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SENSITIVITY THEORY APPLICATION TO THE NUMERICAL 

SOLUTIONS OF THE GENERAL OPTIMAL CONTROL PROBLEM 

iv 

This study proposes various efficient numerical methods for 

the general optima"l control problem. The basic feature of the methods 

developed here is that they somehow exploit the ideas and the 

concepts of the sensitivity theory. 

First, a new method for solving TPBVP, which is met in seeking 

an open-loop solution for optimal control problems, is developed. 

This method can be briefly expressed as an iterative procedure which 

is based on trajectory sensitivities with respect to initial condi­

tions. 

In the second part of the study, various numerical methods are 

developed for the closed-lobp solutions of general optimal control p 

proble~s using performance index sensitivity functions with respect 

to controller parameters. These new methods may be treated in two 

ca tegories : 

1) Apriori p~lynomial approximation methods 

Here the basic assumption is that controller parameter function 

is assumed to be formed by a polynomial function. 

2) Aposteriori polynomial approximation method 

In this method a sequence of subproblems are created using some 

intrinsic properties of the previous method. The values of the 

results of the subproblems are then used in the formation of 

the optimum controller parameter function. 



GENEL ENiYl DENETiM SORUNUNUN SAYISAL COlOMLERiNE 

DUYARLIlIK KURAMININ UYGULANMASI 

v 

Bu ca1lsma Gene1 Eniyi Denetim Sorununun saYlsa1 cozUm1eri 

i1e i1gi1; olarak cesit1i ozgUn ve etkin yontem1er onermektedir. 

Burada ge1istiri1en yontemlerin ortak oze1ligi hepsinin de bir 

sekilde duyarll1lk kuramlndaki kavram ve dUsUnceleri kul1anmlS 01-

malarld~r. 

11k olarak Eniyi Denetim Probleml~rinde aClk-dongU cozUm 

arandlglnda karSl1aSl1an iki-nokta slnlr-deger sorun1arl icin yo-

rUnge duyarll1lk matrislerini kullanan ardlSlk yeni bir saYlsal co­

zUm yontemi gelistirilmistir. 

Ca1lsmanln ikinci klsmlnda ise kapall-dongU, durum geri-bes-

1emeli eniyi denetim sorunlarl icin denetimci parametrelerine gore 

davranlS olcUtUnUn duyarll1lk vektorU kullanl1arak yeni saYlsal yon­

temler onerilmis ve cesitli ornek problemlerle denenmistir. Bu yon­

temler iki gruba ayrl1abilir : 

1) Unsel po1inom yaklaSlklamasl yontemleri 

Buradaki temel varsaYlm denetimci parametre fonksiyonunun bir 

polinom fonksiyon olmasldlr. 

2) Sonsal polinom yaklaSlklamasl yontemi 

Bu yontemde onsel polinom yaklaSlklamasi yonteminin baZl oze1-
- \ 

liklerinden esinl~nerek bir altproblemler dizisi yaratl1mlstlr. 

Bunlarln sonuc degerlerine ise bir po1inom yaklaSlk olarak 0-

turtulmus ve denetimcinin p~rametreleri bu1unmustur. 



I 

I NTRODUCTJ ON 

1.1. BACKGROUND OF THE PROBLEM AND 

OUTLINE OF THE THESIS 

No cont.rol engineer can be content with simply 

formulating or analyzing a control problem. 'He must ulti­

matel, be concerned with the problem of designing systems 

according to the given specifications. In early days, 

trial-and-error methods were the basis for most decisions 

in system design. However, today it is no longer a trial­

and"error effort, rather a precise science involving appl ied 

mathemathics and high speed computers. 

There exist mainly two approaches to the system 

design. One is the classical {frequency domain).and the 

other is the modern (time domain) approaches. In tbe 

classical approach to system design, one utilizes such fre­

quency domain techniques as root locus aftd Bode diagrams to 

determine systems with acceptable performance. In contrast, 

the modern approach is formulated almost exclusively in the 

time doma In. In addition, the modern approach demands not 

only acceptable but optimal performance. 

In order to talk of optimal pe'rformance it is obviously 

necessary to specify some method for determining the quality 

~f the performance of a system. In the modern approach, this 
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is often done by means of a integral performance index of 

the following form: 

PI = 1(~, ~, t) dt 

where x is the state vector and ~ is the control function. 

One then says that a system is optimal over the time 

interval tj to ot f if the value of the performance index is 

minimum (or maximum in some cases). It should be noted that 

the mJnimization (or maximization) of the a~ove performance 

index is done over the control vector ~ and subject to the 

system equation constraint defined by a set of differential 

equations of the form: 

x=-
d~ 

... f (~, !!; t) 
dt 

Eventhough the optimal control problem thus stated informally 

as above may seem very simple, It presents various difficulties 

in both formulation and solution steps. For instance, one of 

the basic problems in the formulation step is the translation 

of system specifications often in such subjective terms as 

IIg~od rise time with reasonable overshoot", into the form of a 

performance index. While another problem of the same step may 
I 

arise in the derivation of system equations from a given 

physical process. However, this study will not cover this 

kind of formulation problems. 

In a gross sense, this study will cover the problems 

of the solution of the opti~al control problem. Hore speci-
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fically, it will propose some new methods for the solution 

of the optimal control prQblem. Furthermore, it will try to 

give a new insight and/or a poiht of view via application of 

sensitivity ideas in the solution step of the problem. 

In the optimal control problem stated above the type 

of the con~rol function is not specified. Actually, there 

exist only two types of control functions. The first type 

is the open-loop control which utilizes the measurement of 

the initial state to compute and generate the control signals 

as functions of the initial state and time. The second one 

is the closed-loop (or feedback) control which utilizes con­

tinuous or rapidly sampled state measurements to compute the 

control signal as a function of the present state and terminal 

state and time. 

Open-loop control is used when one or more of the 

state variables cannot be measured during the control interval 

but when an initial measurement is available. However, 

closed-loop control can be used whe~ all of the state variables 

are known. Open-loop control re~uires fairly exact knowledge 

of the system parameters and therefore system dynamics whereas 

closed-loop control requires less accurate system knowledge, 

since the effect of the control signals on system state is 

monitored. 

Depending on the type of the ~ontrol function, ~ither 

calculus of variations or dynamic programming approaches have 

been extensively use~ In the mathemathical formulation and 

solution of the optimal control problems. If an open-loop 



control is required then the calculus of variations approach 

ends with the well known Two Point Boundary Value Problem. 

In the case of closed-loop (feedback) control dynamic prog­

ramming approach provides us with the partial differential 

equation which is known as Hamilton-Jacobi-Bellman equation. 

Stating more precisely, the calculus of variations 

was used to derive a set of necessary conditions that must be 

satisfied by an optimal control and its associated state­

costate trajectory. The two-point nature of the resultant 

boundary conditions presents a serious computational problem. 

Moreover, the resultant two-point boundary value problem is 

generally a nonlinear one which makes the problem a bit more 

cumbersome. There exist several elegant computational schemes 

developed to solve linear and/or nonlinear two-point boundary 

value problems. However, the basic existence and uniqueness 

theory for nonlinear boundary value problems is not as developed 

as for initial-value problems or li~ear boundary value prob­

lems. Therefore still the convergence to the exact solution 

in every problem for various computational methods remain to 

be in doubt. 

In this study, first an overview of the various com­

putational methods for solving the two-point boundary value 

problem will be given from a mathemathical po(nt of view. 

Next, the two-point boundary value pr~blem will be considered 

fro~ the optimal control side. Various methods developed 

upto now in this dis~ipline are discussed. 
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In the third chapter a new method for the solution 

of the two-point boundary-value problem is presented. This 

new method which we have called-sensitivity approach provides 

an insight for the logic behind the solution of the proqlem. 

As a by-product of this approach a new method is developed 

for the solution of stiff linear differential equations. 

Still as another by-product a method for the determination 

of the sufficjent number of terms in the power-series expansion 

of any function is presented. Theoretical and numerical 

aspects of the method are also discussed in this section. 

Next chapter is dev~ted to the various numerical 

results obtained by the new method and comparison of it with 

the other methods. In this chapter alternate way of solving 

nonlinear two-point boundary-value problem is considered using 

the same approach. The nonl inear problem is considered to be 

allnear one around the known and the guessed (or unknown) 

boundary values and the linear problem is solved using the 

same approach until the unknown boundary value is within 

acceptable tolerance limits. Lastly, a conclusion section 

completes this chapter. 

However, even if we do solve the two-point boundary 

value problem we still do not have an acceptable solution, 

since only an open-loop sol~tion for a specific set of initial 

and terminal states has been found. ~n other words, optimal 

o control ~ is known only a~ a function of time and not as a 

feedback control law depending on system state. If either 

the initial state or terminal state is changed, or if any 

I , 



dis t u r ban c e act son the s y s t em, the -c 0 n t r 0 1 ~ 0 (t) i s no 

longer optimal. 

6 

Dynamic programming is used as an alternate approach 

to eliminate the above difficulty. This alternate approach 

removes the necessity for solving a two-point boundary­

value problem and yields a closed-loop solution in the form 

of an optimal control law ~o(x,t}. However, as one might 

expect, this closed-loop approach also has its own problems. 

Chief among these is the necessity of solving a nonlinear 

pattial differential equation known as Hamilton-Jacobi-Bell'-

man equation. In fact, the solution of this equation is so 

difficult that it has been accomplished only for a few 

special cases. 

Therefore, an alternate approach of attacking the 

sam~ closed-loop optimal control problem must have been 

introduced. Here, at this point we have again tried to 

exploit the sensitivity idea in order to obtain a way of 

formulation of the problem. Basically, we have assumed that 

optimal control vector consists of some linear combination 

of state values. That is, the optimal control ,vector is 

assumed to be in the following form 

U
o (x,t) ... kT(t} x(t) - - -

Since the 9tatevector ~(t) Is assumed to be known for all 

times in order to have an optimal control law, the only thing, 

which remains to be determined Is the coefficient or the gain 
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vector ~(t). Therefore, a sensitivity analysis on this 

vector would yield us some valuable measures in the way of 

obtaining a closed-loop solution to the optimal control 

problem. 

In the fifth chapter, the basic idea behind this 

new approach is introduced. Eventhough the idea behind it 

may seem simple, the approach which we have called direct 

sensitivity approach, provides one a vast amount of various 

attacking opportuni~ies for the same problem. Theoretical 

and numerical aspects of the approach are also discussed in 

this chapter. 

In the next chapter, two new methods for determlnlnQ 

the coefficient (or the gain) vector are developed using the 

same direct sensitivity approach. These two new metbods 

presented in this chapter can be named as "apriori polynomial 

fitting methods", since the coefficient vector is assumed to 

be formed by polynomials. Various numerical examples solved 

using the new aptiori polynomial fitting methods are reported. 

It has also shown that the open-loop sol~tionfor the gener~l 

optimal control problem can be obtained using the same methods 

presented in this section, and some examples related to this 

class of optimal control problems are solved and reported. 

This chapter concludes with a flow-chart of the apriori 

polynomial fitting methods using the direct sensitivity 

approach. 

Chapter seven is completely devoted to a spec·lal 

method which ageln uses the direct sensitivity approach. 
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However, in contrast to aprioti polyn_omial fitting methods 

of the previous chapter, this method first finds out some 

data points for the coefficient ~ector function by using the 

basic idea behind the direct sensitivity approach, and then 

tries to fit a polynomial for these points. Therefore, this 

special method is named as "aposteriori polynomial fitting 

method". This aposteriori polynomial fitting method is 

also able to sdlve the general optimal control problem for 

both open-loop and closed-loop cases as apriori polynomial 

fitting method. Various optimal control problems with linear 

or nonlinear system dynamics and quadratic or nonquadratic 

cost functionals are solved using the aposteriori polynomial 

fitting method and the results are reported in this chapter. 

Next, a flow-chart of the method is given. This chapter 

concludes with the comparison of the apriori and aposteriori 

polynomial fitting methods. 

This study, by no means, tries to Justify the super-
\ 

fluousness of the dynamic programming or the development of 

Hamilton-Jacobi approach; rather, it proposes "a few alternate 

approaches for the treatment of the same optimal control 

problem. It develops more convenient or computationally easy 

methods ~or the optimal control problem with nonlinear sy~tem 

dynamics and/or nonquadratic performance index. For the 

problem defined by a 1 inear system dynamics 

• x = ~~ + Bu 



and with a quadratic performance Index 

CD 

PI a j (~T~~ + ~T~~) dt 

o 
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where Q is symmetric positive semidefl·nite and P is symmetric 

positive definite matrices, the resultant Hamilton-Jacobi-

Bellman equation can be solved In a reasonably simple manner. 

Therefore~ this ·fact alone justifies the dynamic programming 

or the development of the Hamilton-Jacobi approach. 

When we try to solve the optimal control problem 

with infinite horizon defined as above using the methods 

developed in this study we are faced with the problem of 

choosing sufficient final time In order to be able to do 

integration since the final time is designated to be Infinity 

in the problem. Therefore, a method or a rule of thumb of 

determining the sufficient final time for the infinite horizon 

problem of the optimal control theory must be searched. 

In chapter eight a method for determining the 6uffl-

cient final time in case of infinite horizon is developed 
I 

again using the s~nsitivity idea and some properties of the 

cost functionals for stable control problems. Several infi-

nite horizon optimal control problems are solved using the 

new method compared with the results of Hamilton-Jacobi 

approach. This ch~pter again ends up with a flow-chart of 

the method. 

Finally. the last chapter presents an overview and 

a comparative discussion of the methods and the approaches 

I , 
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developed in this research. This chapter also discusses 

some possible extensions and defines further areas of work. 

