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Demirkır, Çaglayan Dicle, Neslihan Gerek, Sıddıka Parlak, Nazlı Güney, Oya Aran,
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ABSTRACT

OBJECT RECOGNITION IN SUBSPACES: APPLICATIONS IN

BIOMETRY AND 3D MODEL RETRIEVAL

Shape description is a crucial step in many computer vision applications. This

thesis is an attempt to introduce various representations of two and three dimen-

sional shape information. These representations are aimed to be in homogeneous

parametric forms in 2D or 3D space, such that subspace-based feature extraction

techniques are applicable on them. We tackle three different applications: (i) Per-

son recognition with hand biometry, (ii) Person recognition with three-dimensional

face biometry, (iii) Indexing and retrieval of generic three-dimensional models. For

each application, we propose various combinations of shape representation schemes

and subspace-based feature extraction methods. We consider subspaces with fixed

bases such as cosines, complex exponentials and tailored subspaces such as Principal

Component Analysis, Independent Component Analysis and Nonnegative Matrix

Factorization.

Most of the descriptors we propose are dependent on the pose of the object.

In this thesis we give special emphasis on the pose normalization of objects. This

challenging step is highly application-specific. For hands and 3D faces, anatomical

landmarks are used in order to reduce within-class variations due to pose, expression

and articulation, whereas generic 3D models lack common landmarks. In order to

deal with this disadvantage of generic models, we propose solutions that operate

both in the pre-processing stage and in the matching stage.
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ÖZET

ALTUZAYLARDA NESNE TANIMA: BİYOMETRİ VE 3B

MODELLERİN GERİ GETİRİLMESİ UYGULAMALARI

Şekil tanıma, bilgisayarlı görü uygulamalarının önemli bir adımıdır. Bu tez,

iki ve üç boyutlu şekil bilgisi için çeşitli gösterimler önermektedir. Bu gösterimlerin,

altuzay tabanlı öznitelik çıkarımına uygun olması için 2B ve 3B uzayda birörnek

parametrik formlarda olması amaçlanmıştır. Üç farklı uygulama üzerinde çalışıl-

mıştır: (i) El biyometrisine dayalı kişi tanıma, (ii) Üç boyutlu yüz biyometrisine

dayalı kişi tanıma, (iii) Üç boyutlu genelgeçer nesnelerin indekslenmesi ve geri-

çağırımı. Her bir uygulama için, şekil gösterimlerinin ve altuzay tabanlı öznitelikle-

rin çeşitli kombinasyonları denenmiştir. Kullanılan altuzay tabanlı yöntemler, ko-

sinüsler ya da karmaşık üsseller gibi sabit tabanlarla betimlenen altuzayları içerebilir,

asal bileşenler analizi, bağımsız bileşenler analizi ve negatif olmayan matris ayrıştır-

ması gibi analizlere dayanabilir.

Önerilen betimleyicilerin çoğu nesnenin pozuna bağımlıdır. Bu tezde, nes-

nelerin poz düzgelenmesine özel bir önem verilmiştir. Poz düzgelemesi uygulamaya

göre farklılık gösterir. El şekilleri ve 3B yüzlerde, poz, ifade ya da boğumlanma

farklılarını gidermek için anatomik nirengi noktalarından faydalanılmıştır. Genel-

geçer 3B nesneler ise ortak anatomik nirengi noktalarından yoksundur. Genel-geçer

3B nesnelerin bu dezavantajını gidermek için, gerek ön işleme gerekse karşılaştırma

aşamalarında kullanılmak üzere çeşitli çözümler önerilmiştir.
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1. INTRODUCTION

Shape-based object recognition is a broad research area encompassing many

domains such as medical imaging, biometry, bioinformatics, archeology, astronomy,

industrial inspection, quality control, robot vision, and so on. There is also great

diversity of the data structures that represent the ”shape” of real objects through

acquisition and reconstruction, virtual objects through modeling and a combination

of both through post-processing and modification. Each application has its own

notion of ”shape” and has specific demands from shape-based computer vision

algorithms.

According to the definition of Kendall [1], the shape of a subset of a Euclidean

space is all the geometric information that remains under similarity transformations

(translation, scaling and rotation). In the domain of computer vision, the invariance

to similarity transformations is the most emphasized requirement of a shape recogni-

tion system. The required invariance can even be extended to affine transformations

where the geometry of an object is mapped onto two-dimensional images and dis-

torted by perspective transformation during acquisition. In other cases, invariance

to articulation (hand recognition) or certain deformations (expression-invariant face

recognition) is of great importance since such variations do not alter the ”identity”

of the object.

The ultimate desired property of shape recognition system is the discriminat-

ing power. This requirement is strongly related to the ”invariance property” since

similarities between two different objects can be significantly higher than the similar-

ities between different transformations (similarity, affine, articulation, deformation)

of the same object.

The discriminative power of a shape descriptor depends on the definition of

”identity” or ”relevance” and the notion of similarity. For example, shape descriptors

used for the purpose of 3D face recognition are desired to be invariant to facial
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expressions and be sensitive to personal features. The smiling and crying face

of the same person should be labeled with the same identity, while neutral faces

of two different individuals should be considered totally different even if the two

individuals are identical twins. If the application at hand is the retrieval of generic

3D models then two human faces of any individuals with any facial expression

are considered as relevant and their mutual similarity score should be high. It

is apparent that the relation between geometric information and identity and the

notion of ”shape similarity” is highly application dependent.

Other desired properties of shape-based recognition systems are invariance to

resolution, operability under unorganized and noisy data, and efficiency in terms of

the complexity and speed of the algorithm and the storage size of the description.

Kendall’s [1] notion of shape (or preshape) is in general applicable to any

dimension, although the practical shape is two or three-dimensional. The research on

2D shape analysis is tremendous and goes back as far as the emergence of computer

vision [2, 3]. Research on 3D shape analysis is relatively new. The earliest recognition

algorithms deal primarily with range data [4]. In the last two decades, studies

for shape-based description and matching of complete free-form 3D models have

progressed in different fields such as medical imaging, recognition of CAD/CAM

models, indexing and retrieval of generic objects.

The data structure containing the geometric information of an object is of great

importance. There are a number of ways to represent 2D shapes (silhouettes, con-

tours, sets of 2D points, polygon approximations, splines) and even more diverse

data structures for 3D shapes (point clouds, polygonal meshes, NURBS, solid mod-

els, voxel structures, range images, etc.). Some of these structures are parametric

functions, such as silhouettes, regularly sampled contours, voxelized models and

depth maps. They can be processed by conventional signal processing tools. Others

are difficult to be interpreted as parametric signals such as point sets and polygonal

meshes. Converting such structures into a parametric form is beneficial since there

will be a common domain and coordinates for shape representation. This form en-
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ables us to cast the geometric information of the object of interest into a fixed-length

vector with well-defined coordinates.

As soon as the shape is converted into a vector of fixed-length N, it can be

regarded as a point lying in the N-dimensional Euclidean space. Since the elements

of this vector are highly correlated, we can safely assume that the volume occupied

by the objects of interest in this Euclidean space has a certain structure. That is the

main motivation behind the use of subspace analysis as a tool to characterize shape

and to recognize objects.

In this thesis, we concentrate on three different applications of shape recog-

nition: (i) Hand recognition, (ii) 3D face recognition, and (iii) Retrieval of generic

3D models. Inputs to these applications are 2D shape, range image (2 1/2-D shape)

and complete 3D shape model, respectively. For each of these inputs, we con-

sider a number of techniques to represent the geometric information in vector forms

that are suitable for subspace-based analysis. Then we compare the recognition

and retrieval performances of various subspace techniques operating on these rep-

resentations. Some combinations of the representation types and subspace-based

schemes were previously applied to these problems, and some are first considered

in this study. Motivations and challenges regarding each of these three applications,

and our contributions to advance the state-of-the-art of these applications will be

described in detail in the proceeding chapters.

The thesis is organized as follows: In Chapter 2, we review the subspace-

methods we have used in this study. We make distinctions between model-based

subspaces and data-driven subspaces as well as reconstructive and discriminative

subspaces.

In Chapter 3, we provide an extensive survey on the state-of-the-art of hand-

based biometry, we bring new approaches to the field and give a detailed experi-

mental evaluation on our large hand database. We compare several subspace-based

feature sets on the normalized hand shape and appearance. We emphasize the
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importance of hand normalization in order to make the subspace-based shape mod-

eling free of intra-person variations of global positioning and finger articulation. We

explore many parameters of the hand-based biometry, such as use of left and right

hands or of ambidextrous access, the choice of acquisition devices, the impact of

time lapse, resolution and the size of the training set.

In Chapter 4, we investigate recognition performances of various subspace-

based features applied on registered 3D face scans. We apply the feature extraction

techniques to different representations of registered faces, such as 3D point clouds,

2D depth images and 3D voxel. We consider both global and local features. Global

features are extracted from the whole face data, whereas local features are computed

over the blocks partitioned from 2D depth images. Experiments using different

combinations of representation types and feature vectors are conducted on the 3D-

RMA dataset and the FRGC face database.

In Chapter 5, we propose the application of masks as a means to mitigate

expression-distortions on 3D faces and to enhance their recognition performance.

Masking becomes necessary to de-emphasize the face regions that deform under

expression. We first show that warping the depth values of corresponding face points

onto the same spatial coordinates while obtaining the 2D depth images is beneficial,

and second, that proper masking can improve the recognition performance.

In Chapter 6, we study the indexing and retrieval of generic 3D models. We

present a retrieval scheme based comparatively on three subspaces, PCA, ICA and

NMF, extracted from the volumetric representations of 3D models. We find that the

most propitious 3D distance transform leading to discriminative subspace features

is the inverse distance transform. We mitigate the ambiguity of pose normalization

with continuous PCA, by the use of all feasible axis labeling and reflections. The per-

formance of the subspace-based retrieval methods on Princeton Shape Benchmark

is on a par with the state-of-the-art methods.

Each chapter has its own concluding section regarding the achievements of this
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work and future perspectives for the specific application in hand. However, we give

a summary of our results in Chapter 7.
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2. SUBSPACES

Subspace methods have been widely used for dimensionality reduction and

feature extraction. They are popular to analyze structures among data in diverse

domains such as engineering, economics, astronomy, biology, psychology, almost in

every field where large amount of correlated numerical data are available.

In the context of shape-based object recognition, we ask the following questions:

• How should we represent the shape information?

• Which subspace methods should we use?

• Should we modify the shape representations to be suitable for subspace anal-

ysis? This question addresses tasks such as pose-normalization, alignment of

shapes and matching strategies.

While attempting to answer these questions, we focus on three specific appli-

cations: (i) Hand shape-based biometry, (ii) 3D face-based biometry, (iii) indexing

and retrieval of 3D generic objects.

The choice or design of x, which is the vector representing the geometric in-

formation, is extremely important since it determines the space of the patterns we

are dealing with and the distribution of the patterns on this space. For example,

gray-valued images of size N1 ×N2 can be represented as vectors (or points) that lie

in the N-dimensional Euclidean space, RN, where N = N1 ×N2. Each pixel location

corresponds to an axis of this space and the intensity of a particular image at that

pixel location is the coordinate of the N-dimensional point representing the image.

The N1 sample points of contours of 2D binary shapes lie in the 2 ×N1-dimensional

Euclidean space. In the case of hand recognition, contour-based representations and

silhouette-based representations lie in totally different spaces and they exhibit very

different behaviour in these spaces. Most of the time, it is the original representa-

tion, rather than the choice of a particular subspace technique that determines the
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performance of a recognition system.

We leave the first question regarding the design of x and the third question

about shape normalization and alignment to the proceeding chapters, where we

concentrate on specific object recognition applications. In this chapter, we will give

brief descriptions of the subspace techniques in general terms.

The formal definition of the subspace is as follows: A subspace is a subset S of

RN with the following properties:

• The zero vector 0 is an element of S.

• If u,v ∈ S, then u + v ∈ S.

• If u ∈ S and c ∈ R, then cu ∈ S.

These properties make the subspace closed under addition and multiplication.

Therefore, any linear combination of vectors in the subspace is still in the subspace.

In this thesis, we will deal with such linear subspaces. We will assume the following

linear model: x̄ ≈ Φb, where x contains data about the shape of an object, Φ is

the matrix of basis vectors and b is the vector of new coordinates. Expressing the

original observations in terms of a subspace basis Φ means a change of coordinate

system, different from the one in which the original data vector x is represented.

The two questions regarding this model are as follows: How should we obtain the

representation vector x, and how should we construct the set of basis vectors that

form the columns of Φ?

The relevant information of the observations is supposed to be expressed in

terms of basis vectors spanning the subspace and any irrelevant information is left

in the complement of the subspace. The criterion for the ”relevant information”

depends on the application. The criterion may be the fidelity to the source of

information, so that any noise not coming from this source is suppressed. Or it may

be the ”visual quality” in the case of DCT-based image coding. In our case, we

would like the relevant information to be the essence of the shape that determines
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the object’s class identity.

The subspace techniques can be categorized with respect to the construction

of the basis Φ. The basis of the subspace can be model-driven or data-driven. In

the model-driven case the basis vectors are fixed, such as dirac functions, cosines,

complex exponentials, wavelets, and even random basis vectors. They are usually

chosen because they have particular desired properties. In the case of Fourier analy-

sis, the complex exponentials have the property of being the eigenfunctions of linear

shift-invariant systems. They are useful to measure the frequency content of a signal.

Likewise, wavelets provide good compromise between localized features of a signal

and its frequency content.

In the data-driven methods, the bases are recovered from a set of observations

with respect to some criteria: Uncorrelatedness (PCA), independence (ICA), non-

negativity (NMF), classification accuracy (LDA), sparsity, etc. These techniques

capture the structure or the distribution of the data in the original space. In most

cases, observations of interest of many computer vision applications do have much

less degree of freedom than the original representation frame suggests. In other

terms, the intrinsic dimension of observations is less than the dimension of the

original space. The data-driven methods are particularly beneficial in these cases.

The data-driven methods assume the availability of a set of observations,

namely a training set. Let this set be composed of D observations (or instances,

realizations, objects) from an N-dimensional space: {x1, x2, ..., xD}. The data matrix

is an N ×D matrix, where each observation is placed into a column. The statistics of

the shapes will be determined by this data matrix, hence its construction is a crucial

step. The desired properties of the data matrix can be listed as follows:

• There should be good correspondence among observations. The value at a

particular index of the data vector x (or a particular variable) should correspond

to the same measurement among all the vectors of the data matrix.

• The samples in the data matrix should represent the population well enough.
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Unseen structures that exhibit statistical properties different than the training

observations will not be adequately modeled by the subspace method. Most

of the essential information of this unseen structures may not be expressed in

terms of basis vectors.

• It is desired to have fewer variables than the number of samples. Otherwise,

we will have fewer samples than the dimensionality of the original space, a

situation which is referred to as the curse of dimensionality [5]. However,

this is the case for many applications. For example, in biometry, it is difficult

to collect data from many subjects, however there is abundant information

(or measurements) per subject: The high resolution scans of 3D faces or high

resolution hand scans. Fortunately, the measurements are highly correlated and

we can assume that the samples are populated in a low dimensional subspace.

• There should be enough samples from each class. This requirement is espe-

cially important for supervised data-driven subspace techniques such as Linear

Discriminant Analysis (LDA).

Another categorization of subspace techniques is based on the use of the class

information of the observed data. A subspace can be unsupervised (generative,

reconstructive) or supervised (discriminative). In the generative approach, the ob-

jective is to reduce the mean square error between the original data and the data

projected onto the subspace under some pre-determined constraints. A well-known

example of the generative approach is the principal component analysis (PCA). DFT,

DCT and wavelet-based subspace approaches also fall in this category. In the case

of pattern recognition, there are two main reasons for the use of generative models:

(i) Their ability to greatly reduce the dimensionality of the data, and (ii) The hope

that the essential structures related to class variations are expressed in terms of the

coordinates of the subspace in use [5].

In the discriminative approach, the class information of the training samples is

utilized to extract the basis vectors of the underlying subspace. Linear discriminant

analysis (LDA) is a classical example, where the aim is to build a subspace spanned

by the vectors that best discriminate among classes [6].
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In the following sections, we will give descriptions of the particular subspace

techniques we have used in our applications.

2.1. Direct Comparisons

The columns of the identity matrix I of size M×M provide a complete orthog-

onal basis for vectors of dimension M. These vectors are called Dirac basis. The

projection on them is trivial and provides an extremely localized representation of

the signal x.

The use of Dirac basis, or what we call the direct comparison method, simply

suggests to stay in the original representation space and use the coordinates of

whatever frame is given. The distance between two objects is just the L1 or L2 distance

of the corresponding points in the original space. However, this original space is

usually very high dimensional, making it ineffective for most object recognition

applications.

2.2. Discrete Fourier Transform (DFT)

The DFT transforms a signal from time or spatial domain to the frequency

domain. The basis of the space is now defined in terms of complex exponentials and

the objects are placed in this space as points with respect to their frequency contents.

A filtering operation to trim out some frequency axes (for example low pass filtering)

results in representations of the signals in a subspace of the complete frequency

space. If the signal is varying smoothly in the spatial domain, Fourier basis provides

parsimonious representations. DFT-based subspaces are model-driven, since the

basis vectors, the sinusoids, are chosen independent of the data being modeled.

Following subsections give formal definitions of 1D, 2D and 3D DFT, which

are used in this thesis study. The dimension of the DFT (1D, 2D and 3D) here has a

different meaning than the dimensionality of the observation (number of real num-

bers used for the exact representation); it rather indicates the spatial organization
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(or neighborhood) of the data points.

2.2.1. 1D-DFT

We will assume that the original data space is N dimensional, e.g. the length

of vectors to be transformed to the frequency domain is N. Consider the following

matrix F:

F =



w0·0
N w0·1

N · · · w0·(N−1)
N

w1·0
N w1·1

N · · · w1·(N−1)
N

...
...

. . .
...

w(N−1)·0
N w(N−1)·1

N · · · w(N−1)·(N−1)
N



(2.1)

where wN = exp{2πi/N} is a primitive N’th root of unity. The columns of the matrix

F correspond to the harmonics that form the basis for the N-dimensional space of

the frequency domain. Then a vector in the original domain x can be transformed

into the frequency domain by X = FHx. This definition of DFT corresponds to the

1D-DFT, where the basis of the frequency space is composed of one dimensional

harmonics.

2.2.2. 2D-DFT

Consider a 2D matrix x of size N1 × N2. The 2D-DFT of x is a 2D matrix X of

size N1 ×N2 and its elements are calculated as:

Xk1k2 =

N2−1∑

n2=0

N1−1∑

n1=0

w−n2·k2
N2

w−n1·k1
N1

xk1k2 (2.2)

for k1 = 0, 1, ..., N1 − 1, k2 = 0, 1, ..., N2 − 1, and where wN1 = exp{2πi/N1} and

wN2 = exp{2πi/N2}.

The basis of the N1 × N2 dimensional frequency space is constructed from the
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N1 ×N2 matrices of the form Fk1k2 :

Fk1k2 =



wk1·0
N1

wk1·1
N1
...

wk1·(N1−1)
N1



[
wk2·0

N2
wk2·1

N2
· · · wk2·(N2−1)

N2

]
(2.3)

2.2.3. 3D-DFT

Let x be a 3D-array of size N1 × N2 × N3. Its 3D-DFT is a complex 3D-array of

the same size and its element at the index (k1, k2, k3) is calculated as:

Xk1k2k3 =

N3−1∑

n3=0

N2−1∑

n2=0

N1−1∑

n1=0

w−n3·k3
N3

w−n2·k2
N2

w−n1·k1
N1

xk1k2k3 (2.4)

for k1 = 0, 1, ..., N1 − 1, k2 = 0, 1, ..., N2 − 1, k3 = 0, 1, ..., N3 − 1, and where

wN1 = exp{2πi/N1}, wN2 = exp{2πi/N2}, wN3 = exp{2πi/N3}.

2.3. Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) is similar to DFT in the sense that it transforms

a vector into a space where the basis vectors are harmonic signals. While in DFT

the harmonic signals are complex exponentials oscillating in different frequencies,

in DCT they are real-valued cosine signals. The DCT of a vector x of length N is

Xk =

N−1∑

n=0

xn cos
[
π
N

(
n +

1
2

)
k
]

(2.5)

for k = 0, 1, ..., N − 1. This corresponds to the definition of 1D-DFT. The 2D-DFT of

an N1 ×N2 matrix x is calculated as follows:

Xk1k2 =

N1−1∑

n1=0

N2−1∑

n2=0

xn1n2 cos
[
π
N1

(
n1 +

1
2

)
k1

]
cos

[
π

N2

(
n2 +

1
2

)
k2

]
(2.6)
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for k1 = 0, 1, ..., N1 − 1 , k2 = 0, 1, ..., N2 − 1.

DCT is widely used for feature extraction and compression, because it has a

strong ”energy compaction” property. If the signal is highly correlated and smoothly

varying in the spatial domain, the DCT summarizes most of the information in few

low frequency coefficients. This property makes DCT-based subspace a good choice

for reconstructive purposes. Its decorrelation ability can approach that of Karhunen-

Loève Transform (KLT), and it has the additional advantage of providing fixed basis

functions (model-driven subspace) excluding the necessity of building data-driven

basis through decorrelation of training data.

2.4. Angular Radial Transform (ART)

Angular radial transform (ART) is a complex transform defined on the unit

disk. The basis functions Vnm(ρ, θ) are defined in polar coordinates as a product of

two separable functions along the angular and radial directions:

Vnm(ρ, θ) = Am(θ)Rn(ρ) (2.7)

where

Am(θ) =
1

2π
exp( jmθ) (2.8)

and,

Rn(ρ) =


1 n = 0

2 cos(πnρ) n , 0
(2.9)

Figure 2.1 shows real parts of the ART basis functions. As can be observed

from this figure, with increasing order n, the basis functions vary more rapidly in the

radial direction, whereas the order m expresses the variation in the angular direction.

The angular radial transform of an image f (ρ, θ) in polar coordinates is a set of ART
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Figure 2.1. Real parts of ART basis functions.

coefficients {Fnm} of order n and m. These ART coefficients can be derived as follows:

Fnm =

∫ 2π

0

∫ 1

0
V∗nm(ρ, θ) f (ρ, θ) dρ dθ (2.10)

A set of N ×M ART magnitude coefficients can be used as features for recog-

nition of images. In shape recognition, the ART coefficients are normalized to F00 in

order to achieve scale invariance.

2.5. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the most widely used feature

extraction schemes in computer vision. The assumption is that the high-dimensional

(N) representations of raw data structures are intrinsically low dimensional (K) and

they lie on (K)-dimensional linear manifolds.

An active area of computer vision research that employs PCA, is the recog-

nition of human faces from 2D intensity images [7, 8]. PCA is used to decouple

the variations due to illumination and viewing direction and the variations due to

identity. Another influential application of PCA is the recognition of general objects

from their 2D intensity images. Murase and Nayar [9, 10] proposed a system which

captured images of general objects with varying pose and illumination. Then these
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images were reduced to a 20-dimensional subspace via PCA. Indeed it has been

proved that the images of a Lambertian surface taken from arbitrary view direc-

tions and under various illumination conditions lie in close to a nine-dimensional

subspace [11, 12]. In these two applications, the raw data are represented in pixel

values organized in M × N image matrices. Other influential approaches that em-

ploy PCA are Active Shape Modeling [13] and Active Appearance Modeling [14].

The authors emphasize the importance of correspondence building among various

instances of structures to be recognized and present a number of techniques to build

correspondence (Procrustes analysis [15], thin-plate splines [16]).

PCA decorrelates the data using second order statistics. Reliance on the sec-

ond order statistics is based on the assumption that the observations are Gaussian.

For multivariate Gaussian data, the mean and covariance determines all the statis-

tical behaviour. The axes of large variance are assumed to describe the underlying

structure, while axes of small variance are considered as noise.

For a data matrix X and the mean vector of the data being µ, eigenvectors of

the M ×M covariance matrix, C = (X − µ)(X − µ)T gives the principal directions of

variations. Notice that the covariance matrix is equivalent to the correlation matrix

of centered data.

Let {u1, u2, ..., uK} be the first K eigenvectors of C with corresponding eigen-

values {λ1 ≥ λ2 ≥ ... ≥ λK}. These vectors model the largest variations among the

training samples, therefore they are considered to capture most of the significant

information. The amount of information maintained depends on K and the spread

of eigenvalues. The projection of an input vector x onto the PCA subspace is given

by a = UTx, where U represents the M × K projection matrix formed as [u1 u2 ... uK].

Apparently, PCA is a reconstructive and data-driven approach. It is the best

linear dimension reduction method in terms of the mean-square error.
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2.6. Independent Component Analysis (ICA)

ICA has been successfully used in many different applications for finding hid-

den factors within data to be analyzed or decomposing it into the original source sig-

nals, namely the blind source separation problem. In the context of natural images,

it also serves as a useful tool for feature extraction [17] and person authentication

tasks [18, 19].

