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friends, Dr. Hatice Akakın, Oya Çeliktutan, Yasin Çitkaya, Dr. Emre Arslan, Yeşim
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ABSTRACT

WEB-SPLINES SOLUTION OF 3D ELECTROMAGNETIC

PROBLEMS

This dissertation proposes the weighted extended basis splines (web-splines)

approach in the finite element method (FEM) for electrostatic, electromagnetic, and

bioheat problems for radially symmetric and three dimensional (3D) structures. The

most important advantage of this new method is that it does not need mesh generation

which overcomes some of the drawbacks of using meshes and piecewise-uniform or linear

trial functions.

In this thesis, the theoretical development of web-spline formulations has been

done. The mathematical contributions have been supported by the simulations in both

electrostatic and electromagnetic wave problems for inhomogeneous boundary condi-

tions in cylindrical coordinates for the first time. Furthermore, this newly developed

computational approach is employed to calculate the steady-state temperature distri-

bution in a normal human eye. As a first step, the human eye is evaluated in two

dimensions (2D). The simulation results which are verified using the values reported in

the literature, point out to better efficiency in terms of the accuracy level. Next, to give

a more precise representation of the actual human eye, 3D modeling is simulated us-

ing these new finite elements in conjunction with linear, quadratic and cubic b-splines.

Grid convergence number estimates are derived for both sets of simulations. It is shown

that this method reaches higher precision in a shorter period of time with fewer nodes.

Finally, FEM with web-spline computer modeling have been applied to human eye to

study the intraocular temperature during microwave irradiation. Our findings indicate

that web-spline solutions improve the computational methods for health care.
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ÖZET

ÜÇ BOYUTLU ELEKTROMANYETİK

PROBLEMLERİNİN WEB-SPLINE ÇÖZÜMÜ

Bu tez, radial simetri ve üç boyutlu (3B) yapılar için elektrostatik, elektro-

manyetik ve biyo-ısı problemlerinde sonlu eleman yönteminde ağırlıklı genişletilmiş

b-spline yaklaşımını önermektedir. Ağ oluşumuna ihtiyaç duymayan bu yeni yöntemin

en önemli yanı, ağ, parça-düzgün veya doğrusal test fonksiyonlarının kullanımındaki

sonlu eleman yöntemindeki eksikliklerin üstesinden gelebilmesidir.

Tezde, ağırlıklı genişletilmiş b-spline formulasyonunun teorik gelişimi yapılmış

ve ilk olarak silindirik koordinatlarda homojen olmayan sınır koşulları için elektro-

statik ve elektromanyetik dalga problemlerinde matematiksel katkılar benzetimlerle

desteklenmiştir. Buna ek olarak, bu yeni geliştirilmiş sayısal yaklaşım, normal bir

insan gözünde kararlı hal sıcaklık dağılımının hesabı için kullanılmıştır. İlk olarak,

insan gözü iki boyutlu (2B) olarak değerlendirilmiştir. Literatürde verilen değerler

kullanılarak doğrulaması yapılan benzetim sonuçlarının, kesinlik seviyesi açısından çok

başarılıolduğu gösterilmiştir. Daha sonra, daha gerçekçi bir insan gözü sunabilmek için,

doğrusal, ikinci dereceden ve üçüncü dereceden b-splinelarla birlikte yeni sonlu eleman-

lar kullanılarak üç boyutlu (3B) modelin benzetimi yapılmıştır. Her iki benzetim için

de ızgara yakınlık sayı tahmini yapılmıştır. Bu da, çok az düğüm sayısı ile çok kısa za-

man periyodunda daha yüksek kesinliğe ulaşıldığını göstermiştir. Son olarak, ağırlıklı

genişletilmiş b-spline sonlu eleman yöntemi bilgisayar modeli, mikrodalga yayılımı

sırasında insan gözündeki sıcaklık etkilerini hesaplamak için kullanılmıştır. Sonuçlar,

ağırlıklı genişletilmiş b-spline çözümlerinin, sağlık hizmetlerinde sayısal yöntemlerin

iyileştirdiğini göstermektedir.
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1. INTRODUCTION

The discovery and understanding of electromagnetic (EM) phenomena can be

traced back thousands of years, to when ancient philosophers were interested in the

physical world around them. Lightning in the sky was the subject of heavenly wor-

ship, but complex electromagnetic processes were involved in the natural phenomenon,

which is still being studied by scientists armed with the latest equipment. Those nat-

ural phenomena led to the recognition of the existence of electric power, yet a truly

scientific explanation and quantization were completed a little more than a century

ago. Generation and utilization of such power for human life have fully blossomed only

in the last few decades.

Although most electrical engineering curricula begin with a study of electric and

magnetic circuits, it is now recognized that the more basic theory of the electric and

magnetic fields deserves subsequent attention in approximating the EM field equations.

Numerical techniques for calculating electromagnetic fields surpassed analytical tech-

niques many years ago. Analytical methods work for only a few basic geometries that

do not apply to most practical problems. There are more articles on numerical calcu-

lation of fields than on analytical calculation. The computer has become a critical part

of electromagnetics.

Computational electromagnetics is the simulation of Maxwell’s equations and

their variations on a computer. Numerical approaches to solving Maxwell’s equations

find the fields in either the time domain or frequency domain. Maxwell’s equations

have yielded some partial differential equations (PDE) which model the behavior of

the electromagnetic waves. These equations are widely used in engineering designs and

are often difficult to solve analytically.

Numerical solutions of electromagnetic scattering and radiation problems are ob-

tained by solving partial differential equations with different methods. The most widely

used techniques are Finite Difference Time Domain (FDTD) Method, Boundary El-



2

ement Method (BEM) or Method of Moments (MOM), and Finite Element Method

(FEM). Thus, numerical computation techniques promote faster and more accurate

solution techniques.

FDTD was developed by Yee in 1966 [1]. His idea was to divide the three di-

mensional region into cubic cells, take values of points on each cell, and to convert the

partial derivatives into difference equations. The idea comes from Taylor expansions.

The finite differences are used to approximate derivatives. In this method, continuous

equations are replaced with their finite difference of values of selected points, which

are easy to implement. However it is difficult to implement this method for complex

objects.

BEM requires calculating only boundary values, rather than values throughout

the space defined by a partial differential equation. It is controlled by points on the

boundary of the domain. It is a way of converting integral equations to matrix equa-

tions. This technique works best for wires and flat plates. More complex systems

are assembled from wires and/or metal plates. Each wire or metal plate is further

subdivided into wire segments or patches that are small compared to the frequency’s

wavelength. Figure 1.1 shows an example of a solid sphere modeled using wires [2].

Figure 1.1. A solid perfectly conducting sphere is modeled with wire grid. Each wire

is divided into subsegments. BEM calculates the current induced on each subsegment

In FEM, which is an important tool in this work, the problem space is subdivided

into finite regions (elements) over which the solution is assumed to follow a simple local
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approximating trial function, and then minimizes the energy of the given function for

the given domain [3].

Although FDTD and BEM are conceptually simpler and easier to program than

FEM, FEM is a more powerful and versatile numerical technique for handling problems

involving complex geometries and inhomogeneous media. The systematic generality of

the method makes it possible to construct general purpose computer programs for

solving a wide range of problems. Consequently, programs developed for a particular

discipline have been applied successfully to solve problems in a different field with little

or no modification [4].

1.1. Research Overview and Contributions

This study presents on the use of web-splines in the FEM method. The spline

functions are often used in approximation, data fitting, computer aided design (CAD),

and many other applications [5, 6]. The contributions of Carl De Boor, de Casteljau,

and Bezier have played an important role for splines. The b-splines can be used as

basis functions for their flexibility and continuity between points. Many researches

have been done on spline finite element solutions [7-9]. Despite the fact that boundary

conditions and stability requirements prevent b-splines from being used on uniform

grids, these difficulties can be overcome with the new method called web-spline. Hollig

[10] constructed the web-spline method and used it with the FEM. Thus the combined

advantages of standard finite elements and web-spline representations inspired many

authors to work on this new subject [11-19].

This study will illustrate the web-splines as basis functions for FEM in axisym-

metrical 3D EM problems and in bioheat transfer problems for analyzing the temper-

ature distribution in 2D and 3D models of the human eye with and without external

sources. The benefits of using web-splines in solving axisymmetrical problems and ap-

proximating the heat distribution in the eye are that no mesh generation is required

and uniform grids are used instead of irregular partitions of domain, thus eliminat-

ing the difficult and time consuming preprocessing step. In fact, as reported in this
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dissertation, high accuracy can be obtained with relatively few parameters.

1.2. Outline of the Thesis

This thesis is organized as follows: In Chapter 2,we review the overview of elec-

tromagnetics, PDE, and FEM. After introducing the general background of FEM, it

explains the b-splines.

Using FEM and b-splines, the steps of FEM with web-spline method are studied

in Chapter 3. Finite element basis functions are constructed by using web-splines

without mesh generation. Then, finite element assembly and solution are studied.

Chapter 4 shows the applications of EMs in one dimension (1D) and 2D. This

chapter shows why the b-splines are used for constructing basis functions. The simu-

lation results using FEM with b-splines are compared with the exact results and the

general FEM methods.

The novel contributions of this research are explained in Chapters 5, 6 and 7. In

Chapter 5, we apply FEM with web-spline technique to radially symmetric electrostatic

and EM wave problems. The findings of the error analysis with the standard FEM

analysis are also reported in this Chapter. Chapter 6 investigates the heat transfer

in the normal unexposed 2D and 3D representations of the human eye. Web-spline

model have been developed and employed to calculate the steady-state temperature

distribution based on the properties and parameters reported in the literature. The

presented method in Chapter 7 is based on the intraocular temperature distribution

during microwave irradiation.

Although each chapter has its own concluding section, we summarize our results

in Chapter 8. It concludes this dissertation with a summary of our findings and the

future directions of our research.
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2. OVERVIEW OF ELECTROMAGNETICS AND

SPLINES

2.1. The Maxwell’s Equations

Maxwell’s equations are a set of fundamental equations that govern all macro-

scopic electromagnetic phenomena. The equations can be written in both differential

and integral forms. For general time-varying fields, Maxwell’s equations in integral

form are given by

∮
C

Edl = − d
dt∬

S

Bds (Faraday’s law) (2.1)

∮
C

Hdl = d

dt∬
S

Dds +∬
S

Jds (Maxwell - Ampere law) (2.2)

∯
S

Dds =∭
V

ρdv (Gauss’s law) (2.3)

∯
S

Bds = 0 (Gauss’s law - magnetic) (2.4)

where E is electric field intensity (V /m), D is electric flux density (C/m2), H is mag-

netic field intensity (A/m), B is magnetic flux density (Wb/m2), J is electric current

density (A/m2), ρ is electric charge density (C/m3) [20, 21].

In Equations (2.1) and (2.2), S is an arbitrary open surface bounded by contour

C, whereas in Equations (2.3) and (2.4), S is a closed enclosing volume V.
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Another fundamental equation, known as the equation of continuity, is given by:

∯
S

Jds = − d
dt∭

V

ρdv (2.5)

This equation, which can be derived from (2.2) and (2.3), is the mathematical

form of the law of the conservation of charge. Equations (2.1) - (2.5) are valid in

all circumstances regardless of the medium and the shape of the integration volume,

surface, and contour. They can be considered as the fundamental equations governing

the behavior of electromagnetic fields.

Maxwell’s equations in differential form can be derived from (2.1) - (2.5) by

using Gauss’s and Stokes’s theorems. When field quantities in Maxwell’s equations are

harmonically oscillating functions with a single frequency, the field is referred to as

time-harmonic. Using the complex phasor notation, differential forms can be written

in a simplified form as:

∇×E = −jωB (2.6)

∇×H = jωD + J (2.7)

∇ ⋅B = 0 (2.8)

∇ ⋅D = ρ (2.9)

∇ ⋅ J = −jωρ (2.10)
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where the time convention ejωt used and suppressed and ω is angular frequency.

Maxwell’s equations become definite when constitutive relations between the field

quantities are specified. The constitutive relations describe the macroscopic properties

of the medium being considered. For a simple medium, they are:

D = εE (2.11)

B = µH (2.12)

J = σE (2.13)

where the constitutive parameters, ε, µ, and σ denote, respectively, the permittivity

(F /m), permeability (H/m), and conductivity (S/m) of the medium. These parameters

are tensors for anisotropic media and scalars for isotropic media. For inhomogeneous

media, they are functions of position, whereas for homogeneous media they are not.

