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ABSTRACT 

 

 

HIGH-LEVEL POWER EFFICIENT SYNTHESIS OF FIR BASED 

DIGITAL SYSTEMS 

 

 

Digital filters are the most frequently used elements in signal processing 

applications. Among digital filters, FIR filters are preferred due to their stability, easily 

achievable linear-phase property, and low quantization wordlength sensitivity. All these 

desirable properties come with a drawback: increased computational workload. This, in 

turn, leads to excessive amount of power dissipation which is a bottleneck for today’s low 

power demanding applications.  

 

In this work, a low-power design methodology for the design of FIR filters is 

proposed. The methodology is implemented in a software tool where the user gives only 

the characteristics of the FIR filter. The tool generates the power optimized 

circuit/coefficient set depending on the type of realization of the filter: parallel/sequential. 

For the parallel realization using constant coefficients, power is related to the number of 

nonzero digits in the binary notation of the filter coefficients. On the other hand, the 

sequential realization of FIR filters is done on programmable processors where coefficients 

are successively applied to the inputs of a multiply accumulate unit. Hence, switching 

activity between successively applied coefficients is important for low power design. In 

this context, a novel algorithm for the design of low-power and hardware efficient linear-

phase FIR filters is proposed which is the main contribution of this work. The algorithm 

finds filter coefficients with reduced complexity (number of ones in coefficients, switching 

activity between coefficients) given the filter frequency response characteristics. Although 

the worst case run time of the algorithm is exponential, its capability to find appreciably 

good solutions in a reasonable amount of time makes it a desirable CAD tool for designing 

low-power and hardware efficient FIR filters. The superiority of the algorithm on existing 

methods in terms of design time, hardware complexity, and power performance is shown 

with several design examples for both parallel and sequential realizations of FIR filters.  
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ÖZET 

 

 

SONLU DÜRTÜ YANITLI SÜZGEÇ TEMELLİ SAYISAL 

SİSTEMLERİN YÜKSEK SEVİYEDE GÜÇ VERİMLİLİĞİNE GÖRE 

SENTEZİ 

 

 

Sayısal süzgeçler işaret işleme uygulamalarında en sık kullanılan devrelerdendir. 

Sayısal süzgeçlerin bir çeşidi olan sonlu dürtü yanıtlı (SDY) süzgeçler kararlılık, doğrusal 

faz ve kuantalamaya karşı düşük hassasiyetli olmaları sebebiyle tercih edilmektedirler. 

Fakat, arzulanan bu özelliklerin yanında hesaplama külfeti artmaktadır. Dolayısıyla fazla 

güç harcamaktadırlar. Bu ise, az güç sarfiyatı gerektiren günümüz uygulamalarının 

ihtiyaçlariyla çelişmektedir.  

 

Bu çalışmada, SDY süzgeçlerin az güç harcayacak şekilde tasarımını sağlayan bir 

metodoloji önerilmektedir. Önerilen metodoloji bir yazılım aracı şeklinde gerçeklenmiştir. 

Araca, kullanıcı tarafından sadece süzgeç karakteristikleri girilmektedir. Araç, süzgecin 

paralel veya ardışıl gerçeklenecek olmasına göre güç sarfiyatı optimize edilmiş devreyi 

veya süzgeç katsayılarını çıktı olarak vermektedir. Paralel gerçeklemede harcanan güç 

süzgeç katsayılarının ikili düzen gösteriminde içerdiği ‘bir’ sayısıyla ilintilidir. Öte yandan, 

ardışıl gerçekleme programlanabilir işlemciler üzerinde olmaktadır. Burada katsayılar 

ardışıl olarak işlemcinin çarpıcı toplayıcı ünitesine girilmektedir. Güç sarfiyatı birbiri 

ardısıra girilen katsayılar arasındaki anahtarlama sıklığına bağlı olarak artmaktadır. Bu 

çalışmanın ana katkısı, az güç harcayan ve az donanım gerektiren SDY süzgeç tasarımına 

uygun yeni bir süzgeç tasarım algoritmasıdır. Bu algoritmayla, daha az güç sarfederekten 

istenen süzgeç frekans karakteristiğini sağlayan süzgeç katsayıları bulunmaktadır. Önerilen 

algoritmanın, en kötü şart koşma süresi üstel olarak artmaktadır. Fakat, gayet kısa bir 

zaman içinde iyi sonuçlar bulabiliyor olması bir bilgisayar destekli tasarım aleti olarak 

kullanılmasına olanak saglamaktadır. Algoritmanın şimdiye kadar önerilmiş yöntemler 

olan üstünlüğü değişik açılardan (tasarım zamanı, güç sarfiyatı, donanım karmaşıklığı) 

çeşitli örnek süzgeçler tasarlanarak doğrulanmıştır.  
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1. INTRODUCTION 

 

 

Low-power very large scale integrated (VLSI) circuit design has an important role in 

the electronics industry today. In the past, most research and development efforts focused 

on increasing the processing speed and reducing the complexity of the chip design. 

However, it is interesting to note that the main cause of switching between technologies 

such as from the vacuum tube to the bipolar, and there on to the metal-oxide 

semiconductor (MOS), and yet today to complementary MOS (CMOS) technology is 

power [1]. The power consumption of the chip, on the other hand, was given lower priority 

during the design phase until the ‘90s. The scenario has been changed since the advent of 

personal communications/computing devices. One reason is owing to the growing markets 

in portable computing and communication systems. The common feature of these devices 

is that they demand high-speed data/signal processing, but are constrained to work with a 

limited capacity power supply, i.e. a battery.  

 

Battery-limited devices are not the only driving forces for low-power design. For the 

microprocessor manufacturer, an increased packaging cost due to excessive amount of 

heating of the processor caused by high power dissipation is the main bottleneck. For 

military applications reliability is the main concern, and high power consumption reduces 

reliability in an integrated circuit (IC) by causing electron migration failures and bouncing 

in supply rails due to excessive amount of driven current. 

 

Having many driving forces, low-power devices are becoming more and more 

important. To meet industries needs, developing power optimization tools is an important 

issue. By using such tools, VLSI systems can be designed at various levels of abstraction 

(software, system, algorithm, architecture, circuit, logic, device, and technology) 

considering power.  

 

1.1. Power in CMOS Circuits 

 

CMOS circuits are preferred due to their inherently low power consumption which 

can be attributed to the elimination of static power consumption. That is, the p-type metal-
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oxide semiconductor (PMOS) and N-type metal-oxide semiconductor (NMOS) devices in 

a CMOS circuit are never ON simultaneously when either at logic 0 or 1. Since there is no 

dc path between the supply and ground there will not be any static current flowing. The 

static power consumed in CMOS circuits is mainly due to leakage currents flowing 

through reverse biased junctions. As more and more transistors are built on ICs, leakage 

power will constitute an important amount of the total power consumption [1].  

 

Dynamic power can still be attributed to be the main source of power consumption in 

CMOS circuits. It is the power consumed when the output of the circuit exhibits a 

transition from logic 0 (1) to 1 (0). There are mainly two sources of dynamic power 

dissipation: 1) short-circuit power consumption, 2) power consumed by charging the load 

capacitance. Both depend on the transitive behavior of the circuit, i.e. the switching 

activity. Short circuit power consumption is due to the occurrence of a DC path between 

supply and ground rails when both transistors become on during a transition at the output. 

However, with proper sizing of the transistors, short-circuit power can be reduced up to a 

certain level, which can be ignored when compared to the power consumed for charging 

the load capacitance.  

 

The dominant source of dynamic power consumption is the charging of the load 

capacitance that can be formulated as follows 

 

 2
ddVfC=Power α  (1.1) 

 

where f is the system clock frequency, Vdd the logical voltage transition (which is taken to 

be equal to the supply voltage), α is the switching activity factor (i.e. occurrence 

probability of a capacitor charging event), and C is the capacitance on which switching 

activity is observed (a charging event occurs). 

 

1.2. Low Power Digital Signal Processing System Design 

 

Digital signal processing circuits constitute a big portion of the VLSI market. They 

require repetitive and hence excessive amounts of arithmetic calculations one of which is 

the multiply accumulate operation. Unfortunately, these operations are power hungry 
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operations and hence there is much work done to reduce the computational complexity of 

signal processing applications. These efforts actually provide a basis for a low power 

digital signal processing system design [2].  

 

Digital filters are the most frequently used elements in signal processing 

applications. Among digital filters, finite impulse response (FIR) filters are preferred due 

to their stability, easily achievable linear-phase property, and low quantization word length 

sensitivity. All these desirable properties come with a drawback compared to their 

recursive counterparts infinite impulse response (IIR) filters: increased computational 

workload.  

 

The filtering operation of an FIR filter having N taps can be expressed by the 

equation 

 

 ∑
−

−
1

0

][][][
N

=k

knxnh=ny  (1.2) 

 

where x represents the input data stream, h the coefficients of the filter, and y the output 

data stream. This equation can be realized in parallel using as many multipliers as the 

number of taps or sequentially using a multiply accumulate unit. 

 

Digital FIR filters are realized with application specific integrated circuits (ASIC) or 

can be implemented by programming of digital signal processors (DSP). They require 

sequential arithmetic calculations, consume large power, and require dedicated fast 

hardware resources. Therefore, power aware design of digital filters is essential. In this 

work, digital FIR filters are examined since they are the basic building block of most 

digital filtering structures. 

 

The architectural level approaches for low power DSP design exploit parallelism or 

pipelining in the algorithm and increase the throughput by employing extra hardware [3]. 

Reducing voltage then reduces the processing speed in a second step. Other methods 

proposed for reducing power dissipation in DSP systems attempt to reduce power by 

identifying operations that are redundant in the sense that they repeat computational steps 
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that do not yield new information by executing a power consuming operation. Many such 

approaches have been applied to FIR digital filters. 

 

1.3. Design of Low-Power FIR Digital Filters 

 

Low-power implementations of FIR filters are of interest in wireless receivers, 

battery-powered mobile applications such as the cellular phone and they have been 

investigated at various levels of abstractions in literature [4], [5]. The low-power FIR filter 

design problem can be divided into two categories depending on the choice of 

implementation: Constant coefficient and variable coefficient FIR filter synthesis. 

 

1.3.1. Constant Coefficient (Multiplierless) Implementation of an FIR Filter 

 

Constant coefficient FIR digital filters can be realized in parallel using as many 

multipliers as the number of coefficients in the filter. However, since multipliers are power 

and area consuming circuits, it is a common practice to represent coefficients as sums of 

signed-power-of-two (SPT) terms. Then, the multipliers are replaced with shift and add 

circuits. Hence, constant coefficient implementation is also referred to as the multiplierless 

realization of an FIR filter. 

 

From the power perspective, each adder contributes as capacitance and switching 

activity to the power budget of the filter. Hence, the fewer the number of adders the less 

the switched capacitance and hence, the less power the filter will consume. The number of 

adders depends on the number of nonzero bits (SPT terms) of the quantized coefficients. A 

practical way to provide reduced SPT terms is to use canonic signed digit (CSD) 

representation since it offers fewer SPT terms in the representation than two’s complement 

representation.  

 

Research in designing FIR filters has concentrated on the design of algorithms, 

which generate floating-point filter coefficients. The resulting filters may not be practical 

for a VLSI implementation because of the potentially large amounts of hardware required 

to implement sufficiently accurate filter coefficient multipliers. Instead, using finite 

precision coefficients implemented with CSD coding using subexpression sharing [6-10] 
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can be much more cost effective because only adders, subtractors, and shifters implement 

the coefficients. The cost (or coefficient complexity) of a parallel arithmetic VLSI 

implementation is largely dependent on the number of adders and subtractors required to 

implement the filter coefficients. Shifts are essentially free because they can be hardwired.  

 

By simply quantizing infinite precision coefficients, the number of adders and 

subtractors cannot be controlled. Although coefficient recoding in CSD gives a reduction 

of 33 per cent, there is still no control over the total number of operations required. Hence, 

methods have been proposed in the literature for designing discrete coefficient FIR filters 

considering the reduction of hardware cost. These methods serve as a basis for the search 

for low power consumption. They rely on the idea that given the filter frequency 

characteristics (such as maximum pass-band ripple, minimum stop-band attenuation, etc.); 

the set of coefficients that satisfy the requirements are not unique. Therefore, one can 

search for a coefficient set that has reduced number of SPT terms and hence better 

area/power performance. Optimal [11,12] and suboptimal methods [13,14] have been 

proposed. There have also been attempts to combine the two approaches, where a set of 

coefficients with reduced number of ones is found and then sub-expression elimination is 

applied on the optimized coefficients [11,15], or the search for reduced number of SPT 

terms is changed to a search for reduced number of adders [16].  

 

Coefficient scaling is extensively used in methods that search for reduced number of 

SPT term coefficients [13-15,17,18]. Scaling all coefficients by the same factor changes 

the distribution of SPT terms among coefficients without altering the shape of the 

frequency response. This can greatly improve the search for reduced SPT terms by 

providing a good starting point for a local search. Based on this, a method is proposed that 

 

Figure 1.1. Parallel realization of an N-tap FIR filter 
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first searches for a scaling factor that minimizes the quantization error in the mean square 

sense [13]. In the second step of the algorithm, coefficients are optimized to minimize the 

normalized maximum ripple in the frequency response of the filter. An improved version 

of this method is proposed in [14] where the selection of the scaling factor is carried out 

considering the normalized peak ripple (NPR) of the frequency response of the filter. Then, 

a local search is performed starting from the quantized Remez coefficients scaled by the 

scaling factor that resulted in the minimum NPR. A common property of both algorithms is 

that they try to improve the frequency response of the filter by restricting the maximum 

number of SPT terms in each coefficient.  

 

Another method that makes use of scaling is proposed in [18]. The algorithm differs 

from the previously mentioned methods in that the frequency response characteristics of 

the filter are taken as a constraint rather than as an objective. Furthermore, instead of 

finding the best frequency response (minimum NPR), the algorithm tries to find a 

coefficient set under the restriction of maximum number of SPT terms per coefficient with 

fewer SPT terms.  

 

An optimization method extensively used in the design of discrete coefficient filters 

is mixed integer linear programming (MILP). The main reason for using MILP is that it 

can find optimum discrete coefficients for which NPR is much better than coefficients 

obtained by simply rounding infinite precision coefficients [19]. Given the filter length and 

the coefficient word-length, MILP can find the optimum frequency response [19-22]. 

However, the optimality criterion is NPR, not hardware or power cost. An MILP 

formulation where the optimization goal is to reduce the number of SPT terms, and hence 

hardware/power cost, is given in [12]. 

 

A drawback of MILP based methods is that solution time increases exponentially 

with the increase of number of taps of a filter. Therefore, it is not practical to use MILP for 

filters having large number of taps. In [15], a method that partially overcomes this problem 

by limiting the optimization variables to be the last D digits of the coefficients is 

introduced. D is taken to be no more than 3. The rest of the digits are initialized to the 

values obtained by quantizing/rounding the Remez solution of the filter.  
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The desired frequency response of an FIR filter imposes boundaries on the values 

coefficients can have, thereby limiting the coefficient search space. A linear programming 

(LP) formulation by which the minimum and maximum values are found for each 

coefficient is given in [11]. Within these boundary values, possible coefficient values 

exceeding the maximum number of SPT terms allowed per coefficient are eliminated. 

Then, the feasibility of each possible combination of coefficient values is checked. This is 

done using a branch and bound based search. By first checking the combination of 

coefficient values having the minimum number of SPT terms will eliminate the need for 

searching after a solution is found. However, the drastic increase of the search space, and 

hence search time, makes it inapplicable for filters having large number of taps. Moreover, 

the starting point of the search might be far away from the optimum solution causing even 

hard to find suboptimal initial solutions. 

 

1.3.2. Variable Coefficient (Sequential) Implementation of an FIR Filter 

 

Variable coefficient implementations of FIR filters are generally realized on DSPs 

where the filtering algorithm is translated into a series of multiply accumulate operations. 

The basic source of power consumption is the multiplication operation, which is performed 

on a dedicated multiplier unit. A filtering operation on a single multiply-accumulate 

(MAC) unit is shown in Figure 1.2. The power dissipated in a multiplier is related to the 

switching activity in the multiplier, which in turn is directly affected by the switching 

activity (Hamming Distance) at the inputs [23]. 

 

One approach targets programmable DSP architectures for identification of factors 

which contribute to dissipated energy and finding methods which reduce power hungry 

operations. Methods proposed for reducing power dissipated in the multipliers and busses 

of a generic Harvard architecture based digital signal processor use various techniques 

such as coefficient scaling, coefficient ordering, selective coefficient negation, removing 

common sub-expressions [4]. These techniques attempt to reduce power by identifying 

operations that are redundant in the sense that they repeat computational steps that do not 

yield new information by executing a power consuming operation. Bus power reduction is 

proposed by coefficient optimization [4], which attempts to reduce the Hamming distance 
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between successive coefficients in order to reduce activity on one of the multiplier inputs. 

