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ABSTRACT 

 

 

HYBRID CONTINUOUS SCATTER SEARCH APPROACH TO 

TARDINESS RELATED SCHEDULING PROBLEMS 

 

 

 In this thesis, a hybrid approach, which integrates Scatter Search (SS) and a 

Variable Neighborhood Search (VNS), is presented to attack tardiness related scheduling 

problems. The aim is to find advanced strategies that can be adapted to the basic SS 

methodology in order to enhance its diversification and intensification capabilities 

throughout the scheduling problems. The Hybrid Continuous Scatter Search (HCSS) 

approach is first implemented on the Single Machine Total Weighted Tardiness (SMTWT) 

problem to minimize total weighted tardiness. Then the HCSS method is modified to 

addresses the Parallel Machine Total Tardiness (PMTT) problem, which consists of a set of 

jobs to be scheduled on a number of parallel processors to minimize total tardiness. The 

NP-hard nature of both problems renders a challenging area for research. 

 

 In order to develop a robust hybrid methodology, the key elements of the Scatter 

Search such as reference set update method, initial solution generation method, solution 

combination method and as an intensification strategy – the hybridized VNS are 

investigated. The employed solution encoding, diverse solution selection methods, and 

dynamic solution combination method are unique and introduced first time in this thesis to 

provide new ideas for Scatter Search era. The proposed HCSS approach yields good 

quality results with respect to optimal/best-known solutions reported in the literature.    
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ÖZET 

 

 

ARTI GECİKME TABANLI ÇİZELGELEME PROBLEMLERİNE 

MELEZ SÜREKLİ DAĞILIM ARAMASI YAKLAŞIMI 

 

 

 Bu tezin konusu olan çalışmada, Artı Gecikme Tabanlı Atama problemlerini 

çözmek için Dağılım Araması (DA) ve Değişken Komşuluk Araması (DKA) yöntemlerini 

bünyesinde birleştiren melez bir yaklaşım sunulmuştur. Bu tezde amaç, DA metodunun 

atama problemlerinin çözümündeki başkalaşım ve kuvvetlendirme kabiliyetlerini artırmak 

için temel metodolojisine adapte edilebilecek ileri seviye stratejiler bulmaktır. Melez 

Sürekli Dağılım Araması  (MSDA) yaklaşımı ilk olarak Tek Makina Toplam Ağırlıklı Artı 

Gecikme (TMTAG) probleminde toplam ağırlıklı artı gecikmeyi en küçüklemek için 

yürütülmüştür. Bir sonraki kademede MSDA metodu, bir takım işin birkaç paralel işlemci 

üzerinde toplam artı gecikmesini en küçüklemek amacıyla oluşturulan Paralel Makina 

Toplam Artı Gecikme (PMTAG) problemini ele alabilmesi için uygun bir şekilde modifiye 

edilmiştir. İlgilenilen problemlerinin NP-zor doğası itibari ile ortaya iddialı bir araştırma 

konusu çıkmıştır. 

 

 Sağlam bir metodoloji geliştirmek için Dağılım Araması yönteminin anahtar 

elemanları olan; referans kümesi güncelleme metodu, başlangıç çözümü oluşturma 

metodu, çözüm birleştirme metodu ve çözüm kuvvetlendirme stratejisi olarak DKA 

yöntemi incelenmiştir. Kullanılan çözüm kodlaması, farklı çözüm seçme metodu ve 

dinamik çözüm birleştirme metodu DA yöntemine yeni fikirler teşkil etmek amacı ile ilk 

defa bu tezde sunulmuşlardır. Tasarlanan MSDA yaklaşımı literatürde yayınlanmış bilinen 

en iyi çözümlerle karşılaştırıldığında kaliteli sonuçlar vermektedir.  
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1. INTRODUCTION 

 

 

Designing efficient solution algorithms for Combinatorial Optimization problems, 

especially scheduling problems, has been a real challenge for researchers. Scheduling 

problems arise in many contexts; from computer engineering to manufacturing techniques. 

Most scheduling problems are NP-hard; thus render classical approaches such as Branch 

and Bound schemes or integer linear programming unpractical for real-life instances. Due 

to the fact that the quality of simple approximation approaches remains limited, many 

researchers continuously search for new sophisticated methods which can provide 

solutions with high accuracy in a short time. 

 

 Meta-heuristics, which extend the neighborhood search beyond the local optima, 

introduced a new era towards improvement of solution quality for scheduling problems. 

Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithms (GA) are the most 

established and widely used meta-heuristic approaches. Several studies in the literature 

report successful implementations of these methods on scheduling problems where the TS 

and its hybrids were often surpassing the performance of the others. 

 

Scatter Search (SS) is another population-based meta-heuristic that came into 

attention very recently, although the original idea dates back to 1970s. Basically, SS works 

on a set of good but diverse reference solutions to generate new trial solutions by 

combining them. European Journal of Operational Research published a special volume 

(EJOR Vol. 169, 2006) dedicated to SS and its implementations. In this volume, articles on 

methodology of SS, as well as several applications including assignment, routing, 

clustering and scheduling problems are reported. In his editorial article, Marti (2006) states 

the highlights of SS and presents it as an amazing search method which would break the 

dominance of Tabu Search and Genetic Algorithm. Based on Marti’s analysis, the number 

of SS publications shows a boost after year 2000. It is apparent that this approach is still 

not fully mature, needs further development and testing especially for scheduling domain.  

 

The highly concentrated interest on SS has motivated and encouraged us to test this 

new approach in this thesis. Due to its stochastic nature and the absence of an exploitation 
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component, SS might result poorly when the NP-Hard scheduling problems are taken into 

consideration. Therefore, SS approach is enhanced with a well known local improvement 

method namely Variable Neighborhood Search (VNS) whose performance on 

intensification is proven throughout most of the studies performed in scheduling era.    

 

 In order to test the performance of the SS approach, we selected two tardiness 

related scheduling problems. Tardiness, or the duration by which the completion time of a 

job exceeds its due date, is a challenging performance measure in the sense that even the 

simplest scheduling setting of sequencing n jobs on a single machine becomes NP-hard 

under this objective. Moreover, scheduling against due dates receives considerable 

attention in literature, since delivery time performance becomes an increasingly critical 

issue under the growing pressure of the competition in today’s markets. 

 

 The first problem handled is minimizing the total weighted tardiness of n jobs 

scheduled on a single machine (SMTWT), a well known NP-hard problem. The problem 

has been studied previously by several researchers including: TS, SA, and GA approaches 

by Crauwels et al. (1998), dynasearch algorithm by Congram et al. (2002) and TS 

approach by Bilge et al. (2007). There is a set of benchmark problems whose best known 

solutions are largely provided by Congram, and TS algorithm introduced by Bilge et al. 

produces matchingly good results. 

 

 The second problem selected is the Parallel Machine Total Tardiness (PMTT) 

problem. Here, a set of jobs with distinct arrival times and sequence dependent setup times 

are scheduled on a set of uniform parallel machines to minimize total tardiness. This 

complicated and realistic problem has also been studied by various researchers: GA 

approach by Sivrikaya-Şerifoğlu and Ulusoy (1999), TS by Bilge et al. (2004), GA by 

Bilge and Kıraç (2006) and a hybrid of TS-SA-VNS by Anghinolfi and Paolucci (2006). 

The best-known solutions for the benchmark set of problems, -first introduced by 

Sivrikaya-Şerifoğlu, has been improved by each research in this line, and currently the 

results obtained by Anghinolfi and Paolucci constitute the best-known solutions.  

 

In this thesis, the proposed hybrid SS will be tested over these two benchmark 

problems sets and the results will be compared to the most up-to-date best known 
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solutions. The thesis is organized as follows: In the next chapter, after a brief overview of 

heuristic approaches in general and a meta-heuristics in particular, a more through account 

for both SS and VNS are given. Chapter Three provides detailed problem definitions and 

literature surveys for the SMTWT and PMTT problems. The proposed hybrid SS algorithm 

is described in details in Chapter Four. Numerical studies and final results for both 

problem settings are presented in Chapter Five and finally, Chapter Six ends the thesis with 

summary and conclusive remarks. 
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2. OVERVIEW OF META-HEURISTICS AND SCATTER SEARCH 

 

 

The hybrid approach used in this study, integrates two well-known meta-heuristics; 

Scatter Search and Variable Neighborhood Search. Thus it will be a good idea to start with 

basics and define heuristics and meta-heuristics in general before examining our approach. 

  

The term heuristic means a method based on previous experiences and judgments 

that provides a fast and reasonable solution to a problem, but which cannot be guaranteed 

to produce the mathematically optimal solution (Silver, 2004). There are several types of 

heuristic solution methods that can be chosen defining on factors related to the problem. 

Most common heuristic techniques can be categorized as constructive methods, branch and 

bound derivatives and local improvement (neighborhood search) methods. Constructive 

methods as the name implies use the data of the problem to build a solution step be step. 

Hence no solution is obtained until the procedure is complete. At each iteration, there is a 

partial solution and the extension of the current solution is constructed by selecting one of 

the possible options available for the current status of the solution. This makes the 

approach myopic. Usually the option with the minimum cost is selected as the extension 

leading to so called greedy method. As an example, consider a scheduling problem 

concerned with the sum of the weighted completion times of n jobs on a single machine. 

Job j has a process time pj and a weight wj. For this case, a well known dispatching rule so 

called WSPT can be employed as a constructive algorithm. All the jobs are ranked 

according to their wj / pj ratios in decreasing order and whenever the machine is idle the job 

with the highest rank is processed and continues to the next highest until set of 

unprocessed jobs is empty. (Pinedo and Simchi-Levi, 1996) 

 

Enumerative branch and bound methods are widely used to obtain optimal solutions 

to NP-hard scheduling problems. Branch and Bound (B&B) attempts to eliminate a node 

by determining a lower bound on the objective function for all partial schedules that 

derived from that node. If the lower bound is higher than the value of objective function 

under known schedule, the node may be eliminated and its possible offspring are 

neglected. The main advantage of Brach and Bound methods is that after evaluating all 
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nodes, the final solution can be considered to be the optimal. On the other hand, B&B 

method is extremely time-consuming, when the number of nodes is very large. Therefore 

some derivatives of B&B method are constructed to overcome this handicap. Filtered beam 

search is an adaptation of Branch and Bound method in which only the most promising 

nodes at a level are selected as nodes for further branching. The remaining nodes at that 

level are filtered permanently. The number of nodes kept is so called beam width of the 

search. The decision process that determines the promising nodes is the most important 

phase of this method. There is a trade-off between quickness and efficiency. A crude 

prediction is quick, but may lead to discard good solutions. On the other hand, more 

through evaluations may be extremely time consuming. (Reeves, 1993) 

 

The basic concept behind the local improvement methods is quite simple. One 

starts with a feasible solution to a problem, often generated randomly or obtained as a 

result of a constructive method. In the next step, feasible solutions in the neighborhood of 

the current solution are evaluated. If one of the new solutions is better than the current 

solution, it becomes the new current solution and its neighborhood is searched for the next 

iteration. These repetitive steps are continued until no improvement can be found. The 

current solution, at the final stage is accepted as the local optimum. The neighborhood of 

the solution suggests that two solutions are neighbors if one can be obtained through well 

defined modifications. As an example, for a single machine scheduling problem, a solution 

is a specific sequence of the jobs on a machine and neighborhood of the current solution 

can be defined as the new schedule obtained by performing a single adjacent pair-wise 

interchange of two consecutive jobs. While searching the neighborhood of the current 

solution, an important issue arises. It is crucial to decide whether to choose a move to the 

first solution in the neighborhood exhibiting an improvement or to evaluate all the 

solutions in the neighborhood and choose the one giving the largest improvement. (This 

method is often referred to as steepest ascent (or descent) method)(Reeves, 1993).  

Depending on the new current solution selection strategy, different local improvement 

methods can be constructed. Although these methods perform highly satisfactory, they 

only guarantee a local optimum. The final solution obtained heavily depends on the 

starting solution and most possibly ends at a local optimum. In order to break out the 

fundamental weakness of local search, exploration and diversification methods are 
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suggested to broaden search to other parts of the solution space. The resulting heuristics 

are generally named as meta-heuristics. 

 

2.1. Meta-heuristics 

 

A meta-heuristic is an iterative master process that guides and modifies the 

operations of sub ordinate heuristic to produce efficiently high quality solutions. It may 

combine intelligently different concepts to explore solution space using adaptive learning 

strategies and structured information (Osman, 1996). Meta-heuristics are particularly 

concerned with not getting trapped at local optimum and carefully reducing solution space 

to be searched. Every meta-heuristic has one or more adjustable parameters, that provide 

flexibility and the robustness. On the other hand, this parameter requires intensive 

calibration on set of numerical instances of the problem. The family of meta-heuristics can 

be classified into three main categories and their sub-categories. Construction based meta-

heuristics includes greedy random adaptive search methods, and guided construction 

methods. Local search based meta-heuristics include simulated annealing, noise methods, 

guide local search methods, iterated local search, neural networks, Tabu Search and 

variable neighborhood search. Population based meta-heuristics include evolutionary 

algorithms (EA) such as ant colony systems, particle swarm optimization, genetic 

algorithm, and scatter search. (Osman and Kelly, 1996) 

 

Tabu search (TS) is one of the most widely used meta-heuristic proposed by Glover 

(1997). In his paper, Glover points to several application areas including scheduling, 

routing, location/allocation, design, logic and artificial intelligence. TS begins with a 

complete feasible solution. This solution can be either randomly generated one or a more 

qualified solution evaluated by a constructive heuristic.  Just like the other local 

improvement methods, TS continues to develop new complete solutions from its 

neighborhood. Then these candidate solutions are evaluated and chosen if better than the 

current solution. However, evaluating every possible move from the current solution might 

be extremely time consuming and computationally expensive. Therefore, candidate list 

strategy is employed to filter some neighborhood solutions. A candidate list strategy 

chooses potentially good candidates from the neighborhood, and prevents considering all 

moves. In order to avoid being trapped at local optimum, moves to neighborhood points 
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with inferior solutions are permitted. In addition to that a mechanism is used to prevent 

cycling back to recently visited solutions. Recently visited solutions are kept in a tabu list 

and these solutions are avoided from reoccurring for a certain number of iterations. The 

number of tabu iterations also called tabu tenure is a key controllable parameter of TS.  

 

Two crucial components of TS search are intensification and diversification 

strategies. Intensification strategy is based on modifying choice rules to encourage move 

combinations and solution features historically found good whereas diversification strategy 

encourages the search to examine unvisited regions of search space and to generate 

solution that differs significantly than previously visited. The memory used in TS is both 

explicit and attributive. Explicit memory records elite solutions visited during the search 

and extension of this memory stores highly attractive but unexplored neighborhoods of 

elite solutions. These solutions are later used to expand local search.  

 

Simulated Annealing (SA) takes its name from the physical process called 

annealing where a material is heated into a liquid state then cooled back into recrystallized 

solid state. In this local search method, the randomly generated or a constructively 

evaluated solution is considered at the initial stage. This starting solution must be complete 

and feasible. In the following steps, neighborhood solutions are generated by mutations 

and evolutions. If the candidate solution is better than the current one, it becomes the new 

current solution. However, if the fitness of candidate is inferior to the current, then there is 

still a chance that candidate replaces current with a probability determined by exponential 

of the difference between fitness values and a parameter called the temperature. The 

probability of accepting the poor solution decreases as the difference between fitness 

values increases or the temperature becomes smaller. The temperature is gradually lowered 

during the course of the search so that the probability of accepting poor solutions is 

reduced towards the end of the process. The search continues until the termination criterion 

is met. This criterion can be a certain total number of iterations or a prescribed number of 

consecutive iterations without any improvement. These properties of simulated annealing 

are more or less same as the TS. However, there are important differences between the 

methods. Firstly, TS uses adaptive memory, whereas SA is memoryless. Secondly, TS 

tends to permit moving to an inferior solution when in the vicinity of the local optimum 

whereas this can happen at any time in SA. Finally, TS allows moving away from a local 
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optimum by a deterministic mechanism; on the other hand SA uses a probabilistic method. 

(Jones and Rabelo, 1998) 

 

Ant Colony Optimization (ACO) proposed by Dorigo (Dorigo and Di Caro, 1999) 

is one of the most successful examples in swarm intelligence systems and have been 

applied to many types of optimization problem. This algorithm simulates the behavior of 

ant colonies when finding the shortest path between nest and the food source. While going 

from nest to food source (or vice versa), ants deposit a chemical substance called 

pheromone on the ground. When they arrive the decision point such as an intersection 

between shorter and longer branch, they make a choice depend on the amount of 

pheromone they smell on the two branches. For this reason, ants choose the shorter path 

having more pheromone with higher probability then the longer one. New pheromone is 

released on the chosen path and makes it more attractive for subsequent ants. Consider a 

traveling salesman problem; the probability of a salesman transition from one city to 

another depends on two factors. First one is the direct distance between two cities 

(probability that is inversely proportional to distance) and the second one is the remaining 

amount of pheromone released by earlier salesman that has traveled this link (probability 

that is proportional to amount of pheromone). In order to provide flexibility and prevent 

premature convergence, ant colony optimization method uses a predefined formula known 

as pheromone evaporation rate through which remaining pheromone is updated at the end 

of each iteration.  

 

 Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart (2001), 

is based on a social-psychological model of social influence and social learning. 

Individuals in a particle swarm follow a very simple behavior: emulate the success of 

neighboring individuals. The collective behavior, which emerges, is that of discovering 

optimal regions of a high dimensional search space. The swarm of particles responds to 

quality factors in the form of the personal and neighborhood best positions. Allocation of 

responses between the personal best and neighborhood best positions ensure a diversity of 

response. The particle changes its state only when the personal best and the global best 

position change. A PSO algorithm maintains a swarm of particles, where each particle’s 

position represents a potential solution. In analogy with evolutionary computation 

paradigms, a swarm is similar to a population, while a particle is similar to an individual. 
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In simple terms, the particles are flown through a multi-dimensional space, where the 

position of each particle is adjusted according to its own experience and that of its 

neighbors. The position of the particle is altered by adding a velocity to the current 

position. This velocity vector drives the optimization process. At the end of search, the 

particle with the superior position is considered as the best particle of the swarm and 

represents the best found solution. 

 

Genetic Algorithms (GA) (Goldberg, 1989, Liepins and Hillard, 1989) work with a 

group or population of solutions. Each individual in the population is characterized by its 

fitness. The fitness of an individual is associated to the objective function. The process 

works iteratively and each iteration is referred to a generation. A generation consists of 

surviving individuals and new solutions or children from previous generation. Population 

size generally remains constant from one generation to the next. The children are generated 

through reproduction and mutation of individuals that are part of previous generation. At 

each iteration, the fittest individuals reproduce and the least fits die. The birth, death and 

reproduction procedure that determine the composition of the next generation can be 

complicated process that is usually a function of the fitness levels of the individuals of the 

current generation. There are considerable number of controllable parameters and other 

choices including size of population, the probability of mutation of an individual, and the 

number of crossover points, etc. 

 

Scatter Search is another derivative of evolutionary algorithms that uses weighted 

linear combinations of several solutions contained in a reference set to produce new 

solutions. Since we employ Scatter Search methodology in our hybrid approach, detailed 

definitions of SS internal components and their working mechanisms are given in the next 

section.  

 

2.2. Scatter Search 

 

Scatter Search (SS) is an evolutionary algorithm which was first introduced by 

Glover (1977) as a heuristic for integer programming. In contrast to other evolutionary 

methods like GA, SS is founded on the idea that new solutions created by systematic 

design and procedures provide significant benefits than those generated randomly. SS 
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orients its exploration systematically relative to a set of reference points that typically 

consists of good solutions obtained by prior problem solving efforts. In this context, 

reference solutions do not cite as “good” according to their objective function value, may 

also be considered in the case of some specifications that differ from other solutions. SS 

uses weighted linear combinations to produce new candidate solutions within the search 

space containing previously found reference points.  

 

Glover (1998) provides a Scatter Search template as the main reference for most of 

the SS implementations. He defines five components to construct a basic design as follows: 

 

• A diversification method to generate a collection of diverse trial solutions using 

an arbitrary trial solution as an input.  

• An improvement method to transform a trial solution into a more enhanced trial 

solution 

• A reference set update method to build and maintain a reference set containing 

predefined number of best solutions and diverse solutions which are accepted 

according to their quality or diversity. 

• A subset generation method to operate on reference set to produce a subset of 

its solutions as a basis for creating combined solutions.  

• A solution combination method to transform a given subset of solutions 

produced by subset generation method into one or more combined vectors. 

 

The reference set plays the crucial role in SS method. The reference set (RefSet) as 

mentioned previously is a collection of both high quality and diverse solutions that are 

used to generate new candidate solutions. The number of elite solutions b1 and diverse 

solutions b2 are fixed and state the size of the reference set (b = b1 + b2). The construction 

of the initial reference set starts with the selection of the best b1 solution from the pool of 

initially generated and improved trial solutions. These solutions are added to RefSet and 

discarded from the pool. For each solution in the pool, the minimum of the distances to the 

reference points contained in RefSet is computed. Then the solution with the maximum of 

these minimum distances is selected as the diverse point. This solution is added to RefSet 

and deleted from the pool. The loop continues until b2 diverse solutions are chosen to 

RefSet. (Laguna et al., 2006) 
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After constructing the RefSet, subsets are created by using the subset generation 

method. In traditional EA’s such as GA, parents are selected through a random sampling 

scheme, but in SS the parent selection is based on a deterministic method. This method 

generates all subsets of size two while skipping subsets with the same elements. Using an 

appropriate solution combination method, these subsets yield into new trial solutions that 

build up the pool. Then the RefSet is rebuilt using new pool and previous RefSet through 

mentioned update method. These five methods are repeated simultaneously until a 

termination criterion is met. (Laguna and Marti, 2003) 

 

Some advanced design, such as dynamic RefSet updating, RefSet rebuilding, RefSet 

tiers, and diversity control are outlined by Glover (1998) which can be useful 

modifications to improve the performance of SS implementations. In dynamic RefSet 

updating, RefSet is updated immediately when a new best solution is found by the 

combination method. The advantage of dynamic update is that it quickly replaces inferior 

solutions in the RefSet with better solutions and future combinations are made with 

improved solutions. The disadvantage is that, some potentially promising combinations are 

eliminated before being considered. In RefSet rebuilding method, RefSet is partially rebuilt 

with diversification update where the previous diverse solutions are deleted and new 

diverse solutions are generated using diversification generation method. These solutions 

are then placed to RefSet. Another advanced approach is dividing RefSet into more than 

two subcategories. As previously mentioned, RefSet already consists of two subcategories: 

high quality and diverse points. In addition to these, new categories may be defined, such 

as a third category containing good generators which generated high quality trial solutions 

when used as inputs in the combination method for the previous generations. All these 

advance modifications can improve the performance of SS and translate it into a higher 

complexity with additional search parameters. However, it conflicts with the goal of 

designing a method that is easy to implement and fine tune. Therefore, there is no one and 

exact combination of these methods that leads to the best performance. One should try and 

decide which combination is superior for a given problem context. 

 

Initial step for an efficient SS algorithm is to understand its methodology. Glover 

(1998), Glover et al. (2000), Glover et al. (2003), Greistorfer (2004), Herrera et al. (2006), 

Laguna et al. (2003), Laguna et al. (2006), Reeves and Yamada (1999) develop basic 
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mechanisms and methods of SS design. They also provide insights to efficient 

implementations and advanced modifications that would help while aiming complex 

problems. The methodologies given in these papers become the keystones of our SS 

approach which will be discussed briefly. 

 

As described in those papers, SS is implemented for both discrete and continuous 

optimization problems. Since it is a methodology, the described components of SS can be 

refined and adapted depending on the nature of the considered optimization problem. A 

discrete optimization problem consists of integer variables xi’s such that xi Є Z, whereas 

continuous problem includes real-value xi’s that belongs to the set R. Constructing a proper 

solution encoding is one of the most crucial parts of the SS approach. Depending on the 

structure of the problem, encoding might contain either integer values or real-value 

components, which should provide a meaningful mapping to the search space. The 

components of SS such as solution combination method and diverse solution selection 

method are designed according to the utilized solution encoding. 

  

The generation method of the new solution changes according to the type of the 

encoding. For discrete problems, the solution combination method employs a crossover or 

a mutation operator which generate a new individual by crossing chromosomes or mutating 

them. However, real-value encoding of solutions offers the possibility of defining a wide 

variety of special real-parameter combination operators which can take advantage of its 

numerical nature. These operators construct intervals depending on the linear combinations 

of the solutions and select a new solution within this interval. Average combination 

method and BLX-α are two well-known combination methods for continuous GAs. 

(Herrera et al., 2006) 

 

Another important method to be carefully designed is the diverse solution selection 

method. Diverse solutions are chosen with respect to their distance values to the reference 

set. This distance measurement should be performed in an accurate way in order to select 

superior diverse solutions. The diversity of two solutions can be defined by either 

calculating the distance between them or evaluating the dissimilarities inside their 

structures. The most of the diverse solution selection methods originates from these two 

measurement rules. Every SS approach has its own unique distance measurement function 
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depending on the characteristics of the desired diverse solution, and the nature of the 

solution encoding. 

 

The hybrid applications show that SS can be improved when combined with other 

meta-heuristics. The key idea behind these hybrid approaches should be identifying the 

method with required strategy and to justify the selection of this method from another 

meta-heuristics. Investigating some hybrid methods found on literature assists us to 

construct our own hybrid SS. 

 

Greistorfer (2003) propose a meta-heuristic based on a TS procedure that makes use 

of the SS paradigm to solve a capacitated Chinese Postman problem where for a given 

undirected network in which the goal is to determine a least cost schedule of routes. The 

computational results indicate that the algorithm can cope up with the other arc routing 

heuristics. 

 

Nowicki and Smutnicki (2006) provide a new view on the solution space and the 

search process of flow-shop makespan problem. They present a new approximate 

algorithm which applies some properties of neighborhood approach known as big valley 

phenomenon, uses some elements of SS as well as the path-relinking technique. The 

proposed algorithm provides very good accuracy obtainable in a short CPU time when 

compared to other best known methods. 

 

Liu (2006) presents a hybrid SS by incorporating the nearest neighbor rule, 

threshold accepting and edge recombination crossover into a scatter search conceptual 

framework to solve the probabilistic traveling salesman problem. The author conducts 

several experiments to test the validity of a hybrid SS on the test problems attained from 

literature. His numerical analysis proves that incorporating threshold accepting into SS 

increases the computational efficiency while maintaining solution quality. 

 

Pachebo (2005) states a meta-heuristic algorithm based on SS whose aim is to 

obtain quality solutions with short computation times for the non-hierarchical clustering 

problem under the criterion of minimum sum of squares clustering. He combines several 
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procedures based on different strategies such as local search, GRASP, TS with Scatter 

Search. 

 

There are more reference papers that are cited by Marti on hybrid SS approaches 

and on other problem types. All prove that, incorporating SS with other types of meta-

heuristics depending on what we might need during our search can overcome the chronic 

handicaps associated with SS and make it more robust against different problem types. To 

sum up, hybrid SS approaches provide better and faster results than the SS methods or 

other meta-heuristics. These results encourage us to develop a hybrid scatter search 

approach to attack scheduling problems considered in this thesis. The next section briefly 

overviews the Variable Neighborhood Search method which will be used as an 

intensification strategy in our hybrid approach.   

 

2.3. Variable Neighborhood Search  

 

Variable neighborhood search (VNS) is a systematic change of neighborhood 

within a possibly randomized local search algorithm that yields a simple and effective 

meta-heuristic for combinatorial and global optimization problems. Contrary to other meta-

heuristics based on local search methods, VNS does not follow a trajectory but explores 

increasingly distant neighborhood of the current incumbent solution, and jumps from this 

solution to a new solution if and only if an improvement has been made. Moreover, a local 

search routine is applied repeatedly to travel from these neighboring solutions to local 

optima. 

 

In their study, Hansen and Mladenovic (1999) define the basic principles of VNS 

and state its several applications to five different combinatorial or global optimization 

problems. They denote with Nk (k=1,…..,kmax), a finite set of preselected neighborhood 

structures, and with Nk(x) the set of solutions in the kth
 neighborhood of x. Their basic VNS 

begins with the initialization step where neighborhood structures  Nk (k=1,…..,kmax) are 

selected, initial solution x is evaluated by a local search method or generated randomly, 

and a stopping condition such as maximum CPU time allowed, maximum number of 

iterations or maximum number of iterations between two improvements is set. Starting 
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with the first neighborhood structure, VNS repeats the following steps until the stopping 

criterion is met. 

