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SENSITIVITY THEORY APPLICATION TO THE NUMERICAL
SOLUTIONS OF THE GENERAL OPTIMAL CONTROL PROBLEM

This study proposes various efficient numerical methods for
the general optimal control problem. The basic feature of the methods
developed here is that they somehow exploit the ideas and the

concepfs of the sensitivity theory.

First, a new method for solving TPBVP, which is met in seeking
anvopen-100p solution for optimal control brob]ems, is developed. .
This method can be briefly expressed as an iterative procedure which
is based on trajectory éensitivities with respect to'initial condi-
tions.

| In tﬁe second part of the study, various numerical methods are
developed for the c1osed-1b0p‘so1utions of genera]IOptima1 control p
problems using performance index sensitivity functions with respect
to controller barameters. Theée_new methods may be treated in twoy
categories :
1) Apriori polynomial apbroximation methods
Here the basic assumption is that controller parameter function
is assumed to be formed by a po1ynomia1 function.
2) Aposferiori polynomial approxiﬁation method

In this method a sequence gf subprob]em; are Created using some

intrinsic properties of the pfeVibus method. The values of the

results of the subprob1emé are then used in fhe formation of

the optimum controT]er parameter function.



GENEL ENiY1 DENETIM SORUNUNUN SAYISAL COZUMLERINE
DUYARLILIK KURAMININ UYGULANMASI

Bu ¢calisma Genel Eniyi Denetim Sorununun sayisal ¢ozimleri
ile ilgili olarak g¢esitli Ozgin ve etkin yontemler onermektedir.
Burada gelistirilen yontemlerin ortak 0zelligi hépsinin de bir
sekilde duyar1111k kuramindaki kavram ve disiinceleri kullanmis ol-
malaridir. ” |

11k olarak Eniyi Denetim Prob]em]érinde ac1k-dongili ¢coziim
arandiginda karsilasilan iki-nokta sinir-deger sorunlari i¢in yo-
ringe duyariilik matrislerini kullanan ardisik yeni bir sayisal ¢o-
ziim yontemi ge]istiriTmistir. n |

Calismanin ikinci kisminda ise kapali-dongii, durum geri-bes-
lemeli eniyi denetim sorunlari ic¢in denetimci parametrelerine gore
davranis olclituniin duyarlilik vektori kullamlarak yeni sayisal yon-
temler Onerilmis ve cesitli Ornek problemlerle denehmistir. Bu yon-
temler iki gruba ayrilabilir :

1) Onsel polinom yaklasiklamasi yontemleri
Buradaki temel varsayim denetimcikparametre fonks iyonunun bir
po]indm fonksiyon olmasidir.

2) Sonsal polinom yaklasiklamas1 yontemi
Bu yontemde dnsel polinom yaklasiklamasi yonteminin baz1 62e1;
liklerinden esinlenerek bir altproblemler dizisi yarat11h1st1r.
Bunlarin sonuc dederlerine ise bir polinom yaklasik olarak o-

turtulmus ve denetimcinin parametreleri bulunmustur.

{



INTRODUCT)ON

1.1. BACKGROUND OF THE PROBLEM AND

OUTLINE OF THE THESIS

No control engineer can be content with simply
formulating or analyzing a control problém. ‘He must ulti-
mately be concerned with the problem of designing systems
according to the given 5pecification§., in early days,
trial-and-error methods were the basis for most decisions
in system désign. However, today it is no longer a trial-
and-error effort, rather a precise science inQolving applied
mathemathics and high speed computers. |

There exist mafnly two épproaches to the system
design. One is the classical (frequency domain),énd the
other is the modern (time domain) approaches. In the
classical approach to system design, one utilizes such fre-
quency domain techniques as root locus and Bode diagrams to
determine systems with acceptable performance. 1In contrast,
the modern approach is formulated almost exclusively in the
time domain. 1In addition, the modern approach demands not
onfy aCceptable bat optimal performance.

In order to talk of optimal! performance it is obviously

necessary to specify some method for determining the quality

of the performance of a system. |In the modern approach, this



is 6ften done by means of a integral performance index of

the following form:

f* ‘
Pl = 1(x, u, t) dt
t

where x is the state vector and u is the control function.
One then says that a system is optimal over the time
interval t; to t. if the value of the performance index is
minimum (orymaximum in some cases). It should be noted that
the minimization (or maximization) of the aPove performance
index is done over the control vector u and subject to the
system equation constraint defined by a set of differential

equations of the form:

o.
%

1%
"

Q.
(ad

"Eventhough the optimal control problem thus stated informally
as above méy seem very sfmple, it presents various difficulties
in both formulation and solution steps. For instance, one of
the basic problems in the formulation step is the translation
of system specifications often in such subjective terms as
""good rise time with reasonable ovgrshoot", into the form of a
performance index., While another problem of the same step may
ar{se in the derivation of system eqUatioAs from a given
physical process. However, this study will not cover tﬁis
kind of formulation problems.

In a gross sense, this study will cover the problems

of the solution of the optimal control problem. More speci-

{



fically, it will propose some new methods for the solution
of the optimal control problem. Furthermore, it will try to
give a new insight and/or‘a point of view via application of
sensftivity ideas in the solution step of the problem.

In the optimal control problem stated above the type
of ;he control function is not specified, Actually, there
exist only two types of control functions. The first type
is the open-ldop control which utilizes the measurement of
the initial state to compute and generate the control sigﬁals
as functions of the initial state and time. The second one |
is the closed-loop (or feedback) control which utilizes con-
tinuous or rapidly sampled state measurements to compute tﬁe
control signal as a function of the present state and terminal
state and time,

Open-loop control is used when one or more of the
state variables cannot be measured during the control interval -
but when an initial measureﬁent is available, However,
closed-loop control can be used when all of the state variables
are known.r Open-loop control requires<fairly exact knowledge
of the system parameters and therefore systém dynamics whereas
closed-loop control requires less accurate system knowledge,
since the effect of the control signals on system state is
monitored. | |

‘Depending on the type of‘the’gontrol function, efther
calculus of variations or dynamic programming approaches have
_been extensively used in the mathemathical formulation and

solution of the optimal control problems. If an open-loop



control is required then the calculus of variations approach
ends with the well known Two Point Boundary Value Problem.
in the case of closed-loop (feedback) control dynamic prog-
ramming approach provides us with the partial differential
equation which is known as Hamilton-Jacobi-Bellman equation,

Stating more precisely, the calculus of variations
was used to derive a set of necessary conditions that must be
satisfied by an optimal control and its associated state-
costate trajectory. The two-point nature of the resultanﬁ
boundary conditions presents a serious computational problem.
Moreover, the resultant two-point boundary value problem is
generally a nonlinear one which makes the problem a bit mofe
cumbersomé. There exist several elegant computatlénal schemes
.developed to solve linear and/or nonlinear two-point boundary
value problems, However, the basic existence and uniqueness
theory for nonlinear boundary value problems is not as developéd
as for initiél-value problems or linear boundary value prob-
lems. Therefore still the convergence to the exact solution
in every problem for Various computational mefhods remain to
be in doubt.

In this study, first an 6vervlew of the various com-
putational methods for solving the two-point boundary value
problem will be given from a ﬁathemaihical point of view.
Next, thé two-point boundary value prqblem will be considered
from the optimal control side, Various methods deveioped

upto now in this discipline are discussed.



In the third chapter a new method for the solution
of the two-point boundary-value probltem is presented., This
new method which we have called “sensitivity approach provides
an insight for the logic behind the solution of the problem,
As a by-product of this approach a new method is developed
for the solution of stiff linear differential equations.

Still a$ another by-product a method for the determination

of the sufficient number of terms In the power-series expansion’
of any function is presented, Theoretical and numerical

aspects of the method are also discussed in this section.

Next chapter is devoted to the various numerical
résults obtained by the new method and comparison of it wifh
the other methods. In this chapter alternate way of solving
nonlinear two-point boundary=value problem is considered dslng
the same approach., The nonlinear problem is considered to be
alinear one around the known and the guessed {or unknown)
boundary values and the linear problem is solved using the
same approach until the unknown boundary value Is within
acceptable tolerance‘limits. Lastly, a concfusion section
completes this chapter.

However, even if we do solve the two=-point boundary
value problem we still do not have an acceptable solution,
since only a; open-loop sol&tfqn for a specific set of initial
and terminal states has been found, ’[n other words, optimal

® is known only as a function of time and not as a

control u
feedback control law depending on system state.. If either

the initial state or terminal state is changed, or if any

-



disturbance acts on thevsystem, the control go(t) is no
longer optimal,

Dynamic programming is used as an alternate approach
to eliminate the above difficulty., This alternate approach
reméves the necessity for solving a two-point boundary-
value problem and yields a closed-loop solution in fhe form
~of an optimal control law go(x,t). However, as one might
expect, this cjosed-IOOp approach also has its own problems.
Chief among these is the necessity of solving a nonlinear
partial differential equation known as Hamilton-Jacobi-Bell-
man equation. In fact, the solution of this equation is so
difficult that it has been accomplished only for a few |
special cases,

Therefore, an alternate approach of attacking the
same closed-loop optimal control problem must have been
"introduced. Here, at this point we have again tried to
exploit the sensitivity idea in order to obtain a way of
formulation of the prohlem., Basically, we have assumed that
optimal control vectof consisfs of someylinea} combination
of state values. That is, the optimal control vector. is

assumed to be in the following form :

u® (x,t) = k' () x(t)
Since the state vector x(t) is assumed to be known for all
times in order to have an optimal control law, the only thing

which remains to be determined is the coefficient or the gain



vector k(t)., Therefore, a sensitivity analysis on this
vector would yield us some valuable measures in the way of
obtaining a closed¥loop solution to the optimal control
problem,

In the fifth chapter, the basic idea behind this
new approach is introduced. Eventhough the idea behind it
may seem simple, the approach which we have called direct
sensitivity appfoach, provides one a vast amount of various
attécking opportunities for the same problem., Theoretical
and numerical aspects of the approach are also discussed In -
this chapter, | |

In the next chapter, two new methods for determining
the coefficient (or the gaiﬁ) vector are developed using the
same direct sensitivity approach, These two new methods
presented in this chapter can be named as."apriofi polynomial
fitting methods", since-the coefficient vector is assumed to
be formed by'polynomials, Various numerical examples solved
using the new apriori polynomial fitting methods are reported.
It has also shown that the open-loop solution for the general
optimal control problem’can be obtained using the same methods
presented in this section, and some examples related to this
class of optimal control problems are solved and reported;
This chapter concludes with a flow~chart of the apriori
polynomiai fitting methods uSlné the direct sensitivity

0

approach,

Chapter seven is completely devoted to a special

method which again uses the direct sensitivity approach,



However, in contrast to apriori polynomial fitting methods
of the previous chapter, this method first finds out some
data points for the coefficient vector function by using the
basic idea behind the direct sensitivity approach, and then
tries to fit a polynomial for these points. Therefore, this
special method is named as '"aposteriori polynomial fitting
method"., This aposteriori polynomial fitting method is

also able to solve the general optimal control problem for
both open-loop and cipsed-loop cases as apriori polynomial "
fitting method. Various optimal control problems with linear
or nonlinear system dynamics and quadratic or nonquadfatic
cost functionals are solved using the aposteriori polynomial
fitting method and the results are réported in this chapter.
Next, a flow-chart of the method is given., This chapter
concludes with the comparison of thevapriorf and aposteriori
polynomial fitting methods,

This study, by no means, tries to justify\the super=~
fluousness of the dynamic programming or the development of
Hamilton-Jacobi approach; rather, it proposes a few alternate
approaches for the treatment of the same optimal control
problem, It develops mofe convenient or computationally easy
methods for the optimal control problem with nonlinear system
dynamics and/or nonquadratic performance index. For the

problem defined by a linear system dynamics

X
]
t1>
Ix
+
11
1c
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and with a quadratic performance index

where Q is symmetric positive semidefinite and P is symmetric
.positive definite matrices, the resultant Hamilton-Jacobi-~-
Bellman equation can be solved in a reasonably simple manner;
Therefore; this -fact alone justifies the dynamic programming
or the development of the Hamilton-Jacobi approach,

When we try to solve the optimal control problem
with infinite horizon defined as above using thé methods
developed in this study we are faced with the probiem of
choosing sufficient final time in order to be able to do
integration since the final time is designated to be infinity
in the problem. Therefore, a method or a rule of thumb of
determining the sufficient final time for the infinite horizon
problem\of the optimal control theory must be searched,

In chapter eight é method for determining thé suffi-
cient final time in case of infinite horizon is developed
again usinrg the sensitivity idea and some properties of the
cost functionals for stable control problems; Several.infi-
nite horizon optimal control problems are solved using the
new method compared with the results of Hamilton;Jacobi
approach. This chapter again ends up with a flow-chart qf
the method,

Finally, the last cﬁépter presents an overview and

a comparative discussion of the methods and the approaches
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developed in this research, This chapter also discusses

some possible extensions and defines further areas of work,
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A SURVEY ON THE NUMERICAL SOLUTIONS

OF TWO-POINT BOUNDARY-VALUE PROBLEMS

2,1, INITIAL=-VALUE PROBLEMS

Among-ﬁhe various technique$ available for‘the
analytical and numerical solution of boﬁndary value problems
for d{fferential eqdations there is a number Af me thods
which attack the given problem by sglving instead certain
refated initial-value problems. In fact, most of the uni-.
versally applicable numerical methods for solving two-point
boundary=value problems somehow employ initial-value techni-
ques. Therefore, the theory of boundary value (especially,
tWo-point boundary=-value) probfeﬁs relies rather heavily on
‘initial-value problems. |

‘The theory of ordinary differenfial equations subject
fo initial conditions (i.e., initial value problems) is one
of the most extensively deQeloped branches of mathemathical
anatysis. Theorems on existence and uniqueness of solutions
related to this tOpié ére’widely‘availablé in the llferature.
Here we will very briefly review some basic definitions and
th;ofem§ on this topic.

