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the most considerate people I have ever known. I will always cherish our memories and

friendship.

This research was supported in part by the Scientific and Technical Research
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ABSTRACT

SUPERVISED, SEMI-SUPERVISED AND UNSUPERVISED

METHODS IN DISCRIMINATIVE LANGUAGE

MODELING FOR AUTOMATIC SPEECH RECOGNITION

Discriminative language modeling aims to reduce the error rates by rescoring

the output of an automatic speech recognition (ASR) system. Discriminative language

model (DLM) training conventionally follows a supervised approach, using acoustic

recordings together with their manual transcriptions (reference) as training examples,

and the recognition performance is improved with increasing amount of such matched

data. In this thesis we investigate the case where matched data for DLM training

is limited or not available at all, and explore methods to improve ASR accuracy by

incorporating unmatched acoustic and text data that come from separate sources.

For semi-supervised training, we utilize weighted finite-state transducer and machine

translation based confusion models to generate artificial hypotheses in addition to the

real ASR hypotheses. For unsupervised training, we explore target output selection

methods to replace the missing reference. We handle discriminative language model-

ing both as a structured prediction and a reranking problem and employ variants of

the perceptron, MIRA and SVM algorithms adapted for both problems. We propose

several hypothesis sampling approaches to decrease the complexity of algorithms and

to increase the diversity of artificial hypotheses. We obtain significant improvements

over baseline ASR accuracy even when there is no transcribed acoustic data available

to train the DLM.
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ÖZET

OTOMATİK KONUŞMA TANIMA İÇİN AYIRICI DİL

MODELLEMEDE GÖZETİMLİ, YARI-GÖZETİMLİ VE

GÖZETİMSİZ YÖNTEMLER

Ayırıcı dil modelleme bir otomatik konuşma tanıma (OKT) sisteminin çıktılarını

yeniden değerlendirerek hata oranlarını azaltmayı amaçlar. Ayırıcı dil modeli (ADM)

eğitimi geleneksel olarak akustik kayıtların elle yazılandırılmış referanslar ile birlikte

eğitim verisi olarak kullanıldığı gözetimli yöntemle yapılır. Konuşma tanıma başarımı

söz konusu eşlenik verinin miktarına bağlı olarak artırılabilir. Bu tezde ADM eğitimi

için gerekli eşlenik verinin yetersiz olduğu ya da mevcut olmadığı durumlar incelenmiş

ve farklı kaynaklardan gelen akustik ve metinsel veriler kullanılarak OKT doğruluğunun

iyileştirilmesine yönelik yöntemler araştırılmıştır. Yarı-gözetimli eğitim için, gerçek

OKT hipotezlerine ek olarak yapay hipotezler türetmeyi sağlayan ağırlıklı sonlu durum

makinesi ve makine çevirisi tabanlı karışıklık modelleri kullanılmaktadır. Gözetimsiz

eğitim için, olmayan referansın yerine geçebilecek üç farklı hedef çıktı seçim yöntemi

tanıtılmaktadır. Ayırıcı dil modelleme işlemi hem yapısal kestirim hem de yeniden

sıralama problemi olarak ele alınmakta ve eğitim için algılayıcı, MIRA ve destek vektör

makinesi algoritmalarının her iki problem için uyarlanmış çeşitleri kullanılmaktadır.

Algoritmaların işlemsel karmaşıklığını azaltmak ve türetilen yapay hipotezlerin çeşitli-

liğini artırmak amacıyla çeşitli hipotez örnekleme yöntemleri önerilmektedir. Yapılan

deneyler sonucunda elle yazılandırılmış akustik konuşma verisinin bulunmadığı du-

rumda dahi temel OKT başarımında istatistiksel olarak anlamlı iyileştirmeler elde

edilmiştir.
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1. INTRODUCTION

The aim of automatic speech recognition (ASR) is to transcribe speech into text.

An ASR system uses acoustic and linguistic information together to process an input

speech utterance and outputs possible transcriptions, called the hypotheses. These are

typically arranged in an N-best list and ordered with respect to their recognition scores,

i.e., the posterior probabilities assigned by the recognizer. The accuracy of a hypothesis

is defined in terms of the number of word errors (WE) it has with respect to the

reference, which is the manual transcription of the utterance. However, the hypothesis

having the highest recognition score is not necessarily the most accurate transcription.

Discriminative language modeling for ASR is proposed as a post-processing step to

determine the most accurate hypothesis in the N-best list by considering other linguistic

factors besides the recognition score.

Discriminative language modeling is different from generative language modeling.

In generative language modeling the aim is to assign probabilities to sequences of

words in the language being modeled. A generative language model (LM), also called

a statistical language model, is an integral component of an ASR system, and is used

in conjunction with the acoustic model (AM) to generate meaningful transcriptions of

an acoustic input. On the other hand, in discriminative language modeling the aim is

to discriminate the best transcription of the ASR output from the others, or to simply

reorder the ASR outputs with respect to their accuracies. In that sense, discriminative

language modeling is not an alternative but a complementary technique to generative

language modeling.

The traditional way of training a discriminative language model (DLM) for ASR

requires the acoustic speech utterances together with their corresponding reference

transcriptions as input examples. The acoustic input is passed through the ASR to

obtain the candidate hypotheses, and the reference transcriptions act as the ground

truth to determine the accuracy of these hypotheses. This type of training, inspired

by the machine learning literature, is called supervised training.
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The accuracy of discriminative language modeling depends on the amount of

training data. The more training examples, the more likely the DLM is to accurately

model the language. However, this requires listening to and manually transcribing

many hours of recorded speech, which is a costly process in terms of both time and

labor. Therefore, the performance of supervised DLM training methods is limited by

the extent of data that can be afforded.

One way to facilitate DLM training when the data is inadequate is to make use of

a separate text corpus through a process called confusion modeling. Most of the time,

finding such a corpus is easier than transcribing a large number of spoken utterances.

In this scenario, a small number of transcribed speech data is used to build a confusion

model (CM), which captures the confusions (errors) made by the ASR system. This

CM is then used to transform the sentences from the text corpus (the source text) into

artificial hypotheses which look like the real ASR hypotheses. The accuracy of the

artificial hypotheses can easily be determined since their reference, the source text, is

already known. This process is sometimes referred to as semi-supervised training in

the literature, because a small number of transcribed data is used to “label” the rest

of the training examples.

An inferior scenario than the data inadequacy problem mentioned above is to have

no transcribed data at all. One practical example of this is ASR for underresourced

languages where there are no experts to transcribe the spoken language. Moreover,

in applications where the speaker’s identity must be kept confidential, listening to the

recordings in order to manually transcribe them might not be allowed. In such a case,

it is still possible to train a DLM by making use of the ASR outputs of untranscribed

speech. Since this necessitates DLM training to be done without any supervision, such

a case is called unsupervised training.

In the scope of this thesis we explore the supervised, semi-supervised and unsuper-

vised scenarios and propose methods to achieve DLM training under such conditions.
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1.1. Challenges in Discriminative Language Modeling

This thesis touches upon several problems of discriminative language modeling,

which we briefly explain in this section.

Canonical approaches define discriminative language modeling as a classification

problem where the aim is to discriminate the best possible transcription of the ASR

output from the others, while optimizing an objective function that is directly related

to the word error rate (WER). But the hypotheses that are not the best transcription

are not all equally bad, and one of the contributions in this study is to formulate this as

a reranking problem which promises to be more informative. In this formulation, each

hypothesis has a rank based on an accuracy measure, e.g., the number of word errors,

and the aim is to reorder the hypotheses in such a way that more accurate ones are

pushed towards the top of the list, as opposed to simply separating the best from the

rest. We explore classification and reranking variants of three algorithms, namely the

perceptron, the margin infused relaxed algorithm and the support vector machine, and

compare their performances to show that reranking is a better fit for DLM training.

The type and amount of data that is used for training the DLM plays an important

role on the effectiveness of discriminative language modeling on ASR performance.

Supervised DLM training requires an acoustic speech corpus, an in-domain ASR system

to generate the hypotheses, and the transcriptions of the spoken utterances as the

reference. Since the acoustic data and the transcriptions belong to the same utterances,

we call this collection the matched data.

Semi-supervised technique eliminates the need for a large number of matched

data by generating artificial hypotheses that resemble real ASR N-best lists via con-

fusion modeling. Two important aspects of this setting are construction of the CM

and efficiency of the generated hypotheses. We present a complete artificial hypoth-

esis generation framework which includes two types of CMs, one based on weighted

finite-state transducers (WFST) and the other on machine translation (MT). We build

CMs based on various units of the language to present the relationship between the

granularity and efficiency.
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By contrast, in the unsupervised case there is absolutely no transcribed text

accompanying the acoustic input. Without transcribed text the accuracy of the hy-

potheses cannot be determined. We present our approaches to choose a word sequence

for unsupervised training which will serve as the missing reference text. We explore

three methods based on the recognition score and the Minimum Bayes Risk (MBR)

criterion. We use this word sequence to achieve DLM training conditions similar to

the supervised and semi-supervised setups, by either training the DLM directly using

the real hypotheses or building a CM first to generate artificial data for training.

The semi-supervised and unsupervised cases allow for incorporating unmatched

acoustic and textual data that are coming from different sources for DLM training.

The unmatched sources can be in-domain or out-of-domain. For the availability of

in-domain text data that is not accompanied by audio data, two mainstream examples

come to mind. The first and classical one is the dictation task where the text comes from

existing (in-domain) documents (especially for business, law and medical domains).

The second and more recent example is voice-enabled search applications where there

is an abundance of written search queries which are in-domain but perhaps following

a slightly different style. The source text can also be out-of-domain, as is the case for

using newspaper articles as the source text for a broadcast news transcription task.

The domain mismatch may result in a variety of different words unseen in the CM

training phase.

Data sets used in speech recognition are very large and for each instance, dis-

criminative training uses the hypotheses in the N-best list. As another direction, we

investigate whether we can decrease complexity without loss in accuracy. We try two

possibilities: (1) With the high-order n-grams that we use as the input features, most

will appear rarely in training and would not be informative. A simple count-based

thresholding prunes the rare combinations, decreases the input dimensionality consid-

erably and hence the training complexity of the learner that follows it. (2) In the N-best

list, it is possible that most of the hypotheses will be very similar and the idea is that

we can get the same discriminative power by using a small subset from the list, which

will lead to significant saving from computation especially in the case of reranking.
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Being an agglutinative language with rich morphological structure, Turkish is a

challenging language in terms of obtaining large vocabulary continuous speech recog-

nition (LVCSR) accuracy. The possibility of producing almost infinitely many words

from a single stem results in very high WERs, as compared to systems of similar vocab-

ulary sizes in English. It has been shown in previous studies that using sub-lexical units

such as statistical morphs, instead of word-based models, help enhance the recognition

performance. We extend this idea in confusion modeling to generate more efficient

artificial hypotheses that look similar to the real ASR outputs.

1.2. Main Contributions of the Study

This thesis study has been conducted as part of the joint projects numbered

NSF #0963898/NSF #0964102/TÜBİTAK 109E142: Semi-Supervised Discriminative

Training of Language Models, and the project BU-BAP 14A02D3: Unsupervised Ap-

proaches in Discriminative Language Modeling for Automatic Speech Recognition.

Parts of the research include contributions of the project partners from Bogazici Univer-

sity Department of Computer Engineering (BU-CmpE) and Oregon Health & Science

University Center for Spoken Language Understanding (OHSU-CSLU). The outcomes

of the research study have been published in two national and seven international con-

ference proceedings and in two journal articles, cited in chronological order in [1–11].

In line with the challenges mentioned in Section 1.1, the main contributions of this

thesis study to discriminative language modeling literature will be summarized in the

following list:

(i) Introduction of the reranking approach to DLM training for ASR: We present

reranking variants of three algorithms (perceptron, MIRA and SVM)1 that are

popularly used in a classification (structured prediction) setting for DLM train-

ing. We show that the reranking approach is more suitable for the discriminative

language modeling task for ASR by considering the improvements in WER with

this setting. This study has been published in [4].
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(ii) Hypothesis sampling approaches: We propose several hypothesis sampling ap-

proaches to decrease the algorithmic complexity of training algorithms for the

supervised case in [1]2. The same idea is then adapted to semi-supervised train-

ing for selecting a sufficiently diverse subset of artificial hypotheses based on their

WER distribution in [2]3.

(iii) Artificial hypothesis generation pipeline: We propose a novel three-step artificial

hypothesis generation pipeline for semi-supervised DLM training, consisting of

confusion modeling, LM rescoring and hypothesis sampling components4. The

architecture is first introduced in [2], and the performances of training algorithms

with respect to different types of the CM, LM, and different sampling schemes

are compared in [3].

(iv) Unsupervised DLM training by reranking: We adapt the reranking approach for

unsupervised DLM training and compare three target output selection schemes

in [7].

(v) Unsupervised confusion modeling: We propose an unsupervised confusion mod-

eling approach which adopts the target output selection scheme to CM training.

This approach allows for training of discriminative models with acoustic and

language data coming from completely different domains. This study has been

presented in [8].

(vi) Introduction of MT-based confusion modeling: We introduce a new confusion

modeling scheme based on the MT framework, which is a phrase-based approach

as opposed to the context-independent WFST approach presented earlier. We

investigate the use of MT-based artificial hypotheses for the semi-supervised case

in [6]5, and extend it to the unsupervised CM case in [9].

(vii) Performance analysis with respect to data types, sources and sizes: We provide a

detailed analysis of supervised, semi-supervised and unsupervised discriminative

language modeling performance with respect to the types (matched, acoustic,

textual), sources (in-domain, out-of-domain), and amounts of data they require.

This study has been published in [11].
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1.3. Outline of the Thesis

This thesis is organized as follows: In Chapter 2, theoretical and practical back-

ground on discriminative language modeling for ASR is presented. This includes a brief

introduction to ASR and the discriminative language modeling problem, explanation of

the language units, data types and datasets used in this study, information about the

baseline system and the training scenarios, and a literature review on discriminative

language modeling.

Chapters 3, 4 and 5 include the novel contributions of this study. In Chapter 3

we investigate the supervised DLM training scenario. We present the structure of the

model, the training algorithms and the hypothesis sampling approaches we propose.

In Chapter 4 we explore the semi-supervised DLM training scenario and present our

pipeline for confusion modeling and artificial hypothesis generation. In Chapter 5 we

focus on the unsupervised DLM training scenario, where we present different techniques

to replace the missing reference. Each of these chapters include sections that explain

the experimental setup, results of the experiments and a discussion of the outcomes.

Chapter 6 concludes this thesis with a summary of achievements, an overall dis-

cussion and future directions.

1The adaptation and coding of perceptron and MIRA for reranking were done in collaboration

with Murat Semerci and Prof. Ethem Alpaydın (BU-CmpE).
2The application of dimensionality reduction approaches (online-PCA and count-based threshold-

ing) in this study was done by Murat Semerci and Prof. Ethem Alpaydın (BU-CmpE).
3The tool for sampling artificial hypotheses by WER analysis was prepared by Arda Çelebi (BU-

CmpE).
4The toolbox for training WFST-based CMs and generating artificial hypotheses was prepared by

Arda Çelebi (BU-CmpE).
5This study has been conducted in collaboration with Dr. Emily Prud’hommeaux and Prof. Brian

Roark during the author’s visit to OHSU-CSLU as an exchange researcher.
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2. DISCRIMINATIVE LANGUAGE MODELING FOR

ASR

Before we explore the methods on how to train a DLM, in this chapter we present

the setting which discriminative language modeling is based upon. We begin with a

brief summary of the architecture of an ASR system, which creates the input data

for discriminative language modeling. We then explain the need for discriminative

language modeling. Different language units and data types can be involved in dis-

criminative language modeling, and we touch upon these issues in the sections that

follow. We then explain how the baseline system is constructed, and present the train-

ing scenarios which will be explored in detail in the following chapters. We conclude

this chapter with a review of previous studies on the subject.

2.1. ASR System Architecture

An ASR system is used to automatically transcribe speech into text. ASR systems

model speech as a well-formulated statistical process whose parameters are estimated

from a corpus of audio samples and corresponding manual transcriptions. In recogni-

tion, the system analyses the input speech signal and tries to find the most likely word

sequence that could have been uttered. In mathematical terms, this corresponds to

Ŵ = argmax
W

P (W |A) (2.1)

Here, A is the sequence of feature vectors obtained from the acoustic signal, W is a

particular word sequence of the language being spoken, P (·) is the probability function,

and Ŵ is the most likely word sequence. Using Bayes’ formula, Equation 2.1 can be

written as

Ŵ = argmax
W

P (A|W )P (W )

P (A)
(2.2)
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The denominator P (A) does not affect the result of the argmax operation and thus

can be omitted, resulting in

Ŵ = argmax
W

P (A|W )P (W ) (2.3)

Equation 2.3 is considered to be the fundamental equation of ASR. Let us now investi-

gate the three components of this equation and the names given to these components

in the ASR system architecture:

P (A|W ) is called the acoustic model (AM). An AM assigns probabilities to acous-

tic features A for a particular word sequence W . The most common acoustic features

for processing speech are the Mel-Frequency Cepstral Coefficients (MFCC), Linear

Predictive Coding Coefficients (LPC) and Perceptual Linear Prediction Coefficients

(PLP). Temporal dynamics of the speech signal can also be represented by the first

(∆) and second (∆∆) derivatives of these features. In this study we use the MFCCs

together with ∆ and ∆∆s as the acoustic features.

