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ABSTRACT

COMPETING VENDORS IN THE TELECOM VALUE

CHAIN

We consider the competition between two vendors that serve a common telecom-

munication operator. The two vendors make independent investments on research and

development of the same or substitutable innovative technology which strictly increases

the demand of the operator if the innovation ever materializes. The operator buys the

innovative technology from the vendor that achieves it first and then decides on the

extra capacity to build in each period. In the first model, it is assumed that the op-

erator chooses the cheaper vendor to buy the technology from. Whereas in the second

model, the operator chooses the more profitable option if both vendors come up with

the same technology.

For both models, the centralized solution is characterized in which a single de-

cision maker oversees the whole system. This solution acts as a benchmark for the

decentralized analysis. In the decentralized setting, the vendors play a simultaneous

investment game first and then they offer the operator a contract. The operator’s de-

cisions are fully characterized for both models. For the first model we provide negative

result via counter-examples for the non-existence of a Nash equilibrium. For the second

model, we characterize the conditions under which a unique Nash equilibrium exists.

We provide a computational study to gain insight about how innovation plays a

role in the vendors’ game. Moreover, profit and revenue sharing coordinating contracts

are proposed for the telecom value chain. The effect of the contract parameters on

profit values is monitored by a numerical illustration.



v

ÖZET

TELEKOM DEĞER ZİNCİRİNDE REKABETÇİ

TEKNOLOJİ SAĞLAYICILAR

Genel bir telekomünikasyon operatörüne hizmet veya ürün üreten ve birbirleriyle

rekabet eden iki tedarikçi düşünülmüştür. Bu iki farklı tedarikçi operatörün talebini

artırabilecek birbirinin yerine ikame edilebilir yeni bir teknoloji üzerinde çalışmaktadır-

lar. Teknoloji tedarikçileri, Ar&Ge çalışmalarına fon ayırarak yeni teknolojiyi keşfede-

cek ve eğer bu teknoloji kullanılabilecek hale gelirse operatöre satarak para kazanacak-

lardır. Müşteri talebinin artması için operatör yeni geliştirilmiş olan iletişim teknolo-

jisine yatırım yapmakta ve dönemsel olarak kendi ağ kapasitesine karar vermektedir.

İlk modelde, operatör yenilikçi teknolojiyi ilk keşfeden teknoloji sağlayıcısından alır.

Ancak, ikinci modelde, her iki teknoloji sağlayıcısı da yeni teknolojiyi geliştirdiğinde

operatör en karlı olan seçeneği tercih eder.

Her iki modelde de bir karar vericinin tüm sistemi kontrol ettiği merkezi çözüm

üretilmiştir. Bu çözüm adem-i merkezi çözüm için bir karşılaştırma kriteridir. Merkezi

olmayan sistemde, öncelikle teknoloji sağlayıcılar eş zamanlı olarak yatırım oyunu oy-

narlar ve sonrasında operatöre bir kontrat önerirler. Her iki model için de operatörün

kararları tamamıyla tanımlanmıştır. İlk model için Nash dengesinin olmadığı olumsuz

sonucuna zıt örnekler yardımıyla ulaşılmıştır. İkinci model için Nash dengesinin var

olduğu koşullar tanımlanmıştır.

Teknoloji sağlayıcıların oyununda yenilikçiliğin nasıl rol oynadığını kavramak

için sayısal çalışmalar yapılmıştır. Ayrıca, kar ve gelir paylaşımı kontratları telekom

değer zinciri içinde koordinasyon için önerilmiştir. Sayısal analiz yöntemiyle kontrat

değiştirgelerinin gelir değerlerini nasıl etkilediği gösterilmiştir.
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1. INTRODUCTION

In today’s fast changing highly competitive market environment, companies in

most industries are turning to their suppliers to seek competitive advantage. Many

firms have begun the reexamining of their supply management strategies to improve

their financial performance and customer delivery service. As many business environ-

ments, the telecommunication supply chain has changed significantly during the past

decades.

Formerly, telecom operators were more involved in innovation and research and

development (R&D) activities, especially development activities. However, the picture

of the sector has changed considerably. The vertical integration between operators

and equipment manufacturers has shrunk. New outsourcing relationship, in which

telecom operators have downsized their genuine long term R&D activities and have

been focusing on short term service innovations and equipment producers have taken

over long term R&D activities, has been formed between them [1, 2, 3, 4].

The recent practice in telecom value chain is that the vendors develop new tech-

nologies and manufacture equipments that are used in building a capacity. The oper-

ators buy equipment from the vendors to build capacity for serving their customers.

At the same time, the operators can buy new technologies from the vendors to boost

their demand. A recent example is the introduction of iPhone by Apple. The wireless

network operator AT&T has been the exclusive provider of iPhones in the U.S. mar-

ket with the hope that iPhones are going to increase the demand for AT&T. AT&T’s

wireless CEO states that “iPhone users generate lot of traffic for the network, about

twice as much as customers using other phones” [5]. This is a typical example of a new

technology developed by an OEM boosting up the revenues for the network operator.

Technological innovation has been dubbed as a critical success factor in telecommuni-

cations [6].

This kind of technological improvement and the interaction between the innova-
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tors under competition motivate us to search the dynamics of innovation in the telecom

sector. Critical questions are how much the vendors should invest for such an innovation

activity, how they should respond to each other in a competitive business environment

when the innovation capabilities of them get involved in competition, and finally, how

the operator and the innovative vendors sustain new technologies in the telecommuni-

cation network. Briefly, our motivation originally stems from the R&D expenditures

incurred by the innovators of the new technologies which attract the technology users

and result in an increase in demand.

The main objective is to provide interpretation for R&D investment in the highly

competitive environment of telecom supply chain. To light up on innovation compe-

tition, we consider the interactions of two rival vendors and one network operator.

In two-stage telecom value chain models, the vendors determine irreversible, one-shot

R&D expenditures at the beginning of the first period and they can not renege on this

commitment during the game. If they innovate and materialize the new technology by

the end of the first period they have an opportunity to sell it to the operator with a unit

price (can be either a decision variable or an exogenous parameter) at the beginning

of the second period. The operator installs a network capacity to satisfy the service

demand of subscribers in each period. She uses this new technology to build extra net-

work capacity for servicing her customers. Extra network capacity denotes a telecom

network capacity that is built up by using new technology (hardware or software) on

the current technology infrastructure of the operator. In addition, the telecom network

capacity is assumed to be incremental. Demand structure of the telecom network is

assumed to be effort dependent and stochastic and R&D investment to new technology

is envisioned as an effort to boost up the demand of the network.

The first model in Chapter 3 is analyzed both from a centralized point of view,

where a single decision maker controls the entire supply chain, and from decentralized

point of view, agents (vendors and the operator) make their choices with respect to the

objective of maximizing their own profits. In this model, the operator decides on her

network capacity, besides, her two period network capacity decisions are contingent

on likelihood of presence of the new technology. The vendors determine their R&D
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investment levels and unit price of new technology. It is assumed that vendors are

the leader of the game and start it either by announcing the price of new technology

first and determining the R&D investment levels later (nested game) or by investing

in innovation activities initially and announcing the price of it later (reverse nested

game). After simultaneous movement (Nash) game between the vendors finishes, op-

erator’s capacity decisions follow the vendors’ game (Stackelberg game). Eventually,

the vendors run away from both nested games. According to our result, two degrees

of freedom in decisions of the vendors (i.e. to set the investment level and the price

of new technology), causes disruption in the game of the vendors. There is no Nash

equilibrium for the nested game. However, in the reverse nested game, there can be

Nash equilibrium in some situations for the identical vendors. This feature leads us to

investigate the situation where the market exogenously determines the price of the new

technology. In addition, there is always a Stackelberg equilibrium between the vendors

and the operator in this game setting whenever Nash equilibrium exists.

The second model in Chapter 4 investigates particularly just R&D investment

decisions of the vendors where the market determines the price of the new technology

(exogenous parameter). Although it seems that the vendors lose their opportunity of

pricing their innovation, it is obvious that naturally, the market can define the price of

the new technology in some circumstances. In this model, contrary to the first one, the

first period capacity decision of the operator is regarded as nominal capacity which is

not associated with the new technology because the operator is assumed to be risk-free

of the upcoming new technology and makes her upgrading network decision after the

new technology appears. The second model is also evaluated both from centralized

point of view and decentralized point of view. Nash equilibrium characteristics of the

R&D investment game is stated clearly and some illustrative visual examples are given

for it. Moreover, numerical examples are also provided to enhance the insights about

the R&D investment dynamics. In addition, two coordinating contracts are designed,

namely, profit sharing contract and revenue sharing contract, to coordinate the telecom

value chain. For the profit sharing contract, we provide a numerical example showing

the expected revenues gained by the vendors and the operator under different contract

parameters, and for the revenue sharing contract, we show the acceptable range of
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contract parameters.

To summarize, R&D investments of two equipment suppliers and supplier-operator

interactions are studied carefully. In this research, we look for R&D investment deci-

sions of the vendors, capacity decisions of the operator and operational effects of these

decisions for both sides as well as coordinating contracts for telecom value chain. We

evaluate the telecom value chain via the eye of central decision maker and provide the

maximum expected profit the telecom supply chain might gain. And, we disclose the

conditions thoroughly where Nash equilibrium exists or not in R&D investment game

between the competitive vendors and where Stackelberg equilibrium exists between

the vendors and the operator. We also propose two different coordinating contracts to

ensure that the vendors and the operator are allied to gain the centralized expected

revenue.

The contribution of this thesis can be summarized as follows: (i) R&D investment

decisions and its related issues such as whether Nash equilibrium exists or not in

R&D investment game of competitive vendors, how the operational parameters of the

vendors affect the equilibrium, and the amount of minimum investment level which can

trigger the demand enough to make the operator is willing to use the new technology to

upgrade her network, are enlightened in a service sector, (ii) the structure of operational

decisions in terms of cost-revenue parameters of the agents and demand increase of the

network for both equipment providers and the network provider is analyzed, and some

managerial insights are provided for the real players of the telecom sector, (iii) two

coordinating contracts, profit and revenue sharing contracts, under effort dependent

stochastic demand are proposed for new usage area.

The rest of the thesis is organized as follows: in Chapter 2, the literature survey

about telecom supply chain and R&D investment activities in technology development

phase is given. In Chapter 3, the first model is described along with major assumptions

and the analysis of the centralized solution in Section . A numerical study is also given

to illustrate the centralized solution. Then, a section is devoted to the decentralized

analysis. In Chapter 4, the second model’s centralized and decentralized analysis are
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provided with both analytically and numerically, and also two coordinating contracts

are defined. In Section 5 we conclude.
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2. LITERATURE REVIEW

Even though the literature is extensive, the papers are selected basically regarding

the new technology investments and telecom value chain papers.

First of all, the influence of R&D investments on innovation and firm performance

has not received too much attention in the literature, especially in the telecommunica-

tion area. However, there exist some empirical studies and reports that try to explain

the relationship among them. In fact, R&D expenditures in telecom sector have an in-

creasing trend throughout the years [1, 2, 3, 7]. However, unlike most of the operators,

most of the equipment manufacturers have a tendency to increase the R&D funds [1].

Furthermore, R&D investments are accepted as a parameter of innovation but

it is obvious that R&D expenditures do not cover every aspect of innovation [1]. In

addition, R&D outlay is on the rise, but the linkage between R&D investment and

financial performance remains poor [7, 8].

After some empirical studies and reports akin to telecommunication area, Çanakoğ-

lu and Bilgiç [9] model the two-stage telecommunication supply chain with technology

dependent demand under a multiple period setting. R&D investment of equipment

suppliers influences the innovation and that new opportunity always provides a better

demand for operator. Their model consists of one operator which faces with stochastic

market demand dependent upon the technology investment level, and decides on his

capacity levels through the periods and one time R&D expenditure for the new technol-

ogy. An algorithm which provides to find the centralized solution is given in the paper.

Moreover, they enhance the results by proving the unique Nash equilibrium for the case

in which the operator decides on her network capacity for each period and the vendor

decides on his one time R&D investment at the beginning. After then, by considering

the equipment manufacturer and the operator as different agents, they propose two

different coordinating contracts, namely, a profit sharing contract where firms share

both the revenue and operating costs generated throughout the periods along with
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initial technology investment and also a coordinating quantity discount contract where

the discount on the price depends on the total installed capacity. However, the coor-

dinating contracts are designed for the case in which the operator decides on both the

capacity levels and the R&D investment level. This is a unique paper which focuses

on the telecom value chain as service sector supply chain instead of the manufacturing

supply chain.

Çınar and Bilgiç [10] extend the previous study by incorporating the probability

of innovation period for manufacturer and implementation time of that innovation for

operator. Moreover, they take into consideration the probabilities of both successful

innovation and unsuccessful innovation and also the technology adoption delay to the

existing network. Once the vendor gets innovation and materializes the new technol-

ogy, the operator is able to improve her telecom network and starts to use it after

some implementation time. As an extension to the paper of Çanakoğlu and Bilgiç

[9], they, firstly constitute the solution of the centralized system contingent upon the

probability of successful innovation. Moreover, they analyze the case in which the op-

erator determines the capacities for each periods and, the vendor decides on the R&D

expenditures, and they propose that the simultaneous movement game has a unique

Nash equilibrium in terms of the supermodularity of the game. They also construct a

profit sharing contract as coordinating contract in which the operator and the vendor

are different, self-interested parties, but the operator gives the decisions of the system,

though.

This work is a sequel to the efforts in characterizing the telecom value chain

[9, 10]. In both of these earlier papers they have considered a two stage, serial chain

comprised of one vendor and one operator. This thesis extends this line of work to two

competing vendors and a single operator.

The major difference is that we incorporate the technology development race

between the technology suppliers into the telecom value chain model. Furthermore,

we also concentrate on the case in which the operator does business with one of the

competing vendors, and her demand is effected by that individual R&D investment of
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the vendors, and the case in which the operator trades with either both or one of the

vendors and her demand is jointly effected by R&D investment levels of the vendors

at the same time.

Agrell et al. [2] consider a three stage telecom supply chain in a two-period

investment-production game under stochastic demand and asymmetric information.

In their paper, minimal agency model is used to compare the system currently used

in telecommunication industry. They basically evaluate the supply chain performance

via changing the magnitude of the bargaining power under asymmetric information. In

contrast to them, we analyze two stage service sector rather than three stage manufac-

turing system. They are concentrated on the ongoing production system of telecom-

munication supply chain but not on the effect of the R&D investment activities of the

upstream firms of the telecom operator. Moreover, the operator’s revenue and the cost

parameters are not involved to the analysis, she is almost inactive in the analysis.

Goyal and Netessine [11] study the effect of competition on a firm’s technology

selection (flexible and product dedicated) and capacity investment decisions. Two

firms competing with each other in price dependent and uncertain demand markets are

modeled. Firms make three decisions in the following sequence, selection of technology

and capacity investment and production quantities. Technology and capacity decisions

are made before demand curve is uncertain, and production quantities are decided

after demand curve is revealed. Technology choice of the competing firms in the same

market has examined and Nash equilibrium has been shown. Firstly, flexibility in

manufacturing system requires initial investment but results various products to the

market, likewise, new technology requires initial investment in service sector and results

diverse service and better communication. Secondly, they modeled technology selection

decisions of two rival firms while assuming that the technology is presence from the very

beginning of the game. However, we model the interaction of the technology providers

within themselves as well as with the technology implementer. Besides, they use price

dependent demand under the assumption that the technology creates cost advantage,

as a result, yield lower price, but we assume that new technology creates extra demand

in telecom network, hence, we use effort dependent demand in our analysis.
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There is a literature dealing with adoption time and diffusion of the new tech-

nology. Reinganum [12] studied the diffusion of new technology in her paper. Nash

equilibria were obtained for a game where the early adoption of new technology yield

better revenue with respect to rival, which uses existing technology, and lower operat-

ing cost [12]. Fudenberg and Tirole [13] extend the previous work and examine diverse

game theoretic strategies for competing firms whose decisions are capacity and pricing

over time in a technology driven market environment. Gaimon [14] formulates the two

player dynamic game to explore the new technology acquisition decisions and the ca-

pacity choices of the firms in a competitive market where the new technology provides

lower operating cost and more advantageous price under a price dependent demand

structure as well as the solutions are obtained for open and closed loop strategies.

Unlike the mentioned papers above, we try to model such a game that captures the

interactions between the both sides of the technology game as a provider (vendors) and

adopter (operator). We explore mutual actions which impact on the strategic decisions

of the technology adopter (capacity choice) and the technology provider (R&D invest-

ment) simultaneously. Moreover, we deal with the technology selection which creates

extra demand instead of the technology adoption which results lower operating cost

and yields competitive advantage on market price. Finally, instead of exploring time of

new technology adoption we handle the effort exerted by the technology providers to

come up with a successful innovation. Justman and Mehrez [15] study a welfare analy-

sis of innovation and provide numerical analysis of timing and diffusion of innovations

in R&D markets where firms engage in R&D activities independently. In their model,

the innovative firms accumulate their knowledge by exerting effort (R&D investment)

throughout time, and eventually get successful new technology then sell it to the mar-

ket, however, we also take into account of failure of innovation process. Moreover, in

their paper, R&D investment treated as an effort affects the innovation probabilities

of the firms positively, but in our model, innovation capabilities of our competitive

firms are independent of how much they invest, and we regard R&D investment as the

activator of demand of the new technology.

There is also a literature handling the irreversible investment decisions. Accord-

ing to Dixit and Pindyck [16], irreversible investments and the ability to delay such
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investments can have a strong impact on the decision to invest. A firm with an oppor-

tunity to invest is holding a real option like financial option in economics. Once a firm

makes an irreversible investment, it activates, or loses, its option to invest. The lost

option value is an opportunity cost that must be included as part of the cost of the

investment. In our model, although the innovator firms make irreversible R&D invest-

ments and have an option of not to invest, they can not have opportunity of delaying

their investments because we offer a periodical approach to telecom value chain to be

more concentrated on the behaviors of both sides of technology pioneers rather than

appearance time of new technology.

Cachon [17] in his review studies the supply chain coordination with contracts

based on common newsvendor model. A number of contract types have been applied

to this model: wholesale price contract, buyback contract, sales rebate contract, rev-

enue sharing contract, quantity flexibility contract, quantity discount contract. More-

over, supply chain coordination is examined by altering the demand structure of the

newsvendor model such as price dependent demand, effort dependent demand, and

demand updating (signaling) opportunity. In the effort dependent demand structure,

firms exert some effort to spur demand such as sale promotion, advertising and so

on. In our model, we regard R&D investments of technology providers as the trig-

ger of demand because naturally, tendency of the technology researches stimulates the

choice of people and can create additional demand, or technology providers can allocate

some portion of their R&D investments to create extra demand via various marketing

strategies for their new technology.

Furthermore, coordination between the agents in telecom value chain under ef-

fort dependent demand is obtained by implementing a profit sharing contract [9, 10].

We are inspired such kind of profit sharing contract while trying to coordinate agents

of supply chain. Cachon and Lariviere [18] examines the revenue sharing contract in

a newsvendor setting. It is compared to several contracts that enhance the channel

coordination such as buy back, quantity flexibility and sales rebate contracts. They

advocate that revenue sharing contract is more capable than the others to coordinate

a wide range of supply chains. Moreover, they also state that if demand is affected
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by the retailer’s actions and sales effort costs are shared by two agents, revenue shar-

ing contracts may not be attractive. However, although our game setting looks like

this when R&D investment of vendors influences the demand of operator, and opera-

tor compensates the initial cost incurred by the vendors, we propose revenue sharing

contract as a coordinating contract because it has gained attraction in practice in the

telecom value chain.

