xi, oj1) + boj2iγi (xi, oj2)

]

+

|S|∑
l=1

|Sl|∑
k=1

|Sl|P
k=1

bskli
=1

bskli

|Skl|∑
j=1

γi (xi, sjkl)



−

n∑
j=1

bjiuj + vi − w.

(7.47)

If we group the equations with the same decision variables, we will end up with the

expression

c∗i =min
xi


|N |∑
j=1

[
bnjiγi (xi, nj)− unj

]
+

|Z|∑
j=1

{
bzj1i [γi (xi, zj1) + γi (xi, zj2)]−

[
uzj1

+ uzj2

]}
+

|O|∑
j=1

boj1i+boj2i≤1

{
boj1i

[
γi (xi, zj1)− uoj1

]
+ boj2i

[
γi (xi, zj2)− uoj2

]}

+

|S|∑
l=1

|Sl|∑
k=1

|Sl|P
k=1

bsklit
=1

bskli

|Skl|∑
j=1

γi (xi, sjkl)− usjkl




+ vi − w.

(7.48)
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We can rewrite (7.48) as,

c∗i =min
xi


|N |∑
j=1

min
{
γi (xi, nj)− unj

, 0
}

+

|Z|∑
j=1

min
{
γi (xi, zj1) + γi (xi, zj2)−

(
uzj1

+ uzj2

)
, 0

}
+

|O|∑
j=1

min
{
γi (xi, oj1)− uoj1

, γi (xi, oj2)− uoj2
, 0

}
+

|S|∑
l=1

min
k


|Skl|∑
j=1

γi (xi, sjkl)− usjkl

 + vi − w,

(7.49)

from which

c∗i =min
xi


|N |∑
j=1

α′i (xi, nj) +

|Z|∑
j=1

β′i (xi, zj1, zj1)

+

|O|∑
j=1

δ′i (xi, oj1, oj2) +

|S|∑
l=1

µ′i (xi,Sl)

 + vi − w

(7.50)

follows for

γ
(t)′
i (xi, j) =hj [cijd (xi, aj) + λi]− u(t)

j ,

α
(t)′
i (xi, j) = min

{
γ

(t)′
i (xi, j) , 0

}
,

β
(t)′
i (xi, j1, j2) = min

{
γ

(t)′
i (xi, j1) + γ

(t)′
i (xi, j2) , 0

}
,

δ
(t)′
i (xi, j1, j2) = min

{
γ

(t)′
i (xi, j1) , γ

(t)′
i (xi, j2) , 0

}
,

ν
(t)′
i (xi,P) =

∑
j∈P

γ
(t)′
i (xi, j),

µ
(t)′
i (xi, {P1, ...,Pn}) = min

l

{
ν

(t)′
i (xi,Pl)

}
.



47

For,

α
(t)
i (xi, j) = max

{
γ

(t)′
i (xi, j) , 0

}
β

(t)

i (xi, j1, j2) = max
{
γ

(t)′
i (xi, j1) + γ

(t)′
i (xi, j2) , 0

}
δ
(t)

i (xi, j1, j2) = max
{
γ

(t)′
i (xi, j1) , γ

(t)′
i (xi, j2)

}
+ max

{
γ

(t)′
i (xi, j1) , 0

}
+ max

{
γ

(t)′
i (xi, j2) , 0

}
α

(t)
i (xi, j) =γi (xi, j)

β(t)

i
(xi, j1, j2) =γi (xi, j1) + γi (xi, j2)

δ
(t)
i (xi, j1, j2) =γi (xi, j1) + γi (xi, j2) + max

{
γ

(t)′
i (xi, j1) , γ

(t)′
i (xi, j2) , 0

}

Although α
(t)
i and β(t)

i
remain unchanged through the iterations, the superscript (t) is

still used for the sake of completeness. Then for S = {S1, ...Sn}, Sk = {Sk1, ...,Skl, ...,

S|Sk|
}
, and Skl =

{
s1kl, ..., spkl, ..., s|Skl|

}
the variables

ρ
(t)
i (xi, {S1, ...Sn} , q) =

∑
Q⊆S
|Q|=q

max
S∈Q

{
ν

(t)′
i (xi,S)

}
,

θ
(t)

i (xi, {S1, ...,Sn}) =
n∑

q=2
q even

ρ
(t)
i (xi, {S1, ...,Sn} , q),

and

θ
(t)
i (xi, {S1, ...,Sn}) =

n∑
q=1

|Sn|∑
l=1

|Skl|∑
p=1

γi (xi, spkl) +
n∑

q=3
q odd

ρ
(t)
i (xi, {S1, ...,Sn} , q)

of (7.50) can be written as

α
(t)′
i (xi, j) =α

(t)
i (xi, j)− α(t)

i (xi, j)− u(t)
j , (7.51)

βi
(t)′ (xi, j1, j2) =β(t)

i
(xi, j1, j2)− β

(t)

i (xi, j1, j2)−
(
u

(t)
j1

+ u
(t)
j2

)
, (7.52)

δ
(t)′
i (xi, j1, j2) =δ

(t)
i (xi, j1, j2)− δ

(t)

i (xi, j1, j2)−
(
u

(t)
j1

+ u
(t)
j2

)
, (7.53)
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and

µ
(t)′
i (xi, {S1, ...Sn}) =θ

(t)
i (xi, {S1, ...,Sn})− θ

(t)

i (xi, {S1, ...,Sn})

−
n∑

k=1

|Sn|∑
l=1

|Skl|∑
p=1

u(t)
spkl
.

(7.54)

After replacing the variables in (7.50) with their definitions (7.51) - (7.54), we have

c
(t)∗
i =min

xi


|N |∑
j=1

[
α

(t)
i (xi, nj)− α(t)

i (xi, nj)− u(t)
nj

]

+

|Z|∑
j=1

[
β(t)

i
(xi, zj1, zj2)− β

(t)

i (xi, zj1, zj2)−
(
u(t)

zj1
+ u(t)

zj2

)]

+

|O|∑
j=1

[
δ
(t)
i (xi, oj1, oj2)− δ

(t)

i (xi, oj1, oj2)−
(
u(t)

ozj1
+ u(t)

ozj2

)]

+

|S|∑
k=1

[
θ

(t)
i (xi,Sl)− θ

(t)

i (xi,Sl)
]
−

|S|∑
k=1

|Sk|∑
l=1

|Skl|∑
j=1

u(t)
s
jkl

 + v
(t)
i − w(t).

(7.55)

Regrouping of the variables results in

c
(t)∗
i =min

xi


 |N |∑

j=1

α
(t)
i (xi, nj) +

|Z|∑
j=1

β(t)

i
(xi, zj1, zj2) +

|O|∑
j=1

δ
(t)
i (xi, oj1, oj2)

+

|S|∑
l=1

θ
(t)
i (xi,Sl)

−
 |N |∑

j=1

α
(t)
i (xi, nj) +

|Z|∑
j=1

β
(t)

i (xi, zj1, zj2)

+

|O|∑
j=1

δ
(t)

i (xi, oj1, oj2) +

|S|∑
l=1

θ
(t)

i (xi,Sl)

 +

 |N |∑
j=1

u(t)
nj

+

|Z|∑
j=1

(
u(t)

zj1
, u(t)

zj2

)

+

|O|∑
j=1

(
u(t)

oj1
, u(t)

oj2

)
+

|S|∑
l=1

|Sk|∑
k=1

|Skl|∑
j=1

u(t)
sjkl

 + v
(t)
i − w(t).

(7.56)

Similar to the column generation, the last summation is the constant part of the
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minimization, and the first two summations are two convex functions, since they are

the difference of convex functions, the pricing problem becomes a DC programming

problem.

As it is previously done in the column generation, this problem can be rewritten

as a concave minimization problem. For,

ψ
(t)
i =−

 |N |∑
j=1

u(t)
nj

+

|Z|∑
j=1

(
u(t)

zj1
, u(t)

zj2

)
+

|O|∑
j=1

(
u(t)

oj1
, u(t)

oj2

)
+

|S|∑
l=1

|Sk|∑
k=1

|Skl|∑
j=1

u(t)
sjkl

 + v
(t)
i − w(t)

the concave minimization submodel (BPi) becomes:

BPi:

minF (xi, ri) =ri −

 |N |∑
j=1

α
(t)
i (xi, nj) +

|Z|∑
j=1

β
(t)

i (xi, zj1, zj2)

+

|O|∑
j=1

δ
(t)

i (xi, oj1, oj2) +

|S|∑
l=1

θ
(t)

i (xi,Sl)

 + ψ(t)

(7.57)

s.t.

 |N |∑
j=1

α
(t)
i (xi, nj) +

|Z|∑
j=1

β(t)

i
(xi, zj1, zj2)

+

|O|∑
j=1

δ
(t)
i (xi, oj1, oj2) +

|S|∑
l=1

θ
(t)
i (xi,Sl)

− ri ≤ 0

(7.58)

ri ≥ 0 (7.59)

xi ∈ H, (7.60)

where H is the convex hull of the customer locations and ri is the auxilliary variable.

