TABLE METHODS FOR RANDOM VARIATE GENERATION

by
Ismail Basoglu

B.S., in Industrial Engineering, Yildiz Technical University, 2006

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering
Bogazici University

2008

11

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision of Assoc. Prof.
Wolfgang Hoérmann. His orientation, guidance, insightful criticisms and patient

encouragement contributed very much for the realization of this thesis.

I would also like to acknowledge the support of TUBITAK, the unique research
foundation in Turkey, with the Domestic Master Study Scholarship Program.

During this work, I have collaborated with many colleagues for whom I have great
regard and I want to express that I thank much to those who have helped me with my work

besides providing a stimulating and fun environment.

Finally, I want to specially thank to my favorite supporters at every time: my dear
mum Mahmude Basoglu, dear dad Hayri Basoglu and other family members, Nalan
Giirsahbaz, Nazan Uyanik, Emrah Giirsahbaz and Fatih Uyanik who have been my

mentors since I started my undergraduate education in Industrial Engineering.

ABSTRACT

TABLE METHODS FOR RANDOM VARIATE GENERATION

For stochastic simulation, the generation of random variates from different
distributions is a prerequisite. In certain programming languages and software, there are
already random variate generation functions of standard distributions. However, for
generating random variates from non-standard distributions or quasi-densities, we need
universal algorithms. In this research, we come up with two universal random variate
generation methods, namely the Triangular Ahrens and the Polynomial Density Inversion.
We try to see if they are competitive with existing methods with respect to simplicity,
speed and other performance criteria. After explaining the basics of the algorithms, we
define the pseudo-codes in detail. Both of the algorithms are coded in C in a
comprehensible and elegant way. Numerical results indicate that both of the algorithms
execute with a successful performance. The Triangular Ahrens, which is a rejection
method, has a smaller rejection constant while it requires smaller tables. The Polynomial
Density Inversion, which approximates the density with piecewise polynomials, is more
complicated however we obtain outstanding approximations with smaller tables. It also has
a faster marginal execution time which makes the Polynomial Density Inversion a

preferable method for a large number of random variates.

OZET

RASSAL DEGISKEN URETIMi UZERINE TABLO YONTEMLERI

Farkli dagilimlar {izerinden rassal degisken iiretimi, stokastik benzetim i¢in 6nkosul
olusturmaktadir. Belirli programlama dilleri ve yazilimlar, standart dagilimlar i¢in rassal
degisken tretimini destekleyen fonksiyonlar barindirmaktadirlar. Yine de, standart
olmayan dagilimlar ve yar1 dagilimlardan rassal degisken {iretebilmek icin otomatik
algoritmalara ihtiyag duyulmaktadir. Bu arastirmada, Uggensel Ahrens ve Polinomlu
Yogunluk Fonksiyonunun Ters Doniistimii adinda iki adet otomatik rassal degisken {iretim
yontemi sunulmustur. Bunlarin mevcut yontemlerle yalinlik, hiz ve diger performans
Olclitleri {lizerinden kiyaslanabilirligi incelenmistir. Algoritmalarin temel igerigi
aciklandiktan sonra, sézde kodlar1 ayrintilarla verilmistir. Her iki algoritma da C
programlama dili kullanilarak diizenli ve anlagilabilir bir sekilde kodlanmistir. Sayisal
sonuclar her iki algoritmanin da basarili bir performans sergiledigini gostermektedir.
Degisken reddetme yontemi olan Uggensel Ahrens daha kiiciik tablolar yardimiyla daha
diisiik reddetme katsayilarina ulagsmaktadir. Olasilik yogunluk fonksiyonunu pargalar
halinde polinomlara yaklagtiran Polinomlu Yogunluk Fonksiyonunun Ters Doniisiimii ise
daha karmagsik olmasina ragmen daha kiicik tablolar yardimiyla goze c¢arpan
yaklagikliklara ulagmaktadir. Ayrica, tek rassal degisken iiretim zamaninin daha hizh
olmasi1 Polinomlu Yogunluk Fonksiyonunun Ters Doniistimii’nii daha yiiksek sayida rassal

degisken iiretimi i¢in seckin kilmaktadir.

Vi

TABLE OF CONTENTS
ACKNOWLEDGEMENTS e e i
ABSTRACT . . \Y
OZET . o \
LISTOF FIGURES. e e e e e IX
LISTOF TABLES e Xiii
LIST OF SYMBOLS/ABBREVIATIONS i XVi
1 INTRODUCTION .. . e e e e e e e 1
2. BASICS ON RANDOM VARIATE GENERATION 3
2.1. The Inversion Method 3
2.2. The Rejection Method 4
2.2.1. BasiCRejection 4
2.2.2. Rejectionwith Inversion 6
2.2.3. Squeeze Principle. 6
2.2.4. Performance Characteristics of the Rejection Method 8
2.3. ComMPOSItIONo 9
2.3.1. Composition-Rejection 11
2.3.2. Decomposition 12
2.4. Rejection with Staircase-Shaped Hat Functions (Ahrens Method) 13
2.5. Discrete Random Variate Generation Methods 15
2.5.1. The Sequential Search. 15
2.5.2. Indexed Search (Guide Table Method) 16
3. TRIANGULAR AHRENS METHOD 18
3.1. Linear PDF and the Mirroring Principle 18
3.2. The Algorithm 20
3.2.1. The Setup Algorithm 24
3.2.1.1. Phase I: Flexible Subinterval Creation. 24
3.2.1.2. Phase II: Data Table Creation 26
3.2.2. The Sampling Algorithm 28
3.3. Computational Results and Performance Characteristics 32

3.3.1. TimingResults 33

vii

3.3.2. Memory Occupation 35
3.3.3. Performance Characteristics. 36
4. APPROXIMATE RANDOM VARIATE GENERATION 42
4.1. Piecewise Linear ApproximationoftheCDF 42
4.2. Piecewise Linear Approximation of the Density 44
4.3. Memory Occupation and Approximation Performance. 46
5. BASICS ON NUMERICAL APPROXIMATION 48
5.1. Newton Interpolation Polynomial. 48
5.1.1. Choosing Interpolation Points 50
5.1.2. Interpolation Polynomial Error Analysis. 53
5.2. Root Finding with Brent’s Method 55
6. POLYNOMIAL DENSITY INVERSION 57
6.1. Basicsof the Algorithm 57
6.1.1. Handling Monotone Subinterval 58
6.1.1.1. Concave Case. oot 58
6.1.1.2.Convex Case 60
6.1.2. Monotone Triangular Distribution. 63
6.1.3. Polynomial Approximation and Approximated Density Error

Analysis with Importance Sampling 65
6.2. The Algorithm 66
6.2.1. The Setup Algorithm. 66
6.2.1.1. Phase I: Flexible Subinterval Creation. 67
6.2.1.2. Phase II: Data Table Creation 71
6.2.2. The Sampling Algorithm 73
6.3. Computational Results and Approximation Performance 74
6.3.1. TimingResults. 75
6.3.2. Memory Occupation. i 76
6.3.3. Efficiency. 77

6.3.4. Approximation Performance of Heuristic Subinterval Creation
Method 80
7. CONCLUSIONS ... e e e 88
APPENDIX A: TRIANGULAR AHRENSCCODES 90

APPENDIX B: POLYNOMIAL DENSITY INVERSION CCODES 107

viii

APPENDIX C: APPROXIMATION ERROR ANALYSISRCODES 128
REFERENCES e 135
REFERENCES NOT CITED e 137

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.

Figure 2.11.

Figure 2.12.

Figure 2.13.

Figure 2.14.

LIST OF FIGURES

Inversion algorithm 4

Rejection from a constant hat, density f(x)=2(-x?+1) on [-1,1].

30 points are generated, 11 are rejected, the x -coordinates of the

remaining pointsare returned 5
Rejection fromuniformhat., 6
Rejection withinversion 6
Rejection with constant hat and constant squeeze 7
The density is decomposed into threeparts. 10
ComposSItioNo 10
Construction of hat functions for parts of Figure2.6 11
Composition —Rejection. 12
Decomposition of the regions below the hat in Figure2.8.......... 13

Staircase-shaped hat and squeeze functions for an increasing density . . 13

Ahrens basicmethod 15
Sequential search. 16
Indexed search, 17

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 5.1.

Figure 5.2.

The idea of the mirroring principle 19
Linear PDF. 20
Triangular Ahrens setup - flexible subinterval creation. 25

Triangular Ahrens setup - data table creation 28
Demonstration of different cases in generation algorithm of the

Triangular Ahrens method for concave subintervals. 30
Demonstration of different cases in generation algorithm of the

Triangular Ahrens method for convex subintervals 31
Triangular Ahrens sampling algorithm. 32
Uniform assumption (piecewise constant approximation) of

subintervals for (a) the concave case and (b) the convex case. 43
() The optimal linear approximation over Chebyshev nodes with

scale [0.1464466, 0.8535534] (b) Required approximation over the
boundaries to prevent from ruining the trapezoid. 44
(a) Negative density is obtained over a part of the domain by using
Chebyshev nodes without scaling (b) Nonnegative density is

guaranteed withthesecant 45
lllustration of the 5™, 9™ and the13™ order approximations for

Runge’s function f(x)= 1/(1+ 25x2) with equidistant points 51
llustration of the 5", 9™ and the13™ order approximations for

Runge’s function f(x)=1/(1+25x?) with Chebyshev nodes 52

Figure 5.3.

Figure 5.4.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

Figure 6.7.

Figure 6.8.

Figure 6.9.

lllustration of the 5, 9" and the13™ order approximations and control
points for Runge’s function f(x)=1/(L+25x?) with rescaled

Chebyshev nodes

Brent’s Method

Decomposition of concave subintervals.

(a) Tangent in the center point ruins the trapezoid (b) Tangent in

the boundary with the smaller density value

Decomposition of convex subintervals.

(a) Linear error in concave subintervals (b) Linear error in convex

subintervals

Polynomial region 4™ order approximation error of standard normal

distribution over the subinterval [0,1] with Chebyshev control points

{0.0746746,0.3375402,0.6624598, 0.9253254}

Polynomial Density Inversion setup - flexible subinterval creation

Polynomial Density Inversion setup - data table creation

Polynomial Density Inversion sampling algorithm.

Distribution of absolute approximation error of a fourth order
interpolation for the standard normal distribution with critical relative

error, r, = 0.1, and different critical linear and polynomial error

values

Xi

Xii

Figure 6.10. Distribution of absolute approximation error of a fourth order
interpolation for the standard normal distribution with critical relative

error, r, = 0.01, and different critical linear and polynomial error

ValUBS . . . o

Xiii

LIST OF TABLES

Table 3.1. List of unimodal distributions used in the Triangular Ahrens and

the Polynomial Density Inversion algorithm. 32

Table 3.2. Relative average generation times for the Triangular Ahrens Method

withsamplesize n=10"%. 35

Table 3.3. Relative average generation times for the Triangular Ahrens Method

withsamplesize n=10°% 35

Table 3.4. Number of subintervals and the total size of the data tables for

different parameters and distributions 36

Table 3.5. The mean and the standard deviation of the percentage of acceptance
types and rejection and the calls for mirroring for different distributions
and critical area parameters, a, = {0.05,0.01,0.005} 38

Table 3.6. The mean and the standard deviation of the percentage of acceptance
types and rejection and the calls for mirroring for different distributions
and critical area parameters, a, = {0.001, 0.0005, 0.0001}. 39

Table 3.7. Actual values and upper bounds of performance characteristics of the
Triangular Ahrens Method for different distributions and critical area
parameters, a, = {0.05,0.01,0.005} 40

Table 3.8. Actual values and upper bounds of performance characteristics of the
Triangular Ahrens Method for different distributions and critical area
parameters, a_ = {0.001, 0.0005,0.0001} 40

Xiv

Table 4.1. Number of subintervals and the total size of tables of the piecewise
constant and linear approximations for different parameters and
distributions 46

Table 4.2. Simulation results for evaluating L, error for the piecewise constant
and linear approximations with critical absolute error, £, =10 (107

for B1 and B2 distributions) and 1* order approximation with critical

absolute error, ¢, =107 (10™° for B2 distribution) 47

Table 5.1. Maximum absolute approximation error with rescaled Chebyshev points
at Chebyshev control points (CCP) and 10000 equidistant control points
(ECP) in the subinterval [0.4,0.5] for different degrees of

approximations and different distributions 55

Table 6.1. Relative average generation times for the Polynomial Density Inversion

method with sample size n=10% 75

Table 6.2. Relative average generation times for the Polynomial Density Inversion

method with sample size n=10° 76

Table 6.3. Number of subintervals and the total size of the setup tables of 4™
order polynomial density inversion for different parameters and
distributions e 77

Table 6.4. Average percentage of sampling types for different distributions, critical
linear error, £ = 0.01, and different critical relative (CRE) and

polynomial error (CPE) values. 78

Table 6.5. Average percentage of sampling types for different distributions, critical
linear error, £ =0.001, and different critical relative (CRE) and

polynomial error (CPE) values. 79

Table 6.6.

Table 6.7.

Table 6.8.

Table 6.9.

Table 6.10.

Table 6.11.

Table 7.1.

Average percentage of sampling types for different distributions, critical
linear error, £ = 0.0001, and different critical relative (CRE) and

polynomial error (CPE) values. 79

Average percentage of sampling types for different distributions, critical
linear error, & =0.00001, and different critical relative (CRE) and

polynomial error (CPE) values. 80

Simulation results for evaluating L, error with critical linear error,

g, =0.01, and different critical relative and polynomial error values . . 85

Simulation results for evaluating L, error with critical linear error,

g. =0.001, and different critical relative and polynomial error values. . 85

Simulation results for evaluating L, error with critical linear error,
g, =0.0001, and different critical relative and polynomial error

ValUBS . . . 86

Simulation results for evaluating L, error with critical linear error,
&, =0.00001, and different critical relative and polynomial error

Values 86

Comparison of universal random variate generation methods 88

XV

>

» P

- O O

A 4 v zZz= =z X

o

—_—
o
[

N~—

N x C

LIST OF SYMBOLS / ABBREVIATIONS

The area below the function

The area below the hat

The area below the squeeze

Size of the Guide Table

Region between the density function and the x -axis

Number of iterations until a successful iteration

Order of the approximation polynomial

Constant hat

Number of subintervals in a distribution

Constant squeeze

Total execution time of a random variate generation algorithm

Execution time of a single iteration in rejection
Execution time of the setup algorithm

Standard uniform random variate

Random variate

Sequential vector of local extrema, cutoff and inflection points

Critical area for the region between linear hat and constant squeeze
Area of the polynomial region
Questioned area for the region between the linear hat and the constant

squeeze
Avrea of the rectangular region

Area of the triangular region

Elements of the vector of subinterval boundaries
Left boundary of a bounded domain

Right boundary of a bounded domain

Center point of an interval

XVi

ca

co

CS

=

X1

x>

Unnormalized cumulative area of the subintervals

Elements of a coefficient vector of the Newton Interpolation Polynomial
Constant squeeze for the decomposition

Divided differences

Polynomial quasi-density

Rectangular quasi-density

Triangular quasi-density

Elements of a Guide Table

Hat function

Linear hat for the decomposition
Intercept of a linear hat

Slope of a linear hat

Linear squeeze for the decomposition
Intercept of a linear squeeze

Slope of a linear squeeze

Relative linear approximation error in the center point

Critical relative linear approximation error in the center point

Cumulative probability of rectangular region in a subinterval
Squeeze function

Cumulative probability of triangular region in a subinterval
Probabilistic weight of decomposed regions

Chebyshev nodes for interpolation

Chebyshev control points for maximum absolute approximation error

Rejection constant
Linear approximation error in the center point

Critical linear approximation error in the center point

XVii

Polynomial error — maximum absolute approximation error over Chebyshev

control points

Critical polynomial error — maximum absolute approximation error over

Chebyshev control points

phs

cdf
pdf

CCP
CPE
CRE
ECP
LE
PE
RE

The ratio of the area below the hat and the area below the squeeze

Cumulative Density Function

Probability Density Function

Chebyshev Control Points
Critical Polynomial Error
Critical Relative Linear Error
Equidistant Control Points
Linear Error

Polynomial Error

Relative Linear Error

XViii

1. INTRODUCTION

Stochastic simulation is a well-known tool appreciated in many fields of research
and application. To use stochastic simulation, the generation of random variates from
different distributions is a prerequisite. Non-uniform random variates are generated by
transforming a sequence of independent uniform random variates into a sequence of
independent random variates of the desired distribution and this is legitimate under the
assumption that we have a source of truly uniform, independent and identically distributed

random variates available (Hérmann et al., 2004).

In general, stochastic simulation requires standard distributions like Normal,
Gamma, Beta, Weibull distributions. In certain programming languages and software, there
are already random variate generation functions of those distributions. However, there may
be cases where the user is interested in random variates generated from non-standard
distributions or quasi-densities, which do not have any existing generation methods. The
best solution for this problem is to build generation algorithms that can sample from any
given distribution with sufficient information about it (e.g.) the density or the cumulative
distribution function; often some other information like the mode of the distribution is
required. These algorithms are called universal (also called automatic or black box)
generators, a single program that can sample from a large family of distributions (H6rmann
et al., 2004).

A universal generator typically starts with a setup that computes all constants
necessary for the generation. In the sampling part of the program these constants are used
to generate random variates. Well-known instances for universal algorithms are
Transformed Density Rejection (Hérmann, 1995) and the Ahrens Method (Ahrens, 1995).
Especially, the Ahrens Method can be applied to a large class of distributions with a

bounded domain.

In this research, we come up with two ideas and two algorithms for improving the
Ahrens method. The first one uses linear hats and applies “the mirroring principle” of

Hormann and Leydold (2007). Thus, we hope to decrease the rejection constant and the

expected number of density function calls, which are important performance characteristic

for rejection based algorithms.

The second idea is based on numerical approximation of the density and can be
seen as an improvement of the first algorithm without rejection (also called “Piecewise
Linear Approximation” in the literature (Hérmann and Leydold, 2007). Yet, in order to
increase the precision of the approximation, we can use higher order polynomial
approximations with effective interpolation tools. Then, by using decomposition and
numerical inversion, we can generate random variates with simple arithmetic operations

and without any density function calls.

The aim of this thesis is to develop all the details of these new algorithms, code
them and find out if they are competitive with existing methods with respect to simplicity,
speed and other performance criteria. The organization of the thesis is as follows: First,
Chapter 2 gives general information about the basics of random variate generation. Then,
the Triangular Ahrens Method is explained and computational results are shown in Chapter
3. In Chapter 4, the piecewise constant and the piecewise linear approximation methods are
criticized to see why higher order polynomial approximations are necessary. Then, the
basics of numerical approximation are summarized in Chapter 5. In Chapter 6, the
Polynomial Density Inversion method is introduced and explained. In addition,
computational results are shown and the approximation performance is examined. And

finally; conclusions, Appendix and references are set at the end of the thesis, respectively.

2. BASICS ON RANDOM VARIATE GENERATION

This chapter includes some basic ideas and methods for continuous and discrete
random variate generation. Many of the universal algorithms are built on the base of these
methods and gain efficiency by combining these basic ideas. The new algorithms, which
can be classified as table methods, also rely on the idea of three basic methods: Inversion,

Rejection and Composition.
2.1. The Inversion Method
The Inversion method is based on the following theorem.

Theorem 2.1: Let F(x) be a continuous cumulative distribution function (cdf) and U a
uniform random number over [0,1]. Then the random variate X = F *(U) has the cdf F .

Furthermore, if X has cdf F , then F(X) is uniformly distributed.

Proof. The cdf is known to be monotonically increasing, thus:

S

P(X <x)=P(F*(U)<x)=PU < F(X))=F(x)

and this means that F(x) is the cdf of X . The second statement immediately follows

from;
P(F(x)<u)=P(X < F(u))=F(F*(u))=u
which completes the proof (Hérmann et al., 2004).
Applying this principle to an invertible continuous cdf function allows generating

random variates from the corresponding density by using a uniform random variate

generator.

Require: Inverse of the cumulative density function F™(x).
Output: Random variate X with cdf F .

1: Generate U ~U(01).

2: X« F*U)

3: return X.

Figure 2.1. Inversion algorithm
2.2. The Rejection Method
2.2.1. Basic Rejection

A well-known method of generating random variates from a density f over a
bounded domain [b,,b, | is rejection from a uniform hat, which consist of generating a

uniform random variate X in the bounded domain and a uniform variate Y in [0,M]

where M is a constant and the uniform hat of the density with the property;

M > f(x); Vxelb,b,]

Thus, any (X,Y) generated with these properties is a random point which is

uniformly distributed in the rectangular region (b,,b,)x(0,M).

The fundamental property that if a random point (X ,Y) is uniformly distributed in
the region G, between the graph of the density function f and the x-axis, then X has

density f , which is formulated in the theorem (Hérmann et al., 2004).

Theorem 2.2: Let f(x) be an arbitrary density and « some positive constant. If the

random pair (X,Y) is uniformly distributed on the set

G, ={xy):0<y<af(x)

Then X is a random variate with density f (x).

Proof. The random pair (X,Y) has by assumption the joint density: f(X, y):1 for

(x,y)eG,, and zero elsewhere. Then the marginal density f, (x) of X is given by

which completes the proof (Hérmann et al., 2004).

Thus, any random point that falls below the density function can be accepted and

the rest can be rejected. The X values of the accepted points follow the desired
distribution.

3
p]
o © o o
o . . o
o L o
.
o .
.
.
o g o
°
[]) ®
e
. .
L] L] L]
.

Figure 2.2. Rejection from a constant hat, density f(x)= %(— X +1) on [-1,1]. 30 points

are generated, 11 are rejected, the x -coordinates of the remaining points are returned

Theorem 2.2 implies that another property of the rejection method is that any
multiple of the density can be used instead of the density itself. In other words, with the
rejection algorithm, random variates of a density multiplied with any constant can be
generated. Such a function is called quasi-density in Hormann et al. (2004).

Require: Quasi-density f(x) on a bounded domain [b,,br], upper bound (constant hat)
M > f(x).

Output: Random variate X with density proportional to f .

1: repeat

2: Generate U ~U(0,1).

3 X «b, +(b, b,)U
4 Generate V ~U(01).
5. Y <« MV

6: until Y < f(X).

7 return X.

Figure 2.3. Rejection from uniform hat
2.2.2. Rejection with Inversion

Instead of a uniform hat, it is possible to use a hat function h(x) with H(x) known.
Thus, it is possible to generate random variates from the hat function by inversion. For
each random variate X generated from the hat, another variate V is generated, which is
uniformly distributed between zero and the corresponding hat value, h(X). Those random

variate pairs are uniformly distributed points in the region below the hat function. The

rejection idea, then, can be applied with the original density.

Require: Quasi-density f(x), hat function h(x), inverse cdf H™(x) of hat.
Output: Random variate X with density proportional to f .

1: repeat

2: Generate U ~U(0J).

3 X < H?U)

4 Generate V ~U(0,1).
5 Y «<Vh(X)

6: until Y < f(X).

7: return X.

Figure 2.4. Rejection with inversion
2.2.3. Squeeze Principle

Let f be a density on the bounded domain [b,,b,]. If f is a monotonically

1+ %r

decreasing function, a simple upper bound (constant hat) can easily be obtained using the

density value of the left boundary, f(b,). Additionally, the density of the right boundary,

f(br), can be used as squeeze term, which allows us accepting a random point without

comparing it with the corresponding density value. This enables random variate generation
with less density function calls and less complicated mathematical operations. Therefore,
the algorithm often executes faster.

Require: Quasi-density f(x) on a bounded domain [b;,b,], upper bound (constant hat)
M > f(x), vx e[b,,b,], constant squeeze S < f(x), vx e[b,,b,].

Output: Random variate X with density proportional to f .

1. loop

2: Generate U ~U(0]1).

X «b +(b, —b,)U

Generate V ~U(0,1).

Y « MV
If Y <S then return X.
If Y < f(X) then return X .

Noa bk ow

Figure 2.5. Rejection with constant hat and constant squeeze
A constant hat on a bounded domain D can also be interpreted as the quasi-density

of the uniform distribution on that domain. It can be replaced by some other appropriate

quasi-density, h(x), with the following property:

h(x)> f(x) for vxe D

Similarly, instead of using a constant squeeze, a squeeze function s(x) with the

following property can be used.
s(x)< f(x) for ¥xe D
These changes result in an increase of the performance, if;

e Random variates of the distribution, which has quasi-density h(x), are easy to
generate.

e s(x) and quasi-density h(x) are not expensive to evaluate.

e Rejection probability is smaller than before.
2.2.4. Performance Characteristics of the Rejection Method
It is clear that a rejection algorithm should have a small rejection probability. To

evaluate the performance of the rejection algorithm, the key parameter is the acceptance

probability 1/« or its reciprocal value « called the rejection constant. It is calculated as

the ratio
a=A /A

of the area below the hat and the area below the density (Hormann et al., 2004). However,

A, is not equal to one for quasi-densities and might be unknown. Thus, another ratio

phszAh/As

of the area below the hat and the area below the squeeze can be introduced as a convenient

upper bound for the rejection constant, which can be used when A, is not known

(Hormann et al., 2004).

Theorem 2.3: Let the number of iterations till acceptance in a rejection algorithm be

denoted by | . Then we have:

P(l = i):l(l—ljl_l, E(l)=a < p,, Var(l)=a(a-1)

Denote the number of evaluations of the density f by # f and the uniform variates

needed to generate one non-uniform variate by #U . Then the expectations of those are

given by;

E(#U)=2a, E(#f)= AhAS < ppe -1
f

where A _ = A, —A,.

Proof. Since the generated pairs (X,Y) are uniformly distributed on the region below the

hat, the probability of acceptance is equal to the ratio of the areas A, /Ah , Which is equal

to I/« . As the uniform random numbers are assumed to be independent, then | follows a
geometric distribution with parameter 1/« . Therefore, the expectation and the variance of

I can be evaluated with the formulas of the geometric distribution.
As we need two uniform variates in a single iteration, we have:
E(#U)=2E(#1)=2a

Two conditions should be considered to evaluate E(# f). Assume a random variate
is finally accepted after | sequential iterations. If the generated random variate is accepted
through squeeze, the density function was called | —1 times. If it is accepted through
density comparison (in other words, if it is above the squeeze and below the density), the
density function was called | times. By introducing the probability of those conditions and

E(1) as the expected number of iterations;

is obtained. Replacing E(I) with Ah/Af completes the proof (Hérmann et al., 2004).

2.3. Composition

The main idea of the composition method is to decompose the domain into

subintervals. For each subinterval, the region below the density can be used to evaluate the

10

probability that a random variate falls into that subinterval. If those subintervals are chosen
with respect to behavior of the density, it is possible to speed up the generation algorithm
by using computation formulas which are specific for that subinterval. Hérmann et al.

(2004) restate this idea in a formal language by writing the target density f as with a

discrete finite mixture:

(=27, w ()

In this formula, f, are the given density functions and the w, values form a

probability vector, elements of which are larger than zero and sum up to one. In order to
choose an index i, a discrete random variate | has to be generated first from that
probability vector. That is possible with random variate generators for discrete
distributions like the Indexed Search algorithm (See Section 2.5.2). Then the

corresponding computations can be executed within subinterval i.

(=S IS—

b b, b,

Figure 2.6. The density is decomposed into three parts

Require: Decomposition of density f(x)=>"" w; f,(x); generators for each f;.
Output: Random variate X with density f .

1: Generate discrete random variate J with probability vector (w,).

2: Generate X with density f,.

3: return X.

Figure 2.7. Composition

11

The composition method is especially useful when the distribution we are interested
in is itself defined as a mixture. For other distributions it is rarely possible to find a simple
mixture that is exactly the same as the desired distribution. Nevertheless decomposition of
the area below the density into triangles and rectangles has been used to design fast but

complicated generators for special distributions (Hormann et al., 2004).
2.3.1. Composition-Rejection

A very powerful application of the composition principle, however, is partitioning

the domain of the distribution into subintervals. To obtain the probabilities w;, we need to

know the area below the density. For the interval (b. b,) computing the region below the

i Mi+l

density is possible only if both F(b,) and F(b,,) are available. However, for each

subinterval, a hat function, h(x), could be defined with H(x) and H ™(x) known. Then we

can calculate the area below the hat in the subinterval and “rejection with inversion” can be
applied to the subinterval which is selected randomly with probabilities given by their
respective areas below the hat.

Figure 2.8 illustrates the construction of linear hat functions. It is not necessary to

construct a hat function for the second region since it already has the uniform property.

h,(x)

=
o=
W
] I

Figure 2.8. Construction of hat functions for parts of Figure 2.6

12

Require: Quasi-density f(x) on domain (b,,b,); partition of domain into N intervals
(b,,b,,), b =b,<b_, <b <by,=b ; hat h(x), inverse cdf of hat H,™(x), and

i M+l
probabilities w, prop. to areas below h; for each interval (b;,b,,,).
Output: Random variate X with density prop. to f .

1. loop
2: Generate discrete random variate J with probability vector (w,).

/* Use Indexed Search or any other discrete RV generation method */
Generate U ~U(0,1).

X «H,)
Generate Y ~U(0,h, (X)).
if Y < f(X) then

return X.

r?

Ne o ko

Figure 2.9. Composition — Rejection
2.3.2. Decomposition

If squeezes are added to the algorithm in Figure 2.9, this will reduce the number of

evaluations of the density f but leaves the expected number of uniform random numbers
unchanged. Adding a squeeze s, in an interval (b, ,,b,) splits the region below the hat h,

into two parts. It is possible to decompose the density f further by:

h, (x) =5, (%) + (h; (x) -5, (x))

It is obvious that any random point (X ,Y) generated by the algorithm that falls into

the lower part below the squeeze can be accepted immediately without evaluating the
density. If X is generated (by inversion) from the distribution with density proportional to

the squeeze s;, then it is not even necessary to generate Y (Hormann et al., 2004).

Figure 2.10 illustrates the decomposition of the region below the hat with constant

squeezes, cs,, and linear squeezes, Is;. Since the second region already has the uniform

property, there is no need for decomposition.

