
MISSION BASED COMPONENT TEST PLANS

by

M. Emre Keskin

B.S., Industrial Engineering, Bilkent University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering
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ABSTRACT

MISSION BASED COMPONENT TEST PLANS

One of the widely used methods of system reliability test plans is based on the

idea of computing the component test plans that ensure prespecified reliability levels

for those components. Another widely used approach suggests the determination of

the system test plans which guarantee a certain reliability level for the system. Since

the main concern is the reliability of the system, the latter approach can be thought

as more advantageous over the former one. However, testing a system as a whole can

be very costly, very difficult or even impossible, which makes the first approach more

appropriate to use. The idea of combining the advantageous points of both approachs

gave birth of another method called as system based component test plans.

One can find many works in the literature that applies the system based com-

ponent testing idea with respect to different system topologies. However, realibility

definition employed in all of these studies assumes a prespecified amount of fixed time

during which the object whose reliability is the concern, works without a failure. This

reliability definition is invalid for systems designed to perform sequence of missions,

which are possibly in random order and have possibly random durations. In this thesis,

a new method which we call as mission based component test plans is proposed as a

means for the determination of the optimum component test plans for series systems

and serial connection of redundant subsystems.
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ÖZET

GÖREV TABANLI BİLEŞEN SINAMI

Dizge güvenilirlik sınamlarının planlanmasında sıkça uygulanan yaklaşımlardan

biri, bileşenlerin sağlaması arzulanan güvenilirlik düzeyleri belirlendikten sonra bu

düzeyleri güven altına alan bileşen sınam sürelerinin hesaplanması düşüncesine dayanır.

Diğer bir yaklaşım ise dizgenin bütün olarak sınanması ve arzulanan dizge güvenilirlik

düzeyini sağlayan dizge sınam sürelerinin belirlenmesidir. Amacın bir bütün olarak

dizgenin güvenilirliği hakkında yargıya varmak olduğu düşünülürse, ikinci yaklaşımın

birinciye göre daha üstün olduğu düşünülebilir. Ancak dizgeyi bütün olarak denemek

çok maliyetli veya çok zor olabilir, hatta bazı durumlarda olurlu olmayabilir. Böyle

durumlarda da birinci yaklaşım ikinciye üstünlük sağlar. Bu iki yaklaşımın olumlu

taraflarını bir araya getirme düşüncesi dizge tabanlı bileşen sınamı adı altında yazına

geçmiş yeni bir yöntemin doğuşuna olanak sağladı.

Konuyla ilgili yazında dizge tabanlı bileşen sınamı düşüncesini değişik dizgeler

için ele alan birçok çalışma bulunmaktadır. Fakat bu çalışmaların tamamında bir nes-

nenin güvenilirlik tanımı nesnenin belirli bir süre boyunca bozulmadan çalışma olasılığı

olarak kabul edilmiştir. Bu güvenilirlik tanımı sıraları ve süreleri rasgele bir dizi görevi

gerçekleştirmek için tasarlanan aygıtlar için geçerli olmamaktadır. Bu çalışmada görev

tabanlı bileşen sınamı adını verdiğimiz yeni bir kavram, güvenilirlik tanımları görev

tabanlı olarak belirlenen dizgelerin eniyi bileşen sınam sürelerini hesaplama yöntemi

olarak sunulmakta ve sıralı dizgeler ile seri bağlanmış koşut alt dizgeler için bileşen

sınamları tasarlanmaktadır.
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1. INTRODUCTION

System is a collection of objects that are organized to perform a predetermined

mission. The smallest unit of the system is called a component. A system can be a

subsystem of a larger system. Systems are designed to perform certain missions. In

order to accomplish the mission, the system should be working until the end of the

mission. Definition of system reliability depends on the structure of the situation at

hand. If there is only one mission to be accomplished or if the system is required to

perform for a predetermined amount of time, namely mission time, reliability is defined

as probability of failure free operation of the system during the mission time. However,

if there is a sequence of missions that are possibly in random order and have possibly

random durations, a different reliability definition is required which is referred in this

work. In such a case, the probability that an object to fulfill the requirement(s) that

are put on it until the end of the last mission is defined to be the (mission) reliability of

that object. To ensure a high (mission) reliability for the system, the system as a whole

or its components and subsystems should be tested. In other words, they should be

operated under different real working conditions, like different temperatures, different

pressures, etc. This testing procedure is called as reliability testing. Reliability testing

process ends after a predetermined number of failure occurences or a time limitation for

the test is exceeded. Test times for each component and subsystem should be carefully

determined so that they reflect the real system reliability level. Therefore, test plans are

essential for complex systems in this sense because they ensure the system to function

with certain level of reliability.

An efficient test plan should serve three main objectives: (1) it should guarantee a

predetermined system reliability level, (2) it should be capable to identify the problems

that must be removed before the system true mission begins, (3) it should have the

minimum possible total test cost. A widely used and incorrect approach in the design

of test plans is to assign certain level of reliabilities to the components and to determine

the number of component tests that assure the component reliabilities with a certain

level of confidence. Another approach suggests testing the system as a whole and
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basing the test plans on the desired value of system reliability. Although the second

approach seems to be more accurate, component tests have following four advantages

over system tests: (1) they are more economical, (2) they enable the collection of

more information about the components, (3) it is possible to test each component

seperately and independently, (4) they are more timely in providing information about

system reliability. However, system owners may feel uncomfortable if all the reliability

test solely depends only on the reliability information at component level. In fact,

a combination of the system and component level reliability testing approachs would

help.

The desire of combining the more accurate structure of system tests with the

advantages of component tests has led to a well known approach in reliability testing:

system based component tests (Altınel 1990). This approach basically suggests hypoth-

esis test for system reliability based on independent experimentation over components.

In other words, it says, experiment with the components and accept or reject the sys-

tem based upon the component test information. However, for all the studies based on

system based component test approach up to today, reliability has been defined as the

probability of failure free operation of the system for a prespecified amount of fixed

mission time. This approach is inappropriate for many real life cases such as for devices

designed to perform missions that consist of possibly random sequence of phases that

have possibly random durations. For instance, consider a bus which is supposed to

leave station A to go to the station D. Moreover, let it be scheduled to stop at stations

B and C and get some passenger from B and C before arriving station D. As soon

as the bus enters a station suppose that it is maintained to replace failed components

with new ones and it becomes fully operational. In such a situation, the bus actually

has a deterministic sequence of missions to accomplish. The first mission finishes when

bus arrives station B, and second mission is accomplished by the time the bus enters

station C. Finally, the last mission of the bus is to arrive station D leaving station C.

Durations of the missions are also supposed to follow some probability distributions.

The bus should be working until it arrives its final destination D. Moreover, it should

be working through the missions. The reliability definition required for such a bus

deviates from the conventional fixed time based reliability definitions. Therefore, the
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reliability is defined as the probability for the bus to be operational until the end of

the last mission. This example actually illustrates the cases where we need a mission

based reliability definition. There is a sequence of missions to be accomplished and

the system should be functional until the end of the last mission. The sequence of

missions can also be in a Markovian order. For instance, the bus can be supposed to

visit the stations, but the order of the visits can be upto the environmental conditions

that follows a probability distribution. In such a situation, although the sequence of

the missions is not deterministic the reliability is still defined as the probability of

being functional until the end of the last mission. In such a case, stochastic failure and

optimization models that have been effectively used within the system based compo-

nent testing framework can no longer be applicable. Therefore, in this thesis a new

approach named as mission based component testing is proposed as a solution proce-

dure for the type of reliability ensurance problems in which reliability of an object is

defined as the probability for the object to fulfill the requirements that are put on it

during all missions and where missions are possibly in random order and have possibly

random durations. This approach yields some stochastic models and optimization re-

sults that are useful in the determination of optimum component test plans for devices

designed to perform a sequence of missions. Similar to the system based component

test approach, a hypothesis test for the system reliability based on independent ex-

perimentation over components is envisaged. Therefore, mission based component test

approach is a special type of system based component test method.

This thesis is organized into seven sections. After the introduction, in the second

section, the literature review consisting historical background behind the system based

component testing approach is introduced while third section gives the general formu-

lation of the semi-infinite linear programming model that is exploited in the optimum

component test time finding process. In section four, the reliability models for which

the mission based component testing method is proposed, are presented. Later on,

for the reliability models given in the forth section, fifth section states the solution

procedure for both the semi-infinite programming model obtained in the third section

and the sub-problems which exist in the body of the general problem. Sixth section

consists of numerical examples for the reliability models submitted in the forth section.
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Finally, concluding remarks and future research directions are provided in the seventh

section.
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2. SYSTEM BASED COMPONENT TESTING

System based component testing problem was first addressed by Gal (1974). In

his paper, he assumes that component failures follow from exponential distribution and

he studies a situation in which a prespecified unacceptable reliability level, R0, is to be

demonstrated at a specified confidence level 1 − α which is known as the consumer’s

risk in the literature. He provides exact analytic solutions for series systems and sys-

tems with serial connection of redundant subsystems. Moreover, he gives approximate

solutions for parallel systems. Denoting the system reliability which is a function of

individual component failure rates, as Rs, the cost of testing component j per unit

time as cj and test time of component j as tj, he proposes a general solution procedure

in order to obtain the optimum component test times of components which minimize

the total test cost for k components

k
∑

j=1

cjtj (2.1)

whilst satisfying the probability requirement

P (accept the system; Rs ≤ R0) ≤ α. (2.2)

Here, the system is accepted if and only if there are no component failures during

the tests. Gal’s formulation is criticized to have two drawbacks which are its rigidity

as no component failures are permitted and the fact that the producer’s risk is not

taken into consideration. It was Mazumdar (1977) who first consulted this missing

case by extending the Gal’s formulation such that a certain acceptable reliability level

R1 is to be satisfied at a confidence level 1− β. In mathematical words, the constraint

demonstrating the producer’s risk as

P (reject the system; Rs ≥ R1) ≤ β (2.3)
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is added to the original formulation of Gal given by (2.1) and (2.2). Constraints (2.2)

and (2.3) actually put upper limits on type I and type II errors of the classical hypoth-

esis testing problem in which the null hypothesis states that the system is unaceptable,

(i.e., H0 : Rs ≤ R0) while the alternative hypothesis claims that it is acceptable,

(i.e., H0 : Rs ≥ R1). Here, R0 and R1 clearly stands for unacceptable and acceptable

reliability levels for the system respectively.

In addition, Mazumdar adopted a new system acceptance criteria such that each

component is allowed to fail during its test and assumed to be replaced with a new

identical component simultaneously when a failure occurs, and the system is accepted

if and only if total number of component failures do not exceed a predefined integer m

which is to be found by an iterative procedure that enables feasibility with respect to

(2) and (3), and leads least possible total cost. This rule is referred to as the sum rule in

the sequel. It should be noted that this is a general form of the Gal’s acceptance method

since Gal considered only the case where m = 0. Previously in the literature, Gnedenko

et al. (1969) have used the sum of component failures as a means for providing system

reliability confidence limits. This is referred as the M-method by Gertsbakh (1989). In

addition, Easterling et al. (1991) have provided a justification for using the sum rule for

a series system. Based on the same ideas Mazumdar (1980) generalized his model and

solution procedures for a serial connection of redundant subsystems in 1980. Likewise

his previous studies, exponential lifetimes are assumed for components, and he provides

an algorithmic method in order to find optimum m, i.e., m∗, and the corresponding

optimum test times tj,m∗ for components, which minimizes (2.1) subject to (2.2) and

(2.3).

While dealing with series system, both Gal (1974) and Mazumdar (1977) show

that the optimum component test times were independent of component test costs

cj and interestingly enough, they are identical. Same results are obtained for also

serial connection of redundant subsystems (Mazumdar 1980). At a first glance, this

result can be justified with the fact that reliability of the systems with subsystems (or

components) connected in a serial manner depends on the weakest subsystem of the

series because its failure will cause whole system to stop. However, in practice it might
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be difficult to convince the managers to schedule the component tests such that each

and every component is tested for the same amount of time independent of the cost of

the testing.

None of these works considers the situation in which prior information about

the component failure rates are obtained before testing. However, most of the time

system managers have prior information on component reliabilities due to historical

experiences. The first study where prior information is considered is due to Altınel

(1992). In his work the prior information is taken in the form of upperbounds on

component failure rates and it is assumed that this information is obtained at no cost.