Fudenberg and Tirole [19] systematically reveal the game theoretic approach to-

wards the competitive models in economics and provide fundamental theories of it.

Cachon and Netessine [20] reviews the game theoretic approach to supply chain man-

agement and particularly to the common newsvendor model. After a small historical

review of game theory, non-cooperative static games where players choose their strate-

gies simultaneously and thereafter committed to those strategies are analyzed. Tech-

niques for demonstrating existence and uniqueness of Nash equilibrium are discussed

and exemplified. After then, dynamic game settings are revealed such as sequential

movements, Stackelberg equilibrium concept, simultaneous moves repeated over mul-

tiple periods, and differential games where decisions are made continuously. Not only

non-cooperative game but also cooperative games are discussed in the review paper.

They also analyze the signaling, screening and Bayesian games which results from

asymmetric information.
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3. INVESTMENT AND PRICING GAME OF VENDORS

We consider a two-stage value chain involving two competitive vendors and a

single operator in which the vendors develop a competing substitutable technology

and the operator can use this technology to boost up the demand.

The operator installs a network to satisfy the random demand from subscribers.

We consider all capacity decisions are given with respect to the “peak demand” of the

network operator. Usage of the network resources fills up the capacity of the network

and revenue generated per unit capacity used is assumed to be constant.

The capacity of the network at a period t is defined as Ct for t = 1, 2. The

equipment used to build up first period capacity is bought from the (spot) market at

a cost of m per unit of capacity. There is no lead time consideration since the decision

for the capacity was given long before the beginning of each period.

The operator incurs an operation cost per unit capacity in period t. Excess

demand is lost and no backlogging is possible. The operator incurs a penalty cost as

a result of lower customer satisfaction due to unsatisfied demand. It is unlikely to

salvage unused capacity at the end of the planning period.

All cost parameters and the service price of the operator are stationary during the

service periods. For the centralized system, the objective is to maximize the system-

wide expected profit, whereas for the decentralized system, each firm optimizes its

expected profits.

When the operator faces a new technology which causes an increase on demand

she is willing to install that technology. The effect of technology on demand is modelled

as follows: total technology investment made by both vendors increases the operator’s

demand. The news that both vendors have invested a certain amount on a new tech-

nology generates an expectation in the market. Although its demand structure is not
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the same as in this model, this situation is typical in the game console competition

(between Sony, Nintendo and Microsoft). The news that all vendors are working on

developing new technologies simultaneously creates a greater expectation in the market.

We consider a two-period interaction where the first period is used for technology

development. Technology development process is uncertain but it does not take more

than one period. At the beginning of the second period, one or both of the vendors

have come up with a new technology or none of them could. If there is new technology

available, the operator surely buys it. If both vendors came up with the same competing

technology, the operator buys it from the cheaper vendor (the technology is perfectly

substitutable).

The capacity installed in the first period can be used with the new technology in

the second period. This is frequently observed in telecommunication networks where

a new service based on a new technology usually requires a software configuration or

update in the equipment that builds up the capacity.

We visualize the first model in Figure 3.1.

VENDOR 1

VENDOR 2

1 2
D I I

OPERATOR

1 1
,I w

2 2
,I w

1 2
,C C

TELECOM

SUBSCRIBERS

Figure 3.1. The description of the first model
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Table 3.1 presents the notation used in the model.

Table 3.1. Model parameters and decision variables for the first model

Dt(I) : Random demand in period t as a function of the technology investment

m : Manufacturing cost per unit capacity for the first period

mj : Second period manufacturing cost of vendor j per unit capacity, j = 1, 2.

ot : Operating cost of the operator per unit capacity in period t

vt : Penalty cost of unsatisfied demand per unit capacity in period t

at : Revenue generated by operator per unit utilized capacity in period t

Ct : Capacity of operator’s network in period t (Decision variable), t = 1, 2.

Ij : Technology investment of vendor j (Decision variable), j = 1, 2.

Decision variables are endogenous to the models and all other parameters are

exogenously determined.

3.1. Assumptions

Dt(I) denotes the random demand during period t which depends on the tech-

nology investment I. We assume that demand is independent throughout the periods.

Furthermore, demand is additive: Dt(I) = θt(I) + ε , where θt(I) is a real-valued

function and ε is a random variable such that Dt(0) ≥ 0.

Let G(x) denote the distribution and g(x) denote the density function of demand

without the effect of technology investment I. We assume G is twice differentiable,

strictly increasing and G(0) = 0. Let F (x|I) denote the distribution and f(x|I) denote

the density of demand after the successful technology is adopted. Note that, under the

additive demand assumption:

F (x|I) = G(x− θ(I))

The additive demand assumption is used extensively in the operations and economics

literature [21]. Under this assumption, only the mean demand depends on I, and the
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uncertainty is captured by ε. The additive demand assumption also implies:

dE [Dt(I)]

dI
=

dDt(I)

dI
t = 1, 2

Each firm in the model is risk neutral, so each firm tries to maximizes its own

expected profit. All firms have the same information at the start of the game, i.e., each

firm knows all costs, parameters and rules and know that the other party knows this

situation and so on.

Further assumptions of the model are given as follows. Expected demand is

increasing in technology investment and it is always profitable to spend a non-zero

amount on technology:

dE [Dt(I)]

dI
> 0 t = 1, 2

This assumption is standard in marketing models. In our case, it means that technology

investment, once innovation materializes and technology is adopted never decreases the

demand.

Expected demand is diminishingly concave (i.e., it is “flattening out” as I ap-

proaches infinity) in technology spending:

d2E [Dt(I)]

dI2
< 0 t = 1, 2

This assumption has empirical evidence in the marketing literature [22].

The demand function is strictly positive (i.e.,F (x|I) is strictly increasing for fixed

I). This is needed for the optimal set be a single point rather than a line segment [23].



16

In order for the value chain to earn a positive revenue:

a1 > m + o1

a2 > max{m1,m2}+ o2

3.2. Analysis of the Centralized Model

We first assume that a central decision maker is going to determine the total

technology investment, I that the company needs to make along with capacity decisions

for the network. Note that I = λI1 + (1 − λ)I2 where λ ∈ [0, 1]. Here λ roughly

captures the “market share” or “brand value” of the first vendor. The first period

is the development period for the innovation and this technology is adopted by the

operator at the beginning of the next period only if it is materialized. Let S (C1)

be the expected service delivered by the operator in the first period before the new

technology is implemented. Furthermore, to isolate the effect of innovation we assume

that the operator does not change her capacity in the second period if the innovation

does not materialize.

S(C1) = ED1 [min(C1, D1(.))]

=

C1∫

0

xG(x)dx + C1 (1−G(C1))

= C1 −
C1∫

0

G(x)dx (3.1)

If successful innovation materializes and is adopted, the operator can buy extra

capacity, C2 with the expectation that the new technology (investment) is going to

increase the demand. The expected service delivered in period 2 is given as:
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S (C1 + C2, I) =

C1+C2∫

0

xF (x| I) + (C1 + C2) F̄ (C1 + C2| I)

= C1 + C2 −
C1+C2∫

0

F (x|I)dx (3.2)

where F̄ (·) denotes 1− F (·).

If both vendors come up with the competing technology, we presume that the

operator will buy it from the more effective (hence cheaper) vendor no matter how

much technology investment he has made. In the centralized model this poses no

problem as the whole value chain is owned by a single company.

Since the operator has an ability to switch to the cheaper technology provider, we

create an asymmetry between two vendors such that one of them (the second vendor)

is more likely to sell his technology.

The expected profit for the centralized system is given as:

π (C1, C2, I) = (a1 + v1) S(C1)− v1µ1 − o1C1 −mC1

+ p2 {(a2 + v2) S(C1 + C2, I)− v2µ2 (I)− o2 (C1 + C2)−m2C2}
+ q2p1 {(a2 + v2) S(C1 + C2, I)− v2µ2 (I)− o2 (C1 + C2)−m1C2}
+ q2q1 {(a2 + v2) S(C1)− v2µ2 − o2C1} − I (3.3)

where the first line is the expected revenue of the first period. The rest of the equation

is for the second period. The second line is the expected profit if the second vendor

successfully comes up with the new technology. The third line is the expected second

period profit if the second vendor fails and the first vendor succeeds. Finally, the

last line is the expected second period profit when both of the vendors fail to develop

the new technology. The first term of each line is the expected revenue generated by
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operating the network, the second term of each line is penalty cost for lost service, the

third and the fourth terms have total acquisition and operating cost of the network.

The final term is the total technology investment.

We assume that each vendor has an independent probability of successful inno-

vation denoted by p1 for vendor 1 and p2 for vendor 2. The complement probabilities

of failure are given as q1 = 1− p1, and q2 = 1− p2.

We first characterize the expected profit function.

Proposition 3.2.1 The expected profit as given in (3.3) is jointly concave in (C1, C2, I)

and the solution obtained from the first order conditions maximizes the total expected

profit of the value chain.

Proof: See Section A.1 in Appendix A.

The optimal capacity levels (C∗
1 , C∗

2) and the optimal total investment I∗ satisfy

the first order conditions:

∂π (C1, C2, I)

∂C2

= (p2 + q2p1)[(a2 + v2)F̄ (C1 + C2|I)− o2]− (p2m2 + q2p1m1) = 0

from which

F̄ (C1 + C2|I) =

[
p2m2 + q2p1m1

(p2 + q2p1)
+ o2

]
/(a2 + v2) (3.4)

∂π (C1, C2, I)

∂C1

= (a1 + v1)Ḡ(C1)− (o1 + m) + q2q1[(a2 + v2)Ḡ(C1)− o2]

+(p2 + q2p1)[(a2 + v2)F̄ (C1 + C2|I)− o2] = 0 (3.5)
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If we substitute (3.4) in (3.5) we derive C∗
1 as:

C∗
1 = G−1

[
1− (o1 + m) + q2q1o2 − (p2m2 + q2p1m1)

[(a1 + v1) + q2q1(a2 + v2)]

]
(3.6)

∂π (C1, C2, I)

∂I
=

dE[D(I)]

dI
(p2 + q2p1) [(a2 + v2)F (C1 + C2|I)− v2]− 1 (3.7)

If we substitute F (C1+C2|I) from (3.4) in (3.7) we can derive optimal total investment,

I∗ from:

dE[D(I)]

dI

∣∣∣∣
I∗

=
1

(p2 + q2p1)(a2 − o2)− p2m2 − q2p1m1

(3.8)

Note that the optimal investment level is independent of capacity decisions and the

shortage penalty. As a managerial insight, the owner of the supply chain has an

incentive to invest more as the marginal profit of selling unit new network capacity

increases. Finally using the fact that F (x|I) = G(x− θ(I)) we derive C∗
2 as:

C∗
2 = G−1

{
1−

[
p2m2 + q2p1m1

(p2 + q2p1)(a2 + v2)
+

o2

a2 + v2

]}
+ θ(I∗)− C∗

1 (3.9)

In order for the capacity and investment decisions to make sense following two

conditions have to be satisfied:

p2m2 + q2p1m1 < o1 + m + q2q1o2

(p2 + q2p1)(a2 + v2 − o2) > p2m2 + q2p1m1

If the reverse of the first condition is true then there is no incentive to provide extra

capacity in the second period (it is too expensive). The second condition states that

if the expected revenue is larger than expected costs in the second period then it is
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worthwhile to invest in extra capacity.

3.2.1. Numerical Illustration

In this section, we illustrate the solution to the centralized system for two periods.

We prepare a 23 factorial design to gain intuition about how the model parameters

influence the decision variables and the expected profit. We determine the impacts of

model parameters on network capacity and technology investment decisions statistically

using factorial design. We determine three levels for all parameters for which the

impact on system performance is not explicit. The random part of the demand, ε in

both periods is taken as normally distributed with mean µ = 200, and sigma σ = 10

or 20 or 40. The impact of investment I is reflected in the second period demand with

θ(I) =
√

I.

Unit sales price is fixed at a = 100 for both periods. First period manufacturing

cost is m = 30 and manufacturing cost for both firms for new technology is also set

m1 = m2 = 30. And, operating costs for both periods are o1 = o2 = 20. Penalty

costs are fixed at v1 = v2 = 25 for both periods. Successful innovation probabilities,

p1 and p2 of the firms have three levels, 0.2, 0.5, and 0.8. In our experimental design,

we investigate the hidden effects of variance of demand and innovation probabilities

of the vendors. Table 3.2 presents how the decision variables C1, C2, I change along

with expected profit for different choices of model parameters. Note that probability

of innovation is assumed to follow a geometric distribution and demand is stationary

for the two periods if innovation does not materialize.

We analyze four different responses with respect to the variance of demand distri-

bution, and innovation probability parameters by using analysis of variance (ANOVA)

to gain some statistically supportable information.

First, we check the reaction of the first period network capacity, C1, to the pa-

rameters. As it can be seen from Table B.1 in Appendix B, C1 reacts to variance of

demand distribution and innovation probabilities of the vendors, significantly. It is
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Table 3.2. 23 Factorial design and responses

σ p1 p2 C1 C2 I Expected Revenue

10,00 0,80 0,50 209,08 27,47 506,25 26185

10,00 0,80 0,20 208,67 26,39 441,00 26055

10,00 0,20 0,20 206,63 16,42 81,00 25322

10,00 0,50 0,20 207,44 21,62 225,00 25618

10,00 0,80 0,80 209,57 28,48 576,00 26321

10,00 0,20 0,50 207,44 21,62 225,00 25618

10,00 0,50 0,50 208,13 24,67 351,56 25875

10,00 0,50 0,80 209,08 27,47 506,25 26185

10,00 0,20 0,80 208,67 26,39 441,00 26055

20,00 0,80 0,50 218,17 32,43 506,25 25283

20,00 0,20 0,50 214,87 28,23 225,00 24759

20,00 0,50 0,80 218,17 32,43 506,25 25283

20,00 0,80 0,20 217,33 31,77 441,00 25165

20,00 0,20 0,20 213,26 23,84 81,00 24476

20,00 0,50 0,50 216,27 30,58 351,56 25000

20,00 0,50 0,20 214,87 28,23 225,00 24759

20,00 0,20 0,80 217,33 31,77 441,00 25165

20,00 0,80 0,80 219,14 32,96 576,00 25404

40,00 0,80 0,80 238,29 41,91 576,00 23570

40,00 0,80 0,50 236,34 42,37 506,25 23478

40,00 0,50 0,20 229,74 41,46 225,00 23040

40,00 0,20 0,80 234,66 42,54 441,00 23385

40,00 0,50 0,50 232,54 42,42 351,56 23249

40,00 0,50 0,80 236,34 42,37 506,25 23478

40,00 0,80 0,20 234,66 42,54 441,00 23385

40,00 0,20 0,20 226,52 38,68 81,00 22785

40,00 0,20 0,50 229,74 41,46 225,00 23040
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meaningful that first period network capacity of the operator is a new capacity and

specifically depends on the first period demand characteristics. Moreover, first period

network capacity is influenced by innovation probabilities of the vendors, hence first

period capacity increases as innovation probabilities of the vendors increase.

Second, we check the reaction of the second period additional network capacity,

C2, to the parameters (Table B.2 in Appendix B). It is obvious that additional capacity

is influenced by variance of demand distribution and innovation probabilities of the

vendors significantly. Besides, additional network capacity C2 has reaction to the joint

effect of innovation probabilities (i.e., both vendors’ innovation probabilities jointly

affect the additional network capacity).

Third, we check the reaction of the total technology investment level, I, to the

parameters (Table B.3 in Appendix B). As we foresee, investment levels are significantly

influenced by innovation probabilities both independently and jointly when the other

parameters are fixed.

Finally, we check the reaction of expected profit function of the centralized system,

π, to the parameters (Table B.4 in Appendix B). It is clear that expected profit of the

centralized system is influenced by the variance of the demand and the innovation

probability of the vendors, both jointly and independently.

3.3. Decentralized Analysis

We now consider that each agent (two vendors and one operator) are independent

self interested agents. In the decentralized setting, the game proceeds as follows: the

vendors simultaneously announce their technology investment levels and unit prices.

They offer the operator a contract; the operator accepts or rejects the contract; assum-

ing the operator accepts the contract, she decides on the network capacity decisions

for the upcoming two periods. Then the “nature moves” and two uncertainties are

resolved: whether the innovation was successful or not is revealed and the demand is

observed. The costs accrue and profits are collected at the end of the second period.
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Hence a simultaneous (Nash) game is played between the vendors which is fol-

lowed by a Stackelberg game between the vendors and the operator. In other words,

the vendors announce their unit prices and investment levels of new technology, w1, w2,

I1, and I2, then the operator follows by announcing her network capacities, C1, and C2,

for the upcoming two periods. In what follows, we also assume that the game between

the vendors is “nested” in the sense that the vendors first simultaneously announce

their unit prices and then their technology investment levels in Section 3.3.3 and they

announce their investment levels first followed by unit prices next in Section 3.3.5.

Moreover, the Stackelberg game between the vendors and the operator can only

occur when technology is successfully adopted and the operator decides to increase her

network capacity in the second period.

3.3.1. The Operator’s Problem

On observing the vendors’ decisions w1, w2, I1 and I2, the operator maximizes

the following expected profit function:

πo (C1, C2; w1, w2, I1, I2) = (a1 + v1) S (C1)− v1µ− (o1 + m) C1

+ p2 ((a2 + v2) S (C1 + C2, I)− v2µ (I)− o2 (C1 + C2)− w2C2)

+ q2p1 ((a2 + v2) S (C1 + C2, I)− v2µ (I)− o2 (C1 + C2)− w1C2)

+ q2q1 ((a2 + v2) S (C1)− v2µ− o2C1) (3.10)

where the interpretation is similar to (3.3) with manufacturing costs (m1 and m2)

replaced by unit prices w1 and w2. Expected sales are influenced by the total technology

investment of both vendors I = λI1 + (1− λ)I2.

Proposition 3.3.1 The expected profit of the operator as given in (3.10) is jointly

concave in (C1, C2) and the solution obtained from the first order conditions maximizes

the total profit of the supply chain.

Proof: See Section A.2 in Appendix A.
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Since the operator’s expected profit function is concave in (C1, C2), the optimal

capacity levels (C1, C2) satisfy the following first order conditions:

∂πo (C1, C2)

∂C2

= (p2 + q2p1)[(a2 + v2)F̄ (C1 + C2|I)− o2]− (p2w2 + q2p1w1) = 0

from which

F̄ (C1 + C2|I) =

[
p2w2 + q2p1w1

(p2 + q2p1)
+ o2

]
/(a2 + v2) (3.11)

∂πo (C1, C2)

∂C1

= (a1 + v1)Ḡ(C1)− (o1 + m) + q2q1[(a2 + v2)Ḡ(C1)− o2]

+(p2 + q2p1)[(a2 + v2)F̄ (C1 + C2|I)− o2] = 0 (3.12)

If we substitute (3.11) in (3.12):

∂πo (C1, C2)

∂C1

= [(a1 + v1) + q2q1(a2 + v2)]Ḡ(C1)− (o1 + m)− q2q1o2

+[p2w2 + q2p1w1] = 0 (3.13)

from which we derive optimal capacity in period one as a function of unit capacity

prices as:

C∗
1(w1, w2) = G−1

[
1− (o1 + m) + q2q1o2 − (p2w2 + q2p1w1)

[(a1 + v1) + q2q1(a2 + v2)]

]
(3.14)

Using the fact that F (x|I) = G(x − θ(I)) we derive the second period capacity as a

function of unit capacity prices and the total investment:

C∗2 (w1, w2, I) = G−1

{
1−

[
p2w2 + q2p1w1

(p2 + q2p1)(a2 + v2)
+

o2

a2 + v2

]}
+ θ(I∗)− C∗1 (w1, w2) (3.15)

Note that the first period capacity decision is independent of the technology investment

as expected. However, as the expected cost of new technology (p2w2+q2p1w1) increases,

C∗
1 increases. The second period capacity increases with technology investment but its

behavior with unit capacity prices is indeterminate.
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There exists a minimum level of total investment which results nonnegative net-

work capacity choice for the operator. The minimum level of investment to join the

game is as follows:

I = θ−1

[
C∗

1(w1, w2)−G−1

{
1−

[
p2w2 + q2p1w1

(p2 + q2p1)(a2 + v2)
+

o2

a2 + v2

]}]
(3.16)

Note that if Nash equilibrium/equilibria exist/s in the vendors’ game, the sum of their

R&D investment levels have to be grater than the minimum total investment level in

(3.16).