For i∗ = arg min
i
{minF (xi, ri)} and minF (xi∗ , ri∗) = F (x∗i∗ , r

∗
i∗), if c∗ ≥ 0 the

model is optimal, there is no need to add any more columns. However, if c∗ < 0 then
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attach the column b
(t)∗
i∗ as such to the model:

b
(t)∗
nji∗ =

 1, if α
(t)′
i (xi, nj) ≤ 0

0, otherwise
for j = 1, ..., |N |

b
(t)∗
zj1i∗ = b

(t)∗
zj2i∗ =

 1, if β
(t)′
i (xi, zj1, zj2) ≤ 0

0, otherwise
for j = 1, ..., |Z| ,

b
(t)∗
oj1i∗ = 1, b

(t)∗
oj2i∗ = 0, if δ

(t)′
i (xi, oj1, oj2) = γ

(t)′
i (xi, oj1) for j = 1, ..., |O| ,

b
(t)∗
oj1i∗ = 0, b

(t)∗
oj2i∗ = 1, if δ

(t)′
i (xi, oj1, oj2) = γ

(t)′
i (xi, oj2) for j = 1, ..., |O| ,

b
(t)∗
oj1i∗ = 0, b

(t)∗
oj2i∗ = 0, if δ

(t)′
i (xi, oj1, oj2) = 0 for j = 1, ..., |O| ,

b
(t)∗
sjkl =

 1, if µ
(t)
i (xi,Sk) = νi (xi,Skl)

0, otherwise

for k = 1, ..., |S| ; l = 1, ..., |Sk| ; j = 1, ..., |Skl| .

(7.61)

For Ml is any node and Ml = {M0
l ,M1

l } is node l with zero branched pairs set

M0
l , one branched set M1

l and Zl is the lower bound for node l, the basic branch and

price heuristic is formerly listed in Figure 7.5.

Concave minimization problem is again solved by outer approximation [31], and

this method has asymptotic convergence. In order to eliminate this issue and speed up

the procedure column generation, Strategy (7.62) is used in practice instead of (7.61).

Here,
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1. Set t← 0, B ← ∅ and ZLB ← +∞

2. LetM0 ← {{} , {}} and B ← B ∪ {M0}

3. Repeat (selecting node)

(a) ChooseMl such thatMl ∈ B, B ← B \Ml

(b) Find N ,Z,O and S sets by definitions given above for the node Ml

(c) Initialize the RCMFWP5 model with a feasible solution

(d) Repeat (solving node)

i. t← t+ 1 and c∗ ← +∞

ii. Solve the main problem and find the dual values u
(t)
i , v

(t)
j and w(t)

iii. For each facility i

A. Solve the BPi problem for facility i

B. If c∗i ≤ c∗, then c∗ ← c∗i ≤ c∗ and i∗ ← i

iv. If c∗ < 0, then insert column for facility i which is found using (7.61)

v. Until c∗ ≥ 0

(e) Set Zl ← the optimal solution for node l

(f) If the solution is not binary and ZLB < Zl then choose a branching pair

{j1, j2}, form two new nodesMl(left) andMl(right):

i. Ml(left) ←
{
M0

l(left),M
1
l

}
whereM0

l(left) ←M0
l ∪ {j1, j2}

ii. Ml(right) ←
{
M0

l ,M1
l(right)

}
whereM1

l(right) ←M1
l ∪ {j1, j2}

iii. Zl(left) ← Zl, Zl(right) ← Zl and B ← B ∪
{
Ml(left),Ml(right)

}
(g) If solution is binary and ZLB < Zl then ZLB ← Zl and remove nodes with

lower bounds less than ZLB from B

(h) Until B = ∅

Figure 7.5. Basic branch and price algorithm for the RCMFWP5
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b
(t)∗
nji∗ =


1, if α

(t)′
i (xi, nj) < −ξ

0 or 1, if − ξ ≤ α
(t)′
i (xi, nj) ≤ ξ

0, otherwise

for j = 1, ..., |N | ;

b
(t)∗
zj1i∗ = b

(t)∗
zj2i∗ =


1, if β

(t)′
i (xi, zj1, zj2) < −ξ

0 or 1, if − ξ ≤ β
(t)′
i (xi, zj1, zj2) ≤ ξ

0, otherwise

for j = 1, ..., |Z| ;

Besides if min
{
γ

(t)′
i (xi, oj1) , γ

(t)′
i (xi, oj2)

}
< −ξ

b
(t)∗
oj1i∗ = 1, b

(t)∗
oj2i∗ = 0

or b
(t)∗
oj1i∗ = 0, b

(t)∗
oj2i∗ = 1

 if
∣∣∣γ(t)′

i (xi, oj1)− γ(t)′
i (xi, oj2)

∣∣∣ ≤ ξ

b
(t)
oj1i∗ = 1, b

(t)
oj2i∗ = 0, if γ

(t)′
i (xi, oj1) ≤ γ

(t)′
i (xi, oj2) + ξ

b
(t)
oj1i∗ = 0, b

(t)∗
oj2i∗ = 1, if γ

(t)′
i (xi, oj2) ≤ γ

(t)′
i (xi, oj1) + ξ,

If − ξ ≤ min
{
γ

(t)′
i (xi, oj1) , γ

(t)′
i (xi, oj2)

}
≤ ξ

b
(t)∗
oj1i∗ = 1, b

(t)∗
oj2i∗ = 0

or b
(t)
oj1i∗ = 0, b

(t)
oj2i∗ = 1

or b
(t)
oj1i∗ = 0, b

(t)
oj2i∗ = 0

 if
∣∣∣γ(t)′

i (xi, oj1)− γ(t)′
i (xi, oj2)

∣∣∣ ≤ ξ

b
(t)∗
oj1i∗ = 0 or 1, b

(t)∗
oj2i∗ = 0, if γ

(t)′
i (xi, oj1) ≤ γ

(t)′
i (xi, oj2) + ξ

b
(t)∗
oj1i∗ = 0, b

(t)∗
oj2i∗ = 0 or 1, if γ

(t)′
i (xi, oj2) ≤ γ

(t)′
i (xi, oj1) + ξ,

If min
{
γ

(t)′
i (xi, oj1) , γ

(t)′
i (xi, oj2)

}
> ξ then b

(t)∗
oj1i∗ = 0, b

(t)∗
oj2i∗ = 0,

for j = 1, ..., |O| ;

b
(t)∗
sjkl =


1, if νi (xi,Skl)− µ(t)

i (xi,Sk) < −ξ

0 or 1, if − ξ ≤ νi (xi,Skl)− µ(t)
i (xi,Sk) ≤ ξ

0, otherwise

for k = 1, ..., |S| ; l = 1, ..., |Sk| ; j = 1, ..., |Skl| .

(7.62)

Moreover, since concave minimization problems must be solved in every node
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created at least once for every facility in the branch and price algorithm, run times

are considerably longer compared to pure column generation. In order to start with a

promising column set, in branching, the columns that are not violating the restrictions

are imported to child nodes’ column set. In addition to this, similar to the pure

column generation part, in order to decrease the running time, every column created

with negative reduced cost are added to the model instead of adding the most negative

one in every iteration. On top of all this given above, the previously defined column

generation heuristic is altered and used. Overall column generation with branch and

price heuristic (BPH) can be seen in Figure 7.6. Similar to the column generation, in

Step 3, every column created is added to the column sets and this change improves run

time for some cases.

1. Set J prev
s ← Js,Js ← ∅

2. For j = 1, ..., |N |, if α
(t)′
i (xi, nj) ≤ 0 then Js ← Js ∪ {nj}

For j = 1, ..., | Z|, if β
(t)′
i (xi, zj1, zj2) ≤ 0 then Js ← Js ∪ {zj1, zj2}

For j = 1, ..., |O|, if δ
(t)′
i (xi, oj1, oj2) = γ

(t)′
i (xi, oj1) then Js ← Js ∪ {oj1}

else if δ
(t)′
i (xi, oj1, oj2) = γ

(t)′
i (xi, oj2) then Js ← Js ∪ {oj2}

For k = 1, ..., |S| ; l = 1, ..., |Sk| ; j = 1, ..., |Skl|,

if µ
(t)
i (xi,Sk) = νi (xi,Skl) then Js ← Js ∪ Skl

3. Find c
(t)
i = min

xi

{ ∑
j∈Js

γi (xi, j)

}
4. If J prev

s = Js then go to Step 5, else go to Step 1

5. Add newly created column containing Js and facility i and solve model. If the

objective function does not improve terminate, else go to Step 6

6. Update u(t), t← t+ 1

Figure 7.6. Column generation with branch and price heuristic

After defining the BPH in Figure 7.6, the branch and price algorithm BP2 can

be given as Figure 7.7.
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1. Set t← 0, B ← ∅ and ZLB ← +∞