Since eyéry nth-order ordinary differential equation
can be replacéd by an equiValent system of n first-order

‘equations, the attention can be confined to first-order



systems of the form

. dx
§= =f (’.‘;t) - sevssconse Eq.(Z.l.I)
dt
. . ‘ . |
Here x = (x1, Xoseee Xn) - is an n-dimensional column vector

with the dependent variables xk(t) as components; then x(t)
is a vector-valued function; f(g;t) is vector~-valued with
components fk(¥1,x2,...xn;t), which are functions of the

n+1 variables (§;t). An initial-value problem for the above
system is obtained by prescribing at some point, say t=a,

the value of x, say
5 (a) = 2( .oo.ocoo.no.ooo qu(20102)

The existence, uniqueness and continuity properties of the

solutions of such problems depend on the continuity and/or

-

smoothness properties of the function f in a neighborhood of
the initial point ( _;a). As a measure of distance between

two points in n-space the maximum norm

" 5"'!" =ILm:an|xk"Ykl eeecsecec qu(201‘3)

or the Euclidean norm

2 ‘ 27}
By I, = [oxgmr)? + oot Clnor, )]
' Eq.(2.1.4)
can be employed equally well. One of the basic results

1 ‘ » ?
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can now be stated as follows.

THEOREM 2,1.1, : Let the function f(§;t) be continuous on

the infinite strip
R : asztsh , “)_(”4@

‘and satisfy there a Lipschitz condition in x with constant

~K, uniformly in t; that is,
: ”f(x;t) - f(y;t)” L K ”5-211,,for all (x;t) and
' (yst) ER

Then

(a) the initial-value problem

1Xe

= f(x;t) x(a) = «
has a unique solution x=x( o;t) defined on the interval

[a,b] = {tla;’;t .éb}

we

(B) this solution is Lipschitz-continuous in o« , uniformly

in t; in fact we have

»"5( f;t) - x( @;t)llé:eK(t-a)‘ "g-@ " for all

( o5t) and ( B;t) ER
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2.2. TWO-POINT BOUNDARY-VALUE PROBLEMS

A boundary-value problem_for an ordinary differential
equation (or system of equations) is obtained by requiring
tﬁat the dependent variable (or variables) satisfy subsidiary
conditions at two or more distinct points; By means of
Theorem 2.1.1 we know that a unique solution of an nth-order
equation is determined (for a very large class of equations)
by specifying n conditions at one point (that is, for initial-
value problems).“However, with a total of n boundary condi-
tions imposed at more than one point it is possible that a
very smooth nth-order equation has many solutions 6r even no
solution. Thus, as we may wkpect. the existence and uniqueness
theory for boundary-value problemé is considerably more
complicated and less thﬁroughly,developed than that for
initial-value problems. When the boundary conditions are
imposed at only two points, which is the usual case in many
applications, a simple fheory can be develobed for maﬁy
special classes of equations and systems of equations.

This existence and uniqueness theory plays an important role
in devising and analyzing numerical methqu for solvfng
boundary-value problems.

Therefore, some of the_impoftant aspects of the
existencé and uniqueness theory will be studied here with
regard to a class of boundary-vélue p?oblems in which the

solution, §(t), of a second-order equation

dzx

.x‘ = 2 = f(x,i;t) ee s 00 te o qu(zozola)
by dt
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is required to satisfy at two distinct points relations of

the form

aox(a) - éli(a) 1o laol.+_la1, ¥ 0

Eq.(2.2.1b)

byx(b) + b k(b) B [bol + Ib,] #0
The solution is sought on the interval [a,b] .

A formal solution to the exact solution of this
problem is obtained by considering a related initial-value

problem, say

d2u

dt?

u = = f(u,u,t) ceeeccnne Eq.(z.z.ZaY

aou(a) - ajﬁ(a) =, cqu(a) - c1ﬁ(a) = s

Eq.(2.2.2b)

The second initial condition is to be independent of the

first. This is assured if alco-aOCI#O. Without loss in
generality\it is required that o and <, be chosen such that
a‘co - aOCl = ‘ . ev o0 e Eq.(Z.Z.ZC)

With co and c1

fixed in this manner,’the solution of
Eq.(2.2.2) is denoted by

u=u (s;t)
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to focus attention on its dependence on s. Evaluating the
solution at t = b, a value of s is sought for which

B(s) = byuls;b) + blﬁ(s;b) - =0 Eq.(2.2.3)

With b and 2 fixed Equation (2.2.3) is, in general, a
transcendental equation in s. If s = s* is a root of this

equation, it is then expected that the function
x(t) = u (s*;t)

is a solution of the boundary-value problem.(2.2.1).
This is true in many cases, and in fact all solutions of
- the problem (2,2.1) can frequently be determined in this

way. To be precise, the following theorem can be stated.

THEOREM 2.2.1 : Let the function f(ul,uz,t) be continuous on

R:actsb , uls u22<°°

and satisfy.there a uniform Lipschitz condition in u,_and

u,. Then the boundary-value probtem (2.2.1) has as many

s e y .
solutions as there are distinct roots, s = s( ), of Equation

(2.2.3). The solutions of (2.2.1) are

x(t) = x(e) = us 0y

that is, the solutions of the initial-value problem (2.2.2)

-

'
{
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with initial data s = (),

For the proof of the above theorem one may refer to
Keller (Ref.4). By means of this theorem the problem of
sblving a boundary-value problem is '"reduced'" to that of
finding the root, or roots, of an (in general, transcenden-
tél) equation, 1In fact, more general boundary-value problems
than (2.2.1) can be reduced in this way to solving systems
of (transcendental) equations.

Moreover, there is an‘important class of problems
for which it can be assured that Equation (2.2.3) has a
unique root. The existence and uniqueness theory for the

corresponding boundary-value problems is then settled,

THEOREM 2,2,2 : "Let the function f(ul,uz,t) in Equétion

(2.2,1a) satisfy the hypothesis of Theorem (2.2.1) and have
continuous derivatives on R wh?ch satisfy, for some positive

constant M,

el of | 2
—-aTl->0, I-—aTl-;—H

Let the coefficients in Equation (2.2.1b) satisfy

aoa‘>0 , bgb, >0 |ao| + ]b0| 0
Then the boundary-value probiem (2.2.1) has a unique
solution.

One may agaiﬁ refer to Keller (Ref.4) for the proof -

- of the above theorem,

i
{
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~

This chh consideration of existence,and uniqueness theory
on boundary-value problems is sufficient for our purposes

at this péint,

2.3. NUMERICAL METHODS

There'exist a yide variety of methods with over-
lapping or interactingdideas for solving boundary-value
problems in the literature. Therefore, it is very difficult
to make a precise cléssification of the existing methods.
However, still all of the metﬁods caa be classified very
broadly under three major headings some of thch may contain
subgroups (or subheadings). These three major headings aré
as follows :
A, - SHOOTING ﬁETHODS (OR INITIAL=-VALUE METHODS) |
B. FINITE-DIFFERENCE METHODS |
C. FUNCTION SPACE APPROXIMATION (OR PROJECTION) METHODS
Let us now have a brief overview of - the above ‘

methods,

A. SHOOTING (OR lNiTlAL-VALUE) METHODS

Shooting methods are so natural and commonly used
for treatiﬁg boundary-value problems for ordinary differen-
tial equations that many papefs empioy them withoui an ex-
plicit statement of the fact. |In the‘previous section we
have seen that by means ofﬂTheorem;(Z.i.i) the problem of
_solving a boundary~-value problém is reduced to that of

finding the root, or roots, of an (in general, transcenden-

[
¢
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tal) equation. A very effective class of numerical me thods,
which we callishooting (or initial=-value) methods, is based

on this equivalence., : -

Let us consider. a rather general nonlinear boundary-

value problem

X = —— = f(x,t) aLt<b ..... Eq.(2.3.1a)
dt
g (x(a), x(b)) = 0 .ieieeeesoses Eq.(2.3.1b)

The above boundary-value problem (2.3.1)_15 associated with

the following initial-value problem.

dg . ]

! = = f (l.],t) cesescescsvscce qu(2-3oza)
dt

Ebi(a) = § esessscsscecnoe qu(20302b)

A solution u = g(g,t) of the problem (2.3.2) is a solution

of the problem (2.3.1) if s is a root of
g(s) = g(s,u(s,b)) =0 cessesses Eq.(2.3.3)

A fairly general theory of this prodess, using arbitrary
stable 5ccurate of 0(hP) initial=-value methods is developed
in Keller (Ref.k). Eventhough, there~may exist various
root-finding schemes‘avail;ble in the literature, Newton's

method or its alternatives or modiflications of it is perhaps

-

t
t
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the most commonly adopted scheme to be used on Equation
(2.3.3).

Now, there'remain three main to}ics that will be
considered very briefly., First topic is related with the
important question of‘how to pick the initial iterate, §(0),
and thi; automatically introduces the continﬁity or continu-
ation studies, Next the standard question of unstable
growth of the solution of the problem (2.3.2) ieading to
parallel- or multiple-shooting methods is considered,
Finally invariant-imbedding which can also be considered as

a special type of initial-value (or shooting) method will

be discussed,

CONTINUATION

(0)

Selection of an appropriate initial iterate, s ,
so that,ﬁonvergence to'ghe desired root of Equati§n (2.3.3)
occurs in whatever iteratio; scheme is being employed, is
one of the basiﬁ open’questions in shooting for nonlinear

problems. A fairly general form of continuation consists in

embedding the problem (2.3.1) in a family of broblems

dz ‘ ‘

é’ -~ =f (E,t;ov) e 9o 0c 00 s Eq.(203.l‘a)
dt

g (z(a),z(b); @) =0 pesevesess Eq.(2.3.4b)

which for (= G} say, reduces to the problem (2.3.1).

. Further the problem (2.3.4) for 0O = 06 has a known solution

(or is "“easily" solved). The idea is to compute

t
t
’
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z2(t; 0}) = x(t) starting from the known solution z(t; Gb)

by continuation in the imbedding parameter, .

PARALLEL~- OR MULTIPLE-SHOOTING

.

Parallel-shooting is employed for regucing the
destabilizing effects of growing solutions of the i&itial-
value problems. The basic idea in parallel-shooting is to
partition the interval [a,b] into subintervals and to
compute the sqiution over each subinterval (more or less)
independently of the results in the other subintervals.
Then simultaneously with attempting to satisfy the boun-
dary conditions the relevant continuity conditions are

imposed at each interval interface.

INVARIANT-IMBEDDING

Here the invariant !hbedding method is considered
to be a shooting~method because‘the‘resultant invariant
imbedding equétions fépresent an initial=value problém.
The method of Invariant\iﬁbedding which originated in 1957
with a series‘of papers by Bellﬁan, Kalaba and Wing is.
actually an outgrowth of dynamic programming. Basically,
the method involves generating a "“family" of problems by
means of a single parameter, where the basic properties of
the system reﬁain invariant under the geﬁeration of thé
faﬁily. ~The family‘then provides a means of advancing from
one member, sometimes degenerate, to‘bhe solution of the
original problem. 1In case of boundary-value problems the

‘crucial paremeter is taken to be the interval length,
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We shall now present a derivation of the invariant

imbedding equations., Let us consider the system of nonlinear

ordinary differential equations -

Ce

= F (u,v,t) , . ceececsces Eq.(2.3.5a)

=6 (u,v,t) , 0<&edT , Eq.(2.3.5b)

<e

subject to the simple separated boundary conditions
u (0) = ( o.of.ooooodooo Eq.(£-305c)
v (T) = C ’ ‘eece0eacecssses Eq.(2.3.5d)

For the sake of exposition, we assume that u and v are

scalar functions. The multidimensional versions of the

following results can be readily obtained,

By differentiating Equations (2.3.5a) - (2.3.5d)

with respect to c, it is seen that

Eq.(2.3.6a)

Uc(t,c,T) = Fuuc + FVVC AR EEE

Velt,e,T) = Gu +Gv. ,  ...... Eq.(2.3.6b)
04t LT

UC(O,C,T) = 0 ‘e 8 8 60 00 00 00 00 Eq.(2.3o6c)

VC(T,C,T) = l - LRI S B B I N B S RN Y Eq.(2.3.6d)
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Similarly, a differentiation in T yields

GT =.FuuT + FVVT e e 600 e 0000 Eq-(203o73)

GT = GUUT + GVVT » ® o9 080000 Eq0(203.7b)
0<£t<T

UT(O’C,T) =0 ss 0000 0e0 0000w Eq0(20307c)

v(T,c,T) +ve(T,e,T) =0  ..oeevee. Eq.(2.3.7d)

To make use of these equations, note that from the

differential equation (2.3.6b), when t =T we have

v(T,c,T) = 6(u(T,c,T),v(T,c,T),T)

= G(r(C,T).C,T) eo e Eqa(20308)
where the notation
r(c'T) = U(T'C’T) tooroo.ooo. qu(20309)
has been introduced. Comparing Equations (2.3.6a) - (2.3.6d)
with (2.3.7a) - (2.3.7d), and assuming a unique solution
exists, it follows that

uT(t,c,T)'¥ -G(r(c,T),c,T) u;(t,c,T) "Eq.(2.3.10a)

vplt,e,T) = -6(r(c,T),ec,T) vc(t.C.T).“
04t4T , |e| "Eq.(2.3.10b)
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Equations (2.3.10a) and (2.3.10b) are the desired partial
differential equations for u and v.' The initial conditions

at T =t are
u(tlc’t) = r(C,t) cceesssssnae .Eq-(ZQBQ‘OC)
V(t,c,t) s C tsses0ensvoesece Eq.(2-3010d)

It remains to consider the function r.