3.3.2. The Vendors’ Problem

The vendors maximize their expected profit functions, π1, and π2 respectively as:

max
w1,I1

π1 (w1, I1; w2, I2) = q2p1 (w1 −m1) C2(w1, w2, I)− I1

s.t. w1 ∈ [w2, a2 − o2]

I1 ∈ (0,∞) (3.17)

max
w2,I2

π2 (w2, I2; w1, I1) = p2 (w2 −m2) C2(w1, w2, I)− I2

s.t. w2 ∈ [m2, w1]

I2 ∈ (0,∞) (3.18)

Both vendors make an initial investment in technology and then charge a unit

price for unit capacity with the new technology. Both vendors aim to make the second

period capacity of the operator, C2 as high as possible.

Moreover, the lower bound of w1 is determined by the asymmetric structure of

the vendors as w1 ≥ w2 (i.e., the first vendor cannot charge a unit price which is

lower than the second vendor). The upper bound of w1 is the profit obtained in the
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second period (since a higher price would make the operator to gain negative profits).

Furthermore, it is obvious that the first vendor needs to make some positive R&D

investment to enter the game. For the second vendor a natural lower bound for w2 is

m2, the manufacturing price, and the upper bound is w1.

We now characterize the expected profit of the vendors.

Proposition 3.3.2 The expected profits of the first (second) vendor as given in (3.17)

(as given in (3.18)) is concave in I1, (I2).

Proof: See Section A.3 in Appendix A.

3.3.3. The Vendors’ Nested Game

We analyze the case where the vendors play a nested game as follows: they first

determine and announce their unit capacity prices for the new technology (w1, w2)

simultaneously and then they decide on their levels of technology investments (I1, I2)

and announce it simultaneously.

Note that the interaction of the vendors are via the second period capacity of the

operator (C2(w1, w2, I)).

The response function of the first vendor is given as follows:

I∗1 (w1; w2, I2) = max
I1

π1(w1, I1; w2, I2)

w∗
1(w2, I2) = max

w1

π1(w1, I
∗
1 (w1; w2, I2); w2, I2)
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Analogously for the second vendor the response functions are given as:

I∗2 (w2; w1, I1) = max
I2

π2(w2, I2; w1, I1)

w∗
2(w1, I1) = max

w2

π2(w2, I
∗
2 (w2; w1, I1); w1, I1)

Proposition 3.3.2 guarantees that the responses are indeed functions (not corre-

spondences). Since we know that the vendors’ profit functions are concave in invest-

ments we first solve for I∗1 (w1; w2, I2) and I∗2 (w2; w1, I1) from:

∂E[D(I)]

∂I1

∣∣∣∣
I∗1

=
1

q2p1(w1 −m1)
(3.19)

∂E[D(I)]

∂I1

∣∣∣∣
I∗2

=
1

p2(w2 −m2)
(3.20)

Unfortunately these responses are not explicit but nevertheless computable. Once

the investment responses are obtained, unit price responses can also be computed.

Hence the pair

{w∗
1(w

∗
2, I

∗
2 ), w∗

2(w
∗
1, I

∗
1 )}

will be a Nash equilibrium by definition if it exists.

At this point, we are not able to characterize whether a (unique) Nash equilibrium

exists unless we impose unnatural conditions that involve the derivative of the pdf of

the demand.

Instead we impose more structure first to gain more insight about the nature of

the problem in the next subsection.
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3.3.4. A Counter Example under Uniform Demand

We provide a counter example showing that such a nested game under all as-

sumptions of the game and demand distribution has no equilibrium. To construct such

an example, demand distribution is determined as D(I) =
√

I+ε where ε is distributed

uniformly on a finite interval, [A,B]. Note that this demand distribution satisfies all

the demand assumptions of the game.

First of all, in order for optimal capacity decisions of the operator, C1 given in

(3.14), and C2 given in (3.15), to be legitimate capacity levels under uniform demand,

we assume that p2w2 + q2p1w1 < o1 +m+ q2q1o2 and v2 > 0 hold simultaneously. If the

reverse of the first condition is valid then uploading of the extra network is meaningless

because it is too expensive.

The expected profit functions, π1 (I1; I2 (w2) , w1), and π2 (I2; I1 (w1) , w2) at the

second stage are concave in I1, and I2 (see Proposition 3.3.2). Hence, we can find out

the best technology investment by employing FOCs as follows:

I∗1 (w1, I2) =

[
1
2
λq2p1 (w1 −m1)

]2 − (1− λ) I2

λ
(3.21)

I∗2 (w2, I1) =

[
1
2
(1− λ) p2 (w2 −m2)

]2 − λI1

(1− λ)
(3.22)

At the first stage, the vendors play the game in wholesale prices, and technology

investment levels now are the functions of wholesale prices such that

π1 (w1; I (w2)) = q2p1 (w1 −m1) C2 − I1 (w1) (3.23)

π2 (w2; w1 (I1)) = p2 (w2 −m2) C2 − I2 (w2) (3.24)
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Proposition 3.3.3 The expected profits of the first (second) vendor as given in (3.23)

(as given in (3.24)) is concave in w1 (w2) for uniform demand distribution

Proof: See Section A.4 in Appendix A.

Since the expected profit of first vendor (second vendor) at the first stage is

concave, optimal w1 (w2) appears either at the FOCs or at the bounds of defined sets.

See Section A.4 in Appendix A.

However, since Nash equilibrium is the best response to best response of the

competitors if we substitute (3.21) in (3.22) and vice versa at the second stage:

I∗1 (w1; w2) =

[
1
2
λq2p1 (w1 −m1)

]2 − [
1
2
(1− λ) p2 (w2 −m2)

]2

2λ

I∗2 (w2; w1) =

[
1
2
(1− λ) p2 (w2 −m2)

]2 − [
1
2
λq2p1 (w1 −m1)

]2

2 (1− λ)

Since, a positive technology investment is required to start the game, i.e., I∗1 (w1; w2) >

0 and I∗2 (w2; w1) > 0, the following two inequalities must hold at the Nash equilibrium

point(s).

1

2
λq2p1 (w1 −m1)− 1

2
(1− λ) p2 (w2 −m2) > 0 (3.25)

1

2
(1− λ) p2 (w2 −m2)− 1

2
λq2p1 (w1 −m1) > 0 (3.26)

Clearly inequalities (3.25) and (3.26) cannot hold simultaneously under the model

restrictions and parameter assumptions. Therefore, the nested game of the vendors

under the wholesale contract has no equilibrium. As a technical note, bounds of the

uniform demand, [A,B], does not cause any problem in the analysis due to our additive

demand assumption where uncertain demand is independent of R&D investment levels.
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3.3.5. The Vendors’ Reverse Nested Game

The vendors first determine and announce their levels of technology investments

(I1, I2) simultaneously and then they decide on their unit capacity prices for the new

technology (w1, w2) and announce it simultaneously. In addition, the interaction of the

vendors are via the second period capacity of the operator (C2(w1, w2, I)).

The response function of the first vendor is given as follows:

w∗
1(w2, I2) = max

w1

π1(w1, I1; w2, I2)

I∗1 (w1; w2, I2) = max
I1

π1(I1, w
∗
1(I1; w2, I2); w2, I2)

Analogously for the second vendor the response functions are given as:

w∗
2(w1, I1) = max

w2

π2(w2, I2; w1, I1)

I∗2 (w2; w1, I1) = max
I2

π2(w2, I
∗
2 (w2; w1, I1); w1, I1)

Unfortunately, all the problems we have encountered in Section 3.3.3 are still

valid in here. However, to light up some points and gain some perception we give an

illustrative game example under uniform distribution, again.

3.3.6. Reverse Nested Game under Uniform Demand

This example is provided to show that such a reverse nested game has an equi-

librium in a very limited game space, however, has no equilibrium rest of it. All the

demand assumptions are the same in Section 3.3.4. Once again, the vendors play in-

vestment game at the first place and then they play unit capacity price game at the

second stage of the game. Note that w1, and w2 stands for the maximum value that

the unit price can take and w1, and w2 denote the minimum value of the unit price.



31

Proposition 3.3.4 The expected pay-off functions of the vendors, π1(w1; w2, I) and

π2(w2; w1, I), are concave under uniform demand distribution in w1, and w2, respec-

tively. And, we can characterize the best unit price levels, w1, and w2, by employing

FOCs as follows:

1. For the first vendor;

w∗
1 =





w1 = a2 − o2 if ∂π1

∂w1

∣∣∣
w1

> 0

w
′
1 if ∂π1

∂w1

∣∣∣
w1

> 0 and ∂π1

∂w1

∣∣∣
w1

< 0

w1 = max{w2,m1} if ∂π1

∂w1

∣∣∣
w1

< 0

where w
′
1 can be obtained from ∂π1

∂w1

∣∣∣
w
′
1

= q2p1

[
C2

(
w
′
1, w2, I

)− q2p1A
(
w
′
1 −m1

)]
=

0 such that A = 1
(p2+q2p1)(a2+v2)g(Ω)

+ 1

[(a1+v1)+q2q1(a2+v2)]g(C∗1)
and

Ω = G−1
{

1−
[

p2w2+q2p1w1

(p2+q2p1)(a2+v2)
+ o2

a2+v2

]}

2. For the second vendor;

w∗
2 =





w2 = w1 if ∂π2

∂w2

∣∣∣
w2

> 0

w
′
2 if ∂π2

∂w2

∣∣∣
w2

> 0 and ∂π2

∂w2

∣∣∣
w2

< 0

w2 = m2 if ∂π2

∂w2

∣∣∣
w2

< 0

where w
′
2 can be obtained from ∂π2

∂w2

∣∣∣
w
′
2

= p2

[
C2

(
w1, w

′
2, I

)− p2A
(
w
′
2 −m2

)]
= 0.

Proof: See Section A.5 in the Appendix.

When we start to solve investment game of the vendors, we encounter nine differ-

ent cases, obtaining by cross matching of the cases for each vendor. Instead of case by

case evaluation of the problem, we just illustrate sample cases where Nash equilibrium

is possible to exist, and impossible to exist.
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First of all, if it is optimal for one of vendors to set its unit price to its lowest

value, w1, or w2, at the second stage of reverse nested game, it makes negative revenue

by investing at the first stage. Recall that vendors only make money by selling extra

network capacity to the operator with a unit price. (See the expected revenue function,

(3.17) for the first vendor, and (3.18) for the second vendor) Therefore, there is no Nash

equilibrium for the investment game of the vendors in the first stage of the reverse

nested game when it is optimal to set the unit price of new technology to its lowest

value.

Secondly, suppose that it is optimal to determine w1 = w∗
1 = w1 = a2− o2 for the

first vendor at the second stage, and for the second vendor w∗
2 = w2 = w1 = a2 − o2.

Under this assumption, the pay-off functions, π1(I1; w1, w2, I2), and π2(I2; w1, w2, I1) are

supermodular. Because cross partial derivatives of the pay-off functions given in (3.27)

are nonnegative after employing a common trick in the literature such that I1 = −I
′
1.

Note that cross partial derivative of demand function is assumed to be negative due to

the demand assumptions of the game. The pay-off functions are supermodular, hence,

the investment game is supermodular. Therefore, supermodularity theorem holds for

the game. It means the game has at least one Nash equilibrium [20]. However, due to

our special game restrictions, Nash equilibrium exists above the minimum investment

level such that λI∗1 + (1− λ) I∗2 ≥ I.

∂2π1

∂I1∂I2

= q2p1 (a2 − o2 −m1)
∂2ED [I]

∂I1∂I2

< 0

∂2π2

∂I2∂I1

= p2 (a2 − o2 −m2)
∂2ED [I]

∂I2∂I1

< 0 (3.27)

Finally, suppose that the first vendor sets his unit price as a function of total

investment, I, and unit price of his rival, w2, such that w∗
1 = w

′
1 = τ1 (I, w2), and the

second vendor sets his unit price as a function of total investment, I, and unit price

of his rival, w1, such that w∗
2 = w

′
2 = τ2 (I, w1). Unfortunately, we are unable to show

w∗
1, and w∗

2 as explicit functions derived from FOCs, nevertheless, we abbreviate them

as τ1 (I, w2), and τ2 (I, w1), implicitly. Then, the vendors problem, π1, and π2, can be
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expressed as, respectively:

max
I1

π1 (I1; w
∗
1(I, w2), w

∗
2(I, w1), I2) = q2p1 (w1 −m1) C2(w1, w2, I)− I1

s.t. w1 = τ1 (I, w2) (3.28)

max
I2

π2 (I2; w
∗
1(I, w2), w

∗
2(I, w1), I1) = p2 (w2 −m2) C2(w1, w2, I)− I2

s.t. w2 = τ2 (I, w1) (3.29)

After substituting the w∗
1, and w∗

2 values, obtained from FOCs (Proposition 3.3.4), into

objective functions of the vendors, the pay-off functions turn out to be:

max
I1

π1 (I1; w
∗
1(I, w2), w

∗
2(I, w1), I2) =

1

A
[C2(w

∗
1, w

∗
2, I)]2 − I1

max
I2

π2 (I2; w
∗
1(I, w2), w

∗
2(I, w1), I1) =

1

A
[C2(w

∗
1, w

∗
2, I)]2 − I2 (3.30)

When we take the difference of the pay-off functions in (3.30), we end up with π1−π2 =

−I1 +I2. If we take the derivative of the difference of the pay-off functions with respect

to decision variables, I1, and I2, we obtain the following result:

∂(π1−π2)
∂I1

= −1 < 0

∂(π1−π2)
∂I2

= 1 > 0
(3.31)

The interpretation of (3.31) is as follows: the first vendor keeps losing money by invest-

ing one unit more, and makes his rival earn money, so does the second vendor. As long

as the vendors are self-interested agents, none of the vendors has an incentive to invest

under these conditions. This result resembles the preemption argument of Fudenberg

and Tirole [19]. Therefore, there is no Nash equilibrium as long as the vendors are

self-interested. The same argument used in this case is also valid for the rest of the

cases where the vendors determine their unit price of technology as a function of their

investment.
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Briefly, there might be an equilibrium when unit prices, w1, and w2, are not

functions of R&D investments, I1, and I2, but there is no equilibrium when the unit

prices, w1, and w2, are functions of R&D investments. The interpretation of this

situation can be that an innovator is more conservative about R&D investment as long

as his rivals in the market are able to benefit from the demand which is manipulated

by him. We have been contented with showing illustrative cases, because our main

objective in this example is to reveal an equilibrium as an example, in contrary to

Section 3.3.4.
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4. SINGLE INVESTMENT GAME OF VENDORS

In this chapter we focus on how vendors in telecommunication value chain direct

their research and development (R&D) investments. Plainly, we are concentrated on

an industry composed of two competitive vendors and a single operator in a game

theoretical framework. Vendors supply the operator’s communication network either

as hardware or software and race against each other to develop a new technology and

sell it to the operator. In our game structure, each vendor makes a R&D investment at

the beginning of development stage and sell their newly developed technology to the

operator at the following period in case it is materialized. In particular, the operator

is always willing to buy and adopt the new technology because it uses current best

technology insofar as it’s possible. What the new technology brings to the operator is

it boosts up the operator’s demand by providing better communication service.

We visualize the second model in Figure 4.1.

VENDOR 1

VENDOR 2

1
D IOPERATOR

1
I

2
I

1 2

2 2
,C C

TELECOM

SUBSCRIBERS

2
D I

Figure 4.1. The description of the second model
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When the new technology is materialized by either one of the vendors or both of

them, they sell it to the operator at a unit price so that the operator expands its network

capacity. The price of the new technology is determined by the market, which means

the unit price is an exogenous parameter in our model. After that, the operator buys

the new technology and uses it in its network to enhance the communication service to

the customers. Again, it is assumed that the operator determines her network capacity

with respect to the ”peak demand” of the telecom network. All cost parameters and

the telecom service price of the operator are constant during the periods. Moreover, the

operator incurs penalty cost for unsatisfied network demand, and salvaging of unused

capacity at the end of the planning period is not allowed.

Furthermore, vendors compete for the same, substitutable new technology in this

game. It is assumed that each vendor either accomplishes the new technology with its

own common innovation probability or does not with its complementary probability

because in the real world, each firm has its own capability of innovation. Furthermore,

the unit price of the new technology is assumed to be exogenous in the system due to

the knowledge of free market, although there are cases where this is not true.

Another important assumption is that individual investment in new technology

influences the demand of the operator positively though it can be true or not in dif-

ferent circumstances. However, the scope of this study is restricted to examine effort

dependent demand, which means we limit ourselves to investigate the demand which

can be raised by exerting some effort.

The vendors compete via unit price of new technology in the model in Chapter

3, but, in this model, they compete via the influence of new technology on service

demand of the operator. The major difference in the demand structure is that total

R&D investment made by the vendors was jointly triggering the demand of the operator

in Chapter 3, but individual R&D investment affects the demand separately in this

chapter. Another difference is that unit price of new technology, w was a decision

variable, and endogenous to the model, but it is exogenous and determined by the

market now. Final difference is that extra network capacity bought by the operator
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was totally substitutable in Chapter 3, however, the operator engages to business with

only one of the vendors here whereas the new technology offered by the vendors is still

entirely substitutable.

4.1. The Centralized Model

In the centralized model, we mainly investigate how the central decision maker

who is totally able to control the telecommunication supply chain involving two vendors

and an operator manages the system.

First of all, the operator is a start up company and has to determine adequate

capacity for the first period initially. And, for the second period it has to decide on how

much capacity it will add to its own network capacity by using new technology which

is put up for sale by vendors. Moreover, it is assumed that the operator buys all extra

network capacity from only one of the vendors who provides more profit to her. This

assumption was structurally fixed in Chapter 3. At the beginning of the first period,

the central decision maker determines the first period capacity with respect to that

period’s needs and the amount of R&D investments. In addition, at the beginning of

the second period, it determines the extra necessary network capacity and also chooses

the appropriate vendor.

Table 4.1 presents the notation used in the model.

Decision variables are endogenous to the models and all other parameters are

exogenously determined.

In addition to demand assumptions in Section 3.1, we assume in order for the

value chain to earn a positive revenue:

a1 > o1 + m

a2 > o2 + m1 or a2 > m2 + o2



38

Table 4.1. Model parameters and decision variables for the second model

Dt(I) : Random demand in period t as a function of the technology investment

m : Manufacturing cost per unit capacity for the first period

mj : Second period manufacturing cost of vendor j per unit capacity, j = 1, 2.

ot : Operating cost of the operator per unit capacity in period t

vt : Penalty cost of unsatisfied demand per unit capacity in period t

at : Revenue generated by operator per unit utilized capacity in period t

C1 : Capacity of operator’s network in period 1 (Decision variable)

Cj
2 : Capacity of operator’s network in period 2 (Decision variable), j = 1, 2.