A popular structure to represent the AM is the Hidden Markov Model. HMMs

are used to describe a time-varying process such as the articulation of a phoneme which

can also be affected by its neighboring phonemes by co-articulation. In a typical left-

to-right triphone model, each phone is represented by three states representing the

beginning, progression and end of the articulation. There are recurrent connections

that allow for temporal dynamics of staying in the same state or making a transition

to the next, each of which is associated with a probability. Each state has also an

output probability distribution over the feature vectors, which is generally modeled by

a mixture of Gaussians.

Other structures which have become increasingly popular to represent the AM are

Artificial Neural Networks (ANN) and their adaptations such as Deep Neural Networks

(DNN) and Recurrent Neural Networks (RNN). A DNN is an ANN with multiple

hidden layers of units between the input and output layers. DNNs can model non-linear

relationships, which enables composition of features from lower layers, thus giving them
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the potential of representing complex patterns of speech data [12]. RNNs can further

provide the network with an internal memory which allows it to incorporate dynamic

temporal behavior [13].

P (W ), the language model (LM), is also called the statistical or generative LM

to distinguish it from the DLM. An LM assigns probabilities to sequence of words

in the language being recognized. The LM is typically represented using an n-gram

formulation, where n denotes the depth (memory) of the model:

P (W ) = P (w1, ..., wn) =
∏
i

P (wi|wi-1, ..., w1) ≈
∏
i

P (wi|wi-1, ..., wi-1-n) (2.4)

The estimation of probabilities in Equation 2.1 are determined by analyzing large text

corpora (millions of words of text). Probabilities of unseen sequences in the training

corpora are estimated using a variety of smoothing methods [14].

The creation of language models also depends on the underlying vocabulary.

One can use individual word-forms (full-forms) as separate entities for the language

model, or a sub-word form. Full-forms work very well for languages with low levels of

inflection (e.g. English), but encounter difficulties when used for languages with high

inflection (e.g. Turkish). The unit for language modeling thus is determined by the

structure of the language under consideration and the amount and types of training

data available for model creation. We consider different language units used in this

study in Section 2.3.

argmaxW is the decoder which produces the most likely sequence of words with

respect to the trained AM and LM. The most common approach is a time-synchronous

search using the Viterbi algorithm [15], in which words and their pronunciations are

aligned to audio features in a dynamic process. Due to the large size of the vocabulary

and the resulting possible word combinations, in practice, the search is only carried out

on a subspace of all possible word sequences via pruning the search space along the way

to keep it manageable. The network that is generated as a result of this process is called
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the lattice. During search, the acoustic and language model scores are applied jointly

to yield scores for the paths of this lattice, which are called the hypotheses. N top

scoring hypotheses of the lattice are returned in an N-best list, and the highest-scoring

hypothesis is produced as the final decoding result. However, the other hypotheses in

the N-best list can also serve as valuable information, which is the main point of focus

in discriminative language modeling.

Word error rate (WER) measures the actual performance of the speech recognizer

in terms of correctly and incorrectly recognized words. To calculate the WER, the

speech recognizer’s output is aligned word-by-word with the manual transcription using

the edit (Levenshtein) distance which considers three types of misalignment errors. The

types of errors considered are: insertion errors (I) where an additional word has been

recognized which does not have a corresponding word in the reference, deletion errors

(D) where a word in the reference does not have a corresponding word in the transcript

and substitution errors (S) where one word in the reference was mis-recognized as

another word in the transcript. Depending on specific requirements, the different types

of errors may be associated with different costs and the least-cost aligned path may be

different due to the weighting. Finally, WER is defined by:

WER =
I +D + S

W
(2.5)

where W is the total number of words in the reference text.

2.2. Problem Setting

Being the final stage of ASR, discriminative language modeling can be viewed as

a complementary method to baseline generative language modeling. A DLM is trained

on the outputs of ASR and the reference transcriptions. Figure 2.1 shows an example

10-best list of an English ASR system for the utterance “This is a test sentence”.

The hypotheses in Figure 2.1 denote the paths in the decoding lattice with the

highest recognition scores, which is a combination of acoustic and language model
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Reference: This is a test sentence

Hypothesis WE Rec.Score

This is a guest sentence 1 -1.801

This is the best sentence 2 -2.207

This is a best sentence 1 -2.503

This is a test sentence 0 -3.042

This is a test sense 1 -3.234

This is a guest sense 2 -3.367

That is the a guest sense 4 -4.623

This is the guest sense 3 -5.326

This is the guest sentence 2 -6.231

That is the a guest sentence 3 -7.257

Figure 2.1. An example 10-best list.

scores for that particular transcription, represented in negative log-likelihood. The

second column denotes the number of word errors (WE) for each hypothesis, which

is calculated by aligning the hypothesis with the reference using the edit distance as

mentioned in Section 2.1.

In an N-best list, the hypothesis with the highest recognition score is called the

1-best. As it can be seen, the 1-best of the list in Figure 2.1 has one word error (i.e.,

“guest” instead of “test”). However, the correct transcription is in fact present in

the N-best list, although it has a lower recognition score. The aim of discriminative

language modeling is to make the necessary arrangements in the N-best list such that

this transcription is returned by the ASR system as the recognition output. Please

note that the correct transcription may not occur in the N-best list. In that case, the

hypothesis with the least number of errors shall be returned.

2.3. Language Units

Despite the fact that the success of an ASR system is measured in Word Error

Rate (WER), the language itself can be modeled at different levels, which corresponds

to choosing a language unit to represent the hypotheses in the language being modeled.
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In this thesis, we deal with Turkish ASR. Turkish is an agglutinative language

of the Altaic family. It has a highly inflectional morphology which causes high out-

of-vocabulary rates in ASR. In order to compensate for this, in our experiments we

build our models on sub-word language units, instead of words. Going from shorter to

longer, these language units are characters, syllables, morphemes and morphs. Morphs

are statistically derived pieces of a word which are similar to morphemes. We use

the Morfessor algorithm [16] which analyses a training text to determine the morphs

statistically.

Figure 2.2 shows an example Turkish sentence parsed into different language units

used in this study.

Language Unit Parse

Word Iyi akşamlar sayın seyirciler

Morph Iyi ak +şam +lar say +ı n seyirci +ler

Morpheme Iyi akşam +lar say +ın seyir +ci +ler

Syllable I +yi ak +şam +lar sa +yın se +yir +ci +ler

Character I y i a k ş a m l a r s a y ı n s e y i r c i l e r

Figure 2.2. Parsing of an example sentence into different language units.

Previous experiments have shown that morphs provide higher accuracies and thus

they are more suitable and effective for the agglutinative nature of Turkish [2, 17,18].

2.4. Data Types and Datasets

The data used in this study can be classified into three different types: The first

type is acoustic data which has been manually transcribed. We will call this type

the “matched” data and denote it with the symbol M. The data is passed through

the recognizer to form the real ASR output hypotheses, and the transcriptions are

used as the reference text. The second type, A, stands for acoustic data that is not

manually transcribed. Finally the third type, T , stands for source text data that is

not accompanied by any recording. Note that A and T are not matched and may be

coming from another corpus than M.
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Table 2.1. Bogazici University Turkish Broadcast News Database.

Dataset Duration
Number of Number of

utt./sent. words

Training m 188h 105K 1.4M

Held-out h 3.1h 1.9K 23K

Evaluation e 3.3h 1.8K 23K

Throughout this thesis, we use discriminative language modeling techniques to

correct ASR errors in a Turkish broadcast news (BN) transcription task. We utilize

three different datasets throughout this thesis, which will be explained in the following

paragraphs.

The main data corpus we use is the Bogazici University Turkish Broadcast News

Database, which consists of approximately 194 hours of speech recorded from TV and

radio news channels, all of which have been manually transcribed6. Part of this dataset

has been published by LDC in 2011 [19]. The database is divided into three disjoint

sets: a training set for building the models, a held-out set for parameter validation and

a test set for algorithmic performance evaluation. We will denote the training set as

m, the held-out set as h and the test set as e in this thesis. Table 2.1 shows the size

of these sets in terms of their duration, the number of utterances/sentences and the

number of words.

Note that not all experiments on this thesis contain the same amount of training

data. We use different partitions of the m dataset, by dividing it into two, three, or

more pieces, with equal number of utterances. We denote the way of partitioning by

a fraction subscript below the dataset symbol. For instance, m1/2 denotes the first

half of m, whereas m2/3 contains the second piece of one-thirds of m. In this regard,

m1/2 +m2/2 = m, or m1/3 +m2/3 +m3/3 = m.

6This dataset was collected and transcribed in the scope of the projects TÜBİTAK 105E102 and

BU-BAP 05HA202.
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Apart from the main corpus, we also utilize two more corpora in this study.

The second corpus is an extension of the Bogazici University Turkish Broadcast News

Database, and contains another 310 hours of speech collected at a later time period,

this time untranscribed. We will use the symbol a to denote this dataset. Since a was

collected at a later stage than h and e, some words in h and e that did not occur in m

may already exist in a, which might be deceiving in terms of the WER computation.

In order to resemble a real life usage scenario and to make consistent performance

comparisons of the two datasets, we introduce a new held-out (h2) and a new test (e2)

set for experiments in which a is included in DLM training.

Our third and final dataset is a source text corpus of 500K sentences (4.7M words)

randomly selected from a larger set (184M words) collected from major Turkish news

portals. We use the letter t to refer to this dataset. Table 2.2 contains information on

the datasets a, h2, e2 and t.

Table 2.2. Other datasets involved in the study.

Dataset Duration
Number of Number of

utt./sent. words

Training a 310h 288K 2.2M

Held-out h2 7.2h 5.8K 56K

Evaluation e2 13.5h 9.9K 95K

Training t n/a 500K 4.7M

Note that we denote the data types by uppercase letters and the actual datasets

by lowercase letters. In our experiments, we use whole or parts of the set m as the

matched dataM. As the acoustic type A we have two sources: the acoustic component

of the set m, to be denoted by mA, and the set a. Similarly as T we use either m’s

textual component (transcriptions), mT , or the set t.
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2.5. Baseline System and Preparation of the DLM Data

In this study we use the same baseline ASR system as in [17]. The acoustic

model component of the ASR system is composed of a decision-tree state clustered

cross-word triphone AM, trained using m. The language model component is a 4-gram

morph generative LM with interpolated modified Kneser-Ney smoothing and entropy-

based pruning, trained using mT and the general text corpus of 184M words mentioned

earlier. The models built from these two sources were linearly interpolated to reduce

the effect of out-of-domain data. The first-pass lattice outputs were rescored with

unpruned LMs to compensate for the effect of pruning. The AM is prepared using the

AT&T tools [20,21] and the generative LM is prepared using the SRILM [22] toolkit.

The DLM training data is composed of real ASR N-best lists obtained from the

sets mA or a, and artificial N-best lists obtained from the sets mT or t. The N-best

lists of a were created by decoding the acoustic data by the baseline ASR system and

selecting the most probable N paths from the output lattice. Preparation of the real

N-best lists of set m deserves special attention, since m was already used in training of

the baseline system. The following standard training procedure was applied to alleviate

overtraining of the LM [23]: mA was divided into K-folds, and utterances in each fold

were decoded with the baseline AM trained on all utterances and an LM trained on the

remaining K − 1 folds. AM training was not controlled in the same way since baseline

AM training is more expensive and less prone to overtraining than n-gram LM training.

The artificial N-best lists of set mT or t were obtained using the confusion modeling

procedure to be explained in Chapter 4. All N-best lists we use in our experiments

include 50 hypotheses.

The Morfessor algorithm [16] is employed to determine the morphs. The N-best

lists of m have around 46K unique morphs, and the N-best lists of a have around

55K unique morphs. Together, they make up about 58K unique morphs. The feature

vector of the linear model, Φ, consists of morph unigram counts and therefore is high

dimensional but sparse.
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Two-class SVM tests are evaluated using the LIBLINEAR toolbox [24]. For

the ranking SVM experiments, we use the SVMrank tool [25] which provides a fast

implementation of the algorithm.

The WFST-based confusion modeling system is implemented by the OpenFST

library [26], and the MBR computations are done using the SRILM toolkit [22]. Sig-

nificance analysis is done using the NIST Matched Pair Sentence Segment Word Error

(MAPSSWE) test [27].

2.6. Training Scenarios

The main focus of this thesis is to investigate DLM training methods with respect

to the availability of different data types. Table 2.3 shows four basic discriminative

language modeling scenarios experimented in this study and the types of data involved.

Table 2.3. Training scenarios.

Scenario M A T

Supervised DLM

Semi-Supervised CM DLM

Unsupervised DLM DLM

Unsupervised CM CM DLM

In the first scenario in Table 2.3, the matched data M is used to train the DLM

directly. This is the traditional way to train a DLM and is called the supervised setup,

as an analogy to the term in pattern recognition which is used for cases where the class

of the training examples are known. We explain the supervised training scenario in

Chapter 3. In the second scenario, M is instead used to build a CM, which is then

applied on T to generate artificial hypotheses. These hypotheses, together with T

as their reference, are finally fed into DLM training. In the literature, this technique

is known as the semi-supervised setup, as a small amount of training examples are

used to generate (“label”) the others [3, 28]. We investigate semi-supervised training

in Chapter 4.
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The third and fourth scenarios are analogous to the first and second, respectively,

with a slight difference: Here the acoustic data A is not accompanied by matched

reference text, making the training examples to be unlabeled and forcing the training

procedure to be unsupervised. The solution we propose for these scenarios is to replace

the reference with a target output sequence and continue the process in a similar way

to the supervised and semi-supervised setups. Once the target ranks of the N-best

hypotheses are determined, one can use them to train the DLM directly or via confusion

modeling. We name the third scenario as the unsupervised DLM setup, and the fourth

one as the unsupervised CM setup. We explore both setups in Chapter 5.

2.7. Previous Work

Discriminative estimation of language models has been studied in the ASR liter-

ature for over ten years. The techniques developed on the subject have been applied to

automatic speech recognition [29], utterance classification [30], parsing [31], machine

translation [32], call classification [30,33], and automatic transcription and retrieval of

broadcast news [17].

The linear model by [34], which we also adopt in this study, is one of the most

studied discriminative modeling frameworks. Being a feature based approach, the

linear model can integrate many different sources (syntactic, semantic, morphological,

n-gram information) into a single mathematical structure [35, 36]). Other modeling

frameworks include global conditional log-linear models (GCLM) [23] and exponential

models [37].

The perceptron algorithm in a structured prediction setting is a popular method

to estimate the parameters of the linear model [23, 32, 38]. Using the structured per-

ceptron for correcting the errors of Turkish ASR, [36] achieve improvements of up to

0.8% over the baseline WER.

The perceptron algorithm has also been adapted for reranking purposes. In [39], a

perceptron ranking (PRanking) algorithm that divides the space into regions bounded
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by threshold levels is proposed. Each example is assigned a rank, and two neighboring

ranks are set apart by a biased boundary. Note that this algorithm cannot be applied

to discriminative language modeling, as it needs global ranks, i.e., the ranks of hy-

potheses in different utterances need to be comparable with each other. Another study

includes a review of reranking and introduces two perceptron-based ranking algorithms

to decrease data complexity and training time [31]. Such algorithms have been applied

to parse reranking and machine translation tasks in [40] and [41]. To the best of our

knowledge, the ranking perceptron variant algorithm we propose in this thesis has not

been applied to ASR output reranking before.

[42] also provide an improvement over the structured perceptron by adding a

word error rate sensitive distance measure into the update rule. This new measure is

adapted to reranking in [3, 6].

Support vector machines (SVM) have also been used as an alternative discrimi-

nation method. Using an English word n-gram setup, [43] applies the SVM classifier

over an equal number of positive and (artificially generated) negative examples. It is

reported that the accuracy of the system increases if negative sentences are disrupted

more, and if the total number of examples is increased. Several modified versions of

the SVM algorithm are also used for other language modeling tasks such as lexical

disambiguation [44], parsing and machine translation [45].

The SVM is adapted to ranking in [46]. In [47] the ranking SVM algorithm

is compared with three other discriminative algorithms, namely perceptron, boosting,

and minimum sample risk (an algorithm which applies line search to minimize the total

error over a useful subset of features), in terms of accuracy and training time. Because

of the long training time, the authors had to use 20-best lists instead of 100-best

for their ranking SVM implementation. Despite this limitation, they show that this

algorithm generalizes better, based on its performance on an unseen test set.

Weighted GCLM [48], Round-Robin Dual Discrimination (R2D2) [49], and margin-

infused relaxed algorithm (MIRA) [50] are among the other methods that are used to
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train a DLM. The MIRA has been applied to statistical machine translation in [51]

and [52] and to parsing in [53].

Semi-supervised DLM training has recently been popular in the literature, and

there are a number of approaches to construct an appropriate confusion model (CM)

for this task. One of the approaches uses a weighted finite-state transducer (WFST)

to represent the CM. In Kurata et al. [54–56], phoneme similarities estimated from

an acoustic model are specified in the CM by a process called Pseudo-ASR. Jyothi et

al. [38] follows a similar method by modeling the phonetic confusions with a WFST.

Another approach makes use of a machine translation (MT) system to learn these con-

fusions. For instance, Tan et al. [57] use a channel modeling approach under a phrase-

based MT system to learn error models between parallel corpora of ASR output and

reference text represented by phonemes, and show that using contextual information

besides basic acoustic distances improves the system accuracy. Similarly, Li et al. [58]

use translation alternatives of source phrase sequences to simulate confusions that could

be made by an MT system. In a third approach, Xu et al. [37] make use of a separate

text corpus and find the competing words (cohorts) which occur in the ASR outputs

of untranscribed speech to train their CM. A comparison of these three approaches is

given in Sagae et al. [28]. Although the authors use the same dataset (English n-gram

features) for all experiments, the language unit they utilize for training different CMs

is different (a phone-based WFST model and phrase-based MT and cohort models).