2. LetM0 ← {∅, ∅} and B ← B ∪ {M0}

3. Repeat (node selection)

(a) ChooseMl such thatMl ∈ B, B ← B \Ml

(b) Find N ,Z,O and S sets by definitions given above for the node Ml

(c) Initialize the RCMFWP5 model with a feasible solution

(d) Repeat (solving the subproblem of the selected node)

i. t← t+ 1 and c∗ ← +∞

ii. Solve the main problem and find the dual values u
(t)
i , v

(t)
j and w(t)

iii. For each facility i

A. Solve the BPi problem for facility i

B. If c∗i ≤ c∗ then c∗ ← c∗i ≤ c∗

iv. If c∗i < 0, then

A. Insert column for facility i which is found using (7.62)

B. Solve the main problem and find the dual values u
(t)
i , v

(t)
j and w(t)

C. Run BPH for facility i from the locations found in subpoblem BPi

v. Until c∗ ≥ 0

(e) Set Zl ← the optimal solution for node l

(f) If the solution is not binary and ZLB < Zl then choose a branching pair

{j1, j2}, form two new nodesMl(left) andMl(right):

i. Ml(left) ←
{
M0

l(left),M
1
l

}
whereM0

l(left) ←M0
l ∪ {j1, j2}

ii. Ml(right) ←
{
M0

l ,M1
l(right)

}
whereM1

l(right) ←M1
l ∪ {j1, j2}

iii. Zl(left) ← Zl, Zl(right) ← Zl and B ← B ∪
{
Ml(left),Ml(right)

}
iv. Export every feasible columns fromMl toMl(left) andMl(right)

(g) If the solution is binary and ZLB < Zl then ZLB ← Zl and remove nodes

with lower bound less than ZLB from B

(h) Until B = ∅

Figure 7.7. Branch and price algorithm for the RCMFWP5
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7.5. Outer Approximation

One of the basic properties of the concave minimization problem on a convex

feasible set is that a global optimal point exists at some extreme point of the feasible

set. If the feasible set is a polytope, the number of extreme points are finite and the

problem can be solved by the enumeration of these vertices. Nevertheless, they can be

too many [33] and an efficient method is necessary since it effects the computational

cost of pricing and thus the efficiency of the column generation.

Another approach is to find optimal solutions for the concave minimization prob-

lems defined on a convex feasible set is the outer approximation method. Simply outer

approximation method can be defined as relaxing the feasible set to a simpler includ-

ing set, finding the optimal point on this relaxed set, adding new constraints on this

relaxed set to exclude the optimal point which is not a feasible point for the origi-

nal problem until a feasible solution –or at least a feasible solution which is almost

feasible– is found. The outer approximation algorithm starts by creating a relaxed

feasible set for the feasible set of the original problem. Since the extreme points of

the relaxed feasible region are the candidate locations for the global optimal solution,

they are kept on a set and in every iteration the extreme point with the maximum

objective function value is selected and removed from the set. If this point is at most

ε-infeasible or simply an ε-feasible solution for the main problem, this point is regarded

as a global optimal point of the concave minimization problem. If not, a cut is added

to the relaxed feasible solution which excludes this extreme point but not any part of

the feasible set of the original problem. After this cut, the set of extreme points are

updated and the process continues until the stopping criteria is obtained.

Before defining the outer approximation algorithm, let us define the adjacency

list algorithm [34]. It is an efficient way to keep track of the extreme points set in

outer approximation method. Current vertex set is defined as V . N (v) is the new

neighbours of vertex v. G is the set of functions of cuts that are added previously and

gnew (.) ≤ 0 is the function of new cut added to the relaxed set. P is the hyperplane

which can be defined as P = {x ∈ Rn : g (x) = 0} and J (v) = {g () ∈ G : g (v) = 0} is
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the set of constraints that defines vertex v. After defining the variables, the adjacency

list algorithm can be listed as Figure 7.8.

1. Set V− ← {} and V+ ← {}

2. For all vertex v ∈ V

(a) If g (v) ≤ 0, then V− ← V− ∪ {v} else V+ ← V+ ∪ {v}

3. Set Vnew ← {}

4. For all vertex v− ∈ V−

(a) For all vertex v+ ∈ N (v−) ∩ V+

i. Set w ← [v−, v+] ∩ P

ii. Vnew ← Vnew ∪ w

iii. N (v−) = {N (v−) \ {v+}} ∪ {w}

iv. N (w)← {v−} and J (w)← {J (v−) ∩ J (v+)} ∪ gnew ()

5. For all vertex u ∈ Vnew

(a) For all vertex v ∈ Vnew and v 6= u

i. If |J (u) ∩ J (v)| = n−1, thenN (u)← N (u)∪v andN (v)← N (v)∪u

Figure 7.8. Adjacency list algorithm

For the problem,

min f (x) (7.63)

s.t. x ∈ D (7.64)

where f : Rn → R is continuous and D ⊂ Rn is closed, the generic outer approximation

scheme is summarized in Figure 7.9 as given in [31].

It is worth to highlight some application details we use when implementing the

outer approximation method. In Step 1, initial relaxation D1 is defined as a hyperplane

using the upper bounds on the variables. The bounds that are computable or given

explicitly are used as they are. For the unbounded variables, arbitrary large numbers

are selected as upper bounds. This approach also simplifies finding the inital vertex set
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1. Set t← 1 and choose D1 ⊃ D

2. Initialize V vertex set with the vertices of D1

3. Repeat

(a) v∗ ← arg min
v∈V
{f (v)}

(b) If v∗ /∈ D, then

i. Construct a constraint function l(t) : Rn → R satisfying,

A. l(t) (v) ≤ 0 for all v ∈ D

B. l(t) (v∗) > 0

ii. Set D(t+1) ← D(t) ∩
{
v : l(t) (v) ≤ 0

}
iii. Set gnew ← l(t) and update V by the adjacency list algorithm

iv. t← t+ 1

(c) Until v∗ ∈ D

Figure 7.9. Outer approximation algorithm

V . During the initialization we also found a feasible point w ∈ D to use in further steps.

In function construction given in Step 3(b)i, we first draw a line between the feasible

point w and current infeasible point v∗. The intersection of this point and the most

infeasible constraint is found. If the constraints of the set D are differentiable, partial

derivatives of these functions are used, if not the partial derivatives are calculated from

the formal definition of the derivative for the intersection point. After finding the point

and the partial derivatives on that point, a hyperplane which contains that point with

the slopes of partial derivatives is drawn and checked by using the feasible point w.

That is how we construct function l(t) at iteration (t).

7.6. Alternating Location Allocation Heuristic

ALA heuristic was proposed by Cooper to solve the UMFWP [7]. It simply

consists of the sequential solution of location and allocation problems. With its fast

convergence rate and near optimal solution, it is still one of the best heuristics available

in the literature. Similar to CMFWP, UMFWP is an NP-complete problem, but the

two components of the heuristic, location and allocation problems are easy to solve.
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Allocation part in this heuristic is a simple inspection over customers in which they are

assigned to the nearest facility. Location part is similar to CALA and can be handled

by using Weiszfeld procedure given in Figure 5.1. The steps of the ALA heuristic are

given in Figure 7.10.

1. Define initial facility locations xi for i = 1, ...,m

2. Set facility locations xi for i = 1, ...,m as parameters.

3. For each customer j, if facility i is the nearest facility to customer j set wij ← hj,

otherwise set wij ← 0

4. Set allocations wij for i = 1, ...,m; j = 1, ..., n as parameters and solve a SFWP

for every facility to find the locations xi for i = 1, ...,m

5. Go to Step 2 until termination criteria are satisfied

Figure 7.10. Alternating location allocation heuristic

Notice that in our case the distance function is di (xi, aj) = cijd (xi, aj) + λi. Here

λi is the Lagrange multiplier and because of it, the new distance function depends on

the facility. In short, Lagrangean subproblems are UMFWPs with facility dependent

distance functions. This affects the allocation phase: The distance function di (xi, aj)

is used. However, Weiszfeld procedure can be adopted directly since λi is constant and

does not exist, after the differentiations with respect to the facility coordinates.

7.7. Uncapacitated Discrete Approximation Heuristic

Even though it is one of the most efficient heuristics in the literature, ALA’s

accuracy heavily depends on the initial solution. In order to calculate better solutions

with ALA, we have tried to improve initial facility locations. This is done by solving

a discrete uncapacitated multifacility location allocation problem (DUMLAP) to find

initial facility locations whose pure binary mathematical model can be written as:
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DUMLAP:

min
m∑

i=1

n∑
j=1

r∑
k=1

yijkhj [cijd (bk, aj) + λi] (7.65)

s.t.
m∑

i=1

r∑
k=1

yijk = 1 j = 1, ..., n (7.66)

r∑
k=1

xik = 1 i = 1, ...,m (7.67)

yijk ≤ xik i = 1, ...,m; j = 1, ..., n; k = 1, ..., r (7.68)

yijk ∈ {0, 1} i = 1, ...,m; j = 1, ..., n; k = 1, ..., r (7.69)

xik ∈ {0, 1} i = 1, ...,m; k = 1, ..., r (7.70)

Similar to the variables defined in the previous models, bk is the candidate lo-

cation k for facilities and they are taken as the customer locations. In other words

K = {a1, a2, ..., am}. xik is 1 if facility i is opened at location bk and yijk is 1 if facility

i is opened at location bk serves customer j. Constraints (7.66) force every customer to

be assigned to a facility, 0 otherwise. Constraints (7.67) restrict facilities to be opened

in only one candidate location. Constraints (7.68) guarantee that customers are served

by opened facilities. As mentioned above, the solution of this model is taken as initial

facility locations and ALA is run afterwards.