Ij : Technology investment of vendor j (Decision variable), j = 1, 2.

4.1.1. Analysis of the Centralized Model

The central decision maker has to decide on the amount of R&D investments

for both of the vendors at the beginning of the first period (technology development

period) and the amount of extra network capacity at the beginning of the second

period (technology usage period). The first period is the development period of the

new technology and its demand is not influenced by the likely upcoming technology at

the next period. Let S (C1) be the expected service delivered by the operator in the

first period before the new technology is adopted. Moreover, since we concentrate on

the new technology adoption we do not let the operator cut its capacity down at the

second period if the innovation does not appear. However, capacity reduction decision

can easily be handled by creating an additional decision variable but it is left out of

this study.

Expected service in the first period is given as exactly as in 3.1. If the successful

new technology is produced by either one or both of the vendors at the beginning of

the second period the central decision maker can load up extra capacity from only one

of the vendors. In other words, the central decision maker can build up extra capacity

either as C1
2 or C2

2 which denotes the second period extra network capacity bought from

first vendor or second vendor, respectively. The expected service delivered in period 2
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is given as:

S
(
C1 + Cj

2 , Ij

)
=

C1+Cj
2∫

0

xF (x| Ij) +
(
C1 + Cj

2

)
F̄

(
C1 + Cj

2

∣∣ Ij

)

= C1 + Cj
2 −

C1+Cj
2∫

0

F (x|Ij)dx j = 1, 2. (4.1)

where F̄ (·) denotes 1− F (·).

The expected profit for the centralized system at the first period is given as:

π(C1) = (a1 + v1) S(C1)− v1µ1 − (o1 + m) C1 (4.2)

Not only for necessity of telecommunication network existence before technology adop-

tion but also for similarity to Chapter 3, we assume that there exists a telecommu-

nication system before the innovation race starts. Apparently, first period network

capacity, C1 is a nominal capacity built with unit price m, which is not associated with

possible imminent innovation. Simply, the expected revenue in the first period includes

first period revenue and cost parameters.

Proposition 4.1.1 The expected profit as given in (4.2) is strictly concave in (C1)

and the amount of capacity obtained from the first order condition maximizes the total

expected profit of the value chain in the first period.

Proof: See Section A.6 in Appendix A.

The optimal capacity level (C∗
1) satisfies the first order condition:

dπ

d (C1)
= (a1 + v1) G (C1)− o1 −m (4.3)
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The optimal (C∗
1) can be extracted as shown below by equalizing (4.3) to zero:

C∗
1 = G−1

(
1− o1 + m

a1 + v1

)
(4.4)

Unlike the best C∗
1 given in (3.6), C∗

1 given in (4.4) does not contain any cost

related with manufacturing of new technology in the second period.

The expected profit for the centralized system at the second period, π(I1, I2, C
1
2 , C

2
2)

is given as:

= q2p1

{
(a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− o2

(
C1 + C1

2

)−m1C
1
2

}

+ q1p2

{
(a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− o2

(
C1 + C2

2

)−m2C
2
2

}

+ p1p2



max


 (a2 + v2) S(C1 + C1

2 | I1)− v2µ2 (I1)− o2 (C1 + C1
2)−m1C

1
2 ,

(a2 + v2) S(C1 + C2
2 | I2)− v2µ2 (I2)− o2 (C1 + C2

2)−m2C
2
2








+ q1q2 {(a2 + v2) S(C1)− v2µ2 − o2C1} − I1 − I2 (4.5)

The first line is the expected gain if the first vendor comes up with a successful inno-

vation and the second one fails. The second line reflects the exact opposite of the first

line. The tricky part is the third line because it reflects that central decision maker

decides on how much extra capacity to build up at the second period by comparing the

revenues generated by choosing either first or the second vendor. To recall it again, we

assumed that the operator establishes business relationship with just one of the ven-

dors, logically with the most profitable one, when they both come up with a successful

innovation. The final line represents the revenue gained by servicing with existing

network capacity at the second period if none of the vendors succeed in innovation.

The first term of each line is the expected revenue generated by operating the network,

the second term of each line is penalty cost for lost service, the third and the fourth

terms have total acquisition and operating cost of the network. Finally, the last two

negative terms show the R&D investments by the decision maker at the beginning of

the technology development stage.
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Moreover, it is assumed that the successful innovation probabilities of the vendors

are independent of each other and follow a geometric distribution. Obviously, pj stands

for the innovation probability for the jth vendor and qj is the complement of it, where

j = 1, 2.

Through a series of transformations the expected profit of the centralized system

in (4.5) can be written as in (4.9). We make two definitions:

π0 = (a2 + v2) S(C1)− v2µ2 − o2C1

πj = (a2 + v2) S(C1 + Cj
2

∣∣ Ij)− v2µ2 (Ij)− o2

(
C1 + Cj

2

)−m1C
j
2 , j = 1, 2 (4.6)

Lemma 4.1.1 π1, (π2), as given in (4.6) is jointly concave and monotonously increas-

ing in I1, C
1
2 , (I2, C

2
2).

Proof: See Section A.7 in Appendix A.

If we rewrite the expected revenue of the centralized system by substituting (4.6)

into (4.5):

π = q2q1π
0 + q2p1π

1 + q1p2π
2 + p1p2 max

(
π1, π2

)− I1 − I2

which can be written as:

π =





q2q1π
0 + p2π

2 + q2p1π
1 − I1 − I2 if π1 ≤ π2

q2q1π
0 + p1π

1 + q1p2π
2 − I1 − I2 if π1 ≥ π2

(4.7)

Lemma 4.1.2 Without considering the equality conditions in (4.7) , there exist two

pairs of (I1, I2) solutions for each branch of (4.7) such that (I1, I2), and (I1, I2) where
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Cj∗
2 = θ

(
Ij

)
+ G−1

(
1− o2+mj

a2+v2

)
− C∗

1 , j = 1, 2, and

∂ED(I1)
∂(I1)

∣∣∣
I1

= 1
q2p1(a2−o2−m1)

∂ED(I2)
∂(I2)

∣∣∣
I2

= 1
p2(a2−o2−m2)

∂ED(I1)
∂(I1)

∣∣∣
I1

= 1
p1(a2−o2−m1)

∂ED(I2)
∂(I2)

∣∣∣
I2

= 1
q1p2(a2−o2−m2)

Proof: See Section A.8 in Appendix A.

Lemma 4.1.2 implies that there are only two pairs of possible investment as the

solution of this problem. Another observation is that the central chain owner tends to

increase the R&D investment levels when the marginal profit of the new technology is

getting higher.

Note that the central decision maker determines from which vendor it buys the

new technology arbitrarily when both of the vendors materialize the successful inno-

vation and cause same amount of profit for the operator since the operator’s election

system between the vendors depends on the profitability. Simply, both vendors are

equally likely to sell their innovation.

Centralized system expected revenue function, (4.7), can be rewritten as follows

using the fact that qj = 1− pj, j = 1, 2:

π = q2q1π
0 + p1π

1 + p2π
2 − I1 − I2 − p1p2





π1 if π1 < π2

{π1, π2} if π1 = π2

π2 if π1 > π2

(4.8)

Central decision maker tries to maximize his expected pay-off, therefore, his problem

can be defined as follows equivalently to (4.8).

max π = max
{
q1q2π

0 + p1π
1 + p2π

2 − I1 − I2

}− p1p2 min
{
max π1, max π2

}
(4.9)
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Lemma 4.1.3 There are investment levels (Ĩ1 and Ĩ2) that maximize the first part of

(4.9) such that

dED (I1)

d (I1)

∣∣∣∣
Ĩ1

=
1

p1 (a2 − o2 −m1)
(4.10)

dED (I2)

d (I2)

∣∣∣∣
Ĩ2

=
1

p2 (a2 − o2 −m2)
(4.11)

Proof: See Section A.9 in Appendix A.

Ĩj is an upper bound in the sense that for any investment level Ij > Ĩj, π is

non-optimal. Then, extra network capacity levels associated with Ĩ1 and Ĩ2 in Lemma

4.1.3 can be characterized from the FOCs as follows (See Section A.9 in Appendix A):

C̃1
2 = θ

(
Ĩ1

)
+ G−1

(
1− o2 + m1

a2 + v2

)
− C∗

1 (4.12)

C̃2
2 = θ

(
Ĩ2

)
+ G−1

(
1− o2 + m2

a2 + v2

)
− C∗

1 (4.13)

where C∗
1 is found from (4.4).

Lemma 4.1.4 The expected revenue of the centralized system, (4.8) can be redefined

as follows by using the upper level investments, (Ĩ1 and Ĩ2):

π =





q2q1π
0 + p1π

1 + p2π
2 − p1p2π

1 − I1 − I2 if π1
(
Ĩ1, C̃1

2

)
< π2

(
Ĩ2, C̃2

2

)

q2q1π
0 + p1π

1 + p2π
2 − p1p2

{
π1, π2

}− I1 − I2 if π1
(
Ĩ1, C̃1

2

)
= π2

(
Ĩ2, C̃2

2

)

q2q1π
0 + p1π

1 + p2π
2 − p1p2π

2 − I1 − I2 if π1
(
Ĩ1, C̃1

2

)
> π2

(
Ĩ2, C̃2

2

)
(4.14)

Proof: See Section A.10 in Appendix A.

A special case for centralized solution in which manufacturing cost of new tech-
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nology is equal for both vendors, (m1 = m2) can be represented as follows:

π =





p1π
1 + p2π

2 − p1p2π
1 − I1 − I2 if p1 < p2

p1π
1 + p2π

2 − p1p2 {π1, π2} − I1 − I2 if p1 = p2

p1π
1 + p2π

2 − p1p2π
2 − I1 − I2 if p1 > p2

(4.15)

Finally, optimal capacity, (C1∗
2 , and C2∗

2 ) and optimal investment levels, (I∗1 , and

I∗2 ) can be determined by using FOCs of the π function because each branch of π

is mutually exclusive from each other and they are all strictly concave owing to the

summation of strictly concave and linear functions.

Theorem 4.1.1 Optimal decision variables that maximize (4.9) are characterized as

follows:

(
I∗1 , I

∗
2 , C

1∗
2 , C2∗

2

)
=





(
I1, I2, C1

2 , C
2
2

)
if π1

(
Ĩ1, C̃1

2

)
< π2

(
Ĩ2, C̃2

2

)
(
Î1, Î2, Ĉ1

2 , Ĉ
2
2

)
if π1

(
Ĩ1, C̃1

2

)
= π2

(
Ĩ2, C̃2

2

)
(
I1, I2, C1

2 , C
2
2

)
if π1

(
Ĩ1, C̃1

2

)
> π2

(
Ĩ2, C̃2

2

)

where Cj
2 = θ

(
Ij

)
+ G−1

(
1− o2+mj

a2+v2

)
− C∗

1 j = 1, 2., and

∂ED(I1)
∂(I1)

∣∣∣
I1

= 1
q2p1(a2−o2−m1)

∂ED(I2)
∂(I2)

∣∣∣
I2

= 1
p2(a2−o2−m2)

∂ED(I1)
∂(I1)

∣∣∣
I1

= 1
p1(a2−o2−m1)

∂ED(I2)
∂(I2)

∣∣∣
I2

= 1
q1p2(a2−o2−m2)

∂ED(I1)
∂(I1)

∣∣∣
Î1

= 1
(q2p1+0.5p1p2)(a2−o2−m1)

∂ED(I2)
∂(I2)

∣∣∣
Î2

= 1
(q1p2+0.5p1p2)(a2−o2−m2)

Proof: See Section A.11 in Appendix A.
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Note that I1 = Ĩ1, and I2 = Ĩ2. As it can be observed from Theorem 4.1.1, the

alternative network capacity decisions of the central decision maker is dependent on

only the different investment levels and the manufacturing cost of the new technology

and independent of innovation probabilities. However, the investment level decisions

of the central decision maker are related to the innovation probabilities of the vendors

which captures the stochastic structure of the model.

The central decision maker allocates the whole investment with respect to innova-

tion probability and manufacturing cost of each vendor, in other words with respect to

effectiveness of the vendor, and determines the second period extra capacity by taking

into account of demand increase and manufacturing cost of new technology. Finally,

the expected pay-offs are associated with R&D investment share of each vendor and

extra capacity upload of second period.

Centralized solution changes with respect to some parameters are summarized in

a corollary.

Corollary 4.1.1 1. I∗1 , Ĩ1, I∗1 , C̃1
2 , C1∗

2 , and π increases as p1 increases.

2. I∗2 , Ĩ2, I∗2 , C̃2
2 , C2∗

2 , and π increases as p2 increases.

3. C̃1
2 , C1∗

2 , (C̃2
2 , C2∗

2 ) decreases as m1, (m2) increases.

4. C1∗
2 , (C2∗

2 ) increases as penalty cost v2 increases, and π → −∞ as v2 →∞.

Proof: See Section A.12 in Appendix A.

4.1.2. Numerical Analysis

In this section, we illustrate the solution to the centralized system for two peri-

ods. We try to gain intuition about how the model parameters influence the decision

variables and the expected profit. The random part of the demand, ε in both periods

is taken as normally distributed with mean µ = 200, and sigma σ = 10, or σ = 30.

The impact of investment I is reflected in the second period demand with θ(I) =
√

I.
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Unit sales price is fixed at a = 100 for both periods. First period manufacturing

cost is m = 30. And, operating cost for the first period is o1 = 20, and for the second

period o2 = 20. Penalty cost of first period is v1 = 25, and either v2 = 25 or v2 = 50

for the second period. Successful innovation probabilities are either p1 = 0.25, or

p1 = 0.75 for the first vendor, and either p2 = 0.25, or p2 = 0.75 for the second vendor.

In addition, manufacturing costs are varied as m1 = 20 or m1 = 40 for the first vendor,

and m2 = 20 or m2 = 40 for the second vendor to reveal the effect of manufacturing

costs over decision variables.

The significant issue is that the central decision maker share his R&D investment

budget between two under-controlled vendor, however, he performs business with one

of them which firstly satisfies the natural rule that the one who gets innovation and

materialize it, and secondly, who is the most efficient. In other words, extra telecom

network capacity is uploaded by only and only one of the vendors. Therefore, C1
2 and

C2
2 reflects the alternative additional capacities for the second period.

Table 4.2 presents how the decision variables C1, I1, I2, C1
2 , and C2

2 change along

with expected profit for different choices of model parameters.Note that probability of

innovation is assumed to follow a geometric distribution and demand is stationary for

the two periods if innovation does not materialize.

As mentioned in Corollary 4.1.1, optimal I1 decision of the central decision maker

has tendency to increase, π increases as p1 increases when the other parameters remain

unchanged, like I2 decision and π in p2. Similar to C2
2 decision, central decision maker

attempts to decrease optimal C1
2 decision when manufacturing cost, m1, increases and

others remain unchanged. Moreover, C1
2 and C2

2 tend to decrease as v2 decreases, but

expected profit has always tendency to decrease while this is happening. Finally, the

effect of σ over the decision variables is not clear to observe, but it cause the profit loss

almost every time.

One important thing to emphasize is that central decision maker reflects the

optimal R&D decisions, (I1, I2), and the extra network capacity decisions, (C1
2 , C

2
2) in
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a mirror when p1, and p2 are not equal, and they interchange between themselves as

long as the other parameters do not change. For example, if we change the values of

p1, and p2 in any row of Table 4.2 in which p1 6= p2, we end up with the transposition

of the values of decision variables. I1 value is transposed with I2, same as C1
2 and C2

2 .

However, expected profit, π, remains the same as we expected. Furthermore, m1 and

m2 transposition provide the same feature of the solution.

Finally, the decision maker has no obligation to add extra network capacity for

the second period, however, he can chose the way of decreasing the telecom network at

the second period, naturally. Since we are primarily interested in the cases of making

R&D investments and uploading extra network rather than the circumstances under

which not making investments and not building extra network up is optimal. In this

sense, the central decision maker is bounded with the condition of C1
2 ≥ 0 and C2

2 ≥ 0.

All of the intuitions can be gained from Table 4.2.

As a managerial insight, as marginal profit of selling capacity built by new technol-

ogy increases the owner of the telecom value chain tends to increase R&D investment,

naturally. However, competition of two identical firms can often cause profit loss for

the centralized solution. In the long run, Ij which is R&D investment level allocated

to more probable vendor is used by the chain owner, and generally, Ij is wasted. The

reason why competition between identical vendors cause profit loss is that one of the

R&D investment, Î1, or Î2 is always waste, and Îj > Ij, j = 1, 2. As it can be seen

from Table 4.2, the expected centralized profit when the identical firms engage in R&D

activities simultaneously is less than that when the vendors are non-identical.
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Table 4.2. Numerical illustration of responses for the centralized model

σ p1 p2 m1 m2 v2 C1 I1 I2 C1
2 C2

2 π

10 0.25 0.25 20 20 25 202.5 43.1 43.1 8.7 8.7 15683.8

10 0.25 0.25 20 20 50 202.5 43.1 43.1 10.3 10.3 15623.7

10 0.25 0.25 20 40 25 202.5 56.3 14.1 9.6 1.7 15667.9

10 0.25 0.25 40 20 50 202.5 14.1 56.3 3.8 11.2 15601.1

10 0.25 0.25 40 40 25 202.5 19.1 19.1 2.3 2.3 15635.8

10 0.25 0.25 40 40 50 202.5 19.1 19.1 4.4 4.4 15560.1

10 0.25 0.75 20 20 25 202.5 3.5 506.3 4.0 24.6 16111.4

10 0.25 0.75 20 20 50 202.5 3.5 506.3 5.6 26.2 16060.8

10 0.25 0.75 20 40 25 202.5 3.5 225.0 4.0 13.0 15829.9

10 0.25 0.75 40 20 50 202.5 1.6 506.3 1.3 26.2 16056.6

10 0.25 0.75 40 40 50 202.5 1.6 225.0 1.3 15.0 15748.4

10 0.75 0.75 20 20 25 202.5 197.8 197.8 16.2 16.2 15998.5

10 0.75 0.75 20 20 50 202.5 197.8 197.8 17.8 17.8 15951.1

10 0.75 0.75 20 40 25 202.5 506.3 14.1 24.6 1.7 16123.2

10 0.75 0.75 40 20 50 202.5 14.1 506.3 3.8 26.2 16069.1

10 0.75 0.75 40 40 25 202.5 87.9 87.9 7.3 7.3 15778.4

10 0.75 0.75 40 40 50 202.5 87.9 87.9 9.4 9.4 15697.6

30 0.25 0.25 20 20 25 207.6 43.1 43.1 13.0 13.0 14879.2

30 0.25 0.25 20 20 50 207.6 43.1 43.1 17.6 17.6 14698.8

30 0.25 0.25 40 20 50 207.6 14.1 56.3 3.8 18.6 14662.8

30 0.25 0.25 40 40 50 207.6 19.1 19.1 4.4 4.4 14603.8

30 0.25 0.75 20 20 25 207.6 3.5 506.3 8.3 28.9 15314.8

30 0.25 0.75 20 20 50 207.6 3.5 506.3 13.0 33.6 15162.9

30 0.25 0.75 20 40 25 207.6 3.5 225.0 8.3 8.9 15032.7

30 0.25 0.75 40 20 50 207.6 1.6 506.3 1.3 33.6 15154.2

30 0.25 0.75 40 40 50 207.6 1.6 225.0 1.3 15.0 14792.0

30 0.75 0.75 20 20 25 207.6 197.8 197.8 20.5 20.5 15204.5

30 0.75 0.75 20 20 50 207.6 197.8 197.8 25.1 25.1 15062.1

30 0.75 0.75 40 20 50 207.6 14.1 506.3 3.8 33.6 15166.7

30 0.75 0.75 40 40 25 207.6 87.9 87.9 3.3 3.3 14983.7

30 0.75 0.75 40 40 50 207.6 87.9 87.9 9.4 9.4 14741.3
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4.2. The Decentralized Model

In the decentralized analysis, the agents (two vendors and the operator) are self-

centred and trying to maximize their own pay-offs at the game. In the sequence of the

decentralized game, two vendors concurrently announce their R&D investment levels.

