

HYBRID CONTINUOUS SCATTER SEARCH APPROACH TO TARDINESS

RELATED SCHEDULING PROBLEMS

by

Ercüment Erdur

B.S., Mechanical Engineering, Boğaziçi University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2006

 iii

To my mother, Muhsine Hanım...

 iv

ACKNOWLEDGEMENT

First and foremost, I am grateful to my thesis supervisor Prof. Ümit Bilge for

privileging me to work with her, and for her continuous guidance and support through this

study. It was really a great pleasure for me to work with her.

I would like to express my gratitude to Prof. Tülin Aktin and Assoc. Prof. Necati

Aras for taking the time to examine this thesis, and taking part in my thesis jury.

My deepest gratitude goes to my family: my mother, my father, my brothers; Emir

and Enver Erdur, my aunt Adnan Akyazıcı for their never ending love, support and trust,

not only during this study, but also through my life.

I would thank to my friends Özhan Özbe, Billur Kılınç, and Ali Kemal Karagöz for

sacrificing numerous hours to help typing my thesis. Also, I wish to thank Birkan Demirci,

Soner Arıcı, Aslıhan Akel, Güler Kızılcık, Hande Çıtakoğlu and Nihan Karali for their

continuous support and motivation, which stop me to feel alone when I lost my way

throughout the hard times of my thesis.

 v

ABSTRACT

HYBRID CONTINUOUS SCATTER SEARCH APPROACH TO

TARDINESS RELATED SCHEDULING PROBLEMS

 In this thesis, a hybrid approach, which integrates Scatter Search (SS) and a

Variable Neighborhood Search (VNS), is presented to attack tardiness related scheduling

problems. The aim is to find advanced strategies that can be adapted to the basic SS

methodology in order to enhance its diversification and intensification capabilities

throughout the scheduling problems. The Hybrid Continuous Scatter Search (HCSS)

approach is first implemented on the Single Machine Total Weighted Tardiness (SMTWT)

problem to minimize total weighted tardiness. Then the HCSS method is modified to

addresses the Parallel Machine Total Tardiness (PMTT) problem, which consists of a set of

jobs to be scheduled on a number of parallel processors to minimize total tardiness. The

NP-hard nature of both problems renders a challenging area for research.

 In order to develop a robust hybrid methodology, the key elements of the Scatter

Search such as reference set update method, initial solution generation method, solution

combination method and as an intensification strategy – the hybridized VNS are

investigated. The employed solution encoding, diverse solution selection methods, and

dynamic solution combination method are unique and introduced first time in this thesis to

provide new ideas for Scatter Search era. The proposed HCSS approach yields good

quality results with respect to optimal/best-known solutions reported in the literature.

 vi

ÖZET

ARTI GECİKME TABANLI ÇİZELGELEME PROBLEMLERİNE

MELEZ SÜREKLİ DAĞILIM ARAMASI YAKLAŞIMI

 Bu tezin konusu olan çalışmada, Artı Gecikme Tabanlı Atama problemlerini

çözmek için Dağılım Araması (DA) ve Değişken Komşuluk Araması (DKA) yöntemlerini

bünyesinde birleştiren melez bir yaklaşım sunulmuştur. Bu tezde amaç, DA metodunun

atama problemlerinin çözümündeki başkalaşım ve kuvvetlendirme kabiliyetlerini artırmak

için temel metodolojisine adapte edilebilecek ileri seviye stratejiler bulmaktır. Melez

Sürekli Dağılım Araması (MSDA) yaklaşımı ilk olarak Tek Makina Toplam Ağırlıklı Artı

Gecikme (TMTAG) probleminde toplam ağırlıklı artı gecikmeyi en küçüklemek için

yürütülmüştür. Bir sonraki kademede MSDA metodu, bir takım işin birkaç paralel işlemci

üzerinde toplam artı gecikmesini en küçüklemek amacıyla oluşturulan Paralel Makina

Toplam Artı Gecikme (PMTAG) problemini ele alabilmesi için uygun bir şekilde modifiye

edilmiştir. İlgilenilen problemlerinin NP-zor doğası itibari ile ortaya iddialı bir araştırma

konusu çıkmıştır.

 Sağlam bir metodoloji geliştirmek için Dağılım Araması yönteminin anahtar

elemanları olan; referans kümesi güncelleme metodu, başlangıç çözümü oluşturma

metodu, çözüm birleştirme metodu ve çözüm kuvvetlendirme stratejisi olarak DKA

yöntemi incelenmiştir. Kullanılan çözüm kodlaması, farklı çözüm seçme metodu ve

dinamik çözüm birleştirme metodu DA yöntemine yeni fikirler teşkil etmek amacı ile ilk

defa bu tezde sunulmuşlardır. Tasarlanan MSDA yaklaşımı literatürde yayınlanmış bilinen

en iyi çözümlerle karşılaştırıldığında kaliteli sonuçlar vermektedir.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS……………………………………………………………. iv

ABSTRACT……………………………………………………………………………. v

ÖZET…………………………………………………………………………………… vi

LIST OF FIGURES…………………………………………………………………….. ix

LIST OF TABLES……………………………………………………………………… xii

LIST OF SYMBOLS/ABBREVIATIONS…………………………………………….. xvii

1. INTRODUCTION…………………………………………………………………… 1

2. OVERVIEW OF META-HEURISTICS AND SCATTER SEARCH………………. 4

 2.1. Meta-heuristics…………………………………………………………………... 6

 2.2. Scatter Search……………………………………………………………………. 9

 2.3. Variable Neighborhood Search………………………………………………….. 14

3. TWO TARDINESS BASED SCHEDULING PROBLEMS………………………… 17

 3.1. Single Machine Total Weighted Tardiness (SMTWT) Problem…………….….. 18

 3.2. Parallel Machine Total Tardiness (PMTT) Problem…………………………….. 21

4. THE PROPOSED HYBRID CONTINUOUS SCATTER SEARCH APPROACH… 24

 4.1. HCSS Approach to SMTWT…………………………………………….……… 24

 4.1.1. Solution Encoding Scheme………………………………………………. 24

 4.1.2. Initial Solution Generation Method……………………………….……… 26

 4.1.3. Reference Set Update Method…………………………………….……… 28

 4.1.4. Subset Generation Method……………………………………………….. 32

 4.1.5. Solution Combination Method…………………………………………… 32

 4.1.6. Variable Neighborhood Search as an Intensification Strategy……….….. 35

 4.1.7. Alpha Strategies……………………………………………………….…. 38

 4.1.8. Stopping Criterion………………………………………………………... 39

 4.2. HCSS Approach to PMTT………………………………………………………. 42

 4.2.1. Solution Encoding Scheme………………………………………………. 43

 4.2.2. Initial Solution Generation Method……………………………………… 43

 4.2.3. Solution Combination Method…………………………………………… 46

 4.2.4. Variable Neighborhood Search…………………………………………... 47

 viii

5. NUMERICAL STUDIES……………………………………………………………. 52

 5.1. Problem Set for SMTWT……………………………………………………….. 52

 5.2. Problem Set for PMTT………………………………………………………….. 53

 5.3. The Experimental Procedure for the HCSS Approach………………………….. 55

 5.4. Numerical Experimentation for SMTWT……………………………………….. 58

5.4.1. Final Results……………………………………………………………… 72

 5.5. Numerical Experimentation for PMTT…………………………………………. 76

5.5.1. Final Results……………………………………………………………… 88

6. CONCLUSION……………………………………………………………………… 92

APPENDIX A: START DISTANCE MEASUREMENT METHOD…………………. 97

APPENDIX B: RANK DISTANCE MEASUREMENT METHOD………………….. 100

APPENDIX C: SOLUTION COMBINATION METHOD…………………………… 104

APPENDIX D: VARIABLE NEIGHBORHOOD SEARCH – SMTWT…………….. 106

APPENDIX E: VARIABLE NEIGHBORHOOD SEARCH – PMTT……………….. 111

APPENDIX F: BEST KNOWN SOLUTION TO THE PROBLEM SETS………….. 122

 Appendix F.1. Best-Known Solutions to SMTWT………………………………… 122

 Appendix F.2. Best-Known Solutions to PMTT…………………………………… 130

REFERENCES……………………………………………………………………….. 133

 ix

LIST OF FIGURES

Figure 4.1. Solution encoding for single machine total weighted tardiness

problem.. 25

Figure 4.2. The pseudo-code of initial solution generation method for the

third approach…………………………………………………… 29

Figure 4.3. The pseudo-code for reserve list update method……………….. 30

Figure 4.4. The pseudo code for reference set update method……………… 33

Figure 4.5. BLX- α combination method.. 34

Figure 4.6. The pseudo code for solution combination method…………….. 36

Figure 4.7. The pseudo code for variable neighborhood search method……. 40

Figure 4.8. The pseudo code for HCSS approach – SMTWT………………. 41

Figure 4.9. Solution encoding for PMTT problem.. 43

Figure 4.10. The pseudo code for EFT initial solution generation method…… 44

Figure 4.11. The pseudo code for multi-rule initial solution generation

 method………………………………………………………….. 47

Figure 4.12. The pseudo code for HCSS approach – PMTT…………………. 50

Figure 5.1. Experimental results for pool sizes and distance measurement

methods………………………………………………………….. 59

 x

Figure 5.2. Fine-tuning for search depth parameter………………………… 60

Figure 5.3. Effects of intensification strategies…………………………….. 61

Figure 5.4. Effect of initial solution generation methods…………………… 62

Figure 5.5. Effect of screening mechanism…………………………………. 63

Figure 5.6. Experimental results for compared MNVS methods……………. 64

Figure 5.7. Combination of screened initial solution set with new MVNS

method…………………………………………………………… 65

Figure 5.8. Experimental results for alpha strategies……………………….. 67

Figure 5.9. Fine-tuning of alpha increment for new alpha strategy………… 67

Figure 5.10. Effect of dynamic stopping criteria……………………………… 70

Figure 5.11. Comparison of mix diverse and start diverse solution selection

methods………………………………………………………….. 71

Figure 5.12. Effects of new reference set update methods…………………… 72

Figure 5.13. Comparison results for pool sizes and distance measurement

methods…………………………………………………………. 78

Figure 5.14. Experimental results for compared search depths (pool size 85)… 79

Figure 5.15. Experimental results for compared search depths (pool size 100).. 80

Figure 5.16. Effect of intensification strategy for PMTT problem (pool

 size-85)………………………………………………………….. 81

 xi

Figure 5.17. Effect of intensification strategy for PMTT problem (pool

size-100)………………………………………………………... 81

Figure 5.18. Structural characteristics of initial solution set for three different

methods………………………………………………………… 83

Figure 5.19. Experimental results for initial solution generation methods for

PMTT…………………………………………………………… 84

Figure 5.20. Effect of new intensification strategy…………………………... 85

Figure 5.21. Comparison of static alpha vs. dynamic alpha………………….. 86

Figure 5.22. Numerical analysis for diverse solution selection methods…….. 87

Figure 5.23. Effects of new reference set update methods for PMTT……….. 87

Figure C.4. Illustration of improvement method…………………………… 105

Figure E.1. Flow chart for recursive algorithm #1…………………………. 118

Figure E.2. Flow chart for recursive algorithm #2…………………………. 119

Figure E.3. Flow chart for recursive algorithm-step #3……………………. 119

Figure E.4. Flow chart for recursive algorithm #4…………………………. 120

 xii

LIST OF TABLES

Table 5.1. Basic HCSS algorithm………………………………………………….. 57

Table 5.2. Components of basic HCSS…………………………………………….. 57

Table 5.3. HCSS for SMTWT - pool sizes and distance measurement methods….. 59

Table 5.4. HCSS for SMTWT - comparison of search depths…………………….. 60

Table 5.5. HCSS for SMTWT - comparison of different intensification

strategies………………………………………………………………… 60

Table 5.6. HCSS for SMTWT - comparison of different initial solution generation

methods………………………………………………………………….. 62

Table 5.7. HCSS for SMTWT - effect of screening mechanism………………….. 63

Table 5.8. HCSS for SMTWT - comparison of MNVS…………………………… 64

Table 5.9. HCSS for SMTWT – effect of combined initial solution and MVNS

methods…………………………………………………………………. 64

Table 5.10. HCSS for SMTWT – comparison of alpha strategies………………….. 66

Table 5.11. HCSS for SMTWT – fine tuning for alpha increment…………………. 66

Table 5.12. Experimental results for selected 40-job instances…………………….. 68

Table 5.13. Experimental results for selected 100-job instances……………………. 69

 xiii

Table 5.14. HCSS for SMTWT – comparison of stopping criteria………………….. 70

Table 5.15. HCSS for SMTWT – evaluation of mix diverse solution selection

method………………………………………………………………… 71

Table 5.16. HCSS for SMTWT – 3-tier design of reference set…………………… 71

Table 5.17. Final results for HCSS approach – 40-job problem set- SMTWT…….. 73

Table 5.18. Final results for HCSS approach – 50-job problem set-SMTWT……… 74

Table 5.19. Final results for HCSS approach – 100-job problem set-SMTWT…….. 75

Table 5.20. Basic HCSS algorithm- PMTT…………………………………………. 77

Table 5.21. HCSS for PMTT - comparison of pool sizes and distance measurement

methods…………………………………………………………………. 78

Table 5.22. HCSS for PMTT - comparison of search depths……………………….. 79

Table 5.23. HCSS for PMTT - comparison of different intensification strategies….. 80

Table 5.24. HCSS for PMTT - comparison of different initial solution generation

methods…………………………………………………………………. 83

Table 5.25. HCSS for PMTT - comparison of new intensification strategy……….. 85

Table 5.26. HCSS for PMTT – comparison of alpha strategies…………………….. 86

Table 5.27. HCSS for PMTT – comparison of mix diverse solution selection

method …………………………………………………………………. 86

Table 5.28. HCSS for PMTT – 3-tier design of reference set………………………. 87

 xiv

Table 5.29. Final results for HCSS approach – 40-job PMTT problem set………… 89

Table 5.30. Final results for HCSS approach – 60-job PMTT problem set………… 90

Table A.1. Best solutions of reference set and candidate solutions in the pool……. 97

Table A.2. Measured distances between best & candidate solutions……………… 98

Table A.3. Updated distance matrix……………………………………………….. 98

Table A.4. Updated distance matrix……………………………………………….. 98

Table A.5. Final reference set………………………………………………………. 99

Table B.1. Best solutions of reference set and candidate solutions in the pool……. 100

Table B.2. Rank matrix…………………………………………………………… 100

Table B.3. Distance matrix……………………………………………………….. 102

Table B.4. Updated distance matrix………………………………………………. 102

Table B.5. Updated distance matrix………………………………………………. 102

Table B.6. Final reference set……………………………………………………… 103

Table C.1. Process time, weight and due date of jobs ….………………………… 104

Table C.2. Two parent solutions………………………………………………….. 104

Table C.3. Offspring solution before improvement method……………………… 104

Table D.1. Process time, weight and due date of jobs……………………………. 106

 xv

Table E.1. Ready time and due date of jobs………………………………………. 110

Table E.2. Process times and setup times for machine #1………………………... 110

Table E.3. Process times and setup times for machine #2………………………… 111

Table F.1. Optimal/best-known solutions to the 40-job problem set –

SMTWT………………………………………………………………. 123

Table F.2. Optimal/best-known solutions to the 50-job problem set –

SMTWT……………………………………………………………….. 124

Table F.3. Best-known solutions to the 100-job problem set (Crauwels et al.,

1998)………………………………………………………………….. 125

Table F.4. Best-known solutions to the 100-job problem set (Congram et al.,

2002)………………………………………………………………….. 126

Table F.5. Min-max best-found solution for five seed experimentation (40-job)

SMTWT……………………………………………………………….. 127

Table F.6. Min-max best-found solution for five seed experimentation (50-job)

SMTWT……………………………………………………………….. 128

Table F.7. Min-max best-found solution for five seed experimentation (100-job)

SMTWT……………………………………………………………….. 129

Table F.8. Best-known solution to 40-job problem set – PMTT…………………. 130

Table F.9. Best-known solution to 60-job problem set – PMTT…………………. 131

Table F.10. Min-max best-found solution for five seed experimentation (40-job)

PMTT.. 131

 xvi

Table F.11. Min-max best-found solution for five seed experimentation (60-job)

PMTT…………………………………………………………………. 132

 xvii

LIST OF SYMBOLS/ABBREVIATIONS

b1 Number of elite solutions

b2 Number of diverse solutions

C Completion time

d Due date

m Number of machines

N() Neighbors of a current solution

n Number of jobs

p Processing time

r Ready time

rand Random number

s Setup time

S Slack time

st Start time

T Tardiness

π Priority value

∆ Increment value

ρ Average utilization of machines

ACO Ant colony optimization

B&B Branch and bound

CBN Combination rule

CPU Central processing unit

EA Evolutionary algorithm

EDD Earliest due date

EFT Earliest finish time

EJOR European Journal of Operational Research

FVNS Final variable neighborhood search

GA Genetic algorithm

HCSS Hybrid continuous scatter search

 xviii

LB Local branching

MA Memetic algorithm

MVNS Middle variable neighborhood search

NJS Neighborhood job swap

NP Non-deterministic polynomial

OR Operation research

PMTT Parallel machine total tardiness

PSO Particle swarm optimization

R&M Rachamadugu and Morton

RDD Range of due dates

RVNS Reduced variable neighborhood search

SA Simulated annealing

SMTWT Single machine total weighted tardiness

SPT Shortest processing time

SS Scatter search

TF Tardiness factor

TS Tabu search

TWLW Total weighted late work

twt Total weighted tardiness

VND Variable neighborhood descent

VNDS Variable neighborhood decomposition search

VNS Variable neighborhood search

 1

1. INTRODUCTION

Designing efficient solution algorithms for Combinatorial Optimization problems,

especially scheduling problems, has been a real challenge for researchers. Scheduling

problems arise in many contexts; from computer engineering to manufacturing techniques.

Most scheduling problems are NP-hard; thus render classical approaches such as Branch

and Bound schemes or integer linear programming unpractical for real-life instances. Due

to the fact that the quality of simple approximation approaches remains limited, many

researchers continuously search for new sophisticated methods which can provide

solutions with high accuracy in a short time.

 Meta-heuristics, which extend the neighborhood search beyond the local optima,

introduced a new era towards improvement of solution quality for scheduling problems.

Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithms (GA) are the most

established and widely used meta-heuristic approaches. Several studies in the literature

report successful implementations of these methods on scheduling problems where the TS

and its hybrids were often surpassing the performance of the others.

Scatter Search (SS) is another population-based meta-heuristic that came into

attention very recently, although the original idea dates back to 1970s. Basically, SS works

on a set of good but diverse reference solutions to generate new trial solutions by

combining them. European Journal of Operational Research published a special volume

(EJOR Vol. 169, 2006) dedicated to SS and its implementations. In this volume, articles on

methodology of SS, as well as several applications including assignment, routing,

clustering and scheduling problems are reported. In his editorial article, Marti (2006) states

the highlights of SS and presents it as an amazing search method which would break the

dominance of Tabu Search and Genetic Algorithm. Based on Marti’s analysis, the number

of SS publications shows a boost after year 2000. It is apparent that this approach is still

not fully mature, needs further development and testing especially for scheduling domain.

The highly concentrated interest on SS has motivated and encouraged us to test this

new approach in this thesis. Due to its stochastic nature and the absence of an exploitation

 2

component, SS might result poorly when the NP-Hard scheduling problems are taken into

consideration. Therefore, SS approach is enhanced with a well known local improvement

method namely Variable Neighborhood Search (VNS) whose performance on

intensification is proven throughout most of the studies performed in scheduling era.

 In order to test the performance of the SS approach, we selected two tardiness

related scheduling problems. Tardiness, or the duration by which the completion time of a

job exceeds its due date, is a challenging performance measure in the sense that even the

simplest scheduling setting of sequencing n jobs on a single machine becomes NP-hard

under this objective. Moreover, scheduling against due dates receives considerable

attention in literature, since delivery time performance becomes an increasingly critical

issue under the growing pressure of the competition in today’s markets.

 The first problem handled is minimizing the total weighted tardiness of n jobs

scheduled on a single machine (SMTWT), a well known NP-hard problem. The problem

has been studied previously by several researchers including: TS, SA, and GA approaches

by Crauwels et al. (1998), dynasearch algorithm by Congram et al. (2002) and TS

approach by Bilge et al. (2007). There is a set of benchmark problems whose best known

solutions are largely provided by Congram, and TS algorithm introduced by Bilge et al.

produces matchingly good results.

 The second problem selected is the Parallel Machine Total Tardiness (PMTT)

problem. Here, a set of jobs with distinct arrival times and sequence dependent setup times

are scheduled on a set of uniform parallel machines to minimize total tardiness. This

complicated and realistic problem has also been studied by various researchers: GA

approach by Sivrikaya-Şerifoğlu and Ulusoy (1999), TS by Bilge et al. (2004), GA by

Bilge and Kıraç (2006) and a hybrid of TS-SA-VNS by Anghinolfi and Paolucci (2006).

The best-known solutions for the benchmark set of problems, -first introduced by

Sivrikaya-Şerifoğlu, has been improved by each research in this line, and currently the

results obtained by Anghinolfi and Paolucci constitute the best-known solutions.

In this thesis, the proposed hybrid SS will be tested over these two benchmark

problems sets and the results will be compared to the most up-to-date best known

 3

solutions. The thesis is organized as follows: In the next chapter, after a brief overview of

heuristic approaches in general and a meta-heuristics in particular, a more through account

for both SS and VNS are given. Chapter Three provides detailed problem definitions and

literature surveys for the SMTWT and PMTT problems. The proposed hybrid SS algorithm

is described in details in Chapter Four. Numerical studies and final results for both

problem settings are presented in Chapter Five and finally, Chapter Six ends the thesis with

summary and conclusive remarks.

 4

2. OVERVIEW OF META-HEURISTICS AND SCATTER SEARCH

The hybrid approach used in this study, integrates two well-known meta-heuristics;

Scatter Search and Variable Neighborhood Search. Thus it will be a good idea to start with

basics and define heuristics and meta-heuristics in general before examining our approach.

The term heuristic means a method based on previous experiences and judgments

that provides a fast and reasonable solution to a problem, but which cannot be guaranteed

to produce the mathematically optimal solution (Silver, 2004). There are several types of

heuristic solution methods that can be chosen defining on factors related to the problem.

Most common heuristic techniques can be categorized as constructive methods, branch and

bound derivatives and local improvement (neighborhood search) methods. Constructive

methods as the name implies use the data of the problem to build a solution step be step.

Hence no solution is obtained until the procedure is complete. At each iteration, there is a

partial solution and the extension of the current solution is constructed by selecting one of

the possible options available for the current status of the solution. This makes the

approach myopic. Usually the option with the minimum cost is selected as the extension

leading to so called greedy method. As an example, consider a scheduling problem

concerned with the sum of the weighted completion times of n jobs on a single machine.

Job j has a process time pj and a weight wj. For this case, a well known dispatching rule so

called WSPT can be employed as a constructive algorithm. All the jobs are ranked

according to their wj / pj ratios in decreasing order and whenever the machine is idle the job

with the highest rank is processed and continues to the next highest until set of

unprocessed jobs is empty. (Pinedo and Simchi-Levi, 1996)

Enumerative branch and bound methods are widely used to obtain optimal solutions

to NP-hard scheduling problems. Branch and Bound (B&B) attempts to eliminate a node

by determining a lower bound on the objective function for all partial schedules that

derived from that node. If the lower bound is higher than the value of objective function

under known schedule, the node may be eliminated and its possible offspring are

neglected. The main advantage of Brach and Bound methods is that after evaluating all

 5

nodes, the final solution can be considered to be the optimal. On the other hand, B&B

method is extremely time-consuming, when the number of nodes is very large. Therefore

some derivatives of B&B method are constructed to overcome this handicap. Filtered beam

search is an adaptation of Branch and Bound method in which only the most promising

nodes at a level are selected as nodes for further branching. The remaining nodes at that

level are filtered permanently. The number of nodes kept is so called beam width of the

search. The decision process that determines the promising nodes is the most important

phase of this method. There is a trade-off between quickness and efficiency. A crude

prediction is quick, but may lead to discard good solutions. On the other hand, more

through evaluations may be extremely time consuming. (Reeves, 1993)

The basic concept behind the local improvement methods is quite simple. One

starts with a feasible solution to a problem, often generated randomly or obtained as a

result of a constructive method. In the next step, feasible solutions in the neighborhood of

the current solution are evaluated. If one of the new solutions is better than the current

solution, it becomes the new current solution and its neighborhood is searched for the next

iteration. These repetitive steps are continued until no improvement can be found. The

current solution, at the final stage is accepted as the local optimum. The neighborhood of

the solution suggests that two solutions are neighbors if one can be obtained through well

defined modifications. As an example, for a single machine scheduling problem, a solution

is a specific sequence of the jobs on a machine and neighborhood of the current solution

can be defined as the new schedule obtained by performing a single adjacent pair-wise

interchange of two consecutive jobs. While searching the neighborhood of the current

solution, an important issue arises. It is crucial to decide whether to choose a move to the

first solution in the neighborhood exhibiting an improvement or to evaluate all the

solutions in the neighborhood and choose the one giving the largest improvement. (This

method is often referred to as steepest ascent (or descent) method)(Reeves, 1993).

Depending on the new current solution selection strategy, different local improvement

methods can be constructed. Although these methods perform highly satisfactory, they

only guarantee a local optimum. The final solution obtained heavily depends on the

starting solution and most possibly ends at a local optimum. In order to break out the

fundamental weakness of local search, exploration and diversification methods are

 6

suggested to broaden search to other parts of the solution space. The resulting heuristics

are generally named as meta-heuristics.

2.1. Meta-heuristics

A meta-heuristic is an iterative master process that guides and modifies the

operations of sub ordinate heuristic to produce efficiently high quality solutions. It may

combine intelligently different concepts to explore solution space using adaptive learning

strategies and structured information (Osman, 1996). Meta-heuristics are particularly

concerned with not getting trapped at local optimum and carefully reducing solution space

to be searched. Every meta-heuristic has one or more adjustable parameters, that provide

flexibility and the robustness. On the other hand, this parameter requires intensive

calibration on set of numerical instances of the problem. The family of meta-heuristics can

be classified into three main categories and their sub-categories. Construction based meta-

heuristics includes greedy random adaptive search methods, and guided construction

methods. Local search based meta-heuristics include simulated annealing, noise methods,

guide local search methods, iterated local search, neural networks, Tabu Search and

variable neighborhood search. Population based meta-heuristics include evolutionary

algorithms (EA) such as ant colony systems, particle swarm optimization, genetic

algorithm, and scatter search. (Osman and Kelly, 1996)

Tabu search (TS) is one of the most widely used meta-heuristic proposed by Glover

(1997). In his paper, Glover points to several application areas including scheduling,

routing, location/allocation, design, logic and artificial intelligence. TS begins with a

complete feasible solution. This solution can be either randomly generated one or a more

qualified solution evaluated by a constructive heuristic. Just like the other local

improvement methods, TS continues to develop new complete solutions from its

neighborhood. Then these candidate solutions are evaluated and chosen if better than the

current solution. However, evaluating every possible move from the current solution might

be extremely time consuming and computationally expensive. Therefore, candidate list

strategy is employed to filter some neighborhood solutions. A candidate list strategy

chooses potentially good candidates from the neighborhood, and prevents considering all

moves. In order to avoid being trapped at local optimum, moves to neighborhood points

 7

with inferior solutions are permitted. In addition to that a mechanism is used to prevent

cycling back to recently visited solutions. Recently visited solutions are kept in a tabu list

and these solutions are avoided from reoccurring for a certain number of iterations. The

number of tabu iterations also called tabu tenure is a key controllable parameter of TS.

Two crucial components of TS search are intensification and diversification

strategies. Intensification strategy is based on modifying choice rules to encourage move

combinations and solution features historically found good whereas diversification strategy

encourages the search to examine unvisited regions of search space and to generate

solution that differs significantly than previously visited. The memory used in TS is both

explicit and attributive. Explicit memory records elite solutions visited during the search

and extension of this memory stores highly attractive but unexplored neighborhoods of

elite solutions. These solutions are later used to expand local search.

Simulated Annealing (SA) takes its name from the physical process called

annealing where a material is heated into a liquid state then cooled back into recrystallized

solid state. In this local search method, the randomly generated or a constructively

evaluated solution is considered at the initial stage. This starting solution must be complete

and feasible. In the following steps, neighborhood solutions are generated by mutations

and evolutions. If the candidate solution is better than the current one, it becomes the new

current solution. However, if the fitness of candidate is inferior to the current, then there is

still a chance that candidate replaces current with a probability determined by exponential

of the difference between fitness values and a parameter called the temperature. The

probability of accepting the poor solution decreases as the difference between fitness

values increases or the temperature becomes smaller. The temperature is gradually lowered

during the course of the search so that the probability of accepting poor solutions is

reduced towards the end of the process. The search continues until the termination criterion

is met. This criterion can be a certain total number of iterations or a prescribed number of

consecutive iterations without any improvement. These properties of simulated annealing

are more or less same as the TS. However, there are important differences between the

methods. Firstly, TS uses adaptive memory, whereas SA is memoryless. Secondly, TS

tends to permit moving to an inferior solution when in the vicinity of the local optimum

whereas this can happen at any time in SA. Finally, TS allows moving away from a local

 8

optimum by a deterministic mechanism; on the other hand SA uses a probabilistic method.

(Jones and Rabelo, 1998)

Ant Colony Optimization (ACO) proposed by Dorigo (Dorigo and Di Caro, 1999)

is one of the most successful examples in swarm intelligence systems and have been

applied to many types of optimization problem. This algorithm simulates the behavior of

ant colonies when finding the shortest path between nest and the food source. While going

from nest to food source (or vice versa), ants deposit a chemical substance called

pheromone on the ground. When they arrive the decision point such as an intersection

between shorter and longer branch, they make a choice depend on the amount of

pheromone they smell on the two branches. For this reason, ants choose the shorter path

having more pheromone with higher probability then the longer one. New pheromone is

released on the chosen path and makes it more attractive for subsequent ants. Consider a

traveling salesman problem; the probability of a salesman transition from one city to

another depends on two factors. First one is the direct distance between two cities

(probability that is inversely proportional to distance) and the second one is the remaining

amount of pheromone released by earlier salesman that has traveled this link (probability

that is proportional to amount of pheromone). In order to provide flexibility and prevent

premature convergence, ant colony optimization method uses a predefined formula known

as pheromone evaporation rate through which remaining pheromone is updated at the end

of each iteration.

 Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart (2001),

is based on a social-psychological model of social influence and social learning.

Individuals in a particle swarm follow a very simple behavior: emulate the success of

neighboring individuals. The collective behavior, which emerges, is that of discovering

optimal regions of a high dimensional search space. The swarm of particles responds to

quality factors in the form of the personal and neighborhood best positions. Allocation of

responses between the personal best and neighborhood best positions ensure a diversity of

response. The particle changes its state only when the personal best and the global best

position change. A PSO algorithm maintains a swarm of particles, where each particle’s

position represents a potential solution. In analogy with evolutionary computation

paradigms, a swarm is similar to a population, while a particle is similar to an individual.

