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ABSTRACT

DESIGN AND ANALYSIS OF COLLECTION SYSTEMS

FOR INCENTIVE-DEPENDENT PRODUCT RECOVERY

In this thesis, we propose three reverse logistics models in which we address the

problem of locating collection centers of a profit seeking company that aims to collect

used products (cores) from product holders via a pick-up strategy.

Firstly, we formulate a mixed-integer nonlinear facility location-allocation model

to find both the optimal locations of collection centers and the optimal quality depen-

dent incentive values to be paid to product holders for returning their cores.

Furthermore, we elaborate on two bilevel programming formulations to model

the relationship between the government and the company engaged in core collection

operations. Since the company seeks only economic profitability, the collected amounts

may not be aligned with the target collection rate imposed by the government. In both

models, the government pays a unit subsidy to the company for each core collected.

The two models differ from each other by the attitude of the government towards the

company as being supportive or legislative.

We propose heuristic methods to solve medium and large size instances. For the

company’s problem, the main loop of the method is based on tabu search performed

in the space of collection center locations and Nelder-Mead simplex search is called to

determine the best incentives and the corresponding net profit. For the government’s

problem, we propose a solution approach based on Brent’s method, which is a root

finding method. Our heuristics obtain good results in all models compared to the

results of commercial solvers.
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ÖZET

ÜRÜN GERİ ALIMLARININ TEŞVİK MİKTARINA

BAĞLI OLDUĞU DURUMDA TOPLAMA

SİSTEMLERİNİN TASARIM VE ANALİZİ

Bu çalışmada kar amacı güden bir şirketin müşterilerden kullanılmış ürünleri

toplaması ve toplama merkezi yer seçimi problemini içeren üç tane tersine lojistik

modeli öneriyoruz.

İlk modelde şirketin karını en iyileyecek şekilde en uygun toplama merkezi yerleri

ve müsterilere ürünlerini idae etmeleri için ödenecek teşvik miktarlarını belirlemeye

yönelik doğrusal olmayan bir karışık tamsayı modeli oluşturulmuştur.

Ayrıca hükümet ve şirketler arasındaki ürün geri toplama açısından ilişkiyi in-

celeyen iki seviyeli iki adet model kurulmuştur. Bu modellerde şirket sadece karlılık

arttırmaya odaklandığından toplanılan ürün miktarı hükümetin hedeflediği toplama

oranının gerisinde kalabilir. Hükümet şirketi bu anlamda desteklemek için her bir

toplanan ürün başına belli bir miktar parasal destek vermektedir. Her iki model bir-

birinden hükümetin şirketin kullanılmış ürün toplama problemine destek verici veya

kanuni olarak zorlayici şekilde yaklaşmasiyla ayrilir.

Orta ve büyük boyuttaki problemleri çözmek için sezgisel yöntemlerden yarar-

landık. Şirketin problemini çözerken tabu arama metodu ile toplama merkezlerinin

yeri belirlenir. Daha sonrasında ise Nelder-Mead simplex arama yöntemi ile uygun

teşvik miktarı bulunur. Hükümetin problemi ise Brent kök bulma metodu ile çözülür.

Bütün modellerde ticari programların sonuçlarına göre iyi sonuçlar elde edilmiştir.
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1. INTRODUCTION

The development of distribution channels and systems for the recycling indus-

try was first mentioned in Guiltinan and Nwokoye (1975). This was a time when

the industry did not feel obligated to governmental regulations and customer perspec-

tive on environmental issues. After the first legislations of Environmentally Conscious

Production and Manufacturing (ECP/ECM) were introduced, ECP/ECM began to

draw the attention of production researchers and practitioners in early 1990s. It was

mainly driven by the escalating deterioration of the environment, such as diminish-

ing raw material resources, overflowing waste sites and increasing levels of pollution.

Even in non-regulated markets, some manufacturers engaged in ECP/ECM to reduce

production costs, enhance brand image and reputation, meet changing customer expec-

tations, protect aftermarkets, and preempt pending legislation or regulations (Güngör

and Gupta, 1999). In today’s context of sustainable development, ECP/ECM has

become a popular business strategy.

Motivated by both environmental and economical facts, in this thesis we develop

three models which deal with reverse flow of goods taken from the product holders and

carried to collection centers. The first part of this study is currently an article in press

referred as Aras et al. (2007). In this study, we propose a facility location-allocation

model to find the optimal locations of a predetermined number of collection centers

(CCs) as well as the optimal incentives offered by the company to product holders

depending on the condition of their used items. We consider a pick-up scenario in

which the company collects used products from the premises of the product holders

and all the collection related costs, i.e., cost of operating the vehicles and transportation

cost of used products are incurred by the company. The willingness of product holders

to return is assumed to be affected by the amount of the financial incentive offered. It

is important to note that we are only modeling the collection operation of the company.

Therefore, the decisions about the shipment of collected used products from collection

centers to disassembly centers or to remanufacturing facilities are out of the scope of

this study.
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Based on this company’s collection center location problem, in the second part

of the thesis we develop a bilevel programming (BP) framework to model a company’s

relationship with the local, regional or national government which imposes a target

collection rate on used products. We propose two interrelated formulations in which

the follower’s role is assigned to the company in the lower level problem, and the

government takes on the role of the leader in the upper level problem. In the first

formulation, the government’s objective is to minimize the standard subsidy payable to

the company for each used product collected from customers while meeting a minimum

collection rate cumulative over all customer zones. The follower’s problem is then to

maximize its net profit from the collection operations for fixed value of subsidy from

the leader (government). In the latter formulation the government’s objective is still

to minimize the unit subsidy it will pay to the company; however, the government

now has to guarantee that the company achieves or exceeds a target profitability ratio

in its product recovery efforts. This time the responsibility of meeting the minimum

cumulative collection rate is transferred to the company. We believe that our work

establishes the first BP methodology in the literature where government subsidization is

merged into the design of a collection system for incentive-dependent product recovery.

The thesis is organized as follows. The second chapter includes further reviews

of the relevant academic literature. Chapter 3 develops a single level and two im-

proved bilevel model formulations on the research problem. Original tabu search based

solution procedures are described in Chapter 4. Computational results on randomly

generated problem instances are presented in Chapter 5 alongside with sensitivity anal-

ysis. Finally, Chapter 6 offers a conclusion, and suggests future research directions.
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2. LITERATURE SURVEY

2.1. Reverse Logistics Concepts

A precise definition of reverse logistics is made by Rogers and Tibben-Lembke

(1998) as:

“The process of planning, implementing, and controlling backward flows of

raw material, in-process inventory, packaging, and finished goods from a man-

ufacturing, distribution or reuse point, to a point of origin for the purpose of

recapturing value or proper disposal.”

An increasing number of organizations in Asia, Europe and North America en-

gage in voluntary or mandatory end-of-life product management. The most promising

corporate endoflife strategies create both economic and environmental values (Geyer

and Jackson, 2004). Dowlatshahi (2000), for example, has found that remanufacturing

can reduce the unit cost of production by 40 to 60 per cent by reutilizing the prod-

uct components. Toffel (2004) observes that concerns for the end of life products are

motivated by legislation across Europe where the electrical/electronics industry has

experienced some of the highest regulatory pressures. The WEEE Directive of the

European Parliament and of the Council (Directive 2002/96/EC), establishes target

component, material and substance reuse and recycling rates at 75 per cent by weight

for large household appliances such as refrigerators, washing machines, and dishwash-

ers. For desktop/notebook computers as well as printers the target rate is set at 65

per cent by weight (EUR-Lex, 2003).

From a logistics point of view, product recovery creates a reverse flow of goods

that originates at the locations of product holders, also referred to as customer zones.

After used products are consolidated at some collection facilities, they are shipped

to disassembly centers where inspection, sorting, and disassembly operations are per-

formed. The final destination of the returns is either remanufacturing facilities where

product recovery actually takes place, or disposal sites.
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Fleischmann et al. (2000) list the following activities found in product recovery

which is considered an integral part of ECP/ECM:

• Collection of used products (returns) from product holders,

• Determining the condition of the returns by inspection and/or separation,

• Reprocessing the returns to capture their remaining value,

• Disposal of the returns which are found to be unrecoverable due to economic

and/or technological reasons, and

• Redistribution of the recovered products.

The type of the product recovery is dependent on the condition of a return. The

possibilities are repairing, refurbishing, remanufacturing, cannibalization, and recycling

Thierry et al. (1995).

One of the key concerns of the companies involved in product recovery is used

product acquisition or collection as mentioned by Guide et al. (2003). It is indeed the

first activity of product recovery, and triggers the later activities of the recovery system.

Güngör and Gupta (1999) argue that collection of retired products must be planned

ahead in order to perform product recovery profitably and according to applicable laws

and regulations. In the authors’ view collection decisions involve:

• Location selection of collection centers (CCs) where used products are collected

and stored prior to distribution to recycling or remanufacturing facilities,

• Layout design of CCs (including material handling and storage),

• Transportation (designing the transportation networks to bring used products

from many origins to a single CC).

The biggest challenge in collection related problems is the level of uncertainty in-

volved in the quality and quantity of the used products collected. Some manufacturers

have been able to influence the quantity of returns by using buy-back (take-back) cam-

paigns and offering financial incentives to product holders. A successful implementation

in the power tools industry is mentioned in Klausner and Hendrickson (2000). Xerox
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Europe obtained over $80 million savings by implementing an end-of-life equipment

take-back and reprocessing program in 1997 (Maslennikova and Foley, 2000). Clearly,

the amount of incentive offered by the company (also called unit acquisition price)

influences the quality level of collected returns. Accepting all end-of-use products in

the waste stream is not viable for most companies since a high percentage of these

will have a poor quality, hence will not be recoverable. As a consequence, adopting

a proactive approach and offering the appropriate incentive depending on the quality

status of a used product is crucial for a company engaged in product recovery.

2.2. Existing Models for Used Product Collection

Logistics literature is remarkably rich in papers that deal with the collection

operations in the context of product recovery and recycling. With the list below, we

would rather make the reader aware of the most pertinent published works that paved

the road to our research.

2.2.1. Discrete Facility Location-Allocation Models with Deterministic Quan-

tities of Collection

Jayaraman et al. (1999), Fleischmann et al. (2001), Salema et al. (2006), Lu and

Bostel (2007) are some of the papers which consider not only the reverse flow of used

products, but also the forward flow of new and remanufactured products to satisfy cus-

tomer demand. However, the mixed-integer linear programs (MILP) developed do not

take collection facilities into consideration, and assume that used products are shipped

from customer zones directly to disassembly centers. Even more restrictive is the as-

sumption that the quantity of returns is known for each customer zone. The number

and locations of CCs alongside with refurbishing centers are considered in Jayaraman

et al. (2003) who exclusively model the reverse logistics of hazardous products with a

multi-level warehouse location model. Theirs is also an MILP model where the num-

ber of hazardous products to be returned at each originating site is known exactly.

Another recent paper that explicitly deals with collection facilities is due to Min et

al. (2006). They solve an MILP to determine the optimal number and locations of
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collection points as well as centralized return centers. A solution method based on

genetic algorithms is developed. Once again, the volume of products returned by con-

sumers is a deterministic parameter. There exist also case studies in the literature

which address reverse logistics network design problems in the framework of recycling.

For example, Barros et al. (1998) focus on a sand recycling network and formulate a

two-level capacitated facility location model. Louwers et al. (1999) present a nonlinear

facility location-allocation model for the collection and preprocessing of carpet waste.

2.2.2. Incentive-Dependent Quantities of Collection

Wojanowski et al. (2007) develop a model for optimally designing a drop-off

facility network and determining the sales price under deposit-refund requirements

using a continuous modeling approach. The customer is informed that the sales price

of the item includes a deposit which will be paid back when the used product is returned

at a collection facility. Customers’ purchasing and return decisions are incorporated

by a stochastic utility choice model. Aras and Aksen (2008) analyze an uncapacitated

CC location problem (CCLP) for incentive- and distance dependent returns. In the

presented profit maximization model a drop-off policy is in effect, i.e., customers are

asked to bring their used products to the centers by themselves. Their decision whether

or not to participate in this product recovery campaign is affected by the distance to the

nearest CC and by the financial incentive offered. The authors propose and solve two

mixed-integer nonlinear programming (MINLP) models with a tabu search heuristic

for the fixed-charge and p-median versions of the CCLP, respectively. Used products

owned by the participating customers are sorted into a finite number of quality classes,

and a different incentive is offered for each class.

2.3. Governmental Regulations on the Throughput of Collection

Operations

The importance of environmental awareness for companies that anticipate tighter

environmental regulations in the future is highlighted clearly by Rodrigue et al. (2001).

These companies want to leverage “greenness” of their production as a competitive ad-
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vantage, however, they fear diminishing profitability due to compulsory product recov-

ery. All of the aforementioned works stem from a company standpoint, and formulate

models to increase the company’s welfare. Thus, the best solutions obtained may not

always satisfy target collection rates imposed by the government. In other words, the

profit maximization objective of the company does not match the objective of the

government to reach a desired collection rate. To ensure that this rate is met, the

government may choose to offer a subsidy for each collected item. Certainly, it tries to

keep the level of this subsidy as low as possible. The interactions between government,

company and product holders are illustrated in Figure 2.1, which has been adopted

from Young et al. (1997), and further augmented with government subsidies.

Figure 2.1. Interactions between government, users, producers and distributors

The role of government subsidies is analyzed in the literature in different contexts.

