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ABSTRACT 

 

 

CROSS-LINGUAL VOICE CONVERSION 

 

 

Cross-lingual voice conversion refers to the automatic transformation of a 

source speaker’s voice to a target speaker’s voice in a language that the target speaker 

can not speak. It involves a set of statistical analysis, pattern recognition, machine 

learning, and signal processing techniques. This study focuses on the problems related 

to cross-lingual voice conversion by discussing open research questions, presenting 

new methods, and performing comparisons with the state-of-the-art techniques. In the 

training stage, a Phonetic Hidden Markov Model based automatic segmentation and 

alignment method is developed for cross- lingual applications which support text-

independent and text-dependent modes. Vocal tract transformation function is 

estimated using weighted speech frame mapping in more detail. Adjusting the weights, 

similarity to target voice and output quality can be balanced depending on the 

requirements of the cross- lingual voice conversion application. A context-matching 

algorithm is developed to reduce the one-to-many mapping problems and enable non-

parallel training. Another set of improvements are proposed for prosody transformation 

including stylistic modeling and transformation of pitch and the speaking rate. A high 

quality cross- lingual voice conversion database is designed for the evaluation of the 

proposed methods. The database consists of recordings from bilingual speakers of 

American English and Turkish. It is employed in objective and subjective evaluations, 

and in case studies for testing new ideas in cross- lingual voice conversion. 
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ÖZET 

 

 

DILLER ARASINDA KONUSMACI DÖNÜSTÜRME 

 

 

Diller arasinda konusmaci dönüstürmede amaç bir kisinin sesinin hedeflenen bir 

baska kisinin sesine, hedef konusmacinin konusamadigi bir dilde otomatik olarak 

dönüstürülmesidir. Dönüsüm için çesitli istatistiksel analiz, örüntü tanima, makine 

ögrenmesi ve sinyal isleme teknikleri kullanilmaktadir. Bu çalisma, diller arasinda 

konusmaci dönüstürme konusuna özel problemlere odaklanarak henüz çözülmemis 

arastirma konularinin belirlenmesini, yeni yöntemlerin gelistirilmesini ve halen 

kullanilan konusmaci dönüstürme yöntemleriyle karsilastirilmasini amaçlamaktadir. 

Egitim asamasinda diller arasinda dönüsüm için Fonetik Sakli Markov Modelleri’ne 

dayali, metinden bagimsiz ve metine bagimli çalisabilen bir otomatik bölütleme ve 

hizalama yöntemi gelistirilmistir. Agirlikli konusma çerçevelerine dayali esleme ile  

girtlak dönüsüm fonksiyonu detayli olarak kestirilmektedir. Agirliklarin ayarlanmasiyla 

girtlak dönüsüm islevindeki ani degisiklikler azaltilarak daha dogal çikti elde 

edilebilmektedir. Bire karsi çoklu eslestirme sorunlarinin azaltilmasini ve içerikleri 

farkli kaynak ve hedef egitim veri tabanlarinin kullanilabilmesini saglayan bir baglam 

kullanan eslestirme yöntemi gelistirilmistir. Gelistirilen diger yeni yöntemler bürünsel 

dönüsümde hedef sese benzerligin kalitede belirgin azalma olmayacak sekilde 

arttirilmasini amaçlamaktadir. Bu yöntemler ses perdesi egrisindeki hareketlerin ve 

konusma hizinin hedef konusmacinin tarzina uygun sekilde dönüstürülmesini 

kapsamaktadir. Gelistirilen yöntemlerin denenmesi için yüksek kaliteli bir diller 

arasinda konusmaci dönüstürme veri tabani tasarlanmistir. Veri tabani Amerikan 

aksanli Ingilizce ve Türkçe konusabilen kisilerden toplanmis, nesnel ve öznel 

deneylerde kullanilmistir. 
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1. INTRODUCTION 

 

1.1. Definitions  

 

The aim of voice conversion is to transform a source speaker’s voice 

characteristics using signal processing techniques such that the output is identified as 

the voice of a target speaker. It employs two common stages in general: Training and 

transformation. The voice conversion system gathers information from the source and 

target speaker’s voices and automatically formulates voice conversion rules in the 

training stage. For this purpose, training databases from source and target speakers are 

acoustically analyzed and a mapping between the acoustic spaces of the two speakers is 

estimated. The transformation stage employs the mapping obtained in the training stage 

to modify the source voice signal in order to match the characteristics of the target 

voice. The modification is performed using a set of signal processing algorithms that 

modify the vocal tract and the prosody characteristics. 

 

Depending on the languages in which the training and test data are available, 

voice conversion applications can be categorized in two groups. In monolingual voice 

conversion, the language in which the training data is available and the language in 

which the target speaker’s voice will be generated are identical. The training data is 

collected in the common language and target speaker’s voice is generated in that 

language. On the contrary, languages of the training and transformation data are 

different in cross- lingual voice conversion. Cross- lingual voice conversion can be 

further divided into two sub-categories. In the first sub-category, a bilingual source 

speaker is available. The training database is collected in the target speaker’s language 

typically in the form of identical utterances from the source and the target speaker. The 

source speaker records a separate transformation set in the transformation language. 

The training is performed using the source and the target databases in the training 

language and the transformation language material is transformed by mapping the 

transformation data to the training data. Although this type of voice conversion has its 

own problems, it is generally an easier problem when compared to the second category. 
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In the second category, a bilingual source speaker is not available. In this case, the 

training databases are not identical both in terms of content and language. 

 

Formal definitions of important terms related to voice conversion and cross-

lingual voice conversion are as follows: 

 

• Target speaker: The voice of the speaker that the voice conversion algorithm 

is aimed to produce at the output. 

• Source speaker: The speaker whose voice is input to a voice conversion 

algorithm and is modified to obtain an output that would sound like the target 

speaker’s voice. 

• Training language: Language in which the training database is collected. 

• Transformation language: Language of the source speaker’s input 

recordings to be transformed. 

• Monolingual voice conversion: Voice conversion application in which 

training and transformation languages are identical. 

• Cross-lingual voice conversion: Voice conversion application in which 

training and transformation languages are different. 

• Parallel voice conversion: Voice conversion application in which the source 

and the target training material are identical in text content. 

• Non-parallel voice conversion: Voice conversion application in which the 

source and the target training material are not identical in text content. 

 

The following definitions related to the proficiency of speakers in one or more 

languages are taken from http://en.wikipedia.org and will be used in the following 

sections: 

 

• L1: Language acquired during childhood without formal education. 

• L2: Language learnt at a later age. 

• Monolingual speaker: Speaker with communicative skills in only one 

language. 
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• Bilingual speaker: Speaker with communicative skills in two languages. 

• Multilingual speaker: Speaker with communicative skills in more than one 

language. 

• Bilingual competence: Relative proficiency of a bilingual speaker in two 

languages. Linguists distinguished at least three levels of bilingual 

competence including coordinate bilingualism, compound bilingualism, and 

subordinate bilingualism as defined below. 

• Coordinate bilingualism: Bilingualism in which the linguistic elements in 

the speaker’s mind are all related to their own concepts. This type of bilingual 

speaker usually belongs to different cultural communities that do not 

frequently interact (i.e. French-English speaker in Quebec, Canada). The 

pronunciation patterns of the speaker significantly differ in the two languages. 

• Compound bilingualism: Bilingualism in which the corresponding linguistic 

elements in the two languages are mostly attached to the same concept in the 

brain (i.e. fluent L2 speakers and speakers in minority communities). 

• Subordinate bilingualism: Bilingualism in which the linguistic elements of 

one of the languages are only available through the elements of the other 

language (i.e. beginning level L2 learners). 

• Prosody: Intonation, rhythm, and vocal stress in speech. 

• Pronunciation: The way a word or a language is usually spoken or the 

manner in which someone utters a word. 

• Accent: A method of pronouncing words common to a certain region. It can 

also refer to the stress on a certain syllable. 

 

1.2. Applications  

 

Voice conversion provides an efficient mechanism to analyze, model, store, and 

transform perceived characteristics of speech. It has a number of interesting 

applications in text-to-speech synthesis, voice quality analysis and transformation, 

emotion research, speech recognition, and speaker identification. Applications in 

dubbing, music, computer games, and healthcare industry have also emerged in the 

recent years. Depending on the application, voice conversion techniques can be used 
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for modifying or normalizing speaker identity as well as modifying a set of acoustic 

and prosodic characteristics. 

 

Text-To-Speech Synthesis (TTS) quality has increased by the employment of 

large databases and unit-selection techniques (Hunt and Black, 1996; Dutoit, 1997). As 

voice conversion requires less training data (5-10 minutes of voice recordings), it is 

advantageous to employ voice conversion for creating new TTS voices out of the 

existing ones (Kain and Macon, 1998; Zhang, et. al., 2001). This approach can be used 

in both monolingual and multilingual frameworks with the ultimate goal of generating 

high-quality synthetic speech from any speaker’s voice in any language. 

 

Emotional text-to-speech techniques aim to generate speech in different emotional 

modes such as excited, happy, sad, or angry. The main goal of these techniques is not 

only to generate speech in a given emotional state but also to have control on the 

amount of the emotion to be generated. Voice conversion techniques can serve as a 

useful tool for both goals by transforming a given emotional state into another with 

control on the continuity and amount of modification in a parametric manner. 

 

As defined in Biology-Online.org, voice quality refers to the component of speech 

which gives the primary distinction to a given speaker’s voice when pitch and loudness 

are excluded. Some of the descriptions of voice quality are harshness, breathiness, and 

nasality. In a similar fashion to emotional text-to-speech synthesis, voice conversion 

techniques can be used in voice quality modification in a controlled manner. Primary 

results of applying voice conversion techniques in voice quality control in emotional 

text-to-speech synthesis are discussed in one of the author’s publications where voice 

conversion techniques are employed to interpolate between soft-modal, and modal- loud 

voice qualities (Turk, et. al. 2005). Modification of different acoustic and prosodic 

characteristics is also important for emotion research in which voice conversion 

techniques can be used as a tool to modify the speech signal with least amount of 

processing distortion. A comparison of emotional prosody in a multilingual setting is 

presented in (Burkhardt, et. al., 2006) in which we have applied parametric prosody 

transformation of pitch, duration, and jitter, and performed a listening test to investigate 
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the perception of different emotion related prosodic states in different languages in the 

context of emotional text-to-speech synthesis. The results indicated that parametric 

modification of prosodic parameters can produce part of the intended emotional states 

in text-to-speech synthesis independent of the language. 

 

Robustness to speaker variations is an important issue for speech and speaker 

recognition systems. In speech recognition, voice conversion techniques can be used in 

modifying the speaker identity to match the trained models in a better manner similar to 

speaker adaptation. In speaker recognition, voice conversion can be used to build a 

reliable automatic performance testing tool. It can be employed for simulating attacks 

to the system by transforming the attacker’s voice to one of the speaker’s voice for 

which the system is trained to recognize. 

 

With the development of high-quality voice conversion systems, many other 

applications can be implemented some of which were demonstrated in our previous 

work. We have reported a demonstration for dubbing movies by employing only 

several dubbers, generating the voice of famous actresses/actors in a foreign language 

which they can not speak, and generating the voices of actresses/actors who are not 

alive (Turk and Arslan, 2002, 2003). Other dubbing applications might be to regenerate 

the voices of actresses/actors who have lost their voice characteristics due to old age 

and to perform cross- lingual dubbing for radio broadcasts. 

 

Voice conversion techniques can be used for singing voice transformation, 

singing voice synthesis, and Karaoke applications in the music industry. In our previous 

work, we have applied voice conversion to generate rap singers’ voices who were 

originally American English speakers in Spanish and French. This approach can be 

integrated with singing voice synthesis to synthesize singing voice in different popular 

voices. In (Turajlic, et. al., 2003), the authors applied formant modification techniques 

successfully to Karaoke in which the users voice is modified to match the target voice 

in terms of average spectral characteristics in real-time. Another application field is 

video games in which it is required to generate voices of virtual characters which can 

be achieved by modifying existing voices. This may help voice design become an 
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adaptable part of the game scenario. It will enable the user to create different synthetic 

voices or even participate with her/his own voice in the game.  

 

Accent transformation and accent normalization can be achieved by employing 

cross- lingual voice conversion to modify accent characteristics. For accent 

transformation, it is sufficient to use a source speaker who is native in the 

transformation language. Therefore, it is possible, for example, to make a native 

American English speaker speak Turkish in native Turkish accent. For this purpose, a 

bilingual source speaker who is native in Turkish but can also speak American English 

is required. However, when such a bilingual source speaker is not available, the 

problem gets more difficult. In this case, modeling of prosodic and acoustic 

characteristics in the transformation language from native speakers and applying 

modification to match those characteristics are required which can be achieved by 

cross- lingual voice conversion.  

 

1.3. Literature Review 

 

Voice conversion has been a popular topic in speech processing research for the 

last two decades (Abe, et. al., 1988; Arslan and Talkin, 1997, Arslan, 1999; Moulines 

and Sagisaka, 1995; Stylianou, et. al., 1998). There are two main stages in voice 

conversion: training and transformation. The flowcharts in Figure 1.1 and Figure 1.2 

show the steps involved in both stages and a non-exhaustive listing of common 

methods employed. 

 

The training stage involves three steps in general: Acoustic modeling, 

segmentation and alignment, and acoustic mapping. In the acoustic modeling stage, 

speaker-specific parameters are extracted from the speech waveform. These parameters 

describe the short-term and long-term characteristics of the source and target voices. 

Vocal tract, glottal source (pitch, spectral tilt, open/closed quotient), duration, and 

energy characteristics convey important speaker-specific information (Furui, 1986; Itoh 

and Saito, 1982; Kuwabara and Sagisaka, 1995; Matsumoto, et. al., 1973; Necioglu, et. 

al., 1998). Linear Prediction Coefficients (LPCs) (Makhoul, 1975), Line Spectral 
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Frequencies (LSFs) (Itakura, 1975a), Mel-Frequency Cepstral Coefficients (MFCCs) 

(Davis and Mermelstein, 1980), formant frequencies and bandwidths (Holmes, et. al., 

1990), and Sinusoidal Transform Coding (STC) parameters (McAulay and Quatieri, 

1995) can be used for modeling the vocal tract characteristics. There has been 

considerable amount of work on the analysis, modeling and modification of glottal 

source characteristics in voice quality research (Childers and Lee, 1991; Childers, 1995; 

Fant, et. al., 1985). Pitch is one of the most important speaker-specific dimensions 

among the glottal source characteristics. It can be estimated using the autocorrelation 

function, average magnitude difference function, Fourier Transform, and harmonic 

analysis (Rabiner and Schafer, 1978). Dynamic programming is a popular method 

employed to avoid discontinuities and hence improve the robustness of the pitch 

detection algorithm (Talkin, 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. General flowchart for voice conversion training 
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The second step, alignment, is necessary to determine corresponding units in the 

source and target voices. This is due to the fact that the durations of sound units (i.e. 

phonemes or sub-phonemes) can be quite different among speakers. It is preferable to 

employ automatic alignment techniques like Dynamic Time Warping (DTW) (Itakura, 

1975b), and Hidden Markov Models (HMMs) (Rabiner, 1989) because manual 

alignment is time consuming. 

 

The final training step is the estimation of the acoustic mapping function between 

the source and the target speaker’s acoustic spaces using machine learning techniques 

like vector clustering/quantization (Abe et. al., 1988), codebook mapping (Acero, 

1993), weighted codebook mapping (Arslan and Talkin 1997, Arslan 1999), GMMs 

(Stylianou, et. al., 1998), Radial Basis Function Networks (RBFNs) (Drioli, 1999), 

Artificial Neural Networks (ANNs) (Narendranath,  et. al., 1995), and Self Organizing 

Maps (SOMs) (Knohl and Rinscheid, 1993). The main distinction between the earlier 

methods (Abe et. al., 1988 and Acero, 1993) and more recent methods (Arslan and 

Talkin 1997, Arslan 1999, Stylianou, et. al., 1998) are that smoothing among the 

mapping units is performed to reduce distortion at frame boundaries. Another 

distinction of more recent methods is the employment of text and language independent 

automatic techniques for alignment such as Sentence-HMM and Dynamic Time 

Warping (DTW). 

 

The transformation stage employs acoustic analysis techniques similar to the 

acoustic modeling step in training. Once the parameters of the input waveform are 

determined, voice conversion rules are employed to obtain the corresponding target 

parameters. Necessary modifications are performed on the input waveform to match the 

target speaker characteristics. The modifications include transformation of the vocal 

tract, glottal source, duration, and energy characteristics. The vocal tract characteristics 

can be transformed using formant modification (Mizuno and Abe, 1995), interpolation 

of the line spectral frequencies (Arslan, 1999), and sinusoidal modeling techniques 

(Laroche, et. al., 1993). There exist several methods for pitch modification: Time-

Domain Pitch Synchronous Overlap-Add Algorithm (TD-PSOLA) (Moulines and 

Charpentier, 1990), Frequency-Domain Pitch Synchronous Overlap-Add Algorithm 
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(FD-PSOLA) (Moulines and Verhelst, 1995), sinusoidal synthesis (Quatieri and 

McAulay, 1992), and phase vocoding (Flanagan and Golden, 1966). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. General flowchart for voice conversion transformation 

 

Cross-lingual voice conversion is a fairly new topic for voice conversion research. 

In our previous studies, we have obtained successful results between different 

languages including English, French, German, Hebrew, Italian, Japanese, Russian, 

Spanish, and Turkish. Black and Lenzo discuss the possibility to adapt TTS engines to 

new languages and new voices without recording new databases or recording only a 

minor amount of new training data (Black and Lenzo, 2004). Latorre, et. al. proposed a 

new multilingual TTS technique that combines data from multiple monolingual 

speakers in different languages for creating an average voice (Latorre, et. al., 2005). 

This average voice is then used for synthesis and transformation to any target speaker’s 

voice. Suendermann and Ney proposed a vocal tract length normalization scheme for 
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cross- lingual voice conversion applications (Suendermann and Ney, 2003). In 

(Suendermann and Ney, 2003) and (Duxans and Bonafonte, 2003) the authors focused 

on the development of voice conversion systems that do not require source and target 

speakers speaking identical utterances in the training set. Duxans, et. al., proposed two 

new methods to integrate dynamic and phonetic information in voice conversion and 

showed that including dynamic information does not improve voice conversion 

performance significantly as opposed to including phonetic information (Duxans, et. 

al., 2004). Mashimo, et. al. used GMM-based voice conversion for cross- lingual voice 

conversion and showed that the performance is comparable to the case of monolingual 

voice conversion (Mashimo, et. al., 2001). 

 

Comparison of voice conversion performance for monolingual and cross- lingual 

voice conversion performance is an interesting research question. This question is 

partly addressed in different studies (Abe, et. al., 1990), (Suendermann, et. al., 2004). 

Abe and his colleagues report that voice conversion performance is lower when the 

training and test languages are different (Abe, et. al., 1990). In (Suendermann, et. al., 

2004), it was shown that monolingual voice conversion was rated to be better in terms 

of both similarity to the target voice and quality for both English and Spanish. 

 

1.4. Thesis Outline 

 

This study focuses on the problem of cross- lingual voice conversion. Chapter 2 

points out important problems in cross-lingual voice conversion research. The 

contributions of this study are summarized in correspondence with the common 

problems. In Chapter 3, the proposed cross-lingual voice conversion framework is 

introduced. First, the baseline voice conversion algorithm based on weighted codebook 

mapping is summarized. Then, proposed improvements for cross- lingual voice 

conversion are described. Chapter 4 focuses on the alignment of cross- lingual voice 

conversion databases. Alignment is one of the most important pre-processing steps of 

voice conversion training. A Phonetic-HMM based alignment method is developed and 

tested. The Phonetic-HMM method can handle both parallel and non-parallel training 

data in different languages. In Chapter 5, a detailed vocal tract transformation function 
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estimation procedure is described in order to search for the best matching speech 

frames in the source and the target training databases to estimate the vocal tract 

transformation filter in a robust and controllable manner. A context-matching algorithm 

that is directly linked with the Phonetic-HMM based alignment is developed. Context 

based search is performed using phonetic labels to reduce one-to-many mapping 

problems and to enable using non-parallel training databases. Finally, a statistical 

evaluation of different objective distance measures in the assessment of vocal tract 

transformation performance is performed. Chapter 6 focuses on the problem of prosody 

transformation in cross- lingual voice conversion. Stylistic prosody transformation 

methods are developed and integrated with the conventional prosody transformation 

algorithms to perform more detailed prosody transformation while keeping the 

additional distortion at an acceptable level. Algorithms for stylistic transformation of 

pitch contours and speaking rate are developed. In Chapter 7, the database designed for 

cross- lingual voice conversion research is described. A subjective test is performed to 

determine the dependence of cross- lingual voice conversion performance on source 

speaker proficiency in the training and transformation languages. Then, the 

performance of the proposed cross-lingual voice conversion algorithm is compared 

with the baseline algorithm in another subjective test. Finally, different objective 

measures are compared for the evaluation of vocal tract transformation performance. 

We show that inverse harmonic weighting based LSF distance is an appropriate choice. 

Chapter 8 presents a discussion of the results and the future work. 
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2. PROBLEM STATEMENT AND CONTRIBUTIONS 

 

2.1. Open Problems in Cross-Lingual Voice Conversion Research 

 

Cross-lingual voice conversion share common stages with the monolingual 

counterpart. These stages include the main training and transformation steps as 

discussed in detail in Chapter 3. However, there are significant differences considering 

the content of the training and transformation databases and the language backgrounds 

of the source and the target speakers. As a result of these differences, new methods 

should be carefully designed and evaluated for to improve performance in cross- lingual 

applications. 