7.8. Relaxed Uncapacitated Discrete Approximation Heuristic

For larger problems, it is difficult to solve the pure binary integer programming

model. Fortunately, an accurate Lagrangean heuristic can be devised. Assignment

constraints (7.66) are relaxed and the Lagrangean subproblem is formulated as
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RDUMLAP:

min
m∑

i=1

n∑
j=1

r∑
k=1

yijk {hj [cijd (bk, aj) + λi] + µj} −
n∑

j=1

µj (7.71)

s.t. Constraints (7.67) - (7.70) (7.72)

where µj stands for the corresponding Lagrange multipliers.

As it can be seen easily, the second summation is constant and the first summation

is seperable over the facilities, and the solution of RDUMLAP becomes equivalent to

the solution of

RDUMLAPi:

min
n∑

j=1

r∑
k=1

yijk {hj [cijd (bk, aj) + λi] + µj} (7.73)

s.t.
r∑

k=1

xik = 1 (7.74)

yijk ≤ xik j = 1, ..., n; k = 1, ..., r (7.75)

yijk ∈ {0, 1} j = 1, ..., n; k = 1, ..., r (7.76)

xik ∈ {0, 1} k = 1, ..., r (7.77)

Furthermore, the seperable problems, RDUMLAPi, can be solved by inspection.

The inspection consists of a calculating the cost of assigning a single facility to every

candidate location for given customer subset and selecting the candidate location which

gives the minimum cost.

In addition to the discrete alternating location allocation heuristic (DALA) is

used in steps of the the relaxed discrete approximation heuristic (RUDAH). Similar

to ALA, in DALA heuristic, location and allocation problems are solved alternately.

The only difference is that, in the location phase of DALA, a DLAP is solved for
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every facility and allocations assigned to it in the previous iteration. The procedure

for DALA heuristic can be seen in Figure 7.11.

1. Define initial facility locations from the candidate location set K

2. Set facility locations xi for i = 1, ...,m as parameters

3. For each customer j, if facility i is the nearest facility to customer j set wij ← hj,

otherwise set wij ← 0

4. For each facility i do

(a) k∗i ← arg min
bkinK

{∑
j

cijwijd (bk, aj)

}
(b) xi ← bk∗i

5. Go to Step 2 until termination criteria are satisfied

Figure 7.11. Discrete alternating location allocation heuristic

Finally the steps of the overall SO procedure for RUDAH can be listed as Figure

7.12.

1. Decide µj and π (where 0 ≤ π ≤ 2)

2. Run DALA heuristic, CUB is the objective

3. ZUB ← min (ZUB, CUB)

4. Solve seperated problems, k?
i is the optimal candidate location for facility i

5. Calculate CLB and set ZLB ← max (ZLB, CLB)

6. Calculate objective by solving ALA. Keep the solution if it is the best so far

7. Gj =
n∑

i=m

yijk?
i
− 1 j = 1, ..., n

8. T = π(ZUB−CLB)
mP

j=n
G2

j

9. µj = µj + TGj j = 1, ..., n

10. Update π if needed

11. Go to Step 2 until termination criteria are satisfied

Figure 7.12. Relaxed uncapacitated discrete approximation heuristic
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8. COMPUTATIONAL RESULTS

Before giving the computational results, we would like to express the computa-

tion environment. All the methods in this research are coded by C#. For solving

mixed integer and linear programming problems ILOG Cplex version 11.0 commercial

solver with Concert technology is used. The remaining methods, including the outer

approximation method based concave minimization solver [31] are coded within the

same environment. Results are obtained on a Dell server with two 3.16 Ghz Intel Xeon

X5460 processor and 28 GB of RAM. It is worth to note that all runs are realised as

single threaded programs.

This chapter consists of three sections. The first one contains results with the

alternating location allocation and discrete approximation heuristics. They give upper

bounds on the optimal value. In the second section the performances of the approxi-

mations using l1 and l∞ norms are studied. In the third and final section, we compared

the Lagrangean relaxation of the CMFWP with the other lower and upper bounding

methods.

Test problems are combined in three groups. Small instances which include some

previously solved problems for the Euclidean distance functions, 201-220 which has 5

facilities with 30 customers and 10 facilities with 10 customers as the largest instances.

Problems 301-323 are also small instances ranging upto size of 30 customers with

10 facilities and 50 customers with 10 facilities. The problems between 301-323 are

unweighted, in other words, the unit shipment cost per unit distance per unit amount

of goods (cij) is defined as unity for every facility customer pair. Test problems 401-423

are obtained by randomly setting cij of the test problems 301-323 to values different

than one. Problems 324-328 and 424-428 are medium instances with 5 facilities and 100

customers where the formers have equal unit shipment cost for every facility customer

pair. Large instances have at least 25 facilities and 250 customers which are named as

Problems 501-504 and 601-604. The former ones have, unit shipment cost set to one.
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The experiments with every test instance are repeated for 5 different distance

functions: Euclidean, squared Euclidean, and lp distance for p = 1.25, 1.50 and 1.75.

8.1. Upper Bounds on the Optimal Value

In the upper bounding algorithms, we tested 6 heuristics. The first 4 heuristics

are the region rejection heuristics RRH, DRRH, RRH′ and DRRH′. In these heuristics,

the radius update factor α is set to 0.7, T is set to the number of customers and E

is set to the integer part of number of customers divided by number of facilities. γ is

chosen as 0.5 and R, the initial rejection radius, is calculated according to the formula

R =
γ

m
max

j
{aj1, aj2}

as suggested in [27]. These four region rejection heuristics are run K times and the

best value of these K iterations is reported. The value of K is set to

K =

 max {100,m}

max {100, 3
√
n} ,

which is again suggested in [27].

The remaining two upper bounding heuristics are DAH and RDAH. In RDAH

algorithm, initial λ values and π are set to two and π is updated if ZUB or ZLB do not

change, by more than 10−4 in 20 consecutive iterations. The algorithm terminates if π

is updated 15 times or the difference between ZUB and ZLB is less than 10−4.

All individual running times of these six heuristics are limited to 1200 seconds

for small instances, 2400 seconds for medium instances and 3600 seconds for large

instances, and the current best solution is reported.
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Table 8.1. Accuracy of the upper bounds: Percent deviations for Problems 201-220

with the Euclidean distance

Problem (m,n) Optimal RRH DRRH RRH′ DRRH′ DAH RDAH

201 (2,2) 0 0.00 0.00 0.00 0.00 0.00 0.00

202 (2,4) 247.28 0.00 0.00 0.00 0.00 0.00 0.00

203 (2,4) 214.34 0.01 0.01 0.01 0.01 0.01 0.01

204 (3,5) 24 0.00 0.00 0.00 0.00 0.00 0.00

205 (3,5) 73.96 0.00 0.00 0.00 0.00 0.00 0.00

206 (3,9) 221.4 0.06 0.00 28.91 0.00 0.00 0.00

207 (3,9) 871.62 0.00 0.00 0.00 0.00 0.00 0.00

208 (4,8) 609.23 19.79 3.52 19.79 0.00 0.00 0.00

209 (5,15) 8169.8 63.74 0.56 0.56 0.00 0.00 0.56

210 (5,20) 12847 4.13 0.00 4.13 0.37 0.00 0.60

211 (5,20) 1107.2 29.40 21.98 29.40 21.98 0.00 0.00

212 (5,30) 23990 2.83 2.80 2.83 1.63 0.00 2.83

215 (5,10) 2595.5 31.65 23.53 31.65 19.38 0.00 2.32

216 (6,10) 7797.2 3.18 0.00 3.18 3.18 0.00 1.56

217 (7,10) 6967.9 5.05 1.03 18.67 2.51 0.10 0.77

218 (8,10) 1564.5 36.80 23.85 36.80 36.80 0.00 0.00

219 (9,10) 3250.7 20.32 8.88 47.42 13.20 0.00 20.32

220 (10,10) 7719 12.71 1.43 12.71 4.96 0.01 3.77

Average 12.76 4.87 13.11 5.78 0.01 1.82

In Table 8.1, the percent deviations of the upper bounds from optimal solutions

of problems 201-220 with the Euclidean distance are reported. The total CPU statistic

for these runs can be found in Table 8.2.