13

S
(=S IEE—

Figure 2.10. Decomposition of the regions below the hat in Figure 2.8
2.4 Rejection with Staircase-Shaped Hat Functions (Ahrens Method)

As the probability of rejection increases, the performance of the algorithm
decreases. In order to improve the performance of the algorithm, a monotonically
decreasing density can be divided into many subintervals and piecewise constant hats and
constant squeezes can be used. Splitting points are denoted by

b, =b, <b, <b, <...<by =b, and subintervals are denoted by i=12,...,N. So the
constant hat and constant squeezes can be evaluated by:

h = f(b_,) forxelb,,b,i=1...,N)

s, = f(b) forxelb,,,b,i=1...,N)

I -
.0y ;

bﬂ [E;! ll EI)_

T

Figure 2.11. Staircase-shaped hat and squeeze functions for an increasing density

14

To generate a random variate, first, we have to decide on the subinterval. The
probabilities of subintervals can easily be based on the areas below their constant hats. And
the Indexed Search (Guide Table) Method, which is a generation method for discrete
probability distributions, can be used to generate a random subinterval index (See Section
2.5.2).

After the index has been generated with a standard uniform random variate, the
uniform variate can be recycled. That allows obtaining another standard uniform random
variate to generate X in the chosen subinterval. This is because, if U was used to choose

the subinterval 1, then U is uniformly distributed over the interval [F(I —1),F(1)).

Independent of |, we can obtain another standard uniform random variate U’ by the

following formula:

U’ F(1-1)
| —

F-F(-1

This method is called recycling of uniform random numbers in the literature. Since
available pseudo-random numbers are not really continuous but have some “resolution”
this technique should be used with care because of the lost precision in very short intervals
(H6rmann et al., 2004).

After recycling, a uniform random variate can be generated from the subinterval.
With basic rejection applied, the algorithm retries until a random variate of the given

quasi-density is generated.

15

Require: Monotonically decreasing quasi-density f(x) on bounded domain [bI ,br];
design points b, =b, <b, <b, <...<by =b,.

Output: Random variate X with density proportional to f .
I* Setup */

1: Compute and store all values f(b,) for i=0,...,N .

2: A « f(b_)b,—-b_)fori=1,...,N. /*areabelow hatin (b,,b,) */

3Set A" A

I* Generator */
4: loop
5. Generate V ~U(0,A).
/* Generate J with probability vector proportional to (A,..., A,). */

6: J<min{d:A+..+A 2V| /*useIndexed Search algorithm */
7.V« Ai(v —(A+...+A)). /*V ~U(0,1) recycle uniform RN */
J
; X «b,,+V-(b, =b,,). * X ~U(b,,,b,)*
9: Generate Y < U(0, f(b,,)).
10: if Y < f(b,) then /* evaluate squeeze */

11: return X.
12: if Y < f(X) then /* evaluate density */
13: return X.

Figure 2.12. Ahrens basic method

The Ahrens Method can also be applied to an arbitrary distribution with given

density provided that the domain can be split into intervals where f behaves
monotonically. Such intervals can easily be computed if the extrema of f are known.

However, when the domain of the density is unbounded, it must be truncated in a way that
the tail regions are computationally not relevant, i.e., the probability of falling into these
tail regions must be so small that even in a long running simulation that is not likely to
happen (Karawatzki, 2006).

2.5. Discrete Random Variate Generation Methods

2.5.1. The Sequential Search

The sequential-search method is an algorithm to generate discrete random variates

with their given probability mass function. It works by searching the smallest value X for

16

which F(X) is larger than the generated standard uniform variate. X is then the generated

discrete random variate. The sequential search starts from X =0.

Require: Probability mass function p, , k >0.

Output: Random variate X with given probability vector.
Generate U ~U(0,1).

2: Set X <0, P« p,.

3: whileU >P do

4: Set X <~ X +1, P« P+ py

5. return X.

=

Figure 2.13. Sequential search
2.5.2. Indexed Search (Guide Table Method)

Sequential search may be slow since the expected number of iterations can become
large for long probability vectors. For example, the algorithm may search almost the whole

vector until the corresponding random variate is found.

The Indexed Search Method, which has been suggested by Chen and Asau (1974),
includes the improvement of starting the while loop from more appropriate points. Instead
of starting with X =0 like in the sequential search, we can start with a larger integer value
X with P, <U . In order to do that, a guide table of size C should be stored to obtain
starting points easily. The entries of the guide table are denoted by index i and the each

entry g, is calculated with the following formula:

g, =inf{x:P(x)>i/C} fori=0,1...,C -1.

Then, with a standard uniform variate U, g, can easily be taken from the guide

table and used as the initial value for the search.

17

Require: Probability vector (p,, p;,..., P_4); size C of guide table.
Output: Random variate X with given probability vector.

* Setup: Computes the guide table g; for i=0,1,...,C-1.*/
Compute cumulative probabilities P, < ijo p; -

Set g, «~0,i«0.

for j=1to C-1do
while j/C > P do

Seti<«i+1.

Set g; «i.

* Generator */

7: Generate U ~U(0,1).

8: Set X « gy

9: while U > P, do

10: Set X « X +1.
11: return X.

Figure 2.14. Indexed search

Looking at the number of iterations, the Indexed Search algorithm is clearly more
efficient than the sequential search algorithm. On the other hand, cache-effects in modern
computers will reduce the speed-up for really large table sizes. Hérmann et al. (2004)
recommend using a guide table that is about two times larger than the probability vector to
obtain optimal speed. But this number strongly depends on the length of the probability

vector, L, the computer, operating system and the compiler used.

Since the table methods for generating random variates from continuous
distributions rely on the composition idea, the subintervals are denoted by an integer index.
In order to decide about the region where the actual random variate will be generated, a
random index must be generated first by using the cumulative probabilities of those
regions. The Guide Table method is the most appropriate method to generate integer
indices. This is because the sampling executes faster with less memory occupation

compared to the other discrete automatic random variate generation methods.

18

3. TRIANGULAR AHRENS METHOD

The Ahrens Method is a simple method; however it needs a large data table in order
to decrease the rejection probability. Otherwise the large rejection probability results in

more density function calls and more iterations until an acceptance.

The aim of the Triangular Ahrens Method is to generate random variates with
simple arithmetic operations and less calls to density functions. In order to do that, the
algorithm divides the density in many subintervals and considers handling those
subintervals separately. This is also the main idea of “Rejection with Staircase-Shaped Hat
Functions” (H6rmann et al., 2004). We call the method “Triangular Ahrens”, since it is an
improved version of the Ahrens Method with less subintervals. Thus, firstly, the idea of
“Ahrens Method”, secondly, the idea of mirroring in point-symmetric domains (H6rmann
and Leydold, 2007) should be analyzed clearly, since they will also be used in the new

algorithm in order to decrease the rejection probability.

Assuming that the 64-bit double precision provided by modern computers is
capable of giving almost exact results for density functions with an insignificant error,
Triangular Ahrens Method can generate random variates from exact densities, since it is

based on rejection from the original density.
3.1. Linear PDF and the Mirroring Principle

Hormann and Leydold (2007) proposed a new method for generating random
variates form linear densities that are positive on point-symmetric domains. The method
basically relies on the rejection concept. However, points which are to be rejected can

actually be used to obtain another independent random variate.

Basically, for a linear density that is positive on a bounded domain [b,,br], a
constant hat can easily be obtained depending on its slope behavior. Instead, since [bI ,br]

is a point-symmetric domain with respect to its center (b, +b,)/2, The Linear PDF method

19

takes f((b, +b,)/2) in the place of the constant hat and compensates the density loss on

the region above with the rejection region below, which are symmetric regions. Thus, any

rejected point, by reflecting it on the center, can be transformed into an accepted point (See
Figure 3.1).

Figure 3.1. The idea of the mirroring principle

20

Require: Linear density ¢(x) on point-symmetric domain D with center ¢ with #(x)>0
for vxeD.
Output: Random variate X with density /.
/* Setup */
1: Compute f, =/(c).
2: Compute f_=min _,/(c). /*constant squeeze */
* Generator */
Generate X uniformlyin D.

Generate U uniformly in [0, f_].
if U< f_ then /*below squeeze */

return X.
else if U < /(x) then /* below density */

return X.

else /* reflect point on the center */

10: return X =2c-X.

Figure 3.2. Linear PDF

This mirroring principle is also applicable for multidimensional linear densities on
point-symmetric domains. Besides, Hérmann and Leydold (2007) used this idea for
random variate generation from concave densities over multidimensional domains. The
main idea of the algorithm can be used for both convex and concave densities in dimension

one. This will be explained together with the new algorithm.

3.2. The Algorithm

As previously mentioned, Rejection from Staircase-Shaped Functions (Ahrens
Method) is based on the idea of dividing the density into many subintervals. For each
subinterval, local maximum defines a constant hat and the minimum can be used as a
constant squeeze. For monotone densities, those values are equal to the maximum and the
minimum of the density values at the boundaries. The region between the hat and the
squeeze is desired to be small to increase the acceptance probability. The rejection

probability can be decreased if subintervals with shorter lengths are selected.

21

Linear PDF method (H6rmann and Leydold, 2007) is used for linear densities on
point symmetric domains. It will help to decrease the rejection probability of the Ahrens
Method and result in an efficient generator. In the new algorithm, a hybrid version of these
two algorithms is tried to be built. For each subinterval a constant squeeze and a linear hat

is defined. Optionally, a linear squeeze can also be introduced.

Since, there are basic rules to calculate the hat and squeezes for convex and
concave functions, there should be no subintervals that consist of both a convex and a

concave region. In order to provide that, all the inflection points of f(x) must be used as

subinterval boundaries. For unimodal distributions, there are often only two inflection
points. In order to maintain monotonic behavior over the subintervals, local maxima and
minima should also be used as subinterval boundaries. For unimodal distributions, there is
only one global maximum, which is the mode, and usually two local minima, which are the

cutoff points of the insignificant tails.

For both the concave and the convex case, the constant squeeze can easily be found

through the local minimum over the subinterval.

Hormann and Leydold (2007) propose a lemma to find an appropriate linear hat for
concave densities to increase the acceptance probability over multidimensional domains. It

is also valid for dimension one.

Lemma 3.1: For the interval [b,b,], let ¢ be its center (b, +b,)/2 and f a density
function that is strictly concave over the domain [b,,b,]. Then the rejection constant of a

rejection algorithm based on the positive linear hat é(x) iIs minimized if we choose the

center c as the construction point of /.

Proof. Since the area below the density on domain [b,,b | is constant, the rejection

constant can be minimized by minimizing the region below the positive linear hat f(x).

The region is computed with the formula:

22

[e = LBy (B0 o)~ (),)

Due to the definition of the hat;
0(x)> f(x) for vxelb,,b,]

¢(c) must be minimized but it must be equal or larger than f(c). Since the domain is
strictly concave, it is possible to reach ¢(c)= f(c) with a tangent to the density on the

center point ¢ (Hérmann and Leydold, 2007).

Lemma 3.2: For the interval [b,,b,], let ¢ be its center (b, +b,)/2 and f a density
function that is strictly convex over the domain [b, ,br]. Then the probability of immediate
acceptance of a rejection algorithm based on the linear squeeze s(x) is maximized if we

choose boundaries b, and b, as the intersection points of s.

Proof. The region below the positive linear squeeze s(x) must be maximized to maximize

the probability of immediate acceptance with linear squeeze. The region is computed with
the formula:

Due to the restriction of squeeze definition of rejection method;
s(x) < f(x) for ¥x e|b,,b,]

s(b,) and s(b,) can be maximized as they must be smaller or equal to f(b,) and f(b,).

Since the domain is strictly concave, by the definition of concavity, the following
statement holds.

23

f(Ab, +@-A)b,)= A f(b)+@-2)f(b,)=As(b)+(@—-A)s(b,) for 4 [01] and
vx e (b,b,]

Then it is possible to maximize the probability of acceptance with a linear squeeze,

which intersects with the density on the boundaries b, and b, .

So, for the concave case, the linear hat should be a tangent constructed in the center

point of the subinterval. The linear squeeze is a secant, intersecting in the boundaries.

For the convex case, it can also be proven in a similar way that the linear hat should
be defined like the linear squeeze for the convex case. It may be possible to maximize the
immediate acceptance probability with a linear squeeze. However, within the existence of a
constant squeeze, this minimization is not important and not very easy. This kind of
optimization is a drawback for the desired simplicity and the speed of the automatic
random variate generation algorithms. Instead, without the consideration of finding the
optimal linear squeeze, the tangent constructed on the center point can be used for
simplicity. Thus, the data stored for each subinterval will be the same, independent from

being convex or concave:

e Slope of the linear hat function constructed in the center point of the subinterval.

e Intercept of the linear hat function constructed in the center point of the subinterval.

e Slope of the linear squeeze function that is intersecting the density in the
boundaries.

e Intercept of the linear squeeze function that is intersecting the density in the
boundaries.

e Constant squeeze, which is equal to the minimum of the density over the

subinterval.

24

3.2.1. The Setup Algorithm

To run the sampling algorithm, initially a table must be created and the required
constants for each subinterval must be stored in it. This is done in a setup algorithm. Below

are the basic required elements of that table.

e A vector that holds the subinterval boundaries.

e Cumulative probability for each subinterval.

e Constant squeeze for each subinterval.

e Slope of the linear squeeze for each subinterval.

e Intercept of the linear squeeze in the center of the subinterval.
o Slope of the linear hat for each subinterval.

o Intercept of the linear hat in the center of the subinterval.

e A guide table to speed up the subinterval selection with the Indexed Search method.

In order to compute the constants of the table, initially the density must be divided

into subintervals.

3.2.1.1. Phase I: Flexible Subinterval Creation. The main reason of creating those

subintervals is to decrease the rejection probability and increase the acceptance probability.
So, for each subinterval, the area of the region between the linear hat and the constant

squeeze, a,, must be less than a critical area, a_, which is defined by the user.

Secondly, the evaluation of the linear hat will depend on the behavior of the
subinterval; whether it is monotonically increasing or monotonically decreasing, convex or
concave. Each subinterval must possess one single behavior. Then an easy formula can be

introduced to evaluate a, for subinterval [b;,b, | with density function f .

25

|f(br)_ f(bl)|(br _bl)

if convex
2
b, +b, . . .
a, =1| f |- f(b,)|(b, —b,) if concave A increasing (3.1)

[f (br ; by j — (b,)j(br —b,) if concave A decreasing

Finally, like the “Ahrens Method”, our new method will require cut-off points for

unbounded domains. Those must be initially selected by the user.

Require: Probability density function f(x), critical area a, for the region between linear
hat and constant squeeze, a sequential set Z of all local extrema, cutoff and inflection
points (z,,2,,...,2,,) from the smallest to largest, which will also help to explain the
behavior of the density.

Output: A vector that holds sequential flexible subinterval boundaries (b,,b;,...,b,), and
its length N +1.

1: Seti«O0.

2: Setbh «z,.

3: while b, =z, do

4: Compute a, for subinterval [b;,z,,,]. /* use equation 3.1 */
5 if a, <a, then I* use subinterval and proceed */
6: bi+l <~ Zi+1
7 i+l
8: else /* divide subinterval */
b +7i.,
9: Add . to set Z and enumerate the elements.

10: return i +1

Figure 3.3. Triangular Ahrens setup - flexible subinterval creation

In the end of the algorithm, the number of subintervals is returned together with the

vector of subinterval boundaries. These results are used as input in the next phase.

26

3.2.1.2. Phase Il: Data Table Creation. After subinterval boundaries were stored in a

vector with a known length of N +1, this vector will be taken as an input and the table
values will be calculated in the second phase. Phase Il also requires the probability density
function and its first derivative, and the distribution parameters during the table creation
process. Again, a vector that holds all inflection points and local extrema will be needed.
Just like in Phase I, since the evaluation of table elements will depend on the behavior of

the subinterval, this vector will help to introduce easy formulas for table elements: cs,
(constant squeeze), lhs, (slope of the linear hat), Ihi, (intercept of the linear hat), Iss
(slope of the linear squeeze), Isi; (intercept of the linear squeeze) and ca; (unnormalized

cumulative area of the regions below the linear hats) for subinterval i=1,...,N . Below,

those functions are given.

f(b_,) if increases
Constant Squeeze: cs; = (3.2)
~ | f(b,) if decreases
f(bt;) ;(‘l) if convex
Slope of the Linear Hat: lhs, = bl +b|_ (3.3)
f'(‘ “1j if concave
M |f convex
Intercept of the Linear Hat: Ihi, =1 . 4 (3.4)
f| = “1j if concave
2
f’] if convex
Slope of the Linear Squeeze: Iss; = 3.5
g ! M if concave &
b, —b. ,
f b, +2b“lj if convex
Intercept of the Linear Squeeze: Isi. = 3.6
; WS)+ 161) =
— 5 if concave

Ihi; (intercept of the linear hat) and Isi, (intercept of the linear squeeze) are

evaluated by using the center point of the subinterval as the origin. This will be helpful in

27

applying the mirroring principle of Linear PDF algorithm since the lhi, value represents

the y -coordinate of the symmetry center and can be directly taken from the table.

ca; (unnormalized cumulative area of the regions below the linear hats) will be
used in the Indexed Search algorithm to choose a subinterval with a uniform random
variate. The cumulative area vector is still useful in its unnormalized form. But since less
mathematical operations in the sampling algorithm are preferred, this vector will be
normalized in the next step of phase Il, by dividing all elements with its last element. After

initializing ca, to zero, other elements of the unnormalized cumulative area vector can be

evaluated with the formula:
ca, =y Ihi;(b, —b_,)=ca,_, +Ihi, (b, —b,) for m=1,..,N (3.7)

As the last step, a guide table should be created by using the normalized cumulative
area vector. In our applications, this guide table will be two times longer than the number

of subintervals (Hérmann et al., 2004).

28

Require: Probability density function f(x) and the corresponding parameters, first
derivative of the pdf f'(x), a vector that holds all local extrema, cut-off and inflection
points (zo,zl,...,zM) which will explain the behavior of the density, a vector of length
N +1 that holds sequential subinterval boundaries (b,,b,,...,b,).

Output: A vector that holds cumulative probability vector for subintervals (P,,P,,..., Py),
a vector that holds constant squeezes for each subinterval (cs,,...,cs,), a vector that holds
the slope of linear hats for each subinterval (Ihs,,...,Ihs,), a vector that holds the intercept
of linear hats for each subinterval (lhi,...,lhi,), a vector that holds the slope of linear
squeezes for each subinterval (Iss,,...,lss,), a vector that holds the intercept of linear
squeezes for each subinterval (Isi,,...,Isi,), a guide table of size 2x N for the Indexed
Search for subinterval selection (g, 9;,-.., Up_)-

1. Store b, for i=0,...,N.

2: Seti<«1,ca,«0.

3: while i< N do

4: Compute and store cs;, lhs,, Ihi., Iss;, Isi,.

[* use equation (3.2, 3.2, 3.4, 3.5, 3.6) */

5: Compute ca, . /* use equation (3.7) */
ca, . .

6: Set P, «~— fori=0,...,N. /* normalization */
ca,

70 Set g, «1,i«1.

8: for j=1to 2N -1 do [* guide table creation for Indexed Search */
9: while j/2N > P, do

10: Seti<«i+1.

11: Setg; «i.

Figure 3.4. Triangular Ahrens setup - data table creation

3.2.2. The Sampling Algorithm

While the required constants are stored and ready to be used as the input, finally

random variates of the corresponding density can be generated. Unlike the setup, the

29

sampling algorithm does not depend on the behavior of the density and just executes using

the corresponding data called from the setup table.

The sampling algorithm initially must decide about which subinterval to consider.
Therefore, by using the guide table (901911---,9M4) and cumulative probabilities of
subintervals (P,,P,,...,P,), the Indexed Search algorithm is run to generate index i. Then,

another standard uniform variate should be recycled from the one which is used in the
indexed search algorithm. By rescaling this uniform variate over the subinterval, a uniform

random variate X of the corresponding subinterval can be generated.

Like in the rejection algorithm, another uniform random variate Y should be
generated, which is uniformly distributed between zero and the value of the linear hat
function on the center point, which is equal to the intercept of the linear hats for all

subintervals, Ihi; .

By using the mirroring principle (Hérmann and Leydold 2007), the pair of random

variates can be mirrored at the reflection point (ci,lhci), if the point they represent is

above the linear hat (See Section 3.1). But this computation is not necessary if the pair

(X ,Y) is below the constant squeeze, cs,, and can be immediately accepted.

Actually there are three cases after generating the pair (X,Y).

o (X ,Y) is below the constant squeeze and is immediately accepted.
e (X,Y) is above the constant squeeze but below the linear hat.

e (X,Y) is above the linear hat.

In the third case, the mirroring principle is applied. Then, the new uniform pair

(X",Y") will obtain an equivalent status as the pair (X,Y) has in the second case.

Continuing from the second and the third case, the pair (X,Y) should be

considered under three new cases.

30

o (X ,Y) is below the linear squeeze and is accepted through squeeze comparison.
o (X,Y) is above the linear squeeze and below the density and is accepted through

density comparison.

o (X ,Y) is above the density, so it is rejected and the generation process starts again.

® Immediately Accepted
(Constant Squueeze)

f(b) . -l W Points before mirroring
r e B Accepted With
. — et Linear Squeeze
th et m== === & Accepted With
UTEEE R Density Comparison
O Rejected

—————

*
\
\

-~

.
|
]
|
I
[}
I
]
]
I
[}
I
]
|
]
|
I
[}
I
L

f(bz) --------------------

=
o3 HE—

Figure 3.5. Demonstration of different cases in generation algorithm of the Triangular

Ahrens Method for concave subintervals

31

® Immediately Accepted
(Constant Squueeze)

f(b) __ W Points before mirroring
I

B Accepted With
Linear Squeeze

& Accepted With
Density Comparison

O Rejected

]
|
I
|
|
I
- g |
] —
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|

[PANI. W ——

f (b)) o

(o}
S

Figure 3.6. Demonstration of different cases in generation algorithm of the Triangular

Ahrens Method for convex subintervals

The sampling algorithm terminates if a random variate is obtained. Otherwise, the
algorithm rejects the variate and repeats from the beginning. If the rejection probability is
large, this increases the execution time of the whole algorithm when a large number of

random variates is required.

32

Require: Probability density function f(x), a data table of the Triangular Ahrens Method

with the corresponding density.

Output: Random variate X with density f .

1: loop

2: Generate U ~U(0J1).

3: Set i« gy

4 while U > P, do I* Indexed Search */
5 Set i<« i+1.

6: U« (U-P_)/(P-P,) I*recycling*/
7 Set X «—b,_, +U (b, —b_,).

8 Generate Y ~U (0, Ihi,).

9 Set ¢ < (b, +b,,)/2.

10: If Y <cs, do /* immediately acceptance */

11: return X .

12: else

13: If Y > Ihi; +1Ihs, (X —c) do /* mirroring */

14 Set X «—2c—X, Y « 2lhi, Y.

15: If Y <Isi; +Iss, (X —c) do /* through linear squeeze */
16: return X.

17: else if Y < f(X) do /* through density */

18: return X .

Figure 3.7. Triangular Ahrens sampling algorithm
3.3. Computational Results and Performance Characteristics
We coded the Triangular Ahrens algorithm in “C” to evaluate some performance
characteristics and measure the speed of the algorithm. Therefore, we applied the algorithm

to generate random variates from particular distributions which are shown in Table 3.1.

Table 3.1. List of unimodal distributions used in the Triangular Ahrens and the Polynomial

Density Inversion algorithms

Ceft Ceft Right | Right
Symbol | Distribution | Parameters| Cutoff | Inflection| Mode | Cutoff | Inflection
N Normal (0,1) -6 -1 0 1 6

C Cauchy (0,1) -640000] -0.577350 0 0.577350] 640000
E Exponential (1) 0 0 0 0 17

G Gamma (3,1) 0 0.585786 2 3.414213 21
Bl Beta (3,4) 0 0.155051 0.4]0.644948 1

B2 Beta (30,40) 0.15 | 0.366049 |0.426470]0.486891| 0.725

33

3.3.1. Timing Results

The generation speed is an important indicator for the performance of the random
variate generation algorithms (Hormann et al., 2004). In practice, it is interesting to see the
total generation time for setup and all generated random variates. Yet, there is a great
variability of those results depending on the computing environment, the compiler and the
uniform pseudo-random number generator. To decrease this variability, Hérmann et al.
(2004) suggested a term, relative generation time of an algorithm as the generation time
divided by the generation time for the exponential distribution using inversion which is

done by the formula:
X =-log(1l-U)

where U is a standard uniform random variate. This time has to be taken in exactly the
same programming environment, using the same type of function call, etc. The relative
generation time is still influenced by many factors and we should not consider differences
of less than 25 per cent. Nevertheless, it can give us a crude idea about the speed of a

certain random variate generation method (Hérmann et al., 2007).

For the Triangular Ahrens algorithm, the relative average generation time of the

whole algorithm, which includes both the setup and the sampling algorithms, is measured
while 10* and 10° random variates are generated. The single subinterval creation

parameter, critical area, a_,, was set to different values to see the performance of the

algorithm. In order to evaluate the average generation times, each generation was repeated

1000 times in an outer loop, and then the whole execution time was divided over 1000.

Lemma 3.3: The total execution time of the Triangular Ahrens algorithm, T, for sampling

a large number of random variates follows the normal distribution.

Proof. Assuming that the execution time of the setup algorithm, T, and the single iteration

of the sampling algorithm, T,, are constant, the variance of the total execution time is

34

caused by the number of iterations until a successful iteration, |, which follows the

geometric distribution with a probability of success equal to 1/« (See Theorem 2.3).

Let I, represent the number of unsuccessful iterations for the i™ random variate, where

i=1...,n. According to Hurley and Andrews (2007), if n is sufficiently large, then

zinzl I, is approximated by a normal distribution with mean:

E(ST 1)= (1, +1, 4. 41,)="

a
and the variance:

Var(S" 1, J=Var(l, +1, +...+1,)=nVar(1) = ”(1(1‘2“)

Thus, the total execution time of the Triangular Ahrens algorithm is normally
distributed with mean:

E(T):(£+ an, T,

and the variance:

if M is sufficiently large.

35

Table 3.2. Relative average generation times for the Triangular Ahrens Method with

sample size n=10*

Critical Area

0.05(0.01{0.005] 0.001 0.0005| 0.0001
N |1.21f1.07f 1.06] 1.10 1.13 1.37
C |1.21] 115 1.10] 1.16 1.16 1.46
E]1.16f1.04] 1.03] 1.07 1.07 1.28
G |1.70] 1.30f 1.30] 1.55 1.82 2.81
B1]1.97| 151 1.55| 2.06 2.48| 4.24
B2 222|172 1.72 2.27 258 4.88

Table 3.3. Relative average generation times for the Triangular Ahrens Method with

sample size n=10°

Critical Area

0.05{0.01{0.005] 0.001 0.0005| 0.0001
N]1.12{ 0.99f 0.94| 0.89 0.88 0.89
C | 1.13]1.00] 093] 0.93 0.90 0.88
E]1.09{0.94] 0.94| 0.90 0.88 0.88
G | 155|106 1.00] 0.91 0.91 0.89
B1]1.78| 1.10f 1.03| 0.91 0.89 0.91
B2]1.99(1.27 1.07| 0.94] 0.92 0.93

We can obtain the average total execution time of 10* and 10° variates in our test

computer by multiplying relative average generation times respectively with 6.7 x10™ and

6.7x107?, which are the actual generation times in seconds, for the same number of

standard exponential random variates.

3.3.2. Memory Occupation

The required table size can be evaluated if the number of subintervals, N, is

known. For each subinterval we are holding the constant squeeze, the slope and the

intercept of the linear squeeze, the slope and the intercept of the linear hat, the left

boundary and the cumulative probability of the subinterval. Each of those values can be
stored as a double type variable, which occupies 8 bytes of memory.

A guide table of size 2x N is also stored for the Indexed Search. Since the indices

are integers, each element of the guide table can be stored as an integer type variable,
which occupies 4 bytes of memory.

36

Insignificantly, cumulative probabilities and the subinterval boundaries need an
additional storage since they refer to boundaries instead of subintervals. A single integer
variable can be used to store the total number of subintervals for quick calls. Therefore, N

subintervals will result in a table size of:
TS = (7N +2)o, + (2N +1)b, =8x (7N +2)+ 4x (2N +1)= 64N + 20

which is evaluated in bytes. Table 3.4 below shows the number of subintervals and the

total size of the data tables for each distribution with different critical area parameters.

Table 3.4. Number of subintervals and the total size of the data tables for different

parameters and distributions

Critical Area
0,05 0,01 0,005 0,001 0,0005 0,0001
12| 788]24]1556]34]2196] 76]|4884]104| 6676]238|15252
44]2836]58|3732] 76|4884] 134(8596] 180]|11540] 382]|24468
13| 852]25]1620]32|2068] 68|4372] 94| 6036]210]13460
11| 724]25]1620]130[1940] 68|4372]104| 6676]220]14100
1]10] 660]22|1428]29|1876] 64|4116] 89| 5716]187/11988
2 113]| 852]25]1620]35|2260] 75[4820] 98| 6292]232|14868

VT IOMO|Z

3.3.3. Performance Characteristics

Performance characteristics are important measures for rejection based algorithms.
For the Triangular Ahrens Method, random variates can be accepted through constant
squeeze immediately or through linear squeeze or density comparison with or without
mirroring applied. To understand the performance of the algorithm, it is important to have

an idea about how many times these different functions are called.

In the flexible subinterval creation phase of the setup, the critical area parameter,
a., plays an important role to select performance characteristics. Assume that the
Triangular Ahrens Method will be used to generate random variates from a density f . The
critical area parameter leads to create N subintervals with a vector of boundaries
(by,b,,...,b). Then the total region below all the hats and the constant and the linear

squeezes can be calculated with the formula:

37

A= A =" _bi_l)max{ f(b,)+ f(bi_l)’ f(bi +b,, j}

2 2

As = ZiN=1ACSi = Zi’\‘:l(bi _bi‘l)min{f(bi)' f(bi_l)}
N N .| f(b,)+ f(b, b, +Db;_,
A ZZizlAisi ZZizl(bi _bi_l)mm{ () 2 ()’ f(j}

2

Since, f is assumed to be a density, A, will converge to one from the right as N
gets larger. Then, the upper bound for the probability of immediate acceptance, P(A,) can

be controlled by the critical area parameter, a_, using the following relationship:

1-a_N value can be accepted as a lower bound for the acceptance probability, and
1/(1—acN) value can be accepted as an upper bound for the rejection constant. Then the

expectation of the number of iterations until an acceptance, E(1), has an upper bound:

(3.8)

Therefore, the expected number of uniform variates needed for a single generation

and the expected number of density evaluations have also upper bounds in a similar way:

(3.9)

E(#f)< n c (3.10)

Exceptionally for the Triangular Ahrens Method, a performance characteristic can
be the expected number of the mirroring function calls. Exactly, for 25 percent of the pairs

in the region below the hat and above the constant squeeze, the mirroring principle is

38

applied. Then an upper bound can also be defined for the number of mirroring function

calls:

E#M)< = (3.11)

In order to compute those performance criteria, the Triangular Ahrens algorithm
was run 500 times. In each run, the setup algorithm was executed and 10° random variates
were generated. For each of the performance criteria, the mean and the standard deviation

were evaluated.