Parallel processing architectures have also been proposed [5]. 

 

To reduce the power consumed in the MAC unit, the coefficients can be reordered so 

as to minimize the Hamming distance between successively applied coefficients [4,24,25]. 

However, reordering of coefficients requires reordering of data. It should be kept in mind 

that data is usually correlated and thus there are very few sudden jumps between 

consecutive data. This then may cancel out the reduced switching activity for the 

coefficients by increasing the Hamming distance in the data stream. This problem can be 

alleviated by both considering the Hamming distance of the data and coefficient stream 

simultaneously. In this case, the possible reordering of data, especially in real-time systems 

or even systems where data is stored in consecutive addresses in memory, may offset the 

expected gains in power. Thus, this approach should be restricted to problems where both 

data and the coefficients are readily available and reordering does not bring much power 

overhead. 

 

 

Figure 1.2. FIR filtering on a single Multiply-Accumulate unit 
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In [23], a method that only reduces the switching activity between filter coefficients 

is proposed. The method formulates the coefficient optimization problem as a local search 

problem to find low switching activity coefficients, thus resulting in suboptimal solutions. 

In [26], the same problem is formulated as an integer linear programming problem 

targeting low Hamming distance coefficients, thus, reducing the power consumed. 

However, it lacks the contribution of the number of ones in the coefficients thus resulting 

filters are optimum for Hamming distance but may not necessarily for power. The problem 

is formulated as an integer programming problem by doubling the number of variables, 

thus limiting the solution to filters having small number of taps (<70) [22]. 

 

1.4. Scope of Thesis 

 

In this work, an algorithm for the design of low-power linear-phase FIR filters is 

proposed. The algorithm is a discrete coefficient FIR filter design algorithm which is 

discussed in Chapter 2. Depending on the choice of implementation, the algorithm 

optimizes filter coefficients for low power. Chapter 3 examines constant coefficient filters 

to be realized as an ASIC for which the number of nonzero digits in the coefficients is 

minimized. For variable coefficient filter implementations, which are studied in Chapter 4, 

 

 

Figure 1.3. The structure of a Multiply-Accumulate unit 
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the switching activity between coefficients is minimized. Chapter 5 discusses the 

application of the algorithm for designing FIR based equalizers extensively used in 

communication systems. Conclusions and suggestions for future work are mentioned in 

Chapter 6. 

 

 

 

 

 

Figure 1.4. Low-power linear-phase FIR filter design flow 
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2. DISCRETE COEFFICIENT LINEAR-PHASE FIR FILTER 

DESIGN 

 

 

Optimal infinite precision filter coefficients obtained by a standard algorithm [27-29] 

are not very useful when it comes to realization. VLSI systems operate on finite 

wordlength. Therefore, quantization of the coefficients is a must for filters obtained by 

such algorithms. Quantization can be done by simply rounding the coefficients to the 

nearest integer or power-of-two values. However, the performance of the filter is 

significantly degraded from the optimal infinite precision coefficients. Hence, there has 

been much research on the design of discrete coefficient linear-phase FIR filters [19-22].  

 

The driving force of the search for finite precision FIR filter design in early methods 

was the degradation in frequency response incurred by rounding and aimed to obtain the 

best frequency response filter given constrained by the coefficient wordlength B. Given the 

edge frequencies and weighings of the bands and the filter length, the best frequency 

response is searched in the minimax sense [19-22].  

 

With the improvements in VLSI technology, FIR filters have started to be realized as 

standalone integrated circuits which steered the direction of the search for discrete FIR 

filter design methods to the design of low hardware implementation cost filters. The 

problem was re-defined as finding the filter with minimum hardware cost while still 

satisfying the filter frequency response characteristics [30,31]. 

 

Heuristic methods have been proposed where one has to be contended with the 

resulting frequency response of the low cost filter. That is, you could not exactly specify 

for example the stopband attenuation of a low pass filter. What you get is a filter that 

approximately satisfies the response [13,14,32]. 

 

Evolutionary strategies have been adapted to solve the discrete FIR filter design 

problem. The hardware cost can be added to the cost function with an appropriate weight.  

Again, the resulting filters trade off between hardware cost and frequency response 
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degradation [33-38]. The computational cost is high, and requires human intervention for 

parameter re-adjustment from one design to another design.  

 

An optimization method by which you can find filters that exactly satisfy the 

frequency response characteristics is the mixed integer linear programming (MILP) 

method [12,15,21,22,39]. The main reason for using MILP is that it can find optimum 

discrete coefficients. Optimum was generally referred to in the minimax sense; however, 

the filter implementation cost is optimized as well. The basic shortcoming of MILP is its 

computational burden. The run-time of the algorithm grows exponentially with filter 

length, constraining it to filters with a length no more than 70 [22].  

 

In this chapter, the GAM algorithm is presented for designing discrete coefficient 

linear-phase FIR digital filters. The algorithm uses linear programming to solve a set of 

equations and can find filters by keeping the quantization wordlength as small as possible. 

It is able to generate high-order filters in a reasonable amount of time. The generated filters 

exactly satisfy the required frequency response characteristics.  

 

GAM can be used as a search algorithm for designing discrete coefficient linear-

phase FIR filters having cost functions related to the number representation of the 

coefficients. If the target is a low-power filter to be realized on a generic DSP processor, 

the cost is the Hamming distance (switching activity) between successive coefficients 

represented either in two’s complement or sign-magnitude notation. A nice property of 

GAM is that the number representation to be used in the final implementation does not 

affect the underlying problem, i.e. it does not increase the size of the underlying LP 

problem by introducing new variables (as it is the case with traditional MILP based 

approaches). This is because the actual cost function is not the cost function of the LP 

problem but is evaluated separately. This is desirable as far as the time spent to the LP 

problem is much longer than the time used for computing the cost function. Fortunately, 

this is generally the case with FIR filter design problems. 

 

The outline of the chapter is as follows: First, a terminology for the description and 

design of linear-phase FIR filters is given. Then, the GAM algorithm is presented. An 

algorithm to find the minimum length and a formula for the minimum quantization 
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wordlength of a filter are given next. The effectiveness of the algorithm in designing 

discrete coefficient filters is shown in design examples. 

 

2.1. Terminology 

 

The frequency response H(ω) of a linear-phase FIR filter with impulse response h[n] 

and length N is  

 

 ∑
−

=

−=
1

0

][)(
N

n

njenhH ωω  (2.1) 

 

which can also be written in terms of the amplitude (A(ω)) and phase terms as 

 

 H(ω) = A(ω)e−jω(M−1) (2.2) 

 

where M is approximately half the length of the filter N given by 

 

 




 +
=

2

1N
M  (2.3) 

 

The amplitude A(ω) is a real function of frequency given by 
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where Tm(ω) is a trigonometric function determined by the length and type of symmetry of 

the filter. The values of Tm(ω) for the four possible types of linear-phase FIR filters are 

given in Table 2.1.  

 

Filter design problems involve finding a filter with a frequency response that 

approximates a desired response to within a specified amount of error. The error is a 

function of frequency. Let D(ω) be the desired filter frequency amplitude response for 

which we are going to approximate a linear-phase FIR filter. Let A(ω) be the frequency 
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amplitude response of the resulting filter coefficients as given by (2.4). Let δ(ω) be the 

approximation error, then the resulting linear-phase FIR filter should satisfy: 

 

 │A(ω)−D(ω)│ ≤ δ(ω) (2.5) 

 

where ω ∈ [0, π]. In general, the frequency response of an FIR filter is defined for some 

disjoint frequency bands Ωk ⊂ [0, π] with desired frequency response Dk(ω) and fixed error 

margin δk, Kk L,2,1= such that (2.5) can be re-written for each k as,   

 

 │A(ω)−Dk(ω)│ ≤ δk (2.6) 

 

Transition bands are the frequency bands for which no constraints are defined. They will 

be denoted with a superscript t as Ωt.  The width of a frequency band Ω = [ω1,ω2] is  

calculated by 

 │Ω│= ω2 − ω1 (2.7) 

 

where ω1 and ω2 are called the edge frequencies of the band. 

Table 2.1. The trigonometric function Tm(ω) for different types of linear-phase FIR filters 

Type N Symmetry Tm(ω)  

    

1 odd symmetric 

( )( )




 −=

−− otherwise

1

1cos2

1 Mm

mM ω
 

2 even symmetric ( )( )ω5.0cos2 −− mM  

3 odd anti-symmetric ( )( )ω1sin2 −− mM  

4 even anti-symmetric ( )( )ω5.0sin2 −− mM  
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The aforementioned frequency response specifications for a low-pass linear-phase 

FIR filter are given in Table 2.2. The frequency response of the filter is given in Figure 2.1.  

 

2.2. The GAM Algorithm 

 

Given the wordlength B and filter length N, the GAM algorithm iteratively finds the 

coefficients of the resulting linear-phase FIR filter with zero-phase magnitude response 

A(ω) defined in (2.4), subject to the frequency response characteristics defined in (2.5). 

Since the filter is symmetric, the GAM algorithm should determine only M coefficients 

where M is calculated by (2.3). 

 

There may be a lot of coefficients satisfying (2.5). However, once N is fixed, then the 

range of all possible values for each coefficient h[i], i = 0,1, ··· ,M−1 can be determined by 

solving the following set of linear optimization problems independently: 

Table 2.2. Frequency response characteristics of a low-pass FIR filter 

Band (k) Ωk Dk(ω) δk 

1 [0, ω1] 1 δ1 

2 [ω2, π] 0 δ2 

    
 

 

Figure 2.1. Frequency response characteristics of a low-pass FIR filter 
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hmin[i] = minimize h[i] 

such that 

 )()()(][
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ωδωω ≤−∑
−

=
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m   (2.8) 

 

 hmin[i] = maximize h[i] 

such that 
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1

0

ωδωω ≤−∑
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where ω ∈ [0, π]. 

 

Note that hmin[i] and hmax[i] are real values and coefficient h[i] is a number that 

appears in this range, i.e. h[i]∈[hmin[i],hmax[i]]. Without the finite wordlength constraint it 

can take over infinitely many numbers. However, since coefficients are restricted to be 

represented with a finite wordlength B all possible values of h[i] form a finite set. Hence, 

let Vi be such a digital value set of h[i]. The selected coefficients from m

M

m V
1
0

−
=U  must 

satisfy (2.5). 

 

The algorithm that finds the feasible value sets is shown in Figure 2.2. At each 

iteration, a value set for the corresponding coefficient is found. If the value set happens to 

be empty, the algorithm returns an empty set. This means that the problem cannot be 

solved because either the number of taps N or wordlength B is less than required. 

 

A simple branch-and-bound algorithm that runs on m

M

m V
1
0

−
=U  will obviously find the 

optimal solution provided that enough memory and time is given. It is easy to observe that 

there exist m

M

m V
1
0

−
=∏  combinations to be searched. However, a design automation tool 

should find a considerably good solution in a reasonable time using a reasonable amount of 

memory. The GAM algorithm, whose pseudo-code is given in Figure 2.3, is a modified 

branch-and-bound algorithm; hence its worst case performance is exponential. Yet, it 

reaches a reasonably good result in a sufficiently short time since it refines the search 
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space during its execution. Obviously, a program that uses GAM as a subroutine can also 

be developed to find the optimal solution.  

 

The operation of the GAM algorithm can be summarized as follows: Starting from 

the initial tap (i.e. i = 0), the algorithm iteratively selects a value v* from the refined value 

set Vi
s of tap coefficient h[i] such that v* is closest to the average of minimum (hs

min[i]) and 

maximum (hs
max[i]) values for h[i]. After this value is assigned to h[i], v* is removed from 

the value set and moved to the solution set H*, which is an ordered set. In other words, the 

first element in H* corresponds to h[0] and the last element in H* corresponds to h[M−1]. 

At each iteration, only one tap is fixed. After fixing each tap, the following pair of 

optimization equations is solved for the next tap: 

 

h
s
min[i] = minimize h[i] 

such that 

 )()()(][
1

0

ωδωω ≤−∑
−

=

DTmh
M

m

m  (2.10) 

 

 h
s
max[i] = maximize h[i] 

such that 

 )()()(][
1

0

ωδωω ≤−∑
−

=

DTmh
M

m

m  (2.11) 

 

VALUE_SET(M, B, D(ω), δ(ω)) 
 i = 0; 
 WHILE (i < M) 
  Obtain hmin[i] and hmax[i] by solving equations (2.8) and (2.9); 

  Vi = {∀v ∈ [hmin[i],hmax[i]]│v is a B-digit binary number}; 
  IF (Vi = ∅) 
   RETURN ∅; 
  END-IF 
  i = i + 1; 
 END 

 RETURN m

M

m V
1
0

−
=U ; 

 
Figure 2.2. Algorithm VALUE_SET finds the feasible value sets of the coefficients 
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where ω ∈ [0, π] and 




<≤
<≤

=
Mmi

im
mh

0

free

fixed
][  for both problems. 

 

It should be noted that these equations are different from equations (2.8) and (2.9) so 

as to refine the search space for the i’th tap after fixing i−1 taps. The superscript s in these 

equations and in the pseudo-code stands for the refined variables. Fixing the values of i−1 

taps moves the boundary values of the i’th tap towards each other and the number of 

possible values for this tap will be reduced. If the refined value set (Vi
s) of h[i] is not 

empty, then the iteration goes on as usual, but the mid-value hmid[i] might change due to 

the possibility that the moving amount of each boundary might not be equal. However, if 

the refined value set of h[i] is empty, then the selected value for h[i−1] is removed from H* 

and the next value in the value set of h[i−1] is selected for the next iteration and this is 

repeated until a nonempty value set of h[i] is obtained.  

 

GAM(M , L, m

M

m V0=U ) 

 H
* = ∅; 

 Obtain hs
min[0] and hs

max[0] by solving equations (2.10) and (2.11); 
 V0

s = VALUE_SELECT(L, hs
min[0], hs

max[0], V0);  
 i = 0; 
 WHILE (i ≥ 0)  
  IF (Vi

s ≠ ∅)  
   h[i] = v* such that v* is the first element of ordered set Vi

s; 
   H

* = H* ∪ {h[i]}; 
   Vi

s = Vi
s − {v

*}; 
    IF (i < M−1)  
     i = i + 1; 

     Obtain ][min ih
s  and ][max ih

s  by solving equations (2.10) and (2.11); 

     Vi
s = VALUE_SELECT(L, hs

min[i], h
s
max[i], Vi); 

    ELSE-IF (problem is feasible) 
     H

* is a solution to the problem; 
    END-IF 
  ELSE  
   H

* = H* − {h[i]}; 
   i = i − 1; 
  END-IF 
 END 
 

Figure 2.3. The GAM Algorithm 
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The algorithm finds a solution until all M taps are selected. Experimentally, it has 

been observed that the algorithm finds a solution in less than 2M iterations depending on 

the tightness of the search space. The algorithm finds a solution in at most LM iterations 

where L is a parameter used to limit the maximum size of the refined value sets Vi
s. That is, 

when selecting the values from the feasible value set Vi
s of coefficient h[i], L values in the 

vicinity of h
s
mid[i] are selected. If L is set to infinity, all values in Vi

s are selected. The 

purpose of limiting the size of the refined feasible value set is to reduce search time by 

avoiding unnecessary search devoted to possibly infeasible combinations. How can one 

predict these infeasible combinations? Experimentally it is observed that feasible solutions 

are the combinations of coefficient values which are selected in the neighborhood of the 

middle values, h
s
mid[i]. The values close to the boundary values of h[i] either do not or 

rarely produce feasible solutions. Practically, setting L = 2 is enough when the coefficient 

wordlength B is set to its lowest possible value. 

 

2.3. Determining the Minimum Length of an FIR Filter 

 

The length of the filter is important because it affects hardware sources and 

computational steps. Therefore, it is a practical issue to realize the filter with shortest 

possible length. There have been attempts to formulize the FIR filter length using the filter 

frequency response characteristics. One is the formula given in [40] 

 

 ( ) 1
2

10log
3

2

12

2110 +
−

−≈
ωω

πδδN  (2.12) 

 

where the parameters δ1, δ2, ω1, and ω2 correspond to the filter specifications as given in 

Figure 2.1. The filter length N determined by (2.12) is an estimation; however, it can be 

VALUE_SELECT(L, hs
min[i], h

s
max[i], Vi) 

 Vi
s = {∀v ∈ Vi│h

s
min[i] ≤ v ≤ hs

max[i]}; 
 h

s
mid[i] = (hs

min[i]+h
s
max[i])/2; 

 Arrange Vi
s = (v1, v2, …, v│Vis│) such that 

       │v1−h
s
mid[i]│ < │v2−h

s
mid[i]│< ··· < │v│Vis│−h

s
mid[i]│; 

 Limit Vi
s = (v1, v2, …, v│Vis│) such that │Vi

s│ ≤ L; 
 RETURN Vi

s; 
 

Figure 2.4. The algorithm used to select values from the value set into a refined value set 
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used as the starting point for a search for the minimum length of the filter.  