Although the confusion model generates a very large number of alternating hy-

potheses that are acoustically similar, not all of them are linguistically plausible. In

order to obtain a sufficiently errorful subset which is at the same time sufficiently

meaningful, these hypotheses are reweighted using a (generative) language model and

sampled according to a scheme. Similar hypothesis selection schemes by sampling from

an N-best list are investigated in [59] where it is argued that the selection of hypotheses

based on WER should be preferred over the recognition score. Using the perceptron

algorithm, the authors achieve an accurate and compact corrective model. In [41],

a perceptron-like algorithm has been proposed that splits the training data into top

r-ranked and bottom k-ranked translations. The same study also includes an ordinal
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regression algorithm for reranking in an MT task and improvements in BLEU of up to

0.3% are reported.

Ways to build a DLM under the unsupervised setting have been investigated in

the literature for the last couple of years. In Xu et al. [37] the confused words in

ASR outputs are used in training, which is done by maximum likelihood optimization

using an exponential model. A more recent study learns phrasal cohorts instead of

word cohorts by pairwise alignments of the hypotheses, uses them to generate artificial

N-best lists, and reports a decrease in word error rate (WER) of up to 40% of that of

the supervised case with the perceptron algorithm [60]. In Jyothi et al. [61], a large

amount of unlabeled data is reprocessed using a weak acoustic model, and small but

statistically significant improvements in WER are reported. Finally in Kuo et al. [62],

the authors employ the Minimum Bayes Risk (MBR) criterion to choose the reference

hypothesis for training the DLM via the perceptron.
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3. SUPERVISED DISCRIMINATIVE LANGUAGE

MODELING

In this chapter we explore the fundamentals of discriminative language modeling

by considering the simplest scenario, the supervised DLM training. In this scenario,

we assume that the acoustic speech data and the manual transcriptions (references)

are both available for training the DLM. The speech utterances are passed through the

ASR system, which generates the hypotheses that are used as the training examples.

By aligning each hypothesis to its corresponding reference, one can obtain the number

of word errors (WE) for that hypothesis, which in turn defines its target class or rank,

hence making the training process supervised.

Regardless of the training scenario, two fundamental choices to be made when

training a DLM are the type of the model and the algorithm to train it. In this study

we choose the linear model framework and utilize three popular algorithms, namely

the perceptron, the margin-infused relaxed algorithm and the support vector machine

to estimate the parameters of the linear model. Defined by the optimization criterion,

two approaches in training are classification and reranking. We explore adaptations of

these three algorithms for both approaches and compare their performances. We also

propose several hypothesis sampling approaches to compensate for the high computa-

tional complexity of the training algorithms.

In the following sections we first give the theoretical information on the DLM

training framework, and then present the experimental results for the supervised sce-

nario. We finally give a detailed statistical analysis of results, followed by a discussion.

3.1. Linear Model

The type of the model sets the mathematical grounds for representing the dis-

criminative language modeling problem. In this study we adopt a linear model similar
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to that in [63]. The following is a list of the elements of the linear model, together with

the symbols we use to denote them throughout this thesis:

• x is the spoken utterance that is input to the recognizer.

• y is the written counterpart of x. In a supervised scenario, y stands for the

manual transcription of x, and is called the reference. In the unsupervised DLM

scenario the manual transcription is not present, so y is a computed hypothesis

that replaces the reference and is called the target output. For the scenarios where

x does not take part in DLM training (i.e., semi-supervised and unsupervised

CM), y stands for data from an unmatched written corpus and is called the

source text.

• GEN(·) is the function that is assumed to generate the hypotheses for training

the DLM. Depending on the availability, this function either takes x as the input

and represents the ASR system itself, or takes y as the input and represents the

CM.

• ỹ ∈ Ỹ are the N-best hypotheses that are generated by GEN(·), and that serve

as training examples for discriminative modeling. Depending on the scenario,

these may be real hypotheses output by the ASR system, or artificial hypotheses

generated by the CM. The method we propose to generate artificial hypotheses

will be explained in Chapter 4.

• Φ(·) is a mapping that represents a hypothesis in a d-dimensional modeling space.

In our implementation, the vector Φ(ỹ) contains the number of occurrences (fre-

quencies) of each morph n-gram in ỹ. Some experiments in this thesis also use

the recognition score of the hypothesis as the first element (φ0) of this vector,

thus making Φ also depend on x. To avoid any confusion, we will always use the

symbol Φ(ỹ) to denote the hypothesis vectors and will mention the usage case

when we explain the experimental setup.

• w is the model vector that is estimated by discriminative training. Each element

of w is the weight associated with the corresponding feature of Φ. The inner

product 〈w,Φ(ỹ)〉 is the value that contributes to the modified score of ỹ.
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3.2. Training Algorithms

Training a DLM means estimating the parameters of the linear model, w. With

respect to the objective of the optimization criterion they use, discriminative model

training algorithms can be grouped into two approaches: classification and reranking.

In the classification approach, discriminative modeling is defined as the separation

of the most accurate hypothesis in an N-best list from the rest. Due to the fact that

there is actually only a single class to be predicted, this approach is typically named

structured prediction. Most of the studies on DLM training in the literature are based on

the structured prediction approach. As a matter of fact, the hypotheses in an N-best list

actually have different degrees of goodness (which can be measured by their WE), and

their differences can also provide valuable information towards achieving a more robust

discriminative model. Hence, it seems more natural to regard DLM training as the

reranking of the N-best list where the WE provides the target ranks of the hypotheses.

One of the objectives of this thesis is to investigate the reranking approach for DLM

training, and to compare and contrast it with the structured prediction approach.

The reranking problem is similar to ordinal regression [64] in that all examples ỹ

of the training set are given a rank rỹ instead of a class label. However, unlike ordinal

regression, in reranking the ranks are defined only between the examples of the same

utterance, i.e., the N-best list Ỹ . In our study, we define the rank of a hypothesis as:

rỹ = 1 + WEỹ (3.1)

In a reranking scenario, we would like to find w such that for any two hypotheses

a and b from the same N-best list, if a has fewer word errors than b, it has a higher

rank (is closer to the top of the list) than b. It must be noted that ranking ordering is

the opposite of numeric ordering. For instance, if ra = 1 and rb = 2, then ra � rb.

In this study we utilize classification and reranking variants of three algorithms,

namely the perceptron, the margin-infused relaxed algorithm and the support vector

machine, which we explain in the following subsections.
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3.2.1. Structured Perceptron

The perceptron algorithm used in DLM training is a multi-class perceptron vari-

ant used for structured prediction [23], which we will refer to as the structured per-

ceptron. The objective of the structured perceptron is to pick the hypothesis in the

N-best list (ỹ ∈ Ỹ) which has the least WE with respect to y (either the reference,

source text or target output).

input set of training examples {1 ≤ i ≤ I},

number of iterations T

w = 0, wsum = 0

for t = 1 . . . T , i = 1 . . . I do

zi = argmaxz∈Ỹ〈w,Φ(z)〉

if ryi 6= rzi then

w = w + g(yi, zi)(Φ(yi)−Φ(zi))

wsum = wsum + w

return wavg = wsum/(IT )

Figure 3.1. The generic structured perceptron algorithm.

The pseudocode of a generic structured perceptron algorithm is given in Fig-

ure 3.1. The structured perceptron takes into account only two hypotheses in Ỹ : yi

and zi. yi is the hypothesis which has the least WE with respect to y, and is called the

oracle. Please note that in our implementation, if there is more than one hypothesis

with the least WE, the one which has the highest recognition score is used as the ora-

cle. zi is the hypothesis which yields the highest inner product score under the current

model, and is called the current best :

zi = argmax
z∈Ỹ

〈w,Φ(z)〉 (3.2)

Taking into account the fact that the oracle needs to have the highest inner product

score in order to minimize the overall WER, the model weights are updated by favoring
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the features which occur in yi and penalizing the ones which occur in zi:

w = w + g(yi, zi)(Φ(yi)−Φ(zi)) (3.3)

The function g(yi, zi) in Equation 3.3 is defined as the margin function and determines

the strength of the update, therefore defining the behavior of the algorithm. Selection

of the function g(·) is associated with the loss function that is being optimized. In this

thesis we implement three different margin functions, which are summarized in Table

3.1.

Table 3.1. Naming of algorithms with respect to margin functions.

Margin Function Naming Abbreviation

g(·) = 1 Perceptron Per

g(·) = rzi − ryi WER-sensitive perceptron WPer

g(·) = 1
ryi
− 1

rzi
Reciprocal perceptron RPer

Our first margin function is g(·) = 1, which corresponds to minimizing the number

of misclassifications. This is the standard version used widely in the literature. We

will refer to this version of the structured perceptron algorithm as Per.

In the second function, g(·) is defined in terms of the differences between the ranks

of yi and zi. This type of perceptron was first proposed in [42] and is called the WER-

sensitive perceptron. Unlike Per, the WER-sensitive perceptron algorithm minimizes

a loss function which is defined using edit distances of hypotheses with the reference

transcription, thus related to the total WE [65]. In this thesis we will abbreviate the

WER-sensitive perceptron as WPer.

In the third alternative, the margin function is defined as g(·) = 1
ryi
− 1

rzi
. This

definition not only accentuates the update when the rank of the oracle and the current

best are far apart, but also when they appear near the top of the ranking. Besides, it
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is more conservative than Per and WPer in that it produces a multiplier less than 1.

We name this algorithm the reciprocal perceptron and denote as RPer.

The structured perceptron makes several epochs (passes) over the training data

and in the end, the model weights obtained at each update step are averaged over the

number of utterances (I) and epochs (T ) to increase model robustness:

wavg =
1

IT

∑
i,t

wt
i (3.4)

3.2.2. Ranking Perceptron

As explained in Section 3.2, the motivation behind reranking is to make use of

the relative differences between the hypotheses of the N-best list in DLM training. The

ranking perceptron is based on this motivation and unlike the structured perceptron

which tries to replace the top-most element of the N-best list by only considering the

current best and oracle, it utilizes each and every hypothesis in the list for training.

input set of training examples {1 ≤ i ≤ I},

number of iterations T , margin multiplier τ > 0,

learning rate η > 0, decay rate γ > 0

w = 0, wsum = 0

for t = 1 . . . T do

for i = 1 . . . I do

for (a, b) ∈ Ỹ do

if ra � rb & 〈w,Φ(a)−Φ(b)〉 < τg(a, b) then

w = w + ηg(a, b)(Φ(a)−Φ(b))

wsum = wsum + w

η = η · γ

return wavg = wsum/(IT )

Figure 3.2. The generic ranking perceptron algorithm.
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Figure 3.2 shows the pseudocode of the generic ranking perceptron algorithm.

Here a and b denote any hypothesis pair from the same N-best list. If a has fewer WE

than b, then it must be ranked higher than b, which means that a’s score (its inner

product with the current model vector) must be significantly greater than that of b:

ra � rb ⇐⇒ 〈w,Φ(a)−Φ(b)〉 ≥ τg(a, b) (3.5)

The score difference threshold is adjusted by a margin multiplier denoted by τg(a, b)

where τ is a positive constant. We use the same margin functions g(·) as in the struc-

tured perceptron. With regard to the selection of the g(·) function, the variants of the

ranking perceptron algorithm are abbreviated as PerRank, WPerRank and RPerRank,

respectively. Just like in the structured perceptron, the WER-sensitive and reciprocal

rules update the model more when the difference between the WE of the two hypothe-

ses are greater. Unlike WPerRank, the margin function of RPerRank also aims to

achieve a greater separation between the hypotheses that are closer to the top of the

list than those at the bottom. It further ensures that the following margin-rank relation

is preserved:

ra � rb � rc ⇐⇒

 g(a, c) > g(a, b)

g(a, c) > g(b, c)
(3.6)

The model update is done just like the structured perceptron, this time for each (a, b)

pair that violates the margin criterion stated above:

w = w + ηg(a, b)(Φ(a)−Φ(b)) (3.7)

Note that the model is not updated if ra ≺ rb. Unlike the structured perceptron,

this time a learning rate (η) multiplier is included to facilitate the convergence of the

iterative optimization procedure. This learning rate is decreased by multiplying with

a decay rate of γ < 1 at the end of each epoch and the weights are finally averaged as

done in Equation 3.4.
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3.2.3. Margin Infused Relaxed Algorithm (MIRA)

The generic MIRA [50] trains a prototype for each class such that the inner

product of an instance with the prototype belonging to its class, 〈wcn ,Φ(yn)〉, is higher

than the inner product with any other class prototype, 〈wc̄n ,Φ(yn)〉. Here cn is the

class of Φ(yn),wcn is its class prototype, and wc̄n are the prototypes of other classes.

The margin is defined as the minimum difference between the inner products and the

aim is to train a classifier with a large margin.

For a two-class problem with cn ∈ {±1}, the binary MIRA iteratively updates a

single prototype (model vector) w, just like Per.

w = w + τncnΦ(yn) (3.8)

However, here the learning rates τn are hypothesis-specific, and are found by solving

the following optimization problem:

min
τn
‖ Φ(yn) ‖2 τ 2

n + 2cnτn〈w,Φ(yn)〉

s.t. 0 ≤ τn ≤ 1 (3.9)

which gives

τn = G

(
−cn〈w,Φ(yn)〉
‖ Φ(yn) ‖2

)
(3.10)

The function G(·) determines how much to update the prototype if it misclassifies the

instance.

G(u) =


0 u < 0

u 0 ≤ u ≤ 1

1 1 < u

(3.11)
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Note that binary MIRA cannot be directly applied to our problem since we do

not have the true labels of the instances; we predict the best hypothesis among many

(N-best list) candidates. We propose single and multiple update versions of MIRA for

structured prediction, similar to those proposed in [51] and [52].

The single update version goes over the N-best lists 1 ≤ i ≤ I and updates only

when the current best zi is not the oracle yi:

w = w + τ si (Φ(yi)−Φ(zi)) (3.12)

τ si = Gs

(
−〈w,Φ(yi)−Φ(zi)〉
‖ Φ(yi)−Φ(zi) ‖2

)
(3.13)

Gs(u) =

 0 u < 0

u otherwise
(3.14)

The multiple update version scans over pairs of the oracle yi and all other hy-

potheses yk ∈ Ỹ , and updates as:

w = w + τmk (Φ(yi)−Φ(yk)) (3.15)

τmk = Gm

(
−〈w,Φ(yi)−Φ(yk)〉
‖ Φ(yi)−Φ(yk) ‖2

)
(3.16)

Gm(u) =


0 u < 0

u u ≥ 0 and yk = zi

u/(N − 1) u ≥ 0 and yk 6= zi

(3.17)
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3.2.4. Ranking MIRA

We apply a modified ranking version of MIRA which updates the prototype if

any pair of hypotheses with ra � rb do not satisfy the margin requirement of g(a, b).

w = w + τab(Φ(a)−Φ(b)) (3.18)

τab = Gr

(
g(a, b)− 〈w,Φ(a)−Φ(b)〉
‖ Φ(a)−Φ(b) ‖2

)
(3.19)

Gr(u) =


0 u < 0

u 0 ≤ u ≤ g(a, b)

g(a, b) g(a, b) < u

(3.20)

3.2.5. Support Vector Machine (SVM)

The SVM is also a linear classifier and its aim is to find a separating hyperplane

that maximizes the margin between the nearest samples of two classes. The constrained

optimization problem is defined as:

min
w

1

2
〈w,w〉 + C

∑
j

ξj

s.t. cj〈w,Φ(yj)〉 ≥ 1− ξj and ξj ≥ 0 (3.21)

where cj ∈ {±1} are the class labels and ξj are the slack variables for violations of

the margin constraints for the linearly nonseparable case. Note that here, the index

j is not constrained within an N-best list and covers the whole sample set. C is a

user-defined trade-off parameter between violations and smoothness. It is possible to

assign different C values to the positive and negative classes, especially when the classes

are not balanced: C+ = βC−. The major advantage of SVM is that this is a convex
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optimization problem that can be solved analytically unlike the perceptron that uses

gradient-descent and risks getting stuck in local optima.

The labeling of training examples in an SVM setup is not straightforward. One

can divide the hypotheses into positive and negative classes by setting a threshold

either on the baseline recognition score, or the WE. In our implementation, we choose

all hypotheses having the least WE of their N-best list as the positive examples, and

the rest as the negative examples.

3.2.6. Ranking SVM

The ranking SVM algorithm is a modification of the classical SVM setup to handle

the reranking problem, defined as

min
w

1

2
〈w,w〉+ C

∑
a,b

ξab

s.t. 〈w,Φ(a)−Φ(b)〉 ≥ 1− ξab

∀(a, b) ∈ P , ξab > 0.

(3.22)

Here, C is again the trade-off value and P is the set of (a, b) pairs for which

ra � rb. The constraint in Equation 3.22 implies that the ranking optimization can also

be viewed as an SVM classification problem on pairwise difference vectors, Φ(a)−Φ(b).

In that sense, the algorithm tries to find a large margin linear function which minimizes

the number of pairs of training examples that need to be swapped to achieve the desired

ranking [46].

The relationship between the ranking perceptron and ranking SVM algorithms is

given in the Appendix.