I , 
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A SURVEY ON THE NUM~RICAL SOLUTIONS 

OF TWO-POINT BOUNDARY-VALUE PROBLEMS 

2.1. INITIAL-VALUE PROBLEMS 

1 1 

Among ·the various techniques available for the 

analytical and numerical solution of boundary value problems 

for differential equations there is a number of methods 

which attack the given problem by solving instead certain 

related initial-value problems. In fact, most of the uni­

versally applicable numerical methods for solving two-point 

boundary-value problems somehow employ initial-value techni­

ques. Therefore, the theory of boundary value (especially, 

two-point boundary-value) problems relies rather heavily on 

Initial-value problems. 

The theory of ordinary differential equations subject 

to initial conditions (i.e., initial value problems) Is one 

of the most extensively developed branches of mathemathical 

ana1~sis. Theorems on existence and uniqueness of solutions 

related to this topic are widely available in the literature. 

Here we will very briefly review some basic definitions and 

theorem~ on this topic. 

Since every nth-order ordinary differential equation 

can be replaced by an equivalent system of n first-order 

equations, the attention can be confined to frrst-order 
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systems of the form 

dx . -x = ---- = f (~;t) • • • • • • • • • Eq.(2.1.1) 
dt 

T Here ~ ~ (x" xl •••• x n ) Is an n-dimensional colum~ vector 

with the dependent variables xk(t) as components; then ~(t) 

is a vector-valued function;" f{~;t) is vector-valued with 

components fk(x,.xl, ••• xn;t), which are functions of the 

n+1 variables (~;t). An initial-value problem for the above 

system" is obtained by prescribing at· some point, say t=a, 

the value of ~, say 

~ (a) = 0( • • • • • • • • • • • • • • Eq.(l.l.l) 

The existence, uniqueness and ~ontinuity properties of the 

sOlutions of such problems depend on the continuity and/or 

smoothness properties of the function! in a neighborhood of 

the initial point (_;a). As a measure of distance between 

two points in n-space the maximum norm 

• • • • • • • • 0 Eq. (2.1.3) 

or the Euclidean norm 

Eq.(2.1.4) 

can be employed equally well. One of the b~sic results 
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can now be stated as follows. 

THEOREM 2.1.1.: Let the function f(~;t) be continuous on 

the infinite strip 

R 

and satisfy there a Lipschitz condition in x with constant 

~K, uniformly 1n t; that is, 

./If(x;t) - f(y;t)II L KII~-x/l 

Then 

(a) the initial-~alue problem 

x = f{x"t) - -.' ~(a) a 0< 

for all (~;t) and 

(X;t) ER 

has a unique solution x=x ( 0(; tl defined on the interval - - -

[a,b] = (tlaftf-b} 

(b) this solution is Lipschitz-continuous in ~. uniformly 

in t; in fact we have 

( ~;t) and (~;t) eR 

I , 
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2.2. TWO-POINT BOUNDARV~VALUE PROBLEMS 

A boundary-value problem.for an ordinary differential 

equation (or system of equations) is obtained by requiring 

that the dependent variable (or variables) satisfy subsidiary 

conditions at two or more distinct points. By means of 

Theorem 2.1.1 we know that a unique solution of an nth-order 

equation is determined (for a very large class of equations) 

by specifying n conditions at one point (that is, for initlal-

value problems). However, with a total of n boundary condl,-

tions imposed at more than one point it is possible that a 

very smooth nth-order equation has many solutions or even no 

solution. Thus, as we may wxpect, the existence and uniqueness 

theory for boundary-value problems is considerably more 

complicated and less thoroughly developed than that for 

initial-value problems. When the boundary conditions are 

imposed at only two points, which is the usual case in mAny 
, 

applications, a simple theory can be developed for many 

special classes of equations and systems of e~uations. 

This existence and uniqueness theory plays an important role 

in devising and analyzing numerical methods for solving 

boundary-value problems. 

Therefore, some of the important aspects of the 

existence and uniqueness theory will be studied here with 
. 

regard to a class of boundary-value problems in which the 

solution, ~(t), of a second-order equation 

.. 
x = = f (x, x;- t) . . . . . . . . . Eq.(2.2.1a) 
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is required to satisfy at two distinct points relations of 

the fo rm 

;. 0 

Eq. (2.2.1b) 
;. 0 

The solution is sought on the interval [a,b] 

A formal solution to the exact solution of this 

problem is obtained by considering a related initial-value 

problem, say 

u = = f(u,u,t) • • • • • • • • • Eq.(2.2.2a) 

aou(a) - a 1 u(a) = ~ , cOu(a) - ctu(a) = s 

Eq.(2.2.2b) 

The second initial condition is to be independent of the 

-
generality it Is required that Co and c, be chosen such that 

• • • • • • • • • Eq. (2.2.2c) 

With Co and c
1 

fixed in this manner, the solution of 

Eq.(2.2.2) is denoted by 

u = u (s;t) 



16 

to focus attention on its dependence on s. Evaluating the 

solution at t = b, a value of s is sought for which 

Eq.(2.2.3) 

With band fJ fixed Equation (2.2.3) is, in general, a 

transcendental equation in s. If s = s* is a root of this 

equation, it is then expected that the function 

x(t) :: u (s*;t) 

is a solution of the boundary-value problem.(2.2.1). 

This is true in many cases, and in fact all solutions of 

the problem (2.2.1) can frequently be determined in this 

way. To be precise, the followlng theorem can be stated. 

THEOREM 2.2.1 : let the function f(u
1

,u2 ,t) be continuous on 

R : a~t~b 

and satisfYRthere a uniform Li,pschitz condition in u 1 and 

u2 • Then the boundary-value problem (2.2.1) has as many 

solutions as there are distinct roots, s .. s(Y), of Equation 

(2~2.3). The solutions of (2.2.1) are 

x(t} os x (If) (t) :: .u(s (V); t) 

that is, the solutions of the initial-value problem (2.2.2) 
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with initial data s = (y) 
s • 

For the. proof of the above theorem one may refer to 

Keller (Ref.4). By means of this. theorem the problem of 

solving a boundary-value problem is"reduced" to that of 

finding the root, or roots, of an (in general, transcenden-

tal) equation, In fact, more general boundary-value problems 

than (2.2.1) can be reduced in this way to solving systems 

of (transcendental) equations. 

Moreover, there is an important class of problems 

for which it can be assured that Equation (2.2.3) has a 

unique root. The existence and.uniqueness theory for the 

corresponding boundary-value problems is then settled. 

THEOREM 2.2.2 . let the function f(u 1 ,u2 ,t) in Equation 

(2.2.1a) satisfy the hypothesis of Theorem (2.2.1) and have 

continuous derivatives on R which satisfy, for some positive 

constant M, 

> 0 

let the coefficients in Equation (2.2.1b) satisfy 

Then the boundary-v~lue problem (2.2.1) has a unique 

solution. 

One may again refer to Keller (Ref.4) for the proof 

. of the above theorem. 
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This much consideration of existence~and uniqueness theory 

on boundary-value problems is sufficient for our purposes 

at this point. 

2.3. NUMERICAL METHODS 

There exist a wide variety of methods with over-
j 

lapping or interacting ideas for solving boundary-value 

problems in the literature. Therefore, it is ~ery difficult 

tomak~ a precise classification of the existing methods. 

However, still all of the methods can be classified very 

broadly under three major headings some of which may contain 

subgroups (or subheadings). These three major headings are 

as fo 11 ows : 

A. SHOOTING METHODS (OR INITIAL-VALUE METHODS) 

B. FINITE-DIFFERENCE METHODS 

C. FUNCTION SPACE APPROXIMATION (OR PROJECTION) METHODS 

Let us now have a brief overview of the above 

methods. 

A. SHOOTING (OR INITIAL-VALUE) METHODS 

Shooting methods are so natural and commonly used 

for treating boundary·value problems for ordinary differen-

ti"al equations that many papers employ them without an ex­

plicit statement of the fact. In the previous section we 

have seen that by means of_Theorem (2.2.1) the problem of 

solving a boundary·value problem Js reduced to that of 

finding the root, or roots, of an (In general, transcenden-
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tal) equation. A very effective class of numerical methods, 

which we call shooting (or initial-value) methods, is based 

on this equivalence. 

Let us consider a rather general nonlinear boundary-

value problem 

dx 
• f(~,t} x . ... - = 

dt 
. . . . . Eq.(2.3.1a) 

9 (~(a), ~(b}) = 0 - • • • • • • • • • • • • • Eq. (2.3.1b)· 

The above boundary-value problem (2.3.1) Is associated with 

the following initial-value problem. 

du - f (!:! , t) u a_a - o • e._ •••••••••• 

dt 

u (a) - s - - • • • • • • • • • • • • • • Eq. (2.3.2b) 

A solution!:! a !:!(~.t) of the problem (2~3.2) Is a solution 

of the problem (2.3.1) if ! is a root of 

• • • • • • • • • Eq.(2.3.3} 

A fairly general theory of this process, using arbitrary 

stable accurate of O(h P) initial-value methods is developed 

in Keller (Ref.4). Eventhough, there may exist various 

root-finding schemes available in the literature, Newton's 

method or its alternatives or modifications of it is perhaps 
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the most commonly adopted scheme to be used on Equation 

(2.3.3). 
,~~ 

Now, there remain three main topics that will be 

considered very briefly. First topic is related with the 

I'm ort t t' f h t . k h ... l' t (0) p an ques Ion 0 ow 0 pIC t e Inltta ttera e, ~ , 

and this automatically introduces the continuity or continu-

ation studies. Next the standard question of unstable 

growth of the solution of the problem (2.3.2) leading to 

parallel- or mUltiple-shooting methods is considered. 

Finally invariant-imbedding which can also be considered as 

a special type of initial-value (or shooting) method will 

be discussed. 

CONTINUATION 

Selection of an appropriate initial iterate, !(O), 

so that. convergence to the desired root of Equation (2.3.3) 

occurs in whatever iteration scheme is being employed, is 

one of the basic open questions in shooting for nonlinear 

problems. A fairly general form of continuation consists in 

embedding the problem (2.3.1) in a family of problems 

dz -• Z"'-- dt 
= f (z,t; 0"') - • • • • • • • • • • Eq. (2.3.ita) 

, . . . . . . . . . Eq.(2.3.itb) 

wh ich for a'= uF say. reduces to the problem (2.3.1). 

Further the problem·(2.3. 4) for v= ~o has a known solution 

(or is "easily" solved). The idea is to compute 
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~ ( t; () F ) :: ~ ( t) s tar tin g fro m the k n o_w n sol uti 0 n ~ ( t; cr 0 ) 

by continuation in the imbedding parameter, • 

PARALLEL- OR MULTIPLE-SHOOTING 

Parallel-shooting is employed for reducing the 

destabilizing effects of growing solutions of th~ initial­

value problems. The basic idea In parallel-shooting is to 

partition the interval [a,bJ into subintervals and to 

compute the solution over each subinterval (more or less) 

independently of the results in the other subintervals. 

Then s)multaneously with attempting to satisfy the boun-

dary conditions the relevant continuity conditions are 

imposed at each interval interface. 

INVARIANT-IMBEDDING 

Here the invariant imbedding method is considered 

to be a shooting-method because the resultant invariant 

imbedding equations represent an initial~value problem. 

The method of invariant imbedding which originated in 1957 

with a series of papers by Bellman, Kalaba and Wing is 

actually an outgrowth of dynamic programming. Basically, 

the method involves generating a "family" of problems by 

means of a single parameter, where the basic properties of 

the system remain invariant under the generation of the 

family •. The family. then provides a means of advancing from 

one member, sometimes degenerate, to ~he solution of the 

original problem. In case of boundary-value problems the 

crucial parameter i~ taken to be the interval length. 
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We shall now present a deriva~ion of the invariant 

imbedding equations. Let us consider the system of nonlinear 

ordinary differential equations 

u = F (u,v,t) • • • • • • • • • • Eq. (2.3.5a) 

• v = G (u,v,t) , Eq. (2.3.5b) 

subject to the simple separated boundary conditions 

u CO) a 0 • • • • • • • • • • • • • • Eq. (2.3.5c) 

v (T) = c • • • • • • • • • • • • • • Eq. (2.3.5d) 

For the sake of exposition, we assume that u and v are 

scalar functions. The multidimensional versions of the 

following results can be readily obtained. 

By differentiating Equations (2.3.5a) • (2.3.5d) 

with respect to c, it is seen that 

I , 

u (t,c,T) = F u + F v c u c v c • • • • • • 

u (O,c,T) .. 0 
c 

v (T,c,T) = 1 c 

• • • • • • 

o ~ t < T 

• • • • • • • • • • • • • • 

• • • • • • • • • • • • • • 

Eq. (2.3.6a) 

Eq. (2.3.6b) 

Eq. (2.3.6c) 

Eq. (2.3.6d) 
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Similarly, a differentiation in T yieJds 

• • • • • • • • • Eq. (2.3. 7a) 

· . . . . . . . . Eq.(2.3.7b) 

O<:t<T 

• • • • • • • • • • • • • Eq. (2.3. 7c) 

v(T,c,T) + vT(T,c,T) = 0 • • • • • • • • • Eq. (2.3. 7d) 

To make use of these equations, note that from the 

differential equation (2.3.6b), when t -T we have 

v(T,c,T) D G(u(T,c,T),v(T,c,T),T) 

- G(r(c,T),c,T) • • • • Eq. (2.3.8) 

where the notation 

r(c,T) D u{T,c,T) • • • • • • • • • Eq. (2.3.9) 

has been introduced. Comparing Equations (2.3.6a) - (2.3.6d) 

with (2.3.7a) - (2.3.7d), and assuming a unique solution 

exi~ts, it follows that 

. 
uT(t,c,T) • -G(r(c,T),c,T) uc(t,c,T) Eq.(2.3.10a) 

o ~t f T , Eq. (2.3.10b) 



Equations (~.3.10a) and (2.3.10b) ar~ the desired partial 

differential equations for ~ and v. 1 The initial conditions 

at T = tare 

u(t,c,t) = r(c,t) • • • • • • • • • • • Eq.(2.3.10c) 

v(t,c,t} = c • • • • • • • • • • • • • • • Eq. (2.3.10d) 

It remains to consider the function r. 

