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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Electrical-Electronics Engineering
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Bogaziçi University. I would like to express my sincere thanks to my numerous friends;
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ABSTRACT

TYPE-2 FUZZY CLUSTERING FOR FUZZY MODELING

APPLICATIONS

In this study, a novel approach is described to the design of an interval type-

2 fuzzy neural system (IT2 FNS). It differs from the classical IT2 FNS in its use

of parameterized conjunctors. In the optimization of the IT2 FNS, the membership

functions are kept fixed and only the parameters of the conjunctors and the parameters

in the consequent are tuned. In this study, the gradient based learning algorithm is

used. The approach is tested for the modeling of a benchmark nonlinear function and

for the wheel slip control of a quarter car model (QCM). In the stated applications, in

the absence of any expert knowledge, some knowledge about the system is gained by the

use of the interval type-2 fuzzy c-means (IT2 FCM) clustering algorithm. However, this

requires the number of classes to be known beforehand. To alleviate this problem, some

validity indices that have been suggested in the literature and a novel validity index that

carries less computational burden are considered to determine the number of classes and

the number of fuzzy rules. Another contribution to the existing literature is that in the

design of an IT2 FNS, recursive FCM clustering algorithm is used and the designed

algorithm is applied in control applications. The center and the standard deviation

values of the interval type-2 Gaussian membership functions at the antecedent part of

the Takagi-Sugeno-Kang type fuzzy rules are determined by the use of the recursive

FCM clustering algorithm. The parameters at the consequent parts are tuned based

on the gradient descent approach. The effectiveness of the designed algorithm is tested

by simulation studies on a 2-DOF helicopter system and by experimental studies on

a real-time servo system. The performance of the proposed method is compared with

a traditional neuro-fuzzy structure adopted from the literature. In addition, IT2 FNS

with recursive fuzzy c-means clustering is used with elliptical membership functions.
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ÖZET

BULANIK MODELLEME UYGULAMALARI İÇİN TİP-2

BULANIK KÜMELEME

Bu çalışmanın özgün değerlerinden bir tanesi aralık değerli tip-2 nöro-bulanık

sistemlerinin tasarımında parametreli t-normlar kullanılmasıdır. Aralık değerli tip-

2 nöro-bulanık sistemlerinin optimizasyonunda öncül kısımdaki üyelik fonksiyonlarının

parametreleri sabit tutulmuş ve parametreli t-normların parametreleri ile bulanık kural-

ların soncul kısmındaki parametreler adapte edilmiştir. Bu çalışmada gradyan tabanlı

öğrenme algoritması kullanılmıştır. Önerilen yaklaşım doğrusal olmayan fonksiyon

modellenmesi ve çeyrek araç modelinin kayma değeri kontrolünde kullanılmıştır. Uz-

man bilgisinin eksik olduğu bu uygulamalarda sistem hakkındaki bilgi aralık değerli

tip-2 bulanık c-ortalamalar kümeleme algoritması ile elde edilmiştir. Bu kümeleme al-

goritmasında küme sayısı önceden verilmelidir; fakat, küme sayıları her zaman önceden

bilinemez. Bu sorunu gidermek için literatürde bilinen ve ayrıca bu çalışmada önerilen

doğruluk indeksleri nöro-bulanık sistemlerin kural sayısını belirlemede kullanılmıştır.

Bu çalışmanın diğer bir özgün değeri ise, aralık değerli tip-2 nöro-bulanık sistemler,

tekrarlamalı bulanık c-ortalamalar kümeleme algoritması ile birlikte kontrol uygula-

malarında kullanılmasıdır. Takagi-Sugeno-Kang (TSK) kural yapısının öncül kısmında

bulunan Gauss üyelik fonksiyonlarının merkez ve standart sapma değerleri tekrarla-

malı bulanık c-ortalamalar kümeleme algoritması ile, soncul kısımındaki polinom kat-

sayıları ise gradyan tabanlı öğrenme algoritması ile bulunmuştur. Önerilen yaklaşım

simülasyon tabanlı olarak iki serbestlik dereceli helikopter ve gerçek zamanlı olarak

servo sistemine uygulanmış ve geleneksel nöro-bulanık sistem ile karşılaştırılmıştır.

Ayrıca önerilen yaklaşım eliptik üyelik fonksiyonları ile de kullanılmış ve iki serbestlik

dereceli helikopter üzerinde simülasyon tabanlı olarak test edilmiştir.
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1. INTRODUCTION

In recent decades, the systems that the control engineers have to deal with have

become more and more complex and therefore difficult to handle. Conventional tech-

niques based on hard computing [1] with precise, rigorous, and quantitative analytical

models are found to be inadequate in most cases as, in the real world, most systems

encounter many uncertainties and imprecise information due to the dynamics of the

external environment and the inner uncertainties of the systems. Soft computing (SC)

methodologies such as Fuzzy Logic (FL), Neural Networks (NNs), Probabilistic Rea-

soning (PR), Evolutionary Computation (EC), Machine Learning (ML), are therefore

often resorted to, to alleviate the difficulties. It is to be noted that these methods are

complementary rather than competitive and can be used together to achieve better

results [1]. One of the fundamental constituents of soft computing is fuzzy logic and it

is the focus of this study.

In the literature, Fuzzy Logic Systems (FLSs) have been used with great success

for more than four decades in many different areas, ranging from decision making, mod-

eling, identification, telecommunications to control of systems [2–12]. In [2], the aim

is to order alternatives by using fuzzy multiple criteria decision making (MCDM) with

a fuzzy number dominance based ranking approach. The effectiveness of the proposed

approach is illustrated through a numerical problem, namely a facility location selec-

tion problem. In [3], simple parameterized conjunctions are used for nonlinear function

approximation. In [4], fuzzy modeling of nonlinear systems based on improved fuzzy

clustering algorithm is realized. In the study, the fuzzy clustering algorithm is improved

by using a new objective function and a rule reduction is performed by using QR de-

composition. In [5], a complex industrial process, the ball mill circuit of a cement mill,

is controlled by a high precision sampling fuzzy logic controller with self-optimizing

algorithm. The proposed controller is able to provide stability of the complex process.

In [6], fuzzy logic controller based variable structure control is used in the control of

an inverted pendulum. The obtained results indicate that the proposed algorithm is

robust and is able to allay the chattering problem. In [7], the nonlinear dynamics of an
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antenna is modeled by a Takagi-Sugeno neuro fuzzy model in which the membership

function values are initialized by the fuzzy clustering algorithm. The results illustrate

that Takagi-Sugeno fuzzy structures are able to model nonlinear systems with high

accuracy. In [8], the series branch of the unified power flow controller (UPFC) is con-

trolled by using recurrent fuzzy neural controllers. The proposed algorithm is used to

improve the performance of the dynamic P-Q control. In [9], a relatively novel ap-

proach, termed Intuitionistic Fuzzy Sets (IFSs), is discussed in terms of its historical,

theoretical and application aspects. In [10], a Takagi-Sugeno (TS) fuzzy model based

integral sliding mode control (ISMC) technique is presented and the proposed approach

is tested on the attitude control of a spacecraft. Its performance is compared with TS

fuzzy model based sliding mode control (SMC) and it is seen that TS-SMC is more

sensitive to uncertainties as compared to TS-ISMC. In [11], networks that use dynamic

transmission control protocol (TCP) are modeled by a perturbed TS fuzzy system.

Subsequently, based on this model, a robust fuzzy congestion controller is devised for

the TCP/Active Queue Management (AQM) router. The simulation results indicate

the robustness of the proposed approach with the dynamic TCP system. In [12], a

self-tuning of 2 degrees of freedom (DOF) control algorithm is proposed for the control

of a SISO helio-crane system and its performance is compared with fuzzy predictive

functional control (FPFC). The design is based on a Type-1 fuzzy model of the system.

The evolving fuzzy structure of the proposed approach uses recursive Gustafson-Kessel

clustering.

In recent years, the integration of soft computing methodologies such as the

combination of fuzzy logic and neural networks, i.e., fuzzy neural networks (FNNs), are

commonly used in identification and control applications to benefit from the advantages

of both. The usage of neural networks in fuzzy logic systems may increase the accuracy

of the model due to their self-learning capabilities [13]. In [14], an adaptive fuzzy neural

network with a novel monitoring controller is used in path planning of a defensive

missile. The proposed approach is used with the principle of command line-of-sight

(CLOS) missile guidance law and its performance is compared with the cerebellar model

articulation controller (CMAC). It is concluded that the proposed approach shows more

efficient tracking performance as compared to CMAC and carries less computational
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burden. In [15], a fuzzy-Gaussian-neural-network (FGNN) controller is combined with

a supervisory controller (SFGNN) and the proposed approach is used in mobile robots

for path tracking. The strength of the method is validated through simulation results

and compared with PID and FGNN controllers. It is seen that the presented approach

has better tracking performance and less computation burden.

In many real world applications, most systems encounter many uncertainties and

imprecise information due to the dynamical external environment and the inner un-

certainties of the systems. The FNNs seen in literature generally use type-1 fuzzy sets

as in the examples cited. The use of such fuzzy sets in the antecedent and/or the con-

sequent parts of the fuzzy rules may not be able to handle the uncertainties discussed

above since type-1 fuzzy membership functions are precise [16]. Type-2 fuzzy sets are

preferable instead of type-1 fuzzy counterpart in cases when the level of uncertainty

is relatively high, because type-2 fuzzy sets are able to represent these uncertainties

in terms of their membership functions. In [17], three types of type-2 Takagi-Sugeno-

Kang (TSK) fuzzy structure are presented. In the study, it is claimed that the proposed

type-2 TSK Fuzzy Logic Controllers (FLCs) should be preferred in cases when linguis-

tic uncertainties exist. In [18], the differences between type-2 and type-1 TSK FLSs are

given and their modeling performance is compared with each other. Both algorithms

are tested on a nonlinear function approximation and the simulation studies show that

type-2 TSK FLS is more robust than its counterpart. In [19], a novel modeling ap-

proach based on type-2 FLS is developed for modeling application with uncertainties.

The proposed approach is tested on modeling the characteristic of a photovoltaic ar-

ray. The obtained results illustrate the effectiveness of the algorithm. In [20], solar

power plant is modeled using three TSK fuzzy models; type-1 antecedents and crisp

consequents, type-1 antecedents and consequents, and the last model is the interval

type-2 antecedents and crisp consequents. The simulation results show that the type-2

TSK fuzzy system has better modeling performance compared to other fuzzy models

even in the presence of noise in the measurements. In [21], an interval type-2 Takagi-

Sugeno-Kang fuzzy neural system (IT2TFNS) with an on-line adaptive controller that

uses a stable simultaneous perturbation stochastic approximation (SPSA) algorithm is

suggested for the control of nonlinear systems. Its performance is tested in tracking
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control of a Chua’s chaotic circuit and in a real-time application, namely the tem-

perature control of a water bath. The results obtained are compared with a type-1

Takagi-Sugeno-Kang Fuzzy Neural Network (TSK-FNN) and a traditional IT2TFNN.

The simulation results show the effectiveness of the proposed approach. In [22], a type-

2 Takagi-Sugeno-Kang fuzzy neural system (FNS) is presented for the identification of

a dynamical plant and for the speed control of a servo system and its performance is

compared with a type-1 FNS. It is observed that the T2 FNS system is able to handle

the uncertainties with less transients as compared to the type-1 fuzzy structure and

it has less root mean square error (RMSE). In [23], to enhance the robustness of the

biped walking robots under the conditions of complex process and measurement noise,

a type-2 fuzzy logic controller (T2FLC) with a state estimator that is based on the

Square Root Unscented Kalman Filter (SRUKF) is suggested. The performance of the

proposed approach is compared with a PID controller, a type-1 fuzzy logic controller

(T1FLC), and a traditional T2FLC. The simulation results show that, especially un-

der the conditions of strong process and measurement noise, the proposed approach

has a better value for the mean of the ZMP stability margin (MZSM) as compared

to some other methods from the literature. In this dissertation, interval type-2 fuzzy

logic system is used with the combination of neural networks to take advantage of the

both approaches.

This study presents a novel approach that uses type-2 fuzzy logic systems with

parameterized conjunctors. In traditional type-1 FLSs, a sufficiently accurate fuzzy

logic model cannot be obtained in most cases. Therefore, the traditional type-1 FLSs

are generally used with some optimization techniques [24]. A common approach to

the optimization process is the tuning of the parameters of the membership functions.

However, this may lead to a distortion or loss of the expert knowledge about the

system. To prevent this, the use of generalized conjunction (G-conjunction) operators

are proposed in the literature [25,26]. In the approach, the optimization of the model is

achieved by the adaptation of the parameter of the conjunctor. The motivation behind

the study is to obtain an optimal fuzzy model without changing the parameters of the

antecedent membership functions which are obtained by using an interval type-2 fuzzy

c-means (IT2 FCM) clustering algorithm.
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Clustering is an unsupervised classification algorithm that has been used in many

interdisciplinary areas, such as data mining, image analysis, pattern recognition, bioin-

formatics, etc. [27–29]. For a general overview the reader may refer to the survey

papers [30–32]. In this study, IT2 FCM clustering algorithm is used to determine the

center values of the antecedent membership functions [33].

One major disadvantage of FCM clustering algorithm is that the number of clus-

ters has to be fixed a priori. However, the data sets may not always be well separable.

To overcome this problem, the use of a validity index is proposed. A summary of fuzzy

clustering indices proposed in the literature is given in [34]. There still is the problem

however that a certain validity index may not always be capable of finding the cluster

numbers of all data sets [34].

In this study, Partition Coefficient (PC) [35,36], Partition Entropy (PE) [37,38],

Xie and Beni [39], Fukuyama Sugeno (FS) [40], and PBM [41] validity indices are

used in the determination of the optimal number of clusters in a number of real and

artificial data sets. In addition, a new validity index is proposed and compared with

the performances of the stated validity indices and seen to be more efficient. The

proposed validity index is then used to determine the number of fuzzy rules of IT2

FNS with parameterized conjunctors and the IT2 FCM clustering algorithm is applied

to determine the centers of the membership functions. The developed IT2 FNS with

parameterized conjunctors is used in two applications, namely for the modeling of

a benchmark nonlinear function and the wheel slip control of a Quarter Car Model

(QCM).