As can be seen, DAH heuristic has the highest accuracy and efficiency, which is

followed by RDAH. Furthermore, DAH finds the optimal solution on 15 out of 18 test

instances. This number is 9 out of 18 for RDAH. The performances of DRRH and

DRRH′ are slghtly worse; they found an optimal solutions of 8 out of 18 instances.
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Table 8.2. Efficiency of the upper bounds: CPU times (seconds) of UB algorithms for

Problems 201-220 with the Euclidean distance

Problem (m,n) RRH DRRH RRH′ DRRH′ DAH RDAH

201 (2,2) 0.22 0.16 0.28 0.31 0.39 0.19

202 (2,4) 6.36 8.27 6.45 8.22 0.17 0.20

203 (2,4) 8.11 9.05 9.67 8.61 0.22 0.22

204 (3,5) 11.30 9.22 9.64 8.09 0.25 0.34

205 (3,5) 8.00 9.97 7.80 10.03 0.19 0.23

206 (3,9) 8.89 9.69 10.20 10.00 0.20 0.42

207 (3,9) 14.48 12.44 15.48 12.44 0.19 0.22

208 (4,8) 17.16 18.02 22.33 19.11 0.20 0.83

209 (5,15) 30.45 36.48 31.97 35.78 0.34 1.00

210 (5,20) 30.86 54.27 34.81 43.36 0.44 0.73

211 (5,20) 28.42 32.83 26.06 28.45 0.69 1.13

212 (5,30) 62.64 65.19 60.67 67.77 1.92 2.38

215 (5,10) 15.98 21.05 17.86 27.45 0.28 1.19

216 (6,10) 31.88 34.59 30.31 34.02 0.58 1.03

217 (7,10) 27.59 38.63 31.23 41.86 0.56 1.03

218 (8,10) 19.78 23.06 23.58 24.63 0.55 0.86

219 (9,10) 23.84 26.78 24.22 28.11 0.66 0.84

220 (10,10) 33.00 36.69 31.55 42.19 0.36 1.02

Average 21.05 24.80 21.90 25.02 0.45 0.77
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For the rest of the instances, percent deviations from the best known values are

reported since the optimal values are not known. Average deviations and CPU times

are reported in Table 8.3 and Table 8.4 for the Euclidean distance and lp distance with

p = 1.25, 1.50, 1.75. Results for the squared Euclidean distance can be found in Table

8.5 and Table 8.6.

Similar to instances 201-220, DAH has the best performance on the small in-

stances. However, it loses its superiority for the large ones because of the limitations

over the CPU time. All of the medium and large instances, except Problem 425, are

stopped because of the time limitation. On the other hand, even though it has the

minimum average CPU time compared to other methods, RDAH performs the best

for all the medium and large instances. Remaining four alternating location allocation

heuristics are not only less accurate but also less efficient than RDAH.

As a result, we can state that DAH is the most accurate for the instances that

can be solved optimally in time limitations, whereas RDAH has the highest accuracy

for the large instances and has fairly short CPU times. It seems better to use RDAH

for the cases with more than 100 customers and/or more than 25 facilities. DAH can

solve small instances better than the other five heuristics in slightly less CPU seconds.

8.2. Lower Bounds on the Optimal Value

In Chapter 6, in addition to heuristics that compute upper bounds, four lower

bounding approaches using discrete approximations of the l1 and l∞ norms with special

sets of candidate locations are defined. The first two of them, namely L1 and L∞, solves

the MILP problems obtained for the l1 and the l∞ norms exactly whereas the other

two, RL1 and RL∞, are two Lagrangean heuristics for these two exact models obtained

by relaxing the demand constraints. In this section, we are going to compare these

four lower bounding algorithms experimentally.

In the L1 and L∞, DLAP are solved, whereas in the RL1 and the RL∞, Lagrangean

relaxations of these DLAP are formed and solved by using the relaxed discrete approx-
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Table 8.3. Accuracy of the upper bounds: Average percent deviations for all

problems with the Euclidean and lp distances with p = 1.25, 1.50, 1.75

Distance type Problems RRH DRRH RRH′ DRRH′ DAH RDAH

201-220 12.76 4.87 13.11 5.78 0.01 1.82

301-323 8.48 9.87 9.35 10.03 0.00 1.56

401-423 33.83 33.23 34.98 33.22 0.00 2.90

Euclidean 324-328 0.39 0.67 0.06 0.33 0.25 0.00

424-428 2.50 3.13 0.70 2.36 0.01 0.08

501-504 9.95 10.01 9.45 9.17 9.13 0.00

601-604 11.71 18.09 9.24 15.82 6.07 0.41

201-220 10.13 4.56 12.12 6.14 0.08 2.28

301-323 9.51 9.61 9.01 9.53 0.09 1.58

401-423 34.24 33.41 32.71 32.70 0.00 2.22

p = 1.25 324-328 0.29 0.54 0.12 0.73 0.55 0.12

424-428 2.16 2.77 2.17 2.61 0.02 0.19

501-504 8.52 9.10 10.07 8.95 4.69 0.00

601-604 9.01 16.75 9.27 15.37 11.93 0.00

201-220 9.68 4.60 14.06 6.14 0.00 2.06

301-323 8.61 9.69 9.41 10.36 0.01 1.64

401-423 35.61 32.22 34.38 34.93 0.00 1.91

p = 1.5 324-328 0.13 0.55 0.20 0.65 0.28 0.45

424-428 3.95 3.40 2.39 2.34 0.13 0.12

501-504 7.89 8.79 8.45 7.87 6.13 0.00

601-604 11.07 16.80 10.02 15.35 10.05 0.00

201-220 9.27 4.82 13.26 5.97 0.00 1.83

301-323 21.09 13.21 12.85 13.49 3.18 4.51

401-423 36.04 32.18 34.39 35.45 0.00 1.95

p = 1.75 324-328 0.35 0.37 0.11 0.47 0.15 0.00

424-428 3.98 3.45 2.32 2.71 0.20 0.12

501-504 8.78 9.65 8.98 9.90 8.20 0.00

601-604 9.02 17.09 9.66 15.56 5.74 0.00
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Table 8.4. Efficiency of the upper bounds: Average CPU times (seconds) for all

problems with the Euclidean and lp distances with p = 1.25, 1.50, 1.75

Distance type Problems RRH DRRH RRH′ DRRH′ DAH RDAH

201-220 21.1 24.8 21.9 25.0 0.5 0.7

301-323 117.3 115.8 120.0 115.3 19.1 3.6

401-423 79.1 74.5 76.0 73.3 5.3 2.0

Euclidean 324-328 218.6 225.4 224.2 230.0 2400.7 19.6

424-428 269.2 266.0 273.7 274.8 2216.5 14.8

501-504 4091.8 3536.6 3404.3 3456.8 3624.3 1076.8

601-604 4256.0 3533.7 3356.2 3422.9 3623.2 623.2

201-220 23.6 24.9 23.2 25.0 0.4 0.7

301-323 117.1 115.9 119.4 119.1 16.3 4.2

401-423 74.2 72.6 72.1 70.9 5.7 2.2

p = 1.25 324-328 226.9 232.3 225.9 241.5 2402.9 23.3

424-428 280.1 273.4 281.2 282.9 2223.2 27.1

501-504 3358.9 3540.4 3361.7 3455.2 3620.5 1151.0

601-604 3386.4 3447.3 3343.6 3431.4 3621.3 722.3

201-220 21.6 23.3 21.4 24.1 0.4 0.7

301-323 119.0 117.9 116.7 115.3 21.1 4.1

401-423 77.2 71.5 80.9 72.4 5.7 2.1

p = 1.5 324-328 215.7 220.4 222.7 225.6 2400.6 18.2

424-428 277.8 265.5 281.4 284.1 2289.4 16.6

501-504 3352.9 3541.4 3331.2 3501.9 3621.4 1033.1

601-604 3378.8 3474.5 3321.1 3486.0 3619.4 651.9

201-220 21.6 23.7 21.0 24.3 0.4 0.7

301-323 121.1 118.4 118.2 115.6 14.7 4.2

401-423 78.2 72.0 80.1 73.4 5.4 2.1

p = 1.75 324-328 216.1 223.6 217.5 220.1 2405.1 21.0

424-428 262.6 261.9 275.9 278.0 2162.7 12.9

501-504 3378.7 3503.1 3307.1 3487.6 3622.8 1118.4

601-604 3372.2 3480.1 3321.9 3419.6 3620.9 645.0
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Table 8.5. Accuracy of the upper bounds: Average percent deviations for all

problems with the squared Euclidean distance

Distance type Problems RRH DRRH RRH′ DRRH′ DAH RDAH

201-220 10.70 4.61 10.15 4.51 1.53 4.47

301-323 15.67 16.49 18.31 13.81 1.12 4.31

Squared 401-423 56.94 53.84 54.13 62.86 1.14 11.38

Euclidean 324-328 0.89 0.83 1.54 1.50 1.00 0.00

424-428 6.36 8.56 6.26 7.31 2.82 0.00

501-504 6.88 7.36 9.55 9.14 9.50 0.92

601-604 26.40 28.75 26.38 32.43 14.10 0.23

Table 8.6. Efficiency of the upper bounds: Average CPU times (seconds) for all

problems with the squared Euclidean distance

Distance type Problems RRH DRRH RRH′ DRRH′ DAH RDAH

201-220 9.3 9.4 9.0 9.1 0.5 0.9

301-323 24.0 24.3 25.1 24.5 109.1 4.7

Squared 401-423 23.8 23.7 23.0 22.9 8.7 2.7

Euclidean 324-328 76.8 77.2 78.5 76.6 2418.2 31.1

424-428 74.5 76.4 72.8 73.4 2400.9 21.9

501-504 2867.7 2831.8 2642.4 2851.9 3623.5 588.0

601-604 2811.2 2769.6 2683.1 2759.1 3621.7 1976.9
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imation heuristic given in Figure 6.4 without Step 4, using an appropriate candidate

location set K. Initial µ and π values are set to 2 and π is updated if ZUB or ZLB do

not change more than 10−4 in 20 consecutive iterations. If π is updated 15 times, the

difference between ZUB and ZLB is less than 10−4 or the CPU time exceeds the time

limit algorithm terminates and ZLB is reported as the lower bound after multiplying it

with the constant defined in (6.10) and (6.11). Similar to the previous runs, all indi-

vidual CPU times of these six heuristics are limited to be below 1200 seconds for small

instances, 2400 seconds for medium instances and 3600 seconds for large instances.