Differentiate Equation (2.3.9) with respect to T 

to obtain 

From Equations (2.3.5a) and (2.3.10a), we. now see that 

rT(c,T} • F(r(c,T),c,T} - G(r(c,T),c,T)rc(c,T) 

E q. (2. 3 .1 2 a ) 

This is the quasillnear first-order partial differential 

equation satisfied by r. From Equation (2.3.5c) we see that 

r (c,O) - 0 • • • • • • • • • • • • • Eq. (2.3.12b) 

The equations for u, v and r, together with their initial 
. 

conditions, constitute the initial value representation for 

the original nonlinear problem. Either some finite difference 

scheme must be developed for the ~olutlon of the above quasi-
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linear first-order partial differential equation with an 

initial condition on r, or a method which replaces the non-

linear boundary-value problem by a sequence of linear boun-

dary-value problems (which hopefully will converge to the 

solution of the nonlinear problem) must be introduced. The 

second choice (or the method) which is called quasilineari-

zation has been used very effectively for solving certain 

important classes of nonlinear boundary-value problems, 

because the invariant imbedding equations derived for a 

1 inear- boundary-value problem is much. easier frolj'l computati-

onal point of view. These special equations are known as 

Riccati differential equations, and there exist many effi-

cient methods developed for the soution of this kind of 

d,ifferential equations. 

B. FINITE DIFFERENCE METHODS 

In order to explain the basic idea behind these 

methods let us consider the general systems of n first-

order equations subject to linear two-point boundary condi-

tions 

• • • • • • • • • • Eq.(2.3.13a) 

• • • • • • • • • • Eq. (2.3.13b) 

In the present discussion a uniform net will be 

employed merely for notational convenience on [a,b] as 

t. ::r a+jh , j=O,l, ••• N 
J 

b-a N Eq.(2.3.14) 

BOGAI\C\ UNNERS\1ES\ \\U1UPH~NES\ 
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The n-dimensional vectors u. will denote approximations to -J -
the corresponding values of the solution x{t.) of Equation 

J 

(2.3.13a) at the points of our net. One obvious system of 

difference equations for the determination of these approxi-

mat ions is 

L u. = n-J 

u . -u. 1 
- J - J-

h 
- f ( 

u. +u. 1 
- J - J-

2 

an~ th~ ~oundary conditions become 

eX ... 0 -

, t. 1) ..; 0 
J-2" 

• • • • • • • • • 

j=1,2, ••• N 

Eq.{2.3.15a) 

Eq.(2.3.15b) 

The scheme in Equation (2.3.15a) is known as the centered-

difference method when used for the Equation (2.3.13a) subject 

to initial conditions. The nonlinear term in Equation (2.3.15a) 

might have been chosen as 

f(u.,t.) + feu. 1,t. ,) 
J J J- J-

and the resulting scheme is called the modified Euler method. 

The Equations (2.3.15), of N+l sets of n equations 

eac~, are,the difference equations ~hose solution is to app­

roximate that of (2.3.13) on the net. We can write these 
. 

difference equations in a more uniform and compact form. 

Let the n(N+1)-dimensional vector U be defined by 

~O 
U ;: ~, 

uN 



Then Equations (2.3.1S) can be written as the system of 

n(N+1) equations 

~~O+~~N- _ 0< \ , 
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O(~} ; hLh!:!l = a . . . . . . . . . Eq.(2.3.16} 

• 

hLh!:!N 

We now see one" basic difference, at least in point of view, 

between the initial-value methods and the finite-difference 

methods. In initial-value methods some unknowns. the initial 
I 

values, are somehow determined recursively so as to be accu-

rate approximations to solutions of the different1al equations, 

and only when the last variables are computed are the boundary 

conditions employed. In finite-difference schemes no particular 

variables are preferred and the.differential equations and 

boundary conditions are presumably treated simulataneously. 

In some iterative attempts at solving the system (2.3.16) one 

might proceed recursively guessing at ~O' say, then solving 

the equations in (2.3.15a), exactly or approximately, in the 

order j=l,2, ••• N and finally checking (2.3.15b) to change 

the value of ~O. 

C. FUNCTION SPACE APPROXIMATION METHODS 

These methods are expansion procedures for which the 

theoretical justification 15 considerably more difficult and 

less well developed. More specificaLly, the solution is app-

roximated by a line~r combination of linea~ly-independent 

functions in an appropriate function space. The coefficients 
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in the expansion are to be determined so that this combination' 

minimizes some measure of the error in satisfying the boundary-

value problem. There is tremendous variety in the choice of 

approximating functions and in the choice of "measure of error" 

in satisfying the problem. 

Rayleigh-Ritz, Galerkin and Collocation are the most 

popular or known ones of the general function space approxima-

tion methods. 

2.4 •. TPBVP IN OPTIMAL CONTROL THEORY 

In general, tn optimization problems for dynamic 

systems, whether the system under consideration is continuous 

or multi-stage or single-state discrete, it is finally encoun-

tered with Two-Point Boundary-Value Problems (TPBVP). More 

specifically, in optimal control theory, one of the basic 

problems is to find a control function or a control-law which 

will minimize a certain performance index while satisfying 

the state equation constraints. Formally, the basic (and the 

most general) optimal control problem can be described by a 

set of differential equations of the form 

• • • • • • • • • • • Eq. (2.4.1) 

and a performance index defined as follows 

t f 
PI :a ~(~(tf) ,t f > + J I (~(t) ,~(t> ,t) dt Eq. (2.4.2) 

t. 
I 
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which is tried to be minimized by a ~ertain control function 

~(t), or the optimal-control law ~=~(~(t},t} which is required 

to be a member of a set U called the control region. U may be 

either open or closed and bounded or unbounded. In this formu-

lation, initial state and time are fixed; that is, x(t.) and - , 
tj are given; the terminal time t

f 
may be fixed or 'free; and 

the terminal state ~(tf) may be fixed, completely free or 

specified by a set of relations of the form 

i=1,2, ••• m n Eq.(2.4.3) 

The solution of this general optimal control problem using 

the Pontryagin1s minimum principle and calculus of variations 

leads us to solve the set of 2n equations. 

• aHa 
(~,e,t) x .. 

ae - • • • • • • • • • • • Eq.{2.4.4) 

• aHa 
(~,e,t) e = 

d~ 
• • • • • • • • • • • Eq.(2.4.S) 

with the given initial and terminal boundary conditions and 

generalized boundary condition 

+ [H a {x, n , t} +2£( x, t} ] • d t .. a . - (; at-
t f t f 

Eq. (2.4.6) 

where 

Eq. (2.4.]) 



30 

and 

Eq. (2.4.8) 

Unless the system equations, the performance index 

and the constraints are quite simple, numerical methods are 

required to solve the two-point boundary-value problems. All 

numerical methods for the solution of such problems involve 

either dynamic programming or iterative procedures. 

Dynamic programming,-as applied to two-point boundary-

value problems, can be described as a process of generating 

many solutions satisfying the specified boundary conditions 

as parameters. If the suitable or correct range of parameters 

'is chosen, some of the solutions will pass through (or near) 

the desired boundary conditions at the other end. This. method 

is, not feasible for problems with two or three state variables 

even on the larger computers of our day. 

There exist several different ways of treating the 

same problem with iterative proce~ures. and only three of these 

possible procedures have been extensively used. Almost all of 

the iterative procedures use "successive linearization" while 

only a small portion of methods use transformations for instance 

Riccati-type transformations. 

Stating in words, the nonlinear TPBVP is to find 

(a) the n state variables ~(t) 

(b) the n costate functions e(t) 

(c) the m control 'functions ~(t) 

and satisfy simulataneously 



31 

(1) the n system of. differential equations (involving ~,~) 

(2) the n costate differential equations (involving e,~,~) 

(3) the m optimality conditions (involving e,::s,~) 

(4) the initial and final boundary conditions (involving ~,e) 

One of the three iterative procedures so far studied 

is neighboring extremal method (or variation of extremals). 

In this method, a nominal solution is chosen which satisfies 

the three conditions (1) through. (3) above; then this nominal 

condition is modified by succesive linearization so that the 

remaining boundary conditions are also satisfied. When using 

neighboring extremal methods and qua;illnearization methods, 

we must solve a succession of linear two-point boundary-value 

problems. Such problems can be solved by (a) finding the 

transition matrix between unspecified boundary conditions at 

one. end and specified boundary conditions at the other end, or 

by (b) "sweeping" the boundary conditions from one end point 

to the other end point, which involves solving a matrix 

Riccati equa.tion. 

The main difficulty with neighboring ex~remal methods 

is getting started; i.e., finding a first estimate of the 

unspecified conditions at one end that produces a solution 

reasonably close to the specified conditions at the other end. 

The reason for this peculiar difficulty is that extremal solu­

tions are often very sensitive to small changes in the unspeci­

fied boundary condition~. This extraordinary sensitivity Is a 

direct result of the nature of the costate function equations. 

The second method is gradient method which is developed 

. to surmount the !!initial gue~s\l difficulty associated with the 
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extremal methods. In these methods, the chosen nominal solu­

tion satisfies system equations and costate equations. These 

methods are characterized by iterative algorithms for improving 

estimates of the control function, u(t), so as to come closer' 

to satisfying. the optimality condition. The drawback of first­

order gradient method is its poor convergence near the optimal 

solution region. The second-order gradient method has solved 

this problem, but may have starting difficulties since the 

nominal solution to be chosen has to be "convex". 

The quasilinearization methods involve choosing nomInal 

funct~ons for ~(t) and e(t) that satisfy as many of the boun­

dary conditions as possibt~. The system equations and costate 

equations are linearized about the nominal and a succession of 

nonhomogeneous( linear two-point boundary-value problems are 

solved to modify the solution until it satisfies the system 

and costate equations to the desired accur~cy. These methods 

are more attractive when compared to other methods. First It 

is' often easier to guess nominal state variable histories than 

control variable histories. Second, these methods converge 

rapidly near the optimum solution. 

Other than the methods mentioned above, there exist 

the differential dynamic programming approach which was first 

introduced into optimal control by Hayne and was later develo­

ped for continuous systems by Jacobson. This approach is a 

successive approximation technique, ~ased on dynamic programmin 

rather than the calculus ~f variations, for determining optimal 

control of nonlinear systems. In each iteration the system 

, , 
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equations are integrated in forward time using the current 

nominal control; and costate equations, which yield the 

coefficients of a linear or quad~atic expansion of the cost 

function in the neighborhood of the nominal x tr9jectory, 

are integrated in ceverse time, thusyielding an improved 

control law. This control is applied to the system equations, 

producing a new and improved trajectory. By continued iteration, 

the procedure produces control functions that successively 

approximate the optimal control function. 
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SENSITIVITY APPROACH.TO TWO-POINT 

BOUNDARY-VALUE PROBLEMS 

3,1, A BRIEF HISTORICAL REVIEW TO SENSITIVITY THEORY 

Sensitivity considerations have long been of concern 

in connection with dynamic systems. Historically, these sensi­

tivity consideration~ have provided a fundamental motivation 

for the use of feedback .and are largely responsible for its­

development into what is called modern control theory, Implying 

the principles of optimization and adapt~tion. Therefore, it is 

qui ten a tu r a I t hat the bas Icc 0 n ce p t sin t his are awe rea Ire a d y 

given in the fundamental literature on feedback control systems 

thirty years ago. Bode was the first to establish the sIgnifi­

cance of sensitivity in the design 6f feedback control systems. 

He has introduced a proper sensitivity definition on the basis 

of frequency domain. 

In its subsequent development it seemed that automatic 

control theory should include the study of sensitivity as an 

essential component. However; with few exceptions, the sensiti~ 

vity problem was not even discussed in the academic texts on 

automatic control in the following decade. It was mainly the 

probJem of accuracy in network-analyz~rs and analog computers 

that gave new impulses to the theory of sensitivity during the 

-fifties. Many basic methods were also worked out in connection 

with the design of electric networks. Toward the end of this 

perrod the ideas of Bode were rediscovered in control engineerir 
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with the appearance of adaptive systems, more precisely, as 

a reaction to their appearance. Horowitz has developed the 

methods of frequency domain to a high extent and has appl ied 

them with great success to the design of low sensitivity con-

ventional feedback control systems. 

Beginning in the period 1958-1960, the number of 

publications in the, time domain rose considerably due to the 

development of 5tate space methods in control engineering and 

the availability of the digital computer. 

3.2. BASIC CONCEPTS AND DEFINITIONS IN SYSTEM THEORY 

Sensitivity theory can be interpreted as a section of 

a general system theory, taking Into consideration parameter 

variations as inputs i~stead of signals. From a mathematical 

point of view, what we call a system Is the explicitly or 

Implicitly given relationship between the input signal ~(t) 

and the 0 u t put s i g n a 1 ~ ( t) .f n g e n era I, ~ ( t) and X ( t) can be 

vectors. The character of this relationship is commonly called 

the structure of the system. For example, the structure of the 

system may be characterized by 

(a) the order of a differential or difference equation, 

(b) linearity or nonlinearity, 

(c} the order of the numerator and denominator of a rational 

transfer function, 

and 

(d) the rationality ,or irrationality of the transfer function. 