 

The performance of voice conversion is generally dependent on the match 

between the source training and transformation recordings. When there are differences 

between the two in terms of recording conditions, prosody, articulation or voice quality, 

the mapping of the source and target training data may be problematic. These problems  

result in the incorrect estimation of the transformation parameters. Although this 

problem is common to monolingual voice conversion, it is likely to be more severe for 

cross- lingual voice conversion. The main reason is the differences between the training 

and transformation languages. These differences are likely to increase the variation in 

prosody and articulation as well as in voice quality. It is also harder to find a good 

match for a given target voice when a bilingual source speaker is needed for cross-

lingual voice conversion. 

 

State-of-the-art vocal tract transformation methods may face excessive smoothing 

and over- fitting problems. A typical example is GMM based voice conversion 

(Meshabi, et. al., 2007). Excessive smoothing reduces similarity to the target voice and 

naturalness of the output. On the contrary, over-fitting may result in abrupt changes in 

the output vocal tract spectrum in successive speech frames resulting in distortion. In 

case of any problems, the training should be repeated by adjusting GMM parameters. 

Depending on the amount of available training data, it might not even be possible to 

estimate the GMM parameters in a robust manner for a sufficiently detailed mapping 
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from the source acoustic space to the target acoustic space. The main advantage of 

weighted codebook mapping based approaches is the possibility of handling these 

problems automatically during transformation by simply adjusting weights and number 

units used in the weighted estimation process. 

 

In cross- lingual voice conversion, the target does not speak the transformation 

language at all. In the case of not having a bilingual source speaker, methods are 

required to map non-parallel training data in a robust and reliable manner. In some 

cases, it is not possible to have direct access to sufficient amount of good quality target 

data. An example is performing voice conversion to generate voices of celebrities. In 

this case, a method is required to estimate the mapping between the source and the 

target acoustic spaces in a robust and reliable manner.  

 

For practical applications, it might be a good idea to select from an available set 

of source speakers to ensure better results. However, it might not be possible to have 

access to sufficient amount of source training material from all source speaker 

candidates to fully train and test a voice conversion algorithm. In this case, a robust and 

reliable method of comparing the performance when different source speakers are used 

is required in an objective manner. There are currently no well-known objective 

measures that relate well with subjective test results. In the case of cross- lingual voice 

conversion, objective or subjective testing could only be applied if the target material is 

available in the transformation language which requires the employment of bilingual 

speakers in tests. This complicates both the testing procedure and finding subjects in 

the transformation language. 

 

The ultimate goal of cross- lingual voice conversion is to provide an algorithm for 

non-speech experts to generate the voice of any target speaker in any language in a fast 

and reliable manner. A flexible cross-lingual voice conversion tool should be integrated 

with a robust cross- lingual voice conversion algorithm that can generate the output with 

minimum amount of manual work. There is generally a trade-off between voice 

conversion quality and similarity to the target speaker’s voice. If the speech signal is 

transformed with abruptly changing filters over time, the output quality might be so low 
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that it can not be used for any practical purposes. However, for some applications 

distortion might be tolerated to increase the similarity to the target voice. For example, 

in singing voice transformations, part of the distortion in the voice conversion output 

becomes inaudible when mixed with music. Therefore, the similarity versus quality 

trade-off should be easily controllable by adjusting a few parameters of the cross-

lingual voice conversion algorithm. 

 

Detailed estimation and transformation of acoustic features is required to get 

sufficiently close to the target speaker’s voice. However, signal processing distortion 

may limit the applicability of severe modifications. For example, increasing or 

decreasing the pitch in a large amount, i.e. doubling it or halving it, usually results in 

distortion. In cross- lingual voice conversion, the variation in prosody is likely to be 

larger. The amount of processing required for pitch transformation increases with 

increased processing distortion at the output.  

 

Another speaker specific prosodic characteristic is the speaking rate. It may 

change significantly in different languages. Modeling and transforming the speaking 

rate might be useful in making the voice conversion output sound closer to the target 

speaker’s voice in cross- lingual applications. 

 

2.2. Contributions  

 

The original contributions of this study can be summarized as follows: 

 

• Robust automatic alignment: An HMM-based robust phonetic aligner is 

integrated in cross-lingual voice conversion to handle both parallel and non-

parallel training database cases. This Phonetic-HMM technique provides 

reliable alignment in cross-lingual voice conversion. It also enables the 

weighted speech frame mapping technique as an alternative to codebook 

mapping in cross-lingual voice conversion to estimate the vocal tract 

transformation function in more detail. 
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• Context matching based algorithm for parallel-data: A context-matching based 

vocal tract transformation function estimation algorithm is developed to 

reduce the one-to-many mapping problems in the source and target training 

databases. It uses context information to distinguish among several target 

candidates for a source phoneme to be converted. This corresponds to 

extracting information on target speaker’s accent and using this information in 

the transformation step. 

• Context matching based algorithm for non-parallel data: The context matching 

based algorithm developed can also be used for estimating the vocal tract 

transformation filter when the source and the target training data are not 

identical in content. 

• Weighted frame mapping: A method is developed for directly matching 

speech frames of the transformation utterance in the training database. This 

method enables detailed estimation of the vocal tract transformation function. 

It has the advantage of avoiding excessive smoothing of the vocal tract 

transfer function which is a typical problem of conventional voice conversion 

methods. In order to reduce discontinuity at the output, weights of the speech 

frames can be adjusted parametrically. The trade-off between detailed 

estimation of the transformation function and continuity can be easily 

balanced in the transformation stage. 

• Stylistic prosody transformation: New methods are developed that enable 

more detailed prosody transformation while keeping the added distortion at 

minimum level. The style of the target speaker is modeled in terms of pitch 

contour movements and speaking rate. The source prosody is transformed 

using a method that reduces additional distortion due to detailed prosody 

modification. The contribution of the new prosody transformation techniques 

is demonstrated in cross- lingual voice conversion examples. 

• Donor selection in cross- lingual voice conversion: Tests are performed for 

investigating the dependence of cross-lingual voice conversion performance 

on the proficiency of the source speakers in the training and transformation 

languages. 
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• Collection of a cross- lingual voice conversion database: A cross- lingual 

database is designed which consists of phonetically balanced training material 

in English and transformation material in Turkish. The database is collected 

from bilingual speakers of American English and Turkish having different 

levels of proficiency in the two languages: native American English and L2 

Turkish speakers, native Turkish and L2 American English speakers, and 

compound bilingual speakers. 

• Evaluation of cross- lingual voice conversion performance: The proposed 

methods are compared with the baseline weighted codebook mapping based 

algorithm in objective and subjective tests. 
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3. CROSS-LINGUAL VOICE CONVERSION 

 

3.1. Introduction 

 

Although part of the monolingual voice conversion techniques can be readily 

applied to cross- lingual voice conversion, cross- lingual voice conversion possesses its 

own problems. The differences between the training and transformation languages as 

well as the increased possibility of having accent differences between the source and 

the target speakers make cross-lingual voice conversion a more difficult task in general.  

 

In order to develop a robust cross- lingual voice conversion system, four main 

components are necessary:  

 

• A robust automatic aligner to segment the source and the target training data 

that possibly have accent differences or even language differences  

• A robust mapping method to find the mapping between the acoustic spaces of 

the source and the target speakers who may have different levels of 

proficiency in the training language 

• A robust transformation function estimator to map the source transformation 

data in one language to source training data in another language 

• A robust acoustic feature transformer capable of generating a speaker’s 

accent, prosody, and style in one language using speech recordings in another 

language 

 

The automatic aligner handles the segmentation of the source and the target 

material as well as matching between the transformation and the training material. In 

the case of cross- lingual voice conversion, both the segmentation and the mapping 

stages are likely to be more problematic. First of all, if an algorithm that requires a 

bilingual source speaker is used, the performance depends significantly on the source 

speaker’s proficiency in the training and transformation languages as we show in 

Chapter 7. If there are significant accent differences between the source and the target 



 

 

35 

speakers, reliable automatic alignment becomes more difficult to achieve. On the other 

hand, if an algorithm that can use a non-parallel voice conversion database in two 

different languages, the problem gets even harder since mapping between the phonemes 

of the two languages would be necessary. 

 

Estimating the mapping between the source and the target acoustic spaces in a 

reliable manner is a harder problem in cross- lingual applications. The first reason is the 

requirement of a bilingual source speaker. Depending on the proficiency of the source 

speaker in the training and test languages, poor mapping estimates between the source 

and the target training databases should be eliminated. On the contrary, when reliable 

mapping is obtained, the voice conversion algorithm should be able to use this 

information and perform more detailed transformation of the acoustic parameters. 

 

The transformation stage requires mapping of the source material to be 

transformed with the source training material so that the corresponding target features 

can be estimated. When the training and the transformation languages are different, 

mapping becomes more prone to errors. Another problem in cross- lingual applications 

is the difference between the source and target speaker accents that needs to be 

compensated for employing robust vocal tract and prosody modification algorithms. 

 

The transformation module should be able to transform the given source acoustic 

parameters in a robust and reliable manner. There is a trade-off between similarity to 

target voice and quality, i.e. more aggressive transformations require modification of 

the source data in a discontinuous manner which in turn reduces the quality. On the 

other hand, with smoother and higher quality transformations, the similarity to the 

target speaker might not be sufficient. In the case of cross- lingual voice conversion the 

prosody in one language may not match the prosody in the other and careful 

modification of the prosodic features might be required. 
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3.2. Baseline Voice Conversion Algorithm STASC 

 

Before proceeding with the details of the proposed cross-lingual voice conversion 

algorithm, it will be useful to summarize the baseline voice conversion algorithm and 

how it can be used for cross-lingual voice conversion. We have used the “Speaker 

Transformation Algorithm using Segmental Codebooks – STASC” as the baseline 

method (Arslan, 1999). STASC is a two-stage codebook mapping method for voice 

conversion. In the training stage, it determines the corresponding acoustic parameters of 

the source and target speakers automatically and collects them in codebooks. In the 

transformation stage, the source speaker acoustic parameters are matched with the 

source speaker codebook on a frame-by-frame basis and the corresponding target 

parameters are determined. The transformed utterance is obtained by applying a time-

varying filter on the source speaker utterance to match the target speaker’s acoustic 

characteristics. Sections 3.2.1 and 3.2.2 describe the training and transformation stages 

briefly. 

 

3.2.1. Training 
 

STASC uses the recordings of a set of identical phrases from source and target 

speakers in the training stage. A left-to-right Hidden Markov Model (HMM) with no 

skip is trained for each source speaker utterance and both the source and the target 

speaker utterances are force-aligned with this HMM. The number of states for each 

utterance is directly proportional to the duration of the utterance. For every 40 

milliseconds, a new state is added to the HMM topology. With this model, neither the 

text nor the language of the utterance needs to be known. This automatic alignment 

procedure is called as the Sentence-HMM method. 

 

Figure 3.1 shows the flowchart of the STASC training algorithm. In the acoustic 

feature extraction step, MFCCs are calculated for the source and target speaker 

utterances. Seven cepstral coefficients derived from a mel- frequency filterbank of 14 

bands, log energy, and probability of voicing are combined to form the acoustic feature 

vector for each frame when the sampling rate is 16 KHz. Delta coefficients are also 

appended to the feature vector to model temporal variations in the speech signal. 
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Therefore, the final acoustic feature vector has 18 dimensions. An HMM is initialized 

using the segmental K-means algorithm and trained using the Baum-Welch algorithm 

for each source speaker utterance using the acoustic feature vectors obtained. Next, 

source and target speaker utterances are force-aligned with the corresponding source 

HMM using the Viterbi algorithm. One may also consider using speaker independent 

models, such that the sentence HMM is trained from both the source and target 

utterances at the same time. After Sentence-HMM based alignment, LSF vectors, 

fundamental frequency values, durations and energy values are calculated in the 

corresponding source and target HMM states. The state arithmetic means of those 

acoustic features are computed and stored in source and target speaker codebooks. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. Flowchart of the STASC training algorithm. 

 

There are several problems in the training stage of STASC. First of all, 

Sentence-HMM based alignment is not a robust method when there are differences in 

prosody, accent, or recording conditions of the source and target training data. The 

main reason behind this problem is the determination of HMM parameters using only a 

single source speaker utterance and then force-aligning the corresponding target 

utterance to that HMM. It is well known that speaker dependent HMMs work better for 

the specific speaker’s voice they are trained for. However, this is not the case when the 

speaker dependent HMM is used to segment another speaker’s recording. The 

alignment mismatches in the Sentence-HMM method may lead to distortion, reduced 

similarity to target voice. Even replacement of phonemes with “mutant” phonemes 
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which are a mixture of two or more phonemes in terms of spectrum can be observed 

(Turk and Arslan, 2006).  

 

The second problem with Sentence-HMM based training is that it does not 

convey information on identity of phonemes in the training data and the context in 

which they exist. Therefore, it is not possible to make use of any phonetic or linguistic 

information in the transformation stage to improve the match between a given source 

speech frame to be transformed and the training material.  In Chapter 4, we describe a 

speaker and language independent method to perform alignment in a robust manner 

using HMMs to cope with this problem.  

 

The third disadvantage of using Sentence-HMM based alignment is the 

requirement for a parallel training database for the source and the target speaker. 

Although using a carefully recorded parallel database improves voice conversion 

performance significantly (Kain, 2001), it is not always possible to employ such a 

database for cross-lingual voice conversion. A typical example is the case when a 

monolingual speaker’s voice will be transformed to a target speaker’s voice who does 

not speak the language of the source speaker. 

 

Another disadvantage of STASC training is in the modeling and transformation 

of prosody characteristics. For example, only the mean and the variance of the source 

speaker f0 are transformed to match the target pitch characteristics. This limits the 

capabilities of the prosody transformation module in matching the target prosody in 

terms of style in the transformation stage. 

 
 
3.2.2. Transformation 
 
 

Figure 3.2 shows the flowchart for the STASC transformation algorithm. The 

vocal tract and residual spectra are modified separately. First, linear prediction (LP) 

analysis for the input frame is performed pitch-synchronously. Next, LP parameters are 

converted to LSFs. The distance between the source input LSF vector and each LSF 

vector in the source codebook is computed using Equations 1 and 2: 
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(1) 

 

 

 

   

 

(2)          

 

 

 

 

where m is the codebook entry index, M is the codebook size, n is the index of LSF 

vector entries, P is the dimension of LSF vectors (order of LP analysis), un is the nth 

entry of the LSF vector for the input source frame, C s(m,n) is the nth entry of the mth 

source codebook LSF vector, d(m) is the weighted distance between the input source 

frame LSF vector u and the mth source codebook LSF vector. LSF weights, ß(n), are 

estimated using Equation 2. LSFs with closer values are assigned higher weights since 

closely spaced LSFs are more likely to correspond to formant frequency locations 

(Crosmer, 1985). Normalized codebook weights, vm, are obtained by Equation 3 where 

using γ=1.0 works well in practice. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Flowchart of the STASC transformation algorithm. 
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(3) 

 

 

Target speaker’s vocal tract spectrum is estimated using Equations 4 and 5 

where y(n) is the nth entry of the estimated target LSF vector. In our notation here and 

onwards, circumflex represents that the feature is obtained by weighted averaging of 

codebook entries. In Equation 4, C t (m,n) is the nth entry of the mth target codebook LSF 

vector. The estimated target LSF vector y is converted to target LP coefficients, â t. 

Target vocal tract spectrum, H t (w), is estimated using Equation 5 where w is the 

angular frequency in radians and â t(n) is the nth entry of the target LP coefficients 

vector â t. 

 

(4) 

 

 

(5) 

 

 

F(w), the frequency response of the time varying vocal tract filter for the current 

frame, is computed using Equation 6. 

 

        or                                                                  (6) 

 

 

Note that the source vocal tract spectrum can be obtained in two different ways to 

give two different versions of the time varying vocal tract filter: 

 

• Using the input speech frame using the original LP coefficients, as(n), as in 

Equation 7. 

• Using the LP coefficients âs(n) that are obtained from û(n)’s that are estimated 

by weighted averaging of the source codebook LSF vectors as in Equation 9. 
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In the latter case, the estimate of the source input frame LSF vector, û, is obtained 

as a weighted average of the source codebook LSF vectors using Equation 8. LSF 

entries, û(n), are converted to LP coefficients, âs(n)’s and the source speaker vocal tract 

spectrum, H s (w), is estimated using Equation 9. In our simulations, we observed that 

using Equation 9 resulted in more natural and higher quality transformation output. 

This was mainly because the same type of averaging in both the numerator and 

denominator of the filter transfer function resulted in a smoother and balanced filter 

function across frames. However, there has been slight similarity degradation from the 

target speaker since H s (w), in this case was not able to filter out all the effects of the 

source vocal tract. 

 

 

(7) 

 

 

 

 (8) 

 

 

 

(9) 

 

 

Prosodic modifications are performed on the excitation signal to match the target 

characteristics using the FD-PSOLA algorithm (Moulines and Verhelst, 1995). FD-

PSOLA algorithm operates on a pitch-synchronous manner and first removes the vocal 

tract estimate from the spectrum and then applies necessary pitch modifications on the 

magnitude of the excitation spectrum either by compression or expansion in the 

frequency domain. Finally, it overlays the original spectrum on top of the modified 

excitation magnitude spectrum and leaves the original phase spectrum unchanged. 
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 The transformation algorithm of STASC employs a full codebook search 

strategy when estimating the vocal tract transformation filter from the training database. 

When there are alignment mismatches in the training data, the whole codebook search 

strategy is likely to result in one-to-many mapping problems. A typical example might 

be the case when two source states that are acoustically similar are mapped into target 

states that are acoustically different in the training stage. In this case, two significantly 

different target state LSF vectors will be mixed up in the weighted target LSF 

estimation procedure. Depending on the difference between the selected target states, 

severe degradation in both output quality and similarity to target voice are likely to 

occur. This problem can be significantly reduced by using a robust aligner as well as 

context information to narrow the search space. Another disadvantage of using full 

codebook search is the memory and processor requirements when the training databases 

are large. For a full codebook search, the whole data extracted during the training 

should be loaded to the memory. Then, parameters extracted from each source speech 

frame to be transformed should be compared with a large number training parameters to 

find the best matches. For example, when an algorithm that uses parameters extracted 

from all available source and target training speech frames is used, each codebook can 

be as large as 500 Megabytes. Therefore, it is required to load part of the training data 

into memory and search for the best match. However, the search method used in 

STASC transformation does not directly enable partial codebook search. Another 

disadvantage of using STASC transformation is that it does not enable detailed prosody 

transformation while minimizing the additional distortion. 

 

3.3. Cross-Lingual Voice Conversion Algorithm 

 

The proposed cross- lingual voice conversion algorithm consists of two stages as 

in the baseline case: training and transformation. In the following subsections, we 

present an outline of the two stages. Implementation details are presented in the 

corresponding chapters. 
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3.3.1. Training 

 

Figure 3.3 shows the flowchart of the proposed training algorithm. The training 

stage starts with the extraction of acoustic parameters from the source and the target 

speaker training recordings. The vocal tract spectrum is represented in two forms: Mel 

Frequency Cepstral Coefficients (MFCCs) for the alignment stage and line spectral 

frequencies (LSFs) for the transformation stage. A fixed window size of 20 ms is used 

with a skip size of 10 ms for MFCC and LSF analyses. Pitch contours are extracted 

using the RAPT algorithm (Talkin, 1995). Voicing, f0 statistics (mean and variance), 

energy as well as stylistic pitch and speaking rate transformation parameters as 

described in Chapter 6 are computed. Then, all source and target recordings are 

segmented using Phonetic-HMM based segmentation. The segmentation can be 

performed in two ways: Text- independent and text-dependent. If the text transcription 

of the training material is not available, phoneme recognition is performed on the 

source recordings first. If the training database is parallel, the target recordings are 

force-aligned to the corresponding source phoneme sequences. Otherwise, target 

recordings are segmented using phoneme recognition. After the alignment, additional 

features to be used in transformation are extracted including phoneme durations and 

stylistic duration transformation parameters. If the training databases are parallel, the 

acoustic features extracted are paired on a frame-by-frame basis using the alignment 

information. The phonetic context of each aligned acoustic feature pair is determined 

from the labels. The resulting acoustic feature vectors and context information are 

saved into two binary speaker model files for the source and the target speaker 

separately. For non-parallel training databases, no pairing is performed and all extracted 

parameters and information on their phonetic context are saved. In this case, the 

mapping of the source and the target acoustic spaces is performed in the transformation 

stage by context matching. 

 

A comparison of the baseline and the proposed training algorithms highlight the 

following important differences: 

 



 

 

44 

• Phonetic-HMM based alignment is used instead of Sentence-HMM based 

alignment. This results in better alignment since the HMM parameters are 

estimated from a large speech corpora from many speakers. It also enables the 

employment of phonetic context information and non-parallel databases for 

cross- lingual voice conversion. 

• It is possible to perform forced-alignment to text if the text transcription of the 

training databases is available. 

• The vocal tract spectrum parameters are kept on a frame-by-frame basis 

instead of using the state averaging method of the baseline algorithm. This 

helps to perform more detailed transformation of the vocal tract spectrum. 