33

3.3. Testing

In the testing phase, the estimated model vector w is used to reweight the N-best

hypotheses of an ASR output. The final output is the hypothesis which gives the

highest inner product score with the estimated model:

y∗ = argmax
ỹ∈Ỹ

{
w0 logP (ỹ|x) + 〈w,Φ(ỹ)〉

}
. (3.23)

Here, logP (ỹ|x) is the recognition score assigned to ỹ by the baseline recognizer

for the given utterance x, and w0 is a scaling factor which is optimized on a held-out

set. The overall system performance is computed by considering all y∗ and represented

in word error rate (WER).

3.4. Hypothesis Sampling

The ranking algorithms use N-best hypotheses in a pairwise manner and com-

plexity increases fast as the sample size and the number of unique ranks in the N-best

list are increased. In this thesis we propose three hypothesis sampling schemes to relax

some of these constraints and to decrease the computational complexity of the algo-

rithm. All three schemes work on the N-best lists. The hypotheses in an N-best list

must be sorted first with respect to their WE in ascending order, and then if WE are

equal, with respect to their recognition scores in descending order.

• In Uniform Sampling (US), we select n = {2, 3, 5, 9} instances in uniform inter-

vals from the ordered N-best list. For instance in US-5 with a 50-best list, the

hypotheses with the indices 1, 13, 25, 37 and 50 are selected. The best and the

worst hypotheses are always in the shortlist. The rank assigned to the hypotheses

is r = 1 + WE.

• Rank Grouping (RG) groups the hypotheses having the same unique WE and

selects 1 or 2 examples as representatives from each group. In RG-1, this repre-
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sentative is the hypothesis having the highest score. In RG-2, we also add the

one with the lowest score. Again, the assigned rank is r = 1 + WE.

• In Rank Clustering (RC), we generate artificial rank clusters. We try RC-2×3

and RC-2×10, where we select 3 and 10 examples, respectively, from the top and

bottom of the ordered list. Positive integers are assigned to these clusters as their

ranks: r = {1, 2}.

A simplified example of these hypothesis sampling schemes on a 9-best list is

presented in Table 3.2. The first column denotes the order of the hypotheses, and

their WE are shown in the second column. In the columns that follow, the rank values

associated with these hypotheses are given.

Table 3.2. An example of sampling schemes.

Order WE US-2 US-3 US-5 RG-1 RC-2×3

1 0 1 1 1 1 1

2 1 2 1

3 2 3 3 1

4 2

5 2 3 3

6 3 4

7 3 4 2

8 4 5 2

9 4 5 5 5 2

The aim of US is to decrease directly the number of instances. It should be noted

that each US scheme with increasing n also contains the instances from the previous

ones. In RG, we would like to keep at least one instance from all available ranks,

whereas in RC, we guarantee decreasing both the number of instances and ranks. Note

that the sampling strategy here considers only single hypotheses but not hypothesis

pairs.
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3.5. Experimental Setup

The experiments in this chapter use the Bogazici University Turkish Broadcast

News Database, explained in Section 2.4. We use all data in the set m for training,

and the sets h and e for parameter validation and testing, respectively.

The N-best lists in all three sets have N=50 hypotheses, represented in morphs.

The first element of the feature vector, Φ, is the recognition score, i.e., the log-

probability of x in the lattice obtained from the baseline recognizer: φ0(x, ỹ) = P (ỹ|x),

This score includes the contribution of baseline acoustic and generative language mod-

els. The rest of the feature vector contains the frequencies (number of occurrences) of

each morph n-gram in the corresponding hypothesis. We experiment with unigram,

bigram and trigram morph models. There exist a total of 45,888 unique morphs,

2,226,825 morph pairs, and 6,969,412 morph triples in m. With such a large number

of unique features, we have highly sparse feature vectors.

When we evaluate the performance of algorithms, we have two benchmarks to

compare against. The first benchmark is the generative baseline, which is the WER of

the 1-best (the hypothesis with the highest score). We need to achieve better WER than

the baseline to prove the validity of our discriminative language modeling techniques.

The second benchmark is the oracle rate, which is the best WER that can be obtained

by selecting the oracle hypothesis in each N-best list. This rate gives us a lower bound

as we are limited by the hypotheses in the N-best list.

The generative baseline WER is 22.9% on the held-out set (h) and 22.4% on the

test set (e). The oracle rates on these sets are 14.2% and 13.9%, respectively.

3.6. Experimental Results

This section is divided into two parts. In the first part, we show the individual

performances of the six training algorithms presented in Section 3.2. The experiments

in this part are made using morph unigram features and 50-best list of hypotheses. In
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the second part, we modify the number of hypotheses and the number of features to

see how they effect discriminative language modeling performance.

3.6.1. Performance of Training Algorithms

In the following subsections we investigate the performances of the classification

and reranking approaches of the perceptron, MIRA and SVM. We also explain the

issues encountered in the implementation of the algorithms.

3.6.1.1. Structured Perceptron. The first of our supervised discriminative training ex-

periments uses the canonical structured perceptron (Per) algorithm as outlined in Sec-

tion 3.2.1 with the 50-best morph unigram setup. Earlier studies in the literature

update w when yi 6= zi [1,36]. Unlike them, we do model updates only when ryi 6= rzi .

This means that we do not have a preference on the actual morphs that appear in the

two hypotheses, as long as they have the same WE. This also ensures that the same set

of candidate hypotheses are evaluated by the structured perceptron and its reranking

variant.

The weight w0 associated with φ0 has a different range than the rest of the w.

The second implementation issue with the perceptron is the selection of w0. We need

to decide whether to include w0 in training, and if yes, how to update this attribute.

Empirical results have shown that it is better to optimize it over a fixed set of values

during perceptron training. The possible values of w0 to optimize over are chosen to

be w0 = {0, 1, 2, 4, 8, 16}.

Table 3.3 shows the WER on the held-out set (h) for different values of weight

w0, over at most three epochs over the data. Here, and in the tables that follow, the

best result is shown with an asterisk.

For the optimal choice of w0 and the number of epochs, the error rate on h gives

22.1% implying a reduction of 0.8% over the generative baseline of 22.9%. The same

model yields 21.8% on the test set e.
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Table 3.3. Per WER (%) on h.

w0 0.0 1.0 2.0 4.0 8.0 16.0

WER 27.1 22.1* 22.3 22.4 22.5 22.6

3.6.1.2. Ranking Perceptron. There are several factors to optimize while training with

the ranking perceptron. The weight updates can be made in an online mode at each

data instance as exemplified in Figure 3.2, or in a batch mode, after all data instances

(I) have been seen [31]. Furthermore, the weight w0 can be fixed just like in the

perceptron, or updated with the other weights. Finally, optimal values of the algorithm

parameters, τ , η, γ must be searched for. In this experiment set we apply the ranking

perceptron with the reciprocal update rule (RPerRank) to measure the performance

of the algorithm and choose the optimal parameters through grid search over these

values: τ = {0, 1, 2, 4, 8, 16, 32, 64}, η = {0.1, 0.5, 1}, γ = {0.5, 0.9, 1}.

Table 3.4. RPerRank WER (%) on h.

Updates w0 fixed w0 free

Online 21.8* 21.8

Batch 21.8 21.8

Table 3.4 shows WERs on h with respect to different update strategies for optimal

choices of algorithm parameters and (at most) 20 epochs. We see that the update

strategy does not have a significant effect on the system accuracy. However, with two

decimal digits’ precision, the best result obtained is a WER of 21.75% by using online

updates with the w0 parameter fixed at w0 = 14.0, η = 1, γ = 0.9, τ = 64. We will use

this update strategy in future experiments.

Comparing this WER with the best result in Table 3.3, we see that the ranking

perceptron performs better than the perceptron by 0.3% absolute. The error rate on e

for the same experiment is 21.5%, which is also better than that of Per.
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In Figure 3.3, we present the change in WER with respect to the number of

epochs for the best setup. It can be seen that for this setup 20 epochs are sufficient for

the algorithm to converge.
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Figure 3.3. RPerRank WER (%) on h with respect to the number of epochs.

3.6.1.3. Margin Infused Relaxed Algorithm (MIRA). We measure the performance of

MIRA with both single and multiple update rules. We use φ0 in evaluating the inner

product score of the hypothesis with the models but we do not use it in the norm

calculations. Table 3.5 presents the best WERs on h for different values of fixed w0.

Table 3.5. MIRA WER (%) on h.

w0 0.0 1.0 2.0 4.0 8.0 16.0

Single Upd. 22.9 22.3 22.3 22.3 22.3 22.3

Multiple Upd. 22.9 22.3 22.3 22.3 22.3 22.3

We see that the value of w0 has no effect on the MIRA performance. We also see

no significant difference between the accuracies of single and multiple MIRA and from

now on, we report only single update results because it is simpler. The test set WER

for this case is 21.8%.

3.6.1.4. Ranking MIRA. The ranking MIRA (MIRArank) performance on h, shown

in Table 3.6, is close to that of the perceptron. Just like MIRA, the value of w0 (unless
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zero) does not have any drastic influence. The WER of 22.2% is 0.1% better than

MIRA but equally worse than Per. The test set error rate for the best case is 21.7%,

which is slightly better than Per.

Table 3.6. MIRArank WER (%) on h.

w0 0.0 1.0 2.0 4.0 8.0 16.0

WER 28.1 22.2* 22.2 22.2 22.2 22.2

3.6.1.5. Support Vector Machine (SVM). The parameters to optimize in SVM imple-

mentation are the trade-off value (C) and minority (positive) class weight (β). The

sample labeling method explained in Section 3.2.5 assigns approximately 10% of the

examples to the positive class. Table 3.7 shows the held-out set WERs with respect to

some combinations of the parameters.

Table 3.7. SVM WER (%) on h.

C = 1 C = 10 C = 100

β = 0.01 22.8 22.9 22.9

β = 0.1 22.8 22.8 22.8

β = 1 22.5* 22.8 22.5

β = 10 24.8 24.9 24.9

β = 100 29.3 29.6 29.3

With the optimal selection of parameters, the lowest WER that could be obtained

on h is 22.5%, which is better than the baseline by 0.4% but worse than Per and MIRA.

On the test set, the WER is calculated as 22.1%.

3.6.1.6. Ranking SVM. Table 3.8 shows the WERs obtained on h for different trade-

off (C) values. The results suggest that ranking SVM leads to better results than the

two-class SVM and is able to yield comparable results to those of Per. Furthermore,
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on the test set it gives 21.6%, an additional improvement of 0.2%, which indicates that

the model learned from SVMrank generalizes better.

Table 3.8. SVMrank WER (%) on h.

C 1 100 1000 10000 20000

WER 22.3 22.3 22.1* 22.1 22.1

3.6.2. Performance with Different Number of Hypotheses and Features

Having seen the individual performances of the training algorithms, let us now

modify the training setup and observe how they react to the changes in the number of

hypotheses and features.

3.6.2.1. Sampling from the N-Best List. In Table 3.9, we present held-out WERs of

our three hypothesis sampling schemes explained in Section 3.4 for the six algorithms,

with an optimal parameter selection that yields the highest accuracy on the same set.

Results of the 50-best unigram setup are also repeated for comparison.

The first notable result here is the 22.1% WER by Per, which suggests that using

only two examples (the best and worst in terms of WE) is as good as using all the

examples in the list. This finding corroborates the result presented in [59]. Adding

more examples to the training set does not decrease the error rate further with this

method.

SVM, being the weakest algorithm in 50-best, prefers a sampled training set but

cannot compete with Per. MIRA performs better with more hypotheses. Though it is

similar to Per, it is not as accurate, neither in classification nor ranking.

Unlike Per, SVMrank benefits from increasing number of examples in the US

and RC cases, but not in RG. The best result obtained here is 21.9% with the US-5

sampling scheme. This value is better than using 5-best lists (22.1%) or choosing 5
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Table 3.9. Sampling schemes WER (%) on h.

Sampling Per MIRA SVM RPerRank MIRArank SVMrank

US-2 22.1* 22.7 22.4 22.0 22.6 22.7

US-3 22.1 22.5 22.5 21.9 22.3 22.2

US-5 22.2 22.6 22.6 21.8* 22.1 21.9*

US-9 22.2 22.4 22.6 21.8 22.0* 21.9

RG-1 22.3 22.4 22.3* 22.0 22.1 22.1

RG-2 22.3 22.5 22.5 21.9 22.0 23.0

RC-2×3 22.3 22.6 22.4 21.9 22.3 22.4

RC-2×10 22.2 22.4 22.5 21.8 22.1 22.1

50-best 22.1 22.3* 22.5 21.8 22.2 22.1

examples randomly (22.2%). The RG and RC schemes also provide results that are

comparable to the baseline.

The superiority of the ranking perceptron is once more evident in Table 3.9. The

algorithm outperforms others in all schemes and responds positively to increasing the

sample size and the number of hypotheses. The performance obtained with US-5, US-9

and RC-2x10 are as good as using all of the examples. Considering the fact that the

number of iterations in RPerRank is in the order of N2, decreasing N to its one tenth

(from 50-best to US-5) provides an enhancement in the order of 100.

3.6.2.2. Increasing the Number of Features. Up to now we did experiments using a

morph unigram (1g) setup, and obtained a lowest WER of 21.8% with RPerRank. In

this section we try to see how the algorithms behave if we extend the feature space

by adding higher order n-grams. Figure 3.4 shows the held-out WERs of these exper-

iments, all trained on 50-best lists and optimized within their parameter space.
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RPerRank

Figure 3.4. Higher-order n-grams WER (%) on h.

As we can see from the figure, for all algorithms, adding bigram (2g) and trigram

(3g) features does not decrease but increases the error rates, most possibly due to the

lack of sufficient training data which leads to overfitting. This finding is coherent with

the observations of [36]. Note that even in this case, the ranking perceptron algorithm

shows superior performance to the other five.

3.6.2.3. Dimensionality Reduction. We know that reducing the number of dimensions

eases the curse of dimensionality and drastically decreases space and time complexity.

It also provides a better generalization by eliminating the effects of noise in redundant

features. In our problem, where the feature vector is very high dimensional, applying a

dimensionality reduction technique can provide a better characterization for the linear

classification of ASR output hypotheses.

In this subsection, we go the other way around and apply feature selection to

reduce the dimensionality. We count the number of times each specific feature (morph

n-gram) occurs in the training set, and define a threshold, below which that feature

will be discarded. We call this approach Count-Based Thresholding (CBT).
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Figure 3.5 shows the 50-best morph unigram held-out set results with Per and

RPerRank for different values of the threshold, along with the number of dimensions

in the reduced space. We see that the performance of Per is not degraded drastically

even if we reduce the number of dimensions by one fifth, with the threshold of 500.

On the other hand, a slight increase in WER is observed in RPerRank, which can be

explained by the number of features utilized. This finding will be explained in Section

3.7.2. Note that CBT results also follow a similar trend for the bigram setup.
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Figure 3.5. Count-based thresholding WER (%) on h.

To decrease the dimensionality, we also tried applying online PCA, but did not

obtain any considerable gain due most probably to the restriction to a linear feature

extractor [1].

3.7. Analysis of Results

So far we have only compared the models by looking at their accuracies. How-

ever the learning process reveals some other important side information about the

performance and working behavior of these methods. In this section, we compare the

algorithms with respect to their CPU times, model complexities, test set accuracies,

and we check for differences that are statistically significant. In the following sections,

we use the 50-best unigram setup in the experiments.
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3.7.1. Comparison of CPU Times

We denoted earlier that ranking algorithms have higher complexity than classi-

fication algorithms, and that they need more computational resources as the number

of instances and unique ranks are increased. Training the models by processing all the

hypotheses takes <2 mins with Per, <3 mins with MIRA and <5 mins with SVM,

whereas it takes <30 mins with RPerRank and MIRArank.

In terms of running time, SVMrank is much more costly than the other models.

Even though SVMrank toolkit provides a fast and efficient implementation, training is

much slower. In Table 3.10, the total number of training instances and the elapsed CPU

times for the SVMrank setup are shown with respect to different hypothesis sampling

schemes. This time a fixed trade-off value of C = 1000 is used for fair comparison. We

see that although SVMrank training takes time in the ranges of hours, by an intelligent

sampling technique from the N-best list, it is possible to decrease the number of training

instances and thus the CPU times considerably, while keeping the WERs still in a

tolerable region.

Table 3.10. SVMrank training CPU times for fixed C=1000.

Sampling
Number of CPU WER(%)

instances hours on h

All 4,939,368 25:00 22.3

US-2 209,675 0:14 22.8

US-3 313,120 0:51 22.5

US-5 518,234 1:42 22.1

US-9 923,770 3:34 22.2

RG-1 466,277 1:49 22.0

RG-2 867,045 4:26 23.1

RC-2×3 620,160 3:16 22.6

RC-2×10 2,020,450 16:45 22.2
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3.7.2. Comparison of Models

We also compare the performances of six models in terms of their complexity

and accuracy. Since all of the models are linear, simpler models are the ones which

use fewer features. The weights of unused features are zero at the end of training and

complexities of the models are compared in terms of the features they use and share.

We consider weights not exceeding the threshold 10−4 as zero. In Table 3.11(a)-(d),

we compare models with respect to the number of zero and nonzero features they use.

Although Per and MIRA use fewer than half of the nearly 46K features, the

other models use almost all of them, due to the fact that the latter consider most of

the hypotheses in their updates as opposed to only two (the oracle and the current

best). It should also be noted that though two models might use the same features,

their weights can have different signs.