 

It generates a candidate point x’ at random from the kth neighborhood of x and then 

applies some local search method with x’ as an initial solution, to obtain a local optima 

denoted by x”. Finally, if this local optima x” is better than the current, a move to the point 

x” is performed (x ← x”) and continue to the search with the first neighborhood structure. 

In contrast, if no improvement is achieved at point x”, set the neighborhood structure to 

next one (k ← k+1) and continue. 

 

There are two other types of VNS that differs from the basic VNS namely variable 

neighborhood descent (VND) method and reduced VNS (RVNS) method. In VND, the 

change of neighborhood is performed in a deterministic way. Different than the basic VNS, 

the best neighbor of initial solution x is explored and is denoted as x’ If this solution x’ is 

better than x, then x’ becomes the new x and the search continues with the current 

neighborhood structure (k ← 1). For the RVNS method, the stochastically generated 

candidate solution x’ is directly compared with the incumbent without subjecting to any 

local search method. If the solution x’ is superior than incumbent, the search move to the 

candidate point x’ (x ← x’) and continue with current k structure. If otherwise is true, then 

the search set (k ← k+1). (Hansen and Mladenovic, 2001) 

 

Although the basic VNS is clearly useful for appropriate solutions of many 

combinatorial and global optimization problems, it has some inefficiency to solve large 

instances. Hence, modifications appear to be highly recommended for basic VNS. Two 

modified version of VNS found in the literature are the Variable Neighborhood 

Decomposition (VNDS) method that extends the basic form into two level VNS scheme 

based upon the decomposition of the problem, and the Skewed VNS that addresses the 

problem of exploring regions of incumbent solutions.  

 

As a change of neighborhood in the search for good solutions to optimization 

problems is a simple and a very powerful tool. In addition to the extensions of VNS, 

several authors have incorporated such hybrid features with other meta-heuristics to gain 

more benefit from VNS. They employ VNS into well-known meta-heuristics such as TS, 
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GA, SA, GRASP and even constant programming in order to optimize routing, scheduling, 

traveling salesman, allocation or even clustering problems. 

 

Garcia et al. (2006) propose a heuristic algorithm based on VNS methodology on a 

linear ordering problem consists of finding a permutation of the columns and rows in order 

to maximize the sum of the weight in the upper triangle. Their method combines different 

neighborhoods for an efficient exploration of the search space. For this reason, they 

construct a hybrid method in which the VNS is coupled with a short term tabu search for 

improved outcomes. 

 

Lejuene (2006) presents a variable neighborhood decomposition search method for 

supply chain management planning problem. He employs an algorithm based on VND 

meta-heuristic which can be considered as a stage-wise exploration of increasingly large 

neighborhoods. Within each stage, neighborhoods are explored using a branch and bound 

algorithm. 

 

Hansen et al (2006) developed a VNS heuristic for solving mixed integer programs 

which provide the origins of VNS method used in hybrid meta-heuristics. They define 

neighborhoods around the current solution by adding constraints to the original problem, as 

suggested local branching (LB) method and compare the performance of VNS against LB. 

Empirical Results show that VNS is simpler and more systematic in exploration and 

improve 14 times the best known solutions from the set of 29 hard problem instances used 

to test LB. 

 

Kyöjoki et al. (2005) present an efficient VNS heuristic for the capacitated vehicle 

routing problem, in which the objective is to design least cost routes for a fleet of 

identically capacitated vehicles. Their proposed VNS procedure is used to guide a set of 

standard improvement heuristics and in addition to that a strategy reminiscent of guided 

local search meta-heuristic is used to help escape from local optimum. 
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3. TWO TARDINESS BASED SCHEDULING PROBLEMS 

 

 

Scheduling concerns with the allocation of limited resources to task over time. It is 

a decision making process that has a goal to optimize one or more objectives. Scheduling 

problems arise from this optimization effort of limited resources. In a deterministic 

production planning environment the scheduling problem, is a problem which decides the 

order of all jobs on each machine and determines the starting time of each job with known 

ready times and processing times in order to optimize objective function.  

 

More formally, a scheduling problem involves a set of jobs (j=1,..,n) and machines 

(k=1,..,m) to process these jobs. Hence, a pair (k,j) refers to processing step or operation of 

job j on machine k. The following data are associated with job j. (Jain and Meeran, 1999) 

 

• rj : the release time or ready time of the job j. It is the time job j arrives to the shop, 

that is the earliest time at which job can be processed. 

• pj
k: It represents the processing time of job j on machine k. If it is a single machine 

problem or the processing time for job j is the same on every machine, then the 

superscript k might be omitted. 

• dj: it represents completion time that is promised a customer or an external unit for 

job j. The completion of a job after its due date is allowed but a penalty is incurred. 

• sij
k: this parameter defines the sequence dependent setup time of job j after job i on 

machine k, meaning that the machine would require sij
k time unit of setup before 

processing job j.  

• wj: the weight wj of job j is basically a priority factor, denoting the importance of 

job j relative to the other jobs. 

• Sj: it represent the slack time of job j, defined as dj-pj-t , where t is the current time. 

 

The scheduling problems are often classified according to their machine number, 

the scheduling problem with one machine is called single machine problem whereas 

problems with two or more machines are so called parallel machine or many machine 

problems. Also scheduling problems can be stated as static or dynamic due to job arrivals. 
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In static case, a certain number of jobs arrive to the shop simultaneously and shop is ready 

to start processing immediately. On the other hand, in a dynamic case, the jobs are ready at 

shop with stochastic or deterministic arrival times. When we are dealing with a 

deterministic scheduling problem, state of the jobs, due dates, arrival times, processing 

times and availability of machines are known and do not include any stochastic factor.  

 

In this thesis, we will focus on two hard to solve scheduling problems frequently 

encountered in practice, namely the Single Machine Total Weighted Tardiness (SMTWT) 

problem and Parallel Machine Total Tardiness (PMTT) problem, to test the performance of 

a hybridized Scatter Search algorithm. The detailed description of these two problems 

together with a brief review of research directed to solving them are given in the following 

two sections. 

 

3.1. Single Machine Total Weighted Tardiness Problem 

 

Single Machine Total Weighted Tardiness (SMTWT) problem is a static 

deterministic regular scheduling problem with independent jobs to be sequenced on a 

single machine with total weighted tardiness measure as the regular optimization criterion. 

Each job is ready at the shop at time zero. No setup is necessary for the machine 

before/after processing a job. Each job has a finite processing time, a positive weight and a 

distinct due date. After generating a sequence for all jobs, earliest completion times Cj and 

related tardiness values of each job Tj = max{0, Cj – dj} are computed.  Each job’s 

tardiness value is then multiplied by its weight and added together to find the sum of the 

weighted tardiness value. In the literature, the problem is represented as n/1/ ΣwjTj where n 

denotes the number of jobs, “1” denotes the machine number and last parameter denotes 

the objective function. 

 

The SMTWT problem is NP-hard (see Lawler, 1977; Lenstra et al., 1977; Du and 

Leung, 1990) and solution approaches like Dynamic Programming and Branch and Bound 

are computationally inefficient, especially when the number of jobs is beyond 50, as the 

results presented in a comparative study by Abdul-Razaq et al. (1990). There is no simple 

dispatching rule that works best for all problem environments. If there is no more than one 

tardy job, then the earliest due date (EDD) sequence is optimal, whereas weighted shortest 
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processing time (WSPT) order gives the optimal sequence when all jobs are necessarily 

tardy. Therefore, EDD generally performs well for lightly loaded machines while WSPT 

should be preferred under heavy loading. Several heuristic dispatching rules like those 

developed by Carroll (1965), Montagne Jr. (1969), Rachamadugu and Morton (1982), 

Morton et al. (1984), and Panwalkar et al. (1993) have been based on this idea. 

 

The search for good and robust heuristics was continued with sophisticated 

approaches like meta-heuristics. Matsuo et al. (1989) address the SMTWT by a simulated 

annealing algorithm which starts with a good initial solution and low acceptance 

probability to accelerate the search for a near optimal solution. Potts and Van Wassenhove 

(1991) propose a descent heuristic and a simulated annealing method for SMTWT. 

Crauwels et al. (1998) present single and multi-start versions of descent, simulated 

annealing, Tabu Search (TS) and genetic algorithm implementations for the same problem 

and show that while simulated annealing is outperformed, Tabu Search dominates the other 

methods. Congram et al. (2002) treat SMTWT with an ‘iterated dynasearch’ algorithm, 

which is a local search technique that uses dynamic programming to find the best move 

which is composed of a set of independent interchange moves and searches an exponential 

size neighborhood in polynomial time. They obtain results that are superior to other local 

search procedures. Laguna et al. (1991) consider a single machine scheduling problem for 

minimizing the sum of setup costs and linear delay penalties, and propose a TS algorithm 

that uses hybrid neighborhood consisting of both swap and insertion moves. 

 

In his study, J. Schaller (2004) presents a timetabling algorithm that inserts idle 

time into a given job sequence on a single machine in order to minimize the sum of the 

absolute value of the lateness at jobs to be scheduled. The single machine problem 

investigated composed of two set of problems; one is the single machine scheduling 

earliness/tardiness problem and the other is a problem involving a quadratic measure of 

performance optimization for single machine scheduling. Timetabling algorithm is used on 

partial sequence in Branch and Bound search. It is also modified so a lower bound on 

objective value due to the jobs that have not been dispatched can be obtained for a partial 

schedule. Later, three different B&B procedures are performed to minimize the objective 

and their results are compared to draw a conclusion. 
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Azizoğlu et al. (2003) present a heuristic that minimizing maximum earliness while 

keeping the number of tardy jobs to its minimum value for an earliness/tardiness single 

machine problem. They propose a general procedure to generate all efficient schedules for 

biciriteria problems and then develop a method to find the best schedule that minimizes a 

composite function of two criteria problem by evaluating only a small fraction of 

previously generated efficient solution set. 

 

In their study, Feldman and Bishop (2003) consider a problem of scheduling a 

number of jobs on a single machine against a restricted common due date. According to 

complexity of restricted common due date problem, it is unlikely to find an efficient 

integer programming algorithm. Hence, Feldman and Bishop develop a new and 

appropriate problem representation and apply three different meta-heuristics namely 

evolutionary algorithm, simulated annealing, and threshold accepting. They demonstrate 

the efficiency of meta-heuristics against integer programming by obtaining near-optimal 

solutions. 

 

Kethley and Alidaee (2002) examine various scheduling rules, heuristics and 

algorithms including WSPT rule, variation of the modified due date rule, a genetic 

algorithm, neighborhood job search for the problem of scheduling n jobs in a single 

machine to minimize the total weighted late work (TWLW). In their search, Kethley and 

Alidaee mostly concentrate on two hypotheses evaluated during the simulation of 

predefined search procedures. According to first hypothesis, there is no difference in the 

Total Weighted Late Work generated by WSPT, combination rule (CBN), neighborhood 

job swap (NJS), and GA. For the second hypothesis, there is no difference in TWLW 

generated by the various initial due date and deadline parameters. They conclude that the 

performances are same regardless of parameter settings for due date and deadline. 

 

In his study, Franca et al. (2001) introduce a new memetic algorithm (MA) for the 

total tardiness single machine scheduling problem with due dates and sequence dependent 

setup times. The main contributions with respect to the implementation of the hybrid 

population approach are a hierarchically structured population concerned as a tenery tree 

and the evaluations of three recombination operators. Concerning local improvement 

procedure, several neighborhood reduction schemes are developed and proved to be 
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effective when compared to the complete neighborhood. They judge pure GA and MA 

against a multi-start algorithm that employs the all pairs neighborhood as well as two 

constructive heuristics. 

 

Bilge et al. (2007) present a TS approach to the single machine total weighted 

tardiness problem. The problem investigated in the study, consists of a set of independent 

jobs with distinct processing times, weights and due dates to be scheduled on a single 

machine. While minimizing total weighted tardiness, a totally deterministic TS algorithm 

with a hybrid neighborhood and dynamic tenure structure is employed. In addition to that, 

the strength of the several candidate list strategies is considered in order to increase the 

efficiency of the search. The proposed TS approach yields very high quality results for a 

set of benchmark problems obtained from literature (Crauwels et al., 1998). 

 

3.2. Parallel Machine Total Tardiness Problem 

 

The classical parallel machine total tardiness problem (PMTT) can be defined as 

the scheduling of n jobs on m continuously available identical parallel machines aiming to 

minimize total tardiness. Each job is processed on an assigned machine as long as its 

processing time. Each machine can process only one job at a time, and each job can be 

processed on only one machine. Each job is ready at the beginning of dispatching process 

and has a distinct processing time and a due date. In most of the PMTT problems, machine 

available on job-shop are identical, jobs are ready at time zero and setup times for 

consecutive jobs are ignored. After assigning all the jobs on available machines, total 

tardiness is evaluated where tardiness is the amount of time that completion time exceeds 

due date. 

 

PMTT is NP-hard even for a single machine (Du and Leung, 1990) and exact 

methods are mostly limited to special cases like common due dates and equal processing 

times (i.e. Root 1965, Lawler 1977, Elmaghraby and Park 1974, Dessouky 1998). 

Recently, Liaw et al. (2003) present a Branch and Bound algorithm that incorporates 

various dominance rules along with efficient lower and upper bounds for the case of 

unrelated machines, distinct due dates, zero ready times and no setup times, and report that 

the algorithm performs well up to 18 jobs and four machines. 
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In this study, we deal with a generalized PMTT problem that introduce complex 

real world situations such as; distinct ready times, uniform parallel machines with different 

processing speeds and sequence dependent setup times. In this generalized PMTT, there 

are n jobs to be processed on m machines of k types. Machines belonging to same type are 

identical where machines belonging to different types are uniform. Each job j has an 

integer processing time pj
k on type k machine, an integer ready time rj, a distinct due date 

dj, and a sequence dependent setup time sij
k of processing job j after job i on a type k 

machine. For a given sequence of jobs, the earliest completion time and related tardiness is 

computed for each job: Tj = max {0 , Cj - dj }. Hence the aim is to find a dispatching order 

that minimizes the total tardiness. Although meta-heuristic approaches to scheduling 

problems in general are quite abundant, the literature is sparse for our specific generalized 

version of PMTT. 

 

Ergun et al. (2002) present a new local search heuristic based on combining 

variable number of insertion moves for the parallel machine total weighted completion 

time scheduling problem. In their study, they introduce a very large scale neighborhood 

search that applies a set of insertion moves for identical parallel machines. Also using the 

special structure of the scheduling problem, they develop a very efficient variable depth 

search method based on multi-label keeping shortest path algorithm. In their computational 

study, they compare the performance new heuristic with the various search frameworks 

including steepest descent, multi-start TS, and iterated local search. According to their 

findings, the new variable depth sequential insertion neighborhood heuristic with the 

iterated local search procedure is the most effective among all. 

 

Sivrikaya-Şerifoğlu and Ulusoy (1999) employ two GA approaches for parallel 

machine scheduling problem with earliness/tardiness penalties. One of them is a GA with 

new cross-over operator which is developed to solve multi-component combinatorial 

optimization problems and the other is a GA with no cross-over operator. Based on result 

of 960 randomly generated tests, they conclude that neighborhood exchange accomplished 

by the mutation of GA can yield relatively better results in a small and easy instances of 

problems whereas GA with new cross-over operator outperforms when large sized, more 

challenging problems occur. 
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Bilge et al. (2004) propose a totally deterministic TS approach to PMTT problem 

introduced by Sivrikaya-Şerifoğlu (1999). Because of the complex nature of the problem, 

they employ a hybrid neighborhood generation method, with several candidate list 

strategies and intensification/diversification phases. In their study, they come up with a 

“low” candidate list strategy that considers job insertions from the machine with maximum 

contribution to total tardiness to each of the other machines, thus isolating desirable 

regions of the neighborhood and increase the speed of the search. Their TS algorithm 

performs much superior compared to previously cited results. 

 

In their research paper, Bilge and Kıraç (2006) presents an adaptive GA for PMTT 

problem. The adaptive control mechanism mainly focuses on slowing down or preventing 

the premature convergence and reduces the parameter dependence of basic GA. Population 

diversity is selected as the key factor for the search and close-loop controllers are 

employed to achieve the desirable population diversity and quality when it decreases below 

a certain threshold. These controllers apply a series of insertion moves in the form of 

mutation and smooth out the peakedness of population distribution while pushing the 

search into different regions. 

 

Anghinolfi and Paolucci (2006) propose a hybrid meta-heuristic approach which 

integrates several features from TS, SA, and VNS in a configurable scheduling algorithm 

for the PMTT problem. They combine the idea of SA which states that randomness in 

generating candidate solutions could improve the search effectiveness, the principle of TS 

that an intelligent neighborhood exploration must be guided by a appropriate candidate list 

strategy, and the concept of VNS that changing the neighborhood structure during the 

search might avoid to get trapped at premature local optimum. The HMH method 

outperforms previous methods employed for PMTT problems introduced by Sivrikaya-

Şerifoğlu (1999). 
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4. THE PROPOSED HYBRID CONTINUOUS SCATTER SEARCH 

APPROACH  

 

 

Our Hybrid Continuous Scatter Search (HCSS) approach is a hybrid meta-heuristic 

method which integrates Scatter Search and Variable Neighborhood Search in a new 

configurable scheduling algorithm. Scatter Search used in our algorithm, serves as a 

diversification mechanism which ensures that different promising regions of solution space 

is visited, whereas variable neighborhood search method exploits systematically the idea of 

intensification in descent to local minima. These two methods are employed 

interchangeably depending on the performance of the search. The detailed description of 

HCSS approach for the SMTWT and PMTT problems considered in this thesis is provided 

in the following sections. 

 

4.1 HCSS Approach to SMTWT 

 

Single Machine Total Weighted Tardiness problem is a static deterministic regular 

scheduling problem with independent jobs to be sequenced on a single machine with total 

weighted tardiness measure as the regular optimization criterion. Each job is ready at the 

shop at time zero. No set up is necessary for the machine before/after processing a job. 

Each job has a finite processing time pj, a positive weight and a distinct due date dj. After 

generating a sequence for all jobs, earliest completion times Cj and related tardiness values 

Tj of each job j are evaluated using the formula Tj = max{0, Cj – dj}.  Each job tardiness 

value is then multiplied by its weight and added together to find the sum of the weighted 

tardiness value. In accordance with the definition of SMTWT problem, our HCSS 

approach is introduced in the following sections. 

 

4.1.1. Solution Encoding Scheme 

 

The most important issue when applying Scatter Search successfully to SMTWT 

problem is to develop an effective problem mapping and a solution generation mechanism. 

If these two mechanisms cooperate efficiently, it is possible to find a good solution for a 

given optimization problem in an acceptable time. Our HCSS approach is a continuous 
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search method that directly handles vectors of real component and combines these vectors 

by linear combinations to produce new ones through successive generations. It aims to map 

each and every solution hidden in the search space with proper vector representations and 

to find good solutions by using search procedures based on basic vector operations. 

 

In order to construct a suitable mapping between problem solution and SS vectors, 

start time of each job is used as the real number component of the vectors. Each vector 

consists of n+ 1 entities where n denotes the number of jobs to be scheduled on a single 

machine. These n jobs have distinct process times, weights and due dates. Therefore, every 

job is denoted with a unique job index and corresponding start time. In a solution vector, 

first n positions contain the start times of n jobs, such that the i
th position in the vector 

corresponds to the start time of job with index i. The last n+1
st position of the solution 

vector is dedicated to total weighted tardiness value (twt) related to these start times. 

Figure 4.1 depicts an example, where job # 1 starts at time 1428, job # 2 starts at 1843 and 

finally job # N starts at 1881 and twt value is 330.  

 

JOB # 1 JOB # 2 ..... JOB # J-1 JOB # J JOB # J+1 ..... JOB # N-1 JOB # N FIT. 

1428 1843 ..... 1610 162 901 ..... 818 1881 330 
 

Figure 4.1. Solution encoding for single machine total weighted tardiness problem 

 

In this vector representation, jobs are not sorted in an increasing order of start times 

that means job # 1 would not be processed in the first place at the specified start time. Any 

job with a smaller start time has the priority to be processed earlier than the other jobs that 

have larger start time values. The twt value is calculated by scheduling n jobs according to 

a permutation sequence obtained after sorting jobs with respect to non-decreasing start 

times. If a vector corresponds to more than one permutation, the one yielding minimum twt 

value is selected. Thus, each solution vector represents a unique sequence with a twt value 

that defines its position in the solution space. Conversely, each job permutation with 

unique twt corresponds to many solution vectors in the continuous search space. Consider a 

solution where three consecutive jobs’ start times are 97, 228 and 322, respectively. The 

start time of the job in the middle can have a value between 97 and 322 without altering the 

corresponding permutation. This also means that a given permutation can be reached from 

many different points in the continuous search space and allows an interesting flexibility 
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property in terms of neighborhoods defined on the solution space. By using linear 

combinations of start times, we can express complex neighborhoods of a considered 

sequence in the search space. 

 

Another advantage of the start time encoding appears when dealing with the basic 

vector operations such as addition, subtraction or even multiplication with constant 

parameters. Easy implementation of these basic operations will help us in defining a 

solution combination method which is used to generate new trial solutions and distance 

measurement methods to select diverse solutions for reference set. These two methods will 

be discussed in further sections.  

 

4.1.2. Initial Solution Generation Method 

 

One of the most crucial component of our HCSS approach is the initial solution 

generation method. SS method is based on generating new solutions by creating 

numerically weighted combinations of existing solutions. Therefore, the initial population 

which is carrying the ancestors of the next generations plays a leading role. The future can 

not be predicted by looking at the past. In other words, poor solutions sometimes may lead 

us to better solutions, whereas an initial population containing only good solutions does not 

always guarantee a better result. Hence, the most essential feature of a proper initial 

solution generation method is to create a collection of both diverse and good solutions. 

 

In our HCSS approach to SMTWT problem, three different initial solution 

generation methods are employed and compared in order to acquire the most efficient 

initial population. The initial population contains predefined number of individuals. The 

first approach uses a simple generator that orders jobs randomly and then evaluates their 

twt values by scheduling them at their earliest start times.  

 

     Second approach employs simple heuristics to create some seeded solutions and a 

random sequence generator to fill the remaining pool with diverse trial solutions. 

Heuristics utilized in this approach are EDD, SPT, WSPT and R&M rules. Before going 

into details of the second approach, it will be a good idea to provide brief overviews of the 
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mentioned heuristics. The following terminology helps to gain an understanding about 

their nature and functions.  

 

• EDD (Earliest Due Date) is a dispatching rule that arranges jobs in increasing order 

of due dates.  

• SPT (Shortest Processing Time) is a dispatching rule that arranges jobs in 

increasing order of processing times.  

• WSPT (Weighted Shortest Processing Time) is the weighted version of SPT.  

• R&M (Rachamadugu and Morton, 1982) is based on sorting the jobs in order of 

non-increasing priorities that are evaluated dynamically by predefined formulas. 

 

WSPT heuristic considered in this study is first introduced by Montagne (1969), which 

use basic full priority WSPT multiplied by a slack factor. The slack factor is close to 1.0 

for very early due date jobs and very close to zero for very late due date jobs. Slack factor 

employed here is not dynamic and even if a job is overdue, it is still not given a full WSPT 

priority. The priority formula is as follows; 

 

                                                  πj = (wj / pj)[1.0 – (dj / Σipi)]                                           (4.1) 

 

where πj is the priority of job j, wj is the weight, pj is the processing time and dj denotes the 

due date of job j. The jobs are sequenced according to their non-increasing order of 

priorities and their related twt values are evaluated.  

 

R&M heuristic for total weighted tardiness problem, developed by Rachamadugu 

and Morton (1982), is based on sorting the jobs in order of non-increasing priorities. The 

priority πj is obtained by using the formula; 

 

                                              πj = (wj / pj)[exp{-(Sj)
+ / kpav}]                                           (4.2) 

   

where k is a factor and pav is the average processing time of all jobs to be scheduled. The 

slack time Sj
+ at time t can be computed as follows; 

 

                                                 Sj
+ = max (0, dj – pj – t)                                                 (4.3) 



 28 

As time t indicates the current time, this heuristic uses a dynamic procedure where 

priorities πj must be updated after a job with the highest priority is scheduled and its 

completion time on machine is computed. When all the jobs are sorted accordingly, the 

final total weighted tardiness value is evaluated. In this study, a small modification is 

applied to R&M heuristic and k factor becomes no longer a fixed value. The solutions are 

generated using each of the k values in the range [0.5, 4.0] with increments of 0.1.  

 

Our second population generation method seeds all solutions created by EDD, SPT, 

WSPT, and modified R&M heuristic into the initial population the rest of which is filled 

using a random generator as in the first approach. Third method is a variant of the second 

method in which 10 best R&M solutions together with EDD, SPT and WSPT solutions are 

established in the initial pool. In all three methods duplication is avoided by replacing 

solutions that have exactly the same set of start times. Another screening mechanism tried 

during numerical experimentation, eliminates solutions with same twt values even if their 

start times are different. 

 

These three initial solution generation methods will be compared via numerical 

experimentation and a final choice will be made according to their contribution to the 

ultimate outcome. 

 

4.1.3. Reference Set Update Method 

 

The reference set update method plays the key role in HCSS approach. As 

previously defined, the reference set is used to produce new solutions by applying linear 

weighted combinations and it is a collection of both high quality elite solutions and 

structurally diverse solutions selected from a pool. In the first iteration, the pool contains 

initial solutions generated using one of the three approaches described in the previous 

section. In the subsequent iterations, the pool consists of solutions created by a 

combination method. The number of elite solutions b1, and diverse solutions b2 in the 

reference set are fixed and determine its size (b=b1+b2). Two methods are devised to select 

the b1 elite solutions. 
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In our first method, the best solutions selected from the pool are stored in a list 

called the reserve list. This list behaves as a long term memory of HCSS by keeping best 

known solutions visited so far. At the end of each iteration, solutions kept in the reserve list 

are updated if any superior ones are generated. Therefore, reserve list holds only of b1 elite 

solutions which are defined as good generators. While revising the reserve list, we keep 

track of entering solutions in order to make sure that new entries are not identical twins of 

existing solutions. If at least one start time of any job j in the entire vector for the candidate 

differs from the corresponding start time of the same indexed job contained in other 

existing solutions, then candidate is permitted to replace a poorer solution from the list. 

After the authorized substitutions, the b1 of best solutions are transferred from the reserve 

list to the reference set. This method leads to a 2-tier design for the reference set, i.e. elites 

from the reserve list and diverse solutions from the pool. 

 

 
 

Figure 4.2. The pseudo-code of initial solution generation method for the third approach 

 

In the second method, the updating procedure of the elite set employs a 3-tier 

design (Laguna and Marti, 2006), where the first tier consists of high quality solutions 

obtained from the pool, the second tier consists of best solutions copied from the reserve 

list and finally the third tier includes the diverse solution selected by a distance 

Create initial solution set 
 
 schedule jobs with respect to EDD and store the trial solution xEDD 

  
 schedule jobs with respect to SPT and store the trial solution xSPT 

 
 schedule jobs with respect to WSPT and store the trial solution xWSPT 

 
 for k = 0.5 : +0.1 :4.0 
  schedule jobs with respect to R&M and store the trial 
                        solution xk if fitness xk ≠ fitness { xEDD, xSPT, xWSPT, xk-1 } 
 end 
  
 select either all or best 10 xk  
 
 create remaining trial solutions using a generator that schedule jobs  
 randomly xRAND 

  
 delete one of the two trial solution having the same fitness value 
  
 the initial solution set = {xEDD, xSPT, xWSPT, xk, xRAND} 
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measurement method. The second update method is aiming to preserve diversity 

continuously, instead of allowing it to become homogenous by only admitting solutions 

from one source, which tend to have very similar components at further stages of the 

search. In the first method, reference set best solutions are rooted from the reserve list. In 

other words, b1 solutions stored at reserve list are directly copied to reference set without 

considering their structures or past performances. These individuals may be neighbors of 

the same local optima or may remain in the list for a long time. In such a case, it directly 

affects the reference set best solution variety and indirectly influences the offspring 

generated from these elite pairs. 

 

 
 

Figure 4.3. The pseudo-code for reserve list update method 

 

Before starting the selection step of second method, reserve list is updated 

according to the rules used in the first case, and the solution pool is rearranged in order to 

find high quality solutions. Different from the first method, half of the b1 solution is 

transferred from the reserve list and the other half is chosen from the high quality members 

Update Reserve List 

POOL = (x1,.....,xk), let xi be the trial solution and xi =< st1,….stn> where stj is the start 

time of job j. 