Table 3.5. The mean and the standard deviation of the percentage of acceptance types and
rejection and the calls for mirroring for different distributions and critical area parameters,
a, = {0.05, 0.01, 0.005}

N C E G Bl B2
Cons. Squ. (%)]74.30/0.043]67.23]0.044]77.46{0.042] 75.00]0.042] 78.32]0.039] 75.70]0.041
Lin. Squ. (%)]20.22]0.040]23.33/0.042]17.70]0.040]18.96]0.039]17.48]0.036]19.05|0.037
Density (%) 2.10]0.014] 3.34]0.018] 1.35/0.012] 2.17]0.014] 1.98]0.014] 2.05]0.014
Rejection (%6) 3.38]0.017] 6.10{0.023] 3.49/0.018] 3.87]|0.018] 2.22]0.015] 3.20{0.016
Mirroring (%) | 6.11]0.023) 7.92|0.024] 5.64]0.023] 5.92|0.023] 4.91]0.022] 5.24|0.022
Cons. Squ. (%)]88.24]0.031}82.24]0.037]90.19{0.027]89.84]0.030§90.62]0.027]88.68]0.030
. Lin. Squ. (%)]10.19{0.030]14.40/0.035] 8.98]|0.026] 8.93]0.028] 8.37]0.026] 9.45|0.028
Density (%) 0.59]0.007] 1.15]0.011} 0.25]0.005] 0.48]0.007] 0.48]0.007] 0.66]0.008
Rejection (%6) 0.98/0.010] 2.21]0.014] 0.58/0.008] 0.75/0.008] 0.53|0.007| 1.21]|0.011
Mirroring (%) | 2.85]0.017]) 4.35[/0.019] 2.45]0.016] 2.45]0.015] 2.22]|0.014] 2.74|0.016
Cons. Squ. (%)]92.10]/0.026{88.57]0.030]92.64{0.025]91.80]0.025]93.01]0.023]92.24]0.025
Lin. Squ. (%) 6.95]0.025] 9.64[0.028] 6.73]0.024] 7.26]0.024] 6.32]0.023] 6.88[0.024
Density (%) 0.37]0.006] 0.57]0.007] 0.18]0.004] 0.36]0.006] 0.32]0.006] 0.33]0.006
Rejection (%6) 0.58]/0.008] 1.22]0.012] 0.45[0.007] 0.58/0.008] 0.35]0.006] 0.55]|0.007
Mirroring (%) | 1.90]/0.014] 2.83|0.016] 1.89]0.013] 1.98|0.013] 1.66|0.012] 1.89]0.013

0,05

Critical Area
0,0

0,005

39

Table 3.6. The mean and the standard deviation of the percentage of acceptance types and
rejection and the calls for mirroring for different distributions and critical area parameters,
a, = {0.001, 0.0005, 0.0001}

N C E G Bl B2

Cons. Squ. (%)]196.57]0.017]94.53{0.021]96.76|0.017]96.45]0.018]96.92|0.017]96.58]0.017
Lin. Squ. (%) 3.20]0.017] 4.94{0.020] 3.05]0.016] 3.33|0.018] 2.94]0.016] 3.18{0.016
Density (%) 0.09]0.003] 0.18]0.004f 0.05]0.002] 0.09]0.003] 0.07]0.003] 0.08]0.003
Rejection (%6) 0.14]0.004] 0.34]0.006] 0.14/0.004] 0.13]0.004] 0.07]0.003] 0.16]0.004
Mirroring (%) | 0.84]0.009] 1.35/0.011] 0.81]0.009] 0.87]0.009] 0.75]0.008] 0.84]0.009
Cons. Squ. (%)]97.47]0.015]96.04{0.018]97.68|0.015]97.70]0.015}97.82]0.014]97.39]|0.016
Lin. Squ. (%) 2.41]0.015] 3.66{0.018] 2.24]0.015] 2.20]|0.014] 2.09]0.014] 2.46{0.015
Density (%) 0.05]0.002 0.10}0.003] 0.02]0.002] 0.04]0.002] 0.05]0.002] 0.06]0.002
Rejection (%6) 0.07]0.003] 0.20]0.005] 0.06{0.002] 0.06/0.002] 0.04]0.002] 0.09]0.003
Mirroring (%) | 0.62]0.008]0.984|0.010] 0.58]0.008] 0.57|0.007] 0.53]0.007] 0.64]0.008
Cons. Squ. (%)]98.93]0.010]98.24]0.013]98.99{0.010]98.94]0.010§98.97]0.010]98.93]0.010
Lin. Squ. (%) 1.04/0.010] 1.68/0.012] 1.00]0.010] 1.03]0.009) 1.01}0.010] 1.04/0.010
Density (%) 0.01}0.001} 0.03]0.002§ 0.00{0.001} 0.01}0.001] 0.01}0.001] 0.01}0.001
Rejection (%6) 0.02]0.001] 0.05]0.002] 0.01{0.001] 0.02]0.001] 0.01]0.001}] 0.02]|0.001
Mirroring (%) | 0.27]0.005] 0.44]0.006] 0.25]0.005] 0.26]0.006] 0.25]0.005] 0.27]0.005

0,001

Critical Area
0,0005

0,0001

By using the data shown in Table 3.5 and 3.6, we can evaluate the performance

characteristics with the following formula.

100
=E(l)= 3.12
«=E(1) Cons.Squ.(%)+ Lin.Squ.(%)+ Density(%) (312
E(#U) 200 (3.13)

" Cons.Squ.(%)+ Lin.Squ.(%)+ Density(%)

- 100 —(Cons.Squ.(%)+ Lin.Squ.(%))
Cons.Squ.(%)+ Lin.Squ.(%)+ Density(%)

E(#f (3.14)

) Mirroring(%)

E#M)=
(Cons.Squ.(%)+ Lin.Squ.(%) + Density(%)

(3.15)

By using the data in Table 3.5 and 3.6 and the Equations 3.12, 3.13, 3.14 and 3.15,
the performance characteristics were evaluated and shown in Table 3.7 and 3.8. Upper
bounds are evaluated by using Equations 3.8, 3.9, 3.10 and 3.11 and also shown in those

tables.

40

Table 3.7. Actual values and upper bounds of performance characteristics of the Triangular

Ahrens Method for different distributions and critical area parameters,

a, = {0.05, 0.01, 0.005}

C

E

G

Bl

B2

Critical Area

0,05

E(1)

1.035

2.500

1.065

INF

1.036

2.857

1.040

2.222

1.023

2.000

1.033

2.857

E#U)

2.070

5.000

2.130

INF

2.072

5.714

2.080

4.444

2.045

4.000

2.066

5.714

E(#)

0.057

1.500

0.100

INF

0.050

1.857

0.063

1.222

0.043

1.000

0.054

1.857

E(#M)

0.063

0.150

0.084

0.55

0.058

0.162

0.062

0.138

0.050

0.125

0.059

0.163

0,01

E(D)

1.010

1.316

1.023

2.381

1.006

1.333

1.008

1.333

1.005

1.282

1.012

1.333

E(#U)

2.020

2.632

2.045

4.762

2.012

2.667

2.015

2.667

2.011

2.564

2.024

2.667

E(#)

0.016

0.316

0.034

1.381

0.008

0.333

0.012

0.333

0.010

0.282

0.019

0.333

E(#ZM)

0.029

0.060

0.044

0.145

0.025

0.063

0.025

0.063

0.022

0.055

0.028

0.063

0,005

E(1)

1.006

1.205

1.012

1.613

1.004

1.190

1.006

1.176

1.003

1.170

1.006

1.212

E(#U)

2.012

2.410

2.025

3.226

2.009

2.381

2.012

2.353

2.007

2.339

2.011

2.424

E(#)

0.001

0.205

0.018

0.613

0.006

0.190

0.009

0.176

0.007

0.170

0.009

0.212

E(#M)

0.019

0.043

0.029

0.095

0.018

0.040

0.020

0.038

0.017

0.036

0.019

0.044

Table 3.8. Actual values and upper bounds of performance characteristics of Triangular

Ahrens Method for different distributions and critical area parameters,

a, = {0.001, 0.0005, 0.0001}

C

E

G

Bl

B2

Critical Area

0,001

E()

1.001

1.082

1.003

1.155

1.001

1.073

1.001

1.073

1.000

1.068

1.002

1.081

E(#U)

2.003

2.165

2.007

2.309

2.003

2.146

2.003

2.146

2.001

2.137

2.003

2.162

E(#)

0.002

0.082

0.005

0.155

0.002

0.073

0.002

0.073

0.001

0.068

0.002

0.081

E(#ZM)

0.008

0.019

0.014

0.034

0.008

0.017

0.009

0.017

0.008

0.016

0.008

0.019

0,0005

E(D)

1.001

1.055

1.002

1.099

1.001

1.049

1.000

1.055

1.000

1.047

1.001

1.052

E#U)

2.001

2.110

2.004

2.198

2.001

2.099

2.001

2.110

2.001

2.093

2.002

2.103

E(#)

0.001

0.055

0.003

0.099

0.001

0.049

0.001

0.055

0.001

0.047

0.001

0.052

E(#M)

0.006

0.013

0.010

0.023

0.006

0.012

0.006

0.013

0.005

0.011

0.006

0.012

0,0001

E()

1.000

1.024

1.001

1.040

1.000

1.021

1.000

1.022

1.000

1.019

1.000

1.024

E#U)

2.000

2.049

2.001

2.079

2.000

2.043

2.000

2.045

2.000

2.038

2.000

2.048

E(#)

0.000

0.024

0.001

0.040

0.000

0.021

0.000

0.022

0.000

0.019

0.000

0.024

E(#M)

0.003

0.006

0.004

0.010

0.003

0.005

0.003

0.006

0.003

0.005

0.003

0.006

The main advantage of the Triangular Ahrens Method is the reduction of the
rejection constant by using the mirroring principle. For the Ahrens Method, such rejection
constants as in Table 3.7 and 3.8 can only be obtained with much more subintervals,
therefore with larger tables. We have tried to build an algorithm, which is based on the
Ahrens Method and as fast, yet has the advantage of storing less data, requiring less

number of iterations until an acceptance and less number of density function calls.

41

The disadvantage is caused by the setup algorithm, which is more sophisticated
than the setup of the Ahrens Method. However, this difference is not important when

generating a large number of random variates.

42

4. APPROXIMATE RANDOM VARIATE GENERATION

Numerical results of the previous chapter (Table 3.5 and 3.6) show that the
Triangular Ahrens Method can generate random variates with a small number of rejections.

The Ahrens Method also has this property.

If the number of subintervals is sufficiently large, this small proportion of rejected
variables should not spoil the distribution that the accepted sample follows. This idea

implies the question if rejection is really necessary.

With the rejection removed, the Ahrens method becomes an approximate random
variate generation method which approximates the cdf linearly. In other words, the density
is approximated with piecewise constant (uniform) distributions. The Triangular Ahrens
Method, without any rejection, generates from the density using piecewise linear

approximations.
4.1. Piecewise Linear Approximation of the CDF

When the setup algorithm runs for the piecewise constant approximation, it only
needs to store subinterval boundaries and the cumulative probabilities of subintervals. If a

monotone subinterval [b,,b,] is assumed to be uniform, it is clear that the maximum
absolute approximation error can be minimized to |f(b)-f(b /2 when

(f(b,)+ f(b,))/2 is used as constant for that subinterval.

43

(a) (b)
Jtb) fb)
J(b)+f(h,) J(b)+1(h,)
2 2
_f!\(i");) f(b;)

b b ,
Figure 4.1. Uniform assumption (piecewise constant approximation) of subintervals for (a)

the concave case and (b) the convex case

For a set of subintervals, the region below the piecewise constants can be assumed
as the weights of subintervals. Therefore, the cumulative probabilities of the subintervals
can easily be computed with normalization and summation. Since the only distribution in a
single subinterval will be the uniform distribution, no additional data is needed to be stored
other than the subinterval boundaries and the cumulative probability vector. In addition, a
guide table must be stored for the Indexed Search, which is two times larger than the
number of subintervals. Insignificantly, 3 more cells are required for the subinterval vector,
the cumulative probability vector of the subintervals and to store the number of
subintervals for quick calls. Total data to be stored in the table, then, can be computed in

bytes by the following formula:

TS = (2N +2)o, + (2N +1)b, =8x (2N +2)+4x (2N +1)= 24N + 20

where N represents the number of subintervals and b, and b, respectively represent the

occupied memory for double and integer variables in bytes.

44

4.2. Piecewise Linear Approximation of the Density

The piecewise linear approximation makes linear approximation at the subinterval
borders. Thus, we use secants in each subinterval to obtain a continuous density of
piecewise linear. This is also necessary prevent negative approximated densities over the
tails (See Figure 4.3).

However we could do a better linear approximation by using Chebyshev nodes as
interpolation points instead of using subinterval borders (See Section 5.1). But the main
reason of the linear approximation is to create a simple and fast algorithm. Using
Chebyshev nodes spoils the simplicity and the continuous property of the density (See
Figure 4.2). It also causes to have negative approximated densities over the tails (See
Figure 4.3).

(a) (b)

Sl
Eimae | '

Optimal
Approximation

With .
Chebyshev Jiby)
Nodes

22 I S——.

fib)

b b+ b, b, by b+ b, b,

Required S

Approximation ! |
To Form A fib) }-----
Trapezoid !

by bib, b, by by b, b,

Figure 4.2. (a) The optimal linear approximation over Chebyshev nodes with scale

[0.1464466, 0.8535534] (b) Required approximation over the boundaries to prevent from

ruining the trapezoid

45

Figure 4.3. (a) Negative density is obtained over a part of the domain by using Chebyshev
nodes without scaling (b) Nonnegative density is guaranteed with the secant

Such negative densities in Figure 4.3 ruin rectangular region in the subinterval.
Since we apply the inversion to generate random variates, the most important
computational difficulty comes as a result of having negative values over the cdf. Those
conditions require additional data on the setup table, which will slow down the setup
algorithm and consume from the memory. On the other hand, using the secant as the
approximated density will increase the number of subintervals, since the maximum
absolute approximation error is higher than the maximum absolute approximation error
obtained with Chebyshev nodes in the same subinterval. Yet, both the setup and the

sampling algorithm will be executed with simpler operations.

When the memory occupation is considered, the difference between the piecewise
constant and the piecewise uniform approximations is the additional probability vector
which holds the probabilities of the rectangular regions and an indicator vector which
defines the type of the triangular region. The total size of the table then can be computed

by the following formula:

TS = (3N +2)b, + (3N +1)o, =8x (3N +2)+4x (3N +1)=36N + 20

where N represents the number of subintervals and b, and b, respectively represent the

occupied memory for double and integer variables in bytes.

46

For both the piecewise constant and the piecewise linear approximations, flexible
subintervals can be created with only one parameter. A subinterval can simply be accepted
if it has a smaller maximum absolute approximation error than the critical absolute
approximation error. Otherwise, it should be divided into two subintervals, both of which
should be checked by the same method.

4.3. Memory Occupation and Approximation Performance

We have coded functions in R that evaluates the total table size that is used and the

mean and the standard deviation for L, error for piecewise constant and linear

approximations. These codes are shown in Appendix C.

Table 4.1 shows the number of subintervals and the total size of the tables of the
piecewise constant and the piecewise linear approximations for different parameters and
distributions. If the number of subintervals are higher than 10000 for a parameter value, it

was assumed unnecessary to analyze the corresponding data table.

Table 4.1. Number of subintervals and the total size of tables of the piecewise constant and
linear approximations for different parameters and distributions

Degree of

ApProx. Piecewise Constant Approximation Piecewise Linear Approximation

Critical

Abs. Err. 1.E-02 1.E-03 1.E-04 1.E-04 1.E-05 1.E-06 1.E-07

N 58| 1412] 568| 13652] 6012| 144308] 140] 5060f 392| 14132] 1258| 45308) 4288| 154388
C 80| 1940] 454| 10916] 4844| 116276 170] 6140] 464| 16724) 1502] 54092) 4478| 161228
E 76| 1844] 708| 17012] 7354| 176516f 106] 3836] 320| 11540) 1040] 37460] 3247| 116912
G 40 980] 401 9644] 3949 94796] 105| 3800] 331] 11936] 936 33716] 3263] 117488
Bl 292 7028) 2962| 71108} - - 224] 8084) 815| 29360] 2721| 97976] 7104| 255764
B2 963| 23132] 8900| 213620] - - 496| 17876] 1719| 61904| 5216| 187796] - -

Table 4.2 shows L, error of the piecewise constant and the piecewise linear
approximations for different parameters and distributions. Those values were obtained with
simulation and the importance sampling with random variates of the original density and of

the uniform density between cutoff points (See Section 6.1.3).

47

Table 4.2. Simulation results for evaluating L, error for the piecewise constant and linear

approximations with critical absolute error, ¢, =10~ (10~ for B1 and B2 distributions)

and 1% order approximation with critical absolute error, g, =107 (107 for B2

distribution)

Piecewise Constant Approximation-1.E-04

Piecewise Linear Approximation-1.E-07

Original IS Dens.

Uniform IS Dens.

Original IS Dens.

Uniform IS Dens.

Mean L,

Std. D. L,

Mean L, |Std. D. L,

Mean L, |Std. D. L,

Mean L,

Std. D. L,

3.28E-04

5.08E-03

3.33E-04 [2.86E-04

2.74E-07 |2.21E-06

4.23E-07

2.70E-07

8.43E-03

6.77E-02

2.38E-03 |1.04E-01

1.85E-04 |6.07E-03

2.35E-04

3.01E-03

5.02E-04

1.60E-02

4.40E-04 [4.42E-04

3.40E-07 |3.34E-06

6.61E-07

3.98E-07

6.59E-04

1.45E-02

5.42E-04 |4.73E-04

1.13E-06 |5.55E-05

7.55E-07

4.69E-07

3.76E-04

2.57E-03

3.61E-04 |2.26E-04

4.27E-08 [1.69E-07

4.25E-08

2.40E-08

VBOIMO|Z

N+~

1.73E-04

1.55E-03

2.38E-04 (1.48E-04

2.37E-07 |6.56E-06

2.06E-07

1.31E-07

According to Table 4.1 and 4.2, the performance of

the piecewise constant

approximation is very bad even with the table sizes of more than 100 kilobytes. The

piecewise linear approximation is better and can achieve a reasonable approximation error

with a magnitude of 10~ but only with a large number of subintervals.

Even though the generated random variates follow the desired distribution for both

of the methods, those methods can be improved with higher order approximations and

subinterval decomposition (See Chapter 6). Then, a reasonable approximation error can be

achieved with a small number of subintervals, consequently with less data computed and

stored in the setup.

48

5. BASICS ON NUMERICAL APPROXIMATION

In Chapter 6, the Polynomial Density Inversion method will be explained, which is
a random variate generation method based on the approximation of the density. Polynomial
approximation will be used since there are simple approximation methods and root finding
algorithms, which can be used in the method in an efficient way. Therefore, in this chapter,

some basics on polynomial approximation are presented.
5.1. Newton Interpolation Polynomial

There are many types of interpolation methods in the literature. The Newton
Interpolation is an efficient and fast method which is applicable for any type of single
variable function. The unique polynomial obtained within the method; Newton
Polynomial, which is named after its inventor Isaac Newton, is the interpolation

polynomial for a given set of interpolation points in the Newton form.
Newton Form is a linear combination of Newton basis polynomials (Burden and

Faires, 1997). For instance, given a set of k+1 interpolation points

(X9, Yo) (X0, Y1) (X, Vi), where no two x; are the same, the unique polynomial in

Newton form can be expressed as:
N(x)= Zﬁzoajnj(x)

with the Newton basis polynomials are defined as:

and the coefficients are defined as:

49
where

Yo m=0,1....kand n=0
d =4d,.5-d 50,

m,n
Xn = Xnn

m=1....kand n=1...,m (5.1)

is the notation for divided differences with the restriction n < m. Therefore, the Newton

polynomial can be written as:

N(X): do,o +d1,1 (X_Xo)+d2,2 (X—XO)(X—Xl)
55 (X=X) (X=X) (X =%,)+ ...
+dy (X= %o)(x =%)...(x=x, ;)

Nevertheless, the formulation does not yield the desired coefficients {c,,c,,...,c, }

of the Newton Polynomial. Yet, with a little computation by using divided differences, it is

easy to obtain those coefficients under a programming environment by the following

formula:
C, :tho D.;Si; (Xgs Xpreees Xy) (5.2)
where
D, =(_1)j(di+j,i+j)
and
S‘*j(xo’xl""’xk):{i (Xgr Xgrever X,) :ig’.“’taqdarfd:'o— i
Div (Xos Xgseees X, =0,....k- j=L... k—i

50

Here the notation smyn(xo,xl,...,xk) expresses the summation of the element
multiplication of the “m-element subsets” of the first n elements of the vector

(Xgs Xgreenr Xy)

m>norm<0

0
Smn (X0 Koo X) =1 D m=1
X

0 Sm1na (Xts Xgseees X)+ Spuna (X0s X0, X,) Otherwise

It is clear that, in a programming environment, coefficients of the Newton
interpolation polynomial can be obtained by recursively executing sub-functions. Thus, the
computation of higher order approximations becomes expensive. In approximate random
variate generation methods, the density should be approximated with piecewise

polynomials, which have a degree of 4 or 6 at most.
5.1.1. Choosing Interpolation Points

In numerical analysis, Runge’s Phenomenon is a problem that occurs when using
polynomial interpolation with higher order polynomials. It was discovered by Carl David
Tolme Runge (1901) when exploring the behavior of the error when using polynomial
interpolation to approximate certain functions (See Figure 5.1). If such functions are

interpolated at equidistant points x, in the interval (b;,b,) such that:

X, =D, +(i—1)b’;b'

,iefl2,...,n+1

with a polynomial P, (x) of degree smaller than or equal to n, the resulting interpolation

oscillates towards the boundaries of the interval. Even it is expected for the maximum
interpolation error to converge to zero as the degree of the polynomial increases, according
to Runge’s phenomenon, interpolation error tends towards infinity because of that

oscillation.

51

5™ Order Approximation 9™ Order Approximation 13" Order Approximation

/\ /\
NN / \ _ \ ,

Figure 5.1. llustration of the 5™, 9™ and the13™ order approximations for Runge’s function

f(x)=1/(L+25x?) with equidistant points

The main reason of that problem is easy to analyze. It is known that the error

between the function itself and the interpolation polynomial of order N is bounded by the

N™ derivative of the original function. Since, the magnitude of higher order derivatives of
certain functions, which Runge has proposed, gets even larger, the upper bound for the

error between interpolating points when using higher order polynomials becomes larger.

1
f =
) (L+25x)

50x 50
frx)=-—20 f(~1)f === ~0.0740
) (1+25x2f e 26°

2
f7(x) = 5000 (L+25%2)-50(1+ 25x?) 1) = 96200

~0.2105
(1+25x%) 6

Chebyshev points or Chebyshev nodes are a set of interpolation points with a
particular sequence and are used for polynomial interpolation (Burden and Faires, 1997).
Because the resulting interpolation polynomial minimizes the problem of Runge’s
Phenomenon and is almost optimal, in our algorithm, the approximate density is
interpolated in Chebyshev points, which are rescaled in each subinterval. It’s a fact that the
oscillation occurring near the boundaries can be minimized by choosing interpolating
points more frequent nearby the boundaries and less frequent in the center. Chebyshev

nodes have this kind of property, such that the maximum error is guaranteed to diminish

52

with increasing polynomial order. Another method to cope with Runge’s phenomenon is to
approximate the function with piecewise polynomials. This will also be used in the

Polynomial Density Rejection algorithm (See Chapter 6).

In order to obtain an interpolation polynomial with degree N in the interval [—1,1],

we need N +1 Chebyshev nodes such that:

We rescale those points over an arbitrary interval [b,,br] by the linear

transformation.

~ 1 1 2i+1 .
X; _E(br +b,)+5(br —b,)cos(2n+27rj, ief0,...,n}

5" Order Approximation 9™ Order Approximation | 13" Order Approximation

. N / "\ / | \‘-
e ' ‘ S _ _#__..//. _H__ _ _._f‘“/ k

Figure 5.2. llustration of the 5™, 9™ and the13™ order approximations for Runge’s function

f(x)=1/(L+25x?) with Chebyshev nodes

However, we also use the boundaries {b,,b, } as interpolation points, since we want

1™y

no approximation error at the interval boundaries. This is because, for the approximate
random variate generation methods, the approximated density should be consistent for
neighboring subintervals on their intersection points and possible negative approximated

densities must be eliminated over the tails like it was done for the piecewise linear

53

approximation (See Figure 4.3). Therefore, we need an appropriate scaling, such that the
first and the last interpolation points are equal to the boundaries. In order to do that, we

need the normalized distances between interpolation points:

(i V4 .
6 :sm(N +1jtan(2N +2j, ie{0,...,n} (5.3)

Then, we can use these distances, which sum up to one, as a scale while calculating

actual interpolation points in the interval [b,,b,].

X' =b +(0, -b)>, 6, ic{0,...n} (5.4)

See Figure 5.3 for the illustration of the 5, 9™ and the13™ order approximations for

Runge’s function with rescaled Chebyshev nodes.
5.1.2. Interpolation Polynomial Error Analysis

As it was mentioned before, in order to cope with Runge’s Phenomenon, we need
to use Chebyshev points for interpolation. If it is not enough for a reasonable
approximation, we need to split the subinterval into two parts.

Needless to say, that a good approximation has a small interpolation error. To

evaluate the performance of the approximation, we need to look at the maximum absolute

error & through the subinterval [b,,b, |, which is:

where P, is the interpolation polynomial of order N of the original function f .

Since the function and the interpolation polynomial are continuous over the

interval, the maximum error can be obtained by checking the local extrema by taking the

54

first derivative of the difference and equating it to zero. However, solving this equation

with N —1 roots can be slow.

However, we can construct control points inspired by the Chebyshev points, which

may not give the exact solution for the problem but still will be close to the local extrema

(Burden and Faires, 1997).

For evaluating the error of interpolation polynomial of order N in the interval

[b

1 ™r

b,], we need N control points such that:

(N +1-1i)

v

I)+ (br ;bI)COS(

=1...,N (5.5)

Then we can find the approximated maximum absolute error between interpolation

polynomial and the original function with the following formula.

&'= max |f (%,)- Py (%

(5.6)

5™ Order Approximation

13™ Order Approximation

A\

Figure 5.3. llustration of the 5™, 9™ and the13™ order approximations and control points

for Runge’s function f (x)=1/(L+ 25x?) with rescaled Chebyshev nodes

55

As a result, an approximation is good if the approximated maximum absolute error
&' is smaller than or equal to a critical interpolation error, which is a parameter that can be

selected before the execution of the random variate generation algorithm.

Table 5.1. Maximum absolute approximation error with rescaled Chebyshev points at
Chebyshev control points (CCP) and 10000 equidistant control points (ECP) in the

subinterval [0.4,0.5] for different degrees of approximations and different distributions

Degrees of Approximation Polynomial
0 1 2 3 4 5 6 7
N CCP [8.1024E-03 |3.5923E-04 |3.6746E-06 [3.0121E-08 |J4.4483E-10]2.0273E-12 |3.9857E-14 []1.1102E-16
ECP |8.1024E-03 |3.5929E-04 |3.6747E-06 [3.0121E-08 |4.4483E-10 [2.0274E-12 |3.9857E-14 |]1.6653E-16
c CCP]9.8786E-03 |1.8027E-04]1.0641E-05 J1.1482E-07 |J2.7909E-09]9.9275E-11 |5.9297E-13 []4.0801E-14
ECP |]9.8786E-03 |1.8130E-04 |1.0641E-05 J1.1482E-07 [2.7911E-09 [9.9275E-11 [5.9297E-13 |]4.0801E-14
E CCP |3.1895E-02 |79720E-04]|5.1507E-06 [2.8712E-08 |1.3434E-10 |}5.3590E-13 |1.8874E-15 |1.1102E-16
ECP |[3.1895E-02 |7.9726E-04 |5.1508E-06 |2.8712E-08 []1.3434E-10 |[5.3602E-13 [1.9984E-15 [2.2204E-16
G CCP |1.1095E-02 J1.6111E-04]9.1196E-06 J1.2430E-07 |J1.0592E-09 |6.6651E-12 |}3.3383E-14 |1.5266E-16
ECP |1.1095E-02 |1.6195E-04 |9.1200E-06 |J1.2431E-07 []1.0592E-09 [6.6651E-12 |3.3404-14 1.9429E-16
B1 CCP [9.9300E-02 J4.7156E-02]1.1354E-03 [5.0717E-05 |J1.5061E-06 |J2.6645E-15 |3.7748E-15 |2.6645E-15
ECP [9.9300E-02 |J4.7197E-02 |1.1359E-03 [}5.0721E-05 []1.5061E-06 [5.3291E-15 [5.9952E-15 [6.2172E-15
B2 CCP]1.4391E+00 |1.5762E+00 [2.5628E-01 J4.6967E-02 |8.0515E-03]9.2686E-04 |1.8114E-04 []1.2375E-05
ECP |J1.4391E+00 |1.6200E+00 J2.5656E-01 J4.7001E-02 [8.0515E-03 [9.2713E-04]1.8114E-04 |]1.2378E-05

Table 5.1 shows how the maximum absolute approximation error behaves in the
subinterval [0.4,0.5] on Chebyshev control points and 10000 equidistant control points for
approximations of degrees zero to seven and different distributions. It is clear that checking
the error on Chebyshev control points is almost as precise as checking it on 10000
equidistant control points. Thus, it is better to use Chebyshev control points for a fast

control. Also, in general, the results indicate that the maximum absolute error is roughly in

the magnitude of order 107", where N is the degree of the approximation polynomial.
5.2. Root Finding with Brent’s Method

Assume that we have a polynomial quasi-density, which is strictly positive over the

domain [bI ,br]. Then it is easy to evaluate the cumulative quasi-density by integration.

Since we are not able to find the inverse cdf, we apply a search algorithm to solve the
equation of the inversion method. Brent’s Method (1973) is a good numerical search
algorithm with a guaranteed fast convergence. It is a combination of popular root-finding

algorithms like bisection method, secant method and inverse quadratic interpolation. It has

56

the reliability of the bisection method, and the convergence is often as quick as the

convergence of the other two methods (Brent, 1973).

