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ABSTRACT

STABLE-MATCHING BASED RESOURCE ALLOCATION

METHODS IN WIRELESS COMMUNICATION SYSTEMS

As the number of smart devices increases day by day, the need for new resource

allocation techniques also increases. 5G technologies such as Long-Term Evolution

Advanced (LTE-A), carrier aggregated heterogeneous networks (HetNets), or Internet

of things (IoT) networks with mobile edge computing (MEC) features require high data

rates and ultra low latency with the restricted resources. Resource allocation and secure

communication are two of the most important challenges in wireless communication.

Graph-based algorithms are proposed in order to achieve resource allocation with a

low computational complexity. The primary objective of this thesis is to address the

resource allocation challenges, e.g., fairness and stability, by using stable matching

(SM)-based approaches. SM algorithm requires channel state information (CSI) before

starting allocation. However, CSI transmission may cause an overload of the up-link

channel. The problem is extensively elaborated in many aspects for different wireless

communication systems such as HetNets and IoT networks. The overload on the uplink

channel, through CSI transmission, is decreased significantly by the proposed partial

feedback matching (PFM) algorithm. Finally, IoT networks are very fragile against

attackers in physical layer as the number of connected smart devices increases. A

three state SM-based attacker identification and punishment policy, is proposed in

order to increase the robustness of the network. Both analytical and simulation results

are presented to demonstrate that the proposed SM-based approaches have better

performance than the algorithms that exist in the literature.
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ÖZET

KABLOSUZ HABERLEŞME SİSTEMLERİNDE KARARLI

EŞLEME ALGORİTMASI İLE KAYNAK DAĞITIMI

Kablosuz haberleşme ağlarında etkin olan akıllı mobil cihazların sayılarının her

geçen gün artması, kısıtlı kaynakların dağıtmı için yeni yaklaşımları gerektirmiştir. İleri

düzeyde uzun süreli evrim (LTE-A), taşıyıcı birleştirmeli (CA) heterojen ağlar (HetNet)

ya da nesnelerin Interneti (IoT) ve mobil sınır hesaplama (MEC) gibi 5G sistemlerde

kullanılması beklenen teknolojiler, yüksek hızlar ve çok düşük gecikmeleri gerektirir-

ler. Kaynak dağıtımı ve güvenli iletişim konuları, bu teknolojiler için araştırılması

gereken en önemli sorunlar arasında yer almaktadır. Graf tabanlı algoritmalar bu

tarz işlemler için düşük karmaşıklığından çok tercih edilmektedir. Bu tezin asıl amacı,

graf tabanlı kararlı eşleme (SM) algoritması kullanarak olabildiğince adil ve kararlı bir

şekilde kısıtlı kaynakların dağıtımını sağlamaktır. Kararlı eşleme algoritması kaynak

dağıtımına başlamadan önce kanal durum bilgisine (CSI) ihtiyaç duymaktadır. Bu

kanal durum bilgileri ne yazık ki kanalda aşırı yüklenmeye sebep olabilir. Bu sebeple

kısmi geri bildirim algoritması (PFM) önerilmiştir. PFM ile sadece çok az miktarda

kanal bilgisi ile bile tam sayıda kanal bilgisine yakın sonuçlar elde edilmiştir. Kablo-

suz haberleşme sistemlerindeki bir başka önemli zorluk ise fiziksel katman güvenliğidir.

Kablosuz ağlar yapıları gereği bir çok saldırıya maruz kalabilirler. Ağa bağlı akıllı mobil

cihaz sayısı arttıkça güvenlik zafiyeti de büyümeye başlar.Bu probleme çözüm olarak da

yine SM tabanlı saldırgan tespit etme ve cezalandırma yaklaşımı sunulmuştur. Teorik

ve nümerik sonuçlar, SM tabanlı yaklaşımların performanslarının literatürde varolan

yaklaşımlardan daha iyi sonuç verdiğini ispatlamıştır.
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1. INTRODUCTION

In order to address the increasing demands for high data rates in wireless com-

munication systems, new technologies, such as heterogeneous networks (HetNets), car-

rier aggregation (CA), and Internet of things (IoT), have been introduced in the last

decade. HetNets include not only one type of cell (i.e., macro-cell), but also various

low power nodes, such as pico-cells and femto-cells, different from the homogeneous

networks. With the ability of providing transmission from various cells inside the con-

current area, long term evolution-advanced (LTE-A) nodes, which are able to use more

than one carriers belonging to different cells (i.e., CA), are developed in the 3GPP

specifications of Release-10 for HetNets in order to achieve the desired data rate. The

significant increase on the number of smart devices opened a new era and required new

technologies beyond these 4G technologies. In this new era, billions of devices connect

to the Internet in a smart form according to the statistics in [1]. All the connections

of this new family of smart devices are named as “Internet of things”. Thus, there is

an essential need for the management of a great amount of data of IoT applications of

these heterogeneous devices. Initially, cloud services are proposed to handle this huge

amount of data; however, these services cannot meet the demand for low latency and

high reliability for new real time applications, such as real time games, virtual real-

ity, medical, and military services. Correspondingly, computation and storage tasks

migrated towards the mobile edge, which has not only relaxed the data traffic on the

cloud, but also decreased the latency significantly.

One of the common challenges in these technologies is to find an efficient resource

allocation algorithm, which may adapt to different scenarios and meet different require-

ments. At this point, low-complexity graph-based algorithms, e.g., SM algorithms, are

proposed as a popular solution to resource allocation problems [2–4]. Although SM

based studies have already increased the efficiency of resource allocation in many as-

pects, new complex network structures, e.g., IoT networks with billion devices, force

us to search for new facilities in this area.
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The other significant challenge is to provide safe communication to the partici-

pants. Significant amount of connecting devices makes wireless network fragile against

any threats, e.g., DDoS, confidentiality, eavesdropping, etc. In order to achieve the

real potential of mobile edge computing (MEC), secure communication is crucial. Al-

though Sun et al. [5] consider these significant problems together with rate efficiency

and fair allocation, secure transmission is not elaborated extensively. Hence, none of

the previous studies proposes joint solutions for rate efficiency, fairness, and security

concerns. In this thesis, extended and adaptable versions of SM algorithm are proposed

in order to solve the resource allocation problem, while it aims to guarantee secure and

fair communication.

1.1. Motivations

The main objectives of this thesis are:

(i) to provide an efficient resource allocation process for carrier aggregated HetNets

by considering many various aspects such as fairness, stability, robustness, com-

putational complexity, and transmission rate,

(ii) to decrease the overload on the feedback channels, while uploading the channel

state information (CSI) that is required by the algorithm before starting resource

allocation ,

(iii) to meet the various requirements from different types of users in the wireless

communication networks with adaptable and flexible matching algorithm,

(iv) to increase the robustness of networks, e.g., IoT networks, which are very fragile

against possible attacks, as a natural result of HetNet structure.

1.2. Contributions

The main contributions of this study are:

(i) many-to-one SM (MSM) algorithm uses the ideal CSI values (via feedback chan-

nel) in order to obtain the preference lists instead of using deterministic prefer-
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ences (as in the original SM algorithm). The overload on the uplink channel,

through CSI transmission, is decreased significantly by the proposed PFM algo-

rithm. Specifically, PFM based CA uses partial feedback CSI instead of ideal full

CSI for each UE in a CA HetNet.

(ii) Stability performances of the proposed algorithm, PFM, and the user satisfaction

analyses are investigated for various amounts of partial feedback CSI transmis-

sion. Stability concerns for CA HetNets are investigated for the proposed vari-

ation of the MSM algorithm in order to determine the rate satisfaction of both

user equipment and the entire HetNet. Individual rate dissatisfaction of UEs and

network instability results are obtained.

(iii) As a more realistic approach, impact of channel estimation errors on feedback

channels are considered by using MSM and PFM approaches for full CSI and

reduced feedback CSI scenarios, respectively.

(iv) Data rate and fairness performances are investigated for all proposed variations

of SM algorithm, simultaneously, by considering the rate requirements of UEs

with the feedback CSI.

(v) The resource allocation problem, which is one the most significant challenges of

the IoT MEC infrastructure, is addressed by applying a graph-based low com-

plexityity resource allocation policy, SM.

(vi) Finally, IoT networks are very fragile against attackers in the physical layer as

a nature of wireless communication systems. A three state reputation based

attacker identification and punishment policy, is proposed in order to increase

the robustness of the network.

1.3. Related works

Wide range of applications of the modern life have inspired growing interests in

high speed wireless communications in the last decade. The main aim is to provide a

robust technology with a high enough capacity to meet the increasing demand. As the

homogeneous networks cannot meet the current demand for data traffic, an intelligent

network strategy, HetNet, is proposed [6], as a mixed network structure including
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macro-cells and low-power nodes, such as pico-cells and femto-cells [7]. The main idea

behind a HetNet is to bring the network closer to the users by using multiple low-power

base stations in order to decrease the cost by offloading the central macro-cells and to

boost the spectral efficiency by potentially sharing the same spectrum [8,9]. In order to

achieve higher data rates, CA is proposed in 3GPP LTE-A specifications of Release-10

standard [10]. Unlike the 3GPP specifications of Release-8 LTE-A standard [11], CA

in Release-10 enables each user to communicate by using up to five carriers rather than

one carrier. This new feature allows each user to reach a maximum bandwidth of 100

MHz [12].

CA is very useful to lessen the load on the network and maximize the energy

efficiency by enabling the use of a carrier outside the traditional cellular frequency

band [13]. Additional carriers per user would allow users to communicate without a

loss of quality of service (QoS) even under unfavorable conditions [14,15]. However, CA

in LTE still requires modification on resource allocation approaches. One of the main

requirement is to achieve higher data rates while providing a pleasant QoS and/or

fairness for each user in a network [16–18]. Correspondingly, the other requirement

is a reliable channel information, which is obtained by channel estimation or feedback

transmission for an efficient resource allocation. The channel information requirements

substantially increase the complexity of the system or the overhead on the feedback

channel.

1.3.1. Carrier Aggregation in Heterogeneous Networks

CA approaches can be placed in three main categories as intraband contiguous,

intraband non-contiguous, and interband non-contiguous CA [19]. In contiguous CA,

component carriers (CCs) are adjacent to each other and belong to the same frequency

band (intraband). However, in non-contiguous CA, the combined CCs can belong to

the same frequency band with a frequency gap (or multiple frequency gaps) or they can

belong to different frequency bands (interbands). CA in LTE still requires modification

on CC selection and resource block (RB) allocation approaches [16]. In [20–22], a

modified carrier specific proportional fair (PF) metric is maximized by using the CC
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selection criteria for a CA system in HetNets. In [23], a CC selection algorithm that

assigns a CC to each newly-arriving user equipment (UE) is proposed on the basis of

the average channel quality; however, fairness of the system is not considered. The

study in [24] focused on energy efficiency (EE) balancing between downlink and uplink

by formulating an optimization problem in order to maximize the weighted sum of EEs,

while the authors in [13] proposed to use the bisection method to balance the energy

minimization and rate maximization.

Graph based algorithms are widely used for resource allocation purpose in wire-

less networks [25]. In [26], a greedy algorithm (GA) is proposed as a radio resource

allocation algorithm by considering unrealistic assumptions as a constraint, such as

the backlogged traffic model and the perfect channel information from channel quality

indicators (CQIs). The proposed resource allocation method in [16] performs better,

achieving a proportional fair throughput and higher fairness index than GA. However,

it has a higher complexity than GA. In [27], a suboptimal solution is proposed based

on the many-to-many two-sided matching game with externalities for device-to-device

(D2D) communications. To this end, MSM algorithm is proposed as a robust solution

for subcarrier allocation problems of such CA HetNets in this study. Our stability

results allow to make finer assignments in terms of individual and/or social rate satis-

faction on the HetNets.

There are several approaches to multiple carrier scheduling initially explored in

its application to CA such as round robin scheduling and resource allocation on a

user grouping [28, 29]. The round robin approach is channel unaware and the network

as a whole may be inefficient in terms of throughput and bandwidth. User grouping

scheduling algorithm aims to maximize the ratio of achievable instantaneous data rate

of the network by using the criteria that are based on each user’s equipment capability

and the number of users within each carrier’s coverage area [30]. In order to schedule

multiple carriers, the modified Frank Kelly algorithm is proposed to maximize their

individual utility functions by taking into account the primary and the secondary

carriers present in the LTE 3GPP standard [28]. In [31, 32], a CC selection algorithm

that assigns a CC to each newly-arriving UE is proposed on the basis of the average
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channel quality, however, fairness of the system is not considered.

In [33], the Gale-Shapley and the random path to stability algorithms are pro-

posed for coexistence between LTE and Wi-Fi systems. Although there are some stud-

ies that propose the SM algorithm as a scheduling scheme for CA systems as above,

fairness and stability performances have not been considered for CA HetNets, so far.

There is only one study that investigates low complexityity and low feedback rate ap-

proaches in order to reduce the feedback overhead in a CA MIMO systems without

considering the fairness [34]. The authors in [34] propose a novel scheme to reduce the

computational complexity of the requiring rank indicator (RI), pre-coding matrix in-

dicator (PMI), and CQI indices, and investigate a low feedback rate channel allocation

approach for CA MIMO systems in [34]. However, the stability of the CA was not

considered.

The complexity of resource allocation and the need for feedback information

will be exponentially increased as the number of users and CCs increase. Moreover,

the great interest to the complexity and feedback overhead of resource allocation in

CA HetNets are getting increased with the 3GPP specifications of Release-13 LTE-A

standard, which already introduces a CA of up to 32 CCs in order to achieve higher data

rates (> 100 MHz) for 5G systems [35]. Although there are some studies that propose

variants of the SM algorithm as a scheduling scheme for CA systems, throughput

and fairness performances have not been considered for the CA HetNets so far. Low

complexity and low feedback rate approaches are presented in [34] in order to reduce

the feedback overhead in a CA MIMO systems without considering the fairness.

1.3.2. Secure communication in Carrier Aggregated Heterogeneous Net-

works

Physical layer security is a crucial topic for wireless communication networks

as the complexity of the transmission methods are increasing tremendously. Thus,

physical layer security is investigated widely for especially cooperative communication

and cognitive radio networks in the literature. In [36], a trust game model is proposed
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by considering the penalty of the faulty secondary users for the cooperative sensing

spectrum to cope with malicious users. In [37], the effects of the inaccuracy of the

trust degree on the secrecy rate is investigated under the assumption of a potential

eavesdropper in the cooperative network. In [38], delivery-based attacker identification

and punishment policies are proposed as a solution for data falsification of cooperative

spectrum sensing in cognitive radio networks. In [39], an evolutionary game algorithm

is proposed as a solution for cooperative behavior of selfish nodes for OFDM wireless

communication systems in order to achieve higher secrecy rate. In [40], a capacity- and

trust-aware base station cooperation strategy has been proposed for the non-uniform

HetNets by considering the limited capacity and trustworthiness of BSs. This study

investigates the optimal BS densities in terms of spectral efficiency results. However,

fairness is not considered.

There are also a few other studies that investigate malicious users in wireless

communications other than cooperative communications; however, existing studies are

not enough for providing both reliable and fair communication. In [41], a modified

neighbor-weight trust determination algorithm based on the reputation results is pro-

posed by aiming to detect and isolate the malicious nodes from mobile ad hoc networks.

In [42,43], a novel trust based network security method is proposed as an integration of

the trust values in the optimization framework in a multi-hop wireless network. Trust

values are obtained from an history. In [44], a trust evaluation method based on the

use of probabilistic functions, called confidence interval calculation, is proposed as a

solution for denial-of-service and Sybil attacks in wireless sensor networks. In [45],

both selfish and malicious behavior of the agents are investigated with the deployment

of trust/reputation management systems by designing cost-effective intrusion detec-

tion system by using a trust update mechanism based on partial monitoring of the

agents. However, the effects of the trust value on the data rates or fairness are not in-

cluded. In [46], a smart mode selection and bearer split-scheduling strategy is proposed

to achieve fair and efficient bandwidth aggregation of LTE and Wi-Fi links. In [47],

a resource allocation optimization problem with joint carrier aggregation in cellular

networks is studied by considering real-time and delay-tolerant applications of mobile

users. Although the proposed algorithms achieve high data rates and proportional
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fairness, the potential security threats are not investigated in these studies. In [48], a

reputation based method is proposed for misbehavior detection in uplink data offload-

ing between Wi-Fi access and LTE access. Although the impact of energy efficiency

and throughput is examined, fairness is not considered.