 9

In simple terms, the particles are flown through a multi-dimensional space, where the

position of each particle is adjusted according to its own experience and that of its

neighbors. The position of the particle is altered by adding a velocity to the current

position. This velocity vector drives the optimization process. At the end of search, the

particle with the superior position is considered as the best particle of the swarm and

represents the best found solution.

Genetic Algorithms (GA) (Goldberg, 1989, Liepins and Hillard, 1989) work with a

group or population of solutions. Each individual in the population is characterized by its

fitness. The fitness of an individual is associated to the objective function. The process

works iteratively and each iteration is referred to a generation. A generation consists of

surviving individuals and new solutions or children from previous generation. Population

size generally remains constant from one generation to the next. The children are generated

through reproduction and mutation of individuals that are part of previous generation. At

each iteration, the fittest individuals reproduce and the least fits die. The birth, death and

reproduction procedure that determine the composition of the next generation can be

complicated process that is usually a function of the fitness levels of the individuals of the

current generation. There are considerable number of controllable parameters and other

choices including size of population, the probability of mutation of an individual, and the

number of crossover points, etc.

Scatter Search is another derivative of evolutionary algorithms that uses weighted

linear combinations of several solutions contained in a reference set to produce new

solutions. Since we employ Scatter Search methodology in our hybrid approach, detailed

definitions of SS internal components and their working mechanisms are given in the next

section.

2.2. Scatter Search

Scatter Search (SS) is an evolutionary algorithm which was first introduced by

Glover (1977) as a heuristic for integer programming. In contrast to other evolutionary

methods like GA, SS is founded on the idea that new solutions created by systematic

design and procedures provide significant benefits than those generated randomly. SS

 10

orients its exploration systematically relative to a set of reference points that typically

consists of good solutions obtained by prior problem solving efforts. In this context,

reference solutions do not cite as “good” according to their objective function value, may

also be considered in the case of some specifications that differ from other solutions. SS

uses weighted linear combinations to produce new candidate solutions within the search

space containing previously found reference points.

Glover (1998) provides a Scatter Search template as the main reference for most of

the SS implementations. He defines five components to construct a basic design as follows:

• A diversification method to generate a collection of diverse trial solutions using

an arbitrary trial solution as an input.

• An improvement method to transform a trial solution into a more enhanced trial

solution

• A reference set update method to build and maintain a reference set containing

predefined number of best solutions and diverse solutions which are accepted

according to their quality or diversity.

• A subset generation method to operate on reference set to produce a subset of

its solutions as a basis for creating combined solutions.

• A solution combination method to transform a given subset of solutions

produced by subset generation method into one or more combined vectors.

The reference set plays the crucial role in SS method. The reference set (RefSet) as

mentioned previously is a collection of both high quality and diverse solutions that are

used to generate new candidate solutions. The number of elite solutions b1 and diverse

solutions b2 are fixed and state the size of the reference set (b = b1 + b2). The construction

of the initial reference set starts with the selection of the best b1 solution from the pool of

initially generated and improved trial solutions. These solutions are added to RefSet and

discarded from the pool. For each solution in the pool, the minimum of the distances to the

reference points contained in RefSet is computed. Then the solution with the maximum of

these minimum distances is selected as the diverse point. This solution is added to RefSet

and deleted from the pool. The loop continues until b2 diverse solutions are chosen to

RefSet. (Laguna et al., 2006)

 11

After constructing the RefSet, subsets are created by using the subset generation

method. In traditional EA’s such as GA, parents are selected through a random sampling

scheme, but in SS the parent selection is based on a deterministic method. This method

generates all subsets of size two while skipping subsets with the same elements. Using an

appropriate solution combination method, these subsets yield into new trial solutions that

build up the pool. Then the RefSet is rebuilt using new pool and previous RefSet through

mentioned update method. These five methods are repeated simultaneously until a

termination criterion is met. (Laguna and Marti, 2003)

Some advanced design, such as dynamic RefSet updating, RefSet rebuilding, RefSet

tiers, and diversity control are outlined by Glover (1998) which can be useful

modifications to improve the performance of SS implementations. In dynamic RefSet

updating, RefSet is updated immediately when a new best solution is found by the

combination method. The advantage of dynamic update is that it quickly replaces inferior

solutions in the RefSet with better solutions and future combinations are made with

improved solutions. The disadvantage is that, some potentially promising combinations are

eliminated before being considered. In RefSet rebuilding method, RefSet is partially rebuilt

with diversification update where the previous diverse solutions are deleted and new

diverse solutions are generated using diversification generation method. These solutions

are then placed to RefSet. Another advanced approach is dividing RefSet into more than

two subcategories. As previously mentioned, RefSet already consists of two subcategories:

high quality and diverse points. In addition to these, new categories may be defined, such

as a third category containing good generators which generated high quality trial solutions

when used as inputs in the combination method for the previous generations. All these

advance modifications can improve the performance of SS and translate it into a higher

complexity with additional search parameters. However, it conflicts with the goal of

designing a method that is easy to implement and fine tune. Therefore, there is no one and

exact combination of these methods that leads to the best performance. One should try and

decide which combination is superior for a given problem context.

Initial step for an efficient SS algorithm is to understand its methodology. Glover

(1998), Glover et al. (2000), Glover et al. (2003), Greistorfer (2004), Herrera et al. (2006),

Laguna et al. (2003), Laguna et al. (2006), Reeves and Yamada (1999) develop basic

 12

mechanisms and methods of SS design. They also provide insights to efficient

implementations and advanced modifications that would help while aiming complex

problems. The methodologies given in these papers become the keystones of our SS

approach which will be discussed briefly.

As described in those papers, SS is implemented for both discrete and continuous

optimization problems. Since it is a methodology, the described components of SS can be

refined and adapted depending on the nature of the considered optimization problem. A

discrete optimization problem consists of integer variables xi’s such that xi Є Z, whereas

continuous problem includes real-value xi’s that belongs to the set R. Constructing a proper

solution encoding is one of the most crucial parts of the SS approach. Depending on the

structure of the problem, encoding might contain either integer values or real-value

components, which should provide a meaningful mapping to the search space. The

components of SS such as solution combination method and diverse solution selection

method are designed according to the utilized solution encoding.

The generation method of the new solution changes according to the type of the

encoding. For discrete problems, the solution combination method employs a crossover or

a mutation operator which generate a new individual by crossing chromosomes or mutating

them. However, real-value encoding of solutions offers the possibility of defining a wide

variety of special real-parameter combination operators which can take advantage of its

numerical nature. These operators construct intervals depending on the linear combinations

of the solutions and select a new solution within this interval. Average combination

method and BLX-α are two well-known combination methods for continuous GAs.

(Herrera et al., 2006)

Another important method to be carefully designed is the diverse solution selection

method. Diverse solutions are chosen with respect to their distance values to the reference

set. This distance measurement should be performed in an accurate way in order to select

superior diverse solutions. The diversity of two solutions can be defined by either

calculating the distance between them or evaluating the dissimilarities inside their

structures. The most of the diverse solution selection methods originates from these two

measurement rules. Every SS approach has its own unique distance measurement function

 13

depending on the characteristics of the desired diverse solution, and the nature of the

solution encoding.

The hybrid applications show that SS can be improved when combined with other

meta-heuristics. The key idea behind these hybrid approaches should be identifying the

method with required strategy and to justify the selection of this method from another

meta-heuristics. Investigating some hybrid methods found on literature assists us to

construct our own hybrid SS.

Greistorfer (2003) propose a meta-heuristic based on a TS procedure that makes use

of the SS paradigm to solve a capacitated Chinese Postman problem where for a given

undirected network in which the goal is to determine a least cost schedule of routes. The

computational results indicate that the algorithm can cope up with the other arc routing

heuristics.

Nowicki and Smutnicki (2006) provide a new view on the solution space and the

search process of flow-shop makespan problem. They present a new approximate

algorithm which applies some properties of neighborhood approach known as big valley

phenomenon, uses some elements of SS as well as the path-relinking technique. The

proposed algorithm provides very good accuracy obtainable in a short CPU time when

compared to other best known methods.

Liu (2006) presents a hybrid SS by incorporating the nearest neighbor rule,

threshold accepting and edge recombination crossover into a scatter search conceptual

framework to solve the probabilistic traveling salesman problem. The author conducts

several experiments to test the validity of a hybrid SS on the test problems attained from

literature. His numerical analysis proves that incorporating threshold accepting into SS

increases the computational efficiency while maintaining solution quality.

Pachebo (2005) states a meta-heuristic algorithm based on SS whose aim is to

obtain quality solutions with short computation times for the non-hierarchical clustering

problem under the criterion of minimum sum of squares clustering. He combines several

 14

procedures based on different strategies such as local search, GRASP, TS with Scatter

Search.

There are more reference papers that are cited by Marti on hybrid SS approaches

and on other problem types. All prove that, incorporating SS with other types of meta-

heuristics depending on what we might need during our search can overcome the chronic

handicaps associated with SS and make it more robust against different problem types. To

sum up, hybrid SS approaches provide better and faster results than the SS methods or

other meta-heuristics. These results encourage us to develop a hybrid scatter search

approach to attack scheduling problems considered in this thesis. The next section briefly

overviews the Variable Neighborhood Search method which will be used as an

intensification strategy in our hybrid approach.

2.3. Variable Neighborhood Search

Variable neighborhood search (VNS) is a systematic change of neighborhood

within a possibly randomized local search algorithm that yields a simple and effective

meta-heuristic for combinatorial and global optimization problems. Contrary to other meta-

heuristics based on local search methods, VNS does not follow a trajectory but explores

increasingly distant neighborhood of the current incumbent solution, and jumps from this

solution to a new solution if and only if an improvement has been made. Moreover, a local

search routine is applied repeatedly to travel from these neighboring solutions to local

optima.

In their study, Hansen and Mladenovic (1999) define the basic principles of VNS

and state its several applications to five different combinatorial or global optimization

problems. They denote with Nk (k=1,…..,kmax), a finite set of preselected neighborhood

structures, and with Nk(x) the set of solutions in the kth
 neighborhood of x. Their basic VNS

begins with the initialization step where neighborhood structures Nk (k=1,…..,kmax) are

selected, initial solution x is evaluated by a local search method or generated randomly,

and a stopping condition such as maximum CPU time allowed, maximum number of

iterations or maximum number of iterations between two improvements is set. Starting

 15

with the first neighborhood structure, VNS repeats the following steps until the stopping

criterion is met.

It generates a candidate point x’ at random from the kth neighborhood of x and then

applies some local search method with x’ as an initial solution, to obtain a local optima

denoted by x”. Finally, if this local optima x” is better than the current, a move to the point

x” is performed (x ← x”) and continue to the search with the first neighborhood structure.

In contrast, if no improvement is achieved at point x”, set the neighborhood structure to

next one (k ← k+1) and continue.

There are two other types of VNS that differs from the basic VNS namely variable

neighborhood descent (VND) method and reduced VNS (RVNS) method. In VND, the

change of neighborhood is performed in a deterministic way. Different than the basic VNS,

the best neighbor of initial solution x is explored and is denoted as x’ If this solution x’ is

better than x, then x’ becomes the new x and the search continues with the current

neighborhood structure (k ← 1). For the RVNS method, the stochastically generated

candidate solution x’ is directly compared with the incumbent without subjecting to any

local search method. If the solution x’ is superior than incumbent, the search move to the

candidate point x’ (x ← x’) and continue with current k structure. If otherwise is true, then

the search set (k ← k+1). (Hansen and Mladenovic, 2001)

Although the basic VNS is clearly useful for appropriate solutions of many

combinatorial and global optimization problems, it has some inefficiency to solve large

instances. Hence, modifications appear to be highly recommended for basic VNS. Two

modified version of VNS found in the literature are the Variable Neighborhood

Decomposition (VNDS) method that extends the basic form into two level VNS scheme

based upon the decomposition of the problem, and the Skewed VNS that addresses the

problem of exploring regions of incumbent solutions.

As a change of neighborhood in the search for good solutions to optimization

problems is a simple and a very powerful tool. In addition to the extensions of VNS,

several authors have incorporated such hybrid features with other meta-heuristics to gain

more benefit from VNS. They employ VNS into well-known meta-heuristics such as TS,

 16

GA, SA, GRASP and even constant programming in order to optimize routing, scheduling,

traveling salesman, allocation or even clustering problems.

Garcia et al. (2006) propose a heuristic algorithm based on VNS methodology on a

linear ordering problem consists of finding a permutation of the columns and rows in order

to maximize the sum of the weight in the upper triangle. Their method combines different

neighborhoods for an efficient exploration of the search space. For this reason, they

construct a hybrid method in which the VNS is coupled with a short term tabu search for

improved outcomes.

Lejuene (2006) presents a variable neighborhood decomposition search method for

supply chain management planning problem. He employs an algorithm based on VND

meta-heuristic which can be considered as a stage-wise exploration of increasingly large

neighborhoods. Within each stage, neighborhoods are explored using a branch and bound

algorithm.

Hansen et al (2006) developed a VNS heuristic for solving mixed integer programs

which provide the origins of VNS method used in hybrid meta-heuristics. They define

neighborhoods around the current solution by adding constraints to the original problem, as

suggested local branching (LB) method and compare the performance of VNS against LB.

Empirical Results show that VNS is simpler and more systematic in exploration and

improve 14 times the best known solutions from the set of 29 hard problem instances used

to test LB.

Kyöjoki et al. (2005) present an efficient VNS heuristic for the capacitated vehicle

routing problem, in which the objective is to design least cost routes for a fleet of

identically capacitated vehicles. Their proposed VNS procedure is used to guide a set of

standard improvement heuristics and in addition to that a strategy reminiscent of guided

local search meta-heuristic is used to help escape from local optimum.

 17

3. TWO TARDINESS BASED SCHEDULING PROBLEMS

Scheduling concerns with the allocation of limited resources to task over time. It is

a decision making process that has a goal to optimize one or more objectives. Scheduling

problems arise from this optimization effort of limited resources. In a deterministic

production planning environment the scheduling problem, is a problem which decides the

order of all jobs on each machine and determines the starting time of each job with known

ready times and processing times in order to optimize objective function.

More formally, a scheduling problem involves a set of jobs (j=1,..,n) and machines

(k=1,..,m) to process these jobs. Hence, a pair (k,j) refers to processing step or operation of

job j on machine k. The following data are associated with job j. (Jain and Meeran, 1999)

• rj : the release time or ready time of the job j. It is the time job j arrives to the shop,

that is the earliest time at which job can be processed.

• pj
k: It represents the processing time of job j on machine k. If it is a single machine

problem or the processing time for job j is the same on every machine, then the

superscript k might be omitted.

• dj: it represents completion time that is promised a customer or an external unit for

job j. The completion of a job after its due date is allowed but a penalty is incurred.

• sij
k: this parameter defines the sequence dependent setup time of job j after job i on

machine k, meaning that the machine would require sij
k time unit of setup before

processing job j.

• wj: the weight wj of job j is basically a priority factor, denoting the importance of

job j relative to the other jobs.

• Sj: it represent the slack time of job j, defined as dj-pj-t , where t is the current time.

The scheduling problems are often classified according to their machine number,

the scheduling problem with one machine is called single machine problem whereas

problems with two or more machines are so called parallel machine or many machine

problems. Also scheduling problems can be stated as static or dynamic due to job arrivals.

 18

In static case, a certain number of jobs arrive to the shop simultaneously and shop is ready

to start processing immediately. On the other hand, in a dynamic case, the jobs are ready at

shop with stochastic or deterministic arrival times. When we are dealing with a

deterministic scheduling problem, state of the jobs, due dates, arrival times, processing

times and availability of machines are known and do not include any stochastic factor.

In this thesis, we will focus on two hard to solve scheduling problems frequently

encountered in practice, namely the Single Machine Total Weighted Tardiness (SMTWT)

problem and Parallel Machine Total Tardiness (PMTT) problem, to test the performance of

a hybridized Scatter Search algorithm. The detailed description of these two problems

together with a brief review of research directed to solving them are given in the following

two sections.

3.1. Single Machine Total Weighted Tardiness Problem

Single Machine Total Weighted Tardiness (SMTWT) problem is a static

deterministic regular scheduling problem with independent jobs to be sequenced on a

single machine with total weighted tardiness measure as the regular optimization criterion.

Each job is ready at the shop at time zero. No setup is necessary for the machine

before/after processing a job. Each job has a finite processing time, a positive weight and a

distinct due date. After generating a sequence for all jobs, earliest completion times Cj and

related tardiness values of each job Tj = max{0, Cj – dj} are computed. Each job’s

tardiness value is then multiplied by its weight and added together to find the sum of the

weighted tardiness value. In the literature, the problem is represented as n/1/ ΣwjTj where n

denotes the number of jobs, “1” denotes the machine number and last parameter denotes

the objective function.

The SMTWT problem is NP-hard (see Lawler, 1977; Lenstra et al., 1977; Du and

Leung, 1990) and solution approaches like Dynamic Programming and Branch and Bound

are computationally inefficient, especially when the number of jobs is beyond 50, as the

results presented in a comparative study by Abdul-Razaq et al. (1990). There is no simple

dispatching rule that works best for all problem environments. If there is no more than one

tardy job, then the earliest due date (EDD) sequence is optimal, whereas weighted shortest

 19

processing time (WSPT) order gives the optimal sequence when all jobs are necessarily

tardy. Therefore, EDD generally performs well for lightly loaded machines while WSPT

should be preferred under heavy loading. Several heuristic dispatching rules like those

developed by Carroll (1965), Montagne Jr. (1969), Rachamadugu and Morton (1982),

Morton et al. (1984), and Panwalkar et al. (1993) have been based on this idea.

The search for good and robust heuristics was continued with sophisticated

approaches like meta-heuristics. Matsuo et al. (1989) address the SMTWT by a simulated

annealing algorithm which starts with a good initial solution and low acceptance

probability to accelerate the search for a near optimal solution. Potts and Van Wassenhove

(1991) propose a descent heuristic and a simulated annealing method for SMTWT.

Crauwels et al. (1998) present single and multi-start versions of descent, simulated

annealing, Tabu Search (TS) and genetic algorithm implementations for the same problem

and show that while simulated annealing is outperformed, Tabu Search dominates the other

methods. Congram et al. (2002) treat SMTWT with an ‘iterated dynasearch’ algorithm,

which is a local search technique that uses dynamic programming to find the best move

which is composed of a set of independent interchange moves and searches an exponential

size neighborhood in polynomial time. They obtain results that are superior to other local

search procedures. Laguna et al. (1991) consider a single machine scheduling problem for

minimizing the sum of setup costs and linear delay penalties, and propose a TS algorithm

that uses hybrid neighborhood consisting of both swap and insertion moves.

In his study, J. Schaller (2004) presents a timetabling algorithm that inserts idle

time into a given job sequence on a single machine in order to minimize the sum of the

absolute value of the lateness at jobs to be scheduled. The single machine problem

investigated composed of two set of problems; one is the single machine scheduling

earliness/tardiness problem and the other is a problem involving a quadratic measure of

performance optimization for single machine scheduling. Timetabling algorithm is used on

partial sequence in Branch and Bound search. It is also modified so a lower bound on

objective value due to the jobs that have not been dispatched can be obtained for a partial

schedule. Later, three different B&B procedures are performed to minimize the objective

and their results are compared to draw a conclusion.

 20

Azizoğlu et al. (2003) present a heuristic that minimizing maximum earliness while

keeping the number of tardy jobs to its minimum value for an earliness/tardiness single

machine problem. They propose a general procedure to generate all efficient schedules for

biciriteria problems and then develop a method to find the best schedule that minimizes a

composite function of two criteria problem by evaluating only a small fraction of

previously generated efficient solution set.

In their study, Feldman and Bishop (2003) consider a problem of scheduling a

number of jobs on a single machine against a restricted common due date. According to

complexity of restricted common due date problem, it is unlikely to find an efficient

integer programming algorithm. Hence, Feldman and Bishop develop a new and

appropriate problem representation and apply three different meta-heuristics namely

evolutionary algorithm, simulated annealing, and threshold accepting. They demonstrate

the efficiency of meta-heuristics against integer programming by obtaining near-optimal

solutions.

Kethley and Alidaee (2002) examine various scheduling rules, heuristics and

algorithms including WSPT rule, variation of the modified due date rule, a genetic

algorithm, neighborhood job search for the problem of scheduling n jobs in a single

machine to minimize the total weighted late work (TWLW). In their search, Kethley and

Alidaee mostly concentrate on two hypotheses evaluated during the simulation of

predefined search procedures. According to first hypothesis, there is no difference in the

Total Weighted Late Work generated by WSPT, combination rule (CBN), neighborhood

job swap (NJS), and GA. For the second hypothesis, there is no difference in TWLW

generated by the various initial due date and deadline parameters. They conclude that the

performances are same regardless of parameter settings for due date and deadline.

In his study, Franca et al. (2001) introduce a new memetic algorithm (MA) for the

total tardiness single machine scheduling problem with due dates and sequence dependent

setup times. The main contributions with respect to the implementation of the hybrid

population approach are a hierarchically structured population concerned as a tenery tree

and the evaluations of three recombination operators. Concerning local improvement

procedure, several neighborhood reduction schemes are developed and proved to be

 21

effective when compared to the complete neighborhood. They judge pure GA and MA

against a multi-start algorithm that employs the all pairs neighborhood as well as two

constructive heuristics.

Bilge et al. (2007) present a TS approach to the single machine total weighted

tardiness problem. The problem investigated in the study, consists of a set of independent

jobs with distinct processing times, weights and due dates to be scheduled on a single

machine. While minimizing total weighted tardiness, a totally deterministic TS algorithm

with a hybrid neighborhood and dynamic tenure structure is employed. In addition to that,

the strength of the several candidate list strategies is considered in order to increase the

efficiency of the search. The proposed TS approach yields very high quality results for a

set of benchmark problems obtained from literature (Crauwels et al., 1998).

3.2. Parallel Machine Total Tardiness Problem

The classical parallel machine total tardiness problem (PMTT) can be defined as

the scheduling of n jobs on m continuously available identical parallel machines aiming to

minimize total tardiness. Each job is processed on an assigned machine as long as its

processing time. Each machine can process only one job at a time, and each job can be

processed on only one machine. Each job is ready at the beginning of dispatching process

and has a distinct processing time and a due date. In most of the PMTT problems, machine

available on job-shop are identical, jobs are ready at time zero and setup times for

consecutive jobs are ignored. After assigning all the jobs on available machines, total

tardiness is evaluated where tardiness is the amount of time that completion time exceeds

due date.

PMTT is NP-hard even for a single machine (Du and Leung, 1990) and exact

methods are mostly limited to special cases like common due dates and equal processing

times (i.e. Root 1965, Lawler 1977, Elmaghraby and Park 1974, Dessouky 1998).

Recently, Liaw et al. (2003) present a Branch and Bound algorithm that incorporates

various dominance rules along with efficient lower and upper bounds for the case of

unrelated machines, distinct due dates, zero ready times and no setup times, and report that

the algorithm performs well up to 18 jobs and four machines.

 22

In this study, we deal with a generalized PMTT problem that introduce complex

real world situations such as; distinct ready times, uniform parallel machines with different

processing speeds and sequence dependent setup times. In this generalized PMTT, there

are n jobs to be processed on m machines of k types. Machines belonging to same type are

identical where machines belonging to different types are uniform. Each job j has an

integer processing time pj
k on type k machine, an integer ready time rj, a distinct due date

dj, and a sequence dependent setup time sij
k of processing job j after job i on a type k

machine. For a given sequence of jobs, the earliest completion time and related tardiness is

computed for each job: Tj = max {0 , Cj - dj }. Hence the aim is to find a dispatching order

that minimizes the total tardiness. Although meta-heuristic approaches to scheduling

problems in general are quite abundant, the literature is sparse for our specific generalized

version of PMTT.

Ergun et al. (2002) present a new local search heuristic based on combining

variable number of insertion moves for the parallel machine total weighted completion

time scheduling problem. In their study, they introduce a very large scale neighborhood

search that applies a set of insertion moves for identical parallel machines. Also using the

special structure of the scheduling problem, they develop a very efficient variable depth

search method based on multi-label keeping shortest path algorithm. In their computational

study, they compare the performance new heuristic with the various search frameworks

including steepest descent, multi-start TS, and iterated local search. According to their

findings, the new variable depth sequential insertion neighborhood heuristic with the

iterated local search procedure is the most effective among all.

Sivrikaya-Şerifoğlu and Ulusoy (1999) employ two GA approaches for parallel

machine scheduling problem with earliness/tardiness penalties. One of them is a GA with

new cross-over operator which is developed to solve multi-component combinatorial

optimization problems and the other is a GA with no cross-over operator. Based on result

of 960 randomly generated tests, they conclude that neighborhood exchange accomplished

by the mutation of GA can yield relatively better results in a small and easy instances of

problems whereas GA with new cross-over operator outperforms when large sized, more

challenging problems occur.

 23

Bilge et al. (2004) propose a totally deterministic TS approach to PMTT problem

introduced by Sivrikaya-Şerifoğlu (1999). Because of the complex nature of the problem,

they employ a hybrid neighborhood generation method, with several candidate list

strategies and intensification/diversification phases. In their study, they come up with a

“low” candidate list strategy that considers job insertions from the machine with maximum

contribution to total tardiness to each of the other machines, thus isolating desirable

regions of the neighborhood and increase the speed of the search. Their TS algorithm

performs much superior compared to previously cited results.

In their research paper, Bilge and Kıraç (2006) presents an adaptive GA for PMTT

problem. The adaptive control mechanism mainly focuses on slowing down or preventing

the premature convergence and reduces the parameter dependence of basic GA. Population

diversity is selected as the key factor for the search and close-loop controllers are

employed to achieve the desirable population diversity and quality when it decreases below

a certain threshold. These controllers apply a series of insertion moves in the form of

mutation and smooth out the peakedness of population distribution while pushing the

search into different regions.

Anghinolfi and Paolucci (2006) propose a hybrid meta-heuristic approach which

integrates several features from TS, SA, and VNS in a configurable scheduling algorithm

for the PMTT problem. They combine the idea of SA which states that randomness in

generating candidate solutions could improve the search effectiveness, the principle of TS

that an intelligent neighborhood exploration must be guided by a appropriate candidate list

strategy, and the concept of VNS that changing the neighborhood structure during the

search might avoid to get trapped at premature local optimum. The HMH method

outperforms previous methods employed for PMTT problems introduced by Sivrikaya-

Şerifoğlu (1999).

 24

4. THE PROPOSED HYBRID CONTINUOUS SCATTER SEARCH

APPROACH

Our Hybrid Continuous Scatter Search (HCSS) approach is a hybrid meta-heuristic

method which integrates Scatter Search and Variable Neighborhood Search in a new

configurable scheduling algorithm. Scatter Search used in our algorithm, serves as a

diversification mechanism which ensures that different promising regions of solution space

is visited, whereas variable neighborhood search method exploits systematically the idea of

intensification in descent to local minima. These two methods are employed

interchangeably depending on the performance of the search. The detailed description of

HCSS approach for the SMTWT and PMTT problems considered in this thesis is provided

in the following sections.

4.1 HCSS Approach to SMTWT

Single Machine Total Weighted Tardiness problem is a static deterministic regular

scheduling problem with independent jobs to be sequenced on a single machine with total

weighted tardiness measure as the regular optimization criterion. Each job is ready at the

shop at time zero. No set up is necessary for the machine before/after processing a job.

Each job has a finite processing time pj, a positive weight and a distinct due date dj. After

generating a sequence for all jobs, earliest completion times Cj and related tardiness values

Tj of each job j are evaluated using the formula Tj = max{0, Cj – dj}. Each job tardiness

value is then multiplied by its weight and added together to find the sum of the weighted

tardiness value. In accordance with the definition of SMTWT problem, our HCSS

approach is introduced in the following sections.

4.1.1. Solution Encoding Scheme

The most important issue when applying Scatter Search successfully to SMTWT

problem is to develop an effective problem mapping and a solution generation mechanism.

If these two mechanisms cooperate efficiently, it is possible to find a good solution for a

given optimization problem in an acceptable time. Our HCSS approach is a continuous

 25

search method that directly handles vectors of real component and combines these vectors

by linear combinations to produce new ones through successive generations. It aims to map

each and every solution hidden in the search space with proper vector representations and

to find good solutions by using search procedures based on basic vector operations.

In order to construct a suitable mapping between problem solution and SS vectors,

start time of each job is used as the real number component of the vectors. Each vector

consists of n+ 1 entities where n denotes the number of jobs to be scheduled on a single

machine. These n jobs have distinct process times, weights and due dates. Therefore, every

job is denoted with a unique job index and corresponding start time. In a solution vector,

first n positions contain the start times of n jobs, such that the i
th position in the vector

corresponds to the start time of job with index i. The last n+1
st position of the solution

vector is dedicated to total weighted tardiness value (twt) related to these start times.

Figure 4.1 depicts an example, where job # 1 starts at time 1428, job # 2 starts at 1843 and

finally job # N starts at 1881 and twt value is 330.

JOB # 1 JOB # 2 JOB # J-1 JOB # J JOB # J+1 JOB # N-1 JOB # N FIT.

1428 1843 1610 162 901 818 1881 330

Figure 4.1. Solution encoding for single machine total weighted tardiness problem

In this vector representation, jobs are not sorted in an increasing order of start times

that means job # 1 would not be processed in the first place at the specified start time. Any

job with a smaller start time has the priority to be processed earlier than the other jobs that

have larger start time values. The twt value is calculated by scheduling n jobs according to

a permutation sequence obtained after sorting jobs with respect to non-decreasing start

times. If a vector corresponds to more than one permutation, the one yielding minimum twt

value is selected. Thus, each solution vector represents a unique sequence with a twt value

that defines its position in the solution space. Conversely, each job permutation with

unique twt corresponds to many solution vectors in the continuous search space. Consider a

solution where three consecutive jobs’ start times are 97, 228 and 322, respectively. The

start time of the job in the middle can have a value between 97 and 322 without altering the

corresponding permutation. This also means that a given permutation can be reached from

many different points in the continuous search space and allows an interesting flexibility

 26

property in terms of neighborhoods defined on the solution space. By using linear

combinations of start times, we can express complex neighborhoods of a considered

sequence in the search space.

Another advantage of the start time encoding appears when dealing with the basic

vector operations such as addition, subtraction or even multiplication with constant

parameters. Easy implementation of these basic operations will help us in defining a

solution combination method which is used to generate new trial solutions and distance

measurement methods to select diverse solutions for reference set. These two methods will

be discussed in further sections.

4.1.2. Initial Solution Generation Method

One of the most crucial component of our HCSS approach is the initial solution

generation method. SS method is based on generating new solutions by creating

numerically weighted combinations of existing solutions. Therefore, the initial population

which is carrying the ancestors of the next generations plays a leading role. The future can

not be predicted by looking at the past. In other words, poor solutions sometimes may lead

us to better solutions, whereas an initial population containing only good solutions does not

always guarantee a better result. Hence, the most essential feature of a proper initial

solution generation method is to create a collection of both diverse and good solutions.

In our HCSS approach to SMTWT problem, three different initial solution

generation methods are employed and compared in order to acquire the most efficient

initial population. The initial population contains predefined number of individuals. The

first approach uses a simple generator that orders jobs randomly and then evaluates their

twt values by scheduling them at their earliest start times.

 Second approach employs simple heuristics to create some seeded solutions and a

random sequence generator to fill the remaining pool with diverse trial solutions.