The quantitative properties of the system are charac­

terized by the system parame~ers. Typical pnrameters are , 



( 1) i nit i a 1 co n d i t Ion s , 

(2) 

(3) 

time-invariant or time-variant coefficients 
, , 

natural frequencies, pulse fre~uencies, 

(4) sampling periods, sampling instants, 

(5) pulse width or magnitude, and 

(6) dead times (or time delays). 
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Dynamic processes in a system, say, the change of the 

state or of the 'output variable with time, can be caused by 

(1) the inlfuence of input signals, 

(2) th~ change of parameters • 

. While studying the influence of input signals, the dynamics 

of the system ace usually considered only as a function of the 

input signals, assuming that the relationship is qualitatively 

and quantitatively unchanged. Thi~ is the subject matter of 

conventional system theory. 

While studying the influence of parameters, the 

dynamics of the system are considered as a function of changes 

in the parameters (or of the s~ructure of the system, because 

the change of system parameters can also~ change ,the system 

structure). The dependence of the system dynamics on the para-

meters is called, sensitivity. Strictly, parameter sensitivity 

can be defined as follows: 

Def'i~ition 3.2.1.: Parameter sensItivity Is the effect of 

parameter changes on the dynamics of a system, say the time 

response, the state, the transfer function, or any other 

quantity characteriz.ing the system dynamics. 

The mathematical problem to be solved in sensitivity 

theory, is the calculation of'the change in the system behavior 
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due to the parameter variations. Let ~he parameters of the 

system be represented by a vector ~:o [0<10(2 ••• o(r] T. 

The mathematical model of a syste.!1\ relates the parameter 

vector 0( to a quantity characterizing its dynamic behavior 

in some way. The characterizing quantity in case of a dynamic 

system wi 11 be the state vector ~. 

Let us explain the basic idea of the sensitivity theory 

by means of this example. It is assumed that the mathematical 

model of the (possibly nonlinear) system Is given by the 

gener.l vector differential equation 

Eq. O.2.1} 

where ~ represents the state vector with the initial state 

o 
~(tO)=~ ,and ~ represents the Input vector. Among other 

things, this equation relates the state vector ~ to the para-

meter vector ~. In terms o! set theory, this relation can 

also be interpreted as a mapping ':! ~ ~. 

Generally, in mathematics, a unique relationship bet-

ween the parameter vector and the state vector is assumed. 

However, this is not possible In engineering practice. Here 

the parameter vector of the mathematical model means a nominal 

pa~ameter vector that will be denoted by ~ 0 in the sequel, 

whereas the parameter vector of the actual system is 

c;:;. :0 ;:. 0+ 60< , in the sequel calle'd the actual parameter 

vector. 

In order to study the influence of the parameter devi-

at ion s A cI. 0 nth e be h a v i 0 r.o f the s y s t em, let us de fin e 
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Rd as the subspace of the parameter variations ~~ 

around ~ 0 ' and 

Rx as the corresponding subspac: of the state vector. 

By this definition the mapping ~ --+ x can be replaced by 

themapping Ro(- Rx as shown in Fig. 3.2.1. 

FIGURE 3.2.1. Happing of the parameter space into the 

state space. 

Rx is uniquely determined by Equation (3.2.1) if Roe is 

known. However, for a number of reasons, it is not reasonable 
( 

to characterize the sensitivity in terms of Equation (3.2.1): 

first, since the direct solution of Equation (3.2.1) for all 

elements of R~ requires an infinite number of solutions and 

depends on the definition of R~ , and second, since the result 

for small parameter variations IIA~ II (<' II ~oll would be 

very inaccurate If approximations are applied for the evalua-

tion if this equation. For example, this would be true in the 

case of numerical or analog comput~tion. 

Therefore, it is a common practice in sensitivity theory 

to define a so-called sensitivity function ~ which, under cer-
. 

tain continuity conditions, relates the elements of the set of 

the parameter deviations 6~ to the elements of the set of the 

parameter-induced errors of the system function A ~ by the 

linear equation 
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• • • • • • • • • Eq.(3.2.2) 

Actually there are several <.ways to define quanti ties 

for the characterization of the parameter sensitivity of a 

system. One of these definitions which is frequently used in 

the sequel wi I I be given below. 

Let the behavior of the dynamic sys~em be characterized 

by a quantity fc ~), called a system function, which, among 

other dependences, is a function of the parameter vector 

0( = [0( . -1 0( ] T. 
-r For example, ) can represent any 

time domain or frequency domain property or a performance index. 

Definition 3.2.2.: Absolute sensitivity function. 

s ~ 
• L o 

3.3. MOTIVATION FOR SENSITIVITY APPROACH TO TPBVP 

The motivation for using sensitivity function (or a 

matrix) )in TPBVP stemmed from the fact that almost all of the 

methods for solving this problem have the difficulty of 

"getting started" or "initial guess"; and the reason is the 
i 

extraordinary sensitivity nature of the Euler-Lagrange equations. 

In order to eliminate this difficulty we thought that it was 

necessary to know the sensitivity of th~ dynamic system to the 

changes in the unspecified boundary condition (in our case 

initial costate func'tlon values). If we had known this sensitLvit 

function of the system undet consideration, then it would have 
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been possible to change the unspecifled boundary conditions 

I n a rat Ion a 1 fa s h i on, i. e., i f the s y s t e m or e qui va l.e n t 1 y. 

the differential equations descrlbing it has high sensitivity, 

them the incremental addition to the unspecified boundary 

condition will have to be smaller or if the system has low 

sensitivity, then this addition will have to be larger; 

because high sensitivity means that a small change in the 

unspecified boundary conditions induces a large change at 

the other end, so we will have to take smaller steps. 

3.4. THE TRAJECTORY SENSITIVITY FUNCTION OF CONTINUOUS 

SYSTEMS 

The new method which will be proposed for the solution 

of general nonlinear two-point boundary-value problem~ wi 11 

employ trajectory sensitivity function as a crucial tool in 

its development. Therefore, at this point, let us define this 

special sensitivity function with relation to continuous systems 

A continuous, possibly nonl inear system of nth-order 

can, in general, be described In the state space by a vector 

differential equation of the form 

Eq.(3.4.l) 

Here x is an nxl state vector, f an nxl vector function, u an -' -
input vector, ~O a nominal rxl parameter vector, and ~O is the 

.nxl initial state vector. Equation 0.4.1) is called the nomi!'lal: 

state equation. 
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Assuming that the parameter vector deviates from the 

nominal value ~o by £).C: , we have 

= x -0 Eq.(3.4.2) 

This equation is called the actual state equation. 

Now it is assumed that Equation (3.4.2) has a unique 

solution ~=~(~",t) for all admissible initial condi.tions and 

par a met e r val u e s. xis 0 f co u r sea fun c t ion 0 f u, x 0 and t" 
- - 0 

as well. However, this dependence is.not needed for the fol-

lowing considerations and will, therefore, be dropped for ease 

of notation. Furthermore, the solution ~ is assumed to be a 

bounded continuous function in ~ and t. It is known that this 

property is guaranteed if f is a bounded continuous function 

satisfying the Lipschitz condition (Refer to Theorem 2.1.1). 

If the parameter takes on its nominal value ~O' the 

nominal solution x =x(~o,t) 
-n -

is obtained. If, on the other hand, 

the actual solution is given by ~=~(~,t), then the parameter­

induced change of the state vector is defined "as 

Eq.(3.4.3) 

A first-order approximation OfA~ can be written by use of a 

Taylor expansion in the form 

=- Eq.(3.4.4} 

~o 

This equation can be viewed as a definition of the parameter-
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induced trajectory deviation. Now we can state the following 

important definition. 

Definition 3.4.2.: Trajectory Se~sitivity Matrix. 

d X
1 aX

1 . . . . 
o~ dO a~ 6 1 5 = = Eq.(3.4.5} = ~~ · 

~O • • 
dX ax n n . . . . 
~ d~ 

r ~O 

3.5. SENSITIVITY APPROACH TO THE SOLUTION OF TWO-POINT 

BOUNDARY-VALUE PROBLEMS 

In this section a new method for the numerical solution 

of two-point .boundary-value problems will be presented. The 

method requires the assignment of arbitrary initial conditions 

for the variable that are specIfied at the final time. Then, 

the problem is solved iteratively, based on trajectory sensiti-

vities with respect to the initial conditions •. 

Consider a two-point boundary-value problem for n-vector 

~(t) and m-vector ~(t). 

Eq.(3.5.1) 

~(O) = a - , ~(T) = b Eq.(3.5.2} 

Equation (3.5.2) shows that n conditions are prescribed at the· 

initial time t=O and m conditions at the final time taT. The 



separation of boundary conditions In tJme makes this problem 

much more difficult to solve than a comparable initial-value 

problem. 

Suppose an initial guess for ~(O) is assigned as follows 

~(O) = a - ~(o) = S • • • • • • • Eq. (3.5.3) 

This is an initial-value problem that can be integrated much 

more easily than the original problem. However, ~(T) calculated 

using ~quation (3.5.3) will in general" be different from the, 

desired boundary value 2. The aim of the iterations will be to 

make ~(T)-2. 

Suppose small changes in the m-vector ~ are introduced. 

The effect rrf such changes is predicted by traJec~ory sensiti-

vities, which can be calculated while the initial·va~ue problem 

is being integrated. 

Define sensitivity matrices as follows 

dX 1 (t) dx1 (t) 
• ••• 

d~ (t) d c 1 
d c m 

~ (t) ~ ... • • Eq. {3.5.4a} 
d • • c • • -

ox (t) 
n dX (t) n 

• ••• a c 1 d c J m 

and' 

dYl (t) dY 1 ( t) 

• ••• 
d c 1 d c m 

• • • • I 

d ~ (t~ • • 
jEq. (J.5.4b) A dY m 

(t) 'dym(t) S ( t) ... ... 
:I d c • • • • 

a c~ d c m 
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Then we obtain two sets of linear differential 

equations by taking the partial derivative of the Equations 

(3.5.1) and (3.5.3) with re~pect to c 

d~ 3f d ~ (0) 
=_._+ - = 0 

dX - dC dC dC : 

= ! =_._+ 
dC 

or In a more compact form, using Equations (3.5.4a) and 

(3.5.4b), we may write 

• a! ~f 
R R ~(O)"Q = ox d~ = - -= Eq.(3.5.5) , 
• "dh ah 

~(O)"~ 5 S 
= = 

~~ ~~ 

Thus, Equations (3.5.1), (3.5.3) and (3.5.5) constitute 

two sets of initial-value problems for ~, ~ and for R,' S, which 

can be integrated concurrently. Only yeT) and SeT) will be used 

as a result of this integration. Here, SeT) predicts the change 

in t(T) as a result of changes in ~, by the defining Equation 

(3.5.4b). Therefore, If yeT} is not suffficiently close to the 

given vector 2, the vector ~ should be changed in a direction 

dictated by the sensitivity matiix SeT). 

Suppose a finite change ~S on the Initial g~ess ~ is 
-

introduced. The resulting ch~nge in t{T) can be approximated by 

a't{T) 
A~(T} .. ( ). ~~+ O(~~) ... ~(T) t::.c Eq.(J.5.6) 

() ~ 
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However, we would like to make ~(T)=~._ This makes A~(T)=~-~(T)~ 

and Equation (3.5.6) can be used to calculate /:).C approximately 

as 

. . . . . . . . . . Eq.D.5.]) 

provided that the sensitivity matrix is invertible. 

Now, the method described above can be summarized as an 

iterative algorithm: 

{input: vectors a and 21 
choose a norm in Em and an accuracy ~ 

make an initial guess for £ 

repeat 

solve the initial-value problems 

if II~-~(T)II<' then solution found 

else update £ using Eq.(3.5.7) 

until solution found or too many iterations 

toutput : ~(t) and ~(t), for 0 ~ t 6T 1 
If the original problem has no solution, this algo-

rithm will of course fall. This failure will usually produce 

a non-invertible SeT). But the converse is not generally true. 

That is, if the algorithm happens to converge to a non-invertible 

seT), it does not mean that the original problem has no solution. 

In fact, in such a case, the algorithm should be restarted 

using a different initial guess for :. 



IV 

NUMERICAL RESULTS AND ~IDE-PRODUCTS 

OF SENSITIVITY APPROACH TO THE SOLUTION OF TPBVP 

4.1. NUMERICAL RESULTS 

The method described above has been used in the solution 

of several linear and nonlinear two-point boundary-value prob-

lems. Three of the examples reported below represent linear 

cases; two with scalar variables, the ~othe.r with vector varlcib-

les. The last three examples involve equations with different J 

nonl inearity features and they exhibit the generality of the 

method. 

In all examples, except Example 5, an error tolerance 

of =0.0001 was allowed. The integrations were performed with 

a step-size of 0.01. 

Example 1 : 

The linear system 

X =.-2.[2x - 0.5y 

x(O) == 2 

y = -2x + 2.f2y 

y(1) a 0 

was solved and y(0)=o.685 was found in 5 iterations. In this 

example, the Runge-Kutta 4 Integration routine was employed. 

Example 2 : 

. 
x = - ... x - O. 5y y == - 2x ..: y 

x(O) = 1 y(l) == 0 

In this example y(O)" was found out to be 0.773 in 4 iteratlon~ 

wi th the same integration ro~tine. 
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ExamEle 3 : 

Vector variables were considered i n this example. 

x {: -:l x + .[: -:.5] ~ 

=[ 
2 :] [: -21 X 

. 
t x + 

0 -3 

~(O) = [ : 1 y (1) = l-: ] 
. The ~(O) vector was calculated to be f-12.07 -12.731 

in 4 iterations using the same Runge-Kutta 4 integration rou-

tine again. It should be noted that new method does not bother 

with any additional computational complexity and difficulty in 

extending to the vector variable cases. The number of iterations 

and computation time for vector variable cases are almost the 

same for scalar variable cases. 