Require: Interval boundaries {a,b} such that only one root of the equation exists in the
interval [a,b] and f(a)f(b)>0, a subroutine for continuous function f ; cdf of the quasi-
density.

Output: One and the unique real root of f(x)=0.

1: Calculate f(a).

2: Calculate f(b).

3. if |f(a)<|f(b) then
4: Swap a and b.
5. Setc«a.
6: Set m«1.
7: loop
8: if f(a)= f(c)and f(b)= f(c) then
o <o af(b)f(c) bf(a)f(c)
(f (a); (f ()t;)é; (a)-f(c) (f(b)-f(a)f(b)-f(c)
+ (f(c)— f(a))(f (c)— f()) [* inverse quadratic interpolation */
10: else
11: s« b-f(b) f(bt;:?(a) /* secant rule */

12: if s is not between (3a: b) and b or (m=1and [s—b|>|b—c|/2)

or (m=0 and |s—b|>|c-d|/2) then

13; s 2tb
2

14: Set m «1.

15: else

16: Set m«0.

17: Calculate f(s).

18: Setd «c.
19: Setc«D.
20: if f(a)f(s)<0 then

21: Set b «s.

22: else

23: Set a <« s.

24: if [f(a)<|f(b) then

25: Swap a and b.

26: if f(b)=0 or [o—a/<& then

27: return b. /* return the root */

Figure 5.4. Brent’s Method

57

6. POLYNOMIAL DENSITY INVERSION

Approximate methods in random variate generation, commonly use the piecewise
constant (uniform) or piecewise linear (1* order) approximations. These methods are based
on the piecewise linear approximation of the cdf and the density. They can, thus, be seen as
the Ahrens or the Triangular Ahrens Method without rejection.

Although, these methods are suggested in parts of the literature, they have a large
maximum absolute approximation error or require too many subintervals. The aim of the
Polynomial Density Inversion algorithm is to obtain a better approximation, without

increasing the number of subintervals and influencing the speed of the algorithm.

6.1. Basics of the Algorithm

The Polynomial Density Inversion algorithm is based on the decomposition method
and the polynomial approximation of the density. Since polynomials are easy to integrate
and easy to invert with search algorithms, the inversion method can easily be applied to

polynomial quasi-densities.

After dividing the domain of the distribution in many subintervals, for each
subinterval, a trapezoid can be defined below the density. This trapezoid actually consists
of a rectangular (uniform) and a triangular distribution. Since generating random variates
from these distributions is easy and fast, trapezoids should cover most of the region below
the density. Then the rest of the subinterval region, which is below the density and above
the trapezoid, can be approximated with a polynomial. The probability or the weight of that
polynomial region can easily be obtained by integration.

As short subintervals with monotone densities are chosen, the behavior of the
density gets closer to linear. For such densities, smaller polynomial interpolation errors are
available as the number of interpolation points increases. That allows us to obtain a
maximum absolute approximation error which has a magnitude of order 10~ with just

five interpolation points (See Table 5.1).

58

Of course, to execute the sampling algorithm, we need a table of subinterval
boundaries and cumulative subinterval probabilities, the areas of the rectangular and the
triangular regions and the coefficients of the polynomials. As the number of interpolation
points increases, the number of interpolation coefficients also increases. That results in a
data table of undesirable size. So, a wise decision should be made about the number of
interpolation points, which should result in a reasonable interpolation error and a small

table, which will speed up the setup and occupy less memory.

Since the sampling algorithm will successfully generate a random variate of the

density each time it is executed, there will be no need for retrying.

6.1.1. Handling Monotone Subintervals

For a subinterval, the probability for the polynomial part must be as small as
possible. Since it can be handled only with simple arithmetic operations, generating
random variates from rectangular (uniform random variates) and triangular (maximum or
minimum of two uniform random variates) distributions are not expensive. The triangular
distribution requires two uniform random variates. On the other hand, calling the cdf of a
polynomial density and executing a search algorithm with many repetitions takes a

significant time. So we need to maximize the trapezoidal region below the density.

6.1.1.1. Concave Case. It is easy to see that the maximum trapezoidal region can be
obtained by a secant which intersects the density at the subinterval boundaries for concave
subintervals (See Lemma 3.2).

59

(a) Increasing (b) Decreasing
Jib,) R N — -
. ar . ay
N N0
Subinterval
aﬁ» (-‘R
b b, by b,
A I |
. b-b, b-b,
J®)
b b, b, b,
2
b-b
F(x) J
X
e

Figure 6.1. Decomposition of concave subintervals

For the subinterval [b b] with an increasing concave density, the region below the

1 ~r
density of the left boundary f(b,) describes the uniform distribution with a probabilistic

weight of its proportional area. The triangular region above is stored by its parameters

(b,,b,,b,). It is equivalent to the distribution that is generated by the maximum of two

17~ Mr
uniform random variates in the subinterval (See Lemma 6.2). The remaining concave
region must be decomposed by subtracting the secant, and the interpolation points must be
well chosen. An interpolation algorithm with k +1 interpolation points compute the
polynomial coefficients (co,cl,...,ck). Integration of this polynomial within the interval
[b,,b,] is necessary to evaluate the probabilistic weight of this region.
The only difference for decreasing concave densities is caused by the triangular

distribution. The upper bound for the rectangular region is now the density value of the

60

right boundary f(br). On the other hand, since the triangular distribution must be
decreasing as well, the parameters will change into (bI b, ,br). The distribution is actually

equivalent to the minimum of two uniform random variates in the subinterval.

The concave subinterval, then, can be represented by the composition formula:

f(x)=w, f, (x)+w, f,(x)+w,f (x)

where:

wi:L, iefrt p}
a, +a, +a,
. f(b,)(b, =b,) increases (6.1
f(b,)(b, —=b,) decreases
f —f —
t:| (b,)—f(b)(b, —by) 62
2
a, = bbr Zikzocixi dx (6.3)
1
f (x)=
0=yt
2{x '2) increases
ft(x): (br_ |)
2 br B)
decreases

6.1.1.2. Convex Case It is desirable to find decomposition routines which are similar to

each other for all types of subintervals. However, for the convex case, it is not a good idea

to construct a trapezoid using a tangent to the density in the center point of the interval.

61

For instance, in the tail parts of the normal distribution, a tangent constructed in the
center point intersects with the x-axis. This is undesirable since it ruins the trapezoidal

shape and it would require additional constants.

(@) (b)

a wb b a ath b

Figure 6.2. (a) Tangent in the center point ruins the trapezoid. (b) Tangent in the boundary

with the smaller density value

Lemma 6.1: Let f be a density function that is strictly convex and monotone over the
domain [b,,b,]. In order to construct a trapezoid below the density, the tangent for the

trapezoid must be constructed in the boundary, which has the minimum density value.

Proof. Let f be a monotonic density. Then any tangent constructed in a point X will not

intersect with x-axis in the subinterval [b b] if the tangent has the following property:

11 ™r

g (x)>g,(X)=f(X) forvxelb,b,]

17 ™r

That is guaranteed if X is chosen as the boundary, which has the minimum density

value.

62

a) Increasin (b) Decrasin
g g
(Y S t-----
ap a,
Sb)p----- = St °r
Subinterval
ap Ay
b b, b b,
. T
b-b b-b
yALY,
b, b, by b,
2 N 2 |
b-b b-b
w1 T ING
b b, b, b,
X
£

Figure 6.3. Decomposition of convex subintervals

The difference in the decomposition of increasing convex subintervals is the
triangular region; it is below the tangent, which is constructed in the boundary that has the
smaller density value. Even if the shape of the polynomial region changes into convex
densities, the idea remains the same. Again, the decomposition of decreasing convex

densities has the same modifications as the decomposition of decreasing concave densities.

Then the composition formula for the concave case, Equation 6.1, 6.2 and 6.3, can
also be used for convex subintervals, only Equation 6.2 has to be replaced by:

, . 2
f (bl)(br b,) increases

2
a = , 2 (6.4)
f (br)(zr -b) decreases

63

6.1.2. Monotone Triangular Distribution

The triangular distribution is a continuous probability distribution with lower limit

a, mode ¢ and upper limit b [e].

M fora<x<c
(c-a)b-a)

f(x;a,b,c)= % forc<x<b
0 otherwise

In our algorithm, the monotonic triangular distribution is used as one of the limits
and the mode are the same. In that case, we have a new density function with two
parameters only; the lower and the upper limit, and an index to express whether it is an
increasing or a decreasing density.

2(x—a)
as<x<b

fl (X; a, b) = (b - a)2

0 otherwise

2(b—x)

as<x<b

fo (X; a, b) = (b - a)2

0 otherwise

Lemma 6.2: The maximum of two independent and identically distributed uniform

random variates over the interval [a,b] is distributed with the density of an increasing

triangular distribution. Then the minimum of two independent and identically distributed

uniform random variates over the interval follows a decreasing triangular distribution.

Proof. Let x be a certain random variate obtained by taking the maximum of two
independent and identically distributed standard uniform random variates, u, and u,, over
the domain [a,b]. The probability of obtaining x can be evaluated by considering two

cases.

64

P(x)= P(u, = x)P(u, < x)+ P(u, = x)P(u, < x)

p(x) 1 x-a 1 x—a:2(x—a2):fl(x;a’b)
b-ab-a b-ab-a (b-a)

If the minimum of those uniform random variates is considered, then the

probability of obtaining x can be evaluated by the following equation:

P(x)= P(u, = x)P(u, > x)+ P(u, = x)P(u, > x)

1 b-x 1 b-x 2(b-x)
P(x) = _ _f (xab
(x) b_ab-a b-ab-a (b-a)’ »(x;a,b)

There are other ways of generating random variates from monotone triangular
distributions. Of course the inversion method can be used. Since the cdf of the monotone
triangular distribution is a second order polynomial and easy to invert using a quadratic

equation, a random variate can be generated with only one uniform random variate.

(x? - 2ax)
X 7 a<x<b
F(xab)=1 (b-ay
0 otherwise
(be—_xz) asx< b
Folcab)=1 poay "
0 otherwise

It is easy to show that, for the increasing triangular distribution, solving the
quadratic equation of the cdf with a uniform random variate is equivalent to taking the
square root of that uniform random variate and rescale it over the interval. On the other
hand, for the decreasing triangular distribution, it is equivalent to take the square root of
the uniform variate and rescale it over the subinterval after subtracting it from one. This
alternative method does not require an additional uniform random variate but requires a
call to the square root function. It must be tested whether the computation of the square

root or generating another random variate is expensive.

65

6.1.3. Polynomial Approximation and Approximated Density Error Analysis with
Importance Sampling

The piecewise approximations may result in the best possible performance by using
Newton interpolation and Chebyshev nodes for a fixed subinterval. Still the approximation
performance may differ over the subintervals depending on the density. In order to
evaluate that performance, we need to integrate the absolute error over the whole density.

We use the L, error defined by:
bri| =
L, —error = J.b ‘ f(x)- f(xj dx

Here, f(x) denotes the approximated density function. The approximation simply
can be done without dividing the subinterval into rectangular and triangular regions, but it
can be done afterwards too. It is hard to compute the L, error in closed form. Yet, it is

possible to evaluate it by simulation.

The problem can be handled by using importance sampling. Since there are other
methods of generating random variates from certain densities without approximation (e.g.
the Triangular Ahrens Method), we can generate random variates from an appropriate
importance sampling distribution and calculate the absolute approximation error of the
Polynomial Density Inversion method for each of them. After dividing each absolute error
by its corresponding importance sampling density, the mean and the variance of those will

give an insight about the L, error. Following integration defines the L, error with the

importance sampling density g(x).

L, —error = j:‘ f(x)- f(x)‘ dx = J':—)(g(x)dx = J‘:i”q(x)g(x)dx

‘F(x)— f(x
9(x)

It is possible to show that the variance of the results is minimized for the

importance sampling density g*(x):

66

(00T

'ﬂq(x)f (x)dx

In practice we cannot use this result, since the denominator is unknown. But we

should remember the rule that the importance sampling density g(x) should mimic the

behavior of g(x)f(x) (Hérmann, 2007).

Evaluating the L, error, yet, is too expensive for testing the acceptance of
piecewise approximations. Because a shorter setup time is preferred, it is appropriate to use
some heuristics in order to test the error of piecewise approximations in the setup. These

heuristics are difficult to interpret but easier to calculate.

The heuristics for creating flexible subintervals will be explained in the setup

algorithm. L, error obtained with these heuristics over different densities will be examined

after the whole algorithm is explained.
6.2. The Algorithm

The Polynomial Density Inversion algorithm consists of two parts. Initially, a setup
algorithm must calculate the necessary tables and then random variates can be generated

by the sampling algorithm.
6.2.1. The Setup Algorithm

To run the sampling algorithm, initially a table must be created and the required
constants for each subinterval must be stored in it. This is done in a setup algorithm. Below
are the basic required elements of that table.

e A vector that holds the subinterval boundaries.
e Cumulative distribution probabilities for each subinterval.
e Cumulative distribution probabilities of rectangular and triangular regions for each

subinterval.

67

e A table that holds the coefficients of approximation polynomials of order K, for
each subinterval.
e A guide table to speed up discrete subinterval selection with the Indexed Search

method (two times larger than the number of subintervals).

In order to compute the constants of the table, initially the density must be divided

into reasonable subintervals with certain rules.

6.2.1.1. Phase I: Flexible Subinterval Creation. The aim of creating those subintervals is to

decrease the approximation error and probability of the polynomial region. For each

monotone interval [b,,b, |, three different values are computed in order to compare them

with critical values of subinterval acceptance.

Linear Error (g): It is the difference between the density and the secant on the

center point of the subinterval.

ng(br+b,j_f(br)+f(b,) 69
2 2
(a) ()
j(b:) f(br) ____________________________
b, +b
257
Jb,) +f(h) Jitb,)+1th)
2 2
j(n.'),-ﬂ);)
P
ftb) fth)
b b, +b b, b b, +by b,
2 2

Figure 6.4. (a) Linear error in concave subintervals (b) Linear error in convex subintervals
As this value gets smaller, the density behaves closer to linear. Thus, a better
approximation can be obtained and the rectangular and the triangular regions become

68

relatively larger. That decreases the probability of generating from the polynomial region
in the sampling algorithm. So, it is necessary to compute ¢ and compare it with a critical
value ¢, which is defined by the user. That is also a subinterval acceptance criterion for

the piecewise linear approximation algorithm, which approximates all subintervals as a

single trapezoid with only the rectangular and the triangular regions (See Section 4.2).

Relative Linear Error (r): In the tails of unimodal distributions, even if we have a
small linear error, the convex behavior of the density may not allow us to obtain a good
polynomial approximation. If the local minimum of the subinterval is much smaller than
the local maximum, it may not be possible to obtain a good approximation. Therefore, we

need to calculate a relative error, r, which should be smaller than the critical value, r,.

r=— % (6.6)

In the tails of unimodal distributions, rectangular and triangular regions will still
have a high probability and it will be possible to obtain good polynomial approximation, if

r. is selected small enough.

However, there is still need for the linear error check since the relative error check
is not sufficient to create subintervals over the main part of the distribution. Therefore, the
linear error and the relative error check complete each other in order to create flexible

subintervals in an efficient way.

Polynomial Error (¢7): Although the linear error and the relative error checks are
sufficient to create flexible subintervals, they do not give a clue about the approximation

errors, which should have reasonably small values.

The polynomial error is hard to calculate. It can only be calculated after calculating
interpolation of the approximate polynomial. Therefore, it should only be computed after

the linear and the relative linear errors were computed and seemed acceptable. It is

69

necessary to use the formulas (Equation 4.1, 4.2, 4.3 and 4.4) in Chapter 4 to calculate

polynomial error, &', using the Chebyshev control points, X;. Then we need to compare

the polynomial error with its critical value, &', defined by the user.

4 e05

2 e-05

Polynomial Region
Approximation Error
0 e+00

-2 e-05

-4 e-05

1 | 1 T T T
0.0 0.2 04 06 0.8 10
Subinterval [0,1]

Figure 6.5. Polynomial region 4™ order approximation error of standard normal distribution

over the subinterval [0,1] with Chebyshev control points

{0.0746746,0.3375402,0.6624598,0.9253254)

As it was previously mentioned, the polynomial error should be small enough to get

a good approximation of the density. Then the generated random variates really follow the
distribution of the given density.

The logic of flexible subinterval creation is simple. Considering local extrema,
cutoff and inflection points as an initial set of subinterval boundaries, we need to question

the acceptance of each subinterval by their &, r values first, and then by the &' value.

70

Require: Probability density function f(x), the first derivative of the pdf f'(x), critical
value ¢, for the difference between the density and the secant on the center point, critical
value r, for the relative proportion of the density-secant error over the density, critical
value &, for the maximum interpolation error, order of interpolation polynomials K, a
sequential set Z of all local extrema, cutoff and inflection points (z,,2,,...,2,,) from the

smallest to largest, which will also help to explain the behavior of the density.

Output: A vector that holds sequential flexible subinterval boundaries (b,,b;,...,b,), and
its length.

1: Seti«O0.

2: Set b, « z

2: while b, #z_do

3: Compute ¢ for subinterval [b,,z,.,]. /* use Equation 6.5 */
4: Compute r for subinterval [b;,z,,,]. /* use Equation 6.6 */
5: if e<e, and r <r, then
6: Interpolate K +1 Chebyshev nodes over [b,,z,.,].
/* use Equation 4.1, 4.2, 4.3 and 4.4 and obtain coefficients */
7 Compute &' for subinterval [b,,z,.,]. /* use Equation 4.5 and 4.6 */
8: if &'<¢gl then [* use subinterval and proceed */
9: b, <z,
10: P« i+1
11: else /* divide subinterval */
12: Add b'+—22'*1 to set Z and enumerate the elements.

13: else /* divide subinterval */

b +z
14: Add —L to set Z and enumerate the elements.

15: return i +1.

Figure 6.6. Polynomial Density Inversion setup - flexible subinterval creation

71

In the end of the algorithm, the number of subintervals is returned together with the

vector of subinterval boundaries. These results are used as input in the next phase.

6.2.1.2. Phase Il: Data Table Creation. After defining the boundaries of reasonable

subintervals in Phase I, it is now possible to use them to compute the required data table
for the sampling algorithm. Phase Il also requires the probability density function and its
first derivative for the table creation process. Again, a vector that holds all inflection points
and the local extrema will be needed to analyze the behavior of the density, since the
calculation of table elements will depend on the behavior of the subinterval. This vector
will help to introduce easy to evaluate functions for table elements ca, (unnormalized

)~ @

cumulative area of the subinterval) and coi(0 co ,...,coi(K) (coefficients of approximated

polynomials of order K) for subinterval i =1,...,N .

ca;, (unnormalized cumulative area of the subinterval) will help to calculate the

cumulative probability vector which will be used in the Indexed Search algorithm to
choose a subinterval and a region with a uniform random variate. Actually, the cumulative
area vector is also useful while it is in the unnormalized form. But since less mathematical
operations in the generation algorithm are preferred, this vector is normalized in the next

step of phase I, by dividing all elements with its last element. After initializing ca, to 0,
other values of cumulative areas can be evaluated with the formula;
ca, :zim:l(a”+ati+api):cam71+arm+atm+apm m=1,..,N (6.7)

where index i shows that the corresponding value is related with subinterval [b, ,,b,].

As the last step, a guide table should be created by using the normalized cumulative
area vector. In our applications, this guide table will be two times larger than the number of
subintervals (Hérmann et al., 2004).

72

Require: Probability density function f(x), the first derivative of the pdf f’(x), a vector
that holds cut-off points, all local extrema and inflection points (z,,2,,...,2,,) which will

explain the behavior of the density, a vector of length N +1 that holds sequential

subinterval boundaries (b,,b;,...,b,), order of interpolation polynomials K .
Output: A vector that holds the cumulative probability of each subinterval (P,,P,,...,P,),

a vector that holds cumulative probability of rectangular regions in each subinterval

(rc,...,rcy), a vector that holds cumulative probability of triangular regions in each
subinterval (tr,,...,tr,), a vector that holds K +1 coefficients for each polynomial of order
K in each subinterval (col(k),coz(k),...,coN(")) for k=0,1...,K, a guide table of size
2x N for the indexed search in subinterval selection (g,,..., 94)-

1. Store b, for i=0,...,N

2: Seti<«1,ca,«0.

3: while i< N do
4: Compute a,; and a,;. /* use Equation 6.1, 6.2 and 6.4 * /

5; Interpolate K +1 Chebyshev nodes over [b, ,,b,].
/* use Equation 4.1, 4.2, 4.3 and 4.4 and obtain coefficients */
6: Store co,¥ for k=0,1,...,K

7 Compute a, . [* use equation 6.3 * /
: a, +a,
8: Store rc, =—*——and tr = ———1
a,; +a, +a, a,; +a, +a,

9: Compute ca, . [* use Equation 6.7 * /

ca, : N~
10: Store P, «~—— for i=0,...,N . [* normalization */

cay

11:Set g, <1, i < 1.

12:for j=1to 2N -1 do /* guide table creation */
13: while j/2N > P, do

14. Seti<«i+1.
15: Setg; «i.

Figure 6.7. Polynomial Density Inversion setup - data table creation

73

6.2.2. The Sampling Algorithm

After the required data are stored in the table, finally random variates of the
corresponding density can be generated. Different from the setup, the sampling algorithm
only needs to know whether the density is increasing or decreasing, since the type of the
triangular distribution depends on that. It is possible to use the mode for unimodal
distributions to analyze the density but we could use indicator variables, which could
optionally be added in the table to define the property of the subinterval in the setup

algorithm.

The sampling algorithm initially must decide about which subinterval to consider.

Therefore, by using the guide table (go,gl,...,gZXN_l) and cumulative probabilities of
subintervals (P,,P,,...,P,), the Indexed Search algorithm is run to generate index i. Then

another standard uniform variate should be recycled from the one which was used for the

Indexed Search algorithm.

With this recycled uniform random variate, the region that will be used in the
subinterval must be selected by using the cumulative probabilities of the regions in the
subinterval. It is possible to recycle this uniform variate once again over the cumulative
region probabilities. Then, a uniform random variate X of the corresponding subinterval

can be generated.

If the chosen region is the rectangular region, X is uniformly distributed over the
corresponding interval and can be immediately returned. If it is the triangular region,
another uniform variate over the subinterval must be generated and depending on the type
of the triangular distribution, the maximum or the minimum is returned after the

comparison (See Section 6.1.2).

However, the most difficult algorithm is necessary for the polynomial region. The

uniform variate, which is recycled for a second time, can be used on the inverse cdf of the
polynomial, which is P‘l(x). By using Brent’s method (1973), the unique solution of the

inverse cdf over the subinterval is returned as random variate for the polynomial region.

74

J

(i)y
P(x)= J'z:_iocoi“)x" dx = ZT:‘[CO‘ X j (6.8)

Require: Probability density function f(x), a vector that holds indicator variables
(1,,1,,...,1,) which will explain the behavior of the density, a data table of the

Polynomial Density Inversion method with the corresponding density.

Output: Random variate with density f .

1: loop

2: Generate U ~U(01).

3: Set i< gy

4 while U > P, do

5: Seti«i+1.

6: U=U-P_)/(P-P_) I*recycling */

7 if U <rc, then

8 U «U/rc, /* second recycling */
9: X < b, +U (b —b,,)

10: return X.

11: elseif U <tr, then

12: U « (U —rc,)/(tr, —rc,) /* second recycling */
13: X b, +U(b -b,)

14: Generate X, ~U(b, ,,b,).

15: if subinterval i increasing (1, =1) then

16: return max(X, X,).

17: else

18: return min(X, X,).

19: else

20: U« U -tr,)/@-tr) /* second recycling */
21: return P‘l(U xapi).

/* use Equation 6.8 and Brent’s Method */

Figure 6.8. Polynomial Density Inversion sampling algorithm
6.3. Computational Results and Approximation Performance
We have applied the Polynomial Density Inversion algorithm in C for a list of

unimodal distributions given in Table 3.1. We used the necessary input (the mode, the

cutoff and the inflection points) which is also given in Table 3.1. We have also coded a

75

function in R that evaluates the total table size that is used and the mean and the standard

deviation for L, error for piecewise polynomial approximations. This code is shown in

Appendix C.

6.3.1. Timing Results

For the Polynomial Density Inversion algorithm, the relative execution time (See
Section 3.3.1) of the total algorithm, which includes both the setup and the sampling
algorithms, is measured while 10* and 10° random variates are generated. For the
subinterval creation parameters, linear error (LE), relative error (RE) and the polynomial
error (PE), different values were used to find efficient settings for the algorithm. In order to
evaluate relative average generation times, each generation was repeated 1000 times in an

outer loop, and then the total execution time was divided by 1000.

Table 6.1. Relative average generation times for the Polynomial Density Inversion method

with sample size n =10*

LE 0.01 0.001 0.0001 0.00001
PE|]1.E-08 |1.E-10 J1.E-12 |1.E-08 |1.E-10 J1.E-12 |1.E-08 |1.E-10 J1.E-12 |1.E-08 |1.E-10 J1.E-12
N J1.75 2.30 |5.16 |J1.67 |2.22 |5.07 J2.16 |[2.34 |4.67]4.01]4.01 |4.73
C 1237 |[3.46 |6.67 228 339 [6.70 J2.49 |3.03 |6.21 |3.85]4.13 |5.58
E J166 179 |3.04 151 172 297 |J1.79 |1.87 |2.78 |3.21 |3.24 |3.60
G
B

B

—
e 3.09 [5.21 |11.07 J2.87 |5.00 |10.85 J4.21 |4.73 19.94]9.96]10.01]11.54
11425 [9.18 |17.20 }6.12 |7.96 |15.81 J12.66 |12.68 |14.03]41.64]41.64 |41.79
w 216.57 |16.27 |30.90]10.30 |13.88 [28.06 [26.42 |27.31 |31.34 |86.72 |87.01 |88.66
@ N J2.41 |2.72 |5.16 |2.37 |2.69 [5.12 |J2.84 |2.88 |4.78]4.58]4.58 [4.90
C |3.10 393 |[6.70 |3.09 |3.88 [6.78 [3.34 |3.73]6.39 458 4.60 |5.81
o E_J173 (297 1296 J1.60 179 1291 J1.90 199 273 3.30]330 |3.60
o |G J422 [5.82 |11.12 J4.22 |5.78 |11.09 |5.37 |5.64 |10.40 J10.91 |10.91 |[12.07

B1]6.87]11.49]18.96 |8.66]10.45 [18.06]14.93 |14.93 |16.12]43.28 [43.13 |43.28
B2 |9.55]16.87 |29.85 |13.13 |15.07 |27.61]28.66 |28.51 |31.34 87.52 [88.36 [88.96

We can obtain the average total execution time of 10* and 10° variates in our test
computer by multiplying relative average generation times respectively with 6.7 x10™ and

6.7x1072.

76

Table 6.2. Relative average generation times for the Polynomial Density Inversion method

with sample size n =10°

LE 0.01 0.001 0.0001 0.00001
PE]1.E-08 |1.E-10 |1.E-12 |1.E-08 J1.E-10 |1.E-12 |1.E-08 |1.E-10 |1.E-12 J1.E-08 |1.E-10 [1.E-12

N J1.01]0.93]0.94 J1.04 [0.94 |0.93 J0.93]0.91]0.96 J0.91]0.91 |0.91

C J122 |097 094 116 |0.97]0.97 J1.09 J1.02 J0.97 J1.00 [0.96 0.94

< |E J1.21 [0.96 |0.88]1.06 0.93]0.90 J0.90]0.90]0.90 J0.90 |0.90 0.91
“1G 099]0.94 099 o096 [0.96 [0.99 J0.94 0.94]0.99 Jo.99]0.97]0.97
B1]1.00 097 J1.03 096 096]1.03 J0.99 |1.00 |1.01 J1.28 |1.28 |1.28

w B2 |1.03 104 |1.18 099 (100 |1.15 113 |1.15 |1.18 |1.81 |1.81 |1.82
@ N 1096 090 091 J0.97 090]0.90]0.88 |0.90]0.91 J0.90 |0.90 [0.91

C J1.09 096 096 J1.12 0.99]0.96 J0.99]0.96]0.94]0.94 [0.94 0.94
E J1.21 091 J0.90 J1.03 |0.94]0.90 J0.91 |0.91]0.90 J0.91 |0.90]0.91
G 1099 094 |0.97 J0.97 |0.93]0.98 J0.94]0.93 [0.97 J1.00 |0.94 |0.97
B110.99 097 J1.06 J0.96 096]1.04 101 |J1.00 |1.08 J1.30 |1.30 |1.33
B2 1100 |1.04 |]116 J1.00 103 115 116 |1.16 |1.18 181 181 [1.82

0.01

6.3.2. Memory Occupation

The required table size can simply be evaluated while the number of subintervals is
known. For each subinterval we are holding the K +1 coefficients of the approximation
polynomial of order K, the cumulative probability of rectangular and triangular regions,
the left boundary and the cumulative probability of the subinterval. Each of those values

can be stored as a double variable, which occupies 8 bytes of memory.

A guide table of size 2x N should also be stored for the Indexed Search. Since the
indices are integers, each element of the guide table can be stored as an integer variable,

which occupies 4 bytes of memory.

Insignificantly, cumulative probabilities and the subinterval boundaries need an
additional storage since they refer to boundaries instead of subintervals. A single integer
variable can be used to store the total number of subintervals for quick calls. We have to
include the vector of indicator variables as a table element, since in practice we prefer to
generate variates with only one input which holds all the information we need. Yet, we can
handle the indication by the mode for unimodal distributions as a double variable.

Therefore, N subintervals will result in a table size of:

TS =((5+ K)N +3)o, + (2N +1)b, =8x((5+ K)N +2)+4x (2N +1) = (48 + 8K)N + 20

77

which is evaluated in bytes. Table 6.3 below shows the number of subintervals and the
total size of the data tables for each distribution with different flexible subinterval creation

parameters.

