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ABSTRACT 

Analog neural networks exhibit a potential for proper/suitable hardware imple­

mentation of artificial neural networks. Their advantages such as small size, low power 

and high speed, however, are seri~:>usly questioned/confronted by the difficulty in the 

training of analog neural network circuitry. Especially, hardware training by software, 

i.e., training of the circuitry by software based on models, so as to avoid on-chip and 

chip in-the-loop training methods, is threatened by circuit nonidealities and variations 

at outputs of identical blocks. The performance of the analog neural network is severely 

degraded in the presence of those unwanted effects caused mainly by statistical varia­

tions in the production process. We propose a new paradigm for the backpropagation 

algorithm in hardware training of multilayer perceptron type analog neural networks. 

The variations at outputs of analog neural network circuitry are modeled based on the 

transistor level mismatches occurring between identically designed transistors. Those 

variations can be used as additive noise during the training, and it has been shown that 

this will increase fault tolerance of the trained neural netw~rk drastically. The method 

has been compared to the method of injecting random noise, and our method outper­

forms the latter where injecting random noise is seen to be inadequate for establishing 

a satisfactory level of fault tolerance in the presence of mismatch based variations. The 

concept of mismatch based variations has been verified by measurements on our test 

chip. 
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OZET 

Analog sinir aglan, yapay sinir aglanmn donamm bazmda kullamlabilir olarak 

ger~eklenmesi i~in potansiyel olu§turmaktadlrlar. Ku~uk alan kaplamalan, du§uk giic; 

harcamalan ve hlZh ~all§malan gibi avantajlan kar§lsmda analog sinir agl devrelerinin 

egitimindeki zorluklar onemli bir engel olu§turmaktadlrlar. Klrmlk-iistii egitim veya 

bilgisayar-klrmlk dongiisii egitimi yerine kullamlabilecek olan donammm yazlhm ba­

zmda egitimi, devrelerin ideal olmayan karakteristiklerinden ve birbirinin aym olarak 

tasarla~an devrelerin ~lkl§larmdaki sapmalardan kotu olarak etkilenmektedir. Uretim 

siirecindeki istatistiksel sapmalardan kaynaklanan bu istenmeyen etkiler, analog sinir 

agl devrelerinin ba§anmml ciddi miktarda du§urmektedirler. Bu tezde ~ok katmanh 

perseptron turii analog sinir agl devrelerinin donamm bazmda egitiminde geriye yaYlhm 

yordaml i~in yeni bir yontem onerilmektedir. Analog sinir agl devrelerinin ~lkl§larmdaki 

sapmalar birbiriyle aym tasarlanml§ transistorlerdeki uyumsuzluklara dayandlnlarak 

modellenmi§tir. Bu sapmalar egitim slrasmda toplamr giiriiltii olarak kullamlml§ ve 

bunun egitilen sinir agmm hataya kar§l dayamkhhgml onemli oranda artlrdlgl goste­

rilrni§tir. Onerilen yontem, rasgele giiriiltii katIhmlyla kar§lla§tInlffil§ ve daha ba§anh 

oldugu gozlemlenmi§tir. Transistorlerdeki uyumsuzluklara bagh olan sapmalarm var­

hgmda, rasgele giiriiltii katIhmlyla yapllan egitimin hataya kar§l yeterince dayamkh 

olrnadlgl goriilmii§tiir. Sapmalann uyumsuzluklara bagh oldugu iirettirilen klrmlklar 

iizerinde yapllan ol~iimlerle dogrulanml§tIr. 
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1. INTRODUCTION 

Designing intelligent machines which can think like a human being has been 

one of the most enthusiastic dreams of mankind. With the advance of science and 

technology in an exponential rate during the last 150 years, great steps have been taken 

towards that goal. Automatic machines, robots mimicking human motion, research in 

artificial intelligence developing methods for symbolic computation are examples of 

these efforts. During the course of incorporating intelligence into machines, almost all 

of the intelligent algorithms have been developed by considering the human brain: 

• How does the brain receive data from outside world through sensors? 

• How does the brain manipulate sensory data into information? 

'. How does the brain store and process the information to make assertions? 

This naturally required a thorough understanding of how the brain actually works, 

which is still not achieved yet. However, studies on the structure of human brain 

revealed that the brain is composed of approximately 1011 processing nodes (neurons) 

connected massively via approximately 1015 synapses [1, 2]. This huge information 

processing network is known to operate based on pulses (electrical signals of magnitude 

in the order of 100 ni. V), where each neuron attains a relatively low activity level (10-

100 spikes per second). However, the massive parallelis~ in the structure and the 

efficiency in power consumption result in a system which can perform six orders of 

magnitude more operations with eight orders of magnitude less energy with respect 

to a state of the art computer system of today. Beyond the evident superiority of 

human neural networks in terms of processing power and energy, they are also capable 

of performing difficult tasks such as classification and recognition easily. Cognitive 

problems like spoken phoneme recognition or classification of handwritten digits require 

that the system (brain) should be able to learn from examples, which is not an easy task 

for a sequential software code implementing a certain algorithm since such problems 

usually do not possess well-defined algorithms. The structure of brain as a neural 

network attracted interest for realizing artificial neural networks (ANN) which would 
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mimic/simulate/emulate the interconnection structure and dynamics of human neurons 

so as to enable learning for such difficult tasks. 

The primary advantage in the realization of ANN is that they do not describe 

any algorithm for the direct solution of the problem at hand, whether it be a function 

approximation or classification problem. Rather, ANN learn from examples either 

supplied with a teacher indicating the correct solution (supervised) or the level of 

success (reinforcement) or supplied without any external feedback (unsupervised). In 

the latter case, ANN simply detect the inherent dynamics of the system from the 

sample data. The essential requirement for ANN is, however, that ANN should be 

able to function properly when new, previously unknown input data are applied to the 

network. This is the so called generalization property of ANN. 

Based on three main criteria given below, several types of ANN models have 

been formulated in the literature [3, 4, 5]: 

• presence of a teacher during learning {supervised, reinforcement, unsupervised}; 

• type of learning algorithm {Hebbian, gradient descent based, Winner-Take-All}j 

• type of connection structure {feedforward, feedback, bidirectional}. 

In this thesis, feedforward neural networks with supervised, gradient descent based 

learning are taken into consideration; however, some of the results are equally well 

applicable to other structures. This will be highlighted where appropriate. 

Formally, a neuron in ANN is a processing unit with several variable inputs 

Xl, X2,"', Xn and (usually) one fixed bias (threshold) of value -1, denoted by Xo 

(FIGURE 1.1). The output y of the neuron is a weighted sum of its inputs, passed 

through a (usually) nonlinear activation function, <p, 

(1.1) 
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where Wi is the weight associated with the input Xi. This type of a neuron is also 

called a perceptron. A feedforward, multilayer perc~ptron (MLP) network is a layered 

structure consisting of several number of neurons in each layer (FIGURE 1.2) where the 

external inputs are applied to the neurons in the first layer and subsequently, outputs 

of each layer are fed to inputs of neurons in the next la.yer. Outputs of the last layer 

are the external outputs. Layers which do not have any direct connection to external 

world are called hidden layers. Even though there is no theoretical limitation on the 

number of hidden layers in a MLP, usually a maximum of two hidden layers are used in 

practice. In this thesis, fully connected MLP structures are considered, that is, outputs 

of each neuron in any layer except the output layer, are connected to to each neuron in 

the next la.yer. The overall output of the MLP depends on the inputs and the weights. 

Given a training set X = {xP, rP}p, where rP is the desired output vector corresponding 

to the input vector xP , learning for the MLP denotes determination of the optimal set 

of values for the weights so as to achieve an acceptable level of approximation to desired 

values. The convergence criterion is usually expressed in terms of the rms (root-mean­

square) error for the training set given as, 

1 pd. . - L L(rj - yj)2 
pd i=1 j=1 

(1.2) 

where d is the dimension of the output vector. Learning is based on applying the input 

samples sequentially to the MLP and calculating the outputs where the weights are 

initialized to small random numbers. Those outputs are' compared to target values 

and the free parameters of the MLP (weights) are updated according to the gradient 

descent algorithm where sensitivity of output error with respect to each weight value 

is used in the update as follows, 

aE 
6..w = -"l­aw (1.3) 

where E = (rP - yP) is the error at output of a single neuron for the pth pattern and 

7J is the learning rate. The essential principle underlying the backpropagation (BP) 

of the output error using gradient descent is that the error forms a hypersurface in 

the weight space and the global minimum of this surface (where all partial derivatives 
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are zero), is the optimal solution if it exists. It should be kept in mind that the error 

surface may also possess local minima where the aQove condition is met, hence, the 

backpropagation algorithm usually stops at a local minimum depending on the initial 

weight set. Since the full mathematical treatment of the error surface for a MLP with 

hundreds of weights is very elaborate, it is of little concern if a local minimum satisfying 

the convergence criteria is reached. As there is no guarantee that the algorithm will 

converge to an acceptable level of error, it may be necessary to restart the process with 

a new set of initial weights and/or training parameters (e.g. learning rate, momentum 

term, decay factor). 

INPUTS 
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-- .. ------ .... 
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o 
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> 

i::::::::::> . . . . 

FIGURE 1.2. The general structure of the multilayer perceptron. 

In this the'sis, online weight update scheme is employed, that is, updates take 

place after every sample pattern is applied to the MLP. In the other alternative, batch 

update, the update terms are accumulated and the actual updates in the weight values 

are performed after the epoch is completed. An epoch designates the application of all 
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training samples to the MLP network once. 

As models of information processing systems, ANN have been implemented by 

software or hardware in a variety of disciplines for many purposes. High energy physics 

(particle detection), engineering, financial markets (time series prediction, credit card 

fraud detection), medicine [6], computer science (handwritten digit recognition, speech 

processing [7]) and many other daily life applications [8] can be cited as examples of 

ANN usage. Software implementations of ANN, however, do not utilize the parallelism 

of processing unless special purpose multiprocessor systems are used [9]. As it happens, 

"simulation" of ANN models may require long training and/or execution times. The 

term long may designate periods of several minutes to several weeks on mainframe 

computers depending on the complexity of the problem which can be described by 

several factors as, 

• number of independent variables (inputs); 

• number of training samples; 

• difficulty of the task to be learned. 

On the other hand, the execution time (computation of outputs for a given, trained 

network) may also be considered as being long depending on the need: In a particle 

detector system or a fingerprint recognition system, classification of signals have to be 

achieved in real time, that is, a software implementation using a dedicated micropro­

cessor would not be fast enough [10]. 

Use of dedicated hardware for ANN have also emerged as a solution offering the 

following advantages over simulation by general purpose computers: 

• independence from a host computer; 

• faster learning and forward operation in real time; 

• easier interfacing with the outer VI!orld in case of analog implementations; 
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where several disadvantages also exist for dedicated ANN hardware implementations 

which adversely affect their use: 

• necessity of large boards/chips for practical ANN applications; 

• nonidealities in ANN hardware (especially in analog implementations) and lim­

ited resolution of building blocks; 

• difficulty in training due to the nonidealities and the probable necessity of a host 

computer for training; 

• storage of weights (digital storage requires memory, analog storage has program­

ming and decay problems [11]). 

There is an important decision to be made by choosing analog or digital hard­

ware: The compactness and speed of analog systems versus the predictable accuracy 

and ease of programming of digital systems. On the other hand, the area of ANN 

hardware is not yet as commercialized as general purpose processors, that is why spe­

cific digital ANN hardware can not compete with the advances in the technology and 

architecture of general purpose computers. As digital hardware for ANN is usually 

specific for an algorithm, the designer can not utilize the flexibility of software avail­

able on a general computer [12]. Hardware realizations of ANN are, however, still very 

promising since they can exceed computational capabilities of software and advances 

in VLSI (Very Large Scale Integration) technology may offer low power, high density 

ANN chips operating at higher frequency so that ANN blocks may be integrated to the 

so called SOC (System-On-Chip) if problems of training, weight storage etc. are solved. 

The aim of this thesis is to make contributions to realization of analog ANN in VLSI 

by addressing system level problems in hardware training of analog ANN circuitry. 

The main attempt of the thesis is to suggest a new paradigm of hardware learning by 

software based on models of analog building blocks. The methodology suggested takes 

hardware related nonidealities and process dependent variations into account so that a 

robust training of analog ANN for a given problem can be achieved solely on software 

during the design phase of the network. The main emphasis will be on feedforward, 
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multilayer perceptron (MLP) type networks realized in MOS (Metal-Oxide Semicon­

. duct or ) technology and trained by the backpropagation algorithm. CHAPTER 2 will 

consider hardware implementations of ANN where advantages and disadvantages of dif­

ferent approaches will be compared. Building blocks for a general analog ANN will be 

described in CHAPTER 3 where special emphasis will be put on the prototype analog 

neural network designed and produced during the course of this thesis. CHAPTER 3 

also describes the silicon assembler for analog neural networks which forms an essential 

part of a complete synthesis system. Hardware training for analog ANN is discussed in 

CHAPTER 4 where different approaches are compared. It also describes BP algorithm 

as adapted for hardware training of analog ANN. Different modeling schemes for build­

ing blocks are compared. System level problems such as effects of mismatches, their 

modeling and incorporation intoBP training will be studied in CHAPTER 5 where 

theoretical derivations will be verified by measurement results. Finally, CHAPTER 6 

will ,conclude the thesis by summarizing the results and contributions of the thesis. 
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Neural networks have gained popularity in the last few years due to their success 

in diverse applications. Many applications require real time or very fast operation. 