• Stylistic prosody parameters are extracted along with the average prosody 

transformation parameters used in the baseline method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Flowchart of the cross-lingual training algorithm 

 

3.3.2. Transformation 

 

Figure 3.4 shows the flowchart of the transformation algorithm. First, a set of 

acoustic features are extracted including MFCCs, LSFs, f0, and energy. Phonetic-HMM 

based alignment is performed either in text- independent mode using phoneme 
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recognition or in text-dependent mode using forced-alignment to a given phonetic 

transcription. Statistical averages of pitch (mean and variance) and stylistic pitch, 

duration and speaking rate are computed. The source LSF vectors are matched with the 

source training LSF vectors using inverse LSF weighting as described in Section 3.2.2. 

The matching is performed either on a subset of the source training LSF vectors by 

considering the context-match as described in Chapter 5 or on the full set as described 

in Section 3.2.2. For cross- lingual voice conversion applications with parallel 

databases, we prefer the second method as it results in better quality output. However, 

for the non-parallel case, the only choice is to employ the context-matching based 

technique. The matching procedure outputs a set of target LSF vectors and 

corresponding weights in order to estimate a target vocal tract spectrum for the current 

source input speech frame. The prosody transformation module take the mean and the 

variance of the source and the target f0 values, average source and target phoneme 

durations for the current context as well as stylistic prosody features to transform the 

prosody using the FD-PSOLA algorithm. The vocal tract is transformed by filtering the 

source speaker’s residual spectrum with the estimated target vocal tract spectrum. The 

vocal tract and prosody transformation can be simultaneously performed using the FD-

PSOLA algorithm which eventually produces the cross- lingual voice conversion output  

signal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Flowchart of the cross-lingual transformation algorithm 
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The major differences between the proposed transformation algorithm and the 

baseline algorithm are: 

 

• The vocal tract transformation function is estimated directly from the speech 

frames in the source and target training database instead of state averages as in 

STASC. This helps to perform more detailed vocal tract transformation.  

• Non-parallel databases can be used for estimating the target vocal tract 

spectrum in the transformation stage. 

• Using the context information search space can be restricted in both parallel 

and non-parallel databases to reduce one-to-many mapping problems as well 

as to minimize memory and processor requirements. 

• In addition to transforming the mean and the variance of f0 and average 

speaking rate to match the target characteristics, stylistic prosody 

characteristics can be transformed including movements of pitch contours, 

global and local speaking rate. 
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4. SEGMENTATION AND ALIGNMENT 

 

4.1. Introduction 

 

The aim of speech signal segmentation is to find boundaries of acoustic or 

phonetic events along the time axis. The resulting boundaries include but are not 

restricted to sentence, word, phoneme, or sub-phoneme boundaries. In voice conversion 

applications, the estimated boundaries should be on the level of phonemes or even 

smaller units in order to enable the estimation of a voice conversion function in 

sufficient detail. Alignment is a special kind of segmentation in which the segmentation 

module is given more detailed information about the nature of the acoustic and phonetic 

events that one is interested in. For example, alignment of a speech signal to a given 

phoneme sequence involves a segmentation stage to search for the boundaries of the 

given phonemes within the signal. In the case of voice conversion with parallel training 

databases, segmentation is required in the training stage to segment either the source or 

the target utterance and then align the other speaker’s utterance using the segmented 

acoustic events. Non-parallel training requires segmentation of the source and the target 

training data. Alignment is then performed by clustering the segments and finding a 

mapping among them. 

 

Our previous experience from a large number of monolingual and cross- lingual 

transformations shows that problems in the alignment may result in non-reliable and 

poor quality voice conversion output. Conventional voice conversion algorithms 

perform alignment using techniques that rely on only speaker dependent information. 

As an example, Dynamic Time Warping (DTW) was commonly used in codebook 

mapping (Abe, et. al., 1988) and GMM based voice conversion algorithms (Stylianou, 

et. al., 1998). DTW finds a minimum error alignment path given a set of acoustic 

features and a distance measure between those acoustic features. As the optimal path is 

constructed by using only information from a single utterance, the alignment 

performance is significantly dependent on variations in prosody, accent, voice quality, 

and recording conditions. Sentence-HMM based alignment is another alternative for 

aligning the source and the target training utterances automatically (Arslan, 1999). It is 
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also non-robust to differences in the source and the target recordings as the model 

parameters are extracted from only the pair of source and target utterances to be 

aligned. 

 

When cross- lingual applications are considered, segmentation and alignment 

becomes a more difficult task in general. First of all, the source and the target training 

material are likely to contain more accent variation when a bilingual source speaker is 

used. Non-parallel training techniques enable using monolingual source speakers for 

cross- lingual applications. In this case, the source and target training materials are 

collected in different languages. Therefore, a segmentation and alignment module that 

can handle both languages is required. In the transformation stage, source 

transformation recording in one language should be aligned with the source training 

recordings in another language. Therefore the phonemes in one language should be 

mapped to those in another language to estimate the transformation parameters from the 

training material. It is preferred to employ an automatic mapping process. Otherwise, it 

will be significantly difficult to specify the mapping of phonemes among the new 

languages and existing ones manually. 

 

In order to improve alignment performance and to enable the employment of 

phonetic information in the cross- lingual voice conversion process, we propose to use 

Phonetic-HMMs. Phonetic-HMM based segmentation and alignment uses models 

trained from a large speaker independent database. It has the following advantages over 

conventional alignment methods: 

 

• Phonetic-HMM parameters are estimated from a large number of speakers 

having different accent and prosody characteristics. Therefore, the models  

cover a significantly wider range of prosody, accent, and voice quality 

characteristics as compared to using a single utterance pair for estimating the 

HMM parameters. 

• Phonetic-HMM can be trained in a robust manner using well-known 

techniques from speech recognition research (Rabiner, 1989), (Woodland, et. 

al. 1994). 
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• Phonetic-HMM can be used both for phoneme recognition and forced-

alignment to a given text transcription. 

• Using silence models trained from a large amount of acoustic data, end-point 

detection can be performed in a more robust manner. This helps to improve 

alignment performance especially when the silence in the beginning or at the 

end of the source and target training files are significantly different.  

• Employment of Phonetic-HMM for phoneme recognition enables using non-

parallel cross- lingual voice conversion training databases. 

• Databases in different languages can be combined to estimate the parameters 

of a multilingual Phonetic-HMM which might improve segmentation and 

alignment performance in cross- lingual voice conversion. This property also 

solves the problem of mapping the phonemes in one language to another 

language in cross- lingual voice conversion. 

 

The cross-lingual voice conversion database collected in this study consists of 

native American English target speakers and bilingual Turkish source speakers. 

Therefore, an overview of the phoneme inventories of both languages is necessary at 

this point. There are different phonetic alphabets designed for American English 

including TIMIT (Garofolo, et. al., 1990) and SAMPA (Wells, 1997). SAMPA is also 

available for a large number of languages including Turkish which makes it a natural 

choice for our study.  A commonly used version of the American English SAMPA set 

consists of 44 phonemes (24 consonants, 17 vowels, and 3 silence/pause symbols). The 

Turkish SAMPA set includes 37 phonemes (26 consonants, 8 vowels, 3 silence/pause 

symbols). 28 phonemes are common in the two languages (22 consonants, 4 vowels, 

and 3 silence/pause symbols). There are 15 distinct American English phonemes (2 

consonants and 13 vowels) that do not exist in the Turkish phoneme set. There are 8 

distinct Turkish phonemes (4 consonants and 4 vowels) that do not exist in the 

American English phoneme set. The tables in Appendix B show lists of common and 

distinct phonemes of American English and Turkish SAMPA phoneme sets along with 

exemplar words and transcriptions. We have used the TIMIT phoneme set in training 

Phonetic-HMMs in American English. In the case of multi- lingual Phonetic-HMM 

training, a Phonetic-HMM was trained in one language, the database in the second 
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language is segmented by phoneme recognition using the initial HMM, and the HMM 

models are updated using the data from the second language. 

 

4.2. Method 

 

Phonetic-HMMs are trained using two large multi-speaker databases. The first 

database consists of recordings from 200 native Turkish speakers (95 female, 105 

male). It was collected at Sabanci University for large-vocabulary speech recognition 

purposes (Erdogan, et. al., 2005). For each speaker, approximately 100 utterances are 

recorded where the utterances are selected from a phonetically balanced set. The second 

database is the training set of the American English TIMIT corpus (Garofolo, et. al., 

1990). Both databases were recorded in 16 KHz, 16 bits PCM format. The Hidden 

Markov Toolkit (HTK) is used for training and performing segmentation and alignment 

(Woodland, et. al., 1994). The acoustic feature vectors used in HMM training were 26-

dimensional: 12 MFCCs, energy, and the corresponding delta parameters. Each 

phoneme was modeled using a 3-state HMM with a number of Gaussian mixture 

components for each state. Different numbers of Gaussian mixture components in the 

range four to twelve were tested. The number of mixtures that resulted in best 

alignment performance was used in the final evaluations. Phoneme recognition using 

the Viterbi algorithm is used for segmentation. Viterbi algorithm is also used for the 

alignment of a speech signal to a given phoneme sequence. Each HMM was appended 

an entry and an exit state to enable transitions from one model to another using the 

Viterbi algorithm.  

 

Depending on whether the text transcription is available for given training and 

transformation databases, Phonetic-HMM based segmentation and alignment module 

can be used in three ways for cross-lingual voice conversion: 

 

• Text- independent mode, parallel training: The source training utterances are 

segmented using phoneme recognition. The target training utterances are 

force-aligned to the corresponding source phoneme sequences. In 

transformation, if context-matching will be used, the source utterance to be 
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transformed is also segmented by phoneme recognition and the context-

matching algorithm described in Chapter 5 is employed for estimating the 

target parameters. Otherwise, full search as in the case of STASC 

transformation is performed by considering all available source and target 

training data. 

• Text- independent mode, non-parallel training: Both source and target training 

databases are segmented using phoneme recognition. In the transformation 

stage, the source recording is segmented by phoneme recognition and the 

closest matches in the source and the target training data are determined using 

the context matching algorithm described in Chapter 5. 

• Text-dependent mode, parallel training: The source and the target training 

utterances are force-aligned to the corresponding phoneme sequences 

extracted from the corresponding text transcriptions. A decision tree based 

letter-to-phoneme module for American English is employed for converting 

the text into the corresponding phoneme sequence. The module was trained 

using the CMU Pronouncing Dictionary. The decision tree training module is 

available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict. As it was not 

possible to perform context matching using phonetic transcriptions in two 

different languages, full acoustic search as in STASC transformation is 

employed. 

 

In fact, there was a fourth possibility to use text-dependent mode in non-parallel 

databases. However, it is not directly possible to perform automatic context-matching 

between phonemes of two languages that have distinct phonemes. Therefore, we 

excluded this possibility from the tests. 

  

4.3. Evaluations  

 

4.3.1. Alignment Performance 

 

An objective distance measure is developed in order to compare the performance 

in the alignment of source and target speaker training utterances using different 
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Phonetic-HMM architectures. To compare an alignment for a given source-target 

utterance pair with a reference alignment, we need the corresponding source and target 

speech frame indices using the two alignments and a measure to evaluate how target 

indices differ in one alignment as compared to the other. 

 

Let us perform an indexing of the source and target speech frames in an utterance 

recording as (1, 2, ..., is , ..., Is) and (1, 2, ..., it, ..., It) respectively. Given the source 

speech frame index is, the corresponding target speech frame index M(is) is determined 

by linear mapping: 

 

 

   (10) 

 

 

where as and bs are the first and the last speech frame indices in a source label 

respectively. at and bt are the first and the last speech frame indices in the 

corresponding target label respectively. Similarly, Mref(is), the corresponding target 

speech frame indices for each source speech frame are found using the reference 

alignment. Figure 4.1 shows an example of the speech frame index mapping process. 

 

The absolute difference between the target frame index correspondence using the 

alignment method and the reference alignment is used as a measure of the similarity 

between the two alignment patterns: 

 

    (11) 

 

where Mref(is) is the target speech frame index corresponding to source speech frame 

index n using the reference alignment and ss is the skip size in seconds. d(is) is the 

mismatch in seconds in the aligned target frame according to the reference and the 

given alignments. When the given alignment matches the reference alignment perfectly, 

d(is) will be zero. Otherwise, d(is) will be a positive real number that increases as the 

mismatch between the two alignments increases. The mean of the alignment mismatch 
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score corresponds to the average shift of a given label boundary as compared to the 

reference alignment. The manual labels served as the reference alignments against 

which the outputs of alternative alignment methods are compared. Sentence-HMM 

based alignment results are also included in the tests for performance comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. An example of the speech frame index mapping process between a source 

label and the corresponding target label. 

 

For alignment comparison, identical utterances from the source and target speaker 

pairs are required. We have used the TIMIT utterances “sa1” and “sa2” from 40 

speakers as the test set. All combinations of speaker pairs are considered. Therefore, we 

had 40x39 = 1560 source-target alignments for each method. For each source-target 
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speaker pair and for each Phonetic-HMM aligner, we first perform phoneme 

recognition with the corresponding Phonetic-HMM to label the source recording. The 

corresponding target recording is force-aligned with the recognized phoneme string 

using the Viterbi algorithm. Table 4.1 shows the contents of the training and test 

databases. 

 

Type Language # Speakers  # Duration 

Training English 325 (135 female, 190 male) 2 hr 47 min 

Training Turkish 175 (81 female, 94 male) 6 hr 32 min 

Test English 40 (20 female, 20 male) 9 min 

 

Table 4.1. Contents of training and test databases for alignment 

 

We have trained Phonetic-HMMs using the TIMIT phoneme set and two sets of 

acoustic data. The first three rows of Table 4.2 show the different Phonetic-HMM 

architectures trained using different sets of acoustic data. The number of mixtures that 

resulted in best performance is also noted for each case. We have used the HTK Toolkit 

for training context-independent  HMMs (Woodland, et. al., 1994). In the case when 

English and Turkish acoustic data were used together, we first trained base models 

using the data in English only, performed phoneme recognition on the Turkish data, and 

updated the models with additional iterations of the Baum-Welch algorithm. In our 

case, convergence was achieved in four additional iterations. As the baseline method, 

we have used Sentence-HMM alignment. In this case, for each source training 

utterance, an HMM was trained using one mixtures per state. The number of states was 

proportional to the duration of the utterance. A new state was added to the HMM 

architecture for every 40 milliseconds. The corresponding target utterance was force-

aligned with the source HMM to obtain the final alignment. 

 

Note that for HMM_ETV in Table 4.2, we have used different number of 

mixtures for different phonemes depending on the number of occurrences of phonemes 

in the manually aligned data. Otherwise, it was not possible to obtain reliable model 

parameters using more than eight mixtures with the given amount of acoustic data. We 



 

 

55 

have divided the TIMIT phonemes into four groups depending on the frequency of 

occurrence in the TIMIT training set as shown in Table 4.3. For this purpose, the 

histogram of total speech frames for each phoneme is computed as in Figure 4.2. The 

histogram is divided into four non-overlapping ranges. For each range, a variable 

number of mixtures were assigned to the corresponding Phonetic-HMM depending on 

the total acoustic data. The motivation was to use less number of mixtures for 

infrequent phonemes for which the acoustic data is limited to obtain more robust 

models. When the available data is large for a specific phoneme, the number of 

mixtures is increased to model the variability of acoustic data in a better fashion. We 

have chosen four ranges by examining the histogram and assigned the corresponding 

number of mixtures for each state as shown in the following table. There were a total of 

177080 observations for 61 phonemes in the training set. 

 

HMM Acoustic data Number of mixtures 
per state 

HMM_E English 6 
HMM_ET English+Turkish 8 

HMM_ETV English+Turkish Variable (4, 6, 8, 12) 
Sentence-HMM Single training 

utterance pairs 
1 

 

Table 4.2. HMM architectures 

 

Total occurrences 
in the training 

database 

Range in histogram 
H=normalized number of 

occurrences for a given phoneme 

Mixtures 
per state  

 
Phonemes 

 
<1771 

 
H<0.01 

 
4 

aw, axh, ch, el, em, 
en, eng, epi, hh, hv, 
jh, ng, nx, oy, pau, 
th, uh, uw, y, zh 

 
[1771, 3542) 

 
0.01<=H<0.02 

 
6 

aa, ah, ao, axr, ay, 
b, bcl, dh, dx, er, 
ey, f, g, gcl, ow, p, 
pcl, sh, ux, v, w 

 
[3542, 7083) 

 
0.02<=H<0.04 

8 ae, ax, d, dcl, eh, 
ih, iy, k, kcl, l, m, 
n, q, r, t, tcl, z 

>7083 H>=0.04 10 h#, ix, s 
 

Table 4.3. Choice of total mixtures per state for each phoneme 
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We have compared the average alignment mismatch scores for different 

alignment methods in statistical tests. For this purpose, alignment mismatch scores are 

computed for all methods for all source speech frames. Results are compared pair by 

pair using pair wise t-tests. The pair wise t-test is a statistical test to compare the mean 

values of two distributions where two set of samples come from (Kreyszig, 1970). The 

test returns a p-value for the probability of observing a specified result. As an example, 

it can be employed to evaluate the probability of the mean value of a set of samples 

being greater than that of another set of samples within a significance level. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Normalized number of occurrences of phonemes in the TIMIT training 

corpus 

 

 Sentence-
HMM 

HMM_E HMM_ET HMM_ETV 

Sentence-
HMM 

x x x x 

HMM_E 0 x x x 
HMM_ET 0 0.0028 x x 

HMM_ETV 0 1.0e-11 2.7e-5 x 
 

Table 4.4. Pair wise comparison of mean alignment mismatch scores. For the 

underlined p-values, the corresponding aligner in the first column results in lower 

average mismatch score as compared to the aligner in the first row. Results are given 

for a confidence level of 99% 
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For each aligner pair, the following hypothesis was tested: The mean alignment 

score of the first aligner is significantly less than the second aligner. Since a 

significance level of 99% is used, p-values less than 0.01 show that the mean alignment 

mismatch score of the first method is significantly lower than that of the second 

method. We have used the TIMIT test corpus in the evaluations. For this purpose, 5082 

source-target speaker utterance pairs were selected. For each pair, the alignment 

mismatch score between the manual alignment and alignment using one of the HMM 

architectures given in Table 4.2 are computed. Table 4.4 shows pair wise comparisons 

of different alignment methods. 

 

 Sentence-HMM HMM_E HMM_ET HMM_ETV 
Score (ms) 78.6 34.0 33.3 33.0 

  

Table 4.5. Mean alignment mismatch score in milliseconds using different HMM 

architectures 

 

Table 4.5 shows the mean alignment mismatch scores for different alignment 

methods. We observe that the Phonetic-HMM based alignment mismatch scores are 

fairly low as compared to the Sentence-HMM case. Even the worst Phonetic-HMM 

based aligner, HMM_E, resulted in significantly lower mean alignment mismatch score 

as compared to the Sentence-HMM based aligner. In the best case, the alignment 

mismatch score was 33.0 milliseconds. We observe that when acoustic data is extended 

using the Turkish database, a larger number of mixtures per state are required as 

expected. Another observation is that when monolingual HMMs are extended with data 

from another language, comparable alignment performance can be obtained by 

carefully adjusting the number of mixtures per state in HMM training. 

 

4.3.2. Voice Conversion Performance 

 

In order to compare the voice conversion performance using Phonetic-HMM for 

segmentation and alignment in cross- lingual voice conversion, we designed an 
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objective voice conversion test. Two methods were compared with the Sentence-HMM 

based method and vocal tract transplantations: 

 

• Text- independent mode, parallel training (TIP) 

• Text-dependent mode, parallel training (TDP) 

 

A compound bilingual male speaker of American English and Turkish from the 

voice conversion database described in Chapter 7 is used as the target. A male Turkish 

speaker from the same database is used as the source. The training set consisted of 80 

utterances in English and the test set consisted of 10 utterances in Turkish. We have 

used the LSF distance measure to rate the objective similarity of the transformation 

outputs to target speaker’s reference recordings in Turkish. LSF distance resulted in 

better performance as compared to a number of objective distance measures for 

evaluating vocal tract transformation performance. Section 5.4 presents the details on 

objective measure selection. 

 

The Phonetic-HMM architecture HMM_ETV was used for segmenting and  

aligning the utterances. Note that for comparison, manual alignment of the transformed 

and target reference utterances was employed. In transformations, no smoothing was 

applied as a post-processing step in order to compare direct target frame reconstruction 

performance. State-averaging method was used in training for comparing the effect of 

alignments only. 

 

Figure 4.3 shows the results. The original average LSF distance between the 

source and the target speaker was 4.81. Sentence-HMM resulted in a distance of 4.20 

while Phonetic-HMM in text- independent and text-dependent modes reduced the 

distance to 3.89 and 3.84 respectively. For comparison, we have also computed the 

average LSF distance between the target speaker test recordings and vocal tract 

transplantation outputs which turned out to be 2.94. Note that transplantation requires 

the target speaker recordings to be available for test utterances. It is a copy-paste 

method in which the source vocal tract spectrum is directly replaced by the 

corresponding target vocal tract spectrum using the alignment information. Therefore, it 
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corresponds to an ideal vocal tract transformation. The Phonetic-HMM based methods 

result in a reduction of 0.31 and 0.36 in the average LSF distance to the target speaker 

as compared to the Sentence-HMM based alignment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Objective comparison of voice conversion performance using different 

alignment and segmentation methods 
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5. VOCAL TRACT TRANSFORMATION USING  

WEIGHTED FRAME MAPPING 

 

5.1. Introduction 

 

Transplantation of the vocal tract spectrum refers to replacing the vocal tract 

spectrum of the source speaker with that of the target speaker by time-varying filtering 

techniques. Our previous research on vocal tract transplantations show that the output is 

significantly close to the target voice provided that average prosody characteristics are 

also modified to match that of the target speaker’s (Turk, 2003). It is not possible to use 

a transplantation technique directly in voice conversion since this would require every 

possible transformation utterance to be recorded from the target speaker. However, it is 

possible to estimate the vocal tract transformation function in more detail to make the 

voice conversion output closer to the transplantation results.  