He treats the system based component test problem as a mathematical programming

problem. The availability of such prior information affects the optimum component

test times and over all test costs. He obtains optimum component test times based on

this formulation, and demonstrate that they are no longer equal. Moreover, the use

of such prior information also leads to considerable reductions in total test costs. His

approach, which is explained in detail in his earlier work Altınel (1990), is important

not only because it is the first mathematical programming view of the problem, but

also leads to solution procedures for more general cases (Altınel, 1994; Altınel and

Özekici, 1997; Altınel and Özekici, 1998). In (Altınel and Özekici, 1997) authors relax

the assumption of exponential failure rates, and in (Altınel and Özekici, 1998) they

study the case of dependent component failures using the concepts developed by Çınlar

and Özekici (1987).

An unrealistic assumption that is often made in the literature is that the devices

for which the reliability testing is being made are designed to perform a given mission

during which the failure rate of the components of the device remain constant. There

are however, many devices in real life which are designed for missions consisting of

phases such that the set of the components that are vital to carry the mission may

change depending on the specific requirements of the cases (Somani et al., 1992). Fail-

ure rates of the device components may also change from phase to phase although they

remain constant within the phases because each phase may impose different conditions

like different pressure, temperature, etc. on the components. Mura and Bondavalli
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(1999) provide an application example for this situation in which a spacecraft involved

in and where the mission consists of four basic phases: launch, hibernation, planet and

scientific observation. Phased-mission systems were initially introduced by Esary and

Ziehms (1975) and an abundant literature has accumulated since then. The order of

the phases may be deterministic or stochastic as Kim and Park (1994) suggests and

components can either be repairable or non-repairable. Alam and Al-Saggaf (1986)

considers a phased-mission system where the repair activity begins as soon as a failure

occurs. Under the light of phased-system framework, Altınel et al. (2001) have gen-

eralized Altınel’s early works for a dynamic component testing of series system with

redundant subsystems depending on an earlier work of Feyzioğlu (1998). In this work,

each component is assumed to have exponentially distributed lifetime in each envi-

ronment it is operated. However, authors manage to show that the system’s overall

lifetime does not necessarily follow from exponential distribution, as it is assumed in all

the available literature on testing serial connection of redundant subsystems. They also

claim that their formulation is strong enough to represent any system with redundant

subsystems where component failure rate functions of the components are piecewise

constant. Altınel et al. (2001) further extent this case with component testing of re-

pairable systems in multistage missions in 2001. Moreover, based on the phased-mission

reasoning and the mathematical model point of view derived in the previous study of

Altınel (1990), Altınel et al. (2002) also carried the research for the systems with ran-

dom missions. Likewise, Feyzioğlu et al. (2003) overtakes the systems with phased

missions depending on an earlier study of Feyzioğlu (2003). A study from Feyzioğlu

et al. (2006) summarizes the system based component testing problem for different

system and mission types and provides numerical examples for all system types.

Reliability definition employed in all the above studies envisage failure free oper-

ation of the system during a predefined amount of time, namely the mission time. This

makes optimization tools of the solution procedures that are applied for many system

based component testing studies, inappropriate for the cases in which reliability of an

object is defined as the probability of the object to fulfill the requirements that are

put on it until the end of the last mission where missions are possibly in random order

and have possibly random durations. Çekyay (2007) provides reliability functions for
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several different systems with this reliability definition. A new method named as mis-

sion based component testing will be developed in the following sections of this thesis

in order to find the optimum component test times for several systems where this new

reliability definition is employed.
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3. PROBLEM FORMULATION

In order to explain the problem of minimizing the total test cost while making

hypothesis tests on the system reliability level based on independent experimentation

over the system components, let us concentrate on a system composed of k components

which is designed to perform n missions. Denote K = {1, ..., k} as the set of components

and M = {1, ..., n} as the set of missions the system has to accomplish. At that

point, one can claim that some of the components of the system may not be vital

to carry mission i. Hence, the set C(i) can be defined as the set of components

required for completion of mission i. C(i) is a subset of K for all i ∈ M . If all

the components are required for all missions, C(i) can be taken as K for all i ∈ M .

Besides, let missions have random sequence and random durations, and define cj(i)

and tj(i) as nonnegative unit cost of testing component j in mission i and testing time

of component j in mission i respectively. Let R0 and R1 be the system reliability

levels that are required to be demonstrated at specified confidence levels 1 − α and

1 − β respectively. In addition, suppose the system reliability function is denoted as

Rs. It is assumed that R0, R1, α and β are chosen from open interval (0, 1) such that

α + β < 1 and R0 < R1. Components are also assumed to have exponential life times

with constant failure rates within the missions which is denoted by λj(i), and they are

tested with replacement. Component failures are assumed to be mutually independent.

System reliability level Rs can be thought as dependent on the reliability levels of the

components. Therefore, it is possible to denote the system reliability as a function of

component failure rate vector λ as Rs(λ) or simply as R(λ). If sum rule is employed

as a means for accepting or rejecting the system, and m denote the allowable total

number of failures of components, the system acceptance probability can be stated as

in the following equality;

P [accept the system] ≡ P





∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m



 (3.1)
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where Nj(i) is the number of component j failures during its test for mission i, which

takes tj,m(i) time units for a given m. It can be observed that since each component j

has an exponential life with failure rate λj(i) in mission i, components are tested with

replacement and component failures are assumed to be mutually indepedent, failures

form a Poisson process. To be more specific, Nj(i) has a Poisson distribution with

parameter λj(i)tj,m(i). Consequently, total failures N =
∑

i∈M

∑

j∈C(i)

Nj(i) has a Poisson

distribution with parameter
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i).

Under the acceptance terminology given above and concerning a sequence of

missions, finding the optimum component test times problem stated with (2.1), (2.2)

and (2.3) can be expressed as the following optimization problem;

min
∑

i∈M

∑

j∈C(i)

cj(i)tj,m(i) (3.2)

s.t.

P (
∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m; Rs ≤ R0) ≤ α (3.3)

P (
∑

i∈M

∑

j∈C(i)

Nj(i) > m; Rs ≥ R1) ≤ β (3.4)

On the other hand, there may be prior information about the component failure

rates due to previous experiences. This information is assumed to be obtained at no

cost and it can also be corporated into the above model. Let prior information on

component failure rates be denoted by Γ which is assumed to be a nonempty and

compact subset of nonnegative real numbers. Γ can be in the form of upper bounds;

e.g. Γ = {λj(i) ∈ R
kn
+ : λj(i) ≤ uj(i) j ∈ C(i), i ∈ M}, where kn is taken as

total magnitudes of C(i)’s which is the set of components required in mission i. In

other words, kn =
∑

i∈M

|C(i)|. Thus, upper bounds on component failure rates are

at hand before testing the system component wise. Let us define two new sets as

ΛI ≡ {λj(i) ∈ R
kn
+ : R(λ) ≤ R0} and ΛII ≡ {λj(i) ∈ R

kn
+ : R(λ) ≥ R1}. Clearly

these two sets define the kn dimensional component failure rates that are feasible with
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respect to system reliability constraints (3.3) and (3.4). If these sets are combined with

the prior information set Γ, one can obtain the final feasible failure rate vectors with

respect to both system reliability requirements and prior information on failure rates.

For instance, let ρ(R0) ≡ ΛI ∩ Γ and ρ(R1) ≡ ΛII ∩ Γ. Consequently,

ρ(R0) ≡ {λj(i) ∈ R
kn

+ : R(λ) ≤ R0, 0 ≤ λj(i) ≤ uj(i), j ∈ C(i), i ∈ M} (3.5)

and

ρ(R1) ≡ {λj(i) ∈ R
kn

+ : R(λ) ≥ R1, 0 ≤ λj(i) ≤ uj(i), j ∈ C(i), i ∈ M} (3.6)

hold where the prior information Γ is given as

Γ = {λj(i) ∈ R
kn

+ : λj(i) ≤ uj(i), j ∈ C(i), i ∈ M}. (3.7)

It should be noted that, if there is no prior information on component failure rates,

namely nothing is known about the failure rates a priori, the only restriction is due to

the system reliability contraints. Formally speaking, Γ = R
kn
+ implying that any failure

rate vector from positive real orthant is feasible with respect to prior information. In

such a case, the final feasible regions of failure rates are ρ(R0) ≡ ΛI and ρ(R1)≡ ΛII .

Assuming that ρ(R0) and ρ(R1) are nonempty, it can be said that more than

one feasible failure rate vector thus more than one value for the system acceptance

probability P





∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m



 can be found. Then, the probability constraints

(3.3) and (3.4) are surely satisfied for all feasible λ vectors if they are modified as

follows:

max
λ∈ρ(R0)

P





∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m



 ≤ α (3.8)
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min
λ∈ρ(R1)

P





∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m



 ≥ 1 − β (3.9)

Suppose that Y is a random variable that has a Poisson distribution with pa-

rameter y. Define λγ,m to be the value of y for which P [Y ≤ m] = γ and let ψm(y)

be a function of y that stands for P [Y ≤ m]. In other words, ψm(y) =
m

∑

k=0

e−yyk

k!
.

By definition ψm(λγ,m) = γ holds. Because N has a Poisson distribution with param-

eter
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i), P





∑

i∈M

∑

j∈C(i)

Nj(i) ≤ m



 = ψm(
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)). Then,

under the light of new terminology, (3.8) and (3.9) inequalities become:

max
λ∈ρ(R0)

ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≤ α, (3.10)

and

min
λ∈ρ(R1)

ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≥ 1 − β. (3.11)

Let us consider ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≤ α and ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≥

1 − β. Moreover, assume tj,m(i)’s are nonnegative coefficients of λj,m(i)’s for all j ∈

C(i), i ∈ M . Then inequalities are equivalent to ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≤ ψm(λα,m)

and ψm





∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i)



 ≥ ψm(λ1−β,m) because it has previously set that ψm(λα,m) =

α, and by the same reasoning ψm(λ1−β,m) = 1−β holds. In addition, ψm(y) is a strictly

decreasing and continuous function of y for nonnegative values of y. It is also invertible

with respect to y. Therefore, by taking the inverse of both sides the first inequality

becomes
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≥ λα,m for nonnegative λ vectors. Similarly, the other
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inequality becomes
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≤ λ1−β,m. Thus, the inequalities (3.10) and

(3.11) result respectively in the constraints which are numbered with (3.13) and (3.14)

of the mathematical programming problem P1(m) for which the formulation is given

below.

P1(m) :

z∗(m) = min
∑

i∈M

∑

j∈C(i)

cj(i)tj,m(i) (3.12)

s.t.

min{
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) : λ ∈ ρ(R0)} ≥ λα,m (3.13)

max{
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) : λ ∈ ρ(R1)} ≤ λ1−β,m (3.14)

tj,m(i) ≥ 0 j ∈ C(i), i ∈ M (3.15)

As it can be seen (3.13) is a minimization and (3.14) is a maximization problem in

λ now. This change is due to the inversion of ψm(y) with respect to y, and the desire

of forcing the constraints (2.2) and (2.3) to hold for all feasible component failure

rate vectors. Thus, for all the component failure rate vectors in ρ(R0) the constraint
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≥ λα,m is forced to hold. Similarly,
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≤ λ1−β,m

must be satisfied for all λ in ρ(R1). This formulation is based on the assumption that

ρ(R0) and ρ(R1) are nonempty. Otherwise, the formulation becomes infeasible.

An optimal solution of P1(m) is denoted as t∗j,m(i) j ∈ C(i), i ∈ M . These are the

minimum cost component test times for a given value of m, and z∗(m) is the associated

total test cost. As a result, the minimum total test cost is z∗ = z∗(m∗) = min{z∗(m) :

m ∈ N} and it is obtained by solving P1(m) parametrically with respect to m. Then

the optimal component test times, which are referred to as t∗j(i) j ∈ C(i), i ∈ M form

a solution of P1(m
∗). Note that t∗j,m∗(i) = t∗j(i) for any component j in the mission i

by definition.
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The inequalities (3.13) and (3.14) are referred as type I and type II inequalities.