Heuristics utilized in this approach are EDD, SPT, WSPT and R&M rules. Before going

into details of the second approach, it will be a good idea to provide brief overviews of the

 27

mentioned heuristics. The following terminology helps to gain an understanding about

their nature and functions.

• EDD (Earliest Due Date) is a dispatching rule that arranges jobs in increasing order

of due dates.

• SPT (Shortest Processing Time) is a dispatching rule that arranges jobs in

increasing order of processing times.

• WSPT (Weighted Shortest Processing Time) is the weighted version of SPT.

• R&M (Rachamadugu and Morton, 1982) is based on sorting the jobs in order of

non-increasing priorities that are evaluated dynamically by predefined formulas.

WSPT heuristic considered in this study is first introduced by Montagne (1969), which

use basic full priority WSPT multiplied by a slack factor. The slack factor is close to 1.0

for very early due date jobs and very close to zero for very late due date jobs. Slack factor

employed here is not dynamic and even if a job is overdue, it is still not given a full WSPT

priority. The priority formula is as follows;

 πj = (wj / pj)[1.0 – (dj / Σipi)] (4.1)

where πj is the priority of job j, wj is the weight, pj is the processing time and dj denotes the

due date of job j. The jobs are sequenced according to their non-increasing order of

priorities and their related twt values are evaluated.

R&M heuristic for total weighted tardiness problem, developed by Rachamadugu

and Morton (1982), is based on sorting the jobs in order of non-increasing priorities. The

priority πj is obtained by using the formula;

 πj = (wj / pj)[exp{-(Sj)
+ / kpav}] (4.2)

where k is a factor and pav is the average processing time of all jobs to be scheduled. The

slack time Sj
+ at time t can be computed as follows;

 Sj
+ = max (0, dj – pj – t) (4.3)

 28

As time t indicates the current time, this heuristic uses a dynamic procedure where

priorities πj must be updated after a job with the highest priority is scheduled and its

completion time on machine is computed. When all the jobs are sorted accordingly, the

final total weighted tardiness value is evaluated. In this study, a small modification is

applied to R&M heuristic and k factor becomes no longer a fixed value. The solutions are

generated using each of the k values in the range [0.5, 4.0] with increments of 0.1.

Our second population generation method seeds all solutions created by EDD, SPT,

WSPT, and modified R&M heuristic into the initial population the rest of which is filled

using a random generator as in the first approach. Third method is a variant of the second

method in which 10 best R&M solutions together with EDD, SPT and WSPT solutions are

established in the initial pool. In all three methods duplication is avoided by replacing

solutions that have exactly the same set of start times. Another screening mechanism tried

during numerical experimentation, eliminates solutions with same twt values even if their

start times are different.

These three initial solution generation methods will be compared via numerical

experimentation and a final choice will be made according to their contribution to the

ultimate outcome.

4.1.3. Reference Set Update Method

The reference set update method plays the key role in HCSS approach. As

previously defined, the reference set is used to produce new solutions by applying linear

weighted combinations and it is a collection of both high quality elite solutions and

structurally diverse solutions selected from a pool. In the first iteration, the pool contains

initial solutions generated using one of the three approaches described in the previous

section. In the subsequent iterations, the pool consists of solutions created by a

combination method. The number of elite solutions b1, and diverse solutions b2 in the

reference set are fixed and determine its size (b=b1+b2). Two methods are devised to select

the b1 elite solutions.

 29

In our first method, the best solutions selected from the pool are stored in a list

called the reserve list. This list behaves as a long term memory of HCSS by keeping best

known solutions visited so far. At the end of each iteration, solutions kept in the reserve list

are updated if any superior ones are generated. Therefore, reserve list holds only of b1 elite

solutions which are defined as good generators. While revising the reserve list, we keep

track of entering solutions in order to make sure that new entries are not identical twins of

existing solutions. If at least one start time of any job j in the entire vector for the candidate

differs from the corresponding start time of the same indexed job contained in other

existing solutions, then candidate is permitted to replace a poorer solution from the list.

After the authorized substitutions, the b1 of best solutions are transferred from the reserve

list to the reference set. This method leads to a 2-tier design for the reference set, i.e. elites

from the reserve list and diverse solutions from the pool.

Figure 4.2. The pseudo-code of initial solution generation method for the third approach

In the second method, the updating procedure of the elite set employs a 3-tier

design (Laguna and Marti, 2006), where the first tier consists of high quality solutions

obtained from the pool, the second tier consists of best solutions copied from the reserve

list and finally the third tier includes the diverse solution selected by a distance

Create initial solution set

 schedule jobs with respect to EDD and store the trial solution xEDD

 schedule jobs with respect to SPT and store the trial solution xSPT

 schedule jobs with respect to WSPT and store the trial solution xWSPT

 for k = 0.5 : +0.1 :4.0
 schedule jobs with respect to R&M and store the trial
 solution xk if fitness xk ≠ fitness { xEDD, xSPT, xWSPT, xk-1 }
 end

 select either all or best 10 xk

 create remaining trial solutions using a generator that schedule jobs
 randomly xRAND

 delete one of the two trial solution having the same fitness value

 the initial solution set = {xEDD, xSPT, xWSPT, xk, xRAND}

 30

measurement method. The second update method is aiming to preserve diversity

continuously, instead of allowing it to become homogenous by only admitting solutions

from one source, which tend to have very similar components at further stages of the

search. In the first method, reference set best solutions are rooted from the reserve list. In

other words, b1 solutions stored at reserve list are directly copied to reference set without

considering their structures or past performances. These individuals may be neighbors of

the same local optima or may remain in the list for a long time. In such a case, it directly

affects the reference set best solution variety and indirectly influences the offspring

generated from these elite pairs.

Figure 4.3. The pseudo-code for reserve list update method

Before starting the selection step of second method, reserve list is updated

according to the rules used in the first case, and the solution pool is rearranged in order to

find high quality solutions. Different from the first method, half of the b1 solution is

transferred from the reserve list and the other half is chosen from the high quality members

Update Reserve List

POOL = (x1,.....,xk), let xi be the trial solution and xi =< st1,….stn> where stj is the start

time of job j.

ReserveList = (y1,.....yb) where y1 is the best and yb is the worst solution stored in list.

y1 = < st1,….stn>

 select xi’s such that fit.(xi) <= fit (yb) // fit.= fitness of a sol’n

 for all selected xi’s

 if fit.(xi) <= fit (yb) /

 for all yi // (i = 1,….,b)

 if any stj of xi ≠ any stj of yi // (j = 1,….,n)

 if fit.(xi) ≠ fit (yi) // used in screening method

 yb = xi

 sort ReserveList in an increasing order of fit.

 update yb

 delete xi from POOL

 end

 end

 end

 end

 31

of the pool. In this way, we assure at least some of the best solutions to be dissimilar than

the ones employed in the previous iteration. Additionally, same screening mechanism used

in initial solution generation method is again utilized to increase the diversity of both the

reference set and reserve list. Hence, two solutions with the same twt value can not enter

the elite set at the same time.

After deciding the b1 elite solutions, the next step is to select b2 diverse solutions.

For each solution left in the pool, its distance to all members of the current reference set

(initially, only b1 elite solutions) are calculated. The minimum of these distances gives the

distance of the candidate to the reference set. The candidate with maximum distance to

current set is selected as a diverse solution and added to the set. The chosen solution is

deleted from the pool and preceding minimum distances to the set are updated with respect

to newly added diverse solution. The process is repeated until all b2 diverse elements are

determined. Two different types of distance measurement methods are devised; these are

start distance and rank distance measurement methods. Based on the distance measure

employed, three diverse selection procedures are introduced; start diverse, rank diverse and

mix diverse selection procedures. In mix diverse selection procedure, start distance method

is initially executed and half of b2 diverse solutions are selected and deleted from the pool.

Then the rank distance measure is applied for the remaining solution left in the pool and

the other half of b2 is determined accordingly. These three procedures will be compared to

decide the most effective diverse element selection technique. We describe the distance

measurement methods that were developed within the context of this thesis below:

Start distance measurement method is inspired from a well known rectilinear

distance formula used in real space vector problems. In our solution encoding, start times

correspond to the coordinates of a position vector that expresses a point in the real space,

and our start distance measure is given as

 distance = |(st11-st21)| + |(st12-st22)|+…+ |(st1j-st2j)|+……..+|(st1n-st2n)| (4.4)

where stij denotes the start time of a job j for the solution vector i. Although the total

distance measured by this modified version indicates a relative value instead of a real one,

 32

it is sufficient for the selection procedure to work properly. The details of start distance

measurement method are described in Appendix A.

The rank distance measure originates from a puzzle where a shuffled string of

numbers should be rearranged with minimum restricted insertion moves to catch a winning

sequence. For an accurate adaptation, a chain of numbers is required rather than the values,

but our vector representation contains only the start times and the total weighted tardiness

value. Hence, start times are sorted in non-decreasing rank and their job indices are noted

in the same order. The solution taken from the pool is denoted as shuffled string and the

reference set solution respect to which the distance is measured, cited as the wining

sequence. The restricted insertion move indicates that a job can only be inserted between

its two preceding jobs. The other insertion moves are not allowed. A simple algorithm is

employed for rank distance measurement method that computes minimum moves needed

to convert a shuffled string into the winning sequence. Finally, the number of total

performed moves states the rank distance between a pool solution and a reference set

solution. The details of rank distance measurement method are described in Appendix B.

4.1.4. Subset Generation Method

The simplest form of subset generation method that is used in our approach consists

of generating all pairs of reference set solutions. The method concentrates on subsets of

size two resulting in (b2-b)/2 newly generated subsets where b=b1+b2. The pairs in new

subsets are selected one at a time in lexicographical order and solution combination

method is applied to produce a trial solution.

4.1.5. Solution Combination Method

Solution combination method also known as combination mechanism or crossover

is a common approach used in most evolutionary algorithms to create new solutions. The

solution combination mechanism is a method for sharing information between solutions.

Generally it combines features of two parents to form several offspring with the possibility

that good solutions may reproduce superior ones. In scatter search, the importance of the

combination method is even greater due to its strong impact on the exploration power.

 33

Since population diversity is obtained by creating new solutions, it induces reliability in the

search process.

Figure 4.4. The pseudo code for reference set update method

In our HCSS approach, we use BLX-α operator which is one of the most effective

combination methods developed for real-coded continuous GAs. Herrera et al. (2006) carry

out empirical study of different combination method instances for real coded evolutionary

algorithms and their experiences on the application of solution combination methods show

that the BLX-α operator outperforms the other methods. They have considered BLX-α as a

combination method due to three facts: it includes randomness which can be effective, it

favors the production of diversity in the population of an EA which may improve the

reliability while avoiding premature convergence and finally, BLX-α has a self adaptive

Update Reference Set

POOL* = (x1,.....,xk) , where * denotes that this set is updated after deleting xi used in

reserve list update step

ReserveList* = (y1,.....yb) where * denotes that this set is updated with new best solutions

entered from the POOL

RefSet = (best1,…., bestb, div1,….,divb) where besti represent best solution and divi is the

diverse solution selected to RefSet.

 RefSet = ReserveList* // initial design

 RefSet (best1,…., bestb/2) = ReserveList* (y1,.....yb/2) // 3-tier design

 RefSet (bestb+1,…., bestb) = best b/2 solution of POOL* // 3-tier design

while # of selected divi < = b

for all xi Є POOL*

 for all Refset sol’n

 DistMatrix(xi, RefSet sol’n) = start distance between xi and RefSet sol’n **

DistMatrix(xi, RefSet sol’n) = rank distance between xi and RefSet sol’n
**

 update row minimums for DistMatrix

find xmax with max of row minimums

RefSet (divi) = xmax

delete xmax from POOL*

 end

end
** executed interchangeably

 34

behavior that can generate offspring according to the distributions of parents without any

control parameter.

 I .α I I . α

 xi yi

Figure 4.5. BLX- α combination method

Let us assume that X=(x1,…, xn) and Y=(y1,…, yn) (xi, yi Є R, i=1,….,n) are two real-coded

vectors selected to be combined. BLX-α combination method generates an offspring

Z=(z1,…, zn) where zi is a randomly chosen number of the interval [cmin – I.α, cmax + I. α]

where cmax=max(xi, yi), cmin=min(xi, yi) and I= cmax - cmin and α is a constant value.

Revisiting our solution encoding, any pair of parent solution can easily be defined as X and

Y vectors where xi and yi represents the start times for each job. Also, the Z vector becomes

the new trial solution with zi’s denoting the imaginary start times. An illustration of

solution combination method is given in Appendix C.

Investigations demonstrate that BLX- α with α=0.5 performs better than other

BLX- α operators with any other α value. Herrera et al. (2006) report that BLX-0.5 offers a

useful tool to enhance global search (exploration) capabilities of continuous SS and induce

reliability in the search process. As previously mentioned, our approach is a continuous SS

which directly handles vector of real components and combines these vectors by linear

combinations to create new ones trough successive generations. Therefore, BLX-α

operator is a perfect match for our solution combination method. Additionally in further

stages, we will test dynamically changing α value instead of fixed α attempting to regulate

diversity of newborn individuals.

Offspring created by solution combination method are stored in a transition set

called pre-pool. Pre-pool contains trial solutions with temporary start times that have no

total tardiness value. Hence, a solution improvement method is applied to the pre-pool

solution. This method sorts the jobs with respect to non-decreasing start times and

calculates the fitness value without changing the temporary start times. A screening

 35

mechanism is employed and one of two offspring with same twt value is deleted instantly

from the pre-pool. Finally, filtered trial solutions are arranged in increasing order of their

fitness values and transferred into the main pool. As previously indicated, pool provides a

source for reference set update method. Best and diverse solutions are both selected from

the pool. Therefore, its condition highly affects the structure of the updated reference set

and future offspring. Poor diverse solutions selected continuously from the pool may lead

the reference set far from the desired optimum, and reduced its skill to produce qualified

next generations. On the other hand, a pool lacking diverse solutions may cause a

premature convergence. In absence of diverse individuals, the selected individuals are

more or less the same as their elite counterparts acquired from the same source. So the

offspring generated from these similar parents, most probably result in identical children,

and the search will be trapped at a local optimum without visiting all of the promising

regions potentially contain optimum solutions. In order to overcome these handicaps, we

introduce the parameter pool size that determines the number of trail solutions accepted to

the pool. Three different strategies are investigated for the pool size; an enlarged size pool

having every solution generated including the very poor diverse ones, a default size pool

containing best 100 fitness value trial solutions and a reduced size pool holding best 85

trial solution excluding most of the poor members. These strategies are examined in the

numerical experimentation section and the best one is selected for our HCSS approach.

4.1.6. Variable Neighborhood Search as an Intensification Strategy

The basic concept of neighborhood search method is quite simple. One starts with a

feasible solution to a problem and the solutions within a neighborhood of the current

solution are evaluated. If one of these solutions is better than the current solution, it

becomes the new current solution and its neighborhood is investigated until no

improvement can be found. The current solution obtained finally is the local optimum.

Therefore, neighborhood search is a very focused and has been referred to as exploitation

or intensification method. Different from general neighborhood search methods, VNS

visits several neighborhoods instead of a single one, where typically neighborhoods move

further and further away from the current solution depending on the search depth. In our

HCSS approach, VNS is employed as an intensification strategy that examines the

neighborhood of elite solutions.

 36

Figure 4.6. The pseudo code for solution combination method

The neighborhoods are simply generated by using swap moves. A swap move

exchanges the location of two jobs so that each job is placed in the position previously

occupied by the other. In our real coded solution representation, the start times determine

the sequence of jobs. So having a sequence, SMTWT can be considered as a permutation

problem. In order to create a neighborhood, VNS divides the sequence into several

subsequences where each subsequence has a number of jobs determined by the search

depth. Starting with the first group including the jobs that will be processed earlier, VNS

lists all possible permutations of these jobs. The permutations are found by using swap

Solution Combination Method

Let (f , m) be a pair of solutions and (fi , mi) Є SubSet where SubSet is a set containing all pairs of

RefSet generated by subset generation method. And offs=<st1
c,….stn

c> is the offspring solution.

f = <st1
f,….stn

f>, stj
f
 is the start time of job j for solution f.

m=<st1
m,….stn

m>, stj
m

 is the start time of job j for solution m.

for all (f , m) Є SubSet // total (b2-b)/2 pairs where b is the size of RefSet

 for all j // j = 1,......,n n denotes the # of jobs

 pmin = min(stj
f, stj

m)

 pmax = max(stj
f, stj

m)

 interval = | stj
f - stj

m |

 cmin=pmin-(interval*α) // α is constant

 cmax=pmax+(interval*α)

 offs (st1
c) =cmin+(rand*(cmax-cmin)) // rand is a random number between 0.0 & 1.0

 end

 prePOOL(i) = offs // i = 1,......., (b2-b)/2

end

for all trial sol’n Є prePOOL

 sort jobs in order of non-decreasing start times

 obtain sequence of jobs

 schedule jobs and calculate fitness

 copy trial sol’n with its fitness to POOL

end

delete one of the two solution from POOL with the same fitness

if POOLCap > size(POOL) // POOLCap is the pool size

 POOL =POOL

else

 POOL=POOL (1:POOLCap) // most fit trial soln’s are selected

end

 37

moves. The initial order of jobs within the selected group is replaced with one of its

alternative permutation arrays without changing the remaining sequence. Evaluating all

alternative permutations, the total weighted tardiness of each newly generated sequence is

computed. If one of these performs better than the initial solution sequence then the initial

sequence is revised and VNS moves to the next subsequence.

After all the subsequences are investigated in the same way, if the final sequence

obtained is an improved one, it becomes the new current solution and the search depth

contracts in size, i.e. the subsequence size is reduced by one. Otherwise, the current

solution is kept and the search depth expands in size. Expansion or contraction of the

search depth means a change in the definition of the neighborhood. At the final stage, VNS

examines the elite solutions’ neighborhoods with the largest search depth and depending

on the outcome it either stops or continues to search. If it can not improve the current

fitness value, then the intensification procedure is terminated and the current solution

becomes the local optimum.

Six different VNS approaches are developed to attack the SMTWT problem. The

first issue is related to the neighborhood definition, or the search depth used in

subsequence sizing. In our three step search depth VNS approach, VNS 3-4-5, and VNS 4-

5-6 are employed to seek neighborhoods of treated solutions. VNS 3-4-5 denotes that the

VNS starts to divide the sequence into subsets of three consecutive jobs to generate

alternative solutions and the size is increased to four if no improvement is achieved with

the previous search depth. Final run is performed using subset of five jobs if no

achievement is experienced so far. Similar to VNS 3-4-5, VNS 4-5-6 behaves in a same

way. The only difference is the size of each consecutive search depth utilized in VNS.

The second issue is related to the timing of VNS method and two approaches, Final

VNS (FVNS) and Middle VNS (MVNS), are developed to investigate the best timing for a

neighborhood search. Final VNS as its name suggests, is executed at the end of SS

algorithm. Usually, SS completes its search throughout the solution space and comes up

with a best solution. In this method, the ultimate elite solution is attacked with FVNS and

its neighborhoods are visited in order to obtain an improvement. On the other hand, MVNS

is implemented after a number of iterations defined by a counter. This counter is so called

 38

best solution VNS counter. It starts with the first iteration and counts successive iterations

passed without any improvement of the best known. Best solution VNS counter zeros itself

if SS or VNS finds a better solution for the problem. After exceeding a certain threshold

value the counter triggers VNS switch and middle VNS is executed. At the end of MVNS,

our counter is either set to zero or continues to count depending on the achievement of an

improvement.

Another issue is related to the selection of elite solutions to which MVNS is

applied. MVNS is applied either to best three or to all elite solutions of the reference set.

Employing VNS for all best solutions seems a time consuming operation compared to the

application of its restricted version. In contrast, without investigating all elite solutions,

better outcomes hidden at the neighborhood of these solutions may be missed. Therefore,

the critical discussion, time vs. performance arises, and will be discussed in experimental

section. The details of VNS method is described in Appendix D.

4.1.7. Alpha Strategies

Nomura et al. (2001) have demonstrated theoretically that BLX-α has the ability to

promote diversity in the population of an EA. They state that BLX-α spread the

distribution of chromosomes when α > (√3-1)/2, reducing it otherwise. Nomura et al.

(2001) observe BLX-0.0 makes the variances of the distribution of the chromosomes

decrease, reducing the distribution whereas BLX-0.5 causes the variances of distributions

increase while spreading them. In this way, BLX-α provide useful tool to enhance

exploration capabilities of continuous SS. In our approach, we introduce two strategies; a

static α value of 0.5 and dynamically changing α values, in order to control diversification

mechanism. In the first strategy, α is set to 0.5 which is proven as the best among other

constant values. In the second one, three different α sub-strategies are developed to test the

effects of dynamic α on solution combination method.

In the first dynamic strategy, α value follows a loop where it starts with 2.0, then

drops to 0.5 after certain iteration, increases incrementally at the end of non-improved

iterations and finally turns back to its initial value. The whole changeovers are controlled

by a switch. Alpha switch is a binary parameter which becomes 1 (on) if VNS does not

 39

improve the best-known solution or becomes 0 (off) if otherwise is true. At the end of each

iteration, the condition of alpha switch and α value are updated depending on the

performance of VNS or SS. An improvement makes the switch off and set α value back to

2.0. For the counter case when the alpha switch becomes on; α value drops to 0.5 and

during the further iterations where the condition of the switch is unchanged, it is increased

by 0.005 at the end of each iteration unless a better global optimum is found.

In the second dynamic strategy, α is fixed at 0.5 during the period where alpha

switch is off. When it becomes on, α is increased by 0.005 at the end of every iteration

without any improvement of the best known solution. The value of α returns to its initial

value 0.5 if SS or VNS improve the best known.

In the last dynamic strategy, α is again fixed at 2.0 and drops to 0.5 when the alpha

switch turns into on. But this time, it stays fixed at 0.5 at the end of every iteration while

the alpha switch is still on. The value increased back to 2.0 if an improvement is

succeeded. The new hypothesis behind developing dynamic α values is to control diversity

and broaden the search to different promising zones when the reference set solutions start

to generate less diverse offspring. This hypothesis will be tested in experimental results

section.

4.1.8. Stopping Criterion

Two stopping criteria are investigated for our HCSS algorithm; a fixed iteration

criterion and a dynamic stopping criterion. According to the first condition, the algorithm

stops at the end of a predefined iteration number whereas for the dynamic stopping

criterion, best solution VNS counter is again employed and the algorithm continues to

operate until the counter of non-improving iterations reaches a certain value. The best

value of the fixed iteration number and the threshold value for best solution VNS counter

are determined through preliminary experiments. The experiments related to fix versus

dynamic stopping criteria are discussed in further sections.

 40

Figure 4.7. The pseudo code for variable neighborhood search method

Variable Neighborhood search
Let X be an elite solution of RefSet such that X = <st1, st2,….., stn> where stj is the start time
of job j. and globalBest is the fitness of current solution. Suppose that VNS 3-4-5 is applied to
X where 3-4-5 indicates the three different search depths.

vns_depth = 3
vns_switch=1
sort X in order of increasing start times and obtain the sequence S // S is an array of job #’s
sorted currentSol = S
globalBest = fitness(S)
while vns_switch=1
 if vns_depth=3 (or 4 or 5)
 divide jobs into groups where each group has 3 (or 4 or 5) jobs
 for each groups
 write all permutations of jobs within the group
 for each permutation
 generate neighborhood Si

*
 evaluate fitness (Si

*)
 end
 select Sbest

* with smallest fitness value

 if fitness(Sbest
*) < fitness(S)

 S = Sbest
*

 end
 end
 if vns_depth=3
 if fitness(S) < globalBest
 globalBest= fitness(S)
 sorted currentSol = S
 vns_depth=4;
 vns_switch=1;
 else
 vns_depth=4;
 vns_switch=1;
 end
 elseif vns_depth=4
 if fitness(S) < globalBest
 globalBest= fitness(S)
 sorted currentSol = S
 vns_depth=3;
 vns_switch=1;
 else
 vns_depth=5;
 vns_switch=1;
 end
 else vns_depth=5
 if fitness(S) < globalBest
 globalBest= fitness(S)
 sorted currentSol = S
 vns_depth=3;
 vns_switch=1;
 else
 vns_switch=0;
 end
 end
end
evaluate start times and fitness value of new solution X* using sorted currentSol.

 41

Figure 4.8. The pseudo code for HCSS approach - SMTWT

create initial solution set P

POOL = P

RefSet (best1,…., bestb1) = best b1 solution of the POOL // size(RefSet) =b=b1+b2

RefSet (div1,….,divb2) = most b2 diverse solution of the POOL // selected acc. start or rank dist.

ReserveList=RefSet

bestSol = min{fit(best1), fit(best2),…., fit(bestn)} // bestSol is the best solution found so far

bestSolVNSCount = 0 // best solution VNS counter

newSolutionsSwitch=1

alphaCount=0;

iterationCount=0

while newSolutionsSwitch =1

 generate new subsetsk with subset generation method // (b2-b)/2 subsets generated

 for each subsetk // k=1,…., (b2-b)/2

 apply solution combination method and improvement method

 end

 newSolutionsSwitch =0

 update POOL

 update ReserveList

 apply reference set update method and select b1 best solution

 if min{fit(best1), fit(best2),…., fit(bestb1)} < bestSol

 bestSol = min{fit(best1), fit(best2),…., fit(bestb1)}

 bestSolutionVNSCount=1; // VNS counter

 αCount=0;

 α=α0; // α0 is the initial α value at time zero

 else

 if bestSolutionVNSCount >VNS activation threshold // threshold is a predefined fix value

 αCount= αCount+1 // α counter

 end

 bestSolutionVNSCount= bestSolutionVNSCount+1

 end

 if bestSolutionVNSCount = VNS activation threshold

 for all besti Є RefSet

 apply VNS and obtain sol’n besti
VNS

 if fit (besti
VNS)< fit (besti)

 for all besti Є RefSet

 if besti
VNS Є RefSet then discard besti

VNS else replace besti with besti
VNS

 end

 end

 end

 if min{fit(best1), fit(best2),…., fit(bestb)} < bestSol

 bestSol = min{fit(best1), fit(best2),…., fit(bestn)}

 bestSolutionVNSCount=1;

 αCount=0;

 α=α0; // α0 is the initial α value at time zero

 42

Figure 4.8. The pseudo code for HCSS approach – SMTWT (continues)

4.2. HCSS Approach to PMTT

The parallel machine total tardiness problem (PMTT) can be defined as the

scheduling of n jobs on m continuously available identical parallel machines aiming to

minimize total tardiness. It differs from the single machine total weighted tardiness

problem, PMTT involves both a sequence problem and an allocation problem. A job

should be assigned to the right machine and be processed at the right time on that machine

in order to achieve minimum total tardiness value.

Our HCSS approach is initially designed for SMTWT problem. Its solution

encoding, initial solution generation methods, solution combination methods and VNS are

unique techniques that are built based on the single machine scheduling problem. Hence,

some essential modifications are performed to adapt it to PMTT problems. With the proper

adjustments, refashioned SS covers all the necessities required to search the more complex

solution space of PMTT and provide feasible elite solutions. These minor fine-tunings do

Continued

 else

 bestSolutionVNSCount= bestSolutionVNSCount+1

 αCount= αCount+1

 end

 end

 apply distance measurement method // start or rank distance

 select diverse solutions from POOL and add them to RefSet

 if αCount>0

 update α // acc. to one of the alpha strategies

 end

 iterationCount= iterationCount+1

 if iterationCount < = stopping threshold // fixed iteration criterion **

 newSolutionsSwitch =1

 end

 if bestSolutionVNSCount < = stopping threshold // dynamic stopping criterion **

 newSolutionsSwitch =1

 end

end

** executed interchangeably

 43

not affect the basic idea and the methodology behind HCSS approach. In the forthcoming

sections, instead of considering all the steps of algorithm, we only focus on the altered

components of our HCSS algorithm.

4.2.1. Solution Encoding Scheme

In our real encoded vector representation, a solution string contains only the start

times of jobs and the fitness value. It is a valid encoding for a single machine problem,

because the sorted start times define the required dispatching order on a single machine

and the fitness can easily be evaluated accordingly. Considering the PMTT problem, the

same representation may state which job is processed earlier but it implies no information

about on which machine the job will be processed. Therefore, the solution encoding is

changed by inserting additional entities involving the machine indices. For an n job parallel

machine problem, our vector becomes < 2n+1> array where first n entities denote the start

times, second n entities denote the machine indices and last entity denotes the total

tardiness value. As shown in Figure 4.9, job #1 is processed on machine #1 at time 214.81,

job # j is on machine #2 at time 257.89 and finally job #n is processed on machine #1 at

83.42.

JOB # 1 JOB # 2 JOB # J JOB # N JOB # 1 JOB # 2 JOB # J JOB # N FIT.

214.81 128.98 257.89 83.42 1 1 2 1 10.38

Figure 4.9. Solution encoding for PMTT problem

In order to evaluate total tardiness value of a solution, the jobs are grouped with

respect to their machine numbers. Then, the jobs on the same machine are sequenced in an

increasing order of their start times. Having both of the allocation and the sequence, the

fitness value can be easily computed.

4.2.2. Initial Solution Generation Method

Three different initial solution generation methods are developed for the PMTT

problem, namely EFT method, EDD method and multi-rule method. All of these methods

take their names from the dispatching rules used to schedule jobs.

 44

In Early Finish Time (EFT) Method, each job is assigned to the machine which can

complete it earlier. Initially, a temporary start time is generated for each job using the

formula;

stj = rj + (dj – rj) x rand (4.5)

where stj, rj, and dj denotes start time, ready time and due date of job j, respectively and

rand is a random number between 0 and 1. Then these start times are sorted in order of

non-decreasing times and a sequence is obtained. Beginning with the first job in the

sequence, for each job; its completion times on each machine is computed and it is

dispatched to the machine with the earliest completion time. Finally, the total tardiness

value is calculated and our initial trial solution becomes ready with its start times, machine

numbers and fitness value.

Figure 4.10. The pseudo code for EFT initial solution generation method

In Earliest Due Date (EDD) Method, initially jobs are assigned to the machines

randomly. Jobs are then sorted according to their due dates. Job with an earlier due date

gets the precedence to be processed earlier on its machine assigned. By dispatching jobs

randomly to the machines, we convert the parallel machine problem into m independent

Start with P = Ø, where P denotes initial population and x denotes an initial trial sol’n Є P.

while size(P) < Psize

 for j = 1,…..,n // n denotes the # of jobs

 stj = rtj + (dtj – rtj) * rand // stj -start time, dtj- due date, rtj- ready time of job j

 end

 sort j’s in order of non-decreasing stj and obtain a sequence q contain sorted j’s

 for k =1,…..,n

 compute completion time of q(k) on each machinei // i =1,…., m m is the # of machines

 select the machinei with earliest finish time

 assign jobq(k) to selected machinei

 update start, tardiness, and completion time

 end

 sum all tardiness and calculate fitness

 x’ = [start times of jobj + fitness] // j=1,…..,n

 if fit(x’) ≠ any of fit (x), x Є P the x’ is added to P, x’→x, otherwise discard x’

 P=P U x

end

 45

single machine problems, where m denotes the number of machines, and EDD rule is used

to sequence jobs. The total tardiness and start times values of jobs are found separately for

each machine and then these data are collected together to form the initial trial solution.