The percent relative deviations of the solutions of the lower bounding algorithms from

the optimal solutions and the total CPU times for these runs of problems 201-220 with

the Euclidean distances are reported in Table 8.7 and 8.8 respectively.

As can be seen, for problems 201-220 with the Euclidean distance, L∞ algorithm

performs slightly better than the other three. None of the instances’ but problem 201’s

lower bounds calculated by these four algorithms overlap with the optimal objective

function values. The CPU times for all the instances are very short; but the relaxation

type algorithms terminate in less than one second on the average. Whereas the other

two heuristics find the lower bound for Problem 212 in more than sixty seconds.

For the remaining instances, again the deviations from the best known are com-

pared instead of the the deviations from the optimal objective value. Average devia-

tions from the best value and the average CPU times for the Euclidean and lp distance

for p = 1.25, 1.50, 1.75 are reported in Table 8.9 and Table 8.10 respectively. First,

we must state that large instances are not solved optimally by using the methods L1

and L∞, since these models composed of more than 200000 binary decision variables.

Second, the CPU times are reported regardless of the distance type. The L1 and RL1

only multiplies the value found by the algorithm with a different constant whereas L∞

and RL∞ returns the same solution for every distance type for the same instance.

From the results, we can state that the RL1 algorithm has the best average

accuracy, whereas in small instances L∞ algorithm gives the best lower bounds for the

Euclidean distance. Even though they are solved using the Lagrangean heuristic, RL1
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Table 8.7. Accuracy of the lower bounds: Percent deviations for Problems 201-220

with the Euclidean distance

Problem (m,n) Optimal L1 L∞ RL1 RL∞

201 (2,2) 0 0.00 0.00 0.00 0.00

202 (2,4) 247.28 6.78 8.61 6.78 8.61

203 (2,4) 214.34 18.84 10.42 18.84 10.42

204 (3,5) 24 29.29 0.00 39.90 35.00

205 (3,5) 73.96 6.31 18.88 6.31 18.88

206 (3,9) 221.4 12.17 10.57 13.03 12.16

207 (3,9) 871.62 17.58 3.97 17.58 3.97

208 (4,8) 609.23 7.96 20.72 14.03 24.23

209 (5,15) 8169.79 16.75 10.62 17.33 10.68

210 (5,20) 12846.87 10.14 9.68 11.17 9.79

211 (5,20) 1107.18 11.67 8.60 18.57 12.57

212 (5,30) 23990.04 18.72 11.57 19.83 14.40

215 (5,10) 2595.47 6.64 12.73 8.79 15.01

216 (6,10) 7797.21 13.03 9.02 17.45 14.19

217 (7,10) 6967.9 11.99 7.49 15.13 12.43

218 (8,10) 1564.46 19.59 7.32 30.44 19.72

219 (9,10) 3250.68 20.10 9.50 28.13 21.01

220 (10,10) 7719 5.97 15.74 6.07 15.79

average 12.97 9.75 16.08 14.38
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Table 8.8. Efficiency of the lower bounds: CPU times (seconds) for problems 201-220

with the Euclidean distance

Problem (m,n) L1 L∞ RL1 RL∞

201 (2,2) 0.27 0.25 2.38 0.20

202 (2,4) 0.19 0.31 0.28 0.20

203 (2,4) 0.19 0.27 0.30 0.19

204 (3,5) 0.22 0.31 0.38 0.47

205 (3,5) 0.19 0.39 0.27 0.20

206 (3,9) 0.42 0.91 0.45 0.55

207 (3,9) 0.34 0.73 0.31 0.23

208 (4,8) 0.66 0.58 0.52 0.45

209 (5,15) 1.28 3.59 0.70 0.72

210 (5,20) 5.02 9.53 1.56 1.52

211 (5,20) 2.67 11.95 1.38 1.84

212 (5,30) 73.03 153.36 3.75 4.33

215 (5,10) 0.73 1.14 0.47 2.94

216 (6,10) 1.02 2.50 0.77 0.70

217 (7,10) 1.02 1.98 0.64 0.75

218 (8,10) 1.00 1.48 0.77 0.81

219 (9,10) 1.27 1.44 0.77 0.89

220 (10,10) 0.77 1.78 0.75 0.77

Average 5.01 10.70 0.91 0.99
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Table 8.9. Accuracy of the lower bounds: Average percent deviations for all the

problems with the Euclidean distance and lp distances with p = 1.25, 1.50, 1.75

Distance type Problem L1 L∞ RL1 RL∞

201-220 12.97 9.75 16.08 14.38

301-323 12.42 5.51 7.75 2.77

401-423 10.39 4.99 9.23 6.31

Euclidean 324-328 84.02 86.31 0.73 0.95

424-428 97.42 95.48 1.92 1.11

501-504 N/A N/A 0.25 6.09

601-604 N/A N/A 0.08 0.68

201-220 0.72 14.84 4.40 19.39

301-323 7.25 18.60 2.62 16.48

401-423 6.38 19.17 5.22 20.35

p = 1.25 324-328 83.95 88.81 0.00 18.94

424-428 97.34 96.29 0.00 18.02

501-504 N/A N/A 0.00 23.51

601-604 N/A N/A 0.00 19.26

201-220 1.55 8.08 5.14 12.86

301-323 7.70 11.20 3.00 8.79

401-423 6.90 11.92 5.70 13.15

p = 1.5 324-328 83.95 87.73 0.00 11.10

424-428 97.34 95.94 0.00 10.08

501-504 N/A N/A 0.00 16.11

601-604 N/A N/A 0.00 11.44

201-220 3.44 4.30 6.91 9.16

301-323 9.09 6.64 4.31 3.97

401-423 8.06 7.17 6.82 8.39

p = 1.75 324-328 83.95 86.89 0.00 5.03

424-428 97.36 95.66 0.45 4.41

501-504 N/A N/A 0.00 10.38

601-604 N/A N/A 0.00 5.40
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Table 8.10. Efficiency of the lower bounds: Average CPU times (seconds) for all the

problems with the Euclidean distance and lp distances with p = 1.25, 1.50, 1.75

Problem L1 L∞ RL1 RL∞

201-220 5.01 10.70 0.91 0.99

301-323 714.20 653.77 14.42 11.57

401-423 629.75 578.20 11.28 9.09

324-328 2410.77 2415.98 284.88 329.28

424-428 2410.28 2412.78 207.06 236.42

501-504 N/A N/A 3609.70 3612.12

601-604 N/A N/A 3606.52 3610.10

and RL∞ terminates because of the time limitation, for large instances, since there

are more than 200000 candidate facility locations. All other CPU times of these two

algorithms are fairly short compared to L1 and L∞. L1 and L∞ are terminated by using

the time limit even for some of the small instances with 25 customers and 9 facilities.

Regardless of the size of the problem and the distance, we can state that RL1 has

the highest accuracy and efficiency. It solves small and medium sized instances in less

than 600 seconds and in most of the cases, finds the best solution compared to other

methods.

8.3. Bounds with Lagrangean Relaxation

In this section we will show the computational results for the RCMFWP. The

RCMFWP is solved by either column generation or branch and price technique. In both

of these methods a concave minimization solver with the outer approximation method

is used for solving the subproblems. In order to eliminate the asymptotic convergence

issue, several stopping conditions are used to terminate concave minimization solver.

The number of iterations and the number of extreme points in the outer convex hull are

limited to 5000. As mentioned before, since the outer approximation offers asymptotic

convergence, an ε value of 10−4 is decided and the outer approximation method returns
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an optimal solution which is at most ε infeasible of the constraints. In addition, in

column generation and branch and price, algorithms given as Figure 7.4 and Figure 7.7

are used instead of Figure 7.2 and Figure 7.5 respectively. Last but not least, columns

are generated using strategies given with (7.43) and (7.62) instead of the ones given

with (7.42) and (7.61) by setting the parameter ξ to 1.