 

Recall from the previous section that by solving equations (2.8) and (2.9) feasible 

value sets for all the coefficients can be found independently. For the filter to be realizable 

with the given filter length, none of the value sets should be empty. For coefficient h[i], 

without considering the wordlength, to have a non-empty feasible value set, the boundary 

values obtained by solving (2.8) and  (2.9) should satisfy the relation hmin[i] ≤ hmax[i]. That 

is the range [hmin[i],hmax[i]] ≠ ∅. Thus, one can check out the feasibility of the length the 

FIR filter by looking at the boundary values of any of the coefficients. Experimentally, it 

has been observed that V0 is the smallest subset of m

M

m V
1
0

−
=U . Therefore, h[0] should be 

checked first.  

 

An algorithm that finds the minimum length of a linear-phase FIR filter using the 

estimation of (2.12) as a starting point is shown in Figure 2.5. The operation of the 

algorithm is as follows: When equations (2.8) and (2.9) are solved for h[0], there can be 

three cases. First, if the range [hmin[0],hmax[0]] = ∅, a filter with N coefficients cannot 

satisfy the filter specifications. Hence, we need to increase the length of the filter. This is 

FILTER_LENGTH(D(ω), δ(ω)) 
 Obtain N by computing equation (2.12) 
 M = (N+1)/2; 
 Obtain hmin[0] and hmax[0] by solving equations (2.8) and (2.9); 
  

 IF ([hmin[0],hmax[0]] = ∅)  /* N is an under-estimate */ 
  DO  
   N = N + 2; 
    M = (N+1)/2; 
   Obtain hmin[0] and hmax[0] by solving equations (2.8) and (2.9); 

  WHILE ([hmin[0],hmax[0]] = ∅) 

 ELSE-IF (0∈[hmin[0],hmax[0]]) /* N is an over-estimate */ 
  DO  
   N = N − 2; 
    M = (N+1)/2; 
   Obtain hmin[0] and hmax[0] by solving equations (2.8) and (2.9); 

  WHILE (0∈[hmin[0],hmax[0]]) 
 END-IF 
 RETURN N; 
 

Figure 2.5. The algorithm to find the minimum filter length 
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done until a non-empty range of values for h[0] is obtained, i.e. [hmin[0],hmax[0]] ≠ ∅. 

Second, if 0 is in the range [hmin[0],hmax[0]], we can set h[0] = 0. Hence, the coefficient set 

can be tailored by removing h[0] (and hence h[N-1] due to symmetry) without affecting the 

frequency response. Thus, we can decrease the length of the filter. This makes the second 

coefficient, namely h[1], the first coefficient. Then, re-phrasing the problem with the new 

filter length N = N − 2, the boundary values of the new first coefficient are computed. This 

procedure is followed until 0∉[hmin[0],hmax[0]]. At this point the length of the filter is the 

minimum required, i.e. Nmin = N. Third, h[0] has a feasible value range excluding 0, i.e. 

[hmin[0],hmax[0]] ≠ ∅ and 0∉[hmin[0],hmax[0]]. Hence, the filter length N is already equal to 

Nmin. 

 

2.4. Wordlength Estimation in FIR filters 

 

From the realization perspective of FIR filters, either on a generic DSP or dedicated 

hardware unit, short coefficient wordlength is a benefit. In the DSP implementation, fixed 

point DSPs are preferred for their speed and low cost where the coefficient wordlength is 

limited to the internal hardware wordlength. Therefore, it is a must to keep the wordlength 

of the filter coefficients at most equal to the DSP wordlength. On the other hand, in the 

hardware implementation, short wordlength reduces the hardware cost by reducing the size 

of the adders and delay elements.  

 

Given the frequency response characteristics, is it possible to generate filter 

coefficients with any desired wordlength? The answer to this question is unfortunately, no. 

It is shown in [41] that the degradation in frequency response incurred by reducing the 

quantization wordlength B, can be compensated by increasing the filter length N. However, 

after a certain wordlength increasing the filter length will not suffice and the desired 

frequency response will no more be achievable. That is, for an FIR filter there is a lower 

bound for the coefficient wordlength that can satisfy the desired frequency response 

characteristics.  

 

Methods proposed in the literature [41-46] consider degradation incurred by 

rounding optimal infinite precision coefficients. The filters discussed are optimal in the 
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minimax sense. The formula proposed in [43] gives a lower bound for the wordlength for a 

prescribed deviation in the degradation in in-band rejection (δk) for frequency band Ωk. 

This bound is obtained by assuming that the infinite precision coefficients could achieve 

exactly the desired response Dk in the corresponding band, i.e. the error margin δk = 0 

(which corresponds to -∞ in dB as it is given in [43]). The formula can be re-written using 

the terminology of this text as  
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where N is the length of the filter, δR is the error margin for rounded coefficients. The 

frequency band with the minimum ripple δR will determine the lower bound. This is an 

optimistic lower bound since there will always be an error margin introduced by the 

infinite precision coefficients due to finite filter length.  

 

By using the filter length estimation formula of (2.12) and following the 

methodology presented in [41] a lower bound for the wordlength can be obtained as 

follows. Re-writing (2.12) for a frequency band weighing of one we obtain  
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where δ1 = δ2 = δ from (2.12). Note that δ is the error margin obtained from the infinite 

precision coefficients. Let the maximum error margin (i.e. ripple) after rounding be δF, 

then, the lower bound for the wordlength is given by 
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where N is the filter length obtained by (2.14). δδ −F
 gives the amount of deviation in 

error. 

 

The formula proposed in this work gives a lower bound for the quantization 

wordlength of a linear-phase FIR. It is obtained by designing several filters using the GAM 

algorithm. It is simple and can directly be calculated from the frequency response 

characteristics of the filter independent of the filter length.  

 

For a linear-phase FIR filter let the frequency response be defined over K frequency 

bands. Then, a lower bound for the wordlength can be found by  
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where │Ωt│min is the minimum transition band-width, Wk is the weight of a frequency 

band in terms of its band-width calculated as 
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For the case where the ripple is equal in all bands, namely δk = δ, (2.16) reduces to  
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Note that the minimum wordlength obtained by (2.16) and (2.18) is a real value. It has 

been observed that the rounding method to be applied on B*
min depends on the minimum 

transition band-width. The minimum wordlength for different range of transition band-

widths can be found by  
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This lower bound is reached by increasing the minimum length of the filter by 4-5 per cent. 

 

2.5. Design Examples 

 

The performance of GAM algorithm is tested on several linear-phase FIR filters. The 

frequency response characteristics of the test filters are given in Table 2.3. The minimum 

filter length (Nmin) is obtained using the algorithm given in Figure 2.5. The lower bound for 

the coefficient wordlength (Bmin) is calculated using (2.19). L1 is a high pass filter. L2, S2, 

A, B, and C are low pass filters. D is a band pass filter and F is a multi-band filter. E is a 

low pass M-band filter where M is equal to 8. 

 

The GAM algorithm is implemented in the C programming language. GAM uses the 

linear programming (LP) library of QSOPT [47]. The frequency grid on which the 

frequency response is evaluated consists of approximately 1000 frequency samples for all 

filters. This makes approximately 2000 constraints for the LP problem solved by GAM. 

All the run-times presented are the results obtained from running the GAM algorithm on a 

PC with a Pentium D 2.8GHz processor and 1 GB RAM. 

 

The feasible value sets of coefficients are generated using the algorithm in Figure 

2.2. Filters are designed for both minimum length and minimum wordlength cases. The 

minimum wordlength filter is obtained by increasing the filter length until the calculated 

minimum wordlength is attained. The filter length (N), coefficient wordlength (B), and run 

time of the GAM algorithm to find the first solution for all filters are given in Table 2.4. 

 

Most of the time to find an initial solution is spent for the selection of all taps, 

starting from h[0] to h[M]. This can be considered as a setup time for the search and the 

time spent during this selection process is unavoidable. At each selection, two LP problems 

((2.10) and (2.11)) are solved to determine the boundary values of the coefficient. Most of 
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the time is spent for solving these LP problems. The LP problem size, and hence its 

solution time, depends on the filter length and number of frequency response constraints. 

Since, for our case, the number of constraints is approximately same for all filters (~2000), 

the length of the filter determines the initial solution time. This is the reason for the long 

run-time of filters C and E which have a filter length above 300.   

 

Table 2.3. Characteristics of the test filters 

Filter Nmin Bmin k Ωk(×π) Dk (ω) δk 

1 [0, 0.74] 0 0.0001 
L1 117 16 

2 [0.8, 1] 1 0.005756 

1 [0, 0.2] 1 0.028774 
L2 61 13 

2 [0.28, 1] 0 0.001 

1 [0, 0.042] 1 0.011512 
S2 59 13 

2 [0.14, 1] 0 0.001 

1 [0, 0.125] 1 0.01 
A 56 13 

2 [0.225, 1] 0 0.001 

1 [0, 0.2] 1 0.01 
B 101 11 

2 [0.24, 1] 0 0.01 

1 [0, 0.125] 1 0.005 
C 311 13 

2 [0.14, 1] 0 0.005 

1 [0, 0.10] 0 0.001 

2 [0.15, 0.4] 1 0.01 D 109 13 

3 [0.45, 1] 0 0.001 

1 [0, 0.12] 1 0.005 
E 471 13 

2 [0.13, 1] 0 0.005 

1 [0, 0.05] 0 0.01 

2 [0.1, 0.3] 1 0.01 

3 [0.35, 0.45] 0 0.01 

4 [0.5, 0.7] 0.5 0.005 

F 95 12 

5 [0.75, 1] 0 0.001 
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2.6. Summary 

 

An algorithm for designing finite wordlength linear-phase FIR filters is presented. 

Although the worst case run time of the algorithm is exponential, its capability to find a 

solution in a reasonable amount of time makes it a desirable CAD tool for designing 

discrete coefficient  linear-phase FIR filters. The effectiveness of the algorithm is more 

apparent on high-order filters. 

 

Here, we propose an empiric formula for the lower bound of the quantization 

wordlength of a linear-phase FIR. It is obtained by designing several filters using the GAM 

algorithm. It can directly be calculated from the frequency response characteristics 

independent of the filter length.  

 

 

Table 2.4. Run-time of the GAM algorithm for finding an initial solution for the test filters 

Minimum length Minimum wordlength 
Filter 

N B Run-time N B Run-time 

L1 117 19 1m 127 16 2m 

L2 61 14 <1m 63 13 <1m 

S2 59 16 <1m 67 13 <1m 

A 56 19 <1m 59 13 17m 

B 101 14 <1m 105 11 1m 

C 311 16 20m  323 13 17m 

D 109 19 <1m 121 13 14m 

E 471 14 1h 3m 477 13 59m 

F 95 14 4m 103 12 <1m 
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3. LOW-POWER DESIGN OF CONSTANT COEFFICIENT FIR 

FILTERS 

 

 

Constant coefficient applications are also referred to as multiplierless implementation 

of FIR filters. In two’s complement binary notation, digits can take over two values {0,1}. 

It is obvious that, in a multiplication operation, the zeros in the multiplying operand will 

cause the corresponding partial products to be zero. Furthermore, if this operand is 

constant then the multiplicand multiplied by the zero digits will always generate zero 

valued partial products. Using adders for these products is a waste of resources which is 

unavoidable when a multiplier is used. Therefore, it is a practical concern to replace the 

multiplier by a tree of adders which adds up the shifted partial products corresponding to 

the nonzero bits of the constant operand. Therefore, the less the number of nonzero bits in 

the constant operand, the less the number of adders required.  

 

To reduce the number of nonzero bits in the coefficients, one can use signed digit 

(SD) representation other than the two’s complement. In SD representation, the bits of the 

quantized coefficient can take over the values {−1,0,1}. The advantage of SD 

representation comes from the fact that it can represent numbers not only by sums of 

numbers but also differences of numbers. This can be viewed on the following example 

where a number (here 15) has four nonzero bits in two’s complement representation 

001111 (=8+4+2+1), and two nonzero bits in SD representation 010001 (=16−1), where 1 

stands for a −1. 

 

Canonic signed digit (CSD) representation is a SD representation in which no 

adjacent bits can take over nonzero values. Moreover in CSD representation numbers have 

unique representations. To see it on an example the number three can be represented in 4-

bit SD as 0011 and 0101. However, in CSD the only representation is 0101. 

 

In the hardware realization of constant coefficient FIR filters multipliers are replaced 

with adders and shifters. From the power perspective, the fewer the number of adders the 

less power the filter will consume. The number of adders depends on the number of 

nonzero bits (SPT terms) of the quantized coefficients.  
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In this chapter, a modified version of the GAM algorithm for designing low-power 

constant coefficient linear-phase FIR filters is proposed. The outline of the chapter is as 

follows: First, the formulation of the problem for minimizing SPT terms in the filter 

coefficients represented in CSD is presented. Then, the modifications required for the 

GAM algorithm to minimize SPT terms are given. Next, hardware implementation issues 

are discussed. These are identification of the parameters affecting the critical path of an 

FIR filter, calculation and further optimization of the adders and registers for the final 

implementation. At the end, the results and comparison of the filters designed by GAM and 

other algorithms appeared in the literature is given.  

 

3.1. Problem Formulation 

 

The coefficients (h[n]) of a linear-phase FIR filter can be written in B-bit CSD 

representation as: 

 

 ∑
−

−
1

0

2][
B

j=

j

ji,x=ih  (3.1) 

 

where xi,j ∈ {−1,0,1} corresponds to the j'th bit of coefficient h[i] and will be referred to as 

an SPT term. Note that j=0 corresponds to the most significant bit. Equation (3.1) is 

actually the SD representation. Remember that in CSD, two adjacent bits cannot have 

nonzero values. So, to ensure CSD, the following constraint should be added 

 

 │xi,j│+│xi+1,j│ ≤ 1 (3.2) 

 

where j = 0,1,…,B−2. Using (3.1), the cost of SPT terms in a coefficient can be written as 

 

 ∑
−1

0

B

j=

ji,x  (3.3) 

 

If the filter length is N, the total number of SPT terms in the coefficients is given by 
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which can be rewritten for a symmetric (anti-symmetric) filter as 
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where M is given by (2.3). 

 

Now, suppose we want to minimize the total number of SPT terms in a linear-phase 

FIR filter having a magnitude response A(ω), satisfying the desired frequency response 

D(ω) with an error margin δ(ω) as defined in (2.5). Then using (3.1) and (3.5), for an even 

length filter the problem can be written as 
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and │xi,j│+│xi,j+1│ ≤ 1 for j = 0,1, ··· , B−2. If the number of SPT terms in each coefficient 

is to be constrained to a pre-determined value P the following constraint should be added 

to the problem for each coefficient h[i]. 

 

 MiPx
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  (3.7) 

 

The problem in (3.6) is a non-linear optimization problem due to the absolute value 

operator in the cost function. However, it can be easily converted to a linear optimization 
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problem by introducing two new variables for each variable xi,j [12]. That is, xi,j can be 

expressed as a difference of two variables, namely  

 

 xi,j = x+
i,j − x−

i,j (3.8) 

 

where x+
i,j, x

−
i,j ∈{0,1}. Then, the new formulation of the problem is 
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i,j+1 ≤ 1   for   j = 0,1, ··· , B−2. (3.9) 

 

This is a combinatorial optimization problem which can be solved optimally using 

MILP. The number of variables to be determined is 2MB. The absolute value in the 

constraint of the formulation does not harm the linearity of the problem since it can be 

written as  
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3.2. The GAM Algorithm for SPT Term Minimization 

 

The GAM algorithm can be easily modified to a search algorithm for finding a 

coefficient set with reduced number of SPT terms. A pre-defined cost function can be 

evaluated when a solution is found. Here, the cost function is the total number of SPT 

terms in the coefficients which was already formulated as in (3.5). However, instead of 

calculating the cost when a solution is found it is better to evaluate it incrementally at each 

coefficient selection and add the number of SPT terms of the current selection given by 

(3.3) to the total SPT term cost. So, after the last coefficient is selected the total number of 

SPT terms is calculated automatically.  
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A nice property of GAM is that the number representation to be used in the final 

implementation does not affect the underlying problem, i.e. it does not grow the size of the 

underlying LP problem by introducing new variables like in (3.9). This is because the 

actual cost function is not the cost function of the LP problem but evaluated separately. 