This is possible only with dedicated neural network hardware. Due to the inherently 

parallel nature of neural networks, they are suitable for VLSI implementation. These 

implementations may be digital, analog, hybrid of the two, pulse based, or optical. This 

chapter will constitute a survey for the existing hardware realizations of ANN. Then, 

a comparison between the two major styles of analog and digital implementations will 

be done. The aim of the thesis is to make clear that analog ANN have the potential 

of realizing the SOC concept by solving the problems associated with the training of 

the ~nalog circuitry. 

2.1. Examples of Existing Hardware Implementations 

Hardware implementations of ANN can be classified into the following cate-

gones: 

• neurochips (digital, analog, mixed signal)j 

• accelerator boards for computers (using neurochips or special purpose processors 

such as digital signal processors)j 

• neurocomputers (using neurochips or general purpose processors). 

Different realizations of neurochips suitable for MLP architecture in hardware 

are cited in TABLE 2.1 based on data from [1, 13, 14, 15] about commercially available 

chips and results of research papers [16, 17]. Moreover, examples of hardware realiza-
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tions for different types of ANN other than MLP also exist. They include analog imple­

mentations of cellular neural networks [18, 19], bio-inspired processors implementing 

cellular neural networks [20], charge based [21] and digital [22] Hamming classifiers, 

charge based [23], analog [24], digital [25], and mixed signal [26] Kohonen map cir:­

cuits, analog bidirectional associative memory [27], current mode Winner-Take-All [28] 

circuits, and analog ART1 systems [29]. 

TABLE 2.1. Commercially available neurochips suitable for MLP architecture. 

Type Name Company Precision Neurons Synapses 
(bits) 

Analog ETANN Intel 6 64 10280 
NLX-420 NeuraLogix 1-16 16 off-chip 
100-NAP HNC 32 100 off-chip 

WSI Hitachi 8 144 off-chip 
- Hitachi 8 1024 106 

- Lockheed 5 256 2048 
Digital N64000 Adaptive 1-16 64 128K 

Solutions 
MT19003 MCE . 13 8 off-chip 
MD-1220 Micro neuron: 1 1 8 

Devices weights: 16 
Lneuro-1 Philips 1-16 16 64 \ 

I 

MA-16 Siemens 16 16 256 
TOTEM - neuron: 16 32 512 

weights:8 
Hybrid ANNA AT&T neuron:3 16-256 4096 

weights:6 
Neuro- Mesa neuron:6 6 426 

classifier Research weights:5 
RN-200 Ricoh - 16 256 

Other examples of hardware ANN can be found in [30] for digital implementation 

and the works in [31, 32, 33, 34, 35, 36] represent analog realizations. Pulse coded 

(pulse stream) ANN hardware can be found in [37, 38, 39,40,41] which combine the 

advantages of analog and digital circuitry in an asynchronous operation mode yielding 

. compact designs with simple interfaces. A recent special issue displays a wide interest in 

pulse coupled neural networks and their implementation [42]. Optical implementations 
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of analog ANN hardware have also appeared in the literature [43, 44, 45] which have 

been applied successfully to classification problems; however, the difficulty of designing 

optical systems and integrating them onto a chip, has prevented a wider usage of optical 

networks . 

. Accelerator boards are special purpose hardware systems suitable for imple­

menting the ANN in conjunction with a host computer. They usually contain com­

mercially available or custom designed neurochips mentioned in TABLE 2.1 for the 

forward operation whereas the data acquisition, storage, and training are carried out 

by the host computer. Examples of such boards have been used in several applications 

such as high-speed character recognition using ANNA chip [46], reverse modeling of 

microwave circuits using digital processors [47], and real time meteorological data ac­

quisition using the TOTEM chips [17]. The only analog neural network chip which 

was commercially available is the ETANN chip from Intel [48]. There has been an 

extensive use of this chip in the field of particle physics for several applications: Drift 

chamber tracking [10, 49] and particle identification [50] where real time responce is of 

utmost importance. Accelerator boards using ETANN chips have been used for these 

applications. A cascadable VME-bus based analog neural network module of [51] has 

been one of the most successful applications of the ETANN chip. However, this chip 

has been plagued by limited resolution in storing the synapse weights in that the long 

time resolution of the weights is not more than five bits. Implementing Madaline Rule 

III [52] has been suggested for the ETANN chip; however, this requires a host computer 

and external hardware besides many timing problems which limit the performance of 

training. Problems like these have prevented the success of this chip on the market 

so that commercial applications using this chip and similar ones have been limited. 

Several applications reported in the literature have demonstrated successful operation, 

whereas other reported applications have suffered from the aforementioned problems. 

, Another major deficiency of this chip is the issue of cyclability in the weight storing 

EAROM's. 
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Neurocomputers are dedicated systems made up of special neurochips and/or 

general purpose processors which form a complete training and operation system. They 

usually require specific programming environments and in that sense they are called 

computers. Commercial products exist [1]: CN APS from Adaptive Solutions employing 

N64000 chips contains 64 processing nodes connected in SIMD (Single Instruction 

Multiple Data) mode; Siemens' SYNAPSEI neurocomputer uses eight MA-16 chips in 

a systolic array architecture; SNAP from RNC utilizes two VME cards containing four 

lOO-NAP chips each. Other examples of neurocomputers are also developed for specific 

purpose applications utilizing custom digital chips realizing ANN [53, 54, 55]. 

As neurocomputers and accelerator boards are alternatives to expensive super­

computers or slow general purpose computers, they are usually developed for specific 

applications. There is no general methodology for hardware implementation of ANN. 

The problems of ANN chips such as difficulty of training due to nonidealities, large 

chip sizes of digital realizations and weight storage have to be solved so as to realize 

easy-to-use ANN blocks which can be incorporated as a sub-system into more complex 

systems. 

2.2. Analog versus Digital Implementation 

Many digital implementations have been reported in the literature owing to 

the fact that they offer several advantages such as predictable accuracy, high noise 

immunity, ease of multiplexing communication and computation, availability of well­

established tools for digital design, and ease of interfacing with other digital systems 

, [56]. Analog implementations, on the other hand, have many advantages such as 

small size, high speed, and straightforward interfacing with the outside world which is 

analog by nature [57]. In the following, analog and digital realizations of ANN will be 

compared based on several criteria: layout area (transistor count), power consumption, 

ease of training. Synapses, which are the most common elements in a neural network, 
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can be represented at the circuit level by multipliers. Parallel digital multipliers require 

a very large area compared to analog multipliers of comparable precision which use less 

than 20 transistors. For instance, parallel digital multipliers of 8x8 input word lengths 

have transistor counts on the order of at least several thousand [58]. Serial digital 

multipliers are smaller than their parallel counterpartsj however, they are much slower. 

On the other hand, the speed of an analog multiplier is limited mostly by its settling 

time. When one looks at neurons, a similar picture can be seen. Again, an adder 

and the nonlinearity can be realized by less than 20 transistors in the analog domain, 

whereas the same operations require transistor counts which are at least an order of 

magnitude larger in the digital domain assuming that multiple input parallel adders and 

efficient look-up tables for the nonlinearity are utilized [48, 59, 60, 61]. 'A comparison 

carried out in [1] indicates that analog neural processors are much more superior than 

their digital counterparts in terms of power, area and transistor count. The details of 

the comparison are repeated in TABLE 2.2. 

TABLE 2.2. Comparison of ANN realizations in software, digital and analog VLSI. 

mIcroprocessor digital analog 
technology 0.75J.Lm CMOS 0.8J.Lm CMOS 0.8J.Lm CMOS 

operational speed 200 MHz 60 MHz 2-5 MHz 
accuracy(bits) 64 16 7-8 

chip size (mm2
) 16.8x 13.9 12.38 x 12.90 10 x 10 

power dissipation 30W @ 3.3 V 2.4W @ 5V 5W'@+/-5V 
# of transistors 1.68M 930K 160K 

Target connection 32E12 Connections Per Second (32GCPS) 
# of chips required 60 12 1 
power consumption 1800 W 28.8 W 5W 

total silicon area 14011mm2 1916mm2 100mm2 

# of transistors 101M 11.2M 160K 

Use of MOS transistors in subthreshold operation region for analog ANN con­

stitute another advantage in terms of power dissipation [62]. Combining subthresh­

old operation with current-mode analog building blocks which also do not require 

transconductance amplifiers, neural systems have been constructed in a compact form 

[63, 64, 65]. The storage of weights as analog values on a floating gate transistor 
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structure also allows a high density implementation for ANN [32, 66, 67, 68]. Despite 

their evident advantages over digital implementatio~s, analog implementations have 

not been accepted as a mature product which can be used as off-the shelf compo­

nents. The main reasons for the lack of success in analog ANN implementations can 

be classified as, 

• circuit based problems (circuit nonidealities, mismatches between identical chips, 

difficulty of full-custom analog design, weight storage and update, interfacing with 

other computational resources); 

• training based problems (use of extra hardware and/or software for training, 

limitations on the algorithms due to circuit nonidealities). 

It can also be said that the problems mentioned above can not be considered separately: 

The training algorithms have to be modified so as to incorporate circuit based features, 

whereas the circuits have to be designed such that they allow a meaningful training to 

be done. 

In the literature, analog neural network implementations have been rather ad 

hoc in that very few, if any, have explored the constraints that circuit non-idealities 

bring about. Examples are nonlinear synapses [69, 70], neurons that deviate from ideal 

functions, or errors and limitations in storing weights [71, 72, 73]. It has previously been 

shown that multiplier nonlinearity can be a very severe problem even for nonlinearity 

factors of less than 10 per cent for many applications [68, 69, 70, 74, 75]. Limited 

precision in storing weights has also proven to be a crucial problem in analog neural 

network design. The work in this area has been mostly limited to predicting these 

effects either through simulation or through theoretical analysisand developing some 

methods to overcome these problems partially. In [70], the effects of some non-idealities 

have been studied through circuit simulation with SPICE and the importance of circuit 

level simulation in analog neural network design has been demonstrated. The aim 

of this thesis is to study the constraints on analog ANN training posed by circuit 

nonidealities and mismatches, and to formulate solutions for the training of hardware 

by software. 
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3. ANALOG NEURAL NETWORK BUILDING BLOCKS 

Several representative circuits will be described in this chapter which can be 

used as building blocks for analog ANN. These circuits have also been implemented 

and tested in a prototype chip. The modeling and training issues for analog neural 

network circuitry will be investigated based on these circuits; however, the approach to 

be described in the thesis and the conclusions arrived are also valid for other synapse 

and neuron implementations. 

3.1. The Synapse 

The synapses in a neural network can be realized by analog multipliers if the 

inputs and the weights can be represented by voltages. The synapse circuit used in 

the chip is a modified version of the well known Gilbert multiplier [66, 76] as shown 

in FIGURE 3.1. The inputs are in the form of voltage differences and are denoted 

by (X2 - Xl) and (Y2 - Y1)' The output of the original Gilbert multiplier is a current 

difference (U - T) and this difference is converted to a single ended current (Z) through 

current mirrors. This improves the linearity of the multiplier as well as providing easy 

interfacing to the following circuitry. Using voltage input' - current output synapses 

for analog ANN is very suitable for VLSI implementation since the actual signals from 

outside are mostly in voltage form, and the summing operation on synapse outputs can 

be performed by connecting the synapse outputs together. The layout of the designed 

synapse is given in FIGURE 3.2 and the dimensions of transistors in the synapse are 

given in TABLE 3.1 where Wand L represent the width and the length of the transistor 

respectively. 



16 

+5V 

Y~------r-~----~ 

7U 

yl----r---+-l Ho--'--E-I 

Z=7(U-T) 

x2 

bias 

-5V 

FIGURE 3.1. Circuit diagram of the synapse. 

TABLE 3.1. Dimensions of the transistors in the synapse as drawn (values will be 
scaled by 0.8 on the mask). 

Mirror number Differential pair bias 
1 2 3 4 5 x y 

I W/L 6/3 6/3 3/3,6/3 24/3,60/3 3/3,22/3 3/12 6/16 9/3 
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FIGURE 3.2. Layout of the synapse circuit. 
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The output current of the synapse can be derived assuming that the transistors 

operate in the saturation region for which the drain current, ID, of the MOS transistor 

is given by 

(3.1) 

where f3 is the current factor, Vas is the gate-to-source potential and VT is the threshold 

voltage. The differential pair for the input flx = (X2 - Xl) causes the currents 11 and 

12 to flow through the differential pairs for the weight, fly = (Y2 - Y1), after reflected 

by the current mirrors 1 and 2, 

(3.2) 
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(3.3) 

where {3x is the current factor of the input differential pair and 1u is the bias current. 