ReserveList = (y1,.....yb) where y1 is the best and yb is the worst solution stored in list. 

y1 = < st1,….stn> 

     select xi’s such that fit.(xi) <= fit (yb)                                     // fit.= fitness of a sol’n 

 for all selected xi’s 

  if fit.(xi) <= fit (yb)  / 

         for all yi                                                                   // (i = 1,….,b) 

       if any stj of xi ≠  any stj of yi                                      // (j = 1,….,n) 

                             if  fit.(xi) ≠ fit (yi)   // used in screening method 

                       yb = xi 

            sort ReserveList in an increasing order of fit. 

            update yb 

            delete xi from POOL 

       end 

         end 

  end 

 end    
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of the pool. In this way, we assure at least some of the best solutions to be dissimilar than 

the ones employed in the previous iteration. Additionally, same screening mechanism used 

in initial solution generation method is again utilized to increase the diversity of both the 

reference set and reserve list. Hence, two solutions with the same twt value can not enter 

the elite set at the same time.  

 

After deciding the b1 elite solutions, the next step is to select b2 diverse solutions. 

For each solution left in the pool, its distance to all members of the current reference set 

(initially, only b1 elite solutions) are calculated. The minimum of these distances gives the 

distance of the candidate to the reference set. The candidate with maximum distance to 

current set is selected as a diverse solution and added to the set. The chosen solution is 

deleted from the pool and preceding minimum distances to the set are updated with respect 

to newly added diverse solution. The process is repeated until all b2 diverse elements are 

determined. Two different types of distance measurement methods are devised; these are 

start distance and rank distance measurement methods. Based on the distance measure 

employed, three diverse selection procedures are introduced; start diverse, rank diverse and 

mix diverse selection procedures. In mix diverse selection procedure, start distance method 

is initially executed and half of b2 diverse solutions are selected and deleted from the pool. 

Then the rank distance measure is applied for the remaining solution left in the pool and 

the other half of b2 is determined accordingly. These three procedures will be compared to 

decide the most effective diverse element selection technique. We describe the distance 

measurement methods that were developed within the context of this thesis below: 

 

Start distance measurement method is inspired from a well known rectilinear 

distance formula used in real space vector problems. In our solution encoding, start times 

correspond to the coordinates of a position vector that expresses a point in the real space, 

and our start distance measure is given as 

 

              distance = |(st11-st21)| + |( st12-st22)|+…+ |( st1j-st2j)|+……..+|( st1n-st2n)|         (4.4) 

 

where stij denotes the start time of a job j for the solution vector i. Although the total 

distance measured by this modified version indicates a relative value instead of a real one, 
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it is sufficient for the selection procedure to work properly. The details of start distance 

measurement method are described in Appendix A. 

 

The rank distance measure originates from a puzzle where a shuffled string of 

numbers should be rearranged with minimum restricted insertion moves to catch a winning 

sequence. For an accurate adaptation, a chain of numbers is required rather than the values, 

but our vector representation contains only the start times and the total weighted tardiness 

value. Hence, start times are sorted in non-decreasing rank and their job indices are noted 

in the same order. The solution taken from the pool is denoted as shuffled string and the 

reference set solution respect to which the distance is measured, cited as the wining 

sequence. The restricted insertion move indicates that a job can only be inserted between 

its two preceding jobs. The other insertion moves are not allowed. A simple algorithm is 

employed for rank distance measurement method that computes minimum moves needed 

to convert a shuffled string into the winning sequence. Finally, the number of total 

performed moves states the rank distance between a pool solution and a reference set 

solution. The details of rank distance measurement method are described in Appendix B. 

 

4.1.4. Subset Generation Method 

 

The simplest form of subset generation method that is used in our approach consists 

of generating all pairs of reference set solutions. The method concentrates on subsets of 

size two resulting in (b2-b)/2 newly generated subsets where b=b1+b2. The pairs in new 

subsets are selected one at a time in lexicographical order and solution combination 

method is applied to produce a trial solution.  

 

4.1.5. Solution Combination Method 

 

Solution combination method also known as combination mechanism or crossover 

is a common approach used in most evolutionary algorithms to create new solutions. The 

solution combination mechanism is a method for sharing information between solutions. 

Generally it combines features of two parents to form several offspring with the possibility 

that good solutions may reproduce superior ones. In scatter search, the importance of the 

combination method is even greater due to its strong impact on the exploration power. 
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Since population diversity is obtained by creating new solutions, it induces reliability in the 

search process.  

 

 
 

Figure 4.4. The pseudo code for reference set update method 

 

In our HCSS approach, we use BLX-α operator which is one of the most effective 

combination methods developed for real-coded continuous GAs. Herrera et al. (2006) carry 

out empirical study of different combination method instances for real coded evolutionary 

algorithms and their experiences on the application of solution combination methods show 

that the BLX-α operator outperforms the other methods. They have considered BLX-α as a 

combination method due to three facts: it includes randomness which can be effective, it 

favors the production of diversity in the population of an EA which may improve the 

reliability while avoiding premature convergence and finally, BLX-α has a self adaptive 

Update Reference Set 

POOL* = (x1,.....,xk) , where * denotes that this set is updated after deleting xi used in 

reserve list update step 

ReserveList* = (y1,.....yb) where * denotes that this set is updated with  new best solutions 

entered from the POOL 

RefSet = (best1,…., bestb, div1,….,divb) where besti represent best solution and divi is the 

diverse solution selected to RefSet. 

 RefSet = ReserveList*                                                             // initial design  

 RefSet (best1,…., bestb/2 ) =  ReserveList* (y1,.....yb/2)            // 3-tier design 

 RefSet (bestb+1,…., bestb ) =  best b/2 solution of  POOL*      // 3-tier design 

 

while # of selected divi < = b 

for all xi Є POOL* 

      for all Refset sol’n  

 DistMatrix(xi, RefSet sol’n) =  start distance between xi and  RefSet sol’n          **     

DistMatrix(xi, RefSet sol’n) =  rank distance between xi and  RefSet sol’n 
**

 update row minimums for DistMatrix 

find xmax with max of row minimums 

RefSet (divi) = xmax 

delete xmax from POOL* 

      end 

end 
** executed interchangeably     
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behavior that can generate offspring according to the distributions of parents without any 

control parameter.  

 

                                           I .α                      I                           I . α 

 

                                                      xi                                 yi 

 

Figure 4.5. BLX- α combination method 

 

Let us assume that X=(x1,…, xn) and Y=(y1,…, yn) (xi, yi Є R, i=1,….,n) are two real-coded 

vectors selected to be combined. BLX-α combination method generates an offspring 

Z=(z1,…, zn) where zi is a randomly chosen number of the interval [cmin – I.α, cmax + I. α] 

where cmax=max(xi, yi), cmin=min(xi, yi) and I= cmax - cmin and α is a constant value. 

Revisiting our solution encoding, any pair of parent solution can easily be defined as X and 

Y vectors where xi and yi represents the start times for each job. Also, the Z vector becomes 

the new trial solution with zi’s denoting the imaginary start times. An illustration of 

solution combination method is given in Appendix C. 

 

Investigations demonstrate that BLX- α with α=0.5 performs better than other 

BLX- α operators with any other α value. Herrera et al. (2006) report that BLX-0.5 offers a 

useful tool to enhance global search (exploration) capabilities of continuous SS and induce 

reliability in the search process. As previously mentioned, our approach is a continuous SS 

which directly handles vector of real components and combines these vectors by linear 

combinations to create new ones trough successive generations. Therefore, BLX-α 

operator is a perfect match for our solution combination method. Additionally in further 

stages, we will test dynamically changing α value instead of fixed α attempting to regulate 

diversity of newborn individuals.  

 

Offspring created by solution combination method are stored in a transition set 

called pre-pool. Pre-pool contains trial solutions with temporary start times that have no 

total tardiness value. Hence, a solution improvement method is applied to the pre-pool 

solution. This method sorts the jobs with respect to non-decreasing start times and 

calculates the fitness value without changing the temporary start times. A screening 
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mechanism is employed and one of two offspring with same twt value is deleted instantly 

from the pre-pool. Finally, filtered trial solutions are arranged in increasing order of their 

fitness values and transferred into the main pool. As previously indicated, pool provides a 

source for reference set update method. Best and diverse solutions are both selected from 

the pool. Therefore, its condition highly affects the structure of the updated reference set 

and future offspring. Poor diverse solutions selected continuously from the pool may lead 

the reference set far from the desired optimum, and reduced its skill to produce qualified 

next generations. On the other hand, a pool lacking diverse solutions may cause a 

premature convergence. In absence of diverse individuals, the selected individuals are 

more or less the same as their elite counterparts acquired from the same source. So the 

offspring generated from these similar parents, most probably result in identical children, 

and the search will be trapped at a local optimum without visiting all of the promising 

regions potentially contain optimum solutions. In order to overcome these handicaps, we 

introduce the parameter pool size that determines the number of trail solutions accepted to 

the pool. Three different strategies are investigated for the pool size; an enlarged size pool 

having every solution generated including the very poor diverse ones, a default size pool 

containing best 100 fitness value trial solutions and a reduced size pool holding best 85 

trial solution excluding most of the poor members. These strategies are examined in the 

numerical experimentation section and the best one is selected for our HCSS approach. 

 

4.1.6. Variable Neighborhood Search as an Intensification Strategy 

 

The basic concept of neighborhood search method is quite simple. One starts with a 

feasible solution to a problem and the solutions within a neighborhood of the current 

solution are evaluated. If one of these solutions is better than the current solution, it 

becomes the new current solution and its neighborhood is investigated until no 

improvement can be found. The current solution obtained finally is the local optimum. 

Therefore, neighborhood search is a very focused and has been referred to as exploitation 

or intensification method. Different from general neighborhood search methods, VNS 

visits several neighborhoods instead of a single one, where typically neighborhoods move 

further and further away from the current solution depending on the search depth. In our 

HCSS approach, VNS is employed as an intensification strategy that examines the 

neighborhood of elite solutions.  
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Figure 4.6. The pseudo code for solution combination method 

 

The neighborhoods are simply generated by using swap moves. A swap move 

exchanges the location of two jobs so that each job is placed in the position previously 

occupied by the other. In our real coded solution representation, the start times determine 

the sequence of jobs. So having a sequence, SMTWT can be considered as a permutation 

problem. In order to create a neighborhood, VNS divides the sequence into several 

subsequences where each subsequence has a number of jobs determined by the search 

depth. Starting with the first group including the jobs that will be processed earlier, VNS 

lists all possible permutations of these jobs. The permutations are found by using swap 

Solution Combination Method 

Let (f , m) be a pair of solutions and (fi , mi) Є SubSet where SubSet is a set containing all pairs of 

RefSet generated by subset generation method. And offs=<st1
c,….stn

c> is the offspring solution. 

f = <st1
f,….stn

f>, stj
f
 is the start time of job j for solution f. 

m=<st1
m,….stn

m>, stj
m

 is the start time of job j for solution m. 

 

for all (f , m) Є SubSet                                            // total (b2-b)/2 pairs where b is the size of RefSet 

      for all j                                                                                   // j = 1,......,n  n denotes the # of jobs 

            pmin = min(stj
f, stj

m) 

            pmax = max(stj
f, stj

m) 

            interval = | stj
f - stj

m | 

            cmin=pmin-(interval*α)                                                                                         // α is constant 

            cmax=pmax+(interval*α) 

            offs (st1
c) =cmin+(rand*(cmax-cmin))                   // rand is a random number between 0.0 & 1.0  

      end 

      prePOOL(i) = offs                                                                                           // i = 1,......., (b2-b)/2 

end 

for all trial sol’n Є prePOOL 

       sort  jobs in order of non-decreasing start times 

       obtain sequence of jobs 

       schedule jobs and calculate fitness 

       copy trial sol’n with its fitness to POOL 

end 

delete one of the two solution from POOL with the same fitness 

if POOLCap > size(POOL)                                                                        // POOLCap is the pool size  

      POOL =POOL 

else 

        POOL=POOL (1:POOLCap)                                                   // most fit  trial  soln’s are selected  

end   
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moves. The initial order of jobs within the selected group is replaced with one of its 

alternative permutation arrays without changing the remaining sequence. Evaluating all 

alternative permutations, the total weighted tardiness of each newly generated sequence is 

computed. If one of these performs better than the initial solution sequence then the initial 

sequence is revised and VNS moves to the next subsequence.  

 

After all the subsequences are investigated in the same way, if the final sequence 

obtained is an improved one, it becomes the new current solution and the search depth 

contracts in size, i.e. the subsequence size is reduced by one. Otherwise, the current 

solution is kept and the search depth expands in size. Expansion or contraction of the 

search depth means a change in the definition of the neighborhood. At the final stage, VNS 

examines the elite solutions’ neighborhoods with the largest search depth and depending 

on the outcome it either stops or continues to search. If it can not improve the current 

fitness value, then the intensification procedure is terminated and the current solution 

becomes the local optimum.  

 

Six different VNS approaches are developed to attack the SMTWT problem. The 

first issue is related to the neighborhood definition, or the search depth used in 

subsequence sizing. In our three step search depth VNS approach, VNS 3-4-5, and VNS 4-

5-6 are employed to seek neighborhoods of treated solutions. VNS 3-4-5 denotes that the 

VNS starts to divide the sequence into subsets of three consecutive jobs to generate 

alternative solutions and the size is increased to four if no improvement is achieved with 

the previous search depth. Final run is performed using subset of five jobs if no 

achievement is experienced so far. Similar to VNS 3-4-5, VNS 4-5-6 behaves in a same 

way. The only difference is the size of each consecutive search depth utilized in VNS.  

 

The second issue is related to the timing of VNS method and two approaches, Final 

VNS (FVNS) and Middle VNS (MVNS), are developed to investigate the best timing for a 

neighborhood search. Final VNS as its name suggests, is executed at the end of SS 

algorithm. Usually, SS completes its search throughout the solution space and comes up 

with a best solution. In this method, the ultimate elite solution is attacked with FVNS and 

its neighborhoods are visited in order to obtain an improvement. On the other hand, MVNS 

is implemented after a number of iterations defined by a counter. This counter is so called 
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best solution VNS counter. It starts with the first iteration and counts successive iterations 

passed without any improvement of the best known. Best solution VNS counter zeros itself 

if SS or VNS finds a better solution for the problem. After exceeding a certain threshold 

value the counter triggers VNS switch and middle VNS is executed. At the end of MVNS, 

our counter is either set to zero or continues to count depending on the achievement of an 

improvement.  

 

Another issue is related to the selection of elite solutions to which MVNS is 

applied. MVNS is applied either to best three or to all elite solutions of the reference set. 

Employing VNS for all best solutions seems a time consuming operation compared to the 

application of its restricted version. In contrast, without investigating all elite solutions, 

better outcomes hidden at the neighborhood of these solutions may be missed. Therefore, 

the critical discussion, time vs. performance arises, and will be discussed in experimental 

section. The details of VNS method is described in Appendix D. 

 

4.1.7. Alpha Strategies 

 

Nomura et al. (2001) have demonstrated theoretically that BLX-α has the ability to 

promote diversity in the population of an EA. They state that BLX-α spread the 

distribution of chromosomes when α > (√3-1)/2, reducing it otherwise. Nomura et al. 

(2001) observe BLX-0.0 makes the variances of the distribution of the chromosomes 

decrease, reducing the distribution whereas BLX-0.5 causes the variances of distributions 

increase while spreading them. In this way, BLX-α provide useful tool to enhance 

exploration capabilities of continuous SS. In our approach, we introduce two strategies; a 

static α value of 0.5 and dynamically changing α values, in order to control diversification 

mechanism. In the first strategy, α is set to 0.5 which is proven as the best among other 

constant values. In the second one, three different α sub-strategies are developed to test the 

effects of dynamic α on solution combination method. 

 

In the first dynamic strategy, α value follows a loop where it starts with 2.0, then 

drops to 0.5 after certain iteration, increases incrementally at the end of non-improved 

iterations and finally turns back to its initial value. The whole changeovers are controlled 

by a switch. Alpha switch is a binary parameter which becomes 1 (on) if VNS does not 
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improve the best-known solution or becomes 0 (off) if otherwise is true. At the end of each 

iteration, the condition of alpha switch and α value are updated depending on the 

performance of VNS or SS. An improvement makes the switch off and set α value back to 

2.0. For the counter case when the alpha switch becomes on; α value drops to 0.5 and 

during the further iterations where the condition of the switch is unchanged, it is increased 

by 0.005 at the end of each iteration unless a better global optimum is found. 

 

In the second dynamic strategy, α is fixed at 0.5 during the period where alpha 

switch is off. When it becomes on, α is increased by 0.005 at the end of every iteration 

without any improvement of the best known solution. The value of α returns to its initial 

value 0.5 if SS or VNS improve the best known. 

 

In the last dynamic strategy, α is again fixed at 2.0 and drops to 0.5 when the alpha 

switch turns into on. But this time, it stays fixed at 0.5 at the end of every iteration while 

the alpha switch is still on. The value increased back to 2.0 if an improvement is 

succeeded. The new hypothesis behind developing dynamic α values is to control diversity 

and broaden the search to different promising zones when the reference set solutions start 

to generate less diverse offspring. This hypothesis will be tested in experimental results 

section. 

 

4.1.8. Stopping Criterion 

 

Two stopping criteria are investigated for our HCSS algorithm; a fixed iteration 

criterion and a dynamic stopping criterion. According to the first condition, the algorithm 

stops at the end of a predefined iteration number whereas for the dynamic stopping 

criterion, best solution VNS counter is again employed and the algorithm continues to 

operate until the counter of non-improving iterations reaches a certain value. The best 

value of the fixed iteration number and the threshold value for best solution VNS counter 

are determined through preliminary experiments. The experiments related to fix versus 

dynamic stopping criteria are discussed in further sections. 
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Figure 4.7. The pseudo code for variable neighborhood search method 

Variable Neighborhood search 
Let X be an elite solution of RefSet such that X = <st1, st2,….., stn> where stj is the start time 
of job j. and globalBest is the fitness of current solution. Suppose that VNS 3-4-5 is applied to 
X where 3-4-5 indicates the three different search depths. 
 
vns_depth = 3 
vns_switch=1 
sort X in order of increasing start times and obtain the sequence S      // S is an array of job #’s 
sorted currentSol = S 
globalBest = fitness(S) 
while vns_switch=1 
 if vns_depth=3 (or 4 or 5) 
  divide jobs into groups where each group has 3 (or 4 or 5) jobs 
  for each groups 
   write all permutations of jobs within the group  
   for each permutation 
    generate neighborhood Si

*  
    evaluate fitness (Si

*) 
   end 
   select Sbest

* with smallest fitness value 

   if fitness(Sbest
*) < fitness(S) 

    S = Sbest
* 

   end 
  end 
 if vns_depth=3 
  if fitness(S) < globalBest 
   globalBest= fitness(S) 
   sorted currentSol = S 
   vns_depth=4; 
               vns_switch=1; 
  else 
   vns_depth=4; 
               vns_switch=1; 
  end 
 elseif vns_depth=4 
  if fitness(S) < globalBest 
   globalBest= fitness(S) 
   sorted currentSol = S 
   vns_depth=3; 
               vns_switch=1; 
  else 
   vns_depth=5; 
               vns_switch=1; 
  end 
 else vns_depth=5 
  if fitness(S) < globalBest 
   globalBest= fitness(S) 
   sorted currentSol = S 
   vns_depth=3; 
               vns_switch=1; 
  else 
               vns_switch=0; 
  end 
 end 
end 
evaluate start times and fitness value of new solution X* using sorted currentSol.  
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Figure 4.8. The pseudo code for HCSS approach - SMTWT 

create initial solution set P 

POOL = P 

RefSet (best1,…., bestb1 ) = best b1 solution of the POOL                                                       // size(RefSet) =b=b1+b2 

RefSet (div1,….,divb2) = most b2 diverse solution of the POOL                                 //  selected acc. start or rank dist.  

ReserveList=RefSet 

bestSol = min{fit(best1), fit(best2),…., fit(bestn)}                                         // bestSol is the best solution found so far 

bestSolVNSCount = 0                                                                                                        // best solution VNS counter 

newSolutionsSwitch=1 

alphaCount=0; 

iterationCount=0 

while newSolutionsSwitch =1 

     generate new subsetsk with subset generation method                                                  // (b2-b)/2 subsets generated 

     for each subsetk                                                                                                                             // k=1,…., (b2-b)/2 

          apply solution combination method and improvement method 

     end 

     newSolutionsSwitch =0 

     update POOL 

     update ReserveList 

     apply reference set update method and select b1 best solution 

     if  min{fit(best1), fit(best2),…., fit(bestb1)} < bestSol 

 bestSol = min{fit(best1), fit(best2),…., fit(bestb1)} 

 bestSolutionVNSCount=1;                                                                                                   // VNS counter 

                 αCount=0;                                                                                  

                  α=α0;                // α0 is the initial α value at time zero 

     else 

 if bestSolutionVNSCount >VNS activation threshold                        // threshold is a predefined fix value 

      αCount= αCount+1                                                                                                                // α counter 

 end 

 bestSolutionVNSCount= bestSolutionVNSCount+1 

     end 

     if bestSolutionVNSCount = VNS activation threshold 

 for all besti Є RefSet 

      apply VNS and obtain sol’n besti
VNS 

      if fit (besti
VNS)< fit (besti) 

           for all besti Є RefSet 

  if besti
VNS Є RefSet then discard besti

VNS else replace besti with besti
VNS 

           end 

      end 

 end 

 if min{fit(best1), fit(best2),…., fit(bestb)} < bestSol 

      bestSol = min{fit(best1), fit(best2),…., fit(bestn)} 

      bestSolutionVNSCount=1; 

                       αCount=0; 

     α=α0;                                                                                             // α0 is the initial α value at time zero 
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Figure 4.8. The pseudo code for HCSS approach – SMTWT (continues) 
 

4.2. HCSS Approach to PMTT 

 

The parallel machine total tardiness problem (PMTT) can be defined as the 

scheduling of n jobs on m continuously available identical parallel machines aiming to 

minimize total tardiness. It differs from the single machine total weighted tardiness 

problem, PMTT involves both a sequence problem and an allocation problem. A job 

should be assigned to the right machine and be processed at the right time on that machine 

in order to achieve minimum total tardiness value. 

 

Our HCSS approach is initially designed for SMTWT problem. Its solution 

encoding, initial solution generation methods, solution combination methods and VNS are 

unique techniques that are built based on the single machine scheduling problem. Hence, 

some essential modifications are performed to adapt it to PMTT problems. With the proper 

adjustments, refashioned SS covers all the necessities required to search the more complex 

solution space of PMTT and provide feasible elite solutions. These minor fine-tunings do 

Continued 

          

              else 

      bestSolutionVNSCount= bestSolutionVNSCount+1 

      αCount= αCount+1 

 end 

     end 

     apply distance measurement method                                                                                    // start or rank distance 

     select diverse solutions from POOL and add them to RefSet    

    if αCount>0 

                 update α                                                                                                                                                           // acc. to one of the alpha strategies 

     end 

     iterationCount= iterationCount+1 

     if iterationCount < = stopping threshold                                                                    // fixed iteration criterion  ** 

 newSolutionsSwitch =1 

     end 

     if bestSolutionVNSCount < = stopping threshold                                                  // dynamic stopping criterion ** 

 newSolutionsSwitch =1 

     end 

end 

** executed interchangeably   
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not affect the basic idea and the methodology behind HCSS approach. In the forthcoming 

sections, instead of considering all the steps of algorithm, we only focus on the altered 

components of our HCSS algorithm. 

 

4.2.1. Solution Encoding Scheme 

 

In our real encoded vector representation, a solution string contains only the start 

times of jobs and the fitness value. It is a valid encoding for a single machine problem, 

because the sorted start times define the required dispatching order on a single machine 

and the fitness can easily be evaluated accordingly. Considering the PMTT problem, the 

same representation may state which job is processed earlier but it implies no information 

about on which machine the job will be processed. Therefore, the solution encoding is 

changed by inserting additional entities involving the machine indices. For an n job parallel 

machine problem, our vector becomes < 2n+1> array where first n entities denote the start 

times, second n entities denote the machine indices and last entity denotes the total 

tardiness value. As shown in Figure 4.9,  job #1 is processed on machine #1 at time 214.81, 

job # j is on machine #2 at time 257.89 and finally job #n is processed on machine #1 at 

83.42. 

 

JOB # 1 JOB # 2 .... JOB # J .... JOB # N JOB # 1 JOB # 2 .... JOB # J .... JOB # N FIT. 

214.81 128.98 .... 257.89 .... 83.42 1 1 .... 2 .... 1 10.38 
 

 

Figure 4.9. Solution encoding for PMTT problem 

 

In order to evaluate total tardiness value of a solution, the jobs are grouped with 

respect to their machine numbers. Then, the jobs on the same machine are sequenced in an 

increasing order of their start times. Having both of the allocation and the sequence, the 

fitness value can be easily computed. 

 

4.2.2. Initial Solution Generation Method 

 

Three different initial solution generation methods are developed for the PMTT 

problem, namely EFT method, EDD method and multi-rule method. All of these methods 

take their names from the dispatching rules used to schedule jobs. 
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In Early Finish Time (EFT) Method, each job is assigned to the machine which can 

complete it earlier. Initially, a temporary start time is generated for each job using the 

formula;  

 

stj = rj  + (dj – rj) x rand                                               (4.5) 

 

where stj, rj, and dj denotes start time, ready time and due date of job j, respectively and 

rand is a random number between 0 and 1. Then these start times are sorted in order of 

non-decreasing times and a sequence is obtained. Beginning with the first job in the 

sequence, for each job; its completion times on each machine is computed and it is 

dispatched to the machine with the earliest completion time. Finally, the total tardiness 

value is calculated and our initial trial solution becomes ready with its start times, machine 

numbers and fitness value. 

 

 
 

Figure 4.10. The pseudo code for EFT initial solution generation method 
 

In Earliest Due Date (EDD) Method, initially jobs are assigned to the machines 

randomly. Jobs are then sorted according to their due dates. Job with an earlier due date 

gets the precedence to be processed earlier on its machine assigned. By dispatching jobs 

randomly to the machines, we convert the parallel machine problem into m independent 

Start with P = Ø, where P denotes initial population and x denotes an initial trial sol’n Є P. 

while size(P) < Psize 

     for j = 1,…..,n      // n denotes the # of jobs 

 stj = rtj  + (dtj – rtj) * rand                         // stj -start time, dtj- due date, rtj- ready time of job j 

     end 

     sort j’s in order of non-decreasing stj and obtain a sequence q contain sorted j’s 

     for k =1,…..,n 

 compute completion time of q(k) on each machinei           // i =1,…., m m is the # of machines 

 select the machinei with earliest finish time 

 assign jobq(k) to selected machinei 

 update start, tardiness, and completion time 

     end 

     sum all tardiness and calculate fitness 

     x’ = [start times of jobj + fitness]                                                                                        // j=1,…..,n 

     if fit(x’) ≠ any of fit (x),  x Є P the x’ is added to P, x’→x, otherwise discard x’ 

     P=P U x 

end 
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single machine problems, where m denotes the number of machines, and EDD rule is used 

to sequence jobs. The total tardiness and start times values of jobs are found separately for 

each machine and then these data are collected together to form the initial trial solution. 

 

Multi-Rule Method is an advanced version of EDD Method. In addition to EDD 

rule, SPT and XR&M (Morton and Pentico 1993) rules are also utilized to order jobs on a 

given machine. EDD rule, as previously mentioned, arranges jobs according to their due 

dates. Shortest Process Time (SPT) Method ranks the jobs in an order of non-decreasing 

process times and finally XR&M is a modified version of R&M priority rule which is 

discussed in single machine problem. R&M developed for SMTWT problem, uses weights 

to evaluate twt value and all jobs are ready at time zero. However, in PMTT problem, there 

are no related weights and the jobs have distinct ready and set-up times. Therefore 

necessary adjustments are conducted to adapt R&M formulas to PMTT problem. In first 

place, the slack time S at time t is found by; 

 

Sj = dj – rj – pj - t                                                    (4.6) 

 

where subscript j indicates the job j and t indicates the completion time of the job j-1 on the 

same machine. The idle priority rule for a given job j is evaluated using the formulas;  

 

(πj)idle =  πj [1 – B ( rj – t )+ / pav]                                          (4.7) 

 

where rj is ready time of job j, pav is  the average processing time of all jobs assigned to the 

same machine and 

 

πj = (1 / pj)[exp{-(Sj)
+ / pav}]                                            (4.8) 

 

B = 1.3 + ρ                                                        (4.9) 

 

ρ is the average utilization of the machine which is found by  

 

ρ = total process time assigned /   current time                              (4.10) 

                                                             
At time zero, (πj)idle value of all jobs are evaluated and the job with the highest 

(πj)idle is the first to be scheduled. Afterward, according to the completion time of selected 
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job, the priorities of remaining jobs are updated and a new job is selected depends on these 

values. This iterative process continues until all jobs are sequenced.  