Example 4 

Here the nonlinearity is in quatient form, 

x = y/J1+y) 

x{O) = 0 

• y = x 

y (1) = 

Starting with an initial guess of y{0}=3, the unspecified 

initial condition yeO) was found out to be 0.772 in 4 iterations. 

The Runge-Kutta 4 integration routine was used in solving initial· 

value problems. 

Example 5 : 

Another type of nonl inearity is considered in the fol lowing 

problem, 
I , 



. 
x = y 

x(O) = 0 

y = -1-X- y 9 

y(l) = -0.5 
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Starting with an initial guess y(O)=O. the algorithm 

produced y(0)=0.652 in 6 iterations using an error tolerance 

of 0.001. The iterated Euler routine was used for integration. 

Example 6 

A stronger nonlinearity is involved in the following 

problem, 
. 
x = y 

x(O) = a 
y = I x+y It 

y(l) = 1 

In this problem, starting with a guess of y(0)=2, the 

algorithm found the value y{O)=O.179 in 11 iterations. For 

integration the Runge-Kutta 4 routine w~s used. 

Actually several m~re problems, both 1 inear and non-

linear, are solved successfully using the new method. However, 

the reported ones are sufficient to elaborate the significance 

of the method. 

4.2. ONE-STEP CONVERGENCE PROOF FOR LINEAR TPBVP 

It can be proven that when the original equations are 

linear, the algorithm converges to the solution always In one 

step regardless of the initial guess. The only requirement for 

this one-step convergence is the exact forward integration of 

the resulting initial-value problem. This feature was not obser· 

ved in the linear examples_reported, due to the fact that app-

roximate numerical ~ntegration routines were employed. 

Consider the following general linear two-point boun-

dary~value problem. 



x ... ~~ + ~y 

~(O) = ~ 

• y = f~ + Qy 

y (T) = ~ 

or writing in a more compact matrix form, we have 

~(O) = a 

y (T) = b 

The sensitivity equations for the above problem are as fol lows: 

R(O) = 0 
= = 
~(O) ... = 

where I is the mxm identity matrix. Now, let the initial guess 
= 

on y(O) be c vector. 

Then we have two sets of linear initial-value problems for ~,~ 

and for R,S. - -
The solution of these two sets of linear initial-value 

problems can be written analytically as follows 

and 

[ 
~(t)] 
~ (t) 

~t 
... e 

where 
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-6.t [ ~ (t) ~ (t)] 
let e = 

~ (t) Ii( t) 
= 

th en [ ~ (t)] . e~t [ ~ ] = [ r (t) ~(t) ] 
UJ ~(t) ! g(t) ~ (t) - --

[~(t)] . [N(t)] 
~(t) H(t} 

which implies that the solution for ~ (t) and yet) can be written 

as follows 

and at the final time T we obtain 

yeT) = ~(T) ! + ~(T) E 

The problem requires that X{T)=2- Therefore, the unspecified 

boundary value (which is guessed to be c vect~r) must satisfy 

the following condition at the final end. 

~(T) 2 + ~ (T) - c = b -exact 

Solving for c vector, we get 
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However, we use 

as the iteration equation in the algorithm. Thus, 

c = c + (:5(T»-' (b_-v{T» -new - l. 

In the first iteration step y(T) has been calculated to 

be 

+ seT) c • 

Substituting this value of ~(T) into the iteration equation 

we get 

.. 
• • 

c = c + 
-new -

(~(T»-l (2-~(T)!-~(T)~) - --
= ~ + (~{T»-l b _ (~(T»-l~(T)! _ (~(T»-l~(T)~ 

-
- c -

c = c after the first iteration. 
-exact -new 



4.3. AN EFFICIENT ALGORITHM FOR FINDING THE SUFFICIENT 

NUMBER OF TERMS IN NUMERICAL EVALUATION OF 

FUNCTIONS BY POWER SERIES 
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Suppose that we have a function f having derivatives 

of every order in an open interval about a point a. We call 

such functions Infinitely differentiable in this interval. 

Then we can certainly form the following power series which 

is known as Taylor's series generated by f at a. 

00 

L f(x) = n=O 
\.. 

fn(a) 
n I 

(x_a)n 

We also know that Taylor's formula with remainder 

provides a finite expansion of the form 

k (x-a) + E (x) 
n 

The finite sum is the Taylor polynomial of degree n generated 

by f at a, and E (x) is the error made in approximating f by n 

its Taylor polynomial. If we let n_CO we see that the power 

series wi 11 converge to f(x) if and-only if the error term 

tends to zero. A useful sufficient condition for the error 

term to tend to zero is stated in the following theorem. 

THEOREM 4.3.1 Assume f is infinitely differentiable in an 

open'interval and assume that there ,Is a positive cons-tant 

A such that 
( 

for n=1,2,3, ••• 
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and every x in I. Then the Taylor 1s series generated by f at 

a converges to f(x) for each x in I. 

However, this theorem does not provide any means for 

finding the sufficient number of terms in the numerical evalu-

atron of a function value at a given point by power seri~s. 

Since It is not possible to let n go to infinity for conver-

gence to the exact value in numerical calculation it is obli-

gatory to devise an algorithm for finding this sufficient 

number n. 

Here, at this point we have again tried to exploit 

sensitivity idea and Newton1s method. 

First assume that sufficient condltion for convergence 

holds for the considered function f in the given interval; 

therefore, the error term is a smoothly decreasing function 

of iteration terms n after some fixed value of n. 
E. 

t:E --------------

n 

FIGURE 4.3.1. Graph of error term function 
. 

By definition error term at nosn. 
I 

is given by 



Similarly, 

En. + 1 = 
I 

f n.+2 
I 

f n.+1 
I 

Then the sensi tivity (or the gradient) function may be 

defined as 

S = 
£ - <c. n. +1 n. 

I I 

n. 
I n.+1 - n. 

I I 

= t n.+1 
I 

- t- n. 
I 
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Since our aim is to make the error term zero or below 

certain prescribed tolerance value t£ t we may write the fol­

lowing recursion formula using the Newton's idea. 

n = n. new I 

n new ... n -I 
-1 S • n. 

I 

Eventhough, it is true that the error term wi 11 tend 

to decrease very smoothly (under sufficiency condition for 

convergence) after some fixed value of n, call it n f , we do 

not know this "fixed" value nf beforehand to set It as initial 

guess n. in order to start the iteration. Here, we have two 
I 

choices. First we may obtain nf analytically. Consider the 

sensitivity (or gradient) function Sn 

Set this function equal to zero and solve for n value in terms 

of x, f(n+2)(~), f(n+1)(a), f(n){a). The "fixed" value n
f 

may 
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be set equal to one more of the value n obtained above. 

Second choice could be an algorithmic approach. We may not 

bother with the calculation of n
f

; but instead we may increase 

our initial guess n. by fixed amounts until we arrive to the 
I 

smoothly decreasing portion of the error term function. This 

fixed amount may be increased geometrically or exponentially 

as the failure occurs in reaching the decreasing portion of 

error term fun~tton in order to speed up the algorl thm. 

Now, let us summarize the first choice as an iterative 

algorithm. 

choose an accuracy t~ 

make an ini tial guess n) n
f 

repeat n:zn 
new 

calculate En' Sn+i' Sn 

if t n .(. tE. then solution found 

-1 else update n using n -n-5 • <c. new n n 

until solution Is found 

[output: n\ 

The Ideas and algorithms developed In this section can 

easily be extended to the numerical evaluation of function of 

matrices by power series. However, it is necessary t6 make a 

few sl ight modifications. We know that a function of square 

matrix can, in general, be expressed by a power series as folIo 

f(A) = 
• k=O 

For instance, an important function in system and control 

theory Is 



~T 
e = 

00 

L (AT) k 
(--=---

k=O. k! 
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Here, we are again faced with the question of 

"sufficient number of terms" to terminate' the infinite power 

series in the numerical evaluation of a function of a matrix. 

Eventhough, there may exist some empirical relations such as 

where N is the sufficient number of terms, It is easy to show 

that this kind of empirical relations is, in general, not 

sufficient to cover all degenerate cases. 

Now, the argument of the funci~on, the error term and 

the sensitivity functions are all matrices; whereas the number 

of terms to be chosen or found out is still a scalar value. 

Therefore, a scalar value must be determined out of these 

matrix funcitons by employing some relevant and logical criteria 

in order to be able to draw a relation with the scalar value 

of the number of terms. This scalar value can be chosen to be 

(a) the trace of the matrix 

(b) the largest of the absolute eigenvalues of the matrix. 

Then, an algorithm similar to the ones developed.for 

scalar functions might be devised. 

First let us consider a scalar example. 

Example 1 : let f(x)=e x , and develop ihe recursion formula for 

this function 

2 
+ x + ~.,+ ••• + 

2 ! 

n 
x 

n! 
+ ••• 
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£ 
n+1 n+2 x E. = and x 

n = 
(n+ 1) 1 n+1 (n+2)1 

Therefore, 

t n+2 n+1 
S = ( x x = n n+1 n (n+2)! ( n+ 1 ) I 

n+1 x x 1 ) = -
(n+ 1) ! n+2 

and 

-1 (n+1)! n+2 S = n n+1 x x- n-2 

Then, the recursion formula 

(n+ 1) ! n+2 n+1 
n = n - x 

new n+1 x-n-2 (n+1)1 x 

n+2 n = n -new x- n-2 

The most important quantity in the above recursion 

formula Is the denominator (x-n-2). If the initial guess on 

n is chosen arbitrarily as it is done in the second algorithm 

developed in this section, then a special attention must be 

paid to the denominator (x-n-2). If this quantity is pbsitive 

then the guess on n must be increased by certain amounts until 

the denominator becomes negative. 
A 

Remark ,. In case of calculating e a
, x might be the largest of 

the absolute eigenvalue of the matrix ~. 

Remark 2 I f x)M then overflow wi 11 occur due to the I imi ts of 

·the computing elemen·t. For instance, M Is equal to 230 for 

Univac 1106 Computer used in this study. 

If x<O then there is no risk of being out of range. 



Remark 3 Similar recursion formulas may be derived for 

other known functions 
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Remark 4 One may stop the calculation when the incremental 

change in n value which is given by -(n+2)/(x-n-2) is less 

than 1.S. This value of 1.5 is determined experimentally. 

4.4. A NEW METHOD FOR NUMERICAL SOLUTION OF LINEAR 

STIFF SYSTEMS 

A stiff ordinary differential equation (o.d.e) is one 

in whiCh one component of the solution decays much faster than 

others. Many chemical engineering systems give rise to systems 

of stifffo.d.es. 

Most realistic stiff systems do not have analytical 

solutions so that a numerical procedure must be used. Conven­

tional methods such as Euler, explicit Runge-Kuttaand Adams­

Moulton are restricted to a very small itep size in order that 

the solution be stable. This means that a great deal of computer 

time could be required. 

Some of the more readily available methods for stiff 

equations include: 

(a) Variable-order methods based on backward differentiation 

multistep formulas 

(b) Methods based on the trapezoidal rule 

(c) Impl icit Runge-Kutta methods 

(d) Methods based on the use of prelimfnary mathematical 

transformations to remove stiffness and the solution of 

the transformed problem by traditional ·techniques 

. (e) Methods eliminating those differential equation having 
I , 
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small time constants and solving them as algebraic equations 

instead. 

Consider the following linear system 

• 
x = ~ ~ ~(o) = ~o 

where the eigenvalues of the matrix A are widely separated, 

i.e., a stiff system. We know that the solution of this system 

is given by 

At -= e • ~O 

Thus, the problem has now been transformed to the exact numerical 

calculation of the exponential function of a matrix. If the 

eigenvalues of the matrix A had not been widely separated any 

marching method would usually have been able to solve the above 

linear system. 

In the previous section we have developed an efficient 

method for the numerical calculation of a funciton of a matrix 

by power series. Therefore, It would be very easy for us to 

calculate this special case of a function of a matrix using 

those results. 

Example 

A linear two-point boundary-value problem which gives 

rise to a stiff initial-value problem -for any initial guess of 

the unspecified boundary-v~lue is considered and the method 

mentioned above is used as the integration routine for solving 

those stiff inltial~value p~oblems. 
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• x = tOy y = lax 

x \( 0) = a y(2) = 1 

Starting with an initial guess of y(O)=l, the unspecified 

initial condition y(O) was found out to be 0.412xl0- B in 

three iterations. An error tolerance of ~=O.OOOl was allowed. 

4.5. SOME EQUIVALENCE PROPERTIES AND MODIFICATIONS IN 

SOLVING LINEAR AND NONLINEAR TPBVP USING SENSITIVITY 

APPROACH 

There is an important property related to the case of 

linear TPBVP which one can exploit quite easily. This is the 

equivalence of the sensitivity matrix and the so-called transi-

tion matrix of the linear system of differential equations. 

This equivalence property removes the necessity of solving two-

sets of initial-value problems which was necessary in the algo-

rithm developed for solving the two-point boundary-value prob-

lem; because when one set of initial-value problem is solved, 

its solution will represent both the sensitivity matrix and the 

transition matrlx. Thus, when the sensltlvity"matrlx is then 

multiplied by the initial value vector of that iteration the 

vector values~(T) and ~(T) would have been obtained. This Is 

quite a saving from computational point of view. 