Calculation of the cost for each selected value brings computational overhead. Although 

this cost is small compared to the computational burden incurred by the solution of (2.10) 

and (2.11) (which are solved by linear programming) to find the boundary values, it can be 

avoided by pre-calculating the number of SPT terms of the values in the feasible value sets 

of the coefficients and storing them separately. Limiting the coefficients to have at most P 

SPT terms does not require additional constraints to be added to the problem as in (3.9). 

The values that have SPT terms more than P are simply removed from their sets prior to 

the search. 

 

The modified GAM algorithm whose pseudo-code is given in Figure 3.1 will be 

termed as SPTGAM. SPTGAM iteratively finds coefficients with reduced number of SPT 

terms given the wordlength B and filter length N. The resulting linear-phase FIR filter has 

zero-phase magnitude response A(ω) as defined in (2.4), and is subject to the frequency 

response characteristics as defined in (2.5). 

 

An advantage of branch and bound based algorithms on enumeration based 

algorithms is that they employ a cut-off mechanism that compares the best solution and 

best obtainable solution at any point of the search tree and decide not to go deeper in the 

search tree if a better solution cannot exist. This, in turn, avoids searching all possible 

combinations. In the original GAM algorithm, since no cost function was defined, a cut-off 

mechanism was not employed. The algorithm can terminate whenever a solution is found. 

However, since the initial solution found by the SPTGAM algorithm may not necessarily 

be the best solution, the algorithm needs to probe further to find better solutions. 

Therefore, we need a cut-off mechanism that will avoid searching all possible 

combinations. 

 

The cut-off mechanism in SPTGAM is as follows: The number of SPT terms of the 

best solution is denoted as O, which is set to infinity at the beginning since there is no 

solution. The number of SPT terms of the value v* (used to fix coefficient h[i]) is denoted 
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by p. The total number of SPT terms in the coefficients that are already fixed is denoted by 

Fi. The predicted minimum possible number of SPT terms of the unfixed coefficients is 

denoted by Ui. If Fi + p + Ui ≥ O, there is no need to further branch to the next coefficient 

since there does not exist a better solution then the current solution. In this case, the 

algorithm proceeds by setting the current coefficient h[i] to its next feasible value v*. The 

main point here is to forecast the number of SPT terms of the unfixed coefficients (h[i+1] 

to h[M−1]), namely Ui. 

 

Although many other SPT term prediction strategies can be found, to give an idea of 

the effect incurred by selecting a strategy, three of them will be mentioned here.  

SPTGAM (M , L, m

M

m V
1
0

−
=U )  

 H
* = ∅; 

 O = ∞; 
 Obtain Ui by computing (3.14) for i = 0,..,M−2; 
 Obtain hs

min[0] and hs
max[0] by solving equations (2.10) and (2.11); 

 V0
s = VALUE_SELECT(L, hs

min[0], hs
max[0], V0); 

 F0 = 0; 
 i = 0; 
 WHILE (i ≥ 0) 
  IF (Vi

s ≠ ∅)  
   h[i] = v* such that v* is the first element of ordered set Vi

s; 
   p = number of SPT terms in v*; 
   H

* = H* ∪ {h[i]}; 
   Vi

s = Vi
s − {v

*}; 
   IF (Fi + p + Ui < O) { /* If there can be a solution having SPT terms less than O */ 
    IF (i < M−1) 
     i = i + 1; 
     Fi = Fi − 1 + p; 
     Obtain hs

min[i] and hs
max[i] by solving equations (2.10) and (2.11); 

     Vi
s = VALUE_SELECT(L, hs

min[i], h
s
max[i], Vi); 

    ELSE-IF (problem is feasible) 
     H

* is a solution to the problem; 
     O = number of SPT terms of H*; 
    END-IF 
   END-IF 
  ELSE  
   H

* = H* − {h[i]}; 
   i = i − 1; 
  END-IF 
 END 
 

Figure 3.1. The modified GAM algorithm for minimizing SPT terms 
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i) U_MIN: Recall that Vi is defined to be the feasible value set of coefficient h[i]. In 

Vi, a value v which has the minimum number of SPT terms is found. Then, let Pi,min 

be the number of SPT terms of v. Then the predicted minimum number of SPT 

terms for the unfixed coefficients while fixing coefficient h[i] is 

 

 ∑
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ii) U_AVG: Unfortunately, (3.11) gives an underestimated value to the actual 

achievable number of SPT terms. Moreover, it causes unnecessary search effort 

devoted to the end of the tree, i.e. the search is stuck at the last coefficients. Instead, 

there is a need for another prediction value that allows the whole search space to be 

searched in a reasonable amount of time. One can use the average number of SPT 

terms a coefficient can have by averaging the SPT terms of the values in the 

feasible value set (Vi). Then let Pi,avg be this value which is calculated as 
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where pk is the number of SPT terms of value vk ∈ Vi. Then 
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iii) U_SUB_AVG: It is observed that the predicted number of SPT terms Ui in (3.13) is 

an overestimate. This causes the search to conclude in a very short time with a 

highly suboptimal result. Choosing the lower integer bound of the average, instead 

of the average itself, is the best choice in terms of search time-optimality trade-off. 

Now the predicted number of SPT terms for M − i unfixed coefficients is 
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Another strategy that needs to be revised due to the addition of a cost function to the 

GAM algorithm is the selection order of values from the refined values sets. The strategy 

adopted in GAM was selecting the value closest to hs
mid[i] first, which was phrased in the 

algorithm in Figure 2.4. This strategy will be termed as MID_VAL_FIRST from now on. 

Another selection order, which will enable the algorithm to find the minimum solution 

faster, could be to select the values having the minimum cost first, where the cost is the 

number of SPT terms. This can be done by first constructing the refined value set Vi
s by 

selecting the first L values out of Vi according to their closeness to the middle value 

h
s
mid[i]. And then, the values in Vi

s are ordered in ascending according to their number of 

SPT terms. The modified algorithm is shown in Figure 3.2 where pk denotes the number of 

SPT terms in value vk. 

 

The new strategy will be termed as MIN_SPT_FIRST. To our observations, 

MIN_SPT_FIRST should not be used unless the coefficient wordlength is greater than the 

minimum possible wordlength.  

 

3.2.1. SPTGAM Example 

 

A linear-phase low-pass FIR filter with 10 taps is to be designed, i.e. N=10, M=5. 

The coefficient wordlength is seven (B=7). The desired filter characteristics are given in 

Table 3.1. The boundary values of the coefficients are found by the algorithm in Figure 

2.2. The value sets ( m

M

m V
1
0

−
=U ) formed using the boundary values are listed in Table 3.2. 

 

MIN_SPT_FIRST (L, hs
min[i], h

s
max[i], Vi)  /* VALUE_SELECT*/ 

 Vi
s = {∀v ∈ Vi│h

s
min[i] ≤ v ≤ hs

max[i]}; 
 h

s
mid[i] = (hs

min[i]+h
s
max[i])/2; 

 Arrange Vi
s = (v1, v2, …, v│Vis│) such that 

       │v1−h
s
mid[i]│ < │v2−h

s
mid[i]│< ··· < │v│Vis│−h

s
mid[i]│; 

 Limit Vi
s = (v1, v2, …, v│Vis│) such that │Vi

s│ ≤ L; 
 Arrange Vi

s = (v1, v2, …, v│Vis│) such that p1 < p2 < ··· < p│Vis│; 
 RETURN Vi

s; 
 
Figure 3.2. The new value selection algorithm to select the values with the least SPT term 

count first 
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The feasible coefficient values are given as integers for ease of demonstration. The 

actual values can be found by dividing the values with 26. The refined values set sizes are 

limited to 2, i.e. L = 2. The SPT term prediction strategy is U_MIN. The value selection 

strategy is MID_VAL_FIRST. 

 

The algorithm starts by finding the boundary values of the first coefficient, h[0]. The 

values found are h
s
min[0] = −3.62 and h

s
max[0] = −0.83, from which the middle value is 

found as h
s
mid[0] = −2.24. The values in V0 within the boundary values are {−3,−2,−1}. 

Since, the refined value set size is limited to 2, the two values that are closest to hs
mid[0] are 

selected, which makes V0
s = {−2,−3}. The value closest to hs

mid[0] = −2.24 in V0
s= {−2,−3} 

is −2, so h[0] = −2, H
*={−2} and −2 is removed from the refined value set making 

V0
s={−3}. The algorithm branches to the next coefficient, h[1]. The refined boundary 

values are found to be hs
min[1] = −4.38 and hs

max[1] = −1.26 making hs
mid[1] = −2.82. The 

refined value set is V1
s = {−3,−2}. h[1] is set to −3 making H*={−2,−3} and V1

s = {−2}. 

The algorithm branches to the next coefficient, h[2]. The search goes on until all values in 

V0
s are tried out.  

Table 3.1. Filter characteristics of a low-pass FIR filter 

Band (k) Ωk (×π) Dk(ω) δk 

1 [0, 0.1] 1 0.05 

2 [0.25, 1] 0 0.05 

    
 

Table 3.2. Value sets of the coefficients for the SPTGAM example 

V0 = {−3, −2, −1} 

V1 = {−4, −3, −2, −1} 

V2 = {1, 2, 3, 4} 

V3 = {12, 13} 

V4 = {20, 21, 22} 
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The values of the variables for each iteration are given in Table 3.3. The status 

column in the table tells the current status of the problem. ‘S’ indicates that a solution is 

found. ‘C’ resembles a cutoff situation meaning that a better solution cannot be found 

going deeper in the search tree. ‘I’ denotes an infeasible situation. This is the case where an 

empty refined value set is encountered for the next coefficient after fixing the current 

coefficient. The search is also demonstrated as a search tree in Figure 3.3, where the 

leftmost branches are the first branched values. Coefficients are set to the values in the 

circles. The values in the circles correspond to the values of the coefficients written at the 

beginning of each row.  

 

 

 

Figure 3.3. Search tree for SPTGAM example (S: Solution, I: Infeasible, C: Cut-off) 
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Table 3.3. The iterative solution of the SPTGAM example 

I h
s
min[i]  h

s
max[i] h

s
mid[i] Vi

s h[i] H
* O Status 

0 -3.62 -0.83 -2.24 {-2,-3}     
    {-3} -2 {-2} ∞  

1 -4.38 -1.26 -2.82 {-3,-2}     
    {-2} -3 {-2,-3}   

2 1.01 3.57 2.29 {2,3}     
    {3} 2 {-2,-3,2}   

3 12.07 13.45 12.76 {13}     
    {} 13 {-2,-3,2,13}   

4 21.18 22.26 21.72 {22}     
    {} 22 {-2,-3,2,13,22} 10 S 

3    {}  {-2,-3,2}   
2    {3}     
    {} 3 {-2,-3,3}   

3 11.97 13.15 12.56 {12,13}     
    {13} 12 {-2,-3,3,12}   

4 20.69 20.78 20.74 {}  {-2,-3,3,12}  I 
3    {13}     
    {} 13 {-2,-3,3,13}  C 

2    {}  {-2,-3}   
1    {-2}     
    {} -2 {-2,-2}   

2 1.75 3.99 2.87 {3,2}     
    {2} 3 {-2,-2,3}   

3 12.03 13.66 12.85 {13}     
    {} 13 {-2,-2,3,13}   

4 20.69 21.37 21.03 {21}     
    {} 21 {-2,-2,3,13,21}  C 

3    {}  {-2,-2,3}   
2    {2}     
    {} 2 {-2,-2,2}   

3 12.65 13.48 13.06 {13}     
    {} 13 {-2,-2,2,13}   

4 20.69 21.26 20.98 {21}     
    {} 21 {-2,-2,2,13,21} 9 S 

3    {}  {-2,-2,2}   
2    {}  {-2,-2}   
1    {}  {-2}   
0    {-3}     
    {} -3 {-3}   

1 -3.62 -1.28 -2.45 {-2,-3}     
    {-3} -2 {-3,-2}   

2 2.65 4.01 3.33 {3,4}     
    {4} 3 {-3,-2,3}  C 
    {} 4 {-3,-2,4}   

3 13.13 13.16 13.15 {}    I 
2    {}     
1    {-3}     
    {} -3 {-3,-3}  C 

0    {}  {}   
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3.3. Hardware Implementation Issues 

 

In the hardware realization of constant coefficient FIR filters, adders/subtractors 

replacing the multipliers are called multiplier adders. The inter-tap adders are called 

structural adders [10]. One may choose among different adder topologies for the multiplier 

and structural adders. In terms of power and area the ripple carry adder seems to be a good 

choice. The delay elements can be realized with D-type flip-flops (D-FF).  

 

The transposed form realization of an FIR filter, which is shown in Figure 3.4, is 

preferred because of its short critical path offering high speed operation. The critical path 

is 1 multiplier + 1 adder long, which is independent of the length of the filter, i.e. number 

of coefficients.  

 

Two drawbacks of the transpose structure have been pointed out [30]. First, as the 

filter length increases the input signal bus becomes longer and has to be distributed to a 

larger number of tap inputs leading to large load capacitances. However, this problem can 

be alleviated by inserting data buffers on the input bus. Furthermore, by distributing the 

network in a tree-like structure, the capacitive loading can be reduced significantly.  

 

The second drawback is that the registers used for the delays have to be larger in the 

transpose structure since they hold the accumulated sum instead of the input signal. This, 

in turn, increases the loading capacitance on the clock bus. To reduce the loading, again a 

tree structure similar to the data bus can be employed. The clock bus capacitance can be 

further reduced by carefully selecting the delay element structure to be used. For example, 

 

 

Figure 3.4. Transposed form realization of an FIR filter 



 39 

the true single-phase clocked (TSPC) D-FF proposed in [48] not only removes the need for 

an inverse clock (i.e. a single clock is used) but also reduces the capacitive load on the 

clock bus. A TSPC D-FF is shown in Figure 3.5. 

 

When a coefficient multiplier is replaced with an adder tree, as it is shown in Figure 

3.6, the number of adders and the depth of the adder tree depend on the number of SPT 

terms in the coefficient. Then, letting the number of SPT terms in coefficient h[i] to be Pi, 

the depth of the adder tree used to replace the multiplier will be at most Pi−1 adders. If the 

maximum number of SPT terms per coefficient is Pmax, then the contribution of a replaced 

multiplier to the critical path will be at most Pmax−1 adders. Then for the transposed form 

realization of an FIR filter the critical path including the structural adder consists of Pmax 

adders. Thus, by limiting the number of SPT terms per coefficient, one can limit the critical 

path length, and hence increase the performance of the filter. This formulation, however, 

neglects the effect of the structure of the adders. The length of the path is affected by the 

structure of the adders. 

 

Here, an analysis for ripple carry adders is given. Ripple carry adders are composed 

of full adders. The critical path is the path for the carry signal generated by the least 

significant input bits to propagate to the most significant output sum. The contribution of 

an adder to the critical path can be approximated to be equal to the adder length of full 

adders. For example an 8-bit ripple carry adder will consist of eight full adders, and hence 

will have an eight full adder long critical path for the carry signal to travel to the most 

 

Figure 3.5. A TSPC D-FF with low capacitive loading to the clock bus 
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significant output sum. For an FIR filter, the maximum size of an adder, which is at the 

same time the output wordlength, can be calculated by the following formula: 

 

 

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n

in nhBWW  (3.15) 

 

where Win is the input data wordlength (including sign bit), h[n]’s are filter coefficients 

−1≤h[n]<1, N is number of coefficients in the filter, and B is wordlength of the coefficients 

(including sign bit). Wmax is the minimum adder size that ensures that no overflow will 

occur. This size is a limiting size for structural adders. The size of the multiplier adders 

will always be less than Wmax.  

 

The critical path of an FIR filter having at most Pmax SPT terms in a coefficient will 

be 

 

 CP = Wmax + Pmax − 1 (3.16) 

 

 

Figure 3.6. Constant coefficient multiplication (a) replaced by an adder tree (b) without 

considering depth and (c) with reduced depth 
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full adders long. This is also shown in Figure 3.7 From (3.16), it is clear that the critical 

path does not depend only on the maximum number of SPT terms (Pmax) a coefficient can 

have but also on the wordlength (B) of the coefficients. Therefore, keeping the wordlength 

small is an alternative method for critical path length minimization. Furthermore, when the 

multiplier adder tree depth can be kept minimum, i.e. the depth is log2Pmax adders, 

reducing the wordlength is even a more effective way (linear vs. logarithmic dependence). 

 

3.3.1. Register and Adder Width Calculation 

 

The filters designed by the SPTGAM algorithm are further optimized by the 

subexpression elimination tool of [8]. This tool generates a netlist of the filter in transposed 

form which is composed of adders and registers. Before the netlist is converted to 

structural level VHDL code to be mapped on a desired technology, the optimum width of 

the adders and registers is calculated. The calculation process will be explained on an 

example. 