 

Since we assign jobs to machines randomly, the PMTT is transformed into single 

machine problems aiming to permute jobs in order to minimize total tardiness. Dealing 

with these single machine problems, three dispatching rules; EDD, SPT and XR&M are 

applied to same machine respectively. The obtained sequences with resulting fitness values 

are compared and the sequence with the smallest fitness value is chosen for the considered 

machine. For example, in a two machine problem, the three rules are applied for both 

machine #1 and machine #2. For the first machine, EDD performs better and for the 

second, XR&M outperforms the others. Then our final trial solution in constructed by 

using the EDD sequence for machine #1 and XR&M sequence for machine #2. The total 

fitness is the sum of tardiness resulted from EDD and XR&M dispatching. The 

performances and diversities of EFT, EDD and multi-rule generated initial solution sets are 

judged in experimental results section. 

 

4.2.3. Solution Combination Method 

 

In PMTT, a modified two-phase BLX-α operator is employed to generate new trial 

solutions. During the first phase, the start times of the offspring are generated as performed 

in the SMTWT. The requirement of second phase arises when a machine number is needed 

to be assigned for each job. The two parents have the data of appointed machine numbers 

that is stored in their chromosomes, which should be transferred somehow into newly 

generated offspring. Second phase uses a conditional random assignment procedure to 

select appropriate machine for each job by looking at the genetic heritage of parents. If a 

job is processed on the same machine in both of the parent solutions then this machine 

processes the corresponding job of the offspring. If the two machines are different in the 

parent solutions for the same jobs, then the job is assigned to a machine that is randomly 

selected considering the machines of the parent solutions. For example, for job j, it is 

processed on machine #1 in one solution and on machine #2 in another solution. 

Considering the offspring generated from these solutions, the machine for job j will be 

either machine #1 or machine #2. This selection is performed randomly. After finding start 
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times and assigning machines for each job, the total tardiness is evaluated and the new trial 

solution is created. 

 

 
 

Figure 4.11. The pseudo code for multi-rule initial solution generation method 
 

4.2.4. Variable Neighborhood Search 

 

VNS applied to SMTWT problem is quite simple. It concerns the sequence of jobs 

on a single machine. So, the neighborhoods of a current solution can easily be generated by 

swap moves that provide different permutations. Consequently, the final fitness value is 

updated by evaluating these neighborhood sequences. On the other hand, PMTT problem 

Start with P = Ø, where P denotes initial population and x denotes an initial trial sol’n Є P. 

while size(P) < Psize 

     randomly assigned each jobj to a machine mchi         // i=1,...., # of machines (m), j=1,....,# of jobs (n) 

     for each mchi 

          sort all jobj Є mchi according to EDD                                                                   // Earliest due date 

          schedule all jobj on mchi and evaluate start times and fitness value 

          store st  and fitness value in a string xEDD = [st1,….,stn, fit]                      // stj is start time for job j 

          sort jobj Є mchi according to SPT                                                                // Shortest process time 

          schedule all jobj on mchi and evaluate start times and fitness value 

          store start times and fitness value in a string xSPT = [st1,….,stn, fit]            // xSPT is partial schedule 

          remain jobs = all jobj Є mchi 

          while size(remain jobs) ≠ 0 

 for each jobj Є remain jobs 

      update slack time, πj, ρ                                   // πj  is the priority of jobj , ρ is avg. mach. util.  

      calculate (πj)idle                                                                                                                     // (πj)idle  is the idle priority 

 end 

 select jobj with the max (πj)idle  

 calculate its start time, completion time and tardiness on mchi 

 delete jobj from remain jobs 

          end 

          sum all tardiness and obtain fitness  

          store start times and fitness value in a string xXRM = [st1,….,stn, fit]         // xXRM is partial schedule 

          select schedulebest with min fitness                           //  xEDD, xSPT or xXRM is selected as schedulebest 

     end 

     x’ = [(schedulebest)mch1 + (schedulebest)mch2 +…….+(schedulebest)mchm] 

     if fit(x’) ≠ any of fit (x),  x Є P the x’ is added to P x’→x, otherwise discard x’ 

     P=P U x 

end 
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consists of both allocation and scheduling of n jobs on parallel machines. Therefore, in 

order to search the neighborhoods of a current solution, VNS should generate candidate 

solutions by applying both machine interchanges and swap moves. For this reason, three 

different type VNS approaches are developed and implemented to elite solutions one after 

other at times determined by  best solution VNS counter. 

 

In the first type VNS (type #1) technique, the sequence of a selected elite solution is 

recorded and kept fixed during the entire neighborhood search. Then this sequence is 

divided into subsequences containing same number of jobs defined by VNS depth. Starting 

with the first subsequence, all possible machine assignments are listed for this group’s 

jobs. As an example, considering a two machine problem with VNS depth equals to three, 

the all possible assignments can be stated as (111), (112), (121), (211), (221), (122), (212) 

and (222), where (112) denotes that the first job of the selected group is processed at 

machine #1, and the remaining jobs are at machine #2. Later, all these alternative 

assignments for first three jobs are investigated without changing the initial sequences and 

other machine assignments for the jobs stay out of this group. The alternative with the 

smallest fitness is selected and the current machine assignment is updated accordingly. 

When all the groups are treated in the same way and the assignments are revised, the total 

tardiness value of the neighborhood solution is compared with the current solution. If there 

is an improvement, neighborhood solution becomes the new current solution and VNS 

depth is decreased one level. Otherwise, the depth is increased one level and VNS repeat 

the previous steps for the new neighborhoods of the current solutions. See Appendix E. 

  

In the second (type #2) and third type (type #3) VNS techniques, the methodology 

employed to construct neighborhood of a current solution is exactly the same that is used 

in SMTWT. Without considering machine allocations, the initial sequence of an elite 

solution is divided into subsequences and each subsequence involves its permutation 

alternatives. The neighborhoods are generated using these permutations that alter the initial 

sequence. The only difference arises at the evaluation step of the fitness value. In SMTWT 

problem, the order of jobs contains all the data need to calculate twt value. On the other 

hand, only a sequence of job indices means nothing for a parallel machine scheduling 

problem because it does not contain any information about machine assignments. 
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Therefore, two simple dispatching rules are utilized to cover required machine indices for 

each job.  

 

The type #2 VNS technique employs an early finish time rule which starts with the 

initial job of the defined array and computes its completion times on each machine 

separately. These values are then compared and the machine with the earlier completion 

time is selected. After assigning the first job, the next one is dispatched to a machine by 

repeating the same computations. This scheduling continues until all jobs have a machine 

to be processed on. And finally, the total tardiness is evaluated and the neighborhood 

solution is generated according to the obtained job sequence and machine allocations. See 

Appendix E. 

 

The type #3 VNS technique uses a recursive rule that operates in a one-way track 

fashion over branch alternatives. In this method, start times play the key role to decide a 

machine for a given job. Jobs are allocated according to their positions stated by the sorted 

sequence. At each step of allocation, a start time corresponding to a job is compared with 

the finish time of the machines where the finish time denotes the completion time of 

previously assigned job on that machine. If the start time of a selected job indicates an 

instant that is before the both machine finish their duties, then the selected job is assigned 

to a machine with the earliest completion time. Else if, the start time is earlier than one 

finish time but not the other, then the job corresponding to that start time is scheduled on 

the earlier machine. Finally, if there is a slack time between the finish time and the start 

time for both machines, then the job can be assigned any of the machines. Thus, recursive 

rule constructs two branches at that node which contain each assignment alternatives. 

When all the jobs are dispatched and their alternative branches are built, the tardiness value 

at each node is evaluated. Starting from the first node and moving forward to the last node 

through generated branches, total tardiness value is calculated. In addition to that, this one-

way track move provides the required assignment sequence for the neighborhood solution. 

The assignment with the smallest total tardiness becomes the fitness of sequence that is 

generated initially as the candidate solution of the initial solution. See Appendix E. 

 

The other features of VNS that are not mentioned in this section, is same as in 

SMTWT problem. Different from the single machine problem, our best solution VNS 
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counter triggers three different type VNS techniques. It initially triggers first type VNS 

technique which generates neighborhoods based on machine interchanges for a fixed 

sequence of jobs. If the current solution can not be improved and counter reaches to the 

second threshold, it executes the second type VNS where the evaluations of neighborhoods 

are done by using EFT rule. Depending on the presence of an improvement, counter either 

implements the first type VNS or the third type VNS technique. If HCSS or previous VNS 

attempts fails to upgrade the best known solution, third type VNS is executed to search 

new neighborhoods attentively while considering all schedule alternatives related to them. 

Third type VNS technique is an intensive search method and it becomes highly time-

consuming when the number of jobs is increased. Therefore, it is applied at the final stage 

like a last bullet to the target. If the bullet hits the target, the counter reset itself and the 

search starts from the beginning with a superior solution. Otherwise, HCSS continues for a 

fixed iteration and stops if no improvement is achieved. The performance comparison 

between three type VNS and single type VNS technique used in SMTWT problem will be 

performed in experimental result section and the best method will be selected for our final 

HCSS approach. 

 

 
 

Figure 4.12. The pseudo code for HCSS approach – PMTT 

create initial solution set P 

POOL = P 

Select b1 best solutions and b2 diverse solutions of RefSet from  the POOL                                                       

ReserveList=RefSet 

bestSol = min fitness value RefSet solution                                                   

bestSolVNSCount = 0                                                                                                         

newSolutionsSwitch=1 

alphaCount=0; 

iterationCount=0 

while newSolutionsSwitch =1 

     generate new subsetsk with subset generation method                                                   

     for each subsetk                                                                                                                              

          apply solution combination method and improvement method 

     end 

     newSolutionsSwitch =0 

     update POOL 

     update ReserveList 

     apply reference set update method and select b1 best solution 

     update bestSol, bestSolutionVNSCount, αCount, α 

     // (activation threshold of type #1 MVNS < type #2 MVNS < type #3 MVNS) 

Continues 
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Figure 4.12. The pseudo code for HCSS approach – PMTT continues 

 

 

 

 

 

 

 

 

 

 

 

     if bestSolutionVNSCount =activation threshold for  type #1 MVNS 

 for all besti Є RefSet 

      apply type #1 MVNS and obtain sol’n besti
VNS 

      update RefSet with besti
VNS  if necessary 

 end 

 update bestSol, bestSolutionVNSCount, αCount, α  

     end 

if bestSolutionVNSCount =activation threshold for type #2 MVNS 

 for all besti Є RefSet 

      apply type #2 MVNS and obtain sol’n besti
VNS 

      update RefSet with besti
VNS  if necessary 

 end 

 update bestSol, bestSolutionVNSCount, αCount, α 

     end 

if bestSolutionVNSCount =activation threshold for type #3 MVNS 

 for all besti Є RefSet 

      apply type #3 MVNS and obtain sol’n besti
VNS 

      update RefSet with besti
VNS  if necessary 

 end 

 update bestSol, bestSolutionVNSCount, αCount, α 

     end 

     apply distance measurement method                                                                                     

     select diverse solutions from POOL and add them to RefSet    

    if αCount>0 

                 update α  =0.5+(∆* α Count)                                                                                                                                                         

     end 

if bestSolutionVNSCount < = stopping threshold                                                  // dynamic stopping criterion 

 newSolutionsSwitch =1 

     end 

end 
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5. NUMERICAL STUDIES 

 

 

This chapter provides the details of experimental procedure and different strategies 

applied to tardiness related scheduling problem sets together with the numerical results. 

The algorithm is implemented on MATLAB® (MathWorks, 2006) which is a high-

performance language for technical computing. The name MATLAB® stands for matrix 

laboratory. It is an interactive system whose basic data element is an array that does not 

require dimensioning. This allows solving many technical computing problems, especially 

those with matrix and vector formulations, in a fraction of the time it would take to write a 

program in a scalar non-interactive language such as C or Fortran. The solution 

representation of our HCSS approach consists of vectors and arrays. Therefore, the basic 

features of MATLAB® provides the necessary computing language infrastructure for our 

meta-heuristic approach and let the incorporation of further strategies composed in 

different compilers within MATLAB®. Both parallel and single machine total 

tardiness/total weighted tardiness problems in their most generic forms, i.e. with distinct 

ready times, processing times, due dates and sequence dependent setup times are imported 

into the software as matrices and can be processed by unique codes special to matrix 

operations. 

 

The several strategies developed for HCSS approach are tested via MATLAB® and 

the results are reported in the following sections. The solution strategy to be employed for 

each problem can be specified by the user just selecting a combination of methods 

implemented for parallel or single machine total tardiness/total weighted tardiness 

problems separately. Extensive experimentation is performed on the HCSS approach 

developed in this thesis. The experiments are conducted on a AMD Athlon 64 – 1.81 GHz 

CPU with 512 MB RAM. 

 

5.1. Problem Set for SMTWT 

 

The problem set used for experimentation consists of scheduling problems with 40, 

50, 100-jobs, which is developed and tested by Crauwels et al.(1998). A total of 125 test 

instances are available for each problem size n=40, n=50 and n=100. The instances were 
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randomly generated as follows: For each job j (j=1,...,n), an integer processing time pj was 

generated from the uniform distribution [1,100] and integer processing weight wj was 

generated from the uniform distribution [1,10]. Instance classes of varying hardness were 

generated by using different uniform distributions for generating the due dates. For a given 

relative range of due dates, RDD (RDD=0.2, 0.4, 0.6, 0.8, 1.0) and a given average 

tardiness factor TF (TF=0.2, 0.4, 0.6, 0.8, 1.0), an integer due date dj for each job j was 

randomly generated from the uniform distribution [ P(1-TF-RDD/2), P(1-TF+RDD/2) ], 

where P = Σj pj for j (j=1,...,n). Five instances were generated for each of the 25 pairs of 

values of RDD and TF, yielding 125 instances for each value of n. These instances are 

available in the OR library run by (Beasley, 2006), which is a collection of test data sets 

for a variety of Operation Research problems. 

 

 Crauwels et al. (1998) develop a Branch and Bound algorithm to attack n=40 and 

n=50 instances. They manage to solve 124 out of the 125 instances for n=40 and 103 

problems out of 125 instances for n=50 with a time limit of two minutes for each instance 

whereas n=100 instances were abandoned due to the anticipation of extremely high 

computational times. The unsolved 40-job problem is number 19, and 50-job problems 11, 

12, 14, 19, 36, 44, 66, 87, 88 and 111 remain unsolved. The optimal solutions for 124 of 

the 40-jobs problem instances and 115 of the 50-job instances are given in the OR library. 

As for, 100-jobs problem instances, the best known solution values reported by Crauwels 

et al. (1998) and Congram et al. (2002) are available. Since, the solutions not known to 

optimality have not been improved further with respect to their best-known values, there is 

a strong evidence that they are actually the optimal solutions. Appendix F.1 presents the 

optimal and best known solutions for 40, 50 and 100-jobs problem instances as reported in 

the OR library. 

 

 5.2. Problem Set for PMTT 

 

 The problem set used for experimentation consists of parallel machine scheduling 

problems of 40 and 60 jobs, developed and tested by Sivrikaya-Şerifoğlu and Ulusoy 

(1999). A total of 20 test instances are available for each problem size, i.e. n = 40, m = 2 

and 4 and n = 60, m= 2 and 4 where n denotes the number of jobs and m denotes the 

number of machines.  
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The instances were randomly generated as follows. It has been assumed that 

machines belong to one of two different types, which have the same characteristics except 

that they have different processing times. Type II machines represent an older technology. 

The processing time of a job on a Type II machine is 10-20 per cent greater than its 

processing time on a Type I machine. Similarly, setup times on a Type II machine are 20-

40 per cent larger than the corresponding setup times on a Type I machine. Processing 

times of job j on a Type I machine, pj
I follow the uniform distribution U [4,20]. To 

generate the processing time of job j on Type II machine, which is denoted as pj
II, a 

multiplier is chosen randomly from [1.10, 1.20] and is applied to the processing time of job 

j on the Type I machine. 

 

 Setup times on Type I machines, cited as aI, are taken to be uniformly distributed 

with U [1, Amax] where two levels of Amax are utilized in this study. Again a multiplier 

chosen from [1.20 1.40] is employed to compute the setup times on Type II machine. 

Ready times are assumed to follow the uniform distribution U [0, Rmax], where Rmax is the 

maximum ready time. Here, Rmax = ¦(pavg
II
+ aavg

II
)/(N/M-1)¦ where ¦x¦ is the smallest 

integer greater than or equal to x, and pavg
II
 , aavg

II are the average processing time and 

average setup time on machine Type II respectively. The due date of job j is taken to be the 

sum of its ready time, processing time on the Type II machine, maximum time to setup a 

Type II machine for the processing of job j and a slack value. The slack value S is defined 

as the sum of mean values of processing and setup times on a Type II machine:  

 

S = pavg
II+ aavg

II.                                                   (5.1) 

 

Due dates are computed according to the formula: 

 

dj = rj + maxi aij
II
 + pij

II + S                                        (5.2)  

 

 Bilge et al. (2004) apply a deterministic TS algorithm and obtain high quality 

solutions with respect to earlier results from the literature for the same problem set. 

However, Anghinolfi and Paolucci (2006) represent a hybrid meta-heuristic approach that 

integrates TS, SA and VNS and achieve some superior results than the ones found by Bilge 

et al. Both sets of best known solutions cited by the authors are given in Appendix F.2. 
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5.3. The Experimental Procedure for the HCSS Approach 

 

 The performance measure used for this study is the average percentage of deviation 

from the best value known in the literature.  Hence, in all the experimental results 

presented in the figures, the percentage deviation for an instance is calculated by using the 

formula: 

 

    per cent dev = [(Best – Best-known to literature)/ Best-known to literature] x 100   (5.3) 

 

where Best-known to literature is the best known solution reported in OR library for the 

problem set and Best is the best solution obtained by the HCSS. Then the average of total 

percentage deviations for a problem set is computed as  

 

              avg. per cent dev. = Σi ( per cent dev.)i / total number of instance            (5.4)  

 

where i denotes the number of an instance. In each experimentation phase, only aggregated 

results are used for decision-making purposes. Therefore, only those aggregate forms of 

results are presented for the entire set of problems, rather than presenting individual results 

for each instance. The performance evaluation is based on the average per cent deviation 

from the optimal (or best known value to the literature) of all the instances of considered 

problem sets. Individual superior results for some instances do not affect the final decision. 

In other words, each candidate strategy is evaluated in terms of aggregate performance 

quality instead of individual success per problem instance. 

 

 For SMTWT problems, mostly 50-job instances are considered. While making a 

crucial decision concerned with the methodology of HCSS approach, the results found for 

50-job instances are supported by either 40-job, 100-job or both sets. Hence, more reliable 

decisions can be made. This is because in some cases the difference between avg. per cent 

deviations of two compared candidate methods is negligible when 50-job instances are 

taken into account. On the other hand, the difference can become more significant for 100-

job problem set. Based on this argument, instead of evaluating a strategy with respect to 

single set of results, more data are considered to arrive at a more robust final form of our 

approach. 
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 For PMTT problems, two-machine problems are usually harder than their four-

machine counterpart. For this reason, the experimentation is conducted with 40-job two-

machine instances. Hence, in the experimentation phase, only 40-job two-machine problem 

average per cent deviation results are reported and the decisions are made after comparing 

these results. The final form of the algorithm obtained in this manner is then employed for 

the remaining problem sets for final results. 

 

 Since the total number of strategies to be tested is very large, a sequential 

experimentation procedure is adopted. First, the HCSS approach is implemented in its most 

elementary form, which we call the basic algorithm. Then this basic algorithm is developed 

into its final form by fixing strategies according to the experimentation results. At each 

experiment, we test one or more parameters/methods and select one (or sometimes more) 

level that perform at least as good as the others for each instance, and go on with this new 

form of the algorithm.       

 

 Before examining experimental results for SMTWT, the components of our basic 

HCSS model are introduced briefly. In our basic model, the initial solutions are generated 

randomly (rand). Initial solution set size is considered as 150 which is consistent with the 

values given in Herrera et al (2006) and Laguna et al (2006). Hence, the size of the set will 

not be fine-tuned and kept constant during entire experimentation. The reference set 

consists of 10 high quality and 10 diverse solutions, as suggested by Laguna et al. (2006). 

Best solutions are selected from the reserve list (2-tier) whereas diverse solutions are 

chosen according to their start time distances (start) to the reference set as described in 

Section 4.1.3. The solution combination method employs BLX-α operator where α equals 

to 0.5 (static) and the generated trial solutions are stored in the pool which has a capacity 

defined as pool size. The initial pool size is considered as 100, which means 90 of the 

generated trial solutions are not accepted to the pool depending on their poor fitness 

values. In our elementary HCSS model, no intensification strategy such as VNS is 

performed; different types of VNS methods will be introduced in further sections of 

experimentation. Finally, the stopping criterion in the basic algorithm is set to 150 

iterations. The used components and default parameter values of our basic HCSS algorithm 

is presented in Table 5.1. Until the otherwise is stated, these components and parameters 

are implemented in our algorithm at the experimentation stage.  
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Table 5.1. Basic HCSS algorithm 

 

   BASIC HCSS  

REFERENCE SET  

UPDATE METHOD 2-tier + start 

# of BEST 10 

# of DIVERSE 10 

INITIAL SOLUTION SET  

GENERATION METHOD RANDOM 

# of INITIAL SOL's 150 

POOL   

SIZE 100 

SOLUTION COMBINATION METHOD  

ALPHA STRATEGY STATIC 

ALPHA VALUE 0.5 

INTENSIFICATION STRATEGY  

TYPE OF VNS NO 

SEARCH DEPTH  X 

STOPPING CRITERION  

TYPE FIX 

# of ITERATIONS 150 

 

 For every experiment conducted, a figure and a table are given together to report 

the results of this experiment and to summarize the components of HCSS which is 

implemented in the experiment. The table is divided into columns and each column 

represents a component of our model. An illustration of our basic model is given in Table 

5.2.  

 

Table 5.2. Components of basic HCSS 

 

INISOL REFSET DISTANCE VNS DEPTH POOL ALPHA STOP 

RAND 2-TIER START NO X 100 0.5 150 

 

where INISOL denotes the initial solution generation method, REFSET denotes reference 

set update method, DISTANCE denotes distance measurement method, VNS and DEPTH 

denote intensification strategy and its search depth, POOL denotes pool size, ALPHA 

denotes α value used in solution combination method and finally STOP defines the 

stopping criterion. Each time, when a new alternative method or parameter value is 

introduced, it is symbolized with abbreviations which are referred in brackets. This 

representation provides a visual simplicity while presenting the internal dynamics of the 
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algorithm. Considering the figures, the x-axis contains the compared methods or strategies, 

y-axis defines problem set and z-axis states the average per cent deviations obtained from 

all instances. 

 

5.4. Numerical Experimentation for SMTWT 

 

 As the first step of experimentation, two diverse solution selection methods and 

three pool sizes are tested by taking all of their combinations. Considering 40-job 

instances, restricted pool sizes perform better regardless of the distance measurement 

method. As shown in Figure 5.1, start distance measure with pool size 100 (start 100) and 

pool size 85 (start 85) result in 2.11 and 1.62 average per cent deviation values 

respectively, which are both smaller than the value 2.22 obtained by using start distance 

measure with no pool restriction (start all). The same situation can be observed between 

rank distance measure and pool size parameter (rank 100, rank 85). Again, two restricted 

pool sizes come up with superior performance values. This is expected since; without any 

restriction, too diverse poor quality solutions are accepted to pool and selected as an 

element of reference set by one of distance measurement methods. Therefore, a poorly 

constructed reference set generates weak offspring that do not yield satisfactory results. 

Investigating all problem sets, rank 100, start 100 and start 85 are considered as the most 

promising distance measure-pool size combinations. 

 

 The next step is to determine search depth for our intensification strategy (VNS). 

Middle VNS (MVNS) is employed with basic scatter search and two different search 

depths; 3-4-5 and 4-5-6 are tested for 50-job instances as described in Section 4.1.6. From 

the Figure 5.2, it can be seen that MVNS 4-5-6 outperforms MVNS 3-4-5 regardless of the 

distance measurement method and pool size combination. Although it is not shown here, 

two compared search depths are chosen among a wide range of depths varying from 2-3-4 

to 6-7-8. The depth 3-4-5 is the best performed one among the fast VNS methods, whereas 

depth 4-5-6 is the fastest when VNS with high quality outcomes are considered. The 

comparison between these two states that MVNS 4-5-6 has a remarkable superiority over  
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Table 5.3. HCSS for SMTWT - pool sizes and distance measurement methods 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND 2-TIER START all, 100, 85 NO X 0.5 150 

RAND 2-TIER RANK all, 100, 85 NO X 0.5 150 

 

start 
all

rank all

start 
100

rank 100

start 
85

rank 85

40 jobs

50 jobs
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Figure 5.1. Experimental results for pool sizes and distance measurement methods 

 

its faster alternative. If the difference were not so significant, the faster VNS depth 3-4-5 

could have been preferred. Hence, during our remaining experimentation, search depth 4-

5-6 is used for our variable neighborhood search.  

 

 After deciding the search depth, two different VNS strategies are applied to 50-job 

100-job problem sets. In the first strategy, a final VNS is executed only on the best solution 

found so far as soon as the stopping criterion – 150 iterations is met whereas for the second 

strategy a middle VNS is implemented when the non-improving iterations counter reaches 

a certain threshold. This threshold is defined as 30 consecutive non-improving iterations. 

Considering 50-job instances, there can be observed a clear improvement after applying an 

intensification strategy; but no clear selection can be made between FVNS and MVNS. 

This is because; the performances shown in Figure 5.3 are close to each other. In order to 

avoid an improper conclusion, a more challenging problem set consisting of 100-jobs is  
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Table 5.4. HCSS for SMTWT - comparison of search depths 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND  2-TIER START 85 MVNS 3-4-5 0.5 150 

RAND  2-TIER RANK 100 MVNS 3-4-5 0.5 150 

RAND  2-TIER START 85 MVNS 4-5-6 0.5 150 

RAND  2-TIER RANK 100 MVNS 4-5-6 0.5 150 

 

MVNS 3-4-5

rank 100
MVNS 4-5-6

rank 100
MVNS 3-4-5

start 85
MVNS 4-5-6
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50 jobs

2,83

1,69

2,49

1,71

0,00

0,50

1,00

1,50

2,00

2,50

3,00

A
V

G
. 

D
E

V
.

MVNS 3-4-5 vs. MVNS 4-5-6

 
 

Figure 5.2. Fine-tuning for search depth parameter 

 

attacked by MVNS can be clearly proven when combined with both rank 100 and start 85. 

Hence, MVNS 4-5-6 is selected as the intensification strategy for HCSS approach. 

 

Table 5.5. HCSS for SMTWT - comparison of different intensification strategies 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND  2-TIER START 85 FVNS 4-5-6 0.5 150 

RAND  2-TIER RANK 100 FVNS 4-5-6 0.5 150 

RAND  2-TIER START 85 MVNS 4-5-6 0.5 150 

RAND  2-TIER RANK 100 MVNS 4-5-6 0.5 150 

RAND  2-TIER START 85 NO X 0.5 150 

RAND  2-TIER RANK 100 NO X 0.5 150 
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Figure 5.3. Effects of intensification strategies 

 

 So far, the initial population used in HCSS is randomly generated. From now on, 

we discuss the performance of two new population generations approaches. For the 

experiments performed at this stage, all the new population are formed by either seeding 

the randomly generated population with some selected good solutions found at the end of 

various list scheduling heuristic (SEED-10) or by seeding the random population with all 

good solutions obtained by same heuristic (SEED-ALL). The list scheduling heuristics 

employed are EDD, SPT, WSPT and R&M +. A single seed solution is provided from each 

of the heuristics except R&M +. R&M + provides up to 36 different elite solutions by 

varying k value. Either all of these solutions are accepted to initial solution set or best 10 of 

them are selected as described in Section 4.1.2.  

 

Based on the results presented in Figure 5.4, seeded initial solution set containing 

best 10 R&M solution with pool size 85 performs better for both 40-job and 100-job 

instances. Focusing on 40-job problem set, seeded initial solution set SEED-ALL do not 

yield satisfactory result as compared to SEED-10 or randomly generated population . The 

main reason behind this situation is the selection of almost identical individuals to the 

initial population. (Trial solutions with different start times but same fitness value can be 

observed in the initial population at the same time; because the selection procedure only 

filters the identical individuals.) Similar individuals later dominate the reference set and 
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directly affect the next generations formed from their linear combinations. Hence, 

insufficient diversity in the population avoids HCSS to explore different promising regions 

and the search cycles around the same local optima.  