Most systems encountered today are time varying and control or modeling of

such processes should be done in a recursive manner. In this study, an interval type-2

FNS with a recursive fuzzy c-means clustering algorithm is used in tracking a specified

trajectory of a 2-DOF helicopter and in the speed control application of a servo sys-

tem. The main contribution of this part of the study is that the interval type-2 FNS

is used with a recursive fuzzy c-means clustering algorithm [42] based on Euclidean

distance and this designed algorithm is used in control applications. The recursive
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fuzzy c-means clustering algorithm is used to identify the center and the standard de-

viation values of the interval type-2 Gaussian membership functions at the antecedent

parts of the TSK-type fuzzy rules. The parameters at the consequent parts of the

fuzzy rules are tuned based on gradient descent approach. The proposed approach

is first tested by simulation studies for position tracking of a 2-DOF helicopter and

then by experimental studies for speed control of a servo system. Subsequently, the

interval type-2 neuro-fuzzy system with recursive FCM clustering algorithm is used

with elliptical membership functions and is tested on trajectory tracking of a 2-DOF

helicopter.

1.1. The Aim of This Study

The engineers of today encounter complex control applications due to the rapidly

evolving technology. For modeling and control of such complex systems, a number of

different methodologies can be used. One such methodology is the use of type-2 fuzzy

logic systems (T2 FLSs) and it is the focus of this study. In this dissertation, the

objectives are summarized in the following:

(i) A novel approach, interval type-2 fuzzy neural system with parameterized

conjunctors is used with interval type-2 fuzzy c-means clustering algorithm. In con-

ventional fuzzy modeling and control, to obtain an optimal fuzzy system, a commonly

used approach is to tune the parameters of the membership functions. However, if

the membership functions carry significant expert knowledge about the system, this

may be lost or distorted during the optimization process. In the proposed approach,

in order to prevent such a loss of valuable information, parameterized conjunction op-

erators are used as the AND operator in the inference engine. During the optimization

process, their parameters are tuned instead. Thus, any knowledge that is carried by

the antecedent membership functions is not lost or distorted.

(ii) In the stated approach, in the absence of any expert knowledge, some knowl-

edge about the system is gained by the use of the interval type-2 fuzzy c-means (IT2

FCM) clustering algorithm. However, this requires the number of classes to be known
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beforehand and to alleviate the problem, some validity indices that are suggested in

the literature and a novel validity index that carries less computational burden are

considered to determine the number of classes and therefore the number of fuzzy rules.

(iii) Interval type-2 neuro-fuzzy system is used with recursive fuzzy c-means clus-

tering algorithm. The center and the standard deviation values of the interval type-2

Gaussian membership functions at the antecedent parts of the TSK-type fuzzy rules

are determined by using recursive fuzzy c-means clustering algorithm. Its contribution

to the existing literature is that in the design of an interval type-2 fuzzy neural sys-

tem, recursive fuzzy c-means clustering algorithm is used and the designed algorithm

is applied in control applications. In addition, the designed algorithm is also used with

elliptical membership functions.

The proposed algorithms are verified through modeling and control applications.

1.2. The Organization of the Thesis

In Chapter 1, the literature review in fuzzy logic and neuro-fuzzy systems are

given. In sequence, the aim of the study and the organization of the thesis are briefly

presented.

In the second chapter, an overview of type-2 fuzzy logic systems is given.

In Chapter 3, Fuzzy C-Means (FCM) clustering and Interval Type-2 Fuzzy C-

Means (IT2 FCM) clustering algorithms are presented.

In chapter four, initially, type-1 and type-2 fuzzy logic systems are used with

parameterized conjunctors for modeling applications.

In the fifth chapter, the normalization method used is explained in detail and the

validity indices adopted from the literature and the newly proposed validity index are

described. To show the effectiveness of the validity index proposed, IT2 FCM clustering
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algorithm is tested on different data sets. An analysis of the clustering results is given.

In Chapter 6, a brief account of the theoretical and the mathematical backgrounds

of IT2 FNS (Fuzzy Neural System) with parameterized conjunctors is given. The

proposed approach is used; firstly for the approximation of a benchmark nonlinear

function and then for the control of a QCM (Quarter Car Model). Its performance is

compared with the other methods seen in the literature.

In Chapter 7, the theoretical and the mathematical background of the IT2 FNS

with the recursive fuzzy c-means clustering algorithm is given in detail. The mathe-

matical descriptions of the Quanser 2-DOF (Degrees of freedom) helicopter and the

DC servo system are presented. To validate the proposed approach, it is tested in a

trajectory tracking of the 2-DOF helicopter and in a speed control application of the

DC servo system. The presented approach is also tested with elliptical membership

functions in position tracking of a 2-DOF helicopter. Consequently, the outcomes of

the applications are analyzed and further progress in this area is discussed.
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2. TYPE-2 FUZZY LOGIC SYSTEMS

Type-1 fuzzy logic has been first introduced by Prof. Lotfi A. Zadeh, who is a

professor of computer science at the University of California, Berkeley, in 1965 and

the first industrial applications appeared in 1970s. Since then, fuzzy logic systems

(FLSs) have been widely used in scientific arena more than four decades. However,

traditional type-1 fuzzy sets may not represent the uncertainties in terms of membership

functions since type-1 membership functions are precise. The uncertainties that can

be encountered are defined as follows [43–45];

• The meaning of the words that are used in antecedent and consequent part of the

rules can mean different things to different people.

• The input measurements of the system has uncertainties according to the envi-

ronmental conditions (such as wind, rain, humidity etc.), and sensors that are

effected by high noise levels from various sources.

• Using noisy training data stimulates uncertainties.

• Uncertainties in consequents of the system may occur due to the change of actu-

ator characteristics.

• The uncertainties in antecedent and consequent arise due to the changing oper-

ation conditions.

As it is mentioned above, these uncertainties may not be handled by using only

type-1 fuzzy logic system. To alleviate this problem, type-1 fuzzy logic systems are

used with some optimization techniques to achieve required performance by enabling

the adaptation of the fuzzy system. However, to achieve the desired performance with

a minimum error response under these uncertainties, type-1 fuzzy logic systems may

become inadequate and any type of optmization that is done becomes irrelevant [45].

In order to overcome these uncertainties, type-2 fuzzy logic was proposed by Prof.

Lotfi A. Zadeh in 1975 as an extension of type-1 fuzzy sets. Type-2 fuzzy logic systems

have the ability to represent the uncertainties mentioned above in terms type-2 fuzzy
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membership functions.

A type-1 fuzzy set, A is defined as in the following [24]:

A = {(x, µA(x))|x ∈ X} (2.1)

where x are the elements of input X, which is the universe of discourse. µA(x) is the

membership function, which takes values in the closed interval [0, 1]. Every element

of X maps to a membership grade taking the values between 0 and 1. In Figure 2.1, a

typical example of a type-1 fuzzy membership function is given. As it is seen, the uncer-

tainties are not taken into consideration since an input value is represented by a precise

value. To handle the uncertainties mentioned above, an interval type-2 membership

function can be used as an alternative. In Figure 2.2, the type-1 Gaussian membership
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Figure 2.1. A type-1 Gaussian membership function.

function that is given in Figure 2.1 is blurred to the left and right. The obtained figure

is called as the footprint of uncertainty (FOU). An input value corresponds to a closed

interval. In addition, this closed interval has a secondary membership grade, which

constitutes the third dimension of the type-2 membership functions. For interval type-

2 membership functions, this value is either zero or one as seen in Figures 2.2 and 2.3.
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Figure 2.2. An interval type-2 Gaussian membership function with uncertain

standard deviation whose secondary membership grade is zero.

Figure 2.3. An interval type-2 Gaussian membership function with uncertain

standard deviation whose secondary membership grade is one.

A type-2 fuzzy set is defined as follows [43] and [46]:

Ã =

∫

x∈X

∫

u∈Jx⊆[0,1]

µÃ(x, u)/(x, u) (2.2)
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An interval type-2 fuzzy set is defined as follows:

Ã =

∫

x∈X

∫

u∈Jx⊆[0,1]

1/(x, u) (2.3)

where x is the primary variable and X is the input domain. The secondary membership

grade µÃ(x, u) is either zero or one for interval type-2 fuzzy sets. u is the secondary

variable. Ã is the interval type-2 fuzzy set. Jx are the primary membership functions.

The union of all primary membership functions forms the FOU [43] and [46]. As seen

in Figure 2.2, FOU is bounded by the lower and the upper membership functions and

these membership functions are type-1 that enable to use type-1 fuzzy arithmetic in

calculations of type-2 fuzzy sets [45] and [47].

General type-2 fuzzy sets may increase the accuracy of the approximation capa-

bility of type-2 fuzzy logic systems. However, the computational burden of the general

type-2 fuzzy system is high as compared to interval type-2 fuzzy logic system. Thus,

interval type-2 fuzzy system is preferred by many researchers due to its computational

ease in the design of a type-2 fuzzy logic system [22]. In this study, Takagi-Sugeno-Kang

(TSK) type fuzzy inference engine, which is a well-known universal approximator, is

used in the design of interval type-2 neuro-fuzzy system. In the subsequent sections, the

structure of type-2 fuzzy logic systems are briefly given and the three types of Interval

Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems (IT2 TSK FLSs) are described.

2.1. The Structure of the Type-2 Fuzzy Logic Systems

The block diagrams of T1 FLS and T2 FLS are seen in Figures 2.4 and 2.5. The

main difference between the structure of type-1 and type-2 fuzzy logic is the type-

reduction procedure. The main components of type-2 fuzzy logic system are listed as

in the following:

• Fuzzfication

• Fuzzy Inference System and Rule Base

• Type-Reduction
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Figure 2.4. Block Diagram of Type-1 Fuzzy Logic Systems (T1 FLSs).

Figure 2.5. Block Diagram of Type-2 Fuzzy Logic Systems (T2 FLSs).

• Defuzzification

These components are given briefly in the following subsections.

2.1.1. Fuzzification

Initially, the input values are fuzzified by using membership functions. A crisp

input value x is mapped to a fuzzy set value Ã (x∈ X, Ã ⊂ X ). Any fuzzy logic system

that contains a type-2 fuzzy set is a type-2 fuzzy logic system.
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2.1.2. Fuzzy Inference System and Rule Base

The IF-THEN fuzzy rule structure of a type-2 fuzzy logic system can be as follows:

A Mamdani Type-2 FLS:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN Zi = C̃i

where Xn are the input values and Ãin are the type-2 fuzzy sets at the antecedents

of the fuzzy rules. At the consequents of the fuzzy rules, Zi is the output and C̃i is

the type-2 fuzzy sets. M indicates the number of rules (i=1,...,M) and n indicates the

antecedent numbers.

A Type-2 TSK FLS:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where zi is the output of the T2 TSK type fuzzy rules.

Meet under minimum or product t-norm and join operators are used in the fuzzy

inference engine and they are given in the following respectively [43];

ωi = µ
Ãi1

(x1)∗ · · · ∗µÃin
(xn) (2.4)

ωi = µÃi1
(x1)∗ · · · ∗µÃin

(xn) (2.5)

where “*” indicates product or minimum operation for meet under product or minimum

t-norm, or it indicates maximum for join operation for interval singleton type-2 fuzzy
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sets.

2.1.3. Type-Reduction

In type-2 fuzzy logic systems, the output is a type-2 fuzzy set. This output

is initially reduced to a type-1 fuzzy set by using a type-reduction method. In the

literature, one of the most commonly used type-reduction procedure is the center of

sets (COS) type-reduction and it is given as follows [43]:

ZCOS(Z
1, ..., ZM ,Ω1, ...,ΩM ) = [zl, zr] =

∫

z1
· · ·

∫

zM

∫

ω1

· · ·
∫

ωM

1/

∑M
i=1 ω

izi
∑M

i=1 ω
i

(2.6)

The result of the type-reduction procedure, ZCOS, equals to interval set, [zl, zr], where

zi ∈ Zi = [zil , z
i
r] and ω

i ∈ Ωi = [ωi, ωi]. zl and zr are calculated respectively as in the

following:

zl =

∑M
i=1 ω

i
lz

i
l

∑M
i=1 ω

i
l

(2.7)

zr =

∑M
i=1 ω

i
rz

i
r

∑M
i=1 ω

i
r

(2.8)

2.1.4. Defuzzification

An interval set [zl, zr] is obtained at the end of the type-reduction. The output

of the system is obtained by using the defuzzification procedure, which is taking the

average of the interval set and it is given as follows [43]:

z =
zl + zr

2
(2.9)
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2.2. Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems (IT2 TSK

FLSs)

In this study, interval type-2 Takagi-Sugeno-Kang type fuzzy logic system is used.

In literature, three types of IT2 TSK FLSs are proposed depending on the types of fuzzy

sets at the antecedents or consequents of fuzzy IF-THEN rules [17]. In the subsequent

subsection the rule structures of these models are given in detail.

2.2.1. Model 1

The first model has the following rule structure [17]:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN Zi = Cinxn + Ci(n−1)xn−1 + ...+ Ci0

where the antecedents are interval type-2 fuzzy sets indicated with Ãin and consequents

are type-1 fuzzy sets Cin. Xn is the input and Zi is the output of the system.

2.2.2. Model 2

The second model has the following rule structure [17]:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where the antecedents are interval type-2 fuzzy sets, Ãin, and the consequents are first

order polynomial. ain are the coefficients of the polynomial. Xn is the input of the

system.
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2.2.3. Model 3

The third model has the following rule structure [17]:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN Zi = Cinxn + Ci(n−1)xn−1 + ...+ Ci0

where both the antecedents and the consequents are type-1 fuzzy sets, Ain and Cin.

The fuzzy sets at the consequents represent the uncertainties. Xn and Zi are the input

and the output of the system, respectively.

In this study, the second model of IT2 TSK FLSs is used. In this rule structure,

antecedents are interval type-2 fuzzy sets and consequents are first order polynomial.