 

Inspired by the closeness of vocal tract transplantations to target speaker voices, a 

more detailed vocal tract transformation algorithm may help to improve cross- lingual 

voice conversion performance. In order to perform detailed transformation with 

sufficient quality, the following requirements should be satisfied: 

 

• The vocal tract transformation function should be estimated directly from the 

training speech frames as in the case of vocal tract transplantation. 

• The alignment between the source and the target training utterances should be 

performed in a robust manner such that no large misalignments are present. 

Otherwise, the detailed vocal tract transformation may be estimated 

incorrectly for some speech frames resulting in distortion and lower similarity 

to target voice. 

• Estimation of vocal tract transformation functions directly from the speech 

frames increases the memory and processor requirements in general. In order 

to be able to use this technique in larger voice conversion databases, i.e. on 

the order of hundreds of utterances, a searching strategy is required. 
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• Even in the case of robust and reliable alignments, depending on the content 

of the material to be transformed, the vocal tract transformation function 

estimated directly from the speech frames may contain discontinuities among 

consecutive speech frames. Appropriate weighting of speech frames is 

required in order to reduce the discontinuities. 

• A reliable and robust objective distance measure is required for the evaluation 

of vocal tract transformation performance. 

 

The conventional training method in STASC uses a state-averaged version of the 

LSF parameters to represent the vocal tract transformation function. The aim of this 

pre-smoothing step is to reduce discontinuities in the resulting transformation function 

by smoothing the source and the target spectrum estimates for each state. This kind of 

pre-smoothing has an important disadvantage. The smoothing is directly performed on 

the source and target LSF vectors which result in a reduction in the detail of vocal tract 

transformation. It is not possible to recover the detail information since it is performed 

in the training stage. Even if re-training is possible, the Sentence-HMM based method 

does not provide sufficiently good alignments to estimate the transformation function 

from the individual source and target speech frames. On the contrary, the Phonetic-

HMM based method described in Chapter 4 provides a reliable framework for 

obtaining the alignment. Therefore, it can be used for detailed vocal tract 

transformation function estimation on a frame-by-frame basis as we describe in this 

chapter. 

 

The estimation of the vocal tract transformation function in more detail has the 

disadvantage of increasing the possibility of observing discontinuities at the output. In 

order to reduce the discontinuities in a controllable manner, weighting of speech frames 

as used in STASC transformation should be employed. Combined with the detailed 

frame mapping and weighting, this technique provides the framework for more detailed 

vocal tract transformation. In addition to these techniques, we also propose a context 

matching algorithm which can be used to limit the search space in the case of large 

training databases. 
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 The proposed technique has several common ideas with unit selection text-to-

speech algorithms. As in the case of unit selection synthesis, the primary goal is to be 

able to use the training data as much as possible. An important distinction is in the 

amount of available data. For unit selection synthesis hours of speech data along with 

prosodic and linguistic information are available. Therefore, unit selection databases 

can be designed to cover a large amount of contextual and prosodic variation. The 

synthesis algorithm can make use of all information in the database to minimize target 

and concatenation costs to generate speech. On the contrary, voice conversion 

databases are generally limited to tens to hundreds of utterances, i.e. one minute to ten 

minutes of speech. It is not possible to use a unit selection algorithm directly for 

searching for the closest source and target matches since the coverage is low for a voice 

conversion database. The algorithm described in this chapter can be classified as a unit 

selection algorithm that uses a target cost function consisting of purely acoustic 

features. 

 

The proposed method has the following advantages for cross- lingual voice 

conversion: 

 

• Making use of more training data in order to perform more detailed 

transformation 

• Reducing the one-to-many mapping problems by successfully constraining the 

acoustic matching process 

• Employing non-parallel databases for training especially when the source and 

the target do not speak the same language 

• Improving the memory and processor load constraints when large training 

databases are used 

 

The general flowchart of the proposed vocal tract transformation function 

estimation algorithm is given in Figure 5.1. The training starts with the mapping of the 

source and the target speech frames in the case of parallel training databases. Context 

information is also extracted for context-matching. In the case of non-parallel training 

databases, context information is the only tool for mapping the source and the target 
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acoustic spaces. The acoustic features extracted from the speech frames are saved in 

binary files along with detailed context information. Mapping between the source and 

target speech frames is also saved in this binary file in case of parallel training.  

 

In the transformation, a detailed vocal tract transformation function is estimated 

for each source speech frame to be transformed using weighted frame mapping. 

Context-information can be used for matching the source input speech frame with the 

training source speech frames and finding the corresponding target features. In the case 

of parallel training databases, full search is another option since the correspondence 

between the source and target training speech frames are known. After weighted frame 

mapping the vocal tract transformation function is estimated as a time-varying 

frequency domain filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Proposed vocal tract transformation function estimation framework 

 

5.2. Weighted Frame Mapping 

 

In weighted frame mapping, the aim is to estimate the vocal tract transformation 

function from the source and the target training speech frames directly. For this 

purpose, the source and the target training databases are aligned using a Phonetic-HMM 
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aligner. In the case of a parallel training database, for each source speech frame, the 

corresponding target speech frame is determined by linear mapping of speech frames as 

described in Section 4.3.1. In the case of non-parallel training, all source and target 

speech frame acoustic parameters are saved in binary files and the transformation filter 

estimation is performed using the context-matching method as described in the next 

sub-section. 

 

During transformation, the N-closest source speech frames in the training data are 

determined using the LSF distance based method described in Section 3.2.2 for each 

source input speech frame. N is set to a smaller number as compared to STASC 

transformation, typically to 3 whereas N=6 to 10 is commonly used in the baseline 

algorithm. This helps to reduce excessive smoothing. 

 

5.3. Context-Matching 

 

Figure 5.1 shows a flowchart of the context-matching based algorithm. In the 

training stage, the source and target utterances are segmented using the Phonetic-HMM 

method. It is possible to use text transcriptions at this stage as described in Chapter 4. 

For each source and target speech frame in the training database, the context 

information and the acoustic features (LSFs, f0, voicing, energy) are recorded. The first 

step in the context-matching based algorithm is the extraction of context information in 

the training phase. For each speech frame in the training database, the phonetic context 

is recorded up to 20 previous and 20 next phonemes. Using such wide context 

information allows the transformation algorithm to use longer target training patterns 

during transformation. When there is no match in the training database, the context is 

reduced and the search process is repeated. The normalized location, lnorm, of the speech 

frame inside the current phoneme is also calculated using: 

 

        (13) 

 

where ss and ws are the skip size and window size in seconds, I is the total number of 

speech frames in the current phoneme, and i is the index of the speech frame in the 
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current phoneme  (1 = i = I). Note that lnorm takes values in the range [0.0, 1.0]. It is 

appropriately normalized prior to integrating it with the context match scores as 

described below. 

 

In the transformation stage, the best matching codebook entries in terms of 

context are found using the following algorithm: 

 

• Let the current phonetic context be:  

 

Ltfm(N-1)  Ltfm  (N-2)  ...  Ltfm  (1)  Ltfm  (0)  Mtfm  Rtfm  (0)  Rtfm (1)  ...  Rtfm (N-2)  Rtfm (N-1) 

 

where Mtfm is the label for the current phoneme, Ltfm(i)’s and Rtfm(i)’s are the 

labels of the N preceding and succeeding phonemes respectively in the 

source speaker utterance to be transformed. 

 

• Let also the context in kth source codebook entry be:  

 

Lk(N-1)  Lk(N-2)  ...  Lk(1)  Lk(0)  Mk  Rk(0)  Rk(1)  ...  Rk(N-2)  Rk(N-1) 

 

• Compute context matching score, s, by the following pseudo-code: 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Pseudo-code for computing the context matching score  
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When the context is longer, it is required to perform the operations in the 

logarithm domain by replacing the last step with the following pseudo-code: 

 

 

 

 

 

 

 

 

 

 

Table 5.2. Pseudo-code for computing the context matching score in logarithmic 

domain 

 

Note that logAdd(x,y) performs logarithmic addition in order to prevent 

overflow/underflow problems when large context is used. The pseudo-code of the 

logAdd function is shown in Table 5.3. 

 

 

 

 

 

 

 

Table 5.3. Pseudo-code for addition in the logarithmic domain 

 

The weighted LSF distances are then calculated only for the best matching entries 

instead of using all of the codebook entries. A weighted average of the LSFs are found 

similar to Equation 4 and used in transformation. The disadvantage of the context-based 

matching algorithm is that a significantly larger database is required to cover all 

possible contextual combinations. However, the algorithm can be used in two-modes 
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simultaneously by simply switching to the baseline method when sufficient amount of 

match cannot be found in the codebooks. 

 

At this point, an analogy between the proposed target vocal tract estimation 

method and concatenative unit selection TTS techniques will be useful. In unit selection 

based TTS, target unit specifications are determined by prosodic and linguistic modules 

of the TTS system. Using a set of pre-selection trees, the search space for the units to 

concatenate is restricted. Then, the best set of units that will minimize a combination of 

the target and concatenation costs is determined. The target cost corresponds to the 

acoustic distance between a candidate unit and a target unit. The unit selection cost 

penalizes discontinuities at concatenation boundaries. The context matching algorithm 

combined with the weighted speech frame mapping can be considered as a special case 

of unit selection from the target training data with smoothing. The context matching 

step acts as a pre-selection stage using phonetic context similar to pre-selection using 

decision trees in unit selection based TTS (Black and Taylor, 1997). Since the amount 

of data for typical voice conversion training is restricted, only phonetic context is used 

in the proposed voice conversion method. Searching for the best candidates among the 

pre-selected speech frames using the LSF distance based acoustic distance measure 

corresponds to the employment of the target costs in unit selection TTS. The weighted 

estimation of the target vocal tract spectrum from the best acoustic matches provides a 

smoothing mechanism similar to the concatenation costs in unit selection TTS. 

 

5.4. Objective Distance Measures for the Evaluation of Vocal Tract Similarity 

 

It is rather difficult to design a subjective listening test in which the subjects will 

only focus on vocal tract transformation performance and ignore other acoustic clues on 

the target speaker’s identity. This is due to the fact that acoustic features such as pitch 

and voice quality have relations with the vocal tract configuration (Kain and Stylianou, 

2000), (d’Alessandro and Doval, 1998). Because of the difficulties in designing 

subjective listening tests to evaluate vocal tract transformation performance in an 

independent manner, this section aims to determine a suitable objective measure for 

vocal tract transformation performance assessment.  
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We start with a description of the desired properties of a reliable objective 

distance measure for vocal tract transformation evaluation. Based on these desired 

properties, a statistical comparison framework is designed. Then, the robustness and 

sensitivity of different objective measures in different speech signal modification 

scenarios are compared.  

 

A reliable objective measure for evaluating vocal tract transformation 

performance in voice conversion applications should possess the following properties: 

 

• Robustness to changes in the residual signal, i.e. pitch changes, algorithmic 

manipulations of the residual for pitch modification, etc. 

• Robustness to noise and differences in recording conditions. 

• Robustness to linguistic variations. 

 

A large number of objective measures have been proposed in the speech coding 

and synthesis literature to compare reference signals with coding or synthesis outputs. 

The most popular measure is the signal- to-noise ratio (SNR): 

 

 

       (14) 

 

 

where M is the window size, s(n) and s(n) are the speech signal samples. As SNR is not 

sufficiently sensitive to temporal changes in similarity of the reference and test signals, 

a locally estimated and averaged version called segmental SNR can be used instead: 

 

 

     (15) 

 

 

where L is the total number of speech frames in the original and estimated signals and 

N is the window size. It is also possible to compare two speech signals based on 
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spectral distance measures. The most basic measure is spectral distortion (SD) as 

defined by: 

 

 

       (16) 

 

 

where L is the total number of speech frames in the original and estimated signals, Fs is 

the sampling rate in Hz., and Ai(f) and Âi(f) are the amplitude at frequency bin f of the 

spectrum of the ith speech frame from the original and estimated signals respectively. 

 

Spectrum-based objective measures enable perceptual weighting in the frequency 

domain similar to the human auditory system. As an example, frequency-weighted 

spectral distortion measure can be calculated using: 

 

 

    (17) 

 

 

where L is the total number of speech frames in the original and estimated signals, Fs is 

the sampling rate in Hz., and Ai(f) and Âi(f) are the amplitude at frequency bin f of the 

spectrum of the ith speech frame from the original and estimated signals respectively. 

WB(f) and W0 are used for Bark-scale  weighting of each frequency bin and 

normalization respectively. They can be computed using: 

 

(18) 

  

 

Another possibility for comparing the perceptual similarity between two speech 

signals is to extract model parameters and to compute the distance between these 

parameters. Linear prediction analysis (Makhoul, 1975) and cepstral analysis  

(Oppenheim and Schafer, 1975) are two well-known modeling techniques. Linear 
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prediction derived line-spectral frequencies (LSFs) are commonly used for speech 

coding and voice conversion applications due to their good interpolation properties. 

Inverse harmonic weighting based LSF distance is a useful measure for computing the 

perceptual distance between two LSF vectors: 

 

 

 

    (19) 

 

 

 

   

(20) 

 

 

where P is the linear prediction order, u1 and u2 are the P-dimensional LSF vectors, 

ß(n)’s are the inverse harmonic weights and LD is the LSF distance between the LSF 

vector u1 and u2. 

 

Using cepstral analysis, it is possible to perform perceptual weighting in the 

cepstrum domain. Weighted cepstral distance can be computed using: 

 

 

   (21) 

 

 

where c1 and c2 are the cepstrum vectors and P is the prediction order. 

 

In order to compare the performance of this set of objective distance measures in 

evaluating vocal tract transformation, we used a set of original recordings and their 

processed versions. The processing was performed using different algorithms that may 
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or may not change the residual or the vocal tract spectrum. The aim is to determine the 

objective measure that possesses the following properties: 

 

• Robustness to processing of the speech signal such that the vocal tract does 

not change significantly 

• Sensitivity to processing of the speech signal such that the vocal tract changes 

significantly 

 

 Examples of processing algorithms for the first case include prosody 

modifications (pitch or duration scaling) and slight noise addition (i.e. 20 dB SNR). 

The algorithms for the second case include vocal tract scaling, filtering, and vocal tract 

transplantation. The original recording set contained a total of 100 sentence utterance 

recordings from 13 different speakers (seven female, six male). The following set of 

objective measures are computed among pairs of reference, input, and output 

recordings: 

 

• Spectral Distortion (SD) 

• Frequency Weighted Spectral Distortion (SDfw) 

• Line Spectral Frequency Distance (LD) 

• Weighted LP Cepstral Distance (WCeps) 

 

For each processing algorithm and for each objective distance measure, we 

compute the distances between the following pairs of speech signals: 

 

• Reference (Original Signal) – Output (Processed Signal): dro 

• Reference (Original Signal) - Input (Another Original Signal): dri 

• Input (Another Original Signal) – Output (Processed Signal): dio 

 

We applied pair wise t-tests to compare the expected values of dro, dri, and dio. 

The pair wise t-test is a statistical test to compare the mean values of two distributions 

where two set of samples come from. The test returns a p-value for the probability of 

observing a specified result, i.e. the mean of distribution in which the first set of 
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samples comes from is greater than that of the second set, etc. The p-values 

corresponding to different cases can be used for comparing the performances of 

different objective measures in evaluating vocal tract transformation amount at a given 

significance level.  

 

Considering the vocal tract similarity in the reference and input signals, we have 

two possibilities: 

 

• Vocal tract spectrum is significantly different in the reference and input 

signals 

• Vocal tract spectrum is not significantly different in the reference and input 

signals 

 

When there is significant vocal tract difference between the reference and the 

input, we can have two cases depending on the processing algorithm used: 

 

• Case 1: The processing algorithm modifies the input vocal tract spectrum 

significantly. An example for this case is vocal tract transplantation from 

speaker Y onto the residual of the speaker X. In this case, the distance pairs 

given above should have the following properties for a good objective 

distance measure: 

 

(i) dro << dri è r1 = dro/dri<<1 

(ii) dro << dio è r2 = dro/dio<<1 

(iii) dio ˜  dri è r3 = dio/dri˜ 1 

 

• Case 2: The processing algorithm does not modify the input vocal tract 

spectrum significantly. Examples of this case include pitch or time scale 

modification, slight noise addition, vocal tract transplantation with excessive 

amount of smoothing. The following properties should hold for a good 

objective distance measure: 
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(i) dro ˜  dri è r1 = dro/dri˜ 1 

(ii) dro >> dioè r2 = dro/dio>>1 

(iii) dio << driè r3 = dio/dri<<1 

 

When there is not significant vocal tract difference between the reference and the 

input, we can have two cases depending on the processing algorithm used: 

 

• Case 3: The processing algorithm does not modify the input vocal tract 

spectrum significantly. As an example, the input signal can be a sentence 

utterance recording from speaker X, the reference signal can be the identical 

utterance recorded from the same speaker again, and the output can be pitch or 

time scaling of the same recording, or slight noise addition. In this case, a 

good objective distance measure should have the following properties: 

 

(i) dro ˜  driè r1 = dro/dri˜ 1 

(ii) dro ˜  dioè r2 = dro/dio˜ 1 

(iii) dio ˜  driè r3 = dio/dri˜ 1 

 

• Case 4: The processing algorithm modifies the input vocal tract spectrum 

significantly. Examples of this case include vocal tract scaling or filtering. The 

following properties should hold for a good objective distance measure in this 

case: 

(i) dro>>driè r1 = dro/dri>>1 

(ii) dro ˜  dioè r2 = dro/dio ˜ 1 

(iii) dio >> driè r3 = dio/dri>>1 

 

In summary, three performance measures are considered for performance 

comparison for each case: r1 = dro/dri, r2 = dro/dio, and r3 = dio/dri. Depending on the 

signal pairs for which these ratios are computed and the signal processing algorithms 

employed, these ratios should be as close as possible to the specified values for the 

corresponding cases. For each case, we computed the respective objective distances and 
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applied a pair wise t-test to evaluate whether the given objective measure satisfies the 

requirement corresponding to that case.  

 

As an example, one of the sample generation procedures for Case 2 is pitch 

scaling speaker X’s utterance recording by a large factor (i.e. 0.6 or 1.8). When we 

compare the output of this procedure to another speaker’s identical utterance recording, 

we expect to observe the reference to output distance to be close to the reference to 

input distance as pitch scaling does not change the vocal tract spectrum. In Table 5.2, 

the fourth row shows that all four objective distances satisfy this condition at a 

significance level of 95%.  

 

p-values and r1=dro/dri ratios for objective 
distances 

Case # 
and 
condition  

 
Input 

 
Ref 

Processing 
Algorithm 

SD SDfw LD WCeps 
Case 1  
dro<<dri? 

X Y Transp1 p=0.0000 
r1=0.9366 

p=0.0000 
r1=0.9722 

p=0.0000 
r1=0.5466 

p=0.0000 
r1=0.5318 

Case 2 
dro˜ dri? 

X Y Transp2  
or Transp3 

p=0.7185 
r1=1.0027 

p=0.0005 
r1=1.0215 

p=0.0000 
r1=0.7830 

p=0.0178 
r1=0.4990 

Case 2 
dro˜ dri? 

X Y PScale1  
or PScale2 

p=0.0000  
r1=1.2269    

p=0.0000 
r1=1.2636    

p=0.0000 
r1=1.0314    

p=0.0319 
r1=0.6091 

Case 2 
dro˜ dri? 

X Y TScale1  
or TScale2 

p=0.0000    
r1=1.0374 

p=0.0000 
r1=1.0543  

p=0.0027   
r1=1.0174 

p=0.4264 
r1=0.8433 

Case 2  
dro˜ dri? 

X Y Noise1 
or Noise2 

p=0.0000 
r1=1.1457    

p=0.0000 
r1=1.0439 

p=0.0000   
r1=1.1432 

p=0.0001 
r1=0.3679 

Case 3 
dro˜ dri? 

Y Y PScale1 
or PScale2 

p=0.0000 
r1=1.3130 

p=0.0000 
r1=1.3339 

p=0.0000 
r1=1.0818 

p=0.9362 
r1=0.9891 

Case 3 
dro˜ dri? 

Y Y TScale1  
or TScale2 

p=0.0022 
r1=1.0152 

p=0.0119 
r1=0.9898 

p=0.0000 
r1=1.0535 

p=0.5001 
r1=1.0929 

Case 3 
dro˜ dri? 

Y Y Noise1 
or Noise2 

p=0.0000 
r1=1.1478 

p=0.0000 
r1=1.0420   

p=0.0000 
r1=1.2534 

p=0.3354 
r1=0.8681 

Case 4 
dro>>dri? 

Y Y VScale1 
or VScale2 

p=0.0000    
r1=1.1017 

p=0.0000 
r1=1.0410 

p=0.0000 
r1=1.5412    

p=0.3188 
r1=1.0656 

Case 4  
dro>>dri? 