Multi-Rule Method is an advanced version of EDD Method. In addition to EDD

rule, SPT and XR&M (Morton and Pentico 1993) rules are also utilized to order jobs on a

given machine. EDD rule, as previously mentioned, arranges jobs according to their due

dates. Shortest Process Time (SPT) Method ranks the jobs in an order of non-decreasing

process times and finally XR&M is a modified version of R&M priority rule which is

discussed in single machine problem. R&M developed for SMTWT problem, uses weights

to evaluate twt value and all jobs are ready at time zero. However, in PMTT problem, there

are no related weights and the jobs have distinct ready and set-up times. Therefore

necessary adjustments are conducted to adapt R&M formulas to PMTT problem. In first

place, the slack time S at time t is found by;

Sj = dj – rj – pj - t (4.6)

where subscript j indicates the job j and t indicates the completion time of the job j-1 on the

same machine. The idle priority rule for a given job j is evaluated using the formulas;

(πj)idle = πj [1 – B (rj – t)+ / pav] (4.7)

where rj is ready time of job j, pav is the average processing time of all jobs assigned to the

same machine and

πj = (1 / pj)[exp{-(Sj)
+ / pav}] (4.8)

B = 1.3 + ρ (4.9)

ρ is the average utilization of the machine which is found by

ρ = total process time assigned / current time (4.10)

At time zero, (πj)idle value of all jobs are evaluated and the job with the highest

(πj)idle is the first to be scheduled. Afterward, according to the completion time of selected

 46

job, the priorities of remaining jobs are updated and a new job is selected depends on these

values. This iterative process continues until all jobs are sequenced.

Since we assign jobs to machines randomly, the PMTT is transformed into single

machine problems aiming to permute jobs in order to minimize total tardiness. Dealing

with these single machine problems, three dispatching rules; EDD, SPT and XR&M are

applied to same machine respectively. The obtained sequences with resulting fitness values

are compared and the sequence with the smallest fitness value is chosen for the considered

machine. For example, in a two machine problem, the three rules are applied for both

machine #1 and machine #2. For the first machine, EDD performs better and for the

second, XR&M outperforms the others. Then our final trial solution in constructed by

using the EDD sequence for machine #1 and XR&M sequence for machine #2. The total

fitness is the sum of tardiness resulted from EDD and XR&M dispatching. The

performances and diversities of EFT, EDD and multi-rule generated initial solution sets are

judged in experimental results section.

4.2.3. Solution Combination Method

In PMTT, a modified two-phase BLX-α operator is employed to generate new trial

solutions. During the first phase, the start times of the offspring are generated as performed

in the SMTWT. The requirement of second phase arises when a machine number is needed

to be assigned for each job. The two parents have the data of appointed machine numbers

that is stored in their chromosomes, which should be transferred somehow into newly

generated offspring. Second phase uses a conditional random assignment procedure to

select appropriate machine for each job by looking at the genetic heritage of parents. If a

job is processed on the same machine in both of the parent solutions then this machine

processes the corresponding job of the offspring. If the two machines are different in the

parent solutions for the same jobs, then the job is assigned to a machine that is randomly

selected considering the machines of the parent solutions. For example, for job j, it is

processed on machine #1 in one solution and on machine #2 in another solution.

Considering the offspring generated from these solutions, the machine for job j will be

either machine #1 or machine #2. This selection is performed randomly. After finding start

 47

times and assigning machines for each job, the total tardiness is evaluated and the new trial

solution is created.

Figure 4.11. The pseudo code for multi-rule initial solution generation method

4.2.4. Variable Neighborhood Search

VNS applied to SMTWT problem is quite simple. It concerns the sequence of jobs

on a single machine. So, the neighborhoods of a current solution can easily be generated by

swap moves that provide different permutations. Consequently, the final fitness value is

updated by evaluating these neighborhood sequences. On the other hand, PMTT problem

Start with P = Ø, where P denotes initial population and x denotes an initial trial sol’n Є P.

while size(P) < Psize

 randomly assigned each jobj to a machine mchi // i=1,...., # of machines (m), j=1,....,# of jobs (n)

 for each mchi

 sort all jobj Є mchi according to EDD // Earliest due date

 schedule all jobj on mchi and evaluate start times and fitness value

 store st and fitness value in a string xEDD = [st1,….,stn, fit] // stj is start time for job j

 sort jobj Є mchi according to SPT // Shortest process time

 schedule all jobj on mchi and evaluate start times and fitness value

 store start times and fitness value in a string xSPT = [st1,….,stn, fit] // xSPT is partial schedule

 remain jobs = all jobj Є mchi

 while size(remain jobs) ≠ 0

 for each jobj Є remain jobs

 update slack time, πj, ρ // πj is the priority of jobj , ρ is avg. mach. util.

 calculate (πj)idle // (πj)idle is the idle priority

 end

 select jobj with the max (πj)idle

 calculate its start time, completion time and tardiness on mchi

 delete jobj from remain jobs

 end

 sum all tardiness and obtain fitness

 store start times and fitness value in a string xXRM = [st1,….,stn, fit] // xXRM is partial schedule

 select schedulebest with min fitness // xEDD, xSPT or xXRM is selected as schedulebest

 end

 x’ = [(schedulebest)mch1 + (schedulebest)mch2 +…….+(schedulebest)mchm]

 if fit(x’) ≠ any of fit (x), x Є P the x’ is added to P x’→x, otherwise discard x’

 P=P U x

end

 48

consists of both allocation and scheduling of n jobs on parallel machines. Therefore, in

order to search the neighborhoods of a current solution, VNS should generate candidate

solutions by applying both machine interchanges and swap moves. For this reason, three

different type VNS approaches are developed and implemented to elite solutions one after

other at times determined by best solution VNS counter.

In the first type VNS (type #1) technique, the sequence of a selected elite solution is

recorded and kept fixed during the entire neighborhood search. Then this sequence is

divided into subsequences containing same number of jobs defined by VNS depth. Starting

with the first subsequence, all possible machine assignments are listed for this group’s

jobs. As an example, considering a two machine problem with VNS depth equals to three,

the all possible assignments can be stated as (111), (112), (121), (211), (221), (122), (212)

and (222), where (112) denotes that the first job of the selected group is processed at

machine #1, and the remaining jobs are at machine #2. Later, all these alternative

assignments for first three jobs are investigated without changing the initial sequences and

other machine assignments for the jobs stay out of this group. The alternative with the

smallest fitness is selected and the current machine assignment is updated accordingly.

When all the groups are treated in the same way and the assignments are revised, the total

tardiness value of the neighborhood solution is compared with the current solution. If there

is an improvement, neighborhood solution becomes the new current solution and VNS

depth is decreased one level. Otherwise, the depth is increased one level and VNS repeat

the previous steps for the new neighborhoods of the current solutions. See Appendix E.

In the second (type #2) and third type (type #3) VNS techniques, the methodology

employed to construct neighborhood of a current solution is exactly the same that is used

in SMTWT. Without considering machine allocations, the initial sequence of an elite

solution is divided into subsequences and each subsequence involves its permutation

alternatives. The neighborhoods are generated using these permutations that alter the initial

sequence. The only difference arises at the evaluation step of the fitness value. In SMTWT

problem, the order of jobs contains all the data need to calculate twt value. On the other

hand, only a sequence of job indices means nothing for a parallel machine scheduling

problem because it does not contain any information about machine assignments.

 49

Therefore, two simple dispatching rules are utilized to cover required machine indices for

each job.

The type #2 VNS technique employs an early finish time rule which starts with the

initial job of the defined array and computes its completion times on each machine

separately. These values are then compared and the machine with the earlier completion

time is selected. After assigning the first job, the next one is dispatched to a machine by

repeating the same computations. This scheduling continues until all jobs have a machine

to be processed on. And finally, the total tardiness is evaluated and the neighborhood

solution is generated according to the obtained job sequence and machine allocations. See

Appendix E.

The type #3 VNS technique uses a recursive rule that operates in a one-way track

fashion over branch alternatives. In this method, start times play the key role to decide a

machine for a given job. Jobs are allocated according to their positions stated by the sorted

sequence. At each step of allocation, a start time corresponding to a job is compared with

the finish time of the machines where the finish time denotes the completion time of

previously assigned job on that machine. If the start time of a selected job indicates an

instant that is before the both machine finish their duties, then the selected job is assigned

to a machine with the earliest completion time. Else if, the start time is earlier than one

finish time but not the other, then the job corresponding to that start time is scheduled on

the earlier machine. Finally, if there is a slack time between the finish time and the start

time for both machines, then the job can be assigned any of the machines. Thus, recursive

rule constructs two branches at that node which contain each assignment alternatives.

When all the jobs are dispatched and their alternative branches are built, the tardiness value

at each node is evaluated. Starting from the first node and moving forward to the last node

through generated branches, total tardiness value is calculated. In addition to that, this one-

way track move provides the required assignment sequence for the neighborhood solution.

The assignment with the smallest total tardiness becomes the fitness of sequence that is

generated initially as the candidate solution of the initial solution. See Appendix E.

The other features of VNS that are not mentioned in this section, is same as in

SMTWT problem. Different from the single machine problem, our best solution VNS

 50

counter triggers three different type VNS techniques. It initially triggers first type VNS

technique which generates neighborhoods based on machine interchanges for a fixed

sequence of jobs. If the current solution can not be improved and counter reaches to the

second threshold, it executes the second type VNS where the evaluations of neighborhoods

are done by using EFT rule. Depending on the presence of an improvement, counter either

implements the first type VNS or the third type VNS technique. If HCSS or previous VNS

attempts fails to upgrade the best known solution, third type VNS is executed to search

new neighborhoods attentively while considering all schedule alternatives related to them.

Third type VNS technique is an intensive search method and it becomes highly time-

consuming when the number of jobs is increased. Therefore, it is applied at the final stage

like a last bullet to the target. If the bullet hits the target, the counter reset itself and the

search starts from the beginning with a superior solution. Otherwise, HCSS continues for a

fixed iteration and stops if no improvement is achieved. The performance comparison

between three type VNS and single type VNS technique used in SMTWT problem will be

performed in experimental result section and the best method will be selected for our final

HCSS approach.

Figure 4.12. The pseudo code for HCSS approach – PMTT

create initial solution set P

POOL = P

Select b1 best solutions and b2 diverse solutions of RefSet from the POOL

ReserveList=RefSet

bestSol = min fitness value RefSet solution

bestSolVNSCount = 0

newSolutionsSwitch=1

alphaCount=0;

iterationCount=0

while newSolutionsSwitch =1

 generate new subsetsk with subset generation method

 for each subsetk

 apply solution combination method and improvement method

 end

 newSolutionsSwitch =0

 update POOL

 update ReserveList

 apply reference set update method and select b1 best solution

 update bestSol, bestSolutionVNSCount, αCount, α

 // (activation threshold of type #1 MVNS < type #2 MVNS < type #3 MVNS)

Continues

 51

Figure 4.12. The pseudo code for HCSS approach – PMTT continues

 if bestSolutionVNSCount =activation threshold for type #1 MVNS

 for all besti Є RefSet

 apply type #1 MVNS and obtain sol’n besti
VNS

 update RefSet with besti
VNS if necessary

 end

 update bestSol, bestSolutionVNSCount, αCount, α

 end

if bestSolutionVNSCount =activation threshold for type #2 MVNS

 for all besti Є RefSet

 apply type #2 MVNS and obtain sol’n besti
VNS

 update RefSet with besti
VNS if necessary

 end

 update bestSol, bestSolutionVNSCount, αCount, α

 end

if bestSolutionVNSCount =activation threshold for type #3 MVNS

 for all besti Є RefSet

 apply type #3 MVNS and obtain sol’n besti
VNS

 update RefSet with besti
VNS if necessary

 end

 update bestSol, bestSolutionVNSCount, αCount, α

 end

 apply distance measurement method

 select diverse solutions from POOL and add them to RefSet

 if αCount>0

 update α =0.5+(∆* α Count)

 end

if bestSolutionVNSCount < = stopping threshold // dynamic stopping criterion

 newSolutionsSwitch =1

 end

end

 52

5. NUMERICAL STUDIES

This chapter provides the details of experimental procedure and different strategies

applied to tardiness related scheduling problem sets together with the numerical results.

The algorithm is implemented on MATLAB® (MathWorks, 2006) which is a high-

performance language for technical computing. The name MATLAB® stands for matrix

laboratory. It is an interactive system whose basic data element is an array that does not

require dimensioning. This allows solving many technical computing problems, especially

those with matrix and vector formulations, in a fraction of the time it would take to write a

program in a scalar non-interactive language such as C or Fortran. The solution

representation of our HCSS approach consists of vectors and arrays. Therefore, the basic

features of MATLAB® provides the necessary computing language infrastructure for our

meta-heuristic approach and let the incorporation of further strategies composed in

different compilers within MATLAB®. Both parallel and single machine total

tardiness/total weighted tardiness problems in their most generic forms, i.e. with distinct

ready times, processing times, due dates and sequence dependent setup times are imported

into the software as matrices and can be processed by unique codes special to matrix

operations.

The several strategies developed for HCSS approach are tested via MATLAB® and

the results are reported in the following sections. The solution strategy to be employed for

each problem can be specified by the user just selecting a combination of methods

implemented for parallel or single machine total tardiness/total weighted tardiness

problems separately. Extensive experimentation is performed on the HCSS approach

developed in this thesis. The experiments are conducted on a AMD Athlon 64 – 1.81 GHz

CPU with 512 MB RAM.

5.1. Problem Set for SMTWT

The problem set used for experimentation consists of scheduling problems with 40,

50, 100-jobs, which is developed and tested by Crauwels et al.(1998). A total of 125 test

instances are available for each problem size n=40, n=50 and n=100. The instances were

 53

randomly generated as follows: For each job j (j=1,...,n), an integer processing time pj was

generated from the uniform distribution [1,100] and integer processing weight wj was

generated from the uniform distribution [1,10]. Instance classes of varying hardness were

generated by using different uniform distributions for generating the due dates. For a given

relative range of due dates, RDD (RDD=0.2, 0.4, 0.6, 0.8, 1.0) and a given average

tardiness factor TF (TF=0.2, 0.4, 0.6, 0.8, 1.0), an integer due date dj for each job j was

randomly generated from the uniform distribution [P(1-TF-RDD/2), P(1-TF+RDD/2)],

where P = Σj pj for j (j=1,...,n). Five instances were generated for each of the 25 pairs of

values of RDD and TF, yielding 125 instances for each value of n. These instances are

available in the OR library run by (Beasley, 2006), which is a collection of test data sets

for a variety of Operation Research problems.

 Crauwels et al. (1998) develop a Branch and Bound algorithm to attack n=40 and

n=50 instances. They manage to solve 124 out of the 125 instances for n=40 and 103

problems out of 125 instances for n=50 with a time limit of two minutes for each instance

whereas n=100 instances were abandoned due to the anticipation of extremely high

computational times. The unsolved 40-job problem is number 19, and 50-job problems 11,

12, 14, 19, 36, 44, 66, 87, 88 and 111 remain unsolved. The optimal solutions for 124 of

the 40-jobs problem instances and 115 of the 50-job instances are given in the OR library.

As for, 100-jobs problem instances, the best known solution values reported by Crauwels

et al. (1998) and Congram et al. (2002) are available. Since, the solutions not known to

optimality have not been improved further with respect to their best-known values, there is

a strong evidence that they are actually the optimal solutions. Appendix F.1 presents the

optimal and best known solutions for 40, 50 and 100-jobs problem instances as reported in

the OR library.

 5.2. Problem Set for PMTT

 The problem set used for experimentation consists of parallel machine scheduling

problems of 40 and 60 jobs, developed and tested by Sivrikaya-Şerifoğlu and Ulusoy

(1999). A total of 20 test instances are available for each problem size, i.e. n = 40, m = 2

and 4 and n = 60, m= 2 and 4 where n denotes the number of jobs and m denotes the

number of machines.

 54

The instances were randomly generated as follows. It has been assumed that

machines belong to one of two different types, which have the same characteristics except

that they have different processing times. Type II machines represent an older technology.

The processing time of a job on a Type II machine is 10-20 per cent greater than its

processing time on a Type I machine. Similarly, setup times on a Type II machine are 20-

40 per cent larger than the corresponding setup times on a Type I machine. Processing

times of job j on a Type I machine, pj
I follow the uniform distribution U [4,20]. To

generate the processing time of job j on Type II machine, which is denoted as pj
II, a

multiplier is chosen randomly from [1.10, 1.20] and is applied to the processing time of job

j on the Type I machine.

 Setup times on Type I machines, cited as aI, are taken to be uniformly distributed

with U [1, Amax] where two levels of Amax are utilized in this study. Again a multiplier

chosen from [1.20 1.40] is employed to compute the setup times on Type II machine.

Ready times are assumed to follow the uniform distribution U [0, Rmax], where Rmax is the

maximum ready time. Here, Rmax = ¦(pavg
II
+ aavg

II
)/(N/M-1)¦ where ¦x¦ is the smallest

integer greater than or equal to x, and pavg
II
 , aavg

II are the average processing time and

average setup time on machine Type II respectively. The due date of job j is taken to be the

sum of its ready time, processing time on the Type II machine, maximum time to setup a

Type II machine for the processing of job j and a slack value. The slack value S is defined

as the sum of mean values of processing and setup times on a Type II machine:

S = pavg
II+ aavg

II. (5.1)

Due dates are computed according to the formula:

dj = rj + maxi aij
II
 + pij

II + S (5.2)

 Bilge et al. (2004) apply a deterministic TS algorithm and obtain high quality

solutions with respect to earlier results from the literature for the same problem set.

However, Anghinolfi and Paolucci (2006) represent a hybrid meta-heuristic approach that

integrates TS, SA and VNS and achieve some superior results than the ones found by Bilge

et al. Both sets of best known solutions cited by the authors are given in Appendix F.2.

 55

5.3. The Experimental Procedure for the HCSS Approach

 The performance measure used for this study is the average percentage of deviation

from the best value known in the literature. Hence, in all the experimental results

presented in the figures, the percentage deviation for an instance is calculated by using the

formula:

 per cent dev = [(Best – Best-known to literature)/ Best-known to literature] x 100 (5.3)

where Best-known to literature is the best known solution reported in OR library for the

problem set and Best is the best solution obtained by the HCSS. Then the average of total

percentage deviations for a problem set is computed as

 avg. per cent dev. = Σi (per cent dev.)i / total number of instance (5.4)

where i denotes the number of an instance. In each experimentation phase, only aggregated

results are used for decision-making purposes. Therefore, only those aggregate forms of

results are presented for the entire set of problems, rather than presenting individual results

for each instance. The performance evaluation is based on the average per cent deviation

from the optimal (or best known value to the literature) of all the instances of considered

problem sets. Individual superior results for some instances do not affect the final decision.

In other words, each candidate strategy is evaluated in terms of aggregate performance

quality instead of individual success per problem instance.

 For SMTWT problems, mostly 50-job instances are considered. While making a

crucial decision concerned with the methodology of HCSS approach, the results found for

50-job instances are supported by either 40-job, 100-job or both sets. Hence, more reliable

decisions can be made. This is because in some cases the difference between avg. per cent

deviations of two compared candidate methods is negligible when 50-job instances are

taken into account. On the other hand, the difference can become more significant for 100-

job problem set. Based on this argument, instead of evaluating a strategy with respect to

single set of results, more data are considered to arrive at a more robust final form of our

approach.

 56

 For PMTT problems, two-machine problems are usually harder than their four-

machine counterpart. For this reason, the experimentation is conducted with 40-job two-

machine instances. Hence, in the experimentation phase, only 40-job two-machine problem

average per cent deviation results are reported and the decisions are made after comparing

these results. The final form of the algorithm obtained in this manner is then employed for

the remaining problem sets for final results.

 Since the total number of strategies to be tested is very large, a sequential

experimentation procedure is adopted. First, the HCSS approach is implemented in its most

elementary form, which we call the basic algorithm. Then this basic algorithm is developed

into its final form by fixing strategies according to the experimentation results. At each

experiment, we test one or more parameters/methods and select one (or sometimes more)

level that perform at least as good as the others for each instance, and go on with this new

form of the algorithm.

 Before examining experimental results for SMTWT, the components of our basic

HCSS model are introduced briefly. In our basic model, the initial solutions are generated

randomly (rand). Initial solution set size is considered as 150 which is consistent with the

values given in Herrera et al (2006) and Laguna et al (2006). Hence, the size of the set will

not be fine-tuned and kept constant during entire experimentation. The reference set

consists of 10 high quality and 10 diverse solutions, as suggested by Laguna et al. (2006).

Best solutions are selected from the reserve list (2-tier) whereas diverse solutions are

chosen according to their start time distances (start) to the reference set as described in

Section 4.1.3. The solution combination method employs BLX-α operator where α equals

to 0.5 (static) and the generated trial solutions are stored in the pool which has a capacity

defined as pool size. The initial pool size is considered as 100, which means 90 of the

generated trial solutions are not accepted to the pool depending on their poor fitness

values. In our elementary HCSS model, no intensification strategy such as VNS is

performed; different types of VNS methods will be introduced in further sections of

experimentation. Finally, the stopping criterion in the basic algorithm is set to 150

iterations. The used components and default parameter values of our basic HCSS algorithm

is presented in Table 5.1. Until the otherwise is stated, these components and parameters

are implemented in our algorithm at the experimentation stage.

 57

Table 5.1. Basic HCSS algorithm

 BASIC HCSS

REFERENCE SET

UPDATE METHOD 2-tier + start

of BEST 10

of DIVERSE 10

INITIAL SOLUTION SET

GENERATION METHOD RANDOM

of INITIAL SOL's 150

POOL

SIZE 100

SOLUTION COMBINATION METHOD

ALPHA STRATEGY STATIC

ALPHA VALUE 0.5

INTENSIFICATION STRATEGY

TYPE OF VNS NO

SEARCH DEPTH X

STOPPING CRITERION

TYPE FIX

of ITERATIONS 150

 For every experiment conducted, a figure and a table are given together to report

the results of this experiment and to summarize the components of HCSS which is

implemented in the experiment. The table is divided into columns and each column

represents a component of our model. An illustration of our basic model is given in Table

5.2.

Table 5.2. Components of basic HCSS

INISOL REFSET DISTANCE VNS DEPTH POOL ALPHA STOP

RAND 2-TIER START NO X 100 0.5 150

where INISOL denotes the initial solution generation method, REFSET denotes reference

set update method, DISTANCE denotes distance measurement method, VNS and DEPTH

denote intensification strategy and its search depth, POOL denotes pool size, ALPHA

denotes α value used in solution combination method and finally STOP defines the

stopping criterion. Each time, when a new alternative method or parameter value is

introduced, it is symbolized with abbreviations which are referred in brackets. This

representation provides a visual simplicity while presenting the internal dynamics of the

 58

algorithm. Considering the figures, the x-axis contains the compared methods or strategies,

y-axis defines problem set and z-axis states the average per cent deviations obtained from

all instances.

5.4. Numerical Experimentation for SMTWT

 As the first step of experimentation, two diverse solution selection methods and

three pool sizes are tested by taking all of their combinations. Considering 40-job

instances, restricted pool sizes perform better regardless of the distance measurement

method. As shown in Figure 5.1, start distance measure with pool size 100 (start 100) and

pool size 85 (start 85) result in 2.11 and 1.62 average per cent deviation values

respectively, which are both smaller than the value 2.22 obtained by using start distance

measure with no pool restriction (start all). The same situation can be observed between

rank distance measure and pool size parameter (rank 100, rank 85). Again, two restricted

pool sizes come up with superior performance values. This is expected since; without any

restriction, too diverse poor quality solutions are accepted to pool and selected as an

element of reference set by one of distance measurement methods. Therefore, a poorly

constructed reference set generates weak offspring that do not yield satisfactory results.

Investigating all problem sets, rank 100, start 100 and start 85 are considered as the most

promising distance measure-pool size combinations.

 The next step is to determine search depth for our intensification strategy (VNS).

Middle VNS (MVNS) is employed with basic scatter search and two different search

depths; 3-4-5 and 4-5-6 are tested for 50-job instances as described in Section 4.1.6. From

the Figure 5.2, it can be seen that MVNS 4-5-6 outperforms MVNS 3-4-5 regardless of the

distance measurement method and pool size combination. Although it is not shown here,

two compared search depths are chosen among a wide range of depths varying from 2-3-4

to 6-7-8. The depth 3-4-5 is the best performed one among the fast VNS methods, whereas

depth 4-5-6 is the fastest when VNS with high quality outcomes are considered. The

comparison between these two states that MVNS 4-5-6 has a remarkable superiority over

 59

Table 5.3. HCSS for SMTWT - pool sizes and distance measurement methods

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START all, 100, 85 NO X 0.5 150

RAND 2-TIER RANK all, 100, 85 NO X 0.5 150

start
all

rank all

start
100

rank 100

start
85

rank 85

40 jobs

50 jobs

100 jobs

6,31 6,26

5,43 5,63

4,66

6,18

3,19
3,15 2,99

2,19 2,77 2,99

2
,2

2 3
,1

2

2
,1

1

2
,2

5

1
,6

2 2
,6

7

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

A
V

G
.
D

E
V

.
Rank vs. Start Distance & POOL Size 100 vs. 85

Figure 5.1. Experimental results for pool sizes and distance measurement methods

its faster alternative. If the difference were not so significant, the faster VNS depth 3-4-5

could have been preferred. Hence, during our remaining experimentation, search depth 4-

5-6 is used for our variable neighborhood search.

 After deciding the search depth, two different VNS strategies are applied to 50-job

100-job problem sets. In the first strategy, a final VNS is executed only on the best solution

found so far as soon as the stopping criterion – 150 iterations is met whereas for the second

strategy a middle VNS is implemented when the non-improving iterations counter reaches

a certain threshold. This threshold is defined as 30 consecutive non-improving iterations.

Considering 50-job instances, there can be observed a clear improvement after applying an

intensification strategy; but no clear selection can be made between FVNS and MVNS.

This is because; the performances shown in Figure 5.3 are close to each other. In order to

avoid an improper conclusion, a more challenging problem set consisting of 100-jobs is

 60

Table 5.4. HCSS for SMTWT - comparison of search depths

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START 85 MVNS 3-4-5 0.5 150

RAND 2-TIER RANK 100 MVNS 3-4-5 0.5 150

RAND 2-TIER START 85 MVNS 4-5-6 0.5 150

RAND 2-TIER RANK 100 MVNS 4-5-6 0.5 150

MVNS 3-4-5

rank 100
MVNS 4-5-6

rank 100
MVNS 3-4-5

start 85
MVNS 4-5-6

start 85

50 jobs

2,83

1,69

2,49

1,71

0,00

0,50

1,00

1,50

2,00

2,50

3,00

A
V

G
.

D
E

V
.

MVNS 3-4-5 vs. MVNS 4-5-6

Figure 5.2. Fine-tuning for search depth parameter

attacked by MVNS can be clearly proven when combined with both rank 100 and start 85.

Hence, MVNS 4-5-6 is selected as the intensification strategy for HCSS approach.

Table 5.5. HCSS for SMTWT - comparison of different intensification strategies

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START 85 FVNS 4-5-6 0.5 150

RAND 2-TIER RANK 100 FVNS 4-5-6 0.5 150

RAND 2-TIER START 85 MVNS 4-5-6 0.5 150

RAND 2-TIER RANK 100 MVNS 4-5-6 0.5 150

RAND 2-TIER START 85 NO X 0.5 150

RAND 2-TIER RANK 100 NO X 0.5 150

 61

 NO VNS ra
nk 100

FVNS ra
nk 100

MVNS ra
nk 100

 NO VNS start 8
5

FVNS start 8
5

MVNS start 8
5

50 jobs
100 jobs

5,43

4,27

3,67

4,66

3,91

3,16
2,19

1,74
1,69

2,77

1,74
1,71

0,00

1,00

2,00

3,00

4,00

5,00

6,00

A
V

G
.

D
E

V
.

FINAL VNS 4-5-6 vs. MIDDLE VNS 4-5-6

Figure 5.3. Effects of intensification strategies

 So far, the initial population used in HCSS is randomly generated. From now on,

we discuss the performance of two new population generations approaches. For the

experiments performed at this stage, all the new population are formed by either seeding

the randomly generated population with some selected good solutions found at the end of

various list scheduling heuristic (SEED-10) or by seeding the random population with all

good solutions obtained by same heuristic (SEED-ALL). The list scheduling heuristics

employed are EDD, SPT, WSPT and R&M +. A single seed solution is provided from each

of the heuristics except R&M +. R&M + provides up to 36 different elite solutions by

varying k value. Either all of these solutions are accepted to initial solution set or best 10 of

them are selected as described in Section 4.1.2.

Based on the results presented in Figure 5.4, seeded initial solution set containing

best 10 R&M solution with pool size 85 performs better for both 40-job and 100-job

instances. Focusing on 40-job problem set, seeded initial solution set SEED-ALL do not

yield satisfactory result as compared to SEED-10 or randomly generated population . The

main reason behind this situation is the selection of almost identical individuals to the

initial population. (Trial solutions with different start times but same fitness value can be

observed in the initial population at the same time; because the selection procedure only

filters the identical individuals.) Similar individuals later dominate the reference set and

 62

directly affect the next generations formed from their linear combinations. Hence,

insufficient diversity in the population avoids HCSS to explore different promising regions

and the search cycles around the same local optima.

Table 5.6. HCSS for SMTWT - comparison of different initial solution generation methods

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START 100,85 MVNS 4-5-6 0.5 150

SEED-ALL 2-TIER START 100,85 MVNS 4-5-6 0.5 150

SEED-10 2-TIER START 100,85 MVNS 4-5-6 0.5 150

RAND start
100

SEED-A
LL start

100

SEED-10 start
100

RAND start
85

SEED-A
LL start

85

SEED-10 start
85

40 jobs

100 jobs

3,67

2,71 2,81
3,16

2,51

1,83
1,44 1,52

1,09 1,17 1,27

0,41
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

A
V

G
.

D
E

V
.

RANDOM INISOL vs. SEEDED INISOL

Figure 5.4. Effect of initial solution generation methods

 A screening mechanism is developed to overcome the diversity problem in the

initial population. This mechanism removes one of two trial solution with the same

tardiness value. By doing so, it is guaranteed that every screened solution has a different

sequence of jobs which reflects an important indicator of diversified population. In the

experimentation, screening is only applied to seeded initial solution set with best 10 R&M

solution (SEED-SCR) and the results are summarized in Figure 5.5. It is obvious that

screening improves both diversity and quality of initial population; thus affects the

efficiency of search.