Differentiate Equation (2.3.9) with réspect to T

to obtain

rT(C,T) SIG(T,C,T) + UT(T.C,T) sevee Eq;(203c]1)
From‘Equations (2.3.5a) and (2.3.10a), we now see that

rele,T) = Flr(c,T),¢,T) = 6(r(c,T),c,T)r_(c,T)
' Eq. (2.3.12a)

This is the quasilinear first-order partial differential

equation satisfied by r. From Equation (2.3.5c) we see that

r (C,O) = 0 | e0 00000000000 qu(2.3.]2b)

The equétions for u, v and r,Atogether with their initial

conditions, constitute the initial value representation for

the original nonlinear problem. Either some finite difference

scheme must be developed for the solution of the above quasi-
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linear first-order partial differential equation with an
initial condition on r, or a method which feplaces the non-
linear boundary-value problem by a sequence of linear boun-
dary-value problems (which hopefully will converge to the
solution of the nonlinear problem) must be introduced. The
second choice (or the method) which is called quasilineari-
zation has been used very effectively for solving certain
important classes of nonlinear boundary-value problems,
bécause the invariant imbedding equations derived for a
linear boundary-value pfoblem is much easier from computati-
onal point of Qiew. These special equations are known as
Riccati differential equatiohs, and there exist many effi-
qient methods developed for the soution of.this kind of

differential equations.,

B, FINITE DIFFERENCE METHODS

In order to explain the basic idea behind these
methods let us consider the general systems of n first-

order equations subject to linear two=-point boundary condi-

tions

tx 2 x - f(x,t) =0 ceceeceess Eq.(2.3.13a)

nux

x(a) + Bx(b) = o cecsssssss Eq.(2.3.13b)

.

In the present discussion a uniform net will be

employed merely for notational convenience on [a,b] as

i

tj = a+jh ’ j=0,.l,s..N ’ h= b;a qu(203olh)

BOGAZIGE (INIVERSITES) KUTUPHANESS
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The n-dimensional vectors u. will denote approxfmations to

J
the corresponding values of the solution x(tj) of Equation
(2.3.13a) at the points of our net. One obvious system of

difference equations for the determination of these approxi-

mations is

u.-u._, U,y
Lu. =——L——-L.__- f - ~J- = {= ce e
n¥j - f( > , tj_i) 0 j=1,2,...N

Eq.(2.3.15a)

6!._] "'99 - 2( """9 sesecssoe Eq-(2-3015b)

The scheme in Equation (2.3.15a) is known as the centered-
difference method when used for the Equation (2,3.13a) subject
to initial conditions. The nonlinear term fn Equation (2.3.15a)

might have been chosen as

3 f(uj,tj)‘+ f(uj_l,tj_l)
and the resulting scheme is called the hodified Euler ﬁethod.
The Equations (2.3.15), of N+1 sets of n equations
eécﬁ, are.the difference equations yﬁose solution is to app-
roximate Lhat of (2.3.13)>on'thé net., We can write‘these
di*ference equations in a more uniform and compaﬁt form,

Let the n(N+1)-dimensional vector U be defined by

]

0
1

c
1]
c e I IC
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Then Equations (2.3.15) can be written as the system of

n(N+1) equations

o(u) = LhYy 20  seeseeee. Eq.(2.3.16)

We now see one basic différence, at least in point of view,
between the initial-value methods and the finite-difference
methods. In initial-value methods some'unknowns, the initial
values, are somehow determined recursively so as to be‘gccu-
rate approximations to solutions of the differential equatigns,
and only when the last variables are computed are the boundary
conditions ehployed. In finite-difference schemes no particular
variables are preferred and the differential equations and
boundary Conditions are presumably treatedvsimulatanequsly.

In some iterative'attempts‘at splving the system (2.3.16) one

might proceed recursively guessing at u say, then so]vihg

0’
the equations in (2.3.15a), exactly or approximately, in the
order j=%,2,...M and finally checking (2.3.15b) to change

the value of Yo

C. FUNCTION SPACE APPROXIMAT[ON METHODS

These methods are expansion procedures for which the
theoretical justification lg considerably more difficultiand
less well developed. More specifically, the solution is app-
roximated by a linear combination of linearly-independent
funétioné in an appropriate function space. The coefficients

-

i
) ¢
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in the expansion are to be determined‘so that this combination:
minimizes some measure of the error in satisfying the boundary-
value problem, There is tremendous variety in the choice of
approximating functions and in the chbice of "measure of error"
in satisfying the problem,

Rayleigh-Ritz, Galerkin and Collocation are the most
popular or known ones of fhe geﬁeral function space approxima-

tion methods.

2,4, _TPBVP IN OPTIMAL CONTROL THEORY

In general, in optimization problems for dyﬁamic
‘systems, whether the system under consideration is continuoﬁs
or multi-stage or single-state diﬁcrete, it is finally encoun-
tered with Two-Point Boundé?y-Value Problems (TPBVP). More
specifically, in optimal control theory, one of the bagic
problems is to find a control functioﬁ or a control-law which
will minimize a certain performance index while satisfying
the state equation coﬁstraints. Formally, the basic (and‘the
most general) optimal control problem can be &eséribed by a

set of differential equations of the form

IXe
U
I
—
X
-
ic

,t) eecsssccs e Eq.(Z.h.l)

and a performance index defined as follows

t
: f
PI o= §0(§(tf).tf) + f 1(x(t),u(t),t) dt Eq.(2.4,2)

t.
'
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which is tried to be ﬁinimized by a certain control function
u(t), or the optimal-control law u=k (x(t),t) which is required
to be a member of a set U called Ehe control region. U may be
either open or closed and bounded or unbounded. In this formu-
lation, initial state and time are fixed; that is, §(ti) and
ti are given; the terminal time tf may be fixed or free; and

the terminal state §(tf) may be fixed, completely free or

specified by a set of relations of the form
9‘(5(tf)’tf) = 9 i=1,2,ooom n Eq.(zcho3)
The solution of this general optimal control problém using

the Pontryagin's minimum principle and calcdlﬁs of variations

leads us to solve the set of 2n equations.

0 ‘ .
é = aH (E,B,t) evoescsccoe Eq.(z.h'h)
. o |
p = 0 (5,2,:) 700000#0.0.0 Eq.(zohOS)

with the given initial and terminal boundary conditions and

generalized‘boundary condition

[ A (x,t)_ g] ;d>_< + [Ho()_c,g‘,‘t)-*-’—a—g()_t,t)] .dt = 0
ox = : ot
- te | e
‘ Eq.(2.4,6)
where
Ho(f,g,t) = H(§,g°,g,t) = min H(§.9{B.t) Eq.(2.4.7)

ué U

i
{
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and
H(x,u,p,t) = 1(x,u,t) + BT. f(x,u,t) Eq.(2.4.8)

Unless the system equations, the performance index
and the constraints are quite simple, numerical methods are
required to solve the two-point boundary-value problems, All
numerical methods for the solution of such problems involve
either dynamic pFogramming or iterative procedures,

Dynamic programming,-as applied to two-point bOundarQ-
value ﬁroblems, can be described as a process of generating
many solutions satisfying the specified boundary conditions
as parameters., If the suitable or correct range of parameters
is chosen, some of the solutions‘will pass through (or near)
the desired boundary conditions at the other end., This. method
is not feasible for problems with two or three state variables
even on the larger computers of our day.

There exist several different ways of treating the
same problem with iterative;procedures, and only thfee of these
possible procedures have been extensively used.'Almos; all of
ghe iterative procedures use ''successive linearization" while
only .a small portion of methods use transformations for instance
Riccati-type transformations. ‘

Stating in words, the nonlinear TPBVP is to find

(a) the n state variables ’§(t) ‘
(b) the n costate functions p(t)
(c) the m control functions u(t)

and satisfy simulataneously

i
i
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(1) the n system of differential equations (involving X,u)
(2) the n costate differentiai equétions (involving 9,5,9)
(3) the m optimality conditions (involving p,x,u)

(4) the initial and final bounaary conditions kinvolving x,p)

One of the three iterative procedures so far studied

is neighboring extremal method (or variation of extremals).

In this method, a nominal solution is chosen which satisfies
the three conditions. (1) through (3) above; then this nominal
condition is modified by succesive linearization so that the
remainjng boundary conditions are also satisfied, When using
neighboring extremal methods and quaéiTinearization methods;
we must solve a succession of linear two-point boundary-value
problems. Such problems can be solved by (a) finding the
transition matrix between unspecified boundary conditions at
one. end and specified boundary conditions at the other end, or
by (b) "sweeping" the boundary conditions ffom one end point
to the other end point, which involves solving a matrix
Riccati equation,

The main difficulty with neighbqring extremal methods
is getting started; i.e., finding a first estimate of the
unspecified conditfons at one end that produces a solution
}easonably close to the specified conditions at the other end.
The reason for this peculiar difficulty is that extremal solu-
tions are often very sensitive to small changes in the unspeci-
fied boundary conditioné. This extraordinary sensitivity’is a

direct result of the nature-of the costate function equations.

The second method is gradient method which is developed

to surmount the "initial guess' difficulty associated with the

t
t



extremal methods. In these methods, the chosen nominal solu-
tionvsatlsfies system equations ana éostate equations. These
methods are characterized by iterative algorithms for improving
estimates of the control functio;, u(t), so as to come closer:
to satisfying the optimality condition, The drawback of first=
order gradient method is its poor convergence near the optimal
solution region. The second-order gradient method has solved
this problem, but may have starting difficulties since the
nominal solution to be chosen has to be ''convex',

| The quasilinearization methods involve choosing nominal
functions for x(t) and p(t) that satisfy as many of the boun-
dary condition§ as possibl&. The system equations and costate
equations are linearized about the nominal and a succession of
nonhomogeneous{ linear two-point boundary-value problems are
solved to modify the solution until it satisfies the system
and costate equations to the desired accuracy. These methods
are more attractive when compared to other methods, First it
is often easier to guess nominal state variable histories than
control variable histories, Second, these methods converge
rapidly near the optimum solution. "

Other than the methods mentioned above, there exist

the differential dynamic programming approach which was first

introduced into optimal control by'ﬂayne and was later develo-
péd for continuous syétems’by-Jacobson. This approach is a

sﬁccessive approximation technique, based on dynahic pEogrammin
rather than the calculus of variations, for determining optimal

control of nonlinear systems. In each iteration the system
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equations are integrated in forward ;}me using the current
nominal control; and costate equatfons, which yield the
coefficients of a lfnear or quadratic expansion of the cost
function in the neighborhood of the nominal x trajectory,

are integrated in reverse time, thusyielding an improved

" control law. This control is applied to the system equations,
producing a new and improved trajectory. By continued iteration,
the procedure produces control functions that successively

approximate the optimal control function.
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SENSITIVITY APPROACH TO TWO-POINT

BOUNDARY-VALUE PROBLEMS

3,7, A BRIEF HISTORICAL REVIEW TO SENSITIVITY THEORY

‘Sensitivity considerations have long been of concern
in connection with dynamic systems. Historically, these sensi-
tivity considerations have provided a fundamental motivation
for the use of feedback and ére largely responsible for its’
development into what is called modern control‘theory, impiying
the principles of optimization and adaptation, Therefore, ii is
quite natural that the basic concepts in this area were already
given in the fundamental literature on feedback control systems
thirty Qears ago. Bode was the first to establish the signifi-
cance of Sensitivity in the design of feedback ;ontrol systems,
He has introduced a prope; sensitivity definition on the basis
of frequency domain.

In its subsequent developmeﬁt ii»seemed that automatic
control! theory should include the study of Sensitivity as an
essential component. However, with few‘exceptions, the sensiti-
vity problem was not even discussed in the academic texts on
automatic contfol in the following aecade. It was mainly the
problem of accuracy in network-analyzers and analog computers
that gave new impulses to the theory of sensitivity durlng the
-fifties. Many basic methods were also worked out in connéctiqn
with the design of electric networks., Toward the end of this

period the ideas of Bode were rediscovered in control engineerit
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With the appearance of adaptive systems, ﬁore precisely, as

a reaction to their appearance. Horowitz has developed the
methods of frequency domain to a bigh,extent and has applied
them with great success to the design of low sensitivity con-
ventional feedback control systems,

Beginning in the period 1958-1960, the number of

publications in the time domain rose considerably due to the
development of state space methods in control engineering and

the availability of the digital computer,

3.2, BASIC CONCEPTS AND DEFINITIONS IN SYSTEM THEORY

Sensifivity.theory can be interprefed as a section of
a general system theory, takiﬁg into.coﬁslderatlon garameter
variations as inbuts instead of sigﬁéls. From a mathematical
point of view; what we call a system is the explicitly or
implicitly given relationship between the input signal g(t)
and the output signal y(t). In genaral, u(t) and y(t) can be
vectors. The character of this relationship is commonly called
the structure of the system, Forbexample, the.structure of the
system may be characterized by |
(a) the order of a differential or difference equation,
(b) linearity or nonlinearity,
(c) the qrder of the numeratorband denominator of a rational
transfer function,
and
(d) the rationality or irrationélity of the transfer functian,
The quantitative properties of the system are charac-‘

terized by the system parameters. Typical parameters are
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(1) initial conditions,

(2) time-invariant or time-variant coefficients,
(3)-na§ural frequencies, pulse frequencies,

(4) sampling periods, sampling instants,

(5) pulse width or magnitude, and

(6) dead times (or time delays).