In this thesis, a trust-based SM approach is proposed for resource allocation

under a selfish user threat in a CA HetNet. Stable matching algorithm has not been

considered for the security threats in a CA HetNet before. The main aim is to preserve

fair transmission by detecting selfish users with a low-complexity SM algorithm with

some extensions. In the identification step of the proposed trust-based SM approach,

the selfish user detection threshold has a significant role in order to avoid detecting

honest users as selfish users as a result of bad channel estimation and decrease the

misleading performances. Additionally, the punishment factor, which affects the trust

index of each user in the network, has an essential role on the rate efficiency as well.

The appropriate detection threshold and punishment indices are investigated in this

study in terms of both misleading ratio and fairness.

1.3.3. Mobile edge computing in Internet of Things

As the number of smart devices increases day by day, the need for new technolo-

gies, which may provide high security, high speed, and low complexityity [49], increases,

too. New applications of smart devices, such as real-time games, emergency applica-

tions, or significant medical applications, have very high data rate and low latency

requirements, which cannot be addressed with cloud or fog networks directly. Thus, all

the computing capabilities are offloaded to the mobile edge devices in order to decrease

the latency significantly. MEC is defined and standardized by ETSI in [76, 77]. The

MEC paradigm was proposed to addressed this issue by offloading the tasks to the

edge devices corresponding to the nearest access points (APs). Resource allocation of

available resources in edge devices to the IoT devices, is one of the main concerns in

MEC.
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Game theory is widely used in order to address the resource allocation problem

in wireless communication networks. In [33], the Gale-Shapley [50] and random paths

to stability algorithms are proposed for coexistence between LTE and Wi-Fi systems.

Although the stability issue is touched on slightly, fairness is again not considered. As

an extension to [50], in [2,51], many-to-one SM algorithm is used instead of one-to-one

SM algorithm for the non-orthogonal spectrum assignment and for over-the-top appli-

cations in 5G networks, respectively. However, security aspects are not included. [52]

focuses on energy consumption and time delay of the mobile terminal and also includes

the stability analysis with a joint wireless and cloud resource allocation solution. [53]

develops a novel online small-cell base station peer offloading framework, by leveraging

the Lyapurov technique. This study mainly focuses on energy consumption problem.

In [54], Wang et al., propose a fair policy based on non-cooperative strategic game,

including three different offloading policies: executing tasks in local devices, offloading

tasks to local servers, and nearby offloading in order to decrease overall system costs.

In [55], hierarchical game for joint wireless and cloud resource allocation is proposed in

order to minimize the cost of mobile terminals and delays. Another joint computation

offloading problem is addressed with a low complexity algorithm different from the

previous algorithms [56]. In [57], joint resource allocation and offloading optimization

is proposed in order to decrease both cost and latency. Cost and latency trade off in

MEC resource allocation is included in a scenario of one macro base station equipped

with multiple MEC servers by using resource block allocation in [58]. Feng et al.

propose a game theoretic Stackelberg game approach in order to address the pricing

problem of cyber insurance security through fog computing platform [59].

In [60], successive convex optimization approach is proposed as a solution to

resource allocation problem, which associates mobile users to the mm-wave access

points with MEC hosts with the objective of minimizing power and latency. In [61],

decentralized game based offloading and resource allocation approach is proposed in

the case of multiple MEC active servers in the network. However, security issues are

not included in this study. A multiuser offloading problem is addressed by proposing

maximizing smart mobile device offloading payoff (SMOP) algorithm based on a game
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model in [62]. In [63], a Nash bargaining based resource allocation method is proposed

by considering users’ individual demands in order to maximize the system throughput

and minimize the delay. This study focused on effectiveness, fairness, and throughput;

however, it does not consider security issues.

In [64], a Bayesian game theoretic framework is proposed for resource allocation

in a MEC network. The analyses demonstrate that rationality (selfish behavior) does

not lead to a more efficient allocation and incomplete information leads to a socially

better outcome. In [65], Bayesian game based power allocation are proposed for MEC

network, which includes selfish users and greedy users together. This study offers a

power allocation algorithm, which considers the user’s Bayesian probabilistic behaviors

to calculate the utility.

Although there have been already many studies about MEC, as above, there

are still open problems to be addressed, such as resource management and secure

communication in order to meet various demands on IoT networks. In this thesis, SM

algorithm is extended and proposed as a robust and low complexity solution for MEC

offloading problems. Our stability results allow to make finer assignments in terms of

individual and/or social rate satisfaction in IoT networks.

1.4. Stable Matching Algorithm

Stable matching algorithm (also known as stable marriage algorithm) is initially

presented in [50]. The main aim is to find the perfect match for everyone in both

groups. The stable marriage process is illustrated in Figure 1.1. Men and women are

defined as two distinct groups. Each woman and man has a deterministic preference list

that reflects the desired levels to be matched with one of the opposite group members,

in descending order. Thus, the first element of any preference list is the most desired

man/woman. The preference list does not change through the SM algorithm.

SM algorithm is presented in detail in Figure 1.2. The preference list of each

man and woman is represented by ≻man
k : and ≻woman

n :, respectively. There is a one-to-
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Figure 1.1. Stable Matching Algorithm

one matching, which means that each man can be matched with at a single (Qk = 1)

woman. ρx refers to the number of received proposals of woman x. A man can make

only one proposal at a time, while a woman can have more than one proposals, at the

same time. Un′ refers to the man, who is matched with the woman n′ temporarily.

As a starting point, each man proposes to the woman, who is ranked first in

his preference list, simultaneously. In the case of receiving only one proposal, the

corresponding woman directly accepts the only proposal. In the case of receiving more

than one proposals, the corresponding woman selects the one ranked highest among the

proposals. When a woman accepts any proposal, she is temporarily matched with that

man (engagement). Through the end of SM algorithm, women continue receiving and

considering the new proposals. In the following steps, if an engaged woman receives

a proposal from the man, who is ranked better than the man, whom she is already

engaged, then she breaks off the engagement and accepts the new proposal. Thus, all

the engagements may change until everyone is matched with one another. After the

broken off engagement, the abandoned man continues to make proposals to the next

woman in his preference list until getting a positive response (accepted). Hence, the
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Initialization: {r, k} ∈ K, n ∈ N ,
K = N , ∀Qk = 1, t = 0
Xman,t :proposal list of men at step t.
αman
k : proposal rank of the kth man (αman

k = 1 at t = 0)
≻woman

n : preference list of the nthwoman.
≻man

k : preference list of the kth man
ρx: number of proposals to x ∈ N .
Un′ : temporary partner x ∈ N .
while ∀Qk 6= 0 do
Each man, k ∈ K (Qk 6= 0), makes proposal to Xman,t.
for n′ ∈ Xman,t do
if ρn′ > 1 then
if µUn′ ,n′ = 1 then
n′ is assigned to the most desired man
if any new proposer, k, ≻woman

n′ Un′ then
µUn′ ,n′ = 0, µk,n′ = 1
QUn′

= 1, Qk = 0.
end if

else
n′ is assigned to the most desired man
µk,n′ = 1, Qk = 0.

end if
αu
k = αu

k + 1, where k ∈ K
else
if µUn′ ,n′ = 1 then
n′ is assigned to the most desired man
if the new proposer, k, ≻woman

n′ Un′ then
µUn′ ,n′ = 0, µk,n′ = 1
QUn′

= QUn′
+ 1, Qk = 0.

end if
else
n′ is assigned to the proposer man (i.e., k).
µk,n′ = 1, Qk = 0.

end if
αu
k = αu

k + 1, where k ∈ K
end if

end for
t = t+ 1

end while

Figure 1.2. SM Algorithm
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process goes on until everyone is matched.

Since SM algorithm is a one-to-one matching algorithm, the number of men, K,

is equal to the number of women, N . For simplicity, a matching can be illustrated

using an K ×N binary matching matrix, M, given as

M =

















µ1,1 µ1,2 ... µ1,N

µ2,1 µ2,2 ... µ2,N

... ... ... ...

µK,1 ... ... µK,N

















, (1.1)

where µ(k,n) is the matching index, defined as

µ(k,n) =











1, if the kth man & nth woman is matched,

0, otherwise.

(1.2)

As an explanatory example, SM algorithm is utilized for 5 men and 5 women in

Example 1 simply.

Example 1. Let K = 5 men and N = 5 women participate in a matching. For the

sake of simplicity, lets give an ID number to each man and woman. Let the IDs of

Bob, Joey, Jake, Adam, and Sheldon be 1, 2, 3, 4, and 5, respectively. Similarly, let

the IDs of Alice, Monica, Sophie, Rachel, and Amy be 1, 2, 3, 4, and 5, respectively,

as in Table 1.1.
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Table 1.1. Man and Woman IDs in SM Algorithm

ID (k or n) Man Woman
1 Bob Alice
2 Joey Monica
3 Jake Sophie
4 Adam Rachel
5 Sheldon Amy

Let the preference lists of men be given as

≻man
1 = {1, 2, 4, 3, 5},

≻man
2 = {2, 1, 3, 4, 5},

≻man
3 = {4, 1, 3, 2, 5},

≻man
4 = {2, 4, 1, 3, 5},

≻man
5 = {5, 2, 4, 1, 3},

(1.3)

According to preference lists of man, it is seen that Bob desires to match with

Alice the most and Sophie the least.Preference lists of women are also given as

≻woman
1 = {4, 2, 1, 3, 5},

≻woman
2 = {3, 2, 4, 1, 5},

≻woman
3 = {1, 2, 4, 3, 5},

≻woman
4 = {3, 4, 2, 1, 5},

≻woman
5 = {5, 4, 1, 3, 2},

(1.4)

At the beginning of SM algorithm, Bob proposes to Alice, Joey and Adam proposes

to the same woman, Monica, and Jake proposes to Rachel. In this case Alice, Rachel,

and Amy have only one proposal for each, thus they accept and get engaged with Bob,

Jake, and Sheldon, respectively. The matching indices of Bob-Alice, Jake-Rachel, and
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Sheldon-Amy couples are µ1,1 = 1, µ3,4 = 1, and µ5,5 = 1, respectively. In the mean

time, Monica (n = 2) has two proposals from Joey (k = 2) and Adam (k = 4).

According to Monica’s preference list ≻woman
2 , she desires to match with Joey more than

Adam. Thus, Monica accepts Joey’s proposal and get engaged with him (µ2,2 = 1).

The rejected man, Adam, proposes to the second placed woman in his preference

list ≻man
4 . Rachel is already engaged, but nevertheless she considers the new proposal.

According to Rachel’s preference list ≻woman
4 , she still desires to match with Jake more

than Adam. Thus, Adam is rejected again. Next, Adam proposes to Alice according to

his preference list. This time, Alice prefers Adam rather than Bob. Thus, she breaks

off the engagement (µ1,1 = 0) and get re-engaged with Adam, (µ4,1 = 1).

Now, Bob makes proposals again until he gets a positive response. Eventually,

Bob is matched with Sophie (µ1,3 = 1). Hence, at the end of the matching process, the

matching matrix is obtained as

M =























0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1























. (1.5)

The final matchings are illustrated as in Table 1.2.

Table 1.2. Final Stable Matchings

Man Woman
Couple Bob (1) Sophie (3)
Couple Joey (2) Monica (2)
Couple Jake (3) Rachel (4)
Couple Adam (4) Alice (1)
Couple Sheldon (5) Amy (5)



16

SM algorithm possesses several nice properties that contribute to the fairness of

the results such as completeness and stability.

Definition 1. A matching is complete if and only if all men and women are assigned

at the end of the algorithm.

As in Example 1, the algorithm is finalized after everyone is matched. Thus, SM

algorithm achieves a complete matching. SM algorithm guarantees that all women and

men are matched.

Definition 2. For any two man-woman matching such as µ(k,n) = 1 and µk̂,n̂ = 1, if

the kth man would prefer the n̂th woman over the nthwoman and the n̂th woman would

prefer the kth man over the k̂th man, then the kth man and the n̂th woman couple is

called rogue couple in the SM algorithm.

Rogue couples means that there are at least two unhappy people in the network.

An explanatory example is given in Example 2.

Example 2. Considering the same variables in Example 1. Assume that the people in

Example 1 are randomly matched. The final matching matrix is obtained as

M =























0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1























. (1.6)

Hence, the final matchings are recorded as in Table 1.3.
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Table 1.3. Random Matchings

Man Woman
Couple Bob (1) Rachel (4)
Couple Joey (2) Monica (2)
Couple Jake (3) Sophie (3)
Couple Adam (4) Alice (1)
Couple Sheldon (5) Amy (5)

Figure 1.3. Rogue couple illustration
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As seen in Figure 1.3, Bob is matched with Rachel, and Jake is matched with

Sophie. By considering the preference lists of these people, it is noticed that Rachel

prefers Jake rather than Bob, and similarly, Jake prefer Rachel rather than his final

match, Sophie. Here, Jake - Rachel couple is called rogue couple as defined in Definition

2.

SM algorithm also guarantees perfect and stable matchings by using the prefer-

ence lists as in Theorem 1. If there are no rogue couples at the end of the matching

process, the matching is referred as perfect and stable matching.

Theorem 1. SM algorithm always gives perfect and stable matchings as results.

Proof. Let us consider a matching M(k, n) = 1. Assume that k had a preference,

n̂, that ranked higher than n in its preference list. This would either mean that k

proposed to n̂ in an earlier round of the algorithm and n̂ rejected the proposal or n̂ is

matched with another applicant that is ranked better than k in the n̂’s preference list.

Hence, any (k, n̂) cannot be a rogue couple.

With all these good features, SM algorithm is very appropriate for resource al-

location problems in wireless communication systems such as CA HetNets, and IoT

networks. In addition to stability and completeness of SM algorithm, the low com-

plexity structure is another reason for being preferred for resource allocation in CA

HetNet.

1.5. Carrier Aggregation in Heterogeneous Networks

As new applications on mobile devices are developed, the existing technologies

in wireless communications cannot meet the tremendous demands. New applications

expect higher data rates and lower latency as much as possible. Thus, services com-

pete each other for limited resources. The existing features of homogeneous networks

are far from meeting expectations. In order to meet these challenges, more efficient
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modulation and coding techniques, multi-antenna features, and cognitive radio tech-

nologies are extensively studied in the literature. Nevertheless, these features alone

are not enough to serve these applications properly, especially in the cell edges, where

the data rate performance decreases fatally. Additionally, system fails when the net-

work is significantly crowded. In this manner, small-cells are introduced in the 3GPP

specifications of Release-9 (R9) in [66] in order to lessen the density of macro-network.

One of the greatest benefits of small-cell deployments is to provide great performances

to the users even placed at the cell edges. Additionally, small-cell deployments cost

significantly less than macro-networks, and it is easier to construct [67].

Figure 1.4. General Carrier Aggregated Heterogeneous Networks
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By considering different size of small-cells and macro-cells as a mix structure is

referred as HetNet, as shown in Figure 1.4. Note that, UE have to be LTE in order

to use the benefits of HetNet structure. A HetNet includes at least two different types

of cells among macro-, micro-, pico-, and femto-cells in decreasing base station power

order. The cell size also depends on antenna properties and the environment, such

as city, rural, outdoor, or indoor. Although HetNet structures relax the data traffic,

significantly, there are still needs for higher data rates as well as lower latency in order

to cope with the requirements of new applications. Thus, with the aim of achieving

wider transmission bandwidths in HetNets, CA is introduced in the LTE-A system

by giving an opportunity to efficiently utilize the fragmented spectrum of multiple

frequency resources [10, 68]. After carrier aggregation, each carrier is called carrier

component. There are two categories:

(i) Primary component carrier: In each aggregation, one of the CC is the main carrier

of that group. Primary CC is a must for both downlink and uplink transmissions.

(ii) Secondary component carrier: All the CCs, other than primary component car-

riers, are called secondary component carriers. In the initial CA settlement the

number of aggregated CCs is restricted by 5 CCs in the 3GPP specifications of

Release-10 [10], whereas after a while new technologies force to get more CCs

and the maximum CCs for an aggregation is increased to 32 CCs in the 3GPP

specifications of Release-14 [35].

According to [10], each UE can have at most 5 CCs with the same or different

bandwidths as 1.4, 3, 5, 10, 15, or 20 MHz. Therefore, each UE can achieve 100 MHz

at maximum. An illustrative example is given in Figure 1.5. In the conventional LTE

networks (defined in R9), LTE users are not capable of aggregating carriers. Thus, the

two of the three CCs are idle in the network. Fortunately, carrier aggregation enabled

LTE-Advanced users are introduced in the 3GPP specifications of Release-10 [10].