Y Y Filt1 
or Filt2 

p=0.0000   
r1=1.4078       

p=0.0000 
r1=1.6262 

p=0.0000   
r1=2.5570 

p=0.0068 
r1=1.7926 

Total 
Closest 

   0 3 7 0 

 

Table 5.4. dro vs dri values for different objective measures and different speech 

processing algorithms 
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Table 5.4 shows that LSF distance using inverse harmonic weighting and 

frequency weighted spectral distance perform the best when dro and dri values are 

considered in different situations. The p-values which are less than 0.05 (i.e. satisfying 

the desired result at a confidence level of 95%) are marked in bold characters. The 

corresponding ave raged ratios r1 are also shown. Note that r is obtained by averaging 

dro/dri ratios over all samples. The r1 values closest to the desired values for a given row 

are also marked for each case. Therefore, the objective distance measure which has the 

maximum number of closest r1 values is a better distance that satisfies the properties 

discussed above. 

 

p-values and r2=dro/dio ratios for objective 
distances 

Case # 
and 
condition 

Input Ref Processing 
Algorithm 

SD SDfw LD WCeps 
Case 1  
dro << dio? 

X Y Transp1 p=1.0000 
r2=1.3156 

p=1.0000 
r2=1.3212 

p=0.0000 
r2=0.5812 

p=0.0836 
r2=0.8341 

Case 2 
dro >> dio? 

X Y Transp2  
or Transp3 

p=0.0000 
r2=1.9029      

p=0.0000 
r2=1.9411 

p=0.0000 
r2=1.4831 

p=0.4540 
r2=1.0369 

Case 2 
dro >> dio? 

X Y Pscale1  
or Pscale2 

p=0.0000 
r2=1.3868    

p=0.0000   
r2=1.3455   

p=0.0000 
r2=2.8084   

p=0.6871 
r2=0.8888 

Case 2  
dro >> dio? 

X Y Tscale1  
or Tscale2 

p=0.0000 
r2=1.2491         

p=0.0000   
r2=1.2883 

p=0.0000   
r2=2.0782   

p=0.0030 
r2=1.9243 

Case 2 
dro >> dio? 

X Y Noise1 
or Noise2 

p=0.0000 
r2=1.5022         

p=0.0000   
r2=2.4557 

p=0.0000 
r2=1.4770 

p=0.7701 
r2=0.8160 

Case 3 
dro ˜  dio? 

Y Y Pscale1 
or Pscale2 

p=0.0000 
r2=1.4895 

p=0.0000 
r2=1.4500 

p=0.0000 
r2=2.4762 

p=0.0000  
r2=3.2430 

Case 3 
dro ˜  dio? 

Y Y Tscale1  
or Tscale2 

p=0.0000 
r2=1.1627 

p=0.0000 
r2=1.1341 

p=0.0000 
r2=1.9324 

p=0.0000 
r2=2.7134 

Case 3  
dro ˜  dio? 

Y Y Noise1 
or Noise2 

p=0.0000 
r2=1.7778       

p=0.0000 
r2=3.2166        

p=0.0000 
r2=1.4289 

p=0.0000 
r2=3.3189 

Case 4  
dro ˜  d io? 

Y Y Vscale1 
or Vscale2 

p=0.0000 
r2=1.2985       

p=0.0000 
r2=1.2922 

p=0.0000 
r2=1.1489 

p=0.0000 
r2=2.2441 

Case 4 
dro ˜  dio? 

Y Y Filt1 
or Filt2 

P=0.0000 
r2=1.1219    

p=0.0000  
r2=1.0709   

p=0.0000    
r2=1.0708  

p=0.1376 
r2=1.5367 

Total 
Closest 

   0 4 6 0 

 

Table 5.5. dro vs dio values for different objective measures and different speech 

processing algorithms 

 

Similar convention is used in Tables 5.5 and 5.6. According to Table 5.5, LSF 

distance using inverse harmonic weighting performs the best when dro and dio values are 
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considered. Table 5.6 shows that spectral distortion, frequency weighted spectral 

distortion, and weighted LP cepstral distance measures perform better when dio and dri 

values are considered. Counting the total closest r1, r2, and r3 values assigned to each 

distance measure, we obtain Table 5.7. Table 5.7 shows that LSF distance is assigned 

the maximum number of closest ri values. Therefore, we decided to use LSF distance 

using inverse harmonic weighting for objective evaluations of vocal tract 

transformation performance. 

 

p-values and r3=dio/dri ratios for objective 
distances 

Case # and 
condition 

Input Ref Processing 
Algorithm 

SD SDfw LD WCeps 
Case 1  
dio ˜  dri ? 

X Y Transp1 p=0.0000 
r3=1.4046        

p=0.0000 
r3=1.3590 

p=0.0000 
r3=1.0634 

p=0.0002 
r3=1.5685 

Case 2  
dio <<dri ? 

X Y Transp2  
or Transp3 

p=1.0000 
r3=1.8978 

p=1.0000 
r3=1.9001 

p=1.0000 
r3=1.8941 

p=0.9894 
r3=2.0781 

Case 2  
dio <<dri ? 

X Y Pscale1  
or Pscale2 

p=0.9999 
r3=1.1303 

p=0.9830 
r3=1.0648 

p=1.0000 
r3=2.7230 

p=0.9336 
r3=1.4592 

Case 2  
dio <<dri ? 

X Y Tscale1  
or Tscale2 

p=1.0000    
r3=1.2041  

p=1.0000  
r3=1.2219 

p=1.0000  
r3=2.0426 

p=0.9998 
r3=2.2818 

Case 2  
dio <<dri ? 

X Y Noise1 
or Noise2 

p=1.0000 
r3=1.3112    

p=1.0000  
r3=2.3523    

p=1.0000  
r3=1.2920    

p=0.9996 
r3=2.2178 

Case 3  
dio ˜  dri ? 

Y Y Pscale1 
or Pscale2 

p=0.0000 
r3=1.1344 

p=0.0000  
r3=1.0870 

p=0.0000 
r3=2.2890 

p=0.0000 
r3=3.2788 

Case 3  
dio ˜  dri ? 

Y Y Tscale1  
or Tscale2 

p=0.0000 
r3=1.1453 

p=0.0000 
r3=1.1458 

p=0.0000 
r3=1.8342 

p=0.0000 
r3=2.4827 

Case 3  
dio ˜  dri ? 

Y Y Noise1 
or Noise2 

p=0.0000 
r3=1.5489 

p=0.0000 
r3=3.0871 

p=0.0000 
r3=1.1400 

p=0.0000 
r3=3.8230 

Case 4  
dio >> dri ? 

Y Y Vscale1 
or Vscale2 

p=0.0000 
r3=1.1786 

p=0.0000 
r3=1.2414  

p=1.0000  
r3=0.7455 

p=0.0000 
r3=2.1059 

Case 4  
dio >> dri ? 

Y Y Filt1 
or Filt2 

p=1.0000 
r3=0.7969 

p=1.0000 
r3=0.6585 

p=1.0000  
r3=0.4188 

p=0.7070 
r3=0.8572 

Total Closest    1 2 2 0 
 

Table 5.6. dio vs dri values for different objective measures and different speech 

processing algorithms 

 

Distance Measure SD SDfw LD WCeps 

Total Closest 1 9 15 0 
 

Table 5.7. Total closest r values that satisfy the corresponding requirements in Tables 

5.4, 5.5, and 5.6 for each objective distance value 
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Table 5.8 shows the total number of triples used for each processing algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8. Total number of triples for each processing algorithm 

 

5.5. Evaluations  

 

5.5.1. Objective Test: Comparison with the Baseline  

 

In order to test the vocal tract transformation function estimation described in this 

chapter, an objective cross- lingual voice conversion test is performed. The target 

speaker was a compound bilingual female American English and Turkish speaker. The 

source speaker was a male Turkish speaker who can speak English with foreign accent. 

100 utterances in English were used in training. For the tests, 10 utterances in Turkish 

were transformed using context-matching and the baseline algorithm. The average LSF 

distance between the transformation outputs and the target speaker recordings is 

Case Input 
Speaker 

Ref. 
Speaker 

Algorithm Total 
Triples 

1 X Y Transplantation from Y onto 
X’s residual (Transp1) 

100 

 
2 

 
X 

 
Y 

Transplantation from Y onto 
X’s residual with mixing 
(0.4) or too much smoothing 
(20) (Transp2, Transp3) 

30 (15+15) 

2 X Y Pitch scaling of X (0.6, 1.8) 
(Pscale1, Pscale2) 

30 (15+15) 

2 X Y Time scaling of X (0.6, 1.8) 
(Tscale1, Tscale2) 

30 (15+15) 

2 X Y Noise addition to X (10 and 
20dB SNR) (Noise1, Noise2) 

30 (15+15) 

3 Y Y Pitch scaling of X (0.6, 1.8) 
(Pscale1, Pscale2) 

40 (20+20) 

3 Y Y Time scaling of X (0.6, 1.8) 
(Tscale1, Tscale2) 

40 (20+20) 

 
3 

 
Y 

 
Y 

Noise addition to X (10 and 
20 dB SNR) (Noise1, 
Noise2) 

40 (20+20) 

4 Y Y Vocal tract scaling (0.6, 1.8) 
(Vscale1, Vscale2) 

40 (20+20) 

4 Y Y Filtering (LPF 2 KHz, BPF, 
2-4 KHz) (Filt1, Filt2) 

40 (20+20) 
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computed. For providing a baseline, the average LSF distance between the vocal tract 

transplantations and the target recordings was also computed. 

 

The results are shown in Figure 5.2. We observe that the proposed method results 

in 0.5 LSF distance reduction as compared to the baseline method. We also note that 

the difference between the source and the target speaker is larger in this example 

because of gender difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Result of objective test for the proposed vocal tract transforma tion function 

estimation method 

 

Figure 5.3 shows samples of vocal tract spectra converted using the baseline 

method and the proposed method along with the corresponding target vocal tract 

spectra. 
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Figure 5.3. Examples of vocal tract spectra transformed using the new method, baseline 

method, and the corresponding target spectra 
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5.5.2. Subjective Test: Comparison of Parallel and Non-Parallel Training 

 

The vocal tract transformation techniques described in this chapter enable the 

employment in non-parallel databases for voice conversion. Using non-parallel training, 

it is even possible to use source and target training databases that are in different 

languages. We have designed a subjective listening test to compare the performance of 

non-parallel with that of parallel training. Two types of non-parallel and a parallel 

training and transformation sessions were carried out: 

 

• Parallel (P1): Training with 50 identical source and target utterances in 

English, transformation of four source utterances in Turkish using the baseline 

method 

• Parallel (P2): Training with 50 identical source and target utterances in 

English, transformation of four source utterances in Turkish using the 

proposed method 

• Non-parallel (NP1): Training with 50 non- identical source and target 

utterances in English, transformation of four source utterances in Turkish 

using the proposed method 

• Non-parallel (NP2): Training with 50 source utterances in Turkish and 50 

target utterances in English, transformation of four source utterances in 

Turkish using the proposed method 

 

The target speaker was a male, native American English speaker and the source 

speaker was a male, bilingual Turkish and American English speaker. For all 

transformations, the mean of the pitch is transformed to match the target speaker’s 

average pitch. As the source and the target speakers had close average pitch values 

(~112 Hz), the pitch scaling amount was fairly close to 1.0 in all cases. The subjects 

were presented with an output and a target recording and were asked to score the level 

of similarity to the target speaker’s voice on a scale from 1 to 5. A score of “1” 

corresponds to minimum similarity to target and “5” corresponds to maximum 

similarity. As there were four methods and four outputs for each method, each of the 
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six subjects listened to 16 output and target pairs. Figure 5.4 shows the results of the 

similarity test. 

 

The results indicate that the proposed method performs the best in terms of 

similarity to the target voice when parallel training is employed. The similarity to the 

target voice is reduced when non-parallel databases are used. This result is expected 

since the mapping between the source and the target speaker is likely to be better 

resulting in better estimation of the vocal tract transformation function in the case of 

parallel training. NP2 corresponds to the most difficult case because one speaker’s 

phonemes in a specific language need to be matched to another speaker’s phonemes in 

another language in the transformation stage. This results in a significant reduction in 

the similarity to the target speaker’s voice. NP2 has the advantage of employing source 

target and training data in the same language. Therefore, the mapping of the source 

training and transformation data is an easier problem. However, it seems that once there 

are problems in training, the cross- lingual voice conversion algorithm is not able to 

cover from these errors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Results of the subjective similarity test 

 

In a second subjective test, we have evaluated the MOS-based quality of the 

output signals. For each training method, six subjects were presented with four output 

recordings. Therefore, the subjects have listened to 16 outputs in total. Prior to test, 
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they were provided with the reference set of recordings in Table 5.9 to provide a 

reference in their judgments. The standard mean opinion scale is used for the judgments 

on quality as given in Table 5.10. The results of the MOS-based quality test are shown 

in Figure 5.5.  

 

Coder or  

Recording format 

Bit rate 

(Kbps ) 

MOS 

PCM 64  4.4 

ADPCM (G.726) 32  4.2 

LD-CELP (G.728) 16 4.2 

CSA-CELP (G.729) 8 4.2 

CELP 4.8 4.0 

LPC-10 (FS 1015) 2.4 2.3 

 

Table 5.9. Reference set for the MOS test 
 

 

MOS Meaning 
5 Very good quality. There is no noise, the conversation is 

clearly and distinctly understood. 
4 Good quality. The noise does not disturb, the conversation is 

distinctly understood. 
3 Normal quality. The noise disturbs a little, the conversation 

can be understood. 
2 Low quality. The noise is disturbing but the conversation can 

be understood. 
1 Very bad quality. The noise is very disturbing and the 

conversation can not be understood. 
 

Table 5.10. Mean Opinion Score (MOS) scale on speech quality 
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Figure 5.5. Results of the MOS-based quality test 

 

In terms of quality, the proposed method using parallel training resulted in the 

best performance. It is followed by the baseline method. The proposed method enables 

non-parallel training which resulted in significant quality reduction. Therefore, there is 

still room for improvement in the automatic mapping of training databases as well as 

reliable estimation of the vocal tract transformation function in the case of non-parallel 

training. 
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6. STYLISTIC PROSODY TRANSFORMATION 

 

6.1. Introduction 

 

As prosody provides significant clues on a speaker’s identity, a robust prosody 

modeling and modification module is an important component of a voice conversion 

system. Applications of prosody modeling, modification, and transformation are not 

only limited to voice conversion research. More detailed modeling of prosody resulted 

in significant improvements in TTS (van Santen, 1994), (Syrdal, et. al., 1998a), speaker 

identification (Sonmez, et. al., 1998), and speech recognition (Shriberg and Stolcke, 

2004). Concatenative text-to-speech synthesis systems use prosody modification 

techniques to synthesize speech in a target prosodic setting (Syrdal, et. al., 1998b) as 

well as to perform smoothing during concatenation (Bozkurt, et. al., 2002). Prosody 

transformation provides a useful framework for investigating the effects of modifying 

prosody parameters in a controlled manner. Therefore, emotion research is another 

application field in which the relationship between perceived emotions and prosodic  

features are being investigated (Burkhardt, et. al., 2006). 

 

Pitch, duration, and energy are the most prominent factors in prosody perception. 

In order to make the voice conversion output sufficiently close to the target voice, it is 

required to perform sufficient amount of prosody modification to match these 

characteristics. Among the three factors, pitch and duration are relatively more 

important in speaker identity perception (Ormanci, et. al. 2002). Modification of pitch 

and duration require application of techniques including phase vocoding (Flanagan and 

Golden, 1966), time domain or frequency domain pitch synchronous overlap-add 

(Moulines and Verhelst, 1995), and sinusoidal model based modification (Quatieri and 

McAulay, 1992). PSOLA based methods have become a popular choice in voice 

modification research since they enable modification of the pitch and the duration 

simultaneously in a robust manner. The frequency domain version of PSOLA is also 

appropriate for modifying other characteristics directly such as the vocal tract spectrum, 

or formant structure. 
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State-of-the-art voice conversion algorithms employ transformation of the long-

term statistics of prosodic features such as the mean and the variance of f0, and the 

overall speaking rate. These modifications are able to make the average prosodic 

characteristics match those of the target speaker. However, they can not reliably model 

and transform prosody in more detail including local shapes and movements of the 

pitch contours, rhythm, and local speaking rate. Lack of a detailed prosody modeling 

and modification module can be a major drawback for cross- lingual applications. In 

cross- lingual voice conversion, the source and the target training databases are 

collected in one language and transformations are performed using a source database 

collected in another language. Significant differences in the source and the target 

prosody characteristics are likely to occur due to accent differences. Therefore, prosody 

transformation techniques to match average target prosodic characteristics might not 

result in sufficient similarity to the target speaker’s style. This is particularly important 

for accent transformation in which the aim is to generate the target speaker’s style in a 

different language. For example, consider a dubbing application in Turkish language 

where the aim is to make an American celebrity speak Turkish with American accent  

using cross- lingual voice conversion. In this particular example, having the target speak 

the transformation language with accent might make the voice conversion output more 

natural since listeners would not expect to hear perfect native-accented Turkish from 

that celebrity voice. In this case, conventional voice conversion algorithms can only be 

employed if a source speaker who is native in American English but can speak Turkish 

with accent could be found. It might be hard to find such source speakers especially 

when the transformation language is not a very common one. An alternative is to use a 

native Turkish speaker as the source who can speak American English as well and to 

modify his/her style to match the target prosody characteristics in the training language. 

In this chapter, we develop prosody transformation techniques that can be used for this 

purpose.  

 

All prosody modification algorithms result in processing distortion especially 

when large amounts of modifications are performed. In order to perform detailed 

prosody modification without causing additional processing distortion, it is required to 

estimate the modification amounts carefully by avoiding large modification factors or 
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discontinuities at the output. In this chapter, we describe a new algorithm for stylistic 

prosody transformation. The algorithm consists of two stages: Stylistic pitch 

transformation and stylistic speaking rate transformation. Stylistic pitch transformation 

models and transforms the slopes of the pitch contour segments while trying to reduce 

the amount of pitch scale modification required. Stylistic speaking rate transformation 

modifies the speaking rate and rhythm by time invariant and time varying duration 

scaling as well as by expansion or contraction of pauses in the speech signal. We 

demonstrate the proposed algorithm in the evaluations for a cross- lingual voice 

conversion task. We also compare its performance with standard prosody 

transformation techniques. The results show that stylistic prosody transformation can 

generate closer output to the target voice with comparable quality to the standard 

methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Flowchart of the proposed stylistic prosody transformation algorithm 

 

Figure 6.1 shows the general flowchart of the proposed method. In Section 6.2, 

two algorithms for stylistic pitch transformation are described. The first algorithm fits 

least-squares lines to source and target pitch contours in the training database and 

estimates additional amounts of pitch modification during transformation to perform 

sentence- level pitch slope transformation. The second algorithm described in Section 

6.2, is an extension of the first algorithm to fit least squares lines on voiced segments of 
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the source and the target pitch contours. It employs context information to estimate the 

average pitch slope modification amount to match the target pitch slope patterns in 

more detail. Estimating the slope modification factors on a voiced segment basis 

enables to reduce discontinuities in pitch manipulation. In Section 6.3, a new method 

for modifying the speaking rate is described. It involves duration modification with 

time invariant and time varying duration scaling as well as modification of the pauses 

between utterances to match the target speaking rate better. 

 

6.2. Pitch Transformation 

 

6.2.1. Conventional Pitch Transformation Methods  

 

State-of-the-art voice conversion algorithms perform pitch transformation using a 

variance scaling and mean shifting approach to match the target f0 mean and variance 

(Arslan, 1999). In this approach, f0 values are assumed to be normal distributed. The 

distribution parameters (mean and variance) can be easily estimated from the training 

pitch contours. In the transformation stage, a time varying pitch scaling factor is 

determined from the instantaneous source f0 value fs(t), and source and target f0 

distribution parameters using: 

 

    

(22) 

 

 

where fs(t) is the instantaneous f0 value in the source transformation utterance, µs and µt 

are the mean of the source and target training f0 values, s s and s t are the variance of the 

source and target training f0 values, and p(t) is the instantaneous amount of pitch 

scaling required for matching the target mean and variance. The limitation of this 

approach is that the local differences in the source and target pitch contour patterns can 

not be modeled and transformed. However, these differences may contain important 

information on a speaker’s style.  
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On the other extreme, very detailed pitch transformation can be performed by an 

approach that replaces the whole source f0 contour with an estimated target contour. 

Examples of this approach include (Chappel and Hansen, 1998), and (Turk and Arslan, 

2003). The estimation of the target f0 contour can be performed by matching the source 

input f0 contour with the training contours, finding an optimal match and transforming 

the pitch to match the corresponding target f0 contour. In (Turk and Arslan, 2003), we 

have developed a method to perform target f0 contour estimation in a weighted manner. 

However, this approach has a major drawback: When the estimated target f0 value is 

significantly different from the instantaneous source f0 value, large amounts of pitch 

modification is required to match the target f0 contour. This results in quality reduction 

as pitch modification algorithms can typically perform well for low to medium amounts 

of modification but fail to produce natural output for larger modification amounts. As 

an example, PSOLA based techniques which are employed in this  study perform 

considerably well for pitch scaling factors in the range 0.7 to 1.5. The quality and 

naturalness may decrease for pitch scaling factors out of this range. 

 

6.2.2. Stylistic Pitch Contour Modeling and Transformation 

 

In order to avoid the shortcomings of the two pitch transformation approaches 

summarized in the previous section, we propose to model and transform the sentence 

and segment level slopes of the pitch contours for the source and the target speakers as 

an additional component to mean and variance transformation. Specia l care is taken to 

determine pitch modification factors to minimize the amount of pitch scaling required. 

Note that parallel source and target training data in the form of sentence utterance 

recordings are required for the proposed method. 