Then, they propose a ”take it or leave it” contract to the operator. Although the

operator has two different choices, our game goes on under the assumption of approval

of the contract. After the acceptance of the contract, the operator decides on his

required additional network capacity for the following period regarding outcome of the

vendors’ game and the market price of the new technology. After then, the mystery of

whether the vendors come up with a successful innovation or not becomes clear at the

beginning of the second period and all of the transfers between the players come true,

they all gain the profits and incur corresponding costs at the end of the second period.

Initially, a simultaneous (Nash) game is played between the vendors regarding

R&D investment levels. Then, a Stackelberg game follows it between the vendors and

the operator regarding network capacity choice at the second period. To state the

matter differently, the R&D investment levels, I1 and I2 are both announced by the

vendors concurrently, and the announcement of the second period extra capacity by

the operator, C1
2 or C2

2 pursues, afterwards. To make clear a point, since the operator

is able to select one of the vendors considering the financial gain, he computes two

separate second period network capacity, one of which is going to be uploaded to the

actual network.

To emphasize a crucial aspect of the game, the Stackelberg game between the

vendors and the operator can only occur when technology is successfully adopted and

the operator decides to increase her network capacity in the second period. Otherwise,

there is no game if no one invests to the new technology sufficiently to boost up the

demand and attract the attention of the operator. Moreover, all information is common

among the agents of the game.
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4.2.1. The Operator’s Capacity Determination Problem

At first place, the operator decides on his initial network capacity with respect

to first period’s costs and profits, because we assume that it is a new company in the

market. Although the first period capacity decision has no effect in the investment

game, we try to create resemblance with the model in Chapter 3.

The first period capacity decision of the operator is independent of the vendors.

It is just a start-up nominal capacity level and constructed by any technology provider

with a unit price m (exogenous). It means none of the vendors make money by sup-

plying the first period network capacity of the operator. The vendors in our game

structure run to collect money from new technology competition.

The operator has to decide on his first period network capacity, C1 by maximizing

the following pay-off function:

π (C1) = (a1 + v1) S(C1)− v1µ1 − (o1 + m) C1 (4.16)

where the interpretation is the same with (4.2), hence, the operator and the central

decision maker can be regarded as the same corporate body without the investment

game. As it can be seen from Proposition 4.1.1, the expected revenue function of the

operator, (4.16), is concave in the network capacity decision, C1, which can be derived

as:

C∗
1 = G−1

(
1− o1 + m

a1 + v1

)
(4.17)

Unlike the best C∗
1 given in (3.14), C∗

1 given in (4.17) does not contain any cost

related with unit purchasing price of new technology in the second period. C∗
1 given in

(4.17) is nominal network capacity and independent of new technology decision of the

operator, however, C∗
1 given in (3.14) responds to maybe imminent new technology in

the second period via possible unit price parameters, w1, and w2, of it. After observing
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the R&D investment levels of the vendors, the operator makes a decision about how

much extra network capacity, C1
2 or C2

2 , he adopts at the second period. Hence, he

maximizes the following expected revenue function, πo(C
1
2 , C

2
2 ; I1, I2):

= q2p1

{
(a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− o2

(
C1 + C1

2

)− wC1
2

}

+ q1p2

{
(a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− o2

(
C1 + C2

2

)− wC2
2

}

+ p1p2



max


 (a2 + v2) S(C1 + C1

2 | I1)− v2µ2 (I1)− o2 (C1 + C1
2)− wC1

2 ,

(a2 + v2) S(C1 + C2
2 | I2)− v2µ2 (I2)− o2 (C1 + C2

2)− wC2
2








+ q1q2 {(a2 + v2) S(C1)− v2µ2 − o2C1} (4.18)

The first line and the second line reflects the gain of the operator if one of the

vendors, either second one or the first one, respectively, fails in the new technology

development race and the other one sees the finish line with successfully materialized

innovation. As one can refer to (4.5), but once again, the third line reveals that the

operator transact with one of the vendors which literally cause more expected business

profit for the operator. And, the last line shows the earnings of the operator if the

innovation is not adopted flourishingly. Moreover, the first ingredient of each line is

the expected revenue, the second one is the cost of lost service, and rest of them is the

total purchasing and the operation cost of the telecommunication network.

In a similar way with the centralized model, we define the following equations:

π0
o = (a2 + v2) S(C1)− v2µ2 − o2C1

πj
o = (a2 + v2) S(C1 + Cj

2

∣∣ Ij)− v2µ2 (Ij)− o2

(
C1 + Cj

2

)− wCj
2 (4.19)

j = 1, 2.

If we rewrite the expected revenue of the operator by substituting (4.20) into
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(4.18):

π = q2q1π
0
o + q2p1π

1
o + q1p2π

2
o + p1p2 max

(
π1

o , π
2
o

)

Since one can easily observe that π1
o = π2

o when I1 = I2, three cases for the payoff

function of the operator can be represented as below:

π =





q2q1π
0
o + p2π

2
o + q2p1π

1
o if I1 < I2

q2q1π
0
o + q2p1π

1
o + q1p2π

2
o + 0.5p1p2 (π1

o + π2
o) if I1 = I2

q2q1π
0
o + p1π

1
o + q1p2π

2
o if I1 > I2

(4.20)

As the decision maker, the operator gives equal chances to the vendors when

they exert effort equally. Obviously, without doing any favor to both vendors, they are

equally likely to sell their innovation to the operator when they make the same R&D

investments.

Proposition 4.2.1 The expected profit of the operator as given in (4.20) is jointly

concave in (C1
2 , C

2
2) and the solution obtained from the first order conditions maximizes

the expected profit of the operator.

Proof: See Section A.13 in Appendix A.

The alternative capacity decisions of the operator for the second period for all

cases can be defined as follows: (See the FOCs from the proof (A.13) in Appendix A)

C1∗
2 = θ (I1) + G−1

(
1− o2 + w

a2 + v2

)
− C∗

1 (4.21)

C2∗
2 = θ (I2) + G−1

(
1− o2 + w

a2 + v2

)
− C∗

1 (4.22)
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Obviously, the alternative network capacities are contingent only upon the R&D

investments of the vendors. Moreover, the investment levels must yield nonnegative

extra network capacity to ensure that the game exists between the vendor. Once again,

as long as the operator chooses nonnegative extra network upload for the second period,

there occurs a competition between the suppliers to satisfy this demand of the operator.

As a result of this, there is a minimum level of investment which results in nonnegative

network capacity choice for the operator. The minimum level of investment to join the

game is as follows:

Ij = θ−1

[
C∗

1 −G−1

(
1− o2 + w

a2 + v2

)]
for j = 1, 2. (4.23)

Note that if Nash equilibrium/equilibria exist/s in the vendors’ game R&D in-

vestment levels have to be grater than the minimum investment level revealed above.

4.2.2. The Vendors’ Investment Problem

The vendors’ aim in the simultaneous (Nash) game is to maximize their own

expected revenue functions taking into consideration the decisions of the operator.

The expected revenues of the vendors are well-adjusted to the operator’s three cases.

Both vendors make an initial investment in technology and then charge a unit

market price for unit capacity with the new technology. Both vendors’ objective is to

supply the operator’s requested second period network capacity and make money via

exerting sufficient effort to boost up the demand of the operator. The first vendor’s

problem can be expressed as follows:

max
I1

π1

(
I1; I2, C

1
2 , C2

2

)
=





π1
1 (I1) = q2p1 (w −m1) C1

2 − I1 if I1 < I2

π2
1 (I1) = (q2p1 + 0.5p1p2) (w −m1) C1

2 − I1 if I1 = I2

π3
1 (I1) = p1 (w −m1) C1

2 − I1 if I1 > I2

s.t. I1 ∈
[
I1,∞

)
(4.24)

We now characterize the expected profit of the first vendor.
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Proposition 4.2.2 The expected profit of the first vendor as given in (4.24) is strictly

concave in I1 in left and right branches, π1
1, and π3

1, and not continuous when I1 = I2.

Proof: See Section A.14 in Appendix A.

With the concavity of the expected pay-off of the first vendor, FOCs (Proposi-

tion 4.2.2) let us implicitly characterize the best investment levels for the first vendor

for the left hand-side and the right hand-side of the function as follows:

dED [I1]

d (I1)

∣∣∣∣
Î1

=
1

q2p1 (w −m1)
(4.25)

dED [I1]

d (I1)

∣∣∣∣ ̂̂
I1

=
1

p1 (w −m1)
(4.26)

From this point on, we abbreviate I1 derived from (4.25) as Î1, and correspond-

ingly I1 derived from (4.26) as
̂̂
I1. The investment level of the first vendor is dependent

on the innovation probabilities, as it is expected. In addition, the effort dependent

demand function is monotonously increasing as I1 is raising and strictly concave by

assumption, hence,
̂̂
I1 > Î1 when p2 6= 0.

The second vendor’s problem can be expressed analogously:

max
I2

π2

(
I2; I1, C

1
2 , C2

2

)
=





π1
2 (I1) = p2 (w −m2) C2

2 − I2 if I1 < I2

π2
2 (I1) = (q1p2 + 0.5p1p2) (w −m2) C2

2 − I2 if I1 = I2

π3
2 (I1) = q1p2 (w −m2) C2

2 − I2 if I1 > I2

s.t. I2 ∈
[
I2,∞

)
(4.27)

Proposition 4.2.3 The first part and the third part of the expected profit of the second

vendor as given in (4.27), π1
2, and π3

2, is strictly concave in I2, and not continuous when

I2 = I1.
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Proof: See Section A.15 in Appendix A.

With the concavity of the expected pay-off of the second vendor, FOCs (Proposi-

tion 4.2.3) let us implicitly characterize the best investment levels for the second vendor

for the two different part of the function as follows:

dED [I2]

d (I2)

∣∣∣∣
Î2

=
1

q1p2 (w −m2)
(4.28)

dED [I2]

d (I2)

∣∣∣∣ ̂̂
I2

=
1

p2 (w −m2)
(4.29)

From this point on, we abbreviate I2 derived from (4.28) as Î2, and correspond-

ingly I2 derived from (4.29) as
̂̂
I2. Similar to the first vendor, the investment level

of the second vendor is dependent on the innovation probabilities, as it is expected.

Moreover,
̂̂
I2 > Î2 when p1 6= 0 due to the same additive demand assumption.

Once more, the investment levels of the vendors are only dependent on the inno-

vation probabilities, as it is expected. Each vendor gives reaction to rival’s investment

strategy over probabilities and its own manufacturing cost at the simultaneous invest-

ment game. The important interpretation is that best investment levels of the vendors

are contingent on the marginal profit of the new technology. It means that the vendors

have no incentive to allocate money to the new technology research unless selling it to

the market is profitable enough.

4.3. Nash Equilibrium in Pure Strategies

The R&D investment problem can be modeled and solved in game theoretic

framework when a competitor exists.

Definition 4.3.1 The strategy space for the vendor j is Sj =
[
Ij,∞

)
, j = 1, 2. A
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pure strategy for vendor j is any scalar which ensures that the operator is willing to be

involved in the new technology game.

Definition 4.3.2 The set of best responses for the vendor j to its rival is Φj (Ik) =
{

Ij ∈ Sj|πj (Ij; Ik) ≥ πj

(
I−j ; Ik

)
,∀I−j ∈ Sj

}
. The mapping Φj : Sk ⇒ Sj is the j’s best

response correspondence.

Definition 4.3.3 A strategy pair
(
IN
1 , IN

2

)
is a Nash equilibrium if

• IN
j ∈ Sj, j = 1, 2.

• π1

(
IN
1 ; IN

2

) ≥ π1

(
I1; I

N
2

)
, ∀I1 ∈ S1; and

• π2

(
IN
2 ; IN

1

) ≥ π2

(
I2; I

N
1

)
, ∀I2 ∈ S2.

In other words, the pair
(
IN
1 , IN

2

)
is a Nash equilibrium if IN

1 ∈ Φ1

(
IN
2

)
, and IN

2 ∈
Φ2

(
IN
1

)
; that is, each strategy is a best response to each other.

Proposition 4.3.1 The first vendor’s best response mapping, Φ1, can be expressed as:

Case i) I1 < Î1 <
̂̂
I1;

Φ1 (I2) =





̂̂
I1 if I2 ≤ I

′
1

Î1 if I2 > I
′
1

where I
′
1 = Î1+(w−m1)

[
p1θ

(
I
′
1

)− q2p1θ
(
Î1

)]
+p1p2(w−m1)

[
G−1

(
1− o2+w

a2+v2

)
− C1

]

such that
dπ3

1

d(I1)

∣∣∣
I
′
1

< 0.

Case ii) Î1 < I1 <
̂̂
I1;

Φ1 (I2) =





̂̂
I1 if I2 ≤ I

′′
1

no response otherwise

where I
′′
1 = I1+(w−m1)

[
p1θ

(
I
′′
1

)− q2p1θ
(
I1

)]
+p1p2(w−m1)

[
G−1

(
1− o2+w

a2+v2

)
− C1

]
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such that
dπ3

1

d(I1)

∣∣∣
I
′′
1

< 0.

Case iii) There is no response when Î1 <
̂̂
I1 < I1 because π1 is always negative for

I1 > 0.

Proof: See Section A.16 in Appendix A.

Proposition 4.3.2 The second vendor’s best response mapping, Φ2, can be expressed

as:

Case i) I2 < Î2 <
̂̂
I2;

Φ2 (I1) =





̂̂
I2 if I1 ≤ I

′
2

Î2 if I1 > I
′
2

where I
′
2 = Î2+(w−m2)

[
p2θ

(
I
′
2

)− q1p2θ
(
Î2

)]
+p1p2(w−m2)

[
G−1

(
1− o2+w

a2+v2

)
− C1

]

such that
∂π1

2

∂(I2)

∣∣∣
I
′
2

< 0.

Case ii) Î2 < I2 <
̂̂
I2;

Φ2 (I1) =





̂̂
I2 if I1 ≤ I

′′
2

no response otherwise

where I
′′
2 = I2+(w−m2)

[
p2θ

(
I
′′
2

)− q1p2θ
(
I2

)]
+p1p2(w−m2)

[
G−1

(
1− o2+w

a2+v2

)
− C1

]

such that
∂π1

2

∂(I2)

∣∣∣
I
′′
2

< 0.

Case iii) There is no response when Î2 <
̂̂
I2 < I2 because π2 is always negative for

I2 > 0.

Proof: See Section A.17 in Appendix A.
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Figure 4.2. Visual interpretation of the expected profit of the first vendor

To make clear the response functions of the vendors we visualize the branches of

the expected profit of the first vendor given in (4.24) in Figure 4.2. We can analogously

illustrate the expected profit of the second vendor. Note that we disregard the minimum

investment level, I1, in Figure 4.2.

The interpretation of I
′
j or I

′′
j is that they are the upper bounds that one can

increase the R&D investment level with the expectation of higher profit. The economic

meaning is that they are the ultimate investment levels at which the expected profit of

investing more with the hope that a vendor can make better money is equal to opportu-

nity cost of investing less. Note that there are two investment levels (Proposition 4.3.1,

and Proposition 4.3.2), and
̂̂
Ij > Îj, j = 1, 2.

We give some illustrative graphic examples to provide a visual interpretation for

response functions of the vendors. For some game parameters, Nash equilibrium does

not exist. For instance, when the vendors’ responses are in case (iii) in Proposition

4.3.1, and case (iii) in Proposition 4.3.2. Note that the axes of Figures 4.3, and 4.4,

are normalized at I1 and I2.



59

1 1 1
I I I  and 

2 2 2
I I I

'

1 2 2
I I I  and 

'

1 1 2
I I I

1 1

2
I

2
I2

I
'

1
I

1
I

'

2
I

1
I

1
I

1 2
I

1 2
I

2 1
I

2 1
I

Nash

Eq.

1
I I I  and 

2 2 2
I I I

'

1 2 2
I I I  and 

''

1 1 1
I I I

2
I

2
I

'

1
I

1
I

''

2
I

1
I

1
I

1 2
I

1 2
I

2 1
I

Nash

Eq.

Figure 4.3. Response functions of the vendors-1
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Theorem 4.3.1 Case by case for all possible cases, Nash equilibrium can be expressed

as follows:

• I1 ≤ Î1 <
̂̂
I1, and I2 ≤ Î2 <

̂̂
I2;

1.
(
IN
1 , IN

2

)
=

(
Î1,

̂̂
I2

)
for I

′
1 < Î2 <

̂̂
I2, and Î1 <

̂̂
I1 < I

′
2.

2.
(
IN
1 , IN

2

)
=

(
Î1,

̂̂
I2

)
for Î2 ≤ I

′
1 <

̂̂
I2, and Î1 <

̂̂
I1 < I

′
2.

3.
(
IN
1 , IN

2

)
=

(
̂̂
I1,

̂̂
I2

)
for Î2 <

̂̂
I2 ≤ I

′
1, and Î1 <

̂̂
I1 ≤ I

′
2.

4.
(
IN
1 , IN

2

)
=

(
̂̂
I1, Î2

)
for Î2 <

̂̂
I2 < I

′
1, and I

′
2 < Î1 <

̂̂
I1.

5.
(
IN
1 , IN

2

)
=

(
̂̂
I1, Î2

)
for Î2 <

̂̂
I2 < I

′
1, and Î1 ≤ I

′
2 <

̂̂
I1.

• I1 ≤ Î1 <
̂̂
I1, and Î2 < I2 ≤ ̂̂

I2;

1.
(
IN
1 , IN

2

)
=

(
Î1,

̂̂
I2

)
for I

′
1 <

̂̂
I2, and Î1 <

̂̂
I1 < I

′′
2 .

2.
(
IN
1 , IN

2

)
=

(
̂̂
I1,

̂̂
I2

)
for

̂̂
I2 ≤ I

′
1, and Î1 <

̂̂
I1 ≤ I

′′
2 .

3. No equilibrium for
̂̂
I2 < I

′
1, and I

′′
2 < Î1 <

̂̂
I1, and for

̂̂
I2 < I

′
1, and Î1 ≤

I
′′
2 <

̂̂
I1.

• Î1 < I1 ≤ ̂̂
I1, and I2 ≤ Î2 <

̂̂
I2;

1.
(
IN
1 , IN

2

)
=

(
̂̂
I1, Î2

)
for Î2 <

̂̂
I2 < I

′′
1 , and I

′
2 <

̂̂
I1.

2.
(
IN
1 , IN

2

)
=

(
̂̂
I1,

̂̂
I2

)
for Î2 <

̂̂
I2 ≤ I

′′
1 , and

̂̂
I1 ≤ I

′
2.

3. No equilibrium for I
′′
1 < Î2 <

̂̂
I2, and

̂̂
I1 < I

′
2, and for Î2 ≤ I

′′
1 <

̂̂
I2, and

̂̂
I1 < I

′
2.

• Î1 < I1 ≤ ̂̂
I1, and Î2 < I2 ≤ ̂̂

I2;

1.
(
IN
1 , IN

2

)
=

(
̂̂
I1,

̂̂
I2

)
for

̂̂
I2 ≤ I

′′
1 , and

̂̂
I1 ≤ I

′′
2 .