Thus, all CCs can be used to increase the data rate in LTE-Advanced networks, as

seen in Figure 1.5. As a result of aggregating three different available CCs, one can

reach two times faster data rates.
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Figure 1.5. Comparison of conventional network with LTE-Advanced network, which
aggregates one 20 MHz CC and two 10 MHz CCs.

Subcarriers can be aggregated from the same or different CCs [69]. The different

deployments of CA can be defined in three main categories as intraband contiguous,

intraband non-contiguous, and interband non-contiguous CA:

(i) Intraband contiguous: In contiguous CA, CCs are adjacent to each other and

belong to the same frequency band as in Figure 1.6 (a). RF views this type of

aggregated channels as one enlarged channel. Only one transceiver is enough as

a result of adjacent structure. Note that, it is crucial to ensure that UE has

an ability of using the wider bandwidth without any loss on performance. This

extension can be adapted easily to the existing RF elements in the base station.

(ii) Intraband non-contiguous: In non-contiguous CA, combined CCs can belong to

the same frequency band with a frequency gap or frequency gaps. Now, this multi-

carrier signal cannot be treated as single channel, thus more than one transceivers

are required. The number of transceivers depends on the number of channels,

from the view of RF. As the number of transceivers increases, the complexity

increases as well. This complexity affects the UE more than base station in terms

of power and cost.
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Figure 1.6. Carrier aggregation deployments: (a) Intraband contiguous, (b) intraband
noncontiguous, and (c) interband noncontiguous

(iii) Interband non-contiguous: In non-contiguous CA, the combined CCs can belong

to different frequency bands (interbands) as in Figure 1.6 (c). This type of carrier

aggregation uses the component carriers belonging to different bands. Compo-

nent carriers are not adjacent. Thus, multiple receivers are required. Moreover,

there are additional challenges, including reducing cross modulation from the two

transceivers. Hence, this type of carrier aggregation is the most complicated one.

One of the major challenges in CA HetNets is to find an appropriate resource

allocation algorithm for various nodes with different data rate requirements. In this

study, SM algorithm is proposed to achieve stable subcarrier allocation by considering

QoS requirements in a CA HetNet. Another significant challenge of CA HetNets is

the complexity of the resource allocations, which increases with each additional CC. In

order to reduce the computational complexity of resource allocation, SM algorithm is

preferred for its simple structure to allocate subcarriers belonging to the same/different

CCs to the UEs in different CA HetNet scenarios. In previous studies, it is shown that

SM algorithm achieves also a very good performance even when the preference lists are

incomplete [70, 71]. This property is also very useful to reduce the CSI overhead on
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the feedback channel. To this end, in Chapter 2, SM algorithm is applied to the CA

HetNets.

1.6. Mobile edge computing in Internet of things

Computation-intensive applications like virtual reality, and interactive gaming

are required to support ultra low latency and ultra high rate computing. For instance,

transformation vehicles may generate Tera bytes in minutes [72]. However, mobile de-

vices have limited battery and storage capabilities. In order to run the applications,

that require high energy consumption in a limited-battery mobile handsets, mobile

devices offload their most energy-consuming tasks to the nearby servers. Cloud com-

puting promises to relax the data storage capability of mobile devices and enable to

access higher rates by offloading their computation-intensive tasks [73]. The main ob-

jectives of cloud computing are to increase data rate while relaxing network bandwidth,

and decreasing the power consumption in IoT devices.

Figure 1.7. Different types of services supplied from IoT network suppliers

Reliability is very significant for time-sensitive decisions of emerging applications.

Low latency is another vital requirement for some critical applications such as electrical

shutdowns, fire or disaster averting systems, military, and remote surgery. Moreover,
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IoT data belonging to this kind of emerging applications has to be protected against

any possible attack. Cloud servers provide their services in three main categories as

shown in Figure 1.7. In Figure 1.7, there is an additional on-premises category, which

is actually no cloud computing. All categories are explained clearly as:

(i) On-premise services:This is the case, where no cloud computing occurs. In this

service, company has to purchase servers, computers, and software. Companies

have the maximum control in the system. As an advantage, only one payment

is enough for user licenses. On-premises hosting has a large initial installation,

which can take time to get everything proper. The other issue is security. In

on-premises hosting, one has to ensure the security.

(ii) Infrastructure as a service (IaaS): Infrastructure as a Service provides network

structure, server computation with a storage, and an additional virtualization

layer. With all these services, a company can create virtual machines, install

operating systems and required software. There is a mid-level control in this

service. A company can manage the operating systems and perform maintenance;

however, it is not permitted to make any changes in the network infrastructure or

server. IaaS makes sure that companies do not need to concern about purchasing

and maintaining the hardware. IaaS has a flexible structure that allows any

company to require any additional storage or computing power. On the other

hand, the cost depends on consumption. Moreover, server is fully independent

from the company. Thus, reliability might be little concern. This service is a

great option for startups or small companies in order to save time and money.

IaaS is also useful in case of there is an uncertainity about the requirements of

new applications.

(iii) Platforms as a service (PaaS): Platform as a service offers more services than

IaaS. PaaS provides not only network infrastructure, server, and system soft-

ware, but also, database software and development runtimes. PaaS is very useful

for companies, that desire to develop or host their own applications in the cloud.

Additionally, companies are free from purchasing and long installation processes.

PaaS delivers a framework for developers that they can develop and deploy soft-

ware applications. Service availability might be a great concern, i.e., any changes
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in the provided environment could effect the applications served by the corre-

sponding networks. PaaS is very beneficial in order to speed up the process in

case of multiple developers working on the same project. PaaS can also simplify

some challenges, if the company has a request in order to develop the application

rapidly.

(iv) Software as a service (SaaS): Software as a service provides to companies all the

service layers so that they do not have to concern any physical installation. SaaS

is also called as ’on-demand service’. Companies do not need to worry about

server space or any software licensing fee. SaaS has a great flexibility in terms of

quick deployment. Many SaaS applications are run in the web browser instead

of requiring download or installation. Beyond these features, when there is any

disruption or error in the system, service provider treats immediately. SaaS might

cause synchronization problems in case of multiple SaaS applications being used

in the same company. As a solution, a digital assistant is proposed. Digital

assistant can integrate with over 50 applications. Security is a great concern in

SaaS. SaaS is also useful for startups get involved to the business, quickly.

All these beneficial services served through only centralized cloud at first. How-

ever, cloud computing does not meet the low latency requirement of many critical

applications. Thus, this technology is moving to a closer point to the mobile devices

by introducing fog computing and edge computing technologies [74].

Cisco defined the fog computing as an extension to cloud computing to realize the

full potential of IoT [75]. The fog is a layer between the edge and the cloud as shown

in Figure 1.8, which extends the cloud closer to the IoT devices. Any device with com-

puting (necessary processing power), storage capability, and network connectivity can

be a fog node, i.e., switches, routers, embedded servers, industrial gateways, industrial

controllers. The data is first transmitted to the fog nodes, then it is transmitted for

processing to the sources in a fog structure. In this structure, system interacts with

both gateways and embedded computer systems at the same time.
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Figure 1.8. Cloud, Fog, and edge structures in a network.
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Fog computing has many additional features compared to the cloud structure.

Fog nodes may receive feeds by using any protocol in real-time, while cloud system

receives data summaries. Fog nodes are able to run IoT applications for real-time

control and transmit the analytics in milliseconds. Moreover, fog nodes can provide

transient storage. Fog nodes send data summaries to the cloud, while the cloud sends

new application rules to the fog nodes.

With edge computing, services are much closer to the user than they are in cloud

a fog services. Edge computing relax the load on embedded computing platforms,

significantly. Cloud computing servers produce always-on shared pools for computing

resources such as storage, processors. IoT devices use these external resources through

RANs and the Internet. Edge nodes directly interface to sensors by interfacing to

sensors and controllers. Although the reliability decreases as the computing processes

moved to the end users, both, computing capability and data rate are extensively

increases. In addition, ultra low latency required applications are mostly satisfied with

edge computing.
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2. APPLICATION OF STABLE MATCHING

ALGORITHM IN CARRIER AGGREGATED

HETEROGENEOUS NETWORKS

In order to address the increasing demands for high data rates in wireless com-

munications, CA is introduced in the 3GPP LTE-A specifications of Release-10 for

HetNets, a platform for the implementation of features with new functionalities. In

this study, resource allocation problem is addressed. Stable matching algorithm is ex-

tended and adapted to the CA HetNets. Subcarriers are matched with UEs instead of

women matched with men, respectively.

2.1. Motivation

One of the major challenges in CA HetNets is to find an appropriate resource

allocation algorithm for various nodes with different data rate requirements. SM algo-

rithm is one of the most popular allocation algorithms introduced in the last decade.

In this study, an important variation of the MSM algorithm is proposed as PFM algo-

rithm, to achieve fair and stable subcarrier allocation by considering rate requirements

in a HetNet. The stability concerns for CA HetNets are investigated for the proposed

variation of the MSM algorithm in order to determine the rate satisfaction of both user

equipments and the entire HetNet. The rate and fairness performances of the proposed

algorithm are also compared with the optimal rate algorithm (ORA), which achieves

the maximum rate, and with PF algorithm, which is widely used for fair resource al-

location problems. Computer simulations show that the proposed variations of SM

algorithms are very robust even with partial CSI in terms of rate and fairness.

2.2. System Model

The system under consideration is a CA HetNet with multiple UEs and subcar-

riers corresponding to the same band or different bands. An LTE-A macrocell base
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station (MBS) and a number of smallcell base stations (SBSs), i.e., micro-, pico-, or

femto-cells, interacting with each other. K UEs are uniformly distributed on a concur-

rent area of LTE-A MBS and SBSs as depicted in Figure 2.1. At this stage, SBS and

MBS are assumed to communicate with each other by using almost blank subframes

(ABS) in order to neglect the co-channel interference [11] and OFDMA is used in order

to avoid inter-user interference. Without loss of generality, we neglect the inter-cell

interference by considering the related studies of inter-cell interference coordinations

(ICICs) in the literature [78, 79].

Figure 2.1. System model of carrier aggregated HetNet. Carrier aggregation enabled
LTE-A users (green) are positioned in the concurrent area of SBSs and MBS while

the other users (gray) are placed out of this concurrent area.

Assume that each UE and each subcarrier has an ID number as k ∈ K and n ∈ N ,

respectively. K refers the set of UEs and N refers the set of subcarriers in the HetNet.

CCs can belong to the same band or different bands. The number of subcarriers of

each CC, Nc, where c ∈ {1, 2, ...,M}, can differ from one CC to another. The number

of CCs in each frequency band can also differ from band to band. The total number of

subcarriers, N , belonging to all contiguous/non-contiguous CCs of such a CA HetNet

is N =
∑M

c=1Nc. Unless otherwise stated, perfect CSI is assumed at both the UEs and

the subcarriers. Total rate of such a CA HetNet is obtained as

R =
K
∑

k=1

N
∑

n=1

µ(k,n)rk(n) [bps], (2.1)
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where µ(k,n) ∈ {0, 1} is the assignment index that takes on the value 1 if the kth UE

and the nth subcarrier is matched, and 0, otherwise. The marginal rate of the kth UE

and the nthsubcarrier, rk(n), can be calculated using the Shannon’s rate formula [80]

as

rk(n) = Wblog2(1 + ck(n)) [bps], (2.2)

where Wb refers to the bandwidth, and ck(n) is the SNR of the kth UE and the nth

subcarrier and it can be written as

ck(n) =
Pk,n

σ2
k(n)

, (2.3)

where σ2
k(n) is the variance of the complex additive white Gaussian noise (AWGN)

component of the nth subcarrier and Pk,n is the power of the channel gains, calculated

as

Pk,n = Pn | hk,n |2, (2.4)

where Pn is the transmit power of subcarriers. The channel coefficients, hk,n, k =

{1, ..., K}, n = {1, ..., N}, are assumed to have complex Gaussian distributions with

zero mean and unit variance.
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Assuming perfect phase synchronization at receiver, in this model, we can as-

sume a Rayleigh distributed amplitude fading. Our rate optimization problem for CA

HetNets is then formulated as

maximize
µ,∀k,n

R =
K
∑

k=1

N
∑

n=1

µ(k,n)rk(n)

s.t. (a)

K
∑

k=1

µ(k,n) ≤ 1, ∀n,

(b)
N
∑

n=1

µ(k,n) ≤ Qk, ∀k,

(2.5)

where (a) dictates that each subcarrier is allowed to be assigned to at most one UE

and (b) indicates that each UE is allowed to use at most Qk subcarriers. Qk is a

predetermined quota value for each UE depending on the rate requirements.

In order to reach the maximum achievable rate for such subcarrier assignment

problems, it has been accepted as an optimal solution that each subcarrier is allocated

to the UEs with the best channel condition [81]. This assignment rule is referred as

optimal rate algorithm (ORA) throughout this thesis. There is no quota for subcarrier

assignments of each UE in ORA, i.e., all subcarriers can be assigned to the same UE if

it is the most preferred UE for each subcarrier. Thus, ORA achieves the maximum rate

for such a CA HetNet system; however, the fairness is not considered. PF algorithm

compares the ratio of the feasible rate for each UE to its average throughput. The

subcarriers are assigned to the UE with the maximum preference metric. Although

PF has significant enhancement on fairness, it is not robust for partial feedback cases.

Thus, our simulation results are compared with ORA and PF for the same scenarios.

In order to achieve both high throughput and rate based fair allocation, some

variations of the SM algorithm are proposed for subcarrier assignment in a CA HetNet.

SM algorithm was originally presented as a solution to college admissions and stable

marriage problem in order to achieve a perfect and stable matching between two distinct

groups, colleges-applicants or men-women, respectively [50]. In this study, K UEs and
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N subcarriers are matched instead of matching of colleges and applicants in the college

admissions problem. The preference lists of UEs and preference lists of subcarriers are

obtained by using the CSI instead of deterministic and ordered preference lists of the

conventional SM algorithm. The basic idea is sorting Px,y in terms of x in descending

order and saves the indices of each x as

≻u
k= arg sort

n
{Pk,n}, k ∈ K, (2.6)

≻sc
n = arg sort

k
{Pk,n}, n ∈ N . (2.7)

MSM algorithm starts with the proposals of each UE to the most desired subcarrier

in their preference lists as presented in Figure 2.2. If there are several proposals to

a subcarrier and the proposed subcarrier is unassigned, this subcarrier is assigned to

the most preferred proposer in the subcarrier’s preference list. Let the dth UE and the

eth UE propose to the sth subcarrier, and assume that the dth UE is preferred to the

eth UE by the sth subcarrier as, ≻sc
s = {... ≻ d ≻ ... ≻ e ≻ ..}, where x ≻ y denotes

that x is preferred to y. Then, the sth subcarrier is assigned to the dth UE, resulting

in µd,s = 1. If there is only one proposal for an unassigned subcarrier, it is assigned to

the proposer. The assignments are saved in the assignment matrix, M, as

M(k, n) =











1, if k & n are matched,

0, otherwise,

(2.8)

where rows represent UEs while columns represent subcarriers. Each UE continues

making proposals to the subcarriers in each step until it reaches its quota, Qk. Thus,

the corresponding quotas are updated after each matching decision until all UEs and

subcarriers are matched.
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Initialization: {r, k} ∈ K, n ∈ N ,
N ≥ K, Qk ≤ N , t = 0
XUE,t :proposal list of UEs at step t, respectively.
αu
k : proposal rank of the kth UE (αu

k = 1 at t = 0)
≻sc

n : preference list of the nthsubcarrier.
≻u

k : preference list of the kth UE
ρx: number of proposals to x ∈ N .
while ∀Qk 6= ∅ do
Each UE, k ∈ K (Qk 6= 0), makes proposal to XUE,t.
for n′ ∈ XUE,t do
if ρn′ > 1 then
if µUn′ ,n′ = 1 then
n′ is assigned to the most desired UE
if any new proposer, k, ≻sc

n′ Un′ then
µUn′ ,n′ = 0, µk,n′ = 1
QUn′

= QUn′
+ 1, Qk = Qk − 1.

end if
else
n′ is assigned to the most desired UE
µk,n′ = 1, Qk = Qk − 1.

end if
αu
k = αu

k + 1, where k ∈ K
else
if µUn′ ,n′ = 1 then
n′ is assigned to the most desired UE
if the new proposer, k, ≻sc

n′ Un′ then
µUn′ ,n′ = 0, µk,n′ = 1
QUn′

= QUn′
+ 1, Qk = Qk − 1.

end if
else
n′ is assigned to the proposer UE (i.e., k).
µk,n′ = 1, Qk = Qk − 1.

end if
αu
k = αu

k + 1, where k ∈ K
end if

end for
t = t+ 1

end while

Figure 2.2. Proposed MSM Algorithm for HetNets



34

One of the significant goals of using MSM based approaches in HetNets is to design

an algorithm that achieves acceptable rate levels while providing higher rates to the UEs

at the same time. MSM algorithm possesses several nice properties that contribute to

the rate based approaches from a fairness perspective. MSM algorithm also guarantees

perfect and stable matchings that ensure high QoS by using the preference lists as in

Theorem 1.