For example, Kulshreshtha and Sarangi (2001) discuss a case where the government

gives a subsidy to a firm involved in recycling of product packages. In another study,

Sheu et al. (2005) indicate the difficulty of integrating logistics flows in a green-supply

chain on the grounds that coordinating the activities of all chain members is a compli-
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cated issue, and externalities such as end-customer behavior and governmental policies

affect the performance. In their paper, the authors propose a linear optimization

model to improve the performance of a green-supply chain, which involves both cross-

functional product (logistics) and used product (reverse logistics) flows. The model

Sheu et al. formulate has a composite multi-objective function together with corre-

sponding operational constraints. The latter include also subsidies for used-product

recovery, return ratio enforced by the government for environmental protection, and

recycle fees charged to manufacturers. They find that used product return ratio and

corresponding unit subsidy significantly influence the green-supply chain management

performance.

A recent paper by Quariguasi et al. (2008) develops a framework for the design

and evaluation of sustainable logistic networks, in which profitability and its environ-

mental impact are balanced. The particular logistic network described in this paper

has multiple agents; i.e., producers, consumers, third parties working on recycling, in-

cineration and energy generation. The paper uses linear multi-objective programming

(MOP), and also introduces a technique based on the commonalities between data en-

velopment analysis and MOP to calculate the efficiency of existing logistic networks.

The authors then illustrate their findings as an efficient frontier for the European pulp

and paper sector.

2.4. Bilevel Programming

Bialas (2002) presents an easy-to-understand introduction to multilevel mathe-

matical programming explaining the underlying motivation in detail. He argues that

many decision making problems require compromises among the objectives of several

interacting individuals or entities, and they are often arranged within a hierarchical

structure with independent and perhaps conflicting objectives. The solution to such

problems is determined collectively by the choices of multiple distinct decision makers.

A bilevel programming problem (BPP) is a special case with two parties, one of whom

takes the leader’s position, and the other one is the follower making his or her plan

based on the leader’s decision. The effect of each party’s decision on the other party
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is only indirect. In other words, there is not a single body that can make the trade-off

between the independent or conflicting objectives.

2.5. BP Applications in Network Design Problems

BP especially fits when the objectives cannot be weighted and aggregated into a

single objective in such a way that the resulting solution is accepted by both parties.

This situation arises quite frequently in transportation and network design problems.

Migdalas (1995), for instance, published an early review of BP in traffic planning where

the leader and follower relationship is found between the public sector and passengers.

Recent studies are due to Kara and Verter (2004) and Erkut and Gzara (2008) both of

which tackle the network design for hazardous material transportation as a bilevel inte-

ger programming (BIP) problem. The government agency is in a leader position aiming

to minimize risk while the carriers are followers who comply with the agency’s regula-

tion and aim to minimize cost at the same time. Kara and Verter transform the bilevel

program into a single-level mixed integer program by replacing the lower-level problem

by its Karush-Kuhn-Tucker conditions and by linearizing the complementary slackness

constraints, whereas Erkut and Gzara develop a heuristic method that exploits the net-

work flow structure to overcome the difficulty of the BIP model. Another interesting

application of BIP is given in Scaparra and Church (2008). The researchers address a

system planner (defender) making decisions about which facilities of an existing sys-

tem to secure or fortify against a potential attacker (interdictor) who deliberately hits

unprotected facilities in order to cause maximal reduction in system efficiency which

is measured in terms of accessibility or service provision costs endured by the users

of the system. In this inherently bilevel problem, the leader’s and follower’s roles are

assigned to the defender and attacker, respectively. The newest comprehensive review

on BP inclusive of literature survey, sample applications, and existing methods is due

to Colson et al. (2007). Finally, two principal textbooks on the subject written by Bard

(1999) and by Dempe (2002) particularly deserve the interested reader’s attention.

The only work that synthesizes a BP approach with the collection operations in

product recovery is due to de De Figueiredo et al. (2007). This is a very recent paper
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addressing a minimum-cost recycling network design problem with incentive-dependent

recyclable product collection and required quantity of recycled items per time period

which is referred to as throughput. The specific problem setting in this study is similar

to the properties of our problem. There is a recycler who wishes to determine the opti-

mal number and location of receiving centers as well as the correct incentive (price per

used/unrecoverable item to be recycled) it must offer to the collecting agents in order

to stimulate collection from a number of geographical regions to a degree required for

regulatory reasons. The authors model this problem as a large bilevel nonlinear mixed-

integer program, and propose a three-stage heuristic algorithm due to its complexity.

An illustrative case study in the recycling of unrecoverable tires in Southern Brazil is

also presented.

Our research distinguishes from De Figueiredo et al. (2007) in several aspects.

First of all, recyclable products are not classified into distinct quality levels; hence,

collecting agents (analogous with the product holders in our problem) are offered a

uniform incentive. Secondly, the government does not play the leader’s role in their

upper-level problem, and unlike in our case, it does not pay a unit subsidy to the

recycler to mitigate his conformation to the specified throughput requirement. Thirdly,

the recycler does not determine the number and loading scheme of vehicles used to haul

collected items from customer regions to the receiving centers or from those centers to

the processing centers. Instead, transportation cost is calculated by simply multiplying

the amount of collected items with the respective costs per unit item and per unit

distance. Finally, the authors represent the differences in individual collecting agents’

decision processes on whether or not to cooperate with the recycler using a binomial

logit function that accounts for factors such as the offered incentive, varying levels of

environmental awareness, and transportation costs. In this thesis, we resort to a right

triangular distribution function the only parameters of which are incentive payment

and product holders’ quality-dependent reservation price for used products. In fact,

our problem combines all of the following merits:

• A nonlinear discrete facility location-allocation and pricing model for the collec-

tion operations of product recovery.



11

• A pick-up policy with vehicles of limited capacity dispatched from CCs to cus-

tomer zones.

• Profit maximization through quality-dependent financial incentives to control the

intrinsic willingness of customers to make a used product return.

• A minimum collection rate imposed by the government.

• A unit subsidy paid by the government for each used product collected.

• BP structure with the government and the company as the leader and its follower,

respectively.
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3. MODEL DEVELOPMENT

3.1. Base Collection System Model

3.1.1. Model Preliminaries

The company under consideration manufactures products for a wide customer

base having different usage habits. Depending on the usage rate and the duration at

each use, the deterioration of used products, hence their condition will vary giving

rise to diverse quality states of the returns. The influence of quality-based collection

incentives on the quality and quantity of product returns is studied by only a few

papers. Guide et al. (2003) categorize returned cellular phones into quality grades

each with a different remanufacturing cost, and find optimal acquisition prices for each

grade to maximize the profit. In a similar fashion, Aras and Aksen (2008) divide

used products owned by the customers (product holders) into K separate groups with

respect to their quality conditions referred to as types. For each core type, a different

level of incentive is offered by the company. This way, the company can pursue an

endogenous quality differentiation in its product recovery efforts. In our study, we

adopt the very same quality differentiation as applied in Aras and Aksen (2008). We

denote the proportion of product holders in zone j having cores of type k (k ∈ K)

by γjk which is assumed to be known. The number of product holders in zone j who

own type k cores is then given by hjk = γjkhj where hj is the total number of product

holders in zone j. For convention, type 1 cores are assumed to have the highest quality

and type K cores the lowest quality. The remaining value that can be captured from

the collected cores can be regarded as revenue due to the savings in the production

cost. The unit cost saving from a core of type k is denoted by sk. It represents the

positive difference between the production cost of a new product and the sum of the

handling and recovery cost (remanufacturing or material recycling) of a core. When

the company offers incentive Rk for a core of type k, the profit associated with that

core becomes (sk − Rk). As a matter of fact, Rk < sk must hold true for each type k

so that the collection operation is economically viable.
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We model product holders’ return decisions using the notion of consumer surplus.

We assume that each product holder having used product of type k (referred to as

product holder of type k) has a reservation incentive for returning his/her used product.

In other words, each product holder would be willing to return if the company offered an

incentive that is at least as large as the reservation incentive R0k. Clearly, the product

holders are heterogeneous in terms of their willingness. One of the most important

factors in this respect is people’s environmental consciousness. Like other authors

who take product holder willingness into account in their models (Ray et al., 2005;

Wojanowski et al., 2007; Aras and Aksen, 2008) we also use the uniform distribution to

model the heterogeneity of the product holders because it not only provides analytical

tractability in the formulation of the facility location-allocation model, but also helps to

incorporate a large degree of variability among product holders. With this choice, R0k

takes on values in the interval [0, ak] where ak > 0 represents the maximum reservation

incentive level of product holder of type k. This means that if Rk = ak, then every

product holder of type k will return his/her used product. Therefore it is not viable

for the company to offer an incentive Rk > ak for a return of type k, and Rk ≤ ak

must always be true. Since R0k ∼ U (0, ak), the probability density and cumulative

distribution functions of R0k are given by f (R0k) = 1/ak and F (R0k) = R0k/ak,

respectively.

As mentioned before, the only factor affecting the decision of a product holder

is the incentive offered by the company. When the company offers incentive Rk, the

consumer surplus for a product holder of type k is

Rk − R0k. (3.1)

Using the notion of consumer surplus, the proportion Pjk of product holders of type k

located in zone j that are willing to return a used product can be written as follows:

Pjk = Pr (Rk − R0k > 0) =
Rk

ak

. (3.2)

Since ak is not dependent on where the product holders are located, we can set Pk = Pjk
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for all j. This way, the return probability of a product holder of type k will be the same

regardless of his/her location. On the other hand, consider two product holders having

used products of the best quality class (product holder of Type 1) and the second best

quality class (product holder of Type 2). When they are offered the same incentive

(i.e., R1 = R2), the willingness of product holder of Type 1 to return will be obviously

less than that of product holder of Type 2. This implies that the maximum reservation

incentive level of product holder of Type 1 (a1) should be higher than that of product

holder of Type 2 (a2). For all product holder types, the following inequalities must

hold true: a1 > a2 > . . . > aK .

As Pk is the proportion of product holders of type k willing to return their

used products, the total number of potential returns of type k from zone j becomes

hjkPk = hjkRk/ak. Hence the maximum possible profit Π′
jk can be computed as

hjkRk (sk − Rk) /ak which is realized if all returns are collected. When sk > ak, we

can write Π′
jk explicitly as follows:

Π′
jk =






0 Rk < 0

hjk

ak
(skRk − R2

k) 0 ≤ Rk < ak

hjk (sk − Rk) Rk ≥ ak

. (3.3)

When sk ≤ ak, then the total profit from returns of type k in zone j becomes

Π′
jk =






0 Rk < 0

hjk

ak
(skRk − R2

k) 0 ≤ Rk < sk

0 Rk ≥ sk

. (3.4)

At this point we want to emphasize that it may not be viable for the company to collect

all the returns of type k in zone j because of the collection-related costs. As a result,

the net profit, i.e., profit obtained from the returns less the collection cost thereof is

a function of the number of returns collected. For that matter, we define a quantity

Xi∗jk ∈ [0, 1] to denote the fraction of potential returns of type k collected in zone j

and carried to the nearest collection center at site i∗.
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The used product collection cost consists of two parts. The first one is the oper-

ating cost of a vehicle. Depending on whether the firm prefers to have its own vehicle

fleet or rent such a fleet for collection operations, the operating cost of a vehicle can

either be its rent or its initial purchasing cost discounted on a periodic basis. This

cost component may also include driver wages and other overhead costs such as in-

surance and tax. The volume of returns and the vehicle capacity determine together

the number of vehicles to be operated by the company. If we assume that the vehicle

fleet is homogeneous, i.e., all vehicles have the same capacity q, then the number of

vehicles needed to carry the returns from zone j is given by
⌈∑

k Xi∗jkhjkRk/ak

q

⌉
where

⌈z⌉ denotes the smallest integer greater than or equal to z for z > 0. Thus, for a unit

operating cost of c1 the total vehicle operating cost equals c1

⌈∑
k Xi∗jkhjkRk/ak

q

⌉
. The

second part of the collection cost is the traveling cost of the vehicles. If the nearest

collection center to customer zone j is located at site i∗, each vehicle has to go from

i∗ to zone j and come back. Denoting the road distance between the two locations by

di∗j , the traveling cost of a single vehicle becomes equal to 2c2di∗j where c2 is the cost

per unit distance. Here we assume that the traveling cost is linearly proportional to

the total distance, and is independent of the load on the vehicle. To summarize, the

collection cost can be expressed as
⌈∑

k Xi∗jkhjkRk/ak

q

⌉
(c1 + 2c2di∗j).

Actually, there is also another cost component that should be taken into account:

the fixed cost of opening and operating collection centers. Under the assumption that

this cost is site-independent, i.e., it is the same at all candidate sites, the total fixed cost

of opening and operating collection centers becomes a constant since we are formulating

a model with a predetermined number of collection centers which is also the case in

the well-known p-median problem. Therefore, this cost component can be altogether

eliminated from further consideration.