The differential current 11 - 12 simplifies to 

(3.4) 

if If.6.x2 can be neglected with respect to 2188 • This differential current will be the 

bias current for the weight differential pairs. Hence, the differential currents a - band 

c - d formed by the weight differential pairs, can be approximated by, 

a - b jii;ji;.6.y 

c - d - -~P;.6.y 

(a + c) - (b+ d) - jii;.6.y (fi; - fi;) 

from which U - T = (a + c) - (b + d) can be rewritten using (3.2) and (3.3) as, 

/{3X{3Y U - T = - -2 -.6.x.6.y. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The currents U and T are multiplied by a factor of seven by means of the current 

mirrors 3, 4 and 5 respectively. Finally, the output current Z becorp.es 

/ {3x{3y Z = -7 -2-.6.x.6.y. (3.9) 

FIGURE 3.3 displays the output current characteristics of the synapse circuit for dif­

ferent weight values, w = {-2, -1, 0, 1, 2} V as simulated by HSPICE with the model 

parameters given in the APPENDIX, where the output node is connected to ground. 
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FIGURE 3.3. HSPICE simulation for the synapse with nominal model parameters. 

Many multiplier circuits have been proposed in MOS technology in the litera­

ture. A large portion of the examples employs the same structure of Gilbert multiplier 

[26, 32, 66, 77, 78, 79] for four-quadrant operation where the transistors are operated 

in the saturation region. Current mode operation in subthreshold'region [19, 64, 80] 

and in saturation region [81] have also been offered as low power synapse circuits. 

Some synapse circuits incorporated the weight storage element as a floating gate MOS 

device so as to allow very compact designs [67, 82] whereas some circuits used a single 

differential pair with digitally adjustable weight values [83]. Tunable MOS transistors 

operated in the triode region used as multipliers have also appeared in the literature 

[18, 62, 66, 84, 85, 86, 87]. In some implementations of analog neural networks, the 

square-law characteristics of the MOS transistor is utilized in order to form squaring 

circuits for multiplication [60, 88, 89]. Digital implementations of multipliers in analog 

neural networks include the works of [90] and [91] where in the latter case the multi­

plier is realized using an AjD converter and latches. It can be stated that the current 
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output Gilbert multiplier using Hoating gate structures for storing the weight values 

. seems to be the most optimal design for the multiplier in terms of compactness and 

accuracy. However, in terms of programming the weight values, use of 'multiplying 

digital-analog converters offer the highest Hexibility where the weight values have to be 

quantized. The implementations of analog ANN mentioned in CHAPTER 2 usually 

employed Gilbert type multipliers operated in the saturation region. 

3.2. I-V Conversion 

The use of current-output synapses enables the summation of those currents by 

simply connecting them together at the input of the neuron. This current sum can be 

converted to voltage by using an opamp and a resistor as a current-to-voltage converter. 

The circuit diagram of the opampis given in FIGURE 3.4. This opamp consists of 

two stages, where the first stage is a differential amplifier whose differential current 

output is mirrored into the next stage and converted to a single ended output through 

circuitry very similar to the synapse circuit mentioned above. The layout ?f the I­

V converter is given in FIGURE 3.5. As most of the applications employed current 

output multipliers as synapses, the summation is carried out as in our chip. The I-V 

conversion is usually required since the activation function blocks to be described in 

the next section, require voltage input. It should be menti~ned, however, that current 

input activation blocks can also be designed which would not require I-V conversion 

[57]. There are several types of current-to-voltage converters [62, 72, 92, 93, 94] to 

be used where opamp based I-V conversion can also be employed [95]. The essential 

requirements for opamp based I-V conversion are that the opamp exhibits a large input 

impedance (in order to satisfy the virtual ground requirement), and the opamp can 

supply <=:nough current by its output stage. 
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FIGURE 3.4. General purpose opamp for I-V conversion. 
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FIGURE 3.5. Layout of the opamp circuit. 

3.3. The Sigmoid 

A sigmoid generator introduced in [91] is used after the opamp to generate 

the activation function for the neuron. This generator is depicted in FIGURE 3.6 

where the layout of the sigmoid block can be seen in FIGURE 3.7. For the sigmoid 

block, the output voltage can be derived in semi-analytic manner (FIGURE 3.6): The 

input differential pair is connected to the positive supply via two resistively,~onnected 



23 

transistors, each having a value of RL. The differential current 

41"81 ~ 2 ---x 
{31 

(3.10) 

causes a differential voltage (Vi - V2) at the gates of the second differential pair which 

also yields the differential current, 

(3.11) 

where (31({32) and 1861 (1882) are the current factor and bias current for the first (second) 

differential pair respectively. The output of the sigmoid can be expressed in terms of 

the difference (13 - 14) as follows, 

(3.12) 

where VQ is the quiescent operating point voltage of the sigmoid output for the input 

of OV, and K is the proportionality factor which will be determined based on simu­

lations. Finally, neglecting the (V2 - Vi)2 term in (3.11), the sigmoid output will be 

approximated by, 

(3.13) 

Transfer characteristics of the sigmoid block according to (3.13) is given in FIGURE 

3.8. It should be noted, however, that (3.13) does not hold tor input magnitudes larger 

than 2 V where the sigmoid output actually saturates. 
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Vout 

Regarding the activation function, the sigmoid and the tangent hyperbolic are 

the two forms found in the literature. Most of the analog implementations have used 

differential pair input circuits for generating the required waveform where the outputs 

can be current or voltage [68, 91, 96, 97, 98]. A class of inverter based circuits can also 

be used for the activation function [57] where the nonlinearity can also be achieved by 

means of the synapse circuits described above: The saturation of the output current for 

large input magnitudes makes the fixed weight Gilbert multiplier a potential activation 

circuit [34]. Digital circuitry for the realization of the activation function based on 

piecewise linear approximation has also been reported in the literature [99]. 
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3.4. SAFANN: Silicon Assembler For Analog Neural Networks 

The straightforward structure of neural networks consisting of identical building 

blocks (mainly multipliers, adders and activation function) in a hierarchical manner 

may allow easy implementation on a single chip. The generation of the actual layout for 

a VLSI circuit is also a tedious task. There are several design methodologies employed 

like bottom-up design or top-down design along with different design styles like full­

custom, semi-custom, gate-array or standard cell based designs. In this thesis, bottom­

up design methodology is chosen because the individual building blocks have already 

been designed and the whole system exhibits a well defined regular structure. Hence, 

the realization of the layout can be seen as an assembly of those building blocks which 

can be considered as a semi-custom design style. The placement and routing of those 

blocks can be done automatically by means of a silicon assembler. Silicon assemblers 

are tools designed to generate compact and correctly connected (electrically) layouts 

which will exhibit high performance provided that the building blocks are designed 

accordingly. Using a silicon assembler for automatic layout generation guarantees that 

the layout is correct with respect to both the functional specification and the constraints 

of the specific technology used (layout design rules). Thus, using a silicon assembler 

enables fast and reliable generation of the layout where any modification in the design 

of any block can be reflected to the layout of the system easily [100]. 

The layout generated by a silicon assembler may consume more area than a 

layout generated manually (full-custom design); however, use of a silicon assembler 

for ANN allows a very fast layout generation due to the regular structure of the ANN 

consisting of several building blocks only. The layout becomes even more compact if the 

building blocks are designed such that abutment becomes possible; i.e., placement of 

neighboring blocks is achieved without any routing channel between them. Moreover, 

the silicon assembler can be used to implement different types of the same building 

block at different locations of the design. For this, the actual blocks have to be designed 

accordingly such that they would fit to the abutment property. Automatic generation 
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of the ANN layout is easily possible if there are suitably designed multiplier and neuron 

blocks. Those basic blocks (subcells) can be placed in arrays and the complete ANN 

will be obtained. Once there are the ciJ(Caltech Intermediate Form for Data Exchange: 

A special language that describes the layout which will be explained below in short), 

files for the building blocks, the final circuit can be obtained as a ciJ file by appending 

the placement information to the ciJ definitions of the blocks. In this thesis, a program 

in C-Ianguage (SAFANN) is devised to accomplish this task. 

The starting point is the layout for a single ANN cell which consists of three 

types of subcells and some interconnections. A sample three-input cell's structure is 

given in FIGURE 3.9. It is mainly made up of three multipliers, a neuron and three of 

the so called channels. In fact, each channel consists of three subchannels employing 

two lines each. This type of a topology has its reasons: First of all, the design has 

to be modular, that is, it should support any number of inputs. Hence, the weights 

for the inputs are carried on channels whose number can easily be manipulated. It 

should be also noticed that only one weight; i.e., two weight lines should be connected 

to each multiplier, so that a decoding scheme is necessary. Next, the input lines have 

to travel throughout the cell in horizontal direction because that input will also be 

required in the next cell placed to the right of the first one. Finally, the output lines of 

the multiplier have to be aligned such that they are common in the vertical direction, 

so that they will be connected together which is also part of the abutment property. 

The supply and bias lines will also run through the cells so that they will be aligned. 

The Caltech Intermediate Form for Data Exchange is a means of describing 

the layout which is a collection of 2-dimensional geometric features. Once the layout 

consisting of mask features describing the graphic items is created by some CAD tool 

like the IC Station, the ciJfile will specify those geometric items, their locations on a 

Cartesian coordinate system, and the layers on which those items reside in usual text 

format. A very common element of such a description is the box (B) which will be 

defined by its length, width, center and direction along with the layer specification. A 

very useful feature of the ciJfile is that groups of objects can be identified as symbols 
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(subcells) and their instances can be called (placed) in the design at specific locations 

in a hierarchical manner [101]. 

The SAFANN program achieves the automatic placement of ANN building 

blocks and routing between them by placing instances of symbols created for those 

blocks, namely the multiplier, opamp, sigmoid, and subchannelj and routing channels 

as collection of boxes into a final cif file. The structure of this methodology can be 

understood by considering a single layer of an ANN given in FIGURE 3.10. Here, the 

channels will be described by collection of boxes representing metal-1, metal-2 lines 

and vias. Neuron cells, however will be called by the symbols. A detailed explanation 

of the SAFANN program is given as an algorithm on the following page. 

Input 
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Cell 
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Cell 

Neuron Neuron 
Cell Cell 
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FIGURE 3.10. Topology of a single layer with three inputs and four neurons. 



Algorithm of the SAFANN code: 

i) Input names of the • 

input..x ile (containing the cif definitions of the basic building blocks), 

data..xile (containing definition of the ANN topology, 

the names and dimensions of basic building blocks to be useci), 

output..xile (will contain the cif description of the final layout ). 

ii) Read the data..xile and obtain numbeLoLlayers and 

the corresponding number_of-.neurons [layer]. 

iii) Initialize the position to (0,0). 

iv) For indexi=l, layer do 

{ 

placeinput_channelj 

For index2=1, number_of-.neurons [layer-i] do 

{ 

place-.neuron_cellj 

for index3=1, number_of-.neurons [layer] do 

} 

{ 

place-.neuronj j* I-V converter and sigmoid cell* j 

for index4=1, number_of-.neurons [layer-i] do 

{ 

for index5=1, number_of-.neurons [layer-2] do 

{ place_weighLchannelj } 

place..multiplierj 

} 

} 

place_weight_decoding_channelj 

placein pu t _decoding_channelj 

} 

v) Perform routing between layers. 

vi) Append the resultant cif code to the input..xile and obtain the output..xile. 

30· 
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SAFANN is developed to realize automated layout generation for ANN. It is 

. a compact, easy to use program which is, to the best of the author's knowledge, the 

first silicon assembler for ANN in the literature. Layouts of different ANN topologies 

can be generated within seconds so that their extraction, circuit level simulation, and 

reconfiguration can be realized easily. FIGURE 3.11 presents the layout generated 

by SAFANN for an XOR gate consisting of two inputs, three hidden units, and an 

output unit. Similarly, layout generated by SAFANN for a 1 X 10 x 1 structure is 

given in FIGURE 3.12. The adaptive nature of SAFANN also displays itself in the 

fact that different types of multiplier, opamp, or sigmoid cells (circuits) can be placed 

at different synapse and neuron locations. This allows flexibility in the overall design; 

e.g., less accurate multipliers consuming less area can be used where the corresponding 

weights are relatively small such that their effects are negligible. 

As future work, SAFANN can be extended to accomplish global routing and 

placement of nonvolatile elements, with weight decoding, for weight storage so that the 

design of complete ANN chips would be possible. For this, development of a library 

containing different types of multipliers and neurons is necessary. Moreover, routing 

of the layers can be optimized so that the resulting layout would be more compact, 

i.e., filling a rectangular region fully, instead of extending in length and leaving empty 

space in width An attempt for compaction of SAFANN has been carried out in [102]. 
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The prototype chip has been designed in Alcatel-Mietec 2.4J.Lm technology using 

Mentor Graphics IC station program, in a full-custom style. The characteristics of the 

technology are given in the APPENDIX. The prototype chip contains four neuJons each 

having five inputs, so that a total of 20 synapses are found in the chip. The dimensions 

of the building blocks are given in TABLE 3.2. The structure of the unit cell for the 

network is given in FIGURE 3.13 whereas the layout of the core (chip without the pads 

and the extra circuitry) can be seen in FIGURE 3.14. 
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FIGURE 3.13. ANN unit cell. 

TABLE 3.2. Dimensions of the building blocks in the prototype chip. 

transistor width height area 
count p.m p.m mm2 

synapse 17 220 200 0.044 
I-V converter 13 220 200 0.044 

sigmoid 16 216 228 0.049 
core 456 1280 1600 2.0 
chip - 3600 3740 13.45 
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FIGURE 3.14. Core of the prototype ANN chip. 