2.2. Vector Wave Equations

The differential wave equation for either E or H can be obtained from Equations

(2.6) - (2.7) with the aid of the constitutive relations (2.11) - (2.13), by taking the curl

of the equations and employing the following vector identity:

∇×∇ ×E = ∇(∇.E) − ∇2E (2.14)

∇×∇ ×H = ∇(∇.H) − ∇2H (2.15)

Since the divergences of the field quantities are zero for the free source and no
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conducting medium, vector wave equations are obtained as:

∇2E + ω2µεE = 0 (2.16)

∇2H + ω2µεH = 0 (2.17)

These wave equations must always be satisfied, whatever boundary conditions

are imposed. The wave equations in Equations (2.16) and (2.17) can be written as:

∇2u + k̃2u = 0 (2.18)

where k̃ = ω√µε is the wave number, ω is the wave angular frequency, and u shows the

time harmonic magnetic or electric field. This is called homogeneous wave equation or

Helmholtz’s equation.

2.3. Boundary Conditions

The EM fields obtained from the solution of Maxwell’s equations must also satisfy

the boundary conditions at the interface between different media. At a source-free

interface between two media, medium 1 and medium 2, the fields must satisfy four

conditions, given by

n̂ × (E1 −E2) =Mm (2.19)

n̂ ⋅ (D1 −D2) = ρs (2.20)

n̂ × (H1 −H2) = Js (2.21)
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n̂ ⋅ (B1 −B2) = 0 (2.22)

where the unit vector n̂ at the interface points into medium 1, ρs is the free surface

electric charge density, and Js,Mm are the free surface electric and magnetic current

density at the interface, respectively. If magnetic current and charges are assumed

to be ignored, Mm and ρm are zero. So the tangential components of the electric

field intensity vectors and the normal components of magnetic flux density vectors are

continuous at the interface [22].

There are one of several types of classes of PDE problems defined by the infor-

mation given at the boundary, including Dirichlet, Neumann and Cauchy problems.

The general form of the boundary conditions can be shown as:

ru + (sx
∂u

∂x
x̂ + sy

∂u

∂y
ŷ + sz

∂u

∂z
ẑ) ⋅ n̂ = g(x, y, z) (2.23)

where n̂ shows the outward normal unit vector of the region with the coefficients

r, s and function g which depends on the boundary conditions. A dirichlet problem

is the problem of finding a function which solves a specified PDE in the interior of

a given region that takes prescribed values on the boundary of the region (s = 0).

As a concrete physical example one can give the problem of determining the steady

temperature distribution inside a domain Ω, if the temperature on its boundary ∂Ω is

given. Another example is that if the value of the field strength is held constant, then

it would be known at that point in space. The boundary gives a value to the normal

derivative of the field equation (u) (r = 0) then it is a Neumann boundary condition.

In this condition, unlike the Dirichlet condition, the Neumann condition ensures only

that the equation has a unique solution up to an additional constant. If the Neumann

condition is not zero, it does not have a physical meaning because a constant flux inside

the domain cannot ensure that the solution is stationary If the boundary has the form

of a curve or surface that gives a value to the normal derivative and the field equation

(u) itself then it is a Cauchy boundary condition [23]. The classification of boundary

conditions are given in Table 2.1.
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Table 2.1. The classification of boundary conditions

Boundary Condition r s

Dirichlet BC nonzero zero

Neumann BC zero nonzero

Cauchy BC nonzero nonzero

2.4. Finite Element Method

The finite element analysis of any problem involves basically four steps:

1) Discretizing the solution region into a finite number of subregions or elements,

2) Deriving governing equations for a typical element,

3) Assembling of all elements in the solution region, and

4) Solving the system of equations obtained.

The geometrical adaptability and low memory requirements of the FEM have

made it one of the most popular numerical methods in all branches of engineering

[23, 24, 25]. Its application to boundary value problems involves the subdivision of

the computational domain (region where the fields are to be determined) into smaller

elements. For two dimensional problems, these elements are typically triangles or

quadrilaterals. A three dimensional mesh around a sphere is given as an example in

Figure 2.1.

While some physical problems can be represented or approximated by a one or

two dimensional mathematical model, all physical problems are three dimensional in

nature. When a one or two dimensional representation or approximation is not possible,

a three dimensional treatment is then necessary. In this part, the finite element method

to three dimensions will be given in a very straightforward manner.

FEM for a general 3D problem, the boundary value problem under consideration
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Figure 2.1. Structured tetrahedral mesh around a metallic sphere

is defined by the second order differential equation.

− ∂

∂x
(αx

∂ϕ

∂x
) − ∂

∂y
(αy

∂ϕ

∂y
) − ∂

∂z
(αz

∂ϕ

∂z
) + βϕ = f, (x, y, z) ∈ V (2.24)

in conjunction with the boundary conditions

ϕ = p on S1 (2.25)

(αx
∂ϕ

∂x
x̂ + αy

∂ϕ

∂y
ŷ + αz

∂ϕ

∂z
ẑ) ⋅ n̂ + γϕ = q(x, y, z) on S2 (2.26)

where S = S1 + S2 denotes the surface enclosing the volume V and n̂ is its outward

normal unit vector.

Various approximation methods have been developed for FEM. This study presents

Ritz-Galerkin approximation by minimizing the functional with respect to its variables.

The equivalent variational problem for the boundary value problem defined above with
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Equations (2.25) and (2.26), is given by:

F (ϕ) = 1

2∭
V

[αx (
∂ϕ

∂x
)
2

+ αy (
∂ϕ

∂y
)
2

+ αz (
∂ϕ

∂z
)
2

]dV +∬
S2

(γ
2
ϕ2 − qϕ)dS

−∭
V

fϕdV (2.27)

The first step of the finite element analysis is the discretization of the domain of interest.

In this case the volume has to be subdivided into a number of small volume elements,

tetrahedral elements. As a result, the surface S is broken into a number of triangular

elements. Then, all volume elements with a set of integers and all nodes, which are

the vertices of the tetrahedral, with another set of integers have to be labeled. The

element numbers and node numbers can be related by a 4 x M integer array denoted

by n(i,e), where i=1,2,3,4, e=1,2,3,...,M, and M denotes the total number of volume

elements. Once the domain is discretized, the unknown function within each element

Figure 2.2. Linear tetrahedral element

has to be approximated. For this, the tetrahedral element illustrated in Figure 2.2 will

be considered. Within the element, the unknown function ϕe can be approximated

with linear interpolation as:

ϕe(x, y, z) = ae + bex + cey + dez (2.28)
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In general form, the approximated solution ϕe which consists of four nodes with the

interpolation function is

ϕe(x, y, z) =
4

∑
1

ciBi(x, y, z) (2.29)

With the discretization and interpolation described above, the problem can be formu-

lated in terms of the unknowns at the nodes using the Ritz-Galerkin method [23, 25].

F (ϕ) =
M

∑
e=1

F e(ϕe) (2.30)

where M denotes the total number of volume elements and F e is given by (2.27).

Substituting (2.29) into (2.30) and taking the partial derivative of F e with respect to

ϕe
i , i = 1,2,3,4.

∂F e

∂ϕe
i

=
4

∑
j=1

ci∭
V e

[αx (
∂Bi

∂x

∂Bk

∂x
) + αy (

∂Bi

∂y

∂Bk

∂y
) + αz (

∂Bi

∂z

∂Bk

∂z
) + βBiBk]dV

+ αγ∬
S2

BiBkdS −∭
V e

fBkdV − α∬
S2

qBkdS (2.31)

4

∑
i=1

ci [Ki,k +Mi,k +Ri,k] = Fk +Gk (2.32)

After constructing the basis functions and taking the integral of each mesh in Equation

(2.33), the linear system is assembled and solved

[K +M +R]ϕ = F +G (2.33)

where ϕ is the matrix consisting of the coefficients of the basis functions, K is the

stiffness matrix, M is the mass matrix, F is the load matrix, and R and G are matrices

related to the boundary conditions.
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2.5. B-splines

In the mathematical field of numerical analysis, a spline is a special function

defined piecewise by polynomials. In the computer science subfields of computer-aided

design and computer graphics, the term spline more frequently refers to a piecewise

polynomial curve. Splines are popular curves in these subfields because of the simplicity

of their construction, their accuracy of evaluation, and their capacity to approximate

complex shapes through curve fitting and interactive curve design.

The term ”spline” is used to refer to a wide class of functions that are used in

applications requiring data interpolation and/or smoothing. Splines may be used for

interpolation and/or smoothing of either one-dimensional or multi-dimensional data.

They were developed by Carl de Boor, de Casteljau, and Bezier [5, 6, 7]. They have

become popular and many papers have been published on basis splines (b-splines).

The b-splines, which can be used as basis functions for their flexibility and conti-

nuity between points, have been taken into consideration to implement basis functions

for FEM. It was proven that more accurate results are obtained by using b-spline

basis functions as shape functions in order to solve two dimensional electromagnetic

field problems for regular regions [25]. Hollig has used b-splines as basis functions to

solve boundary value problems using FEM [10]. Using b-splines involving higher order

shape functions is simple for the approximation of FEM applications. This method

provides to solve electromagnetic problems with high accuracy and can also be applied

to irregular domains.

The uniform b-spline bn of degree n is defined by the recursion [5]

bn(x) =
x

∫
x−1

bn−1(t)dt (2.34)

starting from the characteristic function b0 of the unit interval between zero and one.

The uniform 3D b-spline bn of degree n is also defined by (2.35). Figure 2.3 shows
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the uniform 1D b-splines of degree one, two and three. These are linear (dotted line),

quadratic (dashed line), and cubic (dash-dotted line) b-splines respectively. Cubic 1D

b-spline functions which are defined by piecewise polynomials are given in Figure 2.4.

Table 2.2 and Table 2.3 depict linear, quadratic, and cubic 1D and 3D b-splines which

are obtained by using (2.34) and (2.35), respectively.

bn(x, y, z) =
x

∫
x−1

y

∫
y−1

z

∫
z−1

bn−1(k, l,m)dkdldm (2.35)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

x

b(
x)

b0(x)

b1(x)

b2(x)

b3(x)

Figure 2.3. The uniform b-splines

2.5.1. The Concept of Splines

Identities for bn generalize easily to the scaled translated b-splines with grid h

supporting in [i, i + n + 1]h and scaled formula for the derivative are

bni,h(x) = bn(x/h − i) (2.36)
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Table 2.2. The representation of polynomials for linear, quadratic, and cubic 1D

b-splines

n The uniform 1D b-splines

1 b1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0 dt = x x ∈ [0,1]

∫
1
x−1 dt = 2 − x x ∈ [1,2]

0 otherwise

2 b2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0 t dt = 1

2x
2 x ∈ [0,1]

∫
1
x−1 t dt + ∫

x
1 (2 − t) dt = −x

2 + 3x − 3
2 x ∈ [1,2]

∫
2
x−1(2 − t) dt =

1
2x

2 − 3x + 9
2 x ∈ [2,3]

0 otherwise

3 b3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0

1
2 t

2 dt = 1
6x

3 x ∈ [0,1]

∫
1
x−1

1
2 t

2 dt + ∫
x
1 −t

2 + 3t − 3
2 dt = −

1
2x

3 + 2x2 − 2x + 2
3 x ∈ [1,2]

∫
2
x−1 −t

2 + 3t − 3
2 dt + ∫

x
2

1
2 t

2 − 3t + 9
2 dt =

1
2x

3 − 4x2 + 10x − 22
3 x ∈ [2,3]

∫
3
x−1

1
2 t

2 − 3t + 9
2 dt = −

1
6x

3 + 2x2 − 8x + 32
3 x ∈ [3,4]

0 otherwise

Table 2.3. The representation of polynomials for linear, quadratic, and cubic 3D

b-splines

n The uniform 3D b-splines

1 b1(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0 ∫

y
0 ∫

z
0 dkdldm x, y, z ∈ [0,1]

∫
1
x−1 ∫

1
y−1 ∫

1
z−1 dkdldm x, y, z ∈ [1,2]