ICA is a generalization of PCA in that it removes correlations of higher order

statistics from the data. With ICA, we assume that the observed signals {x1, x2, ..., xN}
result from linear mixtures of K source signals {s1, s2, ..., sK}. Let the dimensions of

the observed signals and the source signals be the same and equal to K. We admit the

signal model, X = AS where A is the K × K matrix of mixing coefficients and S con-

tains source signals in its rows. Both the source signals and the mixing coefficients

are unknown, and need to be estimated. Our aim is to find a linear transformation,

W such that Y = Ŝ = WX, where W is the separating or de-mixing matrix.

2.6.1. The FastICA Algorithm

The objective is to separate the input vectors into statistically independent

sources. Denote the jth element in the random vector y as y j and assume that these

elements are random variables. If these random variables are independent, the

probability distribution function of the random vector y is

fy(y) = f (y1, y2, ..., yK) =

K∏

j=1

fy j(y j) (2.11)

We want to find the matrix W, such that y = ŝ = Wx = WAs is satisfied and the

{y j} are mutually independent. A way to maximize the independence condition is to

define a function whose global optima coincide with the case of the independence

of the variables. Then iterative optimization methods are used to find one of those

optima. We have chosen the FastICA algorithm proposed by Hyvärinen and Oja
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[20] and used the FastICA throughout our implementations in this thesis. In the

following, we mainly reproduce the formulation introduced in [20].

In the FastICA algorithm [20], this function is defined in relation with the

negentropy J of a random vector y:

J(y) = H(ygauss) −H(y) (2.12)

where ygauss is a Gaussian random vector with the same covariance matrix as y. H(y)

is the differential entropy of the random vector y and is equal to −
∫

fy(y) log fy(y)dy.

The negentropy can be viewed as a measure of non-Gaussianity of the random vector

y. If the random variables {y j} are uncorrelated, then we can relate the negentropy

to the mutual information of {y j} as follows:

I(y1, y2, ..., yK) = J(y) −
∑

j

J(yi) (2.13)

The mutual information measures the dependence of random variables. The

FastICA algorithm aims to minimize the mutual information of the components {y j},
with respect to W.

The negentropy can be approximated as follows:

J(y j)) ≈ c[E{G(y j)} − E{G(v)}]2 (2.14)

Here, G is a non-quadratic function, v is a Gaussian random variable with zero mean

and unit variance and c is any positive constant. Let wT
j be the jth row vector of

W. To find one independent component, the following function is maximized with

respect to wj:

JG(wT
j ) = c[E{G(wT

j x)} − E{G(v)}]2 (2.15)
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Recall that the mutual information is minimized when the sum of the ne-

gentropies of {y j} is maximized. The following optimization problem is solved

to maximize the independence criterion: Maximize
∑K

j=1 JG(wT
j ) with respect to

wj, j = 1, 2, ...,K, under constraint E{(wT
mx)(wT

nx)} = δmn.

Usually, the non-quadratic function G(y) is selected as y4. The optimization

problem is solved with a fixed-point algorithm described in [20].

2.6.2. ICA1 and ICA2 Architectures

There are two different interpretations of the source-mixing assumption, which

are denoted as ICA architecture I (ICA1) and ICA architecture II (ICA2) [20]. In ICA1,

observations are considered to be a mixture of statistically independent sources, i.e.,

basis signals; however the estimated mixture coefficients are not statistically inde-

pendent. In ICA2, the mixture coefficients should be estimated under the assumption

of independence, whereas the basis signals are not independent.

ICA2 is similar to PCA in the sense that it provides global features. The basis

vectors are not sparse; so the ICA2 coefficients are influenced by every point of the

input raw data x. On the other hand, ICA1 is similar to NMF. The basis vectors

are sparse, hence the ICA1 coefficients reflect localized activity. The choice of the

architecture (ICA1 or ICA2) depends on the nature of the application [18]. Draper

et al. [18] argue that the task of facial identity recognition is holistic and is better

handled by global feature vectors; whereas the localized feature vectors are more

suitable to facial action recognition. Therefore, they claim that ICA2 architecture

is preferable to identity recognition. This argument is verified in [21], where ICA2

outperformed ICA1 for the task of person identification via global hand shape and

appearance. If the object to be recognized is complete (no occlusion or missing data),

we expect better performance from holistic approaches.

Throughout the thesis, we plug ICA2 architecture to obtain holistic descriptions

of the objects of consideration. For a parts-based analysis we will rather employ
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NMF.

Prior to the estimation of the de-mixing matrix, W, it is conventional to reduce

the dimensionality of the data matrix via PCA. The columns of the new data ma-

trix are constituted of the projections of the training samples onto K-dimensional

subspace obtained by PCA.

2.7. Nonnegative Matrix Factorization (NMF)

Nonnegative Matrix Factorization is another matrix factorization technique

with the added constraint that each factor matrix have only nonnegative coefficients

[22]. It has been observed that avoiding the artificiality of negative coefficients

enhances physical significance of the component sources. In fact, each source re-

sembles a part of the object leading to a parts-based description. A case is the NMF

decomposition of 2D intensity faces, where the basis vectors are found to reflect the

local features of faces.

Given a nonnegative data matrix, X, of size M × N, we factorize it into two

nonnegative matrices V and H, such that X ≈ VH, with sizes M × K and K × N,

respectively. V contains the basis vectors in its columns and H is constituted of

combination coefficients.

We use the multiplicative update rules described by Lee and Seung [23] to

estimate the nonnegative vm, k and hk, n factors. The objective function is taken as

‖X−VH‖2, where ‖ · ‖ is the Frobenius norm and the factor matrices are constrained

to have nonnegative elements [23]. They first define additive update rules, based

on the gradient descent over an objective function that optimizes V and H. Then,

by selecting appropriate step sizes, they convert the additive update rules into

multiplicative ones.

Setting the objective function that measures the reconstruction error as the
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square of the Euclidean distance between X and VH as

[X −VH]2 =
∑

i j

(
(X)i j − (VH)i j

)2
(2.16)

the optimization problem is to minimize ‖X−VH‖2 with respect to V and H, subject

to the constraints V,H ≥ 0. The multiplicative update rules [23] solving this problem

are as follows:

Haτ ← Haτ
(VTX)aτ

(VTVH)aτ
, Via ← Via

(XHT)ia

(VHHT)ia
(2.17)

Notice that in PCA and ICA, both basis vectors and coefficients can have posi-

tive and negative values, and the reconstruction may therefore involve cancellations

of irrelevant parts. This introduces unphysical artifacts of negative mass or lu-

minance. Since only positive bases and coefficients are involved in NMF, that is,

subtractions are not allowed in linear combinations, NMF leads to basis signals that

are locally physical and that model partial structures of objects [22].
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3. HAND BIOMETRY

This chapter provides a survey of hand biometric techniques in the literature

and incorporates several novel results of hand-based person identification and ver-

ification. We compare several feature sets in the shape-only and shape-plus-texture

categories and we emphasize the relevance of a proper hand normalization scheme

in the success of any biometric scheme. The preference of the left and right hands

or of ambidextrous access control is explored. Since the business case of a biometric

device partly hinges on the longevity of its features and generalization ability of its

database, we have tested our scheme with time lapse data as well as with subjects

that were unseen during the training stage. Our experiments were conducted on

a hand database that is an order of magnitude larger than any existing one in the

literature.

3.1. Introduction

Hand recognition systems are among the oldest biometric tools for automatic

person authentication. Access control devices have been manufactured and com-

mercialized since the late seventies. Several patents have already been issued for

hand recognition devices [24, 25, 26, 27, 28] and live applications have been launched

and used at nuclear plants, airports, hotels in the last 30 years [29, 30]. The first bio-

metric device was manufactured in 1971, and it was indeed a hand-based recognition

tool called Identimat [24]. Hundreds of Identimat devices were used for security

purposes at the Department of Energy, U.S. Naval Intelligence in the 1970s. However

hand biometry has gained interest in the academic circles, mostly with the progress

of computer vision research, only in the last decade.

Hand-based person recognition provides a reliable, low-cost and user-friendly,

all in all, a viable solution for a range of access control applications. Other ”nearest

competitor” modalities are face, iris, fingerprint and retinal biometry. The face

recognition alternative is another low-cost solution for access control. However,
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unless several challenging issues are satisfactorily solved, such as illumination, pose

and facial expression variations and occlusions due to accessories, it will be limited

to controlled niche applications. Unsupervised face recognition, where the user

does not have to pose for the camera, requires both detection and segmentation of

the facial region from cluttered backgrounds and normalization of the face, both

challenging problems. Despite its attraction, automatic face recognition within its

current state of the art is regarded as a biometric modality with inadequate reliability.

The iris and retinal modalities demand specialized acquisition devices. Fur-

thermore due to their intrusive nature, most people feel uncomfortable and they

will not, in all likelihood, be widely deployed. Fingerprint modality is by far the

most studied case, commonly used from forensic evidence collection to personal

device access, home access or Internet-access. However, minutiae are very sensitive

to cuts and wounds in the finger, hence fingerprint features from manual laborers or

elderly people become less reliable and more difficult to acquire. In fact, up to four

per cent of the population may fail to provide fingerprints with acceptable quality

[31]. Most people have still a certain reticence with fingerprints; for example, finger-

prints are considered to be private by some users and they may not yield fingerprint

for commercial applications. There has also been a considerable amount of research

on voice authentication, especially in telephone applications. However speech data

suffer from intrapersonal variations due to mood, emotions, illnesses and ageing.

Due to these handicaps, its reliability is low and voice-based authentication is not

yet a competitor to fingerprint or hand.

In contrast to these techniques hand biometry offers some advantages. First,

data acquisition is economical via commercial low-resolution scanners or cameras,

and its processing is relatively simple. Second, according to two public surveys [32,

33] people like hand-based access systems, they do not consider hand information to

be as private as iris or fingerprint in daily applications, hence they find it less invasive

and more convenient to use than other biometric modalities. Third, hand-based

access systems are very suitable for indoor and outdoor usage, and can work well

in extreme weather and illumination conditions [32, 33]. Fourth, hand features of
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adults are more stable over time and are not susceptible to major changes, except for

injuries- or arthritis-based deformations. Finally, hand-based biometric information

has been shown to be very reliable and can successfully recognize people among

populations of the order of several hundreds [21, 34, 35]. We conjecture, therefore,

that time has come to deploy hand biometric devices for daily applications ranging

from access to hospitals, child daycare centers, industrial plants, sport centers and

libraries of universities to more challenging situations at border control and airports.

It can also be used to enhance the security of e-commerce and banking applications

via integration to the conventional systems using PIN codes and passwords.

In this chapter we provide an extensive literature survey on hand biometry and

present performance results with a wide variety of subspace-based methods. We

emphasize the importance of hand normalization as a crucial pre-processing step

of our methods. We consider the generalization ability of the ICA-based feature

extraction algorithm from small to large populations, the preference for right or left

hand, the advantage of ambidextrous testing, the performance of new features, and

various fusion schemes to improve the performance. In addition to the analysis of

our global hand appearance based approach, we provide comparative performance

results of various techniques on a large database. Some of these techniques were

previously applied on hands for person recognition; others are considered first

as tools of characterizing human hands for biometric purposes, such as Principal

Component Analysis of global hand appearance, Active Appearance model, Fourier

descriptors of hand contour and Angular Radial Transform.

3.2. Characteristics of the Human Hand

In this section, we describe the characteristics of the human hand and its

relevant aspect for feature extraction.
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3.2.1. The Skeleton of the Hand

The anatomic structure and biomechanics of the human hand have interested

researchers working in the areas of computer animation, hand gesture and sign

language recognition. This information is also beneficial for hand biometry.

The hand contains 27 bones, categorized into three groups: The carpals in

the wrist, the metacarpal bones that run along the palm, and the phalanx bones in

the fingers [36]. Figure 3.1 shows the skeletal model of the human hand. When

laid on a flat surface, the interphalangeal joints at the fingers become fixed since

the extension/flexion of the fingers are disabled. However, those of the thumb can

still move slightly since they are not totally in the supine position. The carpal-

metacarpal joints are already limited in their freedom of movement, again except

for the thumb. Thus, a hand lying on a flat surface is reduced to seven degrees

of freedom, three at the three joints of the thumb, and four at metacarpal-phalanx

joints of the four fingers. The metacarpal-phalanx joints (MCP) are the pivots where

fingers make adduction/abduction movement, i.e. lateral movements on the plane.

The orientation of the thumb, on the other hand, is controlled by its carpal-metacarpal

joint (TM in Figure 3.1) and the thumb shows relatively high in-plane flexibility.

Kuch and Huang [37] used a set of constraints on finger movements for gesture

modeling where the range of in-plane rotation angles of the four fingers around

their pivot (MCP joints) is taken between -15 and 15 degrees. A more complex

set of relations were assumed between the in-plane angles of the three joints of

the thumb. Lin et al. [38] developed another hand-skeleton model under similar

assumptions, with the additional constraint of a rigid middle finger. In our hand-

posture normalization scheme [21, 34] we make use of the five degrees-of-freedom

model, so that we rotate the fingers to preset reference angles based on an estimate

of their metacarpal pivot locations [34]. The posture normalization algorithm is

described briefly in Section 3.4.2 and in more detail in our paper [34].



25

Figure 3.1. The skeleton of the hand.

3.2.2. The Geometry of the Hand

Geometrical measures have been used in most of the patented methods of

hand-based identification and in earlier publications. Ernst [25] mentioned the

anthropological studies where it was stated that the length and breadth of the hand

had very little statistical correlation. Since both sizes were useful measures, he

developed a string-based, mechanical aperture to measure the width and the length

of the hand. Miller [24] advanced this scheme with an electro-mechanical system,

called Identimation, which measured the lengths of the four fingers and compared

them with measurements prerecorded on an identification card. In 1972, Jacoby et

al. [26] came up with the first optical system that measured the distances between

finger tips and finger crotches through a scanner.

Geometrical features of the hand, referred to also as ”hand dimensions” in the

literature, constitute the bulk of hand features adopted in most hand recognition

systems. One advantage is that geometrical features are more or less invariant to
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the global positioning of the hand and to the individual planar orientations of the

fingers. Among numerous geometrical measures we can cite lengths, widths, areas,

and perimeters of the hand, fingers and the palm. Jain et al. [39], have come to the

conclusion that hand geometrical features solely are not sufficiently discriminative.

This is due to the fact that they are somewhat correlated and there are at most 50

geometrical features. For the present state of the art, they are not viewed as suitable

for identification (one-to-many comparison) purposes, but instead can be used for

verification (one-to-one comparison) tasks [39]. Therefore, for more demanding

applications one must revert to alternative features such as hand global shape,

appearance and/or texture.

Hand geometrical features consist of a set of measured dimensions, such as

lengths, widths and areas of the fingers, of the hand and of the palm. Jain et al. [39]

use 16 axes predetermined with the aid of five pegs. The gray-level profiles along

these axes are modeled as an ideal profile contaminated by Gaussian noise. Using

this profile model, 15 geometrical features are extracted and tested for verification.

In their peg-aided identification system, Sanchez-Reillo et al. [40] use a similar

set of geometric features, containing the widths of the four fingers measured at

different latitude, the lengths of the three fingers and the palm. The distances

among three interfinger points (finger valleys) and the angles between the lines

connecting these points are also part of the set. Wong and Shi [41], in addition to

finger widths, lengths and interfinger baselines, employ the fingertip regions. The

fingertip regions correspond to the top one-eighth portion of the index, middle and

ring fingers. The curves extracted from these fingertip regions are then aligned,

resampled and compared via the Euclidean distance. Bulatov et al. [42] describe a

peg-free system where 30 geometrical measures are extracted from the hand images.

In addition to widths, perimeters and areas of the fingers, they also incorporate the

radii of inscribing circles of the fingers and the radius of the largest inscribing circle

of the palm. They, however, do not give any information on the extraction procedure

of these features.

While geometrical features are simple to extract they have certain disadvan-
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tages. First, they are not discriminating enough to be used in identification tasks

and in high-security verification scenarios. The reason is that this approach reduces

the holistic shape information to a small set of features, and obviously texture can-

not be exploited. Furthermore, a simple set of geometrical measures can be more

easily faked or compromised. For these reasons, some authors propose the fusion

of geometry-based features with other characteristics of the hand such as the finger

shapes [43] or the palmprint features [44, 45, 46].

3.2.3. The Shape of the Hand

The shape or the silhouette of hand has gained little attention in the literature for

person identification despite considerable literature on shape matching in computer

vision. Jain and Duta [47] were the first to propose deformable shape analysis, and to

develop an algorithm where hand silhouettes are registered and compared in terms

of the mean alignment error.

The hand shape, surprisingly, exhibits great variation among individuals. The

silhouettes contain much richer information as compared to geometrical measures

of the hand. For example, the roundness of finger tips, the shape of the thumb,

sharpness of finger valleys etc. are not necessarily incorporated in the geometric

measurements. The geometrical features, no matter how much detailed, are sur-

passed by the shape features in parts-based or holistic analysis.

The major roadblock for the use of hand shape as a person identifier has been

the fact that hand is a highly deformable and articulated organ, making it challenging

to characterize the global shape. The intrapersonal variability of the hand shape,

if not properly normalized, can be much bigger than the interpersonal differences.

Thus, researchers often use pegs to fix the position of the hand and the orientation

of the fingers [47].



28

3.2.4. The Palm of the Hand

Perhaps inspired by the recent advances in fingerprint analysis, the palm has

attracted a lot of attention in the last decade. The palm exhibits a rich pattern of

striations that are believed to be unique to each individual. In fact, palmprints

have been utilized as person identifier for more than 100 years. These techniques,

however, were not automated and required the application of ink, powders or other

chemicals to put ridges into evidence. Notice that the ridgeology practice encom-

passes not only palms but also footprints and any other striated surface [48]. The use

of palmprint features for computer-based identification was first proposed by Shu

and Zhang [49] in 1998. Afterwards, D. Zhang and his colleagues have developed a

series of computer vision algorithms for processing palmprint features.

The palmprint features can be divided into three categories based on their scale:

(i) Palm lines including the principal lines, (ii) Creases or wrinkles, (iii) Ridges or the

minutiae. The palm lines and the principal palm lines are discriminating features

that are considered to be stable over time [50]. Creases or wrinkles are irregular

lines that are thinner than the principal lines and ridges correspond to regular and

very thin lines that are similar to the minutiae of the fingerprints. The extraction

of the minutiae requires high-resolution imaging and elimination of palm lines and

creases. The minutiae of the palmprint are as reliable for identification as those of

the fingerprint, and have been used for forensic applications [48].

Shu and Zhang [49, 50] were the first to publish on palmprint-based person

recognition. They applied nonlinear filters to detect the principal palm lines and

encoded the detected lines by their end-points and mid-points. Duta et al. [51]

used a set of feature points along the prominent palm lines and the associated line

orientations to match two palmprint images. They did not explicitly extract palm

lines as Shu and Zhang did [50], but used only isolated points along palm lines.

Wu et al. [52] proposed a two-stage palm line extraction scheme. In the first stage,

morphological operators are applied to the palm image to extract palm lines in

different directions. In the second stage, a recursive process is used to trace and
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complete the palm line using the local information along the regions extracted in

the first stage. You et al. [53] proposed a hierarchical palm matching algorithm

where global texture energy obtained by Laws’ convolution masks [54] were used

to select a small number of candidate palms at coarse level. An interest point-based

matching algorithm was applied to the candidate palms at fine level to achieve the

final decision. The interest points along the palm lines are similar to the feature

points of Duta et al. [51] and are detected by local operators.

Palmprints have a large number of creases which are assumed to be stable in

a person’s life. In their work, Chen et al. [55] tried to detect the creases by using a

direction computing method based on the local gray level values. Funada et al. [56]

suggested the use of ridges for palmprint characterization. The ridge patterns, such

as the termination of bifurcations, i.e. minutiae, are inherited from the fingerprint

literature. However, the palmprint minutiae are crossed by many creases. Funada

et al. [56] set out to first eliminate these creases and then extract ridge candidates by

fitting the local image to a ridge model. A ridge pattern is approximated by a two-

dimensional sine wave and the pairs of peaks are detected in the power spectrum of

the local image.

In general, the palmprint features, such as principal lines, creases, wrinkles,

delta points, minutiae, etc. are difficult to extract and characterize, especially in low

resolution images. Researchers often used ink to enhance these line structures of the

palm [49, 50, 53, 55]. Alternatively, instead of explicitly extracting and coding the

palm lines, creases and interest points, edge maps can be used directly to compare

palm images. The edge maps provide global information, even at low resolutions

about the magnitudes and directions of the palm lines and creases. Wu et al. [57] used

fuzzy directional element energy feature which provides line structural information

about palmprints via encoding the directions and energies of the edges. Wu et al. [58]

proposed a similar notion in one of their recent papers where they used directional

line detectors to obtain a set of line magnitude images. Then these directional

images were divided into overlapping grids and directional line energy features

were computed. Han et al. [59] applied Sobel and morphological operators to the
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central part of the palm image and used the mean values of the grid cells as features.

Similarly, Kumar et al. [44, 45] have used line detection operators consisting of

four-orientation convolution masks. The output of these operators are merged in

one single directional map and standard deviation of pixels of overlapping blocks

on the directional map are used as the palmprint features.

Li et al. [60] proposed the use of Hausdorff distance to compare the line edge

maps of two palm images. The lines and curves, forming an edge map, are compared

by Line Segment Hausdorff distance and Curve Segment Hausdorff distance.

An alternative way is to consider the central part of the palm as a textured image

and apply well-known pattern recognition techniques to represent the palm region.

These techniques include Gabor filters [61, 62, 63, 64], Global texture energy [53],

Fourier transform [46, 65, 66, 67], Eigen palms through Karhunen-Loève transform

[67, 68, 69, 70], Fishers’ linear discriminant [69, 70], Zernike Moment invariants [71],

Wavelets [69, 72, 73, 74], Independent Component Analysis [69, 75, 76], Correlation

filter classifier [77], Haar wavelets [78], Global and local texture energy [79, 80] and

Hu moment invariants [81].

3.2.5. The Fingers

Since the shape of the hand is characterized by great intra-person variation

due to the articulation of fingers, some authors segment the hand into its fingers

[43, 82, 83] in order to separately model the shapes of the individual fingers.

Oden et al. [43] proposed to model the shape of each individual finger with

implicit polynomial functions of the fourth degree. Then the Keren invariants [84]

are extracted from the fitted polynomials to be used as features invariant to affine

transformations. Xiong et al. [82] separated and identified multiple rigid fingers

under Euclidean transformations. The fingers are aligned with the aid of an elliptical

model and their similarity is measured on finger width observed at predefined nodes.

Fouquier et al. [85] proposed a method based on the projection of finger boundaries
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on the major axis of the fingers. They segment the fingers using finger tips and

inter-finger valleys. They compute the histogram of the distances from the finger

boundary to the major axis of each finger. The histograms, smoothed with a Gaussian

kernel, constitute their feature vectors.

Inner side of the fingers is textured with creases, whose location and pattern

differ from person to person. Joshi et al. [86] proposed to use the gray-level values

of the finger images for person verification. They have defined a feature called the

”wide line integrated profile”, which is obtained by averaging the gray-level values

over five mm wide bands. The distinct peaks in the line profile correspond to the

creases of the fingers. Two profiles are then matched by choosing the maximum

of the correlation values calculated in a range of shift values. Since this scheme

necessitates precise localization and alignment of fingers, the authors use a special

acquisition setup consisting of a mechanical guide and a micro switch to get an

already aligned finger image from the user. The system acquires one finger at a time,

a constraint that decreases the user-friendliness of the system especially if multiple

fingers are to be matched. Ribaric and Fratric proposed an eigenfinger approach,

which is then fused with either eigenpalms [87] or finger geometry [88]. They extract

strip-like finger subimages and apply Karhunen-Loève transform in order to obtain

eigenfingers. These eigenfingers encode the texture variation among the fingers of

the database.

3.2.6. Joint Hand Shape and Texture Features

The palmprint and hand shape information provide independent biometric

identity features, hence one can benefit from their joint use for person recognition.

The integration of palmprint and shape is generally performed at feature level by

using palmprint features and simple geometrical measures together or at score or de-

cision level by constructing classifiers guided by palmprint and shape-based experts

[45].

Kumar et al. [45] fused the palmprint features and geometrical measures both
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at feature level and at score level. In order to characterize the palm, they have used

line detection operators consisting of convolution masks, each of which is tuned

to one of the four orientations. The output of these operators are merged in one

single directional map and standard deviation of pixels of overlapping blocks on the

directional map are used as the palmprint features. Eighteen geometrical measures

such as widths and lengths of the fingers and the palm are estimated to represent

the shape. The palmprint and geometrical features are concatenated to form a single

feature vector representing the hand. In addition to feature level fusion scheme,

these authors also propose fusion at score level, where individual matching scores

for palmprint and hand geometry are combined using the max rule.

3.3. Hand Image Acquisition

3.3.1. Acquisition Devices

After the first electromechanical devices focused on geometric features [24, 25];

the development of optical and infrared imaging technology made it possible to

process hand images with computer-vision tools. Handkey device is a prototypical

commercial product of Schlage Recognition Systems. The device originates from

the invention of Sidlauskas who patented his scanning device in 1988 [27, 30]. The

user positions his/her right hand horizontally between a set of pins that restricts the

orientation of the fingers. The image of the hand is acquired by a CCD camera from

above and, with the help of a mirror, from the side.