Definition 3. For any two UE-subcarrier assignments such as µ(k,n) = 1 and µk̂,n̂ = 1,

if the kth UE would prefer the n̂th subcarrier over the nthsubcarrier, and the n̂th subcar-

rier would prefer the kth UE over the k̂th UE, then the kth UE and the n̂th subcarrier

are called a blocking assignment (also known as rogue couple in the stable marriage

algorithm).

Definition 4. An assignment is perfect and stable if and only if there are no blocking

assignments at the end of the matching process.

Theorem 2.1. SM algorithm always gives perfect and stable matchings [82]

By considering these useful properties of the MSM algorithm, we are able to

determine the quota of each UE, Qk, by considering rate or to set Qk = N/K in order

to achieve a high fairness in terms of the number of subcarriers. The well-known Jain’s

fairness index [83] is used in order to measure the fairness of the proposed algorithms.

In order to further assess the performance of the proposed algorithms in terms of

instantaneous, φr
k, and long-term fairness. Jain’s fairness index uses the ratio of the

individual rate of each UE and the total rate of the network. Fairness index, Φ, of

a HetNet can be obtained by using the fairness index of each of the kth UE by using

(2.1) as in [83].

Φ =

(

K
∑

k=1

φr
k

)2

K
K
∑

k=1

φr
k
2

, (2.9)
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where φr
k is defined based on rate proportionality as

φr
k =

Rk

K
∑

k=1

Rk

. (2.10)

.

2.3. Variations of the stable matching based carrier aggregated resource

allocation approach

Fairness aware and practically implementable variations of SM algorithm are

proposed here as a solution to resource allocation in CA HetNets. Two important

variations of the SM algorithm are considered for different scenarios in this thesis. In

the first variation, the original one-to-one SM algorithm is extended to many-to-one

allocation by considering rate in a CA HetNet and referred to MSM resource approach.

This algorithm is very similar to the many-to-one matching in college admission prob-

lem [3,84,85]. In the college admission problem, colleges put the best Q applications on

their wait list, where Q is the quota of each college. However, in our MSM algorithm,

each UE accepts one subcarrier (proposer) and rejects the rest, instantaneously, and

is open to new proposals for the next matching process until it reaches its quota, Qk.

Unlike the previous studies, MSM algorithm uses partial preference lists that consider

partial CSI from the feedback channel in order to reduce the feedback overhead in the

second variation, which is referred in this thesis as PFM. To be applicable in realistic

scenarios, MSM and PFM are examined under noisy feedback channel conditions as

well. These approaches give opportunity to allocate subcarriers to the UEs in a CA

HetNet with a high fairness despite a very small rate loss even under noisy environment.

2.3.1. Many-to-one Stable Matching Based Carrier Aggregation

In order to achieve higher data rates, CA is proposed for different scenarios of

HetNets in [68]. CA technology allows UEs to communicate with more than one

carriers, which may belong to the same or different frequency bands [69]. Resource
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allocation is another essential issue in CA in order to use the frequency bands efficiently.

Thus, we propose MSM for inter-band non-contiguous CA HetNets in this subsection.

In order to apply the proposed algorithms to these HetNets, we assume that each

subcarrier has a unique ID, n, in the whole HetNet and the IDs of the subcarriers

belonging to same CC are consecutive.

One of the main motivations of using the MSM algorithm for CA HetNets is the

low computational complexity. MSM algorithm performs a linear search on the prefer-

ence list of each UE and of each subcarrier; thus, the total maximum run-time of the

MSM algorithm for a K UE and N subcarrier system is O(KN). The computational

complexity in the sorting process for preference list preparation is O((N−1)log(N−1))

for each UE. The overall computational complexity of sorting isO(K(N−1)log(N−1)).

Hence, the total SM complexity can be obtained as O(KN log(N − 1)).

In previous studies, it was shown that MSM algorithm achieves a very good

performance even when the preference lists are incomplete [70,71]; however, to the best

of our knowledge, the data overhead on the feedback channel has not been considered

before. Thus, MSM algorithm is examined for a CA HetNet scenario that has reduced

feedback CSI in Section 2.3.2. Furthermore, a quick analysis reveals that UEs are

matched to their first or second most desired subcarriers in their preference lists by

a probability of about 70%. This has the potential to allow for successful operation

with partial CSI. The reliability of the preference lists is also very critical for the MSM

algorithm. Unlike previous studies, the impact of channel estimation errors on the

MSM algorithm is also investigated for a CA HetNet in Section 2.5. Stability and rate

satisfaction of each UE and the overall HetNet is analyzed in order to determine the

effect of partial feedback CSI on the HetNet. Using PFM (Figure 2.2) instead of MSM

(Figure 1.2) for allocation in a HetNet that has users with partial preferences, decreases

the stability concern in a network significantly. An explanatory basic example of MSM

is given in Example 3.
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Example 3. Let N = 6 subcarriers be assigned to K = 3 UEs in a many-to-one stable

matching. Let the preference lists be obtained as

≻u
1= {1, 2, 4, 3, 5, 6},

≻u
2= {2, 1, 6, 3, 4, 5},

≻u
3= {3, 1, 6, 2, 5, 4},

(2.11)

≻sc
1 = {2, 1, 3},

≻sc
2 = {3, 2, 1},

≻sc
3 = {1, 2, 3},

≻sc
4 = {3, 2, 1},

≻sc
5 = {1, 3, 2},

≻sc
6 = {1, 3, 2}.

(2.12)

Eventually, the matching matrix is obtained as

M
MSM =











0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0











. (2.13)

2.3.2. Partial Feedback Matching based Carrier Aggregation

In MSM algorithm, the preference lists are obtained by using full CSI, which are

assumed to be perfectly known by both subcarriers at BSs and UEs. As mentioned

before, MSM algorithm assigns each UE to its first or second preference by a probability

of 70%. Starting from this point, in PFM algorithm, it is assumed that each UE has

(f/N)− partial feedback CSI including top−f preferences of each UE are considered,
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where f ≤ N , i.e., f = (N −1), corresponds to full CSI transmission1 . The preference

list of the kth UE is obtained by the (f/N)− partial feedback CSI as

≻u,f
k = {Ck,1 ≻ . . . ≻ Ck,f}, k ∈ K, (2.14)

where Ck,f is the log2N bits long binary feedback information of the channel between

the kth UE and the f th ranked subcarrier. In order to obtain the full preference list

of each UE in a HetNet that has K UEs and N subcarriers, (N − 1)log2N bits are

needed. Thus, the total feedback gain of the system, Gf , when there is an (f/N)−
partial feedback CSI, is calculated as

Gf = ((N − 1)− f)Klog2N [bits]. (2.15)

Partial feedback CSI decreases the feedback data overhead significantly. By using this

motivation, we assume that full CSI corresponding to each UE is perfectly known while

the CSI corresponding each subcarrier may be partially received in order to decrease

the data overhead on the feedback uplink channel. Thus, PFM algorithm is proposed

as a robust variation of MSM algorithm as in Figure 2.3. PFM algorithm starts with

the proposals of each UE to their most preferred preferences in the corresponding

lists as in the original SM algorithm. The proposals of all UEs at step t are saved

in a proposal list, XUE,t. Considering that each UE feedback only the best f CSI to

BSs, subcarrier has a partial preference list and UEs have complete preference lists.

After SM with partial CSI, the remaining subcarriers are assigned by considering the

instantaneous individual fairness index. Subcarriers are assigned to the UE that has

minimum fairness index as

M(argmin
k

{φr
k}, n̂) = 1, k ∈ K, (2.16)

1The feedback information of (N − 1) subcarriers is sufficient to know the all information in a
scenario with N subcarriers.



39

where n̂ is an unassigned subcarrier. Different from MSM, a UE is not restricted with

a quota after partial stable matching. The algorithm ends when all subcarriers are

assigned to a UE. An explanatory basic example of MSM is given in Example 4

Example 4. Let the same parameters in Example 3 be used in this example. However,

the preference lists of UEs are partially feed backed as

≻u
1= {1, 2, ...},

≻u
2= {2, 1, ...},

≻u
3= {3, 1, ...}.

(2.17)

Assume that, the fairness indices after the matchings with the partial CSI are calculated

as

φr
1 = 0.023,

φr
2 = 0.456,

φr
3 = 0.253.

(2.18)

The unassigned subcarriers are n = {4, 5, 6}.The UE k = 1 has the minimum fairness

index, thus one of the unassigned subcarriers, n = 4 is assigned to UE k = 1. Then the

fairness index is calculated as φr
1 = 0.123. The minimum fairness index still belongs

to the UE k = 1. Then, n = 5 is assigned to UE k = 1, as well. Now, the fairness

index is calculated as φr
1 = 0.223. Then, n = 6 is assigned to UE k = 1. Eventually,

the matching matrix is obtained as

M
PFM =











0 0 0 1 1 1

1 1 0 0 0 0

0 0 1 0 0 0











. (2.19)
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1: Initialization: k ∈ K, n ∈ N , N ≥ K, Qk ≤ N , t = 0, N ′: set of unassigned subcarriers.
2: XSC,t :proposal list of subcarriers at step t, respectively.
3: αsc

n :proposal rank of the nthsubcarrier (αsc
n = 1 at t = 0)

4: αu
k :proposal rank of the kth UE (αu

k = 1 at t = 0)
5: ≻sc

n :preference list of the nthsubcarrier

6: ≻u,f
k (f/N)−partial preference list of the kth UE

7: ρx :number of proposals to x ∈ K ∪N .
8: k′: most desired UE (lowest ranked) on ≻sc

n′ .
9: φk : Jain’s fairness index
10: while ∀Qk 6= ∅ do
11: if XSC,t == ∅ then
12: Unassigned subcarriers, Su, are determined
13: while {Su 6= 0} do
14: Calculate φk, ∀k
15: n ∈ Su is assigned to k′ = argkmin(φk)
16: µk′,n = 1. n is removed from Su,
17: Qk′ = Qk′ − 1.
18: end while
19: else
20: Each k ∈ K ( Qk 6= 0), makes proposal to, XUE,t.
21: for n′ ∈ XUE,t do
22: if ρn′ > 1 then
23: if µUn′ ,n′ = 1 then
24: if any new proposer, k′, ≻sc

n′ Un′ then
25: n′ is assigned to the UE k′

26: µUn′ ,n′ = 0, µk′,n′ = 1
27: QUn′

= QUn′
+ 1, Qk′ = Qk′ − 1.

28: end if
29: else
30: n′ is assigned to the most desired UE k′

31: µk′,n′ = 1, Qk′ = Qk′ − 1.
32: end if
33: αu

k′ = αu
k′ + 1, where k′ ∈ K

34: else
35: if µUn′ ,n′ = 1 then
36: if the new proposer, k′, ≻sc

n′ Un′ then
37: µUn′ ,n′ = 0, µk′,n′ = 1
38: QUn′

= QUn′
+ 1, Qk′ = Qk′ − 1.

39: end if
40: else
41: n′ is assigned to the proposer UE.
42: µk′,n′ = 1, Qk′ = Qk′ − 1.
43: end if
44: αu

k′ = αu
k′ + 1, where k′ ∈ K

45: end if
46: end for
47: end if
48: t = t + 1.
49: end while

Figure 2.3. Proposed PFM Algorithm for HetNets



41

2.4. Stability Analysis of PFM

In PFM algorithm, partial feedback information may or may not provide a fully

stable matching. By considering this, a special form of stability is defined according

to the partial preferences by using a degree of instability in [86].

Definition 5. Let µk,Sk
q
= 1 (for any q ∈ {1, 2, ..., Qk}), where Sk

q is the ID of the

assigned subcarrier to the kth UE and belongs to the set of assigned subcarriers to k,

Sk (Sk
q ∈ Sk ) and n̂ /∈ Sk. The rank difference between Sk

q and n̂ in the preference list

of k is referred as pairwise-regret (PR) and is defined as

PR(k, n̂, Sk
q ,≻u

k) = {rank(Sk
q ,≻u

k)− rank(n̂,≻u
k)}, (2.20)

where rank(x,≻y) is the rank of the value x in the preference list of y (≻y). If

PR(k, n̂, Sk
q ,≻u

k) < 0, there is no regret from the view of the kth user for the assignment

of Sk
q compared to unassigned subcarrier n̂.

Definition 6. For any given assignments µk,Sk
q
= 1 and (n̂, Un̂), where Un̂ is the ID

of the assigned UE to the subcarrier n̂ and n̂ /∈ Sk, the pairwise instability of k and n̂,

PI(k, n̂, Sk
q ,≻u

k ,≻sc
n̂ ) is the minimum of the PR values of k and n̂

P I(k, n̂, Sk
q ,≻u

k ,≻sc
n̂ ) = min{PR(k, n̂, Sk

q ,≻u
k), PR(n̂, k, Un̂,≻sc

n̂ )}. (2.21)

Definition 7. According to the Definitions 3 and 6, {k, Sk
q } and {Un̂, n̂} assignments

are called “pairwise-stable”, if PI(k, n̂, Sk
q ,≻u

k ,≻sc
n̂ ) < 0; otherwise, there is a blocking

assignment (k, n̂) and accordingly an instability occurs in the network.

In order to be able to determine the stability of the whole HetNet, the existence of

blocking assignment is saved as a pairwise blocking index of the kth UE for an assigned
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subcarrier Sk
q compared to an unassigned subcarrier n̂, PBk

Sk
q ,n̂

as

PBk
Sk
q ,n̂

=











1, if PI(k, n̂, Sk
q ,≻u

k ,≻sc
n̂ ) > 0,

0, otherwise.

(2.22)

Note that, (k, Sk
q ) is a blocking assignment if there is at least one PBk

Sk
q ,n̂

= 1 for any

n̂ /∈ Sk. Thus, blocking index of an assignment of (k, Sk
q ) is

BIkSk
q
=











1, if max
n̂

{PBk
Sk
q ,n̂

} = 1, n̂ /∈ Sk,

0, otherwise.

(2.23)

Considering that a UE may be assigned more than one subcarriers, the UE may have

stable and blocking assignments together. To be able to determine the stability of a

UE, all assigned subcarriers of UE should be taken into account. By using blocking

index of each assignment, an individual dissatisfaction ratio of a UE is obtained as

βk =

∑Qk

q=1BIk
Sk
q

Qk

. (2.24)

Accordingly, an individual instability for the kth UE can be defined by using individual

rate dissatisfaction ratio as in Definition 8.

Definition 8. A UE k is individually stable if all of its assignments are stable (βk = 0)

while a UE k is referred to as individually unstable, if all are blocking assignments

(βk = 1). When a UE has both stable and blocking assignments at the end of the

algorithm (0 < βk < 1), the UE is referred as individually partial stable.

A UE is assumed to be dissatisfied at the end of PFM, if the individual dissatis-

faction ratio of a UE, βk, is greater than zero. Then, the dissatisfaction index of each
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UE is obtained as

DIk =











1, if βk > 0,

0, otherwise

(2.25)

In the same manners, the average user dissatisfaction D of a network can be calculated

by using the dissatisfaction indices of all UEs asD =
∑K

k=1 DIk

K
. Hence, the total network

instability, NI, can be calculated by using the average of the individual instability

results of all UEs as

NI =

∑K

k=1 βk

K
. (2.26)

By considering these useful definitions, we can finally define the network stability,

similarly, as in Definition 8, as

Definition 9. A network is stable, if and only if all UEs in the network are individually

stable, while a network is unstable if all UEs are individually unstable. Finally, a

network is partially stable, if some UEs in the network are individually partial stable.

Instability of a network has significant effects on the rate and accordingly QoS.

Instability causes both individual rate loss and accordingly an overall network rate loss.

Individual rate loss of each UE can be obtained by using pairwise blocking indices as

RLk =

Qk
∑

q=1

max
n̂

{

log2
1 + ck(n̂)

1 + ck(Sk
q )
PBk

Sk
q ,n̂

}

. (2.27)
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The overall rate loss for the network, L, is the sum of individual rate losses for

each UE of the network as

L =
K
∑

k=1

RLk. (2.28)

PFM algorithm provides prominent decrease on the rate loss by decreasing the instabil-

ity of the network in case of partial preferences. Additionally, the run-time complexity

of the proposed PFM algorithm is the same as that of the classical SM algorithms.