Dynamic processes in a system, say, the change of the
state or of the'dutput variable with time, can be caused by
(f) the inlfuence of input signals,

(2) the change of parameters,

“While studying the influence of input.signals, the dynamics

of the system are usually considered only as a function of the
input signals, assuming that the relation;hip is qualitatively
and quantitatively unchanéed. This is the subject matter of
conventional*system theory.

While studying the influence of parameters, the
dynamics of the system are considered as a function of changes
Vin the parameters (or of‘the structure of the system, becaugé
the change of system parameters can also change the system
structure). The dependence of the system dynamics on the para-
meters is called sensitivity., Strictly, parameter sensitivity

can be defined as follows:

Definition 3.2,1.,: Parameter éensltiVIty is the effect of

parameter'changes on the dynamics of a system, say the time

response, the state, the transfer function, or any other
quantity characterizing the system dynamics.

The mathematical problem to be solved in sensitivity

theory is the calculation of the changé in the system behavior

U
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due to the parameter variations. Let the parameters of the

system be represented by a vector = [d]—d o dr} T.

2
The mathematical model of a system relates the parameter

vector o to a quantity characterizing its dynamic behavior

in some way. The characterizing quantity in case of a dynamic
system will be tbe state vector x.

Let us explain the basic idea of the sensitivity theory
by means of this example. It is assumed that the mathematical
model of the (possibly nonlinear) system is given by the
general vector differential'equationﬂ

= f(’.(! °.‘nbyrt»E) ’ ’-‘(t())‘:== xo ‘EQ~(302-1)

IXe

where x represents the state vector with the initial stéte
5(t0)=§o‘, and u represents the input vector, Amonngther
things, this equation relates the state vector x to the para-
meter vector o, In terms of set theory, this relation can
also be interpreted as é mapping & —» X,

Generally, in mathematics, a unique relationship bet-
ween the parameter vector and the state vector is assumed,
Howe;er, this is not possible in engineering practlce; Here
the parameter vector of the mathematical model means a nominal
parameter vector that will be‘denotéd by % 4 in the éequel,-

whereas the parameter vector of the actual system is

X = =4

ot AX | in the sequel called the actual parameter
vector,

in order to study the influence of the parameter devi-

‘ations A on the behavior of the system, let us define

1
{
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R, @s the subspace of the parameter variations AAK

around o 0 ° and

Rx as the corresponding subspace of the state vector.
By this definition the mapping & —> X can be replaced by

the mapping Rq——» Rx as shown in Fig. 3.2.1,

R

x

FIGURE 3.2.1. Mapping of the pafameter spéce into the

state space.,

R, s uniquely determined by‘Equaiion (3.2,1) if R, s
known,. However, for a number of reasons, It is not rea;onable
to characterize the sensitivity in terms of Equation (3.2.1):
first, since the direct solution of Equation‘(3.2.l) for all
elements of R, requires an infinite number of solutions and
depends on the definition of R, , and second, ;ince the result
for small parameter variations‘ ”Aesn &« ” 0_<0” would be
very inaccurate |If approxfmatidns are applied for the evalua-
tion if tht§ equation. For example, this would be true.in the
case of numerical or énalog computation,

Therefore, it is a common practice in sensitivity theory
to define»a so-called senSitiviiy function g which,:underAcér-
tain continuity conditions, relates th; elements of the set of
the parameter deviatjons Asér to the elements of the set of the

parameter-induced errors of the system function A x by the

linear equation

{
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O)AOS Qo“ooooooo‘EqO‘(3¢202)

Actually there are several ways to define quantiiies
for the characterization of the parameter sensitivity of a
system. One of these definitions which is frequently used in
the sequel will be given below.

Let the behavior of the dynamic system be characterized
by a quantity g% %), called a system function, which, among
other dependence;, is a function of the parameter vector

T
X = { Xy ¥y e gr] . For example, f? can represent any

time domain or frequency domain property or a performance index.

Definition 3.2,2,: Absolute senSitivity function,

0%

A -
=

S
: dx

3.3, MOTIVATION FOR SENSITIVITY APPROACH TO TPBVP

The motivation for using sensitivity function (or a
matrix)ifn T}BVP stemmed from the fact that aimost all of the
methods for solviné this problem have the difficulty of
"getting started'" or "initial guess'; and the reason is the |
extraordinary sensitivity nature of the Euler-lLagrange equations.j
In érder to eliminate this difficulty we thought that it was 5
ﬁecessary to know the sensitivity of the dynamic system to the
changes in the uhspecified boundary condition (in our case

initial costate'fundtion values)., If we had known this sensitiyiﬁ

function of the system undet consideration, then it would have

-

1
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been possible to change the unspecified boundary conditions

in a rational fashion, i.e., if the system or equivalently.
the differential equations describing it has high sensitivity,
then the incremental addftion to the unspecified boundary
condition wiIl have to be smaller or if the system has low
sensitivity, then this addition will have to be larger;
because high sensitivity means that a small change in the
unspecified boundary conditions induces a large change at

the other end, so we will have to take smaller steps. o ‘

3.4, THE TRAJECTORY SENSITIVITY FUNCTION OF CONTINUOUS

SYSTEMS

The new metﬁod which will be proposed for the solution
of general nonlinear two-point boundary-value p;oblems will
employ trajectory sensitivity function as a crucial tool in |
its development. Therefore, at this point, let us define this }
special senﬁitivity fynction with relation to continuous systems,.
A continuous, possibly nonlinear system of nth-order ‘

can, in general, be described in the state space by a vector

differential equation of the form
2= fla g at) s x(tg) = xg Eq.(3.4.,1)

Here x is an nxl state-vectéf, f an nx} vector functfon,'g an
input Vector, X @ nominalmrxltparameter vector, and X0 is the

.nx1 initial state vector. Equation (3.4.1) is called the nominal
state equation, ‘

i
i
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Assuming that the parameter vector deviates from the

nomine] value %4 by AA , we have

x = flx,u, x,t) x(ty) = x Eq.(3.4.2)

=0
This equation is called the actual state equation.
Now it is assumed that Equation (3.4.2) has a unique

solution §=§(§;t) for all admissible initial conditions and

0

as well, However, this dependence is not needed for the fol-

parameter values. x is of course a function of u, X0 and t

lowing considerations and will, therefore,'be dropped for ease
of notation. Furthefmore, the solution x is assumed to be a’
bounded continuous function in £ and t. It is known that this
property is guaranteed if f is a'bounded contiﬁuous function
satisfying the Lipschitz condition (Refer to Theorem 2.1.1).

|f the parameter takes on its nominal value g the
nominal solution §n=x(§o,t) is‘obtafned. If, on the other hand,
the actuel solution is given by x=x(x,t), then the perameter-

induced change of the state vector is defined as

A first-order approximation of Ax can be written by use of a

Taylor expansion in the form

. 35 .
A-’_((-o_(,t) = OA?_("' O(Ao() Eq-(3o‘*ol")
g« .
- ?-(0

. This equation can be viewed as a definition of the parameter-

i
¢
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induced trajectory deviation. Now we can state the following

important definition.

Definition 3.4.2.: Trajectory Sensitivity Matrix.

B R 1
9%y °%y
ox dd X
A - 1 .
s £ = r Eq. (3.4.5)
- deX o . .
-.0 L] .
an axn
plod par
L ! r 1<y

3.5. SENSITIVITY APPROACH TO THE SOLUTION OF TWO-POINT

BOUNDARY=VALUE PROBLEMS

In this sectfon a new methoa for the nqmerical solution
of two-point boundary-value problems will be presented. The
- method requires the assignment of arbitrary initial conditioﬁs
for the variable that are specified at the final time. Then,
the problem is solved iteratively, based on trajectory sensiti=
vities with respect to the initial4conditions.,

Consider a two-point boundary-value problem for n-vector

-§(t) and m-vector y(t).

= f(x,y) . y = hix,y) ‘ Eq.(3.5.1)

I1Xe

x(0) =a , y(M =b . Eq.(3.5.2)

Equation (3.5.2) shows that n conditions are prescribed at the:
initial time t=0 and m conditions at the final time t=T, The

]
{
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separation of boundary conditions in time makes this problem
much more difficult to solve than a comparéble initial-value

problem.

Suppose an initial guess for 2(0) is assigned as follows
’_((0) =§ x(o) = E s 00080 Eq.(3-503)

This is an initial=value pfobiem that can be integrated much
more easily than the original problem. However, y(T) calculated
using Equation (3.5.3) wilf in general be different from the.
dgsired boundary value b. The aim of the iterations will be to
make y(T)=b.

Suppose small changes in the m-vector ¢ are introduced,
The effect of such changes is predicted by trajecdory sensiti-
vities, which can be calculated while the initialsysiue problem
is being integrated., |

Define sensitivity matrices as follows

, [ 2%, (1) ax, (t)
Ix(t) 2 < Sey
R(t) 2 - . . Eq.(3.5.4a)
= Q¢ : : :
2x (t) ax_(t)
i 3(:1 | acm ]
and - . . .
3y1(t) By](t)
—_——Bc, ceee S g
oy (td : :
s(t) = ———— = oy (t) oy _(t) |Eq.(3.5.ub)
= 2¢ B e —
- - o¢y 3 <.
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Then we obtain two sets of lingar differential
equations by taking the partial derivative of the Equations

(3.5.1) and (3.5.3) with respect to ¢

ox 2f  Ox af 2y 9x (0)

= + g  em———— =0
9%  dx d¢ Iy c -
3y . 2h  2x oh 2y 3y (0)

= : + y = 1
¢ ox 3¢ Iy ¢ e -

or in a more compact form, using Equations (3.5.4a) and

(3.5.4b), we may write

. [ ar o
R R R(0)=0
= az-‘ ax ’ Eq.(305-5)
§ 2R s 5(0)=1
: X Jy
X -

Thus, Equations (3.5.1), (3.5.3) and (3.5.5) constitute
two sets of initial-value problems for x, y and for R,”S, which
can be fntegrated concurrently. Only x(T)‘and S{(T) wil) be used
as a result of this integration. Here, S(T) predicts the change
in y(T) as a result of changes in ¢, by the defining Equation
(3.5.4b). Therefore, if y(T) is not suffficiently close to the
given vector b, the vector ¢ should be changed in a direction
dictated By the Sensi;ivity matrix S(T),

Suppose a finite change"Ag on the initial guess ¢ is

introduced. The resulting change in y(T) can be approximated by

2y(T) 7 .
Ay (T) = ( ). &g + 0(Ac) = S(T) &c Eq.(3.5.6)

, d¢c
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However, we would like to make z(T)=§._This makes ‘Ax(T)=b’x(T);
and Equation (3.5.6) can be used to calculate Ac approximately
as

Ac = (5(T)7 N (p-y (1)) ceeeenene. Eq.(3.5.7)

provided that the sensitivity matrix is invertible,
Now, the method déscriﬁed above can be summarized as an
ite}ative algorithm
{input : vectérs a and 9}
choose a norm in E™ and an accuracy §
make an inftial guess for gi |
repeat
solve the initial-value problems
if ||b=-y(T)||]< § then solution found
else update ¢ using Eq.(3.5.7)
until solution found or too many iterations
ioutput : x(t) and 2(t), for 0£t£T |
If the original problem has no solution, this algo~-
rithm will of coﬁ}se fail, This failure will usually produce
a non-invertible $(T). But the converse is not generaliy true.,
That is, if‘the algorithm happens to converge to a non-invertible
S(T), it does not mean that the'origfnaliproblem has no solution,
In fact, fn such a case, the~al§orithm should be restarted

.

using a different initial guess for c.
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NUMERICAL RESULTS AND SIDE-PRODUCTS

OF SENSITIVITY APPROACH TO THE SOLUTION OF TPBVP

b,1. NUMERICAL RESULTS

The method described above has been used in the solution
of several linéar and nonlinear two-point boundary-value prob-
lems. Three of the examples reported below represent linear'
cases, two with scalar variables, the other with vector variab-
les. The last three examples involve equations with different
nonlinearity features'and they exhibit the generality of the.
method, |

in all examples, except Example 5, an error tolerance

of  =0.0001 was allowed, The integrations were performed wilh

a step-size of 0.01.

Example 1 :

The linear system |
X = -2y2Zx - 0.5y y = =2x + 2J7y
x(0) = 2 y(1) =0
was solved and y(0)=0.685 was found in 5 iterations, In this

example, the Runge-Kutta 4 integratiop routine was employed.