Other research groups developed their acquisition setups mostly inspired from

the invention of Sidlauskas [39, 40]. This setup is suitable for extraction of hand

shape, but it does not enable palmprint acquisition.

For systems based on palmprints, the imaging quality is more important. In

early work, researchers used ink to get a palmprint on the paper, which were then

digitized [49, 50, 53, 55]. This laborious technique is only feasible for very specific

applications such as criminal identification. High quality palm images demand
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contactless design and good illumination. D. Zhang and his colleagues were the

first to develop such an acquisition device [62, 65, 89]. This device includes a ring-

shaped source providing white fluorescent light, a platform with pegs to guide the

users, a CCD camera, lens, frame grabber and A/D converter. It is intended for

civilian applications such as access systems and ATMs.

While the device developed by Zhang et al. [62, 65, 89] only acquired palm

images, Kumar et al. [44, 45] have collected data with a setup that can jointly acquire

hand shape and palm image. Their device, however, necessitates an uncomfortable

positioning of the user’s hand facing upwards. Furthermore due to the curved

nature of the back of the hand, the placement is not unique and this causes some

yaw distortion in the hand.

The choice between a camera and a scanner for joint hand and palmprint

imaging is discussed by Wong et al [89]. The camera is advantageous both due its

acquisition speed and because it enables a non-contact setup. The contact of the hand

with the scanner surface causes deformation in the palmprint features depending

on the pressure level; and the scanner surface should be regularly cleaned up.

Flatbed scanners, on the other hand, provide a viable alternative where the

user can lay comfortably his/her hand, and the resulting image is high-quality with

homogenous dark background and constant illumination. Notice that to achieve

conditions similar to those of a scanner, the camera setup should be fixed and

focused on the hand, there should be a flat surface for the user to place her hand,

and in many cases special illumination is needed. For web-based access systems, e-

commerce and e-banking applications special hand or palmprint acquisition devices

may not be affordable in the home and office environments. Instead, the ubiquitous

flatbed scanner is the most appropriate capture device. Many researchers worked

with hand and/or palmprint images acquired by flatbed scanners due to its simplicity

and ease for data collection [21, 34, 41, 42, 51, 59, 66, 69, 81, 87].

Early hand acquisition devices used pegs controlling the finger orientations,
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thus intending to constrain degrees of freedom for hand articulation [39, 40, 47, 62, 74,

86]. Presently, peg usage for constraining the position of the fingers is considered to

be inappropriate for two reasons: First, it decreases the comfort or user-friendliness

of the device due to the training stage to learn proper placement. Second, for people

with too small or too big hands they may cause stress deformations especially in

the inter-finger valleys due to hard contacts. The new trend is definitely to design

peg-free systems [21, 34, 41, 42, 43, 44, 45, 46, 87]. These unconstrained acquisition

systems rely on posture-independent features or preprocess hand images for posture

normalization.

3.3.2. Which Hand to Acquire?

It might seem that the choice between right and left hand would be inconse-

quential for hand biometry. For example, since the majority of people are right-

handed, it would be a matter of convenience to design right-handed devices. How-

ever, some authors have observed a performance difference between right and left

hands. For example, Kumar and Shen [66] and Kumar and Zhang [90] have reported

that the performance differences are of the order of 0.5 to one per cent. We conjecture

that the statistical difference between the right and left hands could be due to the

fact the working hand, often the right one, is plumper and its palm gets deformed

more easily with device contact. Similar observations were made over time lapse

images: The intra variations of the right hand are comparatively more over time.

In many studies, the left and right hand palms of the same person were consid-

ered independently, hence as if belonging to different classes, and the performance

measurements were done accordingly [57, 61, 62, 63, 64, 68, 69, 78, 79]. In fact,

the palmprints and the geometry of the right and left hands of the same person

are highly correlated, and the correlation between these two hands can be more

advantageously exploited. In our previous work, we have shown that the intrap-

ersonal feature distances between left and right hands were much smaller than the

interpersonal distances between hands of different people [34].
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One way to utilize the correlated information in the two hands is to apply

fusion schemes. For example, Kumar and Zhang [90] used fusion of left and right

palmprints with the sum rule at score level. In Section 3.6.5, we discuss various

fusion schemes at data level, feature level, and score level.

3.4. Image Processing

In this section, we describe our novel hand normalization algorithm along

with the discussion of the relevant work in the literature. When no positioning

aids such as fixation pegs are used, hand images exhibit great intra-class variations

due to hand placement (rotation and translation) and free finger orientations. With

our normalization algorithm, we minimize posture variations and also correct for

illumination variations due to the pressure of the hand on the scanner.

3.4.1. Segmentation of the Hand from the Background

For the hand placed on a platen of the acquisition device or on a scanner, the

background is almost uniform and therefore segmentation becomes a relatively easy

task. In some systems [39], hand segmentation is not even required, since the hand

features are computed directly based on the peg template.

In the work of Jain and Duta [47], the mean-shift unsupervised segmentation

and a contour following algorithm are used to extract the shape of the hand. In

most other works, simple thresholding is used for segmentation [30, 41, 44, 87].

For example, Kumar et al. [44] have used Otsu’s thresholding method. However,

segmentation performed with simple thresholding is sensitive to many factors, such

as accessories (rings, bracelets, watches) and sleeves, dirt artifacts and darker skin

regions on the hand. The failure to correctly segment and extract the silhouette of the

hand causes performance degradation as well as frequent rejection of the authorized

users. Another important factor is the ”portability” of the segmentation algorithm,

i.e. the algorithm should be easily adapted to a new setup, with different imaging

devices and environmental factors.
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Figure 3.2. Results of our segmentation and normalization algorithm for the

original hand images of six different persons acquired from two different scanners

(a), two different cameras (b), and two different low-resolution webcams (c). First

column: acquired image; second column: binarized hand; third column:

normalized hand.

We designed a peg-free segmentation and normalization algorithm that oper-

ates with a large range of imaging devices, under varying illumination conditions

and in the presence of hand accessories and sleeves. We impose only two require-

ments: (i) The background should be relatively homogeneous; (ii) Fingers should

not touch each other. Figure 3.2 shows hand images acquired with scanners, cam-

eras, and low resolution webcams, and the outcomes of our segmentation and nor-

malization algorithm. The outcome quality of the segmentation and normalization

algorithms is independent of imaging devices (scanner or camera) and of any special

setup (special illumination, peg usage, etc.).

Figure 3.4 shows the block diagram of our novel hand-normalization scheme
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along with the illustrative outputs of the intermediate steps. It involves the steps

to segment the hand region via K-means clustering, morphological correction and

ring or bandage artifact removal. Morphological operators mop up the holes in

the foreground and debris in the background. The presence of rings or bandages

on the finger is detected, and the silhouette is corrected with an ”artifact removal”

algorithm [21, 34]. Finally, the hand and fingers are aligned to fixed orientations.

3.4.2. Hand Normalization

For hand biometry algorithms that utilize non-local features hand normaliza-

tion is the most critical step. Hand normalization implies positioning of the global

hand and orienting the fingers to fixed positions.

Jain and Duta [47] separately align pairs of corresponding fingers between

the probe and gallery hand using a quasi-exhaustive polynomial search. Using the

correspondences obtained from the finger alignment search, they apply Procrustes

analysis and declare the mean alignment error as a measure of distance between

two hands. Wong and Shi [41] implemented an alignment algorithm using nine

landmarks (finger tips and valleys), which are in turn detected with the extrema of

the hand contour curvature. The middle finger baseline is obtained by the straight

line connecting the two valleys around the middle finger. The palm is rotated to a

common reference frame according to an axis formed on the middle finger. Then

the other fingers are rotated to align with those of a template hand, with matching

middle fingers. Kumar et al. [44, 45] approximated the binarized shape of the hand

by an ellipse. They used moments of the binary hand to extract the best-fitting

ellipse. The hand is rotated according to the angle of the major axis of this ellipse.

This aligned silhouette is then used for computing geometrical measures of the hand

and for localizing the palmprint region.

The alignment of purely palmprint-based schemes is somewhat different. For

example, Zhang and Shu [50] claimed that the three datum points are rotation

invariant and can be used to construct a local coordinate system for alignment of
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Figure 3.3. Palm images where datum points cannot be determined precisely.

line features. These references are the endpoints of the heart line and of head line

while intersecting with the sides of the palm and their midpoint. Obviously this

alignment algorithm is not robust since the assumptions that the life and head lines

extend till one side of the palm and that life and head line merge before ending

on the side of the palm do not hold for a non-negligible portion of the population

(Figure 3.3). The authors report that this alignment scheme failed in five per cent of

the images.

Zhang et al. [62, 63, 64, 65, 80] have proposed a more robust palm extraction

and alignment algorithm based on the finger valleys. Once the two finger valleys,

between the index and middle fingers and between the ring and pinky fingers,

are detected, the line connecting these two crotches constitutes the y-axis of the

palmprint coordinate system. The mid-point corresponds to the origin and the

perpendicular line through the mid-point is used as the x-axis. The palm image’s

local coordinate system is rotated to align with a reference coordinate system and a

central subimage is cropped as the aligned palm region of interest.

Our hand normalization algorithm [21, 34] minimizes intra-person variability

of the hand postures, finger orientations and illumination, as illustrated in Figure

3.4. Briefly, the hand is translated and rotated to a reference frame, illumination

correction is performed on it and the fingers are rotated around the pivot locations

to preset orientations. The details of the normalization procedure can be found in
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Figure 3.4. Block diagram of our hand normalization algorithm with illustrative

intermediate outcome images.
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our previous work [34]. The key points and the superiorities of the algorithm can be

listed as follows:

• Robustness to hand accessories: Users are not obliged to remove their accessories,

such as rings, clocks or bracelets, in this hand-based access system. The seg-

mentation procedure of our normalization algorithm includes a ring and other

artifact (like bandage) removal stage.

• Texture correction: Any non-uniform illumination effects and discolorations

due to pressure applied by the user are corrected. First, the hand texture is

converted to gray-level by choosing the principal component color with the

largest variance. Second, the artifacts due to the non-uniform pressure are

removed by a Gaussian-kernel high-pass filtering.

• Finger rotation around pivots and texture blending: We estimate the pivot loca-

tions (see Section 3.2.1), which are the joints between proximal phalanx and

the corresponding metacarpal bone, corresponding to the knuckle positions

on the reverse side of the hand. The pivots provide robust reference points

around which the fingers can be rotated to pre-determined directions. The

palm texture around these finger joints is corrected to avoid any artificial tex-

ture discontinuity due to rotation.

• Palmprint extraction: Palmprint extraction is a by-product of our normalization

algorithm. A rectangular region inside the palm is extracted with the use of

pivot locations. The details of this extraction procedure are given in Section

3.5.3.

• Wrist guillotining: The wrist region is guillotined at a certain latitude, which

also removes any shadows, cuff artifacts, foreshortening due to non-flat parts

of the wrist. The wrist region is tapered off with a cosinusoidal window that

starts from the half distance point between the pivot line and the wrist line.

Our normalization algorithm can process hands acquired at very different conditions

(Figure 3.2). The success of the algorithm is 100 per cent, in that all of the hands in

our database were successfully normalized. The normalization procedure supplies

the proper input format for subsequent feature extraction schemes, from geometrical
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Figure 3.5. (a) Original hand, (b) Normalized binary hand, (c) Hand contour, (d)

Global hand appearance (handprint), (e) Palmprint.

measures to statistical shape analysis tools, from subspace methods to palmprint-

based feature extraction schemes.

The outcome of this algorithm is the normalized hand, which in turn, can be

given as shape in binary form, as contour information, or as global hand appear-

ance. The global appearance is referred to as the ”handprint”. The normalization

procedure also includes the extraction of the palmprint region (Figure 3.5). In the

next section, we briefly describe the features extracted from these ”modalities” of

the normalized hand.

3.5. Hand and Palm Features

3.5.1. Geometrical Hand Features

Although the focus of our work is holistic hand features, we have also made

tests with our own geometrical features for two reasons. First, our hand normal-

ization algorithm provides by-product key information, such as locations of finger

extremities and pivot positions that can be used to extract geometrical features. Sec-

ond, the comparative performance of geometric features was not ever assessed on

a database of this size (918 subjects), which is an order of magnitude larger with

respect to other test databases in the literature. Our geometrical set consists of 28

features, some of which are illustrated in Figure 3.6:
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Figure 3.6. The geometric measures used for test on our database.

• Five finger lengths computed from the midpoints of the finger baselines to the

finger tips. A finger baseline corresponds to the line connecting the two valleys

around the corresponding finger;

• Fifteen finger widths measured, respectively for each finger, at the baselines,

at one third of the length up, and at two third of the length of the fingers;

• Five finger areas;

• The palm width;

• The length of the hand;

• The total area of the hand.

3.5.2. Shape Features

We have considered several features that represent the global shape of the

hand. These are extracted either from the binary hand or from the hand contour.

3.5.2.1. Pixel Difference of Binary Hands. The pixel difference of binary hands is the

sum of the absolute difference of two binary hand images. This simple comparison

technique provides a measure of the success of the hand normalization algorithm



43

in mitigating the shape variations due to hand posture and finger orientations. We

intend to use it as a baseline against which the gain of the subspace methods can be

measured.

3.5.2.2. PCA of Binary Hands. Each binary hand is organized in a single one-

dimensional vector, and then the collection of vectors in the training database is

subjected to principal component analysis. The PCA bases correspond to the eigen-

vectors of the covariance matrix of the hand vectors. The N-dimensional feature

vector of a hand is obtained by projecting it onto the principal N eigenvectors.

3.5.2.3. ICA of Binary Hands. We apply the ICA analysis tool on binary hand im-

ages to extract and summarize prototypical shape information. ICA assumes that

each observed hand image is a mixture of a set of N unknown source signals. We

first apply PCA to the training set of binary images to reduce their dimension to N.

Then we implement the ICA2 algorithm, which finds a linear transformation that

minimizes the statistical dependence between the mixing coefficients.

3.5.2.4. ART of Binary Hands. We have defined the Angular Radial Transform (ART)

in Section 2.4. We define the binary image in polar coordinates as f (θ, φ), then ob-

tain N ×M ART magnitude coefficients {Fmn} by projecting the image onto the ART

basis functions up to order M and N. In shape recognition, the ART coefficients are

normalized to F00 in order to achieve scale invariance; in our work we specifically

make us of this coefficient for discriminatory size information. After aligning the

hand images and placing them in a fixed-size image plane, we take the center of the

plane as the center of the unit disk. Furthermore, each pixel location is converted

to polar coordinates and the radial coordinate is normalized with the image size to

have a value between zero and one.

3.5.2.5. Distance Between Contours. The contour of the normalized binary hand

is another representation of the hand. Let us represent the hand contour vector
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Figure 3.7. The number of points between landmark positions in the re-sampled

hand contour.

of length 2n as z = (cx(1), · · · , cx(n), cy(1), · · · , cy(n)) where n is the number of points

of the hand contour and (cx(i), cy(i)) are the 2D coordinates of the ith point on the

contour. We first establish the nine fiduciary reference points. We first establish

11 fiduciary reference points, consisting of the first and last contour elements, the

five finger tips and the four finger valleys, and then resample the contour data in

order to guarantee correspondence between contour elements of all hands. The

number of samples between two landmark points is kept equal for all hands; hence

the sampling step sizes differ proportionally to the hand size and shape. Figure

3.7 gives the number of contour elements chosen between landmarks of the hand.

Notice that we exclude from the contour the horizontal line above the wrist. In total,

hand contours have 435 points. The difference between two hand contours is the

sum of the absolute difference between the coordinates of the corresponding points.

3.5.2.6. PCA of the Contours (Active Shape Modeling). The covariance matrix C of

the contour vectors is constructed as:

C =
1

s − 1

s∑

i=1

(zi − ẑ)(zi − ẑ)T (3.1)
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using the s sample hands, and where ẑ is the mean contour vector. The eigenvectors

{ui} of the covariance matrix sorted in decreasing order with respect to the corre-

sponding eigenvalues {λi}model the variations in the training set. If U contains the

K eigenvectors corresponding to the largest eigenvalues, then any shape vector in

the training set can be approximated as z ≈ ẑ + Ub, where U = [u1 u2 · · · uK] is the

selected eigenspace basis set and b is the projection of shape z to this eigenspace, i.e.

b = UT(z− ẑ). The vector b serves as the feature vector of length K of a hand contour

in the matching stage.

Figure 3.8 shows the effect of varying the first 10 modes of b, one at a time.

The shapes in this figure are obtained by summing a perturbed nth eigenvector with

the mean shape vector. The perturbations are exaggerated intentionally to make the

effect of the corresponding mode more visible. A comment is added below each

figure inset related to the major visible effect of eigenvalue perturbation, though

especially for higher eigenvalues, multiple effects can occur.

3.5.2.7. DFT of the Contours. Fourier descriptors are efficient features for shape

characterization due to their scale, translation and rotation invariance, as well as

due to their immunity from small shape perturbations. Fourier descriptors are

derived from the Discrete Fourier Transform (DFT) coefficients of a closed contour

that is represented as a periodic complex function. We represent the hand contour

as a complex function, where x-coordinates form the real part and the y-coordinates

the imaginary part. We use the first K DFT coefficients as features, and K varies

between 15 and 50, depending on the number of classes (subjects). We do not

apply any normalization on the coefficients, since our hand contours are already

pose-normalized. The real and imaginary parts of the raw DFT coefficients are

concatenated to form a feature vector of size 2K − 1.

3.5.2.8. Distance Transform Features. In the shape-based retrieval of objects based

on their 2D views, as proposed by Funkhouser et al. [28] first, the distance transform

(DT) on the planar shape is calculated, and this is followed by sampling of the DT
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Figure 3.8. Effect of varying the weights of the first ten eigenvectors.
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surface with concentric circles (Figure 3.9). The 1D periodic mass (say, one for

hand region, zero for background) on the circles is subjected to the DFT and a

shape signature is obtained by considering a selected number of low-order DFT

magnitude coefficients. Thus, these features are indexed both by the circle number

and DFT coefficient number. As in the case of ART features, the center of the circles

is positioned on the center of the plane. The span of radii is constant for all hands.

This feature applies obviously only to the shape information, and not to the texture.

Figure 3.9 a and b show the contour of a hand image and its distance transform.

Figure 3.9 c and d show, respectively, the concentric circles drawn and the resulting

profiles. Finally, Figure 3.9 e illustrates the feature extraction scheme.

3.5.3. Palmprint Features

We utilize the pivot locations extracted in the hand normalization step to lo-

calize and scale the palmprint region (Figure 3.10). The line connecting the pivots of

the index and little fingers constitute the upper side of the rectangle. The rectangle

is extended until it intersects the parallel line passing through the pivot location of

the thumb. The region is than resized to a fixed size image with linear interpolation.

We extract PCA and ICA-based features from the palmprint image. The PCA-

based approach is known as eigenpalm approach and implemented by several au-

thors [67, 68, 69, 70, 87]. The PCA and ICA-based feature extraction procedures are

as described in Section 3.5.2; the only difference is that we form the data vectors from

the palm images.

3.5.4. Global Hand Appearance

In order to incorporate the texture and shape information of the hands, many

authors have proposed fusion methods at feature and score levels [45]. These

schemes involve separate treatment of each modality, i.e. the shape and palm

features are extracted separately and are in general of different nature. For example
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Figure 3.9. (a and b) Contour of a hand and its distance transform defined on the

plane. (c and d) Concentric spheres on the distance transform and extracted

profiles on circles. (e) Feature extraction: DFTs of the circular profile of the distance

transform function and the selected coefficients.
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Figure 3.10. Extraction of the palmprint region. (a) The rectangular region

determined by pivot locations, (b) The extracted palmprint.

Kumar et al. [45] have fused geometric features representing the shape and the

Fourier coefficients extracted from the palm.

In our study, we make use of the ”handprint”, the outcome of our normalization

algorithm, in order to extract features that inherently represent shape and texture

jointly. The handprint contains the palm texture, finger creases and the silhouette of

the normalized hand.

Recall that the hand normalization stage outputs a binary hand image, Ishape, as

well as gray-scale textured hand image, Iappearance. The gray-level values of the hand

texture are normalized to have unit mean and unit variance. Then, either the binary

shape image or its textured version is fed to the ICA feature extractor, as illustrated

in Figure 3.11. The composition of shape and texture components can be adjusted

by altering the weighting factor, or texture to shape ratio, denoted as α :

I = Ishape + αIappearance, 0 ≤ α ≤ 1 (3.2)

By reducing the weighting factor, the contribution of the texture component is

attenuated. In fact, when it is set to zero, the input to the feature extractor becomes

pure shape; i.e. the normalized hand silhouette.
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Figure 3.11. Weighted combination of shape and texture components.

3.5.5. Active Appearance Modeling

We have followed Cootes method [44] to decouple texture information from

shape. To this end, each image is warped to make its landmarks match with those

of some mean shape. Thin-plate splines are used for image warping as in Bookstein

[45]. The resulting warped texture information is then expressed as a 1D vector.

Finally, PCA is applied to the texture vectors of the training hand examples to obtain

modes of variation of the texture.

Let bh be the projection of a hand to the shape eigenspace and bg the projection

of the warped hand to the texture eigenspace. The vector b = [bh bg]T serves as the

feature vector of the hand. The dimensions of both shape and texture eigenspaces are

important parameters and are optimized through experimental work. The distance

between two hands are computed using a weighted sum of squared differences of

feature vector components. When matching is performed using only shape infor-

mation the distance between two feature vectors, bk and bl, is:

D(k, l) =

K∑

i=1

1√
λi

(
bk

i − bl
i

)2
(3.3)

When matching is performed using shape and texture information together,

the distance is:

D(k, l) =

K∑

i=1

1√
λhi

(
bk

hi − bl
hi

)2
+

L∑

i=1

1√
λgi

(
bk

gi − bl
gi

)2
(3.4)
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where {bk
hi}Ki=1 are the K-dimensional shape features of the kth hand, {bk

gi}Li=1 are the

L-dimensional texture features of the kth hand, and λhi and λgi are the ith eigenvalues

obtained from PCA of shape and texture vectors, respectively. The squared difference

of each feature is divided by the square root of the feature variance as observed in

the training set.

3.5.6. ART of Hand Appearance

We also compute the ART coefficients for the shape plus texture appearance

data, which includes palm and finger gray-level details. The computation of the

ART coefficients is similar to that with silhouette hand images.

3.6. Experimental Results

In this section we report our novel performance results of hand biometry, with

and without texture. We give performance figures with respect to various hand

features. We address the relative contributions of shape and texture, fusion schemes

of right and left hands at various levels, the generalization ability of the ICA-based

scheme, the time lapse issue and robustness to the resolution of hand images.

3.6.1. Hand Database

Our database contains hands from 918 subjects acquired with flatbed scanners

within four years. No positioning aids were used. The users laid their hands

comfortably on the scanner in any orientation with the only constraint that their

fingers are kept apart. Users were not required to take off their accessories such as

rings and watches. All the images were originally scanned at 150 dpi and reduced

to 45 dpi via bilinear resizing. None of the users or their images was discarded.

Table 3.1 gives a summary of the properties of the database. The database is

organized in five sets. Set A contains left hands of 918 subjects while set B contains

ambidextrous recordings, that is, 800 subjects out of total of 918 have both left and
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Figure 3.12. Histogram of the time lapse between two sessions of the subjects in

hand data set C.

Figure 3.13. Hand images of six subjects. First row contains first session hands.

Second row contains hand images of the same six subjects acquired after time lapse

varying between two weeks and three years.
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right hands images. The subjects in set C and D form a subset of those A and B,

whose hand images were re-acquired after a time lapse varying from two weeks to

three years. Figure 3.12 shows the histogram of the time lapse between two scanning

sessions of the subjects in set C. The average time lapse is one year. In set C, only

left hands are present, whereas set D contains time-lapse re-scanned left and right

hands of 100 subjects. The effect of time lapse is demonstrated in Figure 3.13 where

the second row contains the later hand images of the six subjects in the first row.

Finally, in set E, there are left hands of 458 subjects. This set is a subset of Set A.

Table 3.1. The properties of the hand database.

Set Hand type # subjects # samples/subject Time lapse

A Left 918 3 Short

B Left and Right 800 2x3 Short

C Left 160 3+2 One month to two years

D Left and Right 100 2x3+2x3 One month to two years

E Left 458 3 Short

3.6.2. Performance and Feature Types - Part I

In this section we compare the performance of the feature types listed in Table

3.2, which gives the rank-one identification performance with these features under

changing population size. For each population size, random subsets were drawn

from the largest set, i.e. from set A, and the gallery and test images were interchanged

leading to multiple experiments. The average performance of these experiments is

reported in Table 3.2. We considered four different representation types, namely:

(i) Hand contours; (ii) Shape of the hand silhouette, called also binary hand; (iii)

Palmprint image extracted from a rectangular window on the palm; (iv) Hand

appearance, the hand texture bounded by the hand silhouette shape. A number of

conclusions can be drawn from these figures:

• Raw data versus PCA subspace data: We see that PCA, when applied to the

hand appearance data, brings negligible performance advantage, and for large
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Table 3.2. Identification performances with respect to the feature type and the

population size. Enrollment size is two; only left hands are used.