Consequently, the net profit Πj from the collected returns in zone j equals

Πj =
∑

k

Xi∗jkΠ
′
jk −

⌈∑
k Xi∗jkhjkRk/ak

q

⌉
(c1 + 2c2di∗j)

=
∑

k

Xi∗jkhjkRk (sk − Rk)

ak
−

⌈∑
k Xi∗jkhjkRk/ak

q

⌉
(c1 + 2c2di∗j) . (3.5)
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It is obvious that if the collection cost equals or exceeds the profit from zone j, i.e.,

if Πj ≤ 0, then there is no motivation for the company to collect used products from

that zone. The profitability of zone j is also affected by the locations of open collection

centers since the collection cost is a function of the distance di∗j between zone j and

the nearest collection center at site i∗. Another factor is the amount of the incentive

Rk offered by the company as it has a direct impact on both the unit profit (sk − Rk)

and the proportion Rk/ak of product holders of type k who are willing to return their

used item. It is possible to establish some guidelines which would help determine the

number of vehicles dispatched from the nearest collection center at site i∗ to zone j.

We make use of these guidelines later on in our heuristic solution procedure.

1. If a fully loaded vehicle carrying type k returns is not profitable, then it

is optimal not to operate any vehicles carrying only type k returns from zone j to

collection center at site i. Mathematically speaking, this means if q (sk − Rk) ≤ c1 +

2c2dij, then a partially loaded vehicle with only type k returns will not be profitable.

This is so because the collection cost (c1 + 2c2dij) associated with a single vehicle is

independent of the number of returns transported by the vehicle, whereas its profit is

increasing in the number of returns.

2. If a fully loaded vehicle carrying type k returns is profitable, then as many

fully loaded vehicles as possible should be put into service to carry only type k returns.

However, a partially loaded vehicle with exclusively type k returns is not guaranteed

to be profitable.

3. When operating a partially loaded vehicle with only type k returns proves

unprofitable, loading returns of lower quality classes k +1, k+2, . . . to utilize the spare

capacity of the vehicle may yield profit.

3.1.2. Model Formulation

In the base model, there are n customer zones (j ∈ J) and m (i ∈ I) candidate

sites for collection centers to be opened. As is the case with the p-median problem
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the number of collection centers to be opened is predefined as p. The objective is

to determine the best p sites, the number and load composition of vehicles to be

dispatched from centers to each customer zone, the quality dependent incentive values,

and the amount of each used product type to be collected from the zones with the aim

of maximizing the total net profit Π =
∑

j Πj . The indices and parameters used in the

model are defined as follows:

I : Set of candidate sites for opening a CC = {1, . . . , m}

J : Set of customer zones = {1, . . . , n}

K : Set of types (quality states) of used products = {1, . . . , K}

dij : travel distance between customer zone j and candidate site i

c1 : vehicle operating cost

c2 : cost per unit distance traveled

q : vehicle capacity

hj : number of product holders living in zone j

γjk : proportion of product holders of type k living in zone j (hij = γjkhj)

hjk : number of product holders of type k living in zone j

sk : unit cost savings from a used product of type k

ak : the maximum reservation incentive level of product holder of type k

p : number of collection centers to be opened

The decision variables used in the model are as follows:

Yi : binary variable indicating whether a CC is opened at location i

Xijk : fraction of potential returns of type k collected in zone j and transported to the

CC at site i

Vij : number of vehicles required to transport returns from zone j to the CC at site

i

Rk : unit incentive offered (unit acquisition price) for a used product of type k
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The collection center location problem (CCLP) is formulated as:

CCLP : max Π =
∑

i∈I

∑

j∈J

∑

k∈K

XijkhjkRk(sk − Rk)/ak −
∑

i∈I

∑

j∈J

(c1 + 2c2dij)Vij (3.6)

s.t.
∑

i∈I

Xijk ≤ 1 j ∈ J; k ∈ K (3.7)

Xijk ≤ Yi i ∈ I; j ∈ J; k ∈ K (3.8)
∑

i∈I

Yi = p (3.9)

Vij ≥

∑
k∈K

XijkhjkRk/ak

q
i ∈ I; j ∈ J (3.10)

Rk ≤ ak k ∈ K (3.11)

Rk ≤ sk k ∈ K (3.12)

Rk ≥ 0 k ∈ K (3.13)

Xijk ≥ 0 i ∈ I; j ∈ J; k ∈ K (3.14)

Vij ≥ 0 and integer i ∈ I; j ∈ J (3.15)

Yi ∈ {0, 1} i ∈ I (3.16)

The objective function consists of two parts. The first part calculates the sum

of profits from each customer zone j, which is obtained by multiplying the unit profit

(sk − Rk) for each type k with the amount collected (XijkhjkRk/ak) and summing over

all types. The second part of the objective function is the collection cost. Recall that

since the fixed cost of opening and operating collection centers is site-independent and

the number of collection centers is given as p, this cost component is not included in the

objective function. Constraints (3.7) guarantee that either all used products of type

k in zone j are collected and shipped to the nearest collection center (
∑

i Xijk = 1),

or only a fraction of them are collected (0 <
∑

i Xijk < 1), or they are not collected

at all (
∑

i Xijk = 0). Constraints (3.8) ensure that used products of type k collected

from zone j can only be shipped to an open collection center. Constraint (3.9) enforces

that the number of open collection centers be equal to p. Constraints (3.10) determine

the number of vehicles Vij required to transport the returns from zone j to collection
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center at site i. Since the sense of the objective is maximization, each Vij is assigned the

smallest integer value that is greater than or equal to the fractional term
∑

k XijkhjkRk/ak

q
.

Constraints (3.11) and (3.12) are upper limits on the incentive Rk. Depending on the

relative magnitudes of sk and ak one of these constraints will be redundant.

The formulation of the CCLP is a mixed-integer nonlinear programming (MINLP)

model with {(n + 2)K + (K + 1)mn + 1} constraints, (mn + 1)K nonnegative linear

variables, mn nonnegative integer variables, and m binary variables. From the view-

point of locational analysis, the resemblance of the CCLP to the well-known p-median

problem, which is proven to be NP-hard (Kariv and Hakimi, 1979), is evident.

It should be pointed out that there is no upper bound on the total number of

items to be collected by the company either via an explicit upper bound or a purchasing

budget limitation. This implies that the model allows the firm to acquire as many used

products as would be profitable to remanufacture. In other words, it is an implicit

assumption that there is sufficient demand for remanufactured products.

3.2. Government-Subsidized Bilevel Models

3.2.1. Problem Setup and Model Development

We formulate two BP models called GSCSDP1 and GSCSDP2 (Government-

Subsidized Collection System Design Problem) for the used product collection opera-

tions of the company. The government is the leader and the company is the follower in

both models. The models differ from each other in the government’s action by either

forcing or encouraging the company to collect more cores from the customers.

Model GSCSDP1 (supportive model):

The government announces that a unit subsidy G will be paid to the company

for each core collected. If the amount of G is sufficiently high, the company will be

better off by collecting more used products. The government’s problem (GP1) is to
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determine the least possible value of G so as to make the company reach the minimum

collection rate τ . The company’s problem (CP1), on the other hand, is to maximize

its total net profit by determining the optimal number and locations of the CCs, the

number and loads of vehicles to be dispatched from each CC to pick up the cores, the

amount of the quality-dependent incentives to be paid to product holders for each core

returned, and the amount of each core type to be collected. A bilevel framework to

represent GSCSDP1 schematically is depicted in Figure 3.1.

Model GSCSDP2 (legislative model):

The company is obligated by governmental legislation to reach at a minimum

target collection rate τ . This, however, can cause the company to suffer a net loss,

i.e., a negative net profit from its collection operations. The government’s problem

(GP2) becomes minimizing the unit subsidy S paid to the company by guaranteeing

that the company achieves a net profitability ratio at least as large as a target value ρ.

The company’s problem (CP2) is the same as CP1 with an additional constraint which

fulfills the government’s collection rate legislation. A graphic representation of the BP

model GSCSDP2 is shown in Figure 3.2. In both problems, the government is certainly

not interested in which type of cores are actually collected by the company. It is also

not an issue, which customer zones participate in product recovery to what extent.

The government’s regulation will be satisfied once the overall cumulative collection

ratio reaches the target.

For these bilvel models, we revised the company’s problems based on the model

depicted in Section 3.1 with two main differences. Firstly, instead of uniform distri-

bution we assume that R0k follows a right triangular distribution (RTD) given as in

expression (3.17). By preferring the RTD we believe that we can better capture the

customers’ characteristic wisdom of “the more, the better” regarding the incentive of-

fering of the company. In other words, the RTD implies that the change in the number

of potential core returns occurs at an increasing rate per unit increase in Rk (see Figure

3.3). Moreover, this wisdom can be incorporated into the model formulation without

sacrificing the analytical tractability that would be ensured otherwise by the use of
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Figure 3.1. The bilevel framework for GSCSDP1

Figure 3.2. The bilevel framework for GSCSDP2
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Figure 3.3. The RTD distribution of the reservation incentive

the uniform distribution. By implementing RTD, the proportion Pk(= Pjk) of product

holders of type k in zone j who are willing to return their cores when the company

offers incentive Rk per unit core can be written as

f(R0k) = 2R0k/a
2
k (3.17)

Pk = Pr(Rk ≥ R0k) = F (Rk) = R2
k/a

2
k. (3.18)

Note that R0k again takes on values in the interval [0, ak] where ak > 0 represents

the maximum incentive level of product holder of type k. As Pk is the proportion of

product holders of type k willing to return their used products, the total number of

potential returns of type k from zone j becomes hjkPk = hjkR
2
k/a

2
k. Also, for each

core collected the company receives a unit subsidy G. Hence the maximum possible

profit Π′
jk can be computed as hjk(G + sk − Rk)R

2
k/a

2
k which is realized if all returns

are collected. When G + sk > ak we can write explicitly as follows

Π′
jk =






0 Rk < 0

hjk

a2
k

((G + sk)R
2
k − R3

k) 0 ≤ Rk < ak

hjk (G + sk − Rk) ak ≤ Rk < G + sk

0 Rk > G + sk

. (3.19)
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When G + sk ≤ ak, then the total profit from returns of type k in zone j becomes

Π′
jk =






0 Rk < 0

hjk

a2
k

((G + sk)R
2
k − R3

k) 0 ≤ Rk < G + sk

0 Rk ≥ G + sk

. (3.20)

Due to collection related costs like vehicle operating and facility opening, it may not

be profitable to collect all the cores customers agree to give away. In order to reflect

this situation in the model formulation we define a variable Xi∗jk ∈ [0, 1] to denote

the fraction of potentially returned cores of type k collected in zone j and carried to

the nearest CC at site i∗. So, the total profit realized from zone j for 0 ≤ Rk ≤

min{ak, G + sk} is then given by

∑

k

Xi∗jkhjk(G + sk − Rk)R
2
k/a

2
k. (3.21)

Furthermore, differing from CCLP we formulate company’s problems in such a

way that the number of collection centers to be opened is also a decision variable like

in the well-known fixed charge facility location problem. In that case, the trade-off

between the total fixed cost of opening and operating collection centers and the total

collection cost can be incorporated by adding the term fiYi∗ to the objective function

where fi denotes the fixed cost of opening and operating a collection center at site

i. Moreover, constraint (3.9), i.e.,
∑

i Yi = p will not be included the model. To

summarize, the total collection cost can be expressed as

⌈∑
k Xi∗jkhjkR

2
k/a

2
k

q

⌉
(c1 + 2c2di∗j) + fiYi∗ . (3.22)

Thus, the total net profit from zone j becomes

∑

k

Xi∗jkhjk(G + sk − Rk)R
2
k/a

2
k −

⌈∑
k Xi∗jkhjkR

2
k/a

2
k

q

⌉
(c1 + 2c2di∗j) − fiYi∗ . (3.23)
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3.2.2. Model Formulations

We note that CP1 and CP2 are both variants of the uncapacitated discrete facility

location-allocation problem in which there are n customer zones indexed by j and m

candidate sites to open CCs indexed by i. Below we define additional parameters:

fi : fixed cost of opening a CC at candidate site i

ρ : target profitability ratio

τ : target collection rate

The decision variables used in the models are as follows:

Yi : binary variable indicating whether a CC is opened at location i

Xijk : fraction of potential returns of type k collected in zone j and transported to the

CC at site i

Vij : number of vehicles required to transport returns from zone j to the CC at site

i

Rk : unit incentive offered (unit acquisition price) for a used product of type k

G : unit subsidy offered for each collected used product

The GSCSDP1 is formulated as:

GP1 : minG≥0G (3.24)

s.t.

∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R2

k

a2
k

≥ τ
∑

j∈J

hj (3.25)
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where Xijk, Rk solves:

CP1 : max Πnet =
∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R2

k

a2
k

(G + sk − Rk) −
∑

i∈I

∑

j∈J

(c1 + 2c2dij)Vij

−
∑

i∈I

fiYi (3.26)

s.t.
∑

i∈I

Xijk ≤ 1 j ∈ J; k ∈ K (3.27)

Xijk ≤ Yi i ∈ I; j ∈ J; k ∈ K (3.28)

Vij ≥

∑
k∈K

XijkhjkR
2
k/a

2
k

q
i ∈ I; j ∈ J (3.29)

Rk ≤ ak k ∈ K (3.30)

Rk ≤ G + sk k ∈ K (3.31)

Rk ≥ 0 k ∈ K (3.32)

Xijk ≥ 0 i ∈ I; j ∈ J; k ∈ K (3.33)

Vij ≥ 0 and integer i ∈ I; j ∈ J (3.34)

Yi ∈ {0, 1} i ∈ I (3.35)

The model of GSCSDP2 is formulated as:

GP2 : minG≥0G (3.36)

s.t.