One may also realize that left hand sides of these inequalities consist of optimization

problems one of which is a minimization and the other is a maximization in λ over ρ(R0)

and ρ(R1) respectively. These optimization problems are also named as type I and type

II problems. As it can be observed, type I and type II problems in their given forms take

the test times of components in each mission as the coefficient of their decision variables

which are component failure rates in each mission. Type I and type II problems

have linear objective functions but shapes of their feasible regions depend heavily on

the structure of the system reliability function R(λ). Consequently, based on R(λ),

type I and type II problems may lie within the range of linear programming, convex

programming, reverse convex programming, difference of convex (d.c.) programming

and global optimization subjects. In their general form, type I and type II problems

are nonconvex optimization problems with linear objective functions. Solvability of the

type I and type II problems affects also the solvability of the general model.

As stated before, once the component test times in each mission are determined,

type I and type II problems become two optimization problems having these component

test times as coefficients in their objective functions for the component failure rates

in each mission. However, since the optimum test times for each component in each

mission is not known, and they are the actual decision variables of the developed model

P1(m), an iterative algorithm is needed which initially finds optimum component test

results of P1(m). Later on, two optimum component failure rate vectors complying with

the constraints of the type I and the type II problems respectively, should be obtained

by the algorithm. This algorithmic solution procedure which is initially developed

by Altınel (1990) is explained in detail in the fifth section. Before preeceding, an

equivalent form of P1(m) given below which is denoted as P ′
1(m) may help for a better

understanding of the model.
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P ′
1(m) :

z∗(m) = min
∑

i∈M

∑

j∈C(i)

cj(i)tj,m(i) (3.16)

s.t.
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≥ λα,m λ ∈ ρ(R0) (3.17)

∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) ≤ λ1−β,m λ ∈ ρ(R1) (3.18)

tj,m(i) ≥ 0 j ∈ C(i), i ∈ M (3.19)

This is a semi-infinite linear programming model, because it has infinitely many

constraints, and finitely many, kn, variables. The set of constraints (3.17) and (3.18)

describe two cones each of which consists of infinitely many inequalities. In other

words, the feasible set of P ′
1(m) or equivalently P1(m), is the intersection of these two

cones described by infinitely many linear inequalities and the positive orthant.

P ′
1(m) or equivalently P1(m) does not have to be feasible for all m values. Fea-

sibility with respect to m value means that it is possible to find optimum compo-

nent test times for the problem P1(m). It is possible for some m values that the

two cones described by (3.17) and (3.18) do not intersect. Values of the R0 and R1

as well as shape defined by the prior information set plays important roles on the

feasibility of the m value. A sufficient condition for the feasibility is MII

MI
< 1, where

MI = minλ∈R0{
∑

i∈M

∑

j∈C(i)

λj(i)} and MII = maxλ∈R1{
∑

i∈M

∑

j∈C(i)

λj(i)}. Namely, the P1(m)

is feasible for all the values of R0 and R1 leading the MII < MI result. This sufficient

condition is derived from the fact that
{

λ1−β,m

λα,m

}∞

m=0
is a strictly increasing sequence

converging to 1 under the assumptions of α,β > 0, and α+β < 1 (Altınel, 1990). Details

regarding proofs and examples for the sufficient condition is provided in (Altınel, 1994).

Another interesting result is that the feasibility of the problem with respect to m has

a stable nature. Namely, once P1(m) has a solution then P1(m
′) has also a solution for

any m′ > m, (Altınel, 1994).
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As previously stated, if no prior information is available, namely the only restric-

tion on the component failure rates is due to the system reliability constraints and the

sum rule is used as a means for accepting or rejecting a system, the existence of a test

plan is not guaranteed for every system topology. For instance, no test plan exists

for parallel system under stated conditions. This is because type II problem becomes

unbounded for any realization of the parameters like α, β, R0 and R1 which makes

the general model infeasible for any value of m (Altınel, 1990). However, this draw-

back disappears if the prior information on the component failure rates obtained as

a nonempty and compact subset of real numbers, simple upperbounds on component

failure rates for example. The prior knowledge set limits the value of the objective

function of the type II problem in this case, and does not allow any failure rate to be

arbitrarily large.
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4. RELIABILITY MODELS

This section contains the reliability models for the cases where there is a sequence

of missions that has possibly random durations and the sequence of the missions is also

possibly random. The probability of the completion of first n missions is employed as

the reliability function of the models. For the derivations of the reliability models, we

refer to Çekyay (2007). We only present the final reliability formulations and results.

As a reminder, we should point out that we only consider series systems and serial

connection of redundant subsystems with deterministic sequence of missions and series

systems with Markovian sequence of missions within the scope of this thesis.

4.1. Mission Reliability for Deterministic Sequence of Missions

Suppose the sequence of the missions is deterministic. This assumption makes it

easier to handle the problems. Note that, by saying deterministic sequence of missions

it is not meant that duration of mission i, which is denoted by D(i), is deterministic for

all i ∈ M . Duration of mission i still follows a probability distribution for all i ∈ M . For

convenience, we will be assuming that D(i)’s follow exponential distribution throughout

the study.

4.1.1. Series System

By deterministic sequence of missions, it is meant that the sequence of the mis-

sions is fixed and known. Since series system is considered, all the components needed

in mission i are supposed to operate without failure. Therefore, if the set of the com-

ponents that are required to perform without failure during mission i is denoted by

C(i) and the lifetime of the system as LI, probability of completion of the mission i is

given by following formula (Çekyay, 2007),

Pi{LI > D(i)|D(i)} = e

−

∑

j∈C(i)

lambdaj(i)D(i)

(4.1)
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As stated in Çekyay (2007), by referring memoryless property, mission based reliability

R(λ) of a system having a finite number of components connected in series can be

obtained as

R(λ) = Pi{LI > Tn} = E







∏

i∈M

e

−

∑

j∈C(i)

λj(i)D(i)






=

∏

i∈M

Li





∑

j∈C(i)

λj(i)



 . (4.2)

where Tn stands for the completion time of the mission n, and Li(α) = E [exp {−αD(i)}]

is the Laplace transform of D(i).

Following lemma enables the formulation of type I and type II problems. This

is because shapes of the feasible regions ρ(R0) and ρ(R1) of type I and type II prob-

lems mostly depends on the reliability function R(λ). Proof of Lemma 4.1 is given

in Appendix A. Before giving the lemma, define Lk
i (c

T
i αi) = E

[

e−(cT
i αi)D(i)D(i)k

]

as

Laplace transform of cT
i αi depending on natural number k which is power of D(i) in

the expectation.

Lemma 4.1 R =
n

∏

i=1

Lk
i (c

T
i αi), multiplication of the Laplace transforms, is a convex

function of αi = (αi1, ..., αili) ∈ R
li
+, for all i = 1, ..., n, and for all ci = (ci1, ..., cili)

∈ R
li
+, k ∈ N, when D(i) is distributed exponentially with rate µ(i).

To have a more compact form of (4.2), we again refer to Çekyay (2007), and

obtain the following form of the reliability function for series systems;

R(λ) =
∏

i∈M

(
µ(i)

µ(i) +
∑

j∈C(i)

λj(i)
). (4.3)

Due to Lemma 4.1, type I problem arising for the series system with deterministic

sequence of missions, becomes an easy to solve convex programming problem. This is

because the reliability function (4.3) is a convex function of the failure rates. Then
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the constraint R(λ) ≤ R0 existing in the body of type I problem, defines a convex set.

Then, the intersection of the area defined by system reliability constraint R(λ) ≤ R0,

and the prior information Γ, which is the feasible region type I problem stated in

equation (3.5), is a convex set. We are to minimize a linear function over a convex

region, which is a relatively easy task to accomplish. The solution method employed

for the solution of type I problem is given in chapter 5 in detail.

On the other hand, type II problem becomes a reverse convex optimization prob-

lem due to the R(λ) ≥ R1 constraint of type II problem. This problem is also known

as a d.c. programming problem in the canonical form (Horst et al., 2000). Many new

methods has been developed in recent years for the solution of the problems having

linear objective functions and feasible regions that is intersection of a convex set and a

region defined by a reverse convex constraint (Tuy, 1995; Horst et al., 2000; Horst and

Tuy, 1996). The chosen method for the solution of type II problem is also explained in

detail in chapter 5.

4.1.2. Serial Connection of Redundant Subsystems

In this model, system includes serial connection of redundant subsystems instead

of single components. By “redundant subsystem” it is meant a system with components

that are connected in a parallel. A subsystem of such a system works until all of

its components fail and the whole system fails as soon as one of its subsystems fail.

Referring again Çekyay (2007) reliability of such a system can be expressed as:

R(λ) =
n

∏

i=1

Ri(λ) =
n

∏

i=1

E





∏

jǫC(i)

(1 − (1−e−λj(i)D(i))nj(i))



 (4.4)

where nj(i) stands for the number of components of the subsystem j during mission i,

and C(i) for set of the subsystems that are required to stay working during mission i.

We refer the reader to Çekyay (2007) for details of the derivation of this formulation
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and mission based reliability functions of many different systems in general. Following

lemma is also due to Çekyay (2007), and it helps the analysis of the reliability function

(4.4).

Lemma 4.2 (Çekyay (2007)) For any f0, f1, ..., fk ∈ R and k ≥ 0

k
∏

j=0

(1 − fj) =
1

∑

t0=0

...
1

∑

tk=0

(−1)t0+...+tkf t0
0 ...f tk

k . (4.5)

By using Lemma 4.2, following form of the Ri(λ), which is equal to the probability

of completion of mission i, is obtained as,

Ri(λ) =
1

∑

t1=0

...
1

∑

tli=0

(−1)t1+...+tliE[f t1
1 ...f

tli
li

] (4.6)

where li is the magnitude of C(i) which is the set of subsystems that are required to

operate without failure during mission i. Note that fj = (1 − e−λj(i)D(i))nj(i) holds.

At that point, one can make use of the mathematical equations fj = (1 −

e−λj(i)D(i))nj(i) =
nj(i)
∑

rj=0

(

nj(i)
rj

)

(−1)rje−rjλj(i)D(i). Then it becomes possible to get rid of

the expectation term that exists in the body of equation (4.6). For instance, while for

ts1 , ..., tsα
= 1 and all others are zero, following equation concerning the expectation

can be obtained;

E[fs1
...fsα

] =

ns1 (i)
∑

rs1=0

...

nsα (i)
∑

rsα=0

(

ns1(i)

rs1

)

...

(

nsα
(i)

rsα

)

(−1)rs1+...+rsα Li(rs1λs1(i)+...+rsα
λsα

(i))

(4.7)

Due to Lemma 4.1, Laplace transformation term in the body of the expectations

are convex functions of λ, because the term is also a special form of the multiplication

of the Laplace transforms. Because of the coefficient of Laplace terms can be negative
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and positive depending on the power of -1 existing in equation (4.7), Ri(λ) becomes a

linear combination of convex functions. Because some terms have negative coefficients

Ri(λ) is clearly a d.c. (difference of convex) function. Note that the summation of

convex functions is convex. We also know that the overall system reliability function

R(λ) is the multiplication of the Ri(λ)’s. Then, R(λ) is a function that is obtained

by multiplying d.c. functions. However, it is also a known fact that multiplication of

d.c. functions is itself a d.c. function (Horst and Tuy, 1996). Therefore, R(λ) is a d.c.

function as well.

Consequently, type I problem becomes a d.c. programming problem with a linear

objective function and a feasible region defined by a d.c. set. Similar to type I problem,

type II problem is also a d.c. programming problem. This is because the constraint

R(λ) ≥ R1 can be replaced with −R(λ) ≤ −R1, and −R(λ) is also a d.c. function

(Horst and Tuy, 1996). Therefore, both of the type I and type II problems of the

serial connection of redundant subsystems are both d.c. optimization problems. Many

converging algorithms have been offered for the solution of d.c. optimization problems.

The reader is referred to Tuy (1995), Horst and Tuy (1996), Horst et al. (2000), and

references therein. The method we choose is explained in Chapter 5.

4.2. Mission Reliability for a Series System with a Markovian Sequence of

Missions

For systems such that the order in which the missions will proceed is Markovian,

the reliability functions are significantly different than their equivalent ones with de-

terministic sequences. If the mission is accepted as the state of the underlying Markov

process, and the transition matrix of the Markov process lying behind the system is

denoted by P , then transition rates are stated as {µ(i); i ∈ M} where M denotes the

set of missions (states for this case).