 

Table 5.6. HCSS for SMTWT - comparison of different initial solution generation methods 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND  2-TIER START 100,85 MVNS 4-5-6 0.5 150 

SEED-ALL 2-TIER START 100,85 MVNS 4-5-6 0.5 150 

SEED-10 2-TIER START 100,85 MVNS 4-5-6 0.5 150 
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Figure 5.4. Effect of initial solution generation methods 

 

 A screening mechanism is developed to overcome the diversity problem in the 

initial population. This mechanism removes one of two trial solution with the same 

tardiness value. By doing so, it is guaranteed that every screened solution has a different 

sequence of jobs which reflects an important indicator of diversified population. In the 

experimentation, screening is only applied to seeded initial solution set with best 10 R&M 

solution (SEED-SCR) and the results are summarized in Figure 5.5. It is obvious that 

screening improves both diversity and quality of initial population; thus affects the 

efficiency of search. 

 

Previously, MVNS is applied only to first three best solutions stored in the 

reference set. These best solutions are directly transferred from the reserve list where best  
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Table 5.7. HCSS for SMTWT - effect of screening mechanism 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND  2-TIER START 100,85 MVNS 4-5-6 0.5 150 

SEED-10 2-TIER START 100,85 MVNS 4-5-6 0.5 150 

SEED-SCR 2-TIER START 100,85 MVNS 4-5-6 0.5 150 
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Figure 5.5. Effect of screening mechanism 

 

found solutions are kept. Without considering other elite solutions, our intensification 

strategy becomes a partial exploitation mechanism that neglect promising neighborhoods 

of other best solutions. As mentioned before, the performance of a solution is evaluated by 

only looking at its fitness value. A solution, which is considered as poor, can be converted 

in to a better solution by just swapping two jobs’ positions. Therefore every solution is 

assumed to have a potential local optimum hidden at its neighborhood. Based on this 

assumption we developed a comprehensive MVNS and explore the neighborhood of all 

elite solutions contained in the reference set (MVNS ALL). The experimentation is 

performed with a randomly generated initial solution set and the results for 40-job and 50-

job instances are presented in Figure 5.6 MVNS ALL with start 85 decreases average per 

cent deviation from 1.17 to 0.30 for 40-job problem and from 1.71 to 0.47 for 50-job 

instances. This is a remarkable improvement. Hence, new MVNS method is adapted as our 

new intensification strategy. 
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Table 5.8. HCSS for SMTWT - comparison of MNVS 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

RAND  2-TIER START 100,85 MVNS 4-5-6 0.5 150 

RAND 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 150 
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Figure 5.6. Experimental results for compared MNVS methods 

 

 At this point, an important question comes to mind, what happen if we design a 

HCSS which start with a better initial solution set and employs a complete intensification 

strategy that covers all elite solutions. In Figure 5.7, performances of new intensification 

strategy, new seeded population with screening and their combinations are shown 

separately. Based on the results observe from the figure, the new combination shows a 

perfect harmony for all instances and reduce average per cent deviation value in both 

cases. Therefore, MVNS with enlarged application area and diversified seeded population 

are adapted together to our HSCC approach and further experimentations are implemented 

accordingly. 

 

Table 5.9. HCSS for SMTWT – effect of combined initial solution and MVNS methods  

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 85 MVNS 4-5-6 0.5 150 

RAND 2-TIER START 85 MVNS ALL 4-5-6 0.5 150 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5 150 
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Figure 5.7. Combination of screened initial solution set with new MVNS method  

 

 Diversity of the population is the main force behind the HCSS that push it to 

explore distant promising regions in order to find superior solutions. For that reason, 

diversification among the individual must be control at every stage of the search. The 

initial diversity of population is obtained by new screening mechanism, but alone it is not 

sufficient to keep diversity at desired levels for next generations. As we discussed in 

Section 4.1.5, solution combination method that utilizes BLX-α operator has the ability to 

promote diversity of the population. It causes variances of distributions increase while 

spreading them in this way. BLX-α provides a useful tool to enhance exploration 

capability. In order to control diversity, α parameter is employed in three different 

strategies based on dynamically changing α value. Those three strategies are implemented 

as explained in Section 4.1.7 for all instances and the results are given in Figure 5.8. The 

strategy that start with α value equal to 0.5 and increases it by 0.005 at the end of each non-

improving iteration, performs better than other strategies which are based on either static or 

dynamic α value. 

 

 Before modifying our HCSS approach with dynamic alpha strategy, a fine-tuning 

step is executed for the increment values (∆); 0.005, 0.01, 0.025 and 0.05. These 

increments are tested on 50-jobs and 100-job instances and the results are reported in 

Figure 5.9. It is obvious that the smallest increment 0.005 outperforms its candidates. An 
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interesting result is observed for 100-job problem where the average per cent deviations 

are too high for 0.025 and 0.05. This shows that large α values used in solutions 

combination method generates too diverse solutions that lead the search to poor and low 

quality regions. As a result, α parameter should be keep below a certain limit and fast 

convergence to this limit should be prevented. Otherwise, the diversification strategy 

becomes an inaccurate and blind exploration tool.  

 

 The next step is to compare fixed iteration and dynamic iteration stopping criteria. 

As described in Section 4.1.8., fixed iteration criterion terminates HCSS at the end of 150 

iterations; on the other hand dynamic iteration stops the algorithm after executing 60 non-

improving iterations. In order to evaluate their performances, the experiments are 

conducted for all job instances and the results are given in Figure 5.10. The average per 

cent deviations of 40-job is same for both criteria and a small difference is observed when 

50-job and 100-job are considered. Dynamic stopping criterion performs better than fixed 

iteration for problem sets containing more than 40-jobs. Additionally, it shortens the 

execution time of the algorithm for 40-job and 50-job instances where the optimal solution 

can be found in very early stages of the search. For instance, after finding the global 

optimum solution at the iteration 20, algorithm with fixed stopping criteria repeats its 

search procedure 130 times without obtaining a better value. This is an undesirable and 

time- consuming operation. In contrast, dynamic stopping criterion allows the algorithm to 

implement 60 more iterations before terminating the search, which reduce the execution 

time. See Table 5.12. 

 

Table 5.10. HCSS for SMTWT – comparison of alpha strategies 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 2.0>0.5+∆ 150 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 2.0>0.5 150 

 

Table 5.11. HCSS for SMTWT – fine tuning for alpha increment 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150 
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Figure 5.8. Experimental results for alpha strategies 
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Figure 5.9. Fine-tuning of alpha increment for new alpha strategy 

 

In the early development stages of our HCSS approach, 150 iteration is considered 

sufficiently long to conclude the search. Absence of necessary diversification tools and 

inaccurate organization of intensification procedures cause the meta-heuristic to get 

trapped at a local optimum at the very beginning. So, continuing the search procedure more 

than 150 iterations at this level seems useless. However, the presence of new dynamic 

alpha strategy cooperates with new MVNS methodology, prevents undesired early 

convergences to local optima and help to acquire better solutions towards to the end of the 



 68 

Table 5.12. Experimental results for selected 40-job instances 

 

  FIXED ITERATION DYNAMIC ITERATION 

INSTANCE OPTIMUM 
Best 

Found 
Iteration 
to Best  

Total 
Iteration 

Best 
Found 

Iteration 
to Best  

Total 
Iteration 

001 913 913 2 150 913 2 62 

002 1225 1225 11 150 1225 11 71 

003 537 573 10 150 573 10 70 

004 2094 2094 12 150 2094 12 72 

005 990 990 11 150 990 11 71 

006 6955 6955 8 150 6955 8 68 

007 6324 6324 2 150 6324 2 62 

008 6865 6865 10 150 6865 10 70 

009 16225 16225 12 150 16225 12 72 

010 9737 9737 89 150 9737 64 124 

011 17465 17562 32 150 17465 71 131 

012 19312 19312 57 150 19312 43 103 

013 29256 29368 9 150 29368 9 69 

014 14377 14432 3 150 14432 3 63 

015 26914 26914 3 150 26914 3 63 

016 72317 72317 142 150 72317 47 107 

017 78623 78623 12 150 78623 12 72 

018 74310 74387 43 150 74318 51 111 

019 77122* 77432 16 150 77432 16 76 

020 63229 63817 9 150 63817 9 69 

021 77774 77774 17 150 77774 17 77 

022 100484 100484 128 150 100484 65 125 

023 135618 135618 2 150 135618 2 62 

024 119947 119947 3 150 119947 3 63 

025 128747 128747 4 150 128747 4 64 

 * Best Known 

 

search. Table 5.13 presents the fitness values of best visited solutions and iteration elapsed 

up to best for selected 100-job instances. Based on results reported in the table, for some 

instances of fixed iteration stopping criterion, iteration number at which the best is found, 

is so close to constant stopping threshold. Therefore, the algorithm is terminated before 

investigating the promising neighborhoods of the current best solution. On the other hand, 

dynamic stopping allows it to execute at least 60 more iterations to explore the search 

space with new best solution. Although, the execution time is increased, better solutions 

can be visited by applying exploration or exploitation procedures within this extra time. 

Therefore, dynamic stopping criterion is adapted to for further experimentations. 

 

 After performing remarkable achievements with seeded initial solution set, a 

dynamic diversification strategy, a complete intensification method, a reliable dynamic 
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stopping procedure, we focus on the brain of our HCSS meta-heuristic; the reference set. 

So far, reference set is constructed by using 10 best solutions found so far (2-tier design) 

and 10 diverse solutions selected according to start or rank distance measurement method. 

At this stage, two arguments are tested to see whether they have a contribution to the 

performance of the reference set. 

 

Table 5.13. Experimental results for selected 100-job instances 

 

  FIXED ITERATION DYNAMIC ITERATION 

INSTANCE 
Best 

Known 
Best 

Found 
Iteration 
to Best  

Total 
Iteration 

Best 
Found 

Iteration 
to Best  

Total 
Iteration 

010 53208 53992 142 150 53663 139 199 

015 172995 178050 138 150 176539 154 214 

019 477684 483201 147 150 480463 161 221 

024 744287 744290 126 150 744290 120 180 

033 32964 34593 140 150 33740 169 229 

049 656693 656734 133 150 656715 172 232 

057 11539 12250 118 150 12250 113 173 

060 19912 19919 121 150 19919 108 168 

064 100788 111047 139 150 104976 190 250 

075 575274 575288 135 150 575288 131 191 

086 66850 72942 129 150 72942 114 174 

112 174367 177522 141 150 177522 148 208 

113 91169 94436 123 150 94436 123 183 

122 570459 570724 115 150 570724 108 168 

123 397029 397848 137 150 397848 163 223 

124 431115 431284 105 150 431284 93 153 

 

The first argument is that a mixture of diverse solutions which are selected by rank 

and start distance measurement methods (mix distance) may provide different quality, 

dissimilar solution structures for the reference set and increase the diversity observed 

among the next generations. The experimentations with mix diverse solution selection is 

performed as described in Section 4.1.3 and the results for both mix distance and start 

distance selections are given in Figure 5.11. For the 40-job instances, mix distance with 

pool size 100 decreases the average per cent deviation to 0.14 which equals to 0.64 for start 

100. Also for both 40-job and 50-job problem set, the lowest deviation value achieved so 

far is obtained by using mix diverse solution selection with pool size 85; 0.11 and 0.31 

respectively.  
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Table 5.14. HCSS for SMTWT – comparison of stopping criteria 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ 150 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 
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Figure 5.10. Effect of dynamic stopping criteria 

 

 The second argument is about the reference set update method. The new update 

method as mentioned in Section 4.1.3, is aiming to preserve diversity continuously, instead 

of allowing it to become homogenous by only admitting solutions from one source, which 

tend to have very similar components at further stages of the search (3-tier design). A 

reference set whose best solutions are updated from two sources namely the reserve list 

and the pool, may lead the search at a better direction. After conducting necessary 

experiments to evaluate the second argument, obtained results are reported in Figure 5.12. 

According to the results, selecting diverse solutions using both start and rank distance 

measurement method reduces the average per cent deviation value to 0.11 for 40-job and 

0.31 for 50-job instances, which are initially 0.23 and 0.33 for start diverse solutions. 

However, new 3-tier reference set update method performs better than the diverse solution 

selection method and comes up with a deviation 0.07 and 0.012 for 40-job and 50-job 

problems respectively. Finally, mix diverse solution selection procedure and 3-tier 

reference set design are employed together to test their cooperative performance. 

Heterogeneous transient best solutions with dissimilarly evaluated diverse solutions  

 



 71 

Table 5.15. HCSS for SMTWT – evaluation of mix diverse solution selection method 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 100, 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 

SEED-SCR 2-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 
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Figure 5.11. Comparison of mix diverse and start diverse solution selection methods 

 
provide a more extensive exploration through the promising regions; thus increase the 

chance of visiting better optimums. This argument can easily be proven by investigating 

the experimental results for 40-job and 50-job instances. Both per cent deviation values 

decrease to 0.04 and 0.09 respectively. As a result, new diverse solution selection method 

with new reference set design is adapted to our HCSS approach and this concludes the 

experimentation phase conducted to developed the algorithm in a sequential manner. 

 

Table 5.16. HCSS for SMTWT – 3-tier design of reference set 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

SEED-SCR 2-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 

SEED-SCR 2-TIER MIX 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 

SEED-SCR 3-TIER START 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 

SEED-SCR 3-TIER MIX 85 MVNS ALL 4-5-6 0.5+∆ DYNAMIC 

 



 72 

 start 85

 mix 85

3-tier start 85

3-tier mix 85

40 jobs

50 jobs

0,33

0,31

0,12

0,09

0,23

0,11

0,07

0,04

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

A
V

G
. 
D

E
V

.

NORMAL REFSET vs. REFSET 3-TIER

 
 

Figure 5.12. Effects of new reference set update methods 

 

5.4.1. Final Results 

 

After conducting necessary numerical experimentations to adapt new improvement 

methods for our HCSS approach an ultimately modified algorithm, which can be 

implemented on all job sets, is achieved. Different from the elementary model, the fine-

tuned algorithm composed of a new initial solution generation method (SEED-SCR), an 

advance reference set update method (3-tier + mix distance), an extended intensification 

strategy (MVNS ALL) and a self-adjustable alpha parameter (0.5+∆) which control the 

diversification of generated new solutions. In addition to that the dynamic stopping 

criterion allows the algorithm to decide its own termination time depending on the search 

performance. This final form of the HCSS approach is now tested with 40-job, 50-job and 

100-job problem sets respectively and the obtained results are presented. 

 

Due to the probabilistic nature of solution combination method, five different seeds 

are used for the random number generator employed in the HCSS algorithm. The seeds are 

selected to be 1,3,7,9 and 24. The performance measures is again average per cent 

deviation which is calculated as described previously and computational times are reported 

as Average CPU (Entire Search) and Average CPU (Time elapsed up to the best). The first 

measurement indicates the total time allowed for HCSS before termination and the second 

one is the amount of time elapsed in the search until the best solution for that instance is 
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found. The deviation and computational time results presented in this section show the 

average of all final outcomes which are obtained with the selected seeds separately. The 

minimum and maximum values of these results for each instance are given in Appendix F 

Table F.5 to Table F.7. 

 

Table 5.17. Final results for HCSS approach – 40-job problem set- SMTWT 

 

40-JOB PROBLEM SET 

METHOD SS SS + FVNS HCSS 

Best 10 10 10 

Diverse 10 10 10 REFERENCE SET 

Method 3-tier + mix 3-tier + mix 3-tier + mix 

Size 150 150 150 
INITIAL SOLUTION SET 

Method SEED-SCR SEED-SCR SEED-SCR 

POOL Size 85 85 85 

SUBSET GENERATION  Type size-2 size-2 size-2 

Type BLX-α BLX-α BLX-α SOLUTION 
COMBINATION METHOD α 0.5 0.5 0.5 

Type Dynamic Dynamic Dynamic 

When after 30  after 30  after MVNS 

α 0.5 0.5 0.5 
ALPHA STRATEGY 

∆ 0.005 0.005 0.005 

Type NONE VNS VNS 

Type of 
VNS 

NONE FINAL MIDDLE 

Search 
depth 

NONE 4-5-6 4-5-6 

INTENSIFICATION 
STRATEGY 

When NONE after SS  after 30 

Type Dynamic Dynamic Dynamic 
STOPPING CRITERION 

When after 60 after 60 after 60 

AVERAGE PER CENT DEV                                    
( 5 seed averaged) 

0.20 0.15 0.03 

AVERAGE PER CENT DEV                  
( minimum) 

0.17 0.10 0.01 

AVERAGE CPU                                                  
(Entire search-5 seed averaged) 

37.80 37.97 71.19 

AVERAGE CPU                                                  
(Time elapsed up to best                       

5 seed averaged) 
7.81 24.36 16.93 

 

In order to illustrate the performance of our hybrid method (HCSS), it is compared 

against two SS approaches; one with no intensification strategy and one with a final VNS. 

SS algorithms used in comparison contain same components and same parameter values as 

the ones utilized by HCSS. The only difference is the absence of an intensification 

strategy. The structure of compared algorithms and employed advanced methods are all 

given in Table 5.17 to the Table 5.19. All algorithms are executed until a predefined 

stopping criterion and come up with a best solution for each instance. For the final VNS 
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case, the best solution found by the SS is explored intensively by using a VNS as described 

in Section 4.1.6. The execution times of all methods reported in tables are all given in 

terms of non-improved iterations, i.e. the term after 30 cites that the method is 

implemented after 30 non-improved consecutive iterations. 

 

Table 5.18. Final results for HCSS approach – 50-job problem set-SMTWT 

 

50-JOB PROBLEM SET 

METHOD SS SS + FVNS HCSS 

Best 10 10 10 

Diverse 10 10 10 REFERENCE SET 

Method 3-tier + mix 3-tier + mix 3-tier + mix 

Size 150 150 150 
INITIAL SOLUTION SET 

Method SEED-SCR SEED-SCR SEED-SCR 

POOL Size 85 85 85 

SUBSET GENERATION  Type size-2 size-2 size-2 

Type BLX-α BLX-α BLX-α SOLUTION 
COMBINATION METHOD α 0.5 0.5 0.5 

Type Dynamic Dynamic Dynamic 

When after 30  after 30  after MVNS 

α 0.5 0.5 0.5 
ALPHA STRATEGY 

∆ 0.005 0.005 0.005 

Type NONE VNS VNS 

Type of 
VNS 

NONE FINAL MIDDLE 

Search 
depth 

NONE 4-5-6 4-5-6 

INTENSIFICATION 
STRATEGY 

When NONE after SS  after 30 

Type Dynamic Dynamic Dynamic 
STOPPING CRITERION 

When after 60 after 60 after 60 

AVERAGE PER CENT DEV                                    
( 5 seed averaged) 

0.51 0.38 0.11 

AVERAGE PER CENT DEV                  
( minimum) 

0.47 0.31 0.09 

AVERAGE CPU                                                  
(Entire search-5 seed averaged) 

55.96 57.14 95.47 

AVERAGE CPU                                                  
(Time elapsed up to best                        

5 seed averaged) 
20.98 44.77 31.23 

 

According to the results given in Table 5.17 to Table 5.19, HCSS algorithm clearly 

outperforms the other algorithms. By applying an intensification strategy, the deviation 

value 0.20 is decreased to 0.03 for 40-job problem set, from 0.51 to 0.11 for 50-job and 

from 1.07 to 0.50 for 100-job problem set. Although the execution times of HCSS are 

longer than normal SS, this handicap seems negligible when the reduction in average per 

cent deviation is considered with respect to this extra time. Therefore our intensification 
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strategy proves its quality and performance when integrated with the Scatter Search 

methodology. 

 

Table 5.19. Final results for HCSS approach – 100-job problem set-SMTWT 

 

100-JOB PROBLEM SET 

METHOD SS SS + FVNS HCSS 

Best 10 10 10 

Diverse 10 10 10 REFERENCE SET 

Method 3-tier + mix 3-tier + mix 3-tier + mix 

Size 150 150 150 
INITIAL SOLUTION SET 

Method SEED-SCR SEED-SCR SEED-SCR 

POOL Size 85 85 85 

SUBSET GENERATION  Type size-2 size-2 size-2 

Type BLX-α BLX-α BLX-α SOLUTION 
COMBINATION METHOD α 0.5 0.5 0.5 

Type Dynamic Dynamic Dynamic 

When after 30  after 30  after MVNS 

α 0.5 0.5 0.5 
ALPHA STRATEGY 

∆ 0.005 0.005 0.005 

Type NONE VNS VNS 

Type of 
VNS 

NONE FINAL MIDDLE 

Search 
depth 

NONE 4-5-6 4-5-6 

INTENSIFICATION 
STRATEGY 

When NONE after SS  after 30 

Type Dynamic Dynamic Dynamic 
STOPPING CRITERION 

When after 60 after 60 after 60 

AVERAGE PER CENT DEV                                    
( 5 seed averaged) 

1.07 0.65 0.50 

AVERAGE PER CENT DEV                                 
( minimum) 

0.98 0.53 0.44 

AVERAGE CPU                                                  
(Entire search-5 seed averaged) 

138.33 145.02 236.69 

AVERAGE CPU                              
(Time elapsed up to best                        

5 seed averaged) 
70.95 140.85 144.18 

 

Comparing the performance of HCSS with respect to given problem sets, it is 

obvious that our algorithm is significantly sensitive to the size of the problem set. For 40-

job and 50-job instances it performs satisfactorily and solves optimally 88.64 per cent and 

76.64 per cent of the 125 instances. If the best performing seed is considered, then these 

percentages become 90.6 for 40-jobs and 78.4 for 50-job problem set. On the other hand, 

best known solutions found for 100-job problem set drop below 50 per cent of the total 

instances. This is simply due to the fact that as the problem size increases, the problem 

becomes harder to solve. This hardness is reflected on the algorithm as “difficulty to 



 76 

converge” to the global optimum. Although, the performance of HCSS is not so adequate 

when finding the best known solutions, the algorithm succeeds to solve this harder problem 

set with a 0.50 average per cent deviation per instance. 

 

To sum up, the scope of this study is to develop a meta-heuristic approach, which is 

robust to all problem sets. Instead of constructing problem-specific algorithms which are 

using different parameter values depending on the problem size, a unique algorithm is 

established aiming to come up with minimum average per cent deviation for all problem 

sets. In other words, HCSS approach developed in this section utilized same components 

and same parameter values for each problem set. During the numerical experimentation, 

the overall performance is taken into account when adapting advanced methods to the 

elementary HCSS model. In addition to that better results for some problem instances were 

found by tested strategies which is different than the adapted one, but they were not 

inserted to the main algorithm because of their problem-specific achievements. The best 

found solutions during the numerical experimentation are given in Appendix F. 

 

5.5. Numerical Experimentation for PMTT 

 

The basic model employed for the preliminary experimentation of the PMTT 

problem, uses a reference set consists of 10 high quality and 10 diverse solutions. The 

initial solutions are generated by EDD method which is described in Section 4.2.2. Initial 

solution set size is considered as 150. Best solutions are selected from the reserve list 

whereas diverse solutions are chosen according to their start time distances to the reference 

set. The solution combination method employs BLX-α operator where α equals to 0.5 and 

the generated trial solutions are stored in the pool which has a room for 100 offspring. In 

this elementary model, no intensification strategy such as MVNS or FVNS is performed. 

The dynamic stopping rule as aforementioned performs at least as good as fix iteration 

termination rule and in addition to that, it prevents the algorithm to end before 

investigating lately found best solutions’ neighborhoods which may be observed in fix 

iteration situation. Therefore, the stopping criterion in the basic algorithm is decided to be 

the dynamic rule as implemented in SMTWT problem. The used components and fix 

parameter values of our basic HCSS algorithm is presented in Table 5.20. 
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Table 5.20. Basic HCSS algorithm- PMTT 

 

   BASIC HCSS  

REFERENCE SET  

UPDATE METHOD 2-tier + start 

# of BEST 10 

# of DIVERSE 10 

INITIAL SOLUTION SET  

GENERATION METHOD EDD 

# of INITIAL SOL's 150 

POOL   

SIZE 100 

SOLUTION COMBINATION METHOD  

ALPHA STRATEGY STATIC 

ALPHA VALUE 0.5 

INTENSIFICATION STRATEGY  

TYPE OF VNS NO 

SEARCH DEPTH  X 

STOPPING CRITERION  

TYPE DYNAMIC 

# of NON-IMPROVING ITERATIONS 50 

 

As the first step of experimentation, two diverse selection methods (rank and start), 

two initial solution generation methods (EFT and EDD) and three pool sizes (ALL , 100 

and 85) are tested by taking all their combinations (See Table 5.21) . The aim is to 

eliminate those strategies that do not yield satisfactory results and to retain the most 

promising combinations to further analyses. Figure 5.13 presents the results for this step. 

From the figure, it can be seen that all combinations containing enlarged pool size (ALL) 

result in poor optimums when compared to restricted pool sizes. Hence, the pool including 

all generated subsets will not be utilized for the following experimentations. Pool size 100 

seems outperforming beyond the other pool sizes; but more experimentation with different 

combinations at further steps of the development procedure should be performed to prove 

its superiority. When comparing initial solutions sets, it is obvious that the final results are 

highly unsteady depending on the elements of HCSS algorithm, to which initial solutions 

generation method combines. For instance, it is not a consistent conclusion that EFT is the 

best performing initial solutions generation method by looking at a few exceptions. 

Although the best average per cent deviation value is obtained by EFT rank 100 as 6.68, 

EFT start ALL and EFT start 85 result in 16.89 and 10.85 respectively which are the worst 

deviations observed according to pool size categorization. Same situation is noted once 
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evaluating the diverse solutions selection methods. EFT rank 100 grants best average per 

cent deviations whereas EDD rank 100 comes up with a value 13.58. Thus, no exact choice 

between start and rank diverse solutions selection methods can be made at this level. Since 

the pool size of our HCSS can not be determined, the experimental results related to tested 

combinations are divided into two groups according to their pool sizes for further analyses. 

Experimental data corresponding to pool size 100 and pool size 85 will be given in 

separate figures different than each other. 

 

Table 5.21. HCSS for PMTT - comparison of pool sizes and distance measurement 

methods 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

EFT 2-TIER START ALL,100,85 NO X 0.5 DYNAMIC 

EDD 2-TIER RANK ALL,100,85 NO X 0.5 DYNAMIC 

EFT 2-TIER RANK ALL,100,85 NO X 0.5 DYNAMIC 

EDD 2-TIER START ALL,100,85 NO X 0.5 DYNAMIC 
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Figure 5.13. Comparison results for pool sizes and distance measurement methods 

 

The next step is to determine a suitable VNS depth for our HCSS approach. During 

the experimentation phase, middle VNS (type #2) is employed as described in section 

4.2.4. Again, MVNS is triggered at the end of consecutive 30 non-improved iterations. 

Since PMTT problem consist of both sequencing and allocation problem, we neglected 

large search depths, which cause heavy computational burdens for such a challenging 
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problem. In contrast, small depth values can not provide an efficient neighborhood 

generation tool and due to its narrow-scope exploration, the intensification strategy 

becomes a superficial method. For this reason, search depth 3-4-5 and 4-5-6 are considered 

as the most suitable variable depths according to their performance-time ratio and tested 

with MVNS. The results are given in Figure 5.14 and Figure 5.15. Examining Figure 5.14, 

the performances of MVNS 3-4-5 and MVNS 4-5-6 are very close to level of being almost 

identical. MVNS 4-5-6 outperforms its candidate slightly among three of the four tested 

combinations whereas EFT start 85 cooperated with MVNS 3-4-5 shows an exceptional 

success. The required proof to conclude our comparison comes from the experiments 

conducted with pool size 100. Although the overall average per cent deviation values are 

not as good as we found with pools size 85, the performance difference can be clearly 

observed among all columns of the Figure 5.15. Since, we are not concerned with the best 

combination of pool sizes, initial sets or diverse solution methods; aiming only to 

investigate the search depth at this stage; 4-5-6 seems an appropriate choice as the depth 

for variable neighborhood search. 

 

Table 5.22. HCSS for PMTT - comparison of search depths 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

EFT, EDD 2-TIER START 100,85 MVNS 3-4-5 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 100,85 MVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 100,85 MVNS 3-4-5 0.5 DYNAMIC 

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC 
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Figure 5.14. Experimental results for compared search depths (pool size 85) 
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Figure 5.15. Experimental results for compared search depths (pool size 100) 

 

Despite the fact that the best performed search depth is selected, it seems a bit time 

consuming when employed with MVNS, Therefore, the final VNS is revisited as an 

intensification alternative which may reduce the execution time without altering the overall 

performance of the neighborhood search. The experimental results for MVNS 4-5-6 and 

FVNS 4-5-6 are reported in Figure 5.16 and Figure 5.17 together with the results achieved 

when no intensification strategy is used. According to the values displayed in both of the 

figures, MVNS 4-5-6 outperforms FVNS and no VNS noticeably. A final neighborhood 

search shortens the time needed to implement the algorithm as expected, but it definitely 

diminishes the performance of intensification strategy. Thus, MVNS 4-5-6 is again 

adopted for HCSS approach. 