Πnet

/(
∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R3

k

a2
k

+
∑

i∈I

∑

j∈J

(c1 + 2c2dij)Vij +
∑

i∈I

fiYi

)

≥ ρ

(3.37)
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where Xijk, Rk solves:

CP2 : max Πnet =
∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R2

k

a2
k

(G + sk − Rk) −
∑

i∈I

∑

j∈J

(c1 + 2c2dij)Vij

−
∑

i∈I

fiYi (3.38)

s.t.
∑

i∈I

Xijk ≤ 1 j ∈ J; k ∈ K (3.39)

Xijk ≤ Yi i ∈ I; j ∈ J; k ∈ K (3.40)

Vij ≥

∑
k∈K

XijkhjkR
2
k/a

2
k

q
i ∈ I; j ∈ J (3.41)

∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R2

k

a2
k

≥ τ
∑

j∈J

hj (3.42)

Rk ≤ ak k ∈ K (3.43)

Rk ≥ 0 k ∈ K (3.44)

Xijk ≥ 0 i ∈ I; j ∈ J; k ∈ K (3.45)

Vij ≥ 0 and integer i ∈ I; j ∈ J (3.46)

Yi ∈ {0, 1} i ∈ I (3.47)

The inner problems (company’s problems) CP1 and CP2 are represented by con-

straints (3.27) − (3.35) and (3.39) − (3.47), respectively. The unit subsidy G in the

outer problems (government’s problems) GP1 and GP2 constitute an input parameter

for the inner problems. GP1 and GP2 have both the same objective function which is

to minimize the nonnegative value of the unit subsidy G in (3.24) and (3.36). The min-

imum collection rate constraint of GSCSDP1 for which the government is responsible

in the outer problem is shown by (3.25), while the same constraint to be satisfied by

the company in the inner problem of GSCSDP2 is shown by (3.42). The desired level

of collection is obtained by multiplying the target collection rate τ by the total number

of available cores. In both CP1 and CP2 we maximize the same objective function,

namely the net profit as shown in (3.26) and (3.38), respectively, which is obtained

by subtracting the total vehicle operating cost and the cost of opening CCs from the
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total profit. The fraction of potential returns which are collected in reality should be

less than or equal to 100 per cent as stated in (3.27) for GSCSDP1 and in (3.39) for

GSCSDP2. Constraints (3.28) in GSCSDP1 (constraints (3.40) in GSCSDP2) ensure

that this fraction is zero if there is no CC at site i. The number of vehicles Vij re-

quired to transport returns from zone j to the CC at site i should be greater than

or equal to the total amount of returns collected from zone j divided by the vehicle

capacity q. Since vehicle related costs will be minimized in CP1 and CP2, Vij is going

to be set to the smallest integer value greater than
∑

k Xijkhjk. This is taken care of

by the inequalities (3.29) as well as by the integrality constraints on Vij in (3.34) for

GSCSDP1 (inequalities (3.41) and integrality constraints (3.46) for GSCSDP2). For

the incentive Rk, there are two upper bounds. One of them is ak since all product hold-

ers would agree to make a return at or beyond this level of the incentive. The other

upper bound equals (G + sk), because offering any incentive higher than (G + sk) will

result in negative unit profit for CP1. In that case, the company would be better off if

it did not engage in product recovery at all. However, the company of the legislative

model may be obliged to declare an incentive higher than (G + sk) when ak > G + sk,

because it has to fulfill the target collection rate requirement even though this triggers

a decrease in the total net profit. From government’s point of view, this implies at the

cost of having negative profit in some core types due to Rk values above (G + sk), the

company is responsible for reaching the target collection rate τ and by the contribution

of the product recovery of other profitable core types the targeted overall profitability

ratio ρ can eventually be attained. Constraints (3.30) and (3.31) (constraint (3.43))

serve as these upper bounds on Rk in GSCSDP1 (GSCSDP2). Finally, the constraints

(3.32) − (3.35) and (3.44) − (3.47) are nonnegativity and integrality constraints for

GSCSDP1 and GSCSDP2, respectively.

GP1 and GP2 are both continuous optimization problems in nonnegative variable

G for given values of Xijk and Rk. These problems are relatively easy to solve compared

to CP1 and CP2. The latter models are MINLP problems with mn(K +1)+K(n+2)

and mn(K + 1) + K(n + 1)1 constraints, respectively.
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4. SOLUTION PROCEDURE

4.1. Solution Methodology for Base Collection System

The CCLP is formulated as a MINLP model which is difficult to solve even for

decent problem sizes. Hence heuristic methods can be used to obtain near-optimal

solutions. In this context, we propose such a solution method which makes use of the

following problem characteristic: given the locations of p collection centers, the CCLP

reduces to a nonlinear problem in variables Rk for incentives and Vij for vehicles. Thus

it is possible to perform a search in a K-dimensional search space where each point

corresponds to a feasible set of Rk and Vij values. The optimal objective value of each

point can be calculated by adding up the maximum net profits from customer zones. In

order to establish such profits the correct number of vehicles allocated to each customer

zone must be found based on the given vehicle capacity.

In the main loop of our heuristic we use a Tabu Search (TS) procedure to find good

locations for the collection centers. The main motivation of using TS is the similarity

of the CCLP to the well-known p-median problem. Very accurate solutions have been

obtained for this problem by heuristic methods based on TS. Rolland et al. (1996)

developed a TS procedure for the p-median problem which is found to be superior to

the node interchange heuristic. Rosing et al. (1998) made a head to head comparison

between the metaheuristics tabu search and heuristic concentration on a test bed of

21 challenging problems with 100 and 200 customers where p has been assigned values

between 5 and 20. Recently, Mladenović et al. (2003) worked on both a tabu search

and a variable neighborhood search method for solving the p-center problem rather

than the classical p-median problem.

TS is a metaheuristic algorithm that guides the local search to prevent it from

being trapped in premature local optima or in cycling (Glover and Laguna, 1997).

This is achieved by prohibiting the moves that cause to return to previously visited

solutions throughout a certain number of iterations. The basic TS algorithm starts
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with an initial solution. At each iteration, a neighborhood of the current solution is

created by one or more types of moves. The best solution from this neighborhood is

selected as the new current solution if it is not classified as tabu. In the case this

solution is restricted as tabu, it may still be admitted as the new current solution

if it outperforms the incumbent (the overall best solution so far). This condition is

called aspiration criterion. The incumbent is updated if the new current solution is

both feasible and better than the incumbent. A tabu list which is updated at the

end of each iteration keeps record of the tabu attributes of the accepted moves. The

iterations are continued until one or more stopping criteria are satisfied. We propose

a TS procedure that uses 1-, 2-, and 3-Swap moves in which, respectively, one, two,

and three collection centers in the current solution are moved from their locations

to candidate sites without a facility. In other words, opened collection centers are

relocated.

A flowchart is provided in Figure 4.1 to describe the steps of our TS implemen-

tation referred to as TS-CCLP. First, we give the notation used in the flowchart.

num iter number of iterations performed so far

Max Iter maximum number of iterations

num nonimp iter number of iterations throughout which the incumbent does not

improve

Max Nonimp Iter maximum number of iterations throughout which the incumbent

does not improve

num neigh number of neighbors generated in the current iteration

size neighw number of neighbors generated in the current iteration

using the wth move, w = 1-Swap, 2-Swap, 3-Swap

Obj objective value of a newly generated neighboring solution

Obj Best Neigh objective value of the best neighboring solution

Obj∗ objective value of the incumbent

Rk optimal incentive for type k for the newly generated

neighboring solution
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Rbest
k optimal incentive for type k for the best neighboring solution

R∗
k optimal incentive for type k for the incumbent

Max Tabu Tenure maximum tabu tenure (i.e., maximum number of iterations

during which a solution will be considered tabu-active.)

Initial Solution

For each candidate site we calculate its cumulative distance summed over all

customer zones. We obtain an initial solution by choosing the first p sites with the

lowest cumulative distance value.

Neighborhood structure and tabu restrictions

The neighboring solutions are generated from the current solution by applying

1-Swap, 2-Swap, and 3-Swap moves. With this choice of the neighborhood structure,

we prevent infeasible solutions—solutions in which the number of opened collection

centers is not equal to p—from entering the search space. The neighborhood of a

current solution is constructed by applying the three moves in such a way that an

equal number of solutions are generated from each one and the best one is selected by

comparing their net profit values.

As the current solution is updated throughout the iterations of TS-CCLP, we

employ tabu restrictions so that solutions visited earlier are not selected repeatedly.

Tabu restrictions are defined for the three moves as follows. In the 1-Swap move, if

collection centers at sites i and j are swapped, i.e., one is added to and the other

is dropped from the set of opened centers, then the 1-Swap move cannot be applied

to them during the time they are tabu-active. In the case of the 2-Swap, suppose

collection centers at sites i and j are about to be opened, i.e., to be added to the

current configuration, and two centers opened previously at sites k and l are about

to be closed, i.e., to be dropped from the current configuration. Suppose further that

this 2-Swap move does not result in a better profit than the incumbent’s profit, which
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means that it does not satisfy the aspiration criterion. Thus, it cannot be executed if

centers at sites i and j had been closed, and those at sites k and l had been opened

during the previous ǫ iterations with ǫ denoting the then-assigned tabu tenure. This

is, once a particular move has been performed upon some specific collection centers,

it is declared as tabu-active for the next ǫ iterations, during which the outcome of the

move should not be reverted. The tabu attributes of the 3-Swap move are defined in a

similar way. According to the aspiration criterion, a move involving collection center

sites that are tabu can be executed provided that it produces a solution with a higher

net profit than the incumbent. The tabu tenure ǫ are assigned random integer values

in the interval [1, Max Tabu Tenure] where Max Tabu Tenure = ⌈1.5p⌉.

Termination Criterion

We use two termination criteria in TS-CCLP. The first one is the total number

of iterations performed controlled by the parameter Max Iter = max {2m, 100}. The

second criterion is the maximum permissible number of iterations during which the best

solution (incumbent) does not improve. This criterion is controlled by the parameter

Max Nonimp Iter = ⌈Max Iter/5⌉. The values of these parameters are taken from

Rolland et al. (1996).

As can be seen in Figure 4.1, for each alternative configuration of opened collec-

tion centers the TS-CCLP calls the simplex search method to determine the best values

of the incentive variables R = {Rk : k = 1, . . . , K} and the corresponding net profit Π.

Simplex search originally developed by Nelder and Mead (1965) for unconstrained non-

linear optimization is a derivative-free direct search method for maximizing a function

of multiple variables. In this method, the simplex is a polytope consisting of z +1 ver-

tices where z denotes the number of decision variables. Each vertex is represented by a

z-dimensional vector. The worst vertex is rejected and replaced by a new vertex along

the line joining this vertex and the centroid R of the remaining vertices. The exact lo-

cation of the new vertex is found by reflection, expansion, and contraction operations.

These operations are repeated many times until the simplex approximately shrinks to
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a single point which is declared as a local optimum. The (K + 1) initial vertices in

our problem are generated according to the suggestion in Bazaraa et al. (1993). The

reflection (α), expansion (λ), contraction (β), and shrinkage (χ) coefficients are fixed

at the following values as suggested by Nelder and Mead (1965): α = 1, λ = 2, β = 0.5,

and χ = 0.5. If the new vertex is infeasible with respect to the bounds (0 ≤ Rk ≤ sk),

then the coefficient used in that step is adjusted so that each component Rk of the new

vertex is within its lower and upper bounds. The steps of simplex search are provided

in Appendix A.

To determine the best values for Rk the simplex search method needs to compute

the profit for each vertex (i.e., a set of values assigned to Rk). As the total net profit

Π can be calculated by summing up the individual net profits from customer zones, a

procedure is required to find Πj from a single customer zone j. Since simplex search is

called inside the TS-CCLP with a given set of collection center locations, it is possible

to assign each customer zone j to the nearest collection center at site i∗. In other

words, the vehicles that will transport the returns from zone j will be dispatched from

collection center at site i∗. This decision is optimal since the collection centers are

assumed to have unlimited capacity. This would not be the case if we considered a

finite capacity version of the CCLP. There are two interrelated issues that need to be

resolved to determine the optimal profit in each zone. The first one is the amount of

each type k return that will be collected with the maximum number being hjkRk/ak.

The other one is the number of vehicles that will be dispatched to carry the returns (of

any type) from zone j. These decisions should be made simultaneously. By recalling the

guidelines pointed out earlier, we develop an algorithm called vehicle loading procedure

1 (VLP-1) to compute Πj at every zone j and hence Π =
∑
j

Πj corresponding to a

vertex represented by a set of Rk values.

First we sort the used product types in nonincreasing order with respect to their

unit profits sk − Rk. Let sk[1] − Rk[1] ≥ sk[2] − Rk[2] ≥ · · · ≥ sk[K] − Rk[K] be this

order. We start with item type k[1] yielding the highest unit profit and calculate the

net profit of a single vehicle if it is fully loaded with type k[1] returns. This is the case

when hjk[1]Rk[1]/ak[1] ≥ q. The profit due to a fully loaded vehicle can be calculated
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as π = q
(
sk[1] − Rk[1]

)
− (c1 + 2c2di∗j). If π > 0, then it is always profitable to send

as many vehicles as possible to zone j provided that all vehicles carry q returns of

type k[1]. Thus, the number of vehicles turns out to be Vj =
⌊

hjk[1]Rk[1]/ak[1]

q

⌋
where

⌊z⌋ denotes the largest integer less than or equal to z for z > 0. The next question is

whether it is also profitable to send the (Vj + 1)st vehicle that will be partially loaded

with
(
hjk[1]Rk[1]/ak[1] − Vjq

)
returns of type k[1]. We also have the situation of partial

loading when type k[1] returns are not sufficient to fully load a single vehicle (where

Vj = 0), i.e., hjk[1]Rk[1]/ak[1] < q and (Vj + 1)st vehicle has only hjk[1]Rk[1]/ak[1] returns

of type k[1]. Note that this includes the case of hjk[1]Rk[1]/ak[1] = 0 meaning that there

exists no return of type k[1].