2. No equilibrium for I
′′
1 <

̂̂
I2, and

̂̂
I1 < I

′′
2 , and for

̂̂
I2 < I

′′
1 , and I

′′
2 <

̂̂
I1.

where I
′
1, and I

′′
1 are defined in Proposition 4.3.1, and I

′
2, and I

′′
2 are defined in Propo-

sition 4.3.2.

Proof: See Section A.18 in Appendix A.
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Obviously, there is no Nash equilibrium under investment level of Ij, j = 1, 2,

investment level because the Stackelberg game occurs between vendors and the operator

only above this investment level. Moreover, it is always unique whenever it exists.

An important observation is that Nash equilibrium does not appear because the

marginal profit of the new technology is not attractive enough for the vendors to exert

effort, and make investment. This observation explains why the firms engage innovation

activities when the sale price of new technology is much higher than the cost of it, as

it is emphasized from [16].

4.3.1. Numerical Analysis

In this section, we illustrate the solution to the decentralized system for two

periods. We show the Nash equilibrium point numerically for some cases, and gain

intuition about how the model parameters influence the decision variables and the

expected profit. The random part of the demand, ε in both periods is taken as normally

distributed with mean µ = 200, and sigma σ = 20. The impact of investment I is

reflected in the second period demand with θ(I) =
√

I.

Unit sales price is fixed at a = 100 for both periods. First period manufacturing

cost is m = 30. And, operating cost for the first period is o1 = 40, and for the second

period o2 = 20. Penalty costs are fixed at v1 = v2 = 25 for both periods. Successful

innovation probabilities, and manufacturing costs are varied to reveal some illustrative

cases. Note that probability of innovation is assumed to follow a geometric distribution

and demand is stationary for the two periods if innovation does not materialize.

The parameters in Figure 4.5 are p1 = 0.50, p2 = 0.50, m1 = 20, and m2 = 20.

The vendors are identical, and simultaneous movement game equilibrium occurs at

(
̂̂
I1,

̂̂
I2)=(100, 100) point. In addition, Stackelberg equilibrium between the vendors

and the operator occurs at (C1
2(

̂̂
I1), C2

2(
̂̂
I2)))= (7.9, 7.9) point. However, centralized

solution is (I∗1 , I∗2 )=(126.6, 126.6). The decentralized system composed of two vendors

and the operator earns 14927, totally, but the centralized revenue is 15195. Apparently,
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the decentralized system makes money below the centralized setting.

In Figure 4.6, the vendors differ from each other with parameters p1 = 0.70,

p2 = 0.35, m1 = 25, m2 = 10, and the first vendor is less efficient and more likely

to get innovation. Nash equilibrium exists at (
̂̂
I1,

̂̂
I2)=(150, 76.6) point. In addi-

tion, Stackelberg equilibrium between the vendors and the operator occurs at (C1
2(

̂̂
I1),

C2
2(

̂̂
I2)))= (8.1, 4.6) point. However, centralized solution is (I∗1 , I∗2 )=(156.6, 150). The

decentralized revenue is 15016, corresponding centralized revenue is 15342.

In Figure 4.7, the vendors are asymmetric, and the parameters are p1 = 0.55,

p2 = 0.40, m1 = 20, m2 = 30. Nash equilibrium is (
̂̂
I1, Î2)=(121, 7.3). Moreover, Stack-

elberg game between the vendors and the operator occurs at (C1
2(

̂̂
I1)), C2

2(Î2))=(8.9,

0.6) point. However, centralized solution is (I∗1 , I∗2 )=(272.3, 20.3). The decentralized

revenue is 14960, corresponding centralized revenue is 15207.
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Figure 4.5. Nash equilibrium when the vendors are symmetric
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Figure 4.6. Nash equilibrium (
̂̂
I1,
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I2) when the first vendor is more likely to succeed
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We are unable to show comparative statics results with respect to some important

parameters of the model such as innovation probabilities, manufacturing costs, penalty

costs and exogenous wholesale price. Because the response functions of the vendors are

various forms which actually does not give us any chance to characterize the behavior

of the Nash equilibrium point with respect to mentioned parameters. However, the

equilibrium of Stakelberg game which happens between the vendors and the operator

is plainer, since the operator chooses her decision without considering the innovation

probabilities of the vendors. She announces two alternative extra network capacity,

C1∗
2 , and C2∗

2 , with respect to I∗1 , and I∗2 , respectively. Therefore, the equilibrium of

the Stakelberg game is only contingent on the equilibrium of the R&D investment game

of the vendors.

4.4. Coordination

The coordinating contract is defined as the one that makes the independent agents

decide on the same levels for the decision variables as the centralized solutions. In our

case, the coordinating contract let the operator chooses the same amount of extra

capacity for the second period and the vendors choose the same investment levels as

the centralized solutions, and also simultaneous movement investment game must have

an equilibrium for the vendors.

4.4.1. Profit Sharing Contract

Apparently, in wholesale price contract, there is not any coordination unless w =

mi for j = 1, 2 which is unacceptable to the vendors in the decentralized setting.

Therefore, a revenue, operating cost and investment sharing contract was proposed as

a coordinating contract for the model we inspired [9]. We give a modified model of this

contract here.

Initially, the vendors’ technology investments are shared by the operator, after

then the vendors participate both second period revenue and the operating cost of the

operator in the profit sharing contract. Finally, the price of the technology is settled
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as regards the manufacturing cost of it.

Proposition 4.4.1 A profit sharing contract with the transfer payments for both ven-

dors given as

T1 (C1
2 , I1, w1, φ1, ψ1) = w1C

1
2 + (1− φ1) (a2) S (C1 + C1

2 | I1)− (1− λ1) o2C
1
2 + (1− ψ1) I1

T2 (C2
2 , I2, w2, φ2, ψ2) = w2C

2
2 + (1− φ2) (a2) S (C1 + C2

2 | I2)− (1− λ2) o2C
2
2 + (1− ψ2) I2

where 0 ≤ φj ≤ 1, λj ≥ 0, 0 ≤ ψj ≤ 1, φja2 + v2 = λj (a2 + v2), wj = λjmj, and

ψj =
(1−λj)(a2+v2−o2−mj)

(a2−o2−mj)
for j = 1, 2.

Proof: See Section A.19 in Appendix A.

To make clear the concept, we give an illustrative numeric example via using the

parameters mentioned in section (4.1.2), and σ, p1, p2, m1, m2, v2 parameters and C1,

I1, I2, C1
2 , C2

2 decision variable in each row of 4.2 is the same with each row of Table

4.3. And, φ1 = φ2 = 0.90, or φ1 = φ2 = 0.95 which means the operator captures the 90

or 95 percent of the expected revenue gained from the sale. In this example, expected

revenue shares of the vendors and the operator under profit sharing contract are given

in Table (4.3) below.

Some of the basic intuitions, revealed in table (4.3), are that not surprisingly, the

more likely the vendor innovates the more money he gains, and whenever the vendor

decreases his manufacturing cost of the new technology he starts to collect more profit,

and the operator can make more money if she pays less lost sale penalty cost. Moreover,

the fluctuation of the demand cause profit loss for all parties of the game.

Although only two cases when φ1 = φ2 = 0.90, and φ1 = φ2 = 0.95 is revealed

here, we can naturally state that the increase of φj, j = 1, 2. is in favor of the operator

because she makes her share of the sale profit larger. However, not all φj values can

satisfy the restrictive conditions of the other parameters in Proposition 4.4.1. Even
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though the coordination among the different agents of the game is achieved by the profit

sharing contract, it is unable to allocate the whole profit among the agents arbitrarily.

4.4.2. Revenue Sharing Contract

The coordination does not occur when the operator pays w = mi, j = 1, 2, be-

cause the vendors are not willing to sell the technology to the operator due to double

marginalization. Therefore, a revenue sharing and investment support contract is pro-

posed as a coordinating contract for the model because such kind of contracts might

have a chance in real practice.

At the beginning, the operator provides technology investment supports for the

vendors, after then the vendors are involved in the second period revenue, and accept

manufacturing cost support from the operator in the modified revenue sharing contract.

Proposition 4.4.2 A revenue sharing contract with the transfer payments for both

vendors given as

T1 (C1
2 , I1, δ1, φ1, ψ1) = δ1m1C

1
2 + (1− φ1) (a2) S (C1 + C1

2 | I1) + (1− ψ1) I1

T2 (C2
2 , I2, δ2, φ2, ψ2) = δ2m2C

2
2 + (1− φ2) (a2) S (C1 + C2

2 | I2) + (1− ψ2) I2

where 0 ≤ δj < 1, φja2 + v2 = λj (a2 + v2), ,λj =
o2+δjmj

o2+mj
, and ψj =

(1−ϕj)a2−(1−δj)mj

a2−o2−mj

for j = 1, 2.

Proof: See Section A.20 in Appendix A.

To ensure that the revenue sharing contract perform the coordination properly,

the contract parameters have to be chosen such that φj ≥ o2+δjmj

a2
, and a2 > o2 + mj +

v2mj

o2
− δjmj(a2+v2−o2−mj)

o2
. The logical interpretation of these might be that the operator

is not willing to continue business under definite percentage of the sale’s revenue, and

firms of telecom sector keep on doing business if sale price per capacity is grater than

operating and the manufacturing cost of it.
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Table 4.3. Numerical illustration of revenues of agents under profit sharing contract

φ π1 π2 πo φ π1 π2 πo π

0.90 438.6 438.6 14806.6 0.95 219.3 219.3 15245.2 15683.8

0.90 439.0 439.0 14745.8 0.95 219.5 219.5 15184.7 15623.7

0.90 502.5 373.3 14792.2 0.95 251.2 186.7 15230.1 15667.9

0.90 373.2 502.8 14725.1 0.95 186.6 251.4 15163.1 15601.1

0.90 436.2 436.2 14763.4 0.95 218.1 218.1 15199.6 15635.8

0.90 436.1 436.1 14688.0 0.95 218.0 218.0 15124.1 15560.1

0.90 123.9 1563.6 14423.9 0.95 61.9 781.8 15267.7 16111.4

0.90 124.0 1564.8 14372.1 0.95 62.0 782.4 15216.4 16060.8

0.90 123.9 1535.5 14170.6 0.95 61.9 767.7 15000.2 15829.9

0.90 123.6 1564.8 14368.2 0.95 61.8 782.4 15212.4 16056.6

0.90 123.6 1534.9 14089.9 0.95 61.8 767.4 14919.1 15748.4

0.90 957.5 957.5 14083.5 0.95 478.7 478.7 15041.0 15998.5

0.90 958.2 958.2 14034.6 0.95 479.1 479.1 14992.8 15951.1

0.90 1563.6 373.3 14186.3 0.95 781.8 186.7 15154.8 16123.2

0.90 373.2 1564.8 14131.1 0.95 186.6 782.4 15100.1 16069.1

0.90 946.5 946.5 13885.4 0.95 473.2 473.2 14831.9 15778.4

0.90 946.1 946.1 13805.4 0.95 473.1 473.1 14751.5 15697.6

0.90 426.5 426.5 14026.2 0.95 213.3 213.3 14452.7 14879.2

0.90 427.5 427.5 13843.7 0.95 213.8 213.8 14271.3 14698.8

0.90 362.5 489.8 13810.5 0.95 181.2 244.9 14236.6 14662.8

0.90 423.6 423.6 13756.6 0.95 211.8 211.8 14180.2 14603.8

0.90 120.4 1522.2 13672.2 0.95 60.2 761.1 14493.5 15314.8

0.90 120.7 1525.6 13516.6 0.95 60.3 762.8 14339.7 15162.9

0.90 120.4 1494.0 13418.3 0.95 60.2 747.0 14225.5 15032.7

0.90 120.0 1525.6 13508.5 0.95 60.0 762.8 14331.4 15154.2

0.90 120.0 1492.1 13179.9 0.95 60.0 746.1 13986.0 14792.0

0.90 931.6 931.6 13341.4 0.95 465.8 465.8 14272.9 15204.5

0.90 933.8 933.8 13194.6 0.95 466.9 466.9 14128.4 15062.1

0.90 362.5 1525.6 13278.6 0.95 181.2 762.8 14222.6 15166.7

0.90 920.5 920.5 13142.6 0.95 460.3 460.3 14063.2 14983.7

0.90 919.4 919.4 12902.5 0.95 459.7 459.7 13821.9 14741.3
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5. CONCLUSIONS

A two-stage supply chain with a technology dependent stochastic demand is con-

sidered comprehensively. Although the majority of the supply chain literature is in-

terested in happenings between suppliers and retailers in a production sector we are

are concentrated on a service sector by introducing a problem of a service operator.

Besides, a literature about introduction and diffusion of innovative technology, which

mainly pays attention to timing of new technology, and patent protection of it, has

come into being, as well as a literature related to irreversible technology expenditures

to enter a new market has also been constituted. However, to best of our knowl-

edge, none of the papers has investigated the R&D investments in terms of operational

parameters in a competitive environment.

In this paper, we have considered the interactions of two vendors competing to

develop a new technology and then subsequently selling it to a common telecom network

operator. We introduce a service operator who installs network capacity to provide a

telecom service for its customers. This telecom network can also be used throughout

the periods. A vendor supplies necessary equipment (hardware or software) to upgrade

the network of the operator. The main objectives are to provide insights to conditions

where such R&D investments take place, and to the operation of such a telecom value

chain, as well as coordinating contracts.

If a single company owns the telecom value chain and manages it via a centralized

decision maker, in order for the chain to achieve maximum expected profit each vendor

invests in new technology and the operator increases the second period capacity under

appropriate parameters for the new traffic to be created by the new technology for

both of the models given in Chapter 3, and Chapter 4. A numerical study illustrates

the behavior of the central solution for various parameter levels for both of the models.

Note that we just focus on the situations where R&D investment boosts up the demand

and causes uploading of extra new technology to telecom network, nevertheless, it might

be optimal not to build up extra network for some cases where technology triggered
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demand is inadequate, but such cases are out of scope of this thesis.

In the model given in Chapter 3, the vendors and the operator interacts via

unit price per unit of extra capacity of the new technology. As a result, we create an

asymmetry between the unit price of the vendors so that one of the vendors sells his

technology with a cheaper unit price with respect to its rival, and the operator always

prefers him when he materializes his innovation. In this model, we take into account of

two different nested game structures. In the first one, the vendors determine their unit

price firstly, then they decide on the R&D investments afterwards and in the second

one, all decisions are made in a reverse manner. If each player acts independently

and maximizes its own profit, under a specific structure of the game (the unit price

decisions are first and the investment decisions follow them) an equilibrium does not

exist. None of the vendors invest in the new technology. However, under a reverse

nested game structure (investment first, price next), the vendors might invest in a new

technology when the unit price of the new technology does not depend on the R&D

investment levels. But, the vendors have an incentive to distort the game when they

determine the unit price of the new technology with respect to R&D investments they

made at the first place.

First of all, R&D investment is defined as the act of incurring an immediate cost

in the expectation of future pay-offs [24]. As a result, uncertainty makes firms pursue

their rivals’ strategies when they all serve to the same market and have the same

opportunity to trigger the market demand. Besides, if the strategy of the vendors is to

determine the unit price of the new technology he offers to market as a function of R&D

expenditures he incurs during development period, the vendors endure the price risk as

well as the demand risk. In addition, taking strategic interactions with their rivals in

the market into account, companies need to deploy R&D budgets wisely, hence, they

attempt to distort the game and they tend to be a follower in an innovative market.

An important managerial insight is that innovative firms are more conservative when

their rivals can benefit from the demand which is triggered by pioneers. Furthermore,

this negative result (usually seen in public good investments in economics) can be due

to several things such as:
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• A different game structure at the vendor level (investment and price together)

might still have an equilibrium.

• Under a revenue sharing contract, the game might have a different structure.

In the model given in Chapter 4, the vendors and the operator interacts via R&D

investments directly as long as the operator chooses the vendor who can trigger the

demand efficiently because the unit price of the new technology is exogenous, and

determined by the market dynamics. When the vendors give the technology invest-

ment decisions simultaneously and the operator announces the extra network capacity

afterwards, a unique Nash equilibrium appears under one-shot investment scheme of

the game under particular conditions. Firstly, R&D expenditure per firm decreases as

competition increases, however, the total R&D expenditure in the sector increases with

competition. Secondly, the efficiency in some parameters such as firm’s likelihood of

innovation and production cost of new technology is an advantage in the competition

in an innovative market, but it causes drawing the rivals back from investing in a new

technology. The similar results are also stated by Justman and Mehrez [15], and their

preceding papers. Finally, the R&D incentives of the firms when market exogenously

determines the unit price of the new technology are modeled and all the operational

cost/revenue parameters and their effects of this game are analyzed thoroughly. What

makes sense is that the players of the innovation game can allocate their R&D in-

vestment when they have an information about how much money they can sell the

end-product to the market (compared to the model in Chapter 3).

As a managerial insight, both the central owner of the value chain in the cen-

tralized setting and vendors individually in the decentralized setting increase the R&D

funds as the marginal profit of the new technology increases. Moreover, innovative

firms make R&D investment when the marginal profit of the new technology is attrac-

tive enough. Because of this fact, firms engage in innovation activities when the price

of the new technology is much higher than its cost.

To summarize, we try to provide managerial insights about R&D investment lev-

els of the firms in a competitive, innovative market environment. To fulfill such an
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objective, we focus on telecom sector as the most competitive and innovative market

and we model the telecom value chain consisting of two vendors who supply the high

technology equipment and the operator who buys and installs it to her network. R&D

incentives of the firms via considering operational factors associated with R&D invest-

ment decisions are analyzed comprehensively and some insights are provided to light

the phenomenon up.

As further research directions to this study, we propose two beneficial ways. The

first one is that R&D investment decisions of the vendors can be examined under useful

contracts which take place in the practice such as revenue sharing contract. The second

one is that coordination either between the vendors or between the operator and the

vendors can be examined. Because, according to the report of Lindmark et al. [3],

collaborative innovation activities attract attention in telecom sector extensively.
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APPENDIX A: PROOFS

A.1. Proof of Proposition 3.2.1

The concavity of the objective function w.r.t. C1, C2, and I can be shown by

checking the Hessian matrix:

H =

∣∣∣∣∣∣∣∣∣

∂2π
∂C2

1

∂2π
∂C1∂C2

∂2π
∂C1∂I

∂2π
∂C1∂C2

∂2π
∂C2

2

∂2π
∂C2∂I

∂2π
∂C1∂I

∂2π
∂C2∂I

∂2π
∂I2

∣∣∣∣∣∣∣∣∣

The second order and cross partial derivatives are as follows:

∂2π (C1, C2, I)

∂C2
1

= − [(a1 + v1) + q2q1 (a2 + v2)] g (C1)

− (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂2π (C1, C2, I)

∂C2
2

= − (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂2π (C1, C2, I)

∂I2
= (p2 + q2p1) ((a2 + v2) F (C1 + C2| I)− v2)

∂2E [D (I)]

∂I2

− (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

[
∂E [D (I)]

∂I

]2

∂2π (C1, C2, I)

∂C1∂C2

= − (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂2π (C1, C2, I)

∂C1∂I
= (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂E [D (I)]

∂I

∂2π (C1, C2, I)

∂C2∂I
= (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂E [D (I)]

∂I

When we check the Hessian matrix we see that the determinant of the first principal

submatrix is negative such that H1 = ∂2π
∂C2

1
< 0, ∂2π

∂C2
2

< 0, and ∂2π
∂I2 < 0. And, the

determinant of the second principal submatrix is positive such that

H2 = [(a1 + v1) + q2q1 (a2 + v2)] (p2 + q2p1) (a2 + v2) g (C1) f (C1 + C2| I) > 0
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And, the determinant of the third principal submatrix is negative such that

H3 = [(a1 + v1) + q2q1 (a2 + v2)] (p2 + q2p1)
2 (a2 + v2) g (C1) f (C1 + C2| I)

((a2 + v2) F (C1 + C2| I)− v2)
∂2E [D (I)]

∂I2
< 0

Hence, since hessian is negative definite, the centralized system revenue function is

jointly concave in C1, C2, I.