There exist one more important property of sensitivity 

m~trix which may be valuable In the treatment of nonlinear two-

point boundary-value problems. Actually, the sensitivity matrix 

is a solution of th~ linearized version of the nonlinear system 

of equations. 

I , 
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Now it is possible to use both of the equivalence 

prope~ties of the sensitivity function in the treatment of 

nonlinear two-p6int boundary-value problems. That is, first 

the nonlinear two-point boundary-value problem is assumed to 

be linearized by considering only the initial-value problem 

for R and the sensitivity matrix S. Next, this sensitivity 

matrix is again multiplied with the augmented initial condi­

tion vector of that iteration to obtain ~(T) and y{T) values 

for the linearized version of the nonlinear problem. The 

iteration may continue until the solution is within some 

prescribed limits_ Then one may return to the normal procedure 

of the algorithm. 

4.6. CONCLUSIONS 

In view of the variety of boundary-value problems 

that can be encountered, it is not possible to imagine one 

algorithm ever being able to solve all problems both accura­

tely and efficiently. Even in the case of a nonlinear two­

point boundary-value problem, it can be seen that some of the 

existing methods have "initial guess" difficulty, and some 

have "poor convergence" near the solution. 

In this study, a new method is proposed for the numeri­

cal solution of the two-point boundary-value problem which uses 

trajectory sensitivities with respect to the initial conditions. 

Motivation for using sensitivities originated from the fact 

that the Euler-Lagrange equations which give rise to the two­

point boundary-value problem in optimal control were often 

highly 6ensitive to changes tn the unspecified boundary condi-



tions, and therefore, they were causing problems for the 

methods which use initial guess. 
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The generality and the power of the new method lie 

in the fact that the transition from the unspecified boundary 

conditions to the specified end is calculated quite efficiently 

and accurately for nonlinear and large systems. 

The sensitivity matrix which is instrumental in the 

implementation of the method may in some problems become either 

zero or infinity. In such situations a remedy may be the re­

assignment of the initial guess. However, it must be noted that 

we have never met with such critical situations eventhough many 

linear and nonlinear examples are solved using the method. 

There is one more difficulty associated with the numerical 

solution of the differential equations forward in time after the 

initial guess is made. This difficulty is known as the "stiffness ' 

in the differential equations and can be overcome by selecting 

appropriate integration routines. In fact, as a byproduct of 

this study, a method is developed which resolves this "stiffness" 

problem in case of linear differential equations. 

Moreover, it has been proven that when the original 

equations are linear, the algorithm converges to the solution 

always in one step regardless of the initial guess. The only 

requirement for this one-step convergence is the exact forward 

integration of the resulting initial-value problem. This feature 

was not observed in the linear exampie~ reported due to the fact 

that approximate integration routines were employed. 

I , 
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DIRECT SENSITIVITY ~PPROACH TO THE 

GENERAL OPTIMAL CONTROL PROBLEM 

5.1. PROBLEM FORMULATION AND HAMILTON-JACOBI-BELLMAN 

EQUATION 

It often happens in automatic control problem that one 

would like to know the optimal control function u(t} from a 

great many different initial points to a given terminal hyper-

surface, since we may not know where the system will start 

from or when it will start. To cover this situation we must 

calculate a IIfami ly" of optimal paths so that all of the pos-

sible initial points are on, or at least very close to, one of 

the calculated optimal paths. In the literature on the calculus 

of variations, such a family is called a "field of extremals". 

In general, only one optimal path to the terminal hyper­

surface will pass through a given point (~(t).,t), and a unique 

optimal control vector ~O(t) is then associated with each point. 

Hence, we may write 

• • • • • • • • • • Eq.(5.1.1) 

This is the optimal feedback control·1.aw; i.e., the control 

vector is given as a function of the present state ~(t) and 

the present time t •. 

Associated with starting from a point (~,t) and pro-

ceed~n9 optimally to the terminal hypersurface, there is a 
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° unique optimal value of the performance index, J • We may 

° therefore regard J as a function of the initial point, that is, 

° ° J = J (x,t) 

This is the "optimal return function". 

One aspect of the classical Hamilton-Jacobi theory is 

concerned with. finding the partial differential equation 

satisfied by the optimal return function JO(x,t). There is 

also a (vector) partial differential equation satisfied by the 

° . optimal control functions u (x,t). Bellman has generalized the 

Hamilton-Jacobi theory to include multistage systems and 

combinatorial problems and he called this overall theory 

dynamic programming. 

Now consider the general optimal control problem for 

an arbitrary initial point (~,t). The performance index is 

and system equations are 

• x = f(~,~,t) 

t f J 1(~{L),~{L),'C)dl:" Eq.(S.1.3) 

t 

• • • • • • • • • • • • • • Eq. (S.1.4) 

with the terminal boundary conditions 

• • • • • • • • • • • • • • Eq. (S.l.S) 

The optimal return function, defined in Equation (S.1.2), is 



65 

given symbolically by 

t f 

+ J 1 (~, ~ ,1:) dt: J E q. (S. 1 • 6 ) 

t 
,/ 

with the boundary condition 

JO(~,t)= ~(~,t) on the hypersurface ~(x,t)=O 

Eq.(S.1.7) 

Assuming that JO(~,t) exists, is continuous, and 

possesses continuous first and second partial derivatives a.t 

all points of interest in the ~,t space, and applying the 

dynamic programming approach one finally obtains the following 

equation 

o 
D H (x 

-' , t) , Eq. (5.1.8) 

where 

o 
H (~, 3J

O 
~---, t) D min H(~, 
a~ u ( t) 

dJ O 
~---, ~,t) Eq.(S.1.9) 

and 

Eq. (5.1.10) 

Equation (5.1.8) is called the Hamilton-Jacobi-Bellman Equation; 

it is a first-order nonlinear partial. dlffer-ential equation and 

it must be solved with the boundary condition (5.1.5). 

Numerical solution for the Hamilton-Jacobi-Bellman 

Equation is very difficult. In fact, it is only rarely feasible 

to solve this partial differential equation for a nonlinear , , 
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system of any practical significance; and hence, the develop-' 

ment of "exactll explicit feedback control schemes for nonlinear 

systems is usually out of reach._ 

The Hamilton-Jacobi-Bellman Equation gives rise to 

some valuable outcomes only in the case of linear plant dynamics 

and quadratic performance criteria which are referred to as 

I inear regulator problems in the opt imal control theory. If 

the final time'is specified and fixed in the linear regulator 

problem then the Hamilton-Jacobi-Bellman equation reduces to 

the well known "Matrix Riccati Differential Equation ll , and .if 

the final time is infinite then one ends up with the IIAlgebraic 

Matrix Riccati Equation", both for which there exist various 

efficient numerical solution schemes in the literature. 

5.2. PERFORMANCE INDEX SENSITIVITY 

A variety of computational methods have been developed 

for solving general nonlinear optimal control problems. All of 

these methods are iterative techniques which somehow us~ suc­

cessive approximations; and certain of them involve lineariza­

tion of the nonlinear differential equations that are generated 

by first-order variational analysis. 

Here a new approach will be presented which hopefully 

win give rise to various iterative methods and algorithms for 

sol v i n g the 9 e n era lop tim a I con t r 0 I p r.o b I ems tat e din sec t ion 

5.1. This approach is essentially based on the IIperformance 

,index sensitivity". ,Therefore, before devoting ouselves to th,e 

different methods and the algorithms within this approach, let 

us briefly outline the basic properties of the performance-
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index sensitivity. 

Changes of the performance-index of an optimal control 

system can be caused either by pprameter changes of the mathe-

matica) model of the given process (the plant) or by changes 

in the control law. For a feedback control system, changes in 

the control law are equivalent changes of the controller para-

meters. Since the optimization is achieved by minimizing the 

performance index J with respect to the control variable, it is 

evident t~at the performance index sensitivity J~ with respect 
R 

to cha~ges in the controller parameters ~R vanish as long as 

teh minimum is a relative one. On the other hand, the perfor-

mance-index sensitivity J with respect to changes in the plant 
~S 

parameters ~S is not necessarily equal to zero. It can take on 

any real value. The same is true for simultaneous changes of the 

plant and controller parameters as may be encountered in ideal 

optimal controllers that provide optimal control for any set 

of actual parameters. 

Let us now derive the necessary equation for the per­

formance index sensittvlty JO( • ( aJ/ ~ ~ ) I· of a continu-
- ~O 

ous optimal system with respect to controller parameter varia-

tlons. 

Let the control system, for which an open-loop input 

or an optimal closed-loop control is to be designed, be given 

by the following general vector differential equation 

, Eq.(S.2.1) 

where ~ is a n-dimensional state vector, u is a one-di~ensional 
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control vector. 

Now the optimization problem consists in finding a 

control u(t) which minimizes a performance index of the form 

J = Eq. (5.2.2) 

We have assumed that u(t) is, in particular, given by 

• • • • • • • • • • Eq.(5.2.3) 

where e(t) is n-dimensional controller parameter vector. 

We might then obtain the performance Index sensitivity equa­

tions by taking the partial derivative of the Equation (5.2.2) 

with respect to the parameter vector e as follows 

J = e 
8q; 

=- .- t 'dx 
+ Jf [(.2L)(---!....)+ 01 ] dt 

t
f 

to a~ de de 

Eq. (5.2.4) 

Here, ?J'.PI d x , - 'all ~~ , and 31/ de are defined as row 

vectors; whereas the term (d~/de) is the trajectory sensiti­

vity matrix S which is defined in section 1.4. Thus, Equation 

(5.2.4) can be written as 

J = e 

t f 
~ S(t) + J [(2L) " 
a = fa· 
~ t t ~ 

f 0 

S+.1.l... ] d t 
= d E 

Eq. (5.2.5) 

S can be determined from the trajectory sensitivity equation 

• 
S = -- (~). S + 

ax = 
~ (0) = 0 

= 



The solution for the trajectory sensitivity equation is given by 

S = 
= 

t 'df 

J ~ (t, L:.) (--=--> d"L. 

t 
o 

- dE 
• • • • • • • • • Eq. (5.2. n 

0(t,"L) is the transition matrix obeying ~(L., L )=! with 

= 
d! 
ax ~ - • • • • • • • • • • • • Eq.(5.2.8) 

Actually, we might determine the performance index 

sensitivity vector still in another way by simply applying the 

definitions. Let us suppose that the performance index is given 

by JP for the parameter vector E. Then, let a small change in 

e vector, say ~e amount, occuired. This change first induces 

a direct change in the state trajectory of the system and next 

induces directly and indirectly a change in the performance 

index. Supposing that the new performance index i s given by 
e+ 6e 

J , the deviation i n the performance index i s given by 

E+ ~e e 
= J - J • • • • • • • • • • • • Eq.(5.2.9) 

For infinitesimal parameter changes ~e=de , the 

performance index deviation 6J can be written as 

~J = • .6e • • • • • • • • • • Eq.(5.2.10) 

E 

Therefore, the performance index sensitivity can be determined 

directly by applyin~ a perturbation in the parameter vector­

and noting the deviations. One crucial drawback of this method, 

I , 
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however, is that one would have to deal with nonl inear 

differential equations whereas the derived sensitivity equa-

tions are, in general, linear differential equations. 

5.3. THE DIRECT SENSITIVITY APPROACH 

The ge~eral approach which wi 11 be presented below 

co u 1 d ben am e d a s II d ire c t sen sit i v i t yap p rOo a c h II, sin c e all 

of the methods which will be developed using this approach 

are based upon the performance index sensitivities with respect 

to controller parameters. That is, o~e is dealing with the 

design of optimal control function u(t) "dlrectly" by employing 

the performance index "sensitivities". 

Bearing in mind the fact that the performance Index 

sensitivities are identically equal to zero at the optimal 

value of the controller parameters, the following general 

iterative procedure might be considered (or designed) for 

solving the optimal control problems. 

(a) Choose sufficient number of controller parameter vectors, 

say El' E2' ••• Es· 

(b) Calculate the performance index sensitivities for each of 

the controller parameter vectors ~p}s using anyone 
L I . 1 

1= 

of the two methods discussed in the previous section. One 

may also calculate and store the value of the performance 

index for each controller parameter vectors. 

(c) Form a quadratic functional, J, in the parameter space 

using the c~lcul~ted ~alues of step (b). 

(d) Find a new controller par.ameter vector, say e*. which 
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minimizes the quadratic functionai r formed in step (c). 

(e) Check the stopping criteria; and stop or continue accor-

dlngly. 

(f) Put the new minimum controller parameter vector e~ in place 

of the controller parameter vector which either gives rise 

to the greatest performance index value or produces norm-

wise highest performance index sensitivities, and go to 

step (b) •. 

The sufficiency of the number of controller par~meter 

vectors basically depends upon the dimension of the system ·and 

minimization routine chosen (or more precisely. the formation 

of the quadratic functional). For instance. 2 controller para-

meter vectors are sufficient for a second order system if the 

performance index values are used in the formation of the 

quadratic functional. whereas at least 3 controller parameter 

vectors are needed if only the performance index sensitivities 

are employed tn the quadratic functional formation. 

In step (c) the method basically tries to approximate 

the real or exact performance index functional by a quadratic 

one. call it J. using the values calculated in step (b). J can 

be written as a function of the controller parameter vector e 
as follows 

l(e) = i eT Se - eTb + c • • • • • • • Eq. (5.3.1) 
-

where Q is a nxn symmetric matrix to be determined. The mini­

mum of this approximate performance index functional 1 is giv~n 

by 
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- - 1 e* = 9. b • • • • • • • • • • • • • • • • Eq.(S.3.2} -

Using the performance index sensitivity vectors determined 

--for each controller vector one may obtain the following rela-

tion for b vector 

Eq.(S.3.3) 

~'t 
Therefore, e which is the new minimum vector of the iteration, 

can be determined as follows 

* 2 
-1 -1 ) - ~_ 2 - Q (Qp.-J 

lei 

for any i E[l,2, ••• sl 

Eq. (S.3.4) 

where J is the performance index sensitivity vector for the 
ei 

ith controller parameter vector. 