Previously, MVNS is applied only to first three best solutions stored in the

reference set. These best solutions are directly transferred from the reserve list where best

 63

Table 5.7. HCSS for SMTWT - effect of screening mechanism

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START 100,85 MVNS 4-5-6 0.5 150

SEED-10 2-TIER START 100,85 MVNS 4-5-6 0.5 150

SEED-SCR 2-TIER START 100,85 MVNS 4-5-6 0.5 150

RAND start
100

SEED-10 start
100

SEED-S
CR start

100

RAND start
85

SEED-10 s
tart

85

SEED-S
CR start

85

50 jobs

100 jobs

3,67

2,81

1,58

3,16

1,83

1,35
1,38

1,07

0,53

1,44

0,49 0,44
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

A
V

G
.
D

E
V

.
SEEDED INISOL vs. SCREENED SEEDED INISOL

Figure 5.5. Effect of screening mechanism

found solutions are kept. Without considering other elite solutions, our intensification

strategy becomes a partial exploitation mechanism that neglect promising neighborhoods

of other best solutions. As mentioned before, the performance of a solution is evaluated by

only looking at its fitness value. A solution, which is considered as poor, can be converted

in to a better solution by just swapping two jobs’ positions. Therefore every solution is

assumed to have a potential local optimum hidden at its neighborhood. Based on this

assumption we developed a comprehensive MVNS and explore the neighborhood of all

elite solutions contained in the reference set (MVNS ALL). The experimentation is

performed with a randomly generated initial solution set and the results for 40-job and 50-

job instances are presented in Figure 5.6 MVNS ALL with start 85 decreases average per

cent deviation from 1.17 to 0.30 for 40-job problem and from 1.71 to 0.47 for 50-job

instances. This is a remarkable improvement. Hence, new MVNS method is adapted as our

new intensification strategy.

 64

Table 5.8. HCSS for SMTWT - comparison of MNVS

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

RAND 2-TIER START 100,85 MVNS 4-5-6 0.5 150

RAND 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 150

MVNS start 100

MVNS ALL start 100

MVNS start 85

MVNS ALL start 85

40 jobs

50 jobs

1,69

0,67

1,71

0,47

1,44

1,06 1,17

0,30

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80
A

V
G

.
D

E
V

.

MVNS FIRST 3 vs. ALL BEST

Figure 5.6. Experimental results for compared MNVS methods

 At this point, an important question comes to mind, what happen if we design a

HCSS which start with a better initial solution set and employs a complete intensification

strategy that covers all elite solutions. In Figure 5.7, performances of new intensification

strategy, new seeded population with screening and their combinations are shown

separately. Based on the results observe from the figure, the new combination shows a

perfect harmony for all instances and reduce average per cent deviation value in both

cases. Therefore, MVNS with enlarged application area and diversified seeded population

are adapted together to our HSCC approach and further experimentations are implemented

accordingly.

Table 5.9. HCSS for SMTWT – effect of combined initial solution and MVNS methods

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 85 MVNS 4-5-6 0.5 150

RAND 2-TIER START 85 MVNS ALL 4-5-6 0.5 150

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5 150

 65

MVNS A
LL

SEED-S
CR

 M
VNS A

LL+SEED-S
CR.

40 jobs

50 jobs

100 jobs

1,76

1,35

1,17

0,47
0,44

0,37
0,30

0,26
0,22

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

A
V

G
.
D

E
V

.

SCREENED SEEDED INISOL vs. MVNS ALL BEST

Figure 5.7. Combination of screened initial solution set with new MVNS method

 Diversity of the population is the main force behind the HCSS that push it to

explore distant promising regions in order to find superior solutions. For that reason,

diversification among the individual must be control at every stage of the search. The

initial diversity of population is obtained by new screening mechanism, but alone it is not

sufficient to keep diversity at desired levels for next generations. As we discussed in

Section 4.1.5, solution combination method that utilizes BLX-α operator has the ability to

promote diversity of the population. It causes variances of distributions increase while

spreading them in this way. BLX-α provides a useful tool to enhance exploration

capability. In order to control diversity, α parameter is employed in three different

strategies based on dynamically changing α value. Those three strategies are implemented

as explained in Section 4.1.7 for all instances and the results are given in Figure 5.8. The

strategy that start with α value equal to 0.5 and increases it by 0.005 at the end of each non-

improving iteration, performs better than other strategies which are based on either static or

dynamic α value.

 Before modifying our HCSS approach with dynamic alpha strategy, a fine-tuning

step is executed for the increment values (∆); 0.005, 0.01, 0.025 and 0.05. These

increments are tested on 50-jobs and 100-job instances and the results are reported in

Figure 5.9. It is obvious that the smallest increment 0.005 outperforms its candidates. An

 66

interesting result is observed for 100-job problem where the average per cent deviations

are too high for 0.025 and 0.05. This shows that large α values used in solutions

combination method generates too diverse solutions that lead the search to poor and low

quality regions. As a result, α parameter should be keep below a certain limit and fast

convergence to this limit should be prevented. Otherwise, the diversification strategy

becomes an inaccurate and blind exploration tool.

 The next step is to compare fixed iteration and dynamic iteration stopping criteria.

As described in Section 4.1.8., fixed iteration criterion terminates HCSS at the end of 150

iterations; on the other hand dynamic iteration stops the algorithm after executing 60 non-

improving iterations. In order to evaluate their performances, the experiments are

conducted for all job instances and the results are given in Figure 5.10. The average per

cent deviations of 40-job is same for both criteria and a small difference is observed when

50-job and 100-job are considered. Dynamic stopping criterion performs better than fixed

iteration for problem sets containing more than 40-jobs. Additionally, it shortens the

execution time of the algorithm for 40-job and 50-job instances where the optimal solution

can be found in very early stages of the search. For instance, after finding the global

optimum solution at the iteration 20, algorithm with fixed stopping criteria repeats its

search procedure 130 times without obtaining a better value. This is an undesirable and

time- consuming operation. In contrast, dynamic stopping criterion allows the algorithm to

implement 60 more iterations before terminating the search, which reduce the execution

time. See Table 5.12.

Table 5.10. HCSS for SMTWT – comparison of alpha strategies

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 2.0>0.5+∆ 150

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 2.0>0.5 150

Table 5.11. HCSS for SMTWT – fine tuning for alpha increment

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150

 67

2.0>0.5+0.005

 0.5+0.005

 2.0>0.5

40 jobs

50 jobs

100 jobs

1,20
1,14

1,71

0,38
0,34

0,56

0,24
0,23 0,29

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

A
V

G
.
D

E
V

.

ALPHA STRATEGIES

Figure 5.8. Experimental results for alpha strategies

ALPHA 0.005

ALPHA 0.01

ALPHA 0.025

ALPHA 0.05

50 jobs

100 jobs

1,14
1,63

4,01

5,01

0,34
0,89 1,00 1,00

0,00

1,00

2,00

3,00

4,00

5,00

6,00

A
V

G
.
D

E
V

.

ALPHA 0.5+0.005 (COMPARE INCREMENTS)

Figure 5.9. Fine-tuning of alpha increment for new alpha strategy

In the early development stages of our HCSS approach, 150 iteration is considered

sufficiently long to conclude the search. Absence of necessary diversification tools and

inaccurate organization of intensification procedures cause the meta-heuristic to get

trapped at a local optimum at the very beginning. So, continuing the search procedure more

than 150 iterations at this level seems useless. However, the presence of new dynamic

alpha strategy cooperates with new MVNS methodology, prevents undesired early

convergences to local optima and help to acquire better solutions towards to the end of the

 68

Table 5.12. Experimental results for selected 40-job instances

 FIXED ITERATION DYNAMIC ITERATION

INSTANCE OPTIMUM
Best

Found
Iteration
to Best

Total
Iteration

Best
Found

Iteration
to Best

Total
Iteration

001 913 913 2 150 913 2 62

002 1225 1225 11 150 1225 11 71

003 537 573 10 150 573 10 70

004 2094 2094 12 150 2094 12 72

005 990 990 11 150 990 11 71

006 6955 6955 8 150 6955 8 68

007 6324 6324 2 150 6324 2 62

008 6865 6865 10 150 6865 10 70

009 16225 16225 12 150 16225 12 72

010 9737 9737 89 150 9737 64 124

011 17465 17562 32 150 17465 71 131

012 19312 19312 57 150 19312 43 103

013 29256 29368 9 150 29368 9 69

014 14377 14432 3 150 14432 3 63

015 26914 26914 3 150 26914 3 63

016 72317 72317 142 150 72317 47 107

017 78623 78623 12 150 78623 12 72

018 74310 74387 43 150 74318 51 111

019 77122* 77432 16 150 77432 16 76

020 63229 63817 9 150 63817 9 69

021 77774 77774 17 150 77774 17 77

022 100484 100484 128 150 100484 65 125

023 135618 135618 2 150 135618 2 62

024 119947 119947 3 150 119947 3 63

025 128747 128747 4 150 128747 4 64

 * Best Known

search. Table 5.13 presents the fitness values of best visited solutions and iteration elapsed

up to best for selected 100-job instances. Based on results reported in the table, for some

instances of fixed iteration stopping criterion, iteration number at which the best is found,

is so close to constant stopping threshold. Therefore, the algorithm is terminated before

investigating the promising neighborhoods of the current best solution. On the other hand,

dynamic stopping allows it to execute at least 60 more iterations to explore the search

space with new best solution. Although, the execution time is increased, better solutions

can be visited by applying exploration or exploitation procedures within this extra time.

Therefore, dynamic stopping criterion is adapted to for further experimentations.

 After performing remarkable achievements with seeded initial solution set, a

dynamic diversification strategy, a complete intensification method, a reliable dynamic

 69

stopping procedure, we focus on the brain of our HCSS meta-heuristic; the reference set.

So far, reference set is constructed by using 10 best solutions found so far (2-tier design)

and 10 diverse solutions selected according to start or rank distance measurement method.

At this stage, two arguments are tested to see whether they have a contribution to the

performance of the reference set.

Table 5.13. Experimental results for selected 100-job instances

 FIXED ITERATION DYNAMIC ITERATION

INSTANCE
Best

Known
Best

Found
Iteration
to Best

Total
Iteration

Best
Found

Iteration
to Best

Total
Iteration

010 53208 53992 142 150 53663 139 199

015 172995 178050 138 150 176539 154 214

019 477684 483201 147 150 480463 161 221

024 744287 744290 126 150 744290 120 180

033 32964 34593 140 150 33740 169 229

049 656693 656734 133 150 656715 172 232

057 11539 12250 118 150 12250 113 173

060 19912 19919 121 150 19919 108 168

064 100788 111047 139 150 104976 190 250

075 575274 575288 135 150 575288 131 191

086 66850 72942 129 150 72942 114 174

112 174367 177522 141 150 177522 148 208

113 91169 94436 123 150 94436 123 183

122 570459 570724 115 150 570724 108 168

123 397029 397848 137 150 397848 163 223

124 431115 431284 105 150 431284 93 153

The first argument is that a mixture of diverse solutions which are selected by rank

and start distance measurement methods (mix distance) may provide different quality,

dissimilar solution structures for the reference set and increase the diversity observed

among the next generations. The experimentations with mix diverse solution selection is

performed as described in Section 4.1.3 and the results for both mix distance and start

distance selections are given in Figure 5.11. For the 40-job instances, mix distance with

pool size 100 decreases the average per cent deviation to 0.14 which equals to 0.64 for start

100. Also for both 40-job and 50-job problem set, the lowest deviation value achieved so

far is obtained by using mix diverse solution selection with pool size 85; 0.11 and 0.31

respectively.

 70

Table 5.14. HCSS for SMTWT – comparison of stopping criteria

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

150 iterations

Dynamic iterations

40 jobs

50 jobs

100 jobs

1,14 1,12

0,34
0,33

0,23
0,23

0,00

0,20

0,40

0,60

0,80

1,00

1,20

A
V

G
.
D

E
V

.

 FIXED ITERATION. vs. DYNAMIC ITERATION

Figure 5.10. Effect of dynamic stopping criteria

 The second argument is about the reference set update method. The new update

method as mentioned in Section 4.1.3, is aiming to preserve diversity continuously, instead

of allowing it to become homogenous by only admitting solutions from one source, which

tend to have very similar components at further stages of the search (3-tier design). A

reference set whose best solutions are updated from two sources namely the reserve list

and the pool, may lead the search at a better direction. After conducting necessary

experiments to evaluate the second argument, obtained results are reported in Figure 5.12.

According to the results, selecting diverse solutions using both start and rank distance

measurement method reduces the average per cent deviation value to 0.11 for 40-job and

0.31 for 50-job instances, which are initially 0.23 and 0.33 for start diverse solutions.

However, new 3-tier reference set update method performs better than the diverse solution

selection method and comes up with a deviation 0.07 and 0.012 for 40-job and 50-job

problems respectively. Finally, mix diverse solution selection procedure and 3-tier

reference set design are employed together to test their cooperative performance.

Heterogeneous transient best solutions with dissimilarly evaluated diverse solutions

 71

Table 5.15. HCSS for SMTWT – evaluation of mix diverse solution selection method

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 100, 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

SEED-SCR 2-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

start
100

mix 100

start
85

mix 85

40 jobs

50 jobs

0,54

0,44

0,33
0,31

0,64

0,14
0,23

0,11

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70
A

V
G

.
D

E
V

.

 COMPARE START DISTANCE vs. MIX DISTANCE

Figure 5.11. Comparison of mix diverse and start diverse solution selection methods

provide a more extensive exploration through the promising regions; thus increase the

chance of visiting better optimums. This argument can easily be proven by investigating

the experimental results for 40-job and 50-job instances. Both per cent deviation values

decrease to 0.04 and 0.09 respectively. As a result, new diverse solution selection method

with new reference set design is adapted to our HCSS approach and this concludes the

experimentation phase conducted to developed the algorithm in a sequential manner.

Table 5.16. HCSS for SMTWT – 3-tier design of reference set

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

SEED-SCR 2-TIER MIX 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

SEED-SCR 3-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

SEED-SCR 3-TIER MIX 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC

 72

 start 85

 mix 85

3-tier start 85

3-tier mix 85

40 jobs

50 jobs

0,33

0,31

0,12

0,09

0,23

0,11

0,07

0,04

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

A
V

G
.
D

E
V

.

NORMAL REFSET vs. REFSET 3-TIER

Figure 5.12. Effects of new reference set update methods

5.4.1. Final Results

After conducting necessary numerical experimentations to adapt new improvement

methods for our HCSS approach an ultimately modified algorithm, which can be

implemented on all job sets, is achieved. Different from the elementary model, the fine-

tuned algorithm composed of a new initial solution generation method (SEED-SCR), an

advance reference set update method (3-tier + mix distance), an extended intensification

strategy (MVNS ALL) and a self-adjustable alpha parameter (0.5+∆) which control the

diversification of generated new solutions. In addition to that the dynamic stopping

criterion allows the algorithm to decide its own termination time depending on the search

performance. This final form of the HCSS approach is now tested with 40-job, 50-job and

100-job problem sets respectively and the obtained results are presented.

Due to the probabilistic nature of solution combination method, five different seeds

are used for the random number generator employed in the HCSS algorithm. The seeds are

selected to be 1,3,7,9 and 24. The performance measures is again average per cent

deviation which is calculated as described previously and computational times are reported

as Average CPU (Entire Search) and Average CPU (Time elapsed up to the best). The first

measurement indicates the total time allowed for HCSS before termination and the second

one is the amount of time elapsed in the search until the best solution for that instance is

 73

found. The deviation and computational time results presented in this section show the

average of all final outcomes which are obtained with the selected seeds separately. The

minimum and maximum values of these results for each instance are given in Appendix F

Table F.5 to Table F.7.

Table 5.17. Final results for HCSS approach – 40-job problem set- SMTWT

40-JOB PROBLEM SET

METHOD SS SS + FVNS HCSS

Best 10 10 10

Diverse 10 10 10 REFERENCE SET

Method 3-tier + mix 3-tier + mix 3-tier + mix

Size 150 150 150
INITIAL SOLUTION SET

Method SEED-SCR SEED-SCR SEED-SCR

POOL Size 85 85 85

SUBSET GENERATION Type size-2 size-2 size-2

Type BLX-α BLX-α BLX-α SOLUTION
COMBINATION METHOD α 0.5 0.5 0.5

Type Dynamic Dynamic Dynamic

When after 30 after 30 after MVNS

α 0.5 0.5 0.5
ALPHA STRATEGY

∆ 0.005 0.005 0.005

Type NONE VNS VNS

Type of
VNS

NONE FINAL MIDDLE

Search
depth

NONE 4-5-6 4-5-6

INTENSIFICATION
STRATEGY

When NONE after SS after 30

Type Dynamic Dynamic Dynamic
STOPPING CRITERION

When after 60 after 60 after 60

AVERAGE PER CENT DEV
(5 seed averaged)

0.20 0.15 0.03

AVERAGE PER CENT DEV
(minimum)

0.17 0.10 0.01

AVERAGE CPU
(Entire search-5 seed averaged)

37.80 37.97 71.19

AVERAGE CPU
(Time elapsed up to best

5 seed averaged)
7.81 24.36 16.93

In order to illustrate the performance of our hybrid method (HCSS), it is compared

against two SS approaches; one with no intensification strategy and one with a final VNS.

SS algorithms used in comparison contain same components and same parameter values as

the ones utilized by HCSS. The only difference is the absence of an intensification

strategy. The structure of compared algorithms and employed advanced methods are all

given in Table 5.17 to the Table 5.19. All algorithms are executed until a predefined

stopping criterion and come up with a best solution for each instance. For the final VNS

 74

case, the best solution found by the SS is explored intensively by using a VNS as described

in Section 4.1.6. The execution times of all methods reported in tables are all given in

terms of non-improved iterations, i.e. the term after 30 cites that the method is

implemented after 30 non-improved consecutive iterations.

Table 5.18. Final results for HCSS approach – 50-job problem set-SMTWT

50-JOB PROBLEM SET

METHOD SS SS + FVNS HCSS

Best 10 10 10

Diverse 10 10 10 REFERENCE SET

Method 3-tier + mix 3-tier + mix 3-tier + mix

Size 150 150 150
INITIAL SOLUTION SET

Method SEED-SCR SEED-SCR SEED-SCR

POOL Size 85 85 85

SUBSET GENERATION Type size-2 size-2 size-2

Type BLX-α BLX-α BLX-α SOLUTION
COMBINATION METHOD α 0.5 0.5 0.5

Type Dynamic Dynamic Dynamic

When after 30 after 30 after MVNS

α 0.5 0.5 0.5
ALPHA STRATEGY

∆ 0.005 0.005 0.005

Type NONE VNS VNS

Type of
VNS

NONE FINAL MIDDLE

Search
depth

NONE 4-5-6 4-5-6

INTENSIFICATION
STRATEGY

When NONE after SS after 30

Type Dynamic Dynamic Dynamic
STOPPING CRITERION

When after 60 after 60 after 60

AVERAGE PER CENT DEV
(5 seed averaged)

0.51 0.38 0.11

AVERAGE PER CENT DEV
(minimum)

0.47 0.31 0.09

AVERAGE CPU
(Entire search-5 seed averaged)

55.96 57.14 95.47

AVERAGE CPU
(Time elapsed up to best

5 seed averaged)
20.98 44.77 31.23

According to the results given in Table 5.17 to Table 5.19, HCSS algorithm clearly

outperforms the other algorithms. By applying an intensification strategy, the deviation

value 0.20 is decreased to 0.03 for 40-job problem set, from 0.51 to 0.11 for 50-job and

from 1.07 to 0.50 for 100-job problem set. Although the execution times of HCSS are

longer than normal SS, this handicap seems negligible when the reduction in average per

cent deviation is considered with respect to this extra time. Therefore our intensification

 75

strategy proves its quality and performance when integrated with the Scatter Search

methodology.

Table 5.19. Final results for HCSS approach – 100-job problem set-SMTWT

100-JOB PROBLEM SET

METHOD SS SS + FVNS HCSS

Best 10 10 10

Diverse 10 10 10 REFERENCE SET

Method 3-tier + mix 3-tier + mix 3-tier + mix

Size 150 150 150
INITIAL SOLUTION SET

Method SEED-SCR SEED-SCR SEED-SCR

POOL Size 85 85 85

SUBSET GENERATION Type size-2 size-2 size-2

Type BLX-α BLX-α BLX-α SOLUTION
COMBINATION METHOD α 0.5 0.5 0.5

Type Dynamic Dynamic Dynamic

When after 30 after 30 after MVNS

α 0.5 0.5 0.5
ALPHA STRATEGY

∆ 0.005 0.005 0.005

Type NONE VNS VNS

Type of
VNS

NONE FINAL MIDDLE

Search
depth

NONE 4-5-6 4-5-6

INTENSIFICATION
STRATEGY

When NONE after SS after 30

Type Dynamic Dynamic Dynamic
STOPPING CRITERION

When after 60 after 60 after 60

AVERAGE PER CENT DEV
(5 seed averaged)

1.07 0.65 0.50

AVERAGE PER CENT DEV
(minimum)

0.98 0.53 0.44

AVERAGE CPU
(Entire search-5 seed averaged)

138.33 145.02 236.69

AVERAGE CPU
(Time elapsed up to best

5 seed averaged)
70.95 140.85 144.18

Comparing the performance of HCSS with respect to given problem sets, it is

obvious that our algorithm is significantly sensitive to the size of the problem set. For 40-

job and 50-job instances it performs satisfactorily and solves optimally 88.64 per cent and

76.64 per cent of the 125 instances. If the best performing seed is considered, then these

percentages become 90.6 for 40-jobs and 78.4 for 50-job problem set. On the other hand,

best known solutions found for 100-job problem set drop below 50 per cent of the total

instances. This is simply due to the fact that as the problem size increases, the problem

becomes harder to solve. This hardness is reflected on the algorithm as “difficulty to

 76

converge” to the global optimum. Although, the performance of HCSS is not so adequate

when finding the best known solutions, the algorithm succeeds to solve this harder problem

set with a 0.50 average per cent deviation per instance.

To sum up, the scope of this study is to develop a meta-heuristic approach, which is

robust to all problem sets. Instead of constructing problem-specific algorithms which are

using different parameter values depending on the problem size, a unique algorithm is

established aiming to come up with minimum average per cent deviation for all problem

sets. In other words, HCSS approach developed in this section utilized same components

and same parameter values for each problem set. During the numerical experimentation,

the overall performance is taken into account when adapting advanced methods to the

elementary HCSS model. In addition to that better results for some problem instances were

found by tested strategies which is different than the adapted one, but they were not

inserted to the main algorithm because of their problem-specific achievements. The best

found solutions during the numerical experimentation are given in Appendix F.

5.5. Numerical Experimentation for PMTT

The basic model employed for the preliminary experimentation of the PMTT

problem, uses a reference set consists of 10 high quality and 10 diverse solutions. The

initial solutions are generated by EDD method which is described in Section 4.2.2. Initial

solution set size is considered as 150. Best solutions are selected from the reserve list

whereas diverse solutions are chosen according to their start time distances to the reference

set. The solution combination method employs BLX-α operator where α equals to 0.5 and

the generated trial solutions are stored in the pool which has a room for 100 offspring. In

this elementary model, no intensification strategy such as MVNS or FVNS is performed.

The dynamic stopping rule as aforementioned performs at least as good as fix iteration

termination rule and in addition to that, it prevents the algorithm to end before

investigating lately found best solutions’ neighborhoods which may be observed in fix

iteration situation. Therefore, the stopping criterion in the basic algorithm is decided to be

the dynamic rule as implemented in SMTWT problem. The used components and fix

parameter values of our basic HCSS algorithm is presented in Table 5.20.

 77

Table 5.20. Basic HCSS algorithm- PMTT

 BASIC HCSS

REFERENCE SET

UPDATE METHOD 2-tier + start

of BEST 10

of DIVERSE 10

INITIAL SOLUTION SET

GENERATION METHOD EDD

of INITIAL SOL's 150

POOL

SIZE 100

SOLUTION COMBINATION METHOD

ALPHA STRATEGY STATIC

ALPHA VALUE 0.5

INTENSIFICATION STRATEGY

TYPE OF VNS NO

SEARCH DEPTH X

STOPPING CRITERION

TYPE DYNAMIC

of NON-IMPROVING ITERATIONS 50

As the first step of experimentation, two diverse selection methods (rank and start),

two initial solution generation methods (EFT and EDD) and three pool sizes (ALL , 100

and 85) are tested by taking all their combinations (See Table 5.21) . The aim is to

eliminate those strategies that do not yield satisfactory results and to retain the most

promising combinations to further analyses. Figure 5.13 presents the results for this step.

From the figure, it can be seen that all combinations containing enlarged pool size (ALL)

result in poor optimums when compared to restricted pool sizes. Hence, the pool including

all generated subsets will not be utilized for the following experimentations. Pool size 100

seems outperforming beyond the other pool sizes; but more experimentation with different

combinations at further steps of the development procedure should be performed to prove

its superiority. When comparing initial solutions sets, it is obvious that the final results are

highly unsteady depending on the elements of HCSS algorithm, to which initial solutions

generation method combines. For instance, it is not a consistent conclusion that EFT is the

best performing initial solutions generation method by looking at a few exceptions.

Although the best average per cent deviation value is obtained by EFT rank 100 as 6.68,

EFT start ALL and EFT start 85 result in 16.89 and 10.85 respectively which are the worst

deviations observed according to pool size categorization. Same situation is noted once

 78

evaluating the diverse solutions selection methods. EFT rank 100 grants best average per

cent deviations whereas EDD rank 100 comes up with a value 13.58. Thus, no exact choice

between start and rank diverse solutions selection methods can be made at this level. Since

the pool size of our HCSS can not be determined, the experimental results related to tested

combinations are divided into two groups according to their pool sizes for further analyses.

Experimental data corresponding to pool size 100 and pool size 85 will be given in

separate figures different than each other.

Table 5.21. HCSS for PMTT - comparison of pool sizes and distance measurement

methods

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

EFT 2-TIER START ALL,100,85 NO X 0.5 DYNAMIC

EDD 2-TIER RANK ALL,100,85 NO X 0.5 DYNAMIC

EFT 2-TIER RANK ALL,100,85 NO X 0.5 DYNAMIC

EDD 2-TIER START ALL,100,85 NO X 0.5 DYNAMIC

EFT rank ALL

EFT start ALL

EDD rank ALL

EDD start ALL

EFT rank 100

EDD rank 100

EFT start 100

EDD start 100

EFT rank 85

EDD rank 85

EFT start 85

EDD start 85

40 jobs

12,88

16,89

16,68
16,18

6,68

13,58

7,32 7,54

9,20
9,29

10,85

8,85

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

A
V

G
.
D

E
V

.

RANK vs. START and POOL SIZE ALL vs. 100 vs. 85

Figure 5.13. Comparison results for pool sizes and distance measurement methods

The next step is to determine a suitable VNS depth for our HCSS approach. During

the experimentation phase, middle VNS (type #2) is employed as described in section

4.2.4. Again, MVNS is triggered at the end of consecutive 30 non-improved iterations.

Since PMTT problem consist of both sequencing and allocation problem, we neglected

large search depths, which cause heavy computational burdens for such a challenging

 79

problem. In contrast, small depth values can not provide an efficient neighborhood

generation tool and due to its narrow-scope exploration, the intensification strategy

becomes a superficial method. For this reason, search depth 3-4-5 and 4-5-6 are considered

as the most suitable variable depths according to their performance-time ratio and tested

with MVNS. The results are given in Figure 5.14 and Figure 5.15. Examining Figure 5.14,

the performances of MVNS 3-4-5 and MVNS 4-5-6 are very close to level of being almost

identical. MVNS 4-5-6 outperforms its candidate slightly among three of the four tested

combinations whereas EFT start 85 cooperated with MVNS 3-4-5 shows an exceptional

success. The required proof to conclude our comparison comes from the experiments

conducted with pool size 100. Although the overall average per cent deviation values are

not as good as we found with pools size 85, the performance difference can be clearly

observed among all columns of the Figure 5.15. Since, we are not concerned with the best

combination of pool sizes, initial sets or diverse solution methods; aiming only to

investigate the search depth at this stage; 4-5-6 seems an appropriate choice as the depth

for variable neighborhood search.

Table 5.22. HCSS for PMTT - comparison of search depths

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

EFT, EDD 2-TIER START 100,85 MVNS 3-4-5 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 100,85 MVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 100,85 MVNS 3-4-5 0.5 DYNAMIC

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC

MVNS 3-4-5

MVNS 4-5-6

EFT rank 85

EDD start 85

EFT start 85

EDD rank 85

9
,2

7

8
,4

1

6
,7

0

6
,9

1

5
,2

9

5
,2

8

5
,6

2

5
,1

2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

A
V

G
.
D

E
V

.

MVNS 3-4-5 vs. MVNS 4-5-6

Figure 5.14. Experimental results for compared search depths (pool size 85)

 80

MVNS 3-4-5

MVNS 4-5-6

EDD start 100

EFT rank 100

EFT start 100

EDD rank 100

1
0
,6

8

9
,4

3

8
,2

6

8
,0

7

7
,4

2

5
,7

6

6
,0

4

3
,9

5

0,00

2,00

4,00

6,00

8,00

10,00

12,00

A
V

G
.
D

E
V

.

MVNS 3-4-5 vs. MVNS 4-5-6

Figure 5.15. Experimental results for compared search depths (pool size 100)

Despite the fact that the best performed search depth is selected, it seems a bit time

consuming when employed with MVNS, Therefore, the final VNS is revisited as an

intensification alternative which may reduce the execution time without altering the overall

performance of the neighborhood search. The experimental results for MVNS 4-5-6 and

FVNS 4-5-6 are reported in Figure 5.16 and Figure 5.17 together with the results achieved

when no intensification strategy is used. According to the values displayed in both of the

figures, MVNS 4-5-6 outperforms FVNS and no VNS noticeably. A final neighborhood

search shortens the time needed to implement the algorithm as expected, but it definitely

diminishes the performance of intensification strategy. Thus, MVNS 4-5-6 is again

adopted for HCSS approach.

Table 5.23. HCSS for PMTT - comparison of different intensification strategies

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 100,85 MVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER START 100,85 FVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 100,85 FVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER START 100,85 NO X 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 100,85 NO X 0.5 DYNAMIC

 81

NO VNS

FVNS 4-5-6

MVNS 4-5-6

EDD start 85

EFT rank 85

EFT start 85

EDD rank 85

9
,2

9

8
,9

6

8
,4

11
0
,8

5

1
0
,7

9

6
,9

1

9
,2

0

7
,8

3

5
,1

2

8
,8

5

8
,6

3

5
,2

8

0,00

2,00

4,00

6,00

8,00

10,00

12,00

A
V

G
.
D

E
V

.

FINAL VNS vs. MVNS

Figure 5.16. Effect of intensification strategy for PMTT problem (pool size 85)

NORMAL

FVNS 4-5-6

MVNS 4-5-6

EDD start 100

EFT rank 100

EFT start 100

EDD rank 100

1
3
,5

8

1
1
,3

8

9
,4

3

7
,3

2

6
,6

4

8
,0

7

6
,6

8

6
,0

1

5
,7

6

7
,5

4

5
,6

3

3
,9

5

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

A
V

G
.

D
E

V
.

FINAL VNS vs. MVNS

Figure 5.17. Effect of intensification strategy for PMTT problem (pool size 100)

As we mentioned earlier, initial solution generations method is one of the most

crucial component of SS. A simple and an applicable prescription for a well-constructed

initial solution set is to choose diverse high quality solutions, which are situated in far

regions of solutions space and to seed this distinctly structured initial solution set with

good solutions provided by list heuristics. EFT and EDD are two methods that are used

initially as depicted in Section 4.2.2 EFT method generate somewhat more structured

results than EDD method. It strictly depends on the ready time of the jobs. Start time of

each job is selected randomly from an interval generated by the formula 4.6. Then these

 82

start times are sorted in order of non-decreasing times and a sequence is obtained. Two

initial trial solutions with similar sequences mostly result in close or even same total

tardiness values. For the problem instances where given ready times are not so adjacent,

the intervals which are formed with respect to these ready times, do not interfere with each

other frequently. As a result, randomly selected start times can not provide sufficient

alternatives when sorted and the sequence is somehow similar to the one obtained after

sorting jobs according to their non-decreasing ready times. In this manner, initial solution

set occupies the part of the search space dominated by solutions generated by earliest ready

time dispatching rule. Hence, it is a valid argument that this set is a collection of similar

solutions and limits the diversity of initial reference set.