Example 2

X = =ax = 0.5y y = = 2x +y
x(0) = 1 _ / y(1) =0

In this example y(0) was found out to be 0,773 in k4 iterations

with the same integration routine,

i
{
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'Example 3 :

Vector variables were considered in this example,

. 0 1 [0 o
x = X +

-2 -3 "_0 -005
. 2 0 [0 -2
Y = X +

0 o0 1 -3 !

L
1 1

x(0) = y(1) =

1 -1

The y(0) vector was célculated'to be g-12.07 -12.73}
in b iterations using the same Runge-Kutta L4 integration rou-
tine again. It should be noted that new method does not bother
with any additional computational complexity and difficulty in
extending to the vector variable cases; The number of iterations
and computation time for vector variable cases are almost the

same for scalar variable cases.

Example 4

Here the nonlinearity is in quatient form,.
x = y/(1+y) y = x
x{0) =0 y(1) =1
Starting with an initial guess of y(0)=3, the unspecified
initial condition y(0) was found out to be 0.772 in 4 iterations.

The‘Runge-Kutta 4 integration routine was used in solving initial

value problems.
Example 5 :
. Another type of'nonjinearity is considered in the following

_problem,

t
¢
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X =y 9 = -1-x-y9
x(0) =0 y(1) = -0.5
Starting with an initial guess y(0)=0; the algorithm

produced y(0)=0,652 in 6 iterations using an error tolerance

of 0.001., The iterated Euler routine was used for integration.

Example 6

A stronger nonlinearity is involved in the following

problem,
X =y y = lx+y|if
x{0) =0 y(1) =1

In this problem, starting wiéh a guess of y(0)=2, the
algorithm found the value y(0)=0.179 in 11 iterations. For
integration the Runge-Kutta 4 routine was used.

Actually several more problems, both linear and non-
linear, are solvéd successfully using the new method. However,
the reported/ones are sufficienf’to elaborate the significance

of the method.

h,2, .ONE-STEP CONVERGENCE PROOF FOR LINEAR TPBVP

It can be proven that when the original equations are
linear, the algorithm converges to the solution always in one
step regardless of the initial guess, The only requirement for
this one-step convergehce‘is fhe exéct forward integration of
the resulting initial-value problem. This feature was not obser
ved in the linear examples reported, due to the fact that app-

roximate numerical integration routines were employed.

Consider the following general linear two-point boun-

dary-value problem.
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X = Ax + By Y = Cx + Dy
x(0) = a y(T) = b

form, we have

x

or writing in a more compact matri

X 1A B }x x(0) = a
Y ¢ Dy y(T) = b .

The sensitivity equations for the above problem are as follows:

Bl [r e[ 8(0) - 0
SN AIE $00) = 1

where ; is the mxm identity matrix. Now, let the initial guess
on y(0) be ¢ vector.,

Then we have two sets of linear initial-value problems for x,y

and for R,S.

The solution of these two sets of linear initial-value

problems can be written analytically as follows

x(t) At | a
: = e” .,
y (t) c
and
RGO At |0
= | = e" -
s(t) !
where -
A B
TANS
= e
-~ L- pd
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At P(t) N(t)
let e = H =

9(t) H(t)
then ﬁ(t) - éQt 2 g(t) §(t) g
$(t) ! o(t) m(e)| |1
J - = =

(R (1) N(t)

s(t) M(t)

which implies that the solution for x(t) and y(t) can be written

as follows

x(t) = P(t) a + R(t) ¢
y(t) = 9(t) a + 5(e) ¢

and at the final time T we obtain

Y(T) = 0(T) a + 5(7) ¢

[ 117,]

The probiem requires that X(T)=§. Therefore, the unspecified
boundary value (which is guessed to be c vector) must satisfy

the following condition at the final end.

S(T) a §(T) Sexact - 2

Solving for ¢ vector, we get

€ aor = TN L (eeg(Mea)
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However, we use
-1
Ac = (S(T)7 (b-y(T)) _
as the iteration equation in the algorithm. Thus,

Crew = £ * (ST (B-y(T)

In the first iteration step y(T) has been calculated to

be

y(T) = 9(T) a + 5(7) ¢

Substituting this value of z(T) into the iteration equation

we get

Chew = € *+ (3 (b-0(T)a=5(T)¢)

# (s - (5T eMa - (5T 7T (Mg

[}
0

+ (M7 (p-g(Ma) - ¢

L}
0

= (5™ (e-g(Ma)

. ¢ = C after the first iteration,
- =exact -new



52

4.3. AN EFFICIENT ALGOR!ITHM FORlFlNDING THE SUFFICIENT
NUMBER OF TERMS IN NUMERICAL EVALUATION OF

FUNCTIONS BY POWER SERIES

Suppose that we have a function f having derivatives
of every order in an open interval about a point a. We call
such functions infinitely differentiable in this interval.
Then we can certainly form the following power series which

is known as Taylor's series generated by f at a.

0 ’ n

We also know that Taylor's formula with remainder

provides a finite expansion of the form

n ' ‘
fn(x)l= ZZ: —iitliil— (x-a)k + En(x)

k=0 k!
The finite sum is the Taylor polynomiai of degfee n generated
by f at a, and En(x) is the error made in approximating f by
its Taylor polynomial, If we let n—+>® we seé that the power
series will converge to f(*) if and-only if the error term
tends to zero. A useful sufficient condition for the error

term to tend to zero is stated in the following theorem,

THEOREM 4,3, : Assume f is infinitely differentiable in an

open interval | and assume that there is a positive constant

A such that :

: If(n)(x) - AN for n=1,2,3,...
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and every x in I, Then the Taylor's series generated by‘f at
a converges to f(x) for each x in I. /

However, this theorem doeé not provide any means for
finding the sufficient number of terms in the numerical evalu-
ation of a function value at a given point by’power series,
Since it is not possible to let n go to infinity for conver-
gence to the exact value in numerical calculation it is obli-
gatory to devise an algorithm for finding this sufficient
number n,

Here, at thi§ point we have again tried to exploit
sensitivity idea and Newton's method./

First assume that sufficient condition for convergence
holds for the considered function f in the given intervalj;

therefore, the error term is a smoothly decreasing function

of iteration terms n after some fixed value of n.

EJI

SV R W

8\1.‘1’1 [~ - === ==

TSN RS P

e
FIGURE 4.3.1. Graph of error term function

By definition error term at n=n, is given by |
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Similarly,

Then the sensitivity (or the gradient) function may be

defined as

-t

Eni+l n, '
S = - L=t - ¢

i ‘ n.+1 - . N .
i nl t '

Since our aim is to make the error term zero or below
certain prescribed tolerance value t, » we may write the fol-

lowing recursion formula using the Newton's idea.

n = n, + S-‘(O- £ )
new i n, n,

Eventhough, it is true that the error term will tend
to decrease very smoothly (under sufficiency condition for
convergence) after some fixedvvalue of n, call'ii Ne, we do
not know this '"fixed'" value nfvbeforehand to set it as initial
guess n} in order to start the iteration, Here, we have two
choices, First we may obtain ne analytically. Consider the
sensitivity (or gradient) function Sﬁ

) = (F = F)

n+1

Set this function equal to zero and solve for n value in terms

may

f

"of x, f(n+2)(;), f(n¥‘)(a), f(h)(a). The "fixed" value n
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be set equal to one more of the value n obtained above,

Second choice could be an algorithmic(approach. We may not
bother with the calculation of Nes but instead we may increase
our initial guess ﬁi by fixed amo;nts until we arrive to the
smoothly decreasing portion of the error term function. This
fixed amount may be increased geometrically or exponentially
as the failure occurs in reaching the decreasing portion of

error term function in order to speed up the algorithm,

Now, let us summarize the first choice as an iteratijve

algorithm,
choose an accuracy t.

- make an initial guess n?> ne

repeat n=n
new

calculate En , 6n+{ v S,

if En < t. then solution found
' -1
else update n using Mew "S5, - €n
until solution is found
{output : n?

The ideas and algorithms developed In this section can
easily be extended to the numerical evaluation of function of
matrices by power series, However, it is necessary to make ab
few slight modifications. We know that a function of square

matrix can, in general, be expressed by a power series as folloy

© o
f(é) = :E:. Cy k S | |

k=0

Cn

For instance, an important function in system and control

theory is

i
t
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1"nxr

T o (ank
e = Z(._:__

k=0 k!

Here, we are again faced with the question of
"sufficient number of terms'" to terminate the infinite power
series in the numerical evaluation of a function of a matrix.

Eventhough, there may exist some empirical relations such as
No=min {3 [aT| +6 , 100}

where N is the sufficient number of terms, it is easy to show
that this kind of empirical relations/is, in general, not
sufficient to cover all degenerate cases.

Now, the argument of the funciton, theierror_term and
the sensitivity functions are all matrices; whereas the number
of terms to be chosen or found out is still a scalar value.
Therefore, a scalar value must be determined out of these
matrix funcitons by employing some relevant and logical criteria
in order to be able to draw a relation with the scalar value
of the number of terms. This scalar valqe can be chosen to be

(a) the trace of the matrix
(b) the largest of the absolute eigenvalues of the matrix.

Then, an algorithm similar to the ones developed for

scalar functions might be devised. |

First let us consider a scalar example,

Example 1 : Let f(x)=ex, and develop the recursion formula for

this functiqn
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n+1 n+2
€= 2— ang € . ._x
(h+1)1 n+ (n+2) !
Therefore,
S - E . - E - xn+2 } xn+1
n n+1
n (n+2) ! (n+1) 1
xn+l x
= . ( - 1)
{n+1)1 n+2
and
g1 - _(n+1)! n+2
n
Muba X=n=-2

Then, the recursion formula

W =g - fnt1)t n+2 x"*1

new x"* X=n=2 (n+1) !
n+2

n = e e—

new X=n=-2

The most important quantity in the abovebrecursion
formula is the denominator (x-n=2), If the initial guess on
nis cﬁosen arbitrarily as it.is done inrthe second algorithm
developed in this section, then a special attention»must be
paid to the denqminafor (x=n=2). If this quantity is positive

then the guess on n must be increased by certain amounts until

the denominator becomes negative.
’ A

Remark 1 In case of calculating e', x might be the largest of

the absolute eigenvalue of the matrix A,

If x >M then overflow will occur due to the limits of 5

Remark 2

‘the computing element, For instance, M is equal to 230 for

Univac 1106 Computer used in this study,

t

‘ If x <0 then there is no risk of being out of range.
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Remark 3 Similar recursion formulas may be derived for
other known functions

Remark 4 One may stop the calculation when the incremental
change in n value which is given by =(n+2)/(x-n-2) is less

than 1.5. This value of 1,5 is determined experimentally,

4,4, A NEW METHOD FOR NUMERICAL SOLUTION OF LINEAR

STIFF SYSTEMS

A stiff ordinary differential equation (o.d.e) is one
’in which one component of the solution decays much faster than
others. Many chemical engineering systems give rise to systems>
of stifffo.d.es,

Most realistic stiff systems do not have analytical
solutions so that a numerical procedure must be used, Conven-
tional methods such as Euler, explicit Runge;Kutta’and Adams-~-
Moulton are restricted to a very small step size in order fhat
the solution be stable. This means that a great deal of computer
time could be required,

Some of the more readily available méthods for stiff
equations include :

(a) Variable-order methods based on backward differentiation
multistep formulas

(b) Methods based on the trapezoidal rule

(c) Implfcit Runge-Kutta methods

(d) Methods based on the use of preliminary mathematical
transformations tovremove stlffness and the solution of
the transformed problem by traditional technlques

. (e) Methods eliminating those differential equation having

t
&
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small time constants and solving them as algebraic equations

instead,

Consider the following linear system

x(0) = %y

I1Xe
1]
n>
(>4
-

where the eigenvalues of the matrix A are widely separated,

i.e., a stiff system, We know that the solution of this system

is given by

t
x(t) = e” . x,

nx

Thus, the problem has now been transformed to the exact numefical
calculation of the exponentiaf function of a matrix. If the
efgenvalues of the matrix A had not been widely separated aﬁy
mafching method would usually have been able to solve the above

~ linear system.

“in the previous section we have developed an efficient
method for the numerical calculation of a funciton of a matrix

by power series. Therefore, it would be very easy for us to

calculate this special case of a function of a matrix using

those results,

ExamEle 1 ¢

A linear two-point boundary-value problem which gives

rise to a stiff initial-value problem ‘for any initial gdess of

the unspecified boundary-value is considered and the method

mentioned above is used as the integration routine for solving

those stiff initial-value p{oblems.

i
¢
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x = 10y ‘ ; = 10x
x(0) = 0 y(2) =1
Starting with an initial guess of y(0)=1, the unspecified.
8

initial condition y(0) was found out to be 0.412x10"° in

three iterations. An error tolerance of 5=0.0001 was allowed,

L.5. SOME EQUIVALENCE PROPERTIES AND MODIFICATIONS IN
SOLVING LINEAR AND NONLINEAR TPBVP USING SENSITIVITY

APPROACH

There is én important property felated to the case of
linear TPBVP which one can exploit quite easily. This is the
'equivalence of the'sensitivity matrix and the so-called transi-
tion matrix of the linear system of differential equations.
This eqdlvalence property removes the necessity of solviﬁg ‘two~
sets of initial-value problems which was necessary in the algo-
rithmideveloped for solving the two-point boundary-value prob-
~lem; because when one set of initial-value problem is solvéd,
its solution will represent both the sensitivity matrix and the
transition matrix. Thhs, when the sensitivity matrix is then
multiplied by the initial value vector of that iteration the
vector valuesx(T) and y(T) would haQe‘beenvobtained; fhls is
quite a saving from computational pqint of view.