 

Table 5.23. HCSS for PMTT - comparison of different intensification strategies 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 100,85 MVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER START 100,85 FVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 100,85 FVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER START 100,85 NO X 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 100,85 NO X 0.5 DYNAMIC 
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Figure 5.16. Effect of intensification strategy for PMTT problem (pool size 85) 
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Figure 5.17. Effect of intensification strategy for PMTT problem (pool size 100) 

 

As we mentioned earlier, initial solution generations method is one of the most 

crucial component of SS. A simple and an applicable prescription for a well-constructed 

initial solution set is to choose diverse high quality solutions, which are situated in far 

regions of solutions space and to seed this distinctly structured initial solution set with 

good solutions provided by list heuristics. EFT and EDD are two methods that are used 

initially as depicted in Section 4.2.2 EFT method generate somewhat more structured 

results than EDD method. It strictly depends on the ready time of the jobs. Start time of 

each job is selected randomly from an interval generated by the formula 4.6. Then these 
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start times are sorted in order of non-decreasing times and a sequence is obtained. Two 

initial trial solutions with similar sequences mostly result in close or even same total 

tardiness values. For the problem instances where given ready times are not so adjacent, 

the intervals which are formed with respect to these ready times, do not interfere with each 

other frequently. As a result, randomly selected start times can not provide sufficient 

alternatives when sorted and the sequence is somehow similar to the one obtained after 

sorting jobs according to their non-decreasing ready times. In this manner, initial solution 

set occupies the part of the search space dominated by solutions generated by earliest ready 

time dispatching rule. Hence, it is a valid argument that this set is a collection of similar 

solutions and limits the diversity of initial reference set. 

 

Contrarily, consider EDD method where the jobs are assigned to the machines 

randomly and then sorted according to their due dates. Job with an earlier completion 

necessity gets the precedence to be processed on that assigned machine. This type of initial 

solution method meets the demand for required diverse solutions but fails to generate elite 

solutions of adequate quality. The reason behind this handicap is that EDD dispatching rule 

is mainly developed for single machine scheduling problem and stand alone can not 

respond parallel machine problems efficiently. In order to compensate inability of EDD 

method while creating good solutions, we developed an advanced version called multi-rule 

method. In addition to EDD rule, SPT and XR&M rules are also utilized to order jobs on a 

given machine as explained in Section 4.2.2. By doing so, all alternative dispatch orders 

resulted from employed heuristics are compared and the best among all is selected. 

Consequently, it is guaranteed that even in the worst case, the initial solution will be as 

good as the solutions obtained by EDD rule. This advance version therefore improves the 

solution quality related to total tardiness value.  

 

 To demonstrate structural characteristics and variances between the individuals in 

the initial solution set, a randomly selected problem instance is taken into account and 

three different sets are constructed by using predefined generation methods. The results are 

given in Figure 5.18. The best known total tardiness value found in the literature is 

considered as the lower bound and the deviations are calculated as follows; 

 

deviation = (initial solutions’ fitness value - lower bound) / lower bound           (5.5) 
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According to these results, EFT shows a uniform distribution, whereas EDD and 

multi-rule provide non-homogenous chaotic distributions. This chaotic distribution 

indicates the dissimilarity of the internal structure and grant different quality diverse 

solutions. In addition to that, multi-rule behaves as a regulation mechanism that adjusts 

dispatching rules, screens the solutions with same fitness value and improve the overall 

quality of the initial pool. Therefore it can be called as structured family of a chaotic 

population. 
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Figure 5.18. Structural characteristics of initial solution set for three different methods 

 

The experimentations are conducted to compare these three initial solutions 

generation methods. Instead of considering all diverse solution selection methods and pool 

size combinations, only the best performing combinations; namely start 100, start 85 and 

rank 85 are tested with initial solution method. The results are shown in Figure 5.20. It is 

obvious that multi-rule is superior when compared to the previous methods in all cases and 

reduces the best average per cent deviations of 3.95 to 3.11. So, multi-rule strategy is 

included in our HCSS approach. 

 

Table 5.24. HCSS for PMTT - comparison of different initial solution generation methods 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

EFT, EDD 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC 

EFT, EDD 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC 
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Figure 5.19. Experimental results for initial solution generation methods for PMTT 

 

In order to implement a comprehensive intensification procedure, VNS should 

generate all possible neighborhoods based on both machine and job sequences. As 

described in Section 4.2.4, three different types of VNS approaches are developed and 

applied in succession to all elite elements of reference set (MULTISTEP). This 

intensification strategy aims to accomplish two main goals. First goal is to explore all 

reachable neighborhoods which can be originated from a single solution and the second 

one is to examine all high quality solutions which may promise better results.  

 

In the numerical analyses, the new strategy is combined with the new initial 

solution generation method and the results are compared with previous intensification 

method that utilizes single step MVNS to first three elite solutions. The first type VNS is 

triggered at the end of 15 consecutive non-improved iterations, second type is implemented 

after 25 non-improved iterations and finally last type is executed when the best solution 

VNS counter indicates the number 35. During the preliminary experimentations of the 

multi-step VNS, it is discovered that the first type VNS with search depth 4-5-6 causes a 

great computational burden to the algorithm because of the corresponding outnumbered 

machine assignment alternatives. Therefore, the search depth for the first type VNS is 

decreased to 3-4-5 as an exception in order to reduce intensification strategy execution 

time. This exception is only valid for the first type, whereas the second and third type VNS 

techniques are implemented with 4-5-6. The average per cent deviations are given in 
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Figure 5.20. As expected, new intensification strategy outperforms its superficial candidate 

and reduces deviations from 3.11 to 1.71 for start 100, from 3.18 to 1.98 for start 85 and 

from 4.50 to 2.96 for rank 85. Hence, the new strategy is adapted to HCSS approach for 

PMTT. 

 

Table 5.25.  HCSS for PMTT - comparison of new intensification strategy 

 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

MULTI 2-TIER START 100,85 MVNS 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER RANK 85 MVNS 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5 DYNAMIC 
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Figure 5.20. Effect of new intensification strategy 

 

Another important issue is to investigate consistency of the dynamic alpha strategy 

for PMTT problem. In this strategy, α is fixed at 0.5 during a period of time determined by 

a switch. When the switch becomes on, α is increased by 0.005 at the end of every iteration 

that passes without achieving any improvement. Mentioned strategy is tested throughout 

PMTT problem instances by conducting experiment that utilize HCSS approach stated in 

Table 5.26. The corresponding results are presented in Figure 5.21. The superiority of 

dynamic alpha strategy can be proven by looking at the deviation reductions among all 

cases, where the best found average per cent deviation value is decreased to 1.56 for start 

100 combination. 
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Table 5.26. HCSS for PMTT – comparison of alpha strategies 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5 DYNAMIC 

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC 

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5+ DYNAMIC 

 

start

100
start 85 

rank 85

DYNAMIC ALPHA

STATIC ALPHA

1,71 1,98

2,96

1
,5

6

1
,7

9 2
,3

2

0,00

0,50

1,00

1,50

2,00

2,50

3,00

A
V

G
. 
D

E
V

.

STATIC ALPHA vs. DYNAMIC ALPHA

 
 

Figure 5.21. Comparison of static alpha vs. dynamic alpha 

 

Finally, the reference set update method is revisited and preceding improvement 

techniques, which are used in SMTWT, are experimented for parallel machine scheduling 

problem. Starting with the diverse solution selection method, a mixed selection procedure 

is implemented, where half of diverse solutions are selected by start distance and other half 

is selected using rank distance measurement method. According to the results reported in 

Figure 5.22 mixed selection with pool size 100 shows a better performance with respect to 

start distance with same pool size. On the other hand, mix 85 comes up with an average per 

cent deviation 1.81 which stays between 1.79 of start 85 and 2.32 of rank 85. Hence the 

three combinations with the lowest deviations (start 100, mixed 100 and mixed 85) are 

promoted to the final experimentation which will be conducted to verify the success of 3-

tier design for PMTT problem. 

 

Table 5.27. HCSS for PMTT – comparison of mix diverse solution selection method 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

MULTI 2-TIER START 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC 

MULTI 2-TIER RANK 85 MVNS ALL 4-5-6 0.5+ DYNAMIC 

MULTI 2-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC 
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Figure 5.22. Numerical analysis for diverse solution selection methods 

 

Table 5.28. HCSS for PMTT – 3-tier design of reference set 

INISOL REFSET DISTANCE POOL VNS DEPTH ALPHA STOP 

MULTI 2-TIER START 100 MVNS ALL 4-5-6 0.5+ DYNAMIC 

MULTI 3-TIER MIX 100,85 MVNS ALL 4-5-6 0.5+ DYNAMIC 
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Figure 5.23. Effects of new reference set update methods for PMTT 

 

Due to its elite solution selection procedure, 3-tier design provides fresh solutions 

for the reference set at the end of each iteration. These newly visited solutions increase the 

chance of obtaining a better optimum during neighborhood search which is performed for 

all elites. Based on this argument, new reference set update method is employed for HCSS 
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approach as the final improvement strategy that concludes experimental analysis section. 

Being modified with the earlier developments which are presented in Table 5.28, HCSS 

algorithm is executed for numerical analysis and the results are reported in Figure 5.23. 

The average per cent deviation at the final stage is now reduced to 0.99 which is 

accomplished by the cooperation of new diverse selection method and new reference set 

design. Therefore, considered reference set update method is adapted to HCSS approach 

and the experimental analysis section is ended. 

 

5.5.1. Final Results 

 

Depending on the nature of the PMTT problem, the improvement methods used in 

SMTWT problem can not be copied to our HCSS algorithm. Some of these methods are 

revised partially or constructed from the beginning in order to be employed in the 

algorithm. Then the aforementioned methods are tested and adapted to HCSS according to 

the comparative results obtained by numerical experimentations. At the end of analysis, the 

modified HCSS approach, which can be implemented for all job set problem, is achieved. 

Different from the ultimate model used in SMTWT, the fine-tuned algorithm composed of 

a new initial solution generation method that employs a multi-rule to generate initial set 

(MULTI), an advance reference set update method which contains different quality best 

and diverse solutions (3-tier + mix distance), an extended multi-step intensification 

strategy where three different types of VNS is implemented to explore all possible 

neighborhoods of the current solution (MVNS ALL) and a self-adjustable alpha parameter 

(0.5+∆) which control the diversification of generated new solutions. In addition to that the 

dynamic stopping criterion allows the algorithm to decide its own termination time 

depending on the search performance. This final form of the HCSS approach is now tested 

on four types of problems which are encountered with two main job sets: one with 40-jobs 

with 2 or 4 machines in parallel, the second with 60-jobs with 2 or 4 machines in parallel. 

  

 Since our HCSS approach for PMTT contains stochastic parameters, five different 

seeds are again used for the random number generator employed in the algorithm. The 

seeds are selected to be 1,3,7,9 and 24. The performance measures is again average per 

cent deviation which is calculated as described previously and computational times are 

reported as Average CPU (Entire Search) and Average CPU (Time elapsed up to the best). 
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The deviation and computational time results presented in this section show the average of 

all final outcomes which are obtained with the selected seeds separately. The maximum 

and minimum results obtained by different seeds are given in Table F.10 and Table F.11. 

 

Table 5.29. Final results for HCSS approach – 40-job PMTT problem set 

 

40-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 
METHOD 

SS HCSS SS HCSS 

Best 10 10 10 10 

Diverse 10 10 10 10 REFERENCE SET 

Method 3-tier + mix 3-tier + mix 3-tier + mix 3-tier + mix 

Size 150 150 150 150 
INITIAL SOLUTION SET 

Method MULTI MULTI MULTI MULTI 

POOL Size 100 100 100 100 

SUBSET GENERATION  Type size-2 size-2 size-2 size-2 

Type BLX-α BLX-α BLX-α BLX-α SOLUTION 
COMBINATION METHOD α 0.5 0.5 0.5 0.5 

Type Dynamic Dynamic Dynamic Dynamic 

When 25 after MVNS 25 after MVNS 

α 0.5 0.5 0.5 0.5 
ALPHA STRATEGY 

∆ 0.005 0.005 0.005 0.005 

Type NONE MVNS ALL NONE MVNS ALL 

Type of 
VNS 

NONE Multi-step NONE Multi-step 

Search 
depth 

NONE 4-5-6 NONE 4-5-6 
INTENSIFICATION 

STRATEGY 

When NONE 
after                 

15-25-35  
NONE 

after                 
15-25-35  

Type Dynamic Dynamic Dynamic Dynamic 
STOPPING CRITERION 

When after 50 after 50 after 50 after 50 

AVERAGE PER CENT DEV                                    
( 5 seed averaged) 

10.28 0.76 23.03 5.33 

AVERAGE PER CENT DEV                                 
( minimum) 

8.52 0.43 12.91 4.70 

AVERAGE CPU                                                  
(Entire search-5 seed averaged) 

72.17 140.6 64.24 88.51 

AVERAGE CPU                                                  
(Time elapsed up to best                        

5 seed averaged) 
24.72 102.17 51.38 70.81 

 

Similar to the comparison performed in Section 5.4.1, HCSS approach is evaluated 

against the SS with no intensification strategy. SS algorithm employed in comparison 

contains same components and same parameter values used in HCSS, -except the 

intensification method. The main objective is to criticize the performance of hybrid 

approach with respect to the time penalty associated with computational burden of 

exploitation step. The structure of compared algorithms and employed advanced methods 
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are all given in Table 5.29 and Table 5.30. All algorithms are executed until a predefined 

stopping criterion and come up with a best solution for each instance. The execution times 

of all methods reported in tables are all given in terms of non-improved iterations. 

 

Table 5.30. Final results for HCSS approach – 60-job PMTT problem set 

 

60-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 
METHOD 

SS HCSS SS HCSS 

Best 10 10 10 10 

Diverse 10 10 10 10 REFERENCE SET 

Method 3-tier + mix 3-tier + mix 3-tier + mix 3-tier + mix 

Size 150 150 150 150 
INITIAL SOLUTION SET 

Method MULTI MULTI MULTI MULTI 

POOL Size 100 100 100 100 

SUBSET GENERATION  Type size-2 size-2 size-2 size-2 

Type BLX-α BLX-α BLX-α BLX-α SOLUTION 
COMBINATION METHOD α 0.5 0.5 0.5 0.5 

Type Dynamic Dynamic Dynamic Dynamic 

When 25 after MVNS 25 after MVNS 

α 0.5 0.5 0.5 0.5 
ALPHA STRATEGY 

∆ 0.005 0.005 0.005 0.005 

Type NONE MVNS ALL NONE MVNS ALL 

Type of 
VNS 

NONE Multi-step NONE Multi-step 

Search 
depth 

NONE 4-5-6 NONE 4-5-6 

INTENSIFICATION 
STRATEGY 

When NONE 
After                 

15-25-35  
NONE 

after                 
15-25-35  

Type Dynamic Dynamic Dynamic Dynamic 
STOPPING CRITERION 

When after 50 after 50 after 50 after 50 

AVERAGE PER CENT DEV                                    
( 5 seed averaged) 

26.81 3.10 72.23 11.54 

AVERAGE PER CENT DEV                                 
( minimum) 

24.33 3.01 60.85 11.08 

AVERAGE CPU                                                  
(Entire search-5 seed averaged) 

110.58 286.35 64.24 101.96 

AVERAGE CPU                                                  
(Time elapsed up to best                             

5 seed averaged) 
45.02 214.45 51.38 82.22 

 

According to the results given in Table 5.29 and Table 5.30, intensification 

procedure again proves its necessity for the SS methodology. By applying a hybrid 

approach, the deviation value is decreased from 10.28 to 0.76 for 40-job 2-machine 

problem set, from 23.03 to 5.33 for 40-job 4-machine, from 26.81 to 3.10 for 60-job 2-

machine problem set and finally the deviation value 72.23 reduced to 11.54 for the 60-job 

4-machine problem. Similar to the HCSS used in SMTWT, the execution time of the 
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hybrid approach outperforms its candidate SS. Hence, the high computational times are 

still being observed. This is not a surprise for us, since the PMTT is more challenging 

problem than SMTWT. In PMTT, ready times, machine dependent process times and 

sequential setup times are all presented to reflect a real-life situation. These properties 

promote the solution space into a more complex environment which makes it harder to find 

an optimal solution in a shorter time.  

 

Focusing on the performance of HCSS with respect to given problem sets, the 

reported results are quite satisfactory for 4-machine problems. The algorithm manages to 

solve optimally the 16.8 and 13.2 of the 20 instances for 40-job and 60-job problem sets 

respectively. However, the obtained average per cent deviation values appear higher when 

compared to 2-machine cases. This is due to the fact that the optimal total tardiness values 

corresponding to some instances of 4-machine problems are very low; thus small 

deviations between the found and optimal total tardiness values result in great average per 

cent deviations. (See Table F.8 and Table F.9). The more challenging problems are 2-

machine problems especially the one containing 60-jobs. From the Table 5.29 and Table 

5.30, the average per cent deviations for 40-job and 60-job problem sets are 0.76 and 3.10 

respectively. If the best performing seed is considered, then these deviations become 0.43 

for 40-jobs and 3.01 for 60-job problem set. These results seem satisfactory for our HCSS 

approach when compared to normal SS approach. As a remark, the HCSS algorithm 

outperforms some of the previous best known solutions found by Bilge et al. (2004) (See 

Appendix F.2). Therefore, our approach can be considered as a promising solution tool the 

tardiness related scheduling problems. 

 

In the next section, the conclusive remarks are stated about the HCSS approach. 

The solution encoding, basic fundamentals, the driven ideas, advantages and disadvantages 

of HCSS algorithm are all discussed to provide a road book for future studies. 
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6. CONCLUSION 

 

 

This study was designed to attack Single Machine Total Weighted Tardiness and 

Parallel Machine Total Tardiness problems by employing a hybrid meta-heuristic approach 

and to evaluate its performance. The Scatter Search and Variable Neighborhood Search 

approaches are studied and tailored to meet the theoretical requirements of the problems 

under study.  Throughout the study, the solutions to the Single Machine Total Weighted 

Tardiness problem (SMTWT) and the Parallel Machine Total Tardiness problem (PMTT) 

are investigated. Performance criterion adopted for the SMTWT is to minimize the total 

weighted tardiness of all jobs and similarly for the PMTT, the aim is to diminish the total 

tardiness. The problem sets and corresponding best-known solutions employed in this 

investigation are adopted from the literature (Crauwels et al., 1998, Sivrikaya-Şerifoğlu, 

1999).  

 

While evolving our algorithm, numerical studies are conducted for each distinct 

solution strategy. Since the total number of combinatorial strategy approaches to be tested 

is very large, a sequential experimentation procedure is adopted. First, the HCSS approach 

is implemented in its most elementary form, which we call the basic algorithm. Then this 

basic algorithm is developed into its ultimate form by adapting strategies according to the 

experimentation results. At each experiment, we test one or more parameters/methods and 

select one (or sometimes more) level that perform at least as good as the others for each 

instance, and go on with this revised form of the algorithm. 

 

For the SMTWT case, three types of problem sets are encountered, one with 40-

jobs, the second with 50-jobs and the last with 100-jobs. Each of these sets involves 125 

instances. Each instance is associated with a distinct process time, weight and due date. All 

these alternative problem sets are studied throughout this study and the results are obtained 

as: For the 40-job SMTWT problem, when the performance of five seeds is averaged, 

HCSS succeeds to have a 0.03 average per cent deviation from the best-known solution for 

each instance. If the best performing seed is taken into account, then this percentage 

decreases to 0.01 per cent. Similarly, for the 50-job problem HCSS obtains 0.11 average 

per cent deviation for 125 instances. If the best performing seed is considered, then this 
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percentage reduces down to 0.09 per cent. Finally, for the 100-job problem HCSS manages 

to attain average 0.50 per cent deviation from the best known solutions found in the 

literature. The best performing seed has a success 0.44 per cent. 

 

For the PMTT case, the analyzed problem is formulated as follows. Four types of 

problems are encountered with two main job sets:  one with 40-jobs with 2 or 4 machines 

in parallel, the second with 60-jobs with 2 or 4 machines in parallel. Each of these 

operations involves 20 instances. Each instance is associated with distinct process times, 

ready times, sequence dependent setup times and due dates. Attained results are given as: 

For the 40-job 2 machine case, HCSS achieves average deviation of 20 instances from the 

best known solution is at 0.76 per cent. If the best performing seed is taken into account, 

then this percentage goes down to 0.43 per cent. For the 40-job 4 machine case, average 

deviation of 20 instances from the best known solution is at 5.33 per cent. If the best 

performing seed is considered account, then this percentage is obtained as 4.73 per cent. 

For the 60-job 2 machine case, HCSS finds an average deviation of 20 instances from the 

best known solution at 3.10 per cent. If the best performing seed is taken into account, then 

this percentage reduces to 3.01 per cent. Finally the 60 job 4 machine case is studied. Our 

algorithm HCSS achieves an average deviation 11.54 per cent from the best known 

solution. If the best performing seed is encountered, the average per cent deviation is at 

11.08 per cent. 

 

Scatter Search is an emerging meta-heuristic approach in scheduling era. The 

developed methods are limited and there is not a huge source of unique procedures for 

tardiness related scheduling problems. Hence, it was not possible to use the available 

methods directly in all chosen problem domains. The strategies, definitions and 

methodologies explained in previous chapters are either amendments to existing methods 

or most of the time, original procedures developed to provide a different point of view for 

HCSS approach when it becomes incapable of effectively solving the problems at hand by 

using standard methods. The most noteworthy of these new strategies tested are: 

 

• The use of a continuous solution encoding for a scheduling problem which is 

usually represented in discrete fashion. 
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• The use of an adaptive strategy in the solution combination by dynamically varying 

α value which determines the flexibility in creating an offspring. 

• The distance measures proposed for measuring diversity. 

• The idea of using multiple distance measures in selecting diverse solutions. 

 

First of all, the solution space is considered as a continuous space and a real number 

encoded vector representation is introduced to map each and every solution hidden in the 

this space. Since Scatter Search uses weighted linear combinations of several solutions to 

produce new solutions; by employing linear combinations of start times, we express 

complex neighborhoods of a considered sequence in the search space. This also means that 

a given permutation can be reached from many other points in the continuous search space 

and allows an interesting flexibility property in terms of neighborhoods defined on the 

solution space. This new approach is supported with BLX-α operator which is one of the 

most effective combination methods developed for real-coded continuous GAs and with an 

alpha strategy which depends on dynamically changing α values. These methods favor the 

production of diversity in the population and prevent premature convergences. A similar 

representation was introduced by Bean (1994) where random numbers from zero to one are 

employed to encode a solution. These values are used as sort keys to determine a sequence 

of activities. However, in order to evaluate the performance of real number encoding, same 

study should be conducted with a proper discrete encoding where solutions are represented 

by permutation sequences and obtained results should be compared with each other.  

 

 As mentioned before, reference set plays the key role in SS method. All new 

solutions are originating from the combinations of elite and diverse solutions which are 

stored in this set. Therefore, the reference set should be constructed wisely to meet the 

demand for both high quality and dissimilar new solutions that are located at far regions of 

the solution space. In order to fulfill the mentioned requirement, an advanced reference set 

update method is developed in this study, which is feed from different sources. For 

updating best solutions, a reserve list is introduced as a long-term memory, which keeps 

the best found solutions during the entire search. Thus, the elite elements of the reference 

set are selected from both the reserve list and the generated new offspring. In addition to 

that, two different distance measurement methods, namely start and rank distance, are 

designed to select diverse solutions. These methods are new and have never been used 
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before as a diverse solution selection method in SS. When their performances are 

compared, the cooperation of both methods outperforms their individual performances, 

which is consistent with the idea behind constructing a set of dissimilar solutions. To sum 

up, it is proven that reference should be updated by using various solution selection 

procedures which leads to different sources of the search space.  

 

Another conclusive remark should be stated for initial solution generation method. 

After implementing HCSS approach over different structured initial solution sets, it is 

clearly observed that seeded initial populations provide a better start point for the 

algorithm with respect to their randomly generated candidates. These seeded solutions are 

obtained by employing list heuristics as cited in the literature.    

 

 As a final remark, it is noteworthy that without an intensification strategy, the 

capabilities of Scatter Search are very limited. In its most basic form, SS converges to a 

poor local optimum or cycles around the same diverse solutions. To compensate this 

handicap, BLX-α method and dynamic alpha strategies are adapted to our HCSS approach. 

But, these methods alone are not sufficient to come up with superior optimum results. 

Therefore an intensification strategy, which implements a VNS to explore the 

neighborhoods of promising solutions, is integrated to our approach. The results with and 

without an intensification phase are so obvious that HCSS outperforms normal SS in every 

circumstances. One main disadvantageous aspect of the intensification strategy is the high 

execution time. This is mostly due to the fact that a high level programming tool, 

MATLAB, is used instead of a lower language and the code is not optimized in terms of 

time efficiency. The observed high computational times are also due to the intensive effort 

required for local improvement. This can be observed apparently in PMTT problems where 

we employ a three step VNS. For instance, when the optimal solution performance and the 

corresponding computation times of the HCSS method and related other algorithms are 

compared for the SMTWT problem, it is observed that the HCSS method tends to 

satisfactory results with reasonable execution time. When the performance of HCSS 

method is investigated for the PMTT problem, the computation time is relatively longer. 

The intensification strategy employed for the PMTT problem leads to repetitive VNS steps 

of different types. In addition to that algorithm is terminated after implementing all VNS 
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types while achieving no improvement during consecutive runs. Hence, the over-intensive 

effort results in computational overburdening and loss of time. 

 

As a future study, a control mechanism to adaptively change the size of the 

reference set with respect to problem size can be devised. Because the HCSS approach 

with is not quite robust with respect to the size of the problem when attacked with fixed 

number of best and diverse solutions. The reference set used for small scale problems 

becomes in capable of covering huge solution space generated by a greater problem size. 

This situation is observed for SMTWT problem where the average per cent deviation value 

for 100-job problem set is higher when compared to 40-job and 50-job problem sets. 

Another modification can be investigated for the intensification strategy. Instead of 

exploring the whole neighborhood of a solution, a screening mechanism such as the 

candidate-list strategies employed by TS approach can be developed to decide promising 

neighborhoods. Also dynamically changing adaptive search depths can be utilized for VNS 

method. 

 

To summarize, our main aim in this thesis has been to evaluate the performance of 

SS with respect to TS, GA and their hybrids which already produced highly satisfactory 

results in scheduling problems. To this end, based on our observations over two very hard 

tardiness based scheduling problems, it can be said that although SS is a promising strategy 

to elaborate, enchantments are required for it to cope-up with the aforementioned meta-

heuristic approaches. 
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APPENDIX A: START DISTANCE MEASUREMENT METHOD 

 

 

 The start distance measurement method is demonstrated on an example where eight 

jobs are scheduled on a single machine. The reference set contains three best and three 

diverse solutions. The best solutions were already selected and the next step is to choose 

diverse solutions from a POOL including five different candidate solutions. Best solutions 

and candidate solutions are given in Table A.1. 

 

Table A.1. Best solutions of reference set and candidate solutions in the pool 

 

  START TIMES FITNESS 

1 1124 1492 1725 687 1530 1118 1106 993 100 

2 1135 1455 1664 632 1493 1005 993 1047 137 

B
E

S
T

 

3 1271 1457 1762 687 1567 1118 1106 993 254 

1 1837 1385 1885 1274 1569 892 1530 898 312 

2 770 1898 1187 818 682 76 139 393 568 

3 175 1834 55 106 1138 866 139 1050 714 

4 1535 794 502 469 381 0 1431 1810 403 

C
A

N
D

ID
A

T
E

 

5 483 761 599 199 799 1612 345 111 689 

 
 Take two solution, one from reference set and one from POOL .The start distance is 
calculated by using the equation; 
 

dist = |(st job 1)1 –( stjob 1)2|+...+ | (st job j)1 –( stjob j)2|+...+ | (st job n)1 –( stjob n)2| 

 

Distance between best solution one & candidate solution one is calculated as follows; 

 

dist = |1124-1837 |+ |1492-1385|+ |1725-1885|+|687-1274|+|1530-1569|+ 

                       |1118-892|+|1106-1530|+|993-898| = 2351 

 

Using the same equation, the distances of other solution combinations are measured; 

 

dist. (best 1 & candidate 2) = 4886 

dist. (best 1 & candidate 4) = 5959 

dist. (best 2 & candidate 1) = 2510 

dist. (best 3 & candidate 5) = 6040 
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The calculated distance values and minimum of each row are stored in a distance matrix 

shown in Table A.2. 