Contrarily, consider EDD method where the jobs are assigned to the machines

randomly and then sorted according to their due dates. Job with an earlier completion

necessity gets the precedence to be processed on that assigned machine. This type of initial

solution method meets the demand for required diverse solutions but fails to generate elite

solutions of adequate quality. The reason behind this handicap is that EDD dispatching rule

is mainly developed for single machine scheduling problem and stand alone can not

respond parallel machine problems efficiently. In order to compensate inability of EDD

method while creating good solutions, we developed an advanced version called multi-rule

method. In addition to EDD rule, SPT and XR&M rules are also utilized to order jobs on a

given machine as explained in Section 4.2.2. By doing so, all alternative dispatch orders

resulted from employed heuristics are compared and the best among all is selected.

Consequently, it is guaranteed that even in the worst case, the initial solution will be as

good as the solutions obtained by EDD rule. This advance version therefore improves the

solution quality related to total tardiness value.

 To demonstrate structural characteristics and variances between the individuals in

the initial solution set, a randomly selected problem instance is taken into account and

three different sets are constructed by using predefined generation methods. The results are

given in Figure 5.18. The best known total tardiness value found in the literature is

considered as the lower bound and the deviations are calculated as follows;

deviation = (initial solutions’ fitness value - lower bound) / lower bound (5.5)

 83

According to these results, EFT shows a uniform distribution, whereas EDD and

multi-rule provide non-homogenous chaotic distributions. This chaotic distribution

indicates the dissimilarity of the internal structure and grant different quality diverse

solutions. In addition to that, multi-rule behaves as a regulation mechanism that adjusts

dispatching rules, screens the solutions with same fitness value and improve the overall

quality of the initial pool. Therefore it can be called as structured family of a chaotic

population.

DEVIATIONS FROM BEST KNOWN

0

2

4

6

8

10

12

14

16

1 15 29 43 57 71 85 99 113 127 141

INITIAL SOLUTION INDEX

D
E

V
.

EFT

EDD

MULTI-RULE

Figure 5.18. Structural characteristics of initial solution set for three different methods

The experimentations are conducted to compare these three initial solutions

generation methods. Instead of considering all diverse solution selection methods and pool

size combinations, only the best performing combinations; namely start 100, start 85 and

rank 85 are tested with initial solution method. The results are shown in Figure 5.20. It is

obvious that multi-rule is superior when compared to the previous methods in all cases and

reduces the best average per cent deviations of 3.95 to 3.11. So, multi-rule strategy is

included in our HCSS approach.

Table 5.24. HCSS for PMTT - comparison of different initial solution generation methods

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC

EFT, EDD 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC

MULTI 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC

MULTI 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC

 84

EFT
EDD

MULTI-RULE

start 100

start 85

rank 85

5
,1

2

8
,4

1

4
,5

0

6
,9

1

5
,2

8

3
,1

8

8
,0

7

3
,9

5

3
,1

1

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

A
V

G
.
D

E
V

.

COMPARE INISOL METHODS

Figure 5.19. Experimental results for initial solution generation methods for PMTT

In order to implement a comprehensive intensification procedure, VNS should

generate all possible neighborhoods based on both machine and job sequences. As

described in Section 4.2.4, three different types of VNS approaches are developed and

applied in succession to all elite elements of reference set (MULTISTEP). This

intensification strategy aims to accomplish two main goals. First goal is to explore all

reachable neighborhoods which can be originated from a single solution and the second

one is to examine all high quality solutions which may promise better results.

In the numerical analyses, the new strategy is combined with the new initial

solution generation method and the results are compared with previous intensification

method that utilizes single step MVNS to first three elite solutions. The first type VNS is

triggered at the end of 15 consecutive non-improved iterations, second type is implemented

after 25 non-improved iterations and finally last type is executed when the best solution

VNS counter indicates the number 35. During the preliminary experimentations of the

multi-step VNS, it is discovered that the first type VNS with search depth 4-5-6 causes a

great computational burden to the algorithm because of the corresponding outnumbered

machine assignment alternatives. Therefore, the search depth for the first type VNS is

decreased to 3-4-5 as an exception in order to reduce intensification strategy execution

time. This exception is only valid for the first type, whereas the second and third type VNS

techniques are implemented with 4-5-6. The average per cent deviations are given in

 85

Figure 5.20. As expected, new intensification strategy outperforms its superficial candidate

and reduces deviations from 3.11 to 1.71 for start 100, from 3.18 to 1.98 for start 85 and

from 4.50 to 2.96 for rank 85. Hence, the new strategy is adapted to HCSS approach for

PMTT.

Table 5.25. HCSS for PMTT - comparison of new intensification strategy

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

MULTI 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 DYNAMIC

MULTI 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5 DYNAMIC

start 100

start 85

rank 85

 ALL MULTISTEP

FIRST 3 SINGLE STEP

3,11 3,18

4,50

1
,7

1

1
,9

8 2
,9

6

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

A
V

G
.

D
E

V
.

MVNS SINGLE STEP vs. MVNS ALL MULTISTEP

Figure 5.20. Effect of new intensification strategy

Another important issue is to investigate consistency of the dynamic alpha strategy

for PMTT problem. In this strategy, α is fixed at 0.5 during a period of time determined by

a switch. When the switch becomes on, α is increased by 0.005 at the end of every iteration

that passes without achieving any improvement. Mentioned strategy is tested throughout

PMTT problem instances by conducting experiment that utilize HCSS approach stated in

Table 5.26. The corresponding results are presented in Figure 5.21. The superiority of

dynamic alpha strategy can be proven by looking at the deviation reductions among all

cases, where the best found average per cent deviation value is decreased to 1.56 for start

100 combination.

 86

Table 5.26. HCSS for PMTT – comparison of alpha strategies

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 DYNAMIC

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5 DYNAMIC

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5+ DYNAMIC

start

100
start 85

rank 85

DYNAMIC ALPHA

STATIC ALPHA

1,71 1,98

2,96

1
,5

6

1
,7

9 2
,3

2

0,00

0,50

1,00

1,50

2,00

2,50

3,00

A
V

G
.
D

E
V

.

STATIC ALPHA vs. DYNAMIC ALPHA

Figure 5.21. Comparison of static alpha vs. dynamic alpha

Finally, the reference set update method is revisited and preceding improvement

techniques, which are used in SMTWT, are experimented for parallel machine scheduling

problem. Starting with the diverse solution selection method, a mixed selection procedure

is implemented, where half of diverse solutions are selected by start distance and other half

is selected using rank distance measurement method. According to the results reported in

Figure 5.22 mixed selection with pool size 100 shows a better performance with respect to

start distance with same pool size. On the other hand, mix 85 comes up with an average per

cent deviation 1.81 which stays between 1.79 of start 85 and 2.32 of rank 85. Hence the

three combinations with the lowest deviations (start 100, mixed 100 and mixed 85) are

promoted to the final experimentation which will be conducted to verify the success of 3-

tier design for PMTT problem.

Table 5.27. HCSS for PMTT – comparison of mix diverse solution selection method

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5+ DYNAMIC

MULTI 2-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC

 87

start
100

start
85

rank 85

mix 100

mix 85

40 JOBS 2 MACH.

1,56 1,79

2,32

1,41

1,81

0,00

0,50

1,00

1,50

2,00

2,50

A
V

G
.
D

E
V

.

 START vs. RANK vs. MIX

Figure 5.22. Numerical analysis for diverse solution selection methods

Table 5.28. HCSS for PMTT – 3-tier design of reference set

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP

MULTI 2-TIER START 100 MVNS ALL 4-5-6 0.5+ DYNAMIC

MULTI 3-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC

start
100

mix 100

mix 85

5 RESERVE 5 POOL

ALL FROM RESERVE

1,56
1,41

1,81

1
,5

1

0
,9

9

1
,8

5

0,00

0,50

1,00

1,50

2,00

A
V

G
.

D
E

V
.

REFSET 2-TIER vs. 3-TIER

Figure 5.23. Effects of new reference set update methods for PMTT

Due to its elite solution selection procedure, 3-tier design provides fresh solutions

for the reference set at the end of each iteration. These newly visited solutions increase the

chance of obtaining a better optimum during neighborhood search which is performed for

all elites. Based on this argument, new reference set update method is employed for HCSS

 88

approach as the final improvement strategy that concludes experimental analysis section.

Being modified with the earlier developments which are presented in Table 5.28, HCSS

algorithm is executed for numerical analysis and the results are reported in Figure 5.23.

The average per cent deviation at the final stage is now reduced to 0.99 which is

accomplished by the cooperation of new diverse selection method and new reference set

design. Therefore, considered reference set update method is adapted to HCSS approach

and the experimental analysis section is ended.

5.5.1. Final Results

Depending on the nature of the PMTT problem, the improvement methods used in

SMTWT problem can not be copied to our HCSS algorithm. Some of these methods are

revised partially or constructed from the beginning in order to be employed in the

algorithm. Then the aforementioned methods are tested and adapted to HCSS according to

the comparative results obtained by numerical experimentations. At the end of analysis, the

modified HCSS approach, which can be implemented for all job set problem, is achieved.

Different from the ultimate model used in SMTWT, the fine-tuned algorithm composed of

a new initial solution generation method that employs a multi-rule to generate initial set

(MULTI), an advance reference set update method which contains different quality best

and diverse solutions (3-tier + mix distance), an extended multi-step intensification

strategy where three different types of VNS is implemented to explore all possible

neighborhoods of the current solution (MVNS ALL) and a self-adjustable alpha parameter

(0.5+∆) which control the diversification of generated new solutions. In addition to that the

dynamic stopping criterion allows the algorithm to decide its own termination time

depending on the search performance. This final form of the HCSS approach is now tested

on four types of problems which are encountered with two main job sets: one with 40-jobs

with 2 or 4 machines in parallel, the second with 60-jobs with 2 or 4 machines in parallel.

 Since our HCSS approach for PMTT contains stochastic parameters, five different

seeds are again used for the random number generator employed in the algorithm. The

seeds are selected to be 1,3,7,9 and 24. The performance measures is again average per

cent deviation which is calculated as described previously and computational times are

reported as Average CPU (Entire Search) and Average CPU (Time elapsed up to the best).

 89

The deviation and computational time results presented in this section show the average of

all final outcomes which are obtained with the selected seeds separately. The maximum

and minimum results obtained by different seeds are given in Table F.10 and Table F.11.

Table 5.29. Final results for HCSS approach – 40-job PMTT problem set

40-JOB PROBLEM SET

2-MACHINE 4-MACHINE
METHOD

SS HCSS SS HCSS

Best 10 10 10 10

Diverse 10 10 10 10 REFERENCE SET

Method 3-tier + mix 3-tier + mix 3-tier + mix 3-tier + mix

Size 150 150 150 150
INITIAL SOLUTION SET

Method MULTI MULTI MULTI MULTI

POOL Size 100 100 100 100

SUBSET GENERATION Type size-2 size-2 size-2 size-2

Type BLX-α BLX-α BLX-α BLX-α SOLUTION
COMBINATION METHOD α 0.5 0.5 0.5 0.5

Type Dynamic Dynamic Dynamic Dynamic

When 25 after MVNS 25 after MVNS

α 0.5 0.5 0.5 0.5
ALPHA STRATEGY

∆ 0.005 0.005 0.005 0.005

Type NONE MVNS ALL NONE MVNS ALL

Type of
VNS

NONE Multi-step NONE Multi-step

Search
depth

NONE 4-5-6 NONE 4-5-6
INTENSIFICATION

STRATEGY

When NONE
after

15-25-35
NONE

after
15-25-35

Type Dynamic Dynamic Dynamic Dynamic
STOPPING CRITERION

When after 50 after 50 after 50 after 50

AVERAGE PER CENT DEV
(5 seed averaged)

10.28 0.76 23.03 5.33

AVERAGE PER CENT DEV
(minimum)

8.52 0.43 12.91 4.70

AVERAGE CPU
(Entire search-5 seed averaged)

72.17 140.6 64.24 88.51

AVERAGE CPU
(Time elapsed up to best

5 seed averaged)
24.72 102.17 51.38 70.81

Similar to the comparison performed in Section 5.4.1, HCSS approach is evaluated

against the SS with no intensification strategy. SS algorithm employed in comparison

contains same components and same parameter values used in HCSS, -except the

intensification method. The main objective is to criticize the performance of hybrid

approach with respect to the time penalty associated with computational burden of

exploitation step. The structure of compared algorithms and employed advanced methods

 90

are all given in Table 5.29 and Table 5.30. All algorithms are executed until a predefined

stopping criterion and come up with a best solution for each instance. The execution times

of all methods reported in tables are all given in terms of non-improved iterations.

Table 5.30. Final results for HCSS approach – 60-job PMTT problem set

60-JOB PROBLEM SET

2-MACHINE 4-MACHINE
METHOD

SS HCSS SS HCSS

Best 10 10 10 10

Diverse 10 10 10 10 REFERENCE SET

Method 3-tier + mix 3-tier + mix 3-tier + mix 3-tier + mix

Size 150 150 150 150
INITIAL SOLUTION SET

Method MULTI MULTI MULTI MULTI

POOL Size 100 100 100 100

SUBSET GENERATION Type size-2 size-2 size-2 size-2

Type BLX-α BLX-α BLX-α BLX-α SOLUTION
COMBINATION METHOD α 0.5 0.5 0.5 0.5

Type Dynamic Dynamic Dynamic Dynamic

When 25 after MVNS 25 after MVNS

α 0.5 0.5 0.5 0.5
ALPHA STRATEGY

∆ 0.005 0.005 0.005 0.005

Type NONE MVNS ALL NONE MVNS ALL

Type of
VNS

NONE Multi-step NONE Multi-step

Search
depth

NONE 4-5-6 NONE 4-5-6

INTENSIFICATION
STRATEGY

When NONE
After

15-25-35
NONE

after
15-25-35

Type Dynamic Dynamic Dynamic Dynamic
STOPPING CRITERION

When after 50 after 50 after 50 after 50

AVERAGE PER CENT DEV
(5 seed averaged)

26.81 3.10 72.23 11.54

AVERAGE PER CENT DEV
(minimum)

24.33 3.01 60.85 11.08

AVERAGE CPU
(Entire search-5 seed averaged)

110.58 286.35 64.24 101.96

AVERAGE CPU
(Time elapsed up to best

5 seed averaged)
45.02 214.45 51.38 82.22

According to the results given in Table 5.29 and Table 5.30, intensification

procedure again proves its necessity for the SS methodology. By applying a hybrid

approach, the deviation value is decreased from 10.28 to 0.76 for 40-job 2-machine

problem set, from 23.03 to 5.33 for 40-job 4-machine, from 26.81 to 3.10 for 60-job 2-

machine problem set and finally the deviation value 72.23 reduced to 11.54 for the 60-job

4-machine problem. Similar to the HCSS used in SMTWT, the execution time of the

 91

hybrid approach outperforms its candidate SS. Hence, the high computational times are

still being observed. This is not a surprise for us, since the PMTT is more challenging

problem than SMTWT. In PMTT, ready times, machine dependent process times and

sequential setup times are all presented to reflect a real-life situation. These properties

promote the solution space into a more complex environment which makes it harder to find

an optimal solution in a shorter time.

Focusing on the performance of HCSS with respect to given problem sets, the

reported results are quite satisfactory for 4-machine problems. The algorithm manages to

solve optimally the 16.8 and 13.2 of the 20 instances for 40-job and 60-job problem sets

respectively. However, the obtained average per cent deviation values appear higher when

compared to 2-machine cases. This is due to the fact that the optimal total tardiness values

corresponding to some instances of 4-machine problems are very low; thus small

deviations between the found and optimal total tardiness values result in great average per

cent deviations. (See Table F.8 and Table F.9). The more challenging problems are 2-

machine problems especially the one containing 60-jobs. From the Table 5.29 and Table

5.30, the average per cent deviations for 40-job and 60-job problem sets are 0.76 and 3.10

respectively. If the best performing seed is considered, then these deviations become 0.43

for 40-jobs and 3.01 for 60-job problem set. These results seem satisfactory for our HCSS

approach when compared to normal SS approach. As a remark, the HCSS algorithm

outperforms some of the previous best known solutions found by Bilge et al. (2004) (See

Appendix F.2). Therefore, our approach can be considered as a promising solution tool the

tardiness related scheduling problems.

In the next section, the conclusive remarks are stated about the HCSS approach.

The solution encoding, basic fundamentals, the driven ideas, advantages and disadvantages

of HCSS algorithm are all discussed to provide a road book for future studies.

 92

6. CONCLUSION

This study was designed to attack Single Machine Total Weighted Tardiness and

Parallel Machine Total Tardiness problems by employing a hybrid meta-heuristic approach

and to evaluate its performance. The Scatter Search and Variable Neighborhood Search

approaches are studied and tailored to meet the theoretical requirements of the problems

under study. Throughout the study, the solutions to the Single Machine Total Weighted

Tardiness problem (SMTWT) and the Parallel Machine Total Tardiness problem (PMTT)

are investigated. Performance criterion adopted for the SMTWT is to minimize the total

weighted tardiness of all jobs and similarly for the PMTT, the aim is to diminish the total

tardiness. The problem sets and corresponding best-known solutions employed in this

investigation are adopted from the literature (Crauwels et al., 1998, Sivrikaya-Şerifoğlu,

1999).

While evolving our algorithm, numerical studies are conducted for each distinct

solution strategy. Since the total number of combinatorial strategy approaches to be tested

is very large, a sequential experimentation procedure is adopted. First, the HCSS approach

is implemented in its most elementary form, which we call the basic algorithm. Then this

basic algorithm is developed into its ultimate form by adapting strategies according to the

experimentation results. At each experiment, we test one or more parameters/methods and

select one (or sometimes more) level that perform at least as good as the others for each

instance, and go on with this revised form of the algorithm.

For the SMTWT case, three types of problem sets are encountered, one with 40-

jobs, the second with 50-jobs and the last with 100-jobs. Each of these sets involves 125

instances. Each instance is associated with a distinct process time, weight and due date. All

these alternative problem sets are studied throughout this study and the results are obtained

as: For the 40-job SMTWT problem, when the performance of five seeds is averaged,

HCSS succeeds to have a 0.03 average per cent deviation from the best-known solution for

each instance. If the best performing seed is taken into account, then this percentage

decreases to 0.01 per cent. Similarly, for the 50-job problem HCSS obtains 0.11 average

per cent deviation for 125 instances. If the best performing seed is considered, then this

 93

percentage reduces down to 0.09 per cent. Finally, for the 100-job problem HCSS manages

to attain average 0.50 per cent deviation from the best known solutions found in the

literature. The best performing seed has a success 0.44 per cent.

For the PMTT case, the analyzed problem is formulated as follows. Four types of

problems are encountered with two main job sets: one with 40-jobs with 2 or 4 machines

in parallel, the second with 60-jobs with 2 or 4 machines in parallel. Each of these

operations involves 20 instances. Each instance is associated with distinct process times,

ready times, sequence dependent setup times and due dates. Attained results are given as:

For the 40-job 2 machine case, HCSS achieves average deviation of 20 instances from the

best known solution is at 0.76 per cent. If the best performing seed is taken into account,

then this percentage goes down to 0.43 per cent. For the 40-job 4 machine case, average

deviation of 20 instances from the best known solution is at 5.33 per cent. If the best

performing seed is considered account, then this percentage is obtained as 4.73 per cent.

For the 60-job 2 machine case, HCSS finds an average deviation of 20 instances from the

best known solution at 3.10 per cent. If the best performing seed is taken into account, then

this percentage reduces to 3.01 per cent. Finally the 60 job 4 machine case is studied. Our

algorithm HCSS achieves an average deviation 11.54 per cent from the best known

solution. If the best performing seed is encountered, the average per cent deviation is at

11.08 per cent.

Scatter Search is an emerging meta-heuristic approach in scheduling era. The

developed methods are limited and there is not a huge source of unique procedures for

tardiness related scheduling problems. Hence, it was not possible to use the available

methods directly in all chosen problem domains. The strategies, definitions and

methodologies explained in previous chapters are either amendments to existing methods

or most of the time, original procedures developed to provide a different point of view for

HCSS approach when it becomes incapable of effectively solving the problems at hand by

using standard methods. The most noteworthy of these new strategies tested are:

• The use of a continuous solution encoding for a scheduling problem which is

usually represented in discrete fashion.

 94

• The use of an adaptive strategy in the solution combination by dynamically varying

α value which determines the flexibility in creating an offspring.

• The distance measures proposed for measuring diversity.

• The idea of using multiple distance measures in selecting diverse solutions.

First of all, the solution space is considered as a continuous space and a real number

encoded vector representation is introduced to map each and every solution hidden in the

this space. Since Scatter Search uses weighted linear combinations of several solutions to

produce new solutions; by employing linear combinations of start times, we express

complex neighborhoods of a considered sequence in the search space. This also means that

a given permutation can be reached from many other points in the continuous search space

and allows an interesting flexibility property in terms of neighborhoods defined on the

solution space. This new approach is supported with BLX-α operator which is one of the

most effective combination methods developed for real-coded continuous GAs and with an

alpha strategy which depends on dynamically changing α values. These methods favor the

production of diversity in the population and prevent premature convergences. A similar

representation was introduced by Bean (1994) where random numbers from zero to one are

employed to encode a solution. These values are used as sort keys to determine a sequence

of activities. However, in order to evaluate the performance of real number encoding, same

study should be conducted with a proper discrete encoding where solutions are represented

by permutation sequences and obtained results should be compared with each other.

 As mentioned before, reference set plays the key role in SS method. All new

solutions are originating from the combinations of elite and diverse solutions which are

stored in this set. Therefore, the reference set should be constructed wisely to meet the

demand for both high quality and dissimilar new solutions that are located at far regions of

the solution space. In order to fulfill the mentioned requirement, an advanced reference set

update method is developed in this study, which is feed from different sources. For

updating best solutions, a reserve list is introduced as a long-term memory, which keeps

the best found solutions during the entire search. Thus, the elite elements of the reference

set are selected from both the reserve list and the generated new offspring. In addition to

that, two different distance measurement methods, namely start and rank distance, are

designed to select diverse solutions. These methods are new and have never been used

 95

before as a diverse solution selection method in SS. When their performances are

compared, the cooperation of both methods outperforms their individual performances,

which is consistent with the idea behind constructing a set of dissimilar solutions. To sum

up, it is proven that reference should be updated by using various solution selection

procedures which leads to different sources of the search space.

Another conclusive remark should be stated for initial solution generation method.

After implementing HCSS approach over different structured initial solution sets, it is

clearly observed that seeded initial populations provide a better start point for the

algorithm with respect to their randomly generated candidates. These seeded solutions are

obtained by employing list heuristics as cited in the literature.

 As a final remark, it is noteworthy that without an intensification strategy, the

capabilities of Scatter Search are very limited. In its most basic form, SS converges to a

poor local optimum or cycles around the same diverse solutions. To compensate this

handicap, BLX-α method and dynamic alpha strategies are adapted to our HCSS approach.

But, these methods alone are not sufficient to come up with superior optimum results.

Therefore an intensification strategy, which implements a VNS to explore the

neighborhoods of promising solutions, is integrated to our approach. The results with and

without an intensification phase are so obvious that HCSS outperforms normal SS in every

circumstances. One main disadvantageous aspect of the intensification strategy is the high

execution time. This is mostly due to the fact that a high level programming tool,

MATLAB, is used instead of a lower language and the code is not optimized in terms of

time efficiency. The observed high computational times are also due to the intensive effort

required for local improvement. This can be observed apparently in PMTT problems where

we employ a three step VNS. For instance, when the optimal solution performance and the

corresponding computation times of the HCSS method and related other algorithms are

compared for the SMTWT problem, it is observed that the HCSS method tends to

satisfactory results with reasonable execution time. When the performance of HCSS

method is investigated for the PMTT problem, the computation time is relatively longer.

The intensification strategy employed for the PMTT problem leads to repetitive VNS steps

of different types. In addition to that algorithm is terminated after implementing all VNS

 96

types while achieving no improvement during consecutive runs. Hence, the over-intensive

effort results in computational overburdening and loss of time.

As a future study, a control mechanism to adaptively change the size of the

reference set with respect to problem size can be devised. Because the HCSS approach

with is not quite robust with respect to the size of the problem when attacked with fixed

number of best and diverse solutions. The reference set used for small scale problems

becomes in capable of covering huge solution space generated by a greater problem size.

This situation is observed for SMTWT problem where the average per cent deviation value

for 100-job problem set is higher when compared to 40-job and 50-job problem sets.

Another modification can be investigated for the intensification strategy. Instead of

exploring the whole neighborhood of a solution, a screening mechanism such as the

candidate-list strategies employed by TS approach can be developed to decide promising

neighborhoods. Also dynamically changing adaptive search depths can be utilized for VNS

method.

To summarize, our main aim in this thesis has been to evaluate the performance of

SS with respect to TS, GA and their hybrids which already produced highly satisfactory

results in scheduling problems. To this end, based on our observations over two very hard

tardiness based scheduling problems, it can be said that although SS is a promising strategy

to elaborate, enchantments are required for it to cope-up with the aforementioned meta-

heuristic approaches.

 97

APPENDIX A: START DISTANCE MEASUREMENT METHOD

 The start distance measurement method is demonstrated on an example where eight

jobs are scheduled on a single machine. The reference set contains three best and three

diverse solutions. The best solutions were already selected and the next step is to choose

diverse solutions from a POOL including five different candidate solutions. Best solutions

and candidate solutions are given in Table A.1.

Table A.1. Best solutions of reference set and candidate solutions in the pool

 START TIMES FITNESS

1 1124 1492 1725 687 1530 1118 1106 993 100

2 1135 1455 1664 632 1493 1005 993 1047 137

B
E

S
T

3 1271 1457 1762 687 1567 1118 1106 993 254

1 1837 1385 1885 1274 1569 892 1530 898 312

2 770 1898 1187 818 682 76 139 393 568

3 175 1834 55 106 1138 866 139 1050 714

4 1535 794 502 469 381 0 1431 1810 403

C
A

N
D

ID
A

T
E

5 483 761 599 199 799 1612 345 111 689

 Take two solution, one from reference set and one from POOL .The start distance is
calculated by using the equation;

dist = |(st job 1)1 –(stjob 1)2|+...+ | (st job j)1 –(stjob j)2|+...+ | (st job n)1 –(stjob n)2|

Distance between best solution one & candidate solution one is calculated as follows;

dist = |1124-1837 |+ |1492-1385|+ |1725-1885|+|687-1274|+|1530-1569|+

 |1118-892|+|1106-1530|+|993-898| = 2351

Using the same equation, the distances of other solution combinations are measured;

dist. (best 1 & candidate 2) = 4886

dist. (best 1 & candidate 4) = 5959

dist. (best 2 & candidate 1) = 2510

dist. (best 3 & candidate 5) = 6040

 98

The calculated distance values and minimum of each row are stored in a distance matrix

shown in Table A.2.

Table A.2. Measured distances between best & candidate solutions

 BEST

 1 2 3

ROW
MIN

1 2351 2510 2095 2095

2 4886 4719 5142 4719

3 5210 4825 5466 4825

4 5959 5704 5851 5704
C

A
N

D
ID

A
T

E

5 5854 5729 6040 5729

Candidate solution # 5 corresponding to the maximum of the row minimums (5729)

is promoted to the reference set as the diverse solution # 1 and deleted from the POOL.

Since candidate solution # 5 is selected, the fifth row of the distance matrix is deleted and a

column is inserted next to best solution # 3. Then, only the distances between diverse

solution # 1 and remaining candidate solutions are measured and matrix is updated as

shown in Table A.3.

Table A.3. Updated distance matrix

 BEST DIV.

 1 2 3 1

ROW
MIN

1 2351 2510 2095 7801 2095

2 4886 4719 5142 4772 4719

3 5210 4825 5466 4248 4248 C
A

N
D

.

4 5959 5704 5851 6267 5704

According to maximum of the row minimums rule, candidate solution # 4 is

selected as the diverse solution # 2. Fourth row is deleted and a new column is inserted.

The updated distances are listed in Table A.4.

Table A.4. Updated distance matrix

 BEST DIV.

 1 2 3 1 2

ROW
MIN

1 2351 2510 2095 7801 6172 2095

2 4886 4719 5142 4772 5989 4719

C
A

N
D

.

3 5210 4825 5466 4248 6865 4248

 99

Candidate solution # 2 is decided as the last diverse solution for the reference set.

The reference set is updated with new diverse solutions and take the final structure shown

in Table A.5.

Table A.5. Final reference set

 START TIMES FITNESS

1 1124 1492 1725 687 1530 1118 1106 993 100

2 1135 1455 1664 632 1493 1005 993 1047 137

B
E

S
T

3 1271 1457 1762 687 1567 1118 1106 993 254

1 770 1898 1187 818 682 76 139 393 568

2 1535 794 502 469 381 0 1431 1810 403

D
IV

E
R

S
E

3 483 761 599 199 799 1612 345 111 689

 100

APPENDIX B: RANK DISTANCE MEASUREMENT METHOD

 The rank distance measurement method is demonstrated on an example problem

aiming to schedule eight jobs on a single machine. The reference set contains three best

and three diverse solutions. The best solutions were already selected and the next step is to

choose diverse solutions from a POOL including five different candidate solutions. Best

solutions and candidate solutions are given in Table B.1.

Table B.1. Best solutions of reference set and candidate solutions in the pool

 START TIMES FITNESS

1 1124 1492 1725 687 1530 1118 1106 993 100

2 1135 1455 1664 632 1493 1005 993 1047 137

B
E

S
T

3 1271 1457 1567 687 1762 1118 993 1106 254

1 1837 1385 1885 1274 1569 892 1530 898 312

2 770 1898 1187 818 682 76 139 393 568

3 175 1834 55 106 1138 866 139 1050 714

4 1535 794 502 469 381 0 1431 1810 403

C
A

N
D

ID
A

T
E

5 483 761 599 199 799 1612 345 111 689

 Rank distance measurement method is constructed on a simple rearrangement

procedure where places of numbers are changed with restricted insertion moves aiming to

catch a target sequence of these numbers. Our solutions contain start time and fitness

values which should be revised to obtain meaningful number sequences. Therefore, start

times are sorted in non-decreasing order and corresponding job numbers are noted in same

order. The sorted jobs numbers for each job is given in Table B.2.