0 otherwise

2 b2(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0 ∫

y
0 ∫

z
0 klm dkdldm x, y, z ∈ [0,1]

∫
1
x−1 ∫

1
y−1 ∫

1
z−1 klm dkdldm

+∫
x
1 ∫

y
1 ∫

z
1 (2 − k).(2 − l).(2 − z) dkdldm x, y, z ∈ [1,2]

∫
2
x−1 ∫

2
y−1 ∫

2
z−1(2 − k).(2 − l).(2 − z) dkdldm x, y, z ∈ [2,3]

0 otherwise

3 b3(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
x
0 ∫

y
0 ∫

z
0

1
8k

2l2m2 dkdldm x, y, z ∈ [0,1]

∫
1
x−1 ∫

1
y−1 ∫

1
z−1

1
8k

2l2m2 dkdldm

+∫
x
1 ∫

y
1 ∫

z
1 (−k

2 + 3k − 3
2)(−l

2 + 3l − 3
2)(−m

2 + 3m − 3
2) dkdldm x, y, z ∈ [1,2]

∫
2
x−1 ∫

2
y−1 ∫

2
z−1(−k

2 + 3k − 3
2)(−l

2 + 3l − 3
2)(−m

2 + 3m − 3
2) dkdldm

+∫
x
2 ∫

y
2 ∫

z
2 (

1
2k

2 − 3k + 9
2)(

1
2 l

2 − 3l + 9
2)(

1
2m

2 − 3m + 9
2) dkdldm x, y, z ∈ [2,3]

∫
3
x−1 ∫

3
y−1 ∫

3
z−1(

1
2k

2 − 3k + 9
2)(

1
2 l

2 − 3l + 9
2)(

1
2m

2 − 3m + 9
2) dkdldm x, y, z ∈ [3,4]

0 otherwise
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Figure 2.4. Cubic b-spline functions

d

dx
bni,h(x) =

1

h
[bn−1i,h (x) − bn−1i+1,h(x)] (2.37)

While Equations (2.36) and (2.37) allow us to derive the main properties of b-splines

in a straightforward manner, it is not well suited for computations. A simple algorithm

for evaluating b-splines is provided by the following recurrence relation:

bni,h(x) =
1

n
[(x

h
− i) bn−1i,h (x) + (n + i + 1 − x

h
) bn−1i+1,h(x)] (2.38)

Basis properties of bni,h(x) are that they are positive on (0, n + 1) and vanishes outside

this interval, (n − 1) times continuously differentiable, piecewise polynomial of degree

n on each interval, symmetric and strictly monotone. Figure 2.5 shows the cubic and

the derivative of cubic 1D b-spline.
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Figure 2.5. The derivative of cubic b-spline

2.5.2. Scalar and Tensor Products of B-splines

The integrals of b-splines can be computed easily with the aid of convolution.

The convolution of two b-splines of degree n1 and n2 is defined as [10]:

bn1+n2+1(x) = ∫
R
bn1(x − y)bn2(y)dy (2.39)

The other significant properties of b-splines are the representation of their scalar

product. The scalar product of two b-splines and their derivatives can be shown as:

sni−k = bni,h.bnk,h = hb2n+1(n + 1 + i − k) (2.40)

dmi−k =
1

h
(2sn−1i−k − sn−1i−k−1 − sn−1i−k+1) (2.41)

The tensor product of b-splines helps to construct b-splines in two and three
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dimensions. It is defined by multiplying b-splines of each direction. The tensor product

of b-splines of degree n with support [i, i + n]h, grid index i, and dimension m is

bni,h(x) = h−m/2
m

∏
d=1

bnid,h(xd) i ∈ Zm, x ∈ Rm (2.42)

Figure 2.6 and Figure 2.7 show the tensor product cubic b-spline for two and three

dimensions with their first order partial derivatives with respect to x, respectively.
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Figure 2.6. Tensor product of cubic b-spline in 2D and first order partial derivative of

cubic b-spline with respect to x

2.5.3. Error Analysis

The error in finite element approximation is defined as the difference between the

exact (ue) and the approximated solution:

e = ue − ũ (2.43)
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Figure 2.7. Tensor product of cubic b-spline in 3D and first order partial derivative of

cubic b-spline with respect to x

For the accuracy studies, the maximum norm measures the maximum absolute value,

the relative error measures the absolute value of error divided by the exact value, and

relative L2-error norm measures the root mean square of integral of a squared error

function over the domain (W) respectively as:

∥e∥∞ =max∣e∣ (2.44)

∥erel∥ = ∣
e

ue

∣ (2.45)

 L2 = ∣erel∥0 =
√
∫Ω e2 dΩ
√
∫Ω u2

e dΩ
(2.46)

The convergence rate is significant in order to understand the strength of method



21

for the numerical computation. It shows how the error reduces when the grid size is

divided by two. The grid width is divided by two and taking the logarithms of error

ratio with respect to base two gives the convergence rate, which is defined as

Convergence rate = log2

∥eh⋅21−l∥
∥eh⋅2−l∥

(2.47)

for the grid widths h ⋅ 2−l, l = 1,2,3,4, ....



22

3. FEM WITH B-SPLINES

The use of b-splines as finite element basis functions is very functional with ge-

ometric modeling and numerical simulation closely linked in engineering applications.

However, at first sight this seems infeasible for two reasons. Firstly, there are some diffi-

culties in modeling essential boundary conditions. For instance, if a linear combination

of b-splines is required to vanish on the boundary of the domain, then all coefficients

of b-splines with support intersecting the boundary must be zero. Hence, this results

in very poor approximation order for solutions of differential equations with Dirichlet

boundary conditions. This difficulty can be overcome by modeling homogeneous es-

sential boundary conditions via weight functions. Thus, solutions which vanish on the

boundary are approximated with linear combinations of weighted b-splines. Secondly,

the restricted b-spline is not uniformly stable due to the outer b-splines having very

small support in the domain. This leads to excessively large condition numbers of finite

element systems and can cause extremely slow convergence of iterative methods. The

stability problem is resolved by adjoining the outer b-splines to the inner b-splines in

order to form the extended b-splines having stable basis.

Combining the above ideas gives rise to the definition of weighted extended b-

splines. These basis functions possess the usual properties of standard finite elements.

FEM applications use basis functions, and meshes. But mesh generation causes con-

sumption in computation duration for higher dimensions. Given the difficulty of con-

structing finite element meshes [24, 26, 27, 28], not being required the mesh genera-

tion is the most important advantage of using the b-splines. In addition, the use of

web-splines reduces the dimension of finite element systems, in particular, when high

accuracy is required [10], [29-34].

3.1. Flow Chart

The flow chart of FEM using Web-method is focused. Figure 3.1 shows the

flow diagram. First of all, the simulation region and the problem are defined by the



23

storage of inputs for the region, PDE, and boundary conditions. Then the generation

of the grid cells and classification of b-splines are done for the simulation region. The

next step is to compute the extension coefficients. If there is homogeneous Dirichlet

boundary condition, the weight function for the region is determined. After assembling

the system of equations, the approximate solution is computed. At the end, the results

are shown as an output.

Input Determine Region

Determine PDF &

Boundary Conditions

Generate Grids

Classify B-Splines

Compute Extension 

Coefficients

If necessary, Determine 

Weight Function

Assemly & Solve         

The Finite Element 

System

Compute & Show         

The Approximated 

Solution

Figure 3.1. The flow diagram of FEM with web-method
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3.2. Classification of b-splines

There are two types of b-splines; the inner and outer b-splines, which depend on

the size of their support in the domain. The outer b-splines are adjoined to the inner

b-splines to eliminate instability.

For the domain Ω, firstly grid generation is completed. Figure 3.2 shows the

projection view of the layers for sphere region with all layers of the grid generation.

The grid width is taken as 0.25. The next step is to classify b-splines. The relevant

b-splines, which are supporting in the domain, are determined. According to the size

of their support, they are classified as inner and outer b-splines. The inner b-splines

have at least one complete grid cell of their support in the domain. The other ones

supporting the domain are called outer b-splines [10], [29] - [34]. For the outer b-splines,

the grid cells of their supports are not completely contained in the boundary.

Figure 3.3, Figure 3.4 and Figure 3.5 show the inner and outer linear, quadratic

and cubic b-splines for one layer with the grid width 0.25. According to their center of

supports, the inner and outer b-splines are marked by (●) and (○), respectively. Three

layers and all relevant b-splines of the sphere are depicted in Figure 3.6 and Figure 3.7.

3.3. Extension Coefficients

The relevant b-splines supporting in the domain are classified as inner and outer

b-splines. The inner b-splines (bk, k ∈ I) have at least one complete grid cell of their

support in the domain. The others are outer b-splines (bi ∈ J(k)). For the outer

b-splines, the grid cells of their supports are not entirely contained in the domain.

Although the outer b-splines have small effect, they must be taken into consideration

for stability. So they are adjoined to the closest inner b-splines to form the extended
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Figure 3.2. The projection view of layers and all layers of the sphere

Figure 3.3. Outer and inner b-splines for degree n=1

b-splines Bk.

Bk = bk +∑
i

ek,ibi for k ∈ I, i ∈ J(k) (3.1)
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Figure 3.4. Outer and inner b-splines for degree n=2

Figure 3.5. Outer and inner b-splines for degree n=3

where ek, i are the extension coefficients. These extended b-splines inherit all basic

features of the standard b-splines bk. The extension coefficients are computed by using

Lagrange polynomials as:
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Figure 3.6. Outer and inner b-splines for degree n=3 for three layers of sphere domain

Figure 3.7. All relevant outer and inner b-splines for degree n=3
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ek,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

∏
d=1

n

∏
µ=0

id−ld−µ
kd−ld−µ , for i = j ∈ J, k ∈ I(i), ld + µ ≠ id

1, for i = k ∈ I

0, otherwise

(3.2)

where l = [l1, l2, ...] ∈ Zm is the index for the lower left position of I(j). 3D exten-

sion coefficients for linear, quadratic and cubic b-splines are calculated by Lagrange

polynomials and given in Table 3.1.

3.4. The Weight Function

The weight function is a continuous positive function in the domain and zero on

the boundary. It can be constructed by using smooth distance function as [35, 36, 37]:

w(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (1 − dist(x,∂Ω)
δ )γ dist(x) < δ

1 otherwise
(3.3)

where δ is the boundary strip, γ is the smoothing parameter, and dist is the function

which determines the minimum distance to the boundary.

If analytical equations are used for the boundaries, the weight function can be

constructed by using Rvachev’s R-functions. The intersection, union, or complement

of R-functions can be considered as [35, 36, 37]:

w∩(w1,w2) =
1

1 + τ
(w1 +w2 −

√
w2

1 +w2
2 − 2τw1w2 ) (3.4)

w∪(w1,w2) =
1

1 + τ
(w1 +w2 +

√
w2

1 +w2
2 − 2τw1w2 ) (3.5)

wc = −w (3.6)
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Table 3.1. 3D extension coefficients

Degree (n) Corner Extension Coefficients

1

1. Layer

8 -4

-4 2

2. Layer

-4 2

2 -1

2

1. Layer

27 -27 9

-27 27 -9

9 -9 3

2. Layer

27 -27 9

-27 27 -9

9 -9 3

3. Layer

9 -9 3

-9 9 -3

3 -3 1

3

1. Layer

64 -96 64 -16

-96 144 -96 24

64 -96 64 -16

-16 24 -16 4

2. Layer

-96 144 -96 24

144 -216 144 -36

-96 144 -96 24

24 -36 24 -6

3. Layer

64 -96 64 -16

-96 144 -96 24

64 -96 64 -16

-16 24 -16 4

4. Layer

-16 24 -16 4

24 -36 24 -6

-16 24 -16 4

4 -6 4 -1

respectively where τ is a constant (−1 < τ ≤ 1). Taking τ = 0 provides good results in

simulations. The examples of weight functions are tabulated in Table 3.2 and plotted

in Figure 3.8. Figure 3.9 shows the constructed weight functions for the given domains

using Rvachev’s R-functions.
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Table 3.2. The weight functions and rule for the 3D domain

Functions w1 = 25 − (x + 1)2 − (y + 5)2 − (z − 7)2 w2 = 12 − (x + 3)2 − (y − 1)2 − z2

w3 = 6 − (x + 1)2 − (y − 5)2 − z2

w4 = 20 − (x − 2)2 − (y − 3)2 − (z − 4)2 w5 = 8 − (x − 2)2 − (y − 3)2 − (z − 7)2

Rule ΩR = (Ω1 ∪Ω2) ∩Ω3 ∪Ω4 ∩Ω5
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Figure 3.8. The weight functions

3.5. Weighted Extended B-splines

The extended b-splines are multiplied by the weight function w(x) if the Dirichlet

boundary conditions are taken into consideration. Weight function is a continuous

positive function in the domain, and zero on the boundary. It can be constructed by

using analytical function, distance function or Rvachev’s R-function. As a result, the

web-splines are obtained as:

Bk =
w(x)
w(xk)

(bk +∑
i

ek,ibi) for k ∈ I, i ∈ J(k) (3.7)
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Figure 3.9. The weight function using Rvachev’s R-function

where xk is in the center of a grid cell which intersects the support of b-spline and

the domain completely for normalization, w(x) is the weight function for x ∈ Rm and

w(xk) is the value of weight function at the center of grid cell.