Before proceeding to the mission reliability analysis of such systems, there is a

need for new terminology definitions. First of all, let P̃ be a new transition matrix,

which is necessary for the reliability formulations of the systems with Markovian mis-
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sions. The terms of the new Markovian transition matrix P̃ are obtained by multiplicat-

ing the corresponding term of the transition matrix P and the probability of completing

the mission corresponding to the row on hand. To be more specific, P̃ (i, x) equals mul-

tiplication of P (i, x) by the probability of completing the mission i for all x ∈ M

(Çekyay, 2007). To have a consistent transition matrix with sum of the rows equal to

1, a new column added to the end of the matrix, such that P̃ (i, ∆) = 1 −
∑

x∈M

P̃ (i, x)

where ∆ states for the added column. On the other hand, probability of completing

mission i is simply equal to their equivalent forms with deterministic missions.

Making use of new terminology, for systems with Markovian sequence of missions,

the general reliability function form depending on the initial state i is given as follows:

Ri(λ) =
∑

x∈M

P̃ n(i, x), (4.8)

by Çekyay (2007).

By referring equation (4.8), and the reliability formulation for mission i given in

(4.3), one can easily construct the transformed matrix P̃ and determines the reliabil-

ity function for series systems with Markovian sequence of missions by using it. For

instance for all i, x ∈ M ,

P̃ (i, x) = P (i, x)Li(
∑

j∈M

λj(i)) =
P (i, x)µ(i)

µ(i) +
n
∑

j=1

λj(i)

(4.9)

holds, where L stands for the Laplace transform, and duration of mission i follows

from an exponential distribution with rate µ(i). Elements of P̃ is then equal to the

multiplication of a constant term with a function which is known to be convex due to

Lemma 4.1. One can easily obtain also that the terms of P̃ n are multiplications of the

Laplace of linear terms and constants. Then, the mission reliability of the system given

by (4.8) contains summation of the positive linear combination of the multiplications

of the Laplace transforms of linear terms for a series system. However, we know
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from Lemma 4.1 that multiplication of the Laplace transformation of linear terms is

convex. Hence, summation of the positive linear combinations of the multiplication of

the Laplace transforms of linear terms is also convex. Therefore, Ri(λ) turns out to be

a convex function of the failure rates for the series system with Markovian missions,

as in its deterministic case.

Similar to what we have for series systems with deterministic sequence of missions,

we have a convex optimization problem for type I, and a reverse convex, or canonical

d.c. programming problem for type II problem. Thus, the solution methods which

are explained in a detailed manner in Chapter 5 employed for the deterministic case

remains still valid for the Markovian case for series systems.
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5. SOLUTION PROCEDURE

In this section, we provide solution procedures for the general semi-infinite linear

program given by equations (3.16)-(3.19) and subproblems that exist in the body of

the general model. We consider series systems with both deterministic and Markovian

sequence of missions and serial connection of redundant subsystems with deterministic

sequence of missions.

5.1. Semi-Infinite Linear Program

Let FI and FII be two index sets including some feasible failure rate vectors from

ρ(R0) and ρ(R1). In other words, any failure rate vector with an index from FI is

feasible with respect to type I problem and any failure rate vector with an index from

FII is feasible with respect to type II problem. Therefore, the labeled failure rate vector

f I
g belongs to ρ(R0) if g ∈ FI and it belongs to ρ(R1) if g ∈ FII . Let P2(m) be the

following primal linear program and D(m) its dual.

P2(m) :

z∗P2
(m) = min

∑

i∈M

∑

j∈C(i)

cj(i)tj,m(i) (5.1)

s.t.
∑

i∈M

∑

j∈C(i)

f I
gj(i)tj,m(i) ≥ λα,m g ∈ FI (Dual variable πg) (5.2)

∑

i∈M

∑

j∈C(i)

f II
gj (i)tj,m(i) ≤ λ1−β,m g ∈ FII (Dual variable δg) (5.3)

tj,m(i) ≥ 0 j ∈ C(i), i ∈ M (5.4)



26

D(m) :

z∗D(m) = max λα,m

∑

g∈FI

πg − λ1−β,m

∑

g∈FII

δg (5.5)

s.t.
∑

g∈FI

f I
gj(i)πg −

∑

g∈FII

f II
gj (i)δg ≤ cj(i) j ∈ C(i), i ∈ M (5.6)

πg ≥ 0 g ∈ FI (5.7)

δg ≥ 0 g ∈ FII (5.8)

If FI and FII are obtained as finite and if they contain the component test times

which solves P1(m) to optimality, then P2(m) or its dual D(m) can be solved to compute

optimum test times instead of solving P1(m)given by (3.12)-(3.15).

The algorithmic idea which is quite simple depends on this argument and com-

bines two well known methods which are cutting plane and column generation methods.

Algorithm starts with empty FI and FII , or equivalently unconstrained P2(m), and

continues to generate new columns until a solution that is arbitrarily close to optimal

solution is obtained. In other words, in each step new failure rate vectors from ρ(R0)

and ρ(R1) added to FI and FII until a failure rate vector that is approximately close

to the failure rate vector leading to optimal component test times in (3.12). Because

the addition of a failure rate vector to FI or/and FII increases the constraint number

of P2(m), P2(m) can have a very large constraint set. Thus, it is preferable to solve

D(m) by using revised simplex method, which can increase the efficiency. Recall that

cj(i) ≥ 0 for all j ∈ C(i), i ∈ M . Then by letting sj denote the slack variable for the

row j of D(m) it can be seen that sj = cj for all j, πg = 0 for any index g ∈ FI and

δg = 0 for any index g ∈ FII is a basic feasible solution for any given value of m. In

other words, D(m) is feasible for any m, and kn × kn identity matrix can be a starting

basis for any given value of m.

Since we have a minimization problem at hand, the simplex algorithm stops if and
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only if zj − cj ≥ 0 for all nonbasic columns of D(m), or equivalently min{zj − cj : for

every nonbasic j} ≥ 0. Note that zj − cj is the reduced cost associated with the jth

nonbasic variable namely jth nonbasic column.

Assume that FI and FII are bounded. Since nonbasic columns are either from

FI or from FII , and since cj = λα,m for all j in FI and cj = −λ1−β,m for all j in FII ,

by denoting an optimal dual solution of D(m) by w∗
j,m(i), and by using the fact that

w∗
j,m(i) = t∗j,m(i) for all j ∈ C(i), i ∈ M , stopping condition can be equivalently written

as;



min
g∈FI

∑

i∈M

∑

j∈C(i)

t∗j,m(i)f I
gj(i) ≥ λα,m and max

g∈FII

∑

i∈M

∑

j∈C(i)

t∗j,m(i)f II
gj (i) ≤ λ1−β,m



 . (5.9)

Therefore, in order not to include only the nonbasic columns from FI and FII but

all possible nonbasic columns which are to be generated from the two feasible failure

rate sets ρ(R0) and ρ(R1), stopping condition can be modified to;



 min
λ∈ρ(R0)

∑

i∈M

∑

j∈C(i)

t∗j,m(i)λj(i) ≥ λα,m and max
λ∈ρ(R1)

∑

i∈M

∑

j∈C(i)

t∗j,m(i)λj(i) ≤ λ1−β,m



 .

(5.10)

As can be observed this stopping criterion forces the result of the solution proce-

dure to comply with the system reliability constraints (3.13) and (3.14) of the original

formulation P1(m).

According to that stopping condition, one has to solve two optimization problems

with respect to failure rates, whose coefficients of the decision variables in the objective

function are the component test times which currently solve P2(m) to optimality.

This optimization procedure is illustrated in Figure 5.1 below. We define P
(h)
2 (m)

and D(h)(m) as linear program P2(m) and its dual D(m) at the iteration h of the algo-
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rithm, and z∗
P

(h)
2

(m) and z∗
D(h)(m) as their objective values. Denote also the optimum

objective values of the type I and type II problems at iteration h as z∗I,h(m) and z∗II,h(m)

and their objective coefficients as;(w∗
1,m(1), w∗

2,m(1) ,..., w∗
l1,m(1); w∗

1,m(2), w∗
2,m(2), ...,

w∗
l2,m(2); ... ; w∗

1,m(n), w∗
2,m(n), ..., w∗

ln,m(n)), which is an optimal dual solution of D(m)

or equivalently the component times; (t∗1,m(1), t∗2,m(1), ..., t∗l1,m(1); t∗1,m(2), t∗2,m(2), ...,

t∗l2,m(2); ...; t∗1,m(n), t∗2,m(n), ..., t∗ln,m(n)) that solve the P2(m) to optimality. Here, li

stands for the magnitude of the set C(i), e.g., li = |C(i)|. Finally we let f I
h and f II

h

be the optimal solutions of type I and type II problems. They are the new columns

generated at iteration h in order to update B−1
h , which denotes the inverse of the basic

matrix Bh of D(h)(m). Then, based on the above definitions,

z∗I,h(m) = min
λ∈ρ(R0)

∑

i∈M

∑

j∈C(i)

w∗
hj,m(i)λj(i)

= min
λ∈ρ(R0)

∑

i∈M

∑

j∈C(i)

t∗hj,m(i)λj(i)

=
∑

i∈M

∑

j∈C(i)

t∗hj,m(i)f I
hj(i)

and

z∗II,h(m) = max
λ∈ρ(R1)

∑

i∈M

∑

j∈C(i)

w∗
hj,m(i)λj(i)

= max
λ∈ρ(R1)

∑

i∈M

∑

j∈C(i)

t∗hj,m(i)λj(i)

=
∑

i∈M

∑

j∈C(i)

t∗hj,m(i)f II
hj (i)

At iteration h, if D(h)(m) is bounded and the condition z∗I,h(m) ≥ λα,m and

z∗II,h(m) ≤ λ1−β,m holds then t∗j,m(i) for all j ∈ C(i), i ∈ M is an optimal solution

of P2(m) and P1(m); thus, the algorithm stops with z∗
D(h)(m) = z∗

P
(h)
2

(m) = z∗(m).

If D(h)(m) is bounded and either z∗I,h(m) < λα,m or z∗II,h(m) > λ1−β,m, or both are

true, then either
∑

i∈M

∑

j∈C(i)

t∗hj,m(i)f I
hj(i) ≥ λα,m or

∑

i∈M

∑

j∈C(i)

t∗hj,m(i)f II
hj (i) ≤ λ1−β,m, or

both are violated, and the basis inverse B−1
h is updated by pivoting on f I

h or on f II
h ,
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Figure 5.1. General Column Generation Algorithm

or on both. Consequently, it is possible to see that if General Column Generation

Algorithm stops in finitely many iterations either the infeasibility of P1(m) is detected

or an optimal solution is computed. It can be shown that if the algorithm does not

stop in finitely many steps then the sequence {w∗
h,m}

∞
h=1, generated by solving the dual

problem D(h)(m) at each iteration h, converges to an optimal solution of P1(m), i.e., to

t∗m (Altınel, 1994). Therefore it is possible to stop the algorithm in finite iterations by

replacing the stopping condition of step 4 with the following ε-perturbed one, which

we refer as “ε-stopping condition”: If (z∗I,h(m) ≥ λα,m − ε and z∗II,h(m) ≤ λ1−β,m + ε)

then STOP. Here ε is an arbitrarily small positive number.
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Following theorem initially stated with its proof in Altınel (1990) for systems with

one mission, indicates the correctness of the General Column Generation Algorithm.

It can be easily generalized to the situation where there are more than one missions.

Hence, the proof is not given.

Theorem 5.1 (Altınel, 1990) General Column Generation Algorithm either detects

the infeasibility of P1(m) for the given data or computes a sequence of component test

times which eventually converges to a set of component test times solving P1(m) to

optimality.

Finally, last step of the optimization procedure is the search for the optimum value

of the m. It is known that optimal objective value of max{z = cT x : Ax ≤ b, x ≥ 0}

is a piecewise and a convex function of the cost vector c and a concave function of the

requirement vector b due to Charnes and Cooper (1962). Then, the optimal objective

value of dual problem D(m) is a convex function of λα,m and λ1−β,m. Unfortunately,

λα,m and λ1−β,m can be any discrete function of m. However, they can be efficiently

approximated by two linear functions in m as λα,m ≈ p1 + q1m and λ1−β,m ≈ p2 + q2m,

with q1 > 0 and q2 > 0 (Altınel, 1990). After this approximation, z∗(m) becomes

a convex function of m. Consequently, it becomes possible to search for the first

value of m for which z∗(m) < z∗(m + 1) starting from m = 0. Note that General

Column Generation Algorithm can be employed to find z∗(m) values. We can assume

z∗(m) = ∞ for any value of m, D(m) is unbounded, or equivalently P2(m) is infeasible,

by convention. Although this strategy does not guarantee the optimal solution, it does

guarantee an approximate solution.