The center values of the antecedent membership functions are determined by using

interval type-2 fuzzy c-means clustering algorithm.
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3. FUZZY CLUSTERING ALGORITHMS

Clustering is an unsupervised classification algorithm and is a challenging task

that has been considered in many interdisciplinary areas, such as data mining, image

analysis, pattern recognition, bioinformatics, etc. by scientists. In literature, there are

noteworthy studies that have used clustering algorithms as referenced in survey papers

[30–32]. Most of the applications in this topic are in the area of science, technology,

engineering, biochemistry and molecular biology [27–29].

In hard or crisp clustering algorithms, each data object belongs to only one clus-

ter. It is either in the cluster or not. However, in overlapping data sets, crisp clustering

algorithms cannot identify the data object to which cluster it belongs. On the con-

trary, in Fuzzy C-Means (FCM) clustering algorithms each data object is assigned to

a cluster with a degree of membership function value. Furthermore, in interval type-

2 fuzzy c-means clustering algorithm the uncertainties can be handled by using two

fuzzification parameters.

3.1. Fuzzy C-Means (FCM) Clustering Algorithm

In FCM clustering, an object may belong to a cluster with a degree of member-

ship. One of the maximum fuzzy region parameter in FCM clustering is the fuzzification

parameter m, which specifies the shape of the membership functions and the width of

the fuzzy boundary. For type-1 FCM clustering, the fuzzification parameter is gener-

ally set to 2 [35] and [48]. The choice of m does not make any difference if the clusters

have the similar volume and density, otherwise the choice of m will effect the clustering

results [33]. The algorithm is given below.

(i) Initialize the values m, C, and ε where m is the fuzzification parameter, C is the

number of clusters and ε is the error tolerance.
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(ii) Update the membership matrix U as follows:

uj(xi) =
1

∑c
k=1

(

dji
dki

)2/(m−1)
(3.1)

where dji and dki are the distances between jth cluster to xi and kth cluster to xi,

respectively.

(iii) Update the centers v by using:

vj =

∑N
i=1 uj(xi)

mxi
∑N

i=1 uj(xi)m
(3.2)

where N is the number of data and (j=1,...,C).

(iv) Calculate the objective function J is as follows:

J(U,v) =
N
∑

i=1

C
∑

j=1

uj(xi)
md2ji (3.3)

(v) If ‖J (k) − J (k−1)‖ < ε stop the iteration, else go to step (ii).

3.2. Interval Type-2 Fuzzy C-Means (IT2 FCM) Clustering Algorithm

One of the most important features of type-2 fuzzy sets is its ability to incorporate

uncertainties into the membership functions and this feature makes type-2 fuzzy sets

preferable when there exist significant uncertainties. In interval type-2 FCM clustering,

the use of the two fuzzification parameters m1 and m2 enables the designer to define

and manage the uncertainty.

In finding the optimum cluster center, the aim is to minimize the following ob-

jective functions [33]:

Jm1(U,v) =
N
∑

i=1

C
∑

j=1

uj(xi)
m1d2ji (3.4)
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Jm2(U,v) =
N
∑

i=1

C
∑

j=1

uj(xi)
m2d2ji (3.5)

where uj(xi) is the membership value and dji is the distance between jth cluster to xi.

For the optimization of Equation 3.4 and 3.5, an iterative algorithm is used.

Firstly, the membership and the center values are initialized. Then, the upper and the

lower values of the membership values are calculated as follows [49]:

If 1

∑C
k=1

(

dji
dki

) 2
(m1−1)

> 1

∑C
k=1

(

dji
dki

) 2
(m2−1)

, then, uj(xi) =
1

∑C

k=1

(

dji
dki

) 2
(m1−1)

Otherwise, uj(xi) =
1

∑C
k=1

(

dji
dki

) 2
(m2−1)

If 1

∑C
k=1

(

dji
dki

) 2
(m1−1)

≤ 1

∑C
k=1

(

dji
dki

) 2
(m2−1)

, then, uj(xi) =
1

∑C
k=1

(

dji
dki

) 2
(m1−1)

Otherwise, uj(xi) =
1

∑C
k=1

(

dji
dki

) 2
(m2−1)

where dji and dki are the distances between jth cluster to xi and kth cluster to xi,

respectively. Then, the membership value, u is calculated by the mean of upper and

lower membership values.

In the determination of the left and the right center values, the Karnik and

Mendel iterative algorithm is used. It reduces the computational burden considerably.

The algorithm given below is for the right center, that for the left center can be derived

in a similar manner [33]:

(i) The cluster centers v
′

jl are calculated for all data features by using the following
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equation:

v
′

j =

∑N
i=1 uj(xi)

mxi
∑N

i=1 uj(xi)m
(3.6)

(ii) The data is sorted in ascending order.

(iii) The cluster center v
′

jl for each feature is compared with the sorted data xl(k) ≤
v

′

jl ≤ xl(k + 1) to find the index k ( 1 ≤ k ≤ N − 1 ). For i ≤ k, uj(xi) = u(xi),

otherwise, uj(xi) = u(xi).

(iv) Then, the cluster center, v
′′

jl is calculated. If v
′′

jl 6= v
′

jl, v
′

jl = v
′′

jl, else stop the

iteration and keep the value v
′′

jl. After calculation of all the features of center, set

vR = v
′′

j .

A crisp center for the estimated center vj can be found as follows:

vj =
vL + vR

2
(3.7)

The right and left membership values are calculated as follows:

uRj (xi) =

∑M
l=1 ujl(xi)

M
(3.8)

where M indicates the feature number of xi and

ujl(xi) =







uj(xi), if xil uses uj(xi) for v
R
j

uj(xi), otherwise

uLj (xi) =

∑M
l=1 ujl(xi)

M
(3.9)
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where

ujl(xi) =







uj(xi), if xil uses uj(xi) for v
L
j

uj(xi), otherwise

Then, type-reduction is applied as follows:

uj(xi) =
uLj (xi) + uRj (xi)

2
(3.10)

Hard-partitioning can be done as follows:

If uj(xi) > uk(xi) for k = 1, ..., C and j 6= k, Then xi is in jth cluster.

The clustering algorithms mentioned above are used in the neuro-fuzzy structures

to determine the center values of the membership functions at the antecedents of the

fuzzy IF-THEN rules.

In the next chapter, these clustering algorithms are used with type-1 and type-

2 TSK fuzzy logic systems with parameterized conjunctors. The performances of the

designed fuzzy algorithms are compared in modeling of benchmark nonlinear functions.
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4. FUZZY MODELING WITH PARAMETERIZED

CONJUNCTORS

4.1. Type-1 Fuzzy Modeling with Parameterized Conjunctors

In fuzzy modeling applications to obtain an optimal fuzzy model, one of the most

commonly used approaches is to tune the parameters of the membership functions.

This kind of adaptation is undesirable in applications where the expert knowledge is

vital. To overcome this drawback, parametric conjunction or disjunction operators are

used as the fuzzy operators, thus the parameters of the operators can be tuned while

keeping the expert knowledge of the system. However, these operators may mean

complications in the optimization of the structure and in hardware realizations. In [25]

and [26] the authors tunes a number of simple generalized parametric conjunction

operators to obtain an optimal fuzzy model.

A conjunctor (generalized conjunction operation) is defined in [26] as a function

T: [0,1] x [0,1] → [0,1] satisfying the properties of binary conjunction operation:

T (0, 0) = T (0, 1) = T (1, 0) = 0,

T (1, 1) = 1 (4.1)

and monotonicity condition on [0,1]:

T (x, y) ≤ T (u, v) if x ≤ u and y ≤ v. (4.2)

These operators are not required to have the associativity and the commutativity

properties. As a result, the simplest conjunctors proposed in [26] have the following

mathematical representations:

T (x, y) = xpyq (4.3)
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T (x, y) = min(xp, yq) (4.4)

where p, q ≥ 0. In this study, the expert knowledge about the system is obtained by

using fuzzy c-means (FCM) clustering algorithm [35] and [48].

In the application for nonlinear function modeling, a first order type Takagi-

Sugeno-Kang (TSK) fuzzy logic system (FLS) is used and has the following IF-THEN

rule structure:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where i (i = 1, 2,...,M ) indicates the number of rules and n is the number of the

antecedent parameters. In this rule structure, Xn’s (i=1,...,n) are the inputs of the

system, Ain’s (i=1,...,n) are the fuzzy sets, and zi is the output of the each rule. ain’s

are the coefficients of the consequent part of the rule, which is a first order polynomial.

The firing strengths of the rules are calculated by using one of the parameterized

conjunctor operators in Equations 4.3 and 4.4. In the simulations, the first parameter-

ized conjunctor operator is used as an AND operator and defined as follows:

ωi = T (µAi1
(x1), · · · , µAin

(xn))

= µAi1
(x1)

pi1 · · ·µAin
(xn)

pin (4.5)

where i (i = 1, 2, ..., M ) indicates the number of rules. ωi is the firing strength of

each rule. µAin
(xn) is the membership function value of the fuzzy set Ain and pin is

the parameter of the parameterized conjunctor operator.

After computing the firing strengths, the implication method is applied to find

out the result of each rule. The most commonly used implication methods are product
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and minimum operations, given respectively in Equations 4.6-4.7.

oi = ωizi (4.6)

oi = min(ωi, zi) (4.7)

In this study, to find the result of each rule, the product implication method, which

involves multiplying the firing strength with the consequent part of the rules, is used.

The output of the fuzzy system is calculated as follows [24]:

u =

∑M
i=1 ω

izi
∑M

i=1 ω
i

(4.8)

M is the number of rules (i = 1, 2, ..., M ) and u is the output of the system.

4.2. Interval Type-2 Takagi-Sugeno-Kang (IT2 TSK) Model with

Parameterized Conjunctors

The second modeling approach used in this study is the interval type-2 TSK fuzzy

logic system with parameterized conjunctors. The rule structure has the following

form [16,17], and [50]:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

In the antecedent part of the rules, the interval type-2 fuzzy sets are used and are

indicated with tildes. The consequent part of the rule is a first order polynomial. The

centers of the antecedent membership functions are obtained by using interval type-2

fuzzy c-means clustering algorithm, in which the uncertainty can be represented by

using two fuzzification parameters m1 and m2 [33].
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In the calculations of the firing strength of each rule, parameterized conjunctor

operators are used as the AND operator. To calculate the lower and the upper firing

strengths of the rules, the mathematical representations of these operators are given

in the following:

ωi = µ
Ãi1

(x1)
pil1 · · ·µ

Ãin
(xn)

piln (4.9)

ωi = µÃi1
(x1)

piu1 · · ·µÃin
(xn)

piun (4.10)

The output of the system is calculated by using the inference engine in [51] as follows:

u = r

∑M
i=1 ω

izi
∑M

i=1 ω
i
+ (1− r)

∑M
i=1 ω

izi
∑M

i=1 ω
i

(4.11)

where r is chosen as 0.5.

4.3. Modeling Application

The two methods which are explained above are tested in the approximation

of nonlinear functions to compare their performances [52]. In Figure 4.1, the first

nonlinear function is depicted, the mathematical representation of which is:

ud = f(x1, x2) =
sin(5πx1x2)

5πx1x2
, x1, x2 ∈ [−1, 1] (4.12)

For each one of the methods, the same input range [-1, 1] (x1, x2 ∈ [−1, 1]) is used.

The input space is equally partitioned into 27x27 which leads to 729 values of functions

that are calculated. To enhance the validation of the simulation results, the two fuzzy

algorithms are tested on the Rosenbrock’s banana function seen in Figure 4.2. It is

one of the benchmark nonlinear function, which is nontrivial to approximate. The
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Figure 4.1. The Sinc function approximated.
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Figure 4.2. Rosenbrock’s banana function approximated.

mathematical description of this function is as follows:

ud = f(x1, x2) = (1− x1)
2 + 100(x2 − x21)

2 (4.13)

The input range is between [-0.5, 0.5] (x1, x2 ∈ [−0.5, 0.5]) and 441 (21x21) values of

the function are calculated. In order to obtain the optimal fuzzy model, the RMSE

value is used as the objective function which is given in the following:

Fobj =

√

∑N
k=1(u

d
k − uk)2

N
(4.14)
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where udk is the desired output and uk is the actual output of the system where

k=1,2,...,N.

4.3.1. Nonlinear Function Approximation by Using Parameterized Con-

junctors

In this algorithm in the modeling application of the two nonlinear functions, for

each input, x1 and x2, four Gaussian membership functions are used, which leads to a

total of 8 membership functions. They are mathematically defined as follows:

Gaussian membership function = e−
1
2
(x−v

σ
)2 (4.15)

The most significant feature of this algorithm is that the parameters of the parame-

terized conjunctors are tuned instead of the parameters of the membership functions.

The input membership functions that are carrying the linguistic information about the

system are determined by using the FCM algorithm. In the application of the FCM

algorithm, the fuzzification parameter m is chosen as 2. The input membership func-

tions used in the modeling application of Sinc function are given in Figure 4.3. The

−1 −0.5 0 0.5 1
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Figure 4.3. The input membership functions obtained by using FCM algorithm in the

modeling application of Sinc function without noise.
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rule base is composed of 16 rules and the rule structure is:

Ri = IF x1 is Ai1 and x2 is Ai2,

THEN zi = ai2x2 + ai1x1 + ai0

In this structure, at the antecedent part of the rules, x1 and x2 are the inputs, and Ai1

and Ai2 are the type-1 fuzzy sets where i indicates the number of rules (i=1,2,...,16).