 

The flowchart of the sentence- level pitch slope modeling and transformation 

algorithm is shown in Figure 6.2. The algorithm consists of two stages. In the training 

stage, source and target recordings of identical utterances are collected. Pitch contours 

are extracted with the RAPT algorithm (Talkin, 1995). The pitch contours are further 

smoothed with a median filter of 5 frames. The unvoiced regions are linearly 

interpolated starting from previous voiced frame’s pitch value to the next voiced 
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segment’s pitch value. Then, a line is fit to the pitch values using the least squares error 

criterion as shown in Figure 6.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Sentence-level pitch slope modeling and transformation algorithm flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Least-squares line fit to the smoothed and interpolated pitch contour 
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Let K be the total number of parallel source and target utterance pairs. Let also k 

be the index of each parallel training utterance where 1 = k = K. The average length of 

smoothed source training contours is determined using: 

 

 

(23) 

 

 

where ps(k) is the smoothed version of the pitch contour of the kth source training 

utterance. A least-squares line is fit to each smoothed source pitch contour and the 

corresponding line slopes, ms(k), are determined. The smoothed source pitch contours 

are linearly interpolated to the average source training pitch contour length N. ms(k), the 

slopes of the lines fitted to the smoothed source pitch contours; |ps(k)|, the original 

length of each contour ; and xs(k), the smoothed and linearly interpolated versions of the 

source training pitch contours, are reserved for the transformation stage. The target 

training pitch contours are also smoothed and a least-squares line is fit to each one of 

them. mt(k), the slopes of the least-squares lines fit to target training pitch contours are 

also reserved for the training stage. 

 

In the transformation stage, identical pre-processing is performed on the source 

input pitch contour to obtain a smoothed and linearly interpolated pitch contour denoted 

by x. The distance to each smoothed source training contour is computed using: 

 

    (24) 

 

where k is the source training contour index, and a is a weighting parameter between 

contour similarity and contour length. Setting a equal to 0.95 works well in practice. 

The normalized cross-correlation of the smoothed input pitch contour and the smoothed 

source training pitch contours are computed using: 

 

 

   (25) 
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where r(k) is the normalized cross-correlation between the smoothed source input pitch 

contour x and kth smoothed source training pitch contour xs(k). µx and µxs(k) are the mean 

of the f0 values in x and xs respectively. The shape distance is computed using: 

 

                    

   (26) 

        

 

Note that if dshape(k) turns out to be negative, it is set equal to the greatest 

possible shape distance value of 1.0. The length distance is computed using: 

 

 

   (27) 

 

 

The final pitch contour dis tance metric is guaranteed to be a continuous value 

between 0.0 and 1.0. Higher distance values correspond to increased similarity between 

a given contour and a source training contour. The distance values are exponentially 

weighted and the weighted values are normalized to sum up to unity using: 

 

 

(28) 

 

 

ß=5.0 is used in practice. The normalized weights, w(k), are then used to estimate 

the target sentence pitch slope by weighted averaging of the corresponding target 

sentence slopes as follows: 

 

    

(29) 
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where m is the estimated sentence slope, w(k) is the weight of the kth target training 

contour, and mt(k) is the corresponding target training sentence slope. 

 

Once the target sentence slope is estimated, a line equation is determined by 

computing a bias term which makes the middle point of the line and the line fit to the 

source input contour will intersect using: 

 

 

    (30) 

 

 

where lt is the estimated line, ls is the least squares line fit to the source pitch contour, i 

is the speech frame index and I is the number of frames in the source input pitch 

contour. The difference between the two lines is assigned as the pitch scaling factor for 

that frame: 

 

     (31) 

 

 

Additional scaling and shifting is applied to the pitch scaling ratios p(i) if mean 

and variance transformation to target will be applied simultaneously as follows: 

 

 

    (32) 

 

 

where µt and s t are the mean and the standard deviation of target f0 values estimated 

from the target training pitch contours, and µp and s p are the mean and the standard 

deviation of the original pitch scaling factors p. Figure 6.4 shows an example of joint 

sentence slope, mean and variance transformation. 

 

 



 

 

93 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Source input pitch contour, least squares line fit to source input pitch 

contour, estimated target line with mean compensation (red line), and output pitch 

contour after scaling 

 

Figure 6.5 shows the segment- level pitch slope modeling and transformation 

algorithm. The pre-processing steps for the segment-level pitch slope modeling and 

transformation algorithm are identical with the sentence- level algorithm. The main 

difference of the segment- level algorithm is the modeling of source and target pitch 

slopes in a local manner rather than at sentence- level. This results in more detailed 

transformation of the pitch contour movements. 

 

In order to perform segment- level modeling and transformation of the pitch 

contour slopes, an additional segmentation step is required. Although it is possible to 

segment a given pitch contour according to pitch accent movements and syllable 

boundaries, we have used each voiced pitch contour segment as a single unit to model 

the segment slopes. Using this approach segment slopes can be transformed with less 

discontinuity as compared to a more detailed model which estimates more than one 

segment within a voiced pitch contour segment. In the latter case, significantly different 

pitch slope transformation amounts in neighboring units will cause discontinuities in 
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the time-varying pitch scale modification factor. Another advantage of using voiced 

segments as the basic units is the ease of automatic segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Segment- level pitch slope modeling and transformation algorithm flowchart 

 

The segmentation algorithm searches for voiced segments that are separated by 

unvoiced regions in the median filtered pitch contour. A new segment is assigned only 

if the previous and next three speech frames are marked as unvoiced. Otherwise, the 

unvoiced values are linearly interpolated using the neighboring f0 values and the 

current voiced segment is extended. After all voiced segments are determined, a least 

squares line is fit to the each segment and the slope of the line is recorded. Depending 

on the slopes, each segment is classified into three groups: 

 

• Decreasing (D): slope<-0.5 

• Monotone (M): -0.5=slope<0.5 

• Increasing (I): 0.5=slope 

 

For all combinations of previous J source segment slope classes, current source 

segment slope class and the corresponding target segment slope class, the average 
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target slopes and the probability of observing that source-target slope sequence is 

computed. J is set to 0, 1, and 2 respectively. Note that for J=0, no previous source 

segment slope class context is used. For J=1, the statistics for the source slope 

sequences and the corresponding target sequence given in Table 6.1 are computed. 

 
 

Source  Target Source  Target 
Previous  
segment 

Current 
segment 

Current 
segment 

Previous  
segment 

Current 
segment 

Current 
segment 

D D D M M I 
D D M M I D 
D D I M I M 
D M D M I I 
D M M I D D 
D M I I D M 
D I D I D I 
D I M I M D 
D I I I M M 
M D D I M I 
M D M I I D 
M D I I I M 
M M D I I I 
M M M 

 

   
 

Table 6.1. All combinations of source-target slope sequences for J=1 

 

In order to determine the target slope given the source slope sequences, the target 

slope class with highest probability given the source slope sequence for J=2 is 

determined. If the number of sequences observed in the training data is less than a fixed 

threshold (we used 10 in practice), J is decreased by one and the highest probability 

target slope class is determined again. The process is repeated as required until J=0, i.e. 

no source context is employed. This approach is similar to probability estimation in 

language modeling using a back-off mechanism when reliable estimates can not be 

found in the training data. 
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Figure 6.6. Original least-squares lines fit to the segments extracted from the smoothed 

and interpolated pitch contour and their transformed versions 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Source input pitch contour and the pitch contour after scaling and 

mean compensation using the segment based approach 

 

Figures 6.6 and 6.7 show the segment slope lines fit to an utterance, their 

modified versions, and the output pitch contour respectively. In determining the pitch 

scale amount, we follow the method used in sentence- level pitch slope transformation. 
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6.3. Speaking Rate Transformation 

 

Speaking rate is an important component of prosody that conveys clues on the 

identity as well as the emotional state of the speaker. It changes depending on the 

language background of the speaker, on psychological conditions and emotions, and on 

whether the speaker has speech and language impairment. As an example, in the sad, 

happy, and angry modes, people tend to use more variable speaking rate (Yildirim, et. 

al., 2004). It is well known that second-language speakers tend to have significantly 

different durational characteristics when compared to native speakers (Arslan and 

Hansen, 1997), (Tomokiyo, 2000). Hearing- impaired children have slower articulation 

skills as compared to normal children that results in slower speaking rate (Monsen, 

1978), (Osberger and McGarr, 1982). Previous research has shown that speaking rate 

and other acoustic characteristics are not independent. As an example, Hirata and 

Tsukada analyzed the change in formant movements with vowel duration for Japanese 

vowels and showed that the formants of short mid-vowels /e/ and /o/ had significant 

change with speaking rate whereas the high vowel /i/ resisted to changes with speaking 

rate (Hirata and Tsukada, 2003). According to Zellner, slow rate speech has major 

qualitative effects on the speech waveform in French (Zellner, 1998). 

 

Estimating the speaking rate and modifying it in a natural manner with signal 

processing techniques has potential applications in speech compression, speech 

recognition, text-to-speech synthesis (TTS), voice conversion, audio watermarking, 

helping handicapped people, and language education. Faltlhauser, Pfau, and Ruske 

developed a method for on- line speaking rate estimation with Gaussian Mixture Models 

and Artificial Neural Networks (Faltlhauser, et. al., 2000). Their phoneme rate 

estimates had a correlation coefficient of 0.66 with the actual phoneme rates. In a 

multilingual study, Pellegrino and his colleagues proposed a method based on 

unsupervised vowel detection for speaking rate estimation in multilingual spontaneous 

speech. The correlation coefficient between the outputs of the proposed method and the 

actual speaking rates was 0.84 on the average for 6 languages including English, 

German, Hindi, Japanese, Mandarin, and Spanish (Pellegrino, et. al., 2004). There has 

been extensive research targeted at increasing the speaking rate without loss of quality 
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and intelligibility as a means of reducing storage and bandwidth requirements for 

speech (Foulke and Sticht, 1969), (Beasley and Maki, 1976), (Duker, 1974). Arons 

provided a good summary on time-compressed speech with a broad list of relevant 

references (Arons, 1992). Several researchers focused on speaking rate compensation 

for speech recognition systems (Okuda, et. al., 2002), (Mirghafori, et. al., 1995). TTS 

engines employ duration modeling techniques based on sequential rules (Klatt, 1987), 

(van Santen, 1994), decision trees (Pitrelli and Zue, 1989), and neural networks 

(Campbell, 1992) to synthesize more natural sounding speech. Foote, Adcock and 

Girgensohn used time-scale modification in audio watermarking (Foote, et. al., 2003). 

Automatically slowing down speech without reducing intelligibility can be useful for 

manual transcription of spontaneous speech and helping speech and language 

disordered. As an example, Coyle and his colleagues used time-scale modification 

techniques for slowing down speech for the treatment of verbal apraxia (Coyle, et. al., 

2004). In (Demol, et. al., 2004), the authors proposed a time-varying duration scaling 

algorithm for computer-aided language education applications. 

 

A high-quality speaking rate transformation module is an essential part of a 

complete voice conversion system. Different speakers have varying speaking rates and 

timing characteristics due to their linguistic backgrounds, physiology of their vocal 

tracts, and their emotional states. In this section, we describe an algorithm that can be 

used to transform the speaking rate without introducing additional processing 

distortion. 

 

6.3.1. Conventional Speaking Rate Transformation Methods  

 

The overall speaking rate of the target speaker can be matched by applying a time 

invariant scaling factor once the average speaking rates of the source and the target 

speakers are estimated. Arslan proposed estimation of the time varying duration scaling 

factors from the training data (Arslan, 1999). In this approach, the codebook entries that 

are matched with the current source speech frame are analyzed in terms of durations. 

The ratio of the target and source state durations are used as an estimate of the local 

duration modification factor. The durations of the previous and next states are also 
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considered in order to provide a more robust duration estimate and to reduce the effects 

of alignment mismatches. This approach works considerably well for monolingual 

transformations. However, in cross-lingual voice conversion the speaking rate of the 

source speaker might be different in the training and transformation languages. 

Therefore, local modification factors estimated from training data in one language may 

not provide natural sounding output when applied to transform the durations in a 

recording in another language. Another disadvantage is the requirement for different 

amounts of duration modification in consecutive speech frames which may result in 

distortion. 

 

6.3.2. Stylistic Speaking Rate Transformation 

 

In order to minimize the possibility of additional distortion and to match the target 

speaking rate better, we propose a stylistic speaking rate transformation algorithm. The 

algorithm performs global transformation of the speaking rate as well as transformation 

of speech rhythm by analyzing and modifying long pauses to match the target 

characteristics. This approach results in significantly stable output quality with 

sufficient similarity to target voice. Figure 6.8 shows the flowchart of the stylistic 

speaking rate transformation algorithm. It consists of the following steps: 

 

• The average sentence duration is transformed to match the overall target 

speaking rate. 

• The patterns of long pauses in target speech are modeled and transformed. 

 

In order to analyze speaking rate patterns, a separate paragraph is recorded from 

the target speaker in the training language. A paragraph transformed to the target 

speaker’s voice is recorded from the source speaker in the transformation language. The 

target training paragraph and the source and target training utterances are used 

determining the stylistic speaking rate transformation parameters which include: 

 

• A global duration modification factor (r) 

• A global pause duration modification factor (d) 
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• A global pause rate modification factor (f) 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Stylistic speaking rate transformation 

 

The global duration modification factor, r, is determined as the ratio of the 

average target training utterance duration to the average source training utterance 

duration using: 

 

 

   (33) 

  

 

where N is the number of parallel training utterances, and Ds(i) and Dt(i) are the total 

duration of the ith source and targe t training utterances respectively excluding silence in 

the beginning and at the end of the utterances. This factor is used in fixed amount 

duration scaling. 
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Figure 6.9. Long pause duration modification 

 

The global pause duration modification factor, d, is determined using: 

 

  

(34) 

 

 

where Ms is the number of utterances in the paragraph to be transformed, Mt is the 

number of utterances in the target training paragraph, ps(i,i+1) and pt(i,i+1) are the 

pause duration between ith and (i+1)th source and target utterances in the corresponding 

paragraphs respectively. This factor is used in fixed amount scaling of pauses between 

sentences during transformation. If d>1.0, the durations of the long pauses should be 

expanded and if d<1.0, they should be compressed. Figure 6.9 shows an example for 

long pause duration expansion. 

 

The global pause rate modification factor, f, is determined using: 
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(35) 

 

 

where Ps is the total number of long pauses in the source paragraph recording to be 

transformed and Ds is its total duration in seconds. Pt is the total number of long pauses 

in the target training paragraph and Dt is its total duration in seconds. f is used in 

inserting or deleting pauses in the source utterances to be transformed. If f>1.0, pauses 

need to be inserted and if f<1.0 pauses need to be removed. For inserting pauses, the 

energy contour is extracted and low energy regions corresponding to silence are 

determined using the phonetic alignment information also. If an appropriate low energy 

region is found between two consecutive pauses, a new pause with average target long 

pause duration is inserted in the middle of the low energy region. If such a region 

cannot be found, no insertion is performed. 

 

Note that r, the global duration modification should be considered when 

estimating d and f since global duration modification is first performed by PSOLA. 

Then, the modifications as required by d and f are applied. First, pause 

insertion/deletion is applied. Each inserted pause has the average target pause duration. 

Then, all pauses are extracted/compressed with the global pause duration modification 

factor d to match the target characteristics. For f>1.0, new pauses are inserted into 

appropriate locations. For f<1.0 part of the long pauses are deleted. In order to prevent 

distortion at label boundaries only the middle 80% of the pauses are deleted. 

 

6.4. Evaluations  

 

6.4.1. Correlation Analysis of Pitch Contour Slopes 

 

We have analyzed the differences of sentence and segment-level slope with 

respect to the level of proficiency in the American English language of the source and 

the target speakers. For this purpose, we have used 106 phonetically balanced 

utterances in English collected from two male native American English speakers 
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(NAT1, NAT2) and one male non-native American English speakers (NON). We 

extracted the sentence and segment-level slopes as explained in the previous sub-

sections. Two source-target pairs are formed as shown in Table 6.2. For each source-

target pair, the normalized cross-correlation of the sentence- level and segment- level 

slopes extracted from the source and the target training data are computed. The results 

in Table 6.2 show that the correlation between the sentence slopes of the source and the 

target speaker is lower for the nonnative source speaker. Therefore, the difference 

between the slope patterns of the nonnative-native source-target pair is larger when 

compared to the native-native source-target pair. Performing slope transformation using 

the methods described above, it might be possible to make the nonnative source speaker 

closer to the target. In the following subjective listening test, we investigate the 

correctness of this hypothesis. 

 

Source Target Source 
ID 

Target ID Correlation 
(Sentence) 

Correlation 
(Segment) 

Non-native Native NON NAT2 0.4578 0.4243 
Native Native NAT1 NAT2 0.7286 0.6167 

 

Table 6.2. Correlation analyses for sentence and segment- level slopes for nonnative-

native and native-native source-target speaker pairs 

 

6.4.2. Subjective Test 1: Stylistic Pitch Transformation 

 

In order to examine the effect of the proposed stylistic pitch transformation 

methods on voice conversion performance, we have designed a forced-choice AB 

preference test. For this purpose, a male native American English speaker who speaks 

Turkish with American English accent was employed as the target. The source speaker 

was a male, compound bilingual Turkish and American English speaker. Five subjects 

were first presented with ten target recordings in Turkish and were told to focus on the 

speaker’s accent in speaking Turkish. They were then presented with pairs of voice 

conversion outputs using two different pitch transformation methods. They were asked 

to select the item in the pair that is closest to the target speaker’s accent. There were 

three different cases concerning pitch transformation: 
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• P0: No pitch transformation 

• P1: Pitch mean and variance transformation 

• P2: Pitch mean, variance, sentence slope, and segment slope transformation 

 

Vocal tract transformation was identical for all three cases using the frame 

weighting based method described in Chapter 4. All six combinations of pairs using the 

three methods are generated for four utterances in Turkish. Therefore, the subjects have 

scored 24 pairs in total. Table 6.3 shows the preference percentages of the subjects 

among all pairs: 

 

Pair Result 

P0 vs P1 P1 was preferred over P0 by 75.0% 

P0 vs P2 P2 was preferred over P0 by 85.0% 

P1 vs P2 P2 was preferred over P1 by 67.5% 

 

Table 6.3. Preference percentages among all pairs 

 

In the second part of the test, the subjects were asked to rate the MOS quality of 

the three different transformation outputs. For each case, they were presented with four  

recordings. Therefore, the subjects have listened to twelve  outputs in total. Prior to test, 

they were provided with the reference set of recordings in Table 5.7 to provide a 

baseline in their judgments. The standard mean opinion scale is used for the judgments 

on quality as given in Table 5.10. The results of the subjective quality test are shown in 

Table 6.4. The MOS quality of using no pitch transformation is the highest as expected 

since there is no additional pitch processing distortion. The MOS-based quality scores 

for the two pitch transformation methods are fairly close. Therefore, the proposed slope 

modification strategy does not result in a large quality reduction. Considering the 

contribution it makes for making the output closer to the target speaker’s accent, the 

slight reduction in quality is negligible. 
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Method MOS 

P0 3.9 

P1 3.5 

P2 3.4 

 

Table 6.4. Results of MOS-quality test for stylistic pitch transformation 

 

6.4.3. Subjective Test 2: Stylistic Speaking Rate Transformation 

 

For the evaluation of the proposed stylistic speaking rate transformation 

algorithm, the same source and target speaker pair used in the subjective tests of 

Section 6.4.2 was employed. A separate paragraph in English was recorded from the 

target. The source speaker recorded another paragraph in Turkish and this paragraph 

was transformed using the proposed stylistic speaking rate transformation algorithm. As 

the baseline method, we use the time varying duration transformation approach as 

described in Section 6.3.1 and in (Arslan, 1999). The training set for vocal tract 

transformation consisted of 50 utterances in English. The vocal tract transformation 

method described in Chapter 4 was used with identical parameters in both cases. For 

pitch transformation, only the mean of the target speaker is matched in order to 

minimize additional distortion from pitch processing. The global duration modification 

factor was estimated using 50 training utterances for vocal tract transformation. The 

global pause duration modification factor and the global pause rate modification factor 

were estimated using the target paragraph recording in English and the source 

paragraph recording in Turkish. 

 

In the first part of the subjective test, ten subjects were presented with the original 

target recording for the paragraph in English and the transformed paragraph in Turkish 

using two duration transformation methods: Time-varying duration transformation and 

stylistic speaking rate transformation. The subjects were asked to decide which method 

sounded closer to the target speaker’s style in terms of speaking rate and rhythm. They 

were also allowed to respond that they did not observe any differences. Table 6.5 shows 

the subject responses. Seven subjects selected the proposed method over the baseline 
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method and two subjects preferred the baseline method over the proposed method. One 

subject reported that he did not hear significant difference between the two methods. 

 

 Baseline  Proposed No Difference 

Total Preferred 2 7 1 

 

Table 6.5. Subject preferences between the baseline and the proposed speaking 

rate transformation algorithms 

 

In the second part of the test, ten utterances from each paragraph were presented 

to five subjects for MOS scale based quality assessment. The reference set along with 

the corresponding MOS values given in Table 5.7 was presented to the subjects prior to 

the experiment. They assessed the quality of the outputs using the instructions given in 

Table 5.10. Table 6.6 shows the results. The sentences extracted from the paragraph 

using the stylistic speaking rate transformation algorithm were assigned slightly higher 

MOS values. However, the difference is not very significant and we can conclude that 

the proposed method and the baseline method result in comparable quality. 