5.2. Sub-Problems

If the structure of General Column Generation Algorithm is analyzed, it is easy

to see that type I and type II problems are to be solved many times in Step 2 and Step

3 of the algorithm. However, these problems may have difficult structures depending

on the system at hand, and the mission reliability function of the system . Hence, it is
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a good idea to concentrate on the stuctures of these problems. Consequently, general

structures of type I problem depending on the system reliability function R(λ) can be

given as

z∗I (m) = min
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.11)

s.t.

R(λ) ≤ R0 (5.12)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.13)

while type II problem’s structure is

z∗II(m) = max
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.14)

s.t.

R(λ) ≥ R1 (5.15)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M. (5.16)

Observe that the decision variables of type I and type II problems are component

failure rates in each mission whereas the coefficients of failure rates are the test times

of components in each mission. Moreover, type I and type II problem structures are

related with the system structure because of the reliability constraints, (5.12) and

(5.15). Depending on the system reliability function R(λ) of the system at the moment,

type I and type II problems may lie within the subjects of the linear programming,

convex programming, reverse convex programming or global optimization. For instance

if the system reliability function R(λ) is a convex function of λ, (5.12) defines a convex

region whereas (5.15) indicates a concave, or reverse convex area. Thus, even for

the same model, the structure of type I and type II problems may differ, and the

solution methods applied for type I problem may become invalid for type II problem.

The system reliability also depends on whether the missions follow a deterministic or

Markovian sequence. In the following sections, solution methods of type I and type II
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problems for several systems are presented. For deterministic sequence of missions, the

series systems and serial connection of redundant subsystems are considered, while for

the Markovian case the series system is handled.

5.2.1. Deterministic Sequence of Missions

Series System. In chapter 4, the reliability function (4.2) for a series system with

deterministic sequence of missions is found to be convex due to lemma 4.1. If the

more compact form of reliability function given by (4.3) is considered, type I problem

becomes as follows;

z∗I (m) = min
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.17)

s.t.

∏

i∈M

(
µ(i)

µ(i) +
∑

j∈C(i)

λj(i)
) ≤ R0 (5.18)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.19)

Since system reliability function (i.e., left-hand side of (5.18)) is convex, the

feasible set (5.18)- (5.19) is a convex set (Rockafellar, 1970). Feasible region of type I

problem is

ρ(R0) ≡ {λj(i) ∈ R
kn

+ :
∏

i∈M

(
µ(i)

µ(i) +
∑

j∈C(i)

λj(i)
) ≤ R0, 0 ≤ λj(i) ≤ uj(i), j ∈ C(i), i ∈ M}

(5.20)

where prior information set Γ is given by constraint (5.19).

Hence, a linear objective function is to be minimized over a convex set. There

has been accumulated a vast literature about the convex optimization problems. For

instance, (Bazaraa et al., 1993; Bertsekas, 1999) includes several methods. For

the general case, we refer to Sequential Quadratic Programming (SQP) (MATLAB
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Optimization User Guide, 2000). SQP methods presents the state-of-the-art for con-

vex programming solution techniques. For instance, Schittkowski (1986) provides a

performance and comparison analysis in terms of accuracy, efficiency and percentage

of successful solutions over a large number of test problems. He proves that SQP

outperforms over all other methods with respect to mentioned criteria. We use SQP

implementation of Matlab (MATLAB 6.5 User’s Guide, 2002) in our experiments.

On the other hand, type II problem given below poses a structure requiring a

very different technique for its solution.

z∗II(m) = max
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.21)

s.t.

∏

i∈M

(
µ(i)

µ(i) +
∑

j∈C(i)

λj(i)
) ≥ R1 (5.22)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.23)

Constraint (5.22) is a reverse convex inequality. This fact complicates the solution

procedure and makes the methods employed for the solution of type I problem invalid

for type II problem case. Problems with linear objective functions and feasible regions

defined by a reverse convex and some convex constraints, are of the special optimization

problem forms evaluated under global optimization general title, and named as Linear

Reverse Convex Programming Problems (LRCP). Before preeceding to the algorithmic

solution procedure that we offer for the solution of type II problem, we believe it is

beneficial to briefly expose the topics and tools of LRCP problems.

An LRCP problem is also a difference of convex (d.c.) optimization problem

which is in canonical form. Canonical d.c. problem which is abbreviated as CDC

problem, in general is an optimization problem of the form (Horst et al., 2000)
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CDC :

z∗CDC = min cT x (5.24)

s.t.

g(x) ≥ 0 (5.25)

x ∈ D (5.26)

where c ∈ R
n, g : R

n −→ R is a convex function and D is a closed convex subset of

R
n.

Let the feasible region of CDC be denoted by F = {x ∈ D : g(x) ≥ 0}. In the

sequel, it will frequently be required that problem CDC fulfills some of the following

natural additional assumptions (Horst et al., 2000):

Assumption 5.1 D is compact and intD 6= ∅

Assumption 5.2 There exists a point x0 ∈ D satisfying g(x) ≤ 0 and cT x0 <

min
{

cT x : x ∈ D, g(x) ≥ 0
}

.

This assumption ensures that the reverse convex constraint g(x) ≤ 0 is essential, be-

cause if Assumption 5.2 is not satisfied, CDC problem will be equivalent to following

convex optimization problem

min cT x

s.t.

x ∈ D

(5.27)

which can be easily solved to optimality by applying the same method that solves the

type I problem.

One final assumption presented below concerns the robustness of the feasible set
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F = {x ∈ D : g(x) ≥ 0}.

Assumption 5.3 F = cl(intF ). In other words, the feasible set F equals closure of

its interior set, namely it is robust.

This assumptions provides that CDC has a certain regularity ensuring F has full di-

mension. In other words, the case where intersection of the sets {x : g(x) ≥ 0} and D

is part of boundary of D, is excluded from the consideration.

In addition to Assumptions 5.1, 5.2 and 5.3, two more definitions are required

to proceed to Theorem 5.2 due to CDC theory (Horst et al., 2000), which contructs

the idea that we base the algorithmic solution procedure of type II problem on. Let

G = {x : g(x) ≤ 0} and let ∂A denote the boundary of a set A ⊂ R
n.

Theorem 5.2 In the CDC program, assume that D is bounded, F is nonempty and the

reverse convex contraint g(x) ≥ 0 is essential. Then there exists an optimal solution

on the intersection ∂D ∩ ∂G of the boundaries of D and G. Moreover, when D is a

polytope, there exists an optimal solution on the intersection of an edge of D with the

boundary of G.

In addition, following two propositions state the necessary and sufficient condi-

tions for a vector x̄ ∈ R
n to be an optimal solution of CDC problem (Horst et al., 2000).

Proposition 5.1 (Necessary Optimality Condition). In problem CDC, let the As-

sumptions 5.1 and 5.2 be satisfied. Then every optimal solution x̄ of CDC satisfies

max{g(x) : x ∈ D, cT x ≤ cT x̄} = 0. (5.28)
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Proposition 5.2 (Sufficient Optimality Condition). Assume that in problem CDC,

the feasible set F is robust (Assumption 5.3 is satisfied) and that a point x0 satisfying

g(x0) < 0 exists. Let x̄ ∈ F and S ⊇ F such that

max{g(x) : x ∈ S, cT x ≤ cT x̄} = 0. (5.29)

Then x̄ is an optimal solution of CDC.

It is easy to observe that, type II problem can be turned into a CDC problem if

the objective function (5.21) is replaced with

z∗II(m) = − min
∑

i∈M

∑

j∈C(i)

− λj(i)tj,m(i). (5.30)

Therefore, the closed convex subset D of CDC corresponds to the prior infor-

mation Γ of type II problem, and reverse convex constraint g(x) ≥ 0 corresponds

to (5.22). Moreover, if the prior information is in the form of upperbounds as given

by (5.23), then the closed convex set also becomes a polytope. Hence, due to The-

orem 5.2 optimal solution of the problem lies on an edge of the polytope defined by

Γ = {λj(i) ∈ R
kn
+ : λj(i) ≤ uj(i) j ∈ C(i), i ∈ M} and on the boundary of the set

G = {
∏

i∈M

( µ(i)

µ(i)+

∑

j∈C(i)

λj(i)

) − R1 ≤ 0}.

This observation makes it possible to come up with an algorithmic procedure

that simply enamurates all the points that lie both on at least one edge of Γ and on

the boundary of G. Then, an edge following algorithm given below due to an earlier

algorithm of Altınel (1990), guarantees to find the optimal solution of type II problem

under Assumptions 5.1, 5.2 and 5.3. Algorithm identifies the edge of Γ and checks

whether the edge intersects with the boundary of G or not, and finds the point of the

edge that intersects the boundary of G by a simple line seach technique if there is an

intersection. Before giving the algorithm, in order to be sure that the algorithm is

an appropriate tool for type II problem, an analysis of type II problem in terms of
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satisfying the assumptions is made below.

Assumption 5.1 is surely satisfied unless all of the upperbounds uj(i)’s are set

to zero which is clearly an exceptional situation. One can also easily observe that

Assumption 5.2 should also be satisfied for every practical situation. Briefly, for real

life situations people expect that the acceptable reliability level R1 should be high

enough such that the reliability level attained to upperbounds on the failure rates are

less than this value. In mathematical words, R(u) ≤ R1 should hold where u is the

vector of upperbounds on failure rates which is a reasonable assumption. However,

if this holds then Assumption 5.2 also holds since the optimum point within Γ that

minimizes the (5.30) is simply the one which is the largest in magnitude, which is u,

and u does not satisfy constraint (5.22). Finally, Assumption 5.3 holds for Γ because it

is closed and convex by definition implying it is robust. Therefore, the edge following

algorithm submitted in Figure 5.2 below can be employed for the solution of the type

II problem.

Serial Connection of Redundant Subsystems. The situation is completely different for

the serial connection of redundant subsystems. System reliability function R(λ), is

found to be a d.c. function because it is previously stated that the system reliabil-

ity function (4.4) is consist of linear combination of multiplication of linear laplace

transforms. By Lemma 4.1, it has been proven that the multiplication of Laplace

transform of linear functions is a convex function. Therefore, the reliability function

(4.4) actually includes linear combination of convex functions. It is a well known fact

from convexity theory (Rockafellar, 1970) that positive linear combination of convex

functions result in a convex function. Therefore, because some of the coefficients of

the Laplace transforms are negative in equation (4.7), some of the coefficients of the

Laplace transform multiplications in overall system reliability function (4.4) will be

negative as well. Then, one can separate the terms having negative coefficients and

the ones having positive coefficients, end up a d.c. function in which one of the convex

function is the total of convex terms having positive coefficients. The other convex func-

tion is simply the total of the convex terms having negative coefficients, and since this
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Figure 5.2. Edge Following Algorithm
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convex function is extracted from the other one, resulting system reliability function

is a d.c. function. To have a clearer identification, it would be beneficial to formulate

these ideas mathematically. For instance let the convex terms having negative coef-

ficients are g′
1(λ), g′

2(λ), ..., g′
m1

(λ), and the convex terms having pozitive coefficients

are h′
1(λ), h′

2(λ), ..., h′
m2

(λ). Then the system reliability function can be equivalently

written as,

R(λ) = h′(λ) − g′(λ), (5.31)

where h′(λ) =
m2
∑

e=1

h′
e(λ) and g′(λ) =

m1
∑

f=1

g′
f (λ). Clearly, h′, g′ : R

kn −→ R are convex

functions. This representation of the reliability function which is based on the convex

functions g′ and h′, is called as d.c. decomposition of R(λ) (Horst et al., 2000).

Because we have a d.c. reliability function R(λ), we will be dealing with d.c. type

I and d.c. type II problems. Hence, before preeceding further, it would be beneficial

to state the general form of the d.c. optimization problems. Difference of convex

optimization problems are in general defined as the optimization problems in which a

d.c. function is to be minimized under d.c. constraints. The generic form of a D.C.