4. BACKPROPAGATION TRAINING OF NEURAL 
NETWORK HARDWARE 
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Different approaches are used to obtain the weights of an analog neural network 

which also dictate the implementation style and the architecture of the network [57]. In 

this chapter, hardware training for analog ANN will be investigated where the emphasis 

will be put on training On-Software-Only (OSO) method. OSO Training aims to 

eliminate the need for an on-line host computer (and the related interface circuitry) in 

the case of chip-in-the-loop training and the need for extra circuitry on the chip in the 

case of on-chip training methods. First, the training methods mentioned above will be 

examined and examples will be given. Meanwhile, several issues for hardware training 

for analog ANN will be highlighted. Then, the modified backpropagation algorithm 

will b,e explained which aims to perform the (initial) training on software using models 

of the analog neural network building blocks. Regarding the OSO hardware training, 

ANNSyS (An Analog Neural Network Synthesis System) will be investigated which 

uses the modified BP algorithm and weight perturbation (MADALINE Rule III) in 

circuit simulation, for the training. Several illustrative examples will be given for the 

OSO training which will demonstrate the potential of circuit simulation based training 

for analog ANN. 

The most naive way to implement an analog ANN is the non-learning network. 

In this method, the weights are hardwired through the implementation of the fixed 

gain multiplier. The weights to be hardwired must be calculated before the design of 

the neural network layout. The calculations are done on a computer which uses the 

model of the analog neural network. The performance of this method depends heavily 

on the matching between the model and the real circuit, which is a task that is very 

difficult to achieve as will be shown in the following sections. An example of this type 

of system has been proposed in [103] which uses inverters as fixed weight multipliers 

where the transistor dimensions determine the weight associated with the multiplier. 

It is clear that this method does not find a wide-spread acceptance as a reliable system 
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due to the lack of flexibility and due to hardware mismatches. 

4.1. Chip-in-the-Loop Training 

Chip-in-the-loop training refers to training of analog (or digital) hardware where 

the weights can be adjusted externally during the training stage by means of a host 

computer. For this realization, the initial weights are usually computed on the host 

computer and downloaded to the chip. Then, the weights are fine tuned: The chip is 

used for forward pass, host computer is used for feedback (weight adaptation). The 

outputs of the neurons are sampled and fed to the host computer where the weight 

update computations take place. In this way, the matching of the model used for 

the initial training and analog hardware is considerably increased. The weight update 

may be based on the usual backpropagation algorithm using gradient descent or the 

weight perturbation algorithm both of which will be described in subsequent sections, in 

detail. Several applications of chip-in-the-loop training have appeared in the literature 

[68, 104, 105, 106, 107]. The main advantage of this method is that the host computer 

can monitor the actual outputs of the neurons and/or synapses so that the maximum 

available information is going to be used in the training algorithm. Chip-in-the-loop 

training is especially well tailored for perturbation based algorithms [52, 95, 108, 109] 

where the weights are perturbed by a small amount and the resulting change in the 

output error is used to update the weights. This is the so called MAD ALINE Rule III 

which, in theory, assumes that the synapses are linear; however, for chip-in-the-loop 

training, this assumption has to be left, hence, the weight update algorithm has to use a 

nonlinear model for the synapses. Chip-in-the-Ioop training implicitly compensates for 

the nonidealities of the hardware and for the mismatches occurring between identical 

blocks as the computations are carried out according to the actual outputs of the 

circuitry; however, the time required for the training heavily depends on the accuracy 

of the modeling of building blocks. A straight update rule of increasing or decreasing 

the weight by some fixed ratio based on the results of comparison between the desired 
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and actual outputs would require excessively long training times. A very safe way 

of getting successful results from chip-in-the-Ioop training is to obtain the models of 

the building blocks from measurements on the actual circuitry: The host . computer 

may sweep the inputs of the building blocks so as to obtain the characteristics of the 

hardware components, so that the following training would really be based on the 

hardware [110]. 

Even though chip-in-the-loop training seems to be a reliable way of achieving 

hardware training of analog ANN, several disadvantages also exist: 

• Chip-in-the-Ioop training requires a host computer for performing the weight up­

dates and necessary interfacing circuitry with the actual chip for sampling the 

outputs. This leads to the fact that analog to digital and digital to analog con­

~erters have to be used which by themselves cause errors due to the quantization 

applied. 

• There is a trade off between a large pin count of the chip (in order to sample 

as many block's outputs as possible), and the necessity of good modeling of the 

building blocks. 

• Each individual analog ANN system has to be trained separately, that is, a trained 

chip can - most probably - not be changed by another sample ~ince the training 

carried out does not take the mismatches between chips into account. 

• Integration of analog ANN systems into larger complex systems-on-chip becomes 

very improbable, if not impossible, since the SOC paradigm would not allow extra 

area and extra pins for chip-in-the-Ioop training. 
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4.2. On-Chip Training 

In analog neural networks with on-chip learning, both the feedforward structure 

and all circuitry required to adapt the weights are realized on the chip. As the back­

propagation algorithm mainly uses simple arithmetic operations such as subtraction, 

multiplication, and addition along with taking derivatives, it can be realized by extra 

circuitry on the chip. A l~to{ implementations of on-chip training can be found in 

the literature u~ing digital [84], analog [1, 24, 34, 35, 72, 79, 91, 111], optical [112], 

and mixed signal [27, 113] circuitry. The algorithm applied may be again either the 

. gr~dient descent based backpropagation or weight perturbation. The main advantage 

of on-chip training is that the analog hardware does not need any external circuitry 

or computer for training. The user has to supply the training samples only. Moreover 

the ~onidealities of the hardware and mismatches in the forward pass circuitry will 

implicitly be compensated whereas the mismatches of updating circuitry can not be 

prevented to affect the training adversely. The major disadvantage of this approach 

is that additional hardware is required which is used only at the training stage. The 

extra layout area brought by the learning circuitry can be very large in comparison to 

the actual forward propagation circuitry. Even though the actual ratio is not given in 

most of the references, data from [79] indicate that the synapse made up of a Gilbert 

multiplier and update circuitry occupies an area of 170 x 140JLm~ in a 0.7JLm tech­

nology. The similar Gilbert multiplier based synapse in our chip occupies an area of 

220 x 200JLm2 in a 2.4JLm technology, which would be scaled down to approximately 

70 x 60JLm2 in the 0.7JLm technology. This reveals that approximately 85 per cent of 

the synapse is devoted to update circuitry. As an another example the value of 12 per 

cent can be cited from [35] which is the proportion of the synapse area in the die for 

a 64 synapse prototype chip. It is argued that the core efficiency increases for larger 

number of synapses on the chip. The extra layout area and power consumption due 

to the learning circuitry makes on-chip training difficult for SOC applications also. 

Another point of interest is the initialization of the weight values: Even though there 

is no clear reference for initialization of weight values prior to the training phase, an 

initial approximate training based on simple models of the analog ANN circuitry is 
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reported to be beneficial for on-chip learning [72, 112]. 

4.3. Modified Backpropagation Algorithm for Analog ANN Hardware 

Training of the analog neural network hardware on software is another alterna­

tive. In this method, nonideal behaviour of analog neural network circuitry is modeled 

based on simulations or measurements, and the training software employs those models 

in the backpropagation learning [68, 72, 112, 114]. In fact, this type of modeling and 

training is usually required for obtaining a suitable initial weight set to be used in 

chip-in-the-loop or on-chip training. This section will investigate the modified back­

propagation algorithm which is suitable for hardware training of analog ANN blocks 

which exhibit nonideal behaviour. For this purpose, consider a general multilayer per­

ceptron structure depicted in FIGURE 1.2. The backpropagation algorithm as modified 

will be reviewed on this structure where for simplicity of notation, we limit ourselves 

to the scalar input-output case (Solid drawings in FIGURE 1.2). The synapse func­

tion will be denoted by p,( x, w) where x and ware the input and weight respectively. 

The output of the multilayer perceptron (y) is the C?pamp (neuron) output, O(p,) (a 

weighted sum of the outputs of a number (h) of hidden units, neto), filtered through 

the nonlinear sigmoid function ¢( x) as follows: 

h 

neto = l: p,(Ti' Hi(X)) + p,(To, 1) (4.1) 
i=l 

y(x) = ¢(O(neto)) (4.2) 

where x is the input, and Ti are the weights associated with the outputs of hidden 

units. To is the bias weight. Output of each hidden unit is another similar expression, 

neti being the net output of the synapses and Oh being the output of opamps at the 

hidden layer: 

(4.3) 
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(4.4) 

where Wi are the weights associated with the hidden units. Wio are the bias weights 

for the units in the hidden layer. Given a training set X = {xP,rPh, wh~re rP is the 

desired output corresponding to the input xP, the sum of squared errors is: 

E(W, T) = E EP = E[rP - y( XP)]2. (4.5) 
P P 

In the backpropagation algorithm, parameters W, T are updated to minimize E us­

ing gradient-descent, where in the online version, for each pattern pair, the following 

updates are done: 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where TJ is the learning rate. So the learning method can be implemented using any 

synapse and nonlinearity if p.(x,w), 8p./8x, 8p./8w, 0, a', cp, and cp' can be computed. 

Hence, the backpropagation learning can be realized if proper models of the building 

blocks can be obtained. Training of analog neural networks for anal<?g hardware imple­

mentation utilizing the blocks discussed so far, requires special modifications: Given 

a training set X = {xP, rP}p and a certain network topology, the input-output values 

need to be scaled such that they fal1 within the operational range of the analog cir­

cuitry. That is, input values have to be within the linear region (-2V to +2V) of the 

multipliers, and output values have to be within the output range (OV to 2.5V) of the 

sigmoid. A further modification in the update rules is applied to favor small weight 

magnitudes so that the synapses operate in their linear region and the variations in the 

outputs due to II!ismatches are less severe as will be shown in CHAPTER 5. This is 

done by the weight decay technique which has shown to be effective in the improvement 

of generalization in the presence of noise [115, 116]. In weight decay, the error function 



42 

of (4.5) is modified to be: 

E(W, T) = 2:[rP - y( :z:P)] 2 + A 2: W; (4.10) 
P 

where Wi are the weights in the network (including both W and T values) and A is 

the decay factor. The first term is the usual sum of squared errors. The second term 

is the penalty term that penalizes weights that have large magnitude. Performing 

gradient-descent on this yields, 

(4.11) 

Thus at each iteration, there is an effect of pulling a weight towards zero unless pushed 

away to decrease the sum of squared errors. From a Bayesian perspective, weight decay 

corresponds to assuming that weights, Wi, are sampled from a Gaussian distribution 

with zero mean and variance 1/ A. Minimizing (4.10) is the maximum a posteriori 

solution [117]. Using weight decay and a suitable choice of A, weight values are found 

that minimize error and also stay in the linear region of the multiplier. This not only 

assures that the blocks operate in their "close to ideal" region, but also cause less 

variations as will be shown later. Moreover, it has also been reported in the literature 

that employing smaller weight magnitudes enhances the fault tolerance of the neural 

network by distributing the computation evenly to the neurons and synapses [118]. 

4.4. Modeling of Analog ANN Building Blocks for Backpropagation 

As models of analog ANN building blocks are necessary for the backpropagation 

training of the hardware, macromodels for the synapse, opamp, and sigmoid circuits 

have been developed in this thesis. For modeling the blocks' behaviour, three different 

approaches are used, namely, approximation by neural networks, representation by 

look-up tables, and regression by analytical functions. 
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4.4.1. Modeling by Neural Networks 

Approximators used are multilayer perceptrons for the synapse characteristics. 

Finite difference was used to calculate the derivatives of the approximators. The same 

technique was also used to approximate a partial derivative. The multiplier character­

istics are given in FIGURE 4.1-b. The approximator is a multilayer perceptron with 

four hidden units. This neural network is trained using standard backpropagation. 

Data obtained from the HSPICE characterizations of the netlists extracted from the 

layout are used as training samples. Compared with the ideal multiplier, this exhibits 

nonlinear behaviour for large input x, with the nonlinearity getting pronounced for 

large weight values. The MLP can approximate the synapse characteristics well in the 

linear operation region whereas the deviations tend to increase for larger input values. 

The neural network approximator to the sigmoid circuit is a multilayer perceptron with 

one hidden unit; the model for the nonlinearity ¢( x) approximates the sigmoid within 

1.0 per cent accuracy. 

4.4.2. Modeling by Table Look-Up 

The synapses are modeled by a look-up table of size 81 x 8,1 where the inputs 

and weights varying between -2V and 2V are quantized ~o 81 different values, each 

centered around OV with 40 values residing on both positive and negative voltage axis. 

The closest value is chosen when the inputs or the weights do not match the values in the 

table. Derivatives are computed from finite differences. It is obvious that the training 

time required is inversely and the approximation performance is directly proportional 

to the size of the table. The 81 x 81 size was chosen as it gave superior performance 

to the previous method. It was observed that, larger look-up tables yielded longer 

simulation times with marginal improvements in approximation performance, whereas 

the weak approximation performance of smaller tables made this method inapplicable. 
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(a) Ideal multiplier 
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FIGURE 4.1. (a) Ideal multiplier (b) Multiplier data provided by HSPICE simulation 
(c) Neural network approximation to (b). 
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4.4.3. Modeling by Regression 

Analytical expressions for the functional behaviour of the synapse and neuron 

circuits are not available. The synapse function can be modeled as a polynomial func­

tion with less than 5.0 per cent deviation, as follows: 

( 4.12) 

where J.L( x, w) is the output current for the input pair x, wand the coefficients Ci are 

determined using a nonlinear regression program which may take nominal or Monte 

Carlo simulations as input. The opamp (I-V conversion) block can be represented by, 

VDD if -RJ.L > VDD 

O(J.L) = -RJ.L if VDD > -RJ.L > VSS 

VSS if -RJ.L < VSS 

( 4.13) 

where V DD and V SS are the positive and negative supply voltages, R is the resistance 

implemented (the value is 100kn), and J.L is the total current supplied by the synapses. 