 

 Baseline  Proposed 

MOS 3.6 3.7 

 

Table 6.6. MOS values for baseline and proposed duration transformation algorithms 
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7. EVALUATIONS 

 

7.1. Database 

 

A cross- lingual database is designed for evaluations in this study. The database 

consists of recordings of native American English speakers who can read Turkish texts, 

native Turkish speakers who speak American English with foreign accent, and 

compound bilingual speakers who can speak both language without foreign accent. 

 
As the text material,  240 utterances in English were written down first. The 

utterances contained sentences that are commonly used in daily- life and easy to read, 

i.e. “I had a cheese sandwich for breakfast”. Special care was taken to cover each 

phoneme in the SAMPA phoneme set for American English at least three times. An 

English language teacher checked and corrected all the utterances in terms of semantics 

and grammar. TIMIT phonetic transcriptions are obtained by using the TIMIT 

(Garofolo, et. al., 1990) and CMU (CMU, 1996) pronunciation dictionaries. The 

transcriptions are converted to SAMPA by using the conversion table given in 

Appendix B. 

 
As the test set, 40 utterances in Turkish were written down that cover all 

phonemes of the Turkish SAMPA phoneme set. The SAMPA transcriptions were 

obtained by using tables in the Appendix B. As Turkish is a phonetic language, no 

pronunciation dictionary was required for the conversion. The list of English training, 

English transformation and Turkish transformation sets are given in Appendix A. 

 

A set of twenty utterances in English and five utterances in Turkish were selected 

for trial recording sessions. The trial sessions were performed at a private language 

school. Five female and five male English teachers were selected as the native 

American English target voices. The teachers were also able to speak Turkish at 

different levels of proficiency. The trial session was performed in order to do initial 

voice conversion tests and to evaluate the proficiency of the speakers in Turkish 
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language. Among these ten speakers, three male and three female speakers who can 

speak Turkish better were selected as the final target set. 

 

As the source speaker set, two groups of speakers were recorded: Native 

Turkish speakers who can speak American English with foreign accent (three female, 

three male), and compound bilingual American English and Turkish speakers (two 

female, one male). Two paragraphs were recorded from all source speakers: A 

paragraph in English describing New York City, and another paragraph in Turkish 

describing Istanbul. The target speakers also recorded the paragraph in English. These 

paragraphs were used for prosody transformation tests as described in Chapter 6. The 

final cross- lingual voice conversion database consisted of the source and target 

speakers given in Table 7.1. 

 

Speaker 
Type 

Proficiency 
in Training 
Language 

Proficiency in 
Transformation 

Language 

# Female # Male Total 

Source L2 Advanced Native 3 3 6 

Source Native Native 2 1 3 

Target Native L2 Beginner 3 3 6 

 

Table 7.1. Speakers in the cross- lingual voice conversion database 

 

The final recordings were collected in an acoustically isolated recording room at a 

sampling rate of 44100 Hz and were stored as 16-bit, mono, PCM files. A set of high 

quality recording equipments were used: 

 

• M-Audio Fast Track USB sound card 

• Rode NT2-A multi-directional condenser microphone with a windscreen that 

prevents pops 

• TubePre microphone pre-amplifier 

• Phillips HP95 headphones 
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• A PC with an LCD monitor, mouse, and keyboard inside the recording room 

and the hardcase outside the room in order to prevent fan noise from the 

computer 

• High quality XLR microphone cables 

 

7.2.  Subjective Test 1: Effect of Source Speaker Proficiency in Training and 

Transformation Languages on Performance 

 

In our previous work, we have focused on the problem of source speaker (donor) 

selection from a set of available speakers that will result in the best quality output for a 

specific target speaker’s voice (Turk and Arslan, 2005). For this purpose, we have 

collected a well-controlled monolingual voice conversion database consisting of 20 

native Turkish speakers (10 male, 10 female). 180 conversions that cover all male-to-

male and female-to-female voice conversion combinations were performed using a 

codebook mapping based method. A listening test was carried out  in order to determine 

the subjective scores for similarity of the output to the target speaker’s voice and the 

output quality. The results indicated that selecting the appropriate source speaker is 

likely to improve monolingual voice conversion performance. 

 

In the case of cross- lingual voice conversion, we expected to observe performance 

variation depending on the proficiency of the source and the target speakers in the 

training and transformation languages. In order to examine the effect of source speaker 

proficiency on training and test languages on voice conversion performance, a 

subjective listening test is designed. The cross- lingual voice conversion database 

described in Section 7.1 was employed. The training language was American English 

and the transformation language was Turkish. Three types of source speaker voices 

were transformed to native American English target speakers’ voices using the vocal 

tract transformation method described in Chapter 4: 

 

• S1: Native American English, L2 Turkish speakers 

• S2: Compound bilingual Turkish and American English speakers 

• S3: Native Turkish, L2 American English speakers (3 female, 3 male) 
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There were three female and three male target speakers. Only male-to-male and 

female-to-female transformations were considered in order to reduce distortion due to 

excessive amounts of pitch scaling for prosody transformation. The source-target 

combinations are shown in the following table. 

 

Source Type  # Sources # Targets # Source-Target pairs  
S1 2F, 2M 3F, 3M 2Fx3F + 2Mx3M = 12 
S2 2F, 1M 3F, 3M 2Fx3F + 1Mx3M = 9 
S3 3F, 3M 3F, 3M 3Fx3F + 3Mx3M = 18 

 TOTAL 39 
 

Table 7.2. Source-target combinations (F: Female, M: Male) 

 

Training was performed using 50 identical utterances in American English for all 

source and target pairs. Then, one utterance in Turkish was transformed using the vocal 

tract transformation method described in Chapter 4. For prosody transformation, only 

mean pitch is adjusted to match the target mean.  

 

The subjects were presented with triples of sound recordings which contained two 

voice conversion outputs with different source speaker types and a target recording in 

American English. They were asked to select the voice conversion output that sounds 

closer to the target speaker’s voice. For each of the three male and three female target 

speakers, S1-S2, S1-S3, and S2-S3 combinations are prepared as shown in the 

following table. 

 

Gender S1-S2 S1-S3 S2-S3 TOTAL 
Male-to-male 9 9 9 27 

Female-to-female 9 9 9 27 
TOTAL 18 18 18 54 

 

Table 7.3. Subjective listening test material 

 

Five subjects participated in the listening test. The test results are shown in Table 

7.4. We observe that: 
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• The subjects did not identify significant difference between S1 and S2 since 

the preference rate the S1-S2 group is not much greater than 50%, i.e. 

percentage of choosing one source speaker type over the other by chance. 

However, there is a slight tendency to prefer native American English source 

speakers over bilingual source speakers. 

• Native American English source speakers resulted in significantly better 

performance as compared to native Turkish speakers. This result is expected 

and it confirms our previous informal observations. In the case when a native 

Turkish source speaker is employed in an American English to Turkish voice 

conversion application, the source and the target training databases are likely 

to contain more variation in terms of accent. These differences cause a 

reduction in similarity to the target speaker’s voice. 

 

S1 preferred 
over  S2 

S1 preferred 
over S3 

S2 preferred 
over S3 

56.7% 81.1% 68.9% 
 

Table 7.4. Preference rates between different source speaker types 

 

Source Speaker Type  MOS 

S1: Native American English 3.97 

S2: Compound Bilingual 3.70 

S3: Native Turkish 3.55 

 

Table 7.5. MOS test results for the effect of source speaker proficiency in the 

training and test languages 

 

In the second part of the test, MOS-based quality of transformation utterances was 

evaluated. For this purpose, eight transformation outputs for each group were presented 

to the subjects. The MOS quality testing procedure described in Section 6.4.2 was 

performed. Table 7.5 shows the test results. Although there is no significant difference 

between S1 and S2 type of source speakers considering the similarity to target speaker, 
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the quality is significantly better when a native American English source speaker is 

used. 

 

7.3. Subjective Test 2: Comparison of the Proposed and Baseline Algorithms  

 

In order to compare the proposed methods with the baseline algorithm, a 

subjective listening test is designed. For this purpose, all methods described in this 

study are applied. The target was a native male American English speaker and the 

source was a male bilingual Turkish and American English speaker. The training set 

consisted of 106 sentence utterance recordings in English. The transformation set was 

20 sentence utterance recordings in Turkish. In an ABX test, the outputs of the 

proposed cross- lingual algorithm are presented to 14 subjects along with the 

corresponding baseline results and an original target recording. The baseline algorithm 

employed Sentence-HMM based alignment, state-averaging to estimate the vocal tract 

transformation function, and transformation of the mean and variance of pitch. The 

proposed method employed: Phonetic-HMM based alignment, frame weighting based 

vocal tract transformation function estimation, transformation of the mean and variance 

of pitch, and stylistic pitch transformation. Speaking rate transformation was not 

applied since the transformed recordings were single sentence utterances. The subjects 

were asked to judge which output is more similar to the target voice. A total of 20 pairs 

of outputs using the baseline and the proposed methods are presented. The proposed 

method was preferred 251 times out of the 280 cases resulting in a preference rate of 

89.6%. All test pairs were presented in random order. The first item in each pair was 

also shuffled randomly. 

 

In the second part of the test, the subjects were asked to rate the MOS-based 

quality of the baseline and the proposed methods, presented in random order. The 

testing procedure is identical with the one described in Section 6.4.2. The subjects have 

scored the 20 outputs used in the preference test. The MOS quality for the baseline 

method was 3.59 and 3.74 for the proposed method. 
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8. CONCLUSIONS 

 

 

Development of high quality cross- lingual voice conversion techniques will 

provide a deeper understanding of human language and its perception. It will be 

possible to improve naturalness in man-machine interaction by providing the means to 

represent voices in a compact and easily adaptable manner. Inspired by these facts, a 

cross- lingual voice conversion framework is developed in this study. The proposed 

framework has a number of advantages over the state-of-the-art counterparts: 

 

• Phonetic-HMM based alignment that can handle multi- lingual data and 

perform alignment and segmentation in cross- lingual databases in a robust 

manner is developed 

• Context-matching based training can be employed to reduce one-to-many 

mapping problems as well as to employ non-parallel training databases in 

cross- lingual voice conversion 

• Weighted speech frame mapping based vocal tract transformation function 

estimation enables detailed transformation of the vocal tract characteristics 

while keeping continuity and smoothness at desired levels 

• Stylistic prosody modeling and transformation is integrated which may help to 

make the voice conversion output sound closer to the target voice without 

increasing additional processing distortion significantly in cross- lingual voice 

conversion applications 

• A high-quality cross- lingual database is collected from bilingual speakers with 

different levels of proficiency in training and transformation languages and 

employed in subjective and objective performance evaluations 

 

In Chapter 4, a robust automatic alignment and segmentation module that can 

handle multi- lingual data is developed. In order to compare the alignment performance 

in an objective framework, an alignment mismatch score is proposed. The alignment 

mismatch score is a measure of the mismatch between the mappings among source and 
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target speech frame indices using two different alignment methods. This measure is 

employed to show that Phonetic-HMM based alignment results in significantly better 

performance as compared to the Sentence-HMM based counterpart. We have also 

analyzed the performance of the Phonetic-HMM aligner by combining speech 

databases in English and Turkish. We have shown that adjusting the number of states 

for each phoneme according to the number of observations, performance of the 

Phonetic-HMM based alignment can be significantly improved. Another objective test 

was performed to show that Phonetic-HMM based alignment results in significantly 

lower LSF distance to the target voice both in text- independent and text-dependent 

modes. 

 

The proposed Phonetic-HMM based segmentation and alignment framework 

opens up a number of interesting topics for future research. First of all, it will be 

interesting to investigate the extension of the phonetic models to more than two 

languages and perform evaluations using multi- lingual databases. Another future 

research topic is the employment of language independent phoneme models as used in 

multi- lingual TTS engines. This may help to improve alignment performance further in 

cross- lingual voice conversion. Additionally, integration of cross- lingual voice 

conversion techniques with multi- lingual text-to-speech synthesis will become an easier 

task once phonetic information is extracted in a unified framework. 

 

In Chapter 5, a number of methods were proposed for detailed estimation of the 

vocal tract transformation function. The development of the robust and speaker-

independent alignment method in Chapter 4 enabled the employment of information in 

the training data at the level of individual speech frames. In the transformation stage, a 

weighted average of the closest source and target speech frame parameters were 

employed in the estimation of a detailed time-varying vocal tract transformation filter. 

The proposed method reduced the problems of excessive smoothing. Combined with 

context-based matching to restrict the search range in transformation, one-to-many 

mapping problems were reduced. Restricting the search range resulted in lower 

memory requirements during transformation since all training data need not be loaded 

into the memory to perform the search. The employment of context information in 
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transformation also enabled using non-parallel training databases in cross- lingual voice 

conversion. The final topic of Chapter 5 was the assessment of vocal tract 

transformation performance using objective measures. The performances of well-

known objective measures in speech processing research including spectral distortion, 

frequency weighted spectral distortion, LSF distance and weighted LP cepstral distance 

were compared in a statistical testing framework. Results indicated that LSF distance 

performs significantly better in a number of vocal tract modification and transformation 

scenarios. Therefore, it was employed in evaluations regarding vocal tract 

transformation performance throughout the study. We have compared the performances 

of the baseline and proposed methods in objective and subjective tests. The proposed 

method performed significantly better both in terms similarity to the target speaker’s 

voice and quality as compared to the baseline method when parallel training databases 

are available. There is a significant performance reduction in the case of non-parallel 

databases. 

 

Since vocal tract characteristics are one of the most important features that 

characterize a given speaker’s voice, numerous methods have been proposed for vocal 

tract transformation as discussed in Chapter 1. Our preliminary results and comparisons 

with the outputs of other voice conversion methods show that weighted codebook 

mapping as well as the proposed method outperforms state-of-the-art algorithms in 

terms of vocal tract transformation performance. However, a formal evaluation in the 

context of cross- lingual voice conversion has not yet been performed which will be a 

subject for future research. A combination of different approaches may improve 

robustness to speaker and language variations and enhance voice conversion 

performance. 

 

As the baseline algorithm does not support non-parallel training at all, the 

proposed method provides a useful framework for future research in cross-lingual voice 

conversion using non-parallel databases. Improvements in mapping phonemes of 

different languages to each other and performing language independent phonetic 

training as in the case of multi- lingual text-to-speech synthesis are likely to improve 

cross- lingual voice conversion performance using non-parallel training. 
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Chapter 6 focused on the problem of prosody transformation in a cross- lingual 

context. A pitch contour modification method was developed which performs stylistic  

pitch transformation. The algorithm involved modeling and transformation of sentence 

and voiced segment based slopes of pitch contours in addition to the standard mean and 

variance transformation method. A speaking rate transformation algorithm is developed 

in order to compensate for overall speaking rate differences as well as rhythm and local 

differences. The long pause modification strategy resulted in closer output to the target 

speaker’s voice in terms of accent. We have evaluated the performance of the proposed 

stylistic prosody transformation techniques in the context of accent transformation and 

have shown that these techniques help to improve similarity to target speaker’s voice 

without adding extra processing distortion. 

 

 Future improvements in cross-lingual prosody transformation could be possible 

by employing large, multi-speaker databases which are also rich in prosodic content. 

Significant progress has already been achieved in text-to-speech synthesis and speaker 

identification research by employing data driven methods for prosody modeling. 

Integration of information from these large databases into the cross- lingual voice 

conversion framework is very likely to improve prosody transformation performance. 

As an example, it would be interesting to examine the differences in the stylistic 

prosody patterns of two languages using databases rich in prosodic content, classify 

speakers according to their styles, and develop robust prosody modification methods 

between different prosody-style classes. Once the prosody-style classes are determined, 

the source and the target speaker can be assigned to one of these prosody-style classes. 

Then, prosody transformation can be performed by using all information available in 

the databases rich in prosodic content. 

 

 The proposed stylistic pitch transformation method requires parallel training 

databases. In order to extend the proposed method to non-parallel databases, a standard 

prosody labeling strategy like the Tones and Break Indices (ToBI) might be employed 

(Silverman, et. al., 1992). Using a prosody labeling framework, the mapping between 

the source and target prosodic events can be determined and used in prosody 

transformation. 
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Another important topic for future research in cross-lingual prosody 

transformation is the development of new and robust signal processing techniques for 

prosody modification. State-of-the-art methods perform signal processing either in a 

fully parametric manner or in a non-parametric manner. Parametric methods like 

sinusoidal modeling and modification have the advantage of producing more stable 

output by providing direct control on the model parameters. Usually large amounts of 

modifications can be performed with ease and less quality reduction as compared to the 

non-parametric case. The disadvantage is the reduction in naturalness due to model 

based speech signal generation. On the contrary, non-parametric methods like the FD-

PSOLA result in very natural output for small to medium amounts of modifications. 

The major disadvantage of non-parametric methods is the absence of control over the 

output signal in a parametric manner. For example, phase discontinuities and 

mismatches may result in severe distortions in FD-PSOLA based prosody 

modifications. It is fairly easy to control and correct such problems in a parametric 

framework by simply adjusting a set of parameters. A combination of parametric and 

non-parametric approaches may help to improve the quality and robustness of signal 

processing techniques for prosody transformation. Similar hybrid models have already 

been applied for text-to-speech synthesis with success (Min and Ching, 1998). The 

employment of hybrid techniques that enable a larger range of natural sounding 

modifications can be used for more detailed stylistic prosody modification. 

 

 Chapter 7 provided a description of the cross- lingual voice conversion database 

that is employed in the evaluations. A subjective test is performed to determine the 

dependence of cross- lingual voice conversion performance on source speaker 

proficiency in the training and transformation languages. We have shown that native 

American English source speakers and compound bilingual source speakers perform 

equivalently well regarding similarity to the target speaker’s voice. The quality was 

better in the case of native speakers. However both bilingual and native American 

English source speakers resulted in better quality output as compared to native Turkish 

source speakers. The performance of the proposed cross- lingual voice conversion 

algorithm was also compared with the baseline algorithm in a subjective test. We have 
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shown that the proposed algorithm outperforms the baseline algorithm both in terms of 

similarity to target voice and quality in cross- lingual voice conversion. 

 

For subjective evaluations, we have focused on a restricted case where the 

training language was American English and the transformation language was Turkish.  

Testing more than two languages was fairly difficult since native subjects in all 

transformation languages would be required. A future collaboration among voice 

conversion researchers from different countries may facilitate testing all combinations 

of training and transformation language combinations and comparison of results. For 

this purpose, a cross- lingual voice conversion with parallel and non-parallel training 

databases will be required. The database collected in this study may be translated to 

other languages easily and can be used as part of the multi- lingual database. 

 

State-of-the-art voice conversion systems can only make use of information from 

two speakers. Employing large multi-speaker databases with data-driven knowledge 

extraction techniques lead to significant improvements in different areas of speech 

processing technology. Integration of these data-driven techniques may help to improve 

both monolingual and cross- lingual voice conversion performance significantly. For 

this purpose, a given speaker can be mapped on a large speaker database and can be 

represented as a combination of other speakers for which large amounts of data is 

available. Our preliminary results in monolingual voice conversion have shown that 

using a multi-speaker mapping and weighting strategy, the vocal tract spectrum of a 

given speaker can be successfully modeled. However, further research is required for 

the assessment of performance in monolingual voice conversion as well as for problems 

in automatic mapping and weighting in cross- lingual voice conversion. 
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APPENDIX A: TEXT MATERIAL FOR CROSS-LINGUAL VOICE 

CONVERSION DATABASE 

 

English Training 

 

• A clean plate please! 

• Do you need a new toothbrush? 

• I walk to school everyday. 

• I suppose you will need to decrease the microphone gain level for less noise. 

• When do you serve breakfast? 

• What would you like to drink? 

• She will be able to travel to fifteen countries with a single ticket. 

• Don't forget to buy ham on your way home! 

• I don't usually drive at nights. 

• Can you please tell the guests to go to the meeting room? 

• He should send his CV to big companies. 

• What's your shoe size? 

• Three bottles of fresh orange juice please! 

• You should not drink too much cold water. 

• You should try to see things from his viewpoint. 

• Can you please send me the receipt via fax? 

• Do you approve the changes? 

• You don't want to stay at a second-class pension. 

• Can you please mail me the invoice? 

• When does the next train leave? 

• You should change clothes before going out. 

• Three employees were poisoned due to gas leakage. 

• These brown mushrooms are extremely poisonous. 

• He will join our department next week. 

• All equations should be in boldface characters. 
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• Can you switch to the news channel? 

• Please adjust your tables to an upright position. 

• She will need to cancel the flight reservation. 

• You should swim half an hour each day to strengthen your arm muscles. 

• This street is known for being crowded every time of the day. 

• Her ex-boyfriend moved to Washington last year. 

• Can you help me open the window? 

• Is it expected to rain today? 

• It is smart to choose the most reliable travel agency for international journeys. 

• We prefer traveling by train for its comfort and cheap tickets. 

• She had two glasses of diet coke. 

• We hope that you'll enjoy staying at our hotel. 

• Tell him to bring a cup of coffee and cream! 

• You will be responsible for updating databases and checking the old entries. 

• We are going bowling tonight. 

• Maintaining your composure is important for job interviews. 

• The computer monitors are produced using the most recent technology. 

• My favorite meals are meatballs and French fries. 

• Could you give me instructions to find your office by car? 

• I want to register for a new phone number. 

• He should work hard for success. 

• He told me that you have started playing tennis. 

• He likes fishing and long walks. 

• Inappropriate storage conditions may result in food spoilage. 

• Can you please buy a newspaper form the market? 