In column generation an initial starting feasible solution and column set is created

by running CALA heuristic 10 times starting at random location at their first run in

any SO iteration. Furthermore, in order to decrease the time required to create initial

column set, columns created in the previous SO iteration are used in the next iteration

after correcting their cost values, since λi change in every iteration of SO.

In order to compute the upper bounds, either DAH or RDAH is used at first

iteration. At the remaining iterations of SO, CALA heuristic is used and optimal/best

facility locations found by previous steps’ lower bounding algorithm is used as starting

facility locations. In DAH and RDAH, customer locations are used as the candidate

locations. For the cases with more than 30 customers, the RDAH is used with CALA

heuristic. A similar approach is also used for lower bounding algorithms. We solve small

instances with UDAH algorithm and replace with its Lagrangean heuristic RUDAH for

the other two groups of instances.

In SO procedure, initial π and λi values are set to 2 and updated as shown in

Figure 7.1. π is halved if 20 steps passed without any significant improvements which

is more than 10−4 in the best lower or upper bounds. If π or the difference between the

best lower and upper bound is less than 10−4 the SO procedure terminates. The runs

are limited to 180 minutes for small instances, 360 minutes for the medium instances

and 540 minutes for the large ones, SO procedure terminates and the best values found

so far are reported. However, if time elapsed inside one of the lower or upper bounding

algorithms, program waits the algorithm to terminate.

In the test runs for the problems 201-220 with the Euclidean distance column

generation (CGA) and branch and price algorithms (BPA) are used to compute lower
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bound in every iterations of the SO method. Whereas, upper bound is first initialized

by DAH and updated by CALA heuristic in every iteration. In the other two groups

of test runs, instead of running the CGA and BPA in every step, UDAH is used in

every iteration and the lower bound is updated by the other two with different periods

according to run type. Even though a heuristic is used to calculate lower bounds

inside SO, the reported lower bound is calculated by one of the valid lower bounding

algorithms to guarantee its validity at the final step.

Two different settings are considered according to the usage of the second lower

bounding algorithm. In all types, second lower bounding algorithm is applied and π

is halved when the difference between upper and lower bound is less than 10−4. In

addition to that, in type one runs (1), second lower bounding algorithm is run in every

iteration in which π is updated. In type two runs (2), the second lower bounding

algorithm is run after SO terminates, with the lambda values which gives the greatest

lower bound in iterations. The optimality gaps and the CPU times for these 6 different

test runs and the best gap found by using the L∞ and DAH for the Euclidean distance

are reported in Table 8.11 and Table 8.12 respectively.

Before continuing, we must note that, in all of the iterations using Lagrangean

heuristic, upper bound is initialized by running a DAH at the first iterations of the SO

algorithm. Even though, a CALA heuristic is run in every step of the SO, the solution

found by the DAH is rarely improved. This shows the accuracy of the DAH heuristic

for small instances.

If we compare the average gaps, we can state that L∞/DAH pair outperforms

all other three. However if the number of optimal solutions found is compared, which

means the number of zero gaps, all the other six Lagrangean heuristics found optimal

values for the four cases. Furthermore, we can realize that, for the problem 202, the gap

calculated by the Lagrangean type heuristics is 100 % which means the lower bound

found for this instance is 0. If we treat it as an outlier and recalculate the gaps, the

type two algorithm of BPA where UDAH is run in every step of the SO and BPA is

run only in π updates and final iterations, have average gap of 8.79 % which is better
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Table 8.11. Accuracy of the Lagrangean heuristic: duality gaps for the problems

201-220 with the Euclidean distance

Problem CGA(1) BPA(1) CGA(2) BPA(2) CGA BPA L∞/DAH

201 0.00 0.00 0.00 0.00 0.00 0.00 0.00

202 0.00 0.00 0.00 0.00 0.00 0.00 8.60

203 22.90 20.10 22.90 20.10 21.67 20.10 10.43

204 100.00 100.00 100.00 100.00 100.00 100.00 0.00

205 0.00 0.00 0.00 0.00 0.00 0.00 18.87

206 22.37 11.34 22.95 11.34 21.54 11.35 10.57

207 0.00 0.00 0.00 0.00 0.00 0.00 3.97

208 22.68 17.31 22.69 17.47 19.60 17.59 20.72

209 6.30 6.30 7.00 7.00 5.14 4.93 10.62

210 1.58 1.58 1.58 1.58 1.58 1.78 9.68

211 8.28 5.27 8.28 5.27 7.81 5.63 8.60

212 5.56 4.74 5.58 5.12 5.05 4.46 11.57

215 3.72 3.72 3.72 3.72 3.77 3.82 12.73

216 17.37 17.37 17.39 17.39 17.61 18.78 9.02

217 10.54 10.54 10.54 10.54 14.26 13.97 7.58

218 34.25 22.99 34.25 22.99 28.97 37.36 7.32

219 30.05 27.70 30.06 27.63 31.80 65.13 9.50

220 0.46 0.46 0.46 0.46 1.40 1.40 15.75

Average 15.89 13.86 15.97 13.92 15.57 17.02 9.75
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Table 8.12. Efficiency of the Lagrangean heuristic: CPU times (second) for the

problems 201-220 with the Euclidean distance

Problem CGA(1) BPA(1) CGA(2) BPA(2) CGA BPA L∞/DAH

201 0.4 0.5 0.4 0.5 0.5 0.3 0.6

202 63.9 63.7 65.0 63.5 156.0 260.0 0.5

203 103.2 466.4 36.2 67.7 790.0 8014.0 0.5

204 417.6 398.5 113.9 110.4 6557.4 6950.7 0.6

205 66.1 63.2 66.0 63.2 92.3 89.8 0.6

206 239.2 501.2 67.2 167.9 343.6 10819.7 1.1

207 192.9 185.0 130.1 125.2 773.4 793.1 0.9

208 771.9 5038.2 177.3 547.9 10802.4 10872.9 0.8

209 2545.1 2255.3 415.9 408.7 10809.7 10916.0 3.9

210 1481.3 3732.4 321.9 322.0 10806.8 11735.7 10.0

211 320.8 5536.0 176.9 768.3 1801.2 10876.3 12.6

212 888.5 1209.4 577.1 747.6 3059.9 10905.5 155.3

215 1907.9 2108.0 375.0 364.2 10836.4 10949.7 1.4

216 3130.0 2995.2 653.3 644.2 10839.0 11086.0 3.1

217 4305.0 4077.8 961.4 931.7 10840.9 10897.7 2.5

218 3669.0 9823.7 754.3 1326.2 10859.6 10983.4 2.0

219 4259.5 14385.8 898.4 3409.2 10823.1 10974.8 2.1

220 5299.6 5359.2 873.3 854.4 10824.8 11127.5 2.1

Average 1647.9 3233.3 370.2 606.8 6167.6 8236.3 11.2
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than the L∞/DAH pairs gap. However, if we compare the CPU times, L∞/DAH pair

outperforms the other six with its very short CPU times.

If the Lagrangean heuristics are compared with each other, we can state that

using CGA and BPA in every step do not perform better than using them frequently

or only at final step. This is because of the limitations over the CPU time. Since in

every step of CGA and BPA, at least one concave minimization problem is solved using

outer approximation method, the number of iterations done in 180 minutes decreases.

Because of this reason, the SO methods using only CGA or BPA as a lower bounding

algorihm are not tested for the other cases.

For the rest of the instances, instead of giving the results seperately, we have

reported the average gaps and running times of each of the groups for every distance.

Since RL1 gives the best performance in both accuracy and efficiency in lower bound-

ing algorithms and DAH performs the best in upper bounding algorithms for small

instances and RDAH the best in medium and large ones, the average gaps found by

the Lagrangean heuristic are compared with the gap formed by them.

In all runs, if the time limit is reached, the SO steps finish and a final CGA or

BPA is run to make lower bound valid. That is why in some of the instances, CPU

times are more than the limits. For small instances DAH is used to generate the initial

upper bound. Lower bound is found using UDAH with CGA or BPA of usage type (1)

or (2). For medium instances, RDAH is used as the initial upper bounding algorithm.

As lower bounding algorithm again UDAH with CGA and BPA are used. However,

using the UDAH and updating BPA in every update of π, BPA(2) type lower bounding

is removed from the runs because of the long running times. For large instances, instead

of UDAH, RUDAH is used with CGA. CGA is run only in the last iteration of the test

runs to make the found lower bound valid.

The average gaps and CPU times for the Lagrangean heuristic and the gaps

and total CPU times of the other best lower and upper bounding algorithms for the

Euclidean and lp distances with p = 1.25, 1.50, 1.75 are reported in Table 8.13 and
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Table 8.14.