For the sigmoid block an exponential function with coefficients di is employed in re-

gresslOn: 

( 4.14) 

Regarding the quality of the approximations, several characteristics of the re­

gression results are given in TABLE 5.4. The values for the coefficients Ci found by 

regression using the method of least-squares fit are given in TABLE 4.1. It is evi­

dent that the coefficients Cl and Cs for the linear terms dominate for small x, w values 

whereas the coefficients C3 and C7 for the cubic term come next in effect. Hence, it can 

be concluded that the nonlinearity of the multiplier is mainly in cubic terms. When all 

these models were compared in backpropagation training, it was observed that regres­

sion gave the best results for the neuron modeling and satisfactory results for synapse 
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modeling. Even though table look-up has performed better for synapse modeling, re­

. gression is used for modeling the synapses too, since the expressions obtained are easily 

differentiable so that the backpropagation algorithin can be programme~ easily. 

TABLE 4.1. Regression coefficients for the multiplier. 

Coefficient Value Value normalized 
with respect to Cl 

Co -2.480 ---
Cl -7.245 1 
C2 -0.047 0.0065 
C3 0.680 -0.093 
C4 0.0024 -0.0006 
Cs 7.233 -0.9983 
Cs -0.039 0.0054 
C7 -0.384 0.0530 
Cs -0.011 0.0015 

4.5. On-Software-Only Training 

Since a perfect modeling is not possible, the models are based either on the 

results of HSPICE simulations or actual measurements which usually can not be ex­

pressed analytically. Small deviations from the actual physi~al behaviour in the models, 

may cause the analog neural network training to fail: The training is performed satis­

factorily on the software; however, outputs of the actual circuitry may deviate heavily 

from the ideal training set [70]. As a remedy, we offered ANNSyS (An Analog Neural 

Network Synthesis System) through which the on-chip training of analog neural net­

works by software was enabled for backpropagation learning on multilayer perceptron 

structures. The main idea of ANNSyS can be summarized as follows: Models of the 

building blocks, namely the synapse (a multiplier), opamp, and the sigmoid block, are 

obtained from their HSPICE simulation outputs via regression. An initial backpropa­

gation training based on the models is carried out using (4.9)-(4.11). Then, the actual 

circuitry is simulated in a special, fast DC simulator realizing the MADALINE Rule III. 
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The simulator, ANNSiS (An Artificial Neural Network Simulation System), has been 

,developed by Bayraktaroglu [119]. Hence, the weights obtained through approximate 

models are fine tuned by simulating the whole circuit using the most ace,urate models 

available (HSPICE models) which results in a heavy computational load. Details of 

this approach can be found in [120]. This method has been shown to be effective in 

the training of the analog neural network circuitry in software which will be shown 

by examples in the next section. However, it should be noted that the modeling only 

accounts for the nonidealities but not for mismatches found in analog hardware. 

4.6. Numerical Experiments 

ANNSyS has been applied to a number of neural network problems. Two rather 

small examples are the classical XOR problem and a sine function generator. Recog­

nition of spoken phonemes is also included as a large size example. 

4.6.1. Learning XOR Problem 

For the XOR problem, a 2x3x1 structure is used. The weights are calculated via 

modi¥ed backpropagation using the models for the synapse and neuron circuits given 

in Section 4.4.3 and the rms error decreased below one per cent for the four training 

samples. At this time, the network is simulated by ANNSiS and the rms error was 

found to be 13 per cent for the XOR function. Finally, Madaline Rule III was applied 

for 50 epochs and the error obtained using the simulator decreased below one per cent 

agam. 
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4.6.2. Learning Sine Function 

A 1x4x1 structure was employed for the sine function (0.3 sin(27rx)) where the 

training set contains 20 pairs from the interval (0,1) (desired in FIGURE 4.2). Again, 

the neural network was trained via modified backpropagation until the error decreased 

below 1 per cent (modified backprop in FIGURE 4.2), and then the network was simu­

lated by ANNSiS with the weights found. The error was around 30 per cent (ANNSiS 

before Madaline in FIGURE 4.3). Finally, Madaline Rule III was applied for 50 epochs 

and the error decreased below 3 per cent (ANNSiS after Madaline in FIGURE 4.3). 

The result of circuit simulation with weights obtained via the standard backpropagation 

training assuming ideal components, i.e., linear synapses and ideal sigmoid function, is 

also included (backprop. with ideal components) in FIGURE 4.2 to show that macro­

modeling is necessary for proper operation. It is also evident that training based on 

regression models is not adequate, and simulation based training employing Madaline 

Rule III can enable proper training of analog ANN. 

4.6.3. Speech Phoneme Recognition 

For /b, d, g, m, n, N / speech phoneme recognition experiplents, the database 

contains 5240 Japanese isolated words and phrases [7]. Twp hundred samples for each 

class are taken from the even-numbered and odd-numbered words. 600 samples are 

used for training and 600 for testing. Phonemes are extracted from hand-labelled dis­

crete word utterances and phrase utterances which have a sampling frequency of 12 

KHz. Seven speech frames (each 10 ms) are used as input. For each 10 ms frame, 16 

Mel-scaled Fast Fourier Transform coefficients are computed as feature values. This 

112 dimensional input is then reduced to 21 using principal components analysis that 

explains 98.1 per cent of the variance. A 21x8x6 neural network structure is employed 

for the training. There were 600 samples and the modified backpropagation algorithm 

accomplished a correct classification rate of over 90 per cent by the software. However, 
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FIGURE 4.2. Training results for sine function (Part 1). 
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when the same neural network circuitry is simulated by ANNSiS, the correct classifi­

cation rate dropped to 87 per cent and finally, the neural network is trained by the 

Madaline approach and the correct classification rate increased to 92 p~r cent. The 

results on the training and test samples are displayed in TABLE 4.2. 

TABLE 4.2. Speech phoneme recognition. 

Correct classification rate Training set Test set 
Modified backpropagation 90% 72% 
ANNSiS before Madaline 87% 65% 
ANNSiS after Madaline 92% 78% 

As can be deduced from the examples used, analog ANN can be modeled for 

OSO hardware training such that a satisfactory level of learning can be attained. How­

ever, the next chapter will introduce the problem of mismatches between identical 

bloc~s which detoriates the performance of the neural network heavily since the train­

ing methodology assumes that all identical blocks will exhibit the same characteristics. 



'5. SYSTEM LEVEL PROBLEMS IN HARDWARE 
TRAINING 

51 

Advances in VLSI technology has made it possible to realize the so called 

System-On-Chip (SOC) concept, The main idea for building a SOC is to integrate 

analog and digital functions on the same substrate. Hence, it can be stated that the 

need for implementing analog ANN in VLSI continues to be an important research 

area: Analog neural networks can be utilized in SOC applications where high perfor­

mance classification, pattern recognition, function approximation, or control tasks have 

to be realized in real time. In this chapter, we will concentrate on multilayer percep­

tron neural networks implemented in MOS technology and trained by backpropagation 

algorithm, however, the assertions and results can be applied to other topologies and 

learning strategies as well. Despite their numerous advantages, analog implementations 

suffer from several shortcomings and nonidealities: The most important issue is the 

training of analog neural network circuitry, that is, determination of the weight set for 

optimal operation of the hardware which has been discussed in CHAPTER 2. 

Training of the analog neural network hardware on software is another alterna­

tive as described in CHAPTER 4. An essential requirement for the SPICE simulations 

to have meaning is that the outputs of actual integrated circuits match the simulation 

results within some tolerance. Furthermore, the outputs of identical blocks in the same 

chip and on all different chips have to match in order to perform a meaningful design 

based on those components. Any deviation between the outputs of identical blocks 

would cause severe adverse effects in the overall system si'nce they are not included 

in any part of the modeling, Unfortunately, statistical variations in the production 

process of integrated circuits result in the deviations mentioned above. As an example, 

the deviations in the prototype analog neural network produced in Mietec 2.4 micron 

technology are given in TABLE 5.1 for an input-weight pair of 1 V -1 V for the neuron 

and for an input of 1 V for the sigmoid block. There are 10 chips measured where 

the data are based on 200 identical synapses and 40 identical sigmoid blocks under 
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the same bias conditions. As it is clear from the data, such variations impose serious 

constraints on the training algorithm of the analog neural network: Each chip has to 

be trained individually since there are variations among "identical" chips. This makes 

it impossible to replace a trained chip by an off-the shelf component. The aim of our 

research is to overcome the problem of training' with hardware nonidealities and vari­

ations so that, once a robust training of the system for a specific task is achieved, any 

chip of the same family can directly be utilized in the system. 

TABLE 5.1. Sample data from measurements on the test chip. 

Block min.(V) max. (V) mean(V) var.(V2) 
Synapse 1.9 4.15 2.97 0.38 
Sigmoid 1.41 1.91 1.68 0.013 

The variations occur due to several physical causes which will be explained 

In Section 5.1.1. Statistical process variations cause mismatch between parameters 

(threshold voltage VT, current factor (3) of identically designed transistors, which may 

accumulate to large deviations at the outputs of identical blocks. Such variations make 

it almost impossible to train the analog neural network circuitry without taking them 

into account. In this work, we will try to incorporate those variations into the train­

ing of analog neural networks. Closed form expressions of statistical variations from 

the nominal output are derived for the abovementioned circuits. These theoretical 

variations are compared to actual measurements obtained from chips and to Monte 

Carlo simulations. It seems evident from the comparison t~at those variations can be 

attributed to mismatches. In order to incorporate the variations at the output, the 

training algorithm (backpropagation) is modified: The building blocks are modeled ac­

cording to their average outputs whereas the variations are considered to be noise with 

a certain normal distribution. Then, the training is carried out using "noisy" back­

propagation where the outputs of the blocks are calculated in a probabilistic manner 

taking the noise into account (Section 5.2). In Section 5.3, sample simulations are con­

ducted to verify that this method of training allows a higher degree of fault tolerance 

in the sense that noisy forward pass outputs exhibit better performance over outputs 

obtained from the network trained without including the variations. The noise (varia­

tions) can be estimated during the design of the circuitry using the data on transistor 
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geometries so that the usage of "noisy"· backpropagation can be helpful for achieving 

a robust training for analog neural networks. 

In general, those variations can also be considered as static hardware faults 

occurring in the forward operation since individual mismatches in transistor pairs result 

in variations at the outputs for the same set of inputs. The fault tolerance of the 

analog neural network hardware is severely degraded by such variations. There are 

several attempts to enhance the fault tolerance of ANN circuitry: Injecting synaptic 

noise during training has been shown to improve the fault tolerance performance of 

ANN considerably [72, 114, 118]. This could also be used as a means to overcome the 

problem associated with the training of the ANN since we can hope that the ANN 

trained by random noise injection would also be robust against statistical variations at 

neural network blocks. Section 5.3.3 constitutes a comparison between the two types 

of noise injection: based on modeling the transistor mismatch, and hence having a 

certain distribution related to the actual hardware, and based on noise injection with a 

random mechanism. It will be shown that modeling the variations due to mismatches 

will be more beneficial. 

5.1. MOS Transistor Mismatch, Modeling and Verification 

5.1.1. Modeling of MOS Transistor Mismatch 

Mismatch between parameters of two identically designed MOS transistors, is 

the result of several random processes which occur during the fabrication phase. The 

essential parameters of interest are the zero-bias threshold voltage (VTO), current fac­

tor (f3) and the substrate factor coefficient ('Y) which affect the current through the 

transistor. We will assume that all transistors are operating in the saturation region 
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desc:dbed by the following formulae for the drain current ID and threshold voltage VT: 

(5.1) 

(5.2) 

where VGS and VSB are the gate-to-source and source-to-bulk potentials resp~ctively, 

and if> is the surface potential. Any variations in these parameters of two matched 

transistors would cause a difference in the currents of equally biased transistors. The 

physical causes for variations in these parameters are fixed oxide charges, depletion 

charges, edge roughness, variations in substrate doping, oxide thickness and mobility 

values [121, 122]. Variations in any parameter may have systematic and random causes. 

Topography of the layout [123] and gradients in oxide thickness and wafer doping cause 

systematic variations in the parameters along a wafer and among different batches. 

On t4e other hand, random, local variations in physical properties of the wafer cause 

mismatch between closely placed transistors. Nonuniform distribution of dopants in the 

substrate and fixed oxide charges are responsible for local zero-bias threshold voltage 

mismatches whereas variations in substrate doping is the only cause for [ mismatch. 