Following the third guideline we load the (Vj + 1)st vehicle with returns of type

k[2], k[3], . . . until it is full with q returns of various types or there are no returns

remaining. If the net profit of this vehicle is positive, then we also dispatch this vehicle.

Otherwise, the total number of vehicles sent to zone j is Vj . In case vehicle (Vj + 1) is

sent to zone j, vehicle (Vj + 2) is loaded in a similar fashion starting with the returns

yielding highest unit profit among the remaining ones that are still not loaded to any

vehicle. The steps of VLP-1 to determine the optimal amount of collected returns of

each type, the optimal number of vehicles to carry the returns from zone j to collection

center at site i∗, and the optimal net profit Πj in zone j are given in Figure 4.2.

Let qrem
l and urem

k denote respectively the remaining capacity of vehicle l and the

number of type k returns not collected. Also let πl be the profit from vehicle l and V ∗
j

be the optimal number of vehicles. Note that the total number of vehicles necessary

to collect all the possible returns in zone j is given as
⌈∑

k hjkRk/ak

q

⌉
, which makes an

upper bound on V ∗
j .
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Figure 4.2. Pseudo code for VLP-1

(To be run for each customer zone j, j = 1, . . . , n.)

1. (Initialization):

qrem
l := q, l = 1, . . . ,

⌈∑
k hjkRk/ak

q

⌉
.

urem
k := hjkRk/ak, k = 1, . . . , K.

πl := 0, l = 1, . . . ,
⌈∑

k hjkRk/ak

q

⌉
.

Π∗
j := 0.

V ∗
j := 0.

2. Sort the item types in nonincreasing order with respect to unit profit sk − Rk and

let s[1] − R[1] ≥ s[2] − R[2] ≥ · · · ≥ s[K] − R[K] be this order. Also set,

l := 1, k := 1.

3. If urem
[k] ≥ qrem

l , then /* There are as much or more uncollected type k cores in

zone j than the slack capacity of the current vehicle. */

πl := πl + qrem
l

(
s[k] − R[k]

)
− (c1 + 2c2di∗j).

If πl ≤ 0, then

Stop and go to 4. /* It is not profitable to collect any other returns

from zone j. */

Else

Π∗
j := Π∗

j + πl.

urem
[k] := urem

[k] − qrem
l .

qrem
l = 0.

V ∗
j := V ∗

j + 1. /* Acquire a new vehicle for customer zone j. */

l := l + 1.

Go to 3.

EndIf

Else (urem
[k] < qrem

l ) /* The volume of uncollected returns of type k is less

than the slack capacity of the vehicle. */

πl := πl + urem
[k]

(
s[k] − R[k]

)
.

qrem
l := qrem

l − urem
[k] .

urem
[k] = 0.

Continued on Next Page
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k := k + 1.

If k ≤ K, then

Go to 3. /* Proceed with the item type yielding the next highest

unit profit. */

Else

πl := πl − (c1 + 2c2di∗j). /* Compute the profit of the current vehicle. */

If πl > 0, then

Π∗
j := Π∗

j + πl. /* Increase the total net profit by the current vehicle’s

net profit. */

V ∗
j := V ∗

j + 1. /* Add the current vehicle to the set of vehicles allocated

for zone j. */

Stop and go to 4.

EndIf

EndIf

EndIf

4. Report Π∗
j , V ∗

j , and (hjkRk/ak − urem
k ).

4.2. Solution Methodology for Government-Subsidized Bilvel Models

Ben-Ayed and Blair (1990) proved that bilevel programs are NP-hard; hence, ef-

ficient heuristic methods are needed to obtain good solutions for this type of problems.

In both GSCSDP1 and GSCSDP2, the leader’s problem GP is a continuous optimiza-

tion problem with a single decision variable, namely the unit subsidy G. The follower’s

problem CP, however, is a MINLP model for a given value of G determined by the

leader’s problem. We propose a nested heuristic solution methodology, which mainly

utilizes Brent’s method (Brent, 1971) for solving outer problem GP, and a tabu search

heuristic for solving inner problem CP. The nested heuristic for the supportive model

GSCSDP1 is slightly different from that of the legislative model GSCSDP2. Therefore,

we provide the details of our heuristic separately by starting with the supportive model.



37

4.2.1. A Nested Heuristic for the Supportive Model GSCSDP1

In GSCSDP1, the inner problem CP1 is to determine the maximum net profit

that can be attained by the company for a value of the unit subsidy G given by the

government. The government, on the other hand, wants to announce the smallest

possible amount of the unit subsidy that ensures the minimum collection rate. Hence,

it is possible to adopt an exhaustive search in the domain of G. We can start with

the smallest possible value of G, which is zero, and solve CP1. If this solution satisfies

the minimum collection rate constraint 3.25 of GP1, then we are done; otherwise we

can update G by a small increment, and solve CP1 again. This iterative procedure

continues until minimum collection rate constraint 3.25 is satisfied. Let us consider a

sample problem with n = 20 customer zones and K = 3 core types for which we solve

CP1 for different values of G in the interval [0, 10] with increments of 0.5, and record

the realized collection rate T which is computed as:

T =

(
∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R2

k

a2
k

)/
∑

j∈J

hj (4.1)

Figure 4.3. Realized collection rate T as a function of unit subsidy G

We plot T in Figure 4.3 as a function of the unit subsidy G. As can be seen, T

is a monotonically increasing function of G implying that the company collects either
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the same number of cores or more when the subsidy from the government increases.

This observation is also valid for other problem instances we experimented with, which

leads us to apply a more efficient method called Brent’s method to solve GP1.

4.2.1.1. Solving the Outer Problem GP1 by Brent’s Method. Brent’s method is a root

finding method that combines bisection method, secant method, and inverse quadratic

interpolation. It can be employed when the function in question has a unique root.

It has been shown that this method often converges superlinearly, and is never slower

than the bisection method (Brent, 1971). In addition, it can be effectively applied

also to discontinuous functions (Hedge and Kesera, 2005). In order to apply Brent’s

method we modify the objective function of GP1 by taking into account the infeasibil-

ity of the solution of inner problem CP1 with respect to constraint 3.25, which occurs

if the realized collection rate T is less than the minimum collection rate τ . The new

function f1(G), which is to be solved for its root by Brent’s method, is defined as:

f1(G) =





G if T ≥ τ

−M(τ − T ) otherwise
(4.2)

where M is a big positive number. The function f1(G) is a nondecreasing discontinuous

function that takes on positive values equal to G for feasible solutions (T ≥ τ) and

negative values equal to −M for infeasible solutions (T < τ). Moreover, it has a unique

root at T = τ . Brent’s method can find this root, i.e., the minimum unit subsidy value

G to be paid to the company by the government so that the realized collection rate T

is at least as large as the minimum required rate τ .

4.2.1.2. Solving the Inner Problem CP1 by TS-1. Similar to solving CCLP, we imple-

ment a tabu search (TS) heuristic for the inner problem CP1. To this end, we modify

the TS method developed in Aras and Aksen (2008) to solve an uncapacitated, fixed

charge CC location problem so that it accommodates the government-subsidized core

pick-up policy. Recent successful implementations of TS for finding optimal or near

optimal solutions to the fixed charge facility location problem can be found in Sun
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(2006), and Michel and Van Hentenryck (2004).

We name the TS procedure which tackles the inner problem CP1 in the sup-

portive model as TS-1. Each neighborhood solution in this procedure corresponds to

a particular CC location plan, and is obtained by the same moves as in the TS of

Aras and Aksen (2008). Once a CC location plan is given, the optimal assignment of

customer zones to the CCs opened in that plan is trivial. Since CCs are assumed to

have unlimited capacity, collecting the returns in zone j with the vehicles departing

from the nearest CC denoted by i∗(j) will be optimal. A flowchart of TS-1 is provided

in Figure 4.4. We note that TS-1 constitutes the middle shell of the nested heuristic

for GSCSDP1. It runs at each iteration of Brent’s method applied on GP1. TS-1

itself capitalizes on Nelder-Mead simplex search with embedded VLP-1 every time the

objective value of a newly generated solution (a configuration of opened CCs) needs to

be evaluated. General guidelines for TS-1 are given as follows. Same notation is used

used with the TS-CCLP at Section 4.1.

Initial Solution

The initial solution is created by opening only one CC at a candidate site that is

selected randomly.

Neighborhood structure and size

We generate neighboring solutions from the current solution by applying 1-Add,

1-Drop, and 1-Swap moves. This neighborhood structure proved efficient also in the

TS implementation of Aras and Aksen (2008). We select the best of the neighboring

solutions by comparing their objective (net profit) values, which we obtain from the

simplex search embedded in TS-1. 1-Add move opens a CC at one of the candidate

sites where no CC is available yet in the current solution. 1-Drop move removes an

opened CC from the current solution. Finally, 1-Swap move removes one of the opened

CCs in the current solution and at the same time opens a new one at a site that has

none, i.e., it relocates an already opened CC. If we denote σ by the number of CCs
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available in the current solution, then size neighw values, namely neighborhood sizes

of the moves, will be as follows: size neigh1−Add = (m − σ), size neigh1−Drop = σ,

size neigh1−Swap = min{3m, σ(m− σ)}. We ensure that no two neighboring solutions

generated in a given iteration of TS-1 by a specific move are identical.

Tabu restrictions and aspiration criterion

In our TS-1 algorithm we resort to tabu restrictions in order not to be trapped in

location plans that have been created earlier. Tabu restrictions are defined as follows.

1-Add move: If the CC at site i is added to the current location plan, then i is declared

as tabu, and cannot be selected by the 1-Drop move during tabu tenure iterations.

1-Drop move: If the CC at site i is removed from the current location plan, then

i is declared as tabu and cannot be selected by the 1-Add move while tabu-active.

1-Swap move: If the CCs at sites i and j are swapped, i.e., one is added to and

the other is dropped from the current location plan, then 1-Swap move cannot be

applied to them again during the time they are tabu-active. According to the so-called

aspiration criterion, a move involving those sites which are declared as tabu restricted

can be executed if it produces a solution with a higher profit than the incumbent’s

profit (current best profit). Like in the TS method of Aras and Aksen (2008), the

tabu tenure is assigned random integer values in the interval [1, Max Tabu Tenure]

where Max Tabu Tenure equals 25.

Termination Criterion

We use the same termination criteria with TS-CCLP.

4.2.2. A Nested Heuristic for the Legislative Model GSCSDP2

In GSCSDP2 the minimum collection rate constraint has to be satisfied by the

company in the inner problem CP2. This implies that it is mandatory for the company

to reach a minimum collection rate τ by legislation. The government, on the other

hand, ensures that the company achieves a net profitability ratio at least as large as a
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target value ρ by declaring the smallest unit subsidy G. Then, it is possible to adopt

an exhaustive search in the domain of G just as was the case with GSCSDP1. In other

words, we can start with the smallest possible value of G, which is zero, and solve

CP2. If this solution satisfies the minimum profitability constraint (3.37) of GP2, then

we are done; otherwise we can increase G by a small amount, and solve CP2 again.

This iterative procedure continues until the minimum profitability constraint (3.37) is

satisfied. Let us consider a sample problem with n = 50 customer zones, K = 2 two

core types, and minimum collection rate τ equal to 0.4. Using this setting, we solve

CP2 for different values of G in the interval [0, 10] with increments of 0.5, and record

the realized profitability ratio P computed as:

P = Πnet

/(
∑

i∈I

∑

j∈J

∑

k∈K

Xijkhjk
R3

k

a2
k

+
∑

i∈I

∑

j∈J

(c1 + 2c2dij)Vij +
∑

i∈I

fiYi

)

(4.3)

Figure 4.5. Realized profitability ratio P as a function of unit subsidy G

In Figure 4.5 we plot P as a function of the unit subsidy G. We observe that

unlike the curve of the realized collection rate T in Figure 4.3, realized profitability

ratio P is not a monotonically increasing function of G although it has an increasing

trend in general with increasing values of G. This result is the outcome of the discrete

nature of the inner problem CP2. The monotonicity of P in Figure 4.5 is destroyed

when there occurs a drop in P as G increases. In fact, an increase in G gives rise to an
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increase in both the net profit Πnet and total expenditures, but the amount of the latter

surpasses that of the former leading to a reduction in P . This is most likely caused by

the establishment of a new CC in the solution. Consequently, we apply Brent’s method

with the provision that the new function may have several roots.