 

Table A.2. Measured distances between best & candidate solutions 

 

  BEST 

  1 2 3 

ROW 
MIN 

1 2351 2510 2095 2095 

2 4886 4719 5142 4719 

3 5210 4825 5466 4825 

4 5959 5704 5851 5704 
C

A
N

D
ID

A
T

E
 

5 5854 5729 6040 5729 

 

Candidate solution # 5 corresponding to the maximum of the row minimums (5729) 

is promoted to the reference set as the diverse solution # 1 and deleted from the POOL. 

Since candidate solution # 5 is selected, the fifth row of the distance matrix is deleted and a 

column is inserted next to best solution # 3. Then, only the distances between diverse 

solution # 1 and remaining candidate solutions are measured and matrix is updated as 

shown in Table A.3. 

 

Table A.3. Updated distance matrix 

 

  BEST DIV. 

  1 2 3 1 

ROW 
MIN 

1 2351 2510 2095 7801 2095 

2 4886 4719 5142 4772 4719 

3 5210 4825 5466 4248 4248 C
A

N
D

. 

4 5959 5704 5851 6267 5704 

 

According to maximum of the row minimums rule, candidate solution # 4 is 

selected as the diverse solution # 2. Fourth row is deleted and a new column is inserted. 

The updated distances are listed in Table A.4. 

 

Table A.4. Updated distance matrix 

 

  BEST DIV. 

  1 2 3 1 2 

ROW 
MIN 

1 2351 2510 2095 7801 6172 2095 

2 4886 4719 5142 4772 5989 4719 

C
A

N
D

. 

3 5210 4825 5466 4248 6865 4248 
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Candidate solution # 2 is decided as the last diverse solution for the reference set. 

The reference set is updated with new diverse solutions and take the final structure shown 

in Table A.5. 

 

Table A.5. Final reference set 

 

  START TIMES FITNESS 

1 1124 1492 1725 687 1530 1118 1106 993 100 

2 1135 1455 1664 632 1493 1005 993 1047 137 

B
E

S
T

 

3 1271 1457 1762 687 1567 1118 1106 993 254 

1 770 1898 1187 818 682 76 139 393 568 

2 1535 794 502 469 381 0 1431 1810 403 

D
IV

E
R

S
E

 

3 483 761 599 199 799 1612 345 111 689 
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APPENDIX B: RANK DISTANCE MEASUREMENT METHOD 

 

 

 The rank distance measurement method is demonstrated on an example problem 

aiming to schedule eight jobs on a single machine. The reference set contains three best 

and three diverse solutions. The best solutions were already selected and the next step is to 

choose diverse solutions from a POOL including five different candidate solutions. Best 

solutions and candidate solutions are given in Table B.1. 

 

Table B.1. Best solutions of reference set and candidate solutions in the pool 

 

  START TIMES FITNESS 

1 1124 1492 1725 687 1530 1118 1106 993 100 

2 1135 1455 1664 632 1493 1005 993 1047 137 

B
E

S
T

 

3 1271 1457 1567 687 1762 1118 993 1106 254 

1 1837 1385 1885 1274 1569 892 1530 898 312 

2 770 1898 1187 818 682 76 139 393 568 

3 175 1834 55 106 1138 866 139 1050 714 

4 1535 794 502 469 381 0 1431 1810 403 

C
A

N
D

ID
A

T
E

 

5 483 761 599 199 799 1612 345 111 689 

 

 Rank distance measurement method is constructed on a simple rearrangement 

procedure where places of numbers are changed with restricted insertion moves aiming to 

catch a target sequence of these numbers. Our solutions contain start time and fitness 

values which should be revised to obtain meaningful number sequences. Therefore, start 

times are sorted in non-decreasing order and corresponding job numbers are noted in same 

order. The sorted jobs numbers for each job is given in Table B.2.   

 

Table B.2. Rank matrix 

 

  SORTED JOB NUMBERS FITNESS 

1 4 8 7 6 1 2 5 3 100 

2 4 7 6 8 1 2 5 3 137 

B
E

S
T

 

3 4 7 8 6 1 2 3 5 254 

1 6 8 4 2 7 5 1 3 312 

2 6 7 8 5 1 4 3 2 568 

3 3 4 7 1 6 8 5 2 714 

4 6 5 4 3 2 7 1 8 403 

C
A

N
D

ID
A

T
E

 

5 8 4 7 1 3 2 5 6 689 
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 In order to measure rank distance between two solutions, one solution is taken from 

POOL and one from the reference set which is denoted as target sequence. The total 

number of restricted insertion moves utilized to convert candidate sequence into the target 

sequence is the rank distance between these two. A restricted insertion move allows only 

insertion of a job between its two preceding jobs.  For example, the rank distance between 

best solution # 1 & candidate solution # 1 is evaluated as follows; 

 

The target sequence =  4 8 7 6 1 2 5 3 

 

The candidate sequence =     6 8 4 2 7 5 1 3 

 

Start with the job # 4, two insertion moves are needed to place this job into the first place 

as shown below.  

 

The candidate sequence =     4 6 8 2 7 5 1 3 

 

Next, job # 8 is set to target position with one insertion move. 

 

The candidate sequence =     4 8 6 2 7 5 1 3 

 

For job # 7, two insertion moves is needed. 

 

The candidate sequence =     4 8 7 6 2 5 1 3 

 

And after placing job # 1 into its right place by performing two moves, the target sequence 

is obtained.  

 

The candidate sequence =     4 8 7 6 1 2 5 3 

 

 The total seven insertion moves is needed to convert candidate into target sequence. 

This rank distance is then stored in a distance matrix. The calculated distance values and 

minimum of each row are stored in a distance matrix shown in Table B.3.   
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Table B.3. Distance matrix 

 

  BEST 

  1 2 3 

ROW 
MIN 

1 7 7 9 7 

2 11 9 11 9 

3 12 10 10 10 

4 17 15 17 15 

C
A

N
D

ID
A

T
E

 

5 7 9 7 7 

 

Candidate solution # 4 corresponding to the maximum of the row minimums (15) is 

promoted to the reference set as the diverse solution # 1 and deleted from the POOL. Since 

candidate solution # 4 is selected, the fourth row of the distance matrix is deleted and a 

column is inserted next to best solution # 3. Then, only the distances between diverse 

solution # 1 and remaining candidate solutions are measured and matrix is updated as 

shown in Table B.4. 

 

Table B.4. Updated distance matrix 

 

  BEST DIV. 

  1 2 3 1 

ROW 
MIN 

1 7 7 9 12 7 

2 11 9 11 12 9 

3 12 10 10 13 10 C
A

N
D

. 

5 7 9 7 22 7 

 

According to maximum of the row minimums rule, candidate solution # 3 is 

selected as the diverse solution # 2. Third row is deleted and a new column is inserted. The 

updated distances are listed in Table B.5. 

 

Table B.5. Updated distance matrix 

 

  BEST DIV. 

  1 2 3 1 2 

ROW 
MIN 

1 7 7 9 12 17 7 

2 11 9 11 12 15 9 

C
A

N
D

. 

5 7 9 7 22 12 7 
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Candidate solution # 2 is decided as the last diverse solution for the reference set. 

The reference set is updated with new diverse solutions and take the final structure shown 

in Table B.6. 

 

Table B.6. Final reference set 

 

  START TIMES FITNESS 

1 1124 1492 1725 687 1530 1118 1106 993 100 

2 1135 1455 1664 632 1493 1005 993 1047 137 

B
E

S
T

 

3 1271 1457 1567 687 1762 1118 993 1106 254 

1 1535 794 502 469 381 0 1431 1810 403 

2 175 1834 55 106 1138 866 139 1050 714 

D
IV

E
R

S
E

 

3 770 1898 1187 818 682 76 139 393 568 
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APPENDIX C: SOLUTION COMBINATION METHOD 

 

 

Let us assume that, the subset generation method produces a subset of two solutions 

X and Y as a basis for creating combined solution. In order to illustrate the methodology, 

we provide hypothetical process times, due dates, weights for each job and start times and 

total tardy values for X and Y as shown below; 

 

Table C.1. Process time, weight and due date of jobs #1,….,8 

 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

pt 48 38 51 33 88 6 12 88 

wt 4 3 5 8 2 3 8 3 

dt 168 315 220 248 151 10 40 33 

 

Table C.2. Two parent solutions 

 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 FIT 

X 139 187 225 0 276 133 33 45 680 

Y 191 323 272 239 103 0 3 15 376 

 

The start time of each job for the new solution will be a randomly selected number 

from an interval determined by the combination of parent solutions. BLX-α combination 

method generates an offspring Z=( Zjob#1,…, Zjobni) where Zjob#i is a randomly chosen 

number of the interval [cmin – I.α, cmax + I. α] where cmax=max(Xjob#i, Yjob#i), 

cmin=min(Xjob#i, Yjob#i) and I= cmax - cmin and α is a constant value.  

 

Starting with the job#1; 

 

 Xjob#1 = 139, Yjob#1 = 191,  

cmax = 191, cmin= 139 and I =(191 – 139) = 52  

 interval = [139 – (52x0.5), 191+(52x0.5)] = [113, 217]       //  α = 0.5 

 

Zjob#1 is a randomly selected real number from the interval [113, 217]. Suppose that 

imaginary start time of Zjob#1 is chosen as 149.8.  
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Continuing with job#2;  

 

Xjob#1 = 187, Yjob#1 = 323,  

cmax = 323, cmin= 187 and I =(323 – 187) = 136 

 interval = [187 – (136x0.5), 323+(136x0.5)] = [119, 391] 

 

Zjob#2 is randomly selected as 380.3. The methodology repeats itself until all the start time 

values are determined. The offspring with temporary start time values is a trial solution. An 

improvement method is applied to correct start time values and obtain the total tardiness 

value of the improved solution.  

 

Table C.3. Offspring solution before improvement method 

 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

Z 149.8 380.3 233.7 168.4 301.1 10 15.9 33 

 

Improvement method is a simple algorithm that sorts jobs according to their 

increasing start times and then schedule them on a single machine while computing their 

real start times and tardy values. Finally, existing values of the pre improved solution are 

replaced with real values and fitness is inserted into the offspring. 

 

 

Figure C.4. Illustration of improvement method 

Improvement method 

sort Z in order of non-decreasing start times 

sorted Z =  10  15.9  33  149.8  168.4  233.7  301.1  380.3 

sorted jobs = 6   7   8   1   4   3   5   2  

calculate start time and tardy for each job j,       //  j=1,…., 8 

job #6 : start time = 0,  completion time = 6 , tardy = 0 

job #7 :  start time = 6,  completion time = 18 , tardy = 0 

job #8 :  start time = 18,  completion time = 106 , tardy = 219 

job #1 :  start time = 106,  completion time = 154 , tardy = 0 

job #4 :  start time = 154,  completion time = 187 , tardy = 0 

job #3 :  start time = 187,  completion time = 238 , tardy =  90 

job #5 :  start time = 238,  completion time = 326 , tardy = 350 

job #2 :  start time = 326,  completion time = 364 , tardy = 147 

rewrite Z with updated start times and total tardy value 

updated  Z = 106  326  187  154  238  0  6  18  806  
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APPENDIX D: VARIABLE NEIGHBORHOOD SEARCH - SMTWT 

 

 

 The VNS methodology employed in our HCSS approach will be discussed in the 

following section. Initially, VNS used in SMTWT problem is investigated and 

neighborhood generation, neighborhood search and evaluation step are all demonstrated by 

using a sample problem. Our sample problem consists of eight jobs with distinct process 

times, weights and due dates and ready at time zero to be scheduled on a single machine. 

The aim here is to minimize total weighted tardiness value. The process times, weights and 

due dates are given in Table D.1. Before applying VNS, HCSS comes up with an elite 

solution Z such that Z = [106 326 187 154 238 0 6 18 806]. The first eight entities are start 

times of job j (j = 1,…, 8) and final one is the twt value.  

 

Table D.1. Process time, weight and due date of jobs  

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

pt 48 38 51 33 88 6 12 88 

wt 4 3 5 8 2 3 8 3 

dt 168 315 220 248 151 10 40 33 

 

VNS 2-3-4 is applied to generate neighborhood of current solution Z. The sorted Z 

sequence is divided into groups, each having number of jobs determined by search depth. 

At first, our search depth is equal to two. Hence, four groups with two jobs are rearranged 

to create new neighborhoods. 

 

sorted Z =  6   7   8   1   4   3   5   2   

 group #1 = (6 7), group #2 = (8 1), group #3 = (4 3), group #4 = (5 2). 

 

Starting with the first group, all alternative permutations are written 

 

 alternative#1 = (6 7), alternative#2 = (7 6) 

 

Then, first group jobs in the sorted Z are replaced with one of the alternative permutations 

such that 
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 neighbor # 0 = 6   7   8   1   4   3   5   2 

neighbor # 1 = 7   6   8   1   4   3   5   2  

 

The new neighbors are evaluated by scheduling jobs using their processing times, 

weights and due dates and the final fitness values are computed by summing all non-zero 

tardiness values associated to considered sequence. 

 

  fitness of neighbor # 0 = 806 

 fitness of neighbor # 1 = 830 

 

These fitness values are then compared with current solution total weighted 

tardiness value. If one of neighbor is superior to the current one, it becomes the new 

current solution and sorted Z is updated accordingly. In our case, none of the neighbors is 

better than the present schedule. Therefore, the sorted Z is kept without altering. Moving to 

next group; 

 

 alternative#1 = (8 1), alternative#2 = (1 8) 

 neighbor # 0 = 6   7   8   1   4   3   5   2 

neighbor # 1 = 6   7   1   8   4   3   5   2  

 

and evaluating their fitness; 

 

 fitness of neighbor # 0 = 806 

 fitness of neighbor # 1 = 950 

 

the current solution is conserved and new neighbors are generated by using group three 

 

 neighbor # 0 = 6   7   8   1   4   3   5   2 

neighbor # 1 = 6   7   8   1   3   4   5   2  

 

and their fitness values; 

 

 fitness of neighbor # 0 = 806 
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 fitness of neighbor # 1 = 716 

 

Therefore, neighbor #1 becomes new current solution. Instead of going back and dividing 

the new sequence into new groups, we continue with the last group; 

 

neighbor # 0 = 6   7   8   1   3   4   5   2  

neighbor # 1 = 6   7   8   1   3   4   2   5 

 

corresponding fitness values; 

 

fitness of neighbor # 0 = 716 

 fitness of neighbor # 1 = 645 

 

According to this result, our new best order is [6 7 8 1 3 4 2 5]. After exploring all 

neighbors, we take the search more further distances. The search depth is set to three, and 

the new groups are formed starting from the very end of the sequence. 

 

 sorted Z =  6   7   8   1   3   4   2   5 

 group #1 = (8 1 3), group #2 = (4 2 5) 

 

Starting with the first group, all alternative permutations are written 

 

 (8 1 3), (8 3 1), (1 8 3), (1 3 8), (3 1 8), (3 8 1) 

 

and neighbors of the current solution is generated as; 

 

 neighbor # 0 = 6   7   8   1   3   4   2   5 

 neighbor # 1 = 6   7   8   3   1   4   2   5 

 neighbor # 2 = 6   7   1   8   3   4   2   5 

 neighbor # 3 = 6   7   1   3   8   4   2   5 

 neighbor # 4 = 6   7   3   1   8   4   2   5 

 neighbor # 5 = 6   7   3   8   1   4   2   5 
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total weighted tardiness values are computed for each permutation of group #1 

 

 fitness of neighbor # 0 = 645 

 fitness of neighbor # 1 = 793 

 fitness of neighbor # 2 = 789 

 fitness of neighbor # 3 = 942 

 fitness of neighbor # 4 = 942 

 fitness of neighbor # 5 = 798 

 

considering the next group; 

 

 (4 2 5), (4 5 2), (2 4 5), (2 5 4), (5 2 4), (5 4 2) 

 neighbor # 0 = 6   7   8   1   3   4   2   5 

 neighbor # 1 = 6   7   8   1   3   4   5   2 

 neighbor # 2 = 6   7   8   1   3   2   4   5 

 neighbor # 3 = 6   7   8   1   3   2   5   4 

 neighbor # 4 = 6   7   8   1   3   5   2   4 

 neighbor # 5 = 6   7   8   1   3   5   4   2 

 

The corresponding fitness values are 

 

 fitness of neighbor # 0 = 645 

 fitness of neighbor # 1 = 716 

 fitness of neighbor # 2 = 869 

 fitness of neighbor # 3 = 862 

 fitness of neighbor # 4 = 834 

 fitness of neighbor # 5 = 629 

 

Neighbor # 5 is superior to both the current solution and the other neighbors. Hence, the 

best sequence becomes [6   7   8   1   3   5   4   2] and the search depth is decreased to two. 

The search procedure continues as stated above until the termination criterion is met.  
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APPENDIX E: VARIABLE NEIGHBORHOOD SEARCH – PMTT 

 

 

 The three different type VNS techniques employed in our HCSS approach will be 

discussed in the following section. Initially, type #1 VNS technique used in PMTT 

problem is investigated and neighborhood generation, neighborhood search and evaluation 

step are all demonstrated by using a sample problem. Our sample problem consists of eight 

jobs with distinct process times, ready times, sequence dependent setup times and due 

dates. The two machines utilized in the problem are not identical, thus the process times 

and setup times related to same jobs are varying depending on the machine. The aim here 

is to minimize total tardiness value. The ready times and due dates are given in Table E.1 

and process times and sequence dependent setup times are presented in Table E.2 and 

Table E.3. Before applying type #1 VNS, HCSS comes up with an elite solution Z such 

that; 

 

Z = [32  43  31  24  37  11  18  50 1  2  2  1  1  1  2  2  26] 

 

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities 

are the machine indices and final one is the total tardiness  value. 

 

Table E.1. Ready time and due date of jobs 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

rt 27 43 31 24 30 11 18 35 

dt 32 51 38 34 36 20 31 46 

 

Table E.2. Process times and setup times for machine #1 
 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

Job#1 0 1 3 2 3 1 1 2 

Job#2 2 0 2 3 1 2 3 1 

Job#3 1 1 0 1 2 3 1 1 

Job#4 3 2 3 0 2 1 2 2 

Job#5 2 2 1 3 0 1 3 1 

Job#6 2 1 1 1 2 0 3 3 

Job#7 3 1 2 1 3 1 0 3 

Job#8 1 2 1 3 2 1 1 0 

pt  2 5 4 7 3 6 10 8 
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Table E.3. Process times and setup times for machine #2 
 

 Job#1 Job#2 Job#3 Job#4 Job#5 Job#6 Job#7 Job#8 

Job#1 0 3 1 2 1 3 1 1 

Job#2 2 0 1 3 2 1 3 1 

Job#3 1 1 0 1 2 3 1 1 

Job#4 1 2 1 0 2 1 1 3 

Job#5 1 3 2 3 0 1 1 2 

Job#6 2 2 1 3 1 0 3 1 

Job#7 2 3 2 3 1 2 0 1 

Job#8 2 1 1 1 2 3 3 0 

pt  3 6 5 8 4 7 11 9 

 

In the type #1 VNS technique, the sorted job sequence of Z is recorded and kept 

fixed during the entire neighborhood search. Then this sequence is divided into groups 

containing same number of jobs defined by VNS depth and their corresponding machine 

assignments. Starting with the first group, all possible machine assignments are listed for 

this group’s jobs without altering the job sequence and remaining machine indices. VNS 2-

3-4 is applied to generate neighbors of current solution Z. The sorted Z is as follows; 

 

sorted Z =[6  7  4  3  1  5  2  8  1  2  1  2  1  1  2  2] 

group #1=(6 7 1 2), group #2=(4 3 1 2), group #3=(1 5 1 1), group #4=(2 8 2 2) 

 

Starting with the first group, all alternative machine assignments are written as 

 

alt. #1 = (6 7 1 1), alt. #2 = (6 7 2 1), alt. #3 = (6 7 2 2) 

 

Observing the alternative #1, the processing order of job #6 and job #7 does not change. 

The only difference is that the both jobs will be process on machine #1 whereas they are 

initially processed by machine #1 and machine #2 respectively. Inserting alternatives into 

the initial sorted sequence where all are representing a different neighborhood of the 

current solution; 

 

neighbor # 1 = [6  7  4  3  1  5  2  8  1  1  1  2  1  1  2  2] 

neighbor # 2 = [6  7  4  3  1  5  2  8  2  1  1  2  1  1  2  2] 

neighbor # 3 =  [6  7  4  3  1  5  2  8  2  2  1  2  1  1  2  2] 
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The new neighbors are evaluated by scheduling jobs using their machine dependent 

process times, setup times, ready times and due dates. Then the final fitness values are 

computed by summing all non-zero tardiness values associated to considered sequence. 

 

fitness of neighbor # 1 = 45 

fitness of neighbor # 2 = 36 

fitness of neighbor # 3 = 26 

 

These fitness values are then compared with current solution total tardiness value. 

If one of neighbor solution is superior to the current one, it becomes the new current 

solution and sorted Z is updated accordingly. In our case, the neighbor #3 has the value 26 

which is not better than the present best solution. Therefore, the sorted Z is kept without 

altering and VNS moves to next group. The next group and corresponding neighbors are  

 

group #2 = (4 3 1 2) alt. #1 = (4 3 1 1), alt. #2 = (4 3 2 1), alt. #3 = (4 3 2 2) 

neighbor # 1 =  [6  7  4  3  1  5  2  8  1  2  1  1  1  1  2  2] 

neighbor # 2 =  [6  7  4  3  1  5  2  8  1  2  2  1  1  1  2  2] 

neighbor # 3 =  [6  7  4  3  1  5  2  8  1  2  2  2  1  1  2  2] 

 

and evaluating their fitness; 

 

fitness of neighbor # 1 = 40 

fitness of neighbor # 2 = 37 

fitness of neighbor # 3 = 34 

 

According to the results, the current solution is conserved. Considering the next group; 

 

group #3 = (1 5 1 1) alt. #1 = (1 5 1 2), alt. #2 = (1 5 2 1), alt. #3 = (1 5 2 2) 

neighbor # 1 =  [6  7  4  3  1  5  2  8  1  2  1  2  1  2  2  2] 

neighbor # 2 =  [6  7  4  3  1  5  2  8  1  2  1  2  2  1  2  2] 

neighbor # 3 =  [6  7  4  3  1  5  2  8  1  2  1  2  2  2  2  2] 

 

and their fitness values are 
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fitness of neighbor # 1 = 32 

fitness of neighbor # 2 = 28 

fitness of neighbor # 3 = 46 

 

No improvement can be achieved, thus VNS explores the neighbors of the last group; 

 

group #3 = (2 8 2 2) alt. #1 = (2 8 1 1), alt. #2 = (2 8 1 2), alt. #3 = (2 8 2 1) 

neighbor # 1 =  [6  7  4  3  1  5  2  8  1  2  1  2  1  1  1  1] 

neighbor # 2 =  [6  7  4  3  1  5  2  8  1  2  1  2  1  1  1  2] 

neighbor # 3 =  [6  7  4  3  1  5  2  8  1  2  1  2  1  1  2  1] 

 

The corresponding fitness values are 

 

fitness of neighbor # 1 = 25 

fitness of neighbor # 2 = 14 

fitness of neighbor # 3 = 18 

 

Neighbor #2 results with a fitness value 14 which is superior to best current solution. 

Hence, the new sorted Z is updated as follows 

 

sorted Z = [6  7  4  3  1  5  2  8  1  2  1  2  1  1  1  2] 

 

After exploring all neighbors, we take the search a one step further distance. The 

search depth is set to three, and the new groups are formed starting from the very end of 

the sequence. Here, the type #1 VNS technique will not be demonstrated with its all steps 

and not be concluded. The investigating first group alternatives for search depth three gives 

sufficient information to understand the further execution of basic the methodology behind 

our type #1 VNS technique. The groups and corresponding neighbors for the first one are 

given below; 

 

group #1 = (4  3  1 1  2  1)  group #2 = (5  2  8  1  1  2) 

alt. #1 =(4  3  1  1  1  1)  alt. #2 =(4  3  1  1  1  2)  alt. #3 =(4  3  1  1  2  2)   
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alt. #4 =(4  3  1  2  1  1)  alt. #5 =(4  3  1  2  2  1)  alt. #6 =(4  3  1  2  1  2) 

alt. #7 =(4  3  1  2  2  2)  

 

neighbor # 1 =  [6  7  4  3  1  5  2  8  1  2  1  1  1  1  1  2] 

neighbor # 2 =  [6  7  4  3  1  5  2  8  1  2  1  1  2 1  1  2] 

neighbor # 3 =  [6  7  4  3  1  5  2  8  1  2  1  2  2  1  1  2] 

neighbor # 4 =  [6  7  4  3  1  5  2  8  1  2  2  1  1  1  1  2] 

neighbor # 5 =  [6  7  4  3  1  5  2  8  1  2  2  2  1  1  1  2] 

neighbor # 6 =  [6  7  4  3  1  5  2  8  1  2  2  1  2  1  1  2] 

neighbor # 7 =  [6  7  4  3  1  5  2  8  1  2  2  2  2  1  1  2] 

 

and their fitness values are 

 

fitness of neighbor # 1 = 27 

fitness of neighbor # 2 = 11 

fitness of neighbor # 3 = 17 

fitness of neighbor # 4 = 29 

fitness of neighbor # 5 = 25 

fitness of neighbor # 6 = 31 

fitness of neighbor # 7 = 46 

 

According to the fitness values of the neighbor, machine assignment alternative #2 

decreases the total tardiness value from 14 to 11. Therefore, sorted Z is updated and the 

new current solution becomes; 

 

sorted Z = [6  7  4  3  1  5  2  8  1  2  1  1  2 1  1  2] 

 

Our demonstration for the type #1 VNS ends up at this point, the remaining 

neighborhood generations and evaluations can be performed according to methodology 

described so far. 

 

  To illustrate type #2 VNS technique, the same problem set and the same VNS depth 

is utilized. Our elite solution Z is considered such that 
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 Z = [29  44  32  24  39  11  18  35  2  1  1  1  1  1  2  2  11] 

 

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities 

are the machine indices and final one is the total tardiness  value. Initially, the start times 

are ordered with respect non-decreasing values. Then without considering the machine 

indices our sorted Z vector is constructed. The methodology employed to construct 

neighborhood of a current solution is exactly the same that is used in SMTWT. The only 

difference arises at the evaluation step of the fitness value of the generated neighbors. Type 

#2 VNS technique assigns each job to a machine by using the EFT rule and then calculates 

its corresponding total tardiness value. This evaluation step is briefly described in the 

following example. 

 

Suppose that we implement type #2 VNS with search depth two, but do not manage 

to find a better solution. Therefore, the size of the search depth is increased to three and the 

sequence is grouped as follows; 

 

sorted Z = [6  7  4  3  1  5  2  8 ] 

group #1 = (4  3  1)  group #2 = (5  2  8) 

 

The alternative permutation of group #1 jobs and corresponding neighbors are  

 

(4 1 3), (1 3 4), (1 4 3), (3 1 4), (3 4 1) 

neighbor # 1 = 6  7  4  1  3  5  2  8 

neighbor # 2 = 6  7  1  3  4  5  2  8 

neighbor # 3 = 6  7  1  4  3  5  2  8 

neighbor # 4 = 6  7  3  1  4  5  2  8 

neighbor # 5 = 6  7  3  4  1  5  2  8 

 

Evaluating the fitness value of neighbor #1, the completion time of job #6 is 

calculated on both machines. And the job is assigned to the machine with the earlier 

completion time. The tardiness value of the current job is computed accordingly. 
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Completion time of job #6 on machine #1 = max(r6
I, fI) + p6

I= 11+6 = 17 

Completion time of job #6 on machine #2 = max(r6
II, fII) + p6

II = 11+7 = 18 

 

Then job #6 is dispatch to machine #1 and the finish time (fI) for machine #1 is set to 17 

and (fII) for machine #2 to 0. The tardiness value is calculated using the formula Tj = 

max(0,Cj-dj), i.e. max(0, 17-20) = 0. Continuing with job #7; 

 

Completion time of job #7 on machine #1 = max(r7
I, fI) + p7

I + s67
I
 = 31 

Completion time of job #7 on machine #2 = max(r7
II, fII) + p7

II =29 

 

Job # 7 is then assign to the machine #2 and the tardiness value is T7 = max(0, 29-31) = 0. 