A.2. Proof of Proposition 3.3.1

The concavity of the objective function w.r.t. C1, and C2 can be shown by

checking the Hessian matrix:

H =

∣∣∣∣∣∣

∂2πo

∂C2
1

∂2πo

∂C1∂C2

∂2πo

∂C1∂C2

∂2πo

∂C2
2

∣∣∣∣∣∣

The second order and cross partial derivatives are as follows:

∂2πo (C1, C2; w1, I1, w2, I2)

∂C2
1

= − [(a1 + v1) + q2q1 (a2 + v2)] g (C1)

− (p2 + q2p1) (a2 + v2) f (C1 + C2| I)

∂2πo (C1, C2; w1, I1, w2, I2)

∂C2
2

= − (p2 + q2q1) (a2 + v2) f (C1 + C2| I)

∂2πo (C1, C2; w1, I1, w2, I2)

∂C1∂C2

= − (p2 + q2q1) (a2 + v2) f (C1 + C2| I)

Then, to check the hessian matrix whether it is negative semidefinite or not, we do the

following analysis:

[
x1 x2

]
∣∣∣∣∣∣

∂2πo

∂C2
1

∂2πo

∂C1∂C2

∂2πo

∂C1∂C2

∂2πo

∂C2
2

∣∣∣∣∣∣


 x1

x2


 ≤ 0
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After some algebraic manipulation we end up with the following inequality:

− [(a1 + v1) + q2q1 (a2 + v2)] g (C1) (x1)
2 (A.1)

− (p2 + q2p1) (a2 + v2) f (C1 + C2| I) (x1 + x2)
2 ≤ 0

Since, the inequality (A.1) is nonpositive for all x1, and x2 variables, Hessian matrix

of operator is negative semidefinite, hence, the expected revenue of the operator is

concave in C1, and C2. Furthermore, if we do not allow our variables to take zero

values, Hessian matrix of operator is negative definite, hence, it is strictly concave in

C1, and C2.

A.3. Proof of Proposition 3.3.2

∂2π1 (I1; I2 (w2) , w1)

∂I2
1

= q2p1 (w1 −m1)
d2E [D (I)]

dI2
1

< 0

Since d2E[D(I)]

dI2
1

< 0 by assumption, the expected profit function of the first vendor is

concave in I1 given w1, so does the expected profit function of the second vendor in I2

given w2.

A.4. Proof of Proposition 3.3.3

The expected profit function of the first (second) vendor is concave in I1(I2) as

it is shown in Section A.3. Second order derivative of the expected profit function of

the first (second) vendor at the first stage of game is as follows:

∂2π1(w1;w2(I2))
∂w2

1
= − (q2p1)

2
(

2
(p2+q2p1)(a2+v2)f(C1+C2|I) + 2

[(a1+v1)+q2q1(a2+v2)]g(C1) + λ
2

)
< 0

∂2π2(w2;w1(I1))
∂w2

1
= −2 (p2)

2
(

2
(p2+q2p1)(a2+v2)f(C1+C2|I) + 2

[(a1+v1)+q2q1(a2+v2)]g(C1) + (1−λ)
2

)
< 0

Since the second order derivative of them are strictly negative, the expected profit

functions of the vendors are strictly concave in w1 and w2 respectively. Then the first
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order conditions gives the global maximum if it is in the range of the wholesale prices.

Otherwise, the global maximum point appears at the bounds of the wholesale prices.

FOCs are as follows:

∂π1
∂w1

= q2p1

(
C2 − q2p1 (w1 −m1)

(
1

(p2+q2q1)(a2+v2)f(C1+C2|I) + 1
[(a1+v1)+q2q1(a2+v2)]g(C1)

+ λ
2

))
= 0

∂π2
∂w1

= p2

(
C2 − p2 (w2 −m2)

(
1

(p2+q2q1)(a2+v2)f(C1+C2|I) + 1
[(a1+v1)+q2q1(a2+v2)]g(C1)

+ (1−λ)
2

))
= 0

A.5. Proof of Proposition 3.3.4

FOCs of the pay-off functions, π1, and π2, with respect to w1, and w2, respectively,

are given as:

∂π1

∂w1

= q2p1 [C2 (w1, w2, I)− q2p1A (w1 −m1)]

∂π2

∂w2

= p2 [C2 (w1, w2, I)− p2A (w2 −m2)] (A.2)

where A = 1
(p2+q2p1)(a2+v2)g(Ω)

+ 1

[(a1+v1)+q2q1(a2+v2)]g(C∗1)
and

Ω = G−1
{

1−
[

p2w2+q2p1w1

(p2+q2p1)(a2+v2)
+ o2

a2+v2

]}
. Note that A is a constant under uniform

distribution. And, second order partial derivatives are given as follows, respectively:

∂2π1

∂(w1)2
= q2p1 [−q2p1A− q2p1A] < 0

∂2π2

∂(w2)2
= p2 [−p2A− p2A] < 0

Due to the fact that the second order partial derivative of the expected revenue function,

π1, (π2) with respect to w1, (w2) is negative, π1, (π2) is strictly concave in w1, (w2).

We characterize the best w∗
1, and w∗

2 values via using FOCs because w∗
1, and also w∗

2

are defined in its own interval. For Case(i), if ∂π1

∂w1

∣∣∣
w1

> 0 then w∗
1 = w1 = a2 − o2

because π1 still keeps increasing in w1, hence, the best value is upper bound of w1 =

w1. For case (ii), π1 gets its optimal value in intermediate value of w1 if ∂π1

∂w1

∣∣∣
w1

>

0 and ∂π1

∂w1

∣∣∣
w1

< 0. Finally, π1 keeps decreasing as w1 increases if ∂π1

∂w1

∣∣∣
w1

< 0,

therefore the best value is lower bound of w1 = w1. The same argument is also valid

for the second vendor. If we obtain w∗
1, and w∗

2 from FOCs, the following results are
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always satisfied:

∂π1

∂w1

∣∣∣
w∗1

= 0 ⇒ C2 (w∗
1, w2, I) = q2p1A (w∗

1 −m1)

∂π1

∂w2

∣∣∣
w∗2

= 0 ⇒ C2 (w1, w
∗
2, I) = p2A (w∗

2 −m2)

A.6. Proof of Proposition 4.1.1

The expected revenue function in (4.2) is strictly concave in C1 since the second

derivative of it with respect to C1 is strictly negative as shown below.

d2π

d (C1)
2 = − (a1 + v1) f (C1) < 0

A.7. Proof of Lemma 4.1.1

We first show that the separable parts of expected pay-off are concave in corre-

sponding decision variables.

• π1 is strictly concave in C1
2 and I1 since the Hessian matrix (shown below) is

negative definite.

H =




∂2π1

∂(C1
2)

2
∂2π1

∂(C1
2)∂(I1)

∂2π1

∂(C1
2)∂(I1)

∂2π1

∂(I1)2




d2π1

d
(
C1

2

)2 = − (a2 + v2) f
(
C1 + C1

2

∣∣ I1

)

d2π1

d
(
C1

2

)
d (I1)

= (a2 + v2) f
(
C1 + C1

2

∣∣ I1

) dED (I1)
dI1

d2π1

d (I1)
2 = − (a2 + v2) f

(
C1 + C1

2

∣∣ I1

) [
dED (I1)

dI1

]2

+
(
(a2 + v2) F (C1 + C1

2

∣∣ I1)− v2

) d2ED (I1)
d (I1)

2
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It turns out that the determiant of the fist principal submatrix of H, |H1| < 0,

and of the second principal submatrix H, |H2| > 0. Hence, the hessian matrix is

negative definite; therefore, π1 is strictly concave in C1
2 and I1.

• π2 is strictly concave in C2
2 and I2 and it can be easily shown just like the preceding

proof of π1.

First order conditions of the revenue functions are as follows:

∂π1

∂(C1
2)

=
[
(a2 + v2) F (C1 + C1

2 | I1)− o2 −m1

]
= 0

∂π1

∂(I1)
= [(a2 + v2) F (C1 + C1

2 | I1)− v2]
dED(I1)

dI1

∂π2

∂(C2
2)

=
[
(a2 + v2) F (C1 + C2

2 | I2)− o2 −m2

]
= 0

∂π2

∂(I2)
= [(a2 + v2) F (C1 + C2

2 | I2)− v2]
dED(I2)

dI2

The optimal capacity levels (C1∗
2 and C2∗

2 ) and the optimal investment levels (I∗1 and

I∗1 ) satisfy the first order conditions:

Cj∗
2 = θ (Ij) + G−1

(
1− o2 + mj

a2 + v2

)
− C1 j = 1, 2. (A.3)

If (A.3) is substituted into corresponding FOCs with respect to I1 and I2, we end

up with the following:

dπj

d (Ij)
= [(a2 − o2 −mj)]

dE [D (Ij)]

dIj

j = 1, 2. (A.4)

From (A.4), FOCs are strictly positive with respect to (I1 and I2), (since both

a2 > o2 + mj and
dE[D(Ij)]

dIj
> 0 by model assumptions); hence, π1, (π2) is strictly

increasing in I1, (I2). C1∗
2 , (C2∗

2 ) as a function of I1 is strictly increasing in I1,(I2).

Therefore π1, (π2) is monotonously increasing in (I1 and C1
2), (I2 and C2

2).
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A.8. Proof of Lemma 4.1.2

π1, (π2) is strictly concave function of I1, and C1
2 , (I2, and C2

2) and from Lemma 4.1.1.

And, π0 is constant with respect to I1, C1
2 , I2, C2

2 . Each branch of (4.7) is summation

of π0 which is constant, and π1, and π2 which are concave functions, and linear invest-

ment functions, I1, and I2. Therefore, each branch of (4.7) is concave in I1, C1
2 , I2, C2

2 ,

and we can obtain optimal decision variables by employing FOCs given as:

∂π
∂(I1)

= (q2p1) [(a2 + v2) F (C1 + C1
2 | I1)− v2]

dED(I1)
dI1

− 1 = 0

∂π
∂(I2)

= (p2) [(a2 + v2) F (C1 + C2
2 | I2)− v2]

dED(I2)
dI2

− 1 = 0

∂π
∂(I1)

= (p1) [(a2 + v2) F (C1 + C1
2 | I1)− v2]

dED(I1)
dI1

− 1 = 0

∂π
∂(I2)

= (q1p2) [(a2 + v2) F (C1 + C2
2 | I2)− v2]

dED(I2)
dI2

− 1 = 0

Note that I1, I2, I1, and I2 can be obtained in the order FOCs are given. Cj∗
2 can be

obtained as given in Lemma 4.1.1. Furthermore, when we can substitute (a2−o2−mj)

in place of
[
(a2 + v2) F (C1 + Cj

2

∣∣ Ij)− v2

]
by reordering A.3.

A.9. Proof of Lemma 4.1.3

Initially, π0 is constant in decision variables (I1, I2, C
1
2 , C

2
2). Since π1, (π2) is

monotonously increasing in (I1 and C1∗
2 ), (I2 and C2∗

2 ), maximum π1, (π2) goes to

infinity as I1, (I2) goes to infinity. However, maximum π as given in (4.9) goes to neg-

ative infinity as I1, (I2) goes to infinity. Therefore, there must exist upper investment

levels extracted from the following part of (4.9). Our problem turns out to be:

max
I1,I2,C1

2 ,C2
2

π = max
{
q1q2π

0 + p1π
1 + p2π

2 − I1 − I2

}

This function is a strictly concave function because its the summation of strictly con-

cave and linear separable functions. Hence, the following FOCs gives us the upper
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bound investment levels:

∂π1

∂(C1
2)

= p1

[
(a2 + v2) F (C1 + C1

2 | I1)− o2 −m1

]
= 0

∂π1

∂(I1)
= p1 [(a2 + v2) F (C1 + C1

2 | I1)− v2]
dED(I1)

dI1
− 1 = 0

∂π2

∂(C2
2)

= p2

[
(a2 + v2) F (C1 + C2

2 | I2)− o2 −m2

]
= 0

∂π2

∂(I2)
= p2 [(a2 + v2) F (C1 + C2

2 | I2)− v2]
dED(I2)

dI2
− 1 = 0

Note that F (C1 + Cj
2

∣∣ Ij) = 1 − o2+mj

a2+v2
from the FOCs with respect to Cj

2 , when we

substitute this into the FOCs with respect to Ij,
[
(a2 + v2) F (C1 + Cj

2

∣∣ Ij)− v2

]
turns

out to be (a2 − o2 −mj).

A.10. Proof of Lemma 4.1.4

Observe that (4.9) is strictly increasing function of π1 and π2, besides, it can be

seen from (4.7). We also show that π1, and π2 reaches their maximum values when

I1, and I2 goes to infinity, from Lemma 4.1.1. Second part of (4.9) is a negative

term consisting of maxπ1, and maxπ2, and minimum of them has to be chosen. In

Lemma 4.1.3, the existence of upper bound investment levels is revealed. The upper

bound investment levels maximize the first part of (4.9). The interpretation of them is

each technology supplier provides its best profit for the centralized system by investing

its upper bound. If π1
(
Ĩ1, C̃1

2

)
< π2

(
Ĩ2, C̃2

2

)
, then π in (4.9) turns out to be π =

q2q1π
0 + p1π

1 + p2π
2 − p1p2π

1 − I1 − I2 because the best value of π2 is grater than π1,

and we know that there are two possible pairs of investment levels from Lemma 4.1.2.

In other worlds, if there are two levels of investment for centralized decision maker, it

is profitable to determine π2 more. On the other hand, if π1
(
Ĩ1, C̃1

2

)
> π2

(
Ĩ2, C̃2

2

)
,

then π in (4.9) turns out to be π = q2q1π
0 + p1π

1 + p2π
2 − p1p2π

2 − I1 − I2, because

making π1 bigger by investing more results more profit for the centralized system

due to the fact that the centralized system determines two levels of investment (See

Lemma 4.1.2). Finally, if π1
(
Ĩ1, C̃1

2

)
= π2

(
Ĩ2, C̃2

2

)
, then π in (4.9) turns out to be

π = q2q1π
0+p1π

1+p2π
2−p1p2 {π1, π2}−I1−I2 because π is defined by choosing π1 or π2

arbitrarily. The important point is to observe two different possible investment levels

for each technology provider and assign which one results more profit for centralized
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system.

A.11. Proof of Theorem 4.1.1

The three branches of expected revenue function of the centralized system given

in Lemma 4.1.4, can be separated in decision variables, (I1 and C1
2), (I2 and C2

2). π1,

(π2) as a part of (4.14) is just function of I1, and C1∗
2 , (I2 and C2∗

2 ). And, each branch

of (4.14) is strictly concave due to the summation of constant, π0, concave functions,

π1, and π2, and linear functions, I1, and I2. (See the Section A.9 in Appendix A).

Therefore, FOCs let us characterize the optimal solution. First order conditions of the

expected revenue function in (4.14) are represented as follows:

∂π
∂(I1)

= (q2p1) [(a2 + v2) F (C1 + C1
2 | I1)− v2]

dED(I1)
dI1

− 1 = 0

∂π
∂(I2)

= (p2) [(a2 + v2) F (C1 + C2
2 | I2)− v2]

dED(I2)
dI2

− 1 = 0

∂π
∂(I1)

= (p1) [(a2 + v2) F (C1 + C1
2 | I1)− v2]

dED(I1)
dI1

− 1 = 0

∂π
∂(I2)

= (q1p2) [(a2 + v2) F (C1 + C2
2 | I2)− v2]

dED(I2)
dI2

− 1 = 0

∂π
∂(I1)

= (q2p1 + 0.5p1p2) [(a2 + v2) F (C1 + C1
2 | I1)− v2]

dED(I1)
dI1

− 1 = 0

∂π
∂(I2)

= (q1p2 + 0.5p1p2) [(a2 + v2) F (C1 + C2
2 | I2)− v2]

dED(I2)
dI2

− 1 = 0

Note that I1, I2, I1, I2, Î1, and Î2 can be obtained in the order FOCs are given.

The first pair of FOCs is the derivative of the first branch of (4.14) with respect to

I1, and I2, the following pair is the derivative of the third branch, and the last pair

is the derivative of the second branch. Cj∗
2 can be obtained as given in Lemma 4.1.1.

Moreover,
[
(a2 + v2) F (C1 + Cj

2

∣∣ Ij)− v2

]
can be substitutable with (a2 − o2 −mj) as

expressed in Proof A.9. In Theorem 4.1.1, all decision variables are given with respect

to these results.

A.12. Proof of Corollary 4.1.1

1. I∗1 , Ĩ1, I∗1 as given in Theorem 4.1.1 are increasing in p1 due to the fact that

derivative of the expected demand is monotonously decreasing as I1 is increasing
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because we assume that the expected demand is monotonously increasing and

strictly concave in I1. Besides, C̃1
2 , C1∗

2 as given in Theorem 4.1.1 are functions of

I1 and increasing as I1 increases. Moreover, π is increasing as p1 increases because

π1, a component of π, is monotonously increasing in I1, and C1
2 as argued in (A.7).

2. Analogous to case(1).

3. C̃1
2 , C1∗

2 , (C̃2
2 , C2∗

2 ) as given in Theorem 4.1.1 are functions of m1, (m2) and de-

creasing in m1, (m2) because the inverse function of the demand G−1 is decreasing

as m1, (m2) increases.

4. C̃1
2 , C1∗

2 , (C̃2
2 , C2∗

2 ) as given in Theorem 4.1.1 are functions of v2 and increasing in

v2, because the inverse function of the demand G−1 is increasing as v2 increases.

Besides, π → −∞ because π1 → −∞, and π2 → −∞ as v2 → ∞. π1 →
−∞ since −v2µ2 (I1) linear term more rapidly converges to negative infinity than

S(C1 + C1
2 | I1) does, and the other terms also converge to negative infinity as

v2 →∞. Similar arguments can be used for π2. Therefore, π → −∞ as v2 →∞.

A.13. Proof of Proposition 4.2.1

Firstly, πj
o is strictly concave in Cj

2 , where j = 1, 2.

d2πj
o

d
(
Cj

2

)2 = − (a2 + v2) f(C1 + Cj
2

∣∣ Ij) < 0 for j = 1, 2.

Since the extra network capacity decisions, C1
2 and C2

2 , are contingent only upon R&D

investments made by the vendors, by all means, π1
o and π2

o are just dependent on the

investment levels of the vendors. Therefore, π1
o is equal to π2

o if and only if I1 is equal

to I2, so that the operator expected revenue function breaks into pieces when I1 = I2.

Secondly, the operator’s expected revenue function is differentiable at the break

point of the function, I1 = I2, as shown below:

lim
I1→I−2

πo = p2π
2
o + q2p1π

2
o = (p2 + q2p1) π2

o

lim
I1→I+

2

πo = p1π
2
o + q1p2π

2
o = (p1 + q1p2) π2

o
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Since lim
I1→I−2

π = lim
I1→I+

2

π = π (I1 = I2), therefore, πo is continuous at I1 = I2, and also

differentiable because lim
I1→I−2

πo(I1)−πo(I−2 )
I1−I−2

= lim
I1→I+

2

πo(I1)−πo(I+
2 )

I1−I+
2

= 0.