4.2.2.1. Solving the Outer Problem GP2 by Brent’s Method. First, we modify the ob-

jective function of GP2 by taking into account the infeasibility of the solution of inner

problem CP2 with respect to constraint 3.37, which occurs if the realized profitabil-

ity ratio P is less than the minimum profitability ratio ρ. The new function f2(G) is

defined as:

f2(G) =





G if P ≥ ρ

−M(ρ − P ) otherwise
(4.4)

where M is a large positive number. When Brent’s method is applied to f2(G), it finds

a unit subsidy value G at which f2(G) changes its sign, i.e., a root. However, because of

the nonmonotonicity of f2(G) it may not be the root corresponding to the smallest value

of G the company should receive from the government so that the realized profitability

ratio P matches or exceeds the minimum required ratio ρ. Therefore, we adopt the

following approach. After finding the best subsidy level (say G∗
1) at the first trial,

we apply Brent’s method anew by taking the initial interval as [0, G∗
1] to find another

possible root G∗
2 < G∗

1 if there is any. If a second root G∗
2 is found, Brent’s method is

started again with the new interval [0, G∗
2]. We remark that at each restart of Brent’s

method the initial interval gets smaller, and we stop when we find the minimum level

of the unit subsidy G.

4.2.2.2. Solving the Inner Problem CP2 by TS-2. Just as the case with GSCSDP1, we

apply a TS heuristic called TS-2 to deal with the inner problem CP2 in the legislative

model GSCSDP2, which is run for each iteration of Brent’s method employed on GP2.

The structure of TS-2 is exactly the same as the one of TS-1, therefore we do not

provide a separate flowchart for it (see Figure 4.4). TS-2 also depends on Nelder-Mead

simplex search every time the objective value of a newly generated solution needs to
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be evaluated. The only difference between TS-2 and TS-1 exists in the vehicle loading

procedure called from simplex search for each vertex to compute the best profit Πnet.

Recall that a vertex corresponds to a set of Rk values in simplex search. In the vehicle

loading procedure VLP-1 of TS-1, the aim is to obtain for a given unit subsidy G the

highest net profit, which is equal to the sum of the highest profits from each zone j,

without paying attention to the amount of cores collected in customer zones. In TS-2,

however, the collection rate constraint (3.42) must be satisfied in a solution to inner

problem CP2. Therefore, a new component is added to VLP-1, which builds upon the

solution provided by VLP-1 to restore the infeasibility with respect to the collection

rate constraint. The new component of the procedure is referred to as VLP-2.

Note that if VLP-1 yields a solution in which the realized collection rate T is

greater than or equal to the minimum collection rate τ , there is no need to call VLP-2.

Otherwise, new cores have to be collected in addition to those determined by VLP-1,

which definitely decreases the net profit Πnet. VLP-2 works by collecting new cores

and operating new vehicles until the minimum collection rate is eventually reached

at the expense of a reduction in Πnet. If τ is not attainable with the current Rk

values due to the insufficient volume of potential returns, VLP-2 assigns a very large

negative objective value to eliminate the corresponding vertex. The details of VLP-2

are described below.

Let L denote the minimum number of additional cores to be collected to reach

the minimum collection rate τ . Also let vrem
jk and zj denote the number of uncollected

cores of type k in zone j and the idle capacity of vehicles currently dispatched to zone

j, respectively. At this point we use a result from Aras et al. (2007) where it is shown

that only one of the vehicles dispatched to zone j from the nearest CC may have idle

capacity. Unless
∑

j

∑
k vrem

jk < L holds, the next step is to determine (i) which zone

j should be selected to collect the additional cores and (ii) how many cores from each

type should be collected in the selected zone. These two issues need to be resolved so

that the reduction in Πnet is kept at a minimum level. By taking into consideration

the unit profits s[k] + G−R[k] from different core types sorted in nondecreasing order,

the number vrem
jk of uncollected cores of type k in zone j, and the idle capacity zj of
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the vehicles dispatched to zone j, we compute the best possible batch of cores to be

collected in zone j and the resulting profit loss Πloss
j . Notice that the collection opera-

tion associated with additional cores is never profitable, because otherwise they would

be identified by VLP-1. Zone j with the lowest profit loss, i.e., j∗ = argminj{Π
loss
j } is

selected to pick up new cores. After the values of vrem
j∗k , zj∗ , and L are updated, the

process is repeated until L ≤ 0 at which point the minimum collection rate is attained.

The pseudo code of VLP-2 is shown in Figure 4.6 followed by the corresponding nota-

tion.

Notation:

L = minimum number of additional cores to be collected to

reach the minimum collection rate τ

vrem
jk = number of uncollected cores of type k in zone j

zj = idle capacity of vehicles dispatched to zone j

bjk = number of type k cores selected from zone j temporarily

Xi∗jk = fraction of type k cores collected in zone j and transported to

the nearest CC at i∗

Vj = best number of vehicles dispatched to zone j

Πloss
j = profit loss from zone j after restoration iteration

Πnet = best net profit found in VLP-1 for given Rk values

δ = auxiliary variable used to determine the batch of cores to be

collected at an iteration

M = a very large positive number
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Figure 4.6. Pseudo code for VLP-2

1. (Initialization)

L = τ
∑
j

hj −
∑
i

∑
j

∑
k

Xi∗jkhjkR
2
k/a

2
k

vrem
jk = Xi∗jkhjkR

2
k/a

2
k for each k ∈ K and j ∈ J

zj = qVi∗j −
∑
i

∑
j

∑
k

Xi∗jkhjkR
2
k/a

2
k for each and j ∈ J

2. If
∑
j

∑
k

vrem
jk < L /*If the number of cores not collected falls short of the τ */

then report Πnet := −∞ and stop. /* To have simplex search mark the

current Rk values as infeasible */

3. While L > 0 Do /* While the minimum collection rate is not satisfied yet */

4. For each zone j Do

If
∑
k

vrem
jk = 0, then Πloss

j = M /* All cores in zone j have been already

collected */

Else /* There are some uncollected cores in zone j */

bjk = 0 for k ∈ K.

Πloss
j = 0.

If zj = 0, then

zj = q. /* Assign a new vehicle to zone j if idle capacity

is zero */

Πloss
j := Πloss

j + (c1 + 2c2di∗j). /* Compute the cost of the new

vehicle */

EndIf

EndIf /* There are some uncollected cores in zone j */

5. k = 1

While k ≤ K Do /* Collect cores starting from the most profitable

core type */

δ = 0

If vr
j[k]em = 0, then /* There are no uncollected cores of type k in

zone j */

k := k + 1.

Continued on Next Page
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Go to step 4

Else /* There are uncollected cores of type k in zone j */

If (s[k] + G − R[k]) ≥ 0, then let δ =min(vrem
j[k] , zj)

Else let δ =min(vrem
j[k] , zj, L)

EndIf

EndIf

Πloss
j := Πloss

j − δ(s[k] + G − R[k]).

bj[k] := bj[k] + δ.

zj = zj − δ.

If zj = 0 or (s[k] + G − R[k]) < 0 then break WhileDo

k := k + 1.

EndDo /* Consider the next customer zone */

6. Let j∗ := argminj{Π
loss
j }. /* Select zone j∗ with the lowest profit loss */

Πnet := Πnet − Πloss
j∗ .

vrem
j∗k := vrem

j∗k − bj∗[k] for k ∈ K.

L := L −
∑
k

bj∗[k].

EndDo /* End of the outermost while-do loop */

7. Report:

Xi∗jk =
vrem

jk
a2

k

hjkR2
k

for each j ∈ J and k ∈ K,

Vj =

⌈
1
q

∑
k

Xi∗jkhjk
R2

k

a2
k

⌉
for each j ∈ J , Πnet.
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5. COMPUTATIONAL RESULTS

In this section, we first describe how we generate random problem instances. In

all instances, the candidate sites for CCs coincide with the customer zones, implying

I = J, and |I| = |J| = m = n. The x- and y-coordinates of customer zones are sampled

independently from a discrete uniform distribution in the interval [0, 100]. The number

of product holders in each zone is also generated from a discrete uniform distribution

supported on [1, 100]. The travel distances between candidate sites and customer zones

are calculated using the Euclidean distance. We assume that the proportion of product

holders having cores of type k is the same across all customer zones, i.e., γjk = γk for

all j.Parameter values which differ with respect to core types, namely unit cost savings

sk, maximum reservation incentive ak, and γk are given in Table 5.1.

Table 5.1. Parameter values of the base case scenario

K = 2 K = 3

k 1 2 1 2 3

sk 25 15 25 20 15

ak 15 5 15 10 5

γk 0.5 0.5 1/3 1/3 1/3

5.1. Results for Base Collection System Model

This section is divided into two subsections. In the first subsection we perform

experiments to assess the performance of the TS-CCLP on randomly generated in-

stances both in terms of the solution quality and computation time. In the second

subsection we generate insights regarding the policy of the company to offer incentives

depending on the quality of the returns. For this purpose, we examine the case where

the company offers the same incentive to product holders regardless of the quality

type of their returns. Our main objective is to compare the profits obtained under the

two policies and to explore the situations in which offering quality-dependent incentives
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brings about significant additional profit to the company.

5.1.1. Performance of TS-CCLP

By assigning five distinct values to n (n = 10, 20, 50, 100, 200), four distinct values

to p (p = 1, 2, 3, 4) and two distinct values to K (K = 2, 3), we obtain 4 × 5 × 2 = 40

instances where each instance is labeled as a triplet (n, p, K). Also, other parameter

values are taken as c1 = 90, c2 = 1, and q = 10.

TS-CCLP has been coded in C using Microsoft Visual C++ 6.0. All the exper-

iments have been conducted on a desktop computer with 3.20 GHz Intel Pentium 4

HT processor and 2 GB RAM. In the implementation of TS-CCLP, the number of

neighboring solutions (num neigh) is taken as p (m − p), which is the total number of

possible 1-Swap moves. Since there are three types of moves, i.e., 1-Swap, 2-Swap, and

3-Swap, we generate p (m − p) /3 neighbors from each of them.

In order to evaluate the performance of our TS-CCLP heuristic, we employ two

other methods to solve the test instances. One of them is exhaustive search and can

only be used for small CCLP instances. In this approach, we try all possible
(

m
p

)

combinations of p collection centers on m = n candidate sites. For each combination

we vary the incentives Rk in the range [0, min {ak, sk}] with increments of 0.01 to find

the optimal incentives and the corresponding optimal net profit. The combination that

provides the highest net profit and the associated incentive values becomes the optimal

solution to the instance under consideration. In Tables 5.2 and 5.3 we present the

results for two (K = 2) and three (K = 3) used product types, respectively. Those

instances for which the number of facility location combinations is less than 200 are also

solved by exhaustive search with grid size 0.01. Other instances (for which
(

m
p

)
> 200)

cannot be solved within reasonable computation time by exhaustive search. Therefore,

both the incentive values Rk and the net profits are missing for the latter as shown by

(–) sign. On the basis of these results we conclude that the objective values obtained

by TS-CCLP are as good as the ones provided by the exhaustive search. The reason

why TS-CCLP yields slightly better solutions than exhaustive search is that the latter
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is limited by the resolution of the grid, which is 0.01.

We also compare the results of TS-CCLP with those obtained by solving the base

collection model using commercial solvers. There are three solvers available for MINLP

models within the optimization suite GAMS v22.0. These are DICOPT, OQNLP, and

SBB (GAMS: The Solver Manuals, 2005). DICOPT is based on the outer approxima-

tion method in which a sequence of mixed-integer programs and nonlinear programs

are solved. It is expected to perform better on models that have a significant and dif-

ficult combinatorial part. OQNLP is a multi-start heuristic algorithm designed to find

global optima of constrained nonlinear programs that are smooth. By “multi-start” it

is meant that the algorithm calls a nonlinear programming solver from multiple starting

points which are determined by a scatter search application called OptQuest (Laguna

and Marti, 2003). SBB works different from the former two solvers. It performs branch-

and-bound where a nonlinear model is solved at each node of the branch-and-bound

tree by making use of an existing nonlinear solver. SBB may give better results on

models that are fairly nonconvex, or have more difficult nonlinearities. In order make

the decision on which solver to use we conducted a preliminary experiment. By putting

a time limit of one hour, we tried to solve eight instances (m = n = 10, p = 1, 2, 3, 4,

K = 2, 3) using the three solvers mentioned above with their default settings. The

SBB solver has been employed two times by using nonlinear solvers MINOS 5.5 and

CONOPT. The results were surprising in the sense that for none of the instances

OQNLP could find a feasible solution at the end of the time limit, whereas SBB (with

both MINOS 5.5 and CONOPT) and DICOPT produced feasible solutions for all of

them. However, the profits corresponding to the feasible solutions obtained by DI-

COPT were significantly lower compared to the profit values of SBB. We decided to

carry out the experiments with SBB coupled with MINOS 5.5 since it gave results as

good as or better than those obtained by SBB with CONOPT.