Table 6.3. Number of subintervals and the total size of the setup tables of 4™ order

polynomial density inversion for different parameters and distributions

Critical

RE: 0.1 0.01

Critical

LE: 0.01 0.001 0.001 0.0001 0.01 0.001 0.001 0.0001

|) 80| 6428] 80| 6428] 166] 13308] 412 32988] 188| 15068] 188| 15068] 260] 20828] 496 39708

lco.y 162| 12088] 164| 13148 232| 18588] 516] 41308] 356] 28508] 356 28508 420] 33628] 688] 55060
8 e 48| 3868] 58] 4668] 122] 9788] 331] 26508] 71| s5708] 81| 6508] 143] 11468] 348 27860
il [STERD) 62| 4988] 64] 5148] 124] 9048] 343] 27468] 121] o708 121] 9708] 169] 13548] 378 30260

|) 50| 4748 104] 8348] 236] 18908] 821] 65708] 120] 9628] 156] 12508] 279] 22348] 853 68260

IB(30,40) 99] 7948] 186] 14908] 505| 40428) 1722| 137788] 168| 13468] 245| 19628] 552| 44188] 1757| 140580

IN 0,1) 138] 11068] 138] 11068] 182| 14588] 416] 33308] 218| 17468] 218| 17468] 262| 20988} 496] 39700
IC(O,l) 304] 24348] 304] 24348] 310| 24828] 538] 43068] 458| 36668] 458] 36668) 464| 37148] 692| 55380
: IE(l) 89] 7148) 89| 7148] 132] 10588) 333] 26668] 104] 8348) 104] 8348] 147| 11788] 348] 27860
i IG(3,1) 121] 9708] 121] 9708 138] 11068] 344] 27548] 162| 12988) 162| 12988] 176] 14108} 378] 30260
IB(3,4) 127] 10188] 129] 10348 237| 18988) 821] 65708] 181] 14508] 181| 14508] 280| 22428} 853| 68260
IB(30,40) 229] 18348] 236] 18908] 519| 41548] 1726] 138108] 263| 21068] 270| 21628 553| 44268] 1757| 140580

IN 0,1 378] 30268] 378] 30268f 378| 30268] 476] 38108) 422| 33788] 422 33788 422| 33788 520 41620
IC(O,l) 674] 53948) 674] 53948) 674| 53948) 722] 57788] 786| 62908] 786|] 62908] 786| 62908] 834| 66740
IE(l) 201] 16108f 201] 16108f 211| 16908) 365] 29228] 207| 16588] 207| 16588] 217| 17388] 371] 29700
IG(3,1) 268] 21468) 268] 21468] 268| 21468] 382] 30588] 296| 23708] 296| 23708] 296 23708] 406] 32500
IB(3,4) 235] 18828) 235] 18828] 254| 20348) 822] 65788] 281| 22508] 281| 22508] 297| 23788] 854| 68340
IB(30,40) 425| 34028] 425| 34028] 573| 45868 1748] 139868] 441| 35308] 441| 35308) 589| 47148] 1764| 141140,

Critical Polynomial Error
1.E-10

1E-12

According to the Table 6.3, if setup time is not important, for the critical linear
error it is better to use the values 0.01 and 0.001 and for the critical relative linear error, it
IS better to use the value 0.1. Known that the main parameter to define an upper bound for
the maximum absolute approximation error is the critical polynomial error (See Section
6.3.4), it is clear that, the small values of other parameters create unnecessary subintervals

and increase the memory occupation and result in a slow setup.

6.3.3. Efficiency

For the Polynomial Density Inversion method, random variates can be sampled
from three regions: rectangular, triangular and polynomial regions. Since sampling from
the polynomial region is more expensive, the probability of sampling from the polynomial

regions should be small.

78

Table 6.4, 6.5, 6.6 and 6.7 show the average percentages of sampling types for
different flexible subinterval creation parameters. In order to compute those performance
criteria, the Polynomial Density Inversion algorithm was run 500 times. In each run, the
setup algorithm is executed and 10° random variates are generated. For the percentage of

each type of sampling, the mean and the standard deviation were evaluated.

Table 6.4. Average percentage of sampling types for different distributions, critical linear

error, ¢, =0.01, and different critical relative (CRE) and polynomial error (CPE) values

CRE]CPE|Regions N C E G Bl B2

Rect. (%)]94.18/0.023]93.01]0.026]91.27]0.029]92.99{0.025]94.57|0.024]96.33]0.019
Tri. (%) | 5.52|0.022] 6.37]0.025] 8.14]0.027] 6.52]0.024] 5.23]0.023] 3.54{0.019
Poly. (%) | 0.30]0.006] 0.62]{0.008] 0.59{0.008] 0.49(0.007| 0.20{0.004] 0.13|0.004
Rect. (%)]97.14]0.016]97.37{0.015]96.31{0.019]97.34{0.017]98.14/0.014]98.58|0.011
Tri. (%) | 2.80]0.016] 2.52]0.015] 3.59|0.019] 2.59]0.016] 1.83]0.014] 1.40{0.011
Poly. (%) | 0.06/0.002] 0.11]0.003] 0.10]0.101] 0.07{0.003] 0.03|0.002] 0.02]|0.001
Rect. (%)]99.09/0.010§98.91]0.010]98.29]0.013]98.91{0.010J99.07|0.009}99.24]0.009
Tri. (%) | 0.90]{0.010] 1.07]0.010] 1.69]0.013] 1.08]0.010f 0.92]0.009] 0.75{0.009
Poly. (%) | 0.01/0.001] 0.02]0.001] 0.02]0.001] 0.01{0.001] 0.01{0.001] 0.01]0.001
Rect. (%)]94.61/0.023]94.30]0.023]91.36]0.028]94.21{0.025]94.79|0.023]96.44|0.019
Tri. (%) | 5.18]0.022] 5.36]0.022] 8.07]0.027] 5.57]|0.024] 5.05]0.023] 3.45(0.018
Poly. (%) | 0.21]0.004] 0.34{0.006] 0.57{0.007] 0.22{0.005| 0.16{0.004] 0.11]0.003
Rect. (%)]97.14/0.01697.46]0.016]96.31]0.019]97.35{0.017]98.17|0.014]98.58)0.011
Tri. (%) | 2.80/0.016] 2.45]0.015] 3.59]0.019] 2.58]0.016] 1.80]0.013] 1.40{0.011
Poly. (%) | 0.06]0.002] 0.09{0.003] 0.10{0.003] 0.07{0.003] 0.03]0.002] 0.02]0.001
Rect. (%)]99.09]0.010}98.91{0.010}98.29{0.013]98.91{0.010}99.07{0.009]99.24|0.009
Tri. (%) | 0.90{0.010] 1.07]0.010] 1.69]0.013] 1.08]0.010] 0.92]0.009] 0.75{0.009
Poly. (%)]0.001]0.001] 0.02{0.001] 0.02{0.001] 0.01{0.001}] 0.01{0.001] 0.01]0.001

0.1

0.01

1E-12] 1.E-10| 1.E-08 | 1.E-12] 1.E-10] 1.E-08

79

Table 6.5. Average percentage of sampling types for different distributions, critical linear

error, ¢, =0.001, and different critical relative (CRE) and polynomial error (CPE) values

CRE

CPE

Regions

N

C

E

G

Bl

B2

0.1

Rect. (%)

94.18]0.023

93.33]0.025

94.43

0.023

93.51

0.026

96.80]0.018

98.26]0.013

Tri. (%)

5.52]0.022

6.10{0.024

5.28

0.023

6.14

0.025

3.15/0.018

1.71]0.013

Poly. (%)

0.30{0.006

0.57(0.008

0.29

0.005

0.35

0.006

0.05/0.002

0.03]0.002

Rect. (%)

97.1410.016

97.37/0.015

96.31

0.020

97.34

0.017

98.15(0.014

98.68]0.011

Tri. (%)

2.80]0.016

2.52]0.015

3.59

0.020

2.59

0.016

1.82]0.014

1.31]0.011

Poly. (%)

0.06]0.002

0.11]0.003

0.10

0.003

0.07

0.003

0.03]0.002

0.01]/0.001

Rect. (%)

99.09]0.010

98.91/0.010

98.29

0.013

98.91

0.010

99.07{0.009

99.24(0.009

Tri. (%)

0.90{0.010

1.07]0.010

1.69

0.013

1.08

0.010

0.92]0.009

0.75]0.009

Poly. (%)

0.01]0.001

0.02|0.001

0.02

0.001

0.01

0.001

0.01{0.001

0.01{0.001

0.01

Rect. (%)

94.61]0.023

94.30]0.023

94.53

0.022

94.39

0.024

96.82]0.018

98.28]0.013

Tri. (%)

5.18]0.022

5.36/0.022

5.21

0.022

541

0.024

3.14{0.018

1.70{0.013

Poly. (%)

0.21]0.004

0.34/0.006

0.26

0.005

0.20

0.004

0.04]0.002

0.02]0.001

Rect. (%)

97.14/0.016

97.46]0.016

96.31

0.019

97.35

0.017

98.17(0.014

98.68]0.011

Tri. (%)

2.80{0.016

2.45]0.015

3.59

0.019

2.58

0.016

1.80{0.013

1.31]0.011

Poly. (%)

0.06]0.002

0.09/0.003

0.10

0.003

0.07

0.003

0.03]0.002

0.01]0.001

1E-12| 1.E-10| 1.E-08 | 1.E-12 | 1.E-10 | 1.E-08

Rect. (%)

99.09]0.010

98.91]0.010

98.29

0.013

98.91

0.010

99.07]0.009

99.2410.009

Tri. (%)

0.90{0.010

1.07]0.010

1.69

0.013

1.08

0.010

0.92{0.009

0.75[0.009

Poly. (%)

0.01]0.001

0.02]0.001

0.02

0.001

0.01

0.001

0.01]0.001

0.01]0.001

Table 6.6. Average percentage of sampling types for different distributions, critical linear

error, ¢, =0.0001, and different critical relative (CRE) and polynomial error (CPE) values

CRE

CPE

Regions

N

C

E

G

Bl

B2

0.1

Rect. (%)

97.67]0.015

96.13]0.018

98.04

0.014

97.16

0.017

98.87]0.011

99.3410.008

Tri. (%)

2.29 |0.015

3.56 |0.017

1.91

0.014

2.77

0.016

1.12 10.011

0.66 |0.008

Poly. (%)

0.04 10.002

0.31 |0.006

0.05

0.002

0.07

0.003

0.01]0.001

0.00]0.001

Rect. (%)

97.89]0.014

97.45]0.015

98.11

0.014

97.65

0.015

98.91]0.010

99.360.008

Tri. (%)

2.08]0.014

2.44 10.015

1.85

0.014

2.30

0.015

1.08 10.010

0.64 0.008

Poly. (%)

0.03 |0.002

0.11 |0.003

0.04

0.002

0.05

0.002

0.01 |0.001

0.00 |0.001

Rect. (%)

99.09]0.010

98.91]0.010

98.52

0.012

98.91

0.010

99.12]0.009

99.4410.007

Tri. (%)

0.90 |0.010

1.07]0.010

1.46

0.012

1.08

0.010

0.87 0.009

0.56 |0.007

Poly. (%)

0.01 |0.001

0.02 0.001

0.02

0.001

0.01

0.001

0.01 |0.001

0.00 |0.001

0.01

Rect. (%)

97.71]0.015

96.760.017

98.07

0.014

97.23

0.017

98.87]0.011

99.3410.008

Tri. (%)

2.26 10.015

3.10 |0.017

1.89

0.014

2.72

0.016

1.12]0.011

0.66 0.008

Poly. (%0)

0.03 |0.002

0.15 |0.004

0.04

0.002

0.05

0.003

0.01 |0.001

0.00 |0.001

Rect. (%)

97.89]0.014

97.5410.016

98.11

0.014

97.65

0.015

98.91]0.010

99.360.008

Tri. (%)

2.08]0.014

2.38 10.015

1.85

0.014

2.30

0.015

1.08 10.010

0.64 0.008

Poly. (%0)

0.03 |0.002

0.08 |0.003

0.04

0.002

0.05

0.002

0.01 |0.001

0.00 |0.001

1.E-12| 1.E-10| 1.E-08] 1.E-12] 1.E-10] 1.E-08

Rect. (%)

99.09]0.010

98.91]0.010

98.52

0.012

98.91

0.010

99.12]0.009

99.4410.007

Tri. (%)

0.90 |0.010

1.07]0.010

1.46

0.012

1.08

0.010

0.87 0.009

0.56 |0.007

Poly. (%)

0.01]0.001

0.02 10.001

0.02

0.001

0.01

0.001

0.01]0.001

0.00]0.001

80

Table 6.7. Average percentage of sampling types for different distributions, critical linear

error, ¢, =0.00001, and different critical relative (CRE) and polynomial error (CPE)

values

CRE]CPE JRegions N C E G Bl B2

Rect. (%)]99.12]0.009]98.35[0.013]99.35[0.008]99.04 [0.009]99.65|0.006]99.80]0.004
Tri. (%) [0.87 [0.009]1.54 10.012]0.64]0.008]0.95 |0.009]0.35 |0.006]0.20 [0.004
Poly. (%)]0.01]0.001]0.11 [0.004]0.01 {0.001}0.01 (0.001}0.00 [0.000]0.00 |[0.000
Rect. (%6)]99.12]0.009]98.54[0.012]99.35{0.008]99.04 [0.009]99.65|0.006]99.80]0.004
Tri. (%) [0.87 [0.009]1.40]0.012]0.64]0.008J0.95]0.009]0.35 [0.006]0.20 [0.004
Poly. (%)]0.01]0.001]0.06 [0.002]0.01 {0.001}0.01 (0.001}0.00 [0.000]0.00 |[0.000
Rect. (%) 199.28]0.009]98.99{0.010]99.37{0.008]99.23(0.009]99.65|0.006]99.80]0.004
Tri. (%) [0.72 10.009]0.99]0.010J0.62]0.008J0.77]0.009]0.35 [0.006]0.20 [0.004
Poly. (%)]0.00]0.001]0.02 [0.001}0.01 {0.001}0.00 (0.001}0.00 {0.000]0.00 |[0.000
Rect. (%) 199.12]0.009]98.59{0.012]99.35{0.008]99.05(0.009]99.65|0.006]99.80]0.004
Tri. (%) [0.87 [0.009]1.36]0.011]0.64]0.008J0.94]0.009]0.35 [0.006]0.20 [0.004
Poly. (%)]0.01]0.001]0.05 [0.002]0.01 {0.001}0.01 [0.001}0.00 [0.000]0.00 |[0.000
Rect. (%)]99.12]0.009]98.62|0.011]99.35[0.008]99.05|0.009]99.65|0.006]99.80|0.004
Tri. (%) [0.87 [0.009]1.34 10.011]0.64]0.008]0.94]0.009]0.35 |0.006]0.20 [0.004
Poly. (%)]0.01]0.001]0.04 [0.002]0.01 {0.001}0.01 (0.001}0.00 {0.000]0.00 |[0.000
Rect. (%) 199.28]0.009]99.00{0.010}99.37{0.008]99.23(0.009]99.65|0.006]99.80]0.004
Tri. (%) [0.72 10.009]0.98]0.010J0.62]0.008J0.77]0.009]0.35 [0.006]0.20 [0.004
Poly. (%)]0.00]0.001]0.02 [0.001}0.01 {0.001}0.00 (0.001}0.00 [0.000]0.00 |[0.000

0.1

0.01

1E-12| 1.E-10| 1.E-08 | 1.E-12| 1.E-10 | 1.E-08

6.3.4. Approximation Performance of Heuristic Subinterval Creation Method

In Section 5.1, it was suggested that the degree of the approximation polynomial
should be chosen around 5. We have observed how the error behaves over the domain for

normal distribution and evaluated L, error for different distributions under different

flexible subinterval creation parameters.

For different values of critical linear, relative linear and polynomial error
parameters, different subinterval-decompositions were obtained. As the number of
subintervals increases, of course the size of the setup table also increases. However, both

L, error and the maximum approximation error get smaller. Also, sampling from the

polynomial region has a small probability.

The Figure 6.9 and 6.10 show, how the absolute approximation error of a fourth
order interpolation is distributed for the standard normal distribution with different critical

error parameters. They show the absolute approximation error values for 12001 equidistant

81

points between cutoff points {— 6,6}. It can be easily seen that the maximum absolute
approximation error is always smaller than the critical polynomial error & and, in general,

larger in the center than in the tails.

82

[eV] © ©
—l__ R . z
@ 4 . 4
i
- " "
o
P - -
e e = e =
Ll ———
o
o - -
= S
S - -
C e £l Eid p n..w oo+2
4~ s
o © ©
i
D_-v Lo g it 1 AR ‘o
—
- " "
o
Pl o e i
e e = e =
Ll S—
N.J o o
o
o - -
————. e S,
=
Prv = =
b= xp)s i
8% © © © ©
@
— - - - — -
n i - - : °
o
|- R L L e
S = = = =
L o o —————re L s e L o T
= ; ; ; ;
o) BN L OB BN L OB
a) : . i .
=
— = = = =
C m-.r_o L] m-.r_o] ool_u L .w,..r_u 4 murr] m-.r_o L] m-.r_o] ool_u v .w,..r_u 4 murr] €% | D0 G 0P 9 010 P DD T ourr] u—.u_.w- u—.n_o- [Tl uo‘ho”
(A~ xplsce (A~ mp)sae (A~ mp)sae (A~ mp)sae
T0°0 240443 “UIT WD T00°0 40443 “UIT WD | TO00'0 40443 “UIT 'MID | TO000'0 :404IT "UIT "HID

linear and polynomial error values

Figure 6.9. Distribution of absolute approximation error of a fourth order interpolation for
the standard normal distribution with critical relative error, r, = 0.1, and different critical

83

o @ @ @
—
1
- - -
i
.. o —— -, $P.° o —— -, $P.° o —— -, $P.°
(. o~ o~ o~
o e L L
o - ™ e - g~ - ke~ - .
| - - S A ey o . - S A ey o . = - S A ey o . S5 A =
E - p— T~ Y - p— T~ Y b - p— T~ Y b -
X ool i T ol T ol S
> oy oy oy
— i e D i e D e e Al .
(@]
o - - -
-
S - - -
O e) By ELe T 00eR g e By ELe T 00eR e) By ELe T 00eR
A= xplsa A= xps: A= xps:
o ® = %
—
1
- - -
—
b - X - & e o o
m — N — N — N i g T i
r = = = =
——— e AT ——— e AT ———" e AN ———ns e i gt s e s e
> < < e e e
(@]
o - - -
-
S - - -
C T T T T T T T T T T T T
(T] L g L p (Y I 4 oo=2 0 (T] [T 0 L ¢ ez oo=2 0 (T] [T 0 L ¢ ez oo=2 0 ad)’ LT el oo+ 00
(h-xplsae (h=xplsae (h=xplsae A= xp)8
@ @ @
o
- - - -
—
— 4
o ~ o -
= T R O
- A P T e Pt e e L a —————— e e - - -
Iu. w5 o o
o b
. -+ - %
4
|
- - -
E*0T G0P5L GO0 QLROE 00+000 B 0T &0PSL GO0 OLOO0E 00+000 €00 | D9 G 00 9 040 p QIO I Q0+ O LROE N 14 AR oo+ 00
(h-xplsae (h=xplsae (h=xplsae A= xp)8

700 240443 "I D

T00°0 :40443 Ul "HID

T000°0 40T "UIT WD

T0000'0 -40443 "UIT D

Figure 6.10. Distribution of absolute approximation error of a fourth order interpolation for

the standard normal distribution with critical relative error, r, = 0.01, and different critical

linear and polynomial error values

84

Looking at the graphs, it is now possible to analyze the complicated construction of
the flexible subinterval creation heuristics. Clearly the main critical error parameter which
defines the maximum absolute approximation error is the critical polynomial error
parameter itself. The critical relative error is the parameter which decreases the absolute
approximation error in the tails. On the other hand, the critical linear error is the parameter
which decreases the average absolute approximation error, when the critical polynomial

error is fixed.

Also, the critical linear error is not so effective in creating subintervals while the
critical polynomial error takes smaller values. As it is seen in the graphs, while the critical
polynomial error is 107*, the critical linear error can only change the average absolute

approximation error when it takes the value of 0.00001.

Tables 6.8, 6.9, 6.10 and 6.11 show the mean and the standard deviation of the
simulation results in order to evaluate the L, error for different distributions. To evaluate
those values, importance sampling (See Section 6.1.3) has been used. For importance
sampling densities, the original distribution, and the uniform distribution between the

cutoff points are used. 10000 random variates have been used for each run.

85

Table 6.8. Simulation results for evaluating L, error with critical linear error, &, =0.01,

and different critical relative and polynomial error values

Critical Relative Error=0.1 Critical Realtive Error=0.01
Original IS Dens. | Uniform IS Dens. | Original IS Dens. | Uniform IS Dens.
Mean L, |Std. D. L;[Mean L,|Std. D. L;|Mean L,}Std. D. L;|Mean L,|Std. D. L,

7.71E-09 [5.36E-08]7.36E-09{1.01E-10 }3.52E-09(4.94E-09 |3.46E-09|4.25E-11
2.98E-07 [2.06E-06]1.82E-07[9.15E-06]2.26E-08[3.61E-08 |2.21E-09|1.44E-07
1.12E-08 |5.81E-08 |1.13E-08]2.27E-08 |6.53E-099.66E-09 |6.63E-09|1.92E-08
1.48E-08 |2.80E-08 |1.51E-08(2.89E-08 |8.19E-09[1.06E-07 }8.27E-09[2.37E-08
1]1.46E-09 |1.10E-09 |1.45E-09|1.42E-09 |1.40E-09|8.60E-10 |1.38E-09|1.47E-09
2 [7.30E-10 |2.44E-09 |8.00E-10(1.16E-09]6.80E-10(1.88E-09 |6.58E-10|1.22E-09
1.84E-10 |4.99E-09 |1.79E-10|1.43E-12 |1.41E-10|2.89E-10 |1.41E-10|1.36E-12
2.79E-08 [6.30E-07]4.44E-08[1.52E-06 J1.95E-09(1.14E-08 |4.41E-10|3.11E-08
2.38E-10 [9.90E-09]2.06E-10{3.10E-10 J1.63E-10|1.40E-09]1.48E-10|2.71E-10
3.21E-10 [7.22E-09]2.29E-10(3.07E-10 J1.57E-10{4.46E-10 |1.56E-10|2.64E-10
117.57E-12 |5.56E-11 |7.44E-12|7.60E-12]6.29E-12|2.03E-11 }6.52E-12|7.43E-12
2 |6.42E-12 [6.37E-11 |8.78E-12(9.94E-12]6.73E-12|5.90E-11 |7.17E-12]9.23E-12
1.02E-12 |7.34E-12 J1.71E-12|1.57E-14 J1.16E-12|1.38E-11 J1.09E-12|1.27E-14
5.18E-09 [2.88E-07]5.32E-09(9.12E-08 }J4.78E-10(5.48E-09 |1.47E-10]4.84E-09
4.05E-12 |2.63E-10]2.85E-12|3.11E-12]1.60E-12|1.82E-11 }2.28E-12|3.01E-12
2.75E-12 [1.40E-11 |4.13E-12(4.25E-12 J2.51E-12(1.27E-11 |3.44E-12]|4.06E-12
2.94E-13 [6.64E-12 |2.47E-13[2.42E-13]J2.25E-13|1.14E-12 |2.29E-13]2.39E-13
4.54E-14 |1.83E-12 6.21E-13|6.46E-13]6.19E-13|5.92E-12]5.39E-13|6.31E-13

1.E-08

Critical Polynomial Error
1.E-10

1.E-12

VDO |IMO|IZ|V|TO|MO|Z]WV|T/|OMO|Z2

N

Table 6.9. Simulation results for evaluating L, error with critical linear error, &, = 0.001,

and different critical relative and polynomial error values

Critical Relative Error=0.1 Critical Realtive Error=0.01
Original IS Dens. Uniform IS Dens. Original IS Dens. Uniform IS Dens.
Mean L, |Std. D. L; |Mean L, |Std. D. L; [Mean L; |Std. D. L, |Mean L, |Std. D. L,

7.52E-09 |4.26E-08 |7.23E-09 [1.00E-10 |3.38E-09 |4.75E-09 |3.42E-09 |4.24E-11
2.74E-07 |1.89E-06 |4.97E-07 |3.24E-05 |]2.21E-08 |3.68E-08 |4.34E-10 |1.88E-08
6.68E-09 |5.60E-08 |6.75E-09 |1.47E-08]2.38E-09 |6.47E-09]2.29E-09 |6.44E-09
1.27E-08 |2.46E-08]1.24E-08 [2.66E-08 |7.18E-09 |1.06E-08 |7.22E-09 |2.21E-08
2.26E-10 |6.55E-10]2.29E-10 |6.80E-10]2.51E-10 |7.01E-10 |2.34E-10 |7.02E-10
7.55E-11 |2.00E-09 |1.14E-10 |1.87E-10 |J2.55E-11 |1.34E-10 |2.47E-11 |5.84E-11
1.38E-10 |2.83E-10]1.77E-10 [1.40E-12]1.42E-10 |3.53E-10 |1.40E-10 | 2,00E+00
2.18E-08 |3.81E-07 }2.63E-08 |7.31E-07]1.80E-09 |1.03E-08 |1.27E-10 |3.94E-09
1.86E-10 |3.91E-09]2.14E-10 |3.13E-10 |J1.44E-10 |1.18E-09 |J1.44E-10 |2.68E-10
1.88E-10 |3.68E-09]2.25E-10 [3.03E-10]1.67E-10 |5.04E-10 J1.58E-10 |2.66E-10
7.95E-12 |3.78E-11 |7.36E-12 |7.70E-12 | 6,47E-12]2.15E-11 |6.44E-12 |7.37E-12
5.58E-12 |5.25E-11 |8.14E-12 |9.29E-12 |7.28E-12 |1.43E-10 |6.45E-12 |8.44E-12
9.83E-13 |5.76E-12 |1.70E-12 |1.57E-14 |]1.06E-12 |1.24E-11 |1.09E-12 |1.27E-14
5.55E-09 |2.07E-07 |5.58E-09 |7.32E-08 J4.93E-10 |5.40E-09]1.05E-09 |4.77E-08
2.68E-12 |1.03E-10 }2.80E-12 |3.10E-12]5.78E-12 |3.02E-10 |2.33E-12 |3.06E-12
2.86E-12 |1.62E-11 |4.23E-12 |4.25E-12 |3.58E-12 |9.09E-11 |3.48E-12 |2.66E-10
2.30E-13 |1.05E-12 |2.47E-13 |2.43E-13 |J2.20E-13 |9.32E-13]2.29E-13 |2.37E-13
4.98E-13 |3.04E-12]6.22E-13 |6.49E-13 |5.24E-13 |4.21E-12 |5.27E-13 |6.16E-13

1.E-08

N

N

Critical Polynomial Error
1.E-10

1.E-12

VNI |OIMO|IZ|TV|T|O|MO|Z]TV|T O |MO|=Z

N

Table 6.10. Simulation results for evaluating L, error with critical linear error,

&, =0.0001, and different critical relative and polynomial error values

Critical Relative Error=0.1 Critical Realtive Error=0.01

Original IS Dens. Uniform IS Dens. Original IS Dens. Uniform IS Dens.

Mean L; |Std. D. L; [Mean L, |Std. D. L, |Mean L, |Std. D. L, |Mean L, |Std. D. L,

Critical Polynomial Error

4.40E-10 |7.62E-09]5.65E-10 |1.02E-11]2.19E-10 |7.38E-10 |2.19E-10 |8.75E-12

2.84E-07 |2.09E-06 |1.52E-08 |5.43E-07 |}7.63E-09 |2.71E-08 |7.81E-09 |7.58E-07

1.36E-09 |2.85E-08]1.73E-09 [4.66E-09]2.29E-10 |2.10E-09 |2.18E-10 |6.03E-10

1.E-08

1.52E-09 |1.49E-08 |]1.34E-09 |3.32E-09]4.42E-10 |1.31E-09 |J4.38E-10 |2.44E-09

2.44E-12 |1.18E-11 |2.48E-12 |1.22E-11 |]2.31E-12 |1.10E-11 |2.10E-12 |1.05E-11

N

1.47E-12 |1.93E-11 |2.96E-11 [7.67E-11 |2.92E-12 |7.13E-11 |2.79E-12 |1.17E-11

6.84E-11 |3.76-E10 J1.04E-10 |1.17E-12]6.43E-11 |1.93E-10 |6.33E-11 |9.48E-13

3.38E-08 |6.98E-07 |3.08E-08 |8.02E-07]J1.95E-09 |1.09E-08 |1.09E-09 |5.77E-08

9.20E-11 |1.23E-09 |1.61E-10 |2.75E-10 |}7.47E-10 |1.00E-10 |9.26E-11 |2.10E-10

1.73E-10 |5.28E-09 |]1.68E-10 |2.30E-10 J1.04E-10 |4.88E-10 |J1.02E-10 |1.59E-10

1.E-10

1.15E-12 |5.19E-12 |1.12E-12 |3.37E-12 |]1.08E-12 |3.60E-12 |J1.15E-12 |3.54E-12

N

8.70E-13 |2.78E-11 |3.78E-12 |7.41E-12 |3.51E-12 |1.47E-10 |2.12E-12 |4.79E-12

1.20E-12 |1.28E-11]1.73E-12 [1.59E-14]1.17E-12 |1.03E-11]1.07E-12 [1.26E-14

2.35E-09 |5.21E-08 |4.25E-09 |16.23E-08]4.54E-10 |4.93E-09 |5.05E-10 |2.77E-08

1.48E-12 |1.98E-11 |J2.67E-12 |3.00E-12 J4.11E-12 |2.62E-10 J2.17E-12 |2.94E-12

1.E-12

2.64E-12 |1.37E-11 |4.09E-12 |4.20E-12 J2.81E-12 |1.39E-11 |3.35E-12 |4.00E-12

2.32E-13 |2.19E-12 |2.27E-13 |2.51E-13]2.38E-13 |1.73E-12 |2.13E-13 |2.47E-13

VNI OMO|Z|RBV(T|O|M|O|Z)TV(T|O|M[{O|=Z

N

3.73E-13 |4.66E-12]4.60E-13 |5.11E-13 |3.47E-13 |2.89E-12 |3.75E-13 |4.37E-13

Table 6.11. Simulation results for evaluating L, error with critical linear error,

&. =0.00001, and different critical relative and polynomial error values

Critical Relative Error=0.1 Critical Realtive Error=0.01

Original IS Dens. Uniform IS Dens. Original IS Dens. Uniform IS Dens.