In classical SM algorithm (one-to-one assignment), each UE makes a proposal at each

step until it is assigned to a subcarrier. In the worst case, there are K proposals and

there is only one assignment in each step. Therefore, the algorithm ends in at most

K steps with K proposals in each. Thus, the run-time complexity is O(K2) for the

worst case when there are K UEs and K subcarriers in the network. Even if a UE

requires multiple subcarriers, the run-time complexity can be obtained similarly as

O(KN log(N − 1)) when there are K UEs and N subcarriers in the network (K < N).

For the proposed PFM algorithm, K UEs make K proposals for the first f steps

and in the worst case if there is one assignment in each f step, there are (N − f) unas-

signed subcarriers remaining. Consequently, the run-time complexity of UE proposals

is O(Kf). Note that, there is no quota for the proposed UE after partial matchings as

in Figure 2.3. For the proposals of the subcarriers, there are (N − f) proposals in each

step and there are at most K entries in the preference list of each subcarrier. Thus,

the run-time complexity for the proposals of the subcarriers O((N − f)K). Hence,

the total run-time complexity of the PFM algorithm is the same as the many-to-one

extension of SM algorithm, O(KN log(N −1)). As a result, the robustness of MSM al-

gorithm against instability due to the partial preferences are increased by the proposed

PFM algorithm with no additional run-time complexity. The corresponding instability

results for different partial feedback transmissions are shown in Section 2.6.
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2.5. Robustness of PFM Against Channel Estimation Error

In classical approaches, preference lists employed in the SM algorithm are as-

sumed to be fixed and channel corruptions are not included [4]. Authors in [87] focused

on the energy consumption of the feedback channel; however, they did not consider

any fairness or stability results under unfavorable feedback channel conditions. As a

more realistic scenario, effects of channel estimation errors on the preference lists are

considered in this section. Let h̃k,n be the estimated channel gain of the nth subcarrier

as observed by the kth UEs. Accordingly, the erroneous preference lists are considered

using

p̃k,n = | h̃k,n |2, (2.29)

where h̃k,n = hk,n + ǫk,n and ǫk,n is the channel estimation error, which is assumed

to be complex Gaussian distributed with zero mean and variance σǫ
2. An illustrative

example is given in Example 5.

Example 5. Let there be K = 2 UEs and N = 4 subcarriers in one CC in the system.

Assume the preference lists of UEs and CCs, ≻u
k and ≻sc

n , respectively, to be,

≻u
1= {4, 2, 3, 1},

≻u
2= {1, 4, 2, 3},

(2.30)

≻sc
1 = {2, 1},

≻sc
2 = {1, 2},

≻sc
3 = {1, 2},

≻sc
4 = {2, 1}.

(2.31)
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Assume that the CSI is disturbed by a complex Gaussian estimation error with

zero mean and variance of σǫ
2, thus the erroneous channel coefficients are

| h̃k,n |=| hk,n + ǫk,n | . (2.32)

Preference lists of UEs and CCs, ≻u,E and ≻sc, can be obtained from (2.6) and

(2.7) by using the erroneous channel matrix, H̃, as

≻1
u,E = {3, 4, 2, 1},

≻2
u,E = {1, 3, 4, 2},

(2.33)

≻1
sc = {2, 1},

≻2
sc = {2, 1},

≻3
sc = {1, 2},

≻4
sc = {2, 1}.

. (2.34)

After PFM algorithm is applied, the matching matrix M̃ can be obtained as

M
PFM =





0 0 1 1

1 1 0 0



 , (2.35)

If ORA is applied, the matching matrix is obtained as

M
ORA =





0 1 1 1

1 0 0 0



 , (2.36)

PFM algorithm has still better performance than ORA in terms of fairness, since each

UE has a weight 2, while, with ORA, first UE is assigned to three subcarriers, and the

second UE is assigned to one subcarrier. Hence, PFM algorithm is indeed, a robust
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algorithm against the corruptions or destructions on the feedback channel. According

to the matching matrix, the second UE is matched with subcarriers S2
1 = 1 and S2

2 = 2.

Unfortunately, matchings µ2,2 and µ1,4 create a blocking assignment. According to the

instability equations in Section 2.3.2, the pairwise instability of k and n̂ is obtained as

PI(2, 4, 2,≻u
2,≻sc

4 ) > 0. Then, pairwise blocking index of the second UE for an assigned

subcarrier is 2 compared to an unassigned subcarrier 4, PB2
2,4 = 1. On the other hand,

there is no blocking assignment between µ2,2 and µ3,1, resulted as PI(2, 3, 2,≻u
2,≻sc

3 ) <

0. Accordingly, the blocking index of the 2nd UE is BI22 = 1. Similarly, The blocking

index of the 1st UE is calculated as BI22 = 0. Thus, the 2nd UE is individually partial

stable. The individual dissatisfaction ratio of the 2nd UE is calculated as βk = 0.5. the

network instability and dissatisfaction ratio are calculated as NI = 0.25 and D = 0.5,

respectively. As a results, the overall network is also partial stable.

2.6. Simulation results

In this section, the proposed approaches are evaluated under realistic system

parameters for subcarrier allocation in a CA LTE-A HetNet. According to 3GPP

standardizations, each frequency band of five CCs can have different bandwidths such as

{1.4, 3, 5, 10, 15, 20}MHz and support different number of subcarriers, {128, 256,

512, 1024, 1536, 2048}, respectively [35]. Although 3GPP proposed CA of up to five

CCs to reach a maximum bandwidth of 100 MHz, the specifications in Release-15 for

CA scenarios consider only two CCs for dual uplink [35]. For being consistent with

the state-of-the-art standardization studies, the simulation results are obtained for two

CCs in uplink, unless otherwise is stated.

In this thesis, the proposed algorithm is examined for different interband noncon-

tiguous CA scenarios. According to [88], femto and pico base stations can provide 32

users. Without loss of generality, we use the pico base station parameters and set the

number of users as K = 32, which is also divisible by the number of subcarriers. The

transmit power of the subcarriers is assumed to be Pn = 1W . The proposed algorithm

is compared with the two algorithms, ORA and PF, which are widely used for resource
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allocation problems in the literature. ORA is also widely used as the simplest resource

allocation approach, which assigns each subcarrier to the UE that has the best chan-

nel. However, ORA does not consider fairness. In case of partial CSI, ORA assign

subcarriers randomly to the UEs. Another popular resource allocation algorithm is PF

algorithm [89]. The PF algorithm compares the ratio of the feasible rate for each UE

with its average throughput, which is defined as the preference metric. The subcar-

riers are assigned to the UE with the maximum preference metric. Although PF has

significant enhancement on fairness, it is not robust for partial feedback cases.

In the first scenario, two CCs belong to two different SBSs, which both use

the frequency band 2.1 GHz. All UEs and CCs in the network have full CSI unless

otherwise stated. In Figures 2.4, 2.5, and 2.6, fairness and rate performances of PFM

algorithm are illustrated and compared with ORA and PF for various SNR values.

Total Jain’s fairness and the rate of the network are obtained by using (2.1) and (2.9).

Jain’s fairness index [90] is defined as f i(t) = (
∑K

k=1 r
i
k(t))

2/K
∑K

k=1(r
i
k(t))

2, which is

a positive fraction that takes a value of 1 only if all the K users in the cell have exactly

the same instantaneous rate. In Figure 2.4, fairness of the PFM algorithm is slightly

better than PF algorithm, while it has much more fair results when compares to ORA.

The improvement on the fairness performance increases as the number of subcarriers

decreases.
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Figure 2.4. Fairness comparisons of PFM algorithm and ORA (a) for K=32 UEs and
N={256, 512, 1024, 2048} subcarriers.
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In Figure 2.5, the fairness performances of PFM, PF, ORA are illustrated for

N = 512 subcarriers and various number of UEs (K = 8, 16, 32, 64, 128, 256) active in

the network when SNR is 0 dB. The fairness performance gap between PFM and ORA

algorithms is increased as K increases. Although rate loss increases as the number

of subcarriers increases, as expected, the rate performance of PFM algorithm has a

minimal loss when it is compared to the ORA. The rate performance is better than

PF, as shown in Figure 2.6.
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Figure 2.5. Fairness performances are illustrated for various number of UEs.
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Figure 2.6. Rate comparison of PFM, PF, ORA for K = 32 UEs and
N = {256, 512, 1024, 2048} subcarriers.

Unless otherwise stated, we consider a noncontiguous CA HetNet model for our

next simulation results, where all N subcarriers belong to the two CCs of each 10

MHz frequency bands on 800 MHz (MBS) and 2.1 GHz (SBS). In order to reduce the

feedback overhead, the CA LTE-A system performance is examined when UEs have
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partial preference lists. The rate and fairness performances of (2/N)−PFM, ORA, PF

in Figure 2.7 and Figure 2.8 are obtained for K = 32 UEs and N = 2048 subcarriers.

It is assumed that all algorithms are examined for the case, in which only the best

f = 2 subcarriers on the preference list of each UE are transmitted as feedback. The

rate performance of the proposed PFM algorithm slightly decreases in case of partial

feedback. On the other hand, the fairness performance of (2/N)−PFM algorithm is

outperforming (N/N)−PFM, ORA, and PF on fairness, as expected. PF algorithm

has a significant loss on fairness performance. Note that, (N/N)−PFM equals to MSM

when f = N .
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Figure 2.7. Rate performance of (2/N)−partial CSI feedback for K = 32 UEs
N = 2048 subcarriers.
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Figure 2.8. Fairness performance of (2/N)−partial CSI feedback for K = 32 UEs
N = 2048 subcarriers.

The impact of the number of subcarrier feedbacks is illustrated in Figure 2.9 and

Figure 2.10. There are N = 2048 subcarriers active in the network. The data overhead
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on the feedback channel is calculated by using (2.15). The data overhead on the feed-

back channel is decreased significantly and the total feedback gain for (2/N)−PFM as

G2=((2047)−2) x 32 x log22048=720544 bits. Results show that the rate performance

is still above 44 Mbps if f = 256 partial feedback with a feedback gain of G256=630432

bits is employed. Thus, feedback data overhead decreases almost 87%. Similarly, the

rate loss, L, can be acceptable when the feedback gain is significantly high. According

to Figure 2.10, the rate performance of (256/2048)-PFM is still over 95% compared

to (N/N)−PFM. Thus, a proper feedback data decrement by using partial preferences

relaxes the data overhead significantly and also provides high data rates as well.
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Figure 2.9. Feedback gain is shown when various number of subcarrier feedbacks
with f/N−PFM algorithm for a CA HetNet of K = 32 UEs and N = 2048

subcarriers.

The robustness of (2/N)−PFM algorithm against the channel distortions is illus-

trated for a CA HetNet in Figures 2.11 and 2.12 for the systems with different number

of subcarriers, N = {256, 512, 1024, 2048}, when SNR is 0 dB. All three algorithms

are very robust to the channel distortions when only f = 2 subcarrier informations

received as a feedback via the erroneous channel, as seen in Figure 2.11. (2/N)−PFM

algorithm outperforms PF in terms of rate, while ORA outperforms PFM and PF, as

expected.
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Figure 2.10. Rate performances is shown when various number of subcarrier
feedbacks with f/N−PFM algorithm for a CA HetNet of K = 32 UEs and N = 2048

subcarriers.
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In Figure 2.12, the fairness of the system is slightly decreased as the channel dis-

tortion increases Note that the impact of the number of subcarrier feedbacks are much

bigger than the impact of the channel distortions. Thus, rate loss is seen clearly in case

of low number of subcarrier feedbacks, while it is hardly visible for noisy environment.

Figure 2.12. Fairness performances with K = 32 UEs and N = {256, 512, 1024, 2048}
subcarriers for different σǫ

2.

The performance comparisons of PFM, ORA, and PF approaches are illustrated

in Figure 2.13 for a CA HetNet with K = 32 UEs and N = 2048 subcarriers, when

σǫ
2 = 0.5. For (N/N)−PFM with erroneous CSI, the loss on the rate and fairness

performances are acceptable for such a HetNet. As expected, the performance of the

PFM algorithm with erroneous CSI is almost the same with the PFM algorithm. The

effect of partial CSI is much more than the channel estimation when considering that

the effect of PFM on the network.

Finally, the instability results for (f/N)−PFM, PF, and ORA are illustrated

in Figure 2.14 and Figure 2.15 by considering an erroneous channel with σǫ
2 = 0.5.

In Figure 2.14, the average user dissatisfaction (D) of (f/N)−PFM decreases as the

number of subcarrier feedbacks increases, while the average user dissatisfaction of PF

increases, as expected. (f/N)−PFM reduce the average number of dissatisfied UE, in

the network compared to (N/N)−PFM for both low and high number of subcarriers

are active in the network.
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Figure 2.13. Rate performances with K = 32 UEs and N = 2048 subcarriers for
σǫ

2 = 0.5.
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Figure 2.14. The average user dissatisfaction results for 32 UEs and various
subcarriers considering different amount of partial feedback CSI.
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In Figure 2.15, the rate (a) and network instability (NI) (b) results are obtained

in terms of the number of unstable assignments when different number of subcarrier

feedbacks are transmitted by using (2.26). Note that NI = 0, when the number of

subcarrier feedbacks is equal toN ((N/N)−PFM). The rate of all algorithms increase as

the number of subcarrier feedbacks increases as expected. The proposed (f/N)−PFM

algorithm explicitly outperforms the other algorithms in terms of rate and network

instability when the number of subcarrier feedbacks is greater than 16, as shown in

Figure 2.15 (b). Regardless of the number of active subcarriers in the network, PFM

manages to reduce the instability ratio significantly.
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Figure 2.15. Rate (a) and Network instability (b) results for 32 UEs and various
subcarriers considering different amount of partial subcarrier feedbacks.

2.7. Conclusions

Although CA HetNets achieve high data rates, there are still some handicaps in

realistic systems such as complexity, fairness, and rate management on the resource

allocation. In this thesis, an important variation of the MSM algorithm is proposed

as PFM algorithm, which allows to partial preferences in order to decrease the data

overhead on feedback channel in dual uplink inter band noncontiguous CA HetNet sce-

narios. PFM algorithm is proposed in order to achieve a fair or rate based allocation

with a low complexity. The results of the rate and fairness performances of PFM algo-

rithm are compared with those of the ORA and PF. The rate of the PFM algorithm

is less than the ORA and almost the same with PF, as expected; however, it can pro-



56

vide fair resource allocation especially for small number of UEs and subcarriers in the

system. Unlike the previous studies, PFM algorithm is examined under a noisy envi-

ronment with reduced feedback CSI from realistic perspectives. Our results show that

PFM algorithm is much more robust against partial CSI feedback when it compares

with PF. Different from the previous studies, individual stability, partial stability, and

the average network stability concerns are analyzed. The given individual stability def-

initions are very useful in order to obtain the average rate dissatisfaction of a network

and the average network instability. Our results show that the proposed (f/N)−PFM

algorithm has high performance in terms of network instability when compared with

the ORA and PF, when the number of subcarrier feedbacks is greater than f > 16.
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3. SECURE STABLE MATCHING ALGORITHM IN

CARRIER AGGREGATED HETEROGENEOUS

NETWORKS

3.1. Motivation

CA is proposed to address the tremendous demands for high data rates in re-

source limited HetNets. Although the resource allocation problem for CA HetNets has

been studied in the literature before, there are still many open challenges, including

security threats. Thus, in this study, a trust-based SM approach is proposed as a solu-

tion for selfish user threats in a CA HetNet. The proposed approach aims to provide

secure communication to honest users by using a trust index for each user to identify

and gradually punish the selfish users. The selfish user identification process in the

proposed approach is based on a comparison between the difference of the promised

rate and the obtained rate with a predefined threshold after each SM round. The iden-

tification threshold has a significant role in terms of avoiding false detection of honest

users as selfish users as a result of bad channel estimation performances. Additionally,

determining an appropriate punishment factor is another essential issue in order to

achieve high rate and fairness performances. Thus, appropriate values of the threshold

and the punishment factor are investigated in order to achieve a high fairness and low

misleading ratio in this study.

3.2. System Model for a Secure Scenario

The system under consideration is a CA HetNet with K users that are uniformly

distributed on a concurrent area of an LTE-Advanced SBS and an MBS, as seen in

Figure 3.1. MBS is positioned at (0m, 0m), while SBS is positioned at (50m, 50m). All

users are assumed to be LTE-Advanced users, and thus are able to communicate with

multiple CCs. The possible selfish users are visualized as red, while the honest users

are green. The gray users are not able to make CA, since their positions are outside of
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Figure 3.1. K users, including L selfish users, are uniformly distributed in the
coverage area ([−50, 50] m), where LTE SBS and MBS are placed at the center [0.0].

the concurrent area.