In the consequent part of the rule, zi is the output of the each rule and ai2, a
i
1, and a

i
0

are the coefficients of the first order polynomial. In this algorithm, not to lose or dis-

tort the linguistic information about the system, the parameters of the parameterized

conjunctors are tuned instead of tuning the membership function parameters. These

operators are used as the AND operator to calculate the firing strengths of each rule

as follows:

ωi = T (µAi1
(x1), µAi2

(x2)) = µAi1
(x1)

pi .µAi2
(x2)

qi (4.16)

where µAin
’s are the membership functions, pi and qi are the parameters of the param-

eterized conjunctors. The actual output of the system is calculated by using Equation

4.8. As it is stated above, in this algorithm the parameters of operators, pi and qi and

the parameters of the polynomial at the consequent part of the rules, ai2, a
i
1, and ai0

are tuned by using the Sequential Quadratic Programming (SQP) method. For the

left sides of the rules a total of 32 parameters are tuned (16x2=32) and for the right

sides of the rules a total of 48 parameters (16x3=48) are tuned together to minimize

the root-mean-squared-error (RMSE), and the bound constraints for these parameters

are chosen as −50 ≤ ai2, a
i
1, a

i
0 ≤ 50 and 0.1 ≤ pi, qi ≤ 50. The main objective is to

obtain a minimum RMSE response by tuning these parameters. The approximated

fuzzy model and the RMSE curve are given in Figure 4.4a-b and Figure 4.5a-b for

Sinc and Rosenbrock’s Banana functions, respectively. In this algorithm, the obtained

RMSE values for the Sinc and Rosenbrock’s Banana functions are 0.0777 and 0.0675,

respectively.
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Figure 4.4. The result of Sinc function approximation by using type-1 fuzzy

algorithm (a) and the RMSE curve obtained by tuning the parameters of the

parameterized conjunctor operators (b).
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Figure 4.5. The result of Rosenbrock’s Banana function approximation by using

type-1 fuzzy algorithm (a) and the RMSE curve obtained by tuning the parameters

of the parameterized conjunctor operators (b).

4.3.2. Nonlinear Function Approximation by Using Interval Type-2 TSK

Fuzzy Logic Systems with Parameterized Conjunctors

In this approach, four Gaussian primary membership functions with uncertain

mean are used for each input, and these membership functions are kept fixed as they

are, since they are supposed to carry the linguistic information about the system. The

center of these membership functions are determined by using IT2 FCM algorithm and

the fuzzification parameters m1 and m2 are chosen as 1.8 and 2.3, respectively. The

input membership functions used in the modeling application of Sinc function are given
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in Figure 4.6. The ith rule structure of the system is given as:

Ri = IF X1 is Ãi1 and X2 is Ãi2,

THEN zi = ai2x2 + ai1x1 + ai0

To calculate the firing strength of each rule, parameterized conjunctors are used as in

the following:

ωi = µ
Ãi1

(x1)
pil .µ

Ãi2
(x2)

qil (4.17)

ωi = µÃi1
(x1)

piu .µÃi2
(x2)

qiu (4.18)

where pi and qi are the parameters of the parameterized conjunctors and i indicates

the number of rules (i=1,2,...,16). After the calculation of the firing strengths, the

actual output of the system is calculated by using Equation 4.11. To tune the design

parameters of the system, SQP optimization method is used. The parameters of the

operators (16x4) are tuned in the interval of 0.1 ≤ pi, qi ≤ 50, together with the

coefficients of the right sides of the rules (16x3) in the interval of −50 ≤ ai2, a
i
1, a

i
0 ≤ 50.

The output of the model and the RMSE curve are given in Figure 4.7a-b and Figure

4.8a-b for Sinc and Rosenbrock’s Banana functions, respectively. In this algorithm, the

obtained RMSE values for the Sinc and Rosenbrock’s Banana functions are 0.0531 and
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Figure 4.6. The input membership functions obtained by using IT2-FCM algorithm

for Sinc function approximation without noise.
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Figure 4.7. The result of Sinc function approximation by using IT2 TSK fuzzy

algorithm (a) and the RMSE curve obtained by tuning the parameters of the

parameterized conjunctor operators (b).
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Figure 4.8. The result of Rosenbrock’s Banana function approximation by using IT2

TSK fuzzy algorithm (a) and the RMSE curve obtained by tuning the parameters of

the parameterized conjunctor operators (b).

0.0502, respectively.

4.3.3. Modeling Application with Noisy Measurement

In real world applications, noise is an inevitable event that should be considered

in most of the applications. The modeling studies described above are repeated with

the input values, x1 and x2, being corrupted by noise. The uncertainty is represented

by white noise. It is randomly generated. The mathematical description of the signal
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Figure 4.9. The Sinc function (30 dB noise added to the input signal).
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Figure 4.10. Rosenbrock’s banana function (30 dB noise is added to the input signal).

to noise ratio (SNR) is given as follows:

nSNR = 10log10
PSignal

PNoise

(4.19)

30 dB noise is added to the input signals. The corrupted nonlinear functions are

given in Figures 4.9 and 4.10. To make a fair comparison, the same number and type

of membership functions, and the same optimization method are used in modeling

applications. The fuzzy methods that are described above are applied and the output

of the model and the RMSE curve are given in Figures 4.11a-b through Figure 4.14a-b

for Sinc and Rosenbrock’s Banana functions, respectively. The resulting RMSE values

are given in Table 4.1.
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Figure 4.11. The result of Sinc function approximation by using type-1 fuzzy

algorithm (a) and the RMSE curve obtained by tuning the parameters of the

parameterized conjunctor operators (b).
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Figure 4.12. The result of Rosenbrock’s Banana function approximation by using

type-1 fuzzy algorithm (a) and the RMSE curve obtained by tuning the parameters

of the parameterized conjunctor operators (b).

4.4. Conclusion

In this study, two fuzzy modeling methods are tested on the benchmark nonlin-

ear functions; Sinc and Rosenbrock’s banana functions with and without noisy input

measurements. In both of the fuzzy approaches, the parameters of the parameter-

ized conjunctors are tuned instead of antecedent membership function parameters and

additionally the parameters of the consequent part of the rules are tuned.

The advantage of these algorithms is that the linguistic information of the system

is not lost or distorted. When the results are examined in detail, it is seen that the
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Figure 4.13. The result of Sinc function approximation by using IT2 TSK fuzzy

algorithm (a) and the RMSE curve obtained by tuning the parameters of the

parameterized conjunctors (b).
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Figure 4.14. The result of Rosenbrock’s Banana function approximation by using IT2

TSK fuzzy algorithm (a) and the RMSE curve obtained by tuning the parameters of

the parameterized conjunctors (b).

use of interval type-2 fuzzy systems gives better RMSE value comparing to type-1

fuzzy algorithm. In addition, interval type-2 fuzzy algorithms are able to handle the

uncertainties caused by the noisy input measurements. The results are consistent that

interval type-2 fuzzy logic systems give better results when applied to systems having a

large amount of uncertainty. The next step of this work will be applying and modifying

these algorithms for real time control applications.
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Table 4.1. Comparison of the Two Fuzzy Algorithms.

Type-1 Type-2

Fuzzy Fuzzy

Algorithm Algorithm

RMSE for Sinc function 0.0777 0.0531

RMSE for Banana function 0.0675 0.0502

RMSE for Sinc function with noise 0.1094 0.0896

RMSE for Banana function with noise 2.1443 1.9292

Number of parameters 80 112

Optimization method SQP SQP

Iteration no 100 100
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5. VALIDITY INDICES

In FCM clustering algorithms, the number of clusters is determined before the

iteration procedure. However, the data sets in real life applications may not always

be well separable. In literature, to overcome this problem, several validity indices are

proposed. [34] represents a summary of fuzzy clustering indices in the literature.

In data mining applications, one important preprocessing is the normalization of

data set. The reason for this is that a particular feature of data may be very large

as compared to others and this can influence the accuracy of the clustering algorithm,

especially in distance based algorithms. Additionally, normalization can have a positive

effect on the computational time of the clustering algorithm. Data set can be scaled into

a specific range by using one of the normalization procedures suggested in literature

[53]. In this study, min-max normalization is used to scale the data sets into [0,1]

range. It has the following form

xi =
xi −min(X)

max(X)−min(X)
(5.1)

where xi is the data set (i=1,...,N).

In fuzzy clustering algorithms, one of the most significant problems is that the

number of clusters has to be specified at the beginning of the algorithm. However, in

real world applications, the data sets encountered are not always well-separable and

therefore the number of clusters to be used may not be very obvious. To overcome

this difficulty, a validity index can be used and there are many of these proposed

in literature. In this study, a novel validity index is proposed and to illustrate the

effectiveness of the proposed validity index, its performance is compared with some of

the well-known validity indices; Partition Coefficient (PC) [35, 36], Partition Entropy

(PE) [37,38], Xie and Beni (XB) [39], Fukuyama and Sugeno (FS) [40] and PBM [41] on

real and artificial data sets with an IT2 FCM clustering algorithm that uses Euclidean

distance. The algorithm is iterated in the range of C = 2, ...,
√
N [34]. Depending on
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the definition of the validity index measure, the minimum or maximum value of the

measure gives the optimal number of clusters.

In below, an overview of the validity indices that are commonly used in literature

is given together with the description of the proposed validity index.

5.1. Partition Coefficient (PC)

Bezdek has suggested the use of the following, named as Partition Coefficient, as

a measure of the amount of overlap between the clusters [35, 36]:

VPC =
1

N

C
∑

j=1

N
∑

i=1

u2ji (5.2)

In above uji is the membership value, C is the number of clusters and N is the sample

number of the data set (j=1,...,C and i=1,...,N). The maximum value of Partition

Coefficient gives the optimal number of clusters.

5.2. Partition Entropy (PE)

Another validity index that Bezdek has proposed is Partition Entropy (PE) and

has the following form [37,38]:

VPE = − 1

N

C
∑

j=1

N
∑

i=1

ujilogauji (5.3)

The minimum value of Partition Entropy gives the optimal number of clusters.
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5.3. Xie and Beni (XB) Validity Index

Xie and Beni [39], proposed the following validity index:

VXB =

∑C
j=1

∑N
i=1 u

m
ji‖xi − vj‖2

Nminj,i‖vj − vi‖2
(5.4)

where the numerator and the denominator indicate the compactness and the separation

of the clusters respectively. The compactness is the closeness of the clusters and the

separation is the furthest distance between the clusters [34]. This validity index uses

both inter and intra cluster distances. The minimum value of the validity index gives

the optimal number of clusters.

5.4. Fukuyama Sugeno (FS) Validity Index

Fukuyama and Sugeno [40], proposed the following validity index:

VFS =
C
∑

j=1

N
∑

i=1

umji‖xi − vj‖2 −
C
∑

j=1

N
∑

i=1

umji‖vj − v‖2 (5.5)

where v =
∑C

j vj/C. Compactness of the clusters is calculated at the first part of the

validity index. At the second part, the distance between the jth cluster center to the

mean of the clusters centers are multiplied by the each row of the membership value

U. The minimum value of the validity index gives the optimal number of cluster.

5.5. PBM Validity Index

PBM index is proposed by Pakhira et al. [41], which is used with crisp and fuzzy

clustering algorithms. In this study, the index that is used in FCM algorithms is

considered.

VPBM =

(

1

C
× E1

EC

×DC

)2

(5.6)
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EC =
C
∑

j=1

N
∑

i=1

umji‖xi − vj‖ (5.7)

E1 =
N
∑

i=1

uji‖xi − v‖ (5.8)

DC = maxCj,i=1‖vj − vi‖ (5.9)

This validity index is composed of three factors. The first one is 1/C which is the

inverse proportion of the number of clusters. The second factor is the ratio between

E1 and EC . E1 is a constant value and EC decreases while the number of clusters

is increasing. The last factor is DC which is the maximum separation between the

clusters and increases as the number of clusters increase. The choice of the fuzzification

parameterm is also significant. The optimal number of clusters in a data set is achieved

when the validity index reaches to its maximum value.

5.6. Proposed Validity Index

The novel validity index proposed in this study is based on the separation of the

clusters and the closeness of the data objects in one cluster to the cluster center [54].

The separation is obtained by using the following:

Vseparation = maxCj,i=1‖vj − vi‖ (5.10)

where vi is the center value of each cluster (j,i=1,...,C and j 6= i). The larger the value

of Equation 5.10 is, the more separated the cluster centers are.
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The compactness of a cluster is obtained by using:

Vcompactness =

∑N
i=1maxj(uji)

∑N
i=1minj(uji)

(5.11)

where uji is the membership value (j=1,...,C and i=1,...,N). The larger this value is,

the closer are the data objects of the cluster to the cluster center. In the following the

proposed validity index is given.

Vp =
1

C2

maxCj,i=1‖vj − vi‖
∑N

i=1maxj(uji)
∑N

i=1minj(uji)
(5.12)

When the number of clusters increases, both the separation and the compactness values

increase, resulting in a large increase in the validity index. The 1/C2 term in the index

allays this tendency. The optimal number of clusters is obtained when the value of this

validity index reaches a maximum. It is to be noted that the main difference of the

proposed validity index as compared to PBM-index is that the proposed validity index

uses only the inter cluster distance and the membership value and therefore is simpler.

Additionally, it is not sensitive to the choice of the fuzzification parameter m.

5.7. Clustering Application

In the first part of this study, the validity indices explained above and the pro-

posed new validity index are tested on real and artificial data sets [54]. The Iris data

set given in [55] has 150 samples and 4 features, sepal length, sepal width, petal length,

and petal width in centimeters. The data set has three classes, Setosa, Versicolour, and

Virginica; among these classes two are not linearly separable while the other one is.

The optimal cluster number is three. The Breast Cancer data set given in [55] has 683

samples and 9 features. The data set has two clusters. The Wine data set in [55] has

178 samples and 13 features. The data set has three types of wine each from different

cultivators in Italy, and it is defined by chemical analysis of these wines. The artificial

data has six clusters and the clusters are close to each other. In the application of IT2

FCM clustering, first of all, all of the sets are normalized. Several simulation studies
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Figure 5.1. Iris data set.

then are carried out, in which C is taken as C = 2, ...,
√
N where N is the sample

number of the data set. The fuzzification parameters m, m1, and m2 are chosen as 2,

1.8, and 2.3, respectively. The results of the validity indices are given in Table 5.1.

Additionally, the centers of the Iris data and the noisy artificial data are indicated in

Figure 5.1 and 5.2, respectively. When the results are examined in detail, it is seen

that the proposed validity index is able to determine the correct number of clusters for

all data sets. Although the cluster numbers obtained by the PBM-index are the same

except for the artificial data set; it should not be forgotten that the computational

burden of the proposed index is lower because it uses only inter cluster distance and

membership value. In the second part of the study, the proposed validity index is used

to determine the number of fuzzy rules in the IT2 FNS with parameterized conjunctors

used for modeling and control purposes.
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Table 5.1. The optimal number of clusters for different data sets using the IT2 FCM

clustering algorithm.