Mean L; |Std. D. L; [Mean L, |Std. D. L, |Mean L, |Std. D. L, |Mean L, |Std. D. L,

Critical Polynomial Error

5.12E-11 |4..45E-09 |9.11E-11 |1.74E-12]4.98E-12 |1.09E-10 |5.96E-12 |2.06E-13

1.37E-07 |1.49E-06 |2.01E-07 |8.91E-06]2.26E-09 |1.61E-08 |]1.34E-08 |1.33E-06

1.86E-10 |9.94E-09]2.09E-10 [6.01E-10]1.69E-11 |5.44E-10 |2.07E-11 |5.60E-11

1.E-08

3.30E-11 |1.36E-09]1.26E-10 |3.22E-10]2.18E-11 |3.50E-10 |1.91E-11 |6.31E-11

3.53E-14 |2.62E-13 |3.83E-14 |2.59E-13 |]3.58E-14 |2.41E-13 |3.87E-14 |2.50E-13

N

4.24E-12 |3.92E-10]4.69E-12 |1.58E-11 |]2.86E-13 |8.78E-13 |]3.89E-13 |8.05E-13

9.99E-11 |9.39E-09 |4.63E-11 |8.74E-13 |]7.68E-12 |1.86E-10 |5.96E-12 |2.06E-13

2.73E-08 |5.89E-07 |3.42E-08 |1.23E-06]J1.51E-09 |1.12E-08 |3.78E-10 |1.86E-08

2.38E-11 |6.48E-10 |8.55E-11 |2.01E-10 |]1.26E-11 |4.48E-10 |1.95E-11 |5.31E-11

2.43E-10 |9.46E-09 |8.88E-11 |2.15E-10 |}1.74E-11 |2.81E-10 |1.91E-11 |6.50E-11

1.E-10

3.90E-14 |6.11E-13 |4.12E-14 |2.68E-13]3.50E-14 |2.50E-13 |4.22E-14 |2.62E-13

N

2.87E-13 |1.58E-12 |]1.84E-12 |5.76E-12 |]2.73E-13 |9.35E-13 |3.70E-13 |7.42E-13

4.43E-13 |8.56E-12 |1.14E-12 |1.26E-14 J4.06E-13 |8.41E-12]4.92E-13 |5.74E-15

2.35E-09 16.37E-08]6.02E-09 |8.32E-08]4.47E-10 |5.12E-09 |1.87E-10 |4.84E-09

1.11E-12 |2.29E-11 J2.05E-12 |2.77E-12 |7.92E-13 |1.56E-11 |J1.53E-12 |2.52E-12

1.E-12

2.78E-12 |1.57E-10]2.78E-12 |3.75E-12 J2.99E-12 |1.24E-10)2.05E-12 |3.28E-12

1.67E-14 |1.12E-13 |2.02E-14 |6.79E-14 |3.74E-14 |1.75E-12 |2.00E-14 |6.47E-14

VNI OIMO|Z|RBV|T|O|M|O|Z|TV(T|O|M{O|=Z

N

3.68E-13 |6.13E-12 |4.12E-13 |5.35E-13 |5.11E-13 |1.72E-11 |3.15E-13 |4.40E-13

87

The tables show that the L, error is small enough to speak of a very good
approximation. An accurate result of the L, error is always obtained when the uniform

distribution between the cutoff points is used as importance sampling density.

As an approximate random variate generation method, the polynomial
approximation can reach very small approximation errors with less subintervals than
piecewise constant or piecewise linear approximation of the density. Therefore, the
algorithm requires smaller tables. Also, the sampling algorithm does not require any
density function calls.

The algorithm has the advantage of a faster sampling than the Triangular Ahrens

Method. This is because of the reasons:

e The Triangular Ahrens needs at least two uniform random variates to generate a
random variate.
e There is a rejection probability.

e It needs to call density function in the sampling algorithm.

On the other hand, the Polynomial Density Inversion is based only on
decomposition-inversion and needs only one uniform random number. It never calls the
density function in the sampling algorithm. It is also guaranteed to generate a random
variate in each time the sampling algorithm is run. Yet, it needs a larger data table to be
stored, especially for higher order approximations.

Nevertheless, the setup algorithm is slower than the setup algorithm of the
Triangular Ahrens and more complicated. Therefore, the Polynomial Density Inversion
method can be an appropriate method when a larger number of random variates from a

fixed distribution are needed.

88

7. CONCLUSIONS

Both of the Triangular Ahrens and the Polynomial Density Inversion algorithms
were coded in “C”. Numerical results show both of the algorithms work well for a
particular list of unimodal distributions and have advantages when compared to existing
universal random variate generation methods (See Table 7.1). Both of the methods are not
so easy to analyze. Due to the miscellaneous functions and sub-functions (See Appendix A
and B) used both in the setup and sampling algorithms, it was hard to code the algorithms
in a comprehensible and elegant way. On the other hand, defining general heuristics for the
decomposition of the density (especially in the Polynomial Density Inversion method) was
a long study with many trials of implementations. However, we believe that those
heuristics are sufficient to obtain a decomposition, which is close to the optimal, for a user

who understands the heuristics and can decide about appropriate critical parameters.

Table 7.1. Comparison of universal random variate generation methods

Performance Ahrens] Transformed [Polynomial] Triangular Polynomial
Criteria Method| Density Rejection| Inversion | Ahrens | Density Inversion
Simplicity X

Small table X X X

No function calls

in the sampling X X

Speed X X X X X

After the implementation, by applying the chi-square test, we saw that the
generated sample follows the original distribution and the algorithms generate as fast as
existing universal random variate generation methods. When we get into the details, we
criticize and compare the characteristics of this new two methods and Ahrens,
Transformed Density Rejection and Polynomial Inversion.

The Triangular Ahrens is the modification of the Ahrens Method with linear hats
and the mirroring principle. Adding mirroring principle decreases the rejection constant.
But different from the rejection with inversion, it generates random points without calling
the hat function, like it is in the Ahrens Method. It needs a smaller table and has an

acceptable marginal execution time when compared with the Ahrens Method. As it is seen

89

in Table 7.1, the Triangular Ahrens Method is similar to Transformed Density Rejection

with respect to performance criteria.

The Polynomial Density Inversion uses piecewise polynomial approximations
instead of the original density. Thus, it does not need any density function calls in the
sampling algorithm. Since it also uses decomposition, it has a low probability of using
polynomial inversion, which is relatively slow due to the expensive root finding
algorithms. It achieves a good approximation of unimodal densities with 4™ order
polynomials and result in a table size of 50 kilobytes at most. Compared with the
Triangular Ahrens, it needs a longer and more complicated setup, but has a simpler
sampling algorithm and a faster marginal execution time. The method is, then, preferable
when it is needed to generate a very large number of random variates. It is similar to
polynomial inversion with respect to performance criteria, only a bit faster and with

smaller tables.

We have explained both of the algorithms with explicit pseudo codes which could
be applied within any programming environment. We also added the “C” codes for both of

the algorithms and “R” codes for evaluating L, error for constant, linear and the 4™ order

approximations of the densities in the appendix.

90

APPENDIX A: TRIANGULAR AHRENS C CODES

Following codes are the c¢ application of the Triangular Ahrens algorithm. The
algorithm is coded as a main function. Also there is a header file that includes the setup,
the sampling and all other helping functions.

Main Function:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "trilib.h"
/*1.000.000.000 repeat*/

#define OUTER 1 /*outer repetition increase the accuracy of time
length, repeats the setup and generation*/

#define RVS 1000000

/*number of random variates to be generated after setup*/

#define CLASSES 1000

/*number of classes for chi-square test, sqrt(RVS) is desirable*/
#define PRINTFLAG 1

/*prints out the setup table for each outer loop*/

#define CHI2RESULT 1

/*makes a chi-square test for random variates in each outer loop*/
#define COUNTFLAG 1 /*counts and prints the random variates according
to the generation types*/

#define ACRIT 0.05

/*heuristic subinterval creation parameter, area between error*/
#define DENSITY Normal /*distribution type to be generated*/
#define DERIVATIVE Deri1Normal /7*first derivative of the distribution*/
#define CUMULATIVE CdfNormal /*cumulative distribution for chi-square
test*/

#define P1 O /*parameter 1*/

#define P2 1 /*parameter 2*/

#define LEFTCUTOFF -6

/*NORMAL(0,1) -6*/ /*CAUCHY(0,1) -640000*/
/*EXPO(1,NULL) O*/ /*GAMMA(3,1) 0*/

/*BETA(3,4) 0*/ /*BETA(30,40) 0*/

#define LEFTINFLECTION -1

/*NORMAL(0,1) -1*/ /*CAUCHY(0,1) -0.577350269189625*/
/*EXPO(1,NULL) O*/ /*GAMMA(3,1) 0.585786437626905*/
/*BETA(3,4) 0.15505102572168*/ /*BETA(30,40) 0.366049994532764*/
#define MODE O

/*NORMAL(0,1) 0*/ /*CAUCHY(0,1) 0*/

/*EXPO(1,NULL) O*/ /*GAMMA(3,1) 2*/

/*BETA(3,4 0.4)*/ /*BETA(30,40) 0.426470588235294*/
#define RIGHTINFLECTION 1

/*NORMAL(0,1) 1*/ /*CAUCHY(0,1) 0.577350269189625*/

/*EXPO(1,NULL) 0*/ /*GAMMA(3,1) 3.414213562373095*/

91

/*BETA(3,4) 0.6449489742783*/ /*BETA(30,40) 0.486891181937824*/
#define RIGHTCUTOFF 6
/*NORMAL(0,1) 6*/ /*CAUCHY(0,1) 640000*/
/*EXPO(1,NULL) 17*/ /*GAMMA(3,1) 21*/
/*BETA(3,4) 1*/ /*BETA(30,40) 0.8*/
int main()

int anykey;

int j=0,i,subints,total;
time_t genstart,genend;

double gendif,rv; /*variables that hold timing result
and generated RVs*/

double typevec[5]={0}; /*a vector that holds the average
percentage of sampling types*/

double sumsquare[5]={0}; /*a vector that holds the std.
deviation of the percentage of sampling types*/

double typemat[5][OUTER]; /*a matrix that holds the percentage

of sampling types for each run*/

time (&genstart); /*this is where the timing starts*/
double sum=0; /*an arbitrary operation variable to be used with
each random variate*/
Tfor(§=0;J<OUTER;j++){
/*SETUP PART*/
LPAGEN *lIpagen; /*a struct that will store the table*/
Ipagen=Setup(LEFTCUTOFF,LEFTINFLECTION,MODE,RIGHT INFLECTION,
RIGHTCUTOFF,ACRIT,DENSITY ,DERIVATIVE,P1,P2);
it (PRINTFLAG!I=0){
PrintLPATable(lpagen);
/*command that prints out the table*/
}
subints=Ipagen->n;
/*SETUP ENDS*/
/*SAMPLING PART*/
int counter[5]={0}; /*count vector to count three types
of generation and recursion*/
long freq[CLASSES]={0}; /*frequency vector that will store
F(rv) in #CLASSES equidistant intervals*/
For(i=0;i<RVS;i++){
rv=Generator(lpagen,DENSITY,P1,P2,counter,COUNTFLAG) ;
Sum+=rv; /*an arbitrary insignificant (not
expensive) operation*/
it (CHI2RESULT!=0){
freq[(int) (CLASSES*CUMULATIVE(rv,P1,P2))]++;

}

total=counter[0]+counter[1]+counter[2]+counter[3];

typevec[0]+=typemat[0][j]=(double)counter[0]*100/total;
/*assigments for efficiency characteristics*/

typevec[1]+=typemat[1][Jj]=(double)counter[1]*100/total;
/*assigments for efficiency characteristics*/

typevec[2]+=typemat[2][Jj]=(double)counter[2]*100/total;
/*assigments for efficiency characteristics*/

typevec[3]+=typemat[3][j]=(double)counter[3]*100/total;
/*assigments for efficiency characteristics*/

typevec[4]+=typemat[4][Jj]=(double)counter[4]*100/total;
/*assigments for efficiency characteristics*/

/*SAMPLING ENDS*/

92

if (CHI2RESULT1=0){
Chi2Test(freq,CLASSES,RVS,CHI2RESULT);

}
iT (COUNTFLAG!=0){ /*prints out number of random
variates generated with three types of generation*/
printf(''\nTotal # of RVs T %d™,
total);
printf('"\n# of RVs immediatly accepted o %d"

"\n# of RVs accepted through squeeze : %d"
"\n# of RVs accepted through density : %d"

"\n# of RVs rejected T %d"
"\n# of mirroring applied RVs = %d\n"
counter[0],counter[1],counter[2], counter[3]
counter[4]);

FreeGen(lpagen); /*frees the memory*/

}

printf(C"\nMean: %f\n",sum/(OUTER*RVS)); /*the result of the
arbitrary operations*/

time (&genend); /*this is where the timing ends*/

gendif=difftime(genend,genstart);

for (i=0;i<=4;i++){
for(J=0; J<OUTER; j++){
sumsquare[i]+=Ctypemat[i][J]-
(typevec[i]/0UTER))*(typemat[i][J]-(typevec[i]/0UTER));
}

}

printf(""\nMEMORY OCCUPATION:""); /*prints out the number of
subintervals in the table*/

printf(C"\n# of subintervals: %d\n",subints);

printFC\nTIMING RESULTS:"");

printf(’"\nProcessing time : %f",gendif); /*prints out the whole
execution time*/

printF(C"\nSingle loop time: %f\n", (double)gendif/OUTER); /*prints
out the average of single loop (setup and generation) times*/

printfF("\nPERFORMANCE CHARACTERISTICS:""); /*prints out the
mean and the std. dev. of the percentage of sampling types*/

printf(""\nAverage percentage of RVs immediately accepted
o %F",typevec[0]/0UTER);

printf(C’'\nStd.Dev. of the percentage of RVs immediately accepted
: %F',sqrt(sumsquare[0]/0UTER));

printf("’"\nAverage percentage of RVs accepted through squeeze
: %", typevec[1]/0UTER);

printF(’'\nStd.Dev. of the percentage of RVs accepted through
squeeze: %f",sqrt(sumsquare[1]/0UTER));

printF('"\nAverage percentage of RVs accepted through density
: %F",typevec[2]/0UTER);

printF(’'\nStd.Dev. of the percentage of RVs accepted through
density: %f",sqrt(sumsquare[2]/0UTER));

printf(""\nAverage percentage of RVs rejected
: %F",typevec[3]/0UTER);

printfF(''\nStd.Dev. of the percentage of RVs rejected
: %F",sqrt(sumsquare[3]/0UTER));

printfF("\nAverage percentage of mirroring applied RVs
: %f",typevec[4]/0UTER);

printfF(''\nStd.Dev. of the percentage of mirroring applied RVs
: %PA\n",sqrt(sumsquare[4]/0UTER));

93

printfF("\nExpected # of iterations
%F" 100/((typevec[O]/OUTER)+(typevec[1]/OUTER)+(typevec[2]/OUTER)))
printF('"\nUpperbound for expected # of iterations
%F'",1/(1-subints*ACRIT));
printf(""\nExpected # of uniform variates used
%f 200/((typevec[O]/OUTER)+(typevec[1]/OUTER)+(typevec[2]/OUTER)))
printf('"\nUpperbound for expected # of uniform variates used :
%F'",2/(1-subints*ACRIT));
printfF(C"\nExpected # of density function calls
%F'", (100-(typevec[0]/0UTER)-
(typevec[1]/0UTER))/ ((typevec[0]/0UTER)+(typevec[1]/0UTER)+(typevec|[2]/0U
TER)));
printF(C"\nUpperbound for expected # of density function calls:
%F'", (subints*ACRIT)/(1-subints*ACRIT));
printfF("\nExpected # of density mirrorings applied
%F" (typevec[4]/OUTER)/((typevec[O]/OUTER)+(typevec[1]/OUTER)+(typevec[2]
/OUTER)))
printF("\nUpperbound for expected # of mirrorings applied
%F\n",subints*ACRIT/4);

printf(''\nPress X, then Enter to exit...');
scanf("'%d", &anykey) ;
return O;

Trilib.h:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define MAXTABLESIZE 400 /*temporary subinterval vector storage
size*/

#define SEED 1 /*initial seed for uniform random variate generator*/
#define MAXIT 100 /*CDF BETA*/

#define EPS 3.0e-7 /*CDF BETA*/
#define FPMIN 1.0e-30 /*CDF BETA*/

typedef struct{

int n; /*number of subintervals*/

double *sivec; /*pointer to the array holding subinterval
boundaries*/

double *cavec; /*pointer to the array holding subinterval
cumulative probabilities*/

double *csvec; /*pointer to the array holding constant squeeze
value*/

double *lIsvec; /*pointer to the array holding linear squeeze
slopes*/

double *Isconvec; /*pointer to the array holding linear squeeze
constants*/

double *lhvec; /*pointer to the array holding linear hat
slopes*/

double *lhconvec; /*pointer to the array holding linear hat
constants*/

int *guidevec; /*pointer to the array holding indexed search
guide table*/

94

} LPAGEN;

void PrintLPATable(LPAGEN *gen) /*function that prints data table and
guide table by using the pointer*/
{ o
int i;
printf('Ind Lbound Ubound Cumprob Conssqu Squgrad Squcons
Hatgrad Hatcons\n");
for (1=0;i<gen->n;i++){
printf('%3d%9.5F%9 . 5F%9 . 5F%9 . 5F%9 . 5F%9 . 5F%9 . 5F%9 . 5F\n"",
i,gen->sivec[i],gen->sivec[i+1],gen->cavec[i+1],gen-
>csvecl[i],
gen->Isvec[i1],gen->Isconvec[i],
gen->lhvec[1],gen->lhconvec[i]);

}
printf("'\nGuide Table:'");
for (i=0;i<2*gen->n;i++){
it (1%20==0){
printf(''\n"");

}
printf("'%3d",gen->guidevec[i]);

h
printf(’'\n"");
3

double Normal (double x,double mu,double sigma) /*PDF of normal
distribution*/
{
iT (sigma<=0){
printf('error\n™);
return O;
}
else{
return exp(-(xX-mu)*(x-
mu)*0.5/(sigma*sigma))/(2.506628274630963*sigma) ;

}

double DerlNormal (double x,double mu,double sigma) /*First derivative
of normal distribution*/
{
it (sigma<=0){
printf("'error\n™);
return O;

else{
return (mu-x)*exp(-(x-mu)*(x-
mu)*0.5/(sigma*sigma))/(2.506628274630963*sigma*sigma*sigma) ;

}

double CdfNormal (double x,double mu,double sigma) /*CDF of normal
distribution*/
{
if(sigma<=0){
printf("'error\n™);
return O;
}
else{
int help;

95

double xx,x2,x3,x4,x5,x6,x7,x8,zahler,nenner;

static double
ep0=242.66795523053175,ep1=21.979261618294152,
ep2=6.9963834886191355,ep3= -3.5609843701815385e-2,
€q0=215.0588758698612,eq1=91.164905404514901,
eq2=15.082797630407787 ,/*eq3=1,*/
zp0=300.4592610201616005,zq0=300.4592609569832933,
zpl=451.9189537118729422,zq1=790.9509253278980272,
zp2=339.3208167343436870,zq2=931.3540948506096211,
zp3=152.9892850469404039,zq3=638.9802644656311665,
zp4=43.16222722205673530,zq4=277 .5854447439876434,
zp5=7.211758250883093659,zg5=77.00015293522947295,
zp6=0.5641955174789739711,zq6=12.78272731962942351,
zp7= -1.368648573827167067e-7,/*zq7=1,*/
dp0= -2.99610707703542174e-3,dq0=1.06209230528467918e-2,
dpl= -4.94730910623250734e-2,dql1=1.91308926107829841e-1,
dp2= -2.26956593539686930e-1,dq2=1.05167510706793207,
dp3= -2.78661308609647788e-1,dq3=1.98733201817135256,
dpd4= -2.23192459734184686e-2/*,dq4=1*/;

x=(x-mu)/sigma;
1T (x<0)
help=0;
else
help=1;
x=Fabs(X)/sqrt(2.);
if(x<0.5){
X2=X*X;
X4=X2*X2;
X6=X4*X2;
zahler=ep0+epl*x2+ep2*x4+ep3*x6;
nenner=eqO0+eql*x2+eq2*x4+x6;
if(help)
return(0.5*(1+x*zahler/nenner));
else
return(0.5*(1-x*zahler/nenner));

}

else 1IT(x<4){
X2=X*X;
X3=X2*X;
X4=X3*X;
X5=x4*X;
X6=x5%*X;
X7T=X6%*X;

zahler=zp0+zpl*x+zp2*x2+zp3*x3+zp4*Xx4+zp5*X5+zp6*xX6+zp7*X7;
nenner=zq0+zql*x+zq2*x2+zq3*x3+zg4*x4+zq5*x5+zq6*x6+X7 ;
if(help)
return(0.5*(2-exp(-x2)*zahler/nenner));
else
return(0.5*exp(-x2)*zahler/nenner);

}
else iT(x<50){
XX=X*X;
X2=1/XX;
X4=X2*X2;
X6=x4*X2;
X8=X6*X2;
zahler=dp0+dpl1*x2+dp2*x4+dp3*x6+dp4*x8;

96

nenner=dq0+dql*x2+dq2*x4+dgq3*x6+x8;
if(help)
return(1-0.5*(exp(-
xX)/x)*(1/sqrt(3.141592653589793)+zahler/ (xx*nenner)));
else
return(0.5*(exp(-
XX)/x)*(1/sqrt(3.141592653589793)+zahler/ (xx*nenner)));
}

else if(help)

return(1.);
else
return(0.);
}
}
double FGamma(double x) /*gamma function*/
double

p0=1.000000000190015,p1=76.18009172947146,
p2=-86.50532032941677 ,p3=24.01409824083091,
p4=-1.231739572450155, p5=1.208650973866179e-3,
p6=-5.395239384953e-6;

double

sum=p0+(p1/(x+1))+(p2/ (x+2))+(p3/ (x+3)) +(p4/ (x+4)) +(pS/ (x+5)) +(p6/ (x+6)) ;

return sum*sqrt(2*3.141592653589793)*pow((X+5.5), (X+0.5))*exp(-
1*(x+5.5))/x;

double FBeta(double x,double y) /*beta function*/
{

return FGamma(x)*FGamma(y)/FGamma(x+y);
}
double FactorDiv(double x,double y) /*factorial division*/
{

double res=1;

for (x;x>y;x--){

res=res*x;

}

return res;
}
double IncGamma(double alfa,double xbeta) /*incomplete gamma
function*/

double prop=1,res=0;
double n=0;

while (prop>le-12){
prop=pow(xbeta,alfa)*exp(-
1*xbeta)*pow(xbeta,n)/FactorDiv(alfatn,alfa-1);
res=res+prop;

n++:
}
return res;
}
double BetaCF(double x,double a,double b) /*evaluates continued

fraction for incomplete beta function*/

int m,m2;
double aa,c,d,del,h,gab,qam,qgap;

gab=a+b;
gap=a+1.0;
gam=a-1.0;
c=1.0;
d=1.0-gab*x/gap;
i f(Fabs(d)<FPMIN){
d=FPMIN;
¥
d=1.0/d;
h=d;
for(m=1;m<MAXIT;m++){
m2=2*m;
aa=m*(b-m)*x/ ((gqam+m2)*(a+m2));
d=1.0+aa*d;
if(fabs(d)<FPMIN){
d=FPMIN;
}
c=1.0+aa/c;
if(fabs(c)<FPMIN){
Cc=FPMIN;
by
d=1.0/d;
h*=d*c;
aa=-(a+tm)*(gab+m)*x/ ((a+tm2)*(qap+m2));
d=1.0+aa*d;
if(fabs(d)<FPMIN){
d=FPMIN;
}
c=1.0+aa/c;
if(fabs(c)<FPMIN){
Cc=FPMIN;
¥
d=1.0/d;
del=d*c;
h*=del ;
iT(fabs(del-1.0)<EPS){
break;
}
¥
return h;
}
double IncBeta(double x,double a,double b) /*incomplete beta
function*/
{
double bt;
i T(x<0){
return O;
}
ifCx>1){
return 1;

3

if (x==0.0 || x==1.0){
bt=0.0;

3

else {

98

bt=exp(log(FGamma(a+b))-log(FGamma(a))-
log(FGamma(b))+a*log(x)+b*log(1.0-x));

}
iT (x<(a+1l.0)/(a+tb+2.0)){
return bt*BetaCF(x,a,b)/a;

}
else{
return 1.0-bt*BetaCF(1.0-x,b,a)/b;

}
}
double Gamma(double x,double alfa,double beta) /*PDF of gamma
distribution*/
{

if (alfa<=0 || beta<=0){
printf("'error\n™);
return O;

b

it (x<0){
return O;

3

else{
return pow(x,alfa-1)*pow(beta,alfa)*exp(-
1*beta*x)/FGamma(alfa);

}
}
double DerlGamma(double x,double alfa,double beta) /*first
derivative of gamma distribution*/
{
if (alfa<=0 || beta<=0){
printf("'error\n);
return O;
}
if (x<0){
return O;
}
else{
return pow(beta,alfa)*exp(-1*beta*x)*pow(x,alfa-2)*(alfa-1-
beta*x)/FGamma(alfa);
}
}
double CdfGamma(double x,double alfa,double beta) /*CDF of
gamma distribution*/
{
ifT (alfa<=0 || beta<=0){
printf("'error\n™);
return O;
}
i (x<0){
return O;
else{
return IncGamma(alfa,x*beta)/FGamma(alfa);
}
}
double Beta(double x,double alfa,double beta) /*PDF of beta

distribution*/

99

{
if (alfa<=0 || beta<=0){
printf("'error\n);
return O;
3
if (x<0 || x>1){
return O;
3
else{
return pow(x,alfa-1)*pow(1l-x,beta-1)/FBeta(alfa,beta);
3
3

double CdfBeta(double x,double alfa,double beta)
distribution*/

{
if (alfa<=0 || beta<=0){

printf("'error\n);
return O;

¥
if (x<0){
return O;

3
else 1Tt (>1){
return 1;

else {
return IncBeta(x,alfa,beta);
}

}

double DerlBeta(double x,double alfa,double beta)
derivative of beta distribution*/

{
if (alfa<=0 || beta<=0){

printf("'error\n);
return O;

3
it (x<=0 || x>=1){
return O;

else {

/*CDF of beta

/*First

return pow(x,alfa-2)*pow(1-x,beta-2)*(alfa-1-x*(alfat+beta-

2))/FBeta(alfa,beta);

}

double Expo(double x,double lambda,double null)
exponential distribution*/

if (lambda<=0){
printf("'error\n");

return O;
}
else{

return lambda*exp(-1*lambda*x);
}

/*PDF of

100

double CdfExpo(double x,double lambda,double null) /*CDF of
exponential distribution*/

{
it (lambda<=0){
printf("'error\n");

return O;
}
i (x<0){
return O;
}
else{
return l-exp(-1*lambda*x) ;
}
}
double DerlExpo(double x,double lambda,double null) /*First
derivative of exponential distribution*/
{
it (lambda<=0){
printf("'error\n™);
return O;
}
i (x<0){
return O;
}
else{
return -1*pow(lambda,2)*exp(-1*lambda*x) ;
}
}
double Cauchy(double x,double x0,double gamma) /*PDF of
cauchy distribution*/
{
it (gamma<=0){
printf('error\n™);
return O;
}
return 1/(3.141592653589793*gamma*(1+pow((x-x0)/gamma,2)));
}
double CdfCauchy(double x,double x0,double gamma) /*CDF of
cauchy distribution*/
{
it (gamma<=0){
printf("'error\n™);
return O;
}
return 0.5+(atan((x-x0)/gamma)/3.141592653589793) ;
by
double DerlCauchy(double x,double x0,double gamma) /*First
derivative of cauchy distribution*/
{

if (gamma<=0){
printf("'error\n);
return O;

}

return 2*(x0-x)*gamma/ (3.141592653589793*pow((pow(x0,2)-
2*x0*x+pow(X, 2)+pow(gamma,2)),2));
}

101

double UO1() /*standard uniform random variate generator*/
{

static unsigned long int seed=SEED;

seed=(69069*(seed)+1);

return(seed/4.294967296e9);

}
double Dfchia(double x,long n) /*approximation*/
{
double chix,y;
y=2.7(9-*n);
chix=(exp(log(x/n)/3)-1+y)/sqrt(y);
return(CdfNormal (chix,0,1));
}
double Chi2Test(long b[], /*obsereved frequencies*/
long 1, /*number of classes*/
long wid, /*sample size*/
int printflag) /*0..no
output,1.._little,2. .more*/
{
long int i;
double chi2=0.,erw,pval;
erw=(double)wid/l;
if (erw<5.){
printF("Error Chi2Test: expected frequency smaller than
5\n"");
3
for (i=0;i<l;++i){
if (printflag==2){
printf('%41d:%41d;",1,b[i]);
}
chi2+= (b[i]-erw)*(b[i]-erw);
chi2/=erw;
pval=1_-Dfchia(chi2,1-1);
it (printflag>=1)
{
printf('\nChi2-test: samplesize=%ld number of classes= %ld
\n",wid, 1);

printf("'Chi2-value %f Approximate P-Value:
%.15F\n",chi2,pval);

}
return(chi2);
}
int IndexSearch(double u, /*std. uniform RV*/
int guide[], /*guide table*/
int gwidth, /*length of guide table*/
double cdfvec[]) /*cumulative probability
values*/
{
int sind=u*gwidth;
int x;
x=guide[sind];
while (u>cdfvec[x]){
X++

102

return x-1;

}
int FlexSubint(double lcutoff, /*left cutoff point of the unbounded
density*/
double linflect, /*left inflection point*/
double mode, /*global maxima of the density*/
double rinflect, /*right inflection point*/
double rcutoff, /*right cutoff point of the unbounded
density*/

double acrit, /*max. area above constant squeeze
for each subinterval*/
double *subints, /*pointer to the vector that will
store subintervals*/
double (*dens)(double a,double b,double c),/*pointer to
corresponding distribution density function*/
double p1, /*parameter 1*/
double p2) /*parameter 2*/
/*creates flexible subintervals with an heuristic method*/
{
double initsivec[5]={lcutoff,linflect,mode,rinflect,rcutoff};
int ninit=4;
double last=initsivec|[ninit]; /*upper boundary of questioned
subinterval for dividing*/
double start=initsivec[0]; /*lower boundary of questioned
subinterval for dividing*/
int k=ninit-1;
double aim[MAXTABLESIZE]; /*vector that holds sequenced
upper boundaries of subintervals to be questioned*/
while (k>=0){
aim[k]=initsivec[ninit-k];

k--;
}

k=ninit-1;
int i=0;
double aquest; /*the questioned area*/

subints[i]=initsivec[0];
while (subints[i]!=last){
if (aim[k]<linflect || aim[k]>rinflect || start<linflect ||
start>rinflect){
aquest=(aim[k]-start)*fabs((*dens) (aim[k],pl,p2)-
(*dens) (start,pl,p2))/2;

else {
it ((*dens)(aim[k],pl,p2)<(*dens)(start,pl,p2)){
aquest=(aim[k]-
start)*((*dens) ((aim[k]+start)/2,pl,p2)-
(*dens) (aim[k],pl,p2));