 

 

Figure 3.7. Critical path in an FIR filter 

 



 42 

In Figure 3.8 the hardware realization of the first two coefficients h[0] = 000101 and 

h[1] = 010101 of an FIR filter is shown. Here, x is the input, a2, a3, and a4 are coefficient 

adders, t1 is a structural adder, and d0 and d1 are delay elements. Note that a2 and a4 are 

in fact subtractors. To find the width of each element we apply the following procedure: 

 

Input (x) : This parameter is given a priori and for our case it is 8 bits, i.e. Wx = 8. 

 

Multiplier adder (a2, a3, a4) : Assume that the input x is set to 1. Then calculate the 

output value of the adders. Adders having an input from another adder will use the output 

value of that adder. Here a4 is such an adder. Then, the adder width is found by summing 

the input width and the smallest integer greater than the base two logarithm of the absolute 

value of the adder. For the above adders we can write down the formulae as follows: 

  

 Wa2 = Wx + log2│x−x<<2│ = 8 + log2│1−4│ = 8 + log23 = 10 

 Wa3 = Wx + log2│x+x<<2│ = 8 + log2│1+4│ = 8 + log25 = 11  

 Wa4 = Wx + log2│x<<4−a3│ = 8 + log2│16−5│ = 8 + log211 = 12  

 

Structural Adders (t1) : The method to find the width of a structural adder is the same 

as for a multiplier adder. The only difference is in finding the output value. For a structural 

adder (even it is a subtractor) the output value is found by adding the absolute value of the 

inputs. The value of a delay element is equal to the value of the input of the element. For 

 

Figure 3.8. Hardware realization of an FIR filter (a) with multipliers and (b) multiplierless 
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example, here, the value of d0 is equal to the value of a2 which is -3. The width formula 

for t1 is  

 

 Wt1 = Wx + log2(│a2│+│a4│) = 8 + log2(│−3│+│11│) = 8 + log214 = 12 

 

Registers (d0, d1) :  The width of the registers is equal to the width of the element at 

its input. This can be a multiplier adder, a structural adder, another register or the input. 

For example, the width of register d0 is equal to the width the multiplier adder at its input, 

namely a2. So,  

 

 Wd0 = Wa2 = 10  

 

Similarly, the width of register d1 is equal to the width the structural adder at its 

input 

 

 Wd1 = Wt1 = 12  

 

Here the term width of an element is the output width of that element, i.e. the number 

of bit lines coming out of that element. For the delay elements this directly corresponds to 

the number of single bit D-type flip-flops. That is, if a delay element has a width of W then 

it will possess W D-type flip-flops. Although we can use the same convention for the 

adders and say that an adder having an output width W will use W full adder cells (in case 

it is realized with a ripple carry adder structure), this will introduce hardware overhead 

when we have shifted inputs. As an example, coefficient adder a3 will be analyzed. One of 

the inputs is left shifted by two. This means two zeros are added to the right of the input. 

Assuming x is 8 bits, a3 will do the following addition operation: 

 

 0123456777

01234567 00

xxxxxxxxxx

xxxxxxxx

+
  

As can be seen from this operation, there is no need to use full adders for the least 

significant two bits due to the zero inputs. One can save up full adders as the amount of 
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shifting at the inputs. However, one should be careful when applying this procedure to 

subtractors. It should be applied to subtractors only if the negated input is the shifted input. 

Otherwise, the output needs to be negated introducing additional inverters that may cancel 

out the hardware gain obtained by removing the extra full-adders. 

 

3.4. Experimental Results 

 

In this section several example filters are designed using SPTGAM and compared to 

other methods from the literature. The methods used for comparison are the Remez 

algorithm, trellis algorithm [18], Li’s algorithm [17], Lim’s algorithm [20], Samueli’s 

algorithm [14], Yao’s algorithm [9,15], and MILP based optimum method of [12]. For the 

methods the abbreviations RMZ, TRE, LI, LIM, SAM, and PMILP are used respectively. 

For the Remez algorithm, MATLAB’s remez function is used and the filter coefficients are 

quantized to the minimum wordlength satisfying the filter characteristics. The results for 

LIM, SAM, and PMILP are taken directly from the papers they appeared. The algorithms 

TRE, LI, and GAM are implemented in the C programming language. SPTGAM uses the 

linear programming (LP) library of QSOPT [47]. For the optimum MILP method, ILOG 

CPLEX [49] optimization package is used. The frequency grid on which the frequency 

response is evaluated consists of 1000 frequency samples for all filters. This makes 2000 

constraints for the LP problem solved in SPTGAM. The implemented algorithms are run 

on a PC with a Pentium D 2.8GHz processor and 1 GB RAM. The hardware realizations of 

the filters are done using the transposed form structure. After optimization of the 

coefficients, for all filters the sub-expression sharing method in [8] is used. The input data 

width of the filters is taken as 8 bits. Adders are realized with ripple carry adders. Delay 

elements are realized with D-type flip flops. The filters are mapped to the AMS 0.35µ 

technology cell library for power simulations. The simulations are done with an event 

driven gate-level simulator. The operating voltage is 3.3 V. The input data applied to the 

filters is a random sequence of 16384 8-bit samples. 

 

3.4.1. Example 1 

 

In this example filters L1, L2, and S2 are designed. The filter frequency response 

characteristics were already given in Table 2.3. L1 and L2 are the example filters 1 and 2 
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given in [20]. S2 is the second example filter of [14]. The methods used for comparison are 

RMZ, LIM [20], SAM [14], and the PMILP algorithm [9,15].  

 

The properties of the designed filters are given in Table 3.4. Here, N is the number of 

taps, B is the wordlength (including sign bit) of the coefficients, Be is the effective 

wordlength excluding the sign bit and most significant zero bits [20], P is the maximum 

number of SPT terms found in each coefficient. The number of adders is given in terms of 

multiplier adders (MA) and structural adders (SA). The number of multiplier adders is the 

number after sub-expression elimination is applied. The total hardware complexity after 

realizing the adders with ripple carry adders and the delay elements with D-type flip-flops, 

is the sum of the number of full-adders (FA) and number of D-type flip-flops (D-FF). The 

power performance of the filters is given as µW/MHz. The SPT term and power gains are 

calculated taking the RMZ filters as reference.  

 

Table 3.4. Designed filter properties of example 1 

SPT term Hardware Complexity Power 
Filter Method N B Be P 

# 
Gain 
(%) 

FA DFF Total µW/MHz 
Gain 
(%) 

RMZ 121 19 16 8 483 - 3647 2907 6554 1090 - 

LIM 121 17 14 7 416 13.9 3146 2664 5810 938 13.9 

PMILP 121 - 15 6 442 8.5 3248 2748 5996 988 9.4 
L1 

GAM 121 17 14 6 362 25.1 2886 2654 5540 864 20.7 

RMZ 63 15 12 5 197 - 1510 1281 2791 422 - 

LIM 63 13 10 4 159 19.3 1311 1154 2465 349 17.3 

PMILP 63 - 11 4 163 17.3 1285 1182 2467 344 18.4 
L2 

GAM 63 13 10 4 140 28.9 1213 1154 2367 328 22.3 

RMZ 60 16 12 6 204 - 1494 1251 2745 421 - 

SAM 60 - 13 4 174 14.7 1455 1298 2753 402 4.5 

PMILP 60 - 12 4 174 14.7 1342 1255 2597 368 12.6 
S2 

GAM 60 15 11 5 160 21.6 1337 1180 2517 362 14.0 
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It is clear from Table 3.4 that SPTGAM outperforms all methods in terms of the 

number of SPT terms. In terms of wordlength SPTGAM coefficients have either shorter or 

equal wordlength when compared to the other methods. The reduced SPT term count and 

wordlength has reduced the hardware cost and power consumption. Again looking at Table 

3.4, SPTGAM filters have the least hardware cost in terms of full adders and D-FF. Note 

that the reduction in the number of SPT terms (taking the RMZ coefficients as reference) 

for the SPTGAM filters is in parallel with the reduction in power consumption. 

 

The time spent to find the filters for SPTGAM is given in Table 3.5. The feasible 

value set size L for SPTGAM was set to 2. The number of SPT terms per coefficient was 

not limited. The SPT term prediction and value selection strategies used were 

U_SUB_AVG and MID_VAL_FIRST respectively. The first solution is the initial solution 

found by GAM. The best solution is best in terms of both the total number of SPT terms of 

the coefficients and maximum number of SPT terms in a coefficient. Since the compared 

algorithms were not implemented, a direct comparison to their search time was not 

possible. 

 

As an example, the coefficients and frequency response of SPTGAM filter L1 are 

given in Table 3.6 and Figure 3.9 respectively. 

Table 3.5. Solution times for SPTGAM filters of example 1 

First solution Best solution 
Filter 

# of SPT Time # of SPT Time 

Total 
search 
time 

L1 419 2m 362 32m 56m 

L2 157 15s 140 26m 54m 

S2 182 12s 160 23m 27m 
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Table 3.6. Coefficients of SPTGAM filter L1 with N=121, B=17 

  h[0] = 2−14  
h[1] = −2−13 − 2−15  
h[2] = 2−12 + 2−16  
h[3] = −2−12 − 2−14 − 2−16  
h[4] = 2−12 + 2−15  
h[5] = −2−14 − 2−16  
h[6] = −2−12  
h[7] = 2−11 + 2−14 + 2−16  
h[8] = −2−10 + 2−12  
h[9] = 2−11 + 2−13  
h[10] = −2−13 − 2−15  
h[11] = −2−11 − 2−15  
h[12] = 2−10 + 2−13 + 2−15  
h[13] = −2−9 + 2−11 + 2−13 – 2−16 
h[14] = 2−10 + 2−15 
h[15] = −2−13 + 2−16  
h[16] = −2−10 − 2−15  
h[17] = 2−9 − 2−13 − 2−16  
h[18] = −2−9 + 2−13 − 2−15  
h[19] = 2−10 − 2−15  
h[20] = 2−11 + 2−13 + 2−15  
h[21] = −2−9 − 2−12  
h[22] = 2−8 − 2−10   
h[23] = −2−9 − 2−11 + 2−13 + 2−16  
h[24] = 2−11 − 2−13 − 2−16  
h[25] = 2−9 + 2−12 − 2−14  
h[26] = −2−8 − 2−13 + 2−15  
h[27] = 2−8 + 2−12  
h[28] = −2−9 − 2−12 − 2−15  
h[29] = −2−10 − 2−12 + 2−14  
 

h[30] = 2−8 + 2−11 + 2−13  
h[31] = −2−7 + 2−9 − 2−12  
h[32] = 2−8 + 2−10 − 2−14  
h[33] = −2−10 + 2−13  
h[34] = −2−8 − 2−12 − 2−14  
h[35] = 2−7 + 2−13  
h[36] = −2−7 − 2−11 + 2−13 − 2−16  
h[37] = 2−8 + 2−11 − 2−13 + 2−16  
h[38] = 2−9 + 2−11 + 2−16  
h[39] = −2−7 − 2−10 − 2−12  
h[40] = 2−6 − 2−8 + 2−12 + 2−14  
h[41] = −2−7 − 2−9 + 2−11  
h[42] = 2−10 + 2−12  
h[43] = 2−7 + 2−10 + 2−13  
h[44] = −2−6 − 2−11 − 2−13 − 2−15  
h[45] = 2−6 + 2−10 − 2−14  
h[46] = −2−7 − 2−11 + 2−14 − 2−16  
h[47] = −2−7 + 2−9 − 2−13  
h[48] = 2−6 + 2−8 + 2−11  
h[49] = −2−5 + 2−8 + 2−10 − 2−13 − 2−15  
h[50] = 2−6 + 2−8 + 2−10 − 2−13  
h[51] = −2−9 + 2−12  
h[52] = −2−5 + 2−7 + 2−12 + 2−14  
h[53] = 2−4 − 2−6 − 2−8  
h[54] = −2−4 + 2−6 + 2−10 + 2−12 − 2−16  
h[55] = 2−5 − 2−7 − 2−11 + 2−13  
h[56] = 2−5 − 2−7 + 2−9 − 2−12 + 2−14  
h[57] = −2−3 + 2−5 + 2−8 − 2−11 − 2−16  
h[58] = 2−3 + 2−5 + 2−12  
h[59] = −2−2 + 2−4 − 2−6 − 2−9 − 2−11 − 2−13  
h[60] = 2−2 − 2−5 + 2−8 + 2−10 + 2−12 − 2−16

 

 

h[n] = h[120−n] for n=61, 62, 63, … ,120  
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Figure 3.9. Frequency response of SPTGAM filter L1 with N=121, B=17 
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3.4.2. Example 2 

 

In this example SPTGAM is compared to the algorithms TRE, LI, and MILP. The 

algorithms are implemented in the C programming language. The comparison is made with 

the filters A, B, and C of Table 2.3.  

 

The properties of the designed filters are given in Table 3.7. The run times of the 

algorithms are listed in Table 3.8. For the MILP method passband scaling could be used, 

however, to make a direct comparison with the results of SPTGAM the passband gain is 

taken to be unity, i.e. s = 1 in [12]. LI and TRE directly make use of passband scaling in 

Table 3.7. Designed filter properties of example 2 

SPT term Hardware Complexity Power 
Filter Method N B Be P 

# 
Gain 
(%) 

FA DFF Total µW/MHz 
Gain 
(%) 

RMZ 59 15 12 6 200 - 1449 1183 2632 412 - 

TRE 59 13 10 5 160 20.0 1263 1102 2365 340 17.4 

LI 59 13 10 4 151 24.5 1218 1097 2315 325 21.1 

MILP 59 13 10 5 145 27.5 1173 1063 2236 317 23.1 

A 

GAM 59 13 10 5 145 27.5 1173 1063 2236 317 23.1 

RMZ 105 13 10 5 232 - 2007 1958 3965 549 - 

TRE 105 12 9 3 199 14.2 1814 1836 3650 464 15.0 

LI 105 12 9 4 212 8.6 1853 1843 3696 487 11.3 

MILP - - - - - - - - - - - 

B 

GAM 105 11 8 4 169 27.2 1672 1739 3411 426 22.4 

RMZ 325 15 12 5 820 - 7045 6818 13863 1884 - 

TRE 325 14 11 5 743 9.4 6650 6665 13315 1721 8.7 

LI 325 14 11 6 740 9.8 6608 6618 13226 1712 9.1 

MILP - - - - - - - - - - - 

C 

GAM 325 13 10 4 549 33.0 5687 6148 11835 1450 23.0 
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their optimization. LI searches for a range of scaling factors to find the optimum 

coefficients in terms of the number of SPT terms. For TRE, no method is given in [18] to 

determine a proper scaling factor. Since TRE is a polynomial time algorithm, multiple runs 

of the algorithm on different scaling factors are possible. Therefore, TRE is run for the 

same range of scaling factors used by LI. The run time of the algorithm TRE given in 

Table 3.8 is the result of multiple runs of the algorithm. The algorithms are run for at most 

24 hours. The only exception is made for MILP when run on filter A. The reason is that 

filter A is the smallest filter and is the one that is most likely to produce a result in a 

reasonable amount of time.  

 

Table 3.8. Time spent by each algorithm to design the filters of example 2 

First solution Best solution 
Filter Method 

# of SPT Time # of SPT Time 

Total 
search 
time 

RMZ 200 - 200 - - 

TRE 160 38m 160 38m 2h 57m 

LI 151 1s 151 1s 4s 

MILP  13 days 145 14 days 15 days 

A 

GAM 153 17m 145 3h 2m 4h 14m 

RMZ 232 - 232 - - 

TRE 215 48m 199 3h 19m 4h 32m 

LI 221 1s 212 1s 3s 

MILP - - - - 24h 

B 

GAM 179 1m 169 9m 24h 

RMZ 820 - 820 - - 

TRE 767 55m 743 20h 46m 24h 

LI 818 1s 740 18s 41s 

MILP - - - - 24h 

C 

GAM 583 18m 549 13h 47m 24h 
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In terms of search time LI seems to be the best algorithm. However, for large filters 

the gain in the number of SPT terms obtained by SPTGAM compensates the search time. 

Note that even the initial solutions obtained by SPTGAM are much better than the best 

solutions obtained by LI. It is interesting to note that the best solution found for filter A by 

GAM is the optimum solution. The complete search took only four hours for SPTGAM, 

whereas it took 15 days for the optimal MILP method. Hence, SPTGAM is almost 100 

times faster than the optimal MILP method. For filters B and C, the MILP method could 

not find any solutions in one day. 