Let us consider that L selfish users (L < K) are active in the network. The

selfish users mislead the allocation by transmitting stronger channel information than

original in order to suppress the other users and get the best channels selfishly even if

it is not the best option from the view of SBS or MBS. It is assumed that the users

are independent and have no information about each other. The rate of the channel

between the user k and subcarrier n, rik,n, can be obtained as

rik,n = wlog2

(

1 +
P i
k,n10

−L(x1,x2)
10

wN0

)

, (3.1)

where P i
k,n is the transmission power between the kth user and the nth subcarrier, which

also includes the misleading information if k is a selfish user. The channel coefficients

are complex Gaussian distributed as hi
k,n ∼ CN (0, 1) and the channel estimation error

is also assumed to be complex Gaussian distributed with zero mean and variance σ2
ǫ .

w is the bandwidth of each subcarrier, N0 is the noise power and L(x1, x2) is the path
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loss for a user located at (x1, x2) ∈ R
2, stated as

L(x1, x2) = β + α10 log10(
√

x2
1 + x2

2) + χ, (3.2)

where α is the path loss exponent, β is the path loss at 1-meter distance, and χ

models the deviation in fitting (in dB), which is a Gaussian random variable with zero

mean and variance σ2
χ. In order to preserve fair transmission in such a HetNet, SM

algorithm is proposed with some extensions by grading the honesty of all users after

each allocation process. After each SM allocation process, the promised rates of users,

which are obtained by using the transmitted CSI values, and the obtained rates at

the end of the algorithm are compared. If the difference between the promised and

obtained rates are greater than a predefined misleading threshold, the corresponding

user is detected as a selfish user and punished by a predefined punishment factor of

his/her grade for the next allocation process.

The number of assigned subcarriers of each user is limited to a quota, Qk, to

provide both QoS management and fairness. The algorithm ends when all the users

and subcarriers are matched. Different from the previous approaches, SM algorithm is

applied periodically in order to make an efficient allocation by using the latest channel

information in a changing environment in the proposed SM approach. At the end of

each allocation process, users are graded according to their recent misleading ratio

(MR) results. If any user has a MR that is lower than a predefined threshold, than

the corresponding user is detected as a selfish user and is punished by proportionally

lowering the trust index, τ ik, compared to the previous one.

3.2.1. Selfish User Model

As in all wireless networks, HetNets are vulnerable to various security threats.

One of these threats is the untruthful users that may mislead the HetNet for different

reasons, such as blocking the access of other users in the network, targeting the access
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of a specific user, or selfishly desiring the best sub-carriers. In this study, we focus on

the selfish user’s misleading on a CA HetNet. Each user has a misleading factor that

is defined as

φi
k =











φ, if user k is selfish,

1, if user k is honest,

(3.3)

where φ is a predefined misleading factor (φ > 1). Selfish users transmit their CSIs as

stronger than the default by using this misleading factor. Note that, the misleading

factor is 1 if the user is honest.

3.3. Trust-Based Stable Matching Approach

In the proposed resource allocation method, each user has trust index τ ik. At the

end of each SM round, the promised rate, Rprom,i
k , which is obtained by the received

channel information from users, and the obtained rate, Robt,i
k , are compared to each

other. The rate of the user at the end of each allocation is given by

Ri
k,n =

N
∑

n=1

µi
k,nr

i
k,n, (3.4)

where µi
k,n is the matching index, which is equal to 1 if subcarrier n is assigned to user

k, 0 if subcarrier n is not assigned to user k. The rate of the channel between the user

k and subcarrier n, rik,n, can be obtained by using (3.1). Correspondingly, misleading

ratio of each user can be calculated as

MRi
k =

REi
k

Rprom,i
k

, (3.5)
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where REi
k = Rprom,i

k − Robt,i
k is the rate error of user k at the ith SM process. If the

difference between these rates is greater than a predefined threshold, ξ, the correspond-

ing user is identified as a selfish user and is punished by a proportional decrease in its

trust index by a punishment factor, 0 < τ p < 1, for the next allocation

τ i+1
k =











τ ikτ
p if MRi

k > ξ,

τ ik, otherwise.

(3.6)

Note that, even if there are no misleading users in the network, channel estimation

errors may lead to a loss on the rate efficiency. Thus, the predefined threshold has

a significant role in the proposed policy. Low values of ξ may result in identifying

some honest users as selfish users, whereas some selfish users cannot be identified at

high values of ξ. Therefore, ξ should be carefully optimized. After the trust index

calculations in each SM round, P i
k,n are obtained for the next round by also including

the misleading index (φ) and estimated channel information |hi
k,n + ǫik,n|2 as

P i+1
k,n = τ ikφ

i
k|hi

k,n + ǫik,n|2, (3.7)

where ǫik,n ∼ CN (0, σ2
ǫ ).

3.4. Simulation results

The system under consideration is a CA HetNet with K = 32 users that are uni-

formly distributed on a concurrent area of a LTE-Advanced SBS and a MBS, which are

positioned at (50m, 50m) and (0m, 0m), respectively. Our simulations are conducted

for a configuration with 2×10 MHz (10 MHz of MBS, 10 MHz of SBS) bandwidth in

the downlink. Therefore, MBS and SBS have 2048 subcarriers that are assumed to be

available at SBS and MBS in total (each with 1024 subcarriers) through this thesis,
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unless otherwise stated. The transmit power, P , is assumed to be 1 W by default. The

path loss exponent (α) values of SBS and MBS are 3 and 4, respectively. The band-

width per resource block, w, is 180 kHz, noise power, N0, is -174 dBm, and path loss at

1 m, β, is 38 dB for SBS. Determining the misleading ratio threshold has a significant

role in terms of providing reliable communication for the honest users in the network.

Thus, it is initially assumed that there are no selfish users in the network in order to

focus only on the effect of channel estimation errors on the detection performance. The

punishment factor is taken as τ p = 0.7. The probability of detecting any honest user as

a selfish user is presented under different channel estimation error variances in Figure

3.2. From the corresponding results, the misleading ratio threshold can be determined

by considering the channel estimation error variance. Even if there is severe noise in

the channel, i.e., σ2
ǫ = 1, the probability of the occurrence of channel estimation error

is minimized when the threshold is chosen as ξ = 0.7.

Figure 3.2. False detection performance for different misleading ratio thresholds when
the punishment factor is 0.7.

From Figure 3.2, we can see that an appropriate misleading ratio could be deter-

mined as ξ = 0.7 to avoid false detection under a noisy environment with σ2
ǫ = 1. In

Figure 3.3 and Figure 3.4, the average obtained rate for honest users and the average

obtained rate of selfish users are shown for different misleading ratios ξ = 0.1 and

ξ = 0.7, respectively. There are L = 10 selfish users that are always active in the

network. Notice that, there is no punishment when the punishment factor is chosen as

1. At the end of the first trust-based SM round, selfish users have better transmission

rates when compared to the honest users as an expected result of misleading the BSs.
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At the following trust-based SM rounds, transmission rates may return to a fair level

or may even result in lower transmission rates when compared to the honest users,

as seen in Figure 3.3. Although selfish users are punished more effectively when the

misleading ratio is chosen as ξ = 0.1, honest users have better rate recovery when the

misleading ratio is chosen as ξ = 0.7. Moreover, average rate saturation is obtained

faster (early SM rounds) in Figure 3.4 when compared to Figure 3.3 .
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Figure 3.3. The rate of selfish users with misleading ratio threshold ξ = 0.1 for
different punishment factors τ p ∈ {0.1, 0.3, 0.5, 0.7, 1} for 32 users and 2048

subcarriers exist in total.
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Figure 3.4. The rate of selfish users with misleading ratio threshold ξ = 0.7 for
different punishment factors τ p ∈ {0.1, 0.3, 0.5, 0.7, 1} for 32 users and 2048

subcarriers exist in total.

In Figure 3.5, misleading ratio is obtained for different punishment factors in

different SM rounds when L = 10 selfish users active in the network and misleading

ratio threshold is chosen as ξ = 0.7. The fairness performance is obtained for different
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punishment factors by using Jain’s fairness index in Figure 3.6.

3.5. Conclusions

In trust based approach, resource allocation and security challenges are addressed

by considering a specific kind of security threat (i.e., selfish users). A trust-based SM

approach is proposed as a reliable resource allocation solution under selfish user threat

in a CA HetNet. The problem is formulated as an SM problem aimed at minimizing

the misleading rate while guaranteeing the fairness of the system. Computer simula-

tions show that the appropriate misleading ratio threshold should be determined by

considering the false detection performance. Hence, the proposed trust-based SM ap-

proach is very reliable even under severely noisy channel conditions by choosing the

appropriate identification threshold specific to the channel environment, and punish-

ment factor considering the trade-off between rate efficiency and fast recovery. This

study gives an insight on the importance of identification and punishment processes for

reliable communication with high data rate and fairness performances in the presence

of the selfish users in the HetNet for future studies.
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4. REPUTATION-BASED ATTACKER IDENTIFICATION

POLICY FOR MOBILE EDGE COMPUTING IN

INTERNET OF THINGS BY USING STABLE MATCHING

ALGORITHM

4.1. Motivation

Smart devices with several applications, which have high computational demands

and critical latency requirements, do not satisfy with the cloud networks. MEC offers

lower latency and higher speed to the users by offloading the cloud computing capa-

bilities at the nearest edge of the mobile network. In IoT MEC networks, wide range

of applications with different requirements is a big challenge to cope with. Although

there are some MEC deployments that are already defined and standardized by ETSI

in [91], standardization is still in progress. Billions of IoT devices competes each other

in order to run their applications over cloud, fog, or edge servers. The proper allocation

of limited resources is one of the biggest challenges. Moreover, IoT networks are very

fragile against attackers as nature of wireless networks. Security is becoming vital as

the number of devices in an IoT network tends to the billions. The possible security

threats and their precautions in an IoT network are elaborated in [92].

A comprehensive analysis of the security threats, challenges, and mechanisms

inherent in all edge paradigms are given in [93]. According to the previous studies,

even authorized edge devices may be a significant threat for IoT networks (i.e., selfish

behavior) as a result of mix structure with a wide range of different requirements.

Thus, the main motivation of this study is to identify attackers (selfish IoT MDs) with

a reputation-based SM policy.
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4.2. System Model

Consider an IoT network with K IoT mobile devices (MDs), and N access points

(APs), which has a mobile edge server with S available resources for computational

tasks, in total. As our primary aim is to achieve a secure communication, we assume,

without loss of generality, that all the considered IoT devices are in the concurrent

coverage area of access points and are statistically characterized by the same path loss

effect. IoT edge servers provide software as a service (SaaS) to the IoT MDs for the

applications related with their own specific tasks. Without loss of generality, each IoT

MD has an equivalent computing-intensive tasks and desire to offload these tasks to

the edge servers via N access points as illustrated in Figure 4.1. The possible malicious

IoT MDs are visualized as red while the honest IoT MDs are blue. Malicious IoT MDs

mislead the network by transmitting channel state information (CSI) with a relatively

stronger channel than usual.

Figure 4.1. K IoT devices, including Km malicious IoT devices, are uniformly
distributed in the concurrent area of two APs with edge servers.

There are L (≤ K) malicious IoT MDs active in the IoT network. It is assumed

that all IoT devices are independent and have no information about each other. Ad-

ditionally, all APs are assumed as reliable. The main aim of malicious IoT MDs is

to get the best service of the IoT network and suppress all the remaining IoT MDs.
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This type of attacks eventually decreases the overall performance of the network signif-

icantly. In some case, malicious IoT MDs drastically affect the network performances

so that for the network it is quite impossible to provide services to any other IoT MDs

(i.e., resulting in a denial of service, DoS, attack for the entire network).

The data rate between the kth IoT MD and the sth edge resource at the ith

matching slot, rik,s, can be obtained as

rik,s = wlog2

(

1 +
P i
k,s

wN0

)

, (4.1)

where w refers to the bandwidth, N0 is the noise power, P
i
k,s is the power of the channel

gains as

P i
k,s = Psφ

i
k | hi

k,s + ǫik,s |
2
. (4.2)

Ps is the (constant) transmit power of IoT devices, while φi
k is the misleading factor.

The channel coefficients, hi
k,s, k = {1, ..., K}, s = {1, ..., S}, and i = {0, 1, ...,W}, are

assumed to have complex Gaussian distributions with zero mean and unit variance.

ǫik,s is the channel estimation error, which is also complex Gaussian distributed with

ǫ ∼ CN (0, σ2
ǫ ). Assuming perfect phase synchronization at receiver, in this model, we

can assume a Rayleigh distributed amplitude fading.

4.2.1. Attacker Model

As in all wireless networks, IoT networks are fragile against security threats.

Although there are many studies examining the ways to cope with attackers [94–96],

there are still open problems for specific scenarios in IoT networks. In the following

of this paper, we focus on malicious IoT MDs with selfish behavior. Selfish attackers

in IoT networks follow a smart strategy to mislead the resource allocation process as
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Byzantine attackers [97]. This smart strategy is based on inverting the actual local

sensing result in a selective manner. Specifically, an attacker decides in each SM

allocation round, i, to attack, or not, with a probability, which is denoted with p. If

the attacker decides to attack in a specific round, it simply transmits its CSI as a

stronger channel than usual by using a misleading factor defined as:

φi
k =











φ, if IoT device k is malicious,

1, if IoT device k is honest,

(4.3)

where φ is a predefined misleading factor (φ > 1). Selfish IoT devices transmit their

CSIs, stronger than the real one by using this misleading factor. Note that misleading

factor is 1 if the IoT device is honest. Additionally, there may be some unintentional

attackers, who are actually honest, but detected as attackers due to severe channel

estimation propagation conditions. The ability to distinguish unintentional attackers

(honest IoT MDs) from intentional ones (selfish IoT MDs), has a great significance

especially in terms of providing fairness.

4.3. Reputation-based Attacker Identification Policy

The two-fold reputation-based attacker identification policy is proposed as a ro-

bust solution against selfish IoT MDs in the network. In the first stage of this policy,

available resources at the edge servers are allocated to the IoT devices by using SM

algorithm. After each SM allocation, the rate performances are compared with the

promised rates in order to determine whether they are malicious or not. After repu-

tations are obtained, devices are categorized into three stages; honest, suspicious, or

malicious, in the second stage.
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4.3.1. SM based local attacker identification

The primary aim is to detect intentional attackers while avoiding to detect honest

users as attackers (unintentional attackers caused by channel estimation error). In

order to discriminate between intentional and unintentional attackers, the status of

each IoT MD is formulated as two alternate hypotheses: H1 hypothesis, which states

the presence of the intentional attackers and H0 hypothesis, which conversely states the

absence of the intentional attackers but may have state the presence of unintentional

attackers.

H0 : ẑ
i
k,s = hi

k,s + ǫik,s ,

H1 : ẑ
i
k,s =

√

φi
k(h

i
k,s + ǫik,s),

where ẑik,s is the channel information signal between the kth IoT device and the sth mo-

bile edge resource. The channel coefficients hi
k,s are assumed to have complex Gaussian

distributions with zero mean and unit variance. Assuming perfect phase synchroniza-

tion at receiver, in this model, we can assume a Rayleigh distributed amplitude fading

and ǫik,s is the channel estimation error, which is assumed to be complex Gaussian dis-

tributed with zero mean and variance σǫ
2. φi

k is the misleading factor, which is φi
k > 1

if the kth IoT device is intentional attacker and φi
k = 1 otherwise. At the end of each

the ith SM round, each IoT device is matched with Qk mobile edge resources.

Qk =

S
∑

s=1

µi
k,s, (4.4)

where µi
k,s is the matching index. In order to provide fairness in terms of assigned

mobile edge resources, Qk is generally chosen as Qk = S
K

providing that K must

be divisible by N . The decision variable of each IoT device, Z i
k is compared with a
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predefined threshold, ξ, to identify the intentional attackers, as follows:

(

Z i
k =

1

Qk

S
∑

s=1

µi
k,sφ

i
kPs| ẑik,s |

2

)

H0

≶
H1

ξ. (4.5)

The probability of detecting an honest IoT device as an attacker is called Prob-

ability of false alarm, P FA, while the probability of attacker detection is PD.

P FA = Pr[Z i
k > ξ |H0]

PD = Pr[Z i
k > ξ |H1].