The finish time of machine #2 becomes 29. The remaining calculations are performed in 

same manner and not shown here. The final start times, machine indices and total tardiness 

value related to neighbor #1 is computed as 

 

neighbor #1 = [29  43  32  24  34  11  18  39 2  1  1  1  2  1  2  2  10] 

 

where the first eight entities are start times of job j (j = 1,…, 8), the second eight entities 

are the machine indices and final one is the total tardiness  value. The fitness values of the 

other neighbors are; 

 

fitness of neighbor # 2 = 19 

fitness of neighbor # 3 = 23 

fitness of neighbor # 4 = 19 

fitness of neighbor # 5 = 30 

 

From the obtained fitness values, it is obvious that neighbor #1 outperforms the 

other candidates. Therefore, our sorted Z value becomes [6  7  4  1  3  5  2  8] and the 

current solution is updated as; 

 

Z = [29  43  32  24  34  11  18  39 2  1  1  1  2  1  2  2  10] 
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For the group #2 = (5  2  8), the permutation alternatives and generated neighbors are as 

follows; 

 

(5 8 2), (8 2 5), (8 5 2), (2 5 8), (2 8 5) 

neighbor # 1 = 6  7  4  1  3  5  8  2 

neighbor # 2 = 6  7  4  1  3  8  2  5 

neighbor # 3 = 6  7  4  1  3  8  5  2 

neighbor # 4 = 6  7  4  1  3  2  5  8 

neighbor # 5 = 6  7  4  1  3  2  8  5 

 

and the corresponding fitness values are; 

 

 fitness of neighbor # 1 = 9 

fitness of neighbor # 2 = 18 

fitness of neighbor # 3 = 11 

fitness of neighbor # 4 = 10 

fitness of neighbor # 5 = 18 

 

Again, neighbor #1 comes up with a better total tardiness value. Hence our sorted Z and 

new current solution vector is updated as follows; 

 

sorted Z = [6  7  4  1  3  5  8  2] 

Z = [29  43  32  24  34  11  18  39 2  2  1  1  2  1  2  1  9] 

 

Since, the VNS improves the current solution, the search depth decreases the value 

two and the variable neighborhood search is continued by repeating the same methodology 

until the termination criterion is met i.e. the current solution can not be improved with 

maximum VNS depth. Finally, the type #3 VNS technique is described by using same 

problem set and VNS 2-3-4. The alternative job permutations and neighborhood generation 

method are exactly the same as the ones used in type #2 VNS. The only difference as we 

indicate before; is the evaluation procedure of a neighborhood solution.  Previously, EFT 

rule is utilized to perform both machine assignment and total tardiness value computation. 

This time, a recursive rule which is explained in Section 4.2.4, is employed as a substitute 

for EFT rule. Therefore, instead of showing all the steps needed to generate a 
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neighborhood, we only illustrate the recursive rule step by step while evaluating a selected 

neighborhood. 

 

Assume that, VNS comes up with a neighbor such that [6  7  4  1  3  5  8  2] and the 

corresponding sorted start times of jobs are [11    16    24    29    32    40   42    43]. At the 

beginning both machines’ finish times (fI and fII) are zero and the process times and setup 

times are given in Table E.2 and Table E.3. Comparing job #6’s start time with both of the 

finish times, it is seen that the job can be assign any of the machines. Thus, method 

constructs a branch indicating both of the alternatives as shown in Figure E.1. In figure, the 

expression (X,Y) located on the nodes indicates that job X is processed on machine Y and 

the value below the nodes is the total tardiness value of assignments performed so far 

 

 

Figure E.1. Flow chart for recursive algorithm #1 

 

Continuing with the upper branch, the first job is assigned to machine #1 and the fI 

is found as 17 and fII
 equals to zero. The start time of job #7 is 16 which is earlier than fI 

but tardier than fII. Hence, it is allocated to machine #2. The corresponding tardiness value 

of job #7 is 0 and the fII becomes 29. The flow chart is given in Figure E.2. 

 

The next one is job #4 with start time 24 which is earlier than both machines’ finish 

times. So, it is assigned to the machine #1 which has the smallest finish time value. After 

performing required calculations, the tardiness of job #4 is found as 0 and the fI increases 

to 32.  Comparing f
I and fII with job #1’s start time (i.e. 29), the machine #2 is selected with 

the smaller finish time value. Then fII becomes 34 and the tardiness value T1 = max (0,C1- 

d1) = 2. Job #3 with start time 32 is allocated to machine #1 where start time of job #3 

equals to fI
 but smaller than fII value. Calculating the tardiness value, it is observed that 

completion time of job #3 exceeds its due date by one unit. The next start time of job #5 is 

(6,1) 

(6,2) 

0

0
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40 where it is larger than both fI = 39 and fII = 34. Thus, it can be dispatched any of the 

machines which is shown by two branches in Figure E.3. 

 

 

Figure E.2. Flow chart for recursive algorithm #2 

 

 

Figure E.3. Flow chart for recursive algorithm-step #3 

 

For the upper branch where the job #5 is processed on machine #1 and the 

corresponding tardiness value is 8, fI = 44 and fII = 34. On the other hand, lower branch 

comes up with a tardiness value equals to 3, fI = 39 and fII
 = 39. Moving to the next step 

over the upper branch, the start time job #8 is compared with the finish times. Since start 

time 42 is less than fI and more than fII, machine #2 is employed for job #8. Then the results 

are; T8 = 0, fI = 44 and fII = 45. The final one to be scheduled is the job #2. The start time 43 

is earlier than both of the finish times. Therefore, machine #1 with the earlier finish time is 

assigned for the last job. The tardiness value related to this assignment is zero, so the total 

tardiness value becomes 11 for the entire sequence. This value is memorized as the best 

fitness value found so far and represents an upper bound for the total tardiness. When we 

reach to the end of lane, i.e. the allocation of all jobs is completed; we turn back to the 

previous node where the lane is divided into two branches. At this point, the unvisited 

branch is selected and the remaining assignments are performed accordingly. Any time, the 
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total tardiness value which is computed after dispatching a job, is greater than the upper 

bound, the further assignment related to this lane is not executed and the algorithm turns 

back to a previous node that is branched out.  

 

Consider our example, after finishing the allocation, we move back to node (3,1) 

and select the lower branch and jumps to the node (5,2). Since the total tardiness value 

corresponding to this node is smaller than the upper bound, we continue with the next job, 

i.e. job #8. The start time of the job is 42, which is greater than both fI and fII. Thus, the 

lane is divided into two branches and two new nodes are placed at the end of each branch, 

which are indicating machine assignments and related fitness values. 

 

 

Figure E.4. Flow chart for recursive algorithm #4 

 

 The finish times and total tardiness for each node is calculated as; fI = 48, fII = 39 

and T8 = 2 for upper branch and fI = 39, fII = 50 and T8 = 4 for the lower branch. Moving 

along the upper branch, the job #2 is assigned to the machine #2 where the start time 43 is 

greater than f
II. Then the total tardiness value for the entire sequence computed as eight 

which becomes the new upper bound. Turning back to the branched node and jumping to 

the point (8,2),  we realize that the total tardiness value is greater than the upper bound. 

Therefore, there is no need to move further and the current lane is blocked as shown in 

Figure E.4. The remaining calculations are performed in the same way as described. The 

final upper bound is considered as the fitness value of the selected neighborhood. 

 

When dealing with 4-machine PMTT problems, instead of constructing four 

branches that define each machine assignment separately, we only form two of them that 

correspond to the machines with smallest finish times. In other words, before allocating a 
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job, the four finish times are sorted and two of them are selected according to non-

decreasing values. Then the start time of the job is compared with chosen fm’s where fm is 

the finish time of machine m and the job is assigned to a machine depending on the 

selection procedure. The machine selection procedures of 2-machine problem can be 

applied for 4-machine case. Each time an assignment is performed, the finish times are 

updated and two smallest f
m’s are selected accordingly. The remaining methodology is 

same as stated above. 
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APPENDIX F: BEST KNOWN SOLUTION TO THE PROBLEM SETS 

 

 

This appendix provides the optimal/best-known solutions to the problem sets of 

tardiness related scheduling problems used for numerical experimentations throughout this 

thesis. These optimal/best-known solutions are obtained from the literature. In the first 

section, reported optimal/best-known solutions (Crauwels et al., 1998, Congram et al., 

2002) for the SMTWT problem are given and followed by our final results for the five seed 

run. In the next section, best known solutions to PMTT problem sets are stated. Two set of 

best-known solutions are given in Appendix F.2, the first set contains the solutions 

obtained by Bilge et al. (2004) and the second set includes the updated best-known 

solutions reported by Anghinolfi and Paolucci (2006). This section also shows the best-

found solutions to PMTT during the numerical studies conducted with HCSS approach and 

the min-max total tardiness values obtained by five seed final run for the each instance of 

the problem sets. 

 

Appendix F.1. Best-Known Solutions to SMTWT 

 

 For the 40-job and 50-job problem sets, the optimal solutions are known for most of 

the instances. The exceptions are indicated. As for the 100-job problem set, due to the 

problem size limitations, only best-known solutions are reported. However, as these 

solutions have not been improved ever since they have been published, there is a great 

evidence that they are actually optimal. 
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Table F.1. Optimal/best-known solutions to the 40-job problem set – SMTWT 

 

40-JOB PROBLEM SET 

Instance Optimal Instance Optimal Instance Optimal Instance Optimal Instance Optimal 

001 913 026 108 051 0 076 0 101 0 

002 1225 027 64 052 0 077 0 102 0 

003 537 028 15 053 0 078 0 103 0 

004 2094 029 47 054 0 079 0 104 0 

005 990 030 98 055 0 080 0 105 0 

006 6955 031 6575 056 2099 081 684 106 0 

007 6324 032 4098 057 2260 082 172 107 516 

008 6865 033 5468 058 4936 083 798 108 3354 

009 16225 034 2648 059 3784 084 617 109 0 

010 9737 035 5290 060 3289 085 776 110 0 

011 17465 036 19732 061 20281 086 10262 111 31478 

012 19312 037 17349 062 13403 087 18646 112 21169 

013 29256 038 24499 063 19771 088 10021 113 27077 

014 14377 039 19008 064 24346 089 25881 114 19648 

015 26914 040 19611 065 14905 090 8159 115 13774 

016 72317 041 57640 066 65386 091 47683 116 46770 

017 78623 042 81462 067 65756 092 43004 117 50364 

018 74310 043 65134 068 78451 093 55730 118 25460 

019 77122* 044 78139 069 81627 094 59494 119 66707 

020 63229 045 66579 070 68242 095 42688 120 69019 

021 77774 046 64451 071 90486 096 126048 121 122266 

022 100484 047 113999 072 115249 097 114686 122 82456 

023 135618 048 74323 073 68529 098 112102 123 75118 

024 119947 049 110295 074 79006 099 98206 124 73041 

025 128747 050 95616 075 98110 100 157296 125 104531 

 

* not solved optimally 

 

 

 

 

 

 

 

 

 

 

 

 



 124 

Table F.2. Optimal/best-known solutions to the 50-job problem set – SMTWT 

 

50-JOB PROBLEM SET 

Instance Optimal Instance Optimal Instance Optimal Instance Optimal Instance Optimal 

001 2134 026 2 051 0 076 0 101 0 

002 1996 027 4 052 0 077 0 102 0 

003 2583 028 755 053 0 078 0 103 0 

004 2691 029 99 054 0 079 0 104 0 

005 1518 030 22 055 0 080 0 105 0 

006 26276 031 9934 056 1258 081 816 106 0 

007 11403 032 7178 057 3679 082 4879 107 1717 

008 8499 033 4674 058 2522 083 973 108 0 

009 9884 034 4017 059 3770 084 508 109 6185 

010 10655 035 6459 060 5904 085 3780 110 1295 

011 43504* 036 34892* 061 25212 086 20751 111 27310* 

012 36378* 037 22739 062 17337 087 36053* 112 15867 

013 45383 038 29467 063 30729 088 28268* 113 35106 

014 51785* 039 49352 064 18082 089 28846 114 15467 

015 38934 040 26423 065 25028 090 15451 115 10574 

016 87902 041 71111 066 76878* 091 89298 116 35727 

017 84260 042 90163 067 85413 092 66340 117 71922 

018 104795 043 84126 068 92756 093 61060 118 65433 

019 89299* 044 123893* 069 77930 094 42453 119 106043 

020 72316 045 79883 070 74750 095 56522 120 101665 

021 214546 046 157505 071 150580 096 177909 121 78315 

022 150800 047 133289 072 131680 097 139591 122 119925 

023 224025 048 191099 073 98494 098 148906 123 101157 

024 116015 049 150279 074 135394 099 179264 124 139488 

025 240179 050 198076 075 135677 100 120108 125 110392 

 

* not solved optimally 
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Table F.3. Best-known solutions to the 100-job problem set (Crauwels et al., 1998) 

 

100-JOB PROBLEM SET 

Instance B.K. Instance B.K. Instance B.K. Instance B.K. Instance B.K. 

001 5988 026 8 051 0 076 0 101 0 

002 6170 027 718 052 0 077 0 102 0 

003 4267 028 27 053 0 078 0 103 0 

004 5011 029 480 054 0 079 0 104 0 

005 5283 030 50 055 0 080 0 105 0 

006 58258 031 24202 056 9046 081 1400 106 0 

007 50972 032 25469 057 11539 082 317 107 1193 

008 59434 033 32964 058 16313 083 1146 108 0 

009 40978 034 22215 059 7965 084 136 109 232 

010 53208 035 19114 060 19912 085 284 110 0 

011 181649 036 108293 061 86793 086 66850 111 159138 

012 234179 037 181850 062 87067 087 84229 112 174377 

013 178840 038 90440 063 96563 088 55544 113 91171 

014 157476 039 151701 064 100788 089 54612 114 168297 

015 172995 040 129728 065 56510 090 75061 115 70190 

016 407703 041 462324 066 243872 091 248699 116 370631 

017 332804 042 425875 067 401023 092 311022 117 324437 

018 544838 043 320537 068 399085 093 326258 118 246243 

019 477684 044 360193 069 309232 094 273993 119 293576 

020 406094 045 306040 070 222684 095 316870 120 267326 

021 898925 046 829828 071 640816 096 495516 121 471214 

022 556873 047 623356 072 611362 097 636903 122 570459 

023 539716 048 748988 073 623429 098 680082 123 397029 

024 744287 049 656693 074 584628 099 622464 124 431115 

025 585306 050 599269 075 575274 100 449545 125 560754 

 

B.K. denotes Best- Known 
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Table F.4. Best-known solutions to the 100-job problem set (Congram et al., 2002) 

 

100-JOB PROBLEM SET 

Instance B.K. Instance B.K. Instance B.K. Instance B.K. Instance B.K. 

001 5988 026 8 051 0 076 0 101 0 

002 6170 027 718 052 0 077 0 102 0 

003 4267 028 27 053 0 078 0 103 0 

004 5011 029 480 054 0 079 0 104 0 

005 5283 030 50 055 0 080 0 105 0 

006 58258 031 24202 056 9046 081 1400 106 0 

007 50972 032 25469 057 11539 082 317 107 1193 

008 59434 033 32964 058 16313 083 1146 108 0 

009 40978 034 22215 059 7965 084 136 109 232 

010 53208 035 19114 060 19912 085 284 110 0 

011 181649 036 108293 061 86793 086 66850 111 159123 

012 234179 037 181850 062 87067 087 84229 112 174367 

013 178840 038 90440 063 96563 088 55544 113 91169 

014 157476 039 151701 064 100788 089 54612 114 168266 

015 172995 040 129728 065 56510 090 75061 115 70190 

016 407703 041 462324 066 243872 091 248699 116 370614 

017 332804 042 425875 067 401023 092 311022 117 324437 

018 544838 043 320537 068 399085 093 326258 118 246237 

019 477684 044 360193 069 309232 094 273993 119 293571 

020 406094 045 306040 070 222684 095 316870 120 267316 

021 898925 046 829828 071 640816 096 495516 121 471214 

022 556873 047 623356 072 611362 097 636903 122 570459 

023 539716 048 748988 073 623429 098 680082 123 397029 

024 744287 049 656693 074 584628 099 622464 124 431115 

025 585306 050 599269 075 575274 100 449545 125 560754 
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Table F.5. Min-max best-found solution for five seed experimentation (40-job) SMTWT 

 

40-JOB PROBLEM SET 

Instance Min Max Instance Min Max Instance Min Max 

001 913 913 043 65134 65134 085 776 776 

002 1225 1225 044 78139 78139 086 10262 10262 

003 537 537 045 66579 66579 087 18646 18706 

004 2094 2094 046 64451 64451 088 10027 10027 

005 990 990 047 113999 113999 089 25881 25881 

006 6955 6955 048 74323 74323 090 8159 8159 

007 6324 6324 049 110295 110295 091 47683 47683 

008 6865 6865 050 95616 95616 092 43004 43004 

009 16225 16310 051 0 0 093 55730 55730 

010 9737 9737 052 0 0 094 59494 59494 

011 17465 17465 053 0 0 095 42688 42688 

012 19312 19312 054 0 0 096 126048 126048 

013 29256 29279 055 0 0 097 114686 114686 

014 14432 14432 056 2099 2099 098 112102 112102 

015 26914 26914 057 2260 2260 099 98206 98206 

016 72317 72317 058 4936 4936 100 157296 157296 

017 78623 78623 059 3784 3784 101 0 0 

018 74310 74373 060 3289 3289 102 0 0 

019 77122 77432 061 20283 20434 103 0 0 

020 63229 63368 062 13403 13403 104 0 0 

021 77774 77774 063 19771 19771 105 0 0 

022 100484 100484 064 24346 24498 106 0 0 

023 135618 135618 065 14905 15341 107 516 516 

024 119947 119947 066 65386 65386 108 3354 3354 

025 128747 128747 067 65756 65756 109 0 0 

026 108 108 068 78451 78451 110 0 0 

027 64 64 069 81688 81688 111 31478 31478 

028 15 15 070 68242 68242 112 21169 21169 

029 47 47 071 90486 90486 113 27077 27077 

030 98 98 072 115249 115249 114 19648 19678 

031 6575 6575 073 68529 68529 115 13774 13774 

032 4098 4099 074 79013 79013 116 46770 46929 

033 5468 5468 075 98110 98110 117 50364 50384 

034 2648 2648 076 0 0 118 25460 25460 

035 5290 5290 077 0 0 119 66707 66707 

036 19732 20095 078 0 0 120 69042 69042 

037 17349 17349 079 0 0 121 122266 122266 

038 24563 24630 080 0 0 122 82456 82456 

039 19008 19008 081 684 684 123 75118 75379 

040 19611 19611 082 172 172 124 73041 73041 

041 57640 57640 083 798 798 125 104531 104531 

042 81462 81462 084 617 617    
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Table F.6. Min-max best-found solution for five seed experimentation (50-job) SMTWT 

 

50-JOB PROBLEM SET 

Instance Min Max Instance Min Max Instance Min Max 

001 2134 2134 043 84126 84126 085 3780 3796 

002 1996 1996 044 123893 123893 086 20751 20828 

003 2583 2583 045 79883 79883 087 36053 36053 

004 2691 2691 046 157505 157505 088 28671 28671 

005 1518 1518 047 133289 133289 089 28846 28849 

006 26409 26509 048 191099 191099 090 15451 15547 

007 11403 11403 049 150279 150279 091 89324 89474 

008 8499 8610 050 198076 198076 092 66340 66340 

009 9918 9918 051 0 0 093 61060 61225 

010 10655 10655 052 0 0 094 42453 42564 

011 43504 43504 053 0 0 095 56632 56726 

012 36459 36941 054 0 0 096 177909 178115 

013 45383 45383 055 0 0 097 139591 139591 

014 51785 51785 056 1258 1258 098 148906 148906 

015 38934 39293 057 3679 3693 099 179264 179274 

016 87902 87902 058 2522 2564 100 120108 120108 

017 84260 84375 059 3770 3770 101 0 0 

018 104795 104795 060 5904 5904 102 0 0 

019 89299 89299 061 25738 25738 103 0 0 

020 72316 72316 062 17515 17644 104 0 0 

021 214546 214546 063 30737 30737 105 0 0 

022 150800 150800 064 18082 18082 106 0 0 

023 224025 224025 065 25049 25049 107 1717 1717 

024 116015 116015 066 76878 76878 108 0 0 

025 240179 240179 067 85501 85920 109 6185 6185 

026 2 2 068 92897 93446 110 1295 1295 

027 4 4 069 77933 78031 111 27310 27389 

028 755 755 070 74750 74932 112 15867 15867 

029 99 99 071 150580 150580 113 35106 35106 

030 22 22 072 131680 131681 114 15505 15505 

031 9934 9934 073 98494 98494 115 10574 10574 

032 7260 7322 074 135463 135463 116 35727 35727 

033 4674 4674 075 135677 135677 117 71927 71927 

034 4017 4017 076 0 0 118 65433 65433 

035 6459 6459 077 0 0 119 106043 106116 

036 34892 34892 078 0 0 120 101667 101672 

037 22740 22783 079 0 0 121 78315 78315 

038 29492 29492 080 0 0 122 119925 119925 

039 49352 49352 081 816 816 123 101157 101157 

040 26423 26423 082 4879 4879 124 139488 139488 

041 71111 71111 083 973 973 125 110392 110392 

042 90163 90334 084 508 508    
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Table F.7. Min-max best-found solution for five seed experimentation (100-job) SMTWT 

 

100-JOB PROBLEM SET 

Instance Min Max Instance Min Max Instance Min Max 

001 5988 6066 043 320640 321363 085 284 284 

002 6170 6170 044 360193 360193 086 67166 67240 

003 4286 4336 045 306624 307754 087 84303 84454 

004 5011 5011 046 829867 829899 088 55931 56370 

005 5283 5283 047 623362 623441 089 55808 57792 

006 58258 58258 048 749018 749053 090 75223 75229 

007 51318 52104 049 656713 656715 091 248823 248841 

008 59809 60498 050 599269 599375 092 311514 311557 

009 41005 41492 051 0 0 093 326406 326535 

010 53663 53923 052 0 0 094 274073 274200 

011 183665 185688 053 0 0 095 317764 319142 

012 236528 237477 054 0 0 096 495657 496057 

013 180988 182925 055 0 0 097 636903 636903 

014 157946 159314 056 9046 9046 098 680104 680194 

015 174195 175378 057 11740 12425 099 622491 622633 

016 407722 408283 058 16313 17156 100 449613 449613 

017 333415 335722 059 7965 7965 101 0 0 

018 545801 545801 060 19919 19919 102 0 0 

019 479272 480333 061 86915 87928 103 0 0 

020 406675 406869 062 87240 90176 104 0 0 

021 898925 898925 063 97315 97357 105 0 0 

022 556873 556873 064 102826 106471 106 0 0 

023 539716 539716 065 58831 60108 107 1193 1193 

024 744287 744339 066 243942 243942 108 0 0 

025 585306 585306 067 401617 401617 109 232 232 

026 8 8 068 399140 399158 110 0 0 

027 718 718 069 309256 309338 111 159123 159571 

028 27 27 070 222794 222794 112 176448 177522 

029 480 480 071 640845 640845 113 91389 91777 

030 50 50 072 611362 611374 114 168453 168488 

031 24435 24773 073 623429 623559 115 70763 71301 

032 25720 26726 074 584632 584733 116 370790 370840 

033 33612 33740 075 575283 575297 117 324762 325487 

034 22215 23250 076 0 0 118 246697 247688 

035 19490 20016 077 0 0 119 293659 293666 

036 108293 109910 078 0 0 120 267350 267434 

037 182053 185246 079 0 0 121 471499 471828 

038 90747 92576 080 0 0 122 570485 570591 

039 152706 155157 081 1400 1400 123 397197 397908 

040 131062 132165 082 317 317 124 431172 431208 

041 462414 462571 083 1146 1146 125 560858 561644 

042 425897 426207 084 136 136    
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Appendix F.2. Best-Known Solutions to PMTT 

 

 In Table F.8 and Table F.9, the column U.B.K. shows the updated best-known 

solutions found by Anghinolfi and Paolucci (2006), column B.K. shows the best-known for 

Bilge et al. (2004) and finally last column HCSS stands for our best-found solutions which 

are visited by HCSS approach during the numerical experimentations. The values reported 

in the tables are multiplied by 100 for a better representation. 

 

Table F.8. Best-known solution to 40-job problem set – PMTT 

 

40-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 

Instance U.B.K.* B.K.** HCSS*** Instance U.B.K. B.K. HCSS 

01 14071 14079 14079 01 0 0 0 

02 3946 3946 3946 02 0 0 0 

03 3335 3335 3335 03 0 0 0 

04 10095 10095 10095 04 0 0 0 

05 19662 19695 19703 05 0 0 0 

06 26372 26372 26372 06 0 0 0 

07 18565 18565 18565 07 914 914 914 

08 37509 37513 38073 08 26 48 48 

09 1055 1055 1055 09 0 0 0 

10 1032 1038 1038 10 0 0 0 

11 1726 1726 1726 11 0 0 0 

12 8199 8199 8199 12 0 0 0 

13 8382 8382 8528 13 2681 2807 2807 

14 5839 5860 5860 14 2704 2704 2704 

15 21561 21563 21615 15 1382 1388 1418 

16 43395 43502 43418 16 0 0 0 

17 15816 15816 16096 17 0 0 0 

18 5866 5866 5866 18 0 0 0 

19 27258 27258 27258 19 0 0 0 

20 2887 2887 2887 20 0 0 0 

 

 

 * U.B.K. denotes updated best-known solution found by Anghinolfi and Paolucci  

 **   B.K. denotes best-known solution found by Bilge et al. 
*** HCSS denotes best-found solutions which are visited by HCSS approach during   

the numerical experimentations 
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Table F.9. Best-known solution to 60-job problem set – PMTT 

60-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 

Instance U.B.K. B.K. HCSS Instance U.B.K. B.K. HCSS 

01 14205 14205 14205 01 0 0 0 

02 6528 6528 7059 02 3219 2737 4421 

03 17296 17296 17296 03 59 155 155 

04 72330 72406 74132 04 0 0 0 

05 34568 34640 37542 05 2591 2591 2792 

06 50138 50492 53000 06 364 339 364 

07 26535 26660 26660 07 4744 4744 4773 

08 8030 8042 8051 08 0 0 0 

09 16739 16790 16790 09 0 0 0 

10 20899 20943 22104 10 4560 4626 4687 

11 11204 11204 11204 11 4329 4423 4423 

12 14080 14080 14080 12 0 0 0 

13 12806 12806 13170 13 0 0 0 

14 6793 6874 6834 14 0 0 0 

15 20017 20017 20221 15 0 0 0 

16 23981 23883 23981 16 49 58 53 

17 12222 12222 12850 17 0 0 0 

18 38642 38948 38642 18 0 0 0 

19 133 164 133 19 0 0 0 

20 23511 23514 26622 20 0 0 0 

 

Table F.10. Min-max best-found solution for five seed experimentation (40-job) PMTT 

40-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 

Instance Min Max Instance Min Max 

01 14079 14079 01 0 0 

02 3946 3946 02 0 0 

03 3335 3335 03 0 0 

04 10095 10095 04 0 0 

05 19703 19863 05 0 0 

06 26372 26372 06 0 0 

07 18565 18565 07 914 1189 

08 38149 39465 08 48 48 

09 1055 1055 09 0 0 

10 1038 1038 10 0 0 

11 1726 1726 11 0 0 

12 8199 8199 12 0 0 

13 8528 8888 13 2807 3070 

14 5860 5868 14 2704 2898 

15 21615 22655 15 1418 1692 

16 43418 43429 16 0 0 

17 16096 16096 17 0 0 

18 5866 5866 18 0 0 

19 27258 27258 19 0 0 

20 2939 2939 20 0 0 
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Table F.11. Min-max best-found solution for five seed experimentation (60-job) PMTT 

 

60-JOB PROBLEM SET 

2-MACHINE 4-MACHINE 

Instance Min Max Instance Min Max 

01 14205 14205 01 0 0 

02 7059 7120 02 4421 4847 

03 17296 17296 03 155 155 

04 74132 74132 04 0 0 

05 37542 37542 05 2792 2874 

06 53000 54698 06 364 401 

07 26660 26662 07 4773 4886 

08 8051 8051 08 0 0 

09 16790 16790 09 0 0 

10 22104 22649 10 4687 4878 

11 11204 11204 11 4423 4423 

12 14080 14080 12 0 0 

13 13170 13485 13 0 0 

14 6834 6882 14 0 0 

15 20221 20450 15 0 0 

16 23981 24592 16 53 58 

17 12850 12850 17 0 0 

18 38642 38948 18 0 0 

19 133 133 19 0 0 

20 26622 26622 20 0 0 
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