The mismatch in current factor f3 is due to edge roughness and local mobility variations 

[121, 122, 124]. A mathematical analysis for the matching of MOS transistors was 

carried out by several researchers. The mismatch in a parameter is modeled by a normal 

distribution with zero mean. Moreover, the variance of the distribution for mismatches 

in the zero-bias threshold voltage, current factor and sub~trate factor coefficient can 

be expressed as [121, 122], 

a 2(.6. VTO) 

a 2(.6.f3) 
f32 

a 2(.6.[ ) 

(5.3) 

(5.4) 

(5.5) 

where AVTO , A.13, A.." SVTO, S.13, and S.., are process related constants, Wand L are 

the length and width of the transistors, and Dx is the spacing between the matched 

transistors. In case of two transistors with unequal width/length ratio, (WI, L 1 ) and 
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(W2 , L 2), the term ~L will be replaced by 2wtLl + 2~L2' Several other researchers 

worked on characterization of mismatch between two transistors using measurements 

obtained from test structures [125, 126, 127], and verified the mathematical expressions 

(5.3)-(5.5). It has been found in [126] that the threshold voltage mismatch for short­

channel transistors (L ~ 2JLm) is more complex: 

(J2(~ \'- ) = A~VTO + A~VTO 
TO WL WL2 (5.6) 

where three coefficients A 1VTO , A 2VTO , and A3VTO are to be determined. It should also 

be noted that the distance dependent term can be eliminated from (5.3)-(5.5) for dis­

tances less than a few hundred micrometers since the production processes exhibit less 

gradients by the improvements in the last decade. This phenomenon is also justified by 

confidential technology documentations of several foundries involved in the Europrac­

tice program. In the remaining of this thesis, the original mathematical expressions 

will be utilized as the minimum channel length for the technology employed is 2.4JLm. 

However, computations verify that the distance dependent term can be neglected with 

respect to the area dependent term. 

As can be seen in (5.3)-(5.5), the variance of the mismatch is inversely pro­

portional to the area of the transistor and proportional to the square of the distance 

between the matched transistors. Hence, the variance can be minimized by placing 

matched transistors as close to each other as possible and 9Y choosing large area tran­

sistors. However, the latter increases the total die area which should be avoided. A 

detailed analysis of the circuitry is necessary in order to determine transistor pairs 

which are most critical for mismatch behaviour so that they are designed accordingly. 

This requires that mismatches and their cumulative effects on the circuitry have to be 

modeled and simulated. A statistical MOS model has been developed in [128, 129], 

which allows the designer to determine circuit output variance due to mismatches in 

device parameters. However, the simulation methodology requires that a set of test 

structures have to be built and measured for each specific technology in order to gain 

knowledge on the model parameters in question. Then, the modeling has to be incor-
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porated into a simulation environment. It is clear that this is not an easy task to be 

performed. There are also other attempts for modeling the mismatch based on the cir­

cuit structure [29, 130, 131]. Once the effects of mismatches can be predicted, changes 

in the transistor dimensions can be employed as an optimization aid. In this thesis, 

we primarily concentrate on mismatches between pairs of transistors and derive their 

effects on outputs analytically. Simulations and measurements will also accompany the 

mismatch analysis in Section 5.1.3. 

The differential pair and current mirror are among the most frequently used 

structures in analog integrated circuits. This is also the case for our analog neural 

networks where the building blocks are the synapse (Gilbert type, 4-quadrant, current 

output multiplier), an opamp (used for adding synapse outputs and converting them to 

voltage) and the sigmoid block as shown in FIGURE 3.1, FIGURE 3.4, and FIGURE 

3.6 respectively. The prototype chip contains four neurons, each having five synapses 

connected to it. The chip has been produced in Alcatel-Mietec 2.4/Lm technology. The 

transistors in the differential pairs are designed with identical W / L ratio for symmet­

ricaloperation. Similarly the current mirrors used as active loads in the circuitry have 

matched transistors. According to the experimental results of [122] and the data col­

lected from the technology design kits, the process dependent constants for the process 

were estimated since they were not publicly available (TABLE 5.2). Using the data, 

calculation of the variance of the mismatch in matched transistor- pairs of differential 

stages and current mirrors is possible. It should be noted that these parameters may 

not be exactj however, the general methodology for estimation of mismatch at outputs 

of neural network modules is not affected by that. 

TABLE 5.2. Parameters for mismatch analysis. 

AVTO SVTO A,a S,a A'"( S'"( 
(mV/Lm ) (/LV//Lm) (%/Lm) (10-6

/ /Lm ) (Vo.S/Lm) (l0-6VO.S / /Lm ) 
NMOS 25 4 2.5 2 0.016 4 
PMOS 30 4 3 2 0.012 4 
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The ultimate aim of mismatch arialysis is to predict the mismatch at the outputs 

of the building blocks using the variances at individual pairs. In order to accomplish 

this task, variations at outputs of building blocks have to be expressed in terms of 

the variations in the matched pairs. The analysis is carried out for two separate 

cases: Either there are only variations in the threshold voltage (due to mismatches 

in zero-bias threshold voltage VTO and substrate factor () or in current factor {3 of 

matched pairs. Mismatches in the threshold voltage and current factor are shown to 

be independent [121], and the common physical causes of mismatches for zero-bias 

threshold voltage and substrate factor let us expect a positive correlation between 

mismatches in these parameters. In fact, empirical formulae for correlation coefficients 

between the three parameters were obtained from measurements on test structures in 

[127]. We have computed the correlation coefficients for transistor pairs with different 

W / L ratio ranging from 40/40 to 1/1 spanning intermediate combinations. Our results 

indic;ate that there is a weak negative correlation (around -0.3 for NMOS and around 

-0.2 for PMOS transistors) between mismatches in the zero-bias threshold voltage 

and current factor. The correlation between mismatches in substrate factor and zero­

bias threshold is weakly positive: around 0.4 for NMOS and around 0.3 for PMOS 

transistors. Finally, the correlation between mismatches in current factor and substrate 

factor depend heavily on the width W of the transistor pair: It ranges from 0 to -0.6. 

Hence, the variations in different parameters may be considered to be independent so 

as to simplify the computations. It should also be noted that the ~ubstrate factor only 

becomes effective in the differential pair input of .the synapse circuit of FIGURE 3.1, 

so that the simplification does not cause a considerable error. Individual mismatches 

due to each parameter will be computed and the results will be combined later . 

. 5.1.2. Mismatch Based Variations: Modeling for ANN Circuitry 

In the following, the variance of output current for the synapse circuit of FIG­

URE 3.1 is derived. In the case of VTO mismatches, the total mismatch in the output 

current Z can be attributed to mismatches in current mirrors (1 - 5) and differen-
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tial pairs. For the current mirror of FIGURE 5.1, the mismatch in current ID2 for a 

mismatch of D. VTO in the transistor M2 is derived as follows: 

_ {3 (VGS _ VT )2 
2 

~ (VGS - VT - D.VTO?' 

Expanding (5.8), and neglecting the term D. Vio, ID2 becomes 

Ml M2 

IDI ID2 

FIGURE 5.1. Current mirror. 

(5.7) 

(5.8) 

(5.9) 

For mismatches caused by the current mirrors, the analytical expression for 

output current for the synapse circuit is 

(5.10) 

with 

u 

(5.11) 
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1 1 
T - 2" II (1 - M1 ) + 2" 12 (1 - M2) 

+b.y If (';1,(1- M,l -' ';12(1- M,l ) (5.12) 

where II and 12 are currents flowing through the transistors of the input (x) differential 

pair, Mi = vG~~V;O,i are the factors of mismatch in the current mirror i due to the 

mismatch b.. VT,i, f3y is the current factor of the transistors in the weight (y) differential 

pairs, and b..y is the weight (Y2 - Y1). There are five such current mirrors, and the 

output current Z can be expressed as a function 

(5.13) 

for the mismatch analysis. Here, b.. VT,i are considered to be random variables from a 

normal distribution with zero mean and variance as given by (5.3). Then, the variance 

in Z'due to the zero-bias threshold mismatches in current mirrors would be [132], 

( 
. )2 ~ ( 8 f ) 2 2 

a mIrror, VTO Z = ~ 8b..Y;:. a~VT,i 
,=1 T,' 

(5.14) 

where the partial derivatives are computed with the zero mean value of the random 

variables b.. VT,i. Similarly, if the variation due to the threshold voltage mismatches in 

the differential pairs alone, is considered, the output current Z becomes, 

Z = -7.if f3:r::
y 

(b..x + b.. VTO,x + ('Y:r: + b..'Y:r:) (J ¢ + VSB '7 -I¢) ) (b..y + b.. VTO,y ) 

(5.15) 

where b..x = (X2 - Xl) is the input to the multiplier, b..'Y:r: is the mismatch of substrate 

factor for the input differential pair, b.. VTO,x and b.. VTO,y are the mismatches at the 

differential pairs of input and weight respectively. Then, the variance at Z would be, 

a( diff-pair, VTO)~ _ 49~xf3y ( b..y2 a~ VTO,:o + b..y2 ( J ¢ + VSB ,:r: _I¢) 2 a~..,:o 

+ (b..X + 'Y:r: (J¢ + vsB,x -I¢)) 2 a~VTO''') . (5.16) 
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Following the argumentation above, variations at output current due to the 

mismatches in the current factor f3 can be computed for the existence of mismatch 

at current mirrors and differential pairs. For the current mirror of FIGURE 5.1, a 

mismatch of b..f3 in the transistor M2 would give the following mismatch in the current 

1D2 : 

1m 

Expanding (5.18), and rearranging the terms, 1D2 becomes, 

If mismatches at current mirrors only are considered, Z becomes, 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

where Qi = ~i are the factors of mismatch in the current mirror i due to the mismatch 

b..f3i, and all the terms (1- Mi) will be replaced by (1 + Qi) in (5.11)-(5.12). Hence, Z 

becomes a function of mismatches in f3 as, 

(5.21) 

and, the variance in Z due to f3 mismatches in current mirrors is, 

a(mirror,f3)~ = t (aif3.)
2 

ai.B;· 
t=l t 

(5.22) 

Also the variance due to f3 mismatches in differential pairs can be derived after some 

manipulation as: 

(5.23) 

where f3x and f3y are current factors of the input and weight differential pairs respec-
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tively. Finally, the total variation at the output current can be approximated by, 

u~ = u(mirror, VTO)~ + u( diff-pair, VTO)~ + u(mirror, f3)~ + u( diff-pair, f3)~ (5.24) 

which assumes that the individual mismatches due to the parameters VTO and f3 are 

independent. Dealing with the opamp and sigmoid blocks in the same way, analytical 

expressions for the variance at the outputs of those blocks can also be derived. 

Considering the mismatches, the sigmoid output will be approximated by, 

(5.25) 

based on (3.13). Hence, the sigmoid output can be expressed as a function of mis­

matches, and the variance can be calculated as, 

(5.26) 

It should be noted that those values of variance depend on the inputs of the blocks, 

i.e., u~ is a function of y and x (weight and input), and u?out is a function of sigmoid 

input. 

5.1.3. Mismatch Based Variations: Verification in the Test Chip 

As mentioned previously, a prototype analog neural network chip containing four 

neurons has been designed and manufactured through the Europractice program. The 

structure of each neuron is such that current outputs of five synapses are connected 

to a summing node where the current is then converted to voltage by means of an 
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opamp. Voltage output of the opamp is applied to the sigmoid block (FIGURE 3.13). 

We obtained 10 samples of the chip, hence there are 200 synapses, 40 neurons and 40 

sigmoid blocks. During the design phase of the chip little effort has been spent for 

preventing mismatches. The mismatches of individual synapses could not be observed 

since they are current outputs, and they are not available as a pin on the chip. The 

chips have been tested using the Lab View virtual instrumentation program employing 

a special data acquisition environment: At each step of the measurement for a neuron, 

four pairs of synapse inputs and weights are set to OV while the fifth synapse input and 

weight values are swept over a range of -5V to +5V and -2V to +2V, respectively. 

This procedure has been repeated for each of the 200 synapses so as to obtain char­

acteristics of each synapse as seen on the neuron output (sigmoid input). Meanwhile, 

outputs of sigmoid block are also measured so that sigmoid blocks are characterized. 

The outputs are sampled by the data acquisition card and stored on a host computer 

for f~rther analysis. In order to verify the measurements, 40 of the synapses and all 

sigmoids have also been tested manually by connecting all inputs externally and by 

measuring the output voltage values by a digital multimeter. Both measurements give 

identical results. Meanwhile, it has been observed that three neuron outputs are faulty, 

that is their outputs are stuck at the supply voltage. This may be the result of stuck-at 

faults either at one of the synapses or at the opamp. 

In order to establish a solid framework for the mismatch analysis of the synapse 

circuit, HSPICE simulations of the synapse with nominal model parameters were per­

formed. FIGURE 3.3 exhibits the results for the output current of the synapse for 

weight values of w = {-2, -1.5, ... , 2}V where the input is swept over the range 

[-2.5,2.5]V. The variance of mismatch for the parameters VTO, f3 and" are computed 

using (5.3)-(5.5), and they are given in TABLE 5.3 for current mirrors and differential 

pairs of the synapse circuit. Then, 100 Monte Carlo DC sweep runs are simulated for a 

single synapse incorporating the mismatches in the above mentioned parameters. Each 

mismatch parameter has a zero mean and the variance as given in TABLE 5.3. That 

is, for each run of the Monte Carlo sweep, parameters of one transistor in each current 

mirror and differential pair are disturbed by a normal distribution in their model cards. 
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In this way, we obtained a family of characteristic values for each input-weight pair. 