Problem (DCP) is

DCP :

z∗DCP = min f0(x) (5.32)

s.t.

x ∈ D (5.33)

fi(x) ≤ 0 i = 1, ...,m (5.34)

where zDCP is the optimum solution of DCP problem, D is a closed convex subset

of R
n, and all functions fi, i = 0, 1, ..,m are d.c. functions. Observe that type I

and type II problems arising for the serial connection of redundant subsystems are d.c.

optimization problems because R(λ) is a d.c. function, and the linear objective function
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is a special type d.c. function. Moreover, the convex area defined by Γ corresponds to

D within the body of CDP. Then, based on the d.c. decomposition of R(λ), one can

obtain following forms of type I and type II problems both of which fit in DCP form.

Type I :

z∗I (m) = min
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.35)

s.t.

h(λ) − g(λ) ≤ 0 (5.36)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.37)

where g(λ) = g′(λ) + R0 and h(λ) = h′(λ).

Type II :

z∗II(m) = − min
∑

i∈M

∑

j∈C(i)

− λj(i)tj,m(i) (5.38)

s.t.

h(λ) − g(λ) ≤ 0 (5.39)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.40)

where h(λ) = g′(λ) + R1 this time and g(λ) = h′(λ).

Note that the type I and type II problems have the same form, and the same

solution procedure can be applied to solve both of them. Therefore, from now on we

concentrate on the type I problem.

Many methods have been offered for the solution of d.c. problems especially for

the ones that are of the canonical form. CDC problems as mentioned previously, are

convex programs with an additional reverse convex constraint. However, as stated in

Horst et al. (2000), every d.c. optimization problems can be reduced to CDC form.
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Below, the method of reducing the type I problem into CDC form, and the solution

method proposed for its solution is presented.

In order to reduce the problem into CDC form, a new variable say d ∈ R is added

to the formulation, and by making use of the new variable, the constraint h(λ)−g(λ) ≤

0 is separated into two parts one of which is h(λ)−d ≤ 0 and the other is g(λ)−d ≥ 0.

Note that the area defined by the constraint h(λ)−g(λ) ≤ 0 and the region specified by

the constraints h(λ)−d ≤ 0 and g(λ)−d ≥ 0 are equivalent. After this transformation,

type I problem is reduced to the following CDC.

CDC Type I :

z∗I (m) = min
∑

i∈M

∑

j∈C(i)

λj(i)tj,m(i) (5.41)

s.t.

h(λ) − d ≤ 0 (5.42)

g(λ) − d ≥ 0 (5.43)

d ∈ R (5.44)

0 ≤ λj(i) ≤ uj(i) j ∈ C(i), i ∈ M (5.45)

Note that constraint (5.43) is reverse convex, and the closed convex subset of

R
n, which is denoted as D within CDC formulation corresponds to intersections of

closed convex areas defined by (5.42) and (5.45). It should be underlined that D is

not a polytope this time, as it is in the case of type II problem of series system. This

observation actually makes edge following algorithm an inappropriate tool for solution

of the type I problem we have in the CDC form. The reason for this is the fact

that, the optimal solution of the type I CDC problem does not have to occur on an

edge of D as it is used to be for the type II problem of series system case since D

is not a polytope anymore. Therefore, one cannot construct a strategy on following

the edges of D and enumerating the points on which boundary of G intersects, where
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G = {λ ∈ R
kn : g(λ) − d ≤ 0} for this case.

Among many algorithmic procedures proposed for the solution of CDC problem,

we refer to one which is an outer approximation method proposed by Tuy (1995). Before

giving the algorithm, we believe that discussing the general conceptual framework of

outer approximation methods employed for CDC problems would be helpful.

Suppose we are to find an element of (unknown) closed set Ω which is a subset

of a compact set F , where F ⊂ R
n. If this is a difficult problem to solve by conven-

tional methods, one may attempt to build a sequence of easier relaxed problems whose

solutions x1,x2,..., form a sequence that eventually converges to x̄ ∈ Ω. Suppose that

there exists a family Ξ of polytopes containing F , and suppose these polytopes satisfy

the following assumptions (Tuy, 1995);

Assumption 5.4 For every polytope P ∈ Ξ we can select a point w(P ) ∈ P , called

distinguished point associated with P , such that w(P ) does not exist only if Ω = ∅, and

whenever a sequence of distinguished points x1 = w(P (1)),x2 = w(P (2)),..., converges

to a point x̄ ∈ F then x̄ ∈ Ω.

Assumption 5.5 For every distinguished point z = w(P ) (P ∈ Ξ) we can recognize

whether z belongs to F or not and if z /∈ F , we can construct an affine function l(x)

such that P ′ = P ∩{x : l(x) ≤ 0} ∈ Ξ and l(x) strictly separates z from F , i.e. satisfies

l(z) > 0 and l(x) ≤ 0 for ∀x ∈ F .

Under Assumptions 5.4 and 5.5, the general outer approximation scheme can be

displayed in Figure 5.3 (Tuy, 1995).

General Outer Approximation Scheme given in Figure 5.3 provides a sequence

of polytopes such that P (1) ⊃ P (2) ⊃ ... ⊃ P (i) ⊃ ... ⊃ F , approximating F more

and more closely from outside. In most of the applications, the distinguished point

xi = w(P (i)) is selected among the vertices of the polytope P (i). Therefore, a scheme
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Figure 5.3. General Outer Approximation Scheme

that enables getting the knowledge of vertices of P (i+1) from the vertex set of P (i)

is required. Indeed, some subroutines like (Chen et al., 1991; Horst et al., 1988)

are developed for this procedure where the next polytope is obtained by adding an

additional linear constraint to the current polytope, which actually fits into an outer

approximation scheme.

Now, the following outer approximation algorithm which is given in Figure 5.4

is developed for the solution of CDC problems and it is due to Tuy (1995) and it

approximately solves CDC problems to optimality. In order to ensure the convergency

of the algorithm, concept of ǫ-approximate solution is put forward, and the algorithm

finds a solution x̄ such that cT x̄ ≤ min{cT x : x ∈ F, g(x) ≥ 0} + ǫ and inequalities

h(x̄) ≤ ǫ, g(x̄) ≥ −ǫ hold instead of h(x̄) ≤ 0, g(x̄) ≥ 0. Note that ǫ can be taken

as a very little positive real number such that the deviation from the optimality is

negligible.

It should be noted that inner multiplication of two vectors, say a and b, is denoted

as 〈a, b〉 within the body of the algorithm. The converge of the algorithm is shown by

Tuy (1995).

One may observe that, in order for the Outer Approximation Algorithm for
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Figure 5.4. Outer Approximation Algorithm for Canonical D.C. Problems
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Canonical D.C. Problems to work in an efficient manner, there is a need for a subrou-

tine that enables finding the vertex set V (i+1) of the polytope P (i+1) from the knowledge

of previous vertex set V (i). We refer to Adjacency list algorithm of Chen et al. (1991)

for this purpose. Before introducing the algorithm, some more terminology needs to

be defined. Suppose the polytope we have at the step i of the Outer Approxima-

tion Algorithm for Canonical D.C. Problems is defined as P (i) = {x ∈ R
n : lj(x) =

aT
j x− bj ≤ 0, j = 1, 2, ..., i− 1} where aj ∈ R

n\{0}, bj ∈ R (j = 1, 2, ..., i− 1) and new

linear cut introduced is defined as li(x) as defined in the body of the Outer Approx-

imation Algorithm for Canonical D.C. Problems. Define V + = {v ∈ V i : li(v) > 0}

and V − = {v ∈ V i : li(v) < 0} as the sets of vertices that lie above and below the

hyperlane defined by the new cut li(x) respectively. Following theorem that is due to

Horst et al. (2000) defines a framework that the adjacency list algorithm is built on.

Theorem 5.3 (Horst et al., 2000)A point w ∈ R
n is a member of vertex set V (i+1) of

P (i+1), if and only if w is either a vertex of P (i) lying on li(x) or a point where an edge

[u, v] of P (i), u ∈ V −, v ∈ V + intersects li(x), or w is already a member of V −.

Furthermore, let N(u) is the set of vertices that are adjacent to vertex u. By

two adjacent vertices, it is meant that there lies one of the linear cuts defining the

polytope binding on both of the vertices. In addition, let J(u) define the index set

including the indices of the cuts that are active on the vertex u. In mathematical

words, J(u) = {j ∈ {1, ..., i} : lj(u) = 0}. One final remark before the algorithm is the

way of finding the point w, where new cut intersects the edge [u, v] of the polytope.

If u ∈ V − and v ∈ V + holds, then w = αu + (1 − α)v where α = li(v)/(li(v) − li(u))

(Horst et al., 2000).

5.2.2. Markovian Sequence of Missions and Series System

Reliability function (4.8) dependent on the beginning mission i, is previously

stated to be a convex function for the series systems with markovian sequence of mis-

sions where the converted transition matrix P̃ is defined as in equation (4.9). Therefore,
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Figure 5.5. Adjacency List Algorithm
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similar to the series system case with deterministic sequence of missions, the type I

problem is a simple convex programming problem whereas type II problem is a canon-

ical d.c. programming problem in which the compact and closed set that is meant to

exist in the body of CDC type I problem, is a polytope. These observations clearly

indicate that the solution methods employed for the solutions of type I and type II

problems for the case of series systems with deterministic sequence of missions still

remain valid for this case also. Hence, the method of SQP submitted within MAT-

LAB Optimization User Guide (2000) is applied for type I problem. Furthermore, edge

following algorithm of Altınel (1990) is used for the solution of the type II problem.
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6. NUMERICAL EXAMPLES

In this chapter some numerical examples are provided for series systems with

deterministic and markovian sequence of missions and serial connection of redundant

subsystems with deterministic sequence of missions. Solution methods explained in the

previous chapter is coded in Matlab (MATLAB 6.5 User’s Guide, 2002) and run on a

computer having an AMD Sempron 2800 Processor and 512 Megabyte random access

memory.

6.1. Deterministic Sequence of Missions

6.1.1. Series System

First of all, we consider a series system of five components which is worked under

three missions. We choose α = 0.05, β = 0.05, R0 = 0.8 and R1 = 0.98. Moreover,

component test costs are chosen randomly as follows; (c1(1), c2(1), c3(1), c4(1), c5(1),

c1(2), c2(2), c3(2), c4(2), c5(2), c1(3), c2(3), c3(3), c4(3), c5(3)) = (1925, 846, 1410, 1229,

1836, 1526, 760, 823, 1957, 1624, 303, 542, 1560, 1938, 1040). We also assume that

prior knowledge on the component failure rates in each mission is given as upperbounds

limiting the failure rates. We take upperbounds as (u1(1), u2(1), u3(1), u4(1), u5(1),

u1(2), u2(2), u3(2), u4(2), u5(2), u1(3), u2(3), u3(3), u4(3), u5(3)) = (0.092, 0.102,

0.082, 0.102, 0.1, 0.2041, 0.2341, 01841, 0.1741, 0.2101, 0.2961, 0.2803, 0.2901, 0.3161,

0.2806). We also assume that duration of the mission i, which is D(i), follows from an

exponential distribution with rate µ(i), which is given as follows for i = 1, 2, 3; (µ(1),

(µ(2), (µ(3)) = (5, 10, 15). Finally, the set of the components required in mission i,

which is C(i), is given as follows for i = 1, 2, 3; (C(1), C(2), C(3)) = ({1, 2, 3, 4, 5},

{2, 4, 5}, {1, 2, 3, 5}). Under these problem parameters optimum component test times

are found as (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2), t1(3), t2(3),

t3(3), t4(3), t5(3)) = (0, 0, 0, 0, 0, 0, 9.6537, 0, 0, 0, 6.4358, 6.4358, 5.4099, 0, 6.4358).

Optimum m, is found as m∗ = 4. On the other hand, initial feasible m is 2, with

objective function value 33589.5721. These results are obtained after producing 99
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columns in 3.109 seconds. Total cost of testing the components is also found to be

27907.732.