¥
else{
aquest=(aim[k]-
start)*((*dens) ((aim[k]+start)/2,pl,p2)-
(*dens)(start,pl,p2));
by
}
if (aquest<=acrit){ /*accept subinterval*/

i++;

103

subints[i]=aim[k];
start=subints[i];
k--;

else { /*reject and divide subinterval*/
k++;
aim[k]=(start+aim[k-1])/2;

}

return 1i;

}

void GuideTable(int length,double *cumvec, int *outputvec){ /*produces a
guide table, double size of subinterval vector*/

outputvec[0]=0;

int i=0;

int j;

for (J=1;j<(2*length);j++){

while (((double)j*cumvec[length-1]/(2*length))>cumvec[i]){
i++;

outputvec[j]=i;

}
}
LPAGEN *Setup(double Icutoff, /*left cutoff point of the
unbounded density*/
double linflect, /*left inflection point*/
double mode, /*global maxima of the density*/
double rinflect, /*right inflection point*/
double rcutoff, /*right cutoff point of the unbounded
density*/
double acrit, /*max. area above constant squeeze

for each subinterval*/

double (*dens)(double a,double b,double c), /*pointer to
the corresponding distribution density function*/

double (*derl)(double d,double e,double), /*pointer to
the first derivative of distribution density function*/

double p1, /*parameter 1*/
double p2) /*parameter 2*/
/*function returns a pointer to the data table*/

{
double subints[MAXTABLESIZE]; /*vector that records approved
subintervals*/
int i;
i=FlexSubint(lcutoff, linflect,mode,rinflect, rcutoff,acrit,subints,(
*dens),pl,p2);

LPAGEN *gen; /*a structure that holds data table*/

gen=(LPAGEN *)malloc(sizeof(LPAGEN));

gen->sivec=(double *)malloc(sizeof(double)*(i+l1)); /*allocation
for subintervals of the data table*/

gen->cavec=(double *)malloc(sizeof(double)*(i+1)); /*allocation
for cumulative probabilities of the data table*/

gen->csvec=(double *)malloc(sizeof(double)*i); /*allocation
for constant squeezes of the data table*/
gen->Isvec=(double *)malloc(sizeof(double)*i); /*allocation

for linear squeeze slopes of the data table*/

for

for

for

for

gen->Isconvec=(double *)malloc(sizeof(double)*i);

linear squeeze constants of the data table*/

gen->lhvec=(double *)malloc(sizeof(double)*i);

linear hat slopes of the data table*/

gen->lhconvec=(double *)malloc(sizeof(double)*i);

linear hat constants of the data table*/

gen->guidevec=(int *)malloc(sizeof(int)*2*i);

the guide table of indexed search*/
gen->n=i;
gen->sivec[0]=subints[0];
gen->cavec[0]=0;

int j,concave=1;
double sum=0;
double midpoint, intlngth, lborval,rborval;

for(g=1;j<=i;j++){/*depending on the property of the subinterval

(convexity, concavity, increasing or decreasing) calculates table

values*/

}
int FreeGen(LPAGEN *gen){

midpoint=(subints[j]+subints[j-1])/2;
intIngth=subints[j]-subints[j-1];
Iborval=(*dens) (subints[j-1],pl,p2);
rborval=(*dens) (subints[j],pl,p2);

gen->sivec[j]=subints[]j];
ifT (Iborval<=rborval){
gen->csvec[j-1]=01borval;

else {
gen->csvec[j-1]=rborval;

}

iT (subints[j-1]<linflect || subints[j-1]>rinflect ||

subints[jl<linflect || subints[j]>rinflect){
gen->lhvec[j-1]=(rborval-lborval)/intingth;
gen->lhconvec[j-1]=(rborval+lborval)/2;
gen->Isvec[J-1]=C*derl) (midpoint,pl,p2);
gen->Isconvec[j-1]=(*dens) (midpoint,pl,p2);

}

else {
gen->lhvec[j-1]=(*derl) (midpoint,pl,p2);
gen->lhconvec[j-1]=(C*dens) (midpoint,pl,p2);
gen->Isvec[j-1]=(rborval-lborval)/intingth;
gen->Isconvec[j-1]=(rborval+lborval)/2;

}

gen->cavec[j]=sum+intingth*gen->lhconvec[j-1];
sum=gen->cavec[j];

}

for (g=1;j<=gen->n;j++){

}

gen->cavec[j]=gen->cavec|[j]/gen->cavec[gen->n];

GuideTable(gen->n,gen->cavec,gen->guidevec);
return gen;

structure address*/
free(gen->sivec);

/*cumulative vector normalized*/

/*after termination, the function frees

104

/*allocation

/*allocation

/*allocation

/*allocation

105

free(gen->cavec);
free(gen->csvec);
free(gen->Isvec);
free(gen->Isconvec);
free(gen->lhvec);
free(gen->lhconvec);
free(gen->guidevec);
free(gen);

return O;

}

double Generator(LPAGEN *Ipagen,
double (*dens)(double a,double b,double c),
double p1,
double p2,
int *counter, /*a vector that holds accepted
variate types*/
int countflag) /*other than zero, it counts*/
{ /*Generates a random variate through the data table*/
double ul,u2,urc;
int index,accept=0;
double x,u,c,height,sgheight, length,lb,ub;

while(accept==0){

ul=u01Q);

u2=U01Q);

index=IndexSearch(ul, Ipagen->guidevec,2*1pagen->n, Ipagen-
>cavec); /*Subinterval index is determined with ul*/

Ib=Ipagen->sivec[index];
ub=Ipagen->sivec[index+1];
length=ub-1b;
height=Ipagen->lhconvec[index];
urc=(ul-l1pagen->cavec[index])/(Ipagen->cavec[index+1]-lIpagen-
>cavec[index]);
x=1pagen->sivec[index]+length*urc; /*RV is determined with
recycled RV*/
u=u2*height; /*a corresponding ordinate is determined
with u2*/
c=(Ipagen->sivec[index]+Ipagen->sivec[index+1])/2; /*center
point is calculated*/
if (u<=lpagen->csvec[index]){ /*below the constant
squeeze, immediately acceptance*/
if (countflag!=0){counter[0]++;}
accept=1;

else{
it (u>(Ipagen->lhconvec[index]+1pagen->lhvec[index]*(x-
c))){ /*above the linear hat, must be mirrored*/
if (countflag!=0){counter[4]++;}
X=2*Cc-X;
u=2*height-u;
}
if (u<=(lpagen->Isconvec[index]+Ipagen-
>Isvec[index]*(x-c))){ /*below the linear squeeeze, accepted*/
if (countflag!=0){counter[1]++;}
accept=1;

else if (u<=(*dens)(x.p1,p2)){ /*below the density,
accepted*/
if (countflag!=0){counter[2]++;}

106

accept=1;

}

else{ /*above the density rejected*/
iT (countflag!=0){counter[3]++;}

¥

return Xx;

107

APPENDIX B: POLYNOMIAL DENSITY INVERSION C CODES

Following codes are the c application of the Polynomial Density Inversion
algorithm. The algorithm is coded as a main function. Also there is a header file that
includes the setup, the sampling and all other helping functions.

Main Function:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "pdilib.h"

#define OUTER 1 /*outer repetition increase the accuracy of time
length, repeats the setup and generation*/

#define RVS 1000000 /*number of random variates to be generated after
setup*/

#define CLASSES 1000 /*number of classes for chi-square test,
sqgrt(RVS) is desirable*/

#define PRINTFLAG 1 /*prints out the setup table for each outer
loop*/

#define CHI2RESULT 1 /*makes a chi-square test for random variates in
each outer loop*/

#define COUNTFLAG 1 /*counts and prints the random variates according
to the generation types*/

#define ERROR 0.01 /*heuristic subinterval creation parameter,
critical linear error*/
#define RERROR 0.1 /*heuristic subinterval creation parameter,

critical relative error*/

#define PERROR 1.e-8 /*heuristic subinterval creation parameter,
critical polynomial error*/

#define DENSITY Normal /*distribution type to be generated*/

#define DERIVATIVE DerlNormal /*First derivative of the
distribution*/

#define CUMULATIVE CdfNormal /*cumulative distribution for chi-
square test*/

#define P1 0O /*parameter 1*/

#define P2 1 /*parameter 2*/

#define LEFTCUTOFF -6

/*NORMAL(0,1) -6*/ /*CAUCHY(0,1) -640000*/
/*EXPO(1,NULL) O*/ /*GAMMA(3,1) 0.001*/

/*BETA(3,4) 0.001*/ /*BETA(30,40) 0.15*/

#define LEFTINFLECTION -1

/*NORMAL(0,1) -1*/ /*CAUCHY(0,1) -0.577350269189625*/
/*EXPO(1,NULL) 1.e-12*/ /*GAMMA(3,1) 0.585786437626905*/
/*BETA(3,4) 0.15505102572168*/ /*BETA(30,40) 0.366049994532764*/
#define MODE O

/*NORMAL(0,1) 0*/ /*CAUCHY(0,1) 0*/

/*EXPO(1,NULL) 2.e-12*/ /*GAMMA(3,1) 2*/

108

/*BETA(3,4) 0.4*/ /*BETA(30,40) 0.426470588235294*/
#define RIGHTINFLECTION 1
/*NORMAL(0,1) 1*/ /*CAUCHY(0,1) 0.577350269189625*/
/*EXPO(1,NULL) 3.e-12*/ /*GAMMA(3,1) 3.414213562373095*/
/*BETA(3,4) 0.6449489742783*/ /*BETA(30,40) 0.486891181937824*/
#define RIGHTCUTOFF 6
/*NORMAL(0,1) 6*/ /*CAUCHY(0,1) 640000*/
/*EXPO(1,NULL) 17*/ /*GAMMA(3,1) 21*/
/*BETA(3,4) 0.999*/ /*BETA(30,40) 0.725*/
int main()

int anykey;

int j=0,i1,subints;

time_t genstart,genend;

double gendif,rv; /*variables that hold timing result and
generated RVs*/

double typevec[3]={0}; /*a vector that holds the average
percentage of sampling types*/

double sumsquare[3]={0};/*a vector that holds the std. deviation of
the percentage of sampling types*/

double typemat[3][OUTER];/*a matrix that holds the percentage of
sampling types for each run*/

time (&genstart); /*this is where the timing starts*/
double sum=0; /*an arbitrary operation variable to be
used with each random variate*/
for(J=0;jJ<OUTER;j++){ /*beginning of the outer loop*/
/*SETUP PART*/
PDIGEN *pdigen; /*a struct that will store the table*/
pdigen=Setup(LEFTCUTOFF,LEFTINFLECTION,MODE,RIGHTINFLECTION,
RIGHTCUTOFF,ERROR, RERROR, PERROR ,DENSITY ,DERIVATIVE,P1,P2);
it (PRINTFLAG!I=0){
PrintPDITable(pdigen); /*command that prints out the
table*/
}
subints=pdigen->n;
/*SETUP ENDS*/
/*SAMPLING PART*/
int counter[3]={0}; /*count vector to count three types
of generation*/
long freq[CLASSES]={0}; /*frequency vector that will store
F(rv) in #CLASSES equidistant intervals*/
for (i=0;i<RVS;i++){
rv=Generator(pdigen,counter,COUNTFLAG);
sum+=rv; /*an arbitrary insignificant (not
expensive) operation*/
it (CHI2RESULT!=0){
freq[(int) (CLASSES*CUMULATIVE(rv,P1,P2))]++;
/*counts F(rv)as plus 1 in its interval*/

}

typevec[0]+=typemat[0][j]=(double)counter[0]*100/RVS;
/*assigments for efficiency characteristics*/

typevec[1l]+=typemat[1][j]=(double)counter[1]*100/RVS;
/*assigments for efficiency characteristics*/

typevec[2]+=typemat[2][Jj]=(double)counter[2]*100/RVS;
/*assigments for efficiency characteristics*/

/*SAMPLING ENDS*/

109

it (CHI2RESULT!I=0){
Chi2Test(freq,CLASSES,RVS,CHI2RESULT) ; /*calls chi-
square test with frequency vector, tests if it is uniform*/

}
iT (COUNTFLAG!=0){ /*prints out number of random
variates generated with three types of generation*/
printf('"\nTotal # of RVs: %d",RVS);
printf(''\n# of RVs returned through uniform
distribution T %d™
"\n# of RVs returned through triangular
distribution: %d"
"\n# of RVs returned through polynomial inversion
> %d\n",counter[0],counter[1],counter[2]);

FreeGen(pdigen); /*frees the memory*/

}

printf("\nMean: %f\n",sum/(OUTER*RVS)); /*the result of the
arbitrary operations*/

time (&genend); /*this is where the timing ends*/

gendif=difftime(genend,genstart);

for (i=0;i<=2;i++){
for(J=0; J<OUTER; j++){
sumsquare[i]+=Ctypemat[i][j]-
(typevec[i]/0UTER))*(typemat[i][j]1-(typevec[i]/0UTER));

}

printf(""\nMEMORY OCCUPATION:""); /*prints out the number of
subintervals in the table*/

printf(C"\n# of subintervals: %d\n",subints);

printFC\nTIMING RESULTS:"");

printf(’"\nProcessing time: %f",gendif); /*prints out the whole
execution time*/

printF("\nSingle loop time: %f\n", (double)gendif/OUTER); /*prints
out the average of single loop (setup and generation) times*/

printf(""\nEFFICIENCY:""); /*prints out the mean and the std.
dev. of the percentage of sampling types*/

printF('"\nAverage percentage of RVs returned through uniform
distribution : %F",typevec[0]/0UTER);

printf(C'\nStd.Dev. of the percentage RVs returned through uniform
distribution: %f",sqrt(sumsquare[0]/0UTER));

printf('"\nAverage percentage of RVs returned through triangular
distribution : %f",typevec[1]/0UTER);

printF(’'\nStd.Dev. of the percentage RVs returned through uniform
distribution: %f",sqgrt(sumsquare[1]/0UTER));

printF('"\nAverage percentage of RVs returned through polynomial
distribution : %f",typevec[2]/0UTER);

printfF(''\nStd.Dev. of the percentage RVs returned through uniform
distribution: %f\n",sqrt(sumsquare[2]/0UTER));

printfF('"\nPress X, then Enter to exit...');

scanf("'%d", &anykey) ;
return O;

Pdilib.h:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define PTS

110

5 /*number of interpolation points in each

subinterval, all coefficients are not printed if PTS>5*/

#define ERR
algorithm*/

#define MAXTABLESIZE
size*/

#define SEED
generator*/

#define MAXIT 100
#define EPS 3.0e-7
#define FPMIN 1.0e-30

typedef struct{
int n;
double mode;
double *sivec;
double *pcvec;
matrix*/
double *cavec;
areas*/
double *rcvec;
double *trvec;
int *guidevec;
guide table*/

l.e-12 /*critical error for root-finding
900 /*temporary subinterval vector storage

1 /*initial seed for uniform random variate

/*CDF BETA*/
/*CDF BETA*/
/*CDF BETA*/

/*number of subintervals*/

/*mode of the distribution*/

/*pointer to the array holding subintervals*/
/*pointer to the array holding coefficient

/*pointer to the array holding subinterval
/*pointer to the array holding rectangle areas*/

/*pointer to the array holding triangle areas*/
/*pointer to the array holding indexed search

} PDIGEN;
void PrintPDITable(PDIGEN *gen) /*function that prints the table and
guide table by using the pointer*/
{ o
int i;
printf("'Ind Lbound Ubound Cumprob Rect Tri x0 x1 X2

X3 x4\n"") ;

for (i=0;i<gen->n;i++){

printf('%3d%7 . 3F%7 . 3F%8 . 4T%8 . 4F%8 . 4F%6 . 2F%6 . 2F%6 . 2F%6 . 2F%6 . 2F\n"",
i,gen->sivec[i],gen->sivec[i+1],
gen->cavec[i+1],gen->rcvec|i],gen->trvec[i],
gen->pcvec|[5*i],gen->pcvec[5*i+1],
gen->pcvec[5*i+2],gen->pcvec[5*i+3],
gen->pcvec[5*i+4]);

}
printf(C'\nGuide Table:");
for (i=0;i<2*gen->n;i++){
it (1%20==0){
printf('\n"");

}
printf('%3d"”,gen->guidevec[i]);

printf(''\n"");
3

double Normal(double x,double mu,double sigma) /*PDF of normal

distribution*/

111

ifT (sigma<=0){
printf("'error\n);
return O;
3
else{
return exp(-(x-mu)*(x-
mu)*0.5/(sigma*sigma))/(2.506628274630963*sigma) ;

}

double DerlNormal (double x,double mu,double sigma) /*first derivative
of normal distribution*/
{
it (sigma<=0){
printf("'error\n™);
return O;
3
else{
return (mu-x)*exp(-(x-mu)*(x-
mu)*0.5/(sigma*sigma))/(2.506628274630963*sigma*sigma*sigma) ;

}

double CdfNormal(double x,double mu,double sigma) /*CDF of normal
distribution*/
{
if(sigma<=0){
printf('error\n™);
return O;
}
else{
int help;
double xx,x2,x3,x4,x5,x6,x7,x8,zahler,nenner;

static double
ep0=242.66795523053175,ep1=21.979261618294152,
ep2=6.9963834886191355,ep3= -3.5609843701815385e-2,
eq0=215.0588758698612,eq1=91.164905404514901,
eq2=15.082797630407787 ,/*eq3=1,*/
zp0=300.4592610201616005,zq0=300.4592609569832933,
zpl1=451.9189537118729422,zq1=790.9509253278980272,
zp2=339.3208167343436870,zq2=931.3540948506096211,
zp3=152.9892850469404039,zq3=638.9802644656311665,
zp4=43.16222722205673530,zq4=277 .5854447439876434 ,
zp5=7.211758250883093659,z95=77.00015293522947295,
zp6=0.5641955174789739711,z96=12.78272731962942351,
zp7= -1.368648573827167067e-7,/*zq7=1,*/
dp0= -2.99610707703542174e-3,dq0=1.06209230528467918e-2,
dpl= -4.94730910623250734e-2,dql=1.91308926107829841e-1,
dp2= -2.26956593539686930e-1,dq2=1.05167510706793207,
dp3= -2.78661308609647788e-1,dq3=1.98733201817135256,
dp4= -2.23192459734184686e-2/*,dq4=1*/;

x=(x-mu)/sigma;
1T (x<0)
help=0;
else
help=1;
x=Fabs(X)/sqrt(2.);

112

if(x<0.5){
X2=X*X;
X4=X2*X2;
X6=x4*x2;
zahler=ep0O+epl*x2+ep2*x4+ep3*x6;
nenner=eq0+eql*x2+eq2*x4+x6;
if(help)
return(0.5*(1+x*zahler/nenner));
else
return(0.5*(1-x*zahler/nenner));

3

else IT(x<4){
X2=X*X;
X3=X2*X;
X4=X3*X;
X5=x4*X;
X6=xX5%*X;
X7=X6%*X;

zahler=zp0+zpl*x+zp2*x2+zp3*x3+zp4*x4+zp5*x5+zp6*xX6+zp7*X7;
nenner=zq0+zql*x+zq2*x2+zq3*x3+zq4*x4+zq5*x5+z2q6*X6+X7 ;
it(help)
return(0.5*(2-exp(-x2)*zahler/nenner));
else
return(0.5*exp(-x2)*zahler/nenner);

else 1TF(x<50){
XX=X*X;
X2=1/XX;
X4=X2*X2;
X6=X4*X2;
X8=X6*X2;
zahler=dp0+dp1*x2+dp2*x4+dp3*x6+dp4*x8;
nenner=dgq0+dgl1*x2+dq2*x4+dq3*x6+x8;
if(help)
return(1-0.5*(exp(-
xXX)/x)*(1/sqrt(3.141592653589793)+zahler/ (xx*nenner)));
else
return(0.5*(exp(-
xXX)/x)*(1/sqrt(3.141592653589793)+zahler/ (xx*nenner)));
}

else if(help)

return(1.);
else
return(0.);
}
}
double FGamma(double x) /*gamma function*/
double

p0=1.000000000190015,p1=76.18009172947146,
p2=-86.50532032941677 ,p3=24.01409824083091,
p4=-1.231739572450155, p5=1.208650973866179e-3,
p6=-5.395239384953e-6;

double

sum=p0+(p1/(x+1))+(p2/ (x+2))+(p3/ (x+3)) +(p4/ (x+4)) +(pS/ (x+5)) +(p6/ (x+6)) ;

return sum*sqrt(2*3.141592653589793)*pow((X+5.5), (X+0.5))*exp(-
1*(x+5.5))/x%;

113

}
double FBeta(double x,double y) /*beta function*/
{

return FGamma(x)*FGamma(y)/FGamma(x+y);
}
double FactorDiv(double x,double y) /*factorial division*/
{

double res=1;

for (x;x>y;x--){

res=res*x;

}

return res;
by
double IncGamma(double alfa,double xbeta) /*incomplete gamma
function*/

double prop=1,res=0;
double n=0;

while (prop>le-12){
prop=pow(xbeta,alfa)*exp(-
1*xbeta)*pow(xbeta,n)/FactorDiv(alfa+n,alfa-1);
res=res+prop;

n++;
}
return res;
}
double BetaCF(double x,double a,double b) /*evaluates continued
fraction for incomplete beta function*/
{

int m,m2;
double aa,c,d,del,h,gab,qam,qgap;

qab=a+b;

gap=a+1.0;

gam=a-1.0;

c=1.0;

d=1.0-gab*x/gap;

if(fabs(d)<FPMIN){
d=FPMIN;

¥
d=1.0/d;
h=d;
Ffor(m=1;m<MAXIT;m++){
m2=2*m;
aa=m*(b-m)*x/ ((qam+m2)*(a+m2));
d=1.0+aa*d;
if(fabs(d)<FPMIN){
d=FPMIN;
3

c=1.0+aa/c;

if(fabs(c)<FPMIN){
C=FPMIN;

¥

d=1.0/d;
h*=d*c;

114

aa=-(a+tm)*(qab+m)*x/((a+m2)*(qap+m2));
d=1.0+aa*d;
if(fabs(d)<FPMIN){

d=FPMIN;

}

c=1.0+aa/c;

if(fabs(c)<FPMIN){
C=FPMIN;

¥

d=1.0/d;

del=d*c;

h*=del ;
if(fabs(del-1.0)<EPS){

break;
3
3

return h;

}

double IncBeta(double x,double a,double b) /*incomplete beta
function*/
{
double bt;
if(x<0){
return O;

3
iT(>1){
return 1;

3

if (x==0.0 || x==1.0){
bt=0.0;

3

else {
bt=exp(log(FGamma(a+b))-log(FGamma(a))-
log(FGamma(b))+a*log(x)+b*1og(1.0-x));

}

if (x<(a+1.0)/(a+b+2.0)){
return bt*BetaCF(x,a,b)/a;

}

else{
return 1.0-bt*BetaCF(1.0-x,b,a)/b;
}

}

double Gamma(double x,double alfa,double beta) /*PDF of gamma
distribution*/
{
if (alfa<=0 || beta<=0){
printf("'error\n);
return O;

3

it (x<0){
return O;

3

else{

return pow(x,alfa-1)*pow(beta,alfa)*exp(-
1*beta*x)/FGamma(alfa);

}

115

double DerlGamma(double x,double alfa,double beta) /*First
derivative of gamma distribution*/
{
ifT (alfa<=0 || beta<=0){
printf("'error\n");

return O;
}
i (x<0){
return O;
}
else{
return pow(beta,alfa)*exp(-1*beta*x)*pow(x,alfa-2)*(alfa-1-
beta*x)/FGamma(alfa);
}
by
double CdfGamma(double x,double alfa,double beta) /*CDF of
gamma distribution*/
{
if (alfa<=0 || beta<=0){
printf("'error\n™);
return O;
}
if (x<0){
return O;
else{
return IncGamma(alfa,x*beta)/FGamma(alfa);
}
}
double Beta(double x,double alfa,double beta) /*PDF of beta
distribution*/
{
if (alfa<=0 || beta<=0){
printf("'error\n);
return O;
}
If (x<0 || x>1){
return O;
else{
return pow(x,alfa-1)*pow(1l-x,beta-1)/FBeta(alfa,beta);
}
}
double CdfBeta(double x,double alfa,double beta) /*CDF of beta
distribution*/
{

if (alfa<=0 || beta<=0){
printf("'error\n);
return O;

¥
if (x<0){
return O;

3

else it (x>1){
return 1;

3

else {

116

return IncBeta(x,alfa,beta);

}

double DerlBeta(double x,double alfa,double beta) /*First
derivative of beta distribution*/
{
if (alfa<=0 || beta<=0){
printf("'error\n™);
return O;

3

iT (x<=0 || x>=1){
return O;

3

else {
return pow(x,alfa-2)*pow(1-x,beta-2)*(alfa-1-x*(alfat+tbeta-
2))/FBeta(alfa,beta);

}
double Expo(double x,double lambda,double null) /*PDF of
exponential distribution*/
{
if (lambda<=0){
printf("'error\n™);
return O;
}
else{
return lambda*exp(-1*lambda*x);
}
}
double CdfExpo(double x,double lambda,double null) /*CDF of
exponential distribution*/
{
if (lambda<=0){
printf("'error\n);
return O;
}
if (x<0){
return O;
}
else{
return l-exp(-1*lambda*x) ;
}
}
double DerlExpo(double x,double lambda,double null) /*first
derivative of exponential distribution*/
{

if (lambda<=0){
printf("'error\n");
return O;

b
if (x<0){
return O;

else{
return -1*pow(lambda,2)*exp(-1*lambda*x);
}

117

}
double Cauchy(double x,double x0,double gamma) /*PDF of
cauchy distribution*/
{
it (gamma<=0){
printf("'error\n);
return O;
}
return 1/(3.141592653589793*gamma* (1+pow((x-x0)/gamma,2)));
}
double CdfCauchy(double x,double x0,double gamma) /*CDF of
cauchy distribution*/
{
it (gamma<=0){
printf("'error\n);
return O;
}
return 0.5+(atan((x-x0)/gamma)/3.141592653589793) ;
}
double DerlCauchy(double x,double x0,double gamma) /*First
derivative of cauchy distribution*/
{

it (gamma<=0){
printf("'error\n™);
return O;
}
return 2*(x0-x)*gamma/ (3.141592653589793*pow((pow(x0,2)-
2*x0*x+pow(X, 2)+pow(gamma,2)),2));

}
double UO1() /*standard uniform random variate generator*/
static unsigned long int seed=SEED;
seed=(69069*(seed)+1);
return(seed/4.294967296e9) ;
}
double Dfchia(double x,long n) /*approximation*/
{
double chix,y;
y=2.7(9-"n);
chix=(exp(log(x/n)/3)-1+y)/sqrt(y);
return(CdfNormal (chix,0,1));
}
double Chi2Test(long b[], /*obsereved frequencies*/
long 1, /*number of classes*/
long wid, /*sample size*/
int printflag) /*0..no output,l.._little,2. _more*/
{

long int i;
double chi2=0.,erw,pval;

erw=(double)wid/l;
it (erw<5.){
printF("Error Chi2Test: expected frequency smaller than
5\n"");

3
for (i=0;i<l;++i){
if (printflag==2){

printf("%41d:%41d;

118

"L,iL,b0D;

}
chi2+= (b[i]-erw)*(b[i]-erw);

chi2/=erw;
pval=1_.-Dfchia(chi2,1-1);
it (printflag>=1)

{

\n",wid, 1);

printf('"\nChi2-test: samplesize=%Ild

printf("’'Chi2-value %f
%.15F\n"",chi2,pval);

}
return(chi2);
}

int IndexSearch(double u,
int guide[],
int gwidth,
double cdfvec[])

number of classes= %ld

Approximate P-Value:

/*std. uniform RV*/

/*guide table*/

/*length of guide table*/
/*cumulative probability values*/

{
int sind=u*gwidth;
int x;
x=guide[sind];
while (u>cdfvec[x]){

X4+

b
return x-1;

}

void Integ(double coeff[], double *resvec) /*integrates a polynomial
coefficients*/

{
resvec[0]=0;
int i;
for (i=1;i<PTS+1;i++){
resvec[i]=coeff[i-1]/1i;
}
}

double Pol(double x,double coeffs[],int n){
function response*/
int i;
double res=0;
for (1=0;i<n;i++){
res+=pow(x, i)*coeffs[i];
}

return res;

/*returns a polynomial

}

double PinvBrent(double rhs,double a,double b,double coeffs[],int
n,double error) /*finds the unique root of a polynomial in an
interval*/
{

double d=0,h,fh,c,fc,s,fs,maxint,minint;

int mflag;

double fa=Pol(a,coeffs,n)-rhs;

double fb=Pol(b,coeffs,n)-rhs;
if (fa*fb>0){
printf("'error');

else{

it (fabs(fa)<=fabs(fb)){

¥
c=a;
fc=fa;

mflag=
int z=

while

h=a;
fth=Fa;
a=b;
fa=Tb;
b=h;
fb=Fh;

1;

0;

(fabs(fb)>=error){

if((fal=fc) && (fb!=fc)){
s=(a*fb*fc/((fa-fb)*(Fa-fc)))+(b*fa*fc/((fb-

fa)*(fb-fc)))+(c*fa*fth/ ((fc-fa)*(fc-Th)));

b)>(Fabs(b-c)/2))

else{
s=b-fb*(b-a)/(fb-fa);

}
if (((3*atb)/4)>b){
maxint=((3*a+bh)/4);

minint=b;

3

else {
minint=((3*atb)/4);
maxint=b;

3}

if((s<minint]| s>maxint) || (nflag==1 && fabs(s-
Il (mfFlag==0 && Fabs(s-b)>(Ffabs(c-d)/2))){

s=(atb)/2;
mflag=1;

else {
mFlag=0;

fs=Pol (s,coeffs,n)-rhs;

d=c;

c=b;

it (fa*fs<0){
b=s;
fb=Fs;

}

else {
a=s;
fa=Fs;

}

ifT (fabs(fa)<=fabs(fb)){
h=a;
fh=Fa;
a=b;
fa=fb;
b=h;
fb=fh;

119

120

}
}
return b;
}
void ChebyPoints(double a,double b,double *vec) /*evaluates
interpolation points in an interval*/
{
double phi=3.141592653589793/(2*PTS);
double diff[PTS];
int i=0;
diffLi]=sin(2*i*phi)*tan(phi);
for (i=1;i<PTS;i++){
diff[i]=sin(@*i*phi)*tan(phi)+diff[i-1];
3
Ffor(i=0;i<PTS;i++){
vec[i]=a+(b-a)*diff[i];
}
void ChebyExtrema(double a,double b,double *vec) /*evaluates
approximation error control points in an interval*/
{

int z;
double pi=3.141592653589793;
for (z=0;z<PTS-1;z++){
vec[z]=0.5*(a+b)+0.5*(b-a)*cos((PTS-z-
D)*pi/(PTS))/cos(pi/(2*(PTS)));
}