The significance of web-splines is that the contribution of basis functions which

are near the boundary is added to the inner basis functions. So the number of nodes

and computing time is reduced. Secondly instability problem can be solved by coupling

the outer b-splines with the inner b-splines. If we have a boundary value problem with

homogeneous Dirichlet boundary conditions, Equation (3.7) is constructed as a basis

function into Equation (2.33). The other boundary conditions use the Equation (3.1)as

basis function.
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4. WEB-SPLINE APPLICATIONS FOR ONE AND TWO

DIMENSIONS

4.1. One Dimensional EM Problems

The applications of one dimensional electromagnetic problems using FEM with

b-splines are given in [12]. The main formula that is being used in one dimension

problems is listed below:

The standard uniform b-spline bn of degree n for one dimension is defined by the

recursion [10] as:

bn(x) =
1

∫
0

bn−1(x − t)dt (4.1)

starting from b0 of the unit interval between zero and one.

The tensor product b-splines for one dimension is

bnk(x) = h−0.5bn(x/h − k) (4.2)

The extension coefficients, ei,k, using Lagrange polynomials is same as Equation

(3.2). Weight function for one dimension is:

w = (xe − x)(x − xi) (4.3)

where xe and xi are the beginning and the end points of boundary of the problem,

respectively.
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4.1.1. Electromagnetic Waves Between Parallel Plates

One of the other examples of electromagnetic problems in one dimension is to

find the electromagnetic waves between parallel plates, shown in Figure 4.1.

x1
x

y

x2

Figure 4.1. Parallel plates

Consider the parallel plate waveguide; the general differential equation is given

as [25]:

d

dx
( 1

µr

d

dx
Ey) + k̃2

0εrEy = f(x) (4.4)

where Ey is the electric field between plates, with relative permittivity εr, relative

permeability µr, wave number k̃0, and f(x) is the source function.

This application uses the parameters; µr = −1, k̃2
0εr = π2, f(x) = 2π2 sin(πx) with

the homogeneous Dirichlet boundary conditions Ey(0) = Ey(1) = 0 in order to obtain

the results using FEM with web-splines. The exact solution is found as Ey(x) = sin(πx).
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The simulations are compared with the standard FEM, which uses linear La-

grange polynomial basis functions. As seen in Figure 4.2, by using web-splines basis

functions, more accurate results are obtained with respect to the standard FEM anal-

ysis.
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Figure 4.2. Error analysis of parallel plates using standard FEM (solid) and linear

(dash), quadratic (dot), and cubic (dash-dot) web-splines

4.2. Two Dimensional EM Problems

The applications of two dimensional electromagnetic problems using FEM with

b-splines are given in [13]. The tensor product b-splines help to construct b-splines

in two dimensions. It is defined by multiplying b-splines of each direction [10]. The

tensor product b-splines bnk(x, y) for x, y ∈ Rm is

bnk(x) = h−1bn(x/h − k)bn(y/h − k) (4.5)

where h is the grid width, n is the degree, k = [k1, k2, ...] is the grid index. The support

of each b-spline consists of (n+1)m grid cells (kh+[0, h]m). The b-splines are positive

on their supports, and n − 1 times continuously differentiable.
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4.2.1. Wave Equation Analysis For Circular Domain

In this section, for the two dimensional wave equation analysis, the circular do-

main is chosen in order to compare with the exact results. Considering the wave

equation with Cauchy boundary conditions, the solution of the wave equation for cir-

cular domain is obtained by using linear, quadratic, and cubic extended b-splines.

Boundary conditions for circle is given at Equation (2.26) for α = 1, γ = j̃k and q(x, y)

is as Equation (4.6) where θ shows the direction angle of wave. According to the wave

equation for circular domain, the web-spline method is compared with the standard

FEM by using the exact solution given in Equation (4.7).

q(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jk̃(1 − sin θ)ejk̃(cos θx+sin θy1) on Γ1

jk̃(1 + cos θ)ejk̃(cos θx2+sin θy) on Γ2

jk̃(1 + sin θ)ejk̃(cos θx+sin θy2) on Γ3

jk̃(1 − cos θ)ejk̃(cos θx1+sin θy) on Γ4

(4.6)

ϕ(x, y) = ejk̃(cos θx+sin θy) (4.7)

Figure 4.3 shows triangulation for the circular domain using 549 nodes and 1032 tri-

angles. Figure 4.4 shows the b-spline basis of the same domain using 68 outer, 148

extended inner, and 76 standard inner quadratic b-splines.

The error analysis shows better approximation when web-splines are used as basis

functions. Figure 4.5 shows the relative L2 error norm versus number of nodes with

the standard FEM and the linear, quadratic, and cubic extended b-splines. According

to figure, more accurate results are obtained by using web-splines with fewer basis

functions instead of standard finite elements.
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Figure 4.3. Triangulation for circular domain
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Figure 4.4. Quadratic extended b-splines for circular domain
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Figure 4.5. The relative L2 error norm for various basis functions which are linear

Lagrange polynomial (△), linear (○), quadratic (●), and cubic (◇) extended b-splines

versus the number of nodes for circular domain
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5. RADIALLY SYMMETRIC WEIGHTED EXTENDED

B-SPLINE MODEL

In this section, besides using the web-spline method for axisymmetric formula-

tions of electrostatic and EM wave problems, Thus, with the existence of symmetry, a

number of physically important two and 3D problems can be solved by using one and

two dimensional elements. FEM with web spline applications is given in Chapter 4 for

one dimensional (1D) and 2D EM problems for homogeneous boundary conditions in

Cartesian coordinates.

The rest of this paper proceeds as follows. The formulation of the web-splines

in cylindrical coordinates is introduced in Section 5.1, and in addition the web-spline

method including the grid cell classification on the domain, weight functions and nu-

merical integrations is given in detail. Section 5.2 is dedicated to the FEM with web-

splines model of the problems derived from the classical heat diffusion equation. The

corresponding variational functions of each problem are presented along with the error

analysis definitions. Section 5.3 presents the numerical results of electrostatic prob-

lems,and electromagnetic wave equation using various web-splines with different grid

widths, which are followed by the simulation results. It is shown that by using the

web-splines basis functions, more accurate results are obtained with respect to the

standard FEM analysis.

5.1. Web-spline in cylindrical coordinate

The tensor product b-splines used in cylindrical coordinate is defined by multi-

plying b-splines of each direction [10]. The tensor product b-splines bnk(r) for r ∈ R2

is

bnk(r) = h(−1/2)bn(r/h − k) (5.1)
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where h is the grid width, n is the degree, k = [k1, k2] ∈ Z2 is the grid index. The

support of each b-spline consists of (n + 1)2 grid cells (kh + [0, h]2). The b-splines are

positive on their supports, and n − 1 times continuously differentiable.

The polynomial representations of linear, quadratic and cubic b-splines used in

cylindrical coordinates are tabulated in Table 5.1.

Table 5.1. Spline functions used in cylindrical coordinates

Type Representation

Linear (n=1) r

b11(r) −r + 1

Quadratic (n=2) 1/2r2 − r + 1/2

b21(r) −r2 + r + 1/2

1/2r2

Cubic (n=3) −1/6r3 + 1/2r2 − 1/2r + 1/6

b31(r) 1/2r3 − r2 + 2/3

−1/2r3 + 1/2r2 + 1/2r + 1/6

1/6r3

The relevant b-splines (bk, k ∈K) supporting in the domain are classified as inner

and outer b-splines. The inner b-splines (bi, i ∈ I) have at least one complete grid cell

of their support in the domain. The others are outer b-splines (bj, j ∈ J). For the outer

b-splines, the grid cells of their supports are not entirely contained in the domain.

Although the outer b-splines have small effect, they must be taken into consideration

for stability. So, they are adjoined to the closest inner b-splines in order to form the

extended b-splines, Beb
i [10].

Beb
i can be used to solve boundary value problem with the Neumann boundary

conditions. If the Dirichlet boundary conditions are taken into consideration, the

extended b-splines are multiplied by the weight function w(r), which is a continuous

positive function in the domain, and zero on the boundary. It can be constructed by

using analytical function, distance function or Rvachev’s R-function which is shown in
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Figure 5.1 [37]. As a result, the web-splines are obtained as:

Bweb
i = w(r)

w(ri)
(bi +∑

j

ei,jbj) = wBeb
i (5.2)

where ri is in the center of a grid cell which intersects the support of b-spline and the

domain completely for normalization, ei,j is the extended coefficient, w(r) is the weight

function for r ∈ R2, and w(ri) is the value of weight function at the center of grid cell.

According to the center of their supports, Figure 5.2 shows the standard (●), extended

inner (▲), and outer (○) quadratic b-splines respectively for the coaxial cable.

Figure 5.1. The weight function

Until this time, web-splines have been applied only to homogeneous dirichlet

boundary conditions. This study extends the applications for inhomogeneous dirichlet

boundary conditions. Thus, the weight function plays an important role in the per-

formance of the FEM with web-splines method. It can impose a tremendous influence

on the accuracy of the solutions, the complexity of computation and the rate of con-

vergence. To satisfy all given boundary conditions exactly, the R-Function Method

(RFM) solution structure is developed for weight function [37]. The solution structure
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Figure 5.2. The standard (●), extended inner (▲) and outer (○) web-splines for

coaxial cable

(u) for inhomogeneous conditions is

u = w
n

∑
i=1

Ciχi + φ (5.3)

where w ∶ Rn � R is a known as the weight function, Ci are scalar coefficients and χi

are some basis functions. Using the transfinite Lagrangian interpolation φ,

φ =

m

∑
i=1

φi

m

∑
j=1,j≠i

ωj

m

∑
i=1

m

∑
j=1,j≠i

ωj

(5.4)

(5.3) places no restrictions on form, shape, or dimension of the sets ωi = 0 [37].

5.2. FEM with web-spline

In EMs, most differential equations with the mixed boundary condition in the

domain Ω can be considered as

A∇2u + αu = f in Ω (5.5)
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ru = 0 on ∂Ω1 (5.6)

s
∂u

∂n
+ ru = g on ∂Ω2 (5.7)

where ∂Ω1, ∂Ω2 show the homogeneous Dirichlet (g = 0) and Cauchy boundaries around

the domain respectively. The corresponding variational function is:

J(u) = 1

2 ∫V
[A∇2u + αu2]dV + ∫

Ω2

(r
2
u2 − gu)dΩ2 − ∫

V
fudv (5.8)

In FEM analysis, the approximated solution uh consisting of p nodes is,

uh =
p

∫
i=1

ciBi (5.9)

where ci indicates the coefficients of basis functions Bi. Using the Ritz-Galerkin

method, the problem can be formulated in terms of the unknown at the nodes.