’Theré exist one more fmportaht property of sensitivity
matrix which may be valuable lﬁ the treatment of nonlinear fwo-
point boundary-value problgms. Actualfy, the sensitivity matrix

is a solution of the linearized version of the nonlinear system
of equations.



61

Now it is possible to use both of the equivélence
properties of the sensitivity function in the treatment of
nonlinear two=-point boundary-valuq4problems. That is, first
the nonlinear two-point boundary-value probleﬁ is assumed to
be linearized by considering only the initial-value problem
for R and the sensitivity matrix S. Next, this sensitivity
matrix is again multiplied with the augmented initial condi-
tion vector of that iteration to obtain x(T) and y(T) values
for the linearized version of the nonlinear problem. The
iteratjon may contlnué until the solution is within some
prescribed limits.. Then one may return to the normal procedure

of the algorithm.

4,6, CONCLUSIONS

In view of the variety of bodndary-value problems
that can be encountered, it is not possible to imagine one
aigorithm ever being abie~to solve all problems both accuré-
tély and efficiently, Even in the case of a nonlinear two-
point boundary-value pfoblem, it can be Qeen that some of the
existing methods have "initial guess" difficulty, and some
have ''poor convergence' near the solution,

In this study; a new method is proposed for the numeri-
cal solution of the two-point boundary-value problem which uses
trajectory sensitivities with respect to the initial conditions.
Motivation for using sensitivities originated from the fact
that the Euler-Lagrange equations which give rise to the two- .
point boundary-value problem in optimal control were often

highly sensitive to changes in the unSpecified boundary condi-
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tions, and therefore, they were causing problems for the
me thods which use initial guess, ‘

The generality and the power of the new method lie
in the fact that the transition from the unspecified boundary
conditions to the specified end is calculated quite efficiently
and accurately for nonlinear and large systems,

The sensitivity matrix which is instrumental in the
implementation ofvthe method may in some problems become either
zero or infinity. In such situations a remedy may be the re-
assigqment of the initial guess. However, it must be noted that
Qe have never met with such critiﬁal gituatioﬁs eventhough many
linear and nonlinear examples are solved using the method.

There iﬁ oné more difficulty assocjatéd with the Fumérlca‘
solution of the diffefential equations forward in time after the
initial gdess is made. This dffficulty is known as the '"stijffness'
in the differential equations and can be overcome by seleqting
appropriate integration routines. In fact, as a byproduct’of
this study, a method-is deveIOped which resglves this “stiffness'
problém in case bf linear differential equations,

Moreover, it has been proven that when the original
equations are linear, the algorithm converges to the solution
always fn one step regardless of the initial guess. The only
rquirement;for this:one-step convergence is the exact forward
integratibn of the resulting initial=-value problem. This feature
was not observed in the linear examples reported due to the fact

that approximate integratioﬁ routines were employed,
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DIRECT SENSITIVITY QPPROACH TO THE

GENERAL OPTIMAL CONTROL PROBLEM

5.1, PROBLEM FORMULATION AND HAMILTON-JACOBI-BELLMAN

EQUATION

It ofgen happens in automatic control probfem tha; one
would like to know the optimal control function u(t) from a
great many different initial points to a given terminal hyber-
surface, since we may not know where the system will start
from or when it will start. To cover this situation we mﬁst
- calculate a "family" of optimal paths so that all of the pos=
sible initial points are on, or at least very close to, one of
the calculated optimal paths, In the literature on the calculus
of variations, such a family is called a '"field of extremals',
In general, only one optimal path to the terminal hyper-
surface will pass through 'a given point (§(t),t), and a unique
optimal control vector go(t) is then agsociated with each point.

Hence, we may write
!0 =l-jo (§’t) . e e e cseeee e Eq-(s.‘.])

This is the optimal feedback control law; i.e., the control
vector is given as a function of the present state 5(:) and
the present time t.,

Associated with starting from a point (x,t) and pro-

ceeding optimally to the terminal hypersurface, there is a
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unique optimal value of the performance index, JO. We may
therefore regard J0 as a function of the initial point, that is,
30 - JO (x,t)

This is the ”optfmal return function',

One aspect of the classical Hamilton-Jacobi theory is
concerned with finding the partial differential equation
satisfied by the optimalvreturn functioh Jo(x,t). There is
also a (vector) partial differential equation satisfied by the
Optimél control functions uo(x,t). ﬁellman has generalizedbthe
Hamilton~Jacobi theory to include multistage systems and
combinatorial problems and he called this overall_theory
dynamic programming.

Now consfder the general optimal control problem for

an arbitrary initial point (§,t). The performance index is

t
f
)= Plxlep,e] + f 1x(2),u(0), T IdT Equ(5.1.3)
t
and system equations are
é= f(§.9,t) A EEEEE XX NN Y Eq.(S.‘-")

with the terminal boundary conditions
!

\y[>_<(tf),tf] =0 ceceecesceesse Eq.(5.1.5)

The optimal return function, defined in Equation (5.1.2), is

| .
{
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given symbolfcally by
. ‘ te
O .
J (x,t) = min x(t.),t + 1(x,u,c)dz| Eq.(5.1.6)
i E(t)i¢[‘ f f] - ! ‘ - 9 } q

s
i

with the boundary condition

J0(§,t)= ¢(§,t) on the hypersurface V/(x,t)=0
Eq.(5.1.7)
Assuming that Jo(f,t) exists, is continuous, and
possesses continuous first and second partial derivatives at
atl po}nts of interest in the x,t space, and appfying‘the

dynamic programming approach one finally obtains the following

equétion
0 0
2 L0 (x, 2y,  Eq.{(5.1.8)
ot g ox
where
. 0 0 .
HO(§, o , t) = min H(x, » u,t) Eq.(5.1.9)
dx u(t) 2x
and
0 o 7T
i, —2—u,t) = 1(x,u,0) + (21) f(x,u,0)
ox ax

Eqﬁation (5.1.8) is ca]led the Hamiltﬁn-Jacobi-Bellman Equation;
it is a first-order nonlineafypartial,diffenential equatfon and
it must be solved with the boundary condition (5.1.5).

Numerical solution for the Hamilton-Jacobi~Bellman
Equation is very difficult., In fact, it is only rarely feasible

" to solvg!this partial differential equation for a nonlinear
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system of any practical siQnificance; and hence, the develop-
‘ment of "exact" explicit feedback control schemes for nonlinear
systems is usually out of reaﬁh.g

The Hamilton-Jacobi-Bellman Equation gives rise to
some valuable outcomes only in the case of linear plant dynamics
and quadratic performance criteria which are referréd to as
linear regulator problems in the optimal control theory. If
the final time is specified and fixed in the linear regulator
problem then the Hamilton-Jacobi-Bellman equation reduces to
the well known "Matrfx Riccati Differential Equation', and if
the final time is infinite then one ends up with the "Algebraic
Mat;ix Riccati Equation', both for which there exist various

efficient numerical solution schemes in the literature.

5.2, PERFORMANCE INDEX SENSITIVITY

A variety of computational methods have been developed
for solving general nonlinear optimal control problems. All of
these methods are iterative techniques which somehow use suc-
cessive approiimations; and certain of fhem involve lineariza-
tion of the nonlinear differential equations that are generated
by firsteorder variational énalysis. |

Here a new approach will be presented which hopefully
will give rise to varioﬁs iterative methods and algorithms for
solving the general optimal/control problem statéd in section
5.1. This approach is essentially based on the 'performance
index sensitivity'", Therefore, before devoting ouselves to the
different methods and the algorithms within this approaéh, let

-

us briefly outline the basic properties of the performance-
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index sensitfvity.

Change; of the'performance-index'of an optimal control
system can be caused either by parameter changes of the mathe-
matical model of tBe given process (the plant) or by changes
in the control law, For a feedback control System, changes in
the control law are eqqivalent changes of the controller para-
meters. Since the optimization is achieved by minimizing the
performance index J with respect to the control variable, it is
evident that the performance index sensitivity Jd with respect

R

to changes in the controller parameters dR vanish as long as

teh minimum is a relative one., On the other hand, the perfor-
mance-index sensitivity Jd with respect to changes in the plant

S .
parameters . is not necessarily equal to zero. It can take on

S
any real value, The same is true for simultaneous changes of the
plant and controller parameters as may be encountered in'ideal
optimal controllers that provide optimal control for any set
of actual parameters.

Let us now derive the necessary equation for the per-

formance index sensitivity J = ( 9J7 3 ) q. of a continu-
B -0

ous optimal system with respect to controller parameter varia-
tions.

Let the control system, for which an open-loop input
or an optimal closed-loop control is to be designed, be given
by the following general vector.differential equation

.

x(t) = f(x(t), u(t), t)r » x(tg) = xg Eq.(5.2.1)

. where x is a n-dimensional state vector, u is a one-dimensional

| Yo
T
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control vector,
Now the optimization problem consists in finding a
control u(t) which minimizes a performance index of the form

t
J= Px(r),e) + J’f 1(x,u,t)dt Eq.(5.2.2)
t
0

We have assumed that u(t) is, in particular, given by
T .
u(t) =B (t) §(t) R qu(502.3)

where p(t) is n-dimensional controller parameter vector.
We might then obtain the performance index sensitivity equa-
tions by taking the partial derivative of the Equation (5.2.2)

with respect to the parameter vector p as follows

X%
Jp

3J AP
B 3p 9 X

X 32

ot 9 |
s [ (2 e
t d )

t 0 B

tt f

Eq.(5.2.4)

Here, 3¢/ 3x , 231/ 2x , and 91/ Jp are defined as row
vectors; whereas the term ( 9x/ Jp) is the trajectory sensiti-
vity matrix S which is defined in section 3.4, Thus, Equation

(5.2.4) can be written as

RL

o1 ); S+
EN . * 3

)

2l Ydt Eq.(5.2.5)
dp .

i
HO A
o

te

S can be determined from the trajectory sensitivity equation
of of

)o s+ (

= (

Ne

), s(0) =0
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The solution for the trajectory sensitivity equation is given by

of
gc J g(t,t) ("——-) dt te s oo 0o Eq-(5.2-7

g(t,T ) is the transition matrix obeying g(<,T)=] with

0
3

1]~

d

= g B es e eeses s E -(5-2.8)
Ix  : )

| R

(ad
Ix

Actually, we might determine thé performance index
sensi;iVity vector still in another way by simply applying the
definitions., Let us suppose that théfperformance index is given
by J2 for the parameter vector p. Then, let a small change ‘in
P vector, say Ap amount, occurred. This change first induﬁes
a direct chénge in the state trajectory of the system and next
induées directly aﬁd indirectly a change in the performance
index, Supposing that the new performance index is given by

p+ Ap , ‘
J , the deviation in the performance index is given by

p+ Ap P
J .

AJ = - J TR qu(5.209)

For infinitesimal parameter changes Ap=dp , the
performance index deviation AJ can be written as

Al =2 Ap ceeeereees Eq.(5.2.10)

op p
Therefore, the performance ‘index sensitivity can be determined
directly by applying a perturbation in the parameter vector’
and noting the deviatioﬁs. One crucial drawback of this method,

-

!
{
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however, is that one would have to deal with nonlinear
differential equations whereas the derived sensitivity equa-

tions are, in general, linear differential equations.

5.3. THE DIRECT SENSITIVITY APPROACH

The general approach which will be presented below
could be named as ''direct sensitivity approach', since all
of the methods which will be developed using this approach

are based upon the performance index sensitivities with respect

to controller parameters. That is, one is dealing with the
design of optimal control function u(t) ﬁdirectly“ by employing
the performance index Msensitivities",

Bearing in mind the fact that the performance index
sensitiVitiesiére identically equal to zéro at the optimal
value of the controller parameters, the following general
iterative procedure might be considered (or designed) for

solving the optimai control problems,

t

(a) Choose sufficient number of éontroller barameter vectors,
Say Py» Py ;.. -

(b) Calculate the performance index sensitivities for’each of
the controller parameter vectors {pi}?=1 using any one
of the two methods discussed in the pr;vious section. One

‘may also calculate and store the value of the performance
index for each controller parametef vectors,

(c) Form a quadratic functfdnal, J, in the parameter space
using the calculated values of step (b).

(d) Find a new controller paﬁameter vector, SaYvE*’ which

t
¢
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minimizes the quadratic functional J formed in step (c).
(e) Check the stopping criteria; and stop or continue accor-
dingly,

(f) Put the new minimum controller parameter vector p¥ in place

of the controller parameter vector which either gives rise
to the greatest performance index value or produces norm-

wise highest performance index sensitivities, and go to

step (b).