Data Set Iris Breast Wine Artificial

Cancer

Cluster No 3 2 3 6

PC 2 2 2 2

PE 2 2 2 2

XB 2 2 3 5

FS 4 4 2 6

PBM 3 2 3 5

Proposed 3 2 3 6
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6. INTERVAL TYPE-2 FUZZY NEURAL SYSTEM WITH

PARAMETERIZED CONJUNCTORS

Type-2 fuzzy systems are capable of handling uncertain and imprecise informa-

tion. In this study, a TSK type fuzzy structure, which is commonly used for modeling

benchmark nonlinear systems, is used. Interval type-2 TSK FLSs are divided into three

models, depending on the types of membership functions used in the antecedents and

the consequents of the fuzzy IF-THEN rules [17]. In this study, to reduce the computa-

tional burden of the type-2 fuzzy system, the second model is used, in which the fuzzy

sets in the antecedent are of type-2 and the consequent is a first order polynomial [17].

The ith rule structure for M rules and n antecedents is

Ri = IF x1 is Ãi1 and ... and xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where zi is the output of the system and is a first order polynomial. ain are the

coefficients of the polynomial. xn is the input and Ãin are the interval type-2 fuzzy

sets.

The structure of the interval type-2 Fuzzy Neural System (IT2 FNS) used in this

study is as given in Figure 6.1 [22]. In this structure, the input is given at the first

layer. In the second layer, the input space is interpreted by Gaussian membership

functions with uncertain means that have the following form:

The upper membership function is

µÃin
(x) =



















e−
1
2
(
x−v1

σ
)2 , x < v1

1, v1 ≤ x ≤ v2

e−
1
2
(
x−v2

σ
)2 , x > v2

(6.1)
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The lower membership function is

µ
Ãin

(x) =







e−
1
2
(
x−v2

σ
)2 , x ≤ v1+v2

2

e−
1
2
(
x−v1

σ
)2 , x > v1+v2

2

(6.2)

where v1 and v2 are the centers and σ is the standard deviation of the membership

functions. i indicates the number of rules (i=1,...,M ) and n is the number of an-

tecedents. The centers of these membership functions are determined by the interval

type-2 FCM clustering algorithm given in [33]. The aim is to find the optimum center

and the membership value by minimizing Equations 3.4 and 3.5. Then, it is assumed

that these membership functions carry a degree of expert knowledge about the system.

The IT2 FNS design approach described in this study has the goal of preserving this

expert knowledge about the system. Therefore, in the proposed structure, parame-

terized conjunctors (t-norms) are used and, instead of tuning the parameters of the

membership functions, the parameters of the parameterized conjunctors are tuned. At

the third layer, the firing strength of each rule is calculated using “meet under the

product t-norm” [16]. In the calculations of interval type-2 fuzzy sets, the upper and

the lower membership functions are used and they are type-1 fuzzy sets. Thus, type-1

fuzzy arithmetic can be used in calculations of interval type-2 fuzzy sets. A general

Figure 6.1. The structure of a Type-2 FNS.
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formulation of the meet of interval type-2 fuzzy sets is

n
∏

j=1

Aj = [ωi, ωi] (6.3)

where n indicates the antecedent number (j = 1, 2,..., n) and i indicates the rule

number. Aj is the interval type-1 fuzzy set [16]. The meet of interval type-2 fuzzy sets

under product t-norm is computed basically via the lower and the upper membership

functions. In the proposed algorithm, for the calculation of the lower and the upper

bounds of the firing strength, a parameterized product t-norm is used as follows:

ωi = µÃ1i
(x1)

p1i · · ·µÃni
(xn)

pni (6.4)

ωi = µ
Ã1i

(x1)
p
1i · · ·µ

Ãni
(xn)

p
ni (6.5)

The output of the consequent part of each rule is determined at the fourth layer. At

the fifth, sixth, and seventh layers of the neuro-fuzzy structure, the type reduction and

the defuzzification procedures are realized and the output of the system is determined

by the inference engine proposed in [51], and the output has the following form:

u = r

∑M
i=1 ω

izi
∑M

i=1 ω
i
+ q

∑M
i=1 ω

izi
∑M

i=1 ω
i

(6.6)

where ωi and ωi are the lower and upper firing strength of each rule, respectively. r

and q are the design parameters that weight the lower and upper part of the output of

the neuro-fuzzy system, M is the number of rules.

6.1. The Training of the Interval Type-2 FNS with Parameterized

Conjunctors

In the design of the interval type-2 FNS with parameterized conjunctors, the de-

sign parameters are the parameters of the parameterized conjunctors at the antecedent
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of the rules, the coefficients of the first order polynomial at the consequent of the rules,

and the r and q values of Equation 6.6. These values are tuned using the gradient

descent algorithm. The output error is calculated as in the following:

E =
1

2

O
∑

i=1

(udi − ui)
2 (6.7)

where udi and ui are the desired and the actual output of the network, respectively, and

O is the number of outputs. The coefficients at the consequent of the rules, aij, a0j

and the parameters of the parameterized conjunctors, pij , pij are tuned using gradient

descent algorithm as follows:

aij(t+ 1) = aij(t)− λ
∂E

∂aij
(6.8)

a0j(t+ 1) = a0j(t)− λ
∂E

∂a0j
(6.9)

pij(t+ 1) = pij(t)− λ
∂E

∂pij
(6.10)

p
ij
(t+ 1) = p

ij
(t)− λ

∂E

∂p
ij

(6.11)

where λ is the learning rate. The derivatives in Equations 6.8-6.11 are determined as

follows:

∂E

∂aij
=

∂E

∂u

∂u

∂zj

∂zj
∂aij

(6.12)
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∂E

∂a0j
=

∂E

∂u

∂u

∂zj

∂zj
∂a0j

(6.13)

∂E

∂pij
=
∂E

∂u

∂u

∂ωj

∂ωj

∂µij

∂µij

∂pij
(6.14)

∂E

∂p
ij

=
∂E

∂u

∂u

∂ωj

∂ωj

∂µ
ij

∂µ
ij

∂p
ij

(6.15)

where

∂E

∂u
= u(t)− ud(t); (6.16)

∂u

∂ωj

= r
zj − u
∑n

j=1 ωj

;
∂u

∂ωj

= q
zj − u
∑n

j=1 ωj

u =

∑n
j=1 ωjzj

∑n
j=1 ωj

; u =

∑n
j=1 ωjzj

∑n
j=1 ωj

(6.17)

t-norm prod operator has the following form:

∂ωj

∂µij

= pijµ
(pij−1)

ij

N1
∏

k = 1

k 6= i

µ
pkj
kj (6.18)

∂ωj

∂µ
ij

= p
ij
µ
(p

ij
−1)

ij

N1
∏

k = 1

k 6= i

µ
p
kj

kj (6.19)
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where i = 1, ..., N1, k = 1, ..., N1, and j = 1, ..., N2.

∂µij

∂pkj
=

N1
∏

i=1

µ
pij
ij ln(µkj) (6.20)

∂µ
ij

∂p
kj

=

N1
∏

i=1

µ
p
ij

ij ln(µkj
) (6.21)

The parameters r and q enable us to adjust the lower and upper portions of the final

output in Equation 6.6. The initial value for both parameters is chosen as 0.5, and the

optimization algorithm for these parameters is given in the following:

r(t+ 1) = r(t)− γ
∂E

∂r
(6.22)

q(t+ 1) = q(t)− γ
∂E

∂q
(6.23)

where

∂E

∂r
= (u− ud)

ωj
∑n

j=1 ωj

(6.24)

∂E

∂q
= (u− ud)

ωj
∑n

j=1 ωj

(6.25)

6.2. Modeling and Control Applications

As has been stated earlier, this study suggests the use of parameterized conjunc-

tors in an IT2 FNS. Additionally, the use of a novel validity index is suggested for the

optimal partitioning of the input space. The flow of the approach is depicted in Figure

6.2. The first aim is to determine some meaningful knowledge about the system and
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not to lose or distort this knowledge subsequently. For this purpose, first of all, the

interval type-2 fuzzy c-means clustering algorithm is applied to the input data set. In

order to set the number of clusters (as required by the algorithm), a validity index

measure is used. It is a common problem that one or more features of the given input

data set may overweigh others. To alleviate this problem, the data is normalized at

the beginning of the procedure. After acquiring some knowledge about the system in

this way, IT2 FNS with parameterized conjunctors is used for modeling and control

purposes as described in the subsequent subsections in detail.

Figure 6.2. The flow-chart of the proposed approach.

6.2.1. Modeling of a Nonlinear System

System modeling is an important area in engineering. In this study, the interval

type-2 fuzzy neural system with parameterized conjunctors is used to estimate the fuzzy

model parameters using the measured input and output data [54]. The algorithm is

tested for the modeling of a nonlinear, benchmark single input single output (SISO)

dynamic system, which is characterized by the following equation [56]:
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y(k + 1) = f(y(k), y(k − 1), y(k − 2), u(k), u(k − 1)) =

y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1) + u(k)

1 + (y(k − 2))2 + (y(k − 1))2

Here, the y(k) is the current output of the system. u(k) is the current excitation signal

given as follows:

u(k) =































sin(πk
25
), k < 250

1, 250 ≤ k < 500

−1, 500 ≤ k < 750

0.3sin(πk
25
) + 0.1sin(πk

32
) + 0.6sin(πk

10
), 750 ≤ k < 1000

The excitation signal u(k) and the current output of the system y(k) are used as the

inputs of the IT2 FNS structure, and y(k+1) is the output of the system. The input

data is clustered using the IT2 FCM clustering algorithm. The validity indices are

used to determine the number of fuzzy rules to be used in IT2 FNS with parameterized

conjunctors. The results of the validity indices are given in Table 6.1. The value of the

fuzzification parameter m is taken as 2, m1 and m2 values are chosen as 1.8 and 2.8,

respectively. For the determination of the number of the fuzzy rules, the result of the

proposed validity index is used. Therefore, three Gaussian membership functions for

each input are used for the interpretation of the input space, as shown in Figure 6.3.

A number of simulation studies are carried out. During the training, gradient descent

Table 6.1. The optimal number of clusters for the data set using the IT2 FCM

clustering algorithm.

PC PE XB FS PBM Proposed

Number of 2 2 2 6 4 3

classes
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is applied as the learning algorithm. This is used to determine the coefficients at the

consequent of the fuzzy rules; the parameterized conjunctor values; and the parameter

values, r and q, which specify the upper and the lower portion of the output of the

fuzzy system. The learning rate is chosen as 0.03. The initial values of the coefficients

at the consequent of the fuzzy rules are selected randomly, the initial values for the

parameterized conjunctors are chosen as 1 and for the parameters r and q, as 0.5. The

parameterized conjunctors are tuned in the closed interval of [0.1, 100]. The final val-

ues of the parameterized conjunctors are given as follows: p
ni
=[0.9914, 0.8766, 0.6522;

1.5260, 1.1859, 1.0438] and pni =[0.9694, 0.9943, 0.8270; 1.2116, 1.1704, 1.0972]. The

output and the RMSE (root mean square error) value are indicated in Figure 6.4 and

6.5, respectively. The obtained training RMSE is 0.0304 and the testing error is 0.0363.

In Table 6.2, the RMSE values, the number of design parameters, and the CPU (central

processing unit) time in seconds for training are compared with type-1 fuzzy neural

system (T1 FNS) and IT2 FNS (with non-parameterized t-norms) [22]. The initial

membership functions for T1 FNS are distributed equally onto the input domain. In

IT2 FNS, the membership functions that are obtained by the proposed approach are

used as the initial membership functions. During the optimization process of these

−1 −0.5 0 0.5 1
0

0.5

1

Input membership functions for u(k)

−1 −0.5 0 0.5 1
0

0.5

1

Input membership functions for y(k)

Figure 6.3. The knowledge obtained by the use of IT2 FCM clustering algorithm.
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Table 6.2. The comparison of various structures in modeling application.

Methods RMSE RMSE No. of CPU

(Training) (Testing) Parameters Time

T1 FNS 0.0392 0.0454 21 141.8

IT2 FNS [22] 0.0318 0.0374 29 325.9

IT2 FNS with

parameterized 0.0304 0.0363 23 253.4

conjunctors

FNS structures, whatever information that is in these membership functions may be

lost or distorted. However, in the proposed approach the parameters of these member-

ship functions are kept fixed and the parameters of the parameterized conjunctors are

tuned instead. Additionally, in T1 and IT2 FNS, the number of fuzzy rules is deter-

mined heuristically. In the proposed approach, however, the number of fuzzy rules is

determined by a validity index measure. To make a fair comparison, the same number

of fuzzy rules are used in all the fuzzy approaches. The results obtained illustrate

that type-2 fuzzy algorithms have less RMSE value as compared to T1 FNS algorithm;

however, they require more computational time.

6.2.2. Control Application

The proposed approach [54] is also tested for the control of a Quarter Car Model

(QCM) in Figure 6.6. The model has a single wheel with a mass. The car is assumed

to move with a velocity, v. Road friction force Fx is generated between the wheel and

the road in the opposite direction of car’s motion. Tb is the braking torque, which

causes the wheel to slow down. The mathematical model of the quarter car is given by

the following dynamic equations [57, 58]:

ω̇ =
R

J
Fx −

sign(ω)

J
Tb (6.26)
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v̇ = −Fx

m
(6.27)

In these equations Fx and Fz can be expressed as:

Fx = Fzµ(λ) (6.28)

Fz = mg (6.29)

During driving, the speed of the vehicle and the rotational velocity of the wheel

have matching values. However, during braking, a braking torque is generated at

the interface between the wheel and road surface, which causes the wheel speed to

decrease. Consequently, the wheel speed will tend to be lower than the vehicle speed.

The parameter used to specify this difference is called wheel slip and denoted by λ.

λ =
v − ωr

v
(6.30)

A zero wheel slip means that the wheel velocity is equal to the speed of the car,

whereas a ratio of one indicates that the wheel is not rotating, but the car is still

moving, i.e. the wheels are skidding on the road and the vehicle is no longer steerable.