Feature comparisons of perceptron and MIRA variants for bigram and trigram

datasets are given in Table 3.12(a) and (b) (SVM and SVMrank results cannot be

obtained here due to their infeasible training times). Similar to the unigram case,

ranking algorithms use many more features.

3.7.3. Comparison of Test Set Accuracies

The models are also statistically compared in terms of their accuracy on e. WERs

shown in Table 3.13 reveal that the ranking perceptron generalizes better than all other

methods, by providing an improvement of 0.9% over the test set baseline of 22.4%.

Table 3.14 presents the significance values (p values) of the WER improvements of

the algorithms on e, as measured by the NIST MAPSSWE test [66]. The improvement

of RPerRank over Per is significant at p = 0.003. The test also shows that there is

no statistically significant difference between RPerRank and SVMrank, nor between

SVMrank and Per. But SVM has significantly higher WER than both RPerRank

(p < 0.001) and SVMrank (p = 0.004). MIRA does not differ from the other methods

except RPerRank (p = 0.002). MIRArank differs from SVM and RPerRank.
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Table 3.11. Pairwise comparison of models in terms of the number of Zero and

NonZero features they use on unigrams.

(a) Perceptron and SVM

Per SVMrank

NZ Z NZ Z

SVM
NZ 19,946 25,223 44,390 779

Z 175 545 710 10

RPerRank
NZ 20,119 24,896 44,291 724

Z 2 872 809 65

(b) Perceptron and MIRA

MIRA RPerRank

NZ Z NZ Z

MIRArank
NZ 20,540 23,290 43,767 63

Z 7 2,052 1,248 811

Per
NZ 18,728 1,393

Z 1,819 23,949

(c) SVM and MIRA

MIRA

NZ Z

SVM
NZ 20,481 24,688

Z 66 654

(d) SVMrank and MIRArank

MIRArank

NZ Z

SVMrank
NZ 43,790 1,310

Z 40 749
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Table 3.12. Feature comparison for Perceptron and MIRA.

(a) Bigrams

RPerRank MIRA

NZ Z NZ Z

Per
NZ 257,458 44 203,719 53,783

Z 1,924,116 91,096 44,954 1,970,258

MIRArank
NZ 2,079,702 7,039 248,541 1,838,200

Z 101,872 84,101 132 185,841

(b) Trigrams

RPerRank MIRA

NZ Z NZ Z

Per
NZ 819,233 520 703,725 116,028

Z 7,891,409 430,964 127,667 8,194,706

MIRArank
NZ 8,023,671 45,944 830,101 7,239,514

Z 686,971 385,540 1,291 1,071,220

Table 3.13. WER (%) on e.

Per MIRA SVM RPerRank MIRArank SVMrank

21.8 21.8 22.1 21.5 21.7 21.6

Based on these findings, the ordering of the training algorithms with respect to

their accuracies is:

RPerRank SVMrank MIRArank MIRA Per SVM
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Table 3.14. p values of MAPSSWE test.

MIRArank RPerRank Per SVMrank SVM

MIRA 0.638 0.002 0.795 0.121 0.156

SVM 0.014 < 0.001 0.085 0.004

SVMrank 0.168 0.226 0.131

Per 0.764 0.003

RPerRank 0.007

Table 3.15. 10-fold cross-validated WER (%) on e.

Per MIRA SVM RPerRank SVMrank MIRArank

21.87 ± 0.06 21.93 ± 0.05 22.19 ± 0.12 21.47 ± 0.05 21.63 ± 0.09 21.81 ± 0.03

3.7.4. Comparison of Statistical Significance

The results presented in the previous section are over a single run. To average

over randomness, we also apply 10-fold cross validation by splitting the training dataset

into 10-partitions, and results on the test set are given in Table 3.15, this time with two

digits of precision. For each model, we use the parameters optimized over the held-out

set. We apply 10-fold cross-validation paired t test on the test set WERs and Table

3.16 shows the p-values obtained by pairwise t tests. This time all the differences are

significant and we have a clear ordering:

RPerRank < SVMrank < MIRArank < Per < MIRA < SVM

3.8. Discussion

In this chapter we investigated the supervised discriminative language modeling

scenario, where the DLM is trained using matched data, i.e., the speech utterances

and their reference transcriptions. We introduced classification and reranking vari-
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Table 3.16. p values of 10-fold cross-validation t test on e.

MIRArank RPerRank Per SVMrank SVM

MIRA 2.2× 10−5 6.0× 10−9 4.2× 10−2 2.4× 10−5 3.2× 10−4

SVM 9.3× 10−6 1.8× 10−8 2.0× 10−5 4.0× 10−7

SVMrank 7.8× 10−4 2.1× 10−3 1.0× 10−4

Per 0.9× 10−4 3.0× 10−8

RPerRank 1.9× 10−9

ants of three algorithms to train the DLM and measured their performances under

the supervised scenario. We proposed hypothesis sampling schemes to decrease the

computational complexity of the algorithms. We compared the performance of the

algorithms with respect to changing training conditions.

We see first that reranking leads to lower WER than structured prediction, this

is true for all three algorithms. The best WER is obtained by the ranking perceptron

with an improvement of 1.1% over the generative baseline on the held-out set.

The disadvantage of ranking algorithms is that DLM training takes more time

due to the increased complexity. The hypothesis sampling approaches we proposed in

this chapter have been proven to be an efficient way to compensate for this effect.

Another generalized linear classifier which has been proven useful in binary classi-

fication tasks is the Support Vector Machine (SVM). However, the use of SVM leads to

no significant decrease in error in our experiments and may even worsen performance.

SVM-based techniques can also be computationally demanding when the number of

training examples is large and the feature dimension is high. On the other hand, the

complexity of SVM training can be curbed significantly (from a day to minutes) by

intelligent sampling from the N-best list. We note however that these are SVM results

using the linear kernel, and with better, application-specific kernels, SVM may provide

more interesting results.
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MIRA variants do not show significant improvements compared to their percep-

tron correspondents. A possible reason might be that the normalizing effect of the

norms causes smaller updates, diminishing their correcting effects. Another point is

that as long as φ0 is used (w0 is not zero), the other coefficients can adapt themselves

accordingly and the same accuracy can be attained.

Ranking algorithms, though more accurate, use more features than classification

algorithms. The reason is that they do more updates while the classification algorithms

make only one update for each hypothesis set.

Using higher order n-gram data does not improve the performance but it increases

the complexity and the training time. It is possible to do feature selection and use a

subset of the features, thereby decreasing complexity without losing from accuracy.
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4. SEMI-SUPERVISED DISCRIMINATIVE LANGUAGE

MODELING

The effectiveness of a DLM increases as it sees more and more training data.

However, sometimes the existing matched data are not sufficient to train the DLM

using the supervised way. Or the baseline ASR system might have been trained on

another domain, so that its outputs turn to be unsuitable for the context upon which

the DLM needs to be based. In such cases, in order to increase the amount of training

data, it is possible to incorporate an external text corpus (which does not have to

be accompanied by any acoustic recording) into DLM training, via a process called

confusion modeling.

A confusion model (CM) is a model which contains the acoustic confusions (mis-

recognitions) that could be made by the ASR system. In that sense, the CM represents

the inherent variability in the ASR output hypotheses. The CM is trained using the

available matched data. Once the CM is built, it can be applied on any word se-

quence from the text corpus (which we call the source text) to generate some other

word sequences that resemble the source text acoustically. These sequences look like

the hypotheses of a real ASR system, but are artificially generated. Therefore, we call

these outputs the artificial hypotheses.

The source text and the artificial hypotheses can then be fed into DLM training

as training examples, just like the supervised scenario. This whole process is called

semi-supervised training, with respect to the fact that the matched (supervised) data is

used not directly to train a DLM, but to train a CM which will generate the necessary

examples for DLM training.

In this chapter we explore the methods for semi-supervised discriminative lan-

guage modeling. We generate artificial hypotheses through a pipeline which consists

of three stages: confusion modeling, language model reweighting and hypothesis sam-
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pling. In the following sections we explain these three components in detail. Followed

by the experimental setup and results, we present an analysis of the outcomes and a

discussion of the methods.

4.1. Generating Artificial Hypotheses via Confusion Modeling

In this section we explore the methods to train a CM and to generate artificial

hypotheses using the CM. We propose two approaches for confusion modeling. The

first is based on weighted finite-state transducers (WFST) whereas the second is based

on statistical machine translation (MT). We present our artificial hypothesis generation

pipelines for the WFST and MT based confusion modeling approaches in the following

subsections.

Even though it can be used for any language, our confusion modeling approaches

are particularly arranged for Turkish. Since Turkish is an agglutinative language with

a highly productive morphology, the number of distinct as well as long words is consid-

erably high compared to other languages. Considering that this structure of Turkish

can also cause too specific confusion possibilities, we experiment with confusion models

at various granularities, namely, word, morph, syllable and character language units.

4.1.1. Weighted Finite-State Transducer (WFST) Based CM

The first approach we use for semi-supervised discriminative language modeling

is a WFST-based confusion modeling setup. We apply five different CMs based on the

language unit: Phone, character, syllable, morph, and word.

Our phone CM is trained using the acoustic similarities of phones available in the

spoken language. To measure the similarity, we calculate the Bhattacharrya distance

between the representative Gaussians of each phone in the baseline acoustic model

of the ASR, as proposed in [54]. The distances are then converted into estimated

probabilities of confusion between phone pairs.
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The other four CMs are trained using the real ASR hypotheses and the reference

transcriptions. CM training begins by rewriting the ASR hypotheses as a sequence

of the chosen language unit. Then, each hypothesis is aligned to its reference using

the Levenshtein (edit) distance. Unlike what was done in [38], we do not use any spe-

cial cost function to get the best alignment. This alignment yields a list of matching

language unit pairs that are confused by the recognizer, and the frequency of their

match-ups gives the probability of their confusion. In implementation, to reduce com-

putational costs, arcs having probability less than 0.01 are discarded. The CM is finally

represented by a single-node WFST having these language unit pairs as input-output

values and the confusion probabilities as weights. A simplified example of a word CM

for the input “vize” is shown in Figure 4.1.

Figure 4.1. An example CM for the word “vize”.

Once the CM is learned, generating artificial N-best lists given an input word

sequence can be summarized with the following composition procedure:

Ỹ = sample(N-best(prune(W ◦ LW ◦ CM) ◦ LM–1 ◦ GM)) (4.1)

In Equation 4.1, W represents a word sequence from the source text y. This

sequence is first converted to the granularity of the chosen language unit by composing

it with the lexicon LW . The result is further composed with the confusion model (CM)
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of the same granularity. This yields a graph which includes all possible confusions

for that word sequence, together with their probabilities of occurrence. This graph

resembles the lattice output of an ASR system that processed a spoken version of

that source text. Depending on the length of the word sequence and the number of

possible confusions available in CM , the resulting confusion graph may get so large

to prevent efficient processing, and some of the confusions may even be unfeasible or

unmeaningful. In order to circumvent this we prune this graph to the most probable

1000-best paths.

Since we would like our DLM to be based on morphs, we would like the artificial

hypotheses represented in morphs. To obtain morph outputs, we compose the graph

with the inverse morph lexicon L−1
M and then reweight its arcs. GM scores the sequences

in the lattice based on their likelihood seen in a typical sentence in the language being

modeled. In the end, 1000 hypotheses having the highest score are extracted to an

N-best list, which is then sampled using hypothesis sampling schemes to pick 50 of its

examples. These artificial hypotheses, along with their source text, are fed into the

DLM training algorithm as training examples, just like the supervised setting.

4.1.2. Machine Translation (MT) Based CM

The second approach we use to generate artificial hypotheses for semi-supervised

DLM training is a statistical phrase-based machine translation (MT) framework. An

MT system typically tries to match the words or phrases of a source language to those

of the target language, and requires a bilingual parallel corpus. In our implementation,

this parallel corpus consists of ASR N-best hypotheses and their references. We treat

the references as the source language text and the hypotheses as their translations in

the target language. This way, the translation alternatives learned by the MT system

will yield a CM which is similar in principle to that obtained in the WFST-based

approach. However, this time the CM is context dependent, since the MT system is

phrase-based.
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To establish the MT-based confusion modeling system, we use the Moses toolkit

[67]. The steps of the MT-based system are as follows: First, the hypotheses and the

references are represented in the chosen language unit, just like the WFST-based setup,

and language unit alignment is performed between the parallel text. Unlike traditional

MT, we use the Levenshtein algorithm as in the WFST setup rather than a more com-

plicated word alignment package such as Giza++ [68], since we do not need to take into

account reordering of language units during translation. Using these alignments, the

system computes the maximum likelihood of the lexical translations, extracts phrases

and tunes the weights of the feature functions for the phrase translation rules. Finally,

the source text is decoded into artificial hypotheses using these translation probabili-

ties. In order to preserve the alignment structure, no phrase reordering model is built

and no distortions are allowed during decoding.

4.2. Language Model Reweighting

Regardless of the type of CM, the confusion graph may include many implausible

word sequences. Therefore, it is reweighted with a language model to favor the mean-

ingful sequences. In our setup, we apply three different LM reweighting approaches:

GEN-LM, ASR-LM and NO-LM.

GEN-LM is estimated from Turkish newswire data collected from the Internet

and represented by 5-grams with a vocabulary of 76K morphs. This is the same LM

used in the baseline ASR system. ASR-LM is derived from the ASR’s real N-best lists,

represented by 4-grams out of 40K morphs. Since our ultimate goal is to simulate the

ASR output, using the ASR-based LM is more intuitive as it is supposed to give higher

scores to those alternatives that resemble the ASR output most. As a third approach,

we choose not to apply any language model, which means that only the scores of the

CM are used to pick the N-best out of the lattice at the end. This will be denoted by

NO-LM.
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4.3. Hypothesis Sampling

In Chapter 3 we proposed some hypothesis sampling schemes for the supervised

case and showed that sampling from the N-best list decreases CPU times for DLM

training drastically, while keeping the WER in a tolerable range. Hypothesis sampling

can also be beneficial in semi-supervised training, because it enables us to customize

the N-best lists by picking hypotheses from a larger set of broader variety [2].

In our setup we apply different sampling methods to pick 50 hypotheses out

of 1000 that were generated in the resulting lattice. The first method is to simply

select the highest scoring 50 hypotheses, therefore generating 50-best lists. We refer to

this method as Top-50. We also utilize the Uniform Sampling (US-50) and the Rank

Clustering (RC-5x10) schemes that were explained earlier in Section 3.4. To remind,

US-50 selects instances from the WER-ordered list in uniform intervals, and RC-5x10

forms 5 clusters separated uniformly, each containing 10 hypotheses.

In addition to these methods, in this section we propose a new sampling scheme

called ASR-distribution sampling, ASRdist. The aim of ASRdist is to achieve the same

WE distribution of the real ASR outputs in the sampled N-best list. To do that, we

first compute how frequently each number of word errors occurs in the ASR N-best lists

and then simulate this distribution by picking samples from the artificially generated

N-best in proportional numbers.

4.4. Experimental Setup

In our semi-supervised discriminative language modeling experiments, we use

the Bogazici University Turkish Broadcast News Database as in the previous chapter.

However, this time we assume that only one half of the training set (m) is transcribed.

Therefore, this part constitutes the only matched data we have, which is used to train

the CMs. As the source text upon which artificial hypotheses will be generated, we use

the reference transcriptions of the remaining half of m. In the experimental results,

we will denote real N-best lists of the first half with m1/2, and the artificial N-best lists

built from the references of the second half with mT2/2.
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We represent the hypotheses in 50-best lists with morphs. The feature vector Φ

consists of morph unigram counts. In the real ASR N-best lists of m1/2 there are about

38K unique morphs. This value sets the upper limit on the number of morphs that can

be represented in the CM.

Note that the artificial hypotheses do not possess a recognition score as the real

ASR hypotheses, because they are generated by the confusion modeling process in-

stead of an actual speech recognizer. Therefore, unlike supervised training, in semi-

supervised training we cannot use a baseline score as the first element of the feature

vector (φ0). As a consequence, we do not include the weight w0 in the training phase

but only make use of it in testing, where real ASR hypotheses are involved.

The WFST-based confusion system is implemented by the OpenFST library [26]

while the MT-based system is implemented by using the Moses SMT tool [67]. The

SRILM toolkit [22] is used for building the language models for reweighting.

4.5. Experimental Results

The experiments of this chapter are divided into three parts. In the first part, we

evaluate the performance of WFST-based confusion modeling with respect to different

components of the semi-supervised DLM training pipeline. In the second part, we

measure the performance of training algorithms in a similar setup. Finally in the third

part, we compare the performance of WFST- and MT-based approaches.

4.5.1. Evaluation of WFST-based Confusion Modeling

In the following subsections we investigate WFST-based confusion modeling with

respect to the type of CM, the hypothesis selection scheme and the type of data involved

in semi-supervised training.
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4.5.1.1. Effect of the CM Type. In the first of our experiments in this chapter, we

measure the performance of different WFST-based confusion modeling techniques for

semi-supervised DLM training. We use the first half of the training set (m1/2) to train

the confusion models, and the reference transcriptions of the second half (mT2/2) as the

source text to generate artificial 50-best lists, which are then used to train the DLM.

The first element of the feature vector Φ is the baseline score when available, and

the rest consist of morph unigram counts. The parameters τ , η and γ of the ranking

perceptron algorithm, and the weight w0 are optimized over the held-out set h.