The sufficiéncy of the numbef of controller pafameter
vectors basically depends upon the dimension of the system ‘and
minimization routine chosen (or more precisely, the formation
of the quadratic functional). For instance, 2 controller para-
ﬁeter vectors are sufficient for a second order system ff the
performance index values are used in the formation of the
quadratic functional; whereas at least 3 controller parameter
vectors are needed if only the performance index sensitivities
are emp}oyed in the quadratic functional formation.,

in step (c) the method basfcally'tries to approximaté
the real or exéct performancé index funétibnai by a quadratic
one, call it 3,‘using the values calculated in steb (b). J ﬁan
be written as a functibn of the controller parameter vector p

as follows

j(e) = i’ ET QB " ETb + C sev s s e Eq.(50301)

where Q is a nxn symmetric matrix to be determined., The mini-

mum of this approximate performance index functional Jis givén

by
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E* 3-'-‘ g-] b e s 0 0008000000000 Eq-(50302)

Using the performance index sensitivity vectors determined
for each controller vector one m;y obtain the following rela-

tion for b vector

b=gp; -, Viefr,2,...s) Eq.(5.3.3)
- i ‘
% N
Therefore, p which is the new minimum vector of the itera;ion,
can be determined as follows
* -1

.
b =aq (qp,-J_)
.- P

o
]
no

=By T 9 Jgi for any i 6{1,2,...5}
Eq.(5.3.4)
where JEi is the performance index sensitivity vector for the
ith controller parameter vector.

As it is pointed out previously one may either use
both performance index values and performance index sensitivity
vectors together or employ only performance index sensitivity
vectors in . the formation of the quadratic functional (or more
specifically, in determining the symmetric Q matrix). However,
the sensitivity vectors are more significant and valuable
combared to the performance index values; since the abso]ute
performance index values do not mean‘mdch whéreas the sensi;

tivity vectors give a lot of information about the shape of

the functional to belconsidered.
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A single one or a combination of the following

conditions might be considered as the stopping criteria of

step (e).

(i) the difference of two suézessive performance index
values is less than some given tolerance

(ii) the distance between any two recorded minimum
controller parameter vectors is less than some given tolerance

(iii) a certain norm of the sensitivity vectors for \
each of the controllef parameter vectors iﬁtless than some
given tolerance,

The iterative procedure presénted above is actually
quite a general approach to the optimal cohtfol problems.
Depending upon the choice of the fuﬁctlons for-g(t) and the
minimization routine, various effective algorithmé may be

developed out of this approach,., In the following chapters

a few of these alternatives will be considered.
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A PRIORI POLYNOMIAL APPROXIMATION METHODS
VIA DIRECT SENSlTlV]TY APPROACH
FOR THE GENERAL OPTIMAL CONTROL PROBLEMS

’

6.1. BASIC IDEA OF THE METHOD

As it has been pointed out in the previous chapter,
different choices of functions for g(t) would give rise to
different algorithms; eventhough the approach is still the
same direct sensitivity approach., In the algorithms developed
in this chapter, the functioﬁs which are to be chosen before-
hand (apriori) for Bkt) are polynomials. That is, symbolically,

it is assumed that p(t) is given by

- A
m

Po1*Pyqth eoee *Pt

m .
plt) = [Po2*Pyatt soer *Pp,t Eq. (6.1.1)

Lp0n+p1nt+ seee *Ppnt 1

In this manner, fhe infinite dimensional oPtIﬁal
control problem has been mapped to a finite dimensional
mathematical programming’problem. Then, this finite dimen-
sional mathematical programming problem is solved "'sequentially"
using the general iterative optimizatién procedure presented
in section 5,.3. Tﬁat is,kii is first assumed that the controlle

parameter vector function is given by the arbitrary vector
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B T
Pot

p
Efo(t) = (.)2 R R Eq.(6.‘.2)

o
L on.

*
and the minimizing P¢ (t) is found, say Pe using the general
0 ‘ : 0

iterative optimization procedure. Then, the new controller

vector function is formed as

P11
Ef1(t) =Bfo+ . t /oc.o‘oooooo qu(60103)
pln_

Now, the general iterative optimization procedure is applied
to the arbitrary controller parameter vector [p‘l Pyg *oo p‘n]T,‘
and the optimal parameter vector, say Ef , is found, Theh, the
optimal controller parameter vector functlon becomes

x (t) * . * ¢

P =P ~P

fl f0 fl
This '"sequential' procedure continues until one finally arrives
at the minimizing controller parameter vector for Ef , Say

Bf « The optimal controller parameter vector function is then

forméd as
* * % %' m _
pelt) = Efo + Ef1t et gfmt Eq.(6.1.4)

This is a '"forward' sequential optimization procedure, The

reverse of the above sequential optimization procedure migh't

I
{
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be designed, That is, the procedure might begin from the para-
meter vector Eb and terminate at the parameter vector Eb .
0

The optimal controller parameter vector function, in this case,

is given by

* -1 *
m+ Eb tm + seee + pb Eq.(60105)
. m

*( ) %
By o Ebmt -1 0

This, then, might be called a '"backward'" sequential optimiza-
tion procedure for the apriori polynomial approximation
methods. Depending on which procedure is used, the optimal

control-law is determined by either

u(t) = pi(t) x(1) ceeveereess Eq.(6.1.6)
or |

U(t) = B:(t;-§(t) ’ X EEEEEEEREE) Eq'(6o]o7)

6.2. NUMERICAL RESULTS

Eventhough the direct sensitivity approacﬂ is especially
developed for Qenerating the closed-loﬁp control function of
the genéral optimal control problems, it has been observed that
the algorithms developed based on this approach has given quite
satfsfactbry resu)ts also in the generation of the open-loop
optimal control functions. Therefore, a few examples related
to this class ofkproblems is also reported below.

First let u; consider a simple example whose énalytic‘
solution for the closed-loop control function is known,

t
t
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Example 1 : A first-order linear system with quadratic

performance index
Given

x, u scalar variables

~N

L]
X = u H

J

1

xz(tf) + % j] wi(1) dt
0

Find u(x,t) to minimize J

The analytic solution is given by

u(x,t) = ! x(t)

t=-3/2

Therefore, the optimal controller parameter function which fs,

in this case, a scalar one, is

1

p(t) = —
t-3/2

which can be approximated by a polynomial as follows

2 L 8 2

O R - T S Ly,

3 9 27 3

As n approaches to infinity the exact vélue of the function
po(t) will be obtained.

The following polynomial functioﬁ is obtained for the
‘controlier parameter fhnction when forward sequential optimi-
zation procedure is used.

pe(t) = - 0.976 - 0.279 t - 0.204 t°

The value of the performance index functional for this function

{
¢
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is equal to 0,312,
When backward sequential Optiﬁization procedure is
employéd the following polynomial function is obtained for

the controller parameter function.:

pb(t) = « 0,442 - 0,509 t - 2,707 ¢?

The value of the,performanﬁe index functional is equal to
0.342 for this function,

The figure (6.2.1) shows the graphs of the four
functions, po(t),vpf(t), P, (t), pav(t).'lt can be seen from
the graph that the function pf(t) first overestimates the
optimal function po(t) apd then underestimates in the second
half of the time interval, The same is true for the function

pb(t) in a reverse order.
0s 10 £

e

P’ (k)
S AC
—— p
............ Psv(t)

plt) v E o
FIGURE 6.2.1, The graph of the functions po(t),pf(t),pb(t),pav(t

{
{
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Therefore, if we take the average of the coefficients

of the same power of the functions pfkt) and pb(t) it is
certain that oné will usually obtain polynomials which app-
roximate the optimal controller parameter function p(t) much

better than either one of the functions pf(t) and pb(t).

In this special case, the average polynomial function

is given by

P, (t) = = 0.709 - 0.394 t - 1,455 ¢’

The next éxample considers the open-loop function of

again a first-order linear system with quadratic performancg

index

Example 2 :

Given

X = = x + u x(0) = 0

1 2 ; v
J =3 J u®(t) dt - x(1)
B v
Find u(t) to minimize J

The analytic solution is given by

0 -
u (t) = et !

In forward sequential procedure the control function is
obtained to be

uf(t) = 0.637 + 0,161 t + 0,081 tz
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and the value of the performance index functional is found
to be -0.208 for this function.
When .backward sequential procedure is employed the

control function found to be

ub(t) = 0,135 + 0,108 t + 1,349 ¢

with =-0,192 as the vélue of the performance index.
The average polynomial of uf(t) and-ub(t) is given by

uav(t) = 0,386 + 0.135 t + 0.715 tz

The Figure (6.2.2) shows the graphs of the four

functions uo(t), uf(t), ub(t), uav(t).
u(e ¢ - | /

»
g

02 04 o6 =~ of 1.0 i

FIGURE 6.2.2. The graphs of the functions uo(t),uf(t),ub(t),ua

()

\'4
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6.3. ANOTHER ALTERNATIVE FOR BACKWARD SEQUENTIAL

OPTIMIZATION PROCEDURE

'
AN

Among the various alternatives of apriori polynomial
approximation methods, we have employed one which makes use
of "shifted polynomials', In this version the polynomial
functions chosen forAcontroller parameter vector function
p(t) are shifted in time either to the right or the left by
certain amounts. This '"'certain amount'" can be safely chosén
This version of

to be the interval length; that is, t_-t

f 0°
backward sequential optimization procedure has been applied
to various problems and the results have shown that shifted
polynomial fﬁnctions, in general, onld approximate the optimal
controller parameter function much Bettér than the polynomials
used in the brevious section, assuming that (if) the "apriori®"

chosen polynomial function is shifted in the right direction,

Let us consider now a few examples which proves this

Xs
1}
]

X + u

1
J = J (x2 + u?) dt
’ 0

Find u(x,t) to minimize J

.

When the related scalar Riccati differential equation

is solved one obtains the following optimal control-law
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- 2(t=-1) 2(t=-1)
u(x,t) = - £ £ - .o ox(t)

( 2+1)e” 2(t-')~%( 2-1)e 2(t-1)

It has been assumed that controller parameter function

is given by the following second-order shifted polynomial
. | 0
p;(t) = E pk(t-l)k
k=2
and the control function determined by the relation
s
u(x,t) = pb(t) .« x(t)

Then the following controller function is obtained

p:(t) = - 0,582 + 1,084 t - 0.530 ¢2

with the value of performance index being 0.386.
When the normal second-order polynomial is used in

the same backward iterative optimization procedure, that is,

0

p, (t) = ZE: pktk

k=2
then one obtains the following results:

p,(t) = - 0.227 - 0.280 t ¥ 0.502 t*

and the performance index value of 0,403,
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Finally, let us state the resulting polynomial when
the forward sequential optimization procedure is applied.

pe(t) = - 0.388 + 0.231 t + 0.030 t°

The value of the performance index is 0.,370.
The graphs of all of the related controller parameter

functions are shown in Figure (6.3.1).

¥t

SOR

FIGURE 6.3.1, The graphs of the functions ﬁRt),%(t),PZGﬂ
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Example 2 : The same problem as in Example 2 of the
previous section,

The form of the shifted polynomial function is as

Py (t) = ) pp (e+0)

k=2

follows

o

and control function to be determined is directly given by
the above polynohial function since only open-loop control

function is sought for,

Then the controller parameter function (or the shifted poly-

nomial) has been determined to be

p:(t) = 0,280 + 0.437 ¢t + 0.266 t>

and the performancé index value -0,220,

The graphs of the optimal open-loop control function
and the approximating shifted polynomial function are shown
in Figure (6.3.2) below in order to give one the opportunity

of comparison.

uet

1.0+

054

>
v

1.0 t
FIGURE 6.3.2. The graphs of the functions uo(t), u:(t).

'
{
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Example 3 : A nonlinear system with quadratic performance

index.,.
Given

X = = x° + u x(0) = 1

1 )
] (x2+u?) dt
0

(2
[}

Find u(t) which minimizes J.

‘In this case, it is assumed that the optimal open-
loop control function is given by the following second-order

shifted polynomial

.u:(t) = i P (_t--l)k

k=2

When the backward sequential optimization procedure

is employed the following polynomial function is found

u:(t) = - 0.483 + 0.885 t - 0.487 t2

with a performance index value of 0.497.
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APOSTERIORI POLYNOMIAL FITTING METHOD
VlA DIRECT SENSITIVITY APPROACH FOR THE

GENERAL OPTIMAL CONTROL PROBLEM

7.1. BASIC IDEA OF THE METHOD

In the development and the solutipn phases of the
apriori polynomial approximation methods it has been observed
that aflarge step in approximating thg optimal controller
parameter functfon is achieved at the first iteration of the
so called general sequential optimization procedure. For
instance, when forward sequential optimization procedure is
employed, the optimum cons;ant controller parameter function
of the first iteration generally approximates the exact
controller parameter function quite successfully with regard
to performance index values, That is, the contributions of
the polynomial functions fouhd in the following iterationbto
the minimization of the performance index are ususally |-
insignificant. |

Moreover, the constant controller parameter fuﬁction
of the first iteration acts as an averager of the unknown
opfimal controller ﬁarameter functiong For instance, if the
opfimal controller parémeter function p*(t) (which, in
thfs case, is assumed to be a scalar fuﬁdtfon to simplify
fhe illustration) ﬁas the shépe given in Figure (7.1.1),

then the first step of the forward sequential optimization
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procedure of the apriori polynomial approximation method
would yield a constant function which-approximately takes
the average of the function p"(t)' as illustrated in the

L=

same. figure below.

piE) 4

oy
: o

t

i
I
|
|
I
]
1
[}
i
|
]
|
'
)
i tiﬂ

* x
FIGURE 7.1.1., The graph of functions p (t) and Pe (t)
0

As it can easily be deduced from the Figure (7.1.1),
the smallest difference between the actual optimal contro}ler
parameter function p*(t) and the constant controllér function
‘ggnerated by the first iteration of forward seduential optj-
mization procedure would “generally" occur at the midpqint

of the time interval [ti' ti+1] .