 

3.4.3. Example 3 

 

For the same frequency response characteristics of the filters of example 2, filters are 

re-designed with different number of taps using SPTGAM. The number of taps is increased 

starting from the minimum possible to the number beyond no reduction in the coefficient 

Table 3.9. Designed filter properties of example 3 

SPT term Hardware Complexity Power 
Filter N B Be P 

# 
Gain 
(%) 

FA DFF Total µW/MHz 
Gain 
(%) 

56 19 16 6 244 - 1708 1330 3038 412 - 

57 15 12 5 159 34.8 1264 1138 2402 340 32.0 

58 14 11 5 144 40.9 1190 1097 2287 315 39.2 
A 

59 13 10 5 145 40.6 1173 1063 2236 317 38.8 

101 14 11 4 235 - 2017 1985 4002 549 - 

102 13 10 4 206 12.3 1793 1893 3686 464 13.9 

103 12 9 4 189 19.6 1806 1813 3619 487 14.6 
B 

105 11 8 4 169 28.1 1672 1739 3411 426 22.1 

311 16 13 5 771 - 6771 6840 13611 1884 - 

312 15 12 5 674 12.6 6259 6547 12806 1721 8.7 

317 14 11 4 660 14.4 6219 6333 12552 1712 11.8 
C 

325 13 10 4 549 28.8 5687 6148 11835 1450 20.1 
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wordlength could be achieved. The properties of the filters are given in Table 3.9. Power 

gain is calculated taking the filter having the minimum number of taps as reference. 

 

An additional tap requires an additional structural adder and delay element. 

Therefore, increasing the number of taps, at first glance, might seem to increase the 

hardware cost. However, this increase is compensated by the reduction of the wordlength 

of the coefficients, which can be seen from Table 3.9. 

 

3.5. Summary 

 

An algorithm for designing low power/hardware cost linear-phase FIR filters was 

presented. The algorithm optimizes SPT terms in the coefficients given the filter frequency 

response characteristics. Although the worst case run time of the algorithm is exponential, 

its capability to find appreciably good solutions in a reasonable amount of time (at least 

100 times faster than traditional optimum MILP based formulation) makes it a desirable 

CAD tool for designing low power/hardware cost linear phase FIR filters. The algorithm is 

compared to existing methods with several examples. The filters found by the proposed 

algorithm have fewer SPT terms and are shorter in wordlength than the filters found by the 

other methods. SPTGAM filters consume 20 per cent less power on average than 

unoptimized RMZ coefficients. The superiority over existing methods has been shown to 

be more apparent on high-order filters. 
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4. LOW-POWER DESIGN OF VARIABLE COEFFICIENT FIR 

FILTERS  

 

 

In a generic DSP implementation of an FIR filter, the coefficients are held in a 

coefficient memory and are sequentially applied to the multiply accumulate (MAC) unit. A 

separate memory holds data, which is applied to the second input of the unit. The major 

source of power dissipation is the multiplier that computes h[i]·x[n−i] for i = 0,1,…,N−1. 

In a typical multiplier unit, each 1-bit of a multiplicand corresponds to a shift and add 

operation. If the number of 1-bits can be reduced in the multiplier, we can reduce the 

number of additions required to compute the product h[i]·x[n−i], thereby reducing power. 

 

A commonly used multiplier unit employs the Booth’s algorithm for high-speed 

multiplication. The main idea is to recode the multiplier such that consecutive runs of 1-

bits are represented by difference of two numbers each having only a single 1-bit. For 

example, the sequence 01111 can be represented as 1100000001-10000 =  which uses an 

add and a subtract operation in calculating a product with this number. In contrast, the 

original multiplier would have caused 4 add operations. Hence, with the recoded multiplier 

power can be saved. 

 

Power dissipation in a multiplier is a function of the signal activity at the external 

and internal nodes. Booth encoding as mentioned above will reduce the number of 

computations to yield the product but cannot guarantee a reduced switching activity at the 

internal/external nodes, which is the main cause of power dissipation. The signal activity at 

the external nodes depends on the Hamming distance between successively applied inputs. 

The data part cannot be controlled but the coefficient part can. This can either be achieved 

by reordering the coefficients [24] so that Hamming distance between successive 

coefficients is minimized or by using coefficients already having low Hamming distance 

values between successive coefficients.  

 

In our work, we converted the low-power FIR filter coefficient synthesis problem to 

a problem to find low switching activity (Hamming distance) and number of ones 
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coefficients which is then formulated as an integer quadratic programming problem. 

Moreover, since today’s processors may possess multiple MAC units, the formulation 

proposed is extended to handle this situation. The resulting coefficients are optimum in 

terms of switching activity and number of ones for the desired number of multiplier units. 

A couple of example filters are designed and the power performances are tested on a pre-

designed multiply-accumulate (MAC) unit. The effectiveness of our approach is also 

shown on a processor having multiple MAC units.  

 

The integer programming based formulation is restricted to small filters (with length 

N < 40) due to its excessive run-time requirements. To alleviate this problem, a modified 

version of the GAM algorithm that minimizes switching activity, namely SWAGAM, is 

also proposed.  

 

4.1. Problem Formulation 

 

The coefficients h[i] of a linear–phase FIR filter with impulse response can be 

written in B-bit two’s complement representation as 

 

 ∑
−

−+−
1

1
0 2][

B

j=

j

ji,i, xx=ih  (4.1) 

 

where xi,j ∈ {0,1}.  

 

4.1.1. Formulation of the Cost of Switching Activity (Hamming Distance) 

 

Formulation of the switching activity between successively applied coefficients is 

done as follows: A switching between coefficients h[i] and h[i+1], which are quantized 

according to (4.1), at bit j is said to occur when Boolean XOR of the two bits evaluates to a 

one. The arithmetic expression for the Boolean XOR operation is 

 

 xi,j ⊕ xi+1,j ≡ x2
i,j + x2

i+1,j − 2 xi,j xi+1,j 

 ≡ (xi,j − xi+1,j)
2 (4.2) 
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Having defined the cost function for the switching activity between two bits, the cost of 

switching from coefficient h[i] to h[i+1] is given by 

 

 ( )∑
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jiji xx  (4.3) 

 

where B is the coefficient wordlength. The total cost of switching of an FIR filter having N 

taps is 
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Since, for a linear-phase filter the coefficients are symmetric, the above cost function 

reduces to 
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where M is calculated using (2.3). 

 

In the case when there are more than one MAC units the coefficients are assumed to 

be applied in the following sequence: Assuming N taps and P MAC units, coefficients 

applied to a MAC unit are h[i], h[i+P], h[i+2P], ···. An example is shown in Figure 4.1 for 

four MAC units and an FIR filter having 10 coefficients. The new formulation of switching 

activity of successively applied coefficients for P MAC units is 

 

 ( )∑∑∑
− −

=

−

=
+++ −=

1

0

1

0

1

0

2

,)1(,

P

=p

K

i

B

j

jPipjiPpswa xxC  (4.6) 

 

where K = (N−1−p)/P. 
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4.1.2. Formulation of the Cost of Number of Ones 

 

Formulation of the number of ones in the coefficients of an FIR filter is 

straightforward. For a linear-phase FIR filter having N taps and for which the coefficients 

are represented in two’s complement notation using (4.1), the cost of number of ones in the 

coefficients can be expressed as  
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where xi,j ∈ {0,1}. For a symmetric linear-phase FIR filter where the filter length N is odd 

(4.7) reduces to 
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and when N is even  
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where M is calculated using (2.3). 

 

 

Figure 4.1. FIR filtering on multiple MAC units 
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4.1.3. Formulation of the Problem 

 

Having defined the cost functions of switching activity and number of ones three sets 

of optimized coefficients can be obtained: minimum number of ones (MONE), minimum 

switching activity (MSWA) filters, and minimum switching activity and ones (MSWO) 

filters. 

 

Using (2.4), (2.5), (4.1), and (4.9) the optimization problem for MONE filters can be 

written as 
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This problem can be solved optimally using MILP. 

 

Similarly, using (2.4), (2.5), (4.1), and (4.6) the optimization problem for MSWA 

filters for a filter core having P MAC units can be written as 
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Due to the quadratic term in the objective function this problem can be formulated as an 

integer quadratic problem. By introducing new variables this problem can be converted to 

an integer linear programming problem as described in [26]. 
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Again using (2.4), (2.5), (4.1), (4.6), and (4.9) the optimization problem for MSWO 

filters for a filter core having P MAC units can be written as 

 

Minimize ( ) ∑∑∑∑∑
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where the cost of switching activity is given the same weight as the cost for number of 

ones. 

 

4.2. The GAM Algorithm for Switching Activity Minimization 

 

The GAM algorithm can be easily modified to a search algorithm for finding a 

coefficient set with reduced switching activity. The modified algorithm which is named as 

SWAGAM is shown in Figure 4.2. SWAGAM iteratively finds coefficients with reduced 

switching activity given the wordlength B and filter length N. The resulting linear-phase 

FIR filter has zero-phase magnitude response as defined in (2.4), subject to the frequency 

response characteristics defined in (2.5). 

 

Since the minimization of switching activity is defined as the goal of optimization, 

the cut-off mechanism of SWAGAM is re-defined as follows: The switching activity of the 

best solution is denoted as SC (which is set to infinity at the beginning since there is no 

solution). The switching activity cost of setting h[i] to value v* is denoted by p, which can 

be calculated by calculated by counting the different values digits of coefficient h[i-1] and 

h[i] using (4.3). The total switching activity between already fixed coefficients is denoted 

by Fi. The predicted minimum switching activity of unfixed coefficients is denoted by Ui. 

If Fi + p + Ui ≥ SC there is no need to further branch to the next coefficient since there 

does not exist a better solution then the current solution. In this case, the algorithm 

proceeds by setting the current coefficient h[i] to its next feasible value v*.  
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The predicted switching activity of the unfixed coefficients (Ui.) is found as follows: 

First, the average cost of switching activity between all values of coefficient h[i] and 

h[i+1] is found by  
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SWAGAM (M , L, m

M

m V
1
0

−
=U )  

 H
* = ∅; 

 SC = ∞; 
 Obtain Ui by computing (4.14) for i = 0,1,…,M−2; 
 Obtain hs

min[0] and hs
max[0] by solving equations (2.10) and (2.11); 

 V0
s = VALUE_SELECT(L, hs

min[0], hs
max[0], V0); 

 F0 = 0; 
 i = 0; 
 WHILE (i ≥ 0)  
  IF (Vi

s ≠ ∅)  
   h[i] = v* such that v* is the first element of ordered set Vi

s; 
   p = switching activity between h[i−1] and h[i]; 
   H

* = H* ∪ {h[i]}; 
   Vi

s = Vi
s − {v

*}; 
   IF(Fi + p + Ui < SC)  /* If a solution with switching activity less than O exists*/ 
    IF (i < M − 1)  
     i = i + 1; 
     Fi = Fi − 1 + p; 
     Obtain hs

min[i] and hs
max[i]  by solving equations (2.10) and (2.11); 

     Vi
s = VALUE_SELECT(L, hs

min[i], h
s
max[i], Vi); 

    ELSE-IF (problem is feasible)  
     H

* is a solution to the problem; 
     SC = switching activity of H*; 
    END-IF 
   END-IF 
  ELSE 
   H

* = H* − {h[i]}; 
   i = i − 1; 
  END-IF 
 END 
 
 

Figure 4.2. The SWAGAM algorithm for minimizing switching activity between 

successive coefficients 
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where 
kj vvs →  is the switching activity cost of a transition from value vj ∈ Vi to vk ∈ Vi+1. 

Then 
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4.3. Design Examples 

 

In this section the quadratic programming based formulation and SWAGAM are 

compared to the method of coefficient re-ordering on the test filters [23] given in Table 

4.1. 

 

Table 4.2 shows the results for the amount of switching activity and the number of 

ones in the coefficients generated using six methods, namely NOPT, RORD, MONE, 

MSWA, MSWO, and SWAGAM. NOPT coefficients are the coefficients generated using 

MATLAB's Remez function and quantized to 16 bits. They are the reference coefficients 

for which no optimization is done. RORD coefficients are NOPT coefficients re-ordered 

by the method given in [24] for minimum switching activity. MSWA coefficients are the 

coefficients optimized for minimum switching activity using the formulation in (4.11) with 

ILOG CPLEX integer programming tool. MONE coefficients are the coefficients 

Table 4.1. Filter characteristics 

Filter N K Ωk(×π) Dk(ω) δk 

1 [0, 0.375] 1 0.0233 
M2 24 

2 [0.5625, 1] 0 0.0080 

1 [0, 0.3333] 1 0.0139 
M4 28 

2 [0. 5, 1] 0 0.0056 

1 [0, 0.3667] 1 0.0186 
M5 34 

2 [0.5167, 1] 0 0.0035 

1 [0, 0.4] 1 0.0580 
M6 29 

2 [0.6, 1] 0 0.0100 
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optimized for minimum number of ones using the formulation in (4.10) with ILOG 

CPLEX integer programming tool. MSWO coefficients are the coefficients optimized for 

both minimum number of ones and minimum switching activity using the formulation in 

(4.12) with ILOG CPLEX integer programming tool. The optimization problems were 

solved on a PC having INTEL P4 1.7GHz processor with 256 MB of RAM. 

 

The power performance of the generated coefficients are tested on a single MAC unit 

having a 16 bit Booth encoded Wallace tree multiplier and 40-bit accumulator. The MAC 

Table 4.2. Switching activity counts and number of ones in synthesized filters for one 

MAC unit 

Filter Method 
Switching 

Activity 

Number of 

ones 

Optimization 

Time (Sec.) 
Power (µW) 

Power 

Reduction (%) 

NOPT 178 186 - 1317 - 

RORD 59 186 <1 1077 18.2 

MONE 94 88 20 890 32.4 

MSWA 82 150 800 982 25.4 

MSWO 90 90 340 850 35.4 

M2 

SWAGAM 90 92 120 852 35.3 

NOPT 188 244 - 1324 - 

RORD 68 244 <1 1083 18.2 

MONE 116 140 24 913 31.0 

MSWA 100 174 1200 957 27.7 

MSWO 102 144 80 874 34.0 

M4 

SWAGAM 116 174 10 1016 23.3 

NOPT 246 272 - 1321 - 

RORD 75 272 <1 1065 19.4 

MONE 148 140 300 978 26.0 

MSWA 122 290 13742 1137 13.9 

MSWO 140 146 5328 899 31.9 

M5 

SWAGAM 140 160 22 917 30.6 

NOPT 216 245 - 1249 - 

RORD 59 245 <1 993 20.5 

MONE 122 61 4 787 37.0 

MSWA 108 328 2240 1001 19.9 

MSWO 118 63 66 775 38.0 

M6 

SWAGAM 114 129 120 804 35.6 
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unit is synthesized with AMS 0.6µ technology cell library. FIR filtering is performed on 

15625 samples of voice data quantized to 16 bits. Power simulations were done with an 

event driven gate-level simulator using a variable delay model which accounts for glitches. 

The operating frequency was taken to be 1MHz and supply voltage to be 5V. The resulting 

power dissipations are also given in Table 4.2. 

 

The percentage power reduction is calculated by taking the NOPT coefficients’ 

power as reference. The results indicate that by just reducing the switching activity 

between coefficients, the best power performance cannot be achieved. By reordering 

coefficients one can get 19 per cent reduction in power. MSWA coefficients could achieve 

a power reduction of 22 per cent on average. The best power performance is obtained from 

MSWO coefficients having a power reduction of 35 per cent on average. SWAGAM 

coefficients follow next with a 31 per cent power reduction on average. MONE 

coefficients have a comparable performance to MSWO coefficients with 30 per cent power 

reduction on average. When design time is important, which might be the case for filters 

having large number of coefficients, SWAGAM should be preferred. 

 

Another set of coefficients were generated targeting a filter core having four MAC 

units. The coefficients are generated for filter B. The optimization method used is MSWO 

but now targeting 4 MAC units, i.e. P=4 in (4.12). The resulting coefficients’ switching 

activity counts for each MAC unit are given in Table 4.3. The switching activity counts are 

compared to those coefficients generated using methods NOPT, and MSWO targeting one 

MAC unit.  

 

The power performances of the coefficients are tested using the same MAC unit 

mentioned above. The operating frequency is 1MHz and supply voltage 5V. The resulting 

average power dissipation in each MAC unit is given in Table 4.4. The performance of the 

coefficients generated by the method MSWO targeting four units is the best, as expected. 

However there is a little performance increase (three per cent) over MSWO coefficients 

targeting one MAC unit. 
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4.4. Summary 

 

In this chapter, the formulation of finding power optimum coefficients for the 

realization of digital FIR filters on programmable DSPs is demonstrated. The effectiveness 

of the integer quadratic formulation is tested on four low pass FIR filters taken from the 

literature. The results indicate that when minimization of switching activity is the goal, the 

most effective method is to re-order coefficients. However, when it comes to power 

performance, coefficients optimized with the proposed methods outperformed reordered 

coefficients in all cases. The effectiveness of the formulation on DSPs having multiple 

units is also shown on a design example. SWAGAM algorithm gives comparable results in 

a much shorter time than the optimum quadratic programming based formulation.  