We apply the five different CMs presented in Section 4.1.1 with the three different

LM approaches presented in Section 4.2. We utilize the ASRdist-50 sampling scheme

mentioned in Section 4.3 to construct 50-best lists out of 1000 hypotheses. DLMs are

trained using the WPer algorithm. Table 4.1 shows the WERs on the held-out (h) set

for these 15 different configurations.

Table 4.1. WPer WER (%) on h for different CMs and LMs with ASRdist-50.

CMs GEN-LM ASR-LM NO-LM

Phone 22.8 22.7 N/A7

Character 22.6 22.7 N/A7

Syllable 22.5* 22.4* 22.6

Morph 22.6 22.4* 22.5*

Word 22.6 22.5* 22.7

When compared with the baseline on h (22.9%), the configurations in Table 4.1

with an asterisk are significantly better at p < 0.005, based on the NIST MAPSSWE

test. Phone and character CMs yield significantly smaller WER improvements over

the baseline as compared to syllable, morph and word models. However, the difference

between these three models is not significant. For the comparison of LMs, even though

there is no significant difference between them, the configurations with ASR-LM have

7We did not run these configurations because not using an LM with these types of CMs takes too

much computational time.
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better WER than the ones with GEN-LM and NO-LM. The best configuration uses the

morph CM and the ASR-LM and is significantly better than the baseline at p < 0.001.

If DLM training were done with the same half of the dataset (m2/2), but this

time in a supervised manner using matched data (real ASR N-best lists with their

references), the WER obtained on h would be 22.1%. The WER of 22.4% that we

obtain with the best semi-supervised training condition is higher than the supervised

scenario as might be expected, but is still capable of achieving an improvement of 0.5%

over the baseline, which is more than half of the gain obtained by supervised training.

4.5.1.2. Effect of the Hypothesis Selection Scheme. The results presented in the pre-

vious subsection were obtained with a fixed hypothesis sampling scheme, ASRdist-50.

In this subsection, we compare different sampling schemes mentioned in Section 4.3

using the best configuration obtained in the earlier experiment set.

Table 4.2. Sampling from the 1000-best list with morph CM and ASR-LM.

Sampling WER (%) on e KL divergence

NoSampling 22.1 0.38

Top-50 22.1 0.43

US-50 22.0 0.27

ASRdist-50 21.8 0.23

The performance of WPer over the test set e is shown in Table 4.2. While the

performances of Top-50 and US-50 sampling schemes are not significantly different than

using no sampling at all, the improvement by ASRdist-50 is significant at p = 0.006.

This supports our assumption that the more artificial N-best lists resemble the real

ASR N-best lists in terms of WE distribution, the better WER improvement we get.

Figure 4.2 shows how the WE distribution of the ASRdist-50 is more similar to that of

the ASR’s, compared to Top-50’s. We also measure this similarity in terms of Kullback-

Leibler (KL) divergence given in Table 4.2 for each sampling strategy, assuming that
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the drop in KL divergence would correlate with the drop in WER. We calculate the

correlation between the KL divergence and the WER over all experiments and obtain

a value of 0.84, which further supports our assumption.

Normalized WE

Figure 4.2. Word error distribution on h

Note that the best WER of 21.8% obtained in Table 4.2 is 0.6% better than the

test set baseline of 22.4%. On the contrary to the held-out set, the performance on the

test set is on par with that of the supervised scenario (m2/2), which also yields 21.8%.

4.5.1.3. Combining Real Hypotheses with Artificial Hypotheses. So far, we used only

the artificial N-best lists of the set mT2/2 for training the DLM. However, in the semi-

supervised setting, we already have some matched data (m1/2), which we used to build

the CM. This data can actually be reused in DLM training to increase the number of

examples, which would potentially lead to lower WERs.

In this subsection, we experiment with combining the artificial hypotheses with

the real ASR hypotheses for training the DLM. One other case which we would like to

observe is how much the ASR performance would differ, had we used real ASR N-best

lists instead of the artificial N-best lists for DLM training. In the first experiment shown

in Table 4.3, the DLM is trained in a supervised setting using the whole dataset, i.e.,
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m = m1/2 + m2/2. In the second experiment, we use m1/2 for CM training, and add

this data to the artificial N-best lists obtained from mT2/2 for DLM training. In these

experiments the ASRdist-50 hypothesis sampling scheme is used.

Table 4.3. WPer WER (%) on e for combining real and artificial N-best lists.

m1/2 m2/2 WER (%)

Real (ASR) Real (ASR) 21.5

Real (ASR) Artificial (CM) 21.6

Table 4.3 shows that when we combine the real N-best lists with the artificial

N-best lists, we get an additional WER improvement of 0.2%. Furthermore, the

achieved performance is almost as good as the performance obtained by using the

real N-best lists of the whole dataset.

4.5.2. Performance Comparison of Training Algorithms for WFST-based

Confusion Modeling

In the previous section, DLM training was made using the WPer algorithm. In

this section we investigate the performance of the canonical (-), WER-sensitive (W) and

reciprocal (R) variants of the structured perceptron and ranking perceptron algorithms.

4.5.2.1. Comparison of Training Algorithms Under Real Data. We first present the

outcomes of algorithms, when trained on real 50-best lists from m2/2. Table 4.4 shows

the accuracies in terms of WER on the held-out (h) set. Note that here, since the

hypotheses are real ASR outputs, we can include the baseline score to training. For

the semi-supervised case these scores are not available, therefore φ0 is necessarily zero.

For a fair comparison with future experiments we provide the results for both cases.

We see that Per and RPerRank achieve a significant performance improvement when

the baseline score is used in training, while WPerRank yields the lowest WER.
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Table 4.4. Training: m2/2 real, WER(%) on h.

Per PerRank

φ0 in train - W R - W R

No 22.3 22.1 22.2 22.0 21.9 22.1

Yes 22.2 22.1 22.2 21.9 21.8 21.9

4.5.2.2. Comparison of Training Algorithms Under Artificial Data. We now test semi-

supervised discriminative language modeling performance for all combinations of the

four language units8, three language models and four sampling methods presented in

this chapter. Table 4.5 gives an overall comparison of algorithms in terms of means,

standard deviations and minima of their WERs, when trained with artificial N-best

lists from mT2/2.

Table 4.5. Training: mT2/2 artificial, WER(%) on h.

Per PerRank

- W R - W R

mean 22.7 22.6 22.6 22.6 22.6 22.6

std 0.11 0.11 0.14 0.09 0.08 0.11

min 22.4 22.4 22.3 22.4 22.4 22.3

The superiority of the ranking algorithms is not noteworthy when it comes to

artificial data. All algorithms have a similar mean WER value except Per. However,

in terms of the minimum WER that could be obtained, RPer and RPerRank take the

lead.

4.5.2.3. Overall Comparison With Respect to Setup Conditions. We also investigate

whether the algorithms depict a clear ordering, regardless of their WER, under certain

training conditions. We learn this by ranking them with respect to their WERs between

1 and 6, and by fixing one of the training factors and calculating an average rank within

8Phone CMs are discarded because of their inferior performance.
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all experiments which include that factor. These results are given in Table 4.6 with

the best marked with an asterisk.

Table 4.6. Training: mT2/2 artificial, Rank averages on h.

Per PerRank

- W R - W R

Confusion Model

Character 5.88 4.00 5.13 1.38* 1.38* 2.88

Syllable 5.67 2.42* 3.33 2.75 3.67 2.67

Morph 5.67 2.92 3.25 3.25 3.25 2.00*

Word 3.75 3.58 3.58 3.00 3.42 1.83*

Language Model

ASR-LM 5.25 2.63 3.88 2.75 2.94 2.38*

GEN-LM 5.19 3.19 3.38 2.63 2.81* 2.81*

NO-LM 5.08 3.83 3.92 2.75 3.58 1.50*

Sampling Method

Top-50 5.45 3.73 3.09 2.36* 2.73 2.55

US-50 4.64 3.64 4.45 2.64 3.00 1.73*

RC-5x10 5.45 3.18 3.82 2.82 3.27 1.82*

ASRdist-50 5.18 2.09* 3.45 3.00 3.27 3.09

We observe that RPerRank has the highest average rank in most of the cases.

It is beaten under four situations: when the syllable CM or the ASRdist-50 sampling

scheme is used by WPer, and when the character CM or Top-50 sampling is used by

PerRank.

4.5.2.4. Test Set Performance. Finally, we compare the algorithms with respect to the

kind of data they use for training. Table 4.7 shows test set WERs of models optimized

over parameter and training conditions on the held-out set. Similar to Table 4.3, we

observe that in general, although artificial data alone cannot compete with real data,

combining real and artificial data yields competitive results9.

9The WERs shown on the WPer column of this table are slightly different than those of the similar

training conditions of Table 4.2 and Table 4.3 due to a change in the range of algorithmic parameters.
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Table 4.7. WER (%) on e.

m1/2 m2/2

Per PerRank

- W R - W R

None Artificial 22.1 21.9 22.1 22.1 22.1 22.0

None Real 21.8 21.8 22.0 21.6 21.6 21.6

Real Artificial 21.7 21.6 21.5 21.6 21.7 21.8

Real Real 21.8 21.6 21.8 21.5 21.4 21.5

4.5.3. Comparison of WFST- and MT-based CM

Our third experimental direction in this chapter is the comparison of WFST-

and MT-based confusion modeling approaches presented in Sections 4.1.1 and 4.1.2,

for semi-supervised discriminative language modeling.

For both approaches, the CM is based on morphs and is trained by aligning the

ASR N-best outputs from m1/2 with their reference transcriptions using the Levenshtein

distance, and language model reweighting is applied using ASR-LM and GEN-LM. 100

sentences from the training corpus are selected as the development set for the MT-

based model. Finally, the CMs are applied on the reference transcriptions of m2/2 to

generate 50-best lists.

We train the discriminative models with the WPer and WPerRank algorithms.

The algorithms make 20 and 10 passes over the training data, respectively. The pa-

rameter w0 is optimized on the held-out set.

4.5.3.1. Effectiveness of Artificial Data. In our first set of experiments, we investigate

the effectiveness of the artificial data generated by the WFST- and MT-based confusion

models. Table 4.8 reports the system performances in terms of WER on the held-

out set, with respect to the confusion modeling technique and the language model

employed.
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Table 4.8. WER (%) on h.

Confusion Language
WPer WPerRank

Model Model

WFST
ASR-LM 22.8 22.7

GEN-LM 22.7 22.7

MT
ASR-LM 22.5 22.3

GEN-LM 22.4 22.3

The interpretation of Table 4.8 is threefold: First of all, regardless of the language

model or the algorithm, the WERs of the MT-based CM technique are lower than those

of the WFST, which suggests that the artificial examples generated by the MT model

are more appropriate for semi-supervised training. The level of improvement is about

0.3% for WPer and even more for WPerRank (the latter being statistically significant

at p < 0.05). Second, WPerRank provides remarkably lower WER than WPer with

MT, on the contrary to WFST where the difference is insignificant. Finally, for both

choices of the confusion model or the training algorithm, GEN-LM seems to yield

slightly better WER with respect to ASR-LM.

4.5.3.2. Combination of WFST and MT Hypotheses. As a second experiment, we con-

sider whether combining the WFST and MT training examples will provide any further

gains. Table 4.9 shows the error rates of individual and combined results with the GEN-

LM language model, this time also including the test set performance. The supervised

case in which real ASR outputs of m2/2 are used for training the DLM is also given for

comparison.

We see from Table 4.9 that combining artificial training data of two CMs does

not result in a significant decrease in WER on the held-out set h. On the other hand,

there is a 0.3% decrease with WPer on the test set e, which suggests that the learned

discriminative model is more generalizable to unseen data. Furthermore, the WER is

as low as the one achieved using the real ASR hypotheses for training.
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Table 4.9. WER(%) on h and e with GEN-LM.

Confusion WPer WPerRank

Model h e h e

WFST 22.7 22.1 22.7 22.3

MT 22.4 22.3 22.3 21.8

WFST + MT 22.3 22.0 22.2 21.9

Real ASR 22.2 22.0 21.9 21.6

Please note that the combination scheme used in this experiment was to simply

concatenate the training examples of both sources. Other complicated methods like

fusion strategies based on the model (constructing an intermediate model by averaging

the weights of two models), score (choosing the hypothesis which is more confidently

selected by any of the two models), or outputs (doubling the N-best lists) have also

been tried, and were observed to yield very similar test set WER as the one reported.

4.6. Analysis of Results

In order to understand why the examples generated by the MT-based confusions

are a better match for semi-supervised DLM training and why WPerRank provides

lower WER than WPer in general, we look at the variability of artificially generated

examples and the number of utilized features.

It was noted earlier that there are about 38K unique morphs in the N-best lists

of m1/2, which is used for training the confusion model. The N-best lists generated

by the MT confusions contain more than 28K morphs whereas the ones of the WFST

technique contain only about 22K. The number of unique morphs in real ASR outputs

of m2/2 is also 38K (not all of the features are the same as m1/2). Considering occurrence

frequencies of these features, the cosine similarity between the N-best sets can be seen

in Table 4.10.
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Table 4.10. Cosine similarities between real and artificial hypotheses.

WFST Real

MT 0.994 0.998

Real 0.996

More than 20K features are shared by the WFST and MT systems. There are

about 7K unique morphs in the MT outputs which do not exist in WFST’s, as opposed

to only about 1K for vice versa. Based on these evaluations we understand that the

MT-based artificial examples have more variability than the WFST-based, and are

much closer to what the real ASR outputs would look like for the same reference text.

We now look at the number of utilized features after training with both of the

algorithms, which is summarized in Table 4.11. The results suggest that there is

a positive correlation between the system performance and the number of features

utilized. More features are utilized by WPerRank than by WPer since the former

considers each and every hypothesis of the N-best list, rather than only two.

Table 4.11. Number of utilized features (GEN-LM).

CM WPer WPerRank

WFST 10,922 14,227

MT 15,320 24,597

WFST + MT 14,914 24,887

Real ASR 20,469 37,373

4.7. Discussion

In this chapter we applied semi-supervised discriminative language modeling tech-

niques to improve ASR performance, and compared two artificial hypothesis generation

methods, one based on the WFSTs and the other on MT. Using the artificial data as

training examples, we trained our models with the several variants of the structured

perceptron and ranking perceptron.
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The results suggest that, unlike the supervised case, the ranking perceptron does

not show a significant superiority over the structured perceptron with WFST-based

confusion modeling. The performance differences between the algorithmic variants

become visible only by ordering them for a specific setup condition, and this ordering

also changes with respect to different setups.

More significant gains in semi-supervised modeling over the baseline appear when

the artificial N-best lists are combined with the real N-best lists to train the model

jointly. Using this approach the improvements in WER can reach the level that could

be obtained by doubling the matched data.

Our artificial hypothesis generation pipeline also employs pre-trained generative

language models, which are shown to aid in obtaining linguistically plausible word

sequences.

Anecdotal evidence has shown that the top 50 artificial hypotheses from the

confusion graph have a very different WE distribution than that of the ASR N-best

lists: it has a much narrower WE range with smaller WEs. Hence we specifically

sample 50 instances from the top 1000 in a way to match to the ASR WE distribution

in the ASRdist sampling technique. Experiments have shown that by this technique

we not only increase the diversity of the hypotheses in the artificial N-best lists, but

also obtain better WERs.

We see that the MT-based artificial hypotheses provide a better basis for training

the DLM, and that a significant WER reduction can be obtained using both of the

algorithms, the ranking version performing slightly better. Fusing the WFST and MT

confusions under different strategies yields a small improvement, closer to what the

system would give if real ASR data were used.
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5. UNSUPERVISED DISCRIMINATIVE LANGUAGE

MODELING

In Chapter 3, we investigated the case where the DLM is trained using matched

data, which is a combination of speech utterances and their reference transcriptions. In

Chapter 4, we investigated the case where the available matched data is not sufficient

to train a DLM, therefore used to train a CM instead. In this chapter we explore the

case where we cannot find any matched data at all. In other words, the acoustic data

(speech utterances) and their corresponding N-best lists are available, but they are not

transcribed, so the references do not exist. This leads us to train the DLMs without

supervision, i.e., without knowing the ground truths. Therefore, this way of training

is called the unsupervised training.

Our approach in unsupervised discriminative language modeling is to determine a

word sequence which can serve as the missing reference text, and apply this information

to (i) determine the ranks of the ASR outputs in order to train the discriminative model

directly as in the supervised case, or (ii) build a confusion model in order to generate

artificial training examples as in the semi-supervised case.

5.1. Choosing the Target Output in the Absence of the Reference

The reference of an utterance is an essential element in discriminative language

modeling as it provides the supervision for training. For training the DLM, it is needed

to determine the accuracy of the hypotheses, which in turn defines their target ranks

in the N-best list. For building the CM, the reference acts as the ground truth from

which the probabilities of confusions are derived.

When the reference is not present, one possible method to continue DLM training

is to find another word sequence that replaces it. Such a word sequence is called the

target output. In this section, we explore three ways to generate or choose the target

output, by investigating the variability in the N-best list.
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5.1.1. 1-best

The 1-best is the hypothesis in the N-best list which has the highest recognition

score. With the expectation that more accurate hypotheses will also have higher recog-

nition scores, a natural action would be to select the 1-best as the target output. In

this case, the 1-best will have zero word errors, and the WE (thus, the rank) of other

hypotheses will be computed by aligning each to the 1-best.