Figure 6.6. Schematic view of the Quarter Car Model (QCM).
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The road adhesion coefficient is a nonlinear function that depends on slip value and

some parameters. In this study, the Burckhardt formula [59] is used, which is defined

as:

µ(λ) = c1(1− e−c2λ)− c3λ (6.31)

where c1, c2, and c3 represent the road surface condition and λ is the slip value. The

relation between road adhesion coefficient and slip value is given in Figure 6.7. In this

study, the reference slip value is chosen as 0.2 and it is assumed that the car is moving

on dry asphalt. The numerical values used in the simulations are given in Tables 6.3

and 6.4, respectively.

6.2.3. The Simulation Results

The proposed approach is used on the quarter car model, and the block diagram

of the control system being used is as given in Figure 6.8, where e, the error and △e,

the derivative of the error, are the inputs to the system, g is the reference signal, u

Table 6.3. System Parameters.

ω Angular velocity of the wheel (rad/s)

v Velocity of the car (m/s)

r Radius of the wheel (m)

J Inertia of the wheel (kgm2)

Fx Road friction force (kgm/s2)

Fz Vertical load (kgm/s2)

Tb Braking Torque (kgm2/s2)

m Mass of the vehicle (kg)

g Gravitational force (m/s2)

µ(λ) Road adhesion coefficient

λ Wheel slip
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Figure 6.7. Road adhesion coefficient vs. wheel slip.

Table 6.4. System Parameters.

v0 = 25(m/s) r = 0.32(m) J = 1(kgm2)

g = 9.81(m/s2) m = 350(kg) m0 = 350(kg)

c1 = 1.28 c2 = 23.99 c3 = 0.52

Figure 6.8. The block diagram of the type-2 neuro-fuzzy system.

is the control input signal, and y is the output of the system [54]. First of all, the

expert knowledge about the system is generated by the IT2 FCM clustering algorithm.

For this purpose, the quarter car model is controlled by an IT2 FNS. The obtained

error and the derivative of the error values are used in the application of the IT2

FCM clustering algorithm. The fuzzification parameters m, m1, and m2 are taken as

2, 1.8, and 2.3, respectively. The proposed validity index is used to determine the
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Table 6.5. The optimal number of clusters for QCM input data using the IT2 FCM

clustering algorithm.

PC PE XB FS PBM Proposed

Number of 2 2 2 9 7 5

classes

fuzzy rules of the fuzzy structure. The results of the validity indices are given in Table

6.5. A number of simulations are realized with the sampling time set to 1ms. The

initial velocity of the car is chosen as 25 (m/s) before the braking operation. The

reference wheel slip is set to 0.2, which corresponds to the peak value of µ − λ. The

proposed approach is tested both without and with noisy input measurement, and

the results are given in Figures 6.9 and 6.12. The applied noise is depicted in Figure

6.11. The signal-to-noise ratio (SNR) is about 30dB. The parameterized conjunctors

are initially set to 1 and are tuned in the interval of [0.1, 100]. The obtained values

of p
ni

and pni without and with noise in the input measurements are given as follows;

p
ni

=[1.6257, 1.0945, 1.0337, 0.5976, 0.8641; 1.6648, 1.1258, 0.9350, 0.1083, 1.1495],

pni=[0.1073, 1.2394, 1.2330, 1.2766, 1.3410; 0.1010, 1.2979, 1.2935, 1.3893, 1.5449] and

p
ni

=[3.2031, 2.7929, 3.8361, 0.1100, 2.3736; 3.1848, 2.7146, 3.6040, 0.1100, 2.0082],

pni =[3.8713, 3.8991, 0.1100, 3.6123, 3.4932; 3.7843, 3.8427, 0.1007, 3.5607, 3.3997],

respectively. The velocity of the wheel and the car without and with noisy input

measurements is given in Figure 6.10 and 6.13, respectively. The RMSE values of T1

FNS, IT2 FNS, and the proposed approach without and with noisy input measurements

is given in Table 6.6. The fuzzy approaches have similar RMSE values without noise

in the input measurements, which is as expected. When noise is added into the input

measurements, the type-2 fuzzy approaches are able to handle the uncertainties and

have less RMSE value as compared to their type-1 counterpart. The main characteristic

of the proposed approach is that it has fewer design parameters than IT2 FNS.
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Figure 6.9. Wheel slip of type-2 FNS with parameterized conjunctors.
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Figure 6.10. Velocity of the wheel and car without noisy input measurement.

6.3. Conclusion

In this study, a novel approach to the use of neuro-fuzzy structures is proposed

for modeling and control purposes. In this approach, on the assumption that no expert
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Figure 6.11. The noisy input measurement.
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Figure 6.12. Wheel slip of type-2 FNS with parameterized conjunctors with noise.

knowledge is available about the system, the first thing that is done is to acquire some

knowledge about the system. This is done by the use an IT2 FCM clustering algorithm.

For the determination of the number of classes to be used in this algorithm, a novel

validity index is used. This is another contribution of the study. The design parameters
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Figure 6.13. Velocity of the wheel and car with noisy input measurement.

Table 6.6. The comparison of the fuzzy algorithms with and without noise in the

input measurements.

Methods RMSE RMSE No. of

without with parameters

noise noise

T1 FNS 0.0382 0.0783 35

IT2 FNS 0.0302 0.0549 47

IT2 FNS with

parameterized 0.0358 0.0519 37

conjunctors

are updated based on the gradient descent algorithm, and, during the optimization

process, rather than tuning the parameters of the membership functions used at the

antecedent, the parameters of the parameterized conjunctors are tuned. In this way, the

loss of any knowledge that is available about the system, either through expert inputs

or through clustering, is prevented. The performance of the proposed approach and

the traditional neuro-fuzzy structures seen in the literature are compared in modeling
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a benchmark nonlinear function and in the slip regulation of a QCM without and with

noisy input measurements. The results illustrate that IT2 FNS with parameterized

conjunctors has satisfactory results in terms of RMSE value, as compared to other fuzzy

approaches. The main advantage of the approach would show itself in applications

when there is reliable expert knowledge about the system in terms of the shape of

the membership functions and their placement in the input space. The tuning of the

structure would still be possible for optimal performance by tuning the parameters of

the conjunctors without tuning the parameters of the membership functions. It is to

be noted that the proposed IT2 FNS structure has a smaller parameter set than the

traditional IT2 FNS and is easier to implement.
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7. RECURSIVE INTERVAL TYPE-2 FUZZY NEURAL

SYSTEM

In real world applications, systems can experience many uncertainties that the

traditional fuzzy logic systems may not be able to handle. In this study, the Takagi-

Sugeno-Kang (TSK) fuzzy structure, which is a well-known universal approximator [60]

is used in the design of a type-2 FNS. It has the following IF-THEN rule structure:

IF x1 is Ã1j and...and xm is Ãmj THEN zj is
m
∑

i=1

aijxi + a0j (7.1)

In this rule structure, symmetrical interval type-2 Gaussian membership functions

whose lower membership functions (LMFs) are the scaled versions of the upper mem-

bership functions (UMFs) [61] are used in the antecedent parts of the fuzzy rules. An

example is depicted in Figure 7.1. The consequent parts of the fuzzy rules are first

order polynomials with the coefficients a0j and aij.

With the traditional fuzzy c-means clustering algorithm, the standard deviation

of the Gaussian membership functions are not determined, only the center values of the

functions are identified. Furthermore, the traditional fuzzy c-means clustering is an off-

line clustering algorithm. However, in real-time applications in which both the input

and the output data change with time, a recursive approach is needed and therefore

in this study, a recursive fuzzy c-means clustering algorithm in [42] is used in order to

be able to update both the center and the standard deviation values of the antecedent

membership functions. The algorithm has the following steps:

(i) First of all, the number of clusters c, the fuzziness parameters η, ηm, the forget-

ting factors γv and γc, the fuzzy covariance matrix Fi, the center values of the

membership functions vi, the membership values µi and si for i = 1, ..., c are

initialized.
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(ii) The membership values µi are calculated as follows:

µi(t) =
1

∑c
j=1

(

d2
i,(t)

d2
j,(t)

)
1

η−1

(7.2)

where d2i,(t) = (x(t)− vi(t− 1))T (x(t)− vi(t− 1)), (1 ≤ i ≤ c, 1 ≤ t ≤ N).

(iii) Calculate si and ∆vi(t):

si(t) = γvsi(t− 1) + µη
i (t) (7.3)

where si(t− 1) =
∑t−1

k=1 µ
η
i (k).

∆vi(t) =
µη
i (t)(x(t)− vi(t− 1))

γv
∑t−1

k=1 µ
η
i (k) + µη

i (t)
(7.4)
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Figure 7.1. Symmetrical IT2 membership function-UMF is Gaussian and LMF is a

scaled UMF.
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(iv) Calculate the new centers:

vi(t) = vi(t− 1)−∆vi(t) (7.5)

(v) Calculate the new fuzzy covariance matrix:

Fi(t) = γc
si(t− 1)

si(t)
Fi(t− 1) +

µη
i (t)

si(t)
(x(t)− vi(t))(x(t)− vi(t))

T (7.6)

σ2
i,j = ηmfi,j (7.7)

(vi) Gaussian membership functions are calculated by using the center value obtained

in the preceding steps and the standard deviation is obtained by using the fuzzifi-

cation parameter ηm and is given as follows σi,j =
√

ηmfi,j . Here, the fuzzification

parameter defines the overlapping between the membership functions. After the

determination of the upper Gaussian membership functions, the height of the

lower membership functions are determined by using the gradient descent learn-

ing algorithm. The upper and the lower membership functions are given in the

following, respectively:

µj(xi(t)) = e−
1
2
(x−v

σ
)2 (7.8)

µ
j
(xi(t)) = γe−

1
2
(x−v

σ
)2 (7.9)

where γ is tuned between 0.5 and 1.

Afterwards, the lower and the upper firing strengths of each rule are calculated as

follows:

ωj = µ
j
(x1(t)) · · ·µj

(xn(t)) (7.10)
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ωj = µj(x1(t)) · · ·µj(xn(t)) (7.11)

The consequent part of the fuzzy rules are first order polynomials, defined as:

zj =
n

∑

i=1

aijxi + a0i (7.12)

Subsequently, for type reduction, the Nie-Tan (NT) method [62] is used instead of the

well-known Karnik and Mendel iterative algorithm, since the former has less computa-

tional burden and is easier to be utilized in real-time control applications. The output

of the neuro-fuzzy structure is obtained as follows:

u =

∑M
j=1 zj(ωj + ωj)

∑M
j=1(ωj + ωj)

(7.13)

7.1. Parameter Learning

After calculation of the output of the system, the gradient descent based param-

eter learning algorithm is used to adjust the coefficients of the consequent parts of the

fuzzy rules. Initially, the output error is determined as follows:

E =
1

2

O
∑

i=1

(udi − ui)
2 (7.14)

aij(t+ 1) = aij(t)− λ
∂E

∂aij
(7.15)

a0i(t+ 1) = a0i(t)− λ
∂E

∂a0i
(7.16)
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where

∂E

∂aij
=
∂E

∂u

∂u

∂zj

∂zj
∂aij

(7.17)

∂E

∂a0j
=
∂E

∂u

∂u

∂zj

∂zj
∂a0j

(7.18)

In above

∂E

∂u
= u(t)− ud(t) (7.19)

∂u

∂zj
=

ωj + ωj
∑M

j=1(ωj + ωj)
(7.20)

∂zj
∂aij

= xi (7.21)

∂zj
∂a0j

= 1 (7.22)

The parameters of the lower bound of the membership functions are tuned as follows:

γ(t+ 1) = γ(t)− λ
∂E

∂γ
(7.23)

where

∂E

∂γ
=
∂E

∂u

∂u

∂ωj

∂ωj

∂µ
ij

∂µ
ij

∂γ
(7.24)
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∂u

∂ωj

=
zj − u

∑N
j=1(ωj + ωj)

(7.25)

∂ωj

∂µ
ij

=
N1
∏

k=1,k 6=i

µ
kj

(7.26)

∂µ
ij

∂γ
= µij (7.27)

The proposed method is validated by testing it on a 2-DOF helicopter for tracking

a desired trajectory and on a servo system for speed control and the performances

obtained are compared with those obtained by the use of a traditional T1FNS. The

details of the systems are given in the following subsections.

7.2. Description of the 2-DOF Helicopter System

Helicopters are used in many areas, such as transportation, air traffic, fire-fighting,

etc. [63]. Their control is a challenging task due to their highly nonlinear dynamics,

their instability and the cross-coupling effects between its axes. Fuzzy logic and neural-

networks are commonly used for the control of helicopters or twin rotor MIMO (multi-

input-multi-output) systems (TRMS) that resembles a helicopter system. In [64], two

adaptive fuzzy controllers are designed for the pitch and the yaw axes of a TRMS

with 2-DOF to track desired trajectories. The performance of the algorithm is com-

pared with non-adaptive fuzzy and PID controllers. The results obtained indicate

that the adaptive fuzzy controller is more robust against external disturbances and

has less steady-state error and overshoot. In [63], two different descentralized discrete-

time neural network approaches; neural backstepping and neural sliding mode control

methods are deployed for trajectory tracking of a 2-DOF helicopter system. The neu-

ral sliding mode controller is seen to have a better performance as compared to the

neural backstepping control. It is stated that neural network methods do not need a
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priori information about the system and the proposed structure is trained on-line by

using an extended Kalman filter based algorithm. In [65], a fuzzy-sliding controller

and a fuzzy-integral sliding controller (FSFISC) are designed for the horizontal and

the vertical subsystems respectively of a twin-rotor multi-input-multi-output system.

The performance of the proposed approach is compared with the methods from the

literature and it is seen that the proposed approach has better tracking performance

and is more robust to external disturbances. The performance of the approach pro-

posed in this study is also validated on a 2-DOF helicopter for trajectory tracking.

Subsequently, it is used for speed control a servo system.

The proposed method is tested on the 2-DOF helicopter shown in Figure 7.2,

which is a highly nonlinear multi-input-multi-output (MIMO) system with strong cross-

couplings between the pitch and the yaw axes. It is attached to a fixed base and its

pitch and yaw (the front and the back) propellers are driven by DC motors. The

front propeller controls the vertical motion of the helicopter about the pitch axis. This

angle is defined as positive when the front propeller causes a motion in the upward

direction. When the propeller motors are not excited, i.e. when the helicopter is

at rest, the pitch angle is about −40.5o and its motion is restricted between −40.5o

and 40.5o. The propeller at the back controls the horizontal motion about the yaw

axis. The helicopter is able to rotate 360o in the yaw axis. The yaw angle is defined as

positive in the clockwise direction. The thrust forces Fp and Fy shown in Figure 7.2 are

generated at the distances rp and ry from the pitch and the yaw axes, respectively [66].