(4.6)

Thus, the threshold optimization problem is

max
ξ

{PD − P FA}. (4.7)

According to central limit theorem (CLT), the testing variable Z i
k is asymp-

totically (Qk → ∞) Gaussian [98]. The distribution of test variable Z i
k under null

hypothesis is

Z i,E
k ∼ N (Qk(1 + σ2

ǫ ), Q
2
k(1 + σ2

ǫ )
2). (4.8)

An explanatory simplified example is given in Example 6.
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Example 6. Let consider, there are K = 2 IoT MDs and S = 8 available resources at

the edge servers. The final matching matrix is obtained as

M =





1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1



 . (4.9)

For simplicity we assume i = 0 and ignored through this example. Note that, matching

matrix includes µk,s as 0 or 1 for each relation. Qk can be calculated from S
K

as 4. Ps

is assumed as 1W. Hence the decision variables of IoT MDs are

ZE
k =

1

4

8
∑

s=1

µk,s| (hk,s + ǫk,s) |2. (4.10)

ZE
1 =

1

4

[

| (h1,1 + ǫ1,1) |2 + | (h1,4 + ǫ1,4) |2 + | (h1,6 + ǫ1,6) |2 + | (h1,7 + ǫ1,7) |2
]

.

(4.11)

ZE
2 =

1

4

[

| (h2,2 + ǫ2,2) |2 + | (h2,3 + ǫ2,3) |2 + | (h2,5 + ǫ2,5) |2 + | (h2,8 + ǫ2,8) |2
]

.

(4.12)

The theoretical and empirical results are matched as shown in Figure 4.2, in terms

of probability density function (PDF).
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Figure 4.2. PDF of the decision variables under different conditions.

The detailed calculations are given in Section 4.4.

4.3.2. Reputation based identification

All IoT devices are placed in one of the three different states, honest (H), sus-

picious (S), malicious (M) according to their reputations. All IoT devices are tested

after each SM allocation. Each IoT device has a trust index, τk, which is initially zero

for all IoT devices, τ i=0
k = 0, and is defined as

τ i+1
k =











1 if Z i
k > ξ,

0, otherwise.

(4.13)

In order to give a reward chance to any unintentional malicious IoT devices,

we restrict our number of observations with a number W . Since the (W + 1)th SM

allocation, the oldest reputation is forgot and new reputation is included. In order to

get faster results about honest of IoT devices, the proposed identification algorithm is

applied even after first SM allocation (i.e., we applied state transitions by considering
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the results that we get at the first allocation, i=1) instead of waiting W times of SM

allocation. The reputation index, Tk, for each IoT device k is calculated as

Tk =











∑i

t=1 τ
t
k if i ≤ W,

∑W+i−1
t=i τ tk if i > W.

(4.14)

The main aim is to determine the optimal thresholds that maximize the number

of intentional malicious IoT devices in the malicious state while minimizing at the same

time the number of honest IoT devices at malicious state. In [99], authors proposed

four different thresholds to optimize the attacker detection in a cognitive radio network.

In this study, we use these thresholds to optimize our secure offloading IoT network.

State Transitions =























































M → S if Tk < λ1,

S → H, if Tk < λ3.

H → S, if Tk > λ2.

S → M, if Tk > λ4.

No transition, otherwise.

(4.15)

4.3.3. Threshold analysis for identification

Let the attacking probability of a malicious user be p. The transition probabilities

of malicious IoT devices can be calculated as in [99]

PM
M,S =

λ1
∑

i=1

(

W

i

)

p(i)(1− p)W−i, (4.16)
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PM
S,H =

λ3
∑

i=1

(

W

i

)

pi(1− p)(W−i), (4.17)

PM
H,S =

W
∑

i=λ2

(

W

i

)

pi(1− p)(W−i), (4.18)

PM
S,M =

W
∑

i=λ4

(

W

i

)

pi(1− p)(W−i). (4.19)

The transition probabilities of unintentional malicious users who unintentionally at-

tacks as a result of channel estimation error (pe) are obtained similarly. Let NH
H , NH

M

represents the number of honest users at state H and at state M, respectively. Let NM
H ,

NM
M represents the number of malicious users at state H and at state M, respectively.

The optimal thresholds can be calculated as

max
λ1,λ2,λ3,λ4

{NH
H +NM

M −NH
M −NM

H }. (4.20)

4.4. Performance evaluation

In order to obtain the optimal threshold, let define the second- and fourth-order

moments of the received signal are evaluated. For the sake of compactness, the channel

coefficient, hi
k,s, the estimation error factor, ǫik,s, are represented as h and ǫ, respectively.

The power of the channel coefficient, h, the estimation error, ǫ, and the misleading

factor are derived as functions of the higher order moments. Let M2 be the second-



76

order moment of the received signal, z and be expressed as follows:

M2 = E[φ| (h + ǫ) |2]

= φE[| h |2] + φE[| ǫ |2] + E[Re(hǫ∗)] + E[Re(h∗ǫ)],
(4.21)

where E[.] denotes the expectation operator, | . | is the absolute value, and Re(.)

denotes the real part of the complex number. Note that, the misleading factor is

constant through the same SM allocation slot (i), but may changed in another SM

process with probability p. The channel coefficients, estimation errors are zero-mean

and mutually independent random processes. Thus,

E[(h)] = 0, E[ǫ] = 0,

E[Re(h∗ǫ)] = 0, E[Re(hǫ∗)] = 0.
(4.22)

Then, 4.21 can be rewritten as follows:

M2 = φE[| h |2] + φE[| ǫ |2]

= φ(Ph + Pǫ)
(4.23)

where Pǫ = 2σǫ
2 is the noise variance, and Ph is the power level of the channel co-

efficients, respectively. Similarly, let M4 be the fourth-order moment of z, which are

expressed as follows:

M4 = E[φ2| (h + ǫ) |4]

= φ2
[

E[| h |4] + E[| ǫ |4] + 2E[| h |2 | ǫ |2] + 4E[Re(hǫ∗)2]
]

= φ2
[

P 2
h + P 2

ǫ + 4PhPǫ

]

.0

(4.24)
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Ph is rewritten in terms of Pǫ and M2 from (4.23 )as follows:

Ph =
M2 − φPǫ

φ
. (4.25)

In order to obtain a second order expression of Pǫ, (4.25) is take place in (4.24) as in

4.26.

M4 = φ2
[

(
M2 − φPǫ

φ
)2 + P 2

ǫ + 4(
M2 − φPǫ

φ
)Pǫ

]

. (4.26)

Pǫ,1,2 can be found as roots of (4.26) from

x1,2 =
−b±

√
b2 − 4ac

2a
(4.27)

where x is the roots of the second order equation

y = ax2 + bx+ c

. Thus Pǫ,1,2 is obtained as follows:

P̂ǫ,1,2 =
M̂2

2φ
± 1

2φ

√

3M̂2
2 − 2M̂4, (4.28)

Hence, the estimated variables from equation( 4.23) and (4.24) are shown,

P̂h,1,2 =
M̂2

φ
− P̂ǫ,1,2 (4.29)
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where the estimation of second- and fourth-order moments are

M̂2 =
1

Q

Q
∑

i=1

| zi |2 M̂4 =
1

Q

Q
∑

i=1

| zi |4 (4.30)

Hence, the desired expressions of mean E[Ẑ] and variance σ̂2 can be obtained in terms

of functions of the actual values P̂h, P̂ǫ, and φ. The mean E[Z i
k|H0] and the variance

var[Z i
k|H0] are evaluated under the null hypothesis to compute the threshold ξ, while

the mean E[Z i
k|H1] and the variance var[Z i

k|H1] conversely determine the asymptotic

testing power.

E[Z i
k|H0] =

∂2P̂ǫ

∂M̂2
2

var[M̂2] +
∂2P̂ǫ

∂M̂2
4

var[M̂4] +
∂2P̂ǫ

∂M̂2∂M̂4

cov[M̂2M̂4]. (4.31)

var[Z i
k|H0] =

(

∂P̂ǫ

∂M̂2

)2

var[M̂2] +

(

∂P̂ǫ

∂M̂4

)2

var[M̂4] +
∂P̂ǫ

∂M̂2

∂P̂ǫ

∂M̂4

cov[M̂2M̂4]. (4.32)

The probability of false alarm in (4.6) can be obtained by considering the Gaus-

sian integrals as

P FA = Pr[Z i
k > ξ |H0] = erfc

(

ξ − E[[Z i
k|H0]

√

var([Z i
k|H0])

)

, (4.33)

where erfc(.) is the complementary error function. The test threshold, ξ, can be now

evaluated from a straightforward evaluation of the Gaussian integral for a fixed prob-
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ability of false alarm. Under the null hypothesis (H0), the test threshold as follows:

ξ = E[Z|H0] +
1

√

σ̂2
Z|H0

erfc−1(P FA), (4.34)

where erfc−1(.) is the (inverse of the) complementary error function. The probability

of detection can also be evaluated under H1 hypothesis as

PD = erfc





ξ − E[Z|H1]
√

σ̂2
Z|H1



 . (4.35)

4.5. Numerical Results

Considering an IoT network deployment with K = 50 IoT devices offload com-

puting intensive tasks to edge servers for SaaS with S = 100 available resources, in

total, via APs. MEC is defined and standardized by ETSI in [76, 77]. Although MEC

of IoT device deployments are in progress of standardization, we consider our IoT

MEC network according to ETSI specifications [91]. Unless otherwise stated, there are

Ks = 20 malicious (selfish) IoT devices out of 50 IoT devices. In Figure 4.3, attackers

are detected by using the threshold in (4.34). The probability of detection results ob-

tained by simulations are compared with the theoretical results in (4.35). Simulation

results are obtained for attacking probability of p = 1 and channel estimation error

variance σǫ
2 = 0.5. The misleading factors are φ = {1.01, 1.1, 1.6, 2}. According to

Figure 4.3, the probability of detection is over 0.9, if the misleading ratio is greater

than 1.5, φ > 1.5. When the misleading ratio is less than 1.1, φ < 1.1, the performance

of the probability of detection decreases significantly.

After W rounds of SM attacker identification, each IoT device has a reputation

index. According to these reputation indices, each IoT device is placed in one of the
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Figure 4.3. Theoretical and simulation results of PD for different PFA assumptions
and misleading factors φ.

three trust states; malicious, suspicious, or honest. In Figure 4.4, state transitions of

100 honest users and 100 selfish users are illustrated for the misleading ratios φ = 1.1,

respectively. The simulation results of the proposed approach are compared with the

well known Auction approach [5]. Numerical results show that the proposed reputa-

tion based PFM method is able to identify more selfish users than the conventional

(Auction) one, even if the proposed approach fails in moving some honest users in

the honest state. In Figure 4.4, the available resource in edge server is 1000. The

estimation error variance is 0.5 and the preliminary threshold is determined under the

assumption of a fixed probability of false alarm, PFA = 0.1. N refers to the average

number of IoT devices in the corresponding state. The green lines represents malicious

state, the pink lines refers honest state, and the red lines represents the suspicious

states. The number of IoT devices are the average numbers as a result of at least 106

Monte Carlo simulations.

Finally, in Figure 4.5, identification results after W allocation time are obtained

in case of different attacking probabilities. Although honest users are perfectly placed

at honest state, selfish IoT devices are placed at suspicious state as seen in Figure 4.5

(a).
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Figure 4.4. The state transitions when the misleading factor is φ = 1.1 (a) Honest
users (b) Selfish users .

Figure 4.5. The average number of IoT devices at each state are shown after W
allocation time for different probability of attackers, (a)p = 0.1, (b) p = 0.5, and (c)

p = 0.9.
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In Figure 4.5 (b), malicious IoT devices are successfully detected for W ≥ 20

when malicious IoT devices attacks with a probability of 0.5, while malicious IoT

devices cannot be detected as malicious even if W is chosen too high as a result of low

misleading detection threshold in Figure 4.5 (c).

4.6. Conclusions

The two-fold reputation based attacker identification approach is proposed as

a robust solution against selfish IoT MDs in the network. In the first stage of the

approach, available resources at the edge servers are allocated to the IoT devices by

using SM algorithm. After each SM allocation, IoT devices are checked whether they

are malicious or not. The threshold is optimized for the first identification process.

Optimized thresholds are used in the SM based identification process. The simulation

results confirm the theoretical analyses. In the second fold, IoT devices are examined

according to their reputation indices, finally identifying attackers and determining the

states of the IoT devices. As demonstrated by theoretical and simulation results, our

three-states identification process is very effective in identifying malicious devices. At

the same time our approach also rehabilitates unintentional attackers, who suffered

from bad channel propagation conditions , by moving these devices between the three

proposed states (up to the honest state when the channel estimation errors decrease).



83

5. CONCLUSION

In this thesis, SM-based resource allocation methods are proposed in order to

address the tremendous demands for high data rates in resource limited in 5G tech-

nologies. PFM is proposed in order to cope with many-to-one resource allocation.

SM-based approaches have to meet with various requirements from different types of

users in the wireless communication networks with adaptable and flexible matching

algorithm. The problem is extensively elaborated in many aspects for different wire-

less communication systems such as HetNets and IoT networks. In order to increase

the robustness of networks, e.g., IoT networks, which are very fragile against possible

attacks, as a natural result of HetNet structure, trust based approaches are proposed.

MSM algorithm uses the ideal CSI values (via feedback channel) in order to obtain

the preference lists instead of using deterministic preferences as in the original SM

algorithm. The overload on the uplink channel, through CSI transmission, is decreased

significantly by the proposed partial feedback matching algorithm.

Specifically, PFM based CA uses partial feedback CSI instead of ideal full CSI for

each UE in a CA HetNet. Stability performances of the proposed algorithm, PFM, and

the user satisfaction analyses are investigated for various amounts of partial feedback

CSI transmission. The stability concerns for CA HetNets are investigated for the

proposed variation of the MSM algorithm in order to determine the rate satisfaction

of both user equipment and the entire HetNet. Individual rate dissatisfaction of UEs

and network instability results are obtained. As a more realistic approach, impact of

channel estimation errors on feedback channels are considered by using MSM and PFM

approaches for full CSI and reduced feedback CSI scenarios, respectively. Data rate

and fairness performances are investigated for all proposed variations of SM algorithm,

simultaneously, by considering the rate requirements of UEs with the feedback CSI.

The resource allocation problem, which is one the most significant challenges of IoT

MEC infrastructure, are addressed by applying a graph-based low complexity resource

allocation policy, SM algorithm. Finally, IoT networks are very fragile against attackers

in physical layer as a natural result of wireless communication systems. A three state
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reputation based attacker identification and punishment policy, is proposed in order to

increase the robustness of the network. The results show that the proposed approach

is able to identify more selfish users than the conventional (Auction) one, even if it fail

in moving some honest users in the honest state.
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6. FUTURE WORKS

With new technologies, which provides higher transmission rates, the number of

active and smart devices in wireless networks are increasing tremendously. Secure and

efficient resource allocation is a significant concern, while millions of devices are active

in a network. As a future work, the proposed SM based algorithms should be examined

under different security scenarios, which has various types of attackers.



86

REFERENCES

1. Statistica, C. E., “Internet of Things - number of connected devices worldwide

2015-2025”, Statistica, 2019.

2. Sanguanpuak, T., S. Guruacharya, N. Rajatheva, M. Bennis and M. Latva-Aho,

“Multi-Operator Spectrum Sharing for Small Cell Networks: A Matching Game

Perspective”, IEEE Transactions on Wireless Communications , Vol. 16, No. 6, pp.

3761–3774, June 2017.

3. Wang, G., P. Liu, Z. Yang and R. Xue, “Joint College Admissions Game and

Auction Theory for Data Offloading in Heterogeneous Networks”, Chinese Journal

of Electronics , Vol. 27, No. 1, pp. 168–174, 2018.

4. Gu, Y., Y. Zhang, L. Cai, M. Pan, L. Song and Z. Han, “LTE-Unlicensed Coex-

istence Mechanism: A Matching Game Framework”, IEEE Wireless Communica-

tions , Vol. 23, No. 6, pp. 54–60, December 2016.

5. Sun, W., J. Liu, Y. Yue and H. Zhang, “Double Auction-Based Resource Allocation

for Mobile Edge Computing in Industrial Internet of Things”, IEEE Transactions

on Industrial Informatics , Vol. 14, No. 10, pp. 4692–4701, Oct 2018.

6. Khandekar, A., N. Bhushan, J. Tingfang and V. Vanghi, “LTE-Advanced: Hetero-

geneous networks”, European Proc. Wireless Conference (EW), pp. 978–982, April

2010.

7. Chu, X., D. Lopez-Perez, Y. Yang and F. Gunnarsson, Heterogeneous Cellular

Networks: Theory, Simulation and Deployment , Cambridge University Press, 2013.