}

double CombSum(double vec[],int n,int m) /*sum of the multiplication of
n-element subsets of an m element vector*/
{

double res=0;

double revec[PTS];

int i;

it (n>m || n<=0){
res=0;

}
else It (n==1){
for (i=0;i<m;i++){
res+=vec[i];
}
}

else {
for (i=1;i<m;i++){
revec[i-1]=vec[i];

res=vec[0]*CombSum(revec,n-1,m-1)+CombSum(revec,n,m-1);

}

return res;

}

void Interpol(double xvec[],double yvec[],double *coeffs) /*interpolates
points and returns coefficients of the interpolation polynomial*/

{

121

double dtable[PTS][PTS]={0};
double dmat[PTS][PTS]={0}%};
double xmat[PTS][PTS]={0};
double dvec[PTS]={0};

int i,j;
/*CREATION OF DMATRIX*/

for (§=0;j<PTS;j++){
dtable[O][jJ]=yveclil:

3
for (i=1;i<PTS;i++){
for (J=i;J<PTS;j++){
dtable[i][j]1=(dtable[i-1][j]-dtable[i-1][j-
11D/ (xvec[j]-xveclj-1]1);

}

for (§j=0;j<PTS;j++){
dvec[j]=dtable[j]1[i1;
}

for (1=0;i<PTS;i++){
for (J=0;J<PTS-i;j++){
dmat[i][j]=dvec[i+j];
it guw2){
dmat[i][j]1*=-1;

}
/*CREATION OF XMATRIX*/

for (i=0;iI<PTS;i++){
xmat[i][0]=1;

3
for (i=0;i<PTS-1;i++){
for (J=1;j<PTS-i;j++){
xmat[1] [J]=CombSum(xvec,j,i+j);

}
/*CREATION OF RESULT*/

for (i=0;i<PTS;i++){
coeffs[i]=0;
for (J=0;j<PTS;j++){
coeffs[i]+=dmat[i]1[j]*xmat[i]lL[i]:
}

}

double UppSearch(double u,double coeff[],double Ib,double ub) /*root-
finding algorithm directly used by generation algorithm*/

double cmIf[PTS+1];

Integ(coeff,cmlf);

double intlb=Pol(lb,cmlf,PTS+1);

double intub=Pol(ub,cmlf,PTS+1);

double rhs=(intub-intlb)*u+intlb;

return PinvBrent(rhs, lb,ub,cmlf,PTS+1,ERR);

122

}
double Min2(double x1,double x2) /*returns the minimum of two
real numbers*/
{
it (x1<=x2){
return x1;
}
else{
return x2;
}
}
double Max2(double x1,double x2) /*returns the minimum of two
real numbers*/
{
i (x1<=x2){
return x2;
else{
return x1;
}
}
int FlexSubint(double lIcutoff, /*left cutoff point of the unbounded
density*/
double linflect, /*left inflection point*/
double mode, /*global maximum of the density*/
double rinflect, /*right inflection point*/
double rcutoff, /*right cutoff point of the unbounded
density*/
double error, /*max. vertical distance between
secant and density in the center point*/
double rerror, /*max. value for the proportion
betweeen error and the density*/
double perror, /*max. polynomial approximation error
in control points*/
double *subints, /*pointer to the vector that will
store subintervals*/
double *coeffs, /*pointer to the vector that will

store coefficients*/
double (*dens)(double a,double b,double c), /*pointer to
corresponding distribution density function*/
double (*derl)(double d,double e,double), /*pointer to
the first derivative of corresponding distribution density function*/
double p1, /*parameter 1*/
double p2) /*parameter 2*/
/*creates flexible subintervals with an heuristic method*/

double initsivec[5]={lcutoff,linflect,mode,rinflect,rcutoff};
int ninit=4;

double last=initsivec[ninit]; /*upper boundary of questioned
subinterval for dividing*/

double start=initsivec[O0]; /*lower boundary of questioned
subinterval for dividing*/

int k=ninit-1;

double aim[MAXTABLESIZE]; /*vector that holds sequenced upper
boundaries of subintervals to be questioned*/

while (k>=0){

}

aim[k]=initsivec[ninit-k];
k--3

k=ninit-1;
int i=0,j,z;
double erquest,rerquest,grad,cons;

double xpts[PTS],ypts[PTS],coeff[PTS],expts[PTS-1],diff,maxdiff;

subints[i]=initsivec[0];

while (subints[i]!=last){

erquest=fabs((*dens) ((aim[k]+start)/2,pl,p2)-
((*dens) (start,pl,p2)+(*dens) (aim[k],pl,p2))/2);
rerquest=erquest/(*dens) ((aim[k]+start)/2,pl,p2);

if (erquest<=error && rerquest<=rerror){

ChebyPoints(start,aim[k],xpts);
ChebyExtrema(start,aim[k],expts);

it (aim[k]<linflect || aim[k]>rinflect ||
start<linflect || start>rinflect){

123

if ((*dens)(start,pl,p2)<=(*dens)(aim[k],pl,p2)){

grad=(*derl)(start,pl,p2);
cons=(*dens) (start,pl,p2)-grad*start;

else{
grad=(*derl) (aim[k],pl,p2);
cons=(*dens) (aim[k],pl,p2)-grad*aim[k];

}
}
else{
grad=((*dens) (aim[Kk],pl,p2)-
(*dens)(start,pl,p2))/(aim[k]-start);
cons=(*dens) (aim[k],pl,p2)-grad*aim[k];
}

for (J=0;j<PTS;j++){
ypts[j]1=C*dens) (xpts[il.pl,p2)-
(grad*xpts[j]+cons);

}

Interpol (xpts,ypts,coeff);
maxdi Ff=0;
for (J=0;j<PTS-1;j++){
diff=Fabs((*dens) (expts[j]1.,pl,p2)-
(grad*expts[j]+cons+Pol (expts[j],coeff,PTS)));
it (maxdiff<diff){
maxdi Ff=di ff;

}

}

it (maxdiff<=perror){ /*accept subinterval*/
i++;

subints[i]=aim[Kk];

for (z=0;z<PTS;z++){
coeffs[PTS*(i-1)+z]=coeff[z];

}

start=subints[i];
k--;

124

}
else{ /*reject and divide subinterval*/
k++;
aim[K]=(start+aim[k-1])/2;
}
}
else {
k++;
aim[k]=(start+aim[k-1])/2;
}
¥ _
return 1;

}

void GuideTable(int length,double *cumvec, int *outputvec) /*produces a
guide table, double size of subinterval vector*/

{
outputvec[0]=0;
int i=0;
int j;
for (3=1;3<(2*length);j++){
while (((double)j*cumvec[length-1]/(2*length))>cumvec[i]){
i++;
}
outputvec[j]=i;
}
¥
PDIGEN *Setup(double lIcutoftf, /*left cutoff point of the unbounded
density*/
double linflect, /*left inflection point*/
double mode, /*global maximum of the density*/
double rinflect, /*right inflection point*/
double rcutoff, /*right cutoff point of the unbounded
density*/
double error, /*max. vertical distance between
secant and density in the center point*/
double rerror, /*max. value for the proportion
betweeen error and the density*/
double perror, /*max. polynomial approximation error

in control points*/
double (*dens)(double a,double b,double c), /*pointer to
corresponding distribution density function*/
double (*derl)(double d,double e,double), /*pointer to
the first derivative of corresponding distribution density function*/
double p1, /*parameter 1*/
double p2) /*parameter 2*/
/*creates the table required by the generation algorithm*/

double subints[MAXTABLESIZE]; /*vector that records approved
subintervals*/

double coeffs[MAXTABLESIZE*PTS]; /*vector that records approved
coefficients*/

int i;

i=FlexSubint(lcutoff, linflect,mode,rinflect, rcutoff,error,rerror,
perror,subints,coeffs, (*dens), (*derl),pl,p2);

PDIGEN *gen; /*a structure that holds data table*/
gen=(PDIGEN *)malloc(sizeof(PDIGEN));

125

gen->sivec=(double *)malloc(sizeof(double)*(i+1)); /*allocation
for subintervals of the data table*/

gen->cavec=(double *)malloc(sizeof(double)*(i+1)); /*allocation
for cumulative probabilities of the data table*/

gen->pcvec=(double *)malloc(sizeof(double)*i*PTS); /*allocation
for polynomial coefficients of the data table*/

gen->rcvec=(double *)malloc(sizeof(double)*i); /*allocation
for the cumulative probability of rectangular region in a subinterval*/

gen->trvec=(double *)malloc(sizeof(double)*i); /*allocation
for the cumulative probability of triangular region in a subinterval*/

gen->guidevec=(int *)malloc(sizeof(int)*2*i); /*allocation
for the guide table of indexed search*/

gen->n=i;

gen->mode=mode;
gen->sivec[0]=subints[0];
gen->cavec[0]=0;

int j,k;

double grad,cons, length,siarea,polyarea[MAXTABLESIZE];

double sum=0;

double scale[PTS],xpts[PTS],ypts[PTS],coeff[PTS], intcoeffF[PTS+1];
ChebyPoints(0,1,scale);

for (g=1;j<=i;j++){/*depending on the property of the subinterval
(convexity, concavity, increasing or decreasing) calculates table
values*/
gen->sivec[j]=subints[]j];
length=subints[j]-subints[j-1];
iT (subints[j-1]<linflect || subints[j-1]>rinflect ||
subints[jl<linflect || subints[j]>rinflect){
it ((*dens)(subints[j-1],pl,p2)<=
(*dens) (subints[j].,pl,p2)){
gen->rcvec[J-1]=(*dens) (subints[j-1],
pl,p2)*length;
grad=(*derl)(subints[j-1],pl,p2);
cons=(*dens) (subints[j-1],p1,p2)
-subints[j-1]*grad;
gen->trvec[J-1]=gen->rcvec|[]j-1]
+grad*length*length/2;

}
else {
gen->rcvec[j-1]=(*dens) (subints[j],pl,p2)*length;
grad=(*derl) (subints[j].pl,p2);
cons=(*dens) (subints[j],pl,p2)-subints[j]*grad;
gen->trvec[j-1]=gen->rcvec[j-1]
+grad*(-1)*length*length/2;
}
}
else {

grad=((*dens) (subints[j],pl,p2)

—-(*dens) (subints[j-1],pl,p2))/length;

cons=(*dens)(subints[j],pl,p2)

-subints[j]*grad;

it ((*dens)(subints[j-1],pl,p2)<=

(*dens) (subints[j].pl,p2)){
gen->rcvec[j-1]=C*dens) (subints[j-1],pl,p2)
*length;
gen->trvec[j-1]=gen->rcvec[j-1]
+((*dens) (subints[j],pl,p2)
-(*dens) (subints[j-1],pl,p2))*length/2;

126

}
else {
gen->rcvec[j-1]=C*dens) (subints[j],pl,p2)*length;
gen->trvec[j-1]=gen->rcvec[j-1]
+((*dens) (subints[j-1],pl,p2)
-(*dens) (subints[j],pl,p2))*length/2;
by

}

for (k=0;k<PTS;k++){
gen->pcvec[(J-1)*PTS+k]=coeff[k]=coeffs[(J-1)*PTS+k];
}

Integ(coefT, intcoeff);
polyarea[j-1]=Pol(subints[j], intcoeff,PTS+1)
-Pol(subints[j-1], intcoeff,PTS+1);
gen->cavec|[j]=gen->trvec[j-1]+polyarea[j-1]+sum;
sum=gen->cavec[j];

3

for (g=1;j<((gen—>n)+1);j++){
gen->cavec[j]=gen->cavec[j]/gen->cavec[gen->n];
siarea=gen->trvec[j-1]+polyarea[j-1];
gen->rcvec[j-1]=gen->rcvec[j-1]/siarea;
gen->trvec[j-1]=gen->trvec[j-1]/siarea;

}
GuideTable(gen->n,gen->cavec,gen->guidevec);
return gen;

int FreeGen(PDIGEN *gen) /*frees the memory*/
{

free(gen->cavec);

free(gen->pcvec);

free(gen->guidevec);

free(gen->rcvec);

free(gen->sivec);

free(gen->trvec);

free(gen);

return O;

double Generator(PDIGEN *pdigen,
int *counter, /*a vector that holds accepted
variate types*/
int countflag) /*other than zero, it counts*/
/*random variate generation algorithm that works with a created table*/
{
double ul,u2;
double urcl,urc2;
int index;
double x,x2;
double coeff[PTS];
int i;

ul=U01(); /*a standard uniform variate to generate index*/

index=IndexSearch(ul,pdigen->guidevec,2*pdigen->n,pdigen->cavec);
/*index generated*/

urcl=(ul-pdigen->cavec[index])/(pdigen->cavec[index+1]-pdigen

->cavec[index]); /*a new standard uniform variate is recycled to
choose region*/

127

if (urcl<=pdigen->rcvec[index]){ /*recycled variate says
rectangular region*/
urc2=urcl/pdigen->rcvec[index]; /*a new standard uniform
variate is recycled*/
iT (countflag!=0){counter[0]++;}

x=pdigen->sivec[index]+(pdigen->sivec[index+1]-pdigen
->sivec[index])*urc2; /*random variate iIs generated
uniformly*/
return x;
}

else if (urcl<=pdigen->trvec[index]){ /*recycled variate says
triangular region*/
urc2=(urcl-pdigen->rcvec[index])/(pdigen->trvec[index]-
pdigen->rcvec[index]); /*a new standard uniform variate is
recycled*/
if (countflag!=0){counter[1]++;}
x=pdigen->sivec[index]+(pdigen->sivec[index+1]-pdigen
->sivec[index])*urc2; /*it generated the first uniform
variate over the subinterval*/
u2=U01(); /*a standard uniform variate to generate index*/
x2=pdigen->sivec[index]+(pdigen->sivec[index+1]-pdigen-

>sivec[index])*u2; /*it generated the second uniform variate over
the subinterval*/
iT (x<=pdigen->mode && x2<=pdigen->mode){ /*increasing
triangular case*/
return Max2(x,x2);
}
else { /*decreasing triangular case*/
return Min2(x,x2);
}
}
else { /*recycled variate says polynomial region*/

urc2=(urcl-pdigen->trvec[index])/(1-pdigen->trvec[index]);
/*a new standard uniform variate is recycled*/

if (countflag!=0){counter[2]++;}

for (i=0;i<PTS;i++){

coeff[i]=pdigen->pcvec[PTS*index+i]; /*coefficients
are called from the table*/
}
return UppSearch(urc2,coeff,pdigen->sivec[index],pdigen
->sivec[index+1]); /*random variate is generated through
cdf inverse and root finding algorithm*/

}

128

APPENDIX C: APPROXIMATION ERROR ANALYSIS R CODES

Following codes are written in “R” in order to analyze the error behavior with

piecewise constants, piecewise linears and piecewise polynomials.

Useful Functions:

#Combination Sum: Takes sums of the products of n-element subsets
combsum<-function(vec,n){
if (n>length(vec) | n<=0){

res<-0;

}

else If (n==1){
res<-sum(vec);

}

else {
res<-vec[1l]*combsum(vec[-1],n-1)+combsum(vec[-1],n);
by

res;

}

#Sign Matrix: In order to assign signs of D-Matrix, creates a
#coefficient matrix of 1,0 and -1s.
signmat<-function(n){
sign<-c(-1,1);
smat<-matrix(0,n,n);
for (i in 1:n){

for(in 1:(n-i+1)){

smat[i,j]<-sign[j%%2+1]
}

}

smat;

}

#D-Matrix: Calculates D-Matrix (D Coefficients for polynomial)
dmatrix<-function(xvec,yvec){
Ing<-length(yvec);
dtable<-matrix(0,Ing,Ing);
dtable[1,]<-yvec;
for (i in 2:Ing){
for (J in i:Ing){
dtable[i,jl<-(dtable[i-1,j]-dtable[i-1,j-1])/(xvec[jl-xvec[j-
i+1]);

b
¥
dvec<-0;

for (i in 1:Ing){
dvec[i]<-dtable[i,i];

dmat<-matrix(0, Ing,Ing);
for (i in 1:Ing){
for (in 1:(Ing-i+1)){

dmat[i, j]<-dvec[i+j-1];
}

dmat*signmat(Ing);

}

129

#X-Matrix: Takes X-Vector to build a X-Matrix (uses combsum)

xmatrix<-function(xvec){
Ing<-length(xvec);
xmat<-matrix(0,Ing, Ing);
xmat[,1]<-1;
for (i in 1:(Ing-1)){

for (J in 2:(Ing-i+1)){

xmat[1i,j]<-combsum(xvec[l:(i+j-2)],j-1);

}
}

xmat;

}

#Polynomial Calculator: Takes the coefficients

#p(X)s.

pol<-function(x,coeff){

n<-length(coeff)-1;

res<-0;

for (i in 1:length(x)){
res[i]<-sum(coeff*(x[i]™(0:n)));

res;

}

#Unscaled Chebyshev Points

uschebypoints<-function(n,a=0,b=1){
i<-n:1;
x<-cos((2*i-1)*pi/(2*n));
at+(b-a)*(x+1)/2;

}

#Creation of Chebyshev Points
chebypoints<-function(n,a=0,b=1){
phi<-pi/(2*(n));

i<-0:(n-1);
diff<-sin(2*i*phi)*tan(phi);
a+(b-a)*cumsum(diff);

}

#Creation of Chebyshev Control Points
chebyextrema<-function(g,a=0,b=1){

and x vector and Tfinds

0.5*(a+b)+0.5*(b-a)*cos((g:1)*pi/(g+1l))/cos(pi/(2*(g+1)));

}

#Newton Polynomial Interpolation

interpol<-function(xvec, #x-axis values of points

yvec #y-axis values of points

H

dmat<-dmatrix(xvec,yvec);

xmat<-xmatrix(xvec);

pmat<-dmat*xmat;

res<-0;

for (i in 1:length(xvec)){
res[i]<-sum(pmat[i,]);

130

¥

res;

}

pol<-function(x,coeffF){

n<-length(coeff)-1;

res<-0;

for (i in 1:length(x)){
res[i]<-sum(coeff*(x[1]°(0:n)));

}

res;

}

#First Derivation of Particular PDFs
derlnorm<-function(x,mu,sigma){

(mu-x)*exp (- (xX-mu)*(x-
mu)*0.5/(sigma~2))/(2.506628274630963*(sigman3));
}

derlcauchy<-function(x,x0,gamma){
2*(x0-x)*gamma/ (p1* (XON2-2*X0*x+x 2+gamman2)"2) ;
}

derlexp<-function(x, lambda,nul1){
-1*lambda”™2*exp(-1*lambda*x) ;
}

FGamma<-function(x){
p0<-1.000000000190015;
pl<-76.18009172947146;
p2<--86.50532032941677;
p3<-24.01409824083091;
p4<--1.231739572450155;
p5<-1.208650973866179e-3;
p6<--5.395239384953e-6;

sum<-
PO+(p1/ (x+1))+(p2/ (x+2))+(p3/ (x+3)) +(p4/ (x+4)) +(p5/ (x+5)) +(p6/ (x+6)) ;

sum*sqrt*pi)*((X+5.5)"(x+0.5)) *exp(-1*(x+5.5))/x;
}

derlgamma<-function(x,alfa,beta){
(betanalfa)*exp(-1*beta*x)*(x~(alfa-2))*(alfa-1-

beta*x)/FGamma(alfa);

}

FBeta<-function(x,y){
FGamma(x)*FGamma(y)/FGamma(x+y) ;
}

derlbeta<-function(x,alfa,beta){

N (@alfa-2))*((1-x)™N(beta-2))*(alfa-1-x*(alfatbeta-
2))/FBeta(alfa,beta);
}

Piecewise Constants:

131

PDIOError<-function(n,
error,
subintvec=c(-6,-1,0,1,6),
dens=dnorm,
rvdens=rnorm,

pl=0,
p2=1){
subints<-subintvec;
i<-1;
J<-1;

k=length(subints);
consvec<-0;
while(subints[i]!=subintvec[5]){
erquest<-abs(dens(subints[i],pl,p2)-
dens(subints[i+1],pl,p2))/2;
if (erquest<=error){
i=i+l;
consvec[i-1]<-(dens(subints[i-
1],pl,p2)+dens(subints[i],pl,p2))/2;
}

else{
subints[(i+2): (k+1)]<-subints[(i+1):Kk];
subints[i+1]<-(subints[i+2]+subints[i])/2;
k=k+1;

}

rvs<-rvdens(n,pl,p2);

exact<-dens(rvs,pl,p2);

appro<-0;

for(in 1:n){
index<-length(subints[subints<rvs[j]]):
appro[j]<-consvec[index];

}

hist(abs(exact-appro),100);

rvs2<-runif(n,subintvec|[1],subintvec[5]);

exact2<-dens(rvs2,pl,p2);

appro2<-0;

for(in 1:n){
index<-length(subints[subints<rvs2[j1]D);
appro2[j]<-consvec[index];

windows()
hist(abs(exact2-appro2),100);

y<-0;

x<-((subintvec[1]*1000): (subintvec[5]*1000))/1000;

dx<-dens(x,pl,p2);

for(@ in 1:(length(x))){
index<-length(subints[subints<x[jJ1D+(==1);
y[J1<-consvec[index];

windows()
plot(x,abs(dx-y),pch="*");

res<-mean(abs(exact-appro)/exact);
res[2]<-sd(abs(exact-appro)/exact);
res[3]<-mean(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));
res[4]<-sd(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));

132

res[5]<-length(subints)-1;
res;

}

Piecewise Linears:

PDI1Error<-function(n,
error,
subintvec=c(-6,-1,0,1,6),
dens=dnorm,
rvdens=rnorm,

pl1l=0,
p2=1){
subints<-subintvec;
i<-1;
J<-1;

k=length(subints);
gradvec<-0;
consvec<-0;
while(subints[i]!=subintvec[5]){
erquest<-abs(dens((subints[i]+subints[i+1])/2,pl,p2)-
((dens(subints[i],pl,p2)+dens(subints[i+1],pl,p2))/2));
if (erquest<=error){
i=i+l;
gradvec[i-1]<-(dens(subints[i],pl,p2)-dens(subints[i-
1],pl1,p2))/(subints[i]-subints[i-1]);
consvec[i-1]<-dens(subints[i-1],pl,p2)-gradvec[i-

1]*subints[i-1];

}

else{
subints[(i+2): (k+1)]<-subints[(i+1):Kk];
subints[i+1]<-(subints[i+2]+subints[i])/2;
k=k+1;

}

}

rvs<-rvdens(n,pl,p2);

exact<-dens(rvs,pl,p2);

appro<-0;

for(in 1:n){
index<-length(subints[subints<rvs[j1]1);
appro[j]<-gradvec[index]*rvs[j]+consvec[index];

}

hist(abs(exact-appro),100);

rvs2<-runif(n,subintvec|[1],subintvec[5]);

exact2<-dens(rvs2,pl,p2);

appro2<-0;

for(J in 1:n){
index<-length(subints[subints<rvs2[j1]);
appro2[j]<-gradvec[index]*rvs2[j]+consvec[index];

windows()
hist(abs(exact2-appro2),100);

y<-0;

x<-((subintvec[1]*1000): (subintvec[5]*1000))/1000;
dx<-dens(x,pl,p2);

for(in 1:(length(x))){

133

index<-length(subints[subints<x[j]1)+(x[j]==subints[1]);
vl 1<-gradvec[index]*x[j]+consvec[index];

windows()
plot(x,abs(dx-y),pch="*");

res<-mean(abs(exact-appro)/exact);
res[2]<-sd(abs(exact-appro)/exact);
res[3]<-mean(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));
res[4]<-sd(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));
res[5]<-length(subints)-1;

res;

}
Piecewise 4™ Order Polynomials (Polynomial Density Inversion):

PDIError<-function(n,
error,
rerror,
perror,
spoints=5,
subintvec=c(-6,-1,0,1,6),
dens=dnorm,
rvdens=rnorm,
der=derlnorm,

pl1l=0,
p2=1
hR1
HHHHHHHH
#Flexible Subinterval Creation
HHHHHHH
subints=subintvec;
i=1;
J=1;

k=length(subints);
coeffmat<-matrix(0,5,700);
gradvec=0;

consvec=0;

while (subints[i]!'=subintvec[5]){

erquest=abs(((dens(subints[i],pl,p2)+dens(subints[i+1],pl,p2))/2)-
dens((subints[i]+subints[i+1])/2,p1,p2));
rerquest=erquest/dens((subints[i]+subints[i+1])/2,pl1,p2);
ifT (erquest<=error & rerquest<=rerror){
xpts<-chebypoints(spoints,subints[i],subints[i+1]);
expts<-chebyextrema(spoints-1,subints[i],subints[i+1]);
grad<-
der(subints[i],pl,p2)*(subints[i+1]<=subintvec[2])+der(subints[i+1],pl,p2
)*(subints[i]>=subintvec[4])+((dens(subints[i+1],pl,p2)-
dens(subints[i],pl,p2))/(subints[i+1]-
subints[i]))*(subints[i]>=subintvec[2])*(subints[i+1]<=subintvec[4]);
cons<-(dens(subints[i],pl,p2)-
subints[i]*grad)*(subints[i]<subintvec[3])+(dens(subints[i+1],pl,p2)-
subints[i+1]*grad)*(subints[i]>=subintvec[3]);
ypts<-dens(xpts,pl,p2)-(grad*xpts+cons);
coeff<-interpol (xpts,ypts);

diff=abs(dens(expts,pl,p2)-
(grad*expts+cons+pol (expts,coeff)));

134

if(max(diff)<=perror){
i=i+l;
coeffmat[, (i-1)]<-coeff;
gradvec[i-1]<-grad;
consvec[i-1]<-cons;

else{
subints[(i+2): (k+1)]<-subints[(i+1):k];
subints[i+1]<-(subints[i+2]+subints[i])/2;

k=k+1
}
}
else {
subints[(1+2): (k+1)]<-subints[(i+1):K];
subints[i+1]<-(subints[i+2]+subints[i])/2;
k=k+1
}

}

rvs<-rvdens(n,pl,p2);
exact<-dens(rvs,pl,p2);
appro<-0;
appro2<-0;
y<-0;
for(@ in 1:n){
index<-length(subints[subints<rvs[j]]);
appro[j]<-
gradvec[index]*rvs[j]+consvec[index]+pol(rvs[j],coeffmat[, index]);

windows();
hist(abs(exact-appro),100);
rvs2<-runif(n,subintvec|[1l],subintvec[5]);
exact2<-dens(rvs2,pl,p2);
for(@ in 1:n){

index<-length(subints[subints<rvs2[j1]D);

appro2[j]<-

gradvec[index]*rvs2[j]+consvec[index]+pol(rvs2[j],coeffmat[, index]);

windows()

hist(abs(exact2-appro2),100);

Xx<-((subintvec[1]*1000): (subintvec[5]*1000))/1000;

dx<-dens(x,pl,p2);

for(@ in 1:(length(x))){
index<-length(subints[subints<x[j]11)+((==1);
ybil<-

gradvec[index]*x[jJ]+consvec[index]+pol (xX[J],coeffmat[, index]);

windows()

plot(x,abs(dx-y),pch="*");

res<-mean(abs(exact-appro)/exact);
res[2]<-sd(abs(exact-appro)/exact);
res[3]<-mean(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));
res[4]<-sd(abs(exact2-appro2)*(subintvec[5]-subintvec[1]));
res[5]<-length(subints)-1;

res;

135

REFERENCES

Ahrens, J. H., 1995, A One-table Method for Sampling from Continuous and Discrete
Distributions, Computing 54(2), 127-146.

Brent, R. P., 1973, Algorithms for Minimization without Derivatives, Prentice-Hall Inc,
Englewood Cliffs, New Jersey.

Burden, R. L. and J. D. Faires, 1997, Numerical Analysis, Brooks/Cole Publishing
Company, 6™ Edition.

Chen, H. C. and Y. Asau (1974), On Generating Random Variates from An Empirical
Distribution, AIIE Trans. 6, 163-166.

Hurley, W. J. and W. S. Andrews, 2007, Normal Approximation to A Sum of Geometric
Random Variables with Application to Ammunition Stockpile Planning, Defence
Science Journal, Vol. 57, No. 5, 733-737.

Hormann, W., 1995, A Rejection Technique for Sampling from T-concave Distributions,
ACM Trans. Math. Software 21(2), 182-193.

Hormann, W., 2007, Monte Carlo Simulation in Finance, Lecture Notes, Bogazici

University.

Hormann, W. and J. Leydold, 2007, Sampling from Linear Multivariate Densities, Tech.
Rep., Department of Statistics and Mathematics, WU Wien

Hormann, W., J. Leydold, and G. Derflinger, 2004, Automatic Nonuniform Random
Variate Generation, Berlin Heidelberg: Springer-Verlag.

Karawatzki, R., 2006, The Multivariate Ahrens Sampling Method, Tech. Rep. 30,
Department of Statistics and Mathematics, WU Wien.

136

Runge, C., 1901, Uber Empirische Funktionen und die Interpolation Zwischen
Aquidistanten Ordinaten, Zeitschrift fiir Mathematik und Physik 46, 224-243,

137

REFERENCES NOT CITED

Leydold, J. and W. H6rmann, 2006, Black-box Algorithms for Sampling from Continuous
Distributions, Winter Simulation Conference.

Maindonald, J. H., 2004, Using R for Data Analysis and Graphics, Introduction, Code and

Commentary, Centre for Bioinformation Science, Australian National University.

Verzani, J., 2002, Using R for Introductory Statistics, The CSI Math Department.

http://en.wikipedia.org/wiki/Bisection_method.html

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm.html

http://en.wikipedia.org/wiki/False_position_method.html

http://en.wikipedia.org/wiki/Secant_method.html

http://en.wikipedia.org/wiki/Triangular_distribution.html

	00.0 Cover & Approval
	00.1 Acknowledgements
	00.2 Abstract
	00.3 Ozet
	00.4 Table of Contents
	00.5 List of Figures
	00.6 List of Tables
	00.7 List of Abbreviations
	01 Introduction
	02 Basics on Random Variate Generation
	03 Triangular Ahrens
	04 Approximate Random Variate Generation
	05 Basics on Numerical Approximation
	06 Polynomial Density Inversion
	07 Conclusions
	08.1 Appendix A
	08.2 Appendix B
	08.3 Appendix C
	09.1 References
	09.2 References Not Cited