The average of the Monte Carlo simulation is given in FIGURE 5.2. Moreover the vari­

ance of the sample of size 100 is computed for each-input-weight pair, an,d the values 

are plotted in FIGURE 5.3 for nonpositive weight values. The variance of the synapse 

current Z exhibits a symmetrical behaviour as given by 0"1 ( x, w) = O'H -x, -w), hence 

the curves for positive weight values are obtained by the reflection of the curves for 

negative weight values with respect to the y-axis. Finally, the mismatch in the synapse 

output current is also calculated using (5.10)-(5.24). This corresponds to the theoreti­

cal analysis of the mismatch based on the estimates of individual mismatches (TABLE 

5.3), and DC simulations for nominal parameters. The results are again plotted for 

nonpositive weight values in FIGURE 5.4 in sake of clarity since the same symmetry 

also exists for the theoretical computations. It is evident from FIGURE 5.3 and FIG­

URE 5.4 that the mismatch in synapse current as computed by theoretical analysis 

and ~s simulated, exhibit a close relationship. Even though the values do not coincide 

exactly, the general shape of the curves are similar. The deviations may be the result 

of several factors: Our assumption that the mismatches in the parameters are not cor­

related may not hold exactly. Moreover the equations fo~ the drain current and the 

threshold voltage employed in HSPICE are not as simple as (5.1)-(5.2). It should be 

noted that the variance is larger as input and/or weight magnitude increases. This has 

to be taken into consideration in the training issue, and we will also discuss this in the 

next section. 

TABLE 5.3. Mismatch in the current mirrors and differential pairs of the synapse 
circuit. 

M1 M2 M3 M4 M5 diff,x diff,y 
O'i V'1'O (m V2) 78 78 72 11 26 27 15 

O'ir;(/-LA/VY 0.03 0.03 0.19 0.004 0.07 0.36 0.005 
2 

0' A"r a a a a a 0.63e-3 a 

In order to test measurement results on actual chips, a neuron circuit made up 

of five synapses is also simulated for lQCfMonte Carlo runs where each current mirror 

and differential pair in all of five synapses and the opamp are disturbed by the appro­

priate amount of mismatch. The variance obtained is given in FIGURE 5.5 whereas 
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FIGURE 5.2. Average of 100 Monte Carlo runs for the synapse with mismatched 
model parameters. 
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FIGURE 5.6 exhibits the measurement results using the Lab View environment. The 

, close agreement between the two families of curves leads us to the conclusion that our 

approach of mismatch based deviations holds. Moreover, this also suggests that the 

process dependent parameters have been estimated close to the actual values. 

A similar analysis has also been carried out for the sigmoid block. Three types 

of results are given in FIGURE 5.7 and FIGURE 5.8 for the sigmoid output and for 

the variance in sigmoid output, respectively: 

• simulation results with nominal model parameters and variance based on theo­

retical formulae of (5.13)-(5.26); 

• average (variance) of 100 runs of Monte Carlo simulations with mismatched model 

parameters; 

• average (variance) of Lab View measurements on actual chips. 

Again the similarity of curves in FIGURE 5.7 and FIGURE 5.8 supports our claim of 

mismatch based variations. Although the models for mismatches are not perfect, the 

simulation and measurement results indicate that our approach forms a realistic way of 

predicting block level variations based on individual transistor level mismatches. Once 

those variations can be predicted during the design cycle, necessary modifications are 

possible on the actual transistor level design of the analog circuitry: The theoretical 

formulae give the sensitivity of variations at circuit outputs on individual mismatches 

in current mirrors and differential pairs. A detailed investigation on individual contri­

butions from those pairs may label the more critical pairs, so that their sizes (Wand 

L) can be increased. Starting from the highest level of the hierarchy (system level) 

the allowable variances can be defined for each block and sub-blocks. Consequently, 

the allowable level of variance for sub-blocks can be achieved by using the theoretical 

formulae and/or the Monte Carlo simulations. 
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FIGURE 5.3. Variance in synapse output obtained from 100 Monte Carlo runs with 
mismatched model parameters. 
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FIGURE 5.5. Variance in neuron output obtained from 100 Monte Carlo runs with 
mismatched model parameters. 
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5.2. Incorporation of Mismatch into Backpropagation Training 

Building blocks in an analog neural network are nonideal, that is, the synapse 

circuit does not perform the actual multiplication operation, instead, the output de­

pends nonlinearly on both the weight and input. Similarly the summation of currents 

and I-V conversion at the neuron is performed by the opamp so that saturation takes 

place. The transfer characteristic of the opamp for our system is given in FIGURE 5.9 

for the average of 100 Monte Carlo runs. Also the activation function which we denote 

by the term "sigmoid", does not represent the ideal sigmoid function as given by 

~ 
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It should be noted that the curves in FIGURE 5.2, FIGURE 5.7, and FIGURE 

5.9 represent average behaviour for the analog neural network building blocks. There 

are also variations at outputs of identically designed blocks in the sarp.e (different) 

chip(s). Our primary concern is to incorporate the circuit nonidealities together with 

hardware variations into the backpropagation training. Several researchers have in­

vestigated effects of hardware nonidealities, and they concluded that chip-in-the-Ioop 

training has to be carried out where hardware models of ANN blocks are utilized 

[68, 112]. The requirement that each individual chip-set has to be trained separately in 

order to avoid the effects of variations among identical blocks degraded the applicabil­

ity of this approach. However, they have shown that circuit nonidealities (nonlinearity 

of synapses etc.) do not form an obstacle against the learning ability of the networks. 

This has also been supported by the work in [72, 133] where variations among blocks 

(e.g. in synapse gain) are modeled by a probability distribution and applied to the 

circuits as static deviations. The conclusion was that ANN circuits could tolerate vari­

ations if they are known (and fixed) during the training stage. Random variations, 

on the other hand, could not be tolerated. Injecting noise into the inputs, weights 

or outputs during the backpropagation training has also been utilized for generating 

a fault tolerant neural network which, by definition, should also be tolerant to such 

variations. Theoretical derivations of [115, 134] for linear perceptrons which can be 

extended to nonlinear networks, revealed that injecting noise into inputs improves the 

generalization ability which is also justified by the work in [135] and [136]. Even though 

those theoretical derivations may give some hints on noise injection for better general­

ization, the robustness of training for the analog neural networks is not guaranteed by 

improved generalization since the problem for the analog hardware extends more into 

the randomness of the variations between identical blocks. 

The concept of noise-enhanced learning was introduced by Murray [37]. Accord­

ing to his studies, injecting analog noise to weights during the training dramatically 

enhanced the generalization of the neural network. The effect of synaptic noise was to 

distribute the dependence of the output evenly across the weight set [118]. The sim­

ulations with ideal neural network elements revealed that injection of multiplicative 
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analog noise (whose value is reduced to a very small value as the network succeeds 

. learning), during training would yield a more robust network against faults created 

by removal of synapses or by perturbation of finar weight values [118]. ,Clearly, such 

an improvement would also be beneficial for analog neural network hardware where 

variations at outputs of building blocks are encountered. In [114], it is r~ported that 

an ANN hardware has been modeled in software for faults, and the enhanced fault 

tolerance of the network by means of weight noise is verified via simulations. However, 

they needed to measure the relative slope for each of the multiplier in the neurons for 

modeling, which is again a prohibitive matter. The limited dynamic range as a hard­

ware restriction, prohibited the full utilization of the enhancement too: Large weight 

values obtained by the training could not be used. 

Attempts to solve the problem of training in nonideal hardware building blocks 

in the presence of variations have not resulted in a satisfactory solution yet. In our 

approach, the ANN hardware blocks, as realized in VLSI, are modeled using analytical 

expressions for their input-output relations which has also been suggested in previous 

work [68, 72]. On the other hand, the actual dependence of variations at outputs of 

analog building blocks are investigated through theoretical derivations (Section 5.1.2), 

and extensive simulations and measurements (Section 5.1.3) so as to model the actual 

variations depending on the inputs of the analog circuitry. During backpropagation 

training, the variations are modeled according to the mismatch analysis of the circuitry, 

and they are considered as zero mean additive noise from 'a normal distribution with 

known variance depending on the input values of the blocks. For this alm, a new 

training scheme is developed (FIGURE 5.10). 

The behaviour of the synapse, opamp, and the sigmoid have been modeled in 

order to be used in the backpropagation algorithm. Regarding the variances in synapse 

and sigmoid blocks, again regression is employed by fitting the following polynomial 

functions to the data obtained from theoretical computations, Monte Carlo simulations 
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FIGURE 5.10. Flow for the noisy backpropagation. 

and measurements separately. 

cr!(x,w) 

(Csw + C6W2 + C7W3 + csW4) 

cr~(x) - do + d1x + d2x2 + d3X3 + d4 x4 

(5.28) 

(5.29) 

The variance in the opamp will be dealt by the assumption that the resistor imple­

mented will have a certain variation D..R (approximately '5-10 per cent for standard 

processes) and that the output will be affected by the input off-set voltage D.. Voffset of 

the opamp only. 

O(p,) = -(R + D..R)p, + D..Voffset 

The resulting expression for the variance at opamp output becomes, 

2() 2 2 2 cr 0 P, = p, cr 6.R + cr 6. V ff . o set 

(5.30) 

(5.31) 

Regarding the quality of the approximations, several characteristics of the regression 

results are given in TABLE 5.4. 
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TABLE 5.4. Characteristics of regression results. 

Standard error Max. deviation for Prop?rtion of 
of estimate any observation variance explained 

synapse nominal 3.84 13.0 0.9952 
Monte Carlo 3.15 9.23 0.!)979 

synapse theoretical 8.69 32.64 0.9924 
varIance Monte Carlo 12.25 29.69 0.9737 

nominal 0.039 0.076 0.9985 
sigmoid Monte Carlo 0.028 0.055 0.9989 

measured 0.015 0.053 0.9996 
sigmoid Monte Carlo 0.8ge-3 1.8e-3 0.9962 
varIance measured 0.30e-3 1.1e-3 0.9997 

Once the "noisy" behaviour of synapse and sigmoid circuits has been modeled 

based on analytical calculations (or Monte Carlo simulations), the backpropagation 

algorithm can be modified in order to incorporate those variations at the outputs. For 

this 'purpose, consider again the general multilayer perceptron structure depicted in 

FIGURE 1.2. The equations for backpropagation training as given in (4.1)-(4.4) are 

modified to become 

(5.32) 

(5.33) 

Note that the statistical variations at outputs of blocks are represented by additive noise 

terms ILn(X,W), On(IL), and <Pn(x) for the synapse, opamp and sigmoid respectively. 

Output of each hidden unit is another similar expression, neti being the net output of 

the synapses and Oh being the output of opamps at the hidden layer: 

(5.34) 

(5.35) 

In the preceeding implementation of backpropagation, the noise terms are determined 

as follows: In each epoch of the training (forward pass) a random number is generated 

from a distribution of zero mean and variance as calculated by (5.28), (5.29), and 
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(5.31) for each synapse, opamp and sigmoid block. Those values are considered to be 

the statistical variations at the outputs. Since the noise terms are additive, the update 

equations of CHAPTER 4 are still valid. 

5.3. Numerical Experiments 

The efficiency of our noisy backpropagation approach employing transistor based 

mismatches as the source of noise, has been tested on several examples. Five differ­

ent types of learning has been applied to each problem, where the core was a general 

purpose home-written software implementing gradient descent based backpropagation 

with several options like adaptive gain term, momentum term, weight decay and weight 

quantization. In all of the training experiments, on-line weight update scheme is em­

ployed. The following are the training types employing different types of models for 

the neural network blocks: 

• Nominal model, based on simulations with nominal model parameters (no noise 

terms added), 

• Monte Garlo without noise, based on average of simulations with mismatched 

model parameters (no noise terms added), 

• Monte Garlo with noise, based on average of simulations with mismatched model 

parameters and noise terms added with variance obtained from Monte Carlo 

simulations, 

• Measurements and noise, based on average of simulations with mismatched model 

parameters (for the synapse and opamp) and measurements (for the sigmoid), 

and noise terms added with variance obtained from theoretical formulae (for the 

synapse and opamp) and measurements (for the sigmoid), 

• Weight noise, based on uniformly distributed random noise in percentage added 

to weights, and gradually reduced to zero as the network converges [114, 118]. 
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The hardware model is based on Monte Carlo simulations fo~ the synapse, and 

on measurements for the sigmoid, for the average behaviour. 

The essential idea of employing those types of training is to verify that hardware 

nonidealities and circuit variations have to be· taken into account during the training 

process. Even if the variations have been estimated and design improvements are 

carried out on transistor geometries of critical components, the variations are inevitable. 

In order to allow hardware training of analog neural networks without on-chip circuitry 

or chip-in-the-loop training, proper modeling of those variations is also necessary. The 

examples below will indicate that modeling those variations as additive noise based on 

transistor level mismatches, and performing the training in software so as to include 

the random effects of hardware, enhances the performance of the ANN remarkably. 

5.3.1. XOR and 3-bit Parity Problem 

The XOR problem is a simple and standard problem. We have performed 

training on the XOR problem and 3-bit parity check which is similar to the XOR 

problem. The training has been carried out 30 times for both problems, for each type 

of training mentioned above. The noisy forward passes using models from "Monte 

Carlo with noise" and "measurements and noise" have also been run for 20 times (i.e. 