For the second and third cases, in order to observe how the results are sensitive

to changes in the acceptable and unacceptable reliability levels, the same model is

run exactly with same parameters but R1 = 0.9 for the former one, and R0 = 0.9

for the latter case respectively. For the prior one the optimum m equals to the first

initial m, and is found as m∗ = 19, and total cost of testing equals to 248846.8252.

Optimum component test times are (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2),

t4(2), t5(2), t1(3), t2(3), t3(3), t4(3), t5(3)) = (20.04, 24.7390, 24.1868, 24.1868, 24.1868,

0, 12.2685, 0, 12.2685, 12.2685, 8.2452, 8.0677, 8.0677, 0, 8.0677). These solutions are

found after producing 522 columns in 56.937 seconds. On the other hand, for the

latter case optimum m which is also the initial feasible m, is found as m∗ = 4 as it is

in the original example. Total test cost is equal to 177297 and component test times

are; (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2), t1(3), t2(3), t3(3),

t4(3), t5(3)) = (8.0102, 18.3982, 18.3971, 18.3996, 18.3929, 0, 9.6348, 0, 9.6331, 9.6346,

6.4354, 6.4342, 6.4354, 0.0004, 6.4346). From the dramatic changes in the total cost of

testing and in the optimum component testing times, one can easily extract the result

that the model is very sensitive to aceptable reliability level R1 and the unacceptable

reliability level R0.

6.1.2. Serial Connection of Redundant Subsystems

Since the reliability function (4.4) has a very complicated nature and the com-

putation time becomes extensive, we decided to provide a small example. Consider a

system with two subsystems each of which has two identical components in parallel

which have same failure rate and test cost. Suppose also that the system is going to

work for two missions. Five instances of the problem is provided below by changing

the problem parameters.

First of all, let R0 = 0.3, R1 = 0.9999, α = 0.05, β = 0.05. Suppose cost of testing

components in each mission is given as follows; (c1(1), c2(1), c1(2), c2(1)) = (55, 65,
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75, 60). Moreover, suppose both of the subsystems are required to work in both of the

missions, e.g., (C(1), C(2)) = ({1, 2}, {1, 2}). Duration of the mission i is assumed

to follow from an exponential distribution with rate µ(i) as usual, and these rates are

given as (µ(1), µ(2)) = (5, 10). Finally, let the prior knowledge about the component

failure rates are given in the form of upperbounds that limits the failure rates from

above, as (u1(1), u2(1), u1(2), u2(2)) = (5.6709, 7.2911, 8.1011, 4.8607). Under these

problem parameters, optimum m is found equal to 17, e.g., m∗ = 17. Initial feasible

m value is also 17. Optimum component test times are found as (t1(1), t2(1), t1(2),

t2(2)) = (2.4765, 2.7010, 1.7235, 1.3818). On the other hand, testing components at

optimum test times result in a total cost of 523.9396. These results are obtained after

producing 36 columns in 10369.984 seconds.

In the second example, unacceptable reliability level R0 is increased to 0.5, and

upperbounds on the failure rates are tightened. Mathematically, (u1(1), u2(1), u1(2),

u2(2)) = (3.2394, 4.1649, 4.6276, 2.7766). Other problem parameters are kept as the

same. Initial feasible m equals optimum m which is found to be 376, e.g., m∗ = 376.

Optimum component test times are found as (t1(1), t2(1), t1(2), t2(2)) = (77.1368,

95.9951, 45.9780, 25.8903). Under the optimum component test times found and the

cost vector c, total cost of testing components at optimum component test times equals

15333.9723. Finally, these results are found by producing 53 columns in 6865.547

seconds.

In the third example, acceptable reliability level R1 is reduced to 0.99, and all

other problem parameters remain the same as with the second example. This time

m∗ = 640 and the initial feasible m again equals to optimum m. Optimum component

test times are (t1(1), t2(1), t1(2), t2(2)) = (120.3843, 156.1827, 77.7272, 47.1150).

Total optimum testing cost turns out to be 25429.4561 which is found after 26 column

productions in 1612.671 seconds.

Forth and fifth examples illustrate the effect of values of α and β on the optimum

results. In order to observe these effects, α and β values are increased to 0.2 from 0.05

for second and third examples while keeping other parameters same. Such high allow-
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able number 376 of component failures found in second example reduces to optimum

m∗ = 105 for the forth example. However, initial feasible m value remains equal to the

optimum one. Significant decrease effect can also be observed on the optimum com-

ponent test times, which are (t1(1), t2(1), t1(2), t2(2)) = (22.7430, 26.0119, 11.7504,

8.1927), and naturally on the total optimum testing cost which is equal to 4314.4817.

These results are obtained after producing 31 columns in total in 2161.734 seconds.

Same effects are obtained for the fifth example case as well. For instance optimum m is

reduced to 198 from 640 that is found in the third example. However, initial feasible m

still equals to the optimum one. Moreover, optimum test time as are also significantly

reduced to (t1(1), t2(1), t1(2), t2(2)) = (42.4291, 47.4942, 21.1728, 15.0231) which lead

to total optimum component testing cost of 7910.2664, after producing 49 columns in

2834.297 seconds.

One may realize that the initial feasible m value equals to the optimum m for all

the given examples for serial connection of redundant subsystems. Complicated nature

of the problem narrows the feasible region and makes it difficult to reach feasible m

values. This fact explains why the initial feasible m values are relatively higher than the

previous cases. As previously stated and observed for the series system case, numerical

examples presented for the serial connection of redundant subsystems reveals a high

sensitivity to the changes in the values of acceptable and unacceptable reliability levels

R0 and R1. Additionally, model is also sensitive to the values of α and β. These results

are indeed predictable because the main instruments that define the feaible regions for

type I and type II problems are the levels of acceptable and unacceptable reliability

levels whereas the levels for α and β determines how system reliability constraints (3.3)

and (3.4) are tight which affects the general feasible region of the overall model.

6.2. Markovian Sequence of Missions and Series System

For the series system with markovian sequence of missions, four numerical ex-

amples are obtained with different problem parameters. As a first example, let the

unacceptable system reliability level R0 equal to 0.5 while acceptable system reliability

level R1 is 0.98. A sistem of five components is designed to perform two missions and
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the transition matrix of the markovian process lying behind the model is accepted as

P =





0.5 0.5

0.6 0.4





On the other hand, α and β which are the bounds for consumer and producer risks

are both taken as 0.05. Cost of testing each component in each mission is given as

(c1(1), c2(1), c3(1), c4(1), c5(1), c1(2), c2(2), c3(2), c4(2), c5(2)) = (984, 1925, 1326,

846, 756, 1410, 1235, 1229, 1623, 1836), and upperbounds limiting the component

failure rates are accepted as (u1(1), u2(1), u3(1), u4(1), u5(1), u1(2), u2(2), u3(2),

u4(2), u5(2)) = (1.4019, 1.015, 0.2636, 0.6696, 0.9817, 1.4094, 0.2408, 0.6658, 0.4632,

0.4321). Durations of missions are exponentially distributed with rates (µ(1), µ(2)) =

(5, 10), and sets of components required to perform in each mission is given as (C(1),

C(2)) = ({1, 2, 3, 4, 5}, {1, 2, 3, 5}). Finally, the initial mission which is the first state of

the markovian process behind the system is taken as 2. With these problem parameters,

both m∗ and the initial feasible m are found to be 1, and optimum component test times

are found as (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2)) = (2.0610,

0, 0, 0, 2.0157, 0, 0, 0, 0, 0). Total optimal cost is found to be equal to 3551.8565. In

order to reach these results, 0.5 second time is required and a total of 24 columns are

produced.

For the second example, R0 is rised to 0.8, and upperbounds are tightened a little

bit to (u1(1), u2(1), u3(1), u4(1), u5(1), u1(2), u2(2), u3(2), u4(2), u5(2)) = (0.38404,

0.27805, 0.07228, 0.18345, 0.26894, 0.38609, 0.065768, 018233, 0.12684, 0.11838). Op-

timum number of allowable failures is found as m∗ = 2 and optimum component test

times are found as (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2)) =

(4.7423, 0, 0, 4.7423, 4.7423, 5.6172, 0, 1.9645, 0, 0). Initial feasible m value also equals

to the m∗. Total cost of testing turns out to be 22598.34 which is found in 1032 seconds

after producing 52 columns in total. One may observe the increase in the total cost as

well as in the computational required time.

As a third example, again a system of five components is constructed. The values
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of R0, R1, α and β is kept same with the previous example, while the number of

missions is increased to 3. Initial mission is accepted again as 2 and the system has

the following transition matrix

P =











0.3 0.3 0.4

0.6 0.2 0.2

0.4 0.5 0.1











Cost of testing each component in each mission is also given as (c1(1), c2(1), c3(1), c4(1),

c5(1), c1(2), c2(2), c3(2), c4(2), c5(2), c1(3), c2(3), c3(3), c4(3), c5(3)) = (984, 1925, 1326,

846, 756, 1410, 1235, 1229, 1623, 1836, 1625, 945, 598, 1050, 1123), and the upper-

bounds are taken as (u1(1), u2(1), u3(1), u4(1), u5(1), u1(2), u2(2), u3(2), u4(2), u5(2),

u1(3), u2(3), u3(3), u4(3), u5(3)) = (0.384, 0.27802, 0.0722, 0.18343, 0.26892, 0.38606,

0.065762, 0.18231, 0.12683, 0.11837, 0.62494, 0.45795, 0.23958, 0.19798, 0.23498). Ad-

ditionally, duration of mission i, which is D(i), follows from exponential rate with

rates (µ(1), (µ(2), (µ(3)) = (5, 10, 15). Finally, the set of the components re-

quired in mission i, which is C(i), is given as follows for i = 1, 2, 3; (C(1), C(2),

C(3)) = ({1, 2, 3, 4, 5}, {1, 2, 3, 5}, {2, 3, 4}). Optimum number of allowable failures

turns out to be equal to initial feasible m value which is 1 and optimum test times

are found as (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2), t1(3), t2(3),

t3(3), t4(3), t5(3)) = (3.3974, 0, 0, 3.3974, 3.3974, 2.6510, 0, 2.1767, 0, 0, 0, 0.5675,

0.5672, 0.5675, 0). Total optimum cost is also found as 16670.0602 in computational

time of 1375 seconds, after producing 49 columns.

As a final example, we think a sequence of five missions, and a system of five

components is operated in order to complete the missions. The values for R0, R1, α

and β remain same with the previous example. Transition matrix this time a 5×5 one
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is composed as

P =























0.2 0.2 0.2 0.2 0.2

0.4 0.2 0 0.3 0.1

0.6 0.1 0.1 0.1 0.1

0.3 0.2 0.1 0.4 0

0.1 0.15 0.25 0.3 0.2























and cost of testing each component in each mission is taken as (c1(1), c2(1), c3(1),

c4(1), c5(1), c1(2), c2(2), c3(2), c4(2), c5(2), c1(3), c2(3), c3(3), c4(3), c5(3), c1(4),

c2(4), c3(4), c4(4), c5(4), c1(5), c2(5), c3(5), c4(5), c5(5)) = (984, 653, 1925, 785, 1326,

1125, 1623, 1836, 968, 1625, 1146, 945, 598, 964, 1050, 1123, 846, 789, 756, 1410,

1265, 1235, 1040, 1587, 1229), while upperbounds are given as (u1(1), u2(1), u3(1),

u4(1), u5(1), u1(2), u2(2), u3(2), u4(2), u5(2), u1(3), u2(3), u3(3), u4(3), u5(3), u1(4),

u2(4), u3(4), u4(4), u5(4), u1(5), u2(5), u3(5), u4(5), u5(5)) = (0.384, 0.564, 0.278,

0.6249, 0.658, 0.458, 0.215, 0.236, 0.0722, 0.445, 0.1834, 0.259, 0.2689, 0.3861, 0.198,

0.235, 0.215, 0.0658, 0.118, 0.1823, 0.1268, 0.1184, 0.219, 0.568, 0.925). Rates of the

exponential mission durations are accepted as (µ(1), (µ(2), (µ(3), (µ(4), (µ(5)) = (7,

9, 8, 10, 6), while the set of components required for each mission is given as (C(1),

C(2), C(3), C(4), C(5)) = ({1, 2, 3, 4, 5}, {1, 2, 4}, {1, 2, 3, 5}, {2, 3, 4, 5}, {2, 4, 5}).