Because the largest instance in our dataset is solved in 5967.328 seconds by the

TS-CCLP (see the last row of Table 5.3), we set a time limit of two hours for each

instance using the reslim option of GAMS. Among 40 instances, SBB can solve 15

instances within the imposed time limit. These are instances with 10 and 20 customer
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Table 5.2. Results obtained for CCLP with K = 2 core types

Instance Exhaustive Search TS-CCLP

(n, p, K) R1 R2 Net Profit R1 R2 Net Profit CPU (s)

(10,1,2) 6.73 2.91 686.52 6.742 2.907 686.641 0.328

(20,1,2) 6.28 3.06 753.62 6.269 3.065 753.680 0.953

(50,1,2) 5.44 2.44 1635.02 5.455 2.437 1635.109 4.593

(100,1,2) 5.61 1.88 3805.51 5.599 1.884 3805.515 36.39

(200,1,2) 5.28 1.77 5092.62 5.274 1.771 5092.646 272.641

(10,2,2) 6.74 2.91 975.47 6.742 2.907 975.671 1.281

(20,2,2) 6.37 3.03 1179.02 6.376 3.029 1179.189 4.375

(50,2,2) – – – 6.061 2.205 2524.908 24.656

(100,2,2) – – – 6.076 1.871 5518.736 175.547

(200,2,2) – – – 6.161 2.113 8422.826 1259

(10,3,2) 6.94 2.84 1233.48 6.93 2.845 1233.651 2.937

(20,3,2) – – – 6.742 2.907 1545.176 9.343

(50,3,2) – – – 6.186 2.105 3166.757 54.953

(100,3,2) – – – 6.241 2.001 6915.051 411.375

(200,3,2) – – – 6.330 2.238 11124.785 3250.469

(10,4,2) – – – 7.266 2.733 1400.434 3.406

(20,4,2) – – – 7.420 3.145 1849.731 12.531

(50,4,2) – – – 6.437 2.110 3664.761 80.015

(100,4,2) – – – 6.412 1.944 7815.201 617.359

(200,4,2) – – – 6.405 2.120 12613.231 4662.437
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Table 5.3. Results obtained for CCLP with K = 3 core types

Instance Exhaustive Search TS-CCLP

(n, p, K) R1 R2 R3 Net Profit R1 R2 R3 Net Profit CPU (s)

(10,1,3) 6.84 5.12 2.90 663.40 6.839 5.102 2.909 663.42 0.437

(20,1,3) 5.78 3.65 2.44 721.72 5.791 3.647 2.438 721.753 1.312

(50,1,3) 5.81 4.02 2.44 1601.98 5.806 4.019 2.444 1601.987 6.718

(100,1,3) 5.40 3.38 2.14 3606.93 5.395 3.384 2.140 3606.930 52.359

(200,1,3) 5.26 3.45 1.95 4861.28 5.259 3.450 1.949 4861.284 414.016

(10,2,3) 7.05 5.10 2.84 954.06 7.035 5.109 2.840 954.080 1.546

(20,2,3) 6.78 4.66 3.15 1145.40 6.788 4.668 3.143 1145.436 6.156

(50,2,3) – – – – 5.971 3.922 2.305 2477.887 31.516

(100,2,3) – – – – 5.880 3.670 2.055 5322.414 266.219

(200,2,3) – – – – 5.834 3.667 2.478 8094.920 1801.687

(10,3,3) 7.05 5.00 2.89 1224.85 7.038 5.011 2.888 1224.896 3.593

(20,3,3) – – – – 6.917 4.581 3.143 1515.056 12.063

(50,3,3) – – – – 6.095 3.988 2.319 3128.524 72.578

(100,3,3) – – – – 6.307 3.960 2.046 6771.334 526.984

(200,3,3) – – – – 6.089 3.843 2.305 10765.059 4355.453

(10,4,3) – – – – 7.339 4.951 2.818 1392.650 4.265

(20,4,3) – – – – 7.088 4.659 3.048 1840.563 16.296

(50,4,3) – – – – 6.507 4.100 2.170 3614.966 98.860

(100,4,3) – – – – 6.387 3.965 2.017 7709.316 785.813

(200,4,3) – – – – 6.294 3.931 2.326 12319.075 5967.328
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zones (see Table 5.4), and only one of them is the same as that obtained by TS-

CCLP while the remaining 14 solutions are inferior. The CCLP is a highly nonconvex

MINLP, and commercial solvers have a great deal of difficulty in handling such models.

As a result, heuristic methods are indeed necessary for solving moderate and large-size

instances of the CCLP.

Table 5.4. Comparison of the results obtained for CCLP by SBB solver and TS-CCLP

No. of customer zones 10 20 50 100 200

No. of instances 8 8 8 8 8

No. of solutions returned 8 7 0 0 0

No. of solns. as good as TS-CCLP 3 1 - - -

No. of inferior solutions 5 6 - - -

In order to explore the effect of some parameters on the results we perform now

a sensitivity analysis by varying some parameters. We select the instances with K = 3

in which the used product types are equally distributed, i.e., γ1 = γ2 = γ3 = 1/3 (there

are 20 of them). First, we consider vehicle operating cost c1, and vehicle capacity q.

Figures 5.1 and 5.2 display the net profit and the percentage of the potential returns

collected as a function of c1 and q, where c1 takes on values in the interval [70, 110] with

increments of 5 while q assumes integer values in the interval [6, 14].We remark that

the values are the averages obtained over 20 instances. As one may expect, both the

profit and the percentage of collected returns are decreasing in the vehicle operating

cost whereas they are increasing in the vehicle capacity.

Now we turn our attention to unit cost savings (s1, s2, s3) whose values are

(s1, s2, s3) = (25, 20, 15) in the base case scenario. At this point we want to emphasize

that the maximum incentive levels ak at which all product holders of type k would

be willing to return are kept at their original values (a1, a2, a3) = (15, 10, 5). Note

that the effect of changing all si in the same way, i.e., increasing or decreasing them

simultaneously, can easily be predicted. Namely, if they are increased (decreased),

both the net profit and the percentage of collected returns increase (decrease) as well.

Therefore, we investigate the effect of unit cost savings si by keeping s2 = 20 and
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Figure 5.1. Effect of vehicle operating cost on the net profit (K = 3)

Figure 5.2. Effect of vehicle capacity on the net profit (K = 3)

vary the values of s1 and s3 concurrently either towards s2 or away from s2. In other

words, we experiment with different scenarios: (s1, s2, s3) = (20 + ∆, 20, 20 − ∆) where

∆ = 1, 2, . . . , 9. Effectively, the different scenarios correspond to different variability

between used product types. While scenario ∆ = 1 represents the lowest variability

among the types (unit cost savings are very close to each other), scenario ∆ = 9 rep-

resents the highest variability. The profits plotted in Figure 5.3 are averaged over 20
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instances when c1 = 90 and q = 10 (the values in the base case scenario). We also

present in Table 5.5 the percentage of the collected returns for different quality types.

Figure 5.3. Effect of the cost savings variance on the net profit (K = 3)

The profit curve does not exhibit a monotonic behavior as was the case in Figures

5.1 and 5.2. When ∆ = 1, i.e., the variability among the quality types is lowest, the

percentages of collected items become (23 per cent, 30 per cent, 47 per cent) for the

three types, respectively. The number of collected returns of Type 3 is the largest. This

happens because the reservation incentive of Type 3 product holders is, on average,

lower than the other two reservation incentives (a3 < a1, a3 < a2) although the unit

cost savings s3 obtained from Type 3 returns is about the same as those obtained from

other return types. This means it is possible for the company to offer a relatively

low incentive R3 and make a higher unit profit (s3 − R3) from Type 3 returns. As ∆

increases, the difference between the unit cost savings of Type 1 and Type 3 returns

becomes significant, and offering a higher incentive for Type 1 returns is justified. As

a result, more Type 1 returns are collected. Besides, reduced unit cost savings s3 of

Type 3 returns cause a lower incentive R3 leading to decreased collection amounts of

that return type. The combined effect is an increase (decrease) in the percentage of

collected Type 1 (Type 3) returns, which is evident in Table 5.5.
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Table 5.5. Percentage of the returns collected with respect to quality types

∆ 1 2 3 4 5 6 7 8 9

Type 1 23 27 32 37 42 47 51 55 59

Type 2 30 32 33 34 35 35 36 35 35

Type 3 47 41 35 29 23 18 13 10 7

5.1.2. The Effect of the uniform incentive policy

Convinced with the performance of TS-CCLP, we now want to generate insights

regarding the policy of the company to offer quality-dependent incentives. We examine

the case in which the company offers the same incentive to product holders regardless

of the quality of their returns. In other words, although the company recognizes the

quality profile of the used products (distribution of the used products) in advance,

it does not pursue incentive differentiation, but offers a uniform incentive R to all

product holders. Obviously, such a policy will result in a reduced total net profit.

Our aim is to investigate the magnitude of the profit reduction as a function of the

quality profile. Presented in Table 5.6 is the percent loss in net profit averaged over 20

instances for various quality profiles when there are two and three used product types.

Note that in the base case scenario we used quality profiles 5 and 1 for K = 2 and

K = 3, respectively. To determine the optimal value of the uniform incentive (i.e., R∗),

we have to use a derivative-free line search method for one variable only. Therefore,

instead of the the simplex search we adopt the Fibonacci search method as it requires

less function evaluations and therefore is more efficient than other search methods such

as bisection search and golden section search (Bazaraa et al., 1993).

Table 5.6 suggests that the uniform incentive policy (UIP) results in a net profit

loss for all quality profiles both when there are two and three quality types. Further-

more, the magnitude of this loss changes with respect to the quality profile. When

K = 2, we observe that the benefit of the quality-dependent incentive policy (QDIP)

decreases as the proportion γ1 of higher quality items increases (or equivalently, as the

proportion γ2 of lower quality items decreases) except for γ1 values below 0.3. This
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observation can be explained with the help of optimal incentive values obtained under

UIP and QDIP. It turns out that for all the instances we considered, the optimal uni-

form incentive R∗ is between R∗
1 and R∗

2 of the QDIP regardless of the quality profiles.

That is, R∗
2 < R∗ < R∗

1. When the firm offers a uniform incentive for all returns, R∗

has to increase as the proportion γ1 of higher quality items increases since this is the

only way to collect this type of items whose unit profit is higher. Note that the unit

profit of Type 1 returns is larger than the unit profit of Type 2 returns under the UIP,

i.e., s1−R∗ > s2−R∗ since s1 > s2. Therefore, R∗ will get closer to R∗
1 with increasing

γ1. Consequently, the collected amounts of Type 1 returns will converge to each other

under both policies. Although the volume of lower quality (Type 2) returns will be

larger under the UIP, its effect is limited because of the small proportion of such items

and their lower unit profits. In a similar fashion, R∗ will be closer to R∗
2 for relatively

small values of γ1. This implies that most of the higher quality (Type 1) used products

which were collected under the QDIP will not be returned by their holders when UIP

is in effect. This gives rise to a relatively large discrepancy between the net profits of

the two policies. However, when γ1 is close to zero (e.g., γ1 = 0.1), even under the

QDIP the amount of collected Type 1 items will not be so high, and therefore the

contribution to the net profit by those high quality items will be relatively limited.

This is the reason why the value of percent net profit loss is smaller at γ1 = 0.1 than

at γ1 = 0.2.

Table 5.6. Effect of the UIP with respect to quality profiles

(s1=25, s2=15) Quality Profile, K = 2

1 2 3 4 5 6 7 8 9

γ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

γ2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

% Loss in Net Profit 15.94 25.52 26.58 21.23 17.73 13.37 9.70 5.73 2.41

(s1=25, s2=20, s3=15) Quality Profile, K = 3

1 2 3 4 5 6 7

γ1 1/3 0.1 0.45 0.45 0.1 0.1 0.8

γ2 1/3 0.45 0.1 0.45 0.1 0.8 0.1

γ3 1/3 0.45 0.45 0.1 0.8 0.1 0.1

% Loss in Net Profit 11.27 10.73 14.28 5.93 17.31 3.04 2.94



58

Also when K = 3, the same reasoning remains valid for the two extreme quality

profiles (profiles 5 and 7). Similar to the case with profile 9 when K = 2, the benefit of

incentive differentiation does not pay off for profile 7 where the proportion of Type 1

products dominates the others. On the other hand, the QDIP significantly outperforms

the UIP for profile 5 in which the proportion of Type 3 products dominates the other

types. For that profile, the percent loss in the net profit reaches nearly 17 per cent.

The results for other profiles lie between these two extremes. With the limited number

of sets of parameter values tested in this study, we can state that when the proportion

of lowest quality items is significant with respect to the others, which is the case for

profiles 1, 2, and 3, the percent loss ranges between 10-14 per cent. On the contrary,

when the proportion of lowest quality items is considerably low (as in profiles 4, 6, and

7), the benefit of incentive differentiation drops below 6 per cent.

Obviously, the exact impact of offering a uniform incentive or equivalently the

benefit of quality differentiation in offering incentives will depend on the values of the

parameters such as sk’s and ak’s. For example, it is not surprising that as the difference

between the savings of highest and lowest quality items (s1−sK) increases, the percent

loss in the net profit due to the UIP will also increase.

5.2. Results for Government-Subsidized Bilevel Models

As mentioned before, our nested heuristic consists of Brent’s method to solve the

outer problem GP1 (GP2), and TS heuristic TS-1 (TS-2) to solve the inner problem

CP1 (CP2). Since the quality of the solutions generated by the nested heuristic would

depend largely on the performance of TS-1 and TS-2, we first carry out experiments

to assess the accuracy of the solutions found by these TS heuristics. While solving the

problem instances some parameters are set to the following values: c1 = 75, c2 = 1,

q = 10 and fi = 1000.
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Table 5.7. Comparison of the results obtained for CP1 by SBB solver and TS-1

No. of customer zones 10 20 50

No. of instances 12 12 12

No. of solutions returned by SBB 12 12 11

No. of solns. as good as TS-1 3 1 -

No. of inferior solutions 9 11 11

5.2.1. The Performance of TS-1 and TS-2

In order to test the performance of TS-1 and TS-2 we employ SBB which is

one of the available solvers within the optimization suite GAMS v22.0 used for solving

MINLP models. The reason why we choose this solver is based on the results presented

in Section 5.1.1 where it is observed that SBB gives significantly better results than

DICOPT and OQNLP.