J(u) =
M

∫
h=1

Jh(uh) (5.10)

where M denotes the total number of volume elements and Jh is given by (5.8). Taking

the partial derivative of Jh with respect to uh
i , where i = 1...p,

∂Jh

∂uh
i

=
p

∫
j=1

cj ∫
V

[A(∇Bi(∇Bj)t) + αBiBj]dV +Ar∫
S

BiBjdS −∫
V

fBjdV −A∫
S

gBjdS

(5.11)

The following notations; Ki,j = ∫
V

∇Bi(∇Bj)tdV (the stiffness matrix), Mi,j =

∫
V

αBiBjdV (the mass matrix), Fi = ∫
V

fBjdV (the load matrix), and the other terms

from the boundary conditions help to solve the equation. In inhomogeneous Dirichlet
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boundary condition of the type is given as [38, 39]:

u(0) = γ0
β0

, u(l) = γ1
β1

(5.12)

In this case, u(0) = u1 = γ0/β0 and u(l) = uN = γ1/β1, so that only N −2 unknown nodal

values u2, u3, ...uN−1 remain. Then the solution matrix will be reduced to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K22 K23 0 ... 0 0

K32 K33 K34 ... 0 0

0 K43 K44 ... 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ... KN−1,N−2 KN−1,N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2

u3

u4

⋮

uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F2 − K21γ0
β0

F3

F4

⋮

FN−1 −
KN−1,Nγ1

β1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

and the two auxiliary equations corresponding to nodes 1 and N are,

K11 (
γ0
β0

) +K12u2 = f 1
1 + σ(0) (5.14)

KN,N−1uN−1 +KNN (
γ1
β1

) = fN−1
2 + σ(l) (5.15)

A number of physically important 2D and 3D problems can be solved by using 1D

and 2D elements. These problems possess symmetry about either a point or an axis.

The existence of symmetry modifies the solution techniques. The major modification

is the order of the element.

The governing differential equation for quasi-static field problems in cylindrical

coordinates is,

∂2V

∂r2
+ 1

r

∂V

∂r
+ 1

r2
∂2V

∂ϕ2
+ ∂2V

∂z2
+Q = 0 (5.16)
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with the boundary conditions

V = VB (5.17)

or

∂V

∂r
lr +

∂V

∂ϕ
lθ +

∂V

∂z
lz + hV = 0 (5.18)

The terms associated with the z direction are deleted in the 2D problem. The statement

of symmetry means that V ≠ f(ϕ) and ϕ terms are deleted. The governing differential

equation for symmetric 2D field problems is

∂V 2

∂r2
+ 1

r

∂V

∂r
+Q = 0 (5.19)

with the boundary conditions

V = VB (5.20)

or

∂V

∂r
lr + hV = 0 (5.21)

The evaluation of the element integrals in FEM is relatively easy [39]. The incremental

volume dV for a unit depth or height is

dV = 2πrdr (5.22)

where in Cartesian coordinates dV = dxdydz in three dimensions.

The corresponding variational function used in FEM and FEM with web-spline
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methods is:

J(V ) =
r2

∫
r1

[πrε(dV
dr
)
2

− 2πrρV ]dr (5.23)

5.3. Numerical results

In this section, axisymmetric electrostatic, and EM wave are solved using the

web-spline method. The results are compared with the exact and FEM solutions.

5.3.1. Electrostatic problems

Axisymmetric formulation of problems such as electrostatics results in a one-

dimensional differential equation. The equation for the electric potential V (r) in ax-

isymmetric cylindrical coordinates is [40]:

ε
d2V

dr2
+ ε

r

dV

dr
+ ρ = 0 (5.24)

where the area is constant because it corresponds to the circumference of the cylindrical

boundary of the problem. ε is the permittivity of the material, ρ is the charge density.

(5.24) can be written in a more concise form as

ε

r

d

dr
(rdV

dr
) + ρ = 0 (5.25)

The exact solution of (5.25) is

V = −ρr
2

4ε
+C1lnr +C2 (5.26)

The axisymmetric coaxial cable illustrated in Figure 5.3 is a good example which
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exists in [41] to which FEM with web-spline method in cylindrical coordinates may be

applied. For the purpose of discussion we assume that the coaxial cables are very large,

so that ∂/∂z = 0. The radius of the inner conductor is ra = 5mm, the inner radius of

the outer conductor is rc = 25mm, and the interface radius is rb = 10mm. The outer

conductor is grounded, so that Vrc = 0. The inner conductor is held at a fixed potential

which is Vra = 500V . The interelectrode space, a < r < b, and b < r < c are filled with

a linear, homogeneous, and isotropic dielectric of permittivity ε1 = 0.5 and ε2 = 2.0,

respectively. A charge density of ρ1 = 100 for the core and ρ2 = 0 for the outer layer

are assumed. Our aim is to determine the potential distribution within the dielectric

region.

ra

rb

rc

1

2=0
2

1

r=a=500

r=b=0

Figure 5.3. Coaxial cable

The general solutions for each cable using (5.25) are:

V1 = −
ρr2

4ε1
+C1lnr +C2 a ≤ r ≤ b (5.27)

V2 = −C3lnr +C4 b ≤ r ≤ c (5.28)

The solutions of (5.27) and (5.28) give C1 = 6009.762, C2 = −7922.339, C3 = −997.560,

C4 = 3211.021 with the boundary conditions given.
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To obtain an expression for the electric field intensity, we make use of the relation

E = −∇V in cylindrical coordinates [41].

E1 = −100ra⃗r − 6009.762
a⃗r
r

a ≤ r ≤ b (5.29)

E2 = −997.560
a⃗r
r

b ≤ r ≤ c (5.30)

The error analysis of the coaxial cable with respect to the exact solution using standard

FEM, linear, quadratic and cubic web-splines for a grid width of 2.5 and for a grid width

of 1.0 are illustrated in Figure 5.4 and Figure 5.5, respectively.

5 10 15 20 25
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E
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Standard FEM
Linear Web−spline
Quad.Web−spline
Cubic Web−spline

Figure 5.4. Error analysis for the coaxial cable using standard FEM, linear,

quadratic, and cubic web-splines for a grid width of 2.5 mm

FEM analysis using quadratic and cubic Lagrange polynomials is not always

easy to implement, whereas the implementation of higher order polynomials in web-

spline method is much easier. Selection of a grid width is important for higher order

polynomials. Thus, when the grid width is decreased from 2.5 (Figure 5.4) to 1.0
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Figure 5.5. Error analysis for the coaxial cable using standard FEM, linear,

quadratic, and cubic web-splines for a grid width of 1.0 mm in logarithmic scale

(Figure 5.5), the error analysis shows that our results, in comparison to the other

method, gets closer to exact results.

Figure 5.6 shows the L2 error norm of computation for various basis functions

which are linear Lagrange polynomial (solid), linear (dash), quadratic (dot), and cubic

(dash-dot) web-splines.

5.3.2. The EM wave equation

In this section, the web-spline method is applied to electromagnetic wave problem

in cylindrical coordinate which is illustrated in the literature [41]. All parameters are

taken the same with the literature for comparisons. The axisymmetric coaxial cable

with the radius of the inner conductor is considered as ra = 5mm, and the radius of

the outer conductor as rc = 10mm. The core is assumed to be filled with plexiglass

which has the permittivity of 3.4. The frequency is assumed to be 8.2 GHz. The wave
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Figure 5.6. The L2 error norm of coaxial cable for various basis functions versus the

number of nodes

equation in cylindrical coordinates is given as,

1

r

∂

∂r
(r∂Ez

∂r
) + k2Ez = 0 (5.31)

with inhomogeneous Dirichlet boundary conditions on the range 5 mm-10 mm as 5 mV

and 0 V, respectively. Exact solution for the cylindrical wave equation is,

Ez = (−0.0087 − j0.0019)e
−jkr
√
r
+ (−0.0087 + j0.0019)e

jkr

√
r

(5.32)

In FEM analysis, the variational function given by (5.23) is written in terms

of shape functions following the method described before and after minimizing with
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respect to E appears as ∂J(E)
∂r = 0 which is given as:

∂J(E)
∂r

=
r2

∫
r1

⎧⎪⎪⎨⎪⎪⎩
2πr

⎡⎢⎢⎢⎢⎢⎣

−1/R

1/R

⎤⎥⎥⎥⎥⎥⎦
[−1/R 1/R]dr

+ 2πr

⎡⎢⎢⎢⎢⎢⎣

(r2 − r)/R

(r − r1)/R

⎤⎥⎥⎥⎥⎥⎦
[k2] [(r2 − r)/R (r − r1)/R]

⎫⎪⎪⎬⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎣

E1

E2

⎤⎥⎥⎥⎥⎥⎦
dr = 0 (5.33)

The shape functions are

N1 =
r2 − r
R

and N2 =
r − r1
R

(5.34)

where R = r2 − r1, the length of a radial element. As the radius increases, the volume

of the material defined by the integration increases. The matrix multiplication indi-

cated by (5.33) is completed, and the integration in terms of r gives the local stiffness

matrix. The total stiffness matrix and force matrix for the number of element solution

is computed accordingly. Figure 5.7 shows the comparison of error analysis with the

standard FEM, which uses linear Lagrange polynomial basis functions, and the linear,

quadratic, cubic web-splines. As seen in Figure 5.7, the error decreases tremendously

when web-splines basis functions are used. The error is in the third, fifth and seventh

decimal place for the linear, quadratic, and cubic b-splines, respectively. With the

results of higher order of polynomials web-spline method, like cubic web-spline, the

results give good agreement with the exact solution.

Figure 5.8 illustrates the maximum error versus various permittivity values. The

comparison of maximum error is with the standard FEM and the linear, quadratic,

cubic web-splines. It is clearly seen that in Figure 5.8 the error increases for high

permittivity values. So, high order polynomials like cubic web-splines are suitable.

5.3.3. Conclusion

In this Chapter, the web-splines approach in the FEM is applied to the electro-

static, and electromagnetic wave problems for inhomogeneous boundary conditions and
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Figure 5.7. The error analysis of the coaxial cable using standard FEM (solid), linear

(grey), quadratic (dot), and cubic (dash-dot) web-splines for a grid width of 0.1 mm

in logarithmic scale

radially symmetric structures. This new method, which does not need mesh generation

overcomes some of the drawbacks of using meshes and piecewise-uniform or linear trial

functions.

The analysis presented in this study show the suitability of the proposed method

to complex EM problems. This study proposed using the web-spline to solve the

electric field problems in cylindrical coordinates. It is the first time that this method is

applied to problems having inhomogeneous boundary conditions. The wave equation

in cylindrical coordinates has been solved and accurate results have been obtained by

increasing the degree of the basis function. With the higher order polynomials in the

web-spline method, like the cubic web-spline, the results are in good agreement with

the exact solution.
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6. 3D WEB-SPLINES SOLUTION TO HUMAN EYE

HEAT DISTRIBUTION USING BIOHEAT EQUATION

A bioheat transfer model of the human eye is constructed using weighted ex-

tended b-splines as shape functions for the FEM. This newly developed computational

approach is employed to calculate the steady-state temperature distribution in a nor-

mal human eye. Firstly, the human eye is evaluated in two dimensions. The simulation

results which are verified using the values reported in the literature, point out better

efficiency in terms of the accuracy level. Consequently, to give a more precise represen-

tation of the actual human eye, three dimensional modeling is simulated using these

new finite elements in conjunction with linear, quadratic and cubic b-splines.

6.1. Introduction

Modeling of the heat distribution in the human eye has been popular for the

last century with different kinds of techniques taking advantage of the advances in

computational technology. In earlier studies, the finite difference time domain method

(FDTD) was used to solve Pennes bioheat equations numerically. One of the first eye

models in the literature was developed by [42]. They used the FDTD to calculate the

transient solutions of the temperature distribution in a microwave-irradiated human

eye. [43] also examined the thermal effects of microwave radiation on the human eye for

the steady-state temperature distribution. [44] then developed a mathematical model

based on the FDTD method to calculate the transient and steady-state temperature

distributions in the normal unexposed human eye using the data he observed from the

measurements of rabbit eyes. More recently, [45] applied FDTD method to study the

temperature rise in the human eye exposed to electromagnetic waves. The drawback

of these models was that they assumed the structure of the eye to be homogeneous

in the sense that it is composed of a single uniform tissue. Thus, this model by not

taking into account the presence of the cornea and the iris, and simplifying the blood

flow inside the eye caused a significant error.
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Although it is observed that the FDTD mathematical model cannot represent

the human eye perfectly as the grids are rigid, the finite element method (FEM) allows

precise representation of the ocular surface. The earliest reported model for tempera-

ture distribution in the eye using FEM was by [46] and [47]. Their numerical results

which were for rabbit eyes subject to electromagnetic waves were reported to be in

good agreement with data from experimental measurements. [48] and [49] constructed

a two dimensional (2D) FEM of the human eye to analyze the temperature profile

during steady-state. Later [50] used her model to compute the temperature rise in

the eye when exposed to infrared radiation. The studies of [49, 50] were improved by

[51, 52], and [53], respectively. They presented a 2D and three dimensional (3D) finite

element and 2D boundary element human eye models which were developed to simu-

late thermal steady-state conditions of the eye based on the properties and parameters

reported in the open literature. In addition, a three dimensional axisymmetric human

eye model is developed using boundary element method (BEM) during treatment of

laser thermokeratoplasty [54]. The specific regions such as tumor and anterior chamber

of human eye’s effects on the ocular heat transfer are also examined using BEM, re-

spectively [55, 56]. A brief summary of the various mathematical models of the human

eye developed up to date were reviewed in [57].