• She passed all her fifth grade exams. 

• Where can I find the cleaning stuff? 

• Proceed to the right at the second turn. 

• The hotel has its own beach and bar. 

• Would you like more ice for your drink? 

• Wealthy people often prefer self contained houses. 
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• The most beautiful present was a cashmere sweater. 

• Is it forbidden to play football in the school yard? 

• The teacher can speak six languages perfectly. 

• A group of migrating birds is approaching the lake. 

• The total amount of sales turned out to be greater than expected. 

• She is acting too paranoid about safety. 

• Please ask her if she needed anything else. 

• Did you manage to catch your appointment? 

• When will the project be completed? 

• We'll buy new paintings for the living room . 

• Her yellow skirt faded after she washed it. 

• Speech therapy helps mentally disordered children. 

• Jet charters have started between Paris and Prague. 

• Only a thief might have broken the rear window. 

• Push the green button to get off! 

• How long will the whole journey take? 

• The optical illusions presentation attracted all students. 

• We ran out of time for tests and enhancements. 

• Did she enjoy the two weeks holiday? 

• The doors will be fixed on Monday. 

• Sit down and fasten your seat belt as soon as you get on the aircraft! 

• His sister dislikes meat dishes. 

• How long have you been teaching decision making classes? 

• My cousin is brilliant in physics and chemistry. 

• Can you please serve a bottle of red wine with two glasses? 

• I don't believe that this old movie will be in theaters again! 

• They have just finished painting the room. 

• Can you please forward a copy of this fax to our partner? 

• The company has increased its profits by twenty percent as compared to the 

previous year. 

• It's hard to find a suitable carpet for the living room. 
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• I had a cheese sandwich for breakfast. 

• How many employees does your company have? 

• She wanted to have nothing but a long sleep. 

• The explosion destroyed most of the statues. 

• The whole album was recorded in just two weeks. 

• Never exceed fifty miles per hour while driving! 

• Mental confusion might be a symptom of a serious problem in the brain. 

• Where can I find the cheapest computer hardware? 

• Have you ever had a dessert that contained green apples? 

• The joint conference on speech and music technology was quite interesting. 

• Monthly subscription will cost you thirty five dollars. 

• An identification card and a recent photograph are required for application. 

• How much cement will they need? 

• They own a large factory in which two thousand eight hundred and thirty 

workers are employed. 

• An increase of fifteen percent of salaries is expected. 

• The English alphabet consists of twenty six symbols. 

• How many attorneys did you employ? 

• Hold your breath for thirty seconds! 

• It was just a casual conversation. 

• Cubic yard is a measure of volume. 

• The color of the curtains does not match that of the rug. 

• They liked the sofa at the corner of the room. 

• There is not sufficient gas pressure on the fourth floor. 

• They've decided on the kitchen ceramics. 

• There were two coils of wire near the door. 

• Can I examine the figures once more? 

• They ate out at the restaurant opposite their house. 

• The letter he saw on the desk was an invitation. 

• How hot is boiling water? 

• Sweden is in the north of Europe. 
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• What is the inverse operation for division? 

• He was appointed as the president of the council. 

• I forwarded the telephone message to the secretary. 

• There are no problems with the internet connection. 

• The trajectories of the planets around the sun are perfect ellipsoids. 

• My father collects toy cars. 

• The recordings were not intelligible because of noise. 

• The new fertilizer will accelerate the growth of corn. 

• He is the author of twenty three books. 

• Can you turn off the air conditioning? 

• The hotels on the southwest are fully booked during August. 

• The box was covered with a golden foil. 

• Turn off the television before you go out! 

• The soil is pretty moist in the backyard. 

• Please pay your debt by the end of the month. 

• I would like to get the recipe of this sauce. 

• He was appointed as the manager of the new public relations company. 

• Air pressure measurements are correlated with daily temperature. 

• He is the manager of a financial supervision company. 

• Jogging is a favorite leisure activity in our town. 

• For refunds you should apply to the office on the right. 

• Tomorrow will be the longest day of the year. 

• Can I pay the check from my personal account? 

• Can I return the shirt I purchased last week? 

• Can I pay the ticket fare by credit card? 

• Place the napkins on the right of the spoons! 

• I had a long bike ride for five hours. 

• The red t-shirt looks better. 

• There are twelve species that can survive in the desert. 

• The teacher wrote the famous equation on the board. 

• I always had an interest in overseas voyages. 
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• A piece of cloth lies on the floor. 

• Where is the missing items desk? 

• Did you get the letter from him? 

• They left before the show was over. 

• The voice of the actor changed as he got older. 

• The annual advertisement budget was over half a million dollars. 

• The house had two toilets. 

• The visit of the prime minister is postponed. 

• The product will be available in the market this weekend. 

• The project will be cancelled in the event of financial difficulties. 

• The compass will show the direction we are going to. 

• It's hard to believe that they started as an amateur garage band. 

• What is the maximum speed limit in kilometers? 

• Can you throw this heavy ball over the fence? 

• Did you hear any rumors about the earthquake? 

• I strongly recommend the soup of the day. 

• She works as an anesthesiologist. 

• I was late because of the snow. 

• A five degree increase in temperature is expected. 

• The accountant will send the annual financial reports. 

• It takes half an hour for her to reach the office from the house. 

• She was promoted as a software engineer. 

• Drink your milk before having the chocolate! 

• We need your signature for the approval of the modifications. 

• She was a very thin and tall girl. 

• Mary is playing with her wooden toy. 

• For how long have you been a doctor? 

• Can I have a glass of water please? 

• You can taste the most delicious pasta in the city at this cafe. 

• I'm very happy to hear that your test results are not pathological. 

• The cookies that his aunt made did not last for more than ten minutes. 
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• Is it possible to avoid moisture at the basement floor? 

• The company went bankrupt in the next crisis. 

• Vision correction surgeries have become very popular in recent years. 

• He should not leave without an umbrella. 

• The farm workers went on a new strike. 

• How much water should one drink every day for a healthy diet? 

• This mixed salad didn't have enough tomatoes and lettuce. 

• He had a sore throat and slept all Thursday. 

• Who will do the washing? 

• Did you get tired of flying for ten hours? 

• Don't open the oven! 

• She should watch her diet. 

• The meeting will be held in the conference room. 

• It usually rains during this period of the year. 

• Some inclusions affect the quality of diamonds. 

• A powerful storm has started at the ocean coast. 

• Can I try on these pants? 

• I bought a new game for my sister as a birthday present. 

• You can find the application forms at the help desk. 

• You should be at the post office near the bank at half past three. 

• What are the most valuable companies in the stock market? 

• Did I miss the eight fifteen ship? 

• You should first cut the egg plant into slices and then boil it in hot water for 

twenty minutes. 

• The basic goal of massage therapy is to help the body heal itself. 

• The projected light died suddenly. 

• The taxi fares will be re-adjusted. 

• You should get off at the next stop. 

• Can you show the direction it followed? 

• Could you please prepare the invoice according to the company information? 

• Planning serves for better performance. 
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• Did everyone attend the board meeting? 

• The oily substance slipped out of his hand. 

• Avoid long hours of exposure to direct sunlight! 

• In which month should I pay the real estate taxes? 

 

English Test 

 

• How many hours do sports classes take in a week? 

• The headphone cable is broken. 

• You should take a bus when you leave the subway. 

• Could you please turn the volume of your mobile down? 

• Which vegetables can be cooked the most easily? 

• I like to read and listen to music in my spare time. 

• Would you prefer soybeans instead of meat? 

• Don't buy fruits that are not fresh! 

• Using double precision helps to avoid overflow problems in computing. 

• He joined the voice experts group several weeks ago. 

• You need private lessons to improve your painting skills. 

• You should switch off your mobile phone in public transportation vehicles. 

• Which department did you graduate from? 

• The new travel card provides discounts for older people and children. 

• The ratio of the area and the circumference of a circle is proportional to its 

radius. 

• My son is very interested in mathematics. 

• The director will be appointed to a new position. 

• There was a significant drop in the unemployment rate. 

• When was your mother's birthday? 

• This it the most crowded room in the building. 

• Can I ask a question regarding the last section? 

• There is a limit of twenty kilograms for luggage. 

• Does the salad lack lemon and salt? 
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• Wait for half an hour before taking the sugar and flour mixture out of the 

refrigerator! 

• Can you check the second drawer on the left? 

• Both the cat and the dog are sleeping. 

• The balcony had a nice view of the sea and the forest. 

• Does this bus go to the town center? 

 

Turkish Test 

 

• Ucuz ve konforlu bir yolculuk için treni tercih ediyoruz. 

• Deprem söylentilerini duydun mu? 

• Isleminize onay veriyor musunuz? 

• Bu pantolonu deneyebilir miyim? 

• Bu sosun tarifini verir misin? 

• Içkinize buz ister misiniz? 

• Polis komsusunun ifadesine basvurdu. 

• Borsada en degerli bes hisse senedini biliyor musun? 

• Bu otobüs sehir merkezine gider mi? 

• Yeni jetlerdeki otomatik pilot sistemi yenilendi. 

• Son bölümle ilgili bir soru sorabilir miyim? 

• Yengem taze erik göndermis 

• Siparisler nedeniyle hafta içi izinler iptal edildi. 

• Is seyahati nedeniyle mi evde degildin. 

• Sirketinize otomobil ile nasil gelecegimi tarif eder misiniz? 

• Yeni düzenlemeler nedeniyle yolun bir seridi trafige kapali tutuluyor. 

• Yaz tatilini büyük havuzu olan bir otelde geçirecek. 

• Tahtayi süngerle silebilirsin. 

• Telefonda aldigim mesaji sekretere ilettim. 

• Proje kaç ay sonra bitecek? 

• ,Firinin kapagini açma! 

• Bulasiklari kim yikayacak? 
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• Halilari yikadiktan sonra odayi havalandiralim. 

• Ikinci sapaktan saga dönün. 

• Konuklari toplanti odasina alir misiniz? 

• Kitabin üçüncü bölümünün ilk alti sayfasini okuyun. 

• Kizartma yemek zararli mi? 

• Kirmizi gömlek daha güzel görünüyor. 

• Oturma odasina birkaç tablo satin alacagiz. 

• Bugün yagmur yagacagi söyleniyor. 

• Bes dakika içinde havaalanina ulasmis olacagiz. 

• Kira kontratina uygun davranmadigi için dava açtim. 

• Yazilim uzmani olarak basladigi görevinde hizla yükseldi. 

• Eski müdür baska bir okula atanacak. 

• Maaslara yüzde on bes zam yapilacak. 

• Tenis oynamaya basladigini duyduk. 

• Çölde yasamini sürdürebilen on farkli hayvan türü var. 

• Deniz kiyisinda küçük bir tatil köyünde kalmislar. 

• Halamla amcami ziyarete gittik. 

• Genç yasta emekli olacak. 

 

English Paragraph 

New York City is the most populous city in the United States and the most 

densely populated major city in North America. Located in the state of New York, the 

city has a population of over eight point one million within an area of three hundred 

and twenty one square miles.  

The city is a center for international finance, fashion, entertainment, and 

culture, and is widely considered to be one of the world's major global cities with an 

extraordinary collection of museums, galleries, performance venues, media outlets, 

international corporations and financial markets. It is also home to the headquarters of 

the United Nations.  
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The New York metropolitan area has a population of about eighteen point 

seven million, which makes it one of the largest urban areas in the world. The city 

proper consists of five boroughs which would be among the nation's largest cities if 

considered independently. Popularly known as the Big Apple the city attracts large 

numbers of immigrants. Over a third of its population is foreign born. In addition, 

people from all over the United States come for its culture, energy, cosmopolitanism, 

and economic opportunity. The city is also distinguished for having the lowest crime 

rate among the twenty five largest American cities. 

Turkish Paragraph 

 

Türkiye’nin en kalabalik sehri olan Istanbul, dünyada iki kitada yer alan tek 

sehirdir. Sehri iki yakaya ayiran Bogaziçi, Avrupa ile Asya kitalarinin sinirini belirler. 

Artik bir baskent olmasa da Türkiye’nin endüstri, ticaret ve kültür merkezidir.  

 

Tarihi Istanbul sehri üç tarafini Marmara Denizi, Bogaziçi ve Haliç’in sardigi 

bir yarim ada üzerinde yer almaktadir. Sehir stratejik bir bölgede bulunmasi nedeniyle 

hep önemli bir ticaret merkezi olmustur. Üç dünya imparatorluguna baskent olan 

Istanbul’da 1600 yili asan bir süre boyunca 120’den fazla imparator ve sultan hüküm 

sürmüstür.  

 

Ikinci Dünya Savasi’ni takip eden yillarda baslayan ve 1950’den sonra hizlanan 

plansiz gelisme sehrin eski dokusuna zarar vermistir. Disaridan yapilan göçler ile 

nüfusu hizla artan Istanbul kisa sürede tarihi surlarin disina tasmis, sur içi alanlar 

atölye, fabrika ve is yerlerinin istilasina ugramistir. 1980’li yillarda baslayan kurtarma 

hamleleri ile Istanbul yeniden yapilanma sürecine girmistir. Roma sehir surlarinin 

restorasyonuna baslanmis, daha önceki yillara göre temizlik ve bakim konusunda 

Avrupa standartlari yakalanmistir 
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APPENDIX B: COMPARISON OF SAMPA PHONEME SETS FOR 

AMERICAN ENGLISH AND TURKISH 

 
CONSONANTS 

SAMPA 
Symbol 

English 
Word 

SAMPA 
Transcription 

Turkish Word SAMPA 
Transcription 

p pin p I n ip (thread) i p 
b bin b I n balik (fish) b a 5 1 k 
t tin t I n ütü (iron) y t y 
d din d I n dede (grandfather) d e d e 
k kin k I n akil (brain) a k 1 5 
g give g I v karga (crow) k a r g a 
tS chin tS I n seçim(choice) s e tS i m 
dZ gin dZ I n cam (glass) dZ a m 
f fin f I n fare (mouse) f a r e 
v vim v I m ver (give) v e r 
s sin s I n ses (sound) s e s 
z zing z I N azik (food) a z 1 k 
S shin S I n asi (graft) a S 1 
Z measure m E Z @  ̀ müjde (good news) m y Z d e 
h hit h I t hasta (ill) h a s t a 
m mock m A k dam (roof) d a m 
n knock n A k ani (memory) a n 1 
N thing T I N süngü (bayonet) s y N g j y 
r wrong r O N raf(shelf) r a f 
l long l O N lale (tulip) l a l e 
w wasp w A s p tavuk (chicken) t a w u k 
j yacht j A t yat (yacht) j a t 

 
 

Table B.1. Common consonants in American English and Turkish SAMPA phoneme 
sets. 

 
 

VOWELS 
SAMPA 
Symbol 

English 
Word 

SAMPA 
Transcription 

Turkish Word SAMPA 
Transcription 

i ease i z kil (clay) c i l 
e raise r e z keçi (goat) c e tS i 
u lose l u z kul (slave) k u 5 
o nose n o z kol (arm) k o 5 

 
 
Table B.2. Common vowels in American English and Turkish SAMPA phoneme sets. 
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SILENCES AND PAUSES 
SAMPA Symbol Meaning 

+ Epenthetic silence 
# Pause 
## Begin/End 

 
 

Table B.3. Common silence and pause symbols in the American English and the 
Turkish SAMPA sets. 

 
CONSONANTS 

SAMPA Symbol Word SAMPA 
Transcription 

T thin T i n 
D this D i s 

 
 

Table B.4. Distinct American English consonants that do not exist in the Turkish 

SAMPA set. 

 
 

VOWELS 
SAMPA Symbol Word SAMPA 

Transcription 
I pit p I t 
E pet p E t 
{ pat p { t 
A pot p A t 
V cut k V t 
U put p U t 
O cause k O z 
aI rise r aI z 
OI noise n OI z 
aU rouse r aU z 
3` furs f 3` z 
@ allow @ l a U 
@` corner k o r n @  ̀

 
 
Table B.5. Distinct American English vowels that do not exist in the Turkish SAMPA 

set. 
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CONSONANTS 
SAMPA Symbol Word SAMPA 

Transcription 
c kedi (cat) c e d i 
gj genç (youth) gj e n tS 
G sagir (deaf) s a G 1 r 
5 hala (aunt) h a 5 a 

 
 

Table B.6. Distinct Turkish consonants that do not exist in the American English 

SAMPA set 

 

VOWELS 
SAMPA Symbol Word SAMPA 

Transcription 
y kül (ash) c y l 
2 göl (lake) gj 2 l 
1 kil (hair) k 1 5 
a kal (stay) k a 5 

 
 
Table B.7. Distinct Turkish vowels that do not exist in the American English SAMPA 

set 
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CONSONANTS 
TIMIT 
Symbol 

SAMPA 
Symbol 

English 
Word 

TIMIT 
Transcription 

SAMPA 
Transcription 

b b bee b iy b i 
ch tS choke ch ow k tS o k 
d d day d ey D e 

dh D then dh eh n D e n 
dx d muddy m ah dx iy  m V d i  
f f fin f ih n f I n 
g g guy g ay g aI 

hh h hay hh ey h e 
hv h ahead ax hh eh d @ h e d 
jh dZ joke jh ow k dZ o k 
k k key k iy k i 
l l lay l ey l e 

m m mom m aa m m A m 
n n noon n uw n n u n 

ng N sing s ih ng s I N 
nx n winner w ih nx axr w I n r 
p p pea p iy p i 
r r ray r ey r e 
s s sea s iy s i 
sh S she sh iy S i 
t t tea t iy t i 
th T thin th ih n T I n 
v v van v ae n v { n  
w w way w ey w e 
y j yacht y aa t j A t  
z z zone z ow n z o n  
zh Z azure ae zh er { Z 3` 
el l bottle  b aa t el b A t l 

em m bottom b aa t em b A t m  
en n button b ah q en b V ? n  
eng N washington w aa sh eng t ax n w A S N t @ n 
q t (or ?) bat b ae q b { t 

  
 
Table B.8. Mapping between SAMPA and TIMIT phoneme sets for American English. 

The table is a shortened version of the list given in (Hieronymus, 1993) 
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VOWELS 
TIMIT 
Symbol 

SAMPA 
Symbol 

English 
Word 

TIMIT 
Transcription 

SAMPA 
Transcription 

aa A bott b aa t b A t 
ae { bat b ae t b { t 
ah V but b ah t b V t 
ao O bought b ao t b O t 
aw aU bout b aw t b aU t 
ax @ about ax b aw t @ b aU t 
axr @  ̀ butter b ah dx axr b V d r  

ax-h @ suspect s ax-h s p eh k t s @` s p e k t 
ay aI bite b ay t b aI t 
eh E bet b eh t b E t 
ey e bait b ey t b e t 
er 3  ̀ bird b er d b 3` d 
ih I bit b ih t b I t 
ix I debit d eh b ix t d E b I t 
iy i beet b iy t b i t 

ow o boat b ow t b o t 
oy OI boy b oy b OI 
uh U book b uh k b U k 
uw u boot b uw t b u t 
ux u toot t ux t t u t 

 
 

Table B.9. Mapping between SAMPA and TIMIT phonemes for American English. 

The table is a shortened version of the list given in (Hieronymus, 1993) 

 
 

Silences and pauses 
TIMIT Symbol SAMPA 

Symbol 
Meaning 

epi + Epenthetic silence 
pau # Pause 
h# ## Begin/End 

 
 

Table B.10. Mapping between SAMPA and TIMIT phonemes for American English. 

The table is a shortened version of the list given in (Hieronymus, 1993) 
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CLOSURE INSTANTS OF STOPS 
SAMPA 
Symbol 

TIMIT 
Symbol 

Meaning  

- bcl Closure instant before/after b 
- dcl Closure instant before/after d 
- gcl Closure instant before/after g 
- kcl Closure instant before/after k 
- pcl Closure instant before/after p 
- tcl Closure instant before/after t 

 

Table B.11. Mapping between SAMPA and TIMIT phonemes for American English. 

The table is a shortened version of the list given in (Hieronymus, 1993) 
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APPENDIX C: THE PAIR WISE t-TEST 

 

The procedure for performing a pair wise t-test is given in (Hines, et. al. 1990): 

 

 “…Let (X11, X21), (X12, X22), …, (X1n, X2n) be a set of n paired observations, 
where we assume that X1 ~ N(µ1, s1

2) and X2 ~ N(µ2, s 2
2). Define the differences 

between each pair of observations as Dj = X1j-X2j, j=1, 2, …, n. 
  
 The Dj’s are normally distributed with mean 
 

µD = E(X1-X2) = E(X1) – E(X2) = µ1 – µ2     (C1) 
 

so testing hypotheses about equality of µ1 and µ2 can be accomplished by 
performing a one-sample t-test on µD. Specifically, testing H0: µ1 = µ2 against 
H1: µ1? µ2 is equivalent to testing 

  
H0: µD = 0       (C2)  

 
H1: µD ? 0        (C3) 

 
The appropriate test statistic for Equations C2 and C3 is: 

 
 

(C4) 
 
 
 

where 
 
 

(C5) 
 

 
and 

 
 

(C6) 
 
 

 
are the sample mean and variance of the differences. We would reject H0: µD= 0 
(implying that µ1? µ2) if t0 > ta/2, n-1 or if t0 < -ta/2, n-1.” 
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Note that a is the significance level and n-1 is the degrees of freedom for the test. 

a = 0.05 or a = 0.01 corresponding to levels of 95% and 99% respectively are 

commonly used in the tests performed in this study. The ta/2, n-1 values can be found in 

tables of t-distributions. 
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