We take the previously generated test instances with n = {10, 20, 50} and K =

{2, 3} and we solve inner problem CP1 for six different values of G = {0, 2, 4, 6, 8, 10}

using both the SBB solver and TS-1. Using the same setting we also solve inner problem

CP2 with values of the minimum collection rate τ from the set {0.2, 0.4, 0.6} by the

SBB solver and TS-2. This makes a total of 36 instances for CP1 and 108 instances for

CP2. Recall that minimum collection rate requirement is not part of CP1, therefore

parameter τ is not a parameter in CP1. To have a fair comparison we set a time limit

for the SBB solver equal to two hours, which is more than the time required by our

TS heuristics to solve the largest instance. TS-1 and TS-2 have been coded in C using

Microsoft Visual C++ 6.0. All the experiments have been conducted on a desktop

computer with 3.20 GHz Intel Pentium 4 HT processor and 3 GB RAM. The results

are displayed in Table 5.7 and Table 5.8. SBB can solve 133 out of 144 instances in

total. We observe that none of the results provided by SBB is better than those found

by the TS heuristics. The quality of the solutions is the same for 55 instances while

TS-1 and TS-2 outperform the SBB solver for the remaining 78 instances. The latter

case is more prominent for large-size instances. Since both CP1 and CP2 are highly
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nonconvex MINLPs, SBB has a great deal of difficulty in handling such models. Now

by incorporating Brent’s method in our nested heuristic, we turn our attention to the

solution of the comprehensive problems GSCSDP1 and GSCSDP2.

Table 5.8. Comparison of the results obtained for CP2 by SBB solver and TS-2

No. of customer zones 10 20 50

No. of instances 36 36 36

No. of solutions returned by SBB 36 35 27

No. of solns. as good as TS-2 36 15 -

No. of inferior solutions - 20 27

5.2.2. Results Obtained by the Nested Heuristic for GSCSDP1 and GSCSDP2

By choosing parameter values from the sets n = {10, 20, 50, 100}, τ = {0.2, 0.4, 0.6}

and K = 2, 3, we generate 4× 3× 2 = 24 test instances for GSCSDP1, and solve them

using our nested heuristic. The results are shown in Table 5.9 and Table 5.10. When

the number of customer zones is fixed, we observe that unit subsidy G, net profit Πnet,

and realized profitability ratio P increase as the minimum collection rate τ becomes

more stringent. This is an expected result, because the increase in the amount of

collected cores, hence in the profit, is only affected by higher values of G decided by

the government. Recall that the company in the supportive model GSCSDP1 never

collects additional cores to help reach the minimum collection rate requirement if it is

not profitable to do so.

Our next step is to solve test instances for the legislative model GSCSDP2, which

take an additional parameter as input, namely the minimum profitability ratio ρ. In-

stead of assigning arbitrary values to ρ, we adopt the following approach that helps us

also in the comparison of the results of the supportive model GSCSDP1 with those of

GSCSDP2. We take the same 24 problem instances listed in Table 5.9 and Table 5.10,

and solve them as GSCSDP2 instances with the minimum profitability ratio parameter

ρ of each instance set to the value of realized profitability ratio P of the corresponding
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GSCSDP1 instance. The results are provided in Table 5.11 and Table 5.12.

Table 5.9. Results obtained for GSCSDP1 with K = 2 core types

Instance No. CCs Net Profit, Realized Coll. Realized Prof. CPU

(n, τ) opened R1 R2 G Πnet Rate, T (%) ratio, P (%) (s)

(10,0.2) 1 12.09 5.00 1.97 0.08 38.1 0.0 98

(10,0.4) 1 11.95 5.00 2.79 187.82 41.3 3.5 101

(10,0.6) 1 11.80 5.00 6.14 1196.27 64.4 13.7 142

(20,0.2) 1 10.06 4.99 1.77 0.05 26.4 0.0 388

(20,0.4) 2 12.09 5.00 4.11 755.71 57.0 6.0 487

(20,0.6) 2 12.09 5.00 4.44 944.81 61.1 7.1 579

(50,0.2) 2 10.04 4.03 1.13 688.21 31.3 4.2 3113

(50,0.4) 2 10.81 4.92 1.70 1166.49 40.0 5.6 3122

(50,0.6) 4 12.04 5.00 3.63 3761.43 70.4 9.9 4795

(100,0.2) 3 9.58 3.91 0.00 2389.53 31.2 7.8 687

(100,0.4) 4 10.40 4.39 0.44 3214.12 42.1 7.9 24,919

(100,0.6) 5 11.15 4.97 1.46 6012.73 61.7 10.0 26,661

On the basis of these results, we can make an observation similar to the one

made earlier for the GSCSDP1 instances. That is, for a given number of zones unit

subsidy G and net profit Πnet increase as the minimum collection rate τ increases.

More importantly, we can conclude that G is lower, and the company makes less profit

in GSCSDP2 compared to GSCSDP1. In other words, by shifting from a supportive

to a legislative role the government can reduce the subsidization budget allocated to

collection operations. Actually, when the government does not guarantee a minimum

profitability ratio ρ for the company in GSCSDP2, the company might even end up

with a negative net profit as a result of the minimum collection rate requirement. This

is never the case in the supportive model since the company would simply refrain from

collecting any cores if the collection operations turn out to be unprofitable.

When we look at the CC location plans in GSCSDP2 versus in GSCSDP1, we

see that the number of CCs opened in GSCSDP2 is either equal to or less than that

in GSCSDP1. This observation can be explained as follows. Notice that for those

instances in which GSCSDP2 ends up opening fewer CCs than GSCSDP1, there is a
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wider gap between the unit subsidy values and realized collection rates. This implies

that in order to realize the same minimum collection rate τ , unit subsidy SGSCSDP1

has to be relatively higher than the value of SGSCSDP2. However, since ρGSCSDP2 is set

equal to ρGSCSDP1 for the same instance, despite lower subsidization the company still

needs to be as much profitable in GSCSDP2 as it was in GSCSDP1. This can be only

accomplished by collecting the same amount of cores with fewer CCs, thereby saving

the heavy cost of opening a CC which has clearly a negative effect on profitability.

Therefore, under the same minimum collection rate τ , the legislative model would

open either an equal or lesser number of CCs in order to match the profitability of the

equivalent supportive model. The proposed nested heuristic spends significantly more

computational effort in solving GSCSDP2 instances as indicated by the CPU times in

last columns of Tables 5.9−5.12. This is caused by restarting Brent’s method several

times due to the nonmonotonicity of the function f2(G) as explained in Subsection

4.2.2.

Lastly, observe that CP1 and CP2 becomes MILP problems for given values

of Rk’s. MILPs can be solved to optimality with CPLEX solver. In order to test

the performance of TS-1 and TS-2 again, we solved these problem instances with

CPLEX by giving the realized Rk and G values we have found in Tables 5.9−5.12 as a

parameter. 43 out of 48 problems gave the same results which are found by TS-1 and

TS-2. However, with 5 instances CPLEX obtained better total profits. This indicates

that these TS based procedures perform well but may not give optimal solutions since

we are using heuristics.
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6. CONCLUSIONS

In the first part of this thesis, we deal with CCLP of a company. We focus

on a pick-up scenario in which a homogeneous fleet of vehicles with limited capacity

is sent from CCs to customer zones in order to collect and bring the returns. The

number of vehicles operated and the amount of each return type collected are also

decision variables that are contingent on both the locations of collection centers and the

incentives. We assume that the financial incentive offered by the company determines

the willingness of product holders to return their used products. The amount of this

incentive has two conflicting outcomes. Offering a lower incentive enhances on the

one hand the company’s unit profit from the returns; on the other hand, doing so

may critically diminish product holders’ willingness to return. For this problem we

formulate an original MINLP model and develop a Tabu Search based heuristic called

TS-CCLP which incorporates a simplex search procedure as a subroutine.

We generate a test bed consisting of 40 instances, and compare the accuracy of

our heuristic with an exhaustive search on small instances, and with the SBB solver

of the GAMS suite v22.0 on all instances. The experimental results reveal that for all

the instances our heuristic exhibits a favorable performance both in terms of solution

quality and running time. After being convinced with its performance, we use TS-

CCLP to explore the effects of vehicle operating cost and capacity on the profitability

and on the percentage of the collected items. We observe that while a larger vehicle

capacity boosts both the profitability and the percentage of collected items, a higher

unit vehicle operating cost has just the adverse effect. Another empirical finding of

experimentation suggests that as the gap between the unit savings from returns of

highest and lowest quality types increases with their respective reservation incentives

and the average unit savings remaining unchanged, the collection percentage of higher

quality returns as well as the total net profit show an upward trend.

We employ TS-CCLP also to scrutinize the effect of the policy to offer a uniform

incentive for all quality types (UIP) opposed to the quality-dependent incentive policy
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(QDIP). We experiment with different quality profiles when there are two and three

quality types. We find that in terms of the total net profit the UIP is always inferior to

the QDIP. Moreover, we explain why the UIP causes an even higher profit loss when

the proportion of lowest quality products is relatively large. This insight is supported

by the results of our scenario analysis under the UIP versus the QDIP.

Secondly, we develop two types of BP models. The first model (GSCSDP1) is a

supportive model from the perspective of the government in the sense that it does not

impose a minimum collection rate restriction on the company, but allows the company

to be free in its profit maximization objective. The second model (GSCSDP2) is a

legislative model in which the government issues a regulation requiring the company

to reach or exceed a minimum core collection rate. This, of course, reduces the net

profit of the company, and in order to not discourage the company from collecting

cores, which is the triggering activity in reverse logistics and closed-loop supply chain

management, the government guarantees that the profitability ratio of the company

would not drop below a certain level. Both models have been formulated as bilevel

programs, which are intrinsically difficult to solve.

For the solution of GSCSDP1 and GSCSDP2, we develop a nested heuristic so-

lution methodology. The government’s problem (outer problem) is solved with Brent’s

method, which is an effective root finding method for one-dimensional functions. A

tabu search heuristic is used to solve the company’s problem (inner problem), which

performs tabu search in the solution space of CC location combinations and calls sim-

plex search to find the best incentive values and the best net profit for a given set of

CC locations.

We evaluate the performance of the proposed tabu search heuristics TS-1 and TS-

2 in solving the inner problems CP1 and CP2 of GSCSDP1 and GSCSDP2, respectively,

by comparing with the commercial solver SBB. This comparison proves the accuracy

of TS-1 and TS-2. We carry out experiments on a set of randomly generated 24

test instances. The results demonstrate that the subsidy paid to the company by the

government depends on the policy of the government regarding its support to reverse
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logistics operations. In a supportive role, the amount of the subsidy will be higher,

and the company makes a higher profit compared to the case of a legislative role of the

government.

As an extension for future research, one may look into the location-routing version

of this comprehensive problem in which vehicles visit more than one product holder

address on a tour before returning to their base CCs. Vehicle tours will likely be con-

strained by capacity and maximum tour duration restrictions. From a methodological

point of view, it is obvious that simultaneous determination of CC sites and associated

vehicle routes complicates the solution of the government-subsidized collection system

design problem by a great deal, and demands specifically tailored techniques. Also,

value of information for knowing the number and condition of cores at each customer

zone may be investigated. In addition, to be more realistic fixed cost of opening a CC

may be zone dependent and the capacity related operating expenses of a CC may be

considered as a cost component. Lastly, the demand for remanufactured items in the

market can be included in the model since it will directly affect the profitability of the

company.
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APPENDIX A: Simplex search algorithm

1. Construction of the initial simplex: Choose points R1,R2, ...,RK+1 to form a

simplex in K . Choose a reflection coefficient α > 0, an expansion coefficient

λ > 1, a contraction coefficient 0 < β < 1, and a shrinkage coefficient χ > 0.

2. Initialization: Let Rmax = arg max1≤h≤K+1 Π
(
Rh
)
, Rmin = arg min1≤h≤K+1 Π

(
Rh
)
,

R = 1
K

K+1∑

h=1|Rh 6=R
min

Rh.

3. Reflection: Let Rr = R + α
(
R− Rmin

)
.

If Π (Rr) ≥ Π (Rmax), go to Step 4.

If Π (Rr) < Π (Rmax), but Π (Rr) ≥ minh|Rh 6=Rmin Π
(
Rh
)
, then Rmin := Rr to

form a new set of K + 1 points and go to Step 6.

4. Expansion: Let Re = R + λ
(
Rr − R

)
.

Rmin := Rr if Π (Rr) < Π (Re) and Rmin := Re if Π (Rr) ≥ Π (Re) to yield a

new set of K + 1 points and go to Step 6.

5. Contraction: Let Rc = R+β
(
R̂min −R

)
where R̂min = arg max

{
Π
(
Rmin

)
, Π (Rr)

}
.

If Π (Rc) ≥ Π
(
R̂min

)
, Rmin := Rc.

If Π (Rc) < Π
(
R̂min

)
, Rh := Rh + χ

(
Rmax − Rh

)
for h = 1, ..., K + 1.

6. Termination: If

{
1

K+1

K+1∑
h=1

[
Π
(
Rh
)
− Π

(
R
)]2
}1/2

< ε, then stop and set Rbest :=

Rmax, else go to Step 2.
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