Although this gives a practical and easy replacement of the reference, choosing

the 1-best as the target output has a downside for the structured perceptron algorithm

setup: As shown in Section 3.2.1, the structured perceptron operates by comparing the

oracle hypothesis to the current best. With 1-best as the target output, since the oracle

and the current best hypotheses will always be the same, the structured perceptron

cannot make any model updates. On the other hand, the ranking perceptron algorithm

can still train the model by using the relationships between other hypotheses of the

N-best list.

5.1.2. Minimum Bayes Risk

The target output can also be derived by minimizing an error function, or max-

imizing an objective function over the N-best list. A method used in the literature

for this purpose is the Minimum Bayes Risk (MBR) [62,69,70]. The MBR value for a

target output candidate ŷ is defined as:

MBR(ŷ|x) =Eỹ|x[∆(ỹ, ŷ)]

=
∑
ỹ∈Ỹ

∆(ỹ, ŷ)p(ỹ|x)
(5.1)

where ∆(ỹ, ŷ) denotes the edit distance of the other hypotheses ỹ aligned to the candi-

date, and P (ỹ|x) denotes the posterior probability (recognition score) assigned to the

hypotheses by the ASR system. The MBR target output is the hypothesis which yields
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the lowest MBR score:

y = argmin
ŷ∈Ỹ

MBR(ŷ|x) (5.2)

5.1.3. Segmental MBR

The MBR technique stated above operates on the sentence level. It is possible

to adapt the behavior of MBR for the language unit level. In this technique, the

hypotheses are aligned unit-wise using the Levenshtein algorithm, and each aligned

piece is processed separately with the MBR formulation. This requires creating a token

confusion network (also known as the sausage), and finding the best path along this

graph from the first node to the last. This method is called Segmental MBR (SegMBR,

in short) [71]. Combining the outputs for each piece yields the final SegMBR target

output. Note that in this case, the target output may be different from any of the

hypotheses in the N-best list.

5.2. Experimental Setup

The experiments in this chapter all utilize Bogazici University Turkish Broadcast

News Database as before, but are varied in terms of the amount of data they use.

These will be explicitly stated in the experiments.

The ASR N-best lists include 50 hypotheses. In order to obtain equivalent results,

we limit the number of artificial hypotheses to 50 with the Top-50 hypothesis selection

scheme. For experiments which involve confusion modeling, we use the morph CM

with reweighting via the GEN-LM. The feature vector Φ consists of morph unigram

frequencies.

For all experiments, we train the discriminative models with the WER-sensitive

structured perceptron (WPer) and ranking perceptron (WPerRank) algorithms. Some

experiments in this chapter share the same data and algorithmic setup with experi-
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ments presented in earlier chapters, but provide different (better) WERs. This is due

to an increase in the number of epochs (a maximum of 50) and the range of algorith-

mic parameters. As before, all algorithmic parameters, together with the number of

iterations over the data, are optimized on the held-out set.

Please note that some experiments of this section include an acoustic corpus that

was collected at a later time than the data we have been using so far. Therefore we

need a second held-out and test set for experiments which involve this dataset. We will

call these sets h2 and e2, respectively. Table 5.1 shows the generative baselines and the

oracle rates of the new held-out and test sets. We also provide the rates of the older

sets for comparison.

Table 5.1. Baseline and oracle WER (%).

Subset h e h2 e2

Baseline 22.9 22.4 24.1 23.9

Oracle 14.2 13.9 14.6 14.4

5.3. Experimental Results

In this section we investigate the two possible scenarios that can occur in unsu-

pervised discriminative language modeling. The first of these is the unsupervised DLM

scenario, where the real ASR outputs are analysed to determine the target output and

DLM training is done using this target output as the reference, just like the supervised

case. The second scenario is the unsupervised CM, where the target output is utilized

in confusion modeling and the DLM is trained using artificial hypotheses generated

from this confusion model, just like the semi-supervised case. In a third direction, we

try to combine the data obtained in unsupervised DLM and unsupervised CM setups

to check if the performance can be improved. We finally compare the performances of

MT-based CMs and WFST-based CMs for the unsupervised setting.
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5.3.1. Unsupervised DLM Training

In the first experimental set we create a case that is similar to supervised training

where the DLM is trained using real ASR hypotheses. This time, however, we do not

have the manual reference transcriptions. We apply the three approaches presented in

Section 5.1 to choose the target output and use this as a reference to determine the

target ranks of the hypotheses.

These experiments use half of the dataset m as the unsupervised data. We

assume that we only have the acoustic speech utterances of this dataset, but not the

transcriptions. Due to its acoustic-only nature (A), we will denote it as mA1/2. Please

note that the fraction 1/2 does not necessarily correspond to specifically the first half of

mA. We apply two-fold cross validation by using the two halves interchangeably and

average the results when reporting.

The first three rows of Table 5.2 show unsupervised DLM training performance

in terms of WER with respect to the three target output selection approaches and two

DLM training algorithms on the held-out (h) and test (e) sets. The last row contains

the supervised case where the reference is used instead of the target output, and is

included for comparison.

Table 5.2. Unsupervised DLM training WER (%)(Baseline: h 22.9%, e 22.4%).

Target output
WPer WPerRank

h e h e

1-best 22.9 22.4 22.3 22.1

MBR 22.7 22.3 22.3 22.1

SegMBR 22.7 22.3 22.3 22.1

Reference 22.2 22.0 21.8 21.6

We see from Table 5.2 that WPerRank outperforms WPer regardless of what

word sequence is used as the target output. The choice of target output has no sig-
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nificant effect on DLM performance. Note that WPer with the 1-best setup yields the

same WER as the baseline, as expected. This observation is also consistent with [62].

The WER improvement with WPerRank over WPer on h is an absolute 0.4% with a

significance value of p < 0.001, which corresponds to 50% of the gain that could be

obtained under the supervised setup. This improvement is also reflected on the test

set with a WER of 22.1%.

5.3.2. Unsupervised CM Training

In the second set of experiments we investigate the case where the in-domain data

(the data we would like the DLM to be based on) consists only of text (T ), but we

also have some other acoustic data (A) available. We first build a CM using A. Unlike

semi-supervised training, the hypotheses in the N-best list are aligned to the chosen

target output instead of the manual reference to determine the confusion probabilities.

The learned CM can then be applied on T to generate artificial hypotheses for training

the DLM. We use the manual transcriptions of the remaining half of m as the text

data, to be able to obtain comparable results with the previous experiments. Table 5.3

shows WERs of the training algorithms with this setup.

Table 5.3. Unsupervised CM training WER (%)(Baseline: h 22.9%, e 22.4%).

Target output
WPer WPerRank

h e h e

1-best 22.7 22.3 22.5 22.3

MBR 22.9 22.4 22.5 22.2

SegMBR 22.8 22.4 22.5 22.2

Reference 22.6 22.2 22.4 22.1

The superiority of WPerRank over WPer is once again visible in Table 5.3, al-

though the WER has slightly increased with respect to the unsupervised DLM results

in Table 5.2. However, we now see that the gap between the semi-supervised case

(shown in the last row) and the unsupervised CM case has decreased, yielding only an
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absolute 0.1% change (which is not statistically significant) on both sets.

5.3.3. Combination of Data

In the experiments in Section 5.3.2, the (artificial) hypotheses which were used to

train the DLM were generated on a different dataset than the (real) hypotheses used

to train the CM. In this section we investigate whether there is any room for further

improvement on WER by using a combination of these two hypothesis sets for DLM

training. Table 5.4 shows the WER obtained with WPerRank for two experiments

using this idea.

Table 5.4. WPerRank data combination WER (%)(Baseline: h 22.9%, e 22.4%).

Method Training Data h e

Sup. + Semi-Sup. m1/2 +mT2/2 21.9 21.6

Unsup. DLM + Unsup. CM mA1/2 +mT2/2 22.2 22.0

The first row of Table 5.4 represents the case where the artificial hypotheses gen-

erated by the semi-supervised setup are combined with the real ASR hypotheses used

for confusion modeling. Compared to the last row of Table 5.2 (the supervised case), h

WER is slightly increased but e WER is unchanged. This means that adding artificial

hypotheses to the training set brings no additional gain over supervised training. A

similar comparison for the unsupervised setting is given in the second row of Table 5.4.

With 1-best chosen as the target output, the same operation offers a slight but not

significant improvement of 0.1% over the first row of Table 5.2.

5.3.4. MT-based Confusion Modeling for Unsupervised CM

Up to this section, confusion models were built using the WFST-based approach.

In this section we evaluate the MT approach for unsupervised confusion modeling.
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In the examples that follow, we assume that we have 60-hours of acoustic data,

which corresponds to mA1/3. The real ASR hypotheses obtained out of this dataset are

used either to train the DLM directly, or to build the CM. The second piece consists of

a text corpus of 34K sentences, which are the manual transcriptions of mT2/3. We employ

the second piece as the source text upon which artificial hypotheses are generated. As

in our earlier experiments, we intentionally select these transcriptions but not some

other text so that we can compare the artificial hypotheses with the real hypotheses of

the same source. There are about 34K unique morphs in mA1/3 and 19K unique morphs

in mT2/3. For simplicity, we will refer to the first set as A and the second set as T .

Table 5.5 presents the WERs obtained by the WPerRank algorithm on the held-

out and test sets. The first row represents the unsupervised-DLM scenario, where the

DLM is trained directly using the real ASR hypotheses (A). In the second row, A

is used to build a WFST-based CM, which in turn generates the artificial hypotheses

TWFST through unsupervised-CM. The third row is similar to the second, this time

using the MT-based approach to generate TMT .

Table 5.5. WPerRank WER (%) for different training data types.

Training Data h e

A 22.5 22.0

TWFST 22.5 22.3

TMT 22.4 22.0

We see from Table 5.5 that all three experiments provide lower WER than the

held-out baseline of 22.9%. Training the DLM using TMT improves the held-out accu-

racy by 0.5%, which is statistically significant at p < 0.001. The test set performance is

also better than using TWFST , which shows that the model obtained by the MT-based

approach is more generalizable.

The unsupervised-DLM experiment which uses real hypotheses A to train the

DLM shares the best test set WER with TMT . Note that in this experiment, the
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manual transcriptions are not known, and the MBR target outputs are used instead.

For comparison, if the manual reference transcriptions of A were available, the rate on

the same set would be 21.6% (not shown on the table). This suggests that unsupervised

training is able to provide half of the gains that could be obtained with the supervised

technique, without altering the test set accuracy.

Table 5.6. N-best combination WPerRank WER (%).

Training Data h e

A + TWFST 22.2 22.0

A + TMT 22.3 22.1

A + TWFST + TMT 22.2 22.0

It is also possible to combine the unsupervised-DLM and unsupervised-CM ap-

proaches by combining the real hypotheses of set A with the artificial hypotheses of set

T . Table 5.6 shows the performances for possible combinations of different data types.

We see that combining all three sources decreases the held-out WER by an additional

0.2%, down to 22.2%.

5.4. Data Dependency of DLM Training Scenarios

In the previous section we examined the performance of unsupervised DLM and

unsupervised CM techniques. With these experiments, we now have a complete set

of tools for handling all four discriminative language modeling scenarios that were

presented in Section 2.6.

One common observation with all the experiments that were done until now

was the dependency of discriminative language modeling performance with respect to

the amount of data. However, the experiments conducted in different sections were

not comparable to each other because they used different data pieces and algorithmic

setups. In this section we prepare a common setup, and compute the performance

of all four discriminative language modeling scenarios and their combinations, with a

special focus on the type and size of data involved in training.
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5.4.1. Supervised Training

We begin by investigating supervised modeling performance with respect to the

number of training examples. The set m of 188 hours is divided into three equal

parts, shown as m1/3,m2/3,m3/3. Table 5.7 presents the WERs obtained on h and e

with respect to gradually decreasing number of training examples. Please note that

for all experiments using part(s) of the dataset, the results are averaged through cross-

validation.

Table 5.7. Supervised training WER (%).

DLM set
h e

WPer WPerRank WPer WPerRank

m1/3 +m2/3 +m3/3 21.9 21.8 21.6 21.3

m1/3 +m2/3 22.0 21.8 21.7 21.5

m1/3 22.3 22.1 21.9 21.7

The implication of Table 5.7 is twofold: First, discriminative performance de-

grades with decreasing amount of training data. For instance, the improvement with

WPer over the held-out baseline (22.9% for h) drops from 1.0% to 0.6% absolute as

the training data is decreased to its one-third. Second, WPerRank outperforms WPer

in all cases. It provides an additional improvement of around 0.2% over WPer, which

is statistically significant at p < 0.001. The same improvement is also reflected on the

test set, which implies that WPerRank provides a more generalizable model due to its

broader utilization of the N-best list.

For an N-best list, the computational complexity of the WPerRank algorithm is

quadratic in N whereas the complexity of WPer is linear. As a comparison, for the

m1/3 +m2/3 +m3/3 case the CPU times for a single run (for a certain parameter set with

50 epochs over the training data) of the WPer algorithm is around 21 minutes whereas

a single run of a WPerRank algorithm takes about 51 minutes.
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5.4.2. Semi-supervised Training

In the second experiment set, we assume that we have only some part of matched

data (M), and investigate the ways to do better than the second and third rows of

Table 5.7 by adding other text data (T ) into training.

Table 5.8. Semi-supervised training WER (%) on h.

CM set DLM set WPer WPerRank

m1/3 mT2/3 22.7 22.5

m1/3 mT2/3 +mT3/3 22.6 22.5

m1/3 +m2/3 mT3/3 22.6 22.4

The first row of Table 5.8 represents the case where m1/3 is the available matched

data (M), and mT2/3 is some source text (T ). m1/3 is used to build a CM, which is

then used to generate artificial hypotheses out of mT2/3. In this experiment, we again

intentionally choose T to be the reference transcriptions of m2/3 but not some other

text from t, so that we are able to compare the artificial hypotheses to the real ASR

hypotheses of the supervised case. These hypotheses are in turn fed into DLM training.

The result is a 0.4% decrease in held-out WER by the WPerRank, which is half of the

improvement obtained in the supervised scenario (Table 5.7, row 3).

The second and third rows of Table 5.8 also show that doubling the number of

artificial hypotheses by adding more source text (mT2/3+mT3/3), and doubling the amount

of matched data to build a larger CM (m1/3+m2/3) may have a slightly positive effect on

the system performance. The test set WER for all three cases follow a similar behavior

(22.2% for WPer, 22.1% for WPerRank).

But there is still a way to decrease the WER, by reusing the CM data in DLM

training. For instance, the first row of Table 5.9 shows that combining the real ASR

hypotheses of m1/3 (shown in parentheses) with the artificial hypotheses of mT2/3 results
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Table 5.9. Combining supervised and semi-supervised setups, WER (%) on h.

CM set DLM set WPer WPerRank

m1/3 (m1/3)+m
T
2/3 22.3 22.0

m1/3 (m1/3)+m
T
2/3 +mT3/3 22.3 22.1

m1/3 +m2/3 (m1/3 +m2/3)+m
T
3/3 22.1 21.7

in an additional 0.5% improvement over Table 5.8. The held-out WER of 22.0% by

WPerRank is slightly better than its supervised counterpart (m1/3, 22.1%) shown on the

third row of Table 5.7. This difference is significant at p < 0.001. The performance can

be further improved by doubling the amount of matched data (m1/3 + m2/3). Analysis

has shown that this improvement is due to the availability of more real hypotheses for

training the DLM, rather than an effect of a larger CM. With WPerRank, the test set

WER of this last setup is 21.4%, which is better than the second row but worse than

the first row of Table 5.7.

5.4.3. Unsupervised DLM Training

As a third experiment set, we assume that we have only acoustic data with

no manual transcriptions (A), and we investigate the performance of target output

selection approaches. Table 5.10 shows held-out WERs over the real ASR hypotheses

of mA1/3.

Table 5.10. Unsupervised DLM training with mA1/3, WER (%) on h.

Target output WPer WPerRank

1-best 22.9 22.5

MBR 22.7 22.5

SegMBR 22.7 22.5
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The first observation is that with WPer and 1-best selected as the target output,

no gains could be obtained, as expected and explained in Section 5.1.1. Choosing the

MBR or SegMBR hypotheses as the target output, it is possible to decrease the WER

by 0.2%. Regardless of the target output choice, improvements up to 0.4% over the

baseline (significant at p < 0.001) could be achieved with WPerRank. WPerRank also

outperforms WPer on the test set by 0.3% (22.0%). Further experiments have shown

that the WER does not change significantly when we add more acoustic data.

In the last experiment, the DLM was trained using the acoustic component of

the set m. One might argue that this might create a unfair biasing effect for the im-

provement in system performance, since m was already used in training of the baseline

system. Therefore, in this new set of experiments we investigate the case where the

acoustic data used to train the DLM is completely unknown to the baseline system.

Table 5.11 compares the performance of set a to set mA = mA1/3 + mA2/3 + mA3/3 on the

second held-out (h2) and test (e2) sets. We see that using the set a for 1-best unsu-

pervised DLM training yields the same held-out WER (23.6%), but performs better

by 0.1% on the test set. This result also suggests that using matched data which was

previously utilized in training of the baseline system does not yield any positive biasing

effect on DLM performance.

Table 5.11. WPerRank 1-best unsupervised DLM training WER (%).

Unsup. DLM set h2 e2

mA 23.6 23.4

a 23.6 23.3

5.4.4. Unsupervised CM Training

In the fourth experiment set, we use the acoustic data A to train the CM in an

unsupervised way, via aligning the real hypotheses to the chosen target output (the

1-best in this case). The CM is used to generate artificial hypotheses from the source

text T . Optionally, we can include CM training data into DLM training, as done in

the semi-supervised setup.
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Let us now assume that some part of the set m is untranscribed (e.g. mA1/3 +mA2/3),

and the rest has reference transcriptions but not the corresponding audio (e.g. mT3/3).