This chapter proceeds as follows. The mathematical model of the human eye with

its properties for different domains is introduced in Section 2. Section 3 is dedicated to

the method of the problem. The FEM formulation of the Pennes bioheat equation with

the governing boundary equations is presented along with the web-spline method where

grid cell classification on the domain, weight functions and numerical integrations are

given in detail. Section 4 presents the results of comparing the 2D and 3D web-spline

human eye model simulations with the other available FEM and experimental data,

which are followed by the conclusion.

6.2. Mathematical Model of the Human Eye

The 2D and 3D models of the human eye are developed in this section. A 2D

schematic cross section of the eye with the assumption that it is symmetric about the
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pupillary axis is given in Figure 6.1, whereas the 3D model is formed by revolving

this 2D model 3600 around its horizontal pupilliary axis. Simplifying assumptions

concerning the geometry and structure of the eye are made in order to validate our

web-spline model of the human eye using the latest studies done with FEM. First

of all, the optic nerve is not simulated due to its minimal effect on the temperature

distribution in the eye. Secondly, the eye is divided into six regions comprising the

cornea, the aqueous humor, the lens, the iris, the vitreous humor, and the sclera. Each

region is assumed to be homogeneous and isotropic. The thermal properties for each

region are obtained based on [51] and the value for each is tabulated in Table 6.1. In

addition, the coordinates of each region are modeled as in [51]. The properties and

parameters used for the 3D model are similar to those of the 2D model.

Figure 6.1. The 2D human eye model

The governing differential equation for temperature distribution is the Pennes

bioheat transfer equation [58]:

ρc
∂T

∂t
= ∇.(k∇T ) +H in Ω(inside the eye) (6.1)

where Ω is the domain studied and Γ1,Γ2,Γ3 are its boundaries, as indicated in Fig-

ure 6.1. The boundary conditions are specified on the pupillary axis, the sclera and
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Table 6.1. Properties of the human eye for different domains [51]

Domains Thermal Density Specific Heat

Conductivity (Wm−1C−1) (kgm−3) Capacity (Jkg−1C−1)

Cornea 0.58 4178 1050

Aqueous humor 0.58 3997 996

Lens 0.40 3000 1050

Iris 1.0042 3180 1100

Vitreous humor 0.603 4178 1000

Sclera 1.0042 3180 1100

the cornea, given in (6.2), (6.3), and (6.4), respectively.

k
∂T

∂n
= 0 on Γ1(the pupillary axis) (6.2)

−k∂T
∂n
= hs(T − Tb) on Γ2(the sclera) (6.3)

−k∂T
∂n
= E + hc(T − Tamb) + σε(T 4 − T 4

amb) on Γ3(the anterior cornea surface) (6.4)

The parameters k, ρ, and c which refer to thermal conductivity, specific heat ca-

pacity, and density, respectively, are assumed constant within each region and with

temperature variations. The coefficients hs (65Wm−2C−1) and hc (10Wm−2C−1)

describe the thermal exchanges by convection on the eye surface, respectively, from

sclera to body core and from cornea to the surroundings. The other terms describ-

ing the radiative heat transfer are represented by T , unknown temperature (0C);

t, time (s); E, evaporation rate (40Wm−2); Tamb, ambient temperature (250C); Tb,

blood temperature (370C); n, the unit vector outward normal (m); σ, Stefan constant

(5.67x10−8Wm−2K−4); ε, emissivity of corneal surface (0.975); H, heat source (Wm−3).

The initial temperature distribution (t = 0) is found by solving the steady-state
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heat transfer equation with no external heat sources as in,

∇.(k∇T ) = 0 (6.5)

6.3. Method of Analysis

In this section, the first the procedures for applying the FEM method to the

bioheat equation are described. Additionally, the b-splines and web-splines will be

outlined only in 3D, since the detailed account of the method can be found in the

literature [10].

6.3.1. The Weak Formulation of the Bioheat Equation

The bioheat transfer equation is used in calculating the temperature distribution

in the human eye wherein the domain Ω has smooth subdomains Γ1−3. To calculate

the approximate temperature Th, a variational statement of the steady state problem

is obtained by multiplying (6.1) by an arbitrary test function Bk and integrating the

equality. The weak formulation becomes:

∫
Ω
(−∇(k∇Th) + ρc

∂Th

∂t
−H)BkdΩ (6.6)

Employing the Green’s theorem, (6.6) can be expressed as the sum of the functions

T1, T2, and T3 which yield the differential equations,

T1 = −k∫
Ω
(∇Th.∇Bt

k)dΩ − ρc∫
Ω
Bk

∂Th

∂t
dΩ +H ∫

Ω
BkdΩ volume term (6.7)

T2 = −∫
Γ2

hsBk(Th − Tb)dΓ2 sclera term (6.8)
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T3 = −∫
Γ3

[hcBk(Th − Tamb) + σεBk(T 4 − T 4
amb)]dΓ3 cornea term (6.9)

where Bt
k denotes the transposed matrix of Bk. The approximate temperature Th is

replaced with the solution which consists of e nodes:

Th =
e

∑
i=1

αiBi (6.10)

where αi indicates the coefficient of the basis functions Bi. Following the derivation

for ∂(T1,T2,T3)
∂T , the matrix formulation below is obtained:

{∂∑T

∂T
}
e

= [K]e{Th}e + [M]e {
∂∑Th

∂t
}
e

− {G}e (6.11)

where i, k = 1...e,

[K]e = k∫
Ωe
∇Bi∇Bt

kdΩe+hs∫
Γe
2

∇Bi∇BkdΓe
2+hc∫

Γe
3

∇Bi∇BkdΓe
3∫

Γe
3

σε(T 4−T 4
amb)BidΩ

(6.12)

[M]e = ∫
Ωe

ρcBiB
t
kdΩe (6.13)

{G}e = (hcTamb −E)∫
Γe
3

BidΓe
3 + hsTb∫

Γe
2

BidΓe
2 +H ∫

Ωe
BidΩe (6.14)

Hence, after assembling the elementary matrices, the global system is:

∂(T1 + T2 + T3)
∂T

=
e

∑
e=1
{∂(T1 + T2 + T3)

∂T
}
e

= [K]{T} + [M] {∂T
∂t
} − {G} = 0 (6.15)

where [K] is called the global stiffness matrix, [M] the global mass matrix and {G}

is the global load matrix considering boundary conditions.
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6.3.2. Web-spline Approximation

Having briefly discussed necessary background material for web-splines in Chap-

ter 3, temperature distribution analysis of FEM with web-splines is straightforward.

Rewriting (6.10) in 3D using web-splines as finite element basis functions, (6.16) is

obtained.

Th(i) = ∑
u
∑
v
∑
w

αu,v,w,iBu,v,w(xi, yi, zi) (6.16)

where B is the web-spline basis function, x, y, z are the coordinates, u, v,w are web-

spline parameters and α is the coefficient of basis functions. Each point in the equation

has three coordinates. Summation is done over all the defined control point 3D tensor

products for a given xyz location. The basis function for a given location is calculated

from the degree of the web-spline using the standard iterative formula [6]. Thus, to

obtain the approximate solution of the temperature distribution in the eye, the web-

splines are incorporated into the global matrix equation in (6.15), and the linear system

of equations are assembled and solved easily with the program written in MATLAB.

6.4. Simulation Results

In this section, we investigate the steady-state temperature distribution in the 2D

and 3D unexposed human eye models, with the use of the web-spline method. For each

model, grid convergence analysis has been done. The simulations are performed using

linear, quadratic and cubic b-splines with 0.0625 and 0.125 grid widths, respectively.

In order to confirm the validity of our results, we compare them with those reported

in [49, 51], and [52]. We adjust the thermal properties of the eye tissue constants and

size of our model to those in [51], and [52] for 2D and 3D simulations, respectively.

6.4.1. 2D results

First, to find the optimum grid number, we computed cubic web-spline approx-

imations for different grid widths h=0.5, 0.25, 0.125, 0.0625, 0.03125. This grid con-
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vergence test is shown graphically in Figure 6.2. It is deduced from the figure that as

the grid number increases, the temperature results on the corneal surface gets more

stabilized. The optimum number of grids is found to be 193 for which h is 0.0625.
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Figure 6.2. Grid convergence for the 2D web-spline model

We illustrate in Figure 6.3 the inner (●), the outer (○) and the extended (▲)

b-splines using cubic basis splines in the 2D human eye whose dimensions are given in

Figure 6.1. The simulations were also performed with linear and quadratic b-splines.

With cubic b-splines; 39 outer, 42 standard inner and 112 extended inner b-splines are

used in the simulations.

The thermal model of the 2D human eye is given in Figure 6.4. From this figure

it is clearly observed that the lowest temperature, 34.010C appears on the corneal

surface. The highest temperature occurs as we move away from the cornea towards

the sclera.

The latest study regarding the calculation of the temperature distribution at

steady state with no exposure to radiation in the 2D human eye is done by [49, 51]

using the method of finite elements. A corneal surface of 33.250C was obtained in [49]
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Figure 6.3. The standard (●), extended inner (▲) and outer (○) cubic b-splines for

the human eye

Figure 6.4. Thermal pattern of the 2D model without exposure to radiation
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with 496 nodes, and in [51] 33.640C was approximately found with 8557 triangular

elements. Figure 6.5 compares the temperature along the pupillary axis predicted by

the two studies with that of the 2D web-spline method. Figure 6.5 reveals that the

calculated temperatures along the axis of symmetry are in good agreement with those

from the previous 2D finite element studies. In addition, as is evident from Table 6.2,

this low number of grids in web-spline technique makes the computation time very low

such as 0.1s, 0.2s, and 0.3s for linear, quadratic and cubic b-splines, respectively. The

configurations of the computer in the simulations are as follows:

� Microsoft Windows XP, Professional, Version 2002,

� 3.40 GHz Processor,

� 1 GB RAM.
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Figure 6.5. Comparison between the 2D web-spline model, [49] and [51]

6.4.2. 3D results

In this subsection, we examined the temperature distribution at steady-state in

the 3D human eye model. The 3D model is constructed by revolving one half of the

2D model 3600 around its horizontal pupilliary axis and is depicted in Figure 6.6.
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Table 6.2. Efficiency comparison of web-splines with standard FEM studies

Method Number of Nodes

[49] 496

[51] 8557

Linear 2D Web-spline 137

Quadratic 2D Web-spline 164

Cubic 2D Web-spline 193

First, grid convergence analysis is illustrated in Figure 6.7 for cubic b-splines where

the optimum grid width is calculated to be 0.125 (5203 grids) when the gradient of the

graph approaches zero. Thus it is assumed that any decreases in the grid width do not

change the simulation results.

Figure 6.6. The 3D human eye model

Overview of the 3D human eye model for two layers with the outer, the extended

inner and the standard inner cubic web-splines for a grid width of 0.125 are shown in

Figure 6.8. There are 2843 extended inner b-splines marked with triangles, 1754 outer

b-splines marked with white circles and 606 standard inner b-splines which appear in
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Figure 6.7. Grid convergence for the 3D web-spline model

the middle layer of the sphere. If larger grid width had been used, all inner b-splines

would be affected by the outer b-splines and become extended inner b-splines.