Population size: 50 100 200 400 600 918

Number of experiments: 180 90 60 30 15 3

Shape

Geometric measures + LDA 98.36 98.77 98.22 97.79 97.71 97.49

Point set difference of the

contours

98.28 97.49 96.24 94.56 93.83 92.88

Pixel difference 98.39 97.90 96.97 96.77 95.53 95.03

PCA on binary hands 98.44 98.00 97.28 96.10 95.61 95.21

ICA on binary hands 99.49 99.34 98.99 98.21 98.71 98.69

DFT on contour + LDA 98.41 99.34 99.44 99.38 99.23 99.31

Palm texture
PCA on palm texture 95.31 94.73 93.76 92.82 92.50 91.98

ICA on palm texture 95.59 95.10 93.88 91.79 93.31 93.83

Appearance

Pixel difference 99.34 99.29 98.89 98.33 98.23 97.93

PCA on appearance 99.06 98.73 98.18 97.46 97.19 96.66

ICA on appearance 99.73 99.74 99.52 99.40 99.44 99.42

populations causes even some small performance loss. Its only advantage is

in reducing hand image data by approximately two orders of magnitude. In

other words, from the image size (200x200) down to the population size, since

we can at most get that many independent columns. It is also noteworthy

that ICA always outperforms PCA by two to three percentage points. This is

in contrast to the face literature where ICA and PCA were reported to have

similar performance [91].

• The top performing feature: The top-performing feature was found to be ICA

(Architecture II) operating on the hand appearance data. This is closely fol-

lowed by ICA-II features operating on binary shape and DFT coefficients of

hand contour data with linear discriminant analysis. The addition of texture

information to ICA-scheme (binary versus textured hands) proves especially

beneficial for large population sizes.

• Discriminant analysis: We have applied LDA (Linear Discriminant Analysis) on

geometric measures and on DFT coefficients of the contour and these are the

only feature types that benefited from the class information in the enrollment
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phase. The reason to use LDA for geometric features was the fact that they

were very disparate in size (areas, lengths etc.) and LDA contributed to their

normalization. With this advantage, geometric measures give fairly good re-

sults as compared to other shape-based methods, with the exceptions of the

DFT and ICA features.

• Shape contour versus shape alpha-plane: We have observed that point set difference

of the contours yielded relatively poor identification results. The first reason is

that small variations in hand shape have more impact on contour information

than on the binary image. Second, the hand contour samples are not in perfect

correspondence, since we just apply uniform sampling between the eleven

landmarks (five finger tips, four finger valleys, first and last points of the

contours). In contrast, the binary hand silhouette (shape alpha plane) yielded

consistently better results.

• DFT coefficients: DFT coefficients of the contours give good identification per-

formance which is very close to that of the ICA-based method. The main reason

of this high performance is that we apply LDA on the raw DFT coefficients, and

LDA re-weights these coefficients such that maximum class separation is ob-

tained for the training samples. Furthermore, the Fourier descriptors smooth

out the small shape variations on the contour irrelevant to class characteris-

tics and ignore correspondence mismatches among different hands. The high

performance yielded by the DFT coefficients show the success of our hand

normalization algorithm and strengthens our claim that the shape of the hand

contour contains richer information than the geometric measures.

• Palmprint-based features give the worst results: We have observed that the vary-

ing amount of stretching in the palm from session to session and the contact

flattening causes folds on the mass of the palm, and displaces the palm lines

resulting in misalignment between palm features. Our performance figures are

comparable to the state-of-the-art palmprint recognition from low resolution

images. For example, Kumar and Zhang [46] reported 95.8 per cent classifica-

tion rate of palmprints with a population of size 100. We have obtained 95.1

per cent recognition rate on average with 90 different sets consisting of 100

subjects. With increasing populations, the discriminating ability of palmprint
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features reduces to unacceptable levels. This means that, unless palmprint data

are collected with specialized equipment as developed by Zhang et al. [62], the

data will have mediocre reliability.

3.6.3. Performance and Feature Types - Part II

In this section we compare the performance of the feature types listed in Table

3.3, which gives the rank-one identification performance with these features under

changing population size. The experimental setup is similar to Part I. The differ-

ence is that we have used a smaller data set (set E) to evaluate the identification

performances.

As in Table 3.3, the population size grows an order of magnitude from 40 to

458 all features suffer a performance drop ranging from one to three per cent. The

only exception is the ICA features on appearance data, where the performance drop

is only a meager 0.2 per cent, which again points out to the robustness of the ICA

features.

Since we have established that the Independent Component Analysis features

yield superior performance compared to all others, we have conducted the following

experiments with different setups solely with ICA features.

3.6.4. Contribution of Shape and Texture

We can control the contribution of texture relative to the hand silhouette by

adjusting a weighting parameter, as explained in Section 3.5.4. This weighting

parameter is the ratio of the gray-level variation of the handprint to the level of

the binary hand shape. Figure 3.14 gives the identification performance with ICA

features for varying texture-to-shape ratio α. The database is set A, which contains

left hands of 918 people. ICA-based features are extracted for classification. When

we use only binary silhouette the performance is 98.69 per cent. As we increase

the texture-to-shape ratio from 0 to 0.3, the performance increases and reaches its
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Table 3.3. Identification performances with respect to the feature type and the

population size. Enrollment size is two; only left hands are used. Set E is used.

Population size 40 100 200 458

Number of experiments 30 12 6 1

ICA on binary hands 99.19 99.09 98.55 98.40

ICA on appearance 99.68 99.65 99.58 99.49

PCA on contour (Active Shape Modeling) 98.67 98.69 98.56 97.19

PCA on contour and texture (Active Appearance

Modeling)

99.14 98.89 98.72 97.99

ART on binary hands 98.72 97.78 97.00 95.78

ART on appearance 99.28 98.72 98.06 97.67

DT on contour 99.17 98.22 96.22 95.99

maximum value of 99.42 per cent. We encounter a broad maximum; and increasing

the texture component beyond α = 0.9 degrades the performance slightly down to

99.27 per cent.

3.6.5. Fusion of the Left and Right Hands

If both right and left hands are measured, several fusion opportunities arise.

First, with our precise registration algorithm we can fuse the right and left hands at

data level through averaging them. Notice that a right hand is simply flipped over

horizontally, normalized and summed with its corresponding left hand. The second

alternative is fusion at feature level, where two different ICA-vectors are constructed

for right and left hands, and then these feature vectors are concatenated. The third

alternative is to use fusion at score level. We have implemented and compared score

level fusion with max and sum rules.

We have conducted experiments on the database of size 800 (set B) using the

ICA-based features extracted from global hand appearance. Table 3.4 gives the

identification performances of the single hand versus both hands fused in various

styles of data, feature and score. The main observations are:
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Figure 3.14. Identification performance as a function of texture-to-shape ratio α.

The population is of size 918 (Set A).

• When we average normalized gray-level appearances of the right and left

hands, the performance improves by two points from 97.74 to 99.63 per cent

for single enrollment, and by 0.60 points from 99.28 to 99.88 per cent for double

enrollment. Notice that in double enrollment we take the average of four

hands.

• However, to be fair we have to compare equal amounts of data. Thus when we

compare ”single hand and double enrollment” situation with ”double hand

and single enrollment”, the advantage of ambidextrous biometry is much less

impressive. The performance differential becomes 0.35 points. In other words,

we can avoid the discomfort of ambidextrous access control simply with mul-

tiple enrollments.

• Finally, if subjects have two training samples per hand and get enrolled am-

bidextrously, the performance climbs to 99.92 per cent. This means that only

one person in 800 is not recognized. These experiments were conducted in

three folds by interchanging the gallery and probe hand images; and one out

of the three experiments ended up with 100 per cent recognition rate, and in

the other two experiments only one hand was misclassified. The misclassified
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Figure 3.15. The misclassified hand (a), its zoomed version (b), and its normalized

shape (c).

hand and its normalized version are shown in Figure 3.15a and Figure 3.15c

respectively. Obviously this is a faulty image where the two fingers are not

sufficiently kept apart as shown in Figure 3.15b.

• Score fusion under sum rule seems to perform slightly better than score fusion

under max rule or data fusion. Note that for score fusion, left and right hands

are considered separately, each having its own subspace.

• Feature fusion also gives slightly better results than data fusion. Feature fusion

necessitates separate subspace building phases for left and right hands, and

each hand is separately projected to either the left or right subspace. Then the

projections are concatenated and a feature vector of double size is obtained.

Thus, feature fusion is computationally more expensive than data fusion.

Despite the improvement of 0.35-0.50 percentage points on a population of

size 800 in recognition performance, the employment of both right and left hands

in a practice is disputable due to the increased user discomfort [90]. Finally, it is

conceivable to have a system that accepts both right and left hands. The system must

enroll subjects ambidextrously, and will operate on the left-hand or right-hand mode

according to the placement of the test hand in the device. This choice would be a

convenience for right-handed and left-handed people, for people with occasionally

injured and bandaged hands, or simply when one of the hands is busy holding other

objects.
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Table 3.4. Identification performances with left and right hands and with the fusion

of right and left hands. The population is of size 800 (Set B). ICA-based features of

global hand appearance are used.

No fusion Fusion of left and right hands

Enrollment

Size

Left Right Data fusion Feature

fusion

Score Fusion

(Max rule)

Score Fusion

(Sum rule)

1 98.00 97.48 99.63 99.65 99.40 99.73

2 99.42 99.13 99.88 99.92 99.92 99.92

3.6.6. Generalization Ability of the System

The generalization ability of a subspace-based method is defined as its capa-

bility to function with new data, that is, to serve as basis vectors for new data that

were not used in the first place to construct the basis set, and it is important for three

reasons: First, the subspace-building phase requires memory and computation time;

hence it is undesirable to re-train the system every time a new user is registered to

the system. Second, the system should be able to model unseen subjects, especially

for verification tasks. Third, the subspace trained in one population should be ex-

ploitable for another population. Thus, the ICA basis vectors from one population

of subjects should function as the basis set, providing a ready-to-use system for a

new application without the necessity of collecting images to build a subspace.

We can classify the subjects into three sets: The training set, the gallery set and

the impostor set. The training set contains images of the subjects that are used to

build the subpace, in our case, the ICA-subspace. The gallery set consists of subjects

that are registered to the system and are expected to be identified or verified. These

two sets can be identical, totally different or intersecting. The impostor set is disjoint

from the training and gallery sets and consists of unauthorized users that should be

rejected by a verification system. We have conducted three different experiments in

order to test the generalization ability of our ICA-based recognition system.
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Table 3.5. Identification performances with respect to the size of the training set for

building the ICA subspace. The gallery set is of size 918 and contains both seen and

unseen subjects during the subspace-building phase.

Number of Features

50 100 200 300 400 500 600

Training set size

50 95.51

100 95.85 97.69

200 96.30 98.16 98.83

300 96.81 98.39 98.99 99.14

400 96.70 98.42 98.97 99.16 99.23

500 96.67 98.65 99.07 99.24 99.27 99.32

600 96.84 98.69 99.09 99.27 99.31 99.24 99.20

700 96.70 98.73 99.20 99.38 99.31 99.38 99.38

800 96.55 98.69 99.16 99.38 99.42 99.38 99.46

918 96.84 98.69 99.24 99.38 99.42 99.42 99.46

3.6.6.1. The Effect of Training Set Size. In the first experiment, the identification

performances are calculated on a test set of 918 people (Set A), using various ICA-

subspaces built with training sets of different sizes, each corresponding to a different

subset of the set A. Hence the gallery set contains both seen and unseen subjects

during construction of the ICA-subspace. For example, we use a randomly chosen

subset of 200 hands to build the ICA-subspace and recognize persons in a set of 918

persons, without the contributions of the 718 remaining subjects for building the

ICA basis vectors. Table 3.5 gives the results of the identification performance under

various training set sizes and number of features. Five random combinations of

training samples are drawn from the population and the identification experiment

is repeated five times for training set sizes of 50 to 500 and the average identifica-

tion performance is reported. For larger training set sizes, i.e. of 600 to 918, the

experiment is carried out for only one combination of training and test samples.

The number of features is chosen equal or less than the training set size since the

dimensionality of the ICA-subspace is limited by the number of available images.

We can make two observations: (i) For a fixed number of features, the performance
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Table 3.6. Identification performances with respect to the size of the training set for

building the ICA subspace. The gallery subjects are chosen from a population apart

from the training subjects.

Training set size Gallery set size Identification performance # misclassified images

50 400 96.35 15

100 400 98.45 6

200 400 98.95 4

300 400 99.28 3

400 400 99.42 2

500 400 99.40 2

deterioration with increasing training set size is marginal; (ii) The optimal feature

size seems to be 300, as there is not much of an improvement for population sizes

from 300 up to 918. For example, when we grow the training set size from 300

subjects to the maximum possible size, i.e. 918, and the feature components from

300 to 600, the number of misclassified samples only drops from eight to five.

3.6.6.2. Disjoint Training and Gallery Sets. In the second experiment the training

and the gallery sets are totally disjoint. This is the case when the system is trained

on a given population and then exported to another platform where totally different

subjects use the system. The gallery set consists of 400 subjects. The identification

performance increases incrementally after training set size of 100 (Table 3.6). For

all training set sizes, we have drawn five random combinations of training and

test samples and averaged the identification performances obtained from the five

experiments. The results in Table 3.6 indicate that this biometric system is completely

generalizable, in view of the uncompromising high identification performance.

3.6.6.3. Verification and Impostor Rejection. In the third experiment, we simulate a

verification scenario, where the gallery set and impostor set consist of 400 and 100

subjects, respectively. We have 400 genuine-to-genuine and 100x400 impostor-to-

genuine comparisons. None of the gallery and impostor subjects have been seen at
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Figure 3.16. ROC curves with respect to the size of the training set for building the

ICA subspace.

the subspace-building phase. The system is trained with different sizes of popula-

tions, as in the second experiment above. Table 3.7 gives the equal error rates. These

error rates are averaged over five-fold experiments where combinations of training,

genuine and impostor samples are selected randomly. We observe that after training

set size of 100, the improvement is not significant. Figure 3.16 shows the receiver

operating characteristics of the system; the ROC (receiver operating characteristics)

curves of systems trained with 200, 300 and 400 subjects are hardly differentiable.

We can conclude that the system has good impostor rejection performance.

These three experiments demonstrate that our ICA-based hand recognition

scheme can model adequately hands that were unseen during the model-building

phase. The trained subsets can be imported to other populations with identification

rates higher than 99 per cent, and equal error rates lower than 0.4 per cent.
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Table 3.7. Verification performances with respect to the size of the training set for

building the ICA subspace. The gallery and impostor subjects are chosen from a

population apart from the training subjects.

Training set size Gallery set size Impostor set size EER (%)

50 400 100 1.24

100 400 100 0.66

200 400 100 0.40

300 400 100 0.27

400 400 100 0.21

3.6.7. Effect of Resolution on the Performance

We have tested our normalization algorithm and ICA-based feature extraction

scheme under various image resolutions. All other experiments in this work were

performed with 45-dpi resolution, and the resulting normalized images were of size

200x200. We reduced the resolution to 30 and 15 dpi via linear interpolation and

conducted identification experiments on the set A (population 918). The rates of

success for normalization and identification are separately given in Table 3.8.

When some images are downsampled to a lower resolution, fingers that are

close to each other tend to merge, which makes the hand normalization impossible.

There were two such hand images with resolution 30 dpi and six images with

resolution 15 dpi, and they were discarded from the identification experiments. A

sample case is illustrated in Figure 3.17.

This analysis shows that our normalization algorithm can work with very low-

resolution images and the identification performance remains above 96 per cent even

at 15 dpi.
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Figure 3.17. (a) Sample hand image at 15 dpi. (b) Zoomed hand image (c) Result of

segmentation.

Table 3.8. Identification performances with respect to resolution. The population is

of size 918 (Set A). ICA-based features of global hand appearance are used.

45 dpi 30 dpi 15 dpi

Success of normalization (%) 100 99.79 99.35

Identification performance (%) 99.42 99.02 96.24

3.6.8. Performance under Time Lapse

Robustness with respect to time lapse is the most critical issue of a biometry-

based identification system. Table 3.9 gives the identification rates obtained on a

test set of 160 subjects (Set C). Hence we conducted experiments with time-lapse

images, which were acquired after a period ranging from two weeks to three years.

In the experiments, we varied the population size of the training set for building

the ICA subspace and only ”old images” were used. When we use only the old

images of 160 subjects for training, we end up with four misclassified cases within

recent test hands of these subjects. As the number of training images increase, the

dimensionality of the subspace, hence the number of features increase, we achieve

100 per cent recognition rate. The last experiment in Table 3.9 corresponds to the

case where new images of 160 people are compared with the full gallery of size

918 subjects, i.e. 918 classes exist. Even in this difficult setup, the identification

performance is 99.06 per cent.
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Table 3.9. Identification performances with respect to time lapse. ICA-based

features of global hand appearance are used.

Training # users in # test subjects Identification # misclassified

set size the gallery performance % images

160 160 160 98.75 4

300 160 160 99.38 2

918 160 160 100 0

918 918 160 99.06 3

Since there does not exist standard hand databases and protocols, it is difficult

to evaluate the relative success of alternate works on different databases. However,

in Table 3.10, we give the identification and verification results reported by several

authors. In this table, we also indicate the key parameters of each experiment. The

identification and verification performances are denoted as IP and VP, respectively.

All the experiments are performed on databases consisting of 100 subjects since this

was the population size common to the other studies in the literature in Table 3.10.

We have conducted our experiments on set D, with the ICA-based features extracted

from the global hand appearance. The number of test images is three for each

subject. The verification results are obtained using an impostor set of size 100 subjects

with three hand images for each, leading to 300 genuine-to-genuine comparisons

and 300x100 impostor-to-genuine comparisons. Although the performance figures

in Table 3.10 were obtained with different hand databases, we believe that they

nevertheless give an idea of the success of the hand appearance based algorithm.

3.7. Conclusions

Our detailed investigation of the various aspects of hand biometry reveals that

person identification and verification can be successfully implemented with hand

imaging devices. Our major conclusions on the device technology and subject set

list as follows:

• Proper hand registration with finger reorientations is critical for high perfor-
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Table 3.10. Comparison of our method with previous work.

Enrol.

size

Time Lapse Hand

type

Performance

Kumar et al., 2006 [45] 5 Three

months

Left VP: 3.74 % FAR, 1.91 % FRR

Kumar and Zhang, 2006 [46] 5 Three

months

Left IP: 98 %

Kumar and Zhang, 2005 [67] 5 Three

months

Right VP: 0.08 % FAR, 4.6 % FRR

Shang and Huang, 2006 [76] 3 Two months Right IP: 98.67 %

ICA2 on handprint 3 Two weeks

to three years

Left IP: 99.33 %

VP: 1 % EER

ICA2 on handprint 3 Two weeks

to three years

Right IP: 98 %

VP: 1.16 % EER

ICA2 on handprint

(fusion of left and right

hands)

2x3 Two weeks

to three years

Left

and

Right

IP: 99.67 %

VP: 0.33 % EER

mance operation;

• The algorithm can accept input from imaging devices with as low a resolution

as 30 dpi and hands containing various accessories;

• The hand normalization system can work with a wide range of acquisition

devices such as scanners and low-resolution cameras;

• Hand biometric access control can be applied very reliably to populations from

hundreds to a thousand subjects;

• The hand-biometric system trained on a given population can be exported to

operate on a partially or totally differing population;

• The algorithm does not suffer noticeable performance loss over time lapses

from several months to a year.
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4. 3D FACE RECOGNITION

4.1. Introduction

Automatic identification and verification of humans using facial information

is one of the most active research areas in computer vision. Due to the wide use of

digital cameras and ease of the acquisition, the main effort is put on the recognition

of faces from 2D intensity images. However, there are a number of challenges

encountered with face recognition from 2D intensity images. In intensity images,

faces acquired from the same person show high variability due to lighting conditions.

Face segmentation from a cluttered background is another unsolved problem.

The shape information of 3D faces is descriptive enough to distinguish people.

This information can either be used alone, or can be fused with 2D intensity in-

formation to increase recognition performance. Three-dimensional face recognition

possesses certain benefits over intensity-based 2D face recognition: The two crucial

advantages are the illumination-invariance and the ease of detection and cropping

of the face region from the background. Since 3D acquisition devices measure shape

information, 3D face models are independent of lighting conditions. Segmentation

of 3D faces from background is relatively an easy task for range images, as far as the

face is within the range of the scanner. Furthermore, 3D face information can model

small pose variations as opposed to intensity images. Due to these advantages of

3D face based biometry and due to the advancements in 3D scanning technologies,

there has been a rapid increase in research efforts on 3D face biometry in the last

decade [92].

Expression variation remains as a challenge for 3D face recognition systems

[93]. This point is illustrated in Figure 4.1, where we show face scans of three

subjects, each with three varying facial expressions, from the Face Recognition Grand

Challenge (FRGC) database [94]. We will propose solutions to expression variation

in Chapter 5.
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Figure 4.1. 3D faces from three different subjects (a, b, c). Faces on the same row

correspond to the same person with different facial expressions.

The high quality range scans of 3D faces contain hundreds of thousands of

dense points. This high dimensional representation makes the matching stage inef-

ficient, especially for real time applications. Since subspace methods are excellent

dimension reduction techniques, we propose to use them for feature extraction. The

3D face-based biometry is a relatively new research area, therefore many conven-

tional signal processing and subspace extraction techniques were not considered yet.

Some of the subspace-based feature extraction schemes (DFT, DCT, ICA and NMF)

were not previously applied to 3D face representations.

4.2. Previous Work on 3D Face Recognition

Point-cloud representation is one of the popular representations in 3D face

recognition community [95, 96]. The point-cloud representation of a probe face

is registered to the gallery faces by the Iterative Closest Point (ICP) method. The

quality of the ICP alignment is supposed to be sufficiently good to allow for pointwise

matching of two face point clouds. In [97] and [98], all the point sets of the probe and
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gallery faces are registered to an average face via the ICP in order to align the faces

to a common reference frame and to establish dense correspondences. Then, the

features are extracted from these aligned point sets. We also followed this scheme

in our work, and extracted our subspace based features from the aligned point sets.

There are several alternatives to the ICP-based matchers. Koudelka et al.

[99] automatically find several facial landmarks such as nose tip, sellion, inner eye

corners, and mouth center and then sample a number of random points in their

neighborhood. They use a combination of ICP and Hausdorff algorithms to match

two facial surfaces.

Instead of rigid registration via ICP, nonrigid versions of it can be beneficial

in establishing the correspondence between facial surfaces. For example, Irfanoglu

et al. [97] propose the thin-plate-spline (TPS)-warping algorithm. First, they au-

tomatically locate several facial landmarks, and then warp a given face image to

an average face model (AFM) using TPS. Passalis et al. [100] propose a generic

face model, which is fitted to a given face. The related displacement information

forms a separate deformation image. The authors perform wavelet analysis on this

deformation image to get the descriptors.

A number of algorithms were proposed to deal with the deformation of the

geometric structure of the face due to expression. One approach is to model the

face as a deformable object. Lu and Jain [101] have suggested the use of person

specific deformable models. The deformations are learned from a small group of

subjects. Then, the learned deformation model is transferred to the 3D neutral model

of each subject in the database via TPS. At the matching stage, the person-specific

deformable models are fitted to the test face using a modified ICP algorithm where

deformation parameters are updated in an iterative way.

Besides ICP, there are other schemes where the registration [102] or correspon-

dence matching process [103, 104] is inherent to the recognition algorithm. Mian et

al. [103, 104] used rotation invariant tensors that are constructed in locally defined
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coordinate bases to represent the 3D faces. At the recognition stage, the best match-

ing pairs of features, i.e., the correspondences, between the template and test images

are found either by exhaustive matching [104] or via a 4-D hash table [103]. Bron-

stein et al. [102] proposed an expression-invariant face recognition algorithm, where

one 3D face is embedded onto another face by multidimensional scaling (MDS). The

MDS is used to establish intrinsic geometric correspondence between two similar

but deformed surfaces.

Another approach to deal with expression variations is to adopt a region-based

scheme. Chang et al. [105] use three overlapping face regions around the nose.

These regions are assumed to be less deformable under expressions as compared to

those facial parts including eyes and mouth. The corresponding facial region pairs

from the gallery and probe images are matched with Iterative Closest Point (ICP)

algorithm, and the matching scores are combined with the product rule. Any other

region that is deemed deformable under expressions is ignored. Faltemier et al.

[106] describe a system, where one pre-determined facial region in the gallery image

is compared with multiple regions in the probe image, and then their outcomes are

combined through committee voting. A more general treatment of local region-

based face recognition system is presented in [107] and [108] for 2D and 3D face

modalities, respectively. The underlying principle is the automatic determination of

discriminative parts of facial regions via feature subset selection heuristics. These

authors show that, even without prior knowledge on the importance of facial subre-

gions, one can learn informative facial parts from the data, which leads eventually

to better identification rates.

Samir et al. [109] represented a facial surface as a collection of planar curves

derived from the level sets or from the geodesic curves that are centered at the nose

tip of the face. The second type of representation is based on geodesic curves and is

invariant to rotation.

Another popular approach in 3D face recognition research is to convert the

3D point-cloud information into 2D depth images (range images). While the 2D
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data are more familiar to work with, the loss of intrinsic face information due to

resampling and mapping to a regular grid must be accounted for. When more than

one point is mapped to a cell in a 2D grid, these points are undersampled during a

conversion to 2D. A case in point is the sloping parts of the face, which suffer due

to the foreshortening effect in the 3D to 2D conversion. Some of these sloping parts

may incorporate interperson differences like the slopes of nostrils. Once the depth

image is formed, one can treat the 3D face recognition problem as simply a 2D image

matching problem.

Pan et al. [110] design a pose-invariant recognition system by projecting the

preregistered 3D point cloud data to a plane parallel to the face plane. They achieve

pose invariance via a variant of the ICP-based registration. Their projection flattens

out the facial surface. Then they apply PCA to extract features.

An approach for matching range images, using the original measured data and

not their subspace projection, is discussed in [111]. In that work, Russ et al. apply

the partial-shape Hausdorff distance metric to range images. The motivation behind

using the Hausdorff distance is its partial invariance to inconsistencies such as noise,

holes, and occlusions in the 3D facial data.

As an alternative to depth images, it is also possible to construct 2D images that

represent other properties of 3D data, such as surface curvature and surface normals.

Abate et al. [112] generate normal maps, which store three-variate mesh normals

in lieu of the red, green, and blue (RGB) components. The difference between

the normal maps of the two images is calculated in terms of three difference-angle

histograms.

There are a number of papers concentrating on local surface features such

as curvatures. Tanaka et al. [113] utilized Extended Gaussian Image, which in-

cludes information of principal curvatures and their directions. Different EGIs are

compared using Fishers spherical correlation. Another work based on Extended

Gaussian Image can be found in the paper of Lee et al [114]. Gordon [115] proposed
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a template-based recognition system, which again involves curvature calculation.

Chua et al. [116] have used point signatures, a free form surface representation tech-

nique. Beumier et al. [117] extracted central and lateral face profiles, and compared

curvature values along these profiles.

4.3. Types of Face Representation

We assume we have registered 3D coordinate data coming from the prepro-

cessing stage. The common approach for registration is alignment of the 3D point

cloud of a probe image onto each gallery image. Since ICP is a time-consuming

procedure, the alignment of an input face to all the faces in the database precludes

real-time operation. Therefore we follow the Average Face Model (AFM) approach

introduced by Irfanoglu et al. [97]. The AFM is obtained from a set of training face

samples. Then the 3D point cloud of the probe and gallery faces are aligned to AFM

via ICP. This scheme allows us to rapidly build correspondences among faces. The

details of the preprocessing and alignment stages can be found in [92].

The 3D face data admit various representation styles with their consequent

extracted features. We use three different representation schemes for recognition:

Point cloud, depth image and 3D voxel representation. In the following sections, we

briefly describe the construction of each representation. Point cloud and depth image

representations are common in 3D face recognition research. However, mapping the

3D point cloud onto a voxel grid is new in the literature.

4.3.1. Point Cloud Representation

The point cloud is the set of the 3D coordinates (x, y, z), of the points of a face

object. A face with N samples is simply represented in terms of three coordinate

vectors, X, Y and Z of length N. Figure 4.2a shows a sample point cloud, and Figures

4.2b, c and d show the three coordinate vectors plotted with respect to the vector

index. Notice that all correspondences among points of different faces must have

been determined at the registration step.
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Figure 4.2. (a) Point cloud representation. (b, c, d) X, Y, Z coordinate vectors

respectively, as a function of the vector index.

Although the ensemble of face point encodes the variations among different

faces, there is a very loose neighborhood information in the point cloud represen-

tation due to the one dimensional vector structure of the coordinates. The simplest

scheme is to use the coordinates themselves as features and calculate the sum of Eu-

clidean distances between corresponding points of two faces. We propose to apply

subspace-based techniques directly to the point cloud as described in Section 4.4.

4.3.2. Depth Image

One of the most conventional ways to represent face data is the depth image

where the z-coordinates of the face points are mapped on a regular x-y grid by

using linear interpolation. The depth image has the form of a 2D function I(x, y),

similar to an intensity image (Figure 4.3.2). Thus many techniques applicable to

intensity images for classifying facial appearance variations can be directly used
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Figure 4.3. 2D depth image from side and from top.

for depth images to bring forth facial landscape differences among subjects. The

classical dimensionality reduction techniques such as PCA, LDA, and ICA have

been previously applied to depth images [98, 118, 119, 120]. In Section 4.4, we

consider a number of feature extraction techniques applicable to depth images.

4.3.3. 3D Voxel Representation

The initial point cloud data can be converted to a voxel structure, denoted as

Vd(x, y, z), by imposing a lattice. The first step of the voxel conversion procedure is

to define an N ×N ×N grid box in such a way that the barycenter of the point cloud

coincides with the center of the box. Then, we define a binary voxel occupancy

function V(x, y, z) on this grid. This is simply an indicator function: if, in a cell at

location (x, y, z), there does not exist any points of the cloud, V(x, y, z) is set to zero.

If there are one or more points in that cell, then the binary function at that voxel

location assumes the value one. Therefore all cells on the face have the value of one

and the rest of the cells in the space are set to zero, which, in effect, defines a 3D shell.

Figure 4.4 shows a sample point cloud, and the corresponding 3D binary function,

V(x, y, z), displayed as a negative image.

We have found advantageous to convert the binary voxel data into continuous

form via the distance transformation. We apply 3D distance transform to the binary

function V(x, y, z) to fill the voxel grid and obtain Vd(x, y, z). The distance transform

is defined as the smallest Manhattan distance of a voxel point to the binary surface.
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Figure 4.4. The point cloud and its binary voxel representation.

Figure 4.5. Slices from the voxel representation based on the distance transform.

This function gets a value of zero on the face surface, and it increases as we go

further away from the surface. By using the distance transform, we distribute the

shape information of the surface throughout the 3D space and obtain a smoother

representation compared to the binary voxel description. Figure 4.5 gives slices from

the voxel representation based on the distance transform.

4.4. Facial Feature Extraction Methods

We have explored a set of subspace-based features that extract discriminative

information from 3D faces. We have a number of combinations of the representation

types and feature extraction methods. For example, DFT was applied on the voxel

representation and on the depth image. Similarly, ICA was applied to the point

cloud and depth field representations of 3D faces. The combinations we have tested

can be seen in Table 4.1. We assume that 2D data (e.g., depth images, intensity
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Table 4.1. Representation schemes and features used for 3D face recognition.

Representation Features

3D Point Cloud

2D DFT

ICA

NMF

2D Depth Image

Global DFT

Global DCT

Block-based DCT (Fusion at feature level)

Block-based DCT (Fusion at feature level)

Block-based DFT (Fusion at decision level)

Block-based DCT (Fusion at decision level)

ICA

NMF

3D Voxel Representation 3D DFT

images) have size N = N1 × N2, the point clouds have size Np = N × 3 and that 3D

voxel data have size N = R × R × R.

4.4.1. DFT and DCT on 3D Face

We have employed DFT-based features for both the 3D point clouds, for the

depth images and for 3D voxel data. The point cloud and depth image repre-

sentations provide neighborhood information. In the point cloud representation,

the ordering of the points only provides point-to-point neighborhood. However

DFT/DCT coefficients are highly dependent on the spatial arrangement of the signal

points.

2D-DFT of point clouds: In order to compute 2D-DFT coefficients from the point

cloud of Np points, we first define an Np × 3 matrix P, where we put the X, Y and Z

coordinates of the Np points into the columns: P = [X Y Z]. We apply 2D DFT on this

2D matrix. We could have concatenated the X, Y and Z coordinates and computed
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Figure 4.6. Sample DFT-based feature vector obtained from point cloud.

the one-dimensional DFT, however, then we would lose the inherent relation within

the coordinates of a point. DFT coefficients are strongly dependent on the order of

the data, and we intended to keep the X, Y and Z coordinates of a point, close in the

data structure. The 2D-DFT coefficients of P are then computed as follows:

FPuv = DFT{P}uv =

Np∑

n=1

3∑

d=1

exp
(
−2πnu

N

)
exp

(
−2πdv

3

)
Pnd (4.1)

FP is a matrix of size Np × 3. We take the first K coefficients of the first column

of this matrix, and obtain a feature vector of size 2K − 1 by concatenating the real

and imaginary parts of the K complex coefficients. Figure 4.6 shows a sample DFT-

based feature vector of the point cloud. One should note that, most of the energy

is concentrated in the band-pass region due to the zigzag scan of the face as can be

observed from the plots of the coordinates in Figure 4.2.

4.4.1.1. Global 2D-DFT and 2D-DCT of Depth Images. For a depth image I(x, y) we

calculate its N1 ×N2-point DFT and extract K ×K low-frequency coefficients to form

a feature vector of size 2K2 − 1, by concatenating the real and imaginary parts of the
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Figure 4.7. Extraction of global DFT-based features from depth image.

coefficients (Figure 4.7). Likewise, we compute the global DCT: However, in this

case, we obtain a feature vector of size K2 since DCT coefficients are real.

4.4.1.2. Block Based 2D-DFT and 2D-DCT of Depth Images. In addition to the global

DFT/DCT-based techniques, we also extract local features, based on the calculation

of DFT coefficients on blocks. The depth images are partitioned into blocks of size

M×M and 2D-DFT is applied separately to each block. Then we take the first K ×K

DFT coefficients to form the feature vector special to a particular block. We can then

fuse this data either at feature level, or at decision level.

Fusion at feature level is performed by concatenating the DFT coefficients

coming from the blocks in a single vector. Figure 4.8 explains the procedure.

We perform fusion at decision level by using the sum rule. The depth image of

an input face to be recognized is partitioned into blocks and each block is matched

with the corresponding blocks of the depth images in the database. From this

comparison, each face in the database gets a rank. A face in the database, thus

obtains rank values as many as the number of blocks. When we sum up the ranks,

we obtain the final rank for the face, and choose the identity of the face with the

lowest final rank. Figure 4.9 summarizes this procedure.
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Figure 4.8. Procedure for fusion at feature level.

Figure 4.9. Procedure for fusion at decision level.
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4.4.1.3. Global 3D-DFT of Voxel Representation. For faces represented in terms of

voxels, we compute the 3D-DFT of its distance transform Vd(x, y, z). The feature

vector of size 2K3 − 1 is obtained by concatenating the low-pass K × K × K real and

imaginary terms, as shown in Figure 4.10.

4.4.1.4. Matching DFT/DCT Coefficients. Faces have typically slowly varying sur-

face characteristics, which means that there exists a rapid power differential in

DFT/DCT coefficients with increasing frequency. We only select the K×K (K×K×K

for the 3D voxel data) low-pass coefficients, where K is no larger than 10. While

the energetic coefficients at DC and at very low frequencies represent the gross

structure, a portion of the higher frequency coefficients carry the shape difference

information between individuals. These coefficients, which are important for face

classification, tend to be eclipsed by the heavy-weight coefficients. This problem can

be remedied by the QR-decomposition technique. We thus apply QR-decomposition

to these feature vectors: F = QR where F is the matrix consisting of feature vectors

if we have only one training sample per individual. For the case of more than one

sample per individual, F contains the difference of the feature vector of each subject

to its class mean. In this case the QR-decomposition corresponds to a variant of

linear discriminant analysis, where F corresponds to the within class scatter matrix.

R is the upper triangular matrix obtained from QR-decomposition of the training

features. In effect, we transform all feature vectors in both training and test sets

by multiplying them with the inverse of R, so that a feature vector f is mapped to

f T ← f TR−1. Finally, the transformed test and training feature vectors are compared

using the cosine distance.

4.4.2. ICA on 3D Face

We test the potential of the ICA scheme as a discriminative feature for 3D face

data. We extract ICA coefficients from either the 3D point cloud or the depth image

representation.
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Figure 4.10. Extraction of global DFT-based features from voxel representation.

For the point cloud all x, y and z coordinates of a face are concatenated to a

single vector. Its dimensionality is then reduced by applying PCA to the training set

of point-cloud vectors. The columns of the data matrix X for the ICA analysis are

constituted of the first K PCA coefficients of the faces. Then, the FastICA algorithm

described by [20] is applied to obtain the basis A and the independent coefficients

S. Finally, we apply QR-decomposition technique to the ICA-based features to

re-weight the elements of the feature vector according to their discriminative power.

The ICA analysis for depth images follows a similar procedure. The columns

of a depth image are concatenated to form a single one-dimensional vector, one for

each face. This data is subjected to PCA reduction, ICA decomposition and QR

normalization.

Figure 4.11 shows the first 10 basis functions derived from PCA, whereas Figure

4.12 shows 10 independent face components. PCA only captures the second order

variations due to the general face geometry, while ICA faces represent individual

faces within the database fairly well. One can observe more face-like structures from

the ICA basis images.
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Figure 4.11. First 10 basis faces obtained from PCA applied on depth images.

Figure 4.12. Basis faces from ICA of depth images.
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4.4.3. NMF on 3D Face

Parallel to the preprocessing stage of ICA decomposition, we first apply PCA

to reduce the dimensionality of the raw data (depth or point cloud information) and

place the first M PCA coefficients of each face into the columns of the data matrix.

We add a constant to the PCA coefficients to obtain a nonnegative data matrix. The

nonnegative factors V and H are obtained using the multiplicative update rules

described in [23]. Then the QR-decomposition is applied to the NMF-based features

as described in Section 4.4.1.

4.5. Experimental Results

4.5.1. Results on the 3D-RMA Database

The 3D-RMA database [121] contains face scans of 106 subjects. The total

number of faces is 617 and there are five to six sessions per person. We have

used four sessions for training (424 face scans) and utilized the rest 193 faces for

testing. We have conducted five experiments by selecting different combinations of

the sessions. Table 4.2 gives the identification performances (IP) of all the schemes,

averaged over the five experiments. Table 4.2 also provides information about the

number of features selected for each scheme.

As can be observed from Table 4.2, ICA and NMF-based features extracted

from the point cloud representations of faces gave superior results with smallest

number of features. They gave 100 per cent recognition performance for the three

experiments and missed only one face for the two experiments. The missed face is

plotted on top of another face of the same person in Figure 4.13. The misclassification

is due to the inaccurate registration of this particular face.
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Figure 4.13. The misclassified face plotted on top of another face of the same person

(misclassified by ICA and NMF based features computed on point cloud

representation).

4.5.2. Results on the FRGC v1.0 Database

For the recognition tests, we have used the University of Notre Dame (UND)

3D face database [94], also known as the Face Recognition Grand Challenge (FRGC)

v1.0 database in the literature. The original UND database contains 943 3D scans of

275 subjects. We had to use a subset of the original database, since 75 subjects had

only one scan, and 14 3D scans were badly registered with the texture data. Thus,

the part of the database involved in our experiments contained 854 2D and 3D scans

of 195 subjects. Each subject had at least two, and at most eight 3D scans. The UND

database consists mostly of frontal faces and does not exhibit significant expression

variations. However, some scans have slight in-depth pose variations, and different

expressions. Shape data contain approximately 30,000 - 40,000 3D coordinates.

We have designed four different experimental configurations, as shown in

Table 4.3. Each configuration contains a different number of training samples per

subject. The subscript i in experiment Ei denotes the number of training samples per

subject in that experiment. The reason for different populations is that in the UND

database, 195 subjects have more than two 3D scans, 164 subjects have more than

three scans etc. Thus E1 is designed so that every subject possesses only one image

in the training set, and while the rest of 854 − 195 = 659 images are placed in the
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Table 4.2. Recognition performances on the 3D-RMA database.

Representation Features Number of features IP (%)

3D Point Cloud

2D DFT 2x400-1 (799) 95.86

ICA 50 99.79

NMF 50 99.79

2D Depth Image

Global DFT 2x8x8-1 (127) 98.24

Global DCT 11x11 (121) 96.58

Block-based DCT (Fusion

at feature level)

20x20 blocks (12 blocks),

2x2x2-1 for each block (84)

98.76

Block-based DCT (Fusion

at feature level)

20x20 blocks (12 blocks), 3x3

for each block (108)

98.24

Block-based DFT (Fusion

at decision level)

20x20 blocks (12 blocks), 4x4-

1 for each block (180)

98.13

Block-based DCT (Fusion

at decision level)

20x20 blocks (12 blocks), 6x6

for each block (432)

97.82

ICA 50 96.79

NMF 50 94.43

3D Voxel 3D DFT 2x4x4x4-1 (127) 98.34

test set. For each experiment, we have run several folds, and the number of folds

for each experiment is shown in the last column of Table 4.3. We report only the

average of the recognition accuracies of the folds. The most difficult experiment is

obviously E1 (single gallery experiment) since not only there exists a single training

image per person, but also both the enrollment size and the number of test scans

are larger. Conversely, the easiest experiment is E4, since it contains four training

images per person and the test size is smaller. We choose not to report the even

easier identification experiments, such as E5 and E6, since they are not sufficiently

challenging. Note that when the number of images in the training set increases, the

number of subjects that participate in that experiment decreases.

In order to provide a more complete evaluation of our subspace-based methods,

we have included the surface-based methods proposed in [122] in our comparisons.

First is the surface normals-based matching, where the surface normals of corre-

sponding points of two faces are compared with L2 norm and summed up. There
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Table 4.3. Experimental configurations for FRGC v1.0.

Training samples Number of Total training Total test Fold

per subject Subjects scans scans count

E1 1 195 195 659 2

E2 2 164 328 464 3

E3 3 118 354 300 4

E4 4 85 340 182 5

are four methods based on the curvature of the points on the face surface, namely,

shape index, Gaussian curvature, Mean curvature and principal directions. We also

include the point difference methods for the coordinates of the 3D point cloud and

the depth values of the range images.

Table 4.4 shows the recognition performances on FRGC v1.0 database for the

four experimental setups. There is a jump difference in performance between single

gallery case and the experiments with at least two training images per subject. This

result means that all of the subspace methods provide class separable features. When

we have four gallery images per subject the performance is over 99 per cent for all

the methods. With NMF we achieve 100 % correct classification. We conjecture that

the subspace techniques achieve their full potential when adequate training data are

supplied to construct their feature subspaces. The subspace techniques need more

training samples to model the within class variability through the analysis into basis

faces and the corresponding coefficients. The final QR normalization step in the

subspace-based techniques also require at least two training samples per subject in

order to reweight the features according to class separability.

The depth-image-based classifiers DI-ICA and DI-NMF obtain 72 per cent

average performance rate. On the other hand, with the point-cloud representation,

PC-ICA and PC-NMF achieve 85 per cent average recognition rate. Hence, it is

the representation (depth versus point cloud), rather than the feature extraction tool

(ICA versus NMF), that is the determining factor. As matrix factorization techniques,

ICA and NMF give similar results on the same representation.
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Table 4.4. Recognition performances in percentages on the FRGC v1.0.

Representation Features Number of

features

E1 E2 E3 E4

3D Point Cloud

Point coordinates 49,680 87.71 94.68 97.92 98.90

NMF 90 85.13 97.77 99.25 100.00

ICA 90 85.66 98.71 99.67 99.89

2D Depth Image

Depth values 90,201 55.99 70.19 79.75 87.69

DCT 49 78.53 97.63 99.58 99.78

DFT 49 75.95 97.13 99.08 99.56

ICA 80 72.46 96.55 98.92 99.01

NMF 70 71.55 95.83 98.67 99.67

Voxel DFT 53 64.26 91.16 97.92 99.34

Surface Normal Surface normals 49,680 89.07 96.84 98.92 99.45

Curvature

Shape index (SI) 16,560 90.06 96.55 98.67 99.34

Principal Directions (PD) 99,360 91.88 97.13 99.08 99.45

Mean Curvature (H) 16,560 87.41 95.69 98.50 98.90

Gaussian Curvature (K) 16,560 84.37 93.89 97.25 98.46

4.5.3. Results on the FRGC v2.0 Database

In the experiments with FRGC v2.0, we have only considered the case where

there is only one gallery image in the database. Since we have called the corre-

sponding experiment protocol E1 for the FRGC v1.0 data set, we call this protocol

E1. However, the two experimental protocols have an important difference: we

have used the FRGC v1.0 to train our subspace-based methods such as the ICA and

NMF and used the class information in FRGC v1.0 to estimate the LDA and QR

normalization parameters. Then, these parameters and the basis images were fixed

and were used to calculate the feature vectors of the gallery images as well as the

probe images of FRGC v2.0. We have chosen the earliest scan of each subject as the

gallery image. All the 410 gallery images are neutral, i.e., they do not have facial

expressions. All the other scans are used as test images: Thus, we have 3542 test

images. Some 1984 of the test images are neutral faces, and the remaining 1558 faces

exhibit expression variations.
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Table 4.5. Recognition performances in percentages on the FRGC v2.0.

Representation Features Number of

features

E1

3D Point Cloud

Point coordinates 70 80.07

NMF 200 86.34

ICA 300 88.31

2D Depth Image

Depth values 600 57.82

DCT 169 76.14

DFT 127 73.97

ICA 450 67.25

NMF 300 62.68

Voxel DFT 127 72.67

Surface Normal Surface normals 50 83.79

Curvature

Shape index (SI) 80 75.30

Principal Directions (PD) 85 80.35

Mean Curvature (H) 80 72.56

Gaussian Curvature (K) 80 70.78

Table 4.5 shows the classification rates on FRGC v2.0 with the single-gallery-

image setup. The FRGC v1.0 database has been used to tune the parameters of

the subspace-based methods, the QR normalization, and the linear discriminant

functions. In the FRGC v2.0 experiments, we apply the LDA to the features of the

coordinates of the point cloud, to the depth values, to the surface normals, and to the

curvature based methods.We apply LDA and PCA to these raw feature vectors in

the v2.0 database. Our experimental results show that, with the help of FRGC v1.0

training set, it is possible to significantly improve the identification rates of these

methods when compared to using their raw features only.

The second column of Table 4.5 displays the feature dimensionality of each

method. For the methods that use LDA or PCA, dissimilarities between feature

vectors in the transformed subspace are calculated using the cosine distance. For

DFT-, DCT-, ICA-, and NMF-based methods, we have increased the dimensionality

in subspace-based techniques (when compared to the FRGC v1.0 experiments) since

we need more features to discriminate between the subjects in a larger database. The
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individual performances in FRGC v2.0 can be interpreted in relation to the results

obtained with FRGC v1.0 as follows:

• Point-cloud-based ICA and NMF methods perform best, yielding 88.31 per

cent and 86.34 per cent identification accuracies, respectively. Since we have

built the subspace models using FRGC v1.0, we had enough data to construct

the subspaces.

• In general, point-cloud-based methods perform better than depth-image-based

methods. The best depth-image based method, namely, the DCT methods,

reaches 76.14 per cent identification rate, whereas all of the point-cloud ap-

proaches attain identification rates greater than 80 per cent.

• The best two surface-descriptor-based approaches, the surface normals and the

principal directions, attain 83.79 per cent and 80.35 per cent recognition rates,

respectively.

Since the subspace based methods (ICA, NMF, DFT, DCT) and the local descrip-

tors (Surface normals, curvatures) give different descriptions of the faces, fusion of

these methods improves the classification rates beyond individual methods.

Table 4.6 shows the performance improvement due to fusion of 16 different face

experts in single gallery experiment of FRGC v2.0. In addition to the 14 methods

listed in Table 4.5, two texture-based methods are included (Gabor features and

raw pixel values). The fixed combination rules, the sum and product rules obtain

93.56 per cent and 93.08 per cent identification rates, which are 5.25 per cent and

4.77 per cent better, respectively, than the best individual face expert (ICA on point

cloud). The last row of Table 4.6 gives the fusion result with the subset of the experts,

selected by Sequential Floating Backward Search (SFBS) method [122]. This method

selected the set of the following seven methods as the best performing subset of all

the 16 experts: (i) ICA on point clouds, (ii) DCT on depth images, (iii) point cloud

coordinates, (iv) surface normals, (v) principal directions, (vi) raw texture pixels,

and (vii) Gabor features of texture. These seven classifiers attain 95.45 per cent

identification rate which is 7.14 per cent better than the best single face expert.
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Table 4.6. Recognition performances in percentages with fusion on the FRGC v2.0.

Fusion method Fused experts Recognition rate Improvement

Best method ICA on points cloud 88.31

SUM rule All 93.56 5.25

PRODUCT rule All 93.08 4.77

SUM (SFBS selection) 7 experts 95.45 7.14

Table 4.7. Recognition performances in the literature on the FRGC v2.0.

Reference Number of

gallery faces

Number of

probe faces

Landmarking

scheme

Recognition

rate

Passalis et al. [100] 466 3541 Automatic 89.5

Chang et al. [105] 449 3939 Automatic 91.9

Chang et al. [105] 449 3939 Manual 92.9

Faltemier et al. [106] 410 3541 Automatic 94.9

Our methods (SBFS selection) 410 3542 Manual 95.45

4.5.4. Comparison with the State of the Art

Table 4.7 illustrates the performances of different algorithms in the literature,

which use FRGC v2.0 for identification simulations. In all of these systems, the per-

formance of the proposed approach is benchmarked via single-gallery experiments

where the earliest scans of each subject are placed into the gallery set. However, the

experimental setups are different with different sizes of gallery and probe sets. In

this respect, the experimental protocol used by Chang et al. [23] is more challenging

since they conducted recognition experiments on a larger database spanning both

FRGC v1.0 and v2.0 image sets. Furthermore, their results are obtained via a fully

automatic face recognition system, whereas our system employs manual landmark-

ing for registration. Thus, the performance figures should be compared with respect

to the relative difficulty of each experimental setup.
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4.6. Conclusions

We have designed a diverse set of 3D face recognizers that differ in the face

representation and/or in the discriminative features they extract from these repre-

sentations. We have conducted our experiments on the FRGC v1.0 and v2.0 data

sets. We have used the experimental configurations used by the most recent studies.

In the experiments on the FRGC v1.0 data set, we have used all experimental config-

urations Ei. However, in FRGC v2.0, we restricted our attention to E1 experiments,

where the gallery contains a single training image per subject. In the experiments

with FRGC v2.0, we have used the FRGC v1.0 data set to learn feature subspaces

and selections for expert consultations. We have conducted extensive experiments

on the effectiveness of different features, different representations, and different fu-

sion rules. By experimenting with different training-set sizes, we were able to draw

conclusions on the effect of training sets.

Representation is more important when training set is small. The acquired

face data in 3D can assume one of the forms of point clouds, surface normals, depth

images, curvatures, or 3D voxels. The depth image derived from the original 3D

face is also treated as a 2D image. In experiments where the training-set size is very

small, the effect of representation type dominates.

The effect of matching feature dominates when training set size gets larger.

The second tier of the analysis is the feature extraction stage. For 3D face data, we

have compared two varieties of features, namely, the subspace features (DFT, DCT,

NMF, and ICA) and the spatial geometric features (point cloud, shape index, surface

normals, and principal curvatures). Subspace-based methods such as application

of ICA and NMF on point clouds gave superior results when a large training set is

available. One important conclusion is that all 3D face representation types (point

clouds, surface normals, depth images, curvature images, and 3D voxels) have

similar identification performances provided that its matching feature is selected

and that the gallery contains at least two data items per subject. Instances of a

matching feature are the following: DCT or DFT features for depth images, shape
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index for curvature representation, and NMF for point cloud.

The fusion of intelligently selected experts improves the recognition perfor-

mance, where additional 7.14 points of accuracy is gained for FRGC v2.0. Inviting

everybody is not necessarily a good idea, an expert-selection algorithm, such as

Sequential Floating Backward Search, works better.
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5. REGION-BASED RECOGNITION OF 3D FACES WITH

EXPRESSION VARIATIONS

In this chapter, we propose the application of masks as a means to mitigate

expression-distortions on 3D faces and to enhance their recognition performance.

Masking becomes necessary to de-emphasize the face regions that deform under

expression. We have conducted experiments with various masks, namely, ellipse-

shaped binary masks, Gaussian, super- Gaussian and raised-cosine masks. The

design issues of the masks, such as the mask size, the centre, the support region, the

decay rate of the tails, etc. are studied and adjusted with respect to their recognition

performances. We show first that warping the depth values of corresponding face

points onto the same spatial coordinates while obtaining the 2D depth images is

beneficial, and second, that proper masking can add several percentage points to the

recognition performance.

5.1. 2D Depth Image Generation

The common approach for registration is alignment of the 3D point cloud of a

probe image onto each gallery image separately via the Iterative Closest Point (ICP)

algorithm [95]. Since ICP is a time-consuming procedure, the alignment of an input

face to all the faces in the database precludes real-time operation. Therefore we use

an Average Face Model (AFM) obtained from a set of training face samples and align

the 3D point cloud of each face only to AFM via ICP. Figure 5.1 shows an Average

Face Model mapped onto a 2D depth image. This scheme allows us to rapidly build

correspondences among faces.

ICP alignment is a rigid transformation that yields aligned point set correspon-

dence of a face. We first use the ICP algorithm to best match the fiducial points of

a given face to those of the AFM. The seven fiducial points used are the four inner-

and outer-eye corners, nose tip and the two mouth corners. Then we apply spatial

warping to relocate (x, y) face coordinates on top of the regular grid of the AFM.



95

Figure 5.1. Depth view of the AFM.

Finally, the registered depth image of a face is formed with the z-coordinates of the

input face image located at the (x, y) coordinates of the Average Face Model to yield

the depth function H(x, y). This idea is similar to the Active Appearance Model of

Cootes et al. [14], where 2D intensity faces are warped on an average shape model

of the faces in order to establish correspondences. In this thesis, we treat the depth

of each point as the appearance of a face. The model will be complete if we also

consider the (x, y) coordinates of the face points and model the spatial arrangement

of the points. However in this thesis, we limit ourselves to the depth values only.

Figure 5.3 shows the warped depth images of the faces depicted in Figure 5.2. The

faces look very similar to each other, because the spatial arrangements of the pixels

belong to the average face. However, the geometric information represented by the

depth values is preserved. Figure 5.4 shows the profiles of three face images of

a subject in dashed curves and three profiles of another subject in solid and black

curves. With this single profile, two classes seem to be separable from each other.

This warping scheme not only moves corresponding face points to the same

spatial locations in the depth image, but also reduces the deformation caused by

expression variation. A visual inspection of Figures 5.2 and 5.3 shows that the

within-class variations due to expression are reduced after warping. This result

is coherent with the Active Appearance Model of faces [14], where by warping

intensity values on to an average shape model, one can decouple expression from

the appearance of the face.
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Figure 5.2. 3D faces from three different subjects (a, b, c). Faces on the same row

correspond to the same person with different facial expressions.

Figure 5.3. Warped depth images of the faces shown in Figure 5.2.



97

Figure 5.4. Vertical (a) and horizontal (b) profiles of faces from two subjects.

Figure 5.5. Ellipse-shaped (a), Gaussian (b), super-Gaussian (c) and raised-cosine

(d) masks.

5.2. Masking Schemes

Since regions of the depth map H(x, y) have varying reliability, we can privilege

certain regions over others by multiplying with masks W(x, y) :

I(x, y) = W(x, y)H(x, y) (5.1)

The two issues that must be addressed are the shape and the location of the mask

functions. We have tested four different masks: Ellipse-shaped binary mask, Gaus-

sian mask, super-Gaussian mask and raised cosine mask (Figure 5.5).

The ellipse-shaped binary masking can be considered as a parts-based ap-

proach, where one particular region of the face is matched with the corresponding

region of another face. We have chosen ellipse-shaped regions in order to make a fair
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comparison with the Gaussian and super-Gaussian counterparts based on similar

control parameters, such as centre, size, support region, etc. The general form of the

ellipse- shaped binary mask is as follows:

WE(x, y) =


1 if

(
x−Xc

a

)2
+

(
y−Yc

b

)2 ≤ 1

0 otherwise
(5.2)

We have selected three parameters of the ellipse as variables: The vertical

centre point of the ellipse, Yc , along the symmetry axis of the face, the horizontal

radius, a and the vertical radius, b . The centre of the ellipse is constrained to be at

the symmetry axis of the face. The Gaussian mask has the following form:

WG(x, y) = exp

−
(x − Xc

a

)2

−
(

y − Yc

b

)2
 (5.3)

The Gaussian mask is applied to the whole face; hence this scheme does not

discard any face region. Instead, we weight the face points smoothly, with the points

near the centre of the mask contributing more as compared to further points. This is

controlled by the aperture parameters of the Gaussian mask.

To manipulate the decay regime of the Gaussian mask, so that it remains flat

over a larger region and then drops more rapidly to zero, we propose the use of a

super- Gaussian mask of order three. Higher powers of the super- Gaussian will

make the mask similar to an ellipse-shaped mask.

WSG(x, y) = exp
{
−

∣∣∣∣∣
x − Xc

a

∣∣∣∣∣
3

−
∣∣∣∣∣
y − Yc

b

∣∣∣∣∣
3}

(5.4)

The fourth type of mask is the raised-cosine mask, which can provide a flat

value over a controlled support region. The raised-cosine mask can be obtained

from the multiplication of raised-cosine windows along rows and columns of the
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image:

WRC(x, y) = Wa
RC(x)Wb

RC(y) (5.5)

where,

WK
RC(t) =



1 if |t| ≤ K(1−β)
2

gK
RC(t) if K(1−β)

2 < |t| ≤ K(1+β)
2

0 otherwise

(5.6)

and

gK
RC(t) =

1
2

[
1 + cos

(
πK
β

[
|t| − 1 − β

2K

])]
(5.7)

We have set β to 0.5. The raised-cosine mask provides a region-based represen-

tation similar to the ellipse-shaped binary mask. However, with the raised-cosine

mask, we have a smoother transition between the support region and other regions

of the face.

5.3. Features

We have tested the performance of masking schemes with DFT and PCA. We

apply 2D-DFT on the registered and masked depth function and extract the first

M ×M complex DFT coefficients. The real and imaginary parts of these coefficients

are concatenated in a one-dimensional vector, which forms the DFT-based feature

vector of a masked face. For PCA, the values of each of the masked faces in the

training set are concatenated to form a single vector. Part of these vectors are used as

training vectors to constitute the PCA bases, while the remaining ones are projected

onto these bases to form the feature vectors of the test faces. Furthermore, the DCT

and PCA coefficients are reweighted through QR-decomposition in order to make

use of the class information available in the training set.
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Table 5.1. Recognition performances of unmasked faces on the FRGC v2.0.

DFT PCA

Unwarped 71.71 % 74.20 %

Warped 80.66 % 87.15 %

5.4. Experimental Results

We have tested the performance of masking-based 3D face recognition on the

FRGC v2.0 database. We have considered the case where there is only one gallery

image in the database. There are 410 subjects hence, 410 gallery images. The

remaining 3542 face scans are used as test images. In order to train the PCA basis

and obtain QR decomposition we have used a separate dataset: The FRGC v1.0

database. This database consists of 854 face scans of 194 subjects and does not

contain the face scans present in FRGC v2.0. The PCA basis and the transformation

matrix R are calculated and fixed on the v1.0 database, and then used to weight

the features of the gallery and test images of the v2.0 database. As a baseline,

we have used both warped and unwarped depth images without masking. Table

5.1 shows the performances obtained with unmasked face images using DFT and

PCA-based features. The best performance on unmasked images is obtained with

warping and PCA-coefficients. This is much higher than the best performance

obtained from the DFT coefficients with masking (Figure 5.6 and Table 5.2). This is

not surprising, since the 2D-DFT is sensitive to spatial structure of the depth values,

whereas PCA only considers the variations among corresponding points regardless

of their position. After warping, the spatial structure of the depth values does not

carry class information since they are arranged with respect to the average face.

By varying the vertical centre, the support regions and the decay rates, we

have experimented with 128 variations of each of the four masks. The depth image

is of size 201 × 161. We varied the centres of the masks between 30 and 160, with an

increment of 10. The a and b parameters for the elliptic, Gaussian and super-Gaussian

windows are taken in the range of 20 to 80 with an increment of 20. For the raised-
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Figure 5.6. Performances with best 10 mask parameter sets for each masking

scheme, obtained with DFT coefficients.

Table 5.2. Recognition performances of best masks with DFT in percentages.

Method Unmasked Ellipse-shaped Gaussian Super-Gaussian Raised-cosine

DFT 80.66 83.46 85.43 85.35 83.79

PCA 87.15 87.32 88.09 87.89 87.63

cosine mask, a and b vary between 60 to 240 with an increment of 60. Table 5.2 gives

the best performances of the four masks among their different parameterizations

with DFT and PCA features. For DFT, unmasked image performance is 80.66 per

cent, and all masked versions register a few percentage point improvement. The

Gaussian mask has the highest gain, followed closely by super-Gaussian. Both

raised-cosine and elliptic windows fall about two percentage points behind. Both

Gaussian and raised-cosine masks are quite insensitive to parameter adjustments

while the elliptic mask necessitates fine-tuning (Figure 5.6).

Compared to DFT features, the gains with the PCA features are less impressive.

The best performance is again achieved with the Gaussian mask. Elliptic binary

masking yields little improvement. Figure 5.7a and Figure 5.7b illustrate the best
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Figure 5.7. Ellipse-masked faces giving the best five performances with (a) DFT

coefficients (b) PCA coefficients.

five ellipse-masked faces with for DFT and PCA techniques. For the DFT technique,

the best ellipse includes only the nose and eye regions. The second runner ellipse

includes also the mouth. This result shows that discarding the mouth and chin for

the sake of expression invariance causes a loss in the class information available to a

recognition system. Actually, when we observe the best ellipse-masked face for the

PCA case (Figure 5.7b, first face) we see that almost all face regions contribute to this

performance.

The PCA coefficients derived from the Gaussian masked faces give the best

performance, and the performance is relatively insensitive to the parameterization.

Figure 5.8 shows the Gaussian-masked faces giving the best five performances, all

of which are around 88 per cent. Their centres are all located around the nose tip.

However their aperture parameters are different.

5.5. Conclusions

In this chapter, we have proposed the use of smooth masks to deal with expres-

sion variations in 3D faces. We have conducted experiments with an ellipse-shaped

binary mask, a Gaussian mask, a super-Gaussian mask and a raised-cosine mask
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Figure 5.8. Gaussian-masked faces giving the best five performances with PCA

coefficients.

with a large number of possible parameters for each. We have also experimented

on the use of warping depth fields into an average face in order to reduce the

deformation due to facial expressions.

Warping depth images so that the depth values at the same location come

from the corresponding points of the 3D point clouds is beneficial for reducing the

effect of facial expression. This scheme is of great advantage especially with the

PCA-based technique, since PCA models the data better when correspondences are

well-established.

Another important observation is that, avoiding expression- prone face regions

such as mouth and chin, results in class information loss. Weighting the face regions

smoothly via a Gaussian mask, with high weights assigned to the rigid regions such

as nose tip, results in an improved performance. Furthermore one does not need to

fine-tune the parameters of the Gaussian mask in order to get the best region. The

best performance in the literature with the same database and the same experimental

setting is 94.9 per cent [106]. Here, various face regions are compared with each of

the gallery images via ICP and the results are fused with committee voting. We

have obtained 88.09 per cent recognition performance with warping and Gaussian

masking. We have implemented only one ICP procedure for a probe image, which

makes the system much faster and we have used a single masked image. The

proposed schemes are open to improvements.
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6. INDEXING AND RETRIEVAL OF 3D MODELS

6.1. Introduction

The technological advances enabling fast and reliable 3D acquisition and re-

construction of objects have resulted in rapidly growing databases of 3D models in

many domains. This increase brings up a need for efficient tools for indexing the

objects for various recognition, classification or retrieval tasks. Manual annotation

of objects with keywords has several limitations, such as being labor intensive and

difficult to keep updated, the dependency of the choice of keywords to one par-

ticular application, and the insufficiency of keywords to describe the shape of an

object. These limitations have made automatic indexing and retrieval of 3D objects

a popular current research topic.

Automatic and fast retrieval of three-dimensional objects from large databases

is becoming more vital with the increasing number and scope of 3D object mod-

els in computer applications such as CAD/CAM, 3D games, virtual reality media,

biomedicine, and virtual museums. Therefore, it is necessary to build efficient in-

dexing schemes that exploit discriminatory shape characteristics of different object

categories.

The retrieval of general 3D models is a hard problem since its evaluation is

highly objective, in the sense that the categorization of the models and the similarity

judgements depend on the user’s expectations. This is in contrast to the case with

hand-based or 3D face-based biometry, since the similarity notion between two

samples is well-defined: ”They belong to the same person or not”. On the other

hand, the retrieval of generic 3D models has the same challenge as the image retrieval

problem has: The semantic gap, which is defined as ”the difference between the

contextual and semantic knowledge of an entity described in natural language and

its computational representation in a formal language” [123]. The formal language

in 3D object retrieval may correspond to the procedures or rules that produce a
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set of measurements and their transformations, graphs, look-up tables, similarity

scores, search strategies and so on. The contextual and semantic knowledge is any

word, phrase or sentence in natural language pointing to or related to an object.

Examples of such expressions are ”a cat”, ”a tabby cat”, ”a fat tabby cat with large

ears, sitting on a chair”. Despite the challenge, computational tools or descriptors

are being developed to map the geometry of objects to similarity scores among them

and rigorous semantic categories are being defined in order to evaluate the success

of these mappings.

In this chapter, we explore subspace approaches for the shape-based classifi-

cation and retrieval of complete 3D object models. This approach is based on the

conjecture that 3D shapes are compressible or redundant in that they can be charac-

terized with fewer coefficients as compared to their voxel data size. We demonstrate

the potential advantages of data-driven methods that better capture the statistical

characteristics of the 3D objects in retrieval tasks. Among many possible subspace

techniques in the literature, we concentrate on three widely used and well-studied

subspace methods, namely, PCA, ICA, and NMF, which we have introduced in

Chapter 2.

Subspace-based techniques have commonly been used for characterization of

3D anatomical structures in biomedicine, head and body recognition applications

[124, 125, 126, 127]. However, to the best of our knowledge they have not been ex-

tensively studied specifically for indexing and retrieval of general 3D models. These

methods are generally considered as domain dependent; they may not generalize for

totally different structures that were not represented in the training set. For example,

a subspace that is built using only human models cannot generalize for totally dif-

ferent structures, such as plants. With this proviso, subspace methods are otherwise

powerful in characterizing the statistics of the data and in retrieval if the test models

are well represented in the training set. They greatly reduce the dimensionality

of the models supplying compact representations, which enable fast searching. The

feature extraction procedure is also time efficient since it only involves multiplication

with a matrix.
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Figure 6.1. Samples of general 3D models.

The subspace-based retrieval methods that we propose are not rotation in-

variant, hence their success depends critically upon the quality of the object pose

normalization or registration. Pose normalization is crucial, since misalignments

lead to eclipsing of genuine shape variation by pose variations, that is, translation,

scaling and rotation. In specific categories of shapes, such as 3D faces, body shapes

or organs, alignment and correspondence building are performed with the aid of

anatomical landmarks. However, general object classes, such as buildings, plants,

and animals lack such common natural landmarks For mixtures of object classes,

even if landmarks exist for some classes, they are not easily generalizable to other

classes (Figure 6.1).

We address the alignment problem with the aid of Continuous PCA (CPCA)

[128]. Furthermore, the distance transform of the voxelized models provides a

smooth function with an inherent robustness against minor misalignments. Finally,

we resolve the ambiguity in pose by exhaustively searching over all possible mirror

reflections and axis re-labelings as shown in Section 6.6.

We introduce a general subspace-based framework [129] for indexing of general

3D objects. We propose and explore various alternatives for each component of
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this framework, namely for data representation, object alignment, choice of the

subspace and shape matching. In particular, we use the inverse of the distance

transform for data representation, which offers a good compromise between fast

decay rate and large support (Section 6.3.3). For alignment of training models,

we propose mean shape-based and class-based correction schemes to resolve pose

ambiguities resulting from CPCA (Section 6.5.4). For shape matching, we propose

a computationally efficient version of the Munkres algorithm, which we refer to as

the pose assignment strategy, in order to compute the distance between two models

by taking into account all possible mirror reflections and axis re-labelings (Section

6.6). As a result, the PCA, ICA and NMF subspaces, when tailored to the needs of

a retrieval problem and applied to voxelized 3D shapes (Section 6.5), provide state-

of-the-art performance. The retrieval performance of the proposed framework is

demonstrated on Princeton Shape Benchmark (PSB) database. The subspace-based

methods, when combined with other state-of-the-art descriptors in the literature,

achieve the highest retrieval performance reported so far on PSB test set.

6.2. Related Work

The last decade has witnessed the emergence of a new research area in computer

vision, the query by content of general 3D models from large databases, with the

introduction of the Nefertiti project by Paquet et al. [130]. The large amount of

research carried on within the last ten years is thoroughly categorized and reviewed

in a number of survey papers [131, 132, 133], and PhD theses [128, 134, 135, 136].

In this brief survey, we focus on the problem of retrieval of objects belonging to

general categories, such as cats, tables, airplanes, etc. This type of categorization is

subjectively plausible in that it corresponds to what we would picture in our mind

while searching an object in the Web. A significant effort has been dedicated in

the literature to obtain rotation-invariant features from 3D objects. For example,

Zaharia and Preteux [137] use shape index histograms to compare the objects. While

the shape index, based on principal curvatures, is a powerful object surface attribute,

it is computationally tedious and also quite sensitive to noise and resolution level.
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Osada et al. [138] use various shape functions, such as distance between

two arbitrary points on the object surface. The sample distribution of these shape

functions then become object signatures. This distribution-based approach is ap-

propriate for shape categorization, for example, used as a pre-classifier, but not for

object identification.

Converting the surface representation of an object, mostly from a mesh rep-

resentation into a voxel grid has been suggested by many authors [128, 139, 140,

141, 142, 143, 144, 145, 146, 147, 148]. We also base our data structure on a reg-

ular voxel grid since it provides a parametric representation of the surface as a

three-dimensional function that is well-suited for subspace analysis. Furthermore,

voxelization yields uniform sampling of the object surface that is originally defined

by the non-homogeneous, disoriented and topologically inconsistent mesh models

referred to as ”polygon soups” [142].

Funkhouser et al. [142] suggested the use of a binary voxel grid, where the

voxels that intersect the object surface are assigned the value one. Vranic [128] has

argued that a binary function will result in a loss of important surface information

and proposed to use a real function, where each voxel is attributed to a value

proportional to the area of the surface patch confined in it. Novotni and Klein [145]

suggested to voxelize the surface using radial linear, binary and Gaussian kernels;

however they obtained the best results with the binary kernel. Kazhdan et al. [149]

proposed the exponentially decaying Euclidean distance transform. Although the

authors used this method in order to enable the computation of their reflective

symmetry descriptor for models with irregular meshes (topologically inconsistent,

with cracks and flipped triangles), the distance transform has many other advantages

as pointed out in [128]. The use of distance transform instead of plain surface

voxels alleviates the negative impact of pose variations on shape matching. Such

variations, though can be minimized via pose normalization techniques, are usually

inevitable in retrieval systems. The use of an adequate distance transform is even

more crucial in our case since it is a well known fact that subspace-based methods are

usually very sensitive to pose variations. We evaluate experimentally the retrieval
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performances of various 3D functions based on the distance transform on the training

set of Princeton Shape Benchmark. Since the inverse of the distance transform

provides the best results, we use it as the input data to our subspace analysis.

One source of controversy in the 3D model retrieval community concerns

the pose invariance problem. Some authors advocate the development of pose-

invariant descriptors [142, 145, 149, 150] while others rely on preprocessing for

pose normalization and then extract pose-dependent features from the normalized

representations [128, 151, 152, 153, 154]. Since our subspace-based features are

dependent on the pose, we correct the pose of the model prior to voxelization.

Pose normalization techniques can be listed as PCA, weighted PCA [151, 155],

Continuous PCA [128, 156] and PCA on the normals of the model (NPCA) [154]. All

these techniques aim to transform objects into a canonical coordinate frame so that

the normalization of each model becomes totally independent from other models.

Among these, CPCA is the most robust method, since it incorporates the whole

object surface to the pose normalization via integration over triangles, instead of just

using the triangle vertices.

An alternative to rotation-invariant features is to obviate the rotation uncer-

tainty. Thus an object can be aligned along its principal axes, e.g., its principal

components. Paquet et al. [151] construct three cords-based histograms after PCA-

based alignment. Ricard et al. [157] utilize magnitudes of 3D ART coefficients

applied to the voxelized objects as object descriptors. Since magnitudes of 3D ART

coefficients are only invariant to rotations around z-axis, these authors align the

objects principal axis with the z-axis prior to computation of ART coefficients. In

the same vein, Vranic and Saupe [158] take the 3D-DFT of the binary voxel repre-

sentations. Since the 3D-DFT coefficients are not rotation invariant, DFT is applied

after alignment to principal axes. Vranic and Saupe [156] have also experimented

spherical harmonics expansion with the PCA aligned objects.

The descriptors that are closely related to our subspace-based approach are the
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representations of the 3D models in some transform domain. In general, transform-

based methods assume the following signal model:

x = φb + N (6.1)

where, x is the data representing the geometry of a model, φ is the set of basis vectors

onto which x will be projected; and b is the coefficient vector and finally N is the

observation noise. The aim is to describe the shape in a compact form that preferably

possesses an inherent multiresolution nature. Spherical harmonics-based analysis

has been used as shape descriptors in many works [128, 142, 156, 159, 160, 145, 161].

Vranic [128] suggested the 3D - DFT to characterize the 3D voxel grid. Novotni and

Klein used Zernike functions, which are basically spherical harmonics modulated

by appropriate radial functions [145]. Ricard et al. introduced 3D Angular Radial

Transform, which is defined as a product of radial and angular basis functions

[143, 157].

In any such transform-based representation, the discriminating shape infor-

mation is subsumed in the coefficients b while φ is fixed. Most of these transform

domains are constructed in terms of complex exponentials and sinusoids of varying

frequency. One of the drawbacks of using harmonics as basis functions is that it

is difficult to obtain a compact representation of a 3D shape with high frequency

content. If the surface is composed of a series of jagged or highly curved concave

and convex parts, as in articulated objects, many coefficients are required to describe

the model. An additional drawback of the spherical harmonics descriptor is the

necessity to describe the geometry of the object in terms of functions on a sphere.

However, most of the 3D models cannot be mapped onto a single sphere without

loss of information. The common approach is to construct concentric spheres of var-

ious radii, centered at the center of mass of the object, and define separate spherical

functions using some projection of the object geometry onto the spheres [128, 142].

Each sphere is encoded with spherical harmonics independently from others. This

procedure brings an artificial partitioning of the model and is sensitive to parameters

such as the scale of the model, its center of gravity and the number of the spheres.
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Since PCA alignment may give nonconsistent orientations within a class [142],

there have been attempts to extract rotation-invariant features from transform co-

efficients. Novotni and Klein [145] use 3D Zernike moments as descriptors for 3D

shape retrieval. Kazhdan et al. [161] derive rotation-invariant features from spher-

ical harmonic coefficients. They first rasterize objects in a voxel grid to obtain a 3D

binary function, and then compute spherical harmonic invariants of the binary on

concentric shells.

On the other hand, subspace techniques such as PCA, ICA and NMF are data-

driven approaches and solve jointly for the subspace spanning vectors and their

projection coefficients. These techniques exploit the second or higher order statistics

of the data to extract the subspace information, that is, the basis functions. So far

they have been used only to model 3D objects of the same genre. For example, there

is a vast literature of subspace analysis of anatomical structures in the domain of

biomedical imaging [124, 125, 126]. These techniques usually concentrate on a single

structure, such as the corpus callosum, and model the small, but medically signifi-

cant variations. Likewise, in biometric systems that identify a person from her 3D

face geometry, subspace methods are powerful tools for modeling the interpersonal

variations [162, 92, 127]. There is also research for modeling shape variations of 3D

human body via PCA [163] and human torso via PCA and ICA [164]. However, to

the best of our knowledge subspace methods have not previously been considered

for describing general 3D shapes.

6.3. Voxel Representation

6.3.1. Pose Normalization

In order to normalize the triangular mesh models before voxelization, we use

the Continuous Principal Component Analysis (CPCA) technique developed by

Vranic et al. [128, 156]. The aim of this procedure is to transform the mesh model

into a canonical coordinate frame. The model is first translated such that its center

of gravity coincides with the origin. Scale invariance is achieved by setting the area-
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weighted radial distance from the origin to unity. Then, the covariance matrix of the

x, y and z coordinates on the object surface is estimated via a continuous integration

over all the triangles. The eigenvectors of the covariance matrix are considered as the

principal axes, and the object is rotated such that the canonical coordinates coincide

with the eigenvectors.

The eigenvectors of the covariance matrix are sorted in decreasing order of

their eigenvalues, and they are made to correspond to the x, y and z axes of the

canonical frame, respectively. This procedure assigns the orientation of the largest

spread of the surface points with the x-axis, the next largest spread with y axis and

so on. After the order of the axes is determined, the second order moments of the

model are used for selecting the positive direction of the axes [128].

In [142], the authors point out some problems associated with PCA-based pose

normalization techniques. For example, the eigenvalues may be multiple, or too

close to each other for models with high symmetry, such as a cube or a right square

prism. Isotropic models, i.e., models that are close to a sphere, may not even possess

strong principal orientations. Another more serious drawback of PCA normalization

is its potential risk to put objects of the same class ”out of phase” due to inconsistent

axes labelings and reflections [152].

Nevertheless, CPCA is a practical and powerful technique for pose normaliza-

tion. It gives small alignment errors, especially for objects that have clear principal

directions [165], and its merit has been proved by the high retrieval performances

achieved using pose-dependent shape descriptors [128, 152, 153, 154].

6.3.2. Binary Function in 3D Space

The voxelization of a triangular mesh model is a re-sampling process. Regard-

less of the degree of its irregularity, the mesh model can be seen as a piecewise

continuous surface in 3D space. The voxelization converts the mesh information

into a discrete function regularly sampled in 3D coordinates. The mesh model is
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placed in a Cartesian grid at some resolution and voxels are assigned the value one

if the surface passes through it, and zero otherwise. The resulting discrete function

is a 3D binary function, which is a distorted approximation of the object. Some

information is lost during sampling, and artifacts, such as aliasing, are introduced

due to the coarse structure of voxel grids.

The voxelization operation involves setting of two important parameters: The

first one is the size of the rectangular prism, a 3D windowing function, in which the

object will be sampled. The second one is the sampling density, the number of voxel

units, along each direction.

Using the bounding-box of the object itself as the windowing function, will

make the representation sensitive to outliers. Since the number of voxels must be

the same for all the objects, fitting an object into its bounding box will scale it with

respect to its extremities. Instead, we scale objects such that their area-weighted

mean distance (AWMD) from the center of gravity to the surface is set to unity. Then

we put the object in a fixed size box and discard all object parts that fall outside the

box Figure 6.2.

We use a cube as the box; hence we take identical dimensional factors along

x, y and z directions. We define the size of the box as half the length of one of

its edges. There are obvious trade-offs in the choice of the box size vis-á-vis the

normalized scale. The choice of a large box means larger voxels and, a coarser

representation; on the other hand, small boxes may crop some important model

parts. In extremum, the cube size can be adjusted to encompass all extremities of

all the objects in a database. Then we guarantee to have all objects remain within

the box, while sacrificing resolution, and for most objects in the database leaving

unnecessarily significant parts of the box volume empty.

In this work instead, we search for optimum box size that includes a proportion

of objects within the box favorable to good classification. We select the box size as

some factor of AWMD. Since AWMD is already set to unity for all the models during
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Figure 6.2. Selection of the box size for voxelization of the mesh model in (a). The

resulting voxel representations are shown on the right, with box sizes of 2.0 (b), 2.5

(c), 3.0 (d) and 3.5 (e).

scale normalization, the size of the box is equal to the factor we choose (Figure 6.2).

We have used two approaches to set the box size. The first approach examines the

histograms of extremities along x, y and z axes of the pose normalized objects in the

database and selects the box size such that the majority of the objects will remain

entirely in the box. The second approach, given a fixed-size box, calculates the

cropped proportion of objects in terms of surface area and then chooses a box size

to keep the lost surface ratio below a threshold. We have applied both procedures

to the training set of Princeton Shape Benchmark and have chosen the latter method

since it is more robust to outliers. Details are given in Section 6.7.1.

We rasterize scale-normalized objects into grids of R × R × R voxels. The

number of voxels determines the level of detail that will be preserved in the voxel

representation. While in computer graphics both high resolution and anti-aliasing

filtering are required to obtain visual quality, for classification and retrieval purposes,

a rough approximation may suffice depending on the application. The sampling

density is a compromise between maintaining class-specific details and glossing

over small within-class variations, which are considered as ”noise”. Too small an
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Figure 6.3. Models voxelized at resolutions R = 16, 32, 64 and 128 from left to right.

R obviously results in a rough voxelization; on the other hand, too large R values,

while attaining fine voxelization, may unnecessarily bring forth disparities due to

slight pose normalization errors. This issue of mismatching of two similar high

resolution models is discussed in [128]. Vranic has suggested starting with high

resolution volumetric representations and to suppress noise and uncertainty during

feature extraction, e.g. filtering of 3D-DFT coefficients of the volume [128]. However,

high-resolution volumetric models demand more storage and processing time, both

during preprocessing and feature extraction stages.

Figure 6.3 shows voxelized representations of five models with various selec-

tions of R. For these specific examples, representations at resolutions of R = 32 or

64 seem to be sufficient to at least visually identify object classes. In our work, we

conducted experiments with R = 32.
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6.3.3. Functions of the Distance Transform

We found it useful to propagate the binary shape information via 3D distance

transform to the 3D space where the object is rasterized. Binary voxel representation

will result in most of the voxels to have zero value and these voxels will not carry

any information about the structure of the object. One consequence of binary repre-

sentation is that it is not sufficiently robust against pose perturbations. The distance

transform has many advantages over the binary function. First, the representation

is smoothed and high-frequency artifacts due to the blocky structure of the binary

voxels are suppressed. Thus contradictory indications by the nearby binary voxels

of two objects, an artifact of binary voxelization, will be avoided. Second, each voxel

in the cube will contribute to the distance computation between two objects.

The distance transform, also known as the distance field, is a function which

maps each point in the space to the distance between that point and the nearest non-

zero point in the original binary function. We can define the 3D distance transform,

DT f (p) at point p = (x, y, z) of the binary function f (p) as

DT f (p) = min
{p̂, f (p̂)=1}

d(p, p̂) (6.2)

For distance measure d(p, p̂) we use the Euclidean distance. The distance trans-

form is zero at the surface of the object and increases monotonically as we move

further from the surface. The values can become quite large at the borders of the

box. Thus points farthest from object surface will have higher impact on the shape

comparison, which is counterintuitive. We prefer, therefore to use a function of

the distance transform that takes its largest value on the surface of the object and

decreases smoothly as one moves away from the surface. We have experimented

with the distance transform itself and the following functions of it:
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• The inverse of the distance transform (IDT):

IDT f (p) =
1

1 + DT f (p)
(6.3)

• The Gaussian of the distance transform (GDT):

GDT f (p) = exp{−
(
DT f (p)/σ

)2} (6.4)

where the parameter σ determines the width of the Gaussian profile.

• A piecewise linear function of the distance transform (LDT):

LDT f (p) =


1 − DT f (p)

k if DT f (p) ≤ k

0 otherwise
(6.5)

where the parameter k determines the width of the triangular profile of the

linear function.

Kazhdan et al. [149] used an exponentially decaying function of the distance

transform, which corresponds to our GDT. However, they fixed the width of the

Gaussian with respect to the average radial distance of the object. We have performed

experiments with various radii of the Gaussian function. Our results show that the

inverse of the distance transform gives significantly better results regardless of the

resolution of voxel representation.

Figure 6.4 shows the profiles of the functions with various width parameters,

σ and k. The Gaussian and linear profiles are similar in their appearance, and in fact

they yield similar retrieval performances (Section 6.7.2). If their support is small,

they decay rapidly toward zero. For larger widths, the GDT varies slowly in the

neighborhood of the surface, which in turn causes blurring of the object surfaces

(Figure 6.5h). The profile of the IDT is significantly different from the others. First,

it decays rapidly in the beginning, thus the blurring effect is mitigated; furthermore

voxels on the surface gain much more. Thus the relative importance of the surface
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Figure 6.4. Profiles of the functions of distance transform with various parameters.

voxels of the object is preserved. Second, IDT has a larger effective support than

GDT and LDT. Therefore the distance information is propagated further away from

the object surface, but with attenuated weights as compared voxels proximal to the

surface.

Figure 6.5 shows the voxel representation of a chair and the slices from various

possible 3D functions. The slice from the binary representation carries very little

information about the general shape of the model. GDT and LDT functions with

small support are similar to the binary function, since only very prominent voxels to

the surface are weighted. Farther away voxel attributes drop to zero. On the other

hand, increasing the support of GDT and LDT causes a blur of the representation.

Hence IDT is a good compromise between fast decay rate and large support.

6.4. Direct Voxel Comparisons

Direct comparison of objects provides a base-line to measure gains enabled

by the feature extraction schemes. The representation modalities can be voxel-wise
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Figure 6.5. Slices for the chair model (a) extracted as in (b). Slices from binary

function (c), distance transform (d), Inverse Distance Transform (e), Gaussian of the

distance transform with σ = 1 (f), σ = 2 (g), σ = 6 (h), piecewise linear function of

the distance transform with k = 2 (i), k = 3 (j), and k = 10 (k).

differences of volumetric models or pixel differences of depth buffers, etc. This

gain is expressed in terms of increased discrimination power and decreased search

effort. All feature extraction or selection methods focus on class-specific shape

characteristics and attenuate irrelevant variations and details. Subspace projection

as a feature extraction method provides a controlled way of filtering details non

pertinent to classification. In order to measure the performance gain, if any, of the

subspace algorithms, we resort to baseline retrieval performance obtained directly

via raw data without any feature extraction attempt.

For the RxRxR voxel array representation, we convert this 3D array to a 1D vec-

tor, x, using lexicographical ordering with indexing m. The distance of a query model

xi to a target model x j in the database is the sum of pairwise absolute differences

of the attributes of the voxels. We select the L1 distance first due to its computa-

tional simplicity and second due to its appropriateness for high dimensional data
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comparison [166]:

d(xi, x j) =
∑

m

|xi(m) − x j(m)| (6.6)

The direct comparison of raw data serves first as a baseline system. Second, it is

instrumental in tuning parameters such as the box size, sampling resolution, the

type of distance transform function as well as the aperture of the GDT or LDT

functions. These optimized parameter settings are then used by all the subspace

transform methods. Thirdly, direct comparison method guides us to form a well

aligned training set, where coherent axis labels and reflections are selected within

classes. This procedure is described in Section 6.5.4.

Calculation of d(xi, x j) for every pair of the query and target object becomes

very time consuming with increasing number of database objects and for large R. It

would be inefficient to use the direct comparison method in an online application

such as web-based 3D model retrieval. In general, it is desired to have as compact

and informative descriptors as possible, without any significant performance loss.

In Section 6.5 we investigate subspace methods for compacting features.

6.5. Subspace Methods

Given the observation matrix, X subspace methods find a set of vectors that

describe the significant statistical variations among the observations. These vectors

form the basis of a subspace where most of the meaningful information for certain

class of processes is preserved, and the orthogonal complement of this space is then

considered as noise. The significant part of an observation, x is expressed as the

linear combination of basis vectors Φ:

x ≈Φb (6.7)
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where b = (ΦHΦ)−1ΦHx. These methods have the additional advantage of greatly

reducing the dimensionality of the observations.

Let us assume that we have a set of N training models that are represented as

a voxel grid of size R × R × R. Let xi be a column vector of length M = R3 formed by

some lexicographic ordering of the voxel values of the ith model. The data matrix is

then formed as X = [x1 x2 ... xN] and is of size M ×N.

6.5.1. Principal Component Analysis

We have described PCA analysis in Section 2.5. However, for the voxel data

here, we used noncentered PCA contrary to the common practice. Instead of the

covariance matrix, we have calculated the correlation matrix C = XXT and used

the eigenvectors of the correlation matrix. The rest of the procedure is the same as

we have explained in Section 2.5 and we re-explain it here: Let {u1, u2, ..., uK} be

the first K eigenvectors of C with corresponding eigenvalues {λ1 ≥ λ2 ≥ ... ≥ λK}.
These vectors model the largest variations among the training samples, therefore are

considered to capture most of the significant information. The amount of information

maintained depends on K and the spread of eigenvalues. The projection of an input

vector x onto the PCA subspace is given by a = UTx, where U represents the M × K

projection matrix formed as [u1 u2 ... uK].

The reason for using the noncentered PCA is that it is much more suitable for

data that exhibit high heterogeneity among axes [167]. Each voxel in the 3D grid

corresponds to an axis of the vectors of size M = R3. Some classes have negligible

activity on some subset of voxels, i.e. axes, since IDT is close to zero for most of the

voxels, which are not close to the surface. That is why we consider the data as having

high heterogeneity among axes. Choosing non-centered PCA is also validated by

our experiments conducted with centered and non-centered data.

Figure 6.6 and Figure 6.7 give visualizations of eigenvectors, or basis shapes,

obtained via PCA of the training set of the Princeton Shape Benchmark. The first
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Figure 6.6. Visualization of the first eigenvector. First row show slices from x, y and

z axes, from left to right. Second row shows isosurfaces at different levels.

mode of variation is similar to the notion of a ”mean shape” (see Figure 6.6). The

first coefficient then determines the extent that this ”mean shape” is contained in a

given shape. Model groups that have a significant non-zero activity only on a subset

of voxels can have different means, on top of which the other modes of variations are

added. For example elongated and thin models are inactive on most of the outward

voxels and they have low projections on the first eigenvector. So they have a thinner

ellipsoid (see Figure 6.6) as the first component. The compact and fat objects on

the other hand, have a larger ellipsoid as the first component, and other modes of

variations carve out the inner parts. Large deviations from the grand-mean of the

shapes support our choice for the non-centered PCA.

Figure 6.7 shows the next largest four modes of variations added to the first

mode. First mode is multiplied by the first eigenvalue: µ = λ1u1. The reconstructed

modes seen in Figure 6.7 are obtained by fixing µ and adding on top of it, the

eigenvector of interest weighted by a factor c of the corresponding eigenvalue in the

positive and negative directions: cλiui + µ. Then each of the reconstructed modes

is visualized by its slices from three orthogonal directions and also as an isosurface.

Note that we have used the IDT while constructing the basis volumes, therefore the

eigen-volumes are multi-valued functions in the 3D space.
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Figure 6.7. Second (a), third (b), fourth (c), and fifth (d) modes of variation. First

three rows show slices from x, y and z axes, respectively. Fourth row shows

isosurfaces at the same level.
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The shape variations in the figures show the effect of each eigenvector. We

first observe that the basis shapes are nearly symmetric around some axes. This

is due to the symmetric structure of most of the models in the Princeton Shape

Benchmark. The projection of any model on these basis shapes will be an indicator

of the amount of the corresponding type of symmetry. Our second observation is

that the strongest variations are mostly in terms of topological changes. The weights

of the eigenvectors account for the formation or disappearance of gross holes and

disjoint parts in different shapes.

The second eigenvector controls the elongation of a model (Figure 6.7a). When

this coefficient is negative, the model becomes more elongated and thinner, and

when it is positive we get a spherical shape with a hole inside. The presence of a

hole, rather than a solid sphere, is due to the fact that we have surfaces instead of

filled volumes in the training set. Further variation in the positive direction splits the

sphere into two parts. The third mode causes the formation of two elongated parts

with a negative coefficient, and as the coefficient increases the parts start to merge

(Figure 6.7b). An increasing positive third mode coefficient results in a torus. The

fourth and fifth modes of variations have similar kind of topological effects (Figure

6.7c and Figure 6.7d). The effects of higher modes become less discernible on the

topology and the global shape, and they rather model finer shape variations.

6.5.2. Independent Component Analysis

Since ICA1 behaves like NMF and gives sparse bases similar to those of NMF,

it will be more informative to investigate ICA2 architecture as it yields structurally

different basis vectors as compared to NMF.

We select K, the reduced dimension obtained by PCA prior to the applica-

tion of ICA, in a goal-oriented manner, experimentally by observing the retrieval

performance over the training set.

Figure 6.8 gives visualizations of ten of the ICA components obtained from
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Figure 6.8. Visualization of sample ICA2 basis vectors.

the PSB training set. We visualize each component by a horizontal slice and an

isosurface. We have totally different basis volumes from those obtained with PCA.

The ICA2 components, or basis volumes, resemble the models that are present in

the training set; whereas in PCA we observe very general topological or geometric

variations. The PCA projections give clues about the class but distributed over

several coefficients. However in the ICA case, whenever a coefficient is pronounced,

we have a high correlation or resonance situation giving strong indication of the

model class.

6.5.3. Nonnegative Matrix Factorization

We used the multiplicative update rules to get the NMF basis as explained in

Section 2.7. As we have mentioned in Section 2.7, only positive bases and coefficients

are allowed in NMF. This constraint forces the NMF basis vectors to represent local
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Figure 6.9. Visualization of sample NMF basis vectors.

parts of the models. The visualization of sample NMF components in Figure 6.9

verifies this argument. We get sparse basis volumes representing different parts of

the models in the training set.

6.5.4. Axis Relabeling and Reflection

The most problematic issue with the CPCA normalization is the ambiguity of

axis ordering and reflections. We conjecture that most of the misalignment errors

are due to inconsistent within-class axis orderings and orientations given by the

normalization procedure. We will demonstrate this fact in Section 6.7.4 by showing
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the non-negligible gains in the retrieval performance when more coherent within-

class orientations are available.

We resolve the axis ordering and reflection ambiguities by generating the set

of all 48 possible reflections and orientations of the objects. Fortunately these 48

poses are generated very rapidly by applying array transpositions to the voxel-

based representation of 3D models. We simply permute the dimensions of the 3D

array to alter axes relabeling and flip the array along the three dimensions to obtain

reflected representations of the voxel-based models. We will refer collectively to

these pose varieties of the voxel-array as 48-Axes Relabeled and Reflected (48-ARR)

versions of the model. For the ith model in the database, the rth ARR version will be

denoted as xr
i , with r = 1, 2, ..., 48.

While constructing the data matrix at the training stage, we correct the inap-

propriate axes ordering and orientations by applying one of the following corrective

schemes: We find the most appropriate axis labeling and reflection by: (i) Mean

shape based ARR selection (MbARR), or (ii) Class based ARR selection (CbARR).

6.5.4.1. Mean Shape Based ARR Selection. This procedure assumes that the train-

ing set is not annotated with class information. In this case, we calculate the mean

shape m, by averaging the training samples {x1, x2, ..., xN}. Using direct voxel

comparison method, we find the best among the 48-ARR versions of each model as

ri = arg minr=1, 2, ..., 48 |xr
i −m|. Then we recalculate the mean and repeat the procedure

iteratively until the mean shape is not altered anymore.

6.5.4.2. Class Based ARR Selection. In the second procedure, we assume that the

training set is coupled with the class information of the models. For each class C,

we select an arbitrary member x̄C as the representative of the class. Then we find the

best 48-ARR version of the remaining members of the class via direct comparison of

voxels: ri = arg minr=1, 2, ..., 48 |xr
i − x̄C| for xi ∈ C.
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The assumption of the presence of class information of the samples in the train-

ing set is always valid in supervised classification applications of 3D shapes, such as

face recognition or detection of pathologies of organs. In database retrieval, on the

other hand, annotation of large databases is not always possible. However, a well-

sampled subset of the database can be annotated and used to build the subspaces.

Most of the systems including web-based search have subsets of annotated models

that can be reserved for training.

6.6. Matching

After the subspace is trained and the bases are formed, the target and query

models are projected on the subspace, and these projections are used as the shape

descriptor. We apply CPCA to the query and target models, voxelize them and

define the IDT functions in the 3D space. For each model we also get the 48-ARR

versions and project each one onto the subspace. We have a set of feature vectors,

Fi = {f1
i , f2

i , ..., f48
i } for the ith model defined as:

fr
i = PΦxr

i r = 1, 2, ..., 48 (6.8)

where PΦ is the projection operator for the subspace spanned by Φ. In order to assess

the dissimilarity between two models i and j, we construct the distance matrix, D of

the 48 × 48 pairings from the two sets, Fi and F j, such that

Drq(Fi,F j) = dc(fr
i , f

q
j) (6.9)

where, we use cosine distance to compare pairs of feature vectors:

dc(fr
i , f

q
j) =

fr
i f

q
j

|fr
i ||f

q
j |

(6.10)

We have also conducted experiments with L1 and L2 distances to compare pairs

of feature vectors. However, cosine distance gives the best performance since it
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Table 6.1. Pseudo-code for the pose assignment strategy.

Step 1: Initialize COST = 0;

Step 2: (r̂, q̂) = arg minr, q Drq

COST← COST + minr, q Drq

Dr̂q ←∞ q = 1, 2, ..., 48

Drq̂ ←∞ r = 1, 2, ..., 48

Step 3: Stop if all poses (r, q) are assigned to each other (or all Drq = ∞).

Otherwise go to Step 2.

normalizes the norms of the feature vectors to unity. After constructing the distance

matrix among the feature vectors corresponding to 48-ARR versions of the two

models, we either select the minimum of the matrix as the distance between the two

models (the MIN rule) or use the following fast variant of the Munkres algorithm,

which we call as the pose assignment strategy. We define a cost function of the

one-to-one assignment of each 48-ARR version of a model to a 48-ARR version of

another model. We initialize the cost to zero. We select the minimum element of

the matrix and add its value to the cost function. We set all elements in the row

and column of the minimum element to infinity, and search for the next minimum

of the distance matrix. We repeat the procedure until all 48-ARR versions of the

two models are assigned to each other in a one-to-one manner. The final cost is the

distance between the two models. The pose assignment strategy is more robust and

it improves the performance significantly as opposed to the MIN rule. In MIN rule

we consider only one pair of pose match, while in the pose assignment strategy we

use all the distances between matched pose pairs. The pseudo-code for the pose

assignment strategy is given in Table 6.1.

6.7. Experimental Results

We have conducted our experiments on the database of Princeton Shape Bench-

mark [168]. The database consists of a training set with 907 models in 90 classes and

a test set with 907 models in 92 classes. The training and test sets are disjoint in
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the sense that they do not have common models. Although most shape classes are

common to both, each set includes classes not present in the other. We use precision-

recall curves, discounted cumulative gain (DCG), nearest neighbor (NN), first tier

(FT) and second tier (ST) as measures of retrieval performance. Let C be the class of a

query model and |C| be the number of models of class C among the database of target

models. Let K be the number of retrieved models and, KC be the number of models

that belong to class C among the K retrieved models. The evaluation measures are

defined as follows:

• Recall: Given K, recall is the proportion of KC to |C|.
• Precision: Given K , precision is the proportion of KC to K.

• First tier (FT): First tier is equal to the recall at K = |C|.
• Second tier (ST): Second tier is equal to the recall at K = 2|C|.
• Nearest neighbor (NN): Nearest neighbor is the rank-1 classification accuracy.

• Discounted cumulative gain (DCG): To calculate discounted cumulative gain,

we obtain a list, Gk of the retrieved models, where Gk is 1 if the kth model belongs

to C and, 0 otherwise. Then the DCG at k is equal to

DCGk =


Gk , for k = 1

DCGk−1 + Gk
log2 k for k = 2, 3, ..., kmax

(6.11)

The overall DCG is calculated as

DCG =
DCGkmax

1 +
∑|C|

k=1 log2 k
(6.12)

6.7.1. Selection of the Box Size

Prior to voxelization of the models in a database (e.g., PSB), we should set

the size of the box in which the models will be rastered. We select the box size by

inspecting the statistics of the pose-normalized triangular mesh models in the PSB

training set. As explained in Section 6.3.2, we examine the extremities along x, y,

and z directions and the surface areas outside the box.



131

Figure 6.10. Histograms of model extrema along positive and negative x, y, and z

directions.

Figure 6.10 shows the histograms of the extremities along positive and negative

x, y, and z directions in the PSB training set. The extremities are larger in the x

direction since during the PCA normalization an object is aligned such that the

orientation along the highest dispersion coincides with the x-axis. The ”max” figure

in each graph is the maximum extremity encountered among the models in the PSB

training set. Inspecting the histograms for y and z, we can safely set the box size to

2.5. However, extremities along the x direction go well beyond 2.5 for many models.

Table 6.2 gives the percentage of objects that will be cropped with respect to the

choice of the box size. When we select 2.0 for box size, more than half of the objects

will be cropped. When the box size is set to 2.5, nearly 25 per cent of the objects will

not fit in the box.

We can determine the ratio, ai, of the cropped surface area of the ith object to

the object’s total area as a function of box size. Table 6.2 gives the statistics of ai

with respect to the box-size over the PSB training set. We can observe that less than

one per cent of the surface of an object will be cropped on average if we select a
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Table 6.2. Statistics of cropped models and cropped surface area percentage (ai)

with respect to box size (PSB training set).

Box # cropped % cropped Max(ai) Mean(ai) Mean(ai), over Median(ai), over

size models models cropped models cropped models

2.0 474 52.26 16.62 2.34 4.47 3.82

2.5 211 23.26 8.97 0.50 2.15 1.14

3.0 80 8.82 7.29 0.15 1.69 1.04

3.5 31 3.41 6.44 0.05 1.57 0.88

4.0 13 1.43 4.95 0.02 1.45 0.72

4.5 6 0.66 3.80 0.01 1.92 1.90

5.0 4 0.44 2.63 0.01 1.91 2.22

box size of 2.5. When the average is taken over only the cropped models, the ratio

of outside surface area per object is only 2.15 per cent, and the median is half that

amount. Based on these observations, we have decided to fix the box size at 2.5 in

all the experiments.

6.7.2. Comparison of 3D Distance Functions

In this section, we compare the 3D functions defined in Sections 6.3.2 and

6.3.3 with respect to their retrieval performances on the PSB set. The aim of the

experiments in this section is to determine the optimal of these 3D functions without

the use of any subspace technique. Instead, we use direct comparisons method

described in Section 6.4. The experiments are conducted on the PSB training set. In

these experiments we did not calculate 48 × 48 comparison scores between model

pairs; instead we have used only one pose of each model while matching. The pose

is either the one given by the CPCA or is determined using CbARR. Table 6.3 gives

the NN and DCG values for three resolutions of voxelization; i.e. for R = 16, R = 32,

and R = 64. The values under the column entitled as NoARR correspond to the

cases without any pose optimization, hence with the use of the pose obtained by

CPCA. The values under the CbARR refer to the cases with class-based ARR selection

described in 6.5.4.2. We omitted the results for a pose selection using MbARR here,
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Table 6.3. Performance of 3D functions for various resolutions on the training set of

Princeton Shape Benchmark. Direct comparison method is used.

R=16 R=32 R=64

NoARR CbARR NoARR CbARR NoARR CbARR

NN

Binary 47.0 56.4 49.8 58.1 33.8 38.6

DT 48.1 60.4 51.8 63.9 55.1 67.8

IDT 51.0 62.3 58.0 69.1 58.3 71.1

GDT (σ = 1) 49.2 60.2 53.7 63.6 48.3 67.6

GDT (σ = 3) 49.4 61.6 56.0 66.2 55.5 67.7

GDT (σ = 6) 47.9 60.4 54.7 64.1 56.7 67.6

GDT (σ = 10) 47.3 58.7 52.6 64.9 57.2 67.7

LDT (k = 2) 49.6 59.8 54.7 65.9 50.5 67.9

LDT (k = 5) 49.7 62.2 56.4 65.5 55.6 67.9

LDT (k = 10) 48.1 60.1 54.6 64.7 57.3 67.9

DCG

Binary 50.5 57.7 50.2 56.9 40.3 44.2

DT 52.0 61.6 54.8 64.5 55.5 65.6

IDT 53.4 62.3 56.6 66.2 57.0 66.8

GDT (σ = 1) 52.0 60.1 53.5 61.7 48.9 64.6

GDT (σ = 3) 52.5 61.5 55.3 64.3 55.1 64.4

GDT (σ = 6) 51.5 60.9 55.2 64.1 55.8 64.4

GDT (σ = 10) 51.1 60.4 54.7 64.4 55.9 64.4

LDT (k = 2) 52.3 60.5 54.0 62.6 50.6 64.7

LDT (k = 5) 52.6 61.8 55.3 64.4 55.0 64.7

LDT (k = 10) 52.0 61.3 55.4 64.2 55.8 64.7

since it gives similar ordering of performance figures among the functions of distance

transform.

The most significant result of the experiments is that IDT performs much better

than all the other functions at all the three resolutions. The binary function performs

poorly as expected. Its performance even deteriorates for increasing voxel resolution,

since the finer resolutions result in greater mismatch among similar models. Since the

shapes of GDT and LDT profiles are similar, their performances for corresponding

apertures are close to each other. At resolution 64, small apertures yield poor

performance when we do not use class-based ARR selection. Another observation
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is that we get a much bigger increase in NN as compared to DCG, when we increase

resolution. This is because fine resolutions favor target models that are very similar

to the query model. However, for target objects in the same class but do not have

well matching details with the query model, an increase in resolution may not raise

their ranks. With IDT, we gain two points for NN and 0.6 points for DCG when the

voxel resolution goes from 32 to 64. These observations have lead us to adopt R = 32

for resolution in all the following experiments.

6.7.3. Performance Analysis of Subspace Methods

6.7.3.1. Training Phase. In order to select the dimensionality of the PCA, ICA and

NMF subspaces, we perform experiments on the training set of Princeton Shape

Benchmark. We either leave the training set without any pose correction (NoARR)

or apply mean shape-based (MbARR) or class-based ARR selection (CbARR), the

latter two with the goal of selecting the best representative of 48-ARR versions of each

model in the training set. Once the subspaces and their basis vectors are obtained,

we extract the feature vectors corresponding to the 48-ARR versions of each model

in the training set. We apply the MIN rule (Section 6.6) to match the sets of feature

vectors of the query and target models for the NoPC and MbPC cases. However, for

the CbPC case, we directly use the best representative of 48-ARR versions of each

model and do not perform 48 × 48 comparisons between query and target models.

Figure 6.11a, b and c show the DCG versus dimension curves obtained with

PCA, ICA and NMF, respectively. For all subspaces, class-based ARR selection boosts

the retrieval performance; since we greatly reduce the 90 degrees pose ambiguities

within classes. The performance of PCA remains robust with respect to increasing

dimension, since higher order PCA coefficients have lower impact on the similarity

of the models. With ICA, the performance is quite sensitive to the dimensionality.

We have a peak performance at dimension 40, regardless of the alignment scheme of

the training models (Figure 6.11b). NMF-based retrieval scheme yields stable results

with increasing dimension as compared to ICA, although the DCG values fluctuate

a little due to random initialization of NMF basis vectors. With these observations,
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Table 6.4. Retrieval performances on the PSB test set. The pose correction is only

performed on the PSB training set during the subspace building phase. MIN rule is

used to match query and target models.

Subspace Dimension Pose correction NN FT ST DCG

PCA 100
MbARR 61.2 58.0 57.1 61.6

CbARR 61.7 58.4 56.8 61.5

ICA

40
MbARR 57.8 56.2 53.6 59.8

CbARR 58.4 55.2 52.9 59.2

100
MbARR 62.1 59.2 56.8 61.2

CbARR 62.6 59.8 57.0 61.4

NMF

70
MbARR 61.0 58.1 55.7 61.1

CbARR 60.3 58.9 56.3 60.7

100
MbARR 62.0 60.0 56.4 61.5

CbARR 61.7 59.1 56.9 61.0

we set the dimension of PCA-based subspace to 100 for the PSB test set experiments.

For ICA, we set the dimension either to 40, following the peak of DCG with the

training set or to 100 in order to have the same dimension with PCA. Likewise, for

the NMF-based experiments, we report results with dimensions 70 and 100.

6.7.3.2. Performances on PSB Test Set. Regardless of which ARR selection scheme

we have used in the training phase, we do not use any class information in the exper-

iments conducted over the test set. In Table 6.4 we give the retrieval performances of

the three subspaces obtained on PSB test set, with the MIN rule, whereas the results

in Table 6.5 are obtained using pose assignment strategy (Section 6.6). Clearly, pose

assignment strategy provides a significant gain to the performance.

Figure 6.12 gives the precision-recall curves for the three subspace methods.

The curves correspond to the case where we use the pose assignment strategy.

When we compare the three subspaces, we can observe that the performance of

PCA-based scheme is lower than the ICA and NMF-based schemes. ICA and NMF

subspaces give comparable results, although ICA performs slightly better. We can
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Figure 6.11. DCG versus subspace dimension with PCA (a), ICA (b) and NMF (c).

Experiments are conducted on the PSB training set.
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Table 6.5. Retrieval performances on the PSB test set. The pose correction is only

performed on the PSB training set during the subspace building phase. Pose

assignment strategy is used to match query and target models.

Subspace Dimension Pose correction NN FT ST DCG

PCA 100
MbARR 63.2 37.1 48.1 63.4

CbARR 63.5 37.0 48.2 63.4

ICA

40
MbARR 66.2 38.4 51.2 65.0

CbARR 66.4 38.5 50.7 64.8

100
MbARR 66.5 39.5 51.4 65.5

CbARR 66.5 39.4 51.5 65.6

NMF

70
MbARR 66.3 38.6 50.3 64.9

CbARR 66.9 38.5 50.4 64.7

100
MbARR 66.8 39.0 50.7 65.0

CbARR 66.9 38.7 50.0 65.0

see that the class-based ARR selection of the training set brings almost no gain to the

performance on the test set. Another disparity between the training and test cases is

about the dimension. Although the performance drops after the ICA dimension of

40 with the retrieval experiments on the training set (Figure 6.11b), when we switch

to the test set, we have performance gains with a higher dimension. Some classes

in the PSB test set are not present in the training set, therefore a well-tuning of the

parameters with the training set does not necessarily reflect on the test set. However,

an inspection of Table 6.5 reveals that we do not have dramatic dependency on the

selection of the pose correction scheme or the dimension. So we do not need to have

a labeled training set to incorporate class-based alignment while constructing the

subspace models.

6.7.4. The Correct Pose

For the sake of emphasizing the importance of the within-class coherence of

axes labeling and reflection, we give performance results on the PSB test set, assum-

ing that the best 48-ARR version of each model is known. We perform a class-based

pose-correction on the models of the test set using direct comparisons method. We
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Figure 6.12. Precision-recall curves on the PSB test set. Mean shape based pose

correction is applied to the training set. Pose assignment strategy is used to match

query and target models.

obtain the 48-ARR versions of the IDT representation of a model and select the one

that gives the least L1 error with the class representative (Figure 6.13). This is a

hypothetical case where we assume that the axes of each model are correctly labeled.

Table 6.6 gives the performance of various descriptors with this ideal case. We can

observe the boost in the performance when we compare the results with those in

Table 6.5, and this comparison shows that coherent axes labeling is crucial when

PCA normalization is applied to the models. With the pose assignment strategy, we

try to achieve the ideal results presented in Table 6.6.

6.7.5. Comparison with State of the Art

In order to demonstrate the potential of subspace techniques for 3D model

retrieval, we compare our results to the state-of-the-art methods. We select the
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Table 6.6. Retrieval performances on the PSB test set assuming that correct axis

labeling and reflection of each model are known.

Subspace Dimension NN FT ST DCG

PCA 100 70.0 43.0 53.8 68.3

ICA
40 69.6 43.7 55.2 68.6

100 72.4 43.4 53.9 68.9

NMF
70 70.3 43.7 54.9 68.9

100 71.4 43.8 55.1 69.2

Figure 6.13. Class-based ARR selection for bench seat and rectangular table classes.

The top red figures are the reference models. Pink figures at the left are the outputs

of CPCA-based normalization. Cyan figures under the reference models are the

best choice out of the 48-ARR representations.
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Table 6.7. Comparison of subspace methods with the state of the art 3D shape

descriptors on PSB test set.

Descriptor NN FT ST DCG

CRSP 67.9 40.5 52.8 66.8

DSR 66.5 40.3 51.2 66.5

DBF 68.6 39.3 50.0 65.9

ICA 66.5 39.5 51.4 65.5

NMF 66.8 39.0 50.7 65.0

LFD 65.7 38.0 48.7 64.3

PCA 63.2 37.1 48.1 63.4

four top performing methods that were evaluated in [152, 153], namely, concrete

radialized spherical projection (CRSP) [154], DSR descriptor [128], density based

framework (DBF) [152, 153], and light field descriptor (LFD) [169]. The CRSP scheme

decomposes the models into a set of spherical functions, which are then encoded

using spherical harmonics. The DSR descriptor is a hybrid descriptor that combines

depth buffer and silhouette-based descriptors. The DBF characterizes models using

multivariate probability density functions of local surface features. The LFD is a

collection of views of an object from uniformly sampled points on a sphere. With

the exception of LFD, the three methods use CPCA for pose-normalization. In CRSP,

the normalization is even enhanced with another PCA normalization that is based

on surface normals. None of the four descriptors employ learning schemes that use

class information of training or target models. Similarly we abstain from any class

information and use unsupervised ARR selection based on the mean shape of the

training database (Section 6.5.4).

Table 6.8 gives performance results obtained with fusion of the subspace meth-

ods with each other and with the DSR and DBF descriptors. The fusion is performed

via the summation of the scores obtained from each descriptor. The fusion of sub-

space methods with each other does not bring much gain, except the NN measure

with the fusion of ICA and NMF. However, when we combine the ICA and NMF-

based descriptors with the DSR or DBF, we get a significant improvement of retrieval
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Table 6.8. Fusion of subspace methods with other descriptors.

Fusion NN FT ST DCG

PCA+ICA 67.0 39.7 51.3 65.6

PCA+NMF 65.9 38.8 50.6 64.9

ICA+NMF 67.3 39.4 51.3 65.5

PCA+ICA+NMF 66.7 39.6 51.2 65.5

Fusion with DSR NN FT ST DCG

DSR+PCA 67.7 41.6 53.1 67.4

DSR+ICA 69.3 44.2 55.4 69.1

DSR+NMF 69.1 43.8 55.1 68.8

DSR+ICA+NMF 71.0 44.7 56.1 69.6

Fusion with DBF NN FT ST DCG

DBF+PCA 69.2 40.5 51.4 66.8

DBF+ICA 70.5 42.5 53.7 68.2

DBF+NMF 70.2 41.9 53.0 67.8

DBF+NMF+ICA 70.1 43.3 54.6 68.7

Fusion with DBF and DSR NN FT ST DCG

DBF+DSR 73.4 45.0 56.2 70.2

DBF+DSR+NMF+ICA 73.6 46.2 57.7 71.1

performance. These results show that, the subspace methods can be even more ben-

eficial when used in combination with other methods. Indeed, when we combine the

DSR, DBF, ICA and NMF methods, we achieve the highest performance reported so

far on the PSB test set, among the unsupervised retrieval methods in the literature.

6.8. Conclusion

In this chapter, we have developed 3D model retrieval schemes using various

subspaces of object shapes. We have investigated the potential of three popular

techniques, PCA, ICA and NMF, since each of them describes somewhat different

statistical characteristics of the data. Being reconstructive methods, these features

can easily gloss over minor differences and defects, but are affected by the gross

pose uncertainties. The pose dependency of the subspace methods is solved by the

use of CPCA-based pose normalization, followed by voxelization, inverse distance
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transform and exhaustive pose optimization. The two main results of our research

is, first that ICA and NMF-based schemes provide retrieval performances on a par

with the alternate state-of-the-art methods, and second that decision fusion of these

schemes advance the performance on Princeton Shape Benchmark beyond that of

any one method.

We conjecture that there is still room for performance improvement. Our future

research effort will concentrate on the following:

• The subspace methods can be applied on alternative representations of the data,

for example on the point cloud or the depth image representations instead of

the voxel data.

• Robust versions of subspace building can offer enhanced solutions, especially

when the data is corrupted by outliers. In this respect, kernel PCA, sparse PCA

[170, 171], robust PCA [172] or other variants of ICA and NMF can be adopted

and compared.

• The matching strategy can be improved by considering finer pair-wise align-

ment of models. One can consider matching manifolds of projections, obtained

by fine sampling of the rotation space instead of simply using the possible mir-

ror reflections and axis re-labelings.
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7. CONCLUSIONS

In this thesis, we use various subspace-based techniques for three different

object recognition applications: (i) Hand biometry, (ii) 3D face biometry, and (iii)

Indexing and retrieval of general 3D models. Our main contribution has been to

devise various combinations of object representations and subspace methods to

optimize the performance. In addition, we introduced normalization, alignment

and correspondence building techniques specific to each of the above problems.

7.1. Subspace Analysis

The human visual system operates in a subspace: The high dimensional op-

tical information arriving to the eyes are projected onto a three-dimensional color

subspace. The axes of this subspace are determined by the frequency response of

the retinal cones. A change of coordinates takes place at an early stage in vision:

In fact, the scenes observed by humans are not represented in terms of the actual

frequencies of the visible light but a linear combination of the frequency responses

of the retinal pigments.

Alternative coordinate systems other than the native one are chosen so that

we can optimally model the significant variations of the data, and we can perceive

”patterns” in the data better. Another relevant benefit is the potential reduction in

signal dimensionality by capturing the apparent degrees of freedom (or intrinsic

dimensionality) of the observed data. For example, face scans represented as high-

dimensional point sets belong to a manifold of intrinsically very low dimension.

This is also true for hand images and 3D models represented in high-dimensional

pixel or voxel arrays.
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7.2. Choice of Subspaces

There are a number of criteria to choose a subspace, such as minimum approx-

imation error, least representation entropy, uncorrelatedness, maximum variance of

coefficients, statistical independence, sparsity of basis functions, sparsity of coeffi-

cients, maximum separation of classes, and so on. In this thesis, we have relied

on experimental results to judge for the appropriateness of any specific subspace

method for a particular application. However, there are some general clues that can

be referred before experimentation, and can be validated through experimentation:

• If sufficient training data are not available, model-driven subspaces such as

DFT and DCT are preferrable.

• DFT and DCT-based feature extraction techniques yield parsimonious rep-

resentations for signals with compact spectral support. Hence if the spatial

organization of the data has smoothly varying characteristics, i.e. the spectrum

of the data is concentrated at low frequencies, DFT or DCT may be suitable.

• PCA and ICA-2 assume integrity of the shape structure, hence they respond

poorly when the input shape is partial. In our discussions throughout the thesis,

we have assumed non-occluded, complete shapes. However, if the inputs

happen to be partial, application of NMF may be more beneficial [173, 174].

• LDA and QR-decomposition (a half-way to LDA) are highly beneficial if there

are enough samples from the classes and the samples well represent the inter-

class and intra-class variations. We have especially observed their effectiveness

in the case of 3D face recognition.

• If the subspaces built by PCA, ICA and NMF sufficiently reconstruct the data

(e.g. the energy is mostly conserved), application of LDA on top of them will

redefine the axes of the final subspace according to class separability. It has

been observed that the three subspaces, when incorporated with LDA, perform

similar to each other.

• For hand recognition, our normalization algorithm turns out to be very success-

ful in suppressing intra-class shape variations. Thus, LDA is only necessary

The ICA-based scheme yields over 99 per cent correct identification rate with-
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out LDA. However, LDA is beneficial for geometric measures of very different

genres (areas, widths, perimeters) or for noisy contour information.

7.3. Contributions of the Thesis

This thesis involves advances and assessment of registration, feature extraction

and classification techniques as applied to hand images, 3D faces and 3D generic

objects. The main focus was the advancement of the recognition performance in

each application beyond the state-of-the-art via subspace techniques. The common

strategy for dealing with these various types of signals consists of two stages: (i)

Preprocessing of input measurements with emphasis on registration, (ii) Effective

application of subspace tools for feature extraction and classification.

The effectiveness of the subspace-based tools relies largely on the success of

the pose-normalization and correspondence building steps. This requirement is also

true for any other pose-dependent feature extraction method. However, subspace

techniques, especially the data-driven ones, are sensitive to intra-class pose and scale

variations and incorrect correspondences. Since 2D hand, 3D face and 3D generic

objects present different signal characteristics, alignment and pose normalization

procedures appropriate for each case were devised.

Our hand normalization algorithm is extremely robust and can compensate for

all realistic geometric deformations of the hand. This has opened the way to the

use of several subspace-based methods on the contours, silhouettes or texture of the

hand. Our identification and verification performances seems to be by far the best

as compared to the methods in the open literature. Furthermore, our hand database

is an order of magnitude larger than any other publicly available hand database.

We have shown that subspace-based methods applied on various representa-

tion modalities of 3D faces provide satisfactory results and that there is still room for

improvement via fusion schemes. The subspace features can model the inter-class

variations well if there is enough training data with the incorporation of LDA or
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QR-decomposition to reweight the subspace coefficients. In order to mitigate ex-

pression variations, we have suggested planar warping and masking schemes and

we have obtained some improvement. However, expression variation still remains

a challenge.

The application of data-driven subspace techniques was not previously con-

sidered for the indexing and retrieval of 3D models since correspondence building

proved too difficult among different genres of objects. For example, it is nearly im-

possible to align a 3D cat model onto a biplane model. In this thesis, we have attacked

this difficulty at the preprocessing stage by using pose normalization, voxelization

and distance transform, and at the matching stage by considering the subspace

projections of a number of rotated versions of a model.

7.4. Challenges and Future Work

One can note the discrepancy between performance scores of subspace methods

in the three applications, which varied from 99 per cent for hands to 96 per cent for

faces and 70 per cent for generic objects. Obviously, the hand space has a low

dimensionality and hands are well registered. Faces, on the other hand, have more

confounding factors like expressions, they are inherently noisier, and their subspace

dimensionality is higher. Finally, generic 3D object database proves the hardest to

register, and the variety of object shapes indicate to a much larger dimensionality.

In fact, other state-of-the-art methods for 3D model retrieval do not give any higher

performance, in other words, subspace methods give results comparable to the

state-of-the art methods, which are not using subspace notion.

In biometry, the notion of similarity is well-defined: The biometric measure-

ments belong to a person or not. Even if the hand images of two identical twins may

seem extremely similar in shape, a successful recognition system should consider

them as different. The content-based generic model retrieval, on the other hand, is

an ill-posed problem: There may not be a well-defined ground truth for the catego-

rization of the objects; i.e. the categorization is confined to be subjective and specific
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to a particular application. Furthermore, the semantic gap between the linguistic

descriptions of the objects and their measurable shape characteristics may become

too wide.

The quest for robust, fast and reliable pose normalization or alignment tools

for generic objects is still a challenge. The current trend in 3D model retrieval is to

use a number of pose normalization algorithms together. We plan to address this

challenge in two different ways: (i) Building fast correspondences among 3D models

to enable accurate alignment. (ii) Building manifolds of target models by obtaining

various rotated versions of the model.
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118. Dutağacı, H., B. Sankur, and Y. Yemez, “3D Face Recognition by Projection-



161

Based Features”, Proceedings of SPIE Conference on Electronic Imaging: Security,

Steganography, and Watermarking of Multimedia Contents, 2006.

119. Srivastava, A., X. Liu, and C. Hesher, “Face Recognition Using Optimal Linear

Components of Range Images”, Image and Vision Computing, Vol. 24, No. 3, pp.

291–299, 2006.
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