Therefore, if the time interval [to, tf] specified
by the gengral optimal control prpbleﬁvis divided into some
prescribed subintervals ”propérly" énd the forward sequential
optimization procedure is applied to these subintervals only

for constant functions, then one would obtain some significant
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data points on the parameter function space for construction
of optimal controller parameter functions more precisely.
However, the division of the time interval [to, tf] into
subintervals should be made in a special manner because of
the inherent properties of the problem under ﬁonsideration.
More precisely, we mean that the division should be done
wifhout changing the final time specified by the problem;
because changing the specified final time would change the
original optimal'control problem., This Special division of
the time interval could be accomplished only if one remembers
the fact that the optimal solution is valid for all initial
states and times in the closed-loop optimal control problems.
Therefore, one can make the division "properly', that is, |
without changing the original optimal control problem by
"sliding" the initial time (and in return initial state)
forward at certain amounts deterﬁinedAby the subinterval
lengths.

| In the light of the facts discussed above one might
design a new method to find an approximating function for
the optimal contfoller parameter function. Thig new method,
which we have called "aposteriori polynomial fitting'", might

be summarized as follows :

(a) Choose a fixed number N which dgtermlnes the number
of subintervals and equivalently the number of
significant data points to be obtained as a result-of
the following. procedure,

(b)) set k =1



(c)

(d)

(e)
(f)

(g)

procedure as it is.

half of the whole interval ﬂ{to, tfl H

Find the sliding initial time t,

s
equation
te~t :
ty =ty + (——2) (k=1)
S N
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from the following

Perform the forward seduential optimization procedure

of the previous chapter using the new (slided) initial

time t

0
A - (k)
obtained optimum value, say Ps

.

for only constant function and store the

It is assumed that

the optimal controller parameter function passes

through the point

k
2 o
Set k = k+1
Check : if k < N then go to step

else continue

(c)

Pass a polynomial function oflany specified order

through the data points obtalned in

using one of the fitting methods of

and stop .

There exist one important drawback

The data points which

construction of the approximating function

that

the above procedure

numerical analysis;

of the above
are used in the

for the optimal

controller parameter function were cumulated on the second

is, on

t, + te ' :
[-————————— , tfl , because of the intrinsic properties of

2
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the method., Thus; the optimal controller parameter function
would be approximated better on the second half of the
interval [to, tf] . However, this serious drawback of the
method can be overcome by Simply creating a '"virtual'

initial time, say tv » Which satisfies the following

equation

—

In this way, it is assumed that the whole interval
[to, tfl is covered uniformly. The step (c) of the above

procedure would then become

(c) Find the sliding initial time to from the equation
: ; s .

: . , tf t
t =t 4 (—m—Y) (k = 1)

The new method'presentéd above is basically developed
for determining the optimal closed-loop control function,
However, it can be easily used in determining the optimal
opén-IOOp ﬁontrol function by making one slight modification

in the procedure. More precisely, one would have to make a

backward integration on the system equations from the specified
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initial state to the new state at the virtual initial time
since the optimal open-loop control function is dependent

on the initial conditions,

7.2. NUMERICAL RESULTS

Several problems with linear or nonlinear system
equations and quadratic or nonqﬁadratic performance index
criteria are'treated for the optimal closed-loop or open-
loop solutions using the new '"aposteriori polynomial fitting"
method developed above; and, quite satisfactory results are
obtained in all of the examples. In order to be able to
make a comparison of the "apriori' and “aposteriori' methods
we’have first considered the same examples discussed in the
previous chapter. ]n all of the exampies feported below
the data points obtained are fitted employing the well-known
least-squares approximation method; and virtual initial time
and state is used in all of the examples, except in Example

3.

Example 1 ¢

Given

X = u
1
J = xz(tf),+ 3 f wl(t) dt
, ; ,
Find u(x,t) which minimizes J.

(i) First the time interval [t , t.] s divided into
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sixteen subintervals. A second-order polynomial is
fitted for the resulting sixteen data points on the time
interval [to, t{} » and the following result is obtained

(i)

p 1) (t) = - 0.688 - 0.004 t =~ 1.157 t2

d

with a performance index value of 0,329,

(ii) When eight subintervals, and in return, eight data points

are used, the second-order polynomial fitted is given by

psii)(t) = = 0.714 + 0,192 t - 1.413 t2

with the same berformance-index value of 0,329,

The two fitted'pofynomial functions and the optimal

solution is shown in the Figure (7.2.1) to make a comparison,
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FIGURE 7.2.1., The graphs of the functions po(t), p;‘)(t)' pgii)(t

Example 2 :

Given
in—x"blu‘ x(0)=0
1
N G I TIe)
0

Find u(t) which minimizes J.

(i) The time interval [=1, 1) is again divided into sixteen
subintervals, and the following second-order polynomiél
function is fitted for the sixteen data points obtained

on the time interval '[0, 1} .

i
{



(ii)
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usi)(t) = 0.446 + 0,152 t + 0.456 t?

The value of the performancé”index for this control
function is equal to =-0.220,

When eight subintervals and in return eight data points
are employed, the secpnd-order polynomial is obtained to
be |

2

u;ii)(t) = 0.438 + 0.209 t + 0.397 t

with no significant difference -in the performance index

- value,

u(t) /'y

0.5 ~ 4.0 ;£

FIGURE 7.2.2. The graps of the functions uo(t), ui')(t), usii)(d
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Example 3

Given.

3

X == x> +uy x(0) = 1

1 :
J = 'J (x2 + uz) dt
0

Find u(t) which minimizes J.

In this case, the time interval {0, ll is divided
into eight subintervals, A second-order polynomial is fitted
for the resulting eight data points on the time interval

IO, 5,‘ll , and the following function is obtained

-

u (t) = = 0.266 - 0.007 t + 0.275 t2

with a performance index value of 0.495,

In order to be able to make a comparison the same
nonlinear problem is transformed to a two=-point boundary-
value problem and solved using the method developed in this
study. The resulting two-point boundary-valué problem can
be stated as

X = = x3 - 0.5y ; = = 2x + 3yx2

x(0) =1 ‘ A y(1) = 0

and the optimal control function uo(t) is given by



uO(t) = - 3 y(t)

The graphs of the three functions ‘ud(t), u:(t), and
uo(t) is shown in the Figure (7.2.3), where u:(t) is the

function obtained in Example 3 of section 6.3.

t

FIGURE 7.2.3. The graphs of the functions uo(t),'ud(t) and

U:(t).
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Vili

NUMERICAL SOLUTION OF THE INFINITE HORIZON

PROBLEMS IN OPTIMAL CONTROL THEORY

8.1, BASIC IDEA OF THE METHOD

1

For the problem defined by a linear system dynamics

and with a quadratic performance index

J=J (xTgx+u Py dt

0
where Q is symmetric positive semidefinite and P is symmetric
positive definite matrices, the Hamilton~Jacobi-Bellman
equation, as it is pointed out before, results in the well-
known Algebraic Matri* Riccati equation which can be solved
in a reasonably simple manner, However, if there exists a
simple nonlinearity in system dynamics or if the perférmance
index deviates from the quadratic criteria then one is again
faced with the first-order nonltinear partial differential
equétion of Hamilton-chobi-Bel1man which is quite difficult
to solve., In ordef to avoid so]ving this nonlinear partial
differential equatiop one méy like to turn back to the app-

roximate solution generating methods presented in the previous
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chapters of this study. However, one then faces the diffi-
culty of choosing a sufficient final time value in the nu-
merical evaluation of performanse index J, |f the system

equations were linear then one might choose the sufficient

final time value according to a criteria defined by

i
t, = 10 ——
f lk

minl

where Alnin is the minimum eigenvalue of the system

K is the gain matrik, which is a function of controller
parameters. That is, even in the linear case one has to
find the eigenvalues of the matrix (é + B 5) at every
iterétion step, since the controller parameter values will
-change in the iterative algorithm employed.

For the problem defined by a nonlinear system

dynamics
g = f (x,u,t)

and with a nonquadratic perfofmance index

g
J = /’ 1(x,u,t) dt
X "

the calculation of the eigenvalues becomes much more cumbersome.
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Here a new and effective algorithm is devised to be
used in the calculation of sufficient final time in the case
of infinite hofizon problems of optimal control theory.

Assuming that the system under study fs stabilizable
and controllable then we know that J will "“saturate' after
some fixed time t, call it tf in infinite horizon problems.

A tentative graph for performance index function J versus

itime t for a stabilizable and controllable system is shown in
Figure (8.1.1).

J4

!

|

|

|

|

}

|

|

|

|

I

|

:

. ]

1
» t rtﬂ. ' BE3
FIGURE 8.1.1.

Now sugbose that the performance index J for infinite

horizon proble%s is given by

t
u(t) = J H(x,u,t) dt
0

Then, taking the derivative of the above performance index

J with respect to t one obtains
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dJ
dt

=1 (x,u,t)

performance index function J must be behaving like a

constant function around the saturation region; therefore,

our aim becomes to find the time where

[« 8
e

o
(ad

Using the facts developed above one may devise an

effective algorithm which will yield the sufficient final

time value assuming that one is dealing with a stabilizable:

and

(a)

(b)
(c)
(d)

(e)

else perturb t

controlliable system,

Choose an accuracy é-, and a constant steplength A,

a fixed number M for permitted maximum iterations.
Make an initial guess for the sufficient final time te.
Devise and initialize a counter k « 0,

Solve the System equations for the given ﬁarametef to
oBtain the state vector x and evaluate the cost function
I(>_<,u,t)"at the fin\al time tf’ if l()_(,u,t)ltf< 6
then sufficient final time found,

P by At amount te «— to + At

p
Obtain the new state vector x and evaluate the cost

function lp(f,uht) at the perturbed final time tf .
P
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(f) Form the function S defined by

1P -
At

If S£0 then update te by tf¢—rtf - S ]I and go to
step (c)
else kek + 1 if k>M then "system unsteble
A - for this parameter"‘
change the pafa-
meters
else update te by
— t,.  + A

f f.
and go to step (d)

t

8.2, NUMERICAL RESULTS

Eventhough several infinite horizon problems are
solved quite successfully ﬁsing the methods developed in
this study, only two examples with known solutions are
reported in order to give one the opportunity of comparison,
The first example is a scalar linear system with quadratic
performance index, and the other one is a two-dimensional

linear system with again quadratic performance index.

Example 1 :

Given

Xe
[}
]

2x + u
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Find u(x) to minimize J.

The optimal solution for u(x) is given by
WO(x) = - (V5-2) x(t) = - 0.2361 x()

The algorithms presented here have yiélded the result
u(x) = - 0.2339 x(t)

Here, it must be pointed out that Crude-Euler
initial-value technique is employed for the solution of
differential system equations and trapezoidal integration
routine is used for the evaluation of performance index
integral J. 1In the above example all the integrations were
performed with a step size of 0.01, and the CPU time was 45

seconds,

Example 2 :

Given
. 0o 1 1
x = x + u
-1 =1 1
o
J = / (x::' + xg + 2u2) dt

Find u(x) to minimize J.
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"The optimal solution for u(x) is given by
W (x) = [- 0.602 - 0.333] x

Our algorithm has yielded the following result

for u(x).

u(x) = [- 0.620 - 0.410] «x
’ AY
in this example, again Crude=-Euler initial=-value
technique and trapezoidal integration routine are employed
with a stepsize of 0.05, and the CPU time was | minute and
36 seconds. When the stepsize is decreased to 0,025 we

have obtained
u(x) = [-0.610 - 0.371) x

with a CPU time of 2 minutes and 50 seconds. The improvement
in the performance index value for the two different étepsizes

is in order of 1 percents,
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CONCLUSIONS, GENERAL OVERVIEW AND

COMPARISON OF THE METHODS DEVELOPED IN THIS STUDY

First a new method for the numerical solution of
the two-point boundary-value problem is proposed. This new
method is based on trajectory sensitivities with respect to
initial conditions. Since when the two-point boundary-
value problem i; solved only an open-loop solution for a
specific set of initial conditions has been found in the
general optimal control problems, an alternate approach
which will yield a closed-loop solution is sought for other
than the dynamic programming approach which resulits in
‘Hamilton-Jacobi-Belliman Equation. Here, at this point, we
have employed the basic properties of the performance index
sensitivities with respect to controller parameter functions
and developed a general iterative optimization procedure
which, in turn, gives rise to various effective methods,

The first of the methods developed usiqg the direct
Sensitivity appfoach was a quite generalymethod called
"apriori polynomial approximation methods', and a different
versién of the same method was broduced. In the apriori
polynomial approximation methods the basic assuhption is that
controller parameter function is formed by a polynomial
function.

Several problems which have been solved using various
versions of the apribri polynomial approximation methods have
~shown that "shifted' polynomial version would, in general,

l
: {
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yield much better results compared to normal polynomial
approximations using either “forward"“or “"backward"
sgquential optimization procedure, The only probfem with
shifted polynomial version is thaf shifting direction for
the polynomial is usually not known apriori by the designer.
A sensitivity analysis on this shifting direcfion parameter
could be employed and this version of the apriori polynomial
approximation methods could be made almost perfect.

The aposteriori polynpmial fittiﬁg method which is
developed in Chapter 7 is superior than all the existing
apriori polynomial approximation methéds both in accuracy
(or exactness)band computation time. It must be pointed
at that no significant drawback of the apostefiori poly-

nomial fitting method has been encountered in the various

examples solved upto now.
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