Based on the overall computational results we can state that, in cases with high

n
m

ratio, Lagrangean heuristics perform considerably better than the RL1/(R)DAH in

accuracy, whereas in all the other cases, RL1/(R)DAH slightly gives better results. In

addition to that, the RL1/(R)DAH pair has higher efficiency compared to all other

Lagrangean heuristics. Furthermore, the comparisons between the Lagrangean heuris-

tics using BPA and CGA shows that, BPA makes a minor improvement in the lower

bounds of some instances with a great increase in the CPU time. In some instances, it

is observed that BPA performs worse than CGA. This phenomenon occurs since BPA’s

long CPU times reduces the number of iterations and this prevents λi’s to be updated

more accurately. In addition, there is not more than 1 % improvement in the objectives

of the algorithms using CGA in every π update compared to final iteration only. On

the other hand, using CGA at every π update doubles the CPU times. So it is better

to use CGA(2).
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Table 8.13. Accuracy of the Lagrangean heuristic: Average duality gap for all the

problems with the Euclidean, squared Euclidean and lp distances with p = 1.25, 1.50,

1.75

Distance Problems CG(1) BP(1) CG(2) BP(2) RL1/(R)DAH

201-220 15.89 13.86 15.97 13.92 16.08

301-323 13.26 13.26 13.26 13.27 18.77

401-423 17.41 16.11 17.53 16.28 19.54

Euclidean 324-328 3.27 N/A 3.26 3.23 13.43

424-428 2.34 N/A 3.04 3.04 14.08

501-504 N/A 25.42 N/A N/A 21.39

601-604 N/A 27.60 N/A N/A 25.85

201-220 15.61 13.41 15.75 13.44 8.56

301-323 13.12 13.11 13.18 13.16 10.86

p = 1.25 401-423 17.44 16.40 17.64 16.47 12.02

324-328 3.36 N/A 3.44 3.45 6.69

424-428 2.47 N/A 3.26 3.20 7.34

201-220 15.63 13.55 15.75 13.65 11.70

301-323 13.15 13.15 13.16 13.15 14.12

p = 1.5 401-423 17.34 16.16 17.45 16.45 15.13

324-328 3.23 N/A 3.35 3.34 9.73

424-428 3.13 N/A 3.20 3.19 10.13

201-220 15.51 13.70 15.87 13.77 14.13

301-323 13.24 13.24 13.23 13.23 16.72

p = 1.75 401-423 17.34 16.23 17.46 16.42 17.58

324-328 3.29 N/A 3.35 3.35 11.62

424-428 3.09 N/A 3.20 3.20 12.31

201-220 27.06 26.33 27.62 26.37 N/A

301-323 26.25 26.24 26.45 26.31 N/A

Squared 401-423 29.69 30.66 30.76 29.68 N/A

Euclidean 324-328 10.10 N/A 10.48 10.50 N/A

424-428 4.12 N/A 6.67 6.39 N/A
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Table 8.14. Efficiency of the Lagrangean heuristics: Average CPU times (seconds) for

all the problems with the Euclidean, squared Euclidean and lp distances with p =

1.25, 1.50, 1.75

Distance Problems CG(1) BP(1) CG(2) BP(2) RL1/(R)DAH

201-220 1647.9 3233.3 370.2 606.8 1.4

301-323 818.0 898.8 818.0 586.5 33.5

401-423 734.5 6057.5 563.5 1398.3 16.5

Euclidean 324-328 11286.4 N/A 11663.4 17639.4 304.5

424-428 15136.5 N/A 12182.1 14614.8 221.9

501-504 N/A 35892.3 N/A N/A 4686.5

601-604 N/A 55435.2 N/A N/A 4229.7

201-220 1543.3 3088.6 163.9 635.2 1.3

301-323 204.8 340.4 91.8 102.9 30.7

p = 1.25 401-423 387.7 5854.9 208.6 1226.1 17.0

324-328 10379.7 N/A 6706.0 8252.9 308.1

424-428 11905.0 N/A 8844.1 15650.9 234.1

201-220 1391.8 2949.8 347.6 561.8 1.4

301-323 241.0 733.5 100.1 158.3 35.5

p = 1.5 401-423 436.9 5647.4 243.3 1173.5 16.9

324-328 13826.2 N/A 7660.3 9463.8 303.1

424-428 13096.3 N/A 8838.5 16309.7 223.7

201-220 1169.6 2675.8 166.2 372.2 1.3

301-323 294.7 731.4 93.1 95.0 29.2

p = 1.75 401-423 444.7 4944.7 230.1 1188.7 16.7

324-328 15489.6 N/A 7655.7 9541.5 305.9

424-428 13141.8 N/A 10513.7 13253.9 220.0

201-220 1342.7 3470.1 586.1 1883.4 N/A

301-323 1071.6 1625.4 237.3 269.8 N/A

Squared 401-423 2922.3 8213.8 643.1 3073.9 N/A

Euclidean 324-328 14799.6 N/A 8619.5 10754.8 N/A

424-428 16665.9 N/A 15171.5 17681.3 N/A
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9. CONCLUSIONS

In this thesis we have considered the capacitated multifacility Weber problem

with the Euclidean, squared Euclidean and lp distance for 1 ≤ p < 2. The capacitated

multifacility Weber problem has nonconvex objective function and is very difficult to

solve exactly. For this reason, instead of finding the exact solutions of this type of

problems, we proposed some lower and upper bounding algorithms, which give tight

bounds. First we propose four alternating location allocation heuristics and two dis-

cretization strategies which gives good upper bounds. Second we define four lower

bounding algorithms, which are based on some special properties of the l1 and l∞ dis-

tances and their relations with general lp distance. Third we formulate a Lagrangean

relaxation of the capacitated multifacility Weber problem and solve the Lagrangean

subproblem by using column generation and branch and price. In every iteration of

these two algorithms several concave minimization subproblems are solved by outer

approximation method.

For upper bounding algorithms, we compared two groups of heuristics. In the

first group, we use region rejection type heuristics. The main idea of these heuristics

are placing the facilities in the convex hull of the customers as balanced as possible

initially and improving the objective by CALA heuristic. In the first two of these

heuristics, RRH and DRRH, we first define a constant radius and consider not to locate

a facility inside the radius of a previously fixed facility. The only difference between

RRH and DRRH is that, in RRH a facility can be located anywhere in the convex hull

of the customer locations whereas in DRRH a facility is placed on one of the customer

locations. In RRH′ and DRRH′, previously defined two heuristics are improved by

defining a dynamic radius concept and instead of defining a constant radius at the

beginning of the iterations, each radius of the facility are assigned according to its

capacity and the customers near to it. In the second group of heuristics, we investigate

the DAH and its Lagrangean ralaxation RDAH. In DAH, the customer locations are set

as candidate facility locations and a DLAP is solved and this solution is improved by

a CALA. In RDAH, instead of solving the problem exactly, a Lagrangean relaxation is
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considered, and a CALA is run in every step of the SO algorithm. Experimental results

show that, DLAP and RDLAP outperforms the other four. In small instances with

less than 50 customers and 10 facilities DAH performs good whereas in larger cases

RDAH gives better results in limited time period with minimum CPU time compared

to the other four.

As a lower bounding algorithm, we define four types of algorithms: L1, L∞ and

their relaxations RL1, RL∞. Briefly, these are the same problems with different distance

metrics, l1 and l∞ which are known as rectilinear and Tchebycheff distances. Since,

the optimal facility locations of these problems are elements of a finite set of locations,

these problems can be modeled as DLAP problems and can be solved optimally. In L1

and L∞ algorithms, problems are modeled and solved optimally whereas in RL1 and

RL∞, a Lagrangean heuristic is devised which gives tight upper bounds in short CPU

times. Experiments show that, RL1 outperforms all other three with tighter lower

bounds and shorter running times.

At the last part, we have first proposed a Lagrangean relaxation scheme for the

CMFWP. After this relaxation, Lagrangean subproblem looks like an uncapacitated

multifacility Weber problem. This Lagrangean subproblem is reformulated as a set

partitioning model and solved using column generation and branch and price algo-

rithms. Pricing subproblems are a d.c. programming problems, which are converted

into concave minimization problems and solved by the outer approximation method. By

using one of these two lower bounding algorithms with an appropriate upper bounding

heuristic, a subgradient optimization scheme is generated and tight bounds are com-

puted. The experimental results show that using UDAH or RUDAH algorithms as

lower bounding algorithms inside the subgradient optimization scheme and validating

the lower bound by solving a column generation or branch and price algorithm with

the λi’s that give the best lower bound in iterations returns the best solution. Finally

we compared the best lower and upper bounds with the gaps found by the Lagrangean

heuristic. It can be observed that, Lagrangean heuristic works better for instances with

small facility to customer ratio. For all of the remaining instances, RL1 and (R)DLAP

outperforms the Lagragean heuristics.
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Although we have not been able to find an exact solution procedure yet, we

proposed some methods that can be used in finding exact solution methods. The

lower and upper bounding methods researched in the previous chapters can be used

in a branch-and-bound scheme. In this type of algorithm, especially the Lagrangean

heuristic can be very useful and by reformulating the variables the lower bounds of the

nodes can be improved. As a final point it is possible to say that, tighter lower bounds

can be obtained by combining other lower bounding methods with the Lagrangean

heuristic.
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