The numerical value of the temperature in the thermal pattern of the eye model

is calculated to be 34.520C for linear, 34.550C for quadratic, and 34.620C for cubic

web-splines at the center of the corneal surface. Figure 6.9 plots the local temperature

variation along the horizontal pupilliary axis for the FEM models developed by [49]’s

2D, [52]’s 3D models, and the current 3D cubic web-spline model. The temperature

distribution of the 3D web-spline model is very similar to those in [49] and [52]. Slight

differences in the compared results are mostly attributable to the differences in the

modeling of the human eye. In Figure 6.10, the comparison between the different 3D

models, namely the one in Ng [52] and the web-spline methods, is shown for the linear,

quadratic, and cubic web-splines. In the simulations, it appears that the temperature

is decreased at the center of the corneal surface.

The simulation results are compared with the values reported by [51] in which they

summarized the results of the corneal surface temperature obtained from the previous
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Figure 6.8. Grid representation for the 3D human eye model

experimental studies with the mean value of 34.650C. These studies are depicted in

Table 6.3. Upon investigations, it was found that the 3D cubic web-spline model gives

only a temperature difference of 0.030C as compared to the 0.640C for the 2D cubic

web-spline model.

Table 6.4 summarizes the comparisons between the FEM results on the corneal

surface inside the human eye model and the web-spline model. When we compare the

simulation results with the mean value of 34.650C on the corneal surface, the current

3D model obtained a discrepancy of only 0.178% while the result of [51] produced

a discrepancy of 0.455% and [52] produced a discrepancy of 0.33%. There are some

deviations in the results. The reasons for these deviations are the different ambient

temperature used (200C versus 250C) and the different approximations of material

properties in the model. The choice of 250C ambient temperature in the current model

is based on a typical laboratory condition in Turkey. In [51], the iris and ciliary body
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Table 6.3. The summary of the results of the corneal surface temperature obtained

from the previous studies

Author Mean Temperature ○C Technique

Dohnberg, 1876 36.6 Mercury bulb

Galozowski, 1877 36.4 Mercury bulb

Silex, 1893 35.55 Thermo-element

Gilese, 1894 35.72 Thermo-element

Hertel, 1900 35.65 Mercury bulb

Kirisawa, 1942 34.5 Thermo-element

Holmberg, 1952 36.24 Thermo-electric

Hamano at al, 1964 34 Thermistor

Hill and Leighton, 1965 32.1 Thermistor

Mapstone, 1968 34.8 Infrared

Kolstrad, 1970 32 Thermistor

Kinn and Tell, 1973 35.5 Liquid crystal

Rysa and Sarvaranta, 1974 34.8 Infrared

Horven, 1975 33.67 Contact probe

Hamano at al, 1976 34.4 Infrared

Fatt and Chaston, 1980 34.5 Infrared

Alio and Padron, 1981 32.9 Infrared

Fielder, Winder, Sheridaihah at al 33.4 Infrared

Martin and Fatt, 1985 34.5 Heat flow

Mean Temperature ○C 34.65
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Figure 6.9. Comparison of the results for the 3D model using the methods in [49],

[52] and the cubic web-spline method
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Figure 6.10. Comparison of the results for the 3D model using the method in [52] and

the linear, quadratic, and cubic web-spline method
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were assumed to have properties similar to aqueous humor whereas the current model

obtained different properties for iris and sclera. The number of grids generated in the

3D web-spline model is 2904, 4272, and 5203 for linear, quadratic and cubic b-splines,

respectively, whereas 54,796 elements had been used in [52]. The computation time is

1.2s, 1.4s, and 1.5s for linear, quadratic and cubic b-splines,respectively.

Table 6.4. Comparison between the mean value of the experimental results, 34.650C

with FEM and the web-spline method solutions on the corneal surface

Author Method used Temperature Absolute Percentage

(0C) Difference (0C) Difference (0C)

[49] FEM 33.25 1.4 4.04

[51] FEM 33.64 1.0 2.91

[52] FEM 34.48 0.17 0.49

Kunter (3D) Web-spline (linear) 34.52 0.13 0.38

Kunter (3D) Web-spline (quadratic) 34.55 0.1 0.29

Kunter (3D) Web-spline (cubic) 34.62 0.03 0.09

6.5. Conclusion

A FEM with web-splines, which models the heat transfer in the normal unex-

posed 2D and 3D representations of the human eye have been developed and employed

to calculate the steady-state temperature distribution based on the properties and pa-

rameters reported in the literature. Error analysis indicates that our web-spline based

method is successful in determining the temperature distribution in the eye.

Based on the investigations in this study, the 3D web-spline model was found to

yield better accuracy than the 2D web-spline model and is able to give a more precise

interpretation of the temperature inside the human eye. The reason why the differences

become larger in the 2D models is that, the actual eye model cannot be sufficient in 2D.

Altogether, the 3D heat transfer model is shown to be a more significant representation

of the actual human eye than the 2D model.
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7. WEB-SPLINE COMPUTATION OF TEMPERATURE

RISE WITHIN A MODEL OF THE

MICROWAVE-IRRADIATED HUMAN EYE

This section is the continuation of the previous Chapter where the only steady-

state temperature distribution has been calculated for the unexposed human eye. In

this section, we report a calculation of the microwave fields within a model of the human

eye. FEM with web-spline computer modeling have been applied to study the corneal

surface temperature increase during microwave irradiation. The heat conduction model

of the microwave-irradiated eye which is assumed to be 3D is also constructed. The

mechanism of heat transfer from the eye and the selection of the thermal parameters of

the media of the eye are also discussed. The implementation of these parameters in the

web-spline solution of the heat conduction is then developed. Furthermore, tempera-

ture rises calculated are compared with the values found in the literature pertaining to

microwave-induced cataract formation.

7.1. Introduction

Early theoretical work in the area of the biological effects of electromagnetic radi-

ation is centered on the entire human body irradiation. However, because experimental

work indicated that harmful local tissue temperature rises could occur, interest in par-

tial body irradiation was stimulated. Under conditions of partial-body exposure to

intense EM waves, significant thermal damage can occur in sensitive tissues. One of

the most sensitive organs for EM wave exposure is the human eye.

The human eye is one of the most sensitive organs under EM exposure. The

exposure of the eye to RF radiation can be sufficient to damage tissues owing to

temperature rise. RF energy is generally absorbed in the cornea on the front surface

of the eye. A number of models of heat transport in the eye have been proposed,

motivated by the development of cataracts after exposure of the eye to infrared and
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microwave radiation which are the most common sources of heat that the human eye

may be exposed.

One of the earliest study on the thermal effects of microwave radiation in the

human eye was done by [43]. They assumed that the eye was spherical and composed of

uniform tissue. An analytical solution to the 1-D heat transfer problem was developed

for steady state conditions and did not account for transient temperature distributions.

[42] computed induced temperatures within a model of the microwave-irradiated human

eye at 750 MHz and 1.5 GHz. They concluded that at frequencies higher than 1.5

GHz, maximum temperatures could occur within the eye. With the same incident

power level, similar temperature values are computed by Guy et. al. at 2.45 GHz in

the irradiated rabbit’s eye. Thus, [42] imply that microwave heating of the rabbit eye

and of the human eye can be correlated. Another early investigation which included

a finite element heat transport model for the rabbit eye was presented by [46]. The

initial temperature distribution of normal rabbit eye and eye exposed to microwave

radiation was obtained from experimental measurements carried out on actual rabbits.

As wireless communication and industrial, scientific and medical applications of

radio frequency have rapidly grown, it is important to consider possible health hazards

due to this type of non-ionizing radiations. Temperature rises for the human eye

exposure to RF energy were investigated in [59-62]. Various sources of microwave

radiation such as mobile phones [63, 64], user antenna in wireless local area networks

[65, 66] and radar equipment [45], [67-69] have been investigated. Results from these

numerical investigations enabled exposure limits in the various frequency ranges of

microwaves to be defined that would help to reduce the potential hazards of microwave

radiation.
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7.2. Thermal Model of The Human eye

7.2.1. Electrical Parameters of Eye

Due to the lack of experimental data at the microwave frequencies, the evaluation

of the complex permittivity values related to the eye tissues is done by using the Debyes

dispersion equation. Debyes equation gives the complex permittivity (ϵ∗) of a dielectric

material as a function of the frequency (f), according to

ϵ∗(f) = ϵ′(f) + σ(f)
j2πfϵ0

= ϵ� +
σs

j2πfϵ0
+ ϵs − ϵ�

1 + j f
fr

(7.1)

where fr is the relaxation frequency, ϵs − ϵ� is the change in the permittivity due to

this relaxation process, and σs and ϵ� are the limits of the conductivity at very low

frequencies and of the permittivity at very high frequencies, respectively [62]. Debye

parameters for cornea are fr = 21.5(GHz), ϵs = 42.62, ϵ� = 5.1, σs = 1.21(S/m). For

cornea, dielectric and conductivity constants were simplified as a polynomial functions

[70].

Polynomial function fitting for permittivity and conductivity of cornea at 1 −

30GHz are

ϵ(f) = −4.9 × 10−5f4 + 0.004191f 3 − 0.112f2 + 0.09232f + 42.62

σ(f) = 5.858 × 10−5f 4 − 0.005011f3 + 0.1342f2 − 0.1103f + 1.308 (7.2)

Dielectric and conductivity variations of cornea tissue is shown in Figure 7.1 with

respect to frequency. In this study, human eye model is considered as a homogeneous

semi-infinite tissue block characterized with known thermal and physical properties

[60]. H(x, t) is the heat source due to electromagnetic energy absorbed by tissue. The

power deposited in a semi-infinite tissue exposed to incident electromagnetic wave is
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Figure 7.1. Dielectric and conductivity variations of cornea tissue

given as below

H(x, t) = 2I0ζ

δ
e−2x/δU(t) (7.3)

where I0 is the power density of incident electromagnetic wave (W /m2), ζ is power

transmission coefficient between air and tissue, δ is penetration depth, and U(t) is the

unit step function. For a plane uniform electromagnetic wave incident normally to the

skin surface, the SAR between the tissue can be determined as H(x, t)/ρ, where ρ is

the density (kg/m3).

Due to biological tissues are nonmagnetic medium, power transmission coefficient

ζ is defined only with permittivities of free space and the tissue [60].

ζ = 1 −
RRRRRRRRRRR

√
ϵ∗.ϵ0 −

√
ϵ0√

ϵ∗.ϵ0 +
√
ϵ0

RRRRRRRRRRR

2

(7.4)
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The penetration depth δ is given as below

δ = (67.52

f
)[
√
(ϵ′)2 + (ϵ′′)2 − ϵ′]

−1/2
(7.5)

where f is the frequency in MHz, and ϵ′ and ϵ′′ are the real and imaginary parts of

the complex relative permittivity. Table 7.1 depicts the electrical parameters of the

cornea at the frequency of interest.

Table 7.1. Electrical parameters of the cornea at the certain frequencies

Frequency Permittivity Conductivity Energy Transmission Skin Depth

f, GHz ϵ σ,S/m Coefficient, ζ δ,mm

1 42.604 1.326 0.4268 27.445

1.8 42.446 1.515 0.446 23.064

2.45 42.23 1.77 0.4507 19.54

6 39.97 4.47 0.458 7.633

10 36.014 9.199 0.4647 3.547

18 27.194 19.728 0.4834 1.483

30 17.786 30.93 0.517 0.802

7.2.2. Time Dependent Heat Conduction

The governing differential equation for temperature distribution is the Pennes

bioheat transfer equation:

ρc
∂T

∂t
= ∇(k∇T ) +H(x, t) in Ω(inside the eye) (7.6)

where Ω is the domain studied, and Γ1,Γ2 are its boundaries, as indicated in Figure 6.1.

The boundary conditions are specified on the sclera and the cornea, given in (7.7), and

(7.8)respectively.

−k∂T
∂n
= hs(T − Tb) on Γ1(the sclera) (7.7)
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−k∂T
∂n
= E + hc(T − Tamb) + σε(T 4 − T 4

amb) on Γ2(the anterior cornea surface) (7.8)

The solution of simplified bioheat equation for the surface temperature (T (0, t))

is given in [60] as

T (0, t) = (I0 × δ × ζ
2k

)) ×
⎡⎢⎢⎢⎢⎣
2

√
t

πτ
+ et/τerfc(

√
t

τ
) − 1

⎤⎥⎥⎥⎥⎦
(7.9)

τ = δ2ρC

4k
(7.10)

where τ is the time required for thermal energy to diffuse a distance equal to energy

penetration depth, erfc(x) is the complementary error function.