The voltages applied to the front and the back propeller motors are the inputs of the

system and the pitch (θ) and the yaw (ψ) angles in radians are the outputs. The

aim is to design a controller to track the desired trajectories in the pitch and the yaw

axes. The dynamic nonlinear equations of the system obtained by using Lagrangian
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Figure 7.2. Simple free body diagram of 2-DOF helicopter [66].

mechanics are given for the pitch and the yaw axes as follows, respectively [66]:

(Jeq,p +mhelil
2
cm)θ̈ =KppVm,p+

KpyVm,y −mheliglcmcosθ−

Bpθ̇ −mhelil
2
cmsinθcosθψ̇

2

(Jeq,y +mhelil
2
cmcos

2θ)ψ̈ =KypVm,p+

KyyVm,y −Byψ̇+

2mhelil
2
cmsinθcosθψ̇θ̇

(7.28)

The descriptions of the variables in Equation 7.28 are given in Table 7.1.

7.2.1. Simulation Studies

The recursive interval type-2 fuzzy neural system (RIT2FNS) and the type-1 fuzzy

neural system (T1FNS) are both tested on the 2-DOF helicopter shown in Figure 7.2 by

a series of simulation studies [67]. The sampling time is chosen as 10ms. Two RIT2FNS

controllers are designed for each axis. The block diagram of the neuro-fuzzy control

structure is depicted in Figure 7.3. The pitch angle (rad) error (ep), its derivative
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Table 7.1. Description of the nonlinear model parameters.

Parameters Description Values

Jeq,p Total moment of inertia about pitch axis 0.0384kg.m2

lcm
Center of mass length along

0.1855m

helicopter body from pitch axis

Jeq,y Total moment of inertia about yaw axis 0.0431kg.m2

Kpp

Thrust torque constant acting on
0.2041N.m/V

pitch axis from pitch propeller

Kpy

Thrust torque constant acting on
0.0068N.m/V

pitch axis from yaw propeller

Kyp

Thrust torque constant acting on
0.0219N.m/V

yaw axis from pitch propeller

Kyy

Thrust torque constant acting on
0.072N.m/V

yaw axis from yaw propeller

g Gravitational constant 9.81m/s2

Bp Viscous damping about pitch axis 0.8N/V

By Viscous damping about yaw axis 0.318N/V

mheli Total moving mass of the helicopter 1.3872kg

Vm,p Voltage apply to pitch motor ±24V

Vm,y Voltage apply to yaw motor ±15V

(∆ep) and its integral (
∑

ep) are given as the inputs to the RIT2FNS controller for

the pitch axis. Similarly, the yaw angle (rad) error (ey), its derivative (∆ey) and its

integral (
∑

ey) are given as the inputs to the RIT2FNS controller for the yaw axis.

In both RIT2FNSs, three symmetrical Gaussian membership functions whose LMFs

are the scaled versions of the UMFs are used for each input. In the application of
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Figure 7.3. Block diagram of the neuro-fuzzy control system.

T1FNS, the number of type-1 Gaussian membership functions used for each input is

also three to have a fair basis for comparison. The membership functions are randomly

initialized. In the proposed approach, the center and the standard deviation of the

membership functions are determined by using the recursive fuzzy c-means clustering

algorithm described. The parameters at the consequent part of the fuzzy rules and γ

are tuned based on a gradient descent learning algorithm. In T1FNS approach, both

the antecedent and the consequent parameters of the fuzzy rules are tuned with the

gradient descent approach. The initial values of the parameters at the consequent

parts are chosen randomly. The initial γ values are chosen as 0.8 and they are tuned

between 0.5 and 1. For the learning rate λ, a small value is chosen between 0 and

1. The learning rate is adapted according to the magnitude of the error. When the

derivative of the error is negative, the learning rate is increased, and when the rate is

positive it is decreased. The simulation results obtained for three different experiments

are given in Figures 7.4-7.6. In the third experiment, as shown in Figure 7.6, a sudden

step disturbance with a 0.1 magnitude is applied to both axes between 15 and 17

seconds. The root mean square error values of the tracking error obtained in the three

experiments for each axis and the number of design parameters are given in Table 7.2,

showing the robustness of both neuro-fuzzy approaches.
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Figure 7.4. Simulation 1: The results obtained for sinusoidal reference trajectory.
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Figure 7.5. Simulation 2: The results obtained for square wave reference trajectory.
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Figure 7.6. Simulation 3: The results obtained for sinusoidal reference trajectory with

a sudden disturbance.

7.3. Description of the Servo System

Servo systems are commonly used in industrial processes and fuzzy neural sys-

tems are commonly deployed in the control of such systems. In [68], a fuzzy neural

network (FNN) proportional-integral (PI)-/proportional-derivative (PD)-like controller

with on-line learning is presented for speed trajectory tracking of a brushless drive sys-

tem. It is seen that the adaptive control via the Extended Kalman Filter (EKF)

learning of the FNN is superior to fuzzy logic systems (FLSs) and the experimental

results obtained under various operational conditions indicate remarkable tracking per-

formance. In [69], an adaptive self-organizing Takagi-Sugeno-Kang type fuzzy network

control (ASTFNC) is deployed on a DC motor drive. The performance of the ASTFNC

system with a PI-type learning algorithm is compared with some methods from the lit-

erature. The experimental studies verify the expectations that the proposed approach

is more advantageous as compared to the other methods.

The proposed method is tested on the experimental setup AMIRA DR300 [70]
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Table 7.2. Comparison of obtained RMSE values of 2-DOF Helicopter.

T1FNS RIT2FNS

Simulation 1: RMSE value 0.0388 0.0385

in rad for pitch axis

Simulation 1: RMSE value 0.0104 0.0049

in rad for yaw axis

Simulation 2: RMSE value 0.0493 0.0430

in rad for pitch axis

Simulation 2: RMSE value 0.1122 0.1008

in rad for yaw axis

Simulation 3: RMSE value 0.0406 0.0393

in rad for pitch axis

Simulation 3: RMSE value 0.0121 0.0085

in rad for yaw axis

Design parameters 30 39

shown in Figure 7.7. It is a nonlinear servo system. In [70], the theoretical and the

mathematical background of the ideal permanently excited DC motor is given. The

block scheme of the plant is presented in Figure 7.8. The plant consists of two identical

permanently excited DC motors M1 and M2. The free shaft of the first motor (M1) is

coupled to the second motor (M2) with a mechanical clutch. The second motor (M2)

is used as a generator to create nonlinear load conditions. The block diagram of the

permanently excited DC motor with a load is seen in Figure 7.9. The transfer function
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Figure 7.7. The experimental setup.

Figure 7.8. Block scheme of the plant.

of the system is given below:

ω(s) =
1

Cφ

1

1 + TMs+ TMTAs2
UA(s)

− RA

KMCφ

1 + TAs

1 + TMs+ TMTAs2
ML(s) (7.29)

where ω is the speed of the rotor, UA is the armature voltage, C is the motor constant,

φ is the magnetic excitation, KM is the motor constant, ML is the sum of all load

torques, TA is the armature time constant and TM indicates the time behavior of the
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Figure 7.9. Block diagram of the constantly excited DC motor with load.

system. TA and TM are given as follows:

TA =
LA

RA

(7.30)

and

TM =
JRA

KMCφ
(7.31)

The first part of the transfer function Equation 7.29 describes the reference whereas the

disturbance is described by the second part. The system parameters and the numerical

values that are used in the experiments are given in Table 7.3.

7.3.1. Experimental Studies

The recursive interval type-2 fuzzy neural system and the type-1 fuzzy neural

system are both tested experimentally on the set up that is shown in Figure 7.7. The

block diagram of the neuro-fuzzy structure is given in Figure 7.10. In the experimental

studies, the sampling time is chosen as 10ms and the tacho speed and the applied load

voltage are normalized between -1 and 1. The same initial values of the parameters and

the same number of fuzzy rules are used in both NFSs as in the previous application.

The experimental results obtained with varying reference and load conditions are given

in Figures 7.11-7.13. In Figure 7.14, the control input signal for the second experiment

is given. For the first two experiments, a sinusoidal load shown in Figure 7.15 is applied
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Table 7.3. The technical data of the laboratory setup.

Description Value

Motor

Nominal Voltage 24 V

Nominal Current 2 A

Nominal Speed 3000 rpm

Nominal Torque 0.096 Nm

Moment of Inertia 17.7 10−6 Kgm2

Torque Constant 0.06 Nm/A

Armature Resistance (RA) 2.6 Ω

Armature Inductance (LA) 3 mH

emf constant 6.27 mV/rpm

Mechanical clutch Moment of Inertia 33 10−6 Kgm2

Tacho
Output Voltage 5 mV/rpm

Moment of Inertia 10.6 10−6 Kgm2

to the system. In the first experiment, the reference is changed as shown in Figure

7.11. In the second experiment, the reference speed is changed as shown in Figure

7.12. In the third experiment, the load applied changes from 0.3 pu to 0.6 pu at t = 5

seconds and decreases to 0.5 pu at t = 8 seconds. The adaptation of the membership

functions takes place throughout the experiments and the final membership functions

for only the first experiment are given in Figures 7.16 and 7.17 for the T1FNS and the

RIT2FNS respectively. The root mean square error values and the number of design

parameters are given in Table 7.4.

7.4. Conclusion

In this study, an interval type-2 fuzzy neural system, the membership functions of

which are determined with a recursive fuzzy c-means clustering algorithm is presented.
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Figure 7.10. Block diagram of the neuro-fuzzy control system.
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Figure 7.11. Experiment 1: The results obtained for changing reference under

sinusoidal load.

As compared to the traditional fuzzy c-means clustering algorithm, in the recursive

approach not only the center values of the membership functions but also the standard

deviation values are identified. Another contribution of this study is that the recursive

fuzzy c-means clustering algorithm is used with interval type-2 fuzzy neural system

and it is applied in control applications.

The performance of the proposed approach and a traditional T1 neuro-fuzzy

structure adopted from the literature are tested on a 2-DOF helicopter (a benchmark

system since there exists a strong cross coupling relation between its axes) for trajectory

tracking. The results obtained illustrate the effectiveness of the proposed approach.

It is concluded that both algorithms are able to track time-varying reference signals
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Figure 7.12. Experiment 2: The results obtained for changing reference under

sinusoidal load.
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Figure 7.13. Experiment 3: The results obtained for constant reference under varying

step load.

and are robust against external disturbances. However, the proposed approach has

less RMSE value and less overshoot as compared to the T1FNS. The performances
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Figure 7.14. Control input signal for the second experiment (changing reference

under sinusoidal load).
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Figure 7.15. Sinusoidal load.

of both approaches are tested experimentally too on a laboratory servo system. It is

observed that especially under the condition of a time varying reference signal with a
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Figure 7.16. Experiment 1: The final membership functions of T1FNS.
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Figure 7.17. Experiment 1: The final membership functions of RIT2FNS.

nonlinear load, the proposed approach is able to track the reference signal better than

the T1FNS. In addition, it is seen that the proposed approach is able to converge faster

than the T1FNS and it results in smaller RMSE values in all experiments.
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Table 7.4. Comparison of obtained RMSE values of real-time servo system.

T1FNS RIT2FNS

Experiment 1: RMSE value in pu 0.0542 0.0332

(changing reference under sinusoidal load)

Experiment 2: RMSE value in pu 0.0366 0.0128

(changing reference under sinusoidal load)

Experiment 3: RMSE value in pu 0.0623 0.0375

(constant reference under varying step load)

Design parameters 30 39

7.5. Recursive Interval Type-2 Neuro Fuzzy System with Elliptical

Membership Functions

As mentioned in the previous section, today, most of the systems are non-linear

and time-varying. The control of these kind of processes should be realized, recursively.

In this part of the study, interval type-2 neuro-fuzzy system is used with recursive fuzzy

c-means clustering with elliptical membership functions. Type-2 fuzzy systems are able

to handle the environmental and the inner uncertainties of the systems better than their

type-1 counter part. In [71], it is shown that type-2 fuzzy logic system (T2 FLS) with

interval type-2 elliptical membership functions have better noise reduction property as

compared to type-1 fuzzy systems and the detailed information can be found in [71].

The interval type-2 TSK FLS is used with the integration of neural-networks.

The fuzzy IF-THEN rule structure is given as follows [17]:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where Xn’s are the inputs and Ain’s (i=1,...,n) are the interval type-2 fuzzy sets indi-
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cated with tildes. zi is the output of the each rule. ain’s are the coefficients of the first

order polynomial at the consequents of the each rule. i (i = 1, 2,...,M) indicates the

number of rules and n is the number of the antecedent parameters.

At the antecedents of the fuzzy IF-THEN rules, interval type-2 elliptical mem-

bership functions are used as seen in Figure 7.18. The kernel and the both support end

points of these membership functions are precise and the other parts of the support

are fuzzy.
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Figure 7.18. Interval type-2 elliptical membership function.

In traditional fuzzy c-means clustering algorithms, the center values are deter-

mined offline. However, for time-varying processes that the input-output data changes

over time, recursive approaches should be used. In this study, recursive fuzzy c-means

clustering approach [42] is used to determine the center values of the elliptical mem-

bership functions. In this clustering approach, the centers of the elliptical membership

functions are determined recursively. The approach is given as in the following [42]:

• The following parameters are initialized: c (number of clusters ), η (fuzziness

parameter ), γv (forgetting factor), vi (center values of the membership functions),

µi (membership values), and si for i = 1, ..., c.
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• The membership values µi are calculated as follows:

µi(t) =
1

∑c
j=1

(

d2
i,(t)

d2
j,(t)

)
1

η−1

(7.32)

where d2i,(t) = (x(t)− vi(t− 1))T (x(t)− vi(t− 1)), (1 ≤ i ≤ c, 1 ≤ t ≤ N).