Finally, fourth mission is taken as the initial mission. Optimum number for maximum

allowable component failures is found as 1, i.e., m∗ = 1. Initial feasible m value is also

the optimum one. Optimum component test results are found under these problem

parameters as (t1(1), t2(1), t3(1), t4(1), t5(1), t1(2), t2(2), t3(2), t4(2), t5(2), t1(3), t2(3),

t3(3), t4(3), t5(3), t1(4), t2(4), t3(4), t4(4), t5(4), t1(5), t2(5), t3(5), t4(5), c5(5)) = (0,

3.0403, 0, 3.0403, 0.3565, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8667), and

total cost of optimum testing is 5909.9394. These results are obtained after producing

26 columns in total, in 33.203 seconds.
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7. CONCLUSIONS

This thesis provides a new way of approach to the component testing problem

by deviating from the conventional fixed time based reliability definition to a more

general one which is suitable for the systems designed to perform a sequence of missions

rather than a single mission. Systems are supposed to be maintained to replace failed

components during intermissions. Moreover, the sequence of the missions can also

be Markovian as well as deterministic. In such conditions, reliability of the system

is defined as the probability for the system to be functional until the end of the last

mission.

This new reliability definition enabled us to construct a means for determining

component test plans that ensures type I and type II error bounds for system relia-

bility at minimum possible total cost for systems designed to perform a sequence of

missions that are possibly in random order and have possibly random durations. We

named this method as mission based component testing and we managed to adapt it

for series systems with deterministic and markovian sequence of missions and for serial

connection of redundant subsystems with deterministic sequence of missions. We dealt

with convex and reverse convex optimization subproblems for series systems with de-

terministic and markovian sequence of missions and d.c. optimization subproblems for

serial connection of redundant subsystems with deterministic sequence of missions.

We witnessed that as the complexity of the system increases, the initial feasible m

value increases and the system reveals more sensitivity to problem parameters because

of the narrower feasible regions. In addition, we observed that for almost every problem

instance we tested but one, the initial feasible m also turned out to be the optimum

one. Because of extensive computational time, a detailed sensitivity analysis of the

systems could not be achieved within the scope of this thesis. However, we believe that

such an analysis would enlight the characteristics of mission based component testing

method even more.
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We believe that mission based component testing idea will lead interesting re-

search discussions in the future. For instance as a natural extension of this thesis,

serial connection of redundant subsystems with markovian sequence of missions come.

Moreover, the idea of mission based component testing can be applied for the sys-

tems having different topologies and different working styles such as serial connection

of standby redundant subsystems, or serial connection of k -out-of-m systems. Addi-

tionally, another interesting idea can be put on practice by changing the reliability

definition from probability of completing all the missions to probability of completing

a critical mission. This thesis naturaly will trigger such discussions and contribute to

the component testing literature.
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APPENDIX A: Proof of Lemma 4.1

Laplace transform of a linear equation can be extended as follows

Lk
i (c

T
i αi) = E

[

e−(cT
i αi)D(i)D(i)k

]

=

∫ ∞

0

e−(cT
i αi)D(i)D(i)kµ(i)e−µ(i)D(i)dD(i)

= µ(i)

∫ ∞

0

e−(cT
i αi+µ(i))D(i)D(i)kdD(i)

Then applying the substitution ,
(

cT
i αi + µ(i)

)

D(i) = x, we have

Lk
i (c

T
i αi) = µ(i)

∫ ∞

0

e−x

(

x

cT
i αi + µ(i)

)k
dx

cT
i αi + µ(i)

=
µ(i)

(cT
i αi + µ(i))k+1

∫ ∞

0

e−xxkdx

=
µ(i)

(cT
i αi + µ(i))k+1

Γ(k + 1)

=
µ(i)k!

(cT
i αi + µ(i))k+1

Then following equality holds;

R =
n

∏

i=1

Lk
i (c

T
i αi) =

n
∏

i=1

µ(i)k!

(cT
i αi + µ(i))k+1

(A.1)

and if we take partial derivatives of equation (A.1), we obtain

∂R

∂αxv

=
−cxv(k + 1)

(cT
x αx + µ(x))

µ(x)k!

(cT
x αx + µ(x))k+1

∏

i∈{1,...,n}/{x}

µ(i)k!

(cT
i αi + µ(i))k+1

=
−cxv(k + 1)

(cT
x αx + µ(x))

n
∏

i=1

µ(i)k!

(cT
i αi + µ(i))k+1

where x ∈ M and v ∈ C(x).
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Therefore, second derivatives happen to be as

∂R

∂αxv∂αxt

=
cxvcxt(k + 2)(k + 1)

(cT
x αx + µ(x))2

n
∏

i=1

µ(i)k!

(cT
i αi + µ(i))k+1

∂R

∂αxv∂αsr

=
cxvcsr(k + 1)2

(cT
x αx + µ(x))(cT

s αs + µ(s))

n
∏

i=1

µ(i)k!

(cT
i αi + µ(i))k+1

Here we have x, s ∈ M ; v, t ∈ C(x), r ∈ C(s).

Note that R =
n
∏

i=1

µ(i)k!

(cT
i αi+µ(i))k+1 ≥ 0, then we can eliminate the term from the

second order derivatives and constitute the Hessian matrix H ′. If H ′can be shown to

be positive semi-definite, then the real hessian H will also be positive semi-definite as

well. Matrix H ′ can be obtained as

H ′ =





































































































F1111 · F111l1 F1121 · F112l2 · · F11n1 · F11nln

F1211 · F121l1 F1221 · F122l2 · · F12n1 · F12nln

· · · · · · · · · · ·

· · · · · · · · · · ·

F1l111 · F1l11l1 F1l121 · F1l12l2 · · F1l1n1 · F1l1nln

F2111 · F211l1 F2121 · F212l2 · · F21n1 · F21nln

F2211 · F221l1 F2221 · F222l2 · · F22n1 · F22nln

· · · · · · · · · · ·

· · · · · · · · · · ·

F2l211 · F2l21l1 F2l221 · F2l22l2 · · F2l2n1 · F2l2nln

· · · · · · · · · · ·

· · · · · · · · · · ·

· · · · · · · · · · ·

Fn111 · Fn11l1 Fn121 · Fn12l2 · · Fn1n1 · Fn1nln

Fn211 · Fn21l1 Fn221 · Fn22l2 · · Fn2n1 · Fn2nln

· · · · · · · · · · ·

· · · · · · · · · · ·

Fnln11 · Fnln1l1 Fnln21 · Fnln2l2 · · Fnlnn1 · Fnlnnln




































































































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where Fxvsd = cxvcsd(k+1)2

AxAs
for the cases where x is not equal to s, and Fxvsd =

cxvcsd(k+2)(k+1)
AxAs

while x = s, where x, s ∈ M and v ∈ C(x), d ∈ C(s) in which the

term Ai = cT
i αi + µ(i) is employed. Moreover, li = |C(i)| for all i ∈ M , and kn is the

sum of li’s for all i ∈ M . Observe also that since αi, ci, µ(i) ≥ 0, Ai ≥ 0 holds for all

i ∈ M .

Let x ∈ Rkn such that xT = {x11, x12, .., x1l1 , x21, x22, .., x2l2 , ..., xn1, xn2, .., xnln}.

Then, after opening Fxvsd terms again, and multiplying transpose of x vector with H ′

we obtain

(xT H ′)T =

























































































































c11(k+2)(k+1)

A2
1

l1
∑

i=1

c1ix1i + c11(k+1)2

A2A1

l2
∑

i=1

c2ix2i + ... + c11(k+1)2

AnA1

ln
∑

i=1

cnixni

c12(k+2)(k+1)

A2
1

l1
∑

i=1

c1ix1i + c12(k+1)2

A2A1

l2
∑

i=1

c2ix2i + ... + c12(k+1)2

AnA1

ln
∑

i=1

cnixni

·

·

c1l1
(k+2)(k+1)

A2
1

l1
∑

i=1

c1ix1i +
c1l1

(k+1)2

A2A1

l2
∑

i=1

c2ix2i + ... +
c1l1

(k+1)2

AnA1

ln
∑

i=1

cnixni

c21(k+1)2

A1A2

l1
∑

i=1

c1ix1i + c21(k+2)(k+1)

A2
2

l2
∑

i=1

c2ix2i + ... + c21(k+1)2

AnA2

ln
∑

i=1

cnixni

c22(k+1)2

A1A2

l1
∑

i=1

c1ix1i + c22(k+2)(k+1)

A2
2

l2
∑

i=1

c2ix2i + ... + c22(k+1)2

AnA2

ln
∑

i=1

cnixni

·

·

c2l2
(k+1)2

A1A2

l1
∑

i=1

c1ix1i +
c2l2

(k+2)(k+1)

A2
2

l2
∑

i=1

c2ix2i + ... +
c2l2

(k+1)2

AnA2

ln
∑

i=1

cnixni

·

·

·

cn1(k+1)2

A1An

l1
∑

i=1

c1ix1i + cn1(k+1)2

A2An

l2
∑

i=1

c2ix2i + ... + cn1(k+2)(k+1)
A2

n

ln
∑

i=1

cnixni

cn2(k+1)2

A1An

l1
∑

i=1

c1ix1i + cn2(k+1)2

A2An

l2
∑

i=1

c2ix2i + ... + cn2(k+2)(k+1)
A2

n

ln
∑

i=1

cnixni

·

·

cnln(k+1)2

A1An

l1
∑

i=1

c1ix1i +
cnln(k+1)2

A2An

l2
∑

i=1

c2ix2i + ... +
cnln(k+2)(k+1)

A2
n

ln
∑

i=1

cnixni
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⇒

xT H ′x =

l1
∑

i=1

c1ix1i

[

(k + 2)(k + 1)

A2
1

l1
∑

i=1

c1ix1i +
(k + 1)2

A2A1

l2
∑

i=1

c2ix2i + ... +
(k + 1)2

AnA1

ln
∑

i=1

cnixni

]

+

l2
∑

i=1

c2ix2i

[

(k + 1)2

A1A2

l1
∑

i=1

c1ix1i +
(k + 2)(k + 1)

A2
2

l2
∑

i=1

c2ix2i + ... +
(k + 1)2

AnA2

ln
∑

i=1

cnixni

]

+ .... +

+
ln

∑

i=1

cnixni

[

(k + 1)2

A1An

l1
∑

i=1

c1ix1i +
(k + 1)2

A2An

l2
∑

i=1

c2ix2i + ... +
(k + 2)(k + 1)

A2
n

ln
∑

i=1

cnixni

]

then, because k ≥ 0 we have

xT H ′x ≥

l1
∑

i=1

c1ix1i

[

(k + 1)2

A2
1

l1
∑

i=1

c1ix1i +
(k + 1)2

A2A1

l2
∑

i=1

c2ix2i + ... +
(k + 1)2

AnA1

ln
∑

i=1

cnixni

]

+

l2
∑

i=1

c2ix2i

[

(k + 1)2

A1A2

l1
∑

i=1

c1ix1i +
(k + 1)2

A2
2

l2
∑

i=1

c2ix2i + ... +
(k + 1)2

AnA2

ln
∑

i=1

cnixni

]

+ .... +

+
ln

∑

i=1

cnixni

[

(k + 1)2

A1An

l1
∑

i=1

c1ix1i +
(k + 1)2

A2An

l2
∑

i=1

c2ix2i + ... +
(k + 1)2

A2
n

ln
∑

i=1

cnixni

]

=

(

n
∑

j=1

(k + 1)Kj

Aj

)2

≥ 0

where Kj =
lj
∑

i=1

cjixji for all j ∈ M .

Therefore, xT H ′x ≥ 0, implying that H ′ is positive semi-definite. Then, we also

have H positive semi-definite. Then R is convex. Q. E. D.
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Altınel, İ. K., December 1990, “System Based Component Test Problem: The De-

sign of Optimum Component Test Plans”, PhD Thesis, University of Pittsburgh,

Pittsburgh, PA 15261.
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Altınel, İ. K. and S. Özekici, 1997, “A dynamic model for component testing”, Naval

Research Logistics, Vol. 44, pp. 187-197.
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Feyzioğlu, O., Jun 2003, “The Design of Optimum Component Test Plans for Systems

with Changing Operating Conditions”, PhD Thesis, Boğaziçi University, Bebek,
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