Finally, all the parts of the expected revenue function of the operator are the

summation of separable, strictly concave functions, π1
o and π2

o , and a constant, π0
o ,

therefore, all branches of the function is strictly concave in itself.

To deal with the determination of the operator’s network capacity decisions at

the second period, C1
2 and C2

2 , we simply equalize the first order conditions, shown

below for all three branches of the expected revenue function of the operator. FOCs

for I1 < I2;

∂πo

∂(C1
2)

= q2p1

[
(a2 + v2) F (C1 + C1

2 | I1)− (o2 + w)
]

= 0

∂πo

∂(C2
2)

= p2

[
(a2 + v2) F (C1 + C2

2 | I2)− (o2 + w)
]

= 0

FOCs for I1 > I2;

∂πo

∂(C1
2)

= p1

[
(a2 + v2) F (C1 + C1

2 | I1)− (o2 + w)
]

= 0

∂πo

∂(C2
2)

= q1p2

[
(a2 + v2) F (C1 + C2

2 | I2)− (o2 + w)
]

= 0

FOCs for I1 = I2;

∂πo

∂(C1
2)

= (q2p1 + 0.5p1p2)
[
(a2 + v2) F (C1 + C1

2 | I1)− (o2 + w)
]

= 0

∂πo

∂(C2
2)

= (q1p2 + 0.5p1p2)
[
(a2 + v2) F (C1 + C2

2 | I2)− (o2 + w)
]

= 0

As it can frankly be seen from the FOCs, in any cases, the operator selects the same

extra network capacity for the second period regardless of vendors’ innovation proba-

bilities.
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A.14. Proof of Proposition 4.2.2

Since the second derivative of the expected profit function’s branches of the first

vendor as shown below is negative, left and right branches of the pay-off function of

the first vendor is strictly concave in I1.

∂2π1
1

∂(I1)2
= q2p1 (w −m1)

d2ED[I1]

d(I1)2
< 0

∂2π3
1

∂(I1)2
= p1 (w −m1)

d2ED[I1]

d(I1)2
< 0

lim
I1→I−2

π1
1 (I1) = q2p1 (w −m1) C1

2 (I2)− I2

lim
I1→I+

2

π3
1 (I1) = p1 (w −m1) C1

2 (I2)− I2

Since lim
I1→I−2

π1
1 (I1) 6= lim

I1→I+
2

π3
1 (I1) when p2 6= 0, π1 is not continuous and not differ-

entiable when I1 = I2. Moreover, I1 = I2 can not be a maximal point of the π1 because

lim
I1→I+

2

π3
1 (I1) = p1 (w −m1) C1

2 (I2)−I2 > π2
1 (I1 = I2) = (q2p1 + 0.5p1p2) (w −m1) C1

2 (I2)−
I2 when p2 6= 0. As it can easily be seen, the point which maximizes π1, can be derived

from the FOCs of either left hand-side or right hand-side of the pay-off function. FOCs

are as follows:

∂π1
1

∂(I1)
= q2p1 (w −m1)

dED[I1]
d(I1)

− 1 = 0

∂π3
1

∂(I1)
= p1 (w −m1)

dED[I1]
d(I1)

− 1 = 0

A.15. Proof of Proposition 4.2.3

Since the second derivative of the left hand-side, π3
2, and the right hand-side, π1

2,

of the expected profit function is negative, two branches of the pay-off function of the
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second vendor is strictly concave in I2.

∂2π1
2

∂(I2)2
= p2 (w −m2)

d2ED[I2]

d(I2)2
< 0

∂2π3
2

∂(I2)2
= q1p2 (w −m2)

d2ED[I2]

d(I2)2
< 0

lim
I2→I−1

π3
2 (I2) = q1p2 (w −m2) C2

2 (I1)− I1

lim
I2→I+

1

π1
2 (I2) = p2 (w −m2) C2

2 (I1)− I1

Since lim
I2→I−1

π3
2 (I2) 6= lim

I2→I+
1

π1
2 (I2) when p1 6= 0, π2 is not continuous and not differen-

tiable when I2 = I1. Moreover, I2 = I1 can not be a maximal point of the π2 because

lim
I2→I+

1

π1
2 (I2) = p2 (w −m2) C2

2 (I1)−I1 > π2
2 (I2 = I1) = (q1p2 + 0.5p1p2) (w −m2) C2

2 (I1)−
I1 when p1 6= 0. As it can easily be seen, the point which maximizes π2, can be derived

from the FOCs of either left hand-side or right hand-side of the pay-off function. FOCs

are as follows:

∂π1
2

∂(I2)
= p2 (w −m2)

dED[I2]
d(I2)

− 1 = 0

∂π3
2

∂(I2)
= q1p2 (w −m2)

dED[I2]
d(I2)

− 1 = 0

A.16. Proof of Proposition 4.3.1

For the case I1 < Î1;

• Firstly, π3
1 (I1) > π2

1 (I1) > π1
1 (I1) for ∀I1 when p2 6= 0.

• Secondly,
̂̂
I1 > Î1 and π3

1

(
̂̂
I1

)
> π1

1

(
Î1

)
because π3

1

(
̂̂
I1

)
> π3

1

(
Î1

)
> π1

1

(
Î1

)
.

• Thirdly, there exists I
′
1 >

̂̂
I1 such that π3

1

(
̂̂
I1; I2

)
> π1

1

(
Î1; I2

)
as I2 ≤ I

′
1,

and π3
1

(
̂̂
I1; I2

)
< π1

1

(
Î1; I2

)
as I2 > I

′
1. Let ψ

(
Î1, I1

)
= π3

1 (I1) − π1
1

(
Î1

)
.

ψ

(
Î1,

̂̂
I1

)
> 0. ψ

(
Î1,M

)
< 0, M refers to very large investment level. Since ψ

monotonically decreases after
̂̂
I1 as π3

1 (I1) decreases, it follows by the intermediate
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value theorem and the monotonicity of the ψ that there exists I
′
1 >

̂̂
I1.

• Finally, since π3
1

(
̂̂
I1

)
> π1

1

(
Î1

)
roughly when I2 ≤ ̂̂

I1, I
′
1 must be grater than

̂̂
I1. To ensure this property,

dπ3
1

d(I1)

∣∣∣
I
′
1

< 0. Note that I
′
1 can be extracted when

π3
1

(
I
′
1

)
= π1

1

(
Î1

)
.

For the case Î1 < I1 <
̂̂
I1;

Proof is similar to previous one but since Î1 < I1, the point which maximizes

π1
1 is I1 rather than Î1. π1

1 starts to decreases after Î1. I1 is the minimum required

investment level to join the race. Hence, the first vendor ends up with worst profit

whatever he invests grater than I1. Furthermore, π3
1

(
̂̂
I1; I2

)
> π1

1

(
I1; I2

)
as I2 ≤ I

′′
1 ,

and π3
1

(
̂̂
I1; I2

)
< π1

1

(
I1; I2

)
as I2 ≥ I

′′
1 . Note that I

′′
1 can be extracted when π3

1

(
I
′′
1

)
=

π1
1

(
I1

)
.

A.17. Proof of Proposition 4.3.2

The proof of Φ2 is analogous to Φ1, (A.16). For the case I2 < Î2;

• Firstly, π1
2 (I2) > π2

2 (I2) > π3
2 (I2) for ∀I2 when p1 6= 0.

• Secondly,
̂̂
I2 > Î2 and π1

2

(
̂̂
I2

)
> π3

2

(
Î2

)
because π1

2

(
̂̂
I2

)
> π1

2

(
Î2

)
> π3

2

(
Î2

)
.

• Thirdly, there exists I
′
2 >

̂̂
I2 such that π1

2

(
̂̂
I2; I1

)
> π3

2

(
Î2; I1

)
as I1 ≤ I

′
2,

and π1
2

(
̂̂
I2; I1

)
< π3

2

(
Î2; I1

)
as I1 > I

′
2. Let ψ

(
Î2, I2

)
= π1

2 (I2) − π3
2

(
Î2

)
.

ψ

(
Î2,

̂̂
I2

)
> 0. ψ

(
Î2,M

)
< 0, M refers to very large investment level. Since ψ

monotonically decreases after
̂̂
I2 as π1

2 (I2) decreases, it follows by the intermediate

value theorem and the monotonicity of the ψ that there exists I
′
2 >

̂̂
I2.

• Finally, since π1
2

(
̂̂
I2

)
> π3

2

(
Î2

)
roughly when I1 ≤ ̂̂

I2, I
′
2 must be grater than

̂̂
I2. To ensure this property,

dπ1
2

d(I2)

∣∣∣
I
′
2

< 0. Note that I
′
2 can be extracted when

π1
2

(
I
′
2

)
= π3

2

(
Î2

)
.
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For the case Î2 < I2 <
̂̂
I1;

Proof is similar to previous one but since Î2 < I2, the point which maximizes

π3
2 is I2 rather than Î2. π3

2 starts to decreases after Î2. I2 is the minimum required

investment level to join the race. Hence, the first vendor ends up with worst profit

whatever he invests grater than I2. Furthermore, π1
2

(
̂̂
I2; I1

)
> π3

2

(
I2; I1

)
as I1 ≤ I

′′
2 ,

and π1
2

(
̂̂
I2; I1

)
< π3

2

(
I2; I1

)
as I1 ≥ I

′′
2 . Note that I

′′
2 can be extracted when π1

2

(
I
′′
2

)
=

π3
2

(
I2

)
.

A.18. Proof of Theorem 4.3.1

Without taking into consideration to cases, Φ1 (I2) is non-increasing and when

represented by graph in (I1, I2) space, composed of either one or two horizontal half-

lines which cover
[
I1,∞

)
; Φ2 (I2) is non-increasing and when graphed in (I1, I2) space,

composed of either one or two vertical half-lines which cover
[
I2,∞

)
, where I1 = I2,

see (4.23). When they are represented by graph case by case for all possible cases, they

must intersect at least once for corresponding cases.

A.19. Proof of Proposition 4.4.1

For π1 ≥ π2;

π
(
I1, I2, C

1
2 , C

2
2

)
= p1

{
(a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− o2C
1
2 −m1C

1
2

}

+ q1p2

{
(a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− o2C
2
2 −m2C

2
2

}

+ q1q2 {(a2 + v2) S(C1)− v2µ2} − o2C1 − I1 − I2 (A.5)

πo

(
C1

2 , C
2
2 ; I1, I2

)
= p1

{
(a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− o2C
1
2 − T1 (.)

}

+ q1p2

{
(a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− o2C
2
2 − T2 (.)

}

+ q1q2 {(a2 + v2) S(C1)− v2µ2} − o2C1 (A.6)



88

After we explicitly add the transfer payments as given in (4.4.1) to (A.7), it turns out

to be, πo (C1
2 , C

2
2 ; I1, I2):

= p1

{
λ1 (a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− λ1o2C
1
2 − λ1m1C

1
2

}

+ q1p2

{
λ2 (a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− λ2o2C
2
2 − λ2m2C

2
2

}

+ q1q2 {(a2 + v2) S(C1)− v2µ2} − o2C1 − (1− ψ1) I1 − (1− ψ2) I2 (A.7)

When we check the FOCs with respect to Cj
2 , j = 1, 2 we observe that ∂π

∂(C1
2)

=

λ1
∂πo

∂(C1
2)

, and ∂π

∂(C2
2)

= λ2
∂πo

∂(C2
2)

. Therefore, the operator chooses the right extra network

capacity with the central decision maker.

The first vendor’s expected profit function can be represented as follows after

adding transfer payment:

π1 = p1

{
(1− λ1) (a2 + v2) S

(
C1 + C1

2

∣∣ I1

)− (1− λ1) (o2 + m1) C1
2

}− ψ1I1 (A.8)

When we check the FOCs of (A.8) with respect to I1 we observe that

∂π1

∂ (I1)
= p1 [(1− λ1) (a2 + v2)− (1− λ1) (o2 + m1)]

dED (I1)

dI1

− ψ1 = 0

Therefore, the optimal
̂̂
I∗1 under profit sharing contract can be derived from

dED (I1)

dI1

∣∣∣∣̂̂
I∗1

=
ψ1

p1 (1− λ1) (a2 + v2 − o2 −m1)

Finally, dED(I1)
dI1

∣∣∣̂̂
I∗1

= dED(I1)
dI1

∣∣∣
I∗1

when ψ1 = (1−λ1)(a2+v2−o2−m1)
(a2−o2−m1)

. Therefore, the first

vendor determines the right investment level,
̂̂
I∗1 = I∗1 , with the central decision maker.

Similar analysis can be made for the second vendor. He also decides on the right

investment level, Î∗2 = I∗2 , with the operator.
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Similar analysis can be done for π1 ≤ π2 case. Since our approach does not

depend on different cases but it depends on the fact that we can define the operator’s

and also the vendors’ expected profit functions λ away from the centralized expected

revenue function, we can also get the same results with previous analysis. In conclusion,

with a profit sharing contract, the independent agents of the technology game can be

coordinated under the conditions of proposition (4.4.1).

The other important point is whether Nash equilibrium exists between the ven-

dors under profit sharing coordinating contract. If the vendors and the central decision

maker decide on the same amount of investment level, I1, and I2, the best response

mapping of the vendors can be represented as, respectively:

Φ1 =





̂̂
I∗1 if π1 ≥ π2

Î∗1 if π1 ≤ π2

(A.9)

Φ2 =





Î∗2 if π1 ≥ π2

̂̂
I∗2 if π1 ≤ π2

(A.10)

(A.9) is non-increasing and when represented by graph in (I1, I2) space, composed

of two horizontal half-lines which cover
[
I1,∞

)
; (A.10) is non-increasing and when

graphed in (I1, I2) space, composed of two vertical half-lines which cover
[
I2,∞

)
. When

they are represented by graph, they must intersect at least once for corresponding

parameters. Therefore, Nash equilibrium exists between the vendors with profit sharing

contract, and also the coordination is ensured among the agents in decentralized setting.

Note that we presume the central decision maker is able to switch off the one of the

vendors when they both provide equal expected profit.
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A.20. Proof of Proposition 4.4.2

For π1 ≥ π2; The centralized expected revenue function is given in (A.5). The

operator’s expected revenue function, πo (C1
2 , C

2
2 ; I1, I2), is given as:

= p1

{
λ1 (a2 + v2) S(C1 + C1

2

∣∣ I1)− v2µ2 (I1)− o2C
1
2 − δ1m1C

1
2

}

+ q1p2

{
λ2 (a2 + v2) S(C1 + C2

2

∣∣ I2)− v2µ2 (I2)− o2C
2
2 − δ2m2C

2
2

}

+ q1q2 {(a2 + v2) S(C1)− v2µ2} − o2C1 − (1− ψ1) I1 − (1− ψ2) I2 (A.11)

Since the expected revenue of the operator, (A.11), is strictly concave in C1
2 , and C2

2

because just the coefficients of the decision variables changed (See Section A.13 in the

Appendix), FOCs provide the optimal network capacity levels for the second period.

FOCs for π1 ≥ π2;

∂πo

∂(C1
2)

= p1

[
λ1(a2 + v2) F (C1 + C1

2 | I1)− (o2 + δ1m1)
]

= 0

∂πo

∂(C2
2)

= q1p2

[
λ2(a2 + v2) F (C1 + C2

2 | I2)− (o2 + δ2m2)
]

= 0

The optimal capacity levels (C1∗
2 and C2∗

2 ) are given as follows:

Cj∗
2 = θ (Ij) + G−1

(
1− o2 + δjmj

λj (a2 + v2)

)
− C1 j = 1, 2. (A.12)

In fact, if λj =
o2+δj

o2+mj
, then the operator determines the same extra network capacity

with the central decision maker, whenever Cj
2 ≥ 0, j = 1, 2. The expected revenue of

the vendors turns out to be:

π1 = p1 {(1− λ1) (a2 + v2) S (C1 + C1
2 | I1)− (1− δ1) m1C

1
2} − ψ1I1

π2 = q1p2 {(1− λ1) (a2 + v2) S (C1 + C2
2 | I2)− (1− δ2) m2C

2
2} − ψ2I2 (A.13)

Since the expected revenue of the vendors are concave in I1, and I2 because ∂2π1

∂(I1)2
=

p1 [(1− λ1) (a2 + v2)−m1]
d2ED(I1)

d(I1)2
< 0, and

∂2π2

∂(I2)2
= q1p2 [(1− λ2) (a2 + v2)−m2]

d2ED(I2)

d(I2)2
< 0, FOCs ensure optimal I1, an I2 as
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follows:

dED(I1)
d(I1)

= ψ1

p1[(1−λ1)(a2+v2)−m1]

dED(I2)
d(I2)

= ψ2

q1p2[(1−λ2)(a2+v2)−m2]

If ψj =
(1−ϕj)a2−(1−δj)mj

a2−o2−mj
, then right I1, and I2 are determined by the vendors in decen-

tralized setting.

Similar analysis can be done for π1 ≤ π2 case. In conclusion, under a revenue

sharing contract, the independent agents, the operator and the vendors, of the tech-

nology game can be coordinated under the conditions of proposition (4.4.2). Note that

an analogous proof with (A.19) can be expressed for the vendors about equilibrium of

the simultaneous (Nash) game. In fact, the vendors operates at Nash equilibrium with

revenue sharing contract. Once again, the central decision maker is in favor of one of

the vendors when they yield the same amount of expected profit.
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APPENDIX B: TABLES

B.1. ANOVA TABLES FOR C1, C2, I, AND CENTRALIZED

EXPECTED REVENUE

Table B.1. ANOVA table for C1

Analysis of variance table (ANOVA) Response C1

Source Sum of Squares df Mean Square F Value p value Prob > F

Model 3009.66 6 501.61 249.58 < 0.0001 significant

A-Sigma 2893.90 2 1446.95 719.93 < 0.0001

B-p1 57.88 2 28.94 14.40 0.0001

C-p2 57.88 2 28.94 14.40 0.0001

Residual 40.20 20 2.01

Cor Total 3049.86 26

Table B.2. ANOVA table for C2

Analysis of variance table (ANOVA) Response C2

Source Sum of Squares df Mean Square F Value p value Prob > F

Model 2415.35 10 241.54 111.51 < 0.0001 significant

A-Sigma 1388.61 2 694.30 320.55 < 0.0001

B-p1 444.16 2 222.08 102.53 < 0.0001

C-p2 444.16 2 222.08 102.53 < 0.0001

BC 138.41 4 34.60 15.98 < 0.0001

Residual 34.66 16 2.17

Cor Total 2450.01 26
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Table B.3. ANOVA table for I
Analysis of variance table (ANOVA) Response I

Source Sum of Squares df Mean Square F Value p value Prob > F

Model 6786634.43 8 848329.30 63660000.00 < 0.0001 significant

B-p1 3181890.06 2 1590945.03 63660000.00 < 0.0001

C-p2 3181890.06 2 1590945.03 63660000.00 < 0.0001

BC 422854.32 4 105713.58 63660000.00 < 0.0001

Residual 0.00 18 0.00

Cor Total 6786634.43 26

Table B.4. ANOVA table for expected centralized profit

Analysis of variance table (ANOVA) Response Expected Profit

Source Sum of Squares df Mean Square F Value p value Prob > F

Model 18.37 6 3.06 31.48 < 0.0001 significant

A-Sigma 2.08 2 1.04 10.69 0.0007

B-p1 8.14 2 4.07 41.87 < 0.0001

C-p2 8.14 2 4.07 41.87 < 0.0001

Residual 1.94 20 0.10

Cor Total 20.31 26
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