• si and ∆vi(t) are calculated as follows:

si(t) = γvsi(t− 1) + µη
i (t) (7.33)

where si(t− 1) =
∑t−1

k=1 µ
η
i (k).

∆vi(t) =
µη
i (t)(x(t)− vi(t− 1))

γv
∑t−1

k=1 µ
η
i (k) + µη

i (t)
(7.34)

• The new center values are determined as in the following:

vi(t) = vi(t− 1)−∆vi(t) (7.35)

• The center values of the elliptical membership functions are determined by using

the recursive fuzzy c-means clustering algorithm. The parameters that present

the width and the width of the uncertainty of the membership functions are

determined by gradient based learning approach.

The upper and the lower part of the elliptical membership functions are given in the

following, respectively [71]:

µij =







(1−
∣

∣

∣

xi−vij
dij

∣

∣

∣

b1ij
)1/b1ij , if vij − dij < x < vij + dij

0, else
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µ
ij
=







(1−
∣

∣

∣

xi−vij
dij

∣

∣

∣

b2ij
)1/b2ij , if vij − dij < x < vij + dij

0, else

where b1 and b2 determines the width of the uncertainty of the elliptical membership

functions and they are chosen as b1 > 1, 0 < b2 < 1. vij and dij are the center and

the width of the membership functions, respectively. Subsequently, the lower and the

upper firing strengths of each rule are calculated as follows:

ωj = µ
j
(x1(t)) · · ·µj

(xn(t)) (7.36)

ωj = µj(x1(t)) · · ·µj(xn(t)) (7.37)

The consequent part of the fuzzy rules are first order polynomials, defined as:

zj =
n

∑

i=1

aijxi + a0i (7.38)

Nie-Tan (NT) method [62] is used as the type-reduction procedure. This method has

less computational burden and is easier to be utilized. The output of the interval type-2

neuro-fuzzy system is given as follows:

u =

∑M
j=1 zj(ωj + ωj)

∑M
j=1(ωj + ωj)

(7.39)

7.5.1. Parameter Learning

In this study, gradient descent based learning approach is used to obtain an opti-

mal neuro-fuzzy model. The width and the width of the uncertainty of the membership

functions at the antecedents and the coefficients at the consequents of the fuzzy rules
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are adjusted. The objective function is given as follows:

E =
1

2

O
∑

i=1

(udi − ui)
2 (7.40)

aij(t+ 1) = aij(t)− λ
∂E

∂aij
(7.41)

a0i(t+ 1) = a0i(t)− λ
∂E

∂a0i
(7.42)

b1ij(t+ 1) = b1ij(t)− λ
∂E

∂b1ij
(7.43)

b2ij(t+ 1) = b2ij(t)− λ
∂E

∂b2ij
(7.44)

dij(t+ 1) = dij(t)− λ
∂E

∂dij
(7.45)

where

∂E

∂aij
=
∂E

∂u

∂u

∂zj

∂zj
∂aij

(7.46)

∂E

∂a0j
=
∂E

∂u

∂u

∂zj

∂zj
∂a0j

(7.47)
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∂E

∂b1ij
=

∑

j

∂E

∂u

∂u

∂ωj

∂ωj

∂µij

∂µij

∂b1ij
(7.48)

∂E

∂b2ij
=

∑

j

∂E

∂u

∂u

∂ωj

∂ωj

∂µ
ij

∂µ
ij

∂b2ij
(7.49)

∂E

∂dij
=

∑

j

∂E

∂u

[

∂u

∂ωj

∂ωj

∂µ
ij

∂µ
ij

∂dij
+

∂u

∂ωj

∂ωj

∂µij

∂µij

∂dij

]

(7.50)

In above

∂E

∂u
= u(t)− ud(t) (7.51)

∂u

∂zj
=

ωj + ωj
∑M

j=1(ωj + ωj)
(7.52)

∂zj
∂aij

= xi (7.53)

∂zj
∂a0j

= 1 (7.54)

∂u

∂ωj

=
zj − u

∑N
j=1(ωj + ωj)

(7.55)

∂ωj

∂µij

=
N1
∏

k=1,k 6=i

µkj (7.56)
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∂u

∂ωj

=
zj − u

∑N
j=1(ωj + ωj)

(7.57)

∂ωj

∂µ
ij

=
N1
∏

k=1,k 6=i

µ
kj

(7.58)

∂µij

∂b1ij
= − 1

b21ij
ln

(

1−
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xi−vij
dij

∣

∣
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b1ij
)(

1−
∣
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∣

xi−vij
dij

∣

∣

∣

b1ij
)

1
b1ij

− 1
b1ij
ln

∣

∣
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xi−vij
dij
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∣

xi−vij
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b1ij
(

1−
∣

∣

∣

xi−vij
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b1ij
)

1
b1ij

−1

(7.59)

where vij − dij < xi < vij + dij

∂µ
ij

∂b2ij
= − 1

b21ij
ln

(

1−
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xi−vij
dij

∣
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b2ij
)(
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1
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(7.60)

where vij − dij < xi < vij + dij

∂µij

∂dij
= 1

|dij |
2 sign(dij) |xi − vij|

∣
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xi−vij
dij

∣

∣

∣

b1ij−1
(

1−
∣

∣

∣

xi−vij
dij

∣

∣

∣

b1ij
)

1
b1ij

−1
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where vij − dij < xi < vij + dij

∂µ
ij

∂dij
= 1

|dij |
2 sign(dij) |xi − vij|

∣

∣

∣

xi−vij
dij

∣
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b2ij−1
(

1−
∣

∣

∣

xi−vij
dij

∣
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∣

b2ij
)

1
b2ij

−1

(7.62)

where vij − dij < xi < vij + dij
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Figure 7.19. The block diagram of the system.

7.5.2. Simulation Results

The position tracking of a 2-DOF helicopter is realized through interval type-2

neuro-fuzzy system with recursive fuzzy c-means clustering algorithm with elliptical

membership functions [72]. The block diagram of the system is given in Figure 7.19.

2-DOF helicopter is a coupled non-linear MIMO (multi-input-multi-output) system.

For each axis; the pitch and the yaw axes, an interval type-2 neuro-fuzzy system with

elliptical membership functions is designed. The inputs for the each controller are the

error (e) and the derivative of the error (∆e). Two elliptical membership functions are

used for each input and they are initialized randomly. The center of the membership

functions are determined by recursive fuzzy c-means clustering algorithm. The num-

ber of clusters determines the number of fuzzy rules used in the neuro-fuzzy system.

Gradient based learning approach is used to adapt the width and the width of the

uncertainty parameters of the antecedent membership functions and the coefficients at

the consequents of the fuzzy rules. The initial values of these parameters are chosen

randomly. The learning rate λ is chosen between 0 and 1 and it is adapted according

to the magnitude of the error. Its magnitude is increased, when the derivative of the

error is negative. It is decreased, when the rate is positive.

Three simulation studies are realized and the obtained the pitch and the yaw

trajectory tracking results are given in Figures 7.20-7.22. In the third application, a

small step disturbance with a 0.1rad magnitude is applied between the 20th and 20.5th

seconds. The final membership functions obtained for the pitch and the yaw axes in
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Figure 7.20. First simulation study, changing reference trajectory for the pitch axis

and step reference trajectory for the yaw axis of a 2-DOF helicopter.
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Figure 7.21. Second simulation study, step reference trajectory for the pitch axis and

changing reference trajectory for the yaw axis of a 2-DOF helicopter.

the third application are given respectively in Figure 7.23 and 7.24. The root mean

square error (RMSE) values for each axes are given in Table 7.5.
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Figure 7.22. Third simulation study, changing reference trajectory with a disturbance

for both axes of a 2-DOF helicopter.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

The error

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

The derivative of the error

Figure 7.23. The final membership functions of the third simulation study for the

pitch axis.
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Figure 7.24. The final membership functions of the third simulation study for the

yaw axis.

7.5.3. Conclusion

Desired position tracking of a 2-DOF helicopter is performed by interval type-2

neuro-fuzzy system with recursive fuzzy c-means clustering algorithm with elliptical

membership functions. The centers of the elliptical membership functions are deter-

mined by using recursive fuzzy c-means clustering algorithm. The width and the width

of the uncertainty parameters and the parameters at the consequents of the fuzzy rules

are obtained by using gradient descent based learning approach. When the results

are analyzed in detail, it is seen that the neuro-fuzzy controller is able to track the

reference trajectory well even under disturbance.



94

Table 7.5. The obtained RMSE values.

RIT2FNS

Simulation 1: RMSE value 0.0385

in rad for pitch axis

Simulation 1: RMSE value 0.0216

in rad for yaw axis

Simulation 2: RMSE value 0.0612

in rad for pitch axis

Simulation 2: RMSE value 0.0055

in rad for yaw axis

Simulation 3: RMSE value 0.0395

in rad for pitch axis

Simulation 3: RMSE value 0.0098

in rad for yaw axis
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8. CONCLUSION

The focus of this dissertation is to contribute into the design of interval type-

2 neuro-fuzzy system for modeling and control applications. For this aim, first of

all, type-1 and type-2 fuzzy logic systems are used with parameterized conjunctors in

modeling benchmark nonlinear functions. In these fuzzy logic systems, the linguistic

information is obtained by using fuzzy c-means clustering algorithms. The obtained

knowledge is kept fixed and the parameters of the parameterized conjunctors are tuned

instead of membership functions at the antecedents. It is observed that interval type-2

fuzzy logic system gives better RMSE value especially with noise in the input measure-

ments as compared to type-1 counterpart.

Subsequently, a novel approach to the use of neuro-fuzzy structures, which is

interval type-2 neuro-fuzzy system with parameterized conjunctors is proposed and

it is used in modeling a benchmark nonlinear function and in slip regulation of a

QCM without and with noisy input measurements. The linguistic information about

the systems that are considered is obtained by using interval type-2 FCM clustering

algorithm. In FCM clustering algorithms, one of the disadvantages is that the number

of clusters need to be given in advance. However, the input data sets cannot be always

well-separable. Validity indices are used to alleviate this problem. In this study, a

validity index is proposed and the result of this validity index is used to determine

the number clusters and the number of fuzzy rules of the neuro-fuzzy structure. The

performance of the proposed approach is compared with the type-1 neuro-fuzzy system

and interval type-2 neuro-fuzzy system without parameterized conjunctors. The results

obtained indicate the efficacy of the approach.

Another contribution of this study is the implementation of IT2 FNS with re-

cursive FCM clustering algorithm. Today, most of the processes that have been en-

countered are time-varying and in the control of these processes a recursive approach

is needed. In this part of the study, the centers and the standard deviation values of

the membership functions at the antecedents are determined by using recursive fuzzy
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c-means clustering algorithm. The designed approach is implemented in trajectory

tracking of a 2-DOF helicopter and in speed control of a real-time servo system. The

results obtained is compared with type-1 neuro-fuzzy system. It is seen that the inter-

val type-2 fuzzy neural system with recursive FCM clustering algorithm has less RMSE

value and converges faster than type-1 fuzzy neural system. Subsequently, the same in-

terval type-2 neuro-fuzzy structure is used with elliptical membership functions. These

membership functions have the noise reduction property. The neuro-fuzzy structure is

applied in the position tracking of a 2-DOF helicopter and it is seen that it is able to

track the reference trajectory well even under noise in the measurements.
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APPENDIX A: LABORATORY SETUP: SERVO SYSTEM

Figure A.1. The schematic view of the hardware station.

The schematic view of the hardware station is seen in Figure A.1. The hardware

station is mainly composed of the following elements; plant, actuator unit, PC with

the A/D converter card.

The plant consists of two identical permanently excited DC motors M1 and M2.

The free shaft of the first motor (M1) is coupled to the second motor (M2) with a

mechanical clutch, K. The second motor (M2) is used as a generator to create nonlinear

load conditions. The output sensors are; a tacho generator and an incremental encoder.

The actuator unit is composed of four quadrant (4Q) current controllers for each

motor, signal adaptation unit, output sensors, and power supplies, (Mains: 220-240 V,

50 Hz, 200 W). The technical data for the actuator with signal adaption unit is given

in Table A.2. The direction of the current can be arbitrarily adjusted with the use

of 4Q-current controller. As a result, the rotation of the motor is also adjustable in

arbitrary directions [70] and [73].

The designed algorithm is deployed for the speed control of the DC motor and

it is digitally implemented by using an A/D converter card, namely HUMUSOFT MF
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614 [74]. PC is connected to the real-time servo system by this card. The input/output

features of the Humusoft MF614 are given in the following Table A.1 [73].

Table A.1. The input/output features of the Humusoft MF614.

Inputs Outputs

3 sensor signals ± 10 V 2 control signals for

at 12 Bit A/D converter for the servo amplifiers

tacho voltage and current monitors ± 10 V from 12 Bit D/A-converter

Input for 4Q-incremental Digital enable/disable

encoder signal for servo amplifiers

This card is used for standard data acquisition and control applications. It is

compatible with Real-Time Workshop for MATLAB R©. This Real-Time Workshop

for MATLAB R© gives ability the designer to deploy a control algorithm using MAT-

LAB/Simulink. It converts Simulink models into C code. Subsequently, the code is

compiled and an executable code is created with .rwd extension and it is implemented

in real-time.
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Table A.2. The technical data for the actuator with signal adaption unit.

Description Value

Inputs servo
Supply voltages ± 35 V, 50 W

Control signal ± 10 V (0.23 A/V )

amplifiers

Outputs servo

Armature current for

max. ± 2.0 A (± 8.0 A, 10 ms)the motor/generator

amplifiers

Current monitor 0.2 V/A

adaption unit

2 control signals, range ±10 V (∗)
Inputs signal

Servo amplifier enabled/disabled

Speed 5 V /1000 rpm, V=0.5

Monitor of motor current 0.2 V/A, V=22.0

Monitor of generator current 0.2 V/A, V=22.0

adaption unit

2 control signals range ± 10 V

Outputs signal

Speed 2.5 V /1000 rpm, max. ± 10 V (∗)

Motor current 2.0 V/A, max. ± 10 V (∗)

Generator current 4.4 V/A, max. ± 10 V (∗)

(∗) = Measurement output at the front
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