As it is pointed out previously one may either use 

both performance index values and performance -Index sensitivity 

vectors together or employ only performance Index sensitivity 

vectors in the formation of the quadratic functional (or more 

specifically, in determining the symmetric Q matrix). However, 

the sensitivity Yectors are more significant and valuable 

compared to the performance index values; since the absolute 

performance index values do not mean much whereas the sensi-

tivity vectors give a lot of information about the shape of 

the functional to be considered. 

I , 
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A single one or a combination of the following 

conditions might be considered as the stopping criteria of 

step (e). 

(i) the differenc~ of two successive performance index 

values is less than some given tolerance 

(i i) the distance between any two recorded minimum 

controller parameter vectors is less than some given tolerance 

(iii) a certain norm of the sensitivity vectors for 

each of the controller parameter vectors is less than some 

given tolerance. 

The iterative procedure presented above is actually 

quite a general approach to the optimal control problems. 

Depending upon the choice of the functions fore(t) and the 

minimization routine, various effective algorithms may be 

developed out of this approach. In the following Cha~ters 

a few of these alternatives will be considered. 

I , 
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V I 

A PRIORI POLYNOMIAL APPROXIMATION METHODS 

VIA DIRECT SENSITIVITY APPROACH 

FOR THE GENERAL OPTIMAL CONTROL PROBLEMS 

/ 

6.1. BASIC IDEA OF .THE METHOD 

As it has been pointed out in the previous chapter, 

different choices of functions for e(t) would give rise to 

different algorithms; eventhough the ,approach is still the 

same direct sensitivity approach. In the algorithms developed 

in this chapter, the functions which are to be chosen before-

hand (apriori) for e{t) are polynomials. That is, symbolically, 

it is assumed that e(t} is given by 

m 
e{t) = P02+P12 t + • • • • +Pm2 t Eq.(6.1.1) 

• • • • • • • • • • 

POn+ Pln t+ • • • • +Pmn t
m 

In this manner, the infinite dimensional optimal 

control problem has been mapped to a finite dimensional 

mathematical programming~problem. Then, this finite dimen-

sional mathematical programming problem is solved "sequentially" 
. 

using the general Iterative optimization procedure presented 

in section 5.J. That is, it is first assumed that the control lei 

parameter vector function is given by the arbitrary vector 

I , 
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. . . . . . . . . . . . . . Eq.(6.1.2) 
• 

* and the minimizing 2f (t) is found, say Pf ,using the general 
o 0 

iterative optimization procedure. Then, the new controller 

vector function is formed as 

P 11 

(t) * P'2 
2f = p + t 

1 -fO • • 
~ . . . . . . . . . Eq.(6.1.3) , 

• 

P'n 

Now, the general iterative optimization procedure is applied 

to the arbitrary controller parameter vector [P" P'2 ••• P1n1T ,! 

* and the optimal parameter vector, say 2f ' is found. Then, the 
1 

optimal controller parameter vector function becomes 

This "sequential" procedure continues until one finally arrives 

at the minimizing controller parameter vector for ef • say 

* 2f' • The 
m 

formed as 

m 
optimal controller parameter vector function is then 

*' m + •••• + 2f t 
m 

Eq.(6.1.4) 

This is a "forward" sequential optimization procedure. The 

reverse of the above sequenti'al optimization procedure migh't 
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be designed. That is, the procedure might begin from the para-

meter vector 2b and terminate at the parameter vector 2b • 
m 0 

The optimal controller parameter vector function; in this case, 

is given by 

t
m * m-l 

+ 2b t 
. m- 1 

+ ....+ Eq.{6.1.S) 

This, then, might be called allbackward" sequential optlmiza-

tion procedure for the apriori polynomial approximation 

metho~s. Depending on which procedure is used, the optimal 

control-law is determined by either 

u(t) '* or ~ ( t) Eq.(6.1.6) = l?f (t) • • • • • • • • • • • 

or 

'* T ~ ( t) Eq.(6.1.]) u (t) = l?b ( t) • • • • • • • • • • • 

6.2. NUMERICAL RESULTS 

Eventhough the direct sensitivity approach is especially 

developed for generating the closed-loop control function of 

the general optimal control problems, it has been observed that 

the algorithms developed based on this approach has given quite 

satisfactory results also in the generation of the open-loop 

optimal control functions. Therefore, a few examples related 

to this class of problems is also reported below. 

First let us consider a simple example whose analytic' 

solutiori for the closed-loop ~ontrol function is known. 

I , 



Example 1 : A first-order I inear system with quadratic 

performance index 

Given 
. 
x = u " x, u scalar variables 

J = x
2

(t f ) + ! l u
2

(t) dt 

° 
Find u(x,t) to minimize J 

The analytic solution is given by 

u(x,t) = x ( t) 
t-3/2 

77 

Therefore, the optimal controller par~meter function which is, 

in this case, a scalar one, is 

° p (t) = 
t- 3/ 2 

which can be approxlmat~d by a polynomial as follows 

2 4 
----t-

3 9 

8 

27 

2 
t - ••• _(.2-.-)n t n 

3 

As n approaches to infinity the exact value of the function 

pO(t) will be obtained. 

The following polynomial function is obtained for the 

controller parameter function when forward sequential optimi­

zation procedure Is used. 

The value of the performance index functional for this function 
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is equal to 0.312. 

When backward sequential optimization procedure is 

employed the following polynomial function is obtained for 

the controller parameter function. 

The value of the performance index functional is equal to 

0.342 for this function. 

The figure (6.2.1) shows the graphs of the four 

o ' 
functions, p (t), Pf(t), Pb(t), p (t). It can be seen from . av 

the graph that the function Pf(t) first overestimates the 

o optimal function P (t) a~d then underestimates in the second 

half of the time interval. The same is true for the function 

Pb(t) in a reverse order. 
05 1.0 

. 1.0 

2..0 

p(-I:.) 

""" . 
" ---.~~ 

~ ---. ......, - ...... . \"" ...... , . " 
" " . 

\ ... . \ ••..... 
, " 

\ \-
• 

\ 

t 

.... ------

. .......... . 

o p. {t.) 

P (t) 
f 

o 
FIGURE 6.2.1. The graph of the functions P (t),Pf(t),Pb(t},Pav(t 

I , 
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Therefore, if we take the average of the coefficients 

of the same power of the functions Pf(t) and Pb(t) it Is 

certain that one will usually obtain polynomials which app­

roximate the optimal controller parameter function p(t) much 

better than either one of the functions Pf(t) and Pb(t). 

In this special case, the average polynomial function 

is given by 

Pav{t) = - 0.709 - 0.394 t - 1.455 t
2 

The next example considers the open-loop function of 

again a first-order linear system with quadratic performance 

index 

Example 2 : 

Given 

• x = - x + u x(O) = 0 

J = ! 

Find u(t) to minimize J 

The analyti.c solution is given by 

In forward sequential procedure the ~o~trol function is 

obtained to be 

uf{t} = 0.637 + 0.1-61 t + 0.081 t
2 
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and the value of the performance index functional is found 

to be -0.208 for this function. 

When ·backward sequential procedure is employed the 

control function found to be 

with -0.192 as the value of the performance index. 

The average polynomial of uf(t) and ub(t) is given by 

u (t)· 0.386 + 0.135 t + 0.715 t
2 

av 

The Figure (6.2.2) shows the graphs of the four 

o functions u (t), uf(t), ub(t}, uav(t). 

u(t) 

1.0 

O.i 

0.(, 

'0.2 

0.2.. O./r 

/ 
/ 

/ 

/ ., ...... " 
. -.. ' ---"""" 

0.(, G.g 1.0 

u/t ) 

U
b 
(t:) 

............... Ua}t) 

t. 

o FIGURE 6.2.2. The graphs of the functions u (t),uf(t),ub(t),uav(t) 



6.3. ANOTHER ALTERNATIVE FOR BACKWARD SEQUENTIAL 

OPTIMIZATION PROCEDURE 

81 

Among the various alterna~ives of apriori polynomial 

approximation methods, we have employed one which makes use 

of "shifted polynomials". In this version the polynomial 

functions chosen for controller parameter vector function 

E(t) are shifted in time either to the right or the left by 

certain amounts.· This "certain amount" can be safely chosen 

to be the interval length; that is, tf-t O• This version of 

backward sequential optimization procedure has been applied 

to various problems and the results have shown that shifted 

polynomial functions, in general, would approximate the optimal 

controller parameter function much better than the polynomials 

used in the previous section, assuming that (if) the "apriori" 

chosen polynomial function is shifted· in t.he right direction. 

Let us consider now a few examples which proves this 

claim. 

Example 1 : 

Given 

" x = - x + u 

J = 
1 

J 
2 2 (x + u ) dt 

o 

Find u(~,t) to minimize J 

When the related scalar Riccati differential equation 

is solved one obtai~s the following optimal control-law 
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u(x,t) = -
- 2(t-1) 2(~-1) 

e - e • x(t) 

It has been assumed that controller parameter function 

is given by the following second-order shifted polynomial 

and the control function determined by the relation 

u(x,t) = p~(t) • x(t) 

Then the following controller function is obtained 

s 2 
Pb(t) = - 0.582 + 1.084 t - 0.530 t 

with the value of performance index being 0.386. 

When the normal second-order polynomial is used in 

the same backward iterative optimization procedure, that is, 

then one obtains the following results 

and the performance index value of 0.403. 
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Finally, let us state the resulting polynomial when 

the forward sequential optimization pr~cedure i~ applied. 

The value of the performance index is 0.370. 

The graphs of all of the related controller parameter 

functions are shown in Figure (6.3.1). 

0.5 to t 

pO(t) 

P
f 

C-\:) 

\t:) 
PI::J 

FI GURE 6.3.1. The graphs of the funct ions pO C-\:) , P,f(t..)) P:(t.) 
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Example 2: The same problem as in Example 2of'the 

previous section. 

The form of the shifted polynomial function is as 

follows 

o 

L , 
k=2 

and control function to be determined is directly given by 

the above polynomial function since only open-loop control 

function is sought for. 

Then the controller parameter function (or the shifted poly­

nomial) has been determined to be 

s 2 
Pb(t) = 0.280 + 0.437 t + 0.266 t 

and the performance index value -0.220. 

The graphs of the optimal open-loop control function 

and the approximating shifted polynomial function are shown 

in Figure (6.3.2) below in order to give one the opportunity 

of comparison. 
u( 
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/ 
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./ 
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// 
/ 

1.0 t 
FIGURE 6.3.2. The graphs of the functions uO(t), uS(t). 

b 
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Example 3 A nonlinear system with quadratic performance 

index. 

Given 

+ u x (0) = 

1 

J = f 2 2 
(x +u ) dt 

o 

Find u(t) which minimizes J. 

In this case, it is assumed that the optimal open-

loop c~ntrol function is given by the following second-order 

shifted polynomial 

s 
u (t) = 

b 

When the backward sequential optimization procedure 

is employed the following polynomial function is found 

uS(t) D - 0.483 + 0.885 t - 0.487 t 2 
b 

with a performance index value of 0.497. 

I , 
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APOSTERIORI POLYNOMIAL FITTING METHOD 

VIA DIRECT SENSITIVITY ApPROACH FOR THE 

GENERAL OPTIMAL CONTROL PROBLEM 

7.1. BASIC IDEA OF THE METHOD 
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In the development and the solution phases of the 

apriori polynomial approximation methods it has been observed 

that a large step in approximating the optimal controller 

parameter function is achieved at the first Iteration of the 

so called general sequential optimization procedure. For 

instance, when forward sequential optimization procedure is 

employed, the optimum constant controller parameter function 

of the first iteration generally approximates the exact 

controller parameter function quite successfully with regard 

to performance index values. That is, the contributions of 

the polynomtal functions found in the following iteration to 

the minimization of the performance Index are ~susally : ~ 

ins i g n i fica n t • 

Moreover, the constant controller parameter function 

of the first iteration acts as an averager of the unknown 

optimal controller parameter function. For instance, if the 

* optimal controller parameter function p (t) 
. 

(which, in 

this case, is assumed to be a scalar function to simplify 

the ill u s t rat ion ) h a's the s hap e g i v e n i n Fig u r e (7. 1 • 1 ) , 

th~n the fir~t step of the forward sequential optimization 
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procedure of the apriori polynomial approximation method 

would yield a constant function which-approximately takes 
... 

the average of the function p-(t) as illustrated in the 

same figure below. 

p(t) 

51 
t· I 

* p (t) 

* ..... Pf (t) 
o 

* * FIGURE 7.1.1. The graph of functions p (t) and Pf (t) 
o 

As it can easily be deduced from the Figure (7.1.1), 

the smallest difference between the actual optimal controller 

* parameter function p (t) and the constant controller function 

generated by the first iteration of forward sequential opti-

mization procedure would "generally" occur at the midpoint 

of the time interval 

Therefore, if the time interval specified 

by the general optimal control problem is divided into some 

prescribed subintervals "properly" and ~he forward sequential 

optimizati6n procedure is applied to these subintervals only 

for constant functions, then one would obtain some significant. 
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data points on th~ parameter function space for construction 

of optimal controller parameter funct~ons more precisely. 