 

The formulation of the low switching activity filter design problem is given for two’s 

complement number representation. However, the procedure can be easily applied to sign-

magnitude notation as well.  

 

Table 4.3. Switching activity counts and number of ones in synthesized filters for four 

MAC units 

Switching Activity 
Filter Method 

MAC 0 MAC 1 MAC 2 MAC 3 

Number of 

Ones 

       NOPT 47 38 37 46 186 

MSWO (P=1) 36 22 24 36 90 M2 

MSWO (P=4) 22 16 16 22 92 

       
 

 

Table 4.4. Power simulation results using four MAC units 

Power (µW) 

Filter Method 
MAC 0 MAC 1 MAC 2 MAC 3 Total 

Reduction 

(%) 

        NOPT 1523 1357 1341 1525 5746 - 

MSWO (P=1) 994 937 906 981 3818 33.5 M2 

MSWO (P=4) 944 875 855 972 3646 36.5 

        



 64 

5. POWER OPTIMIZATION IN FIR BASED SYSTEMS – 

EQUALIZER DESIGN EXAMPLE 

 

 

Frequency response and/or linear-phase are not a design constraint for equalizing 

filters, namely equalizers, which are extensively used in communication systems. They are 

employed at the receiver end of the communication system to recover the original 

transmitted signal distorted when passing through the channel via effects such as additive 

noise and inter-symbol interference (ISI) [50,51].  

 

In this work, we consider the design of low-power hardware efficient MMSE 

equalizer. The coefficients of the MMSE equalizer are obtained by minimizing the MSE 

between output and the actual transmitted data. The resulting coefficients have infinite 

precision and hence quantization is needed for a practical VLSI implementation. A simple 

way of quantization is to round the coefficients to a desired wordlength. However, from the 

implementation point of view, the hardware/power cost of the VLSI realization cannot be 

controlled by simple rounding. We propose the algorithm EQUGAM which is an extension 

to SPTGAM for finding equalizer coefficients with fewer non-zero digits in the 

coefficients. EQUGAM differs from SPTGAM in that MSE is the design constraint. 

Hence, the optimization problems to be solved are different. Moreover, filters designed by 

EQUGAM are not constrained to have linear phase. EQUGAM uses the MSE of the 

rounded MMSE coefficients as an upper bound to the MSE. Hence the resulting equalizers 

do not face performance degradation.  

 

This chapter is organized as follows. First, the signal models of the channel and 

equalizer are given. The optimization problem is defined next. Then the proposed 

algorithm for solving the optimization problem is presented. Next, design examples are 

given comparing the proposed algorithm to simple rounding and this chapter is finished 

with concluding remarks.  

 

5.1. Signal Model 

 

A communication system with a linear discrete-time channel is shown in Figure 5.1. 
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The output is  
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where xk is the data to be transmitted over the channel, hk is the channel impulse response 

with length M, and nk is white Gaussian noise with power spectral density σ2. The N-tap 

linear equalizer in Figure 5.1 is described by the vector w = [w0 w1 ··· wN−1]
T. The equalizer 

output at time k is  

 

 zk = wTyk (5.2) 

  

where the channel output vector yk = [yk yk−1 … yk−N+1]
T is given by 

 

 yk = Hxk + nk (5.3) 

 

where xk = [xk xk−1 ··· xk−M−N+1]
T is a vector of channel inputs, nk = [nk nk−1 ··· nk−M+1]

T is a 

vector of noise samples, and H is the N×(M+N−1) channel convolution matrix 
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Figure 5.1. A communication system with an FIR filter equalizer 
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The delay of the channel and equalizer system can be defined to be D=(M+N−1)/2 

so that the reciever output zk is an approximation to the input sample xk−D. Then, the 

equalizer coefficient vector w can be computed using the MSE criterion J=E[(zk−xk−D)2]. 

The MSE can be written in terms of the equalizer coefficients as  

 

 J = wTRw − pTw − wTp + 1 (5.5) 

 

where R = HHT + σ2I, and p is the (D+1)th column of H. The optimum coefficient vector 

is 

 

 wMMSE = R−1p (5.6) 

 

which provides the MMSE as 

 

 JMMSE = 1 − pTR−1p. (5.7) 

  

5.2. Problem Formulation 

 

The coefficients w = [w0 w1 ··· wN−1]
T  of an N-tap equalizer can be written in B-bit 

canonic signed digit (CSD) representation as: 

 

 wi = qTbi (5.8) 

 

where q = [202−1···2−B+1]T is the B-bit quantization vector and  bi = [bi,0 bi,1 ··· bi,B−1]
T is the 

B-bit CSD expansion of coefficient wi where bi,j∈{-1,0,1} and bi,j + bi,j+1 ≤ 1 for 

j=0,…,B−2. Note that bi,j is the j’th bit and j=0 corresponds to the most significant bit of 

coefficient wi. The non-zero digits bi,j∈{-1,1} are also referred to as signed power of two 

(SPT) terms in the literature.  

 

Using (5.8), the total number of SPT terms (or equivalently the non-zero bits) in 

coefficient wi is obtained by computing bi
Tbi. If the equalizer length is N, the total number 

of SPT terms in the coefficients is obtained by computing bTb where b is the merged CSD 

expansion vectors of all the coefficients such that 
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The coefficients that give the MMSE have infinite precision and are unique. To be 

able to make a search for coefficient vector with fewer SPT terms we need to have a 

feasible search space to exist. Then the coefficient vector w should satisfy  

 

 wTRw − pTw − wTp + 1 ≤ Jmax. (5.10) 

 

Obviously, for a feasible search space to exist Jmax ≥ JMMSE. For the case Jmax = JMMSE the 

coefficient vector w is unique and w = wMMSE.  

 

Since quantization is inevitable and the MSE value of the quantized coefficients will 

always be greater than MMSE, a feasible choice is to set the upper bound Jmax to the MSE 

value of that can be obtained by rounding the MMSE coefficients to the desired 

wordlength. Then, denoting the vector of MMSE coefficents quantized to B-bit by wB, the 

MSE of B-bit rounded coefficients can be found using (5.5) as 

 

 JB = wB
TRw − pTwB − wB

Tp + 1. (5.11) 

 

By setting Jmax = JB it is guaranteed that the search results in a coefficient vector with an 

MSE either equal or better than the B-bit rounded  MMSE coefficient vector. 

 

Now, to minimize the total number of SPT terms in the coefficients of an equalizer 

for which the maximum allowed MSE is Jmax, the problem can be formulated as 

 

Minimize bTb 

 

Such that 

 bTQRQTb − pTQTb − bTQp + 1 ≤ Jmax (5.12) 
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where Q is the quantization matrix defined as 
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from which the coefficient vector w can be obtained by w = QTb. 

 

5.3. The EQUGAM Algorithm 

 

There are N*B number of variables to be solved in the formulation of (5.12). 

Moreover, it is a combinatorial optimization problem with a quadratic objective function 

and quadratic constraints. Instead of using this complex formulation, we translate the 

problem to an optimization problem which has a linear objective function with a single 

quadratic constraint. It requires only N variables to be determined. Furthermore, our 

formulation has a closed form solution that only requires matrix inversion with a maximum 

size of N×N.  

 

Given the equalizer length N, quantization wordlength B, and the desired mean 

square error bound Jmax, the search should end up with a coefficient vector w=[w0 w1 ··· 

wN−1]
T  with fewer SPT terms satisfying (5.10). Unlike the MMSE coeffcients, there may 

be more than one coefficient vector. Hence, the value of each coefficient is not unique, but 

falls in a range, i.e. they have lower and upper bounds. Let wi,min and wi,max denote the 

lower and upper bounds for coefficient wi. The boundary values can be found by 

independently solving the following pair of optimization problems for each coefficient wi, 

i=0,1,…,N-1 

 

 wi,min = minimum wi 

such that 

 wTRw − pTw − wTp + 1 ≤ Jmax (5.13) 

 

and 
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 wi,max = maximum wi 

such that 

 wTRw − pTw − wTp + 1 ≤ Jmax (5.14) 

 

for which the Lagrange multiplier based solutions are given in Appendix A. Note that wi,min 

and wi,max are real values and wi belongs to the range wi ∈ [wi,min,wi,max]. Due to the finite 

wordlength constraint wi is a number that appears in this range and must be represented 

with B bits. As a result, all possible digital values for wi form a finite set. Hence, let Vi be 

such a digital value set of wi then.  
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A filter can be composed by setting the coefficients to the values selected from their 

feasible value sets i

N

i V
1

0
−

=U . The selected coefficients must satisfy (5.10).  

 

Given the desired mean square error bound Jmax, the EQUGAM algorithm, shown in 

Figure 5.2, iteratively finds the coefficient vector w satisfying (5.10). The algorithm is 

based on the SPTGAM algorithm The basic difference is the optimization problems solved 

to compute the boundary values of the coefficients. EQUGAM finds the refined boundary 

values (ws
i,min , w

s
i,max) by solving the following problems 

 

 w
s
i,min = minimum wi 

Such that 

 wTRw−pTw−wTp+1 ≤ Jmax (5.16) 

 

 w
s
i,max = maximum wi 

Such that 

 wTRw−pTw−wTp+1 ≤ Jmax (5.17) 

 

where w=[w0 w1 ··· wk ··· wN−1]
T  and 
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The Lagrange multiplier based solutions of (5.16) and (5.17) are given in Appendix 

A. It should be noted that these equations are different from (5.13) and (5.14) so as to 

refine the search space for the i’th coefficient after fixing the first i−1 coefficients. Fixing 

the values of i−1 coefficients moves the boundary values of the i’th coefficient (wi,min, 

wi,max) towards each other (ws
i,min ≥ wi,min, w

s
i,max ≤ wi,max) and the number of possible 

values for this coefficient will be reduced. Hence, the refined value set Vi
s is a subset of the 

value set Vi 

 

 Vi
s
 = {∀ v ∈Vi  w

s
i,min ≤ v ≤ w

s
i,max }. 

 

EQUGAM(N , L, Jmax, i

N

i V
1

0
−

=U ) 

 W = ∅; 
 Omax = ∞; 
 Obtain w

s
0,min and w

s
0,max by  solving problems (5.16) and (5.17); 

 V0
s = EQU_VALUE_SELECT(L, ws

0,min , w
s
0,max , Vi); 

 i = 0; 
 WHILE ( i ≥ 0 )  
  IF ( Vi

s ≠ ∅)  
   wi = v* such that v* is the first element of ordered set Vi

s; 
   W = W  ∪ {wi}; 
   Vi

s
 = Vi

s − {v
*}; 

   IF (OW* ≤ Omax)  
    IF (i < N − 1)  
     i = i + 1; 
     Obtain ws

i,min and w
s
i,max by solving problems (5.16) and (5.17) 

      Vi
s =EQU_VALUE_SELECT(L, ws

i,min , w
s
i,max , Vi)  

    ELSE-IF (JW ≤ Jmax) /*  solution is feasible */ 
     W is a solution; 
     Omax = OW ; 
    END-IF 
  ELSE 
   W = W − {wi}; 
   i = i − 1; 
  END-IF 
 END 

 

Figure 5.2. The EQUGAM algorithm 
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The refined value set is an ordered set generated by the VALUE_SELECT algorithm 

in Figure 5.3. The elements in the refined values set Vi
s are ordered according to their 

closeness to the average of the refined boundary values (ws
i,mid). After a value v

* of the 

refined value set is assigned to wi, it is removed from the value set and moved to the 

solution set W, which is an ordered set. The first element in W corresponds to w0 and the 

last element in W corresponds to wN−1. 

 

The EQUGAM algorithm uses a cutoff mechanism to avoid unnecessary search. The 

cutoff mechanism decides whether to branch further or not depending on the guess of 

branching cost, i.e. the predicted number of SPT terms (OW*) at its current position in the 

search tree. That is, if there can not be a better solution than the current solution, i.e. OW* ≤ 

Omax , it will not branch further, hence the tree is cut-off.  

 

5.4. Experimental Results 

 

In this section, we show the effectiveness of our algorithm in designing MSE 

equalizers. For all the examples the refined value set size L = 2. The SPT term prediction 

startegy is U_SUBAVG.  

 

A total number of 32 randomly generated channels are used to compare the 

EQUGAM algorithm to simple rounding. The channels are characterized by an impulse 

response consisting of 11 coefficients. The BER vs Eb/N0 performance of the length 31 

MMSE equalizers for the randomly generated channels is shown in Figure 5.4. The plot is 

generated using data packets of size 1000 and a total packet count of 4000. The data is 

binary having values of {-1,1}. As can be seen from the figure the channels are not all 

good or all severe but distributed from severe to good.  

EQU_VALUE_SELECT(L, ws
i,min , w

s
i,max , Vi)  

 Vi
s
 = {∀ v ∈Vi  w

s
i,min ≤ v ≤ w

s
i,max }; 

 w
s
i,mid = (ws

i,min + w
s
i,max)/2; 

 Order Vi
s
 =(v1,v2,…,vL) such that 

     |v1−w
s
i,mid|<|v2−w

s
i,mid|<···<|vL−w

s
i,mid| ; 

 RETURN Vi
s; 

 

Figure 5.3. The VALUE_SELECT algorithm of EQUGAM 
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The performance of the EQUGAM algorithm is compared to rounded MMSE 

coefficients. Equalizers with lengths ranging from 11 to 51 with an interval of 5 are 

designed for Eb/N0 levels of 10 dB, 15 dB, and 20 dB. The comparison is made for 

wordlengths of B=6, B=7, and B=8 bits. For the B-bit GAM filters, the upper bound of the 

MSE (Jmax) is set to the MSE value of the B-bit rounded MMSE filters. 

 

The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers is shown in Figure 5.5, Figure 5.6, and 

Figure 5.7. EQUGAM filters may have upto 18% fewer SPT terms than the rounded 

MMSE coefficients. Moreover, they have either smaller or equal MSE. The same results 

are plotted in Figure 5.8, Figure 5.9, and Figure 5.10 groupped according to the 

quantization wordlength B=6, B=7, and B=8 respectively. 

 

 

Figure 5.4. BER vs Eb/N0 performance of the length 31 MMSE equalizers for 32 randomly 

generated channels 
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Figure 5.5. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: Eb/N0 = 10 dB 

 

Figure 5.6. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: Eb/N0 = 15 dB 
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Figure 5.7. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: Eb/N0 = 20 dB 

 

Figure 5.8. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: wordlength B = 6 bits 
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Figure 5.9. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: wordlength B = 7 bits 

 

Figure 5.10. The average percentage gain in the number of SPT terms for the EQUGAM 

equalizers over the rounded MMSE equalizers: wordlength B = 8 bits 
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5.5. Summary 

 

An algorithm for designing low power/hardware cost equalizing FIR filters was 

presented. The algorithm optimizes SPT terms in the coefficients given the maximum 

mean square error. Although the worst case run time of the algorithm is exponential, its 

capability to find appreciably good solutions in a reasonable amount of time makes it a 

desirable CAD tool for designing low power/hardware constant coefficient equalizers. The 

effectiveness of the algorithm is shown on different examples. The filters found by the 

proposed algorithm have upto 18% less SPT terms then obtained by rounded MMSE 

filters. With a slight modificiation the EQUGAM algorithm can also be used to optimize 

MSE given the length of the filter and wordlength of the coefficients. 
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6. CONCLUSION AND FUTURE WORK 

 

 

In this thesis, the GAM algorithm for the design of low-power linear-phase FIR 

filters is developed. GAM is a discrete coefficient FIR filter design algorithm. Depending 

on the choice of implementation, GAM optimizes filter coefficients for low power. For 

parallel implementation of constant coefficient filters, the number of nonzero digits in the 

coefficients is minimized. For sequential realization of variable coefficient filters, the 

switching activity between coefficients is minimized. Although the worst case run time of 

the algorithm is exponential, its capability to find a solution in a reasonable amount of time 

makes it a desirable CAD tool for designing discrete coefficient  linear-phase FIR filters. 

The effectiveness of the algorithm is more apparent on high-order filters when compared to 

other methods proposed in the literature.  

 

The performance of the GAM algorithm strictly depends on the cost prediction 

mechanism. Choosing the lower integer bound of the average cost of the values in the 

feasible value set of a coefficient, namely U_SUB_AVG, seems to be best solution from 

the search time/optimality trade-off. However, this can be improved by developing other 

cost prediction strategies which is left as a future work. 