7.2.3. Derivation of Finite Element Equations

By multiplying both sides of (7.6) by ϕe =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ
(e)
1

ϕ
(e)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where ϕ

(e)
1 and ϕ

(e)
2 are the

linear shape functions and integrating over [x(e)1 , x
(e)
2 ], we get

x
(e)
2

∫
x
(e)
1

ρC
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ϕ
(e)
1

ϕ
(e)
2
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∂T

∂t
dx =

x
(e)
2

∫
x
(e)
1
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ϕ
(e)
1

ϕ
(e)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
[ ∂
∂x
(kx

∂T

∂x
) +H] dx (7.11)

By using integration by parts formula, right side of (7.11) becomes

x
(e)
2

∫
x
(e)
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ
(e)
1

ϕ
(e)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∂

∂x
(kx

∂T

∂x
)dx = kx

∂T

∂x
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ϕ
(e)
1

ϕ
(e)
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

RRRRRRRRRRR

x
(e)
2

x
(e)
1

−
x
(e)
2

∫
x
(e)
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ϕ
(e)
1

∂x

∂ϕ
(e)
2

∂x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(kx

∂T

∂x
)dx

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−kx ∂T
∂x ∣

x=x(e)1

kx
∂T
∂x ∣

x=x(e)2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−
x
(e)
2

∫
x
(e)
1

kx
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∂ϕ
(e)
1

∂x

∂ϕ
(e)
2
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dx (7.12)
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Combining (7.11) and (7.12), and rearranging the terms, we get

x
(e)
2

∫
x
(e)
1

ρC
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ϕ
(e)
1

ϕ
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2
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2
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−kx ∂T
∂x ∣
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In the terms on the left side of (7.11) we replace T (x, t) by the finite element in-

terpolation [ϕ(e)1 (x)ϕ
(e)
2 (x)]
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(7.15)

As a result, we get

M(e)Ṫ(e) +K(e)T(e) = F(e) +Q(e) (7.16)
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7.2.4. Numerical Time Integration

The time dependent problem (7.6) is solved numerically by a finite difference

scheme. We begin by assuming that the two temperature states Ti at time ti and Ti+1

at time ti+1 are related by

Ti+1 = Ti + [(1 − θ)Ṫi + θṪi+1] △ t, 0 ≤ θ ≤ 1 (7.18)

where △t = ti+1 − ti denotes the time step. The relation (7.18) follows from the trape-

zoidal rule, where the parameter θ is chosen by the user. Next we express (7.17) in the

global form as

KT +MṪ = F (7.19)
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By using ti and ti+1, we have

KTi +MṪi = Fi,

KTi+1 +MṪi+1 = Fi+1 (7.20)

Then multiplying the first equation in (7.20) by (1 − θ) and the second by θ,

(1 − θ) (KTi +MṪi) = (1 − θ)Fi,

θ (KTi+1 +MṪi+1) = θFi+1 (7.21)

which, after adding together, gives

M[(1 − θ)Ṫi + θṪi+1] +K[(1 − θ)Ti + θTi+1] = (1 − θ)Fi + θFi+1 (7.22)

Now, using (7.18), we delete the time derivative terms and get

M(Ti+1 −Ti)
△t

+K[(1 − θ)Ti + θTi+1] = (1 − θ)Fi + θFi+1 (7.23)

Rewriting this equation, we have

( 1

△t
M + θK)Ti+1 = [

1

△t
M − (1 − θ)K]Ti + (1 − θ)Fi + θFi+1 (7.24)

The time integration to solve for T is carried out as follows:

� Given a known initial temperature T0 at time t = 0 and a time step △t;

� Determine T1 at t = △t, which is not known, by using (7.24);

� Use T1 to determine T2 at t = 2△ t; and so on.
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7.3. Simulation Results

Considerable work has been done in developing exposure standards for radio

frequency (RF) radiation. Exposure standards for microwave energy [in particular,

ANSI/IEEE C95.1-1992 and ICNIRP] specify times over which the exposure is to be

averaged. In ANSI/IEEE and ICNIRP, these times range from 6 to 30 min, with

shorter times at frequencies above 1 GHz. Thus to calculate our simulation results

with the standards and with [60]; temperature rise occurred by incident power density

of 5 mW /cm2 and 10 mW /cm2 in the surface of cornea was calculated respectively at

certain frequencies for exposure time of 6 min.

In this study, the temperature rise in the human eye is computed as follows.

First, all tissues in the eye model are assigned a temperature of 37 0C. By using (7.6)

(with H(x, t) = 0 ), the temperature in the steady state is computed in order to obtain

the initial temperature distribution in the eye in the absence of microwave exposure.

Secondly, the H(x, t) in the eye exposed to microwave is added to (7.6). This is used

as the heat source in (7.6) to compute the temperature rise to the steady state with

in the eye. Finally, the temperature difference before and after microwave exposure

is derived as the temperature rise. The human eye tissue paramaters were given in

Chapter 6.

Web-spline simulation results with the results of the simplified bioheat equation

for the surface temperature ((7.9), 7.10) are given in Table 7.2 for linear, quadratic

and cubic web-spline. Results are also given in graphics in Figure 7.2 and Figure 7.3

for 5 mW /cm2 and 10 mW /cm2 incident power densities,respectively at the frequency

range of 1-30 GHz.

It is shown in the simulated figures that as the degree of the spline functions

increase temperature increase agrees well with [60] solutions.

Variation of temperature rise of cornea surface to exposure time by means of IC-

NIRP and ANSI/IEEE exposure limits at 30 GHz for 5 mW /cm2 and 10 mW /cm2 is
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Figure 7.2. Temperature rise on the cornea surface at 6 min. duration at 5 mW /cm2

shown in Figure 7.4. For comparison reason, temperature rise of cornea surface versus

exposure times are simulated with linear, quadratic and cubic web-spline model; and

[60]’s at 6 GHz and 10 GHz with 5 mW /cm2 incident power densitiy. Findings are

depicted in Figure 7.5 and in Figure 7.6, respectively. It is clearly seen that cubic

web-spline solution of bioheat equations give more accurate results than linear, and

quadratic web-splines when compared with [60] model. Temperature variation de-

pending on depth of skin eye tissue using web-spline technique was simulated for 6

min exposure times. Skin dept simulations are plotted in Figure 7.7 with the power

density of 5 mW /cm2 at 2.45 GHz, 6 GHz and 10 GHz frequencies respectively for

cubic web-splines.

7.4. Conclusion

Temperature rise on the cornea surface for plane wave exposure have been inves-

tigated by using bioheat equation with web-spline model at the frequency range of 1
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Figure 7.3. Temperature rise on the cornea surface at 6 min. duration at 10 mW /cm2

GHz and 30 GHz. Since radio frequency EM energy be absorbed in cornea on the front

of surface of the eye, so the threshold temperature rise is 3.00C for cataract formation.

Maximum temperature rise due to power density of 5mW /cm2, which is the maximum

permissible exposure limit for controlled environment [ICNIRP 1998], is found to be

0.0580C, 0.1950C, and 0.3690C at 30 GHz for linear, quadratic and cubic web-splines,

respectively. For power density of 10mW /cm2 [ANSI/IEEE 1992], it is found to be

0.1160C, 0.390C, and 0.660C at 30 GHz for linear, quadratic and cubic web-splines,

respectively.
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Table 7.2. Temperature increase values on the cornea surface for plan wave exposure

Frequency (GHz)
I0 = 5mW /cm2

n = 1 n = 2 n = 3 Foster

I0 = 10mW /cm2

n = 1 n = 2 n = 3 Foster

1 0.023 0.061 0.097 0.093 0.045 0.121 0.194 0.185

1.8 0.023 0.066 0.110 0.108 0.045 0.131 0.220 0.216

2.45 0.026 0.073 0.122 0.121 0.052 0.146 0.243 0.242

6 0.095 0.152 0.183 0.199 0.191 0.341 0.408 0.397

10 0.124 0.198 0.240 0.251 0.244 0.439 0.527 0.502

18 0.111 0.239 0.328 0.296 0.222 0.477 0.656 0.591

30 0.058 0.195 0.369 0.330 0.116 0.390 0.738 0.660

Figure 7.4. Temperature rise on the cornea surface at 6 min. duration at 10 mW /cm2
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Figure 7.5. Temperature rise on the cornea surface at 6 min. duration at 6 GHz
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Figure 7.6. Temperature rise on the cornea surface at 6 min. duration at 10 GHz



83

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

0.2

0.25

Penetration Dept (mm)

T
em

pe
ra

tu
re

 r
is

e 
of

 h
um

an
 e

ye
 (o C

)

 

 

2.45 GHz
6 GHz
10 GHz

Figure 7.7. Cubic web-spline solution of temperature rise on the human eye for

I0 = 5mW /cm2 at 10 GHz (-.), 6 GHz (–) and 2.45 GHz (-)
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8. CONCLUSIONS

The numerical computational electromagnetics in scattering, biomedical prob-

lems, and antenna design are taken into consideration in various journals and con-

ferences. There are several numerical methods, which are given attention. One of

the popular numerical methods is the Finite Element Method, which is very effective

for inhomogeneous materials and allows complex geometries to be represented very

precisely. It is a versatile and flexible numerical technique that is often used in the

analysis of geometrical complex structures. It is also used in scattering, radiation, and

propagation problems.

In this thesis we proposed the use of extended and weighted extended b-spline

method to numerically study the electromagnetic models and bioheat transfer prob-

lems. Firstly, we have concentrated on using the web-spline to solve the electrostatic

and electromagnetic wave problems in cylindrical coordinates. Secondly, a bioheat

transfer model of the human eye is constructed using web-splines as shape functions

for the FEM to calculate the steady-state temperature distribution in a normal 2D and

3D human eye. Finally, the heat conduction model of the microwave-irradiated eye is

constructed.

8.1. Contributions and Discussion

This new method bridges the gap between geometric modeling and numerical

simulation. In this dissertation, we introduce and implement a minimal degree variant

of the web-method for 2D axisymmetric boundary value problems. It is intended

primarily for simulations where computational speed is of key importance and only

moderate accuracy in simulation parameters are required. Electrostatic, and EM wave

equation as a basic model problem already exhibit the essential features of the new

method. The wave equation in cylindrical coordinates has been solved and accurate

results have been obtained by increasing the degree of the basis function.
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FEM with web-splines are applied to analyze the steady-state temperature dis-

tribution in 2D and 3D models of the human eye with no external sources. Grid width

(h) optimization is done by decreasing h in dependence of the domain. It is observed

that below 0.0625mm and 0.125mm in 2D and 3D web-spline models, respectively, de-

creasing h does not affect the results substantially. Thus, for saving the computational

power and memory, higher numbers of grids are not tested. With the grid convergence

number estimates, it is shown that this method reaches higher precision in a shorter

period of time with fewer nodes. It is depicted that the errors decrease with increas-

ing basis spline degrees. Besides diminishing the number of nodes, low computational

time is also achieved by the web-spline method. The results indicate that FEM with

web-spline method is observed to offer a much better performance than the standard

FEM.

In this dissertation, the temperature rise in the cornea layer for plane wave ex-

posure are investigated with the tissue block model by using Penne’s bioheat equation

with the new method, FEM with web-spline, at the frequency range of 1 − 30GHz.

We compare our results with the ANSI/IEEE and ICNIRP exposure standards for

microwave radiation with respect to the maximal increase in the surface of cornea tem-

perature that would be allowed at the maximal permissible exposures. Subsequently

it has been observed that our web-spline model agrees well with the solutions of the

simplified bioheat equations especially for higher order b-splines. Finally, temperature

variations at varying eye tissue thicknesses at different frequencies were calculated by

using incident power density of 5 mW /cm2.

8.2. Future Directions

Eliminating the difficult and time consuming preprocessing step in computational

techniques is still a challenge. The constructed 3D web-spline model is to use a number

of applications. We plan to address this challenge in different heat sources exposed to

human eye. Web-spline technique can also be applicable to finding tumors in the

human bodies and it can be used on the other EM problems.
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