Table B.2. Rank matrix

 SORTED JOB NUMBERS FITNESS

1 4 8 7 6 1 2 5 3 100

2 4 7 6 8 1 2 5 3 137

B
E

S
T

3 4 7 8 6 1 2 3 5 254

1 6 8 4 2 7 5 1 3 312

2 6 7 8 5 1 4 3 2 568

3 3 4 7 1 6 8 5 2 714

4 6 5 4 3 2 7 1 8 403

C
A

N
D

ID
A

T
E

5 8 4 7 1 3 2 5 6 689

 101

 In order to measure rank distance between two solutions, one solution is taken from

POOL and one from the reference set which is denoted as target sequence. The total

number of restricted insertion moves utilized to convert candidate sequence into the target

sequence is the rank distance between these two. A restricted insertion move allows only

insertion of a job between its two preceding jobs. For example, the rank distance between

best solution # 1 & candidate solution # 1 is evaluated as follows;

The target sequence = 4 8 7 6 1 2 5 3

The candidate sequence = 6 8 4 2 7 5 1 3

Start with the job # 4, two insertion moves are needed to place this job into the first place

as shown below.

The candidate sequence = 4 6 8 2 7 5 1 3

Next, job # 8 is set to target position with one insertion move.

The candidate sequence = 4 8 6 2 7 5 1 3

For job # 7, two insertion moves is needed.

The candidate sequence = 4 8 7 6 2 5 1 3

And after placing job # 1 into its right place by performing two moves, the target sequence

is obtained.

The candidate sequence = 4 8 7 6 1 2 5 3

 The total seven insertion moves is needed to convert candidate into target sequence.

This rank distance is then stored in a distance matrix. The calculated distance values and

minimum of each row are stored in a distance matrix shown in Table B.3.

 102

Table B.3. Distance matrix

 BEST

 1 2 3

ROW
MIN

1 7 7 9 7

2 11 9 11 9

3 12 10 10 10

4 17 15 17 15

C
A

N
D

ID
A

T
E

5 7 9 7 7

Candidate solution # 4 corresponding to the maximum of the row minimums (15) is

promoted to the reference set as the diverse solution # 1 and deleted from the POOL. Since

candidate solution # 4 is selected, the fourth row of the distance matrix is deleted and a

column is inserted next to best solution # 3. Then, only the distances between diverse

solution # 1 and remaining candidate solutions are measured and matrix is updated as

shown in Table B.4.

Table B.4. Updated distance matrix

 BEST DIV.

 1 2 3 1

ROW
MIN

1 7 7 9 12 7

2 11 9 11 12 9

3 12 10 10 13 10 C
A

N
D

.

5 7 9 7 22 7

According to maximum of the row minimums rule, candidate solution # 3 is

selected as the diverse solution # 2. Third row is deleted and a new column is inserted. The

updated distances are listed in Table B.5.

Table B.5. Updated distance matrix

 BEST DIV.

 1 2 3 1 2

ROW
MIN

1 7 7 9 12 17 7

2 11 9 11 12 15 9

C
A

N
D

.

5 7 9 7 22 12 7

 103

Candidate solution # 2 is decided as the last diverse solution for the reference set.

The reference set is updated with new diverse solutions and take the final structure shown

in Table B.6.

Table B.6. Final reference set

 START TIMES FITNESS

1 1124 1492 1725 687 1530 1118 1106 993 100

2 1135 1455 1664 632 1493 1005 993 1047 137

B
E

S
T

3 1271 1457 1567 687 1762 1118 993 1106 254

1 1535 794 502 469 381 0 1431 1810 403

2 175 1834 55 106 1138 866 139 1050 714

D
IV

E
R

S
E

3 770 1898 1187 818 682 76 139 393 568

 104

APPENDIX C: SOLUTION COMBINATION METHOD

Let us assume that, the subset generation method produces a subset of two solutions

X and Y as a basis for creating combined solution. In order to illustrate the methodology,

we provide hypothetical process times, due dates, weights for each job and start times and

total tardy values for X and Y as shown below;

Table C.1. Process time, weight and due date of jobs #1,….,8

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

pt 48 38 51 33 88 6 12 88

wt 4 3 5 8 2 3 8 3

dt 168 315 220 248 151 10 40 33

Table C.2. Two parent solutions

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 FIT

X 139 187 225 0 276 133 33 45 680

Y 191 323 272 239 103 0 3 15 376

The start time of each job for the new solution will be a randomly selected number

from an interval determined by the combination of parent solutions. BLX-α combination

method generates an offspring Z=(Zjob#1,…, Zjobni) where Zjob#i is a randomly chosen

number of the interval [cmin – I.α, cmax + I. α] where cmax=max(Xjob#i, Yjob#i),

cmin=min(Xjob#i, Yjob#i) and I= cmax - cmin and α is a constant value.

Starting with the job#1;

 Xjob#1 = 139, Yjob#1 = 191,

cmax = 191, cmin= 139 and I =(191 – 139) = 52

 interval = [139 – (52x0.5), 191+(52x0.5)] = [113, 217] // α = 0.5

Zjob#1 is a randomly selected real number from the interval [113, 217]. Suppose that

imaginary start time of Zjob#1 is chosen as 149.8.

 105

Continuing with job#2;

Xjob#1 = 187, Yjob#1 = 323,

cmax = 323, cmin= 187 and I =(323 – 187) = 136

 interval = [187 – (136x0.5), 323+(136x0.5)] = [119, 391]

Zjob#2 is randomly selected as 380.3. The methodology repeats itself until all the start time

values are determined. The offspring with temporary start time values is a trial solution. An

improvement method is applied to correct start time values and obtain the total tardiness

value of the improved solution.

Table C.3. Offspring solution before improvement method

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

Z 149.8 380.3 233.7 168.4 301.1 10 15.9 33

Improvement method is a simple algorithm that sorts jobs according to their

increasing start times and then schedule them on a single machine while computing their

real start times and tardy values. Finally, existing values of the pre improved solution are

replaced with real values and fitness is inserted into the offspring.

Figure C.4. Illustration of improvement method

Improvement method

sort Z in order of non-decreasing start times

sorted Z = 10 15.9 33 149.8 168.4 233.7 301.1 380.3

sorted jobs = 6 7 8 1 4 3 5 2

calculate start time and tardy for each job j, // j=1,…., 8

job #6 : start time = 0, completion time = 6 , tardy = 0

job #7 : start time = 6, completion time = 18 , tardy = 0

job #8 : start time = 18, completion time = 106 , tardy = 219

job #1 : start time = 106, completion time = 154 , tardy = 0

job #4 : start time = 154, completion time = 187 , tardy = 0

job #3 : start time = 187, completion time = 238 , tardy = 90

job #5 : start time = 238, completion time = 326 , tardy = 350

job #2 : start time = 326, completion time = 364 , tardy = 147

rewrite Z with updated start times and total tardy value

updated Z = 106 326 187 154 238 0 6 18 806

 106

APPENDIX D: VARIABLE NEIGHBORHOOD SEARCH - SMTWT

 The VNS methodology employed in our HCSS approach will be discussed in the

following section. Initially, VNS used in SMTWT problem is investigated and

neighborhood generation, neighborhood search and evaluation step are all demonstrated by

using a sample problem. Our sample problem consists of eight jobs with distinct process

times, weights and due dates and ready at time zero to be scheduled on a single machine.

The aim here is to minimize total weighted tardiness value. The process times, weights and

due dates are given in Table D.1. Before applying VNS, HCSS comes up with an elite

solution Z such that Z = [106 326 187 154 238 0 6 18 806]. The first eight entities are start

times of job j (j = 1,…, 8) and final one is the twt value.

Table D.1. Process time, weight and due date of jobs

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

pt 48 38 51 33 88 6 12 88

wt 4 3 5 8 2 3 8 3

dt 168 315 220 248 151 10 40 33

VNS 2-3-4 is applied to generate neighborhood of current solution Z. The sorted Z

sequence is divided into groups, each having number of jobs determined by search depth.

At first, our search depth is equal to two. Hence, four groups with two jobs are rearranged

to create new neighborhoods.

sorted Z = 6 7 8 1 4 3 5 2

 group #1 = (6 7), group #2 = (8 1), group #3 = (4 3), group #4 = (5 2).

Starting with the first group, all alternative permutations are written

 alternative#1 = (6 7), alternative#2 = (7 6)

Then, first group jobs in the sorted Z are replaced with one of the alternative permutations

such that

 107

 neighbor # 0 = 6 7 8 1 4 3 5 2

neighbor # 1 = 7 6 8 1 4 3 5 2

The new neighbors are evaluated by scheduling jobs using their processing times,

weights and due dates and the final fitness values are computed by summing all non-zero

tardiness values associated to considered sequence.

 fitness of neighbor # 0 = 806

 fitness of neighbor # 1 = 830

These fitness values are then compared with current solution total weighted

tardiness value. If one of neighbor is superior to the current one, it becomes the new

current solution and sorted Z is updated accordingly. In our case, none of the neighbors is

better than the present schedule. Therefore, the sorted Z is kept without altering. Moving to

next group;

 alternative#1 = (8 1), alternative#2 = (1 8)

 neighbor # 0 = 6 7 8 1 4 3 5 2

neighbor # 1 = 6 7 1 8 4 3 5 2

and evaluating their fitness;

 fitness of neighbor # 0 = 806

 fitness of neighbor # 1 = 950

the current solution is conserved and new neighbors are generated by using group three

 neighbor # 0 = 6 7 8 1 4 3 5 2

neighbor # 1 = 6 7 8 1 3 4 5 2

and their fitness values;

 fitness of neighbor # 0 = 806

 108

 fitness of neighbor # 1 = 716

Therefore, neighbor #1 becomes new current solution. Instead of going back and dividing

the new sequence into new groups, we continue with the last group;

neighbor # 0 = 6 7 8 1 3 4 5 2

neighbor # 1 = 6 7 8 1 3 4 2 5

corresponding fitness values;

fitness of neighbor # 0 = 716

 fitness of neighbor # 1 = 645

According to this result, our new best order is [6 7 8 1 3 4 2 5]. After exploring all

neighbors, we take the search more further distances. The search depth is set to three, and

the new groups are formed starting from the very end of the sequence.

 sorted Z = 6 7 8 1 3 4 2 5

 group #1 = (8 1 3), group #2 = (4 2 5)

Starting with the first group, all alternative permutations are written

 (8 1 3), (8 3 1), (1 8 3), (1 3 8), (3 1 8), (3 8 1)

and neighbors of the current solution is generated as;

 neighbor # 0 = 6 7 8 1 3 4 2 5

 neighbor # 1 = 6 7 8 3 1 4 2 5

 neighbor # 2 = 6 7 1 8 3 4 2 5

 neighbor # 3 = 6 7 1 3 8 4 2 5

 neighbor # 4 = 6 7 3 1 8 4 2 5

 neighbor # 5 = 6 7 3 8 1 4 2 5

 109

total weighted tardiness values are computed for each permutation of group #1

 fitness of neighbor # 0 = 645

 fitness of neighbor # 1 = 793

 fitness of neighbor # 2 = 789

 fitness of neighbor # 3 = 942

 fitness of neighbor # 4 = 942

 fitness of neighbor # 5 = 798

considering the next group;

 (4 2 5), (4 5 2), (2 4 5), (2 5 4), (5 2 4), (5 4 2)

 neighbor # 0 = 6 7 8 1 3 4 2 5

 neighbor # 1 = 6 7 8 1 3 4 5 2

 neighbor # 2 = 6 7 8 1 3 2 4 5

 neighbor # 3 = 6 7 8 1 3 2 5 4

 neighbor # 4 = 6 7 8 1 3 5 2 4

 neighbor # 5 = 6 7 8 1 3 5 4 2

The corresponding fitness values are

 fitness of neighbor # 0 = 645

 fitness of neighbor # 1 = 716

 fitness of neighbor # 2 = 869

 fitness of neighbor # 3 = 862

 fitness of neighbor # 4 = 834

 fitness of neighbor # 5 = 629

Neighbor # 5 is superior to both the current solution and the other neighbors. Hence, the

best sequence becomes [6 7 8 1 3 5 4 2] and the search depth is decreased to two.

The search procedure continues as stated above until the termination criterion is met.

 110

APPENDIX E: VARIABLE NEIGHBORHOOD SEARCH – PMTT

 The three different type VNS techniques employed in our HCSS approach will be

discussed in the following section. Initially, type #1 VNS technique used in PMTT

problem is investigated and neighborhood generation, neighborhood search and evaluation

step are all demonstrated by using a sample problem. Our sample problem consists of eight

jobs with distinct process times, ready times, sequence dependent setup times and due

dates. The two machines utilized in the problem are not identical, thus the process times

and setup times related to same jobs are varying depending on the machine. The aim here

is to minimize total tardiness value. The ready times and due dates are given in Table E.1

and process times and sequence dependent setup times are presented in Table E.2 and

Table E.3. Before applying type #1 VNS, HCSS comes up with an elite solution Z such

that;

Z = [32 43 31 24 37 11 18 50 1 2 2 1 1 1 2 2 26]

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities

are the machine indices and final one is the total tardiness value.

Table E.1. Ready time and due date of jobs

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

rt 27 43 31 24 30 11 18 35

dt 32 51 38 34 36 20 31 46

Table E.2. Process times and setup times for machine #1

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

Job#1 0 1 3 2 3 1 1 2

Job#2 2 0 2 3 1 2 3 1

Job#3 1 1 0 1 2 3 1 1

Job#4 3 2 3 0 2 1 2 2

Job#5 2 2 1 3 0 1 3 1

Job#6 2 1 1 1 2 0 3 3

Job#7 3 1 2 1 3 1 0 3

Job#8 1 2 1 3 2 1 1 0

pt 2 5 4 7 3 6 10 8

 111

Table E.3. Process times and setup times for machine #2

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8

Job#1 0 3 1 2 1 3 1 1

Job#2 2 0 1 3 2 1 3 1

Job#3 1 1 0 1 2 3 1 1

Job#4 1 2 1 0 2 1 1 3

Job#5 1 3 2 3 0 1 1 2

Job#6 2 2 1 3 1 0 3 1

Job#7 2 3 2 3 1 2 0 1

Job#8 2 1 1 1 2 3 3 0

pt 3 6 5 8 4 7 11 9

In the type #1 VNS technique, the sorted job sequence of Z is recorded and kept

fixed during the entire neighborhood search. Then this sequence is divided into groups

containing same number of jobs defined by VNS depth and their corresponding machine

assignments. Starting with the first group, all possible machine assignments are listed for

this group’s jobs without altering the job sequence and remaining machine indices. VNS 2-

3-4 is applied to generate neighbors of current solution Z. The sorted Z is as follows;

sorted Z =[6 7 4 3 1 5 2 8 1 2 1 2 1 1 2 2]

group #1=(6 7 1 2), group #2=(4 3 1 2), group #3=(1 5 1 1), group #4=(2 8 2 2)

Starting with the first group, all alternative machine assignments are written as

alt. #1 = (6 7 1 1), alt. #2 = (6 7 2 1), alt. #3 = (6 7 2 2)

Observing the alternative #1, the processing order of job #6 and job #7 does not change.

The only difference is that the both jobs will be process on machine #1 whereas they are

initially processed by machine #1 and machine #2 respectively. Inserting alternatives into

the initial sorted sequence where all are representing a different neighborhood of the

current solution;

neighbor # 1 = [6 7 4 3 1 5 2 8 1 1 1 2 1 1 2 2]

neighbor # 2 = [6 7 4 3 1 5 2 8 2 1 1 2 1 1 2 2]

neighbor # 3 = [6 7 4 3 1 5 2 8 2 2 1 2 1 1 2 2]

 112

The new neighbors are evaluated by scheduling jobs using their machine dependent

process times, setup times, ready times and due dates. Then the final fitness values are

computed by summing all non-zero tardiness values associated to considered sequence.

fitness of neighbor # 1 = 45

fitness of neighbor # 2 = 36

fitness of neighbor # 3 = 26

These fitness values are then compared with current solution total tardiness value.

If one of neighbor solution is superior to the current one, it becomes the new current

solution and sorted Z is updated accordingly. In our case, the neighbor #3 has the value 26

which is not better than the present best solution. Therefore, the sorted Z is kept without

altering and VNS moves to next group. The next group and corresponding neighbors are

group #2 = (4 3 1 2) alt. #1 = (4 3 1 1), alt. #2 = (4 3 2 1), alt. #3 = (4 3 2 2)

neighbor # 1 = [6 7 4 3 1 5 2 8 1 2 1 1 1 1 2 2]

neighbor # 2 = [6 7 4 3 1 5 2 8 1 2 2 1 1 1 2 2]

neighbor # 3 = [6 7 4 3 1 5 2 8 1 2 2 2 1 1 2 2]

and evaluating their fitness;

fitness of neighbor # 1 = 40

fitness of neighbor # 2 = 37

fitness of neighbor # 3 = 34

According to the results, the current solution is conserved. Considering the next group;

group #3 = (1 5 1 1) alt. #1 = (1 5 1 2), alt. #2 = (1 5 2 1), alt. #3 = (1 5 2 2)

neighbor # 1 = [6 7 4 3 1 5 2 8 1 2 1 2 1 2 2 2]

neighbor # 2 = [6 7 4 3 1 5 2 8 1 2 1 2 2 1 2 2]

neighbor # 3 = [6 7 4 3 1 5 2 8 1 2 1 2 2 2 2 2]

and their fitness values are

 113

fitness of neighbor # 1 = 32

fitness of neighbor # 2 = 28

fitness of neighbor # 3 = 46

No improvement can be achieved, thus VNS explores the neighbors of the last group;

group #3 = (2 8 2 2) alt. #1 = (2 8 1 1), alt. #2 = (2 8 1 2), alt. #3 = (2 8 2 1)

neighbor # 1 = [6 7 4 3 1 5 2 8 1 2 1 2 1 1 1 1]

neighbor # 2 = [6 7 4 3 1 5 2 8 1 2 1 2 1 1 1 2]

neighbor # 3 = [6 7 4 3 1 5 2 8 1 2 1 2 1 1 2 1]

The corresponding fitness values are

fitness of neighbor # 1 = 25

fitness of neighbor # 2 = 14

fitness of neighbor # 3 = 18

Neighbor #2 results with a fitness value 14 which is superior to best current solution.

Hence, the new sorted Z is updated as follows

sorted Z = [6 7 4 3 1 5 2 8 1 2 1 2 1 1 1 2]

After exploring all neighbors, we take the search a one step further distance. The

search depth is set to three, and the new groups are formed starting from the very end of

the sequence. Here, the type #1 VNS technique will not be demonstrated with its all steps

and not be concluded. The investigating first group alternatives for search depth three gives

sufficient information to understand the further execution of basic the methodology behind

our type #1 VNS technique. The groups and corresponding neighbors for the first one are

given below;

group #1 = (4 3 1 1 2 1) group #2 = (5 2 8 1 1 2)

alt. #1 =(4 3 1 1 1 1) alt. #2 =(4 3 1 1 1 2) alt. #3 =(4 3 1 1 2 2)

 114

alt. #4 =(4 3 1 2 1 1) alt. #5 =(4 3 1 2 2 1) alt. #6 =(4 3 1 2 1 2)

alt. #7 =(4 3 1 2 2 2)

neighbor # 1 = [6 7 4 3 1 5 2 8 1 2 1 1 1 1 1 2]

neighbor # 2 = [6 7 4 3 1 5 2 8 1 2 1 1 2 1 1 2]

neighbor # 3 = [6 7 4 3 1 5 2 8 1 2 1 2 2 1 1 2]

neighbor # 4 = [6 7 4 3 1 5 2 8 1 2 2 1 1 1 1 2]

neighbor # 5 = [6 7 4 3 1 5 2 8 1 2 2 2 1 1 1 2]

neighbor # 6 = [6 7 4 3 1 5 2 8 1 2 2 1 2 1 1 2]

neighbor # 7 = [6 7 4 3 1 5 2 8 1 2 2 2 2 1 1 2]

and their fitness values are

fitness of neighbor # 1 = 27

fitness of neighbor # 2 = 11

fitness of neighbor # 3 = 17

fitness of neighbor # 4 = 29

fitness of neighbor # 5 = 25

fitness of neighbor # 6 = 31

fitness of neighbor # 7 = 46

According to the fitness values of the neighbor, machine assignment alternative #2

decreases the total tardiness value from 14 to 11. Therefore, sorted Z is updated and the

new current solution becomes;

sorted Z = [6 7 4 3 1 5 2 8 1 2 1 1 2 1 1 2]

Our demonstration for the type #1 VNS ends up at this point, the remaining

neighborhood generations and evaluations can be performed according to methodology

described so far.

 To illustrate type #2 VNS technique, the same problem set and the same VNS depth

is utilized. Our elite solution Z is considered such that

 115

 Z = [29 44 32 24 39 11 18 35 2 1 1 1 1 1 2 2 11]

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities

are the machine indices and final one is the total tardiness value. Initially, the start times

are ordered with respect non-decreasing values. Then without considering the machine

indices our sorted Z vector is constructed. The methodology employed to construct

neighborhood of a current solution is exactly the same that is used in SMTWT. The only

difference arises at the evaluation step of the fitness value of the generated neighbors. Type

#2 VNS technique assigns each job to a machine by using the EFT rule and then calculates

its corresponding total tardiness value. This evaluation step is briefly described in the

following example.

Suppose that we implement type #2 VNS with search depth two, but do not manage

to find a better solution. Therefore, the size of the search depth is increased to three and the

sequence is grouped as follows;

sorted Z = [6 7 4 3 1 5 2 8]

group #1 = (4 3 1) group #2 = (5 2 8)

The alternative permutation of group #1 jobs and corresponding neighbors are

(4 1 3), (1 3 4), (1 4 3), (3 1 4), (3 4 1)

neighbor # 1 = 6 7 4 1 3 5 2 8

neighbor # 2 = 6 7 1 3 4 5 2 8

neighbor # 3 = 6 7 1 4 3 5 2 8

neighbor # 4 = 6 7 3 1 4 5 2 8

neighbor # 5 = 6 7 3 4 1 5 2 8

Evaluating the fitness value of neighbor #1, the completion time of job #6 is

calculated on both machines. And the job is assigned to the machine with the earlier

completion time. The tardiness value of the current job is computed accordingly.

 116

Completion time of job #6 on machine #1 = max(r6
I, fI) + p6

I= 11+6 = 17

Completion time of job #6 on machine #2 = max(r6
II, fII) + p6

II = 11+7 = 18

Then job #6 is dispatch to machine #1 and the finish time (fI) for machine #1 is set to 17

and (fII) for machine #2 to 0. The tardiness value is calculated using the formula Tj =

max(0,Cj-dj), i.e. max(0, 17-20) = 0. Continuing with job #7;

Completion time of job #7 on machine #1 = max(r7
I, fI) + p7

I + s67
I
 = 31

Completion time of job #7 on machine #2 = max(r7
II, fII) + p7

II =29

Job # 7 is then assign to the machine #2 and the tardiness value is T7 = max(0, 29-31) = 0.

The finish time of machine #2 becomes 29. The remaining calculations are performed in

same manner and not shown here. The final start times, machine indices and total tardiness

value related to neighbor #1 is computed as

neighbor #1 = [29 43 32 24 34 11 18 39 2 1 1 1 2 1 2 2 10]

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities

are the machine indices and final one is the total tardiness value. The fitness values of the

other neighbors are;

fitness of neighbor # 2 = 19

fitness of neighbor # 3 = 23

fitness of neighbor # 4 = 19

fitness of neighbor # 5 = 30

From the obtained fitness values, it is obvious that neighbor #1 outperforms the

other candidates. Therefore, our sorted Z value becomes [6 7 4 1 3 5 2 8] and the

current solution is updated as;

Z = [29 43 32 24 34 11 18 39 2 1 1 1 2 1 2 2 10]

 117

For the group #2 = (5 2 8), the permutation alternatives and generated neighbors are as

follows;

(5 8 2), (8 2 5), (8 5 2), (2 5 8), (2 8 5)

neighbor # 1 = 6 7 4 1 3 5 8 2

neighbor # 2 = 6 7 4 1 3 8 2 5

neighbor # 3 = 6 7 4 1 3 8 5 2

neighbor # 4 = 6 7 4 1 3 2 5 8

neighbor # 5 = 6 7 4 1 3 2 8 5

and the corresponding fitness values are;

 fitness of neighbor # 1 = 9

fitness of neighbor # 2 = 18

fitness of neighbor # 3 = 11

fitness of neighbor # 4 = 10

fitness of neighbor # 5 = 18

Again, neighbor #1 comes up with a better total tardiness value. Hence our sorted Z and

new current solution vector is updated as follows;

sorted Z = [6 7 4 1 3 5 8 2]

Z = [29 43 32 24 34 11 18 39 2 2 1 1 2 1 2 1 9]

Since, the VNS improves the current solution, the search depth decreases the value

two and the variable neighborhood search is continued by repeating the same methodology

until the termination criterion is met i.e. the current solution can not be improved with

maximum VNS depth. Finally, the type #3 VNS technique is described by using same

problem set and VNS 2-3-4. The alternative job permutations and neighborhood generation

method are exactly the same as the ones used in type #2 VNS. The only difference as we

indicate before; is the evaluation procedure of a neighborhood solution. Previously, EFT

rule is utilized to perform both machine assignment and total tardiness value computation.

This time, a recursive rule which is explained in Section 4.2.4, is employed as a substitute

for EFT rule. Therefore, instead of showing all the steps needed to generate a

 118

neighborhood, we only illustrate the recursive rule step by step while evaluating a selected

neighborhood.

Assume that, VNS comes up with a neighbor such that [6 7 4 1 3 5 8 2] and the

corresponding sorted start times of jobs are [11 16 24 29 32 40 42 43]. At the

beginning both machines’ finish times (fI and fII) are zero and the process times and setup

times are given in Table E.2 and Table E.3. Comparing job #6’s start time with both of the

finish times, it is seen that the job can be assign any of the machines. Thus, method

constructs a branch indicating both of the alternatives as shown in Figure E.1. In figure, the

expression (X,Y) located on the nodes indicates that job X is processed on machine Y and

the value below the nodes is the total tardiness value of assignments performed so far

Figure E.1. Flow chart for recursive algorithm #1

Continuing with the upper branch, the first job is assigned to machine #1 and the fI

is found as 17 and fII
 equals to zero. The start time of job #7 is 16 which is earlier than fI

but tardier than fII. Hence, it is allocated to machine #2. The corresponding tardiness value

of job #7 is 0 and the fII becomes 29. The flow chart is given in Figure E.2.

The next one is job #4 with start time 24 which is earlier than both machines’ finish

times. So, it is assigned to the machine #1 which has the smallest finish time value. After

performing required calculations, the tardiness of job #4 is found as 0 and the fI increases

to 32. Comparing f
I and fII with job #1’s start time (i.e. 29), the machine #2 is selected with

the smaller finish time value. Then fII becomes 34 and the tardiness value T1 = max (0,C1-

d1) = 2. Job #3 with start time 32 is allocated to machine #1 where start time of job #3

equals to fI
 but smaller than fII value. Calculating the tardiness value, it is observed that

completion time of job #3 exceeds its due date by one unit. The next start time of job #5 is

(6,1)

(6,2)

0

0

 119

40 where it is larger than both fI = 39 and fII = 34. Thus, it can be dispatched any of the

machines which is shown by two branches in Figure E.3.

Figure E.2. Flow chart for recursive algorithm #2

Figure E.3. Flow chart for recursive algorithm-step #3

For the upper branch where the job #5 is processed on machine #1 and the

corresponding tardiness value is 8, fI = 44 and fII = 34. On the other hand, lower branch

comes up with a tardiness value equals to 3, fI = 39 and fII
 = 39. Moving to the next step

over the upper branch, the start time job #8 is compared with the finish times. Since start

time 42 is less than fI and more than fII, machine #2 is employed for job #8. Then the results

are; T8 = 0, fI = 44 and fII = 45. The final one to be scheduled is the job #2. The start time 43

is earlier than both of the finish times. Therefore, machine #1 with the earlier finish time is

assigned for the last job. The tardiness value related to this assignment is zero, so the total

tardiness value becomes 11 for the entire sequence. This value is memorized as the best

fitness value found so far and represents an upper bound for the total tardiness. When we

reach to the end of lane, i.e. the allocation of all jobs is completed; we turn back to the

previous node where the lane is divided into two branches. At this point, the unvisited

branch is selected and the remaining assignments are performed accordingly. Any time, the

(6,1)

(6,2)

0

0

0

(7,2)

0 2 3

(4,1)

(5,2)
11

6

(1,2) (3,1) (5,1)

(6,1)

(6,2)

0

0

0

(7,2)

 120

total tardiness value which is computed after dispatching a job, is greater than the upper

bound, the further assignment related to this lane is not executed and the algorithm turns

back to a previous node that is branched out.

Consider our example, after finishing the allocation, we move back to node (3,1)

and select the lower branch and jumps to the node (5,2). Since the total tardiness value

corresponding to this node is smaller than the upper bound, we continue with the next job,

i.e. job #8. The start time of the job is 42, which is greater than both fI and fII. Thus, the

lane is divided into two branches and two new nodes are placed at the end of each branch,

which are indicating machine assignments and related fitness values.

Figure E.4. Flow chart for recursive algorithm #4

 The finish times and total tardiness for each node is calculated as; fI = 48, fII = 39

and T8 = 2 for upper branch and fI = 39, fII = 50 and T8 = 4 for the lower branch. Moving

along the upper branch, the job #2 is assigned to the machine #2 where the start time 43 is

greater than f
II. Then the total tardiness value for the entire sequence computed as eight

which becomes the new upper bound. Turning back to the branched node and jumping to

the point (8,2), we realize that the total tardiness value is greater than the upper bound.

Therefore, there is no need to move further and the current lane is blocked as shown in

Figure E.4. The remaining calculations are performed in the same way as described. The

final upper bound is considered as the fitness value of the selected neighborhood.

When dealing with 4-machine PMTT problems, instead of constructing four

branches that define each machine assignment separately, we only form two of them that

correspond to the machines with smallest finish times. In other words, before allocating a

(6,1)

(6,2)

0

0

0

(7,2)

0 2 3

(4,1)

(5,2)
11

6

(1,2) (3,1) (5,1) (8,2) (5,1)

11 11
(8,1)

(8,2)
8

10

(2,2)

8

 121

job, the four finish times are sorted and two of them are selected according to non-

decreasing values. Then the start time of the job is compared with chosen fm’s where fm is

the finish time of machine m and the job is assigned to a machine depending on the

selection procedure. The machine selection procedures of 2-machine problem can be

applied for 4-machine case. Each time an assignment is performed, the finish times are

updated and two smallest f
m’s are selected accordingly. The remaining methodology is

same as stated above.

 122

APPENDIX F: BEST KNOWN SOLUTION TO THE PROBLEM SETS

This appendix provides the optimal/best-known solutions to the problem sets of

tardiness related scheduling problems used for numerical experimentations throughout this

thesis. These optimal/best-known solutions are obtained from the literature. In the first

section, reported optimal/best-known solutions (Crauwels et al., 1998, Congram et al.,

2002) for the SMTWT problem are given and followed by our final results for the five seed

run. In the next section, best known solutions to PMTT problem sets are stated. Two set of

best-known solutions are given in Appendix F.2, the first set contains the solutions

obtained by Bilge et al. (2004) and the second set includes the updated best-known

solutions reported by Anghinolfi and Paolucci (2006). This section also shows the best-

found solutions to PMTT during the numerical studies conducted with HCSS approach and

the min-max total tardiness values obtained by five seed final run for the each instance of

the problem sets.