600 different training-forward pass pairs have been simulated). This allows us to derive 

statistically significant results for the problems. For the "weight noise" training, three 

noise levels have been used: 10 per cent, 20 per cent, and 40 per cent. Then, 10 forward 

runs are done for each noise level. Regarding the network sizes, a 2:3:1 network is used 

for the XOR problem, whereas a 3:6:1 network is employed for the 3-bit parity problem. 

Input levels are -2V for logic low, and +2V for logic high. However, output levels are 

-0.3V for logic low, and +2.6V for logic high as the desired outputs. Those values 

correspond to the minimum and maximum values of the sigmoid output. The averages 

of success rates for 600 (30 for nominal and Monte Carlo without noise) forward runs 

are given in TABLE 5.5. The numbers in parantheses are the results for the 3-bit 

parity problem. 
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The success rates are determined as follows: The allowable output range of 

[-0.3,2.6] has been divided into four equal subintervals, [-0.3,0.425], [0.425,1.15], 

[1.15,1.875], and [1.875,2.6]. The set of outputs h"as been classified as being "settled" 

if the outputs are within the intervals [-0.3,0.425] or [1.875,2.6] representing logical 

"LOW" and "HIGH" respectively, for the four possible input combinations of the XOR 

problem. If the output for any input pair belongs to the other two intervals, the output 

set is said to be "rejected". An output set is classified as "successful" if the outputs 

for the four input pairs are "settled" and correct. On the other hand, if output for one 

or more input pairs is not "settled" or correct, the set is classified as "unsuccessful". 

TABLE 5.5. Success rates in per cent for XOR (3-bit parity) problem for different 
training/forward pass types. 

TRAINING using models obtained from ... 
Model used in Nominal Monte Carlo Measurements Weight 
forward pass simulation w/out noise with noise and noise nOIse 

Nominal 100(100) 100(100) 100(100) 100(100) 100(100) 
Monte Carlo 100(100) 100(100) 100(93) 100(100) 100(100) 
Monte Carlo 84(73) 60(59) 100(99) 100(100) 78(74) 

and noise 
Measurements 65(58) 72(66) 94(90) 100(100) 82.5(85) 

and noise 

In order to test the effectiveness of the training, sample measurements have been 

carried out on the prototype chips. There are eight chips with no defective neurons. 

Since each chip contains four neurons, two chips are required to implement the XOR 

network employing two variable inputs, one bias input, three hidden neurons, one 

output neuron, and 13 weights. The topology of the test setup is given in FIGURE 

5.11. For each one of the training methods, five different weight sets are used to test 

the XOR operation. For each weight set, 30 combinations of chips have been used in 

the test, that is, the chip for the hidden neurons and the chip for output neuron have 

been selected from the eight chips in 30 different ways so that the effects of statistical 

variations among different chips can be observed. In this way, for each training method, 

a total of 150 XOR networks have been costructed and tested. The weights have been 

applied as voltages directly using potentiometers as voltage dividers. The weights and 

inputs which are not used, have been connected to ground to imply zero input and zero 
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weight. 

CHIP-I CHIP-2 

xl 

x2 1-----+-- output 

bias -,---;:.oK: 

FIGURE 5.11. Test configuration for the XOR problem. 

The results of the measurements on the chips are given in TABLE 5.6. Again, 

the allowable output range of [-0.3,2.6] has been divided into four equal subintervals, 

[-0.3,0.425], [0.425,1.15], [1.15,1.875], and [1.875,2.6]. An output set is classified as 

"successful" if the outputs for the four input pairs are "settled" and correct. On the 

other hand, if output- for one or more input pairs is not "settled", the set is classified 

as "reject". "Failure" denotes the case where the outputs are "settled", however, the 

output is not correct for one or more input pairs. 

5.3.2. 2-Dimensional Classification Problem 

As a "continuous input" classification problem, two sets of data points are 

generated from a normal distribution with the following properties: The one labeled 

by class-l has mean of -0.5 for xl coordinate, mean of zero for x2 coordinate, where 



TABLE 5.6. Success rates of measurements on the chips in percentage for XOR 
problem. 

Training Method Success Failure Reject 
Nominal 49 29 22 

Monte Carlo without noise 61 26 13 
Monte Carlo with noise 85 6 9 
Measurements and noise 85 10 5 

Weight noise 81 14 5 
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the standard deviation for both coordinates is 0.3. class-2, on the other hand, has 

mean of 2.0 for xl coordinate, mean of zero for x2 coordinate, where the standard 

deviation for both coordinates is 1.0. Of the 100 data points generated for each class, 

half of them are used as the training set, where the other half is used for test. FIGURE 

5.12 displays the data points generated. A 2:14:2 structure is used for training where 

class-l and class-2 outputs are designated by the pairs of (2.6V, -0.3V) and (-0.3V, 

2.6V) as target values. All types of training are carried out until the rms training 

error dropped below one per cent. The training has been carried out 15 times, for each 

type of training mentioned above. The noisy forward passes using models from "Monte 

Carlo with noise" and "measurements and noise" have also been run for 10 times. 

TABLE 5.7. Success rates in per cent for classification problem for different 
training/forward pass types. 

TRAINING using models obtained-from ... 
Model used in Nominal Monte Carlo . Measurements Weight 
forward pass simulation w/out noise with noise and noise nOIse 

Nominal 94(88) 96(86) 92(88) 90(86) 92(84) 
Monte Carlo 46( 44) 94(88) 96(92) 94(88) 96(88) 
Monte Carlo 32(38) 76(72) 88(92) 90(86) 82(79) 

and noise 
Measurements 29(26) 68(64) 90(88) . 95(92) 78(74) 

and noise 
The entries are rates for the training set and the test set in parantheses. 
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FIGURE 5.12. Data for the classification problem. 

5.3.3. Comparison of Results 

The purpose of our comparison is not to test the final performance of the training 

methodologies but rather the improvement brought abou~ by the new approach. As 

can be seen from the results, incorporation of variations into the training enhances 

the capability of the network strongly: The comparison is performed with respect to 

the forward pass using the models obtained from measurements which resembles the 

actual electrical characteristics of the analog circuitry. For the XOR (3-bit parity) 

problem training without noise results in high level of error. The degradation in the 

classification problem is more severe: correct classification rates drop to 29 per cent and 

68 per cent for nominal and Monte Carlo models. Inclusion of weight noise improves 

the fault tolerance of the network as expected. However, the performance of training 

with weight noise is worse in comparison to training with Monte Carlo with noise and 
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Measurements and noise. This implies that random injection of noise is not capable of 

compensating the effects of hardware variations fully. 

Regarding the measurements on actual chips the followings can be stated: 

• The measurement results do not coincide exactly with the simulation results of 

TABLE 5.5, however they are correlated, that is, injection of noise during the 

training really improves the performance of the analog neural network. 

• Modeling the variations based on either Monte Carlo simulations or actual mea­

surements on the chip do not differ in the robustness of the training, however, 

they perform better than random noise injection. 

• Even though the success rate has been found to be 100 per cent in the simulation 

using measurement based variations, the actual success rate has been 85 per cent 

only. This may be due to several factors: 

- The precision of weights used during the measurements is not as high as the 

precision of computed weights. Moreover there has been electrical noise on 

the setup which may have effected the outputs slightly. 

- The modeling does not base on measurements solely: Variances in the 

synapse have been modeled using the theoretical formulae, hence the mod­

eling may be not accurate enough to incorporate the deviations fully. 

• The measurements indicate that a much more robust training has to be carried 

out in order to guarantee satisfactory operation in the presence of hardware 

nonidealities and variations. This can be achieved through either improvement 

of the analog circuitry so that they exhibit less variation, or through utilization 

of a simulation based training as offered in CHAPTER 4. 

An investigation of the weight distributions also suggests some hints for the 

enhancement of the fault tolerance: The weights for the training types with noise 

exhibit a larger standard deviation in comparison to weights obtained without noise 
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terms (TABLE 5.8 for the classification problem). This confirms the results of [118] that 

the "information" is distributed evenly to the weights in training with noise injection. 

TABLE 5.8. Distribution· of weights for different training types in the Classification 
problem. 

TRAINING using models obtained from ... 
Nominal Monte Carlo Measurements Weight 

simulation without noise with noise and noise nOIse 
Mean -0.035 -0.033 -0.015 -0.05 0.001 

Standard 0.14 0.24 0.73 0.54 0.64 
Deviation 
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6. CONCLUSION 

In this the"sis, a new approach for design and training of analog neural networks 

has been proposed. The approach aims to make possible the integration of analog neu­

ral networks into larger systems-on-chip by proposing solutions to problems of hardware 

training on software which would eliminate the need for chip-in-the-loop training and 

on-chip training. The main problems of analog hardware in terms of training is that the 

circuitry exhibits nonideal characteristics and mismatches between identically designed 

components. The nonidealities of the hardware are incorporated into the training by 

modeling the characteristics of building blocks via regression, and by using the mod­

els during the backpropagation training. In order to incorporate the mismatches into 

training, building blocks of an analog neural network, namely the synapse, opamp and 

sigrpoid circuitry, are analyzed for their mismatch characterization analytically. Mis­

matches in the threshold voltages (VT) and current factors ((3) are considered to be 

the causes of variations on matched MOS transistor pairs which result in deviations 

at outputs of identically designed blocks. Closed form expressions of statistical vari­

ations from the nominal output are derived for the abovementioned circuits. These 

theoretical variations are compared to actual measurements obtained from chips. It 

seems to be evident from the comparison that those variations can be attributed to 

mismatches. In order to incorporate the variations at the outpu~s, the training algo­

rithm (backpropagation) is modified: The building blocks are modeled according to 

their average outputs whereas the variations are considered to be noise with certain 

normal distribution. Then, the training is carried out using "noisy" backpropagation 

where the outputs of blocks are calculated in a probabilistic manner taking the noise 

into account. Sample simulations are conducted to verify that this method of training 

allows a higher degree of fault tolerance in the sense that noisy forward pass outputs 

exhibit better performance over outputs after a training without including the varia­

tions. The comparison of the modified backpropagation algorithm for different types 

of modeling also indicates that incorporating variations based on mismatch model ob­

tained through Monte Carlo simulations and actual measurements also coincide. This 

verifies that noise (variations) can be estimated during the design stage of the circuitry 
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using the data on transistor geometries so that the usage of "noisy" backpropagation 

can be helpful for achieving a robust training for analog neural networks. The ulti­

mate aim of this research is to enable training of -analog neural networ~s on software 

eliminating the need forchip-in-the-Ioop or on-chip training. The author believes that 

the incorporation of variations based on mismatches will be an important step towards 

that goal. 

Moreover, estimation of mismatch either through analytical derivations or through 

Monte Carlo simulations can be utilized as a means for circuit optimization. Sensi­

tivity of the overall performance of the analog neural network with respect to circuit 

elements (sub-blocks such as current pairs or differential pairs) can be estimated during 

the design. Improvements can be done in the sizing of transistors for critical pairs so as 

to obtain reasonable levels of variations which could be tolerated during the training. 

During the course of the thesis the following original contributions are done: 

• Design, characterization, and modeling of analog neural network building blocks 

suitable for hardware implementation. 

• Development of a silicon assembler for generating the layout of analog neural 

networks. 

• Derivation of mismatch based statistical variations on outputs of analog building 

blocks analytically, and the verification on the prototype neural network chip. 

• Incorporation of MOS transistor mismatches into training of analog neural net­

works for enhancing fault tolerance. 

It is the opinion of the author that the future of analog neural network real­

izations has to consider the effects of statistical variations during the design phase 

(through analytical modeling and Monte Carlo simulations,) so that a robust training 

will be enabled for the analog hardware. 
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APPENDIX 

CHARACTERISTICS OF THE ALCATEL-MIETEC 2.4J-lm 

PROCESS 

Minimum feature size: 2.4JLm 

Number of metal and poly layers: 2 

Type of substrate and well: n-well on p-type substrate 

Resistance of n-well diffusion: 2kil/square 

Model parameters for NMOS transistor: 

.model N nmos level=3 vto=O.86 nsub=1.3ge15 tox=40.29n gamma=O.26 Id=O.22u 

+ kp=51.71u phi=O.62 uo=611.37 delta=O.85 cj=6.ge-5 mj=O.5 pb=O.65 

+ mjsw=O.27 rsh=33.42 vmax=158e3 cjsw=3.43e-10 cgbo=5.57e-10 

+ nfs=1.35ell ucrit=le4 eta=O.07 kappa=1.4 xj=O.3u js=O.OOl theta=O.05 

+ capop=4 xw=O xl=O lmlt=l wmlt=l acm=2hdif=3u wd=-O.028u del=-O.16u 

Model parameters for PMOS transistor 

.model P pmos level=3 vto=-O.85 nsub=9.1e15 tox=42.46n gamma=O.691d=O.35u 

+ kp=19.14u phi=O.67 uo=233.84 delta=O.96 cj=3.1e-4 mj=O.5 pb=O.76 

+ mjsw=O.38 rsh=35.01 vmax=223.67e3 cjsw=3.67e-10 cgbo=5.57e-10 

+ nfs=3.92ell ucrit=le4 eta=O.06 kappa=9.23 xj=O.5u js=O.OOl theta=O.12 

+ capop=4 xw=O xl=O lmlt=l wmlt=l acm=2 hdif=3u wd=O.034u del=-O.01u 
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