8. Saleh, N. and N. Patel, “Enhancing spectrum efficiently and energy efficiently via

offloading mechanism in heterogeneous networks (in context of Wi-Fi and LTE-

Advanced)”, International Conf.on Innovations in Electronics, Signal Processing



87

and Communication (IESC), pp. 171–177, April 2017.

9. Lopez-Perez, D., I. Guvenc, G. de la Roche, M. Kountouris, T. Quek and J. Zhang,

“Enhanced intercell interference coordination challenges in heterogeneous net-

works”, IEEE Wireless Communications , Vol. 18, No. 3, pp. 22–30, June 2011.

10. 3GPP, TR and 36.808, “E-UTRA; Carrier Aggregation; base station radio trans-

mission and reception”, 3GPP Technical Specification Group Radio Access Network

, Vol. Release 10, 2010.

11. 3GPP, TS and 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA);

Physical Channels and Modulation”, 3GPP Technical Specification Group Radio

Access Network , Vol. Release 8, 2008.

12. Ratasuk, R., D. Tolli and A. Ghosh, “Carrier Aggregation in LTE-Advanced”,

Proc. IEEE Vehicular Technology Conference, pp. 1–5, May 2010.

13. Chavarria-Reyes, E., I. Akyildiz and E. Fadel, “Energy-Efficient Multi-Stream

Carrier Aggregation for Heterogeneous Networks in 5G Wireless Systems”, IEEE

Trans. on Wireless Communications , Vol. 15, No. 11, pp. 7432–7443, Nov 2016.

14. Dahlman, E., S. Parkvall and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broad-

band , Academic Press, 2011.

15. Wang, Q., Q. Zhang, Y. Sun, Z. Wei and Z. Feng, “A QoS-guaranteed radio re-

source scheduling in multi-user multi-service LTE-A systems with carrier aggrega-

tion”, IEEE International Conf. on Computer and Communications (ICCC), pp.

2927–2932, Oct 2016.

16. Rostami, S., K. Arshad and P. Rapajic, “A joint resource allocation and link

adaptation algorithm with carrier aggregation for 5G LTE-Advanced network”,

Proc. Intl. Conf. on Telecommunications (ICT), pp. 102–106, April 2015.



88

17. Zhang, L., Y. Wang, L. Huang, H. Wang, and W. Wang, “QoS performance

analysis on carrier aggregation based LTE-A systems”, Proc. IET International

Comm.Conf.on Wireless Mobile and Computing (CCWMC) , pp. 253–256, Dec

2009.

18. Zhang, L., K. Zheng, W. Wang and L. Huang, “Performance analysis on carrier

scheduling schemes in the long-term evolution-advanced system with carrier aggre-

gation”, IET Communications , Vol. 5, No. 5, pp. 612–619, March 2011.

19. Kiwoli, L., A. Sam and E. Manasseh, “Performance analysis of carrier aggregation

for various mobile network implementations scenario based on spectrum allocated”,

CoRR, Vol. 1711.02287, 2017.

20. Sun, C., J. Jiang, L. Huang and G. Lu, “Component carrier selection and inter-

ference coordination for carrier aggregation system in heterogeneous networks”,

IEEE International Conf. on Communication Technology (ICCT), pp. 402–407,

Nov 2012.

21. Wang, Y., K. Pedersen, M. Navarro, P. Mogensen and T. Sorensen, “Uplink over-

head analysis and outage protection for multi-carrier LTE-Advanced systems”,

IEEE International Symposium on Personal, Indoor and Mobile Radio Communi-

cations, pp. 17–21, Sept 2009.

22. Wang, H., C. Rosa and K. Pedersen, “Uplink Component Carrier Selection for LTE-

Advanced Systems with Carrier Aggregation”, Proc. IEEE International Conf. on

Communications (ICC), pp. 1–5, June 2011.

23. Katsha, M. and H. Mohd Ramli, “Development of a novel component carrier selec-

tion algorithm in Long Term Evolution-Advanced (LTE-A) with Carrier Aggrega-

tion”, IEEE Student Conf.on Research and Development (SCOReD), pp. 1–5, Dec

2016.

24. Yu, G., Q. Chen, R. Yin, H. Zhang and G. Li, “Joint Downlink and Uplink Resource



89

Allocation for Energy-Efficient Carrier Aggregation”, IEEE Trans. on Wireless

Communications , Vol. 14, No. 6, pp. 3207–3218, June 2015.

25. Gu, Y., W. Saad, M. Bennis, M. Debbah and Z. Han, “Matching theory for fu-

ture wireless networks: Fundamentals and applications”, IEEE Communications

Magazine, Vol. 53, No. 5, pp. 51–59, 2015.

26. Liao, H., P. Chen and W. Chen, “An Efficient Downlink Radio Resource Allocation

with Carrier Aggregation in LTE-Advanced Networks”, IEEE Trans. on Mobile

Computing , Vol. 13, No. 10, pp. 2229–2239, Oct 2014.

27. Zhao, J., Y. Liu, K. Chai, Y. Chen and M. Elkashlan, “Many-to-Many Matching

With Externalities for Device-to-Device Communications”, IEEE Wireless Com-

munications Letters , Vol. 6, No. 1, pp. 138–141, Feb 2017.

28. Kurrle, R., Resource Allocation for Smart Phones in 4G LTE-Advanced Carrier

Aggregation, Master’s Thesis, Virginia Polytechnic Institute and State University,

Arlington, VA, 2012.

29. Wang, Y., K. Pedersen, P. Mogensen and T. Sorensen, “Resource allocation con-

siderations for multi-carrier LTE-Advanced systems operating in backward com-

patible mode”, IEEE International Symposium on Personal, Indoor and Mobile

Radio Communications, pp. 370–374, Sept 2009.

30. Shi, S., C. Feng and C. Guo, “A Resource Scheduling Algorithm Based on User

Grouping for LTE-Advanced System with Carrier Aggregation”, International

Symposium on Computer Network and Multimedia Technology, pp. 1–4, Jan 2009.

31. Tian, H., S. Gao, J. Zhu and L. Chen, “Improved Component Carrier Selection

Method for Non-Continuous Carrier Aggregation in LTE-Advanced Systems”, pp.

1–5, Sept 2011.

32. Wu, F., Y. Mao, S. Leng and X. Huang, “A Carrier Aggregation Based Resource



90

Allocation Scheme for Pervasive Wireless Networks”, pp. 196–201, Dec 2011.

33. Gu, Y., C. Jiang, L. Cai, M. Pan, L. Song and Z. Han, “Dynamic Path To Stability

in LTE-Unlicensed With User Mobility: A Matching Framework”, IEEE Trans. on

Wireless Communications , Vol. 16, No. 7, pp. 4547–4561, July 2017.

34. Galanopoulos, A., C. Tsinos and F. Foukalas, “Low-complexity and low-feedback-

rate channel allocation for carrier aggregation in heterogeneous networks”, IEEE

Wireless Communications and Networking Conference, pp. 1–6, April 2016.

35. 3GPP, TR and 36.715-02-02, “LTE Advanced Dual Uplink Interband Carrier Ag-

gregation”, 3GPP Technical Specification Group Radio Access Network , Vol. Re-

lease 15, 2017.

36. Bennaceur, J., H. Idoudi and L. Saidane, “A trust game model for the cognitive

radio networks”, International Conf. on Performance Evaluation and Modeling in

Wired and Wireless Networks , pp. 1– 5, Nov 2016.

37. Ryu, J. Y., J. Lee and T. Q. S. Quek, “Confidential Cooperative Comm. With Trust

Degree of Potential Eavesdroppers”, IEEE Trans.on Wireless Comm., Vol. 15,

No. 6, pp. 3823–3836, June 2016.

38. Althunibat, S., B. Denise and F. Granelli, “Identification and Punishment Policies

for Spectrum Sensing Data Falsification Attackers Using Delivery-Based Assess-

ment”, IEEE Trans. on Vehicular Technology , Vol. 65, No. 9, pp. 7308–7321, Sept

2016.

39. Huang, S., J. Tan and J. Xu, “Nash Bargaining Game Based Subcarrier Alloca-

tion for Physical Layer Security in Orthogonal Frequency Division Multiplexing

System”, IEEE UIC-ATC-ScalCom, pp. 1094–1100, Aug 2015.

40. Wu, H., N. Zhang, X. Tao, Z. Wei and X. Shen, “Capacity- and Trust-Aware BS

Cooperation in Nonuniform HetNets: Spectral Efficiency and Optimal BS Den-



91

sity”, IEEE Trans. on Vehicular Technology , Vol. 66, No. 12, pp. 11317– 11329,

Dec 2017.

41. Zawaideh, F., M. Salamah and H. Al-Bahadili, “A fair trust-based malicious node

detection and isolation scheme for WSNs”, International Conf. on the Applications

of Information Technology in Developing Renewable Energy Processes Systems , pp.

1–6, Dec 2017.

42. Paraskevas, E., T. Jiang and J. Baras, “Trust-aware network utility optimization

in multihop wireless networks with delay constraints”, Mediterranean Conf. on

Control and Automation, pp. 593–598, June 2016.

43. Zhao, M., J. Y. Ryu, J. Lee, T. Quek and S. Feng, “Exploiting Trust Degree for

Multiple-Antenna User Cooperation”, IEEE Trans. on Wireless Comm., Vol. 16,

No. 8, pp. 4908–4923, Aug 2017.

44. Basan, A., E. Basan and O. Makarevich, “A Trust Evaluation Method for Active

Attack Counteraction in Wireless Sensor Networks”, International Conf. on Cyber-

Enabled Distributed Computing and Knowledge Discovery , pp. 369–372, Oct 2017.

45. Ntemos, K., N. Kalouptsidis and N. Kolokotronis, “Trust-based strategies for wire-

less networks under partial monitoring”, European Signal Processing Conference,

pp. 2591–2595, Aug 2017.

46. Jin, B., S. Kim, D. Yun, H. Lee, W. Kim and Y. Yi, “Aggregating LTE and WI-FI:

Toward Intra-Cell Fairness and High TCP Performance”, IEEE Trans.on Wireless

Comm., Vol. 16, No. 10, pp. 6295–6308, Oct 2017.

47. Shajaiah, H., A. Abdelhadi and C. Clancy, “Robust Resource Allocation with

Joint Carrier Aggregation in Multi-Carrier Cellular Networks”, IEEE Trans. on

Cognitive Comm. and Networking , , No. 99, pp. 1–1, 2017.

48. Miliotis, V., L. Alonso and C. Verikoukis, “Resource Allocation Techniques for



92

Heterogeneous Networks Under User Misbehavior”, IEEE Comm. Letters , Vol. 20,

No. 6, pp. 1179 – 1182, June 2016.

49. Abedin, S. F., M. G. R. Alam, S. M. A. Kazmi, N. H. Tran, D. Niyato and

C. S. Hong, “Resource Allocation for Ultra-Reliable and Enhanced Mobile Broad-

band IoT Applications in Fog Network”, IEEE Transactions on Communications ,

Vol. 67, No. 1, pp. 489–502, Jan 2019.

50. Gale, D. and L. Shapley, “College Admissions and the Stability of Marriage”, The

American Mathematical Monthly , Vol. 69, pp. 9–15, 1962.

51. Datsika, E., A. Antonopoulos, D. Yuan and C. Verikoukis, “Matching Theory for

Over-the-Top Service Provision in 5G Networks”, IEEE Transactions on Wireless

Communications , Vol. 17, No. 8, pp. 5452–5464, Aug 2018.

52. Zhang, J., W. Xia, Z. Cheng, Q. Zou, B. Huang, F. Shen, F. Yan and L. Shen, “An

evolutionary game for joint wireless and cloud resource allocation in mobile edge

computing”, 2017 9th International Conference on Wireless Communications and

Signal Processing (WCSP), pp. 1–6, Oct 2017.

53. Chen, L., S. Zhou and J. Xu, “Computation Peer Offloading for Energy-

Constrained Mobile Edge Computing in Small-Cell Networks”, IEEE/ACM Trans-

actions on Networking , Vol. 26, No. 4, pp. 1619–1632, Aug 2018.

54. Wang, C., C. Dong, J. Qin, X. Yang and W. Wen, “Energy-efficient Offloading

Policy for Resource Allocation in Distributed Mobile Edge Computing”, 2018 IEEE

Symposium on Computers and Communications (ISCC), pp. 00366–00372, June

2018.

55. Lan, Z., W. Xia, W. Cui, F. Yan, F. Shen, X. Zuo and L. Shen, “A Hierarchical

Game for Joint Wireless and Cloud Resource Allocation in Mobile Edge Computing

System”, 2018 10th International Conference on Wireless Communications and

Signal Processing (WCSP), pp. 1–7, Oct 2018.



93

56. Zhang, J., W. Xia, F. Yan and L. Shen, “Joint Computation Offloading and

Resource Allocation Optimization in Heterogeneous Networks With Mobile Edge

Computing”, IEEE Access , Vol. 6, pp. 19324–19337, 2018.

57. Zhang, J., W. Xia, F. Yan and L. Shen, “Joint Computation Offloading and

Resource Allocation Optimization in Heterogeneous Networks With Mobile Edge

Computing”, IEEE Access , Vol. 6, pp. 19324–19337, 2018.

58. Zaw, C. W., N. N. Ei, H. Y. Reum Im, Y. K. Tun and C. S. Hong, “Cost and La-

tency Tradeoff in Mobile Edge Computing: A Distributed Game Approach”, 2019

IEEE International Conference on Big Data and Smart Computing (BigComp),

pp. 1–7, Feb 2019.

59. Feng, S., Z. Xiong, D. Niyato and P. Wang, “Dynamic Resource Management to

Defend Against Advanced Persistent Threats in Fog Computing: A Game Theo-

retic Approach”, IEEE Transactions on Cloud Computing , pp. 1–1, 2019.

60. Sardellitti, S., M. Merluzzi and S. Barbarossa, “Optimal Association of Mobile

Users to Multi-Access Edge Computing Resources”, 2018 IEEE International Con-

ference on Communications Workshops (ICC Workshops), pp. 1–6, May 2018.

61. Pham, Q., T. Leanh, N. H. Tran, B. J. Park and C. S. Hong, “Decentralized

Computation Offloading and Resource Allocation for Mobile-Edge Computing: A

Matching Game Approach”, IEEE Access , Vol. 6, pp. 75868–75885, 2018.

62. Yu, H., J. Liu and S. Guo, “Multi-User Optimal Offloading: Leveraging Mobility

and Allocating Resources in Mobile Edge Cloud Computing”, 2018 IEEE Interna-

tional Conference on Networking, Architecture and Storage (NAS), pp. 1–8, Oct

2018.

63. Zhu, Z., J. Peng, X. Gu, H. Li, K. Liu, Z. Zhou and W. Liu, “Fair Resource

Allocation for System Throughput Maximization in Mobile Edge Computing”,

IEEE Access , Vol. 6, pp. 5332–5340, 2018.



94

64. Guglielmi, A. V., M. Levorato and L. Badia, “A Bayesian Game Theoretic Ap-

proach to Task Offloading in Edge and Cloud Computing”, 2018 IEEE Interna-

tional Conference on Communications Workshops (ICC Workshops), pp. 1–6, May

2018.

65. Meng, S., Y. Wang, W. Sun, S. Guo and K. Sun, “Dynamic Bayesian Game Based

Power Allocation in Mobile Edge Computing with Users’ Behaviors”, pp. 83–87,

02 2019.

66. 3GPP, TS and 32.592, “Home eNodeB (HeNB) Operations, Administration, Main-

tenance and Provisioning (OAM&P); Information model for Type 1 interface HeNB

to HeNB Management System (HeMS)”, 3GPP Technical Specification Group Ra-

dio Access Network , Vol. Release 9, 2010.

67. Public, “Improving wireless connectivity through small cell deployment”, GSMA,

2016.

68. Rumney, M. and A. Technologies, LTE and the Evolution to 4G Wireless: Design

and Measurement Challenges , Wiley, 2013.

69. Pedersen, K., F. Frederiksen, C. Rosa, H. Nguyen, L. Garcia and Y. Wang, “Carrier

aggregation for LTE-Advanced: functionality and performance aspects”, IEEE

Communications Magazine, Vol. 49, No. 6, pp. 89–95, June 2011.

70. Huang, C., K. Iwama, S. Miyazaki and H. Yanagisawa, “A Tight approxima-

tion bound for the Stable Marriage Problem with Restricted Ties”, Vol. 40 of

Approx/Random, Leibniz International Proceedings in Informatics (LIPIcs), pp.

361–380, 2015.
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