Appendix F.1. Best-Known Solutions to SMTWT

 For the 40-job and 50-job problem sets, the optimal solutions are known for most of

the instances. The exceptions are indicated. As for the 100-job problem set, due to the

problem size limitations, only best-known solutions are reported. However, as these

solutions have not been improved ever since they have been published, there is a great

evidence that they are actually optimal.

 123

Table F.1. Optimal/best-known solutions to the 40-job problem set – SMTWT

40-JOB PROBLEM SET

Instance Optimal Instance Optimal Instance Optimal Instance Optimal Instance Optimal

001 913 026 108 051 0 076 0 101 0

002 1225 027 64 052 0 077 0 102 0

003 537 028 15 053 0 078 0 103 0

004 2094 029 47 054 0 079 0 104 0

005 990 030 98 055 0 080 0 105 0

006 6955 031 6575 056 2099 081 684 106 0

007 6324 032 4098 057 2260 082 172 107 516

008 6865 033 5468 058 4936 083 798 108 3354

009 16225 034 2648 059 3784 084 617 109 0

010 9737 035 5290 060 3289 085 776 110 0

011 17465 036 19732 061 20281 086 10262 111 31478

012 19312 037 17349 062 13403 087 18646 112 21169

013 29256 038 24499 063 19771 088 10021 113 27077

014 14377 039 19008 064 24346 089 25881 114 19648

015 26914 040 19611 065 14905 090 8159 115 13774

016 72317 041 57640 066 65386 091 47683 116 46770

017 78623 042 81462 067 65756 092 43004 117 50364

018 74310 043 65134 068 78451 093 55730 118 25460

019 77122* 044 78139 069 81627 094 59494 119 66707

020 63229 045 66579 070 68242 095 42688 120 69019

021 77774 046 64451 071 90486 096 126048 121 122266

022 100484 047 113999 072 115249 097 114686 122 82456

023 135618 048 74323 073 68529 098 112102 123 75118

024 119947 049 110295 074 79006 099 98206 124 73041

025 128747 050 95616 075 98110 100 157296 125 104531

* not solved optimally

 124

Table F.2. Optimal/best-known solutions to the 50-job problem set – SMTWT

50-JOB PROBLEM SET

Instance Optimal Instance Optimal Instance Optimal Instance Optimal Instance Optimal

001 2134 026 2 051 0 076 0 101 0

002 1996 027 4 052 0 077 0 102 0

003 2583 028 755 053 0 078 0 103 0

004 2691 029 99 054 0 079 0 104 0

005 1518 030 22 055 0 080 0 105 0

006 26276 031 9934 056 1258 081 816 106 0

007 11403 032 7178 057 3679 082 4879 107 1717

008 8499 033 4674 058 2522 083 973 108 0

009 9884 034 4017 059 3770 084 508 109 6185

010 10655 035 6459 060 5904 085 3780 110 1295

011 43504* 036 34892* 061 25212 086 20751 111 27310*

012 36378* 037 22739 062 17337 087 36053* 112 15867

013 45383 038 29467 063 30729 088 28268* 113 35106

014 51785* 039 49352 064 18082 089 28846 114 15467

015 38934 040 26423 065 25028 090 15451 115 10574

016 87902 041 71111 066 76878* 091 89298 116 35727

017 84260 042 90163 067 85413 092 66340 117 71922

018 104795 043 84126 068 92756 093 61060 118 65433

019 89299* 044 123893* 069 77930 094 42453 119 106043

020 72316 045 79883 070 74750 095 56522 120 101665

021 214546 046 157505 071 150580 096 177909 121 78315

022 150800 047 133289 072 131680 097 139591 122 119925

023 224025 048 191099 073 98494 098 148906 123 101157

024 116015 049 150279 074 135394 099 179264 124 139488

025 240179 050 198076 075 135677 100 120108 125 110392

* not solved optimally

 125

Table F.3. Best-known solutions to the 100-job problem set (Crauwels et al., 1998)

100-JOB PROBLEM SET

Instance B.K. Instance B.K. Instance B.K. Instance B.K. Instance B.K.

001 5988 026 8 051 0 076 0 101 0

002 6170 027 718 052 0 077 0 102 0

003 4267 028 27 053 0 078 0 103 0

004 5011 029 480 054 0 079 0 104 0

005 5283 030 50 055 0 080 0 105 0

006 58258 031 24202 056 9046 081 1400 106 0

007 50972 032 25469 057 11539 082 317 107 1193

008 59434 033 32964 058 16313 083 1146 108 0

009 40978 034 22215 059 7965 084 136 109 232

010 53208 035 19114 060 19912 085 284 110 0

011 181649 036 108293 061 86793 086 66850 111 159138

012 234179 037 181850 062 87067 087 84229 112 174377

013 178840 038 90440 063 96563 088 55544 113 91171

014 157476 039 151701 064 100788 089 54612 114 168297

015 172995 040 129728 065 56510 090 75061 115 70190

016 407703 041 462324 066 243872 091 248699 116 370631

017 332804 042 425875 067 401023 092 311022 117 324437

018 544838 043 320537 068 399085 093 326258 118 246243

019 477684 044 360193 069 309232 094 273993 119 293576

020 406094 045 306040 070 222684 095 316870 120 267326

021 898925 046 829828 071 640816 096 495516 121 471214

022 556873 047 623356 072 611362 097 636903 122 570459

023 539716 048 748988 073 623429 098 680082 123 397029

024 744287 049 656693 074 584628 099 622464 124 431115

025 585306 050 599269 075 575274 100 449545 125 560754

B.K. denotes Best- Known

 126

Table F.4. Best-known solutions to the 100-job problem set (Congram et al., 2002)

100-JOB PROBLEM SET

Instance B.K. Instance B.K. Instance B.K. Instance B.K. Instance B.K.

001 5988 026 8 051 0 076 0 101 0

002 6170 027 718 052 0 077 0 102 0

003 4267 028 27 053 0 078 0 103 0

004 5011 029 480 054 0 079 0 104 0

005 5283 030 50 055 0 080 0 105 0

006 58258 031 24202 056 9046 081 1400 106 0

007 50972 032 25469 057 11539 082 317 107 1193

008 59434 033 32964 058 16313 083 1146 108 0

009 40978 034 22215 059 7965 084 136 109 232

010 53208 035 19114 060 19912 085 284 110 0

011 181649 036 108293 061 86793 086 66850 111 159123

012 234179 037 181850 062 87067 087 84229 112 174367

013 178840 038 90440 063 96563 088 55544 113 91169

014 157476 039 151701 064 100788 089 54612 114 168266

015 172995 040 129728 065 56510 090 75061 115 70190

016 407703 041 462324 066 243872 091 248699 116 370614

017 332804 042 425875 067 401023 092 311022 117 324437

018 544838 043 320537 068 399085 093 326258 118 246237

019 477684 044 360193 069 309232 094 273993 119 293571

020 406094 045 306040 070 222684 095 316870 120 267316

021 898925 046 829828 071 640816 096 495516 121 471214

022 556873 047 623356 072 611362 097 636903 122 570459

023 539716 048 748988 073 623429 098 680082 123 397029

024 744287 049 656693 074 584628 099 622464 124 431115

025 585306 050 599269 075 575274 100 449545 125 560754

 127

Table F.5. Min-max best-found solution for five seed experimentation (40-job) SMTWT

40-JOB PROBLEM SET

Instance Min Max Instance Min Max Instance Min Max

001 913 913 043 65134 65134 085 776 776

002 1225 1225 044 78139 78139 086 10262 10262

003 537 537 045 66579 66579 087 18646 18706

004 2094 2094 046 64451 64451 088 10027 10027

005 990 990 047 113999 113999 089 25881 25881

006 6955 6955 048 74323 74323 090 8159 8159

007 6324 6324 049 110295 110295 091 47683 47683

008 6865 6865 050 95616 95616 092 43004 43004

009 16225 16310 051 0 0 093 55730 55730

010 9737 9737 052 0 0 094 59494 59494

011 17465 17465 053 0 0 095 42688 42688

012 19312 19312 054 0 0 096 126048 126048

013 29256 29279 055 0 0 097 114686 114686

014 14432 14432 056 2099 2099 098 112102 112102

015 26914 26914 057 2260 2260 099 98206 98206

016 72317 72317 058 4936 4936 100 157296 157296

017 78623 78623 059 3784 3784 101 0 0

018 74310 74373 060 3289 3289 102 0 0

019 77122 77432 061 20283 20434 103 0 0

020 63229 63368 062 13403 13403 104 0 0

021 77774 77774 063 19771 19771 105 0 0

022 100484 100484 064 24346 24498 106 0 0

023 135618 135618 065 14905 15341 107 516 516

024 119947 119947 066 65386 65386 108 3354 3354

025 128747 128747 067 65756 65756 109 0 0

026 108 108 068 78451 78451 110 0 0

027 64 64 069 81688 81688 111 31478 31478

028 15 15 070 68242 68242 112 21169 21169

029 47 47 071 90486 90486 113 27077 27077

030 98 98 072 115249 115249 114 19648 19678

031 6575 6575 073 68529 68529 115 13774 13774

032 4098 4099 074 79013 79013 116 46770 46929

033 5468 5468 075 98110 98110 117 50364 50384

034 2648 2648 076 0 0 118 25460 25460

035 5290 5290 077 0 0 119 66707 66707

036 19732 20095 078 0 0 120 69042 69042

037 17349 17349 079 0 0 121 122266 122266

038 24563 24630 080 0 0 122 82456 82456

039 19008 19008 081 684 684 123 75118 75379

040 19611 19611 082 172 172 124 73041 73041

041 57640 57640 083 798 798 125 104531 104531

042 81462 81462 084 617 617

 128

Table F.6. Min-max best-found solution for five seed experimentation (50-job) SMTWT

50-JOB PROBLEM SET

Instance Min Max Instance Min Max Instance Min Max

001 2134 2134 043 84126 84126 085 3780 3796

002 1996 1996 044 123893 123893 086 20751 20828

003 2583 2583 045 79883 79883 087 36053 36053

004 2691 2691 046 157505 157505 088 28671 28671

005 1518 1518 047 133289 133289 089 28846 28849

006 26409 26509 048 191099 191099 090 15451 15547

007 11403 11403 049 150279 150279 091 89324 89474

008 8499 8610 050 198076 198076 092 66340 66340

009 9918 9918 051 0 0 093 61060 61225

010 10655 10655 052 0 0 094 42453 42564

011 43504 43504 053 0 0 095 56632 56726

012 36459 36941 054 0 0 096 177909 178115

013 45383 45383 055 0 0 097 139591 139591

014 51785 51785 056 1258 1258 098 148906 148906

015 38934 39293 057 3679 3693 099 179264 179274

016 87902 87902 058 2522 2564 100 120108 120108

017 84260 84375 059 3770 3770 101 0 0

018 104795 104795 060 5904 5904 102 0 0

019 89299 89299 061 25738 25738 103 0 0

020 72316 72316 062 17515 17644 104 0 0

021 214546 214546 063 30737 30737 105 0 0

022 150800 150800 064 18082 18082 106 0 0

023 224025 224025 065 25049 25049 107 1717 1717

024 116015 116015 066 76878 76878 108 0 0

025 240179 240179 067 85501 85920 109 6185 6185

026 2 2 068 92897 93446 110 1295 1295

027 4 4 069 77933 78031 111 27310 27389

028 755 755 070 74750 74932 112 15867 15867

029 99 99 071 150580 150580 113 35106 35106

030 22 22 072 131680 131681 114 15505 15505

031 9934 9934 073 98494 98494 115 10574 10574

032 7260 7322 074 135463 135463 116 35727 35727

033 4674 4674 075 135677 135677 117 71927 71927

034 4017 4017 076 0 0 118 65433 65433

035 6459 6459 077 0 0 119 106043 106116

036 34892 34892 078 0 0 120 101667 101672

037 22740 22783 079 0 0 121 78315 78315

038 29492 29492 080 0 0 122 119925 119925

039 49352 49352 081 816 816 123 101157 101157

040 26423 26423 082 4879 4879 124 139488 139488

041 71111 71111 083 973 973 125 110392 110392

042 90163 90334 084 508 508

 129

Table F.7. Min-max best-found solution for five seed experimentation (100-job) SMTWT

100-JOB PROBLEM SET

Instance Min Max Instance Min Max Instance Min Max

001 5988 6066 043 320640 321363 085 284 284

002 6170 6170 044 360193 360193 086 67166 67240

003 4286 4336 045 306624 307754 087 84303 84454

004 5011 5011 046 829867 829899 088 55931 56370

005 5283 5283 047 623362 623441 089 55808 57792

006 58258 58258 048 749018 749053 090 75223 75229

007 51318 52104 049 656713 656715 091 248823 248841

008 59809 60498 050 599269 599375 092 311514 311557

009 41005 41492 051 0 0 093 326406 326535

010 53663 53923 052 0 0 094 274073 274200

011 183665 185688 053 0 0 095 317764 319142

012 236528 237477 054 0 0 096 495657 496057

013 180988 182925 055 0 0 097 636903 636903

014 157946 159314 056 9046 9046 098 680104 680194

015 174195 175378 057 11740 12425 099 622491 622633

016 407722 408283 058 16313 17156 100 449613 449613

017 333415 335722 059 7965 7965 101 0 0

018 545801 545801 060 19919 19919 102 0 0

019 479272 480333 061 86915 87928 103 0 0

020 406675 406869 062 87240 90176 104 0 0

021 898925 898925 063 97315 97357 105 0 0

022 556873 556873 064 102826 106471 106 0 0

023 539716 539716 065 58831 60108 107 1193 1193

024 744287 744339 066 243942 243942 108 0 0

025 585306 585306 067 401617 401617 109 232 232

026 8 8 068 399140 399158 110 0 0

027 718 718 069 309256 309338 111 159123 159571

028 27 27 070 222794 222794 112 176448 177522

029 480 480 071 640845 640845 113 91389 91777

030 50 50 072 611362 611374 114 168453 168488

031 24435 24773 073 623429 623559 115 70763 71301

032 25720 26726 074 584632 584733 116 370790 370840

033 33612 33740 075 575283 575297 117 324762 325487

034 22215 23250 076 0 0 118 246697 247688

035 19490 20016 077 0 0 119 293659 293666

036 108293 109910 078 0 0 120 267350 267434

037 182053 185246 079 0 0 121 471499 471828

038 90747 92576 080 0 0 122 570485 570591

039 152706 155157 081 1400 1400 123 397197 397908

040 131062 132165 082 317 317 124 431172 431208

041 462414 462571 083 1146 1146 125 560858 561644

042 425897 426207 084 136 136

 130

Appendix F.2. Best-Known Solutions to PMTT

 In Table F.8 and Table F.9, the column U.B.K. shows the updated best-known

solutions found by Anghinolfi and Paolucci (2006), column B.K. shows the best-known for

Bilge et al. (2004) and finally last column HCSS stands for our best-found solutions which

are visited by HCSS approach during the numerical experimentations. The values reported

in the tables are multiplied by 100 for a better representation.

Table F.8. Best-known solution to 40-job problem set – PMTT

40-JOB PROBLEM SET

2-MACHINE 4-MACHINE

Instance U.B.K.* B.K.** HCSS*** Instance U.B.K. B.K. HCSS

01 14071 14079 14079 01 0 0 0

02 3946 3946 3946 02 0 0 0

03 3335 3335 3335 03 0 0 0

04 10095 10095 10095 04 0 0 0

05 19662 19695 19703 05 0 0 0

06 26372 26372 26372 06 0 0 0

07 18565 18565 18565 07 914 914 914

08 37509 37513 38073 08 26 48 48

09 1055 1055 1055 09 0 0 0

10 1032 1038 1038 10 0 0 0

11 1726 1726 1726 11 0 0 0

12 8199 8199 8199 12 0 0 0

13 8382 8382 8528 13 2681 2807 2807

14 5839 5860 5860 14 2704 2704 2704

15 21561 21563 21615 15 1382 1388 1418

16 43395 43502 43418 16 0 0 0

17 15816 15816 16096 17 0 0 0

18 5866 5866 5866 18 0 0 0

19 27258 27258 27258 19 0 0 0

20 2887 2887 2887 20 0 0 0

 * U.B.K. denotes updated best-known solution found by Anghinolfi and Paolucci

 ** B.K. denotes best-known solution found by Bilge et al.
*** HCSS denotes best-found solutions which are visited by HCSS approach during

the numerical experimentations

 131

Table F.9. Best-known solution to 60-job problem set – PMTT

60-JOB PROBLEM SET

2-MACHINE 4-MACHINE

Instance U.B.K. B.K. HCSS Instance U.B.K. B.K. HCSS

01 14205 14205 14205 01 0 0 0

02 6528 6528 7059 02 3219 2737 4421

03 17296 17296 17296 03 59 155 155

04 72330 72406 74132 04 0 0 0

05 34568 34640 37542 05 2591 2591 2792

06 50138 50492 53000 06 364 339 364

07 26535 26660 26660 07 4744 4744 4773

08 8030 8042 8051 08 0 0 0

09 16739 16790 16790 09 0 0 0

10 20899 20943 22104 10 4560 4626 4687

11 11204 11204 11204 11 4329 4423 4423

12 14080 14080 14080 12 0 0 0

13 12806 12806 13170 13 0 0 0

14 6793 6874 6834 14 0 0 0

15 20017 20017 20221 15 0 0 0

16 23981 23883 23981 16 49 58 53

17 12222 12222 12850 17 0 0 0

18 38642 38948 38642 18 0 0 0

19 133 164 133 19 0 0 0

20 23511 23514 26622 20 0 0 0

Table F.10. Min-max best-found solution for five seed experimentation (40-job) PMTT

40-JOB PROBLEM SET

2-MACHINE 4-MACHINE

Instance Min Max Instance Min Max

01 14079 14079 01 0 0

02 3946 3946 02 0 0

03 3335 3335 03 0 0

04 10095 10095 04 0 0

05 19703 19863 05 0 0

06 26372 26372 06 0 0

07 18565 18565 07 914 1189

08 38149 39465 08 48 48

09 1055 1055 09 0 0

10 1038 1038 10 0 0

11 1726 1726 11 0 0

12 8199 8199 12 0 0

13 8528 8888 13 2807 3070

14 5860 5868 14 2704 2898

15 21615 22655 15 1418 1692

16 43418 43429 16 0 0

17 16096 16096 17 0 0

18 5866 5866 18 0 0

19 27258 27258 19 0 0

20 2939 2939 20 0 0

 132

Table F.11. Min-max best-found solution for five seed experimentation (60-job) PMTT

60-JOB PROBLEM SET

2-MACHINE 4-MACHINE

Instance Min Max Instance Min Max

01 14205 14205 01 0 0

02 7059 7120 02 4421 4847

03 17296 17296 03 155 155

04 74132 74132 04 0 0

05 37542 37542 05 2792 2874

06 53000 54698 06 364 401

07 26660 26662 07 4773 4886

08 8051 8051 08 0 0

09 16790 16790 09 0 0

10 22104 22649 10 4687 4878

11 11204 11204 11 4423 4423

12 14080 14080 12 0 0

13 13170 13485 13 0 0

14 6834 6882 14 0 0

15 20221 20450 15 0 0

16 23981 24592 16 53 58

17 12850 12850 17 0 0

18 38642 38948 18 0 0

19 133 133 19 0 0

20 26622 26622 20 0 0

 133

REFERENCES

Anghinolfi, D. and M. Paolucci, 2006, “Parallel machine total tardiness scheduling with a

new hybrid metaheuristic approach”, Computers & Operations Research, In Press,

Available online.

Azizoğlu, M., S. Kondakci, and M. Köksalan, 2003, “Single machine scheduling with

maximum earliness and number tardy”, Computers & Industrial Engineering, Vol.

45, pp. 257-268.

Bean, J.C., 1994, “Genetics and random keys for sequencing and optimization”, ORSA

Journal on Computing Vol. 6, pp. 154-160.

Beasley, J.E., 2006, OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Bilge, U., F. Kıraç, and M. Kurtulan, 2006, “An adaptive genetic algorithm for the parallel

machine total tardiness problem”, Research Papers, Boğaziçi University, FBE-IE-

05/2006-07.

Bilge, U., F. Kıraç, M. Kurtulan, and P. Pekgün, 2004, “A tabu search algorithm for

parallel machine total tardiness problem”, Computers & Operations Research, Vol.

31, pp. 397-414.

Bilge, U., F. Kıraç, and M. Kurtulan, 2007, “A tabu search algorithm for the single

machine total weighted tardiness problem”, European Journal of Operational

Research, Vol. 176, pp. 1423-1435.

Carroll, D.C., 1965, Heuristic Sequencing of Single and Multiple Components, Ph.D.

Dissertation, Massachusetts Institute of Technology, MA.

 134

Congram, R.K., C.N. Potts, and S.L. Van de Velde, 2002, “An iterated dynasearch

algorithm for the single-machine total weighted tardiness scheduling problem”,

Informs Journal on Computing Vol.14 (1), pp. 52–67.

Crauwels, H.A.J., C.N. Potts and L.N. Van Wassenhose, 1998, “Local search heuristics for

single machine total weighted tardiness scheduling problem”, Informs Journal on

Computing, Vol. 10, pp. 341-350.

Dessouky, M.M., 1998, “Scheduling identical jobs with unequal ready times on uniform

parallel machines to minimize maximum lateness”, Computers and Industrial

Engineering, Vol. 34, pp. 793-806.

Dorigo, M. and G. Di Caro, 1999, “The Ant Colony Optimization Meta-Heuristic”, in:

Corne, D., M. Dorigo and F. Glover (Eds.), New Ideas in Optimization, McGraw-

Hill, pp. 11-32.

Du, J., and J.Y.T. Leung, 1990, “Minimizing total tardiness on one machine is NP-hard”,

Mathematics of Operations Research, Vol.15, pp. 483–495.

Elmaghraby, S.E., and S.H. Park, 1974, “Scheduling jobs on a number of identical

machines”, AIEE Transactions, Vol. 6, pp. 1-13.

Ergun, O., J.B. Orlin, and A.B. Punnen, 2002, “A survey of very large-scale neighborhood

search techniques”, Discrete Applied Mathematics, Vol.123, pp. 75-102.

Feldmann, M. and D. Bishop, 2003, “Single-machine scheduling for minimizing earliness

and tardiness penalties by meta-heuristic approaches”, Computers & Industrial

Engineering, Vol. 44, pp. 307–323.

França, P.M., A. Mendes and P.Moscato, 2001, “A memetic algorithm for the total

tardiness single machine scheduling problem”, European Journal of Operational

Research, Vol. 132, pp. 224-242.

 135

Garcia, C.G., D. Pérez-Brito, V. Campos and R. Martí, 2006, “Variable neighborhood

search for the linear ordering problem”, Computers & Operations Research, Vol. 33,

pp. 3549-3565.

Glover, F., 1977, “Heuristics for integer programming using surrogate constraints”,

Decision Sciences Vol. 8, pp.156–166.

Glover, F. and M. Laguna, 1997, Tabu search, Kluwer Academic Publishers, London.

Glover, F., 1998, “A Template for Scatter Search and path relinking”, in: Hao, J.K.,

Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (Eds.), Artificial Evolution,

Lecture Notes in Computer Science 1363, Springer, pp. 13–54.

Glover, F., A. Løkketangen, and D.L. Woodruff, 2000, “Scatter Search to generate diverse

MIP solutions”, in: Laguna, M., J.L. Gonza´lez-Velarde, (Eds.), OR Computing Tools

for Modeling, Optimization and Simulation: Interfaces in Computer Science and

Operations Research, Kluwer Academic Publishers, pp. 299–317.

Glover, F., M. Laguna, and R. Martı´, 2003, “Scatter Search and path relinking: Advances

and applications”, in: Glover, F., Kochenberger, G. (Eds.), Handbook of

Metaheuristics, Kluwer, pp. 1–36.

Goldberg, D.E., 1989, Genetic algorithms in Search, Optimization and Machine Learning,

Addison-Wiley, Reading, MA.

Greistorfer, P., 2003, “A Tabu Scatter Search Metaheuristic for the Arc Routing Problem”,

Computers & Industrial Engineering, Vol. 44, pp. 249-266.

Greistorfer, P., 2004, “Experimental pool design: Input, output and combination strategies

for scatter search”, in: Resende, J.P., J.P. de Sousa, (Eds.), Metaheuristics: Computer

Decision-Making, Kluwer Academic Publishers, Boston, pp. 1–18.

Hansen, P. and N. Mladenovic, 2001, “Variable neighborhood search: Principles and

applications”, European Journal of Operational Research, Vol. 130, pp. 449-467.

 136

Hansen, P. and N. Mladenovic, 1999, “An introduction to variable neighborhood search”.

in: S. Voss et al. (Eds.), Metaheuristics, Advances and Trends in Local Search

Paradigms for Optimization, Kluwer Academic Publishers, Dordrecht, pp. 433-458.

Hansen, P., N. Mladenovic and D. Uroševic, 2006, “Variable neighborhood search and

local branching”, Computers & Operations Research, Vol. 33, pp. 3034–3045.

Herrera, F., M. Lozano, and D. Molina, 2006, “Continuous scatter search: An analysis of

integration of some combination methods and improvement strategies”, European

Journal of Operational Research, Vol. 169, pp. 450-476.

Jain A.S. and S. Meeran, 1999, “Deterministic job-shop scheduling: Past, present, and

future”, European Journal of Operational Research, Vol. 113, pp. 390-434.

Jones, A. and J. C. Rabelo, 1998, Survey of Job Shop Scheduling Techniques, NISTIR,

National Institute of Standards and Technology, Gaithersburg, MD.

Kennedy, J., R. and C. Eberhart, 2001, and Y. Shi, Swarm intelligence, Morgan Kaufmann

Publishers, San Francisco.

Kethley, R.B. and B. Alidaee, 2002, “Single machine scheduling to minimize total

weighted late work: a comparison of scheduling rules and search algorithms”,

Computers & Industrial Engineering, Vol. 43, pp. 509-528.

Kytöjoki, J., T. Nuortio, O. Bräysy and M. Gendreau, 2005, “An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems”,

Computers & Operations Research, In Press, Available online.

Laguna, M., J.W. Barnes, and F. Glover, 1991, “Tabu search methods for a single machine

scheduling problem”, Journal of Intelligent Manufacturing 2, pp. 63–74.

Laguna, M., and R. Martı´, 2003, Scatter Search: Methodology and Implementations, C.

Kluwer Academic Publishers.

 137

Laguna, M., R. Martı´ and F. Glover, 2006, “Principles of scatter search”, European

Journal of Operational Research, Vol. 169, pp. 359-372.

Lawler, E.L., 1977, “A pseudopolynomial algorithm for sequencing jobs to minimize total

tardiness”, Annals of Discrete Mathematics, Vol.1, pp. 331–342.

Lejeune, M.A., 2006, “A variable neighborhood decomposition search method for supply

chain management planning problems”, European Journal of Operational Research,

Vol. 175, pp. 959-976.

Lenstra, J.K., K. Rinnooy, and A.H.G., Brucker, P., 1977, “Complexity of machine

scheduling problems”, Annals of Discrete Mathematics, Vol.1, 343–362.

Liaw, C.F., Y.K. Lin, C.Y. Cheng, and M. Chen, 2003, “Scheduling unrelated parallel

machines to minimize total weighted tardiness”, Computers and Operations

Research, Vol. 30, pp. 1777-1789.

Liepins, G.E., and M.R. Hilliard, 1989, “Genetic Algorithms: Foundations and

Applications”, Annals of Operations Research, Vol. 21, pp. 31-58.

Liu, Y.H., 2006, “A hybrid scatter search for the probabilistic traveling salesman

problem”, Computers & Operations Research, In Press, Available online.

Marti, R., 2006, “Scatter Search-wellsprings and challenges”, Editorial, Europen Journal

of Operational Research, Vol. 169, pp.351-358.

MathWorks, 2006, “MATLAB®, Matrix laboratory, http://www.mathworks.com.

Matsuo, H., C.J. Suh, and R.S. Sullivan, 1989, “A controlled search simulated annealing

method for the single machine weighted tardiness problem”, Annals of Operations

Research Vol. 21, pp. 85–108.

 138

Montagne Jr., E.R., 1969, “Sequencing with time delay costs”, Industrial Engineering

Research Bulletin 5.

Morton, T.E. and D.W., Pentico, 1993, Heuristic Scheduling Systems with Applications to

production Systems and Project Management, John Wiley, New York.

Nomura, T., and K. Shimohara, 2001, “An analysis of two-parent recombinations for real-

valued chromosomes in an infinite population”, Evolutionary Computation Journal,

Vol. 9, pp. 283-308.

Nowicki, E. and C. Smutnicki, 2006, “Some aspects of scatter search in flow-shop

problem”, European Journal of Operational Research, Vol. 169, pp. 654-666.

Osman I.H. and G. Laporte, 1996, “Metaheuristics: A bibliography”, Annals of

Operational Research, Vol. 63, pp. 513-628.

Osman, I.H. and J.P. Kelly, 1996, “Meta-heuristics: An overview”. in: Osman, I.H. and

J.P. Kelly, Meta-heuristics: Theory and applications, Kluwer, Boston, pp. 1–21.

Pacheco, J. A., 2005, “A scatter search approach for the minimum sum-of-squares

clustering problem”, Computers & Operations Research, Vol. 32, pp.1325–1335.

Panwalkar, S.S., Smith, and M.L. Koulamas, C.P., 1993, “A heuristic for the single

machine tardiness problem”, European Journal of Operations Research Vol. 70, pp.

304–310.

Pinedo, M. and D. Simchi-Levi, 1996, “Heuristics Methods: Applications to Facility

Layout, Routing and Scheduling”. in: M. Avreil and B. Golany, (Eds.) Mathematical

Programming for Industrial Engineers, Marcel Dekker, Inc., NY, pp. 575 -617.

Potts, C.N., and L.N. Van Wassenhove, 1991, “Single machine tardiness sequencing

heuristics”, IIE Transactions Vol. 23, pp. 346–354.

 139

Rachamadugu, R.V., and T.E. Morton, 1982, Myopic Heuristics for the Single Machine

Weighted Tardiness Problem, Working Paper 30-82-83, GSIA, Carnegie Mellon

University, Pittsburgh, PA.

Reeves, C.R., 1993, Modern Heuristic Techniques for Combinatorial Problems, John

Wiley, New York.

Reeves, C.R., and T. Yamada, 1998, “Genetic algorithms, path relinking and the flowshop

sequencing problem”, Evolutionary Computation Journal, Vol. 6, pp. 45–60.

Root, J.G., 1965, “Scheduling with deadlines and loss functions on k parallel machines”,

Management Science, Vol. 11, pp. 460-475.

Schaller, J., 2004, “Single machine scheduling with early and quadratic tardy penalties”,

Computers & Industrial Engineering, Vol. 46, pp. 511–532.

Silver E.A., 2004, “An overview of heuristic solution methods”, Journal of the

Operational Research Society, Vol. 55, pp. 936-956.

Sivrikaya-Şerifoğlu F. and G. Ulusoy, 1999, “Parallel machine scheduling with earliness

and tardiness penalties”, Computers & Operations Research, Vol. 26, pp. 773–787.

Yamashita, D.S., V.A. Armentano and M. Laguna, 2006, “Scatter search for project

scheduling with resource availability cost”, European Journal of Operational

Research, Vol. 169, pp. 623-637.