In this subsection we train the unsupervised CM with part(s) of mA and generate

artificial hypotheses from mT . We choose the 1-best target selection scheme for all

experiments in this section.

Table 5.12. Unsupervised CM training WER (%) on h.

Unsup. CM set DLM set WPer WPerRank

mA1/3 mT2/3 22.8 22.5

mA1/3 (mA1/3)+m
T
2/3 22.7 22.3

mA1/3 +mA2/3 mA3/3 22.8 22.4

mA1/3 +mA2/3 (mA1/3 +mA2/3)+m
T
3/3 22.7 22.2

Table 5.12 shows unsupervised CM training performance on the h set. The CM

set can also be added to DLM training, just like the semi-supervised case. In that sense,

the first and second rows of Table 5.12 are analogous to the first rows of Table 5.8 and

Table 5.9, respectively.

We see from the table that WPerRank is again more efficient than WPer, yield-

ing significant improvements over the baseline setup even with this limited scenario.

Combining real but unsupervised hypotheses (mA1/3) with artificial examples generated

by the unsupervised CM (mT2/3) decreases the WER down to 22.3%. This value is

again significantly (p < 0.05) better than the 22.5% WER obtained by training with

only unsupervised DLM using the same set. Increasing the amount of the CM set

(mA1/3 + mA2/3) does not yield any change in WER for WPer but a 0.1% decrease for

WPerRank. Further experiments (not shown here) have also shown that using MBR

or SegMBR hypotheses as the target output, or increasing the amount of DLM sets do

not alter the system performance.
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5.4.5. Combination of Methods

Up to this section, the experiment sets included individual performances of the

four basic discriminative modeling scenarios. Based on these results, in this section we

explore the effect of combining different types of data (M, A and T ) on the system

accuracy. Figure 5.1 is an illustration of WERs obtained on the h set with WPerRank,

for selected experiments that combine different types and amounts of training data.

The relevant components of the set m (either m, mA or mT ) are used for training.

Figure 5.1. WPerRank WER (%) on h for different types and amounts of training

data.

In Figure 5.1, the diamonds represent matched data (M), the empty rectangles

represent acoustic data (A), and the full circles represent text data (T ). In terms

of training scenarios, the diamonds stand for the supervised setup and the empty

rectangles stand for the unsupervised DLM training setup. A circle tied to a diamond

stands for the semi-supervised setup whereas a circle tied to a rectangle stands for the

unsupervised CM setup. From left to right, we include an additional piece of data into

training. The experiment set shown on the upper part of Figure 5.1 is composed of

unmatched data. The lower set, on the other hand, has at least one piece of supervised

(matched) training data.
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Let us begin by investigating the lower experiment set that includes at least one

piece of matched data. The all-supervised-training setup shown with the path at the

very bottom of the graph is a graphical representation of Table 5.7. Here the WER

is decreased with each additional M piece. In fact, we can achieve a similar WER

when the third piece is T instead of M. We also observe a significant decrease in

WER by joining a single piece of the three data types, which is a combination of

supervised, semi-supervised and unsupervised DLM settings. The least effective path

in this experiment set seems to be adding two pieces of A onto M.

Starting with one piece of A in the upper experiment set, we see that adding one

piece of T decreases the WER on the contrary to adding one other piece of A, which

has no significant effect on the system accuracy. We also observe that further addition

of the same data type (either A or T ) does not change the WER. The best case in

this experiment set is the case where two pieces of A are combined with one piece of

T . It is interesting to see that with this approach the WER can be decreased by 0.3%

to less than 22.2%, which is very close to what we would obtain if we had one piece of

M (22.1%). The difference between the two results is not statistically significant.

5.5. Analysis of Results

In this section we elaborate on the experimental results presented in Section 5.4.

We first give an analysis on the optimal combination of data types. We then discuss

the effectiveness of artificial hypotheses. We finally consider the effect of using out-of-

domain data instead of an in-domain text source.

5.5.1. Optimal Data Combination

The results in Section 5.4.5 hinted that combining three different types of data

(M, A and T ) for training the DLM can yield a cumulative improvement in ASR

accuracy. However, that experiment set only allowed an equally-balanced combination

of data, as each type was composed of one-third of the whole training set. An important

question that arises in this regard is how to arrange the data balance in order to achieve

the lowest WER. This is the first question that we would like to answer in this section.



85

In this new experiment we divide the training set m into twelve equal parts as

opposed to three. We assume that one piece is fixed to be matched data (M). This

piece is included to DLM training as well as used to build a CM. The remaining

eleven pieces will be split into acoustic (A) and textual (T ) components, which will

produce their own hypotheses through semi-supervised and unsupervised DLM settings

as exemplified in earlier sections.

Figure 5.2 presents the held-out WERs of such an experiment set with respect

to the number of pieces assigned to the T and A components. Please note that the

number of both components sum up to eleven, so that the total amount of training

data is the same for all instances.

T:  0 1 2 3 4 5 6 7 8 9 10 11

A:11 10 9 8 7 6 5 4 3 2 1 0

Series1 22.3 22.2 22.1 22.1 22.2 22.2 22.2 22.2 22.2 22.4 22.4 22.5

22.1

22.2

22.3

22.4

22.5

Figure 5.2. WPerRank WER (%) on h for different number of T and A data pieces

for training.

The first instance on the graph is the result of combining eleven pieces of A

with the base piece M, which yields a WER of 22.3%. Then we start including one

additional piece of T while discarding a comparable amount of A, which at first causes

a gradual decrease in WER, down to 22.1%. This T /A balance of 2/9 (or, 3/8) turns

out to be the ideal combination of different types of data in order to achieve the best

performance under such setting. Including more T in place of A begins to increase the

WER to the level of 22.5%. This level is in fact equal to training the DLM with only

one piece of M, without combining with any A or T .
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5.5.2. Effectiveness of Artificial Hypotheses

The second question that we would like to answer in this section is the effective-

ness of the artificial hypotheses generated by the semi-supervised and unsupervised

CM setups. We examine this by showing the similarity of the artificial hypotheses to

the real ASR hypotheses of the supervised setup, measured by the number of unique

morphs that are shared across these sets and their KL divergence.

Table 5.13. Similarity of artificial hypotheses to real hypotheses.

Setup
Number of morphs WER (%)

Total New Utilized on e

Supervised 33.8K - 33.0K 21.7

Semi-supervised 18.5K 1.0K 14.5K 22.1

Unsupervised CM 19.7K 1.2K 15.4K 22.2

Table 5.13 presents the number of unique morphs that are input to and utilized by

the WPerRank algorithm along with their WER on e, for different training setups which

use the m3/3 piece of the dataset. We see that the real N-best lists of this piece contain a

total of 33.8K unique morphs. Using m1/3 to build the CM, we can artificially generate

18.5K unique morphs for the semi-supervised setup and 19.7K unique morphs for the

unsupervised CM setup. Therefore, we see that the artificial hypotheses have a much

narrower coverage of the morph feature space than the real hypotheses. Nevertheless,

there exists around 1K morphs in each set that do not occur in the supervised set. This

result shows the efficiency of the confusion modeling technique that we use in handling

unseen data.

The fourth column of Table 5.13 shows the number of morphs that are actually

used by the WPerRank algorithm, i.e., these are the morphs that have nonzero weights

after training the DLM. We see that about 97% of the 33.8K morphs in real ASR

hypotheses are utilized by the algorithm, whereas for the artificial sets, only up to 80%

of the morphs can be utilized. Looking at the last column, we can deduce that the total
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and utilized number of morphs have a direct influence on the test set performance.

Table 5.14. KL divergence of artificial examples.

Supervised Semi-supervised

Unsupervised CM 0.040 0.019

Semi-supervised 0.034

Another type of comparison across these hypothesis sets is their KL divergences,

shown in Table 5.14. These values are obtained by comparing the frequency histograms

of one set to another. We observe that, although the morphs in the semi-supervised

setup span a smaller portion of the feature space, their distribution is more similar to

the supervised (real) morphs than the morphs in the unsupervised CM setup. This is

considered to be one of the reasons for the lower WER.

5.5.3. Effect of Using Unmatched Audio and Out-of-Domain Source Text

The source text T we have used up to now, mT , is in-domain as it is composed

of the reference transcriptions of spoken utterances in our dataset. It is also possible

to use an out-of-domain text corpus instead of, or in addition to, the in-domain data.

The performance of discriminative language modeling under a semi-supervised

setting that uses out-of-domain data as the source text has previously been investigated

in the study by [72]. This study uses the same broadcast news dataset as ours as the

in-domain data, together with a collection of sentences from newspaper articles as the

out-of-domain data. The results show that under some conditions, similar or better

performance can be achieved by using at least 10 times more out-of-domain data instead

of in-domain data.

In order to extend the work in [72] to unsupervised CM setting, in this section

we experiment with the effect of using out-of-domain data t, explained in Section 2.4.

We generate the CM using the mA and a sets and present the results in terms of WPer

and WPerRank held-out WER in Tables 5.15 and 5.16.
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Table 5.15. Unsupervised CM training with mA and t, WER (%) on h.

Unsup.

CM set

(Unsup.)

DLM set
WPer WPerRank

(mA1/3 +mA2/3) 22.9 22.4

mA1/3 +mA2/3 t 22.7 22.5

mA1/3 +mA2/3 (mA1/3 +mA2/3)+t 22.7 22.4

(mA) 22.9 22.4

mA t 22.7 22.5

mA (mA)+t 22.7 22.3

Table 5.15 shows the h set performance of experiments where CM is trained using

whole or parts of mA. In the first row, we see that if mA1/3 + mA2/3 is used to train a

DLM the unsupervised way, WPerRank provides a WER of 22.4% on the held-out

set, which is a 0.5% improvement over the baseline. In the second row, the DLM is

instead built on artificial hypotheses generated from the out-of-domain source text t,

via an unsupervised CM trained using mA1/3 + mA2/3. Finally in the third row, these

two hypothesis sets are combined to train a single model. We observe that although

adding out-of-domain data into training has no positive effect on the performance of

WPerRank, it yields a 0.2% decrease for WPer.

The setups shown on the second and third rows of Table 5.15 use the same

CM with the last two rows of Table 5.12. The only difference is that the in-domain

source text (mT3/3) of approximately 35K utterances is replaced by the out-of-domain

newspaper corpus t of 500K sentences. Comparing the WER of 22.4% shown in the

third row with the corresponding WER of 22.2% shown in the last row of Table 5.12,

we see that the system performances for both setups are not significantly different,

and that out-of-domain data can be a viable alternative to using in-domain data for

unsupervised training of DLMs.
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In the second part of Table 5.15, the unsupervised CM is built upon all of mA.

This time, combining the real hypotheses with the artificial hypotheses from t beats the

unsupervised DLM WPerRank result (22.3% vs 22.4%). This result is also consistent

with our previous observations in Figure 5.1 that the artificial hypotheses become more

effective with a well-trained CM.

Table 5.16. Unsupervised CM training with a and t, WER (%) on h2.

Unsup.

CM set

(Unsup.)

DLM set
WPer WPerRank

(mA) 24.1 23.6

mA t 24.0 23.8

mA (mA)+t 23.9 23.7

(a) 24.1 23.6

a t 24.0 23.8

a (a)+t 23.8 23.5

In Table 5.16, we repeat the experiments using the set a instead of m to build

the CM. We report the WERs on the set h2 since we employ a as the training data.

Here WPer achieves an improvement of 0.3% over the baseline on h2 by combining the

artificial N-best lists of t with the real N-best lists of a. With WPerRank the improve-

ment over the baseline is 0.6%, however most of this gain comes from unsupervised

DLM training, which was already reported in Table 5.11. Comparing the performance

of similar experiments on the first and second parts of Table 5.16, we see that the WER

values are not significantly different. This result suggests that for unsupervised CM

training, there is no difference between using a dataset of unmatched audio a which is

completely unknown to the baseline system and mA that was used in training of the

baseline acoustic model.
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5.6. Discussion

In this chapter we focused on the unsupervised discriminative language model-

ing problem where the manual transcriptions of acoustic inputs are not available for

training the DLM. We applied three different methods to choose the target output to

replace the manual reference. We trained the discriminative models by (i) using the

target output to determine the ranks of the real ASR hypotheses and (ii) building a

confusion model to generate artificial examples on a text corpus.

The ranking perceptron algorithm is more suited to unsupervised DLM training

problem in that it offers better system accuracies than the structured perceptron. By

combining the two hypothesis sets for CM and DLM training, a slight decrease in WER

can be obtained.

We also compare WFST- and MT-based artificial hypothesis generation approaches

for unsupervised discriminative language modeling. These techniques allow us to make

use of acoustic and textual data that are coming from different sources to train the

discriminative language model, with no supervision at all. Experiments show that the

MT-based approach is able to yield to slightly better WER than the WFST-based

approach, although the superiority of MT-generated hypotheses are not as apparent as

semi-supervised training.
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6. CONCLUSION

In this thesis we apply discriminative language modeling techniques for Turkish

ASR, with a special focus on approaches to improve training accuracy for cases when

the amount of manually transcribed acoustic data is limited or not available at all. For

the semi-supervised setting we build a WFST-based confusion model, and show that

it is possible to decrease the WER significantly by combining real ASR hypotheses

with generated artificial hypotheses. For the unsupervised setting, we compare three

methods to choose a target output which replaces the missing reference text in order

to define the ranks of the hypotheses for training the DLM. We adapt the confusion

modeling technique for the unsupervised case, and show that even with acoustic data

that is not manually transcribed and with text data not accompanied by any recording,

it is possible to decrease baseline WERs significantly.

We use and compare the performance of three algorithms, namely, perceptron,

MIRA and SVM, for both classification and reranking. We apply thresholding as a

dimensionality reduction technique on the sparse feature set, and some hypothesis

selection strategies to decrease the complexity of training.

Experiments have shown that the reranking variant of the algorithms outper-

forms the structured prediction variants for all scenarios. This superiority comes from

considering each hypothesis in the N-best list instead of only two as in the former. The

downside, however, is the increased training time due to algorithmic complexity.

The main advantage of unsupervised DLM training is that it shows improvements

in ASR accuracy even when matched acoustic and text data are not present. The

reranking approach can also be efficiently applied to unsupervised training. We believe

that the techniques developed in this study will be beneficial especially to build ASR

systems for under-resourced languages, where it is hard to find a large amount of

transcribed acoustic data.



92

Although we investigate discriminative language modeling for ASR on Turkish,

the techniques we developed are applicable to any language, thanks to the feature-

based representation of the linear model. Any grammatical, syntactical or semantical

information can also be easily integrated into the modeling scheme.

Some prospective topics on the area would be investigating the effect of using

larger N-best and feature sets. The n-gram representation is very sparse and high-

dimensional and an interesting future research direction is to represent such a long

sparse vector using fewer features. The variability of the artificial hypotheses also

seems to be an important factor in system performance, and it would be worthwhile to

think more on the ways to improve variability within the artificially generated N-best

lists.

The use of discriminative language modeling is not only limited to improving

system performance for automatic speech recognition, and we believe that the tech-

niques developed in this study can also be beneficial for other tasks such as machine

translation and keyword search.
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18. Arısoy, E., M. Saraçlar, B. Roark and I. Shafran, “Syntactic and sub-lexical features

for Turkish discriminative language models”, Proc. ICASSP , pp. 5538–5541, 2010.
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APPENDIX A: RELATIONSHIP BETWEEN PerRank

AND SVMrank

If ra � rb, we require f(a) > f(b) where f(u) = 〈w,Φu〉. With the ranking

perceptron, the update rule is

w = w + g(a, b)(Φa −Φb) (A.1)

This is applied when f(a) < f(b). So the error function we should minimize is

E =
∑
ra�rb

f(a)<f(b)

[f(b)− f(a)] (A.2)

If we use gradient-descent, we get

∆w = −η[∇wf(b)−∇wf(a)] = η(Φa −Φb)

If we penalize differences with respect to their rank differences as given by a function

such as g(a, b):

E =
∑
ra�rb

f(a)<f(b)

[f(b)− f(a)]g(a, b) (A.3)

when we use gradient-descent, we get

∆w = ηg(a, b)(Φa −Φb)

which is the update rule of Eq. A.1 with η = 1.
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Let us now consider the case of SVM. We require f(a) > f(b), so when this is

not satisfied, we need slack variables ξab to make up for the difference:

f(b) ≤ f(a) + ξab,∀ra � rb

and the total error is

min
∑
ra�rb

ξab

subject to f(a) ≥ f(b)− ξab (A.4)

If we require a difference of at least 1 unit as the margin, the constraints become

subject to f(a) ≥ f(b) + 1− ξab

We can add a L2 regularizer for smoothness and the error becomes

min
1

2
〈w,w〉+ C

∑
ra�rb

ξab

where C denotes the relative weights of the first regularizer and the second data-misfit

terms. With the perceptron too, if we like we can add a similar term—this is known

as “weight decay” in neural network terminology.

So we see that, as would be expected, the ranking perceptron and ranking SVM

minimize very similar error functions with some slight differences: (1) SVM enforces

a minimum margin between differences, (2) In perceptron, error terms are weighted

by the g(ra, rb) term whereas for SVM, all have the same weight of C, and (3) SVM

has an additional regularizer term—in perceptron, we have tried a version with weight

decay but this did not a cause a significant difference.