However, the division of the time interval into 

subintervals should be made in a ~pecial manner because of 

the i n her e n t pro pe r tie s 0 f the pro b 1 emu n de r con sid era t ion • 

More precisely, we mean that the division should be done 

without changing the final time specified by the problem; 

because changing the specified final time would change the 

original optimal control problem. This special division of 

the time interval could be accomplished only if one remembers 

the fact that the optimal solution i sv ali d for all Initial 

states and times in the closed-loop optimal cont~rol problems. 

Therefore, one can make the division "properly", that is, 

without changing the original optimal control problem by 

"sliding" the initial time (and in return initial state) 

forward at certain amounts determined by the subinterval 

lengths. 

In the light of the facts discussed above one might 

design a new method to find an approximating function for 

the optimal controller parameter function. This new method, 

which we have called "aposteriori polynomial fitting", might 

be summarized as follows: 

(a) Choose a fixed number N which determines the number 

of subintervals and equivalently the number of 

significant data points to be ob~alned as a result of 

the following. procedure. 

(b) Set k = 1 

, I 
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(c) Find the s-liding initial time to from the following 
s 

equation 

(d) Perform the forward sequential optimization procedure 

of the previous chapter using the)new (slided) initial 

time to 
s 

for only constant function and store the 

obtained optimum value, say (k) 
Pf • o 

It is assumed that 

the optimal controller parameter function passes 

through the point 

( , (k) ) 
Pf 

o 

(e) Set k ~ k+l 

(f) Check: if k ~ N then go to step (c) 

else continue 

(g) Pass a polynomial function of any specified order 

through the data points obtained in the above procedure 

using one of the fitting methods of numerical analysis; 

and ~. 

There exist one important drawback of the above 

procedure as it is. The data points which are used in the 

construction of the approximating function for the optimal 

controller parameter function were cumulated on the second 

half of the whole interval Lt o ' tfJ ; that is, on 

[ to + t f 

2 
, t f 1 ,because of the intrinsic properties of 

I , 
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the method. Thus, the optimal controller parameter function 

would be approximated better on the second half of the 

interval [to' tfl • However, this serious drawback of the 

method can be overcome by simply creating a "virtual" 

initial time, say t , which satisfies the following v 

equation 

= t o 

which "implies that 

t = 2 t - to 
v 0 f 

In this way, it is assumed that the whole interval 

[to' tf1 is covered uniformly. The step (c) of the above 

procedure would then become 

(c) Find the sliding initial time to from the equation 

= t v 

t - t 
+ (f v) 

N 

s 

(k - 1) 

The new method presented above is basically developed 

for determining the optimal closed-loop control function. 

Howeyer, it can be easily used in determining the optimal 

open-loop control function by making one slight modification 

in the procedure. Hore precisely, one would have to make a 

backward integration on the system equations from the specified 
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initial state to the new state at the virtual initial time 

since the optimal open-loop control function is dependent 

on the initial conditions. 

7.2. NUMERICAL RESULTS 

Several problems with linear or nonlinear system 

equations and quadratic ~r nonquadratic performance index 

criteria are treated for the optimal closed-loop or open-

loop sc:>lutions using the new "aposteriori polynomial fitting" 

method developed above; and, quite satisfactory results are 

obtained in all of the examples. In order to be able to 

make a comparison of the "apriori" and "aposteriori" methods 

we have first considered the same examples discussed in the 

previous chapter. In all of the examples reported below 

the data points obtained are fitted employing the well-known 

least-squares approximation method; and virtual Initial time 

and state is used in all of the examples, except In Example 

3. 

Example 1 : 

Given 
. 
x = u 

1 

J = x2 (t f } + ! J u2
(t} dt 

o 

Find u(x,t) which minimizes J. 

(i) First the time interval is divided into 



91 

sixteen subintervals. A second-order polynomial is 

fitted for the resulting sixteen data points on the time 

interval [to' tfl , and the following result is obtained 

p(i){t) = - 0.688 - 0.004 t - 1.157 t 2 
d 

with a performance index value of 0.329. 

(ii) When eight subintervals, and in return, eight data points 

are used, the second-order polynomial fitted is given by 

P(ii}(t) = _ 0.714 + 0.192t - 1.413 t 2 
d 

with the same performance index value of 0.329. 

The two fitted polynomial functions and the optimal 

solution is shown in the Figure (].2.1) to make a comparison. 

I , 



-1.0 

p(t) 

0·5 1.0 t , 

Example 2 : 

Given 

• x ... - x + u x(O) ... 0 

1 

J ... t f u
2
(t) dt - x(l) 

o 

Find u(t) which minimizes J. 

p
O (t) 

p(j)(t} 
d 

P ( i i) (t) 
d 
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(i) The time interval (-1, 1) is again divided into sl~teen . 
subintervals, and the f~llowing second-order polynomial 

function is fitted for the sixteen data points obtained 

on the time interval LO, 11 • 



u(t) (t) = 0.446 + 0.152 t -+ 0.456 t 2 
d 

The value of the performance index for this control 

function is equal to -0.220. 
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(ii) When eight subintervals and in return eight data points 

u(t) 

1.0 

0.5 

are employed, the second-order polynomial is obtained to 

be 

u(ii)(t) .. 0.438 + 0.209 t + 0.397 t 2 
d 

with no significant difference in the performance index 

value. 

0.5 -t.O 

u(i)(t} 
d 

-,_ u ( i i) (t) 
d 



Example 3 : 

Given 

• x = + u x(O) = 1 

Find u(t) which minimizes J. 

In thi"s case, the time interval (0, 11 is divided 

into eight subintervals. A second-order polynomial is fitted 

for th~ resulting eight data points ~n the time interval 

Lo. 5, 11 , and the following function is obtained 

J u (t) = - 0.266 - 0.007 t + 0.275 t
2 

d 

with a performance index value of O.~95. 

In order to be able to make a comparison the same 

nonlinear problem is transformed to a two-point boundary-

value problem and solved using the method developed in this 

study. The reSUlting two-point boundary-value problem can 

be stated as 

~ ... - x3 - O.5y • 2 Y ... - 2x + 3yx 

x(O) = 1 y(l) ... 0 

and the optimal cont,rol function o u (t> is given by 



° u (t) 
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The graphs of the three functions 'u (t), uS(t), and 
. d b 

is shown in the Figure (7.2.3), where uS(t) is the 
b 

function obtained in Example 3 of section 6.3. 

- 0.1 

-0.1. 

-0.3 

-0·4 

-O.? 

u ({:) 

oS 1.0 1: 

---
u (t) 

d 

u~ (t.) 

FIGURE 7.2.3. The graphs of the functions uO{t), ud{t) and 

uS{t). 
b 
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VI II 

NUMERICAL SOLUTION OF THE INFINITE HORIZON 

PROBLEMS IN OPTIMAL CONTROL THEORY 

8.1. BASIC IDEA OF THE METHOD 

For the problem defined by a 1 inear system dynamics 

and with a quadratic performance index 

00 

J = J (~T g ~ + 

o 
uT f !!) dt. -

where Q is symmetric positive semidefinite and P is symmetric 

positive definite matrices, the Hamilton-Jacobi-Bellman 

equation, as it is pointed out before, results in the well-

known Algebraic Matrix Riccati equation which ·can be solved 

in a reasonably simple manner. However, if there exists a 

simple nonlinearity in system dynamics or if the performance 

index deviates from the quadratic criteria then one is again 

faced with the first-order nonlinear partial differential 

equation 6f Hamilton-J~cobi-Bellman which is quite difficult 
. 

to solve. In order to avoid solving this nonlinear partial 

differential equation one may I ike io turn back to the app-

roximate solution generating methods presented in the previous 
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chapters of this study. However, one then faces the diffi-

culty of choosing a sufficient final time value in the nu-

merical evaluation of performance index J. If the system 

equations were linear then one might choose the sufficient 

final time valtie according to a criteria defined by 

where ~ is the minimum eigenvalue of the system 
A min 

• 
x = (~ + g ~) x 

K is the gain matrix, which is a function of controller 

parameters. That is, even in the linear case one has to 

find the eigenvalues of the matrix (~+ g~) at every 

iteration step, since the controller parameter values will 

change in the iterative algorithm employed. 

For the problem defined by a nonlinear system 

dynamics 

x = f (~,u,t) 

and with a nonquadratic performance index 

f
oo 

J = I (~tU,t) dt 

o 

the calculation of the eigenvalues becomes much more cumbersome. 



Here a new and effective algorithm is devised to be 

used in the calculation of sufficient final time in the case 

of infinite horizon problems of optimal control theory. 

Assuming that the system u~der study is stabilizable 

and controllable then we know that J wi II "saturate" after 

some fixed time t, call it t
f 

in infinite horizon problems. 

A tentative graph for performance index function J versus 

i.time t for a stabilizable and controllable system is shown in 

Figure (8.1.1). 

J 

to 
FIGURE 8.1.1. 

Now su~pose that the performance index J for infinite 

horizon proble~s is given by 

J (t) = 
t 

J 1 (~,u,t) dt 

o 

Then, taking the derivative of the above performance index 

J with respect to t one obtains 



dJ 
dt 

= 

The performance index function J must be behaving like a 
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constant function around the saturation region; therefore, 

our aim becomes to find the time where 

dJ 
dt 

= 0 

Using the facts developed above one may devise an 

effective algorithm which will yield the sufficient final 

time value assuming that one is dealing with a stabilizable 

and controllable system. 

(a) Choose an accuracy ~ , and a constant steplength At 

a fixed number H for permitted maximum iterations. 

(b) Hake an initial guess for the sufficient final time t f • 

(c) Devise and initialize a counter k ~ O. 

(d) Solve the system equations for the given parameter to 

obtain the state vector x and evaluate the cost function 

I (~,u,t) at the final time t f if 1(x,u,dl t (6 
- f 

then sufficient final time found, 

else perturb t
f 

by 6 t amoun t t f ~ t f + 6. t 
P 

(e) Obtain the new state vector x and evaluate the cost 

function IP(~,u·,d at the perturbed final time t f • 
p 
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(f) Form the function S defined by 

S = l P - 1 

.6.t 

If S -1..' 0 then update t f by 

step (c) 

else k 4- k + i f k">M then "system unstable 

for this parameter" 

change the para-

meters 

else update t f by 

t f - t f + A 

and go to step (d) 

8.2. NUMERICAL RESULTS 

Eventhough several infinite horizon problems are 

solved quite successfully using the methods developed in 

this study, only two examples with known solutions are 

reported in order to give one the opportunity of comparison. 

The first example is a scalar I inear system with quadratic 

performance i~dex, and the other one is a two-dimensional 

linear system with again quadratic performance index. 

Example 1 

Given 

• 
x = - 2x, + u 
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~ 

J = f 2 2 
(x + u ) 

o 

Find u(x) to minimize J. 

The optimal solution for u(x) is given by 

The algorithms presented here have yielded the result 

u(x) = - 0.2339 x(t) 

Here, it must be pointed out that Crude-Euler 

initial-value technique is employed for the solution of 

differential system equations and trapezoidal integration 

routine is used for the evaluation of performance index 

integral J. In the above example all the integrations were 

performed with a step size of 0.01, and the CPU time was 45 

seconds. 

Example 2 

Given 

• x = 

J = 

[-: J 
Q1 

j 2 
(xl 

0 

[ : ] u 
x + -

2 + x 2 + 2u 2 ) dt 

Find u(x) to minimize J. 

I , 



'The optimal solution for u(x) is given by 

Our algorithm has yielded the following result 

for u(~). 
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In this example, again Crude-Euler initial-value 

technique and trapezoidal integration routine are employed 

with a stepsize of 0.05, and the CPU time was 1 minute and 

36 seconds. When the stepsize is decreased to 0.025 we 

have obtained 

with a CPU time of 2 minutes and 50 seconds. The improvement 

in the performance index value for the two different stepsizes 

is in order of 1 percents. 



CONCLUSIONS, GENERAL OVERVIEW AND 

COMPARISON OF THE METHODS DEVELOPED IN THIS STUDY 
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First a new method for the numerical solution of 

the two-point boundary-value problem is proposed. This new 

method is based on trajectory sensitivities with respect to 

initial conditions. Since when the two-point boundary­

value problem is solved only an open-loop solution for a 

specific set of initial conditions has been found in the 

general optimal control problems, an alternate approach 

which will yield a closed-loop solution is sought for other 

than the dynamic programming approach which results in 

'Hamilton-Jacobi-Bellman Equation. Here, at this point, we 

have employed the basic properties of the performance index 

sensitivities with respect to controller parameter functions 

and developed a general iterative optimization procedure 

which, in turn, gives rise to various effective methods. 

The first of the methods developed using the direct 

sensitivity approach was a quite general method called 

"apriori polynomial approximation methods", and a different 

version of the same method was produced. In the aprlorl 

polynomial approximation methods the basic assumption is that 

controller parameter function is formed by a polynomial 

function. 

Several problems which have been solved using various 

versions of the apriori polynomial approximation methods have 

shown that "shifted" polynomial version would, in general, 
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yield much better results compared to normal polynomial 

approximations using either "forward" or IIbackward" 

sequential optimization procedure. The only problem with 

shifted polynomial version Is that shifting direction for 

the polynomial is usually not known apriori by the designer. 

A sensitivity analysis on this shifting direction parameter 

could be employed and this version of the apriori polynomial 

approximation methods could be made almost perfect. 

The aposteriori polynomial fitting method which is 

developed in Chapter 7 is superior than all the existing 

apriori polynomial approximation methods both in accuracy 

(or exactness) and computation time. It must be pointed 

at that no significant drawback of the aposteriori poly­

nomial fitting method has been encountered in the various 

examples solved upto now. 
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