 

An important issue in filter design is to keep the quantization wordlength of the 

coefficients as small as possible. In this context, an empiric formula for the lower bound of 

the quantization wordlength of a linear-phase FIR is developed. It is obtained by designing 

several filters using the proposed filter design algorithm. As opposed to other formulae 

proposed in the literature it can directly be calculated from the frequency response 

characteristics independent of the filter length. In its present form, the formula takes three 

different forms depending on the width of the transition band. Hence, there is a need for 

unification which is left as a future work.  

 

As an example for power optimization in FIR based systems the EQUGAM 

algorithm is developed for designing equalizing FIR filters.The algorithm is a modified 

version of the GAM algorithm which optimizes nonzero digits in the coefficients given the 

maximum mean square error. As opposed to the linear-phase FIR filter design algorithm 
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GAM, linear programming could not be used due to the quadratic nature of the problem. 

Instead, a closed form solution is developed by using Lagrange multipliers. The 

effectiveness of the algorithm is shown on different examples. In its present form 

EQUGAM can be used for non-adaptive equalizers. However, where the variation in the 

characteristics of the channel is large, adaptive equalizers are to be used. Hence, methods 

for applying our algorithm for adaptive equalizers stays as an open area for future study.  
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APPENDIX A:  PROBLEM SOLUTIONS 

 

 

A.1.  Solutions to the Optimization Problems of (5.16) and (5.17) 

 

Minimize/maximize  wi  

 

Such that 

 wTRw − pTw − wTp + 1 ≤ Jmax 

 

where w = [w0 w1 ··· wk ··· wN−1]
T and 

 



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fixed
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The coefficient vector can be partitioned as: 
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where wa = [w0 w1 ··· wi−1]
T  represents the coefficients whose value is fixed, wi is the 

(i+1)’th coefficient in w for which the refined boundary values (ws
i,min,w

s
i,max) are to be 

found, and wd = [wi wi+1 ··· wM−1]
T  the coefficients that are currently free. Accordingly R 

and p can be partitioned as follows 
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The problem can be solved using Lagrange multiplier relaxation. First, the inequality 

constraint is converted to an equality constraint by adding a dummy variable z. Then the 

problem turns out to be 

 

Minimize/maximize  wi  

 

Such that 

 

 wTRw − pTw − wTp + 1 − Jmax + z2 = 0 

 

for which we can write the lagrangian L as follows 

 

 L(w,λ,z) = wi ± λ (wTRw − pTw − wTp + 1 − Jmax + z2) (A.4) 

 

The sign ± is used intentionally to indicate wheter the problem is a minimization (+) or 

maximization (−) problem.  

 

The variables in w are wi and wd and then from Kuhn-Tucker conditions [52] 

 

 0=
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=
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=
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Differentiating L by wi yields 
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Then, differentiating by z and using λ ≠ 0 yields 
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Differentiating L by wd  
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and again using λ ≠ 0 
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which yields 
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Finally, differentiation by λ yields 
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Since z = 0 and using (A.1), (A.2), and (A.3) for w, R, and p respectively we get  
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Doing the matrix multiplication and after re-grouping the products we get 
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Using (A.8) and doing some simplification we end up with 

 

 Awi
2 + 2Bwi + C = 0 (A.11) 

 

where 
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If the roots of this equation are real then the minimum and maximum values of wi are  

 

 w
s
i,min = min{ ( ) AACBB −±− 2 } (A.13) 

 w
s
i,max = max{ ( ) AACBB −±− 2 } (A.14) 

 

otherwise wi has no solution. 

 

A.2.  Solutions to the Optimization Problems of (5.13) and (5.14) 

 

Minimize/maximize  wi  

 

Such that 

 max1 J
TTT ≤+−− pwwpRww  

 

where w = [w0 w1 ··· wk ··· wN−1]
T and wk : free for k = 0,1,…,N−1.  

 

Let wi be the vector consisting of the coefficients of w excluding wi. Thus 

 

 wi = [w0 w1 ··· wi−1 wi+1 ··· wN−1]
T. (A.15) 

 

Let ci be the (i+1)’th column of R. Using the partitioning in (A.2) 
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 
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Similarly, let Ri be the matrix consisting of the elements of R excluding the (i+1)’th 

column and rows, and pi be the vector of elements of p excluding the (i+1)’th element. 

Thus, using the partitioning in (A.2) and (A.3) 
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Using the same Lagrange multiplier relaxation methodology of section A.1 we end 

up with  

 

 wi,min = min{ ( ) AACBB −±− 2 } (A.18) 

 wi,max = max{ ( ) AACBB −±− 2 } (A.19) 

 

where  
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The values ri and pi in (A.20) are the elements of matrix R and vector p as denoted in (A.2) 

and (A.3) respectively. 
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APPENDIX B:  USER MANUAL 

 

 

B.1. FRQ 

 

The program FRQ generates a text file containing the frequency response 

characteristics of the filter.  The synopsis of the program is 

 

FRQ "[fm1 fx1 fs1 hm1 hx1; fm2 fx2 fs2 hm2 hx2; ... ]" > ide.frq 

 

where  

 

   fm1 : cutin  frequency  

   fx1 : cutout frequency 

   fs1 : frequency step (frequency grid stepsize) 

   hm1 : minimum amplitude 

   hx1 : maximum amplitude 

 

are the frequency response specifications of the first band. You can enter as many band 

specifications as you want. You should place a semi-colon after each band specification 

except the last. The band specifications fm1 and fx1 should have frequency values 

normalized to one. That is the minimum frequency value can be 0 and the maximum 

frequency value can be 1. Figure B.1 shows an example filter for having two bands. If the 

output is not directed to a file (here ide.frq) it is written to the screen. The output filename 

extension should always be “.frq”. An example run of FRQ for a filter named m3  

 

FRQ "[0 0.36 0.001 0.9826 1.0174; 0.5 1 0.001 -0.001 0.001]" > m3.frq 

 

B.2. HMX 

 

The program HMX is used to determine the boundary values of the coefficients 

given the filter length N, quantization wordlength B, and the frequency response 

characteristics in a file named “ide.frq”. hmx is run from the command line as follows 
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HMX [ide] [N] [B]  

 

where the arguments are defined as follows: 

 

ide : name of the filter 

N  : number of taps 

B : wordlength  

 

HMX looks for the frequency response characteristics file ide.frq. It should reside in the 

same directory where HMX is invoked. Otherwise the program will exit with an error. 

 

The program generates an output text file named “ide_nN.hmx” in which the 

minimum and maximum values of the filter coefficients are written. An example output 

file is shown in Figure B.2. Lines beginning with an asterisk (*) are comment lines. Due to 

symmetry, only half of the coefficients’ boundary values are written. The first column is 

the coefficient index (i in h[i]). The second is the minimum value of the coefficient 

(hmin[i]) written in B-bit two’s complement format. Similarly, the third is the maximum 

value of the coefficient (hmax[i]) written in B-bit two’s complement format. There are more 

than three columns in the actual output file which are only used for debugging purposes. 

They are not shown in Figure B.2.  

 

Figure B.1. Frequency band specifications as they are entered to the program FRQ 
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An example invocation of HMX from the command line for a filter named “m3” is as 

follows  

 

HMX m3 41 12 

 

which generates the output file “m3_n41.hmx”. 

 

B.3. GAM 

 

This is the implementation of the GAM algorithm. It is a bundle which can solve 5 

different linear-phase FIR optimization problems. The synopsis of the program is as 

follows: 

 

GAM [ide] [N] [B] [P] [O] [L] [S] 

 

ide : name of the filter  

N : number of taps 

******************** 
*                    
*  N = 41 
*  B = 16 
*                    
******************** 
*                    
0 1111111110100111 0000000000100110 
1 1111111100111110 0000000000100001 
2 1111111100101011 0000000000010111 
3 1111111101110110 0000000001111111 
4 0000000000100100 0000000100101000 
5 0000000000010110 0000000100101001 
6 1111111011000000 1111111111111000 
7 1111111000101111 1111111100100001 
8 1111111101001100 0000000011000100 
9 0000000110000111 0000001010001000 
10 0000000010010100 0000001000011010 
11 1111110011111111 1111111010000101 
12 1111110000000111 1111110100110100 
13 0000000001000000 0000001000110110 
14 0000010101001100 0000011000101111 
15 0000000011101011 0000001100000010 
16 1111011100011100 1111100001111101 
17 1111010111011011 1111011110000100 
18 0000100011100100 0000101100000010 
19 0010011010100100 0010011111011101 
20 0011010000110010 0011011010110010 

 

Figure B.2.  An example output file generated by HMX 
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B : wordlength  

P : maximum SPT count per coefficient (used only for the optimization problem S 

= 0) 

O : upper bound for the cost (If you don’t need it give it high number) 

L : refined value set size 

S : type of optimization you want to do. It can be a number between 0 and 4. 

 0 : minimize the number of SPT terms in CSD notation 

 1 : minimize the number of ones in 2’s complement notation 

 2 : minimize the number of ones in sign-magnitude notation 

 3 : minimize switching activity between adjacent coefficients in 2’s 

complement notation 

 4 : minimize switching activity between adjacent coefficients in sign-

magnitude notation 

 

The program requires two files. The names of the files are not explicitly entered but 

derived from the arguments. These files are the frequency response specification file 

(ide.frq) generated by the program FRQ and the boundary value specification file 

(ide_nN.hmx) generated by the program HMX. The program will prompt an error message 

and exit in case the files cannot be found.  

 

The program generates three output files for each solution found, namely 

“ide_nNbBc#_g#.log”, “ide_nNbBc#_g#.m”, and “ide_nNbBc#_g#.dat” where ide, N, and 

B are the input arguments described above. The number after ‘c’ in the file names is the 

cost of the solution (depends on the type of optimization chosen, for example if we have 

chosen to optimize the nonzero digits in CSD notation (S=0) it would be the total number 

of nonzero digits in the coefficients). Similarly, the number after ‘g’ is the solution index. 

The file with the extension “.m” is a MATLAB m-file consisting of the coefficient array in 

MATLAB format. The file with the extension “.dat” can be used as an input file to the sub-

expression elimination program.  

 

An example run of the program for a filter named “m3” with the parameters N=41, 

B=12, P=203, O=10000, L=2, and S=3 is 
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GAM m3 41 12 203 10000 2 3 

 

B.4. CSE 

 

This is the implementation of the sub-expression elimination algorithm of [8]. It is 

invoked from the command line as 

 

CSE < coefficient.dat > filter_netlist.txt 

 

where “coefficients.dat” is the input file consisting of the coefficients in CSD notation, and 

“filter_netlist.txt” file is the output file generated by the program consisting of a the netlist 

of the filter. An example “coefficients.dat” file is shown in Figure B.3. The first line in the 

file indicates the number of coefficients. The coefficient wordlength is written in the 

second line. The following lines consist of the coefficient values written in CSD notation. 

The letter N in the values corresponds to −1. 

Tapno= 45 
Wordlength= 12 
000000000N0N 
00000000N000 
00000000N00N 
00000000N000 
000000000N01 
000000000100 
0000000100N0 
00000010N0N0 
00000010N010 
000000010100 
000000001000 
0000000N0010 
000000N0N001 
00000N001000 
00000N000001 
00000N01000N 
00000000N0N0 
0000010N0100 
000010000010 
00010N010100 
000100100N00 
000101010000 
0010N0N00000 
000101010000 
000100100N00 
00010N010100 
000010000010 
0000010N0100 
     . 
     . 
     . 

 

Figure B.3. An example “.dat” file consisting of the filter coefficients in CSD notation 
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There are five different nodes in the output filter netlist file, namely the input, adders, 

tap adders, delay elements, and the output. The nodes are also listed in Table B.1 with an 

example for each. An example filter netlist file generated by CSE is shown in Figure B.4.  

 

 

 

Table B.1. Type of nodes in the filter netlist file 

Node abbreviation Node Example 

in : input in 

a : adder a2 

t : tap adder t3 

d : delay element (register) d5 

o : output o41 

 

 
*Solving the model iteratively for the suboptimal solution... 
*adders:6 
 
a2 =  (in << 0) - (in << 2) 
a3 =  (in << 0) + (in << 2) 
a4 =  (in << 0) - (in << 3) 
a5 =  (in << 0) + (in << 6) 
a7 =  (in << 0) + (in << 3) 
a8 =  (in << 0) + (a2 << 2) 
 
d0 =     - (a3 << 0) 
t1 =  d0 - (in << 3) 
d1 =  t1 
t2 =  d1 - (a7 << 0) 
d2 =  t2 
t3 =  d2 - (in << 3) 
d3 =  t3 
t4 =  d3 + (a2 << 0) 
d4 =  t4 
t5 =  d4 + (in << 2) 
d5 =  t5 
t6 =  d5 - (a4 << 1) 
      . 
      . 
      . 
d42 =  t42 
t43 =  d42 - (in << 3) 
d43 =  t43 
t44 =  d43 - (a3 << 0) 
o44 =  t44 
 

Figure B.4. An example filter netlist file generated by CSE 
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B.5. VHD 

 

The program VHD generates a VHDL netlist from the filter netlist file generated by 

the program CSE. The synopsis of the program is as follows 

 

VHD [filename] [input wordlength] 

 

where the filename is the name of the file containing the filter netlist. It should have an 

extension of “.txt”. That is the netlist file name should be “filename.txt”. The input 

wordlength is the number of input bits of the filter. The program generates an output file 

named “filename.vhd” with its subcomponents containing the VHDL descriptions of the 

adders, subtractors, and registers used in the filter. An example run of VHD from the 

command line for a filter with eight bit input wordlength is as follows 

 

VHD m3_n41b12c52_g2 8 

 

which generates the output file “m3_n41b12c52_g2.vhd”. 

 

B.6. EQUGAM 

 

The EQUGAM algorithm is implemented in MATLAB under the name equ_gam. 

The synopsis of the program is shown in Figure B.5. The program requires at least five 

arguments which are a unique identifier of the problem prbname, the channel coefficient 

vector h, signal-to-noise ratio in decibels SNR, the equalizer length M, and the coefficient 

wordlength B. The rest of the arguments are optional. The first optional argument is jmax. 

It refers to the maximum MSE value of the coefficients to be found. If omitted it defaults 

to the MSE value of the B-bit rounded MMSE coefficients for the given SNR and equalizer 

length M. The second optional argument is the maximum number of SPT terms allowed for 

each coefficient which is denoted as P. If omitted P is taken to be equal to B. The third 

optional argument is O which corresponds to the maximum total number of SPT terms int 

the coefficients. The next three optional arguments L, SPTPredict and ValueOrder 

determine the refined value set size, cost prediction strategy, and value selection strategies 

respectively.  
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The program generates three output files for each solution found, namely 

 

prbname_sSNRnMbBc#_g#.log 

prbname_sSNRnMbBc#_g#.m 

prbname_sSNRnMbBc#_g#.dat 

 

where prbname, M, and B are the input arguments described above. The number after ‘c’ in 

the file names is the cost of the solution (the total number of SPT terms in the coefficients). 

Similarly, the number after ‘g’ is the solution index. The file with the extension “.m” is a 

MATLAB m-file consisting of the coefficient array in MATLAB format. The file with the 

extension “.dat” can be used as an input file to the sub-expression elimination program 

CSE. 

 

function [wgam] = equ_gam(prbname, h, SNR, M, B, varargin) 
% 
% 
% [wgam] = equ_gam(prbname, h, SNR, M, B, varargin) 
% 
% 
% wgam : optimum equalizer coefficient vector 
% 
%%%%%%%% 
% 
% prbname : a unique identifier for the problem 
% 
% SNR  : signal-to-noise ratio in dB 
% h : channel coefficient vector 
% M : Number of equalizer coefficients 
% B : coefficient wordlength 
% 
% 
% varargin : (1) jmax, (2) P, (3) L, (4) O, (5) SPTPredict, 
%            (6) ValueOrder 
% 
% jmax : maximum error % default = the MSE of B-bit rounded MMSE 
%        coefficients 
%    P : maximum number of SPT terms allowed in CSD representation 
%        of a coefficient % default = B 
%    L : refined value set size % default = 2 
%    O : maximum number of SPT terms 
% 
% SPTPredict = 0 : U_MIN 
%            = 1 : U_MID % rounded to (B-1) bits % default = 1 
%            = 2 : U_SUB_AVG 
%            = 3+: U_AVG 
% 
% ValueOrder = 0 : order values by their SPTcount  
%            = 1 : order values by their closeness to mid value 
%          default = 1 
 

Figure B.5. Synopsis of the MATLAB function equ_gam 
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An example run of the algorithm from the MATLAB command window is as follows 

 

equ_gam(‘PROAKIS_B’, [0.407 0.815 0.407]', 20, 11, 8) 

 

where signal-to-noise ratio SNR = 20 dB, equalizer length M = 11, and coefficient 